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Abstract

In this thesis, I approach to algebraic ODEs from Differential Algebra’s point of view.
I look for rational solutions of AODE, I present an algebrogeometric method to decide the
existence of rational solutions of a first-order algebraic ODE and if they exist I give an
algorithm to compute them. This method depends heavily on rational parametrizations,
in particular for autonomous equations on the parametrization of algebraic curves, and for
non-autonomous equations on the parametrization of algebraic surfaces. In the first case I
use a proper rational parametrization � of the curve defined by the equation, regarded as
algebraic equation, as starting point to find a rational solution of the equation. I look for a
rational function f such that ⇡1(� � f), where ⇡1 is the projection on the first coordinate,
is a rational solution of the equation. I show that such a f exists only in two cases. In
the last case, I prove the correspondence between rational solutions of a parametrizable
algebraic ODE and rational solutions of a rational first-order linear autonomous differential
system of two equations in two variables. I provide an algorithm to compute rational
solutions of such system based on its invariant algebraic curves. Rational parametrizations
of such curves are good candidates to be rational solution of the system. Since computing
rational parametrization of algebraic surfaces and the method presented depends heavily
on them. In order to avoid that computation I also study a group of affine transformations
which preserves the rational solvability, in order to reduce, when possible, an algebraic
ODE to an easier one. Moreover I present the results of the implementation of all these
algorithms in two computer algebra system: CoCoA and Singular.
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Introduction

Solving algebraic ordinary differential equations is still a challenge in computer algebra.
After the work by J.F. Ritt, Differential Algebra and later by E.R. Kolchin, Differential
Algebra and Algebraic Groups, the theory of differential equations has been rapidly de-
veloped from the algebraic point of view. In particular, most of the studies of algebraic
ODEs can be seen as a differential counterpart of the one of algebraic equations. Clearly
this last ones are much more studied in computer algebra. The first definition of general
solution of an algebraic ODE appeared in the paper The general solution of an ordinary
differential equations, E. Hubert, 1996. Where is given a method to compute a basis of
the prime differential ideal defining the general component. While in the papers Rational
general solutions of algebraic ordinary differential equations, 2004, and A polynomial time
algorithm for finding rational general solutions of first order autonomous ODEs, 2006, by
R. Feng and X-S. Gao the authors give an algorithm for explicitly computing a rational
general solution of the autonomous algebraic ODE F (y, y0) = 0. The method is based
on the computation of a proper rational parametrization of the corresponding algebraic
curve F (y, z) = 0. This last one is the starting point of my work. Following the papers
Rational general solutions of first order non- autonomous parametrizable ODEs, 2010 and
Rational general solutions of planar rational systems of autonomous ODEs, 2011 by my
advisor F. Winkler, joint with L. X. C. Ngô, I studied how the method ideated by Feng
and Gao works in the case of non-autonomous equations. All the work is based on the will
of finding an efficient algebrogeometric method to compute rational general solutions of
non-linear algebraic ODEs that can be used in the most general cases and, concerning the
algorithmic aspect, of seeing how much can be done with the algebraic tools now available
in common computer algebra systems, for instance, CoCoA and Singular.

The thesis consists of three main chapters 3,4, and 5. In Chapter 3, we give a criterion
of existence for rational general solution of an autonomous first order algebraic ODE
based on Gao’s differential polynomial. Then we present a geometric method to decide the
existence of a rational general solution of a autonomous parametrizable algebraic ODE of
order 1. In the affirmative case this decision method can be turned into an algorithm for
actually computing such a rational general solution. We conclude this chapter with some
examples.

In Chapter 4, we present a geometric method to decide the existence of a rational
general solution of a non-autonomous parametrizable algebraic ODE of order 1. As in
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the autonomous case, in the affirmative case this decision method can be turned into an
algorithm for actually computing such a rational general solution. More precisely, a proper
rational parametrization of the solution surface allows us to reduce the given differential
equation to a system of autonomous algebraic ODEs of order 1 and of degree 1 in the
derivatives, called the associated system with respect to the chosen parametrization. This
often turns out to be an advantage because the original differential equation is typically of
higher degree in the derivative. One of he main result in this chapter is the one-to-one
correspondence between a rational general solution of the associated system and that
of the given differential equation. We give a criterion of existence of rational general
solution of the associated system under a degree bound for the solution. Then we present
a geometric method to compute rational general solutions of the associated system based
on the notion of an invariant algebraic curve of a planar polynomial system. Since the
method presented in this chapter depends heavily on computing rational parametrizations
of algebraic surfaces, that computation is hard, so in order to avoid it, in this chapter we
define a group of linear transformations. The main idea in the construction of the group is
to preserve the rational solvability of the differential equations under the group action.
We use the action of this group on the set of parametrizable algebraic ODE, to transform
the equations into other equations of a special form, for instance autonomous equations.

In Chapter 5, I present the result of the implementation of the methods presented in
chapters 3 and 4, moreover I analyse what can be done so far and what could be the next
steps to improve the method.

Almost all the results in this thesis have already been published, in particular the
proof of Lemma 4.8, Lemma 4.20, Proposition 4.21 and their consequences are original
and the whole chapter 5 is new, moreover it is the first implementation of these methods
in Singular and CoCoA.



Chapter 1

Basics of Algebraic Geometry

In this chapter I make an introduction on basic concepts of algebraic geometry, focusing
on curves, surfaces and on the properties of their parametrizations. The main results in
this chapter are about rationality and properness of a parametrization of an algebraic
curve, these properties will be fundamental in next chapters. In the last section I describe
a way to decide if a rational parametrization of a rational curve is proper by computing
its tracing index. This chapter is based on the contents of [SWPD08].

1.1 Algebraic curves and algebraic surfaces
In this and next chapters we indicate by K an algebraically closed field of characteristic

zero. An algebraic hypersurface S in the n-dimensional affine space An(K) is an algebraic
set defined by a non-constant polynomial f in K[x1, . . . , xn

]. The squarefree part of f
defines the same set S, so we might as well require the defining polynomial to be squarefree.
In particular, if n = 2 and n = 3 we have a plane algebraic curve and an algebraic surface,
respectively.

Definition 1.1. An algebraic hypersurface over K is defined as the set

S =
�

(a1, . . . , an) 2 An(K) | f(a1, . . . , an) = 0
 

for a non constant squarefree polynomial f(x1, . . . , xn

) 2 K[x1, . . . , xn

].

Definition 1.2. A parametrization of a hypersurface S defined by f 2 K[x1, . . . , xn

] is a
mapping

� : Kn�1 ! An(K),

v 7! (�1(v), . . . ,�n

(v))

such that
f(�1(v), . . . ,�n

(v)) = 0,

for each v 2 Kn�1.

1



CHAPTER 1. BASICS OF ALGEBRAIC GEOMETRY 2

In particular we are interested in rational parametrizations which are invertible.

Definition 1.3. A parametrization � of a hypersurface S ⇢ An(K) is called rational if �
i

is a rational function for each i, i.e. �
i

2 K(v1, . . . , vn�1).

Definition 1.4. A hypersurface S ⇢ An(K) is called rational hypersurface if it admits a
rational parametrization.

In this thesis we consider only non-constant polynomials which defines rational curves
or rational surfaces.

Definition 1.5. A parametrization � of a hypersurface S ⇢ An(K) is called proper if �
has an inverse, i.e., there is a rational mapping

⌘ : An(K) ! Kn�1,

x 7! (⌘1, . . . , ⌘n�1)

such that
(⌘ � �)(v) = v

for almost all v, i.e., except for finitely many vectors in Kn�1, and

� � ⌘(x) = x

for almost every x 2 S.
We have an equivalent condition of properness of a parametrization.

Theorem 1.1. Let S ⇢ An(K) be a hypersurface and � a rational parametrization of S.
Then, �(v1, . . . , vn�1) is proper with inverse map ⌘ if and only if

K(�1(v1, . . . , vn�1), . . . ,�n

(v1, . . . , vn�1)) = K(v1, . . . , vn�1). (1.1)

Proof. Suppose that the equation (1.1) is true. Then for each i = 1, . . . , n�1 exist a
i,J

2 K
for J = (j1, . . . , jn) 2 Nn, with only finitely many of them different from zero, such that

v
i

=
X

J

a
i,J

f j1
1 · · · f jn

n

.

Hence, the map
⌘ : (y1, . . . , yn) 7!

� · · · ,
X

J

a
i,J

yj11 · · · yjn
n

, · · · )

is clearly the inverse mapping of �.
If � is proper then exists a rational mapping ⌘ such that ⌘(�(v1, . . . , vn)) = (v1, . . . , vn).
Since ⌘

i

is a rational mapping for each i = 1, . . . , n� 1, we have

v
i

= ⌘
i

(�1, . . . ,�n

) 2 K(�1, . . . ,�n

).

Then the (1.1) follows.
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1.2 Rational curves
Definition 1.6. A rational algebraic curve C is an algebraic hypersurface of dimension 1.
If C is of codimension 1 it is called plane rational algebraic curve.

Definition 1.7. Let C be a plane curve over K defined by f(x, y) 2 K[x, y], and let
P = (a, b) 2 C. We say that P is of multiplicity r on C if all the derivatives of f up to
and including the (r � 1)th vanish at P but at least one rth derivative does not vanish at
P. We denote the multiplicity of P on C by mult

P

(C). P is called a simple point on C if
mult

P

(C) = 1. If mult
P

(C) = r > 1, then we say that P is a multiple or singular point (or
singularity) of multiplicity r on C or an r-fold point.

Definition 1.8. A singular point P of multiplicity r on a plane algebraic curve C is called
ordinary if the r tangents to C at P are distinct, and non-ordinary otherwise.

As we did for the affine case, we can define a curve in the projective plane.

Definition 1.9. A projective plane algebraic curve over K is defined as the set

CP =
�

(a : b : c) 2 P2(K) | F (a, b, c) = 0
 

for a non-constant squarefree homogeneous polynomial F (x, y, z) 2 K[x, y, z].

Definition 1.10. Let C be an irreducible curve defined by f 2 K[x, y]. The homogenisation
of C is the projective curve C⇤ defined by f ⇤ 2 K[x, y, z] the homogenisation of f.

We can apply quadratic transformations (blow-ups) for birationally transforming the
curve into a curve with only ordinary singularities. For such a curve the genus can be
readily determined by proper counting the singularities, so we define the genus of an
irreducible projective curve with only ordinary singularities as follows

Definition 1.11. Let C be a projective curve with only ordinary singularities, and let d
be the degree of C. Then

genus(C) = 1

2

h

(d� 1)(d� 2)�mult
P

(C)(mult
P

(C)� 1)
i

,

for P 2 Sing(C), where Sing(C) is the set of the singular points of C.
Theorem 1.2. Any rational curve is irreducible.

Proposition 1.3. Let C be an irreducible curve and C⇤ its corresponding projective curve.
Then C is rational if and only if C⇤ is rational. Furthermore, a parametrization of C can
be computed from a parametrization of C⇤ and vice versa.

Theorem 1.4. An algebraic curve C is rational if and only if genus(C) = 0.

Let’s now focus on rational parametrizations, first of all we recall now a deep result in
field theory due to Lüroth.



CHAPTER 1. BASICS OF ALGEBRAIC GEOMETRY 4

Theorem 1.5 (Lüroth’s Theorem). Let L be a field (not necessarily algebraically closed),
t a transcendental element over L. If K is a subfield of L(t) strictly containing L, then K
is L-isomorphic to L(t).

Thanks to Theorem 1.1 and Lüroth’s Theorem we get

Corollary 1.6. Every rational curve can be properly parametrized.

Next two theorems will be fundamental in the method presented in Chapter 2 and
Chapter 3.

Theorem 1.7. Let �(t) be a proper parametrization of a rational curve C, and let  (t) be
any other rational parametrization of C. Then

1. There exists a nonconstant rational function ⇢(t) 2 K(t) such that  (t) = �(⇢(t)).

2.  (t) is proper if and only if there exists a linear rational function �(t) 2 K(t), i.e.
�(t) = at+b

ct+d

with a, b, c, d 2 K, such that  (t) = �(�(t)).

Proof. 1. We consider the following diagram:

A1(K) C ⇢ A2(K)

A1(K)

�

�

�1 �   

Then, since is � is a birational mapping, it is clear that ⇢(t) = ��1 �  2 K(t).

2. If  is proper, then by the diagram above we see that � = ��1 �  is a birational
mapping from A1(K) onto A1(K), so we have an isomorphism between the rings of
functions, since A1(K) is a line its ring of functions is K(t). Hence, � induces an
automorphism �̃ of K(t) defined as:

�̃ : K(t) ! K(t),

t 7! �(t).

Therefore, since K-automorphisms of K(t) are the invertible rational functions, we
see that �̃ is our linear rational function.
Conversely, let ⌘ be the birational mapping from A1(K) onto A1(K) defined by the
linear rational function �(t) 2 K(t). Then, it is clear that  = � � ⌘ : A1(K) ! C is
a birational mapping, and therefore  (t) is proper.
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Theorem 1.8. Let C be a rational curve defined over K with defining polynomial f(x, y) 2
K[x, y], and let �(t) = (�1(t),�2(t)) be a parametrization of C. Then �(t) is proper if and
only if deg(�(t)) = max{deg

x

(f), deg
y

(f)}.
Furthermore, if �(t) is proper and �1(t) is nonzero, then deg(�1(t)) = deg

y

(f); similarly,
if �2(t) is nonzero then deg(�2(t)) = deg

x

(f).

If the parametrization �(t) is of the form

�(t) =
⇣�11

�12
,
�21

�22

⌘

,

we define the following polynomials

H�

1 (t, x) = x�12(t)� �11(t),

H�

2 (t, y) = y�22(t)� �21(t).

Theorem 1.9. Let �(t) be a proper parametrization in reduced form of a rational affine
plane curve C. Then, the defining polynomial of C is the resultant

res
t

(H�

1 (t, x), H
�

2 (t, y)).

1.3 Tracing index
Definition 1.12. Let W1 and W2 be varieties over K. Let � : W1 ! W2 be a rational
mapping such that �(W1) ⇢ W2 is dense. Then � is a dominant mapping from W1 to W2.

Definition 1.13. The degree of the dominant rational mapping � from W1 to W2, where
dim(W1) = dim(W2), is the degree of the finite algebraic field extension K(W1) over
�̃(K(W2)), that is

degree(�) = [K(W1) : �̃(K(W2))],

where �̃ : K(W2) ! K(W1), ⇢ 7! ⇢ � �.
Observe that the notion of degree can be used to characterize the birationality of

rational mappings as follows.

Lemma 1.10. A dominant rational mapping � : W1 ! W2 between varieties of the same
dimension is birational if and only if degree(�) = 1.

Consider now a rational curve C and a proper rational parametrization �(t) of the
curve C. We will denote by F

�

(P ) the fibre of a point P 2 C; that is

F
�

(P ) = ��1(P ) =
�

t 2 K | �(t) = P
 

.

Intuitively speaking, the degree of the mapping � measures the number of times the
parametrization traces the curve when the parameter takes values in K.



CHAPTER 1. BASICS OF ALGEBRAIC GEOMETRY 6

Definition 1.14. Let C be a rational curve, and let �(t) be a rational parametrization
of C. Then the tracing index of �(t), denoted by index(�(t)), is the degree of � : A(K) !
C, t 7! �(t); i.e., index(�(t)) is a natural number such that almost all points on C are
generated, via �(t), by exactly index(�(t)) parameter values.

If the parametrization �(t) is of the form

�(t) =
⇣�11

�12
,
�21

�22

⌘

,

we define the bivariate polynomials

G�

1(x, y) = �11(x)�12(y)� �12(x)�11(y),

G�

2(x, y) = �21(x)�22(y)� �22(x)�21(y).

Theorem 1.11. Let �(t) be a rational parametrization of in reduced form. Then for
almost all a 2 K we have

card(F
�

(�(a))) = deg
y

(gcd(G�

1(a, y), G
�

2(a, y))).

Lemma 1.12. Let �(t) be a rational parametrization in reduced form. Then for almost
all values a 2 K of x we have

deg
y

(gcd(G�

1(x, y), G
�

2(x, y))) = deg
y

(gcd(G�

1(a, y), G
�

2(a, y))).

From the theorem and the lemma above follow

Theorem 1.13. Let �(t) be a rational parametrization in reduced form of the curve C.
Then

index(�(t)) = deg
y

(gcd(G�

1(x, y), G
�

2(x, y)).

Theorem 1.14. A rational parametrization of a curve C is proper if and only if its tracing
index is 1, i.e. if and only if deg

y

(gcd(G�

1 , G
�

2)) = 1.

The previous results can be used to derive the following algorithm for computing the
tracing index of a given parametrization. This algorithm can also be used for checking the
properness of a parametrization.

INPUT: A rational parametrization �(t) in reduced form.
OUTPUT: The tracing index of the parametrization �(t) given in input, and if �(t) is
proper or not.

1. Compute the polynomials G�

1(x, y), G
�

2(x, y).

2. Determine G�(x, y) = gcd(G�

1(x, y), G
�

2(x, y)).

3. l = deg
y

(G�(x, y)).

4. If l = 1 then return "�(t) is proper and index(�(t)) = 1" else return "�(t) is not
proper and index(�(t)) = l.”
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We illustrate the algorithm by an example.

Example 1.1. Let �(t) be the rational parametrization

�(t) =
⇣ (t2 � 1)t

t4 � t2 + 1
,

(t2 � 1)t

t6 � 3t4 + 3t2 � 1� 2t3

⌘

.

In step 1 the polynomials

G�

1(x, y) = x3y4 � xy4 + x2y3 � x4y3 � y3 � x3y2 + xy2 + x4y � x2y + y + x3 � x,

G�

2(x, y) = x4y6 � x2y6 � x6y4 +2x3y4 + y4 � 2x4y3 +2x2y3 + x6y2 � 2x3y2 � y2 � x4 + x2,

are generated. Their great common divisor G� is computed in step 2.

G�(x, y) = xy2 � x2y + y � x.

In step 3,
l = deg

y

(G�(x, y)) = 2.

Thus, index(�(t)) = 2, and therefore the parametrization is not proper.



Chapter 2

Basics of Differential Algebra

In this chapter I make an easy introduction on first concepts of Differential Algebra
essentially based on [Ritt], [Kol73] and [Ngo]. I also make first steps on algebraic ODEs
theory from an algebraic point of view defining what an algebraic ODE is and the notion
of general solution of an algebraic ODE.

2.1 First definitions
Definition 2.1. Let R be a commutative ring and � : R ! R be a mapping such that

�(a+ b) = �(a) + �(b), and �(ab) = �(a)b+ a�(b).

Then (R, �) is called a differential ring with the derivation �. If R is a field then (R, �) is
called a differential field.

In this thesis we deal with an algebraically closed field of characteristic 0, i.e. it contains
Q, named K.

Example 2.1. Let R be a commutative ring and � the operator such that

�(a) = 0, for every a 2 R.

Clearly � is a derivation, then (R, �) is a differential ring.

Example 2.2. Let K(x) be the field of the rational functions over K. Let � be a derivation
on K(x). Then the conditions

�(a) = 0 for all a 2 K

and
�(x) = 1

define uniquely the usual derivation d

dx

on K(x). Therefore,
�

K(x), d

dx

�

is a differential
field.

8
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Note that the concept of differential ring or field can be generalised to an arbitrary
finite number of derivations.
Example 2.3. The field of complex meromorphic functions on a given region of the space
of m complex variables x1, . . . , xm

, with the set of operators @

@x1
, . . . , @

@xm
is a differential

field.
The differential ring is called ordinary if it is only equipped with one derivation. We

consider only ordinary differential rings.
Definition 2.2. Let (R, �) be a differential ring. The set C = {c 2 R | �(c) = 0} is called
the set of constants of R with respect to the derivation �. If R is a field, then C is a
subfield of R. In this case, we also call C the field of constants of R with respect to �.
Example 2.4 (Continuing Example 2.2). The field of constants of

�

K(x), d

dx

�

is K.

Definition 2.3. Let (R, �) be an ordinary differential ring. An ideal I of R is called a
differential ideal if I is closed under the derivation �, i.e., for all a 2 I we have �(a) 2 I.

Definition 2.4. Let S be a set of differential polynomials in R. The differential ideal
generated by S, denoted by (S), is the ideal generated by all elements in S and their
derivatives. The radical differential ideal generated by S, denoted by {S}, is the radical of
(S).

Consider now the infinite sequence of symbols

y, y0, y00, · · · , y(n), · · · . (2.1)

We call y differential indeterminate and y(p) is the pth derivative of y. Where y = y(0), y0 =
y(1) and y00 = y(2). Furthermore, for every p and for every q > 0, y(p+q) is the qth derivative
of y(p). It is to be pointed out that in (2.1) only y is a differential indeterminate. We want
to use the symbols in (2.1) to build polynomials, clearly only a finite subset of them for
each polynomial.
Definition 2.5. Let (F , �) be a differential field. Consider the polynomial ring

R = F [y, y0, y00, . . . ],

and the derivation �̃ on R obtained from � as follows

�̃(y(i)) = y(i+1),

�̃(a) = �(a), for all a 2 F ,

�̃
�

X

i1,··· ,ik

a
i1···iky

(i1) · · · y(ik)� =

=
X

i1,··· ,ik

�(a
i1···ik)y

(i1) · · · y(ik) + a
i1···iky

(i1+1)y(i2) · · · y(ik)+

+ · · ·+ a
i1···iky

(i1) · · · y(ik�1)y(ik+1).

So (R, �̃) defines a differential ring, denoted by F{y}. A polynomial in F{y} is called
differential polynomial.
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Example 2.5. Consider the differential field of rational functions
�

Q̄(x), d

dx

�

then

G = xy02 + yy0 � y4

is an element of Q̄(x){y}. The derivative of G(x, y, y0) is

�(G) = y02 + 2xy0y00 + y02 + yy00 � 4y3y0,

where � = d̃

dx

as in the definition above.

We can also define differential polynomial ring in more than one differential indetermi-
nates, for instance consider the differential indeterminates y1, · · · , yn, then

F{y1, y2, · · · , yn}

is the ring of all poynomial combinations of y1, · · · , yn and of their derivatives with
coefficients in F .

Example 2.6. The ring K(x){y1, y2} is a differential polynomial ring.

Definition 2.6. Let (F , �) be a differential field. The order of G 2 F{y} is the highest
p 2 N such that y(p) effectively occurs in G. It is denoted by ord(G), ord

y

(G) if the ring
has more than one differential indeterminate.

Example 2.7. The order of G = xy02 + yy0 � y4 is ord(G) = 1.

Definition 2.7. A differential polynomial F 2 R = F{y1, . . . , yn} is irreducible if it can
not be written as product of two differential polynomials.

2.2 Rankings
Here we give the definitions for ordinary differential rings, for more general settings

please check [Kol73].

Definition 2.8. Let (F , �) be a differential field and R = (F{y1, . . . , yn}, �̃) be the
differential ring with indeterminates y1, . . . , yn. A ranking of (y1, . . . , yn) is a total ordering
of the set of all derivatives

�y := {�j(y
i

) | i = 1, . . . , n; j 2 N},

such that
u  �j(u) and u  v ) �j(u)  �j(v)

for all u, v 2 �y and j 2 N.

We say that u 2 �y is of higher rank than v 2 �y if v  u, and that u is of lower rank
than v if u  v, with respect to a ranking of (y1, . . . , yn).
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Definition 2.9. A ranking is said to be:

• integrated if for any �jy
i1 , �

ky
i2 , there exists l 2 N such that

�jy
i1  �k+ly

i2 .

• sequential if every derivative �jy
i

is of higher rank than only a finite number of
derivatives.

• orderly if
j  k ) �jy

i1  �ky
i2

for any i1, i2 2 {1, . . . , n}.
Remark 2.1. An orderly ranking is sequential and integrated.

Example 2.8. Consider the differential polynomial ring R = K(x){s, t}. Let � be the
set of the derivatives of R, i.e. � = {s(i), t(i) | i 2 N}. The ord-lex ranking on � is the
total order defined as follows:

8

>

>

>

<

>

>

>

:

s(i) < s(j), if i < j,
t(i) < t(j), if i < j,
t(i) < s(j), if i  j,
s(i) < t(j), if i < j.

(2.2)

The ord-lex ranking is an orderly ranking.

In this thesis we will consider only the ord-lex ranking.

Definition 2.10. Let A 2 F{y1, . . . , yn} such that A /2 F . The highest ranking derivative
occurring in A is called the leader of A, and it is denoted by u

A

. The leading coefficient of
A with respect to its leader is called the initial of A, and it is denoted by I. The partial
derivative of A with respect to its leader is called the separant of A, and it is denoted by
S
A

.

Example 2.9. Consider G = (s(4))2t(2) + x3t(3) � 2xs0 the differential polynomial G 2
Q̄(x){s, t} with the ord-lex ranking defined in Example 2.8. Therefore, The leader of G is
u
G

= s(4), its initial is I = t(2) and its separant is S
G

= @

@s

(4) (G) = 2s(4)t(2).

Remark 2.2. Both the initial and the separant of a differential polynomial G are of lower
rank than G.
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2.3 Ritt’s reduction
Definition 2.11. Let (F , �) be a differential field and R = (F{y1, . . . , yn}, �̃) be the
differential ring with indeterminates y1, . . . , yn, with a fixed ranking on them. Let F,G 2 R
such that F,G /2 F . F is said to be partially reduced with respect to G if it is free of the
derivatives that occur in u

G

.

Definition 2.12. Let R, F and G be as above then F is said to be reduced with respect
to G if it is partially reduced with respect to G and if deg

uG(F ) < deg
uG(G).

Remark 2.3. With the same notation of the definitions above, if F is of lower rank than
G, then u

F

< u
A

, so deg
uG(F ) = 0 < deg

uG(G). Fix an orderly ranking, if F is of lower
rank than G, then F is also reduced with respect to G, since, in this ranking, F is also
lower than all the derivatives of G.

Definition 2.13. A ⇢ R = F{y1, . . . , yn} is called an autoreduced set if A \ F = ; and
each element in A is reduced with respect to all the others.

We want now to introduce an important tool in Differential Algebra called Ritt’s
reduction, it is an analogous of the euclidean division for differential polynomials.

Theorem 2.1. Let A ⇢ R = F{y1, . . . , yn} be an autoreduced set with respect to a ranking
and G 2 R a differential polynomial. There exist nonnegative integers s

i

, t
i

, i = 1, . . . , r,
and a differential polynomial R 2 R such that R is reduced with respect to A, its rank is
lower than or equal the rank of G and

Ss1
1 · · ·Ssr

r

I t11 · · · I tr
r

G =
X

A2A

X

j

Q
A,j

· A(j) +R,

where S
i

an I
i

are respectively the separant and the initial of A
i

2 A, i = 1, . . . , r and
Q

A

2 R.

Proof. If G is reduced with respect to A, then it is enough to take R = G, so assume that
G is not reduced with respect to A. Let j be the greatest value of i such that G is not
reduced with respect to A

i

2 A. Let u
Aj = y

(m)
p

, and let G be of order h in y
p

. We suppose
first that h > m. If k1 = h�m, then A

(k1)
j

, the k1th derivative of A
j

, will be of order h in
y
p

. It will be linear in y
(h)
p

, with S
j

for coefficient of y(h)
p

. Therefore,

A
(k1)
j

= S
j

y(h)
p

+D.

Since
G =

X

t

I
t

(y(h)
p

)t,

we find a nonnegative integer v1 such that

Sv1
j

G = C1A
(k1)
j

+D1, (2.3)
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where D1 is of order less than h in y
p

. In order to have a unique procedure, we take v1 as
small as possible.
Suppose that p < n, where n is the number of differential indeterminate of R. Let a be an
integer such that p < a  n. We claim that D1 is not of higher rank than G in y

a

. We
may limit ourselves to the case in which D1 6= 0. Also since S

j

is free of y
a

, we need only
treat the case in which y

a

is present in G. Let G of order g in y
a

. Then the order of D1 in
y
a

cannot exceed g because of (2.3). If D1 were of higher degree than G in y
(g)
a

, C1 would
have to involve y

(g)
a

to the same degree as D1 and C1A
(k1)
j

would contain terms involving
y
(g)
a

and y
(h)
p

which would be balanced neither by D1 nor by Sv1
j

G. This proves our claim.
If D1 is of order greater than m in y

p

, we find a relation

Sv2
j

D1 = C2A
(k2)
j

+D2 (2.4)

with D2 of lower order than D1 in y
p

and not of higher rank than D1 (or G) in any y
a

with a > p. For uniqueness, we take v2 as small as possible.
We eventually reach a D

u

, of order not greater than m in y
p

, such that, if

s
j

= v1 + · · ·+ v
u

,

we have
S
sj

j

G = E1A
(k1)
j

+ · · ·+ E
u

A
(ku)
j

+D
u

.

Furthermore, if a > p, D
u

is not of higher rank than G in y
a

.
If D

u

is of order less than m in y
p

, D
u

is reduced with respect to A
j

, as well as to any A
i

with i > j. If D
u

is of order m in y
p

, we find, with the algorithm of division, a relation

I
tj

j

D
u

= HA
j

+K (2.5)

with K reduced with respect to A
j

, as well as to A
j+1, · · · , Ar

. For uniqueness, we take
t
j

as small as possible. If K is not reduced with respect to A, we treat K as G was
treated. For some l < j, there are s

l

, t
l

such that Ssl
l

I tl
l

K exceeds, by a linear combination
of A

l

and its derivatives, a differential polynomial L which is reduced with respect to
A

l

, A
l+1, . . . , Ar

. Then

Ssl
l

S
sj

j

I tl
l

I
tj

j

G =
X

h

Q
Aj ,hA

(h)
j

+
X

k

Q
Al,k

A
(k)
l

+ L. (2.6)

Continuing, we reach a differential polynomial L as described in the statement.

Definition 2.14. The differential polynomial R in the Theorem 2.1 is called pseudo-
remainder of G with respect to A and it is denoted prem(G,A).

2.4 Rational general solutions of an algebraic ODE
Let I be a differential ideal in the differential ring R = (F{y1, y2, . . . , yn}, �̃), where

(F , �) is a differential field. Let L be a differential field extension of F . An element
⇠ = (⇠1, . . . , ⇠n) 2 Ln is called a zero of I if for all F 2 I we have F (⇠) = 0. The defining
differential ideal of ⇠ in R is D = {F 2 R | F (⇠) = 0}.



CHAPTER 2. BASICS OF DIFFERENTIAL ALGEBRA 14

Definition 2.15. Let P be a prime differential ideal in R = (F{y1, y2, . . . , yn}, �̃),. where
(F , �) is a differential field. A point ⇠ 2 Ln is called a generic zero of P if P is the defining
differential ideal of ⇠ in R.

By algebraic ODE of order n we mean a polynomial a relation given by

F (x, y, y0, ..., y(n)) = 0,

where F is a differential polynomial in K(x){y} where K is a differential field and the
derivation 0 is the usual d

dx

. A solution of F (x, y, y0, ..., y(n)) = 0, is a function y = f(x)
such that F (x, f(x), f 0(x), ..., f (n)(x)) = 0. We can look at F as a differential polynomial
in the differential ring (K(x){y}, �), where y is the differential indeterminate and � is the
extension of d

dx

. The proof of next theorem can be found in [Ritt] (Chapter II,7).

Theorem 2.2 (Differential Nullstellensatz). Let

F1, . . . , Fp

be any finite system of differential polynomials in (K(x){y}, �) and let G be such that every
common zero of F1, . . . , Fp

is a zero of G. There exists m 2 N such that

Gm =
p

X

i=1

X

j

A
i,j

F
(j)
i

,

where A
i,j

are differential polynomial for all i and j, that is exactly

G 2 {F1, . . . , Fp

}.
In particular if F1, . . . , Fp

has no zeros,

{F1, . . . , Fp

} = 1.

Note now that if (K, �) is a differential extension of (K(x), d

dx

). A solution of F (x, y, y0, ..., y(n)) =
0, in K is an element ⌘ 2 K such that F (x, ⌘, �⌘, ..., �n⌘) = 0. Therefore, if ⌘ is a solution
of F = 0 then it is a solution of �mF = 0 for every m 2 N \ {0}. Hence, ⌘ is a zero of the
differential ideal (F ) generated by F. Thanks to the Differential Nullstellensatz the set of
differential polynomials in K(x){y} vanishing on the zeros of F is the radical differential
ideal {F}.
Lemma 2.3. If u and v are indeterminates and if j is a nonnegative integer then

uj+1v(j) ⌘ 0 (uv, (uv)0, . . . , (uv)(j)).

Proof. The statement is clearly true for j = 0. We make an induction to j = r with r > 0,
assuming that the lemma is true for j  r � 1. By induction we have

urv(r�1) ⌘ 0 (uv, (uv)0, . . . , (uv)(r�1)). (2.7)

Then
urv(r) + rur�1u0vr�1 ⌘ 0 (uv, (uv)0, . . . , (uv)(r)).

Multiplying by u and using (2.7) we get the thesis.
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Remark 2.4. Consider a perfect ideal I 2 F{y1, . . . , yn}, i.e. an ideal such that if Gn 2 I
for some n 2 N then G 2 I, and let FG 2 I. By the lemma with j = 1, F 2G0 2 I. So
FG0 2 I. In general, if I is a perfect differential ideal and if FG 2 I then F (i)G(j) for
every i and j.

Theorem 2.4. Consider F 2 K(x){y} then we can decompose {F} as

{F} = ({F} : S) \ {F, S},
where S is the separant of F and {F} : S = {G 2 K(x){y} | SG 2 {F}}.
Proof. Since {F} is contained in each ideal in the second member it is enough to show
that the second member is in {F}. Let A 2 {F, S}. There exists m 2 N such that

Am = B + C

with B 2 (F ) and C 2 (S). Now, let A also belong to ({F} : S). Then SA 2 {F}, since a
radical ideal is perfect, according to Remark 2.4, S(j)A 2 {F}. Then AC 2 {F}. So that
Am+1 2 {F}.
Proposition 2.5. Let F be an irreducible differential polynomial in K(x){y1 . . . , yn}.
Then {F} : S, where S is the separant of F, is a prime differential ideal.

Proof. Let AB 2 ({F} : S). Assume ord
yp(F ) = m. The process of reduction used for

forming remainders shows the existence of relations

SaA ⌘ R, SbB ⌘ T, (F ), (2.8)

with R and T of order at most m in y
p

. We shall prove that at least one of R and T is
divisible by F. From (2.8) we have

SRT ⌘ Sa+b+1AB, (F ). (2.9)

Since the second member in (2.9) is divisible by F we have

SRT ⌘ 0, (F ).

Let then
(SRT )c = MF +M1F

0 + · · ·+M
q

F (q).

We have
F (q) = Sy(m+q)

p

+ U,

where U is of order less than m+ q in y
p

. We replace ym+q

p

in F (q) and in M
i

for every i
by �U/S. Clearing fractions, we find the relation

Sd(RT )c = NF +N1F
0 + · · ·+N

q�1F
(q�1).

Continuing, we find that some Se(RT )c is divisible by F. As F is algebraically irreducible,
and it is not a factor of S, F must be a factor of at least one of R and T.
Suppose that R is divisible by F. By (2.8) SA 2 {F} so that A 2 ({F} : S). Thus
({F} : S) is prime.
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Consider again K(x){y}. It is a radical Noetherian ring, i.e., a ring in which every
radical differential ideal is finitely generated. So, in this case, {F, S} can be decomposed
as the intersection of finite number of prime differential ideals. From that decomposition
eliminating the ideals which are divisors of {F} : S we can obtain a unique minimal
decomposition of {F} into an intersection of prime differential ideals. Furthermore,
{F} : S is one of this minimal component and moreover it is the unique component of
{F} that does not contain the separant S, in fact if {F} : S contains S, then S2 2 {F}.
Hence, S 2 {F}, a contradiction with deg

y

(n)(S) < deg
y

(n)(F ).

Definition 2.16. A generic zero of the prime differential ideal {F} : S is called a general
solution of F (y) = 0. Where generic zero ⌘ of {F} : S means that for any G 2 K(x){y}
G(⌘) = 0 if and only if G 2 ({F} : S).

Definition 2.17. A zero of {F, S} is called a singular solution of F (y) = 0.

It is important to solve the ideal membership problem for {F} : S, that can be
done using Ritt’s reduction introduced in the previous section. We remember that let
F,G 2 K(x){y} the pseudo-remainder of G with respect to F is the differential polynomial
R such that

SsI tG =
X

j

Q
j

F (j) +R,

where s and t are nonnegative integers, S is the separant of F and I is the initial of
F, Q

j

are differential polynomials. In particular R is reduced with respect to F and
ord

y

(R)  ord
y

(F ), and if ord
y

(F ) = n then deg
y

(n)(R) < deg
y

(n)(F ).

Theorem 2.6. For every G 2 K(x){y}, G 2 ({F} : S) if and only if prem(G,F ) = 0.

Proof. Suppose G 2 ({F} : S). We have a relation

SsG ⌘ H, (F ), (2.10)

with ord
y

(H)  ord
y

(F ). Now SB is in {F} so that, as in the proof of Proposition 2.5,
H is divisible by F. Conversely, if prem(G,F ) = 0, we have again (2.10), but with H is
divisible by F. Therefore G 2 ({F} : S).

Corollary 2.7. Suppose that ⌘ is a general solution of F (y) = 0. Then for every G 2
K(x){y}, G(⌘) = 0 if and only if prem(G,F ) = 0.



Chapter 3

Rational general solutions of

autonomous algebraic ordinary

differential equations

In this chapter I present a criterion to decide if an autonomous algebraic differential
equation of the first order has a rational general solution. If it exists, I give an algorithm
to compute it. The algorithm is based on the rational parametrization of the curve defined
by the equation regarded as algebraic equation, which means that the differential variables
are considered as independent algebraic variables.

3.1 A criterion for existence of rational general solu-
tions

The contents of this and next section can be found in [FG04] and in [FG06].

Definition 3.1. An algebraic ordinary differential equation of the first order is called
autonomous if it does not depend directly on the independent variable x, i.e. it is of the
form

F (y, y0) = 0,

where F 2 K(x){y} is a differential polynomial over a field K.

In this chapter F will always be a first order non-zero differential polynomial with
coefficients in K.

The aim of this chapter is to find a general solution y of F = 0 of the form

y =
a
n

xn + a
n�1x

n�1 + · · ·+ a0
xm + b

m�1xm�1 + · · ·+ b0
,

where a
i

, b
j

are constants in some extension of K. We put deg
x

(y) = max{m,n} We call a
solution y of F = 0 nontrivial if deg

x

(y) > 0. The differential polynomial F can be seen

17
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as an algebraic polynomial, i.e. as an element of the polynomial ring K[y, z]. In this case
the zeros of F defines a curve in the plane.

Definition 3.2. Let F = 0 be a first order autonomous algebraic ODE, the curve defined
by F = 0 as element of K[y, z] is called solution curve of the differential equation F = 0.

Let F be a differential polynomial in K(x){y} and S its separant with respect to the
ord-lex ranking. In this chapter we indicate by ⌃

F

the differential ideal {F} : S. In the
previous chapter we have defined a rational general solution of the equation F = 0 as a
generic zero of ⌃

F

.

We want to obtain a criterion to say if an autonomous algebraic ODE admits a rational
general solution, the first step in this direction is the definition of a really special polynomial
named Gao’s differential polynomial.

Definition 3.3. Let {y, y(1), y(2), . . . } be a set of differential variables, the differential
polynomial D

n,m

defined by

D
n,m

=

�

�

�

�

�

�

�

�

�

�

n+1
0

�

y(n+1)
�

n+1
1

�

y(n) · · · �

n+1
m

�

y(n+1�m)
�

n+2
0

�

y(n+2)
�

n+2
1

�

y(n+1) · · · �

n+2
m

�

y(n+2�m)

...
... . . . ...

�

n+m+1
0

�

y(n+m+1)
�

n+m+1
1

�

y(n+m) · · · �

n+m+1
m

�

y(n+1)

�

�

�

�

�

�

�

�

�

is called Gao’s differential polynomial.

The main property of D
n,m

is contained in the following lemma

Lemma 3.1. The solutions ȳ of the equation D
n,m

= 0 have the following form

ȳ(x) =
a
n

xn + a
n�1x

n�1 + · · ·+ a0
xm + b

m�1xm�1 + · · ·+ b0
,

where a
i

, b
j

are constants in some extension of K.

Proof. Let’s prove it by induction on m. Suppose m = 0, in this case D
n,m

= y(n+1). The
solutions of y(n+1) = 0 are the polynomials c

n

xn + c
n�1x

n�1 + · · ·+ c0, where the c
j

are
arbitrary constants. Suppose now that the theorem is true for m < k + 1 and let’s prove
it for m = k + 1. If ȳ is a zero for D

n,m

, then ȳ is rational by inductive hypothesis. Now
we suppose that D

n,k

(ȳ) 6= 0. Since D
n,k+1(ȳ) = 0, there exists Q0, Q1, . . . , Qk+1 2 K, not

all zero, such that
0

B

B

B

@

�

n+1
0

�

ȳ(n+1)
�

n+1
1

�

ȳ(n) · · · �

n+1
k+1

�

ȳ(n�k)
�

n+2
0

�

ȳ(n+2)
�

n+2
1

�

ȳ(n+1) · · · �

n+2
k+1

�

ȳ(n+1�k)

...
... . . . ...

�

n+k+2
0

�

ȳ(n+k+2)
�

n+k+2
1

�

ȳ(n+k+1) · · · �

n+k+2
k+1

�

ȳ(n+1)

1

C

C

C

A

0

B

B

B

@

Q0

Q1
...

Q
k+1

1

C

C

C

A

= 0. (3.1)
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Without loss of generality, we can assume that Q
k+1 = 0 or 1. From (3.1) we get

P

k+1
i=0

�

j

i

�

ȳ
j�i

Q
i

= 0 for j = n+ 1, . . . , n+ k + 2. Differentiating
P

k+1
i=0

�

j

i

�

ȳ
j�i

Q
i

= 0, we
obtain

(
k+1
X

i=0

✓

j

i

◆

ȳ
j�i

Q
i

)0 =
k+1
X

i=0

✓

j

i

◆

ȳ
j�i+1Qi

+
k+1
X

i=0

✓

j

i

◆

ȳ
j�1Q

0
i

= 0.

Thanks to the property of binomial coefficients
�

j+1
i

�

=
�

j

i

�

+
�

j

i�1

�

, we have

k+1
X

i=0

✓

j + 1

i

◆

ȳ
j�i+1Qi

=
k+1
X

i=0

✓

j

i

◆

ȳ
j�i+1Qi

+
k

X

i=0

✓

j

i

◆

ȳ
j�1Qi+1 = 0,

then the above equations imply that

k

X

i=0

✓

j

i

◆

ȳ
j�1(Q

0
i

�Q
i+1) +

✓

j

k + 1

◆

ȳ
j�k�1Q

0
k+1 = 0

for j = n+ 1, . . . , n+ k + 1.
Since Q0

k+1 = 0, we have
P

k

i=0

�

j

i

�

ȳ
j�i

(Q0
i

�Q
i+1) = 0 for j = n+ 1, . . . , n+ k + 1 which

can be written in the matrix form:
0

B

B

B

@

�

n+1
0

�

ȳ(n+1)
�

n+1
1

�

ȳ(n) · · · �

n+1
k+1

�

ȳ(n�k)
�

n+2
0

�

ȳ(n+2)
�

n+2
1

�

ȳ(n+1) · · · �

n+2
k+1

�

ȳ(n+1�k)

...
... . . . ...

�

n+k+2
0

�

ȳ(n+k+2)
�

n+k+2
1

�

ȳ(n+k+1) · · · �

n+k+2
k+1

�

ȳ(n+1)

1

C

C

C

A

0

B

B

B

@

Q0
0 �Q1

Q0
1 �Q2

...
Q0

k

�Q
k+1

1

C

C

C

A

= 0.

Since D
n,k

(ȳ) 6= 0, we get Q
i+1 = Q0

i

for i = 0, 1, . . . , k. According to this Q0 must be a
polynomial of degree k or k + 1 if Q

k+1 = 0 or 1, respectively. In the last case the leading
coefficient of Q0 will be 1

(k+1)! . Then

k+1
X

i=0

✓

n+ 1

i

◆

ȳ
n+1�i

Q
i

=
n+1
X

i=0

✓

n+ 1

i

◆

ȳ
n+1�i

Q
i

= 0,

putting Q
j

= 0 for j = k + 2, k + 3, . . . , n+ 1. Now the equation becomes

(ȳQ0)
n+1 = 0,

and follows that
ȳ =

a
n

xn + · · ·+ a0
Q0

,

where a
i

are arbitrary constants.

This lemma implies the following criterion of existence for rational general solutions of
an algebraic ODE.
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Theorem 3.2. Let F be an irreducible differential polynomial. Then the differential
equation F = 0 has a rational general solution ȳ if and only if there exist non-negative
integers n and m such that Prem(D

n,m

, F ) = 0, where Prem is the pseudo-remainder for
differential polynomials defined in the first chapter.

Proof. Let ȳ = P (x)
Q(x) be a rational general solution of F = 0. We choose non-negative

integers n,m such that n � deg(P (x)) and m � deg(Q(x)). Thanks to Lemma 3.1 we have

D
n,m

(ȳ) = 0,

since ȳ in a generic zero of the differential ideal ⌃
F

generated by F we have

D
n,m

2 ⌃
F

,

which is equivalent to
Prem(D

n,m

, F ) = 0.

On the other hand Prem(D
n,m

, F ) = 0 implies that D
n,m

2 ⌃
F

. Let m be the least integer
such that D

n,m

2 ⌃
F

. Since every zero y of ⌃
F

must be a zero of D
n,m

, it must must be of
the form

y =
a
n

xn + a
n�1x

n�1 + · · ·+ a0
b
m

xm + b
m�1xm�1 + · · ·+ b0

,

with b
m

6= 0, otherwise m� 1 is such that D
n,m�1 2 ⌃

F

. Then the generic zero of ⌃
F

has
the following form

ȳ =
ā
n

xn + ā
n�1x

n�1 + · · ·+ ā0
b̄
m

xm + b̄
m�1xm�1 + · · ·+ b̄0

.

Remember that ⌃
F

is prime and that implies the existence of a generic zero. So F = 0
has a rational general solution.

3.2 Computing rational general solutions
In previous sections we worked in an arbitrary field K, now we choose K = Q̄, so

F (y, y0) will be an autonomous first order differential polynomial with coefficient in Q and
irreducible over Q̄, with F (y, y1) we indicate the same polynomial when it is considered as
an algebraic polynomial.

It is well know that the solution set of an algebraic ODE with constant coefficients
is invariant of the independent variable x, which means that if ȳ(x) is a solution, then
ȳ(x+ k) is a solution for every arbitrary constant k. We can use this fact to reduce the
problem of finding a rational general solution to the problem of finding a nontrivial rational
solution.

Lemma 3.3. Let ȳ = ānx
n+ān�1x

n�1+···+ā0

x

m+b̄m�1x
m�1+···+b̄0

be a non trivial solution of the equation
F (y, y0) = 0, where ā

i

, b̄
j

2 Q, and ā
n

6= 0. Then

ŷ =
ā
n

(x+ c)n + ā
n�1(x+ c)n�1 + · · ·+ ā0

(x+ c)m + b̄
m�1(x+ c)m�1 + · · ·+ b̄0
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is a rational general solution of the equation F (y, y0) = 0, where c is an arbitrary transcen-
dental constant over Q.

Proof. Clearly ŷ is still a zero of ⌃
F

. For any G 2 Q{y} which satisfies G(ŷ) = 0, let
R = Prem(G,F (y, y0)). Then R(ŷ) = 0. Suppose that R 6= 0, since F is irreducible and
deg(R, y0) < deg(F, y0) by the definition of Prem, there exist two differential polynomials
P,Q 2 Q{y} such that PF+QR 2 Q[y] and PF+QR 6= 0. Thus we have (PF+QR)(ŷ) = 0
since both F and R has ŷ as zero. Because c is a transcendental constant over Q we have
PF +QR = 0, a contradiction. Hence R = 0 which means G 2 ⌃

F

. Since this is true for
every G then ŷ is a generic zero of ⌃

F

, i.e. a rational general solution.

If ȳ = r(x) is a non trivial solution of the differential equation F (y, y0) = 0, then
we can regard (r(x), r0(x)) as a parametrization of the curve defined by the algebraic
equation F (y, y1) = 0. Now we want to show that (r(x), r0(x)) is a proper parametrization
of F (y, y1) = 0, this will allow us to look for rational solutions of F (y, y0) = 0 among the
proper parametrizations of the curve F (y, y1) = 0.

Proposition 3.4. Let f(x) = p(x)
q(x) /2 Q̄ be a rational function in x such that gcd(p(x), q(x)) =

1. Then Q̄(f(x)) 6= Q̄(f 0(x)).

Proof. Clearly if f 0(x) is a constant the proposition is true, so assume that deg(f 0(x)) > 0.
Suppose that Q̄(f(x)) = Q̄(f 0(x)). Since f(x), f 0(x) are transcendental over Q̄, thanks to
the Theorem in Section 63 of [VDW1] we have

f(x) =
af 0(x) + b

cf 0(x) + d
,

where a, b, c, d 2 Q̄. Differentiating we have

f 0(x) =
p0(x)q(x)� p(x)q0(x)

q(x)2
,

then by substitution

p(x)

q(x)
=

a(p0(x)q(x)� p(x)q0(x)) + bq(x)2

b(p0(x)q(x)� p(x)q0(x)) + dq(x)2
,

which implies that q(x)|cp(x)q0(x), which means q(x)|cq0(x) because gcd(q(x), p(x)) = 1.
So c = 0 or q0(x) = 0, we get respectively

f(x) =
a

d
f 0(x) +

b

d
,

or
p(x) = c1p

0(x) + c2,

where c1, c2 2 Q̄. This is impossible, because f(x) is a rational function and p(x) is a
constant polynomial if q(x) 2 Q̄.
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Theorem 3.5. Let f(x) = p(x)
q(x) /2 Q̄ be a rational function in x such that gcd(p(x), q(x)) =

1. Then Q̄(f(x), f 0(x)) = Q̄(x).

Proof. From Lüroth’s Theorem, there exists g(x) = u(x)
v(x) such that Q̄(f(x), f 0(x)) =

Q̄(g(x)), where u(x), v(x) 2 Q̄[x], and gcd(u(x), v(x)) = 1. We can assume that deg(u(x)) >
deg(v(x)). Otherwise, we have u

v

= c+ w

v

with c 2 Q̄ and deg(w(x)) > deg(v(x)), and w

v

is
also a generator of Q̄(g(x)). Then we have

f(x) =
p1(g(x))

p2(g(x))
,

f 0(x) =
p2(g(x))

q2(g(x))
=

g0(x)(p01(g(x))q1(g(x))� p1(g(x))q01(g(x)))

q21(g(x))
,

for some polynomials p
i

(x), q
i

(x) for i = 1, 2. The two equations above imply that g0(x) 2
Q̄(g(x)). Indeed, if g0(x) /2 Q̄, we have

[Q̄(x) : Q̄(g0(x))] = [Q̄(x) : Q̄(g(x))][Q̄(g(x)) : Q̄(g0(x))]. (3.2)

However, we have [Q̄(x) : Q̄(g(x))] = deg(g(x)) = deg(u(x)) and [Q̄(x) : Q̄(g0(x))] 
2deg(u(x))� 1. So the equation (3.2) tells us that [Q̄(g(x)) : Q̄(g0(x))] < 2, which implies

Q̄(g(x)) = Q̄(g0(x)),

a contradiction by Proposition (3.4). Hence g0(x) 2 Q̄, which means that g(x) = ax+ b,
for some constants a, b.

The theorem proven just above tells us that if ȳ is a nontrivial rational solution of
the equation F (y, y0) = 0 the parametrization (ȳ(x), ȳ0(x)) of the curve F (y, y1) = 0 is
proper. Thanks to the following lemma we can deduce a degree bound for rational general
solutions of autonomous algebraic ODE.

Lemma 3.6. Let f(x) = p(x)
q(x) /2 Q̄ be a rational function in x such that gcd(p(x), q(x)) = 1.

Then deg(f(x))� 1  deg(f(x))  2deg(f(x)).

Proof. The inequality deg(f(x))  2deg(f(x)) is a direct consequence of the definitions.
If q(x) 2 Q̄, then deg((p(x)

q(x))
0) = deg((p(x)

q(x))) � 1. Hence the result is true. Assume that
q(x) /2 Q̄. We are in a algebraically closed field, so we can assume that

q(x) = (x� a1)
↵1(x� a2)

↵2 · · · (x� a
r

)↵r .

Then (p(x)
q(x))

0 = u(x)
v(x) where

u(x) = p0(x)
r

Y

i=1

(x� a
i

)� p(x)
�

r

X

i=1

Y

j 6=i

↵
i

(a� a
j

)
�

,
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v(x) = (x� a1)
↵1+1(x� a2)

↵2+1 · · · (x� a
r

)↵r+1.

Since gcd(u(x), v(x)) = 1 we have

deg
⇣⇣p(x)

q(x)

⌘0⌘
= max{deg(p(x)) + r � 1, deg(q(x)) + r},

which is greater than deg((p(x)
q(x)))� 1. This completes the proof.

As announced we got the following

Theorem 3.7. If the autonomous algebraic ODE F (y, y0) = 0 has a rational general
solution ȳ, then we have

⇢

deg(ȳ) = deg(F, y0),
deg(F, y0)� 1  deg(F, y)  2deg(F, y0).

Proof. Assume ȳ = r(x) for some rational function r(x). Then (r(x), r0(x)) is a proper
parametrization of the curve F (y, y0) = 0, thanks to the Theorem 1.8 we have that
deg(r(x)) = deg(F, y0). And Lemma 3.6 applied to r(x) give us the required inequalities.

We can use the Theorem 3.7 to get an upgraded version of the criterion of existence of
rational general solution of autonomous algebraic ODE presented in the previous section.

Theorem 3.8. Let F (y, y0) = 0 be an autonomous algebraic ODE and d = deg(F, y0).
F (y, y0) = 0 has rational general solutions if and only if Prem(D

d,d

, F ) = 0.

Proof. It follows immediately from Theorem 3.2 and Theorem 3.7.

What we have said so far about the rational general solutions of algebraic autonomous
ODE suggests us that we can use the results on rational algebraic curves to obtain an
algorithm to compute these solutions. Indeed, we can construct a nontrivial rational
solution of F (y, y0) = 0 starting from a proper rational parametrization of the curve
F (y, z) = 0.

Theorem 3.9. Let (r(x), s(x)) be a proper rational parametrization of the curve F (y, z) =
0, where r(x), s(x) 2 Q̄(x). Then F (y, y0) = 0 has a nontrivial rational solution if and
only if we have one of the following relations

s(x)

r0(x)
= ā,

or
s(x)

r0(x)
= ā(x� b̄)2,

where ā, b̄ 2 Q̄ and ā 6= 0. if the first relation is true then the rational solution of
F (y, y0) = 0 is given by ȳ = r(āx), if the second one is the rational solution is given by
ȳ = r(b̄� 1

āx

).
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Proof. Let ȳ = p(x) a nontrivial rational solution of the equation F (y, y0) = 0. Then we
know that (p(x), p0(x)) is a proper rational parametrization of the curve F (y, z) = 0. Then
there exists a linear rational function f(x) = ax+b

cx+d

where ad � bc 6= 0, i.e. the map f is
invertible, such that

p(x) = r(f(x)),

p0(x) = s(f(x)) = (r(f(x)))0 = f 0(x)r0(f(x)). (3.3)

If c = 0, then f(x) = a

d

x + b

d

, so f 0(x) = a

d

. From the equation (3.3) we have s(f(x)) =
ār0(f(x)), where f(x) = āx+ b̄, with ā = a

d

and b̄ = c

d

. Suppose now that c 6= 0, we can
write f(x) = ax+b

cx+d

= a

c

+ bc�ad

c(cx�d) . Then

f 0(x) =
(ad� bc)

(cx+ d)2
=

c2(f(x)� a

c

)2

ad� bd
.

Again from (3.3), we have
ā(x� b̄)2r0(x) = s(x),

where ā = c

2

ad�bc

and b̄ = a

c

. In both situations we get a non trivial rational solution
p(x) = r(f(x)) of F (y, y0) = 0. For the other direction put p(x) = r(f(x)). Equation (3.3)
tells us that p0(x) = f 0(x)r0(f(x)), by hypothesis we have f̄ 0(x)r0(f(x)) = s(f(x)), so we
have

p0(x) = s(f(x)).

That implies
F (p(x), p0(x)) = F (r(f(x)), s(f(x))) = 0,

because (r(x), s(x)) is a parametrization of F (y, z) = 0. So ȳ = p(x) is a nontrivial rational
solution of F (y, y0) = 0.

Clearly once we obtain a non trivial rational solution of the equation F (y, y0) = 0,
applying Lemma 3.3 we get a rational general solution.

In previous chapters we have seen that an irreducible algebraic curve defined by a
polynomial over Q can be parametrized over an extension field of Q of degree at most two.
Next result tell us that algebraic ODEs which admit a rational general solution define an
algebraic curve which can be parametrized over Q.

Theorem 3.10. If the algebraic ODE F (y, y0) = 0 has a rational general solution, then
the coefficients of the rational general solution can be chosen in Q.

Proof. It is enough to prove that the coefficients of a nontrivial rational solution are in Q.
Thanks to Theorem 3.1 in the paper [SW97] and Theorem 3.9, we get a nontrivial rational
solution r(x) of F (y, y0) = 0 whose coefficients belong to Q(↵) where ↵2 2 Q. There exist
p
j

(x), q
j

(x) 2 Q[x] for j = 1, 2 such that

r(x) =
↵p1(x) + p2(x)

xm + ↵q1(x) + q2(x)
,
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and we can assume that gcdQ(↵)[x](↵p1(x) + p2(x), xm + ↵q1(x) + q2(x)) = 1. Moreover, we
assume that deg(q

j

(x))  m� 2, which may be achieved by a proper linear transformation,
this implies that if m = 0, i.e. we have a polynomial solution, then q

j

(x) = 0. Clearly if
↵ 2 Q there is nothing to prove. Assume ↵ /2 Q. Using field extension automorphisms it
is easy to check that

r̄(x) =
�↵p1(x) + p2(x)

xm � ↵q1(x) + q2(x)
,

is also a nontrivial rational solution of F (y, y0) = 0. Each nontrivial rational solution of
F (y, y0) = 0 defines a proper parametrization of the curve F (y, z) = 0, then it exists a
rational linear transformation f(x) such that r(x) = r̄(f(x)) and r0(x) = r̄0(f(x)). The
last equation implies that f(x) = x+ c for some c 2 Q(↵), because r0(x) = f 0(x)r̄0(f(x)).
So

↵p1(x) + p2(x)

xm + ↵q1(x) + q2(x)
=

�↵p1(x+ c) + p2(x+ c)

xm � ↵q1(x+ c) + q2(x+ c)
.

Since both rational function are reduced we have

xm + ↵q1(x) + q2(x) = xm � ↵q1(x+ c) + q2(x+ c).

If m > 0, we have c = 0 because deg(q
j

(x))  m� 2, the equality becomes

xm + ↵q1(x) + q2(x) = xm � ↵q1(x) + q2(x),

2↵q1(x) = 0,

and as well
2↵p1(x) = 0,

which imply q1(x) = p1(x) = 0 and the thesis in this case. If m = 0, then r(x) is a
polynomial. We can assume r(x) = (a

n

↵ + ã
n

)xn + ↵p1(x) + p2(x) where p
i

(x) 2 Q(x),
deg(p

i

(x))  n � 2 and a
n

, ã
n

2 Q, and at least one of a
n

and ã
n

is not 0. As above we
have

(a
n

↵ + ã
n

)xn + ↵p1(x) + p2(x) = (�a
n

↵ + ã
n

)(x+ c)n � ↵p1(x+ c) + p2(x+ c),

we obtain
2a

n

↵ = 0,

2↵p1(x) = 0.

These imply a
n

= p1(x) = 0 and the thesis.

The results presented in this section lead to an algorithm which decides if an au-
tonomous algebraic ODE has a rational general solution, and if yes it computes it.
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INPUT: A first order differential polynomial F (y, y0) with coefficients in Q, which is
irreducible over Q̄.
OUTPUT:A rational general solution of F (y, y0) = 0 if it exists.

1. Verify the degree bound in Theorem 3.7. If deg(F, y) < deg(F, y0) � 1 or
deg(F, y) > 2deg(F, y0) then the algorithm terminates and F (y, y0) = 0 has
no rational general solution.

2. Compute a proper rational parametrization (r(x), s(x)) of the curve F (y, y1) = 0.

3. Let A = s(x)
r

0(x)

(a) If A = a 2 Q we get a rational general solution ȳ = r(a(x+ c)).

(b) If A = a(x�b)2 for a, b 2 Q we get a rational general solution ȳ = r(ab(x+c)�1
a(x+c) ).

(c) Otherwise F has no rational solution.

Clearly the algorithm is correct and it terminates, there are not infinite processes. The
complexity of the algorithm depends on the algorithm chosen to compute the parametriza-
tion.
Example 3.1. Consider the differential equation

F (y, y0) = y03 + 4y02 + (27y2 + 4)y0 + 27y4 + 4y2

1. d = deg(F, y0) and e = deg(F, y). d = 3, e = 4. We have d� 1 < e < 2d.

2. A proper parametrization of F (y, y1) = 0 is given by

(r(x), s(x)) = (216x3 + 6x,�3888x4 � 36x2).

3. r0(x) = 648x2 + 6, we have

A =
s(x)

r(x)
= �6x2.

So a = �6, and b = 0.

4.
ȳ =

⇣

r
⇣

b� 1

a(x+ c)

⌘⌘

=
(x+ c)2 + 1

(x+ c)3

is a rational general solution of F (y, y0) = 0.

3.3 Examples
We implemented the algorithm above in two computer algebra systems: Singular by

Kaiserslautern University and CoCoA by Genova University. To compute the parametriza-
tions we used the function in Singular. For more details about the implementation see
Chapter 5.
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Example 3.2. Equation:
F (y, y0) = �y02 + y � 1 = 0

Singular:

(c2+2cx+x2+4)/4

CoCoA:

1/4x^2 + 1/2xc + 1/4c^2 + 1

Example 3.3. Equation:

F (y, y0) = 9y4 � 1

3
y03 � 9y0y2 +

4

3
y02 +

4

3
y2 � 4

3
y0

Singular:

(-c2-2cx-x2-1)/(c3+3c2x+3cx2+x3)

CoCoA:

(-x^2 - 2xc - c^2 - 1)/(x^3 + 3x^2c + 3xc^2 + c^3)

Example 3.4. Equation:

F (y, y0) =
2

27
y03 � 2y2 � 2

27
y02 +

8

27
y = 0

Singular:

x^3 + 3x^2c + 3xc^2 - 1/3x + c^3 - 1/3c + 2/27

CoCoA:

(27c^3+81c^2x+81cx^2-9c+27x^3-9x+2)/27

Example 3.5. Equation:

F (y, y0) =
8

189
y6 +

2

7
y4 � 2

7
y2y02 � 2

7
y03 = 0

Singular:
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-27/(c3+3c2x+3cx2+9c+x3+9x)

CoCoA:

-27/(x^3 + 3x^2c + 3xc^2 + 9x + c^3 + 9c)

Example 3.6. Equation:

F (y, y0) =
2

3
y4y03 � 18y6 � 2

3
y4y02 � 16

3
y3y03 � 2

3
y2y04 +

532

3
y5 +

10

9
y2y03 +

2

3
y05

�50y4 +
500

9
y2y02 +

400

9
yy03 +

50

9
y04 � 20500

9
y3 +

500

3
yy02

+
500

9
y03 � 12500

3
y02 +

1250

9
y02 � 25000

9
x� 6250

9
= 0

Singular:

(92389579776c5+461947898880c4x-2377847197440c4+923895797760c3x2
-9511388789760c3x +24479632045440c3+923895797760c2x3-14267083184640c2x2
+73438896136320c2x-126007336746720c2+461947898880cx4-9511388789760cx3
+73438896136320cx2-252014673493440cx +324307344255180+92389579776x5
-2377847197440x4+24479632045440x3-126007336746720x2+324307344255180x
-333962642704019)/(92389579776c2+184779159552cx-858749299200+92389579776x2
-858749299200x+2064783344832)

CoCoA:

(x^5+5x^4c-4015/156x^4+10x^3c^2-4015/39x^3c+3224045/12168x^3+10x^2c^3
-4015/26x^2c^2+3224045/4056x^2c -2588908135/1898208x^2+5xc^4-4015/39xc^3
+3224045/4056xc^2-2588908135/949104xc+2078893232405/592240896x+c^5
-4015/156c^4+3224045/12168c^3-2588908135/1898208c^2+2078893232405/592240896c
-333962642704019/92389579776)/(x^2+2xc-725/78x+c^2-725/78c+543877/24336)



Chapter 4

Rational general solutions of

non-autonomous algebraic ordinary

differential equations

As I did in the previous chapter for autonomous equations, here I want to present a way
to decide if a rational general solution of first order non-autonomous algebraic ordinary
differential equation exists, and if yes to compute it. This time the algorithm is based on
the parametrization of rational surfaces. Parametrizing rational surfaces is a hard step,
in the last part of the chapter I present a way to reduce our equation to an easier case
trough affine transformations.

4.1 Associated System
The contents of this and next section are treated in [CNW10].

We have the obvious definition

Definition 4.1. An algebraic ODE F = 0, where F is a differential polynomial in K(x){y}
is said to be non-autonomous if it is not autonomous, i.e. x occurs in F.

Example 4.1. Consider the differential polynomial F (x, y, y0) = y03 � 4xyy0 + 8y02 in
Q̄(x){y} then

F (x, y, y0) ⌘ y03 � 4xyy0 + 8y02 = 0

is a non-autonomous algebraic ODE.

As in the autonomous case we can consider F as an algebraic polynomial, F 2
K[x, y, y1]. In this sense F defines a zero set.

Definition 4.2. Let F = 0 be a first order non-autonomous algebraic ODE, the surface
defined by F = 0 as element of K[x, y, z] is called solution surface of the differential
equation F = 0, where K is algebraically closed and of characteristic zero.

29
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Example 4.2 (Continuing Example 4.1). The solution surface of the equation in the
Example 4.1 is the algebraic surface defined by

F (x, y, z) ⌘ z3 � 4xyz + 8z2 = 0.

We introduce now the set of all first order algebraic ODEs

AODE =
�

F (x, y, y0) = 0 | F (x, y, z) 2 K[x, y, z]
 

,

and its subset

PODE =
�

F 2 AODE | the surface F = 0 has a proper rational parametrization
 

.

In this section we consider a first order ODE F (x, y, y0) = 0, with F 2 K(x){y}, where
K is an algebraically closed field of characteristic zero. We can suppose the differential
polynomial F to be irreducible, otherwise we could consider one of its factors. Moreover,
we consider only polynomial such that its solution surface is a rational solution.

Consider a rational solution ȳ = f(x) of F (x, y, y0) = 0, it is an element of K(x) such
that

F (x, f(x), f 0(x)) = 0.

So a rational solution of F (x, y, y0) = 0 defines a parametric curve in the space which lies
on the solution surface F (x, y, z) = 0.

Definition 4.3. Let ȳ = f(x) be a rational solution of F (x, y, y0) = 0. The parametric
space curve

� : K �! K3

x 7! (x, f(x), f 0(x)),

is called the solution curve of ȳ = f(x).

Let consider a proper rational parametrization of the solution surface F (x, y, y0) = 0

� : K2 �! K3

(s, t) 7! (�1(s, t),�2(s, t),�3(s, t)),

where �
i

(s, t) 2 K(s, t) for i = 1, 2, 3.

Definition 4.4. Let ȳ = f(x) be a rational solution of F (x, y, y0) = 0. Let � be a proper
rational parametrization of the solution surface F (x, y, z) = 0. Let � be the solution
curve of ȳ = f(x). The solution curve � is parametrizable by � if and only if � is almost
contained in Im(�) \Dom(��1), i.e. except for finitely many points.

Proposition 4.1. Let F (x, y, z) = 0 be the solution surface of F (x, y, y0) = 0 with rational
proper parametetrization

�(s, t) = (�1(s, t),�2(s, t),�3(s, t)).
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The differential equation F (x, y, y0) = 0 has a rational solution ȳ = f(x) such that its
solution curve is parametrizable by � if and only if the system

⇢

�1(s(x), t(x)) = x
�2(s(x), t(x))0 = �3(s(x), t(x))

(4.1)

has a rational solution (s(x), t(x)). In this case ȳ = �2(s(x), t(x)) is a rational solution of
the equation F (x, y, y0) = 0.

Proof. Assume that ȳ = f(x) is a rational solution of F (x, y, y0) = 0, which is parametriz-
able by �. Consider the function

(s(x), t(x)) = ��1(x, f(x), f 0(x)),

it is rational because it is composition of rational functions, indeed f and ��1 are both
rational. We have

�(s(x), t(x)) = �(��1(x, f(x), f 0(x))) = (x, f(x), f 0(x)).

This means that (s(x), t(x)) is a rational solution of the system
8

<

:

�1(s(x), t(x)) = x
�2(s(x), t(x)) = f(x)
�3(s(x), t(x)) = f 0(x),

which is clearly equivalent to the system
⇢

�1(s(x), t(x)) = x
�2(s(x), t(x))0 = �3(s(x), t(x)).

Conversely, assume that (s(x), t(x)) is a rational solution of the system (4.1) and consider
the function ȳ = �2(s(x), t(x)). We get

F (x, ȳ, ȳ0) = F (x,�2(s(x), t(x)), (�2(s(x), t(x)))
0)

= F (�1(s(x), t(x)),�2(s(x), t(x)),�3(s(x), t(x)))

= F (�(s(x), t(x))) = 0,

where the last equality is because � is a parametrization of the solution surface F (x, y, z) =
0. So ȳ = �2(s(x), t(x)) is a rational solution of the equation F (x, y, y0) = 0 and clearly it
is parametrizable by �.

Remark 4.1. Observe that the rational parametrizations of the solution surface F (x, y, z) =
0 are not unique. So if �1 and �2 are two different rational proper parametrization of
the solution surface F (x, y, z) = 0 it may exist a solution curve associated to a solution
ȳ = f(x) of F (x, y, y0) = 0 is not parametrizable by both parametrizations �1 and �2. This
happens when the solution curve of f is not almost contained in Im(�1) \ Dom(�1) \
Im(�2) \Dom(�2).
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Differentianting the first equation of the system (4.1) we obtain the following system
⇢

(�1(s(x), t(x)))0 = 1
(�2(s(x), t(x)))0 = �3(s(x), t(x))

that can be expanded to
8

<

:

@�1(s(x),t(x))
@s

· s0(x) + @�1(s(x),t(x))
@t

· t0(x) = 1

@�2(s(x),t(x))
@s

· s0(x) + @�2(s(x),t(x))
@t

· t0(x) = �3(s(x), t(x)).

(4.2)

The system (4.2) can be seen as a linear system of two equation in two variables s0(x), t0(x).
Suppose now that the coefficients matrix is invertible, i.e.

det

0

@

@�1(s(x),t(x))
@s

@�1(s(x),t(x))
@t

@�2(s(x),t(x))
@s

@�2(s(x),t(x))
@t

1

A 6⌘ 0, (4.3)

applying Cramer’s rule to the system (4.2) we get that (s(x), t(x)) is a rational solution of
the autonomous system of differential equations

8

>

<

>

:

s0 = f1(s,t)
g(s,t)

t0 = f2(s,t)
g(s,t) ,

(4.4)

where f1(s, t), f2(s, t), g(s, t) 2 K(s, t) are defined by

f1(s, t) =
@�2(s, t)

@t
� �3(s, t) · @�1(s, t)

@t
,

f2(s, t) = �3(s, t) · @�1(s, t)

@s
� @�1(s, t)

@s
,

g(s, t) =
@�1(s, t)

@s
· @�2(s, t)

@t
� @�1(s, t)

@t
· @�2(s, t)

@s
.

If g(s, t) ⌘ 0, which means that the determinant (4.3) is zero, then (s(x), t(x)) is a solution
of the system

⇢

ḡ(s, t) = 0
f̄1(s, t) = 0,

(4.5)

where ḡ(s, t) and f̄1(s, t) are the numerators of g(s, t) and f1(s, t), respectively. Observe
that if gcd(ḡ(s, t), f̄1(s, t)) is constant, i.e. it does not depend on s and t, the solution
(s(x), t(x)) is an intersection point of two algebraic curves ḡ(s, t) = 0 and f̄1(s, t) = 0, so it
does not define a solution for the equation F (x, y, y0) = 0 because the condition (4.1) is not
satisfied. Then we have that (s(x), t(x)) defines a curve if and only if gcd(ḡ(s, t), f̄1(s, t))
is a non-constant polynomial in s and t.
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Definition 4.5. If the determinant in (4.3) is not zero the autonomous system (4.4) is
called the associated system of the algebraic ODE F (x, y, y0) = 0 with respect to the
parametrization � of the solution surface F (x, y, z) = 0.

Example 4.3 (Continuing Example 4.2). The solution surface in the Example 4.2 is
parametrized by

�(s, t) = (t,�4s2 · (2s� t),�4s(2s� t)),

and its inverse mapping is
��1(x, y, z) = (

y

z
, x).

We compute the rational mappings f1(s, t), f2(s, t) and g(s, t) as above

f1(s, t) = 4s · (3s� t), f2(s, t) = 8s · (3s� t),

g = 8s(3s� t).

Then the associated system of F = 0 with respect to the parametrization � is
8

<

:

s0 = 1
2

t0 = 1.

Now we want to define what a rational general solution of a system is and then to prove
that there is a one-to-one relation between the rational general solutions of the equation
F (x, y, y0) = 0 and the rational general solutions of its associated system with respect to
a proper rational parametrization of the solution surface F (x, y, y1) = 0. So far it seems
legitimate to ask why solving a system of ODEs should be easier than solving a single
equation. The answer to this question lays in the special form of an associated system,
indeed the degree of derivatives is one and the equation of the system are autonomous ones.

In order to define what a rational general solution for a system is let’s consider the
system

8

>

<

>

:

s0 = N1(s,t)
M1(s,t)

t0 = N2(s,t)
M2(s,t)

,

(4.6)

where M1, N1,M2, N2 2 K[s, t] and M1 6= 0, M2 6= 0. Let’s now define two differential
polynomials F1, F2 2 K{s, t} as

F1 = M1s
0 �N1,

F2 = M2t
0 �N2.

Remark 4.2. We are considering K{s, t} with the ord-lex ranking introduced in the Example
2.8. Note that with this ranking the initial and the separant of F

i

are the same for i = 1, 2.
Moreover with respect to that order, F1 is reduced with respect to F2 and F1 is reduced
with respect to F1, so the set {F1, F2} is autoreduced.
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Remark 4.3. The differential pseudo-remainder R = Prem(G,F1, F2) is for every G 2
K(x){s, t} is a polynomial in K(x)[s, t] because F1 and F2 are of order 1 and degree 1.

Lemma 4.2. Let
I = {G 2 K(x){s, t}|Prem(G,F1, F2) = 0}.

Then I is a prime differential ideal in K(x){s, t}.
Proof. Denote (F1, F2) the differential ideal generated by F1 and F2. Consider M1 and M2

as above and denote H1 = {Mm1
1 Mm2

2 |m1,m2 2 N}. Then

(F1, F2) : H
1 = {G 2 K(x){s, t}|9J 2 H1, JG 2 (F1, F2)},

is a prime differential ideal. In fact, suppose that (F1, F2) : H1 contains a differential
polynomial PQ but neither P nor Q. Let R

P

and R
Q

be, respectively, the remainders of P
and Q with respect to F1, F2. Then (F1, F2) : H1 contains R

P

R
Q

but neither R
P

nor R
Q

.
In what follows, every L

i

is a power product of the separants and of the initials of F1, F2,
i.e. n element of H1. Some L1RP

R
Q

has an expression linear in F1 and F2 and their
derivatives. Let F

(k)
1 be the highest derivative of F1 or F2 in this expressions, the other

case is analogous. Suppose that k > 0. Then

F
(k)
1 = M1s

(k+1) + U,

where U is of lower order than F
(k)
1 in s. We replace s(k+1) by � U

M1
in L1RP

R
Q

. Clearing
fractions, we have an expression of the form L2RP

R
Q

which is free of F (k)
1 . Continuing we

find a L
t

R
P

R
Q

which is linear in F1, F2.
In R

P

and R
Q

may occur derivatives of s and t of order higher than 1, we indicate these
as follows

v1k = s(k),

v2l = t(l),

for k, l > 1, moreover we indicate by v1 and v2, respectively, s and t. We consider
the polynomial prime ideal I0 = (M1(v1, v2)z1 � N1(v1, v2),M2(v1, v2)z2 � N2(v1, v2))
in K[z1, z2, v1, v2, v12, . . . , v1r1 , v22, . . . , v2r2 ] with an ordering which respects the ord-lex
ranking. Observe that J

t

, R
P

and R
Q

, regarded as algebraic polynomials do not belong to
I0, neither is their product. Then the differential polynomial J

t

R
P

R
Q

cannot be linear in
F1 and F2, contradiction. Thus (F1, F2) : H1 is prime. If I is defined as in the statement
we prove that

I = (F1, F2) : H
1.

Since M1 and M2 are the separant and initial of F1 respectively of F2 it is clear that
I ✓ (F1, F2) : H1. Let G 2 (F1, F2) : H1. Then there exists J 2 H1 such that
JG 2 (F1, F2). If R = Prem(G,F1, F2) then we have

J1G�R 2 (F1, F2),
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for some J1 2 H1. It follows that JJ1G�JR 2 (F1, F2), but since JG 2 (F1, F2) it implies
that JR 2 (F1, F2). Note that R, J 2 K(x)[s, t], this is possible if and only if JR = 0
because F1 and F2 are both of order 1. We must have R = 0 because J is not the zero
polynomial. Then G 2 I and we have the equality.

Definition 4.6. Let M1, N1,M2, N2 2 K[s, t], with M1 6= 0 and M2 6= 0. A rational
solution (s(x), t(x)) of the system

8

>

<

>

:

s0 = N1(s,t)
M1(s,t)

t0 = N2(s,t)
M2(s,t)

is called a rational general solution if for any G 2 K(x){s, t}

G(s(x), t(x)) = 0

if and only if
Prem(G,M1s

0 �N1,M2t
0 �N2) = 0.

As in the definition of rational general solution for an algebraic ODE F (x, y, y0) = 0 a
rational general solution of the system (4.6) can be seen as a generic zero of the ideal

I = {G 2 K(x){s, t}|Prem(G,F1, F2) = 0}.

The Lemma 4.2 tells us that I is a prime ideal so it has a generic zero in a differential
extension of K(x). We can consider the smallest differential extension such that contains
both generic zeros of F (x, y, y0) = 0 and of the system (4.6) to be the field where our
solutions are. Now we want to give a necessary and sufficient condition for a rational
solution being general, in few words we are going to prove that a rational solution is
general if and only if it depends on a transcendental constant over the field of coefficients.

Lemma 4.3. Let (s(x), t(x)) be a rational general solution of the system (4.6). Let G be
a bivariate polynomial in K(x)[s, t]. If G(s(x), t(x)) = 0, then G = 0.

Proof. G is an algebraic polynomial in s and t, and since F1 and F2 defined as above are
both of order one we have

Prem(G,M1s
0 �N1,M2t

0 �N2) = G.

Since G is a rational general solution G(s(x), t(x)) = 0 implies

Prem(G,M1s
0 �N1,M2t

0 �N2) = 0.

Then G = 0.
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Proposition 4.4. Let L be a field big enough to contain the constants of a rational solution
of the system (4.6). Let

s(x) =
a
k

xk + a
k�1x

k�1 + · · ·+ a0
b
l

xl + b
l�1xl�1 + · · ·+ b0

and
t(x) =

c
n

xn + c
n�1x

n�1 + · · ·+ c0
d
m

xm + d
m�1xm�1 + · · ·+ d0

be a non-triavial rational solution where a
i

, b
i

, c
i

, d
i

2 K and b
l

, d
m

6= 0. If (s(x), t(x)) is a
non-trivial rational general solution of the system (4.6), then there exist a constant among
the coefficients of s(x) and t(x), which is transcendental over K, where K is the field which
contains the coefficients of the equations of the system.

Proof. Define

S = (b
l

xl + b
l�1x

l�1 + · · ·+ b0)s� (a
k

xk + a
k�1x

k�1) + · · ·+ a0

and
T = (d

m

xm + d
m�1x

m�1 + · · ·+ d0)t� (c
n

xn + c
n�1x

n�1 + · · ·+ c0).

Let G = res
x

(S, T ) be the resultant of S and T with respect to x. G is a polynomial in
s and t by definition of resultant, its coefficients depend on a

i

, b
i

, c
i

, d
i

so G 2 K[s, t]. It
is easy to check that G(s(x), t(x)) = 0 so thanks to Lemma 4.3 we have G = 0. On the
other hand thanks to the Theorem 1.9 we know that G is the rational curve parametrized
by (s(x), t(x)) then G 6= 0, a contradiction. Therefore, there is a coefficient of s(x) or t(x)
that does not belong to K, but K is algebraically closed so the coefficient which is not in
K must be transcendental over K.

Proposition 4.5. Let (s(x), t(x)) be a rational solution of the system (4.6). Let G(s, t) be
a polynomial such that G = 0 is the rational algebraic curve defined by (s(x), t(x)). If there
is an arbitrary transcendental constant in the set of coefficients of G(s, t) then (s(x), t(x))
is a rational general solution of the system (4.6).

Proof. Consider H 2 K(x){s, t} be a differential polynomial such that H(s(x), t(x)) = 0.
Put

R = Prem(P, s0M1(s, t)�N1(s, t), t
0M2(s, t)�N2(s, t)),

where N1, N2 and M1,M2 denominators and numerators of the right hand side of system
(4.6). Then R 2 K[s, t] and R(s(x), t(x)) = 0. Among the coefficients of G(s, t) there
is an arbitrary constant, so we can look G(s, t) as a family of polynomial in K[s, t] by
substituting the transcendental constant with a number in K. The Theorem 1.2 tells us
that is a family of irreducible polynomials since G(s, t) = 0 is a family of rational algebraic
curves. So R must be a multiple of each element of the family G(s, t), but this is possible
if and only if R = 0. It follows that (s(x), t(x)) is a rational general solution of the system
(4.6).
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The last two propositions give us a necessary and sufficient condition for a non-trivial
rational solution of the system (4.6) (s(x), t(x)) to be a rational general solution. It
requires the rational general solution to contain at least a transcendental constant over K,
usually this transcendental constant occurs as an arbitrary constant.

Theorem 4.6. There is a one-to-one correspondence between rational general solutions
of the algebraic ODE F (x, y, y0) = 0 and the rational general solutions of the asso-
ciated system of F = 0 with respect to the proper rational parametrization �(s, t) =
(�1(s, t),�2(s, t),�3(s, t)) of the surface F (x, y, z) = 0

8

<

:

s0 = �2t��3·�1t

�1s·�2t��1t·�2s
,

t0 = �3·�1s��2s

�1s·�2t��1t·�2s
,

(4.7)

with �1s · �2t � �1t · �2s 6= 0.

(i) Let y = f(x) be a rational general solution of F (x, y, y0) = 0. Suppose the solution
curve of f is parametrizable by �(s, t) = (�1(s, t),�2(s, t),�3(s, t)). Let

(s(x), t(x)) = ��1(x, f(x), f 0(x)),

and
g(s, t) =

@�1(s, t)

@s
· @�2(s, t)

@t
� @�1(s, t)

@t
· @�2(s, t)

@s
.

if g((s(x), t(x))) 6= 0, then (s(x), t(x)) is a rational general solution of the associated
system of F = 0 with respect to �.

(ii) Let (s(x), t(x)) be a rational general solution of the system (4.7) and let c = �1(s(x), t(x))�
x. Then

y = �2(s(x� c), t(x� c))

is a rational general solution of the equation F (x, y, y0) = 0.

Proof. Since g(s(x), t(x)) 6= 0, by the Proposition 4.1 (s(x), t(x)) is a solution of (4.7).
Consider a differential polynomial P 2 K(x){y} such that P (s(x), t(x)) = 0. Let N1, N2

and M1,M2 be the numerators and the denominators of the righthand side of the system
(4.7), let

R = Prem(P,M1s
0 � n1,M2t

0 �N2).

Since we are computing a pseudo remainder with respect to linear differential polynomials
we have R 2 K(x)[s, t]. We want to prove that R = 0. We know that

R(s(x), t(x)) = R(��1(x, f(x), f 0(x))) = 0.

Let us consider the rational function R(��1(x, y, z)) = U(x,y,z)
V (x,y,z) , clearly U and V are

polynomials. Then U(x, y, y0) is a differential polynomial such that

U(x, f(x), f 0(x)) = 0.
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Since U(x, y, y0) vanishes on a generic zero of the differential ideal generated by F the
differential pseudo remainder of U with respect to F must be zero. But both U(x, y, y0)
and F (x, y, y0) are differential polynomials of order 1 we have the reduction

ImU(x, y, y0) = Q0F,

where I is the initial of F, m 2 N and Q0 is a differential polynomial of order 1 in K(x){y}.
Therefore,

R(s, t) = R(��1(�(s, t))) =
U(�(s, t))

V (�(s, t))
=

Q0(�(s, t))F (�(s, t))

Im(�(s, t))V (�(s, t))
= 0

because F (�(s, t)) = 0 and I(�(s, t)) 6= 0. Thus (s(x), t(x)) is a rational general solution
of (4.7). Let’ s prove now the second statement. Let (s(x), t(x)) be a rational general
solution of the system (4.7). In the associated system we have the relation

(�1(s, t))
0 = 1,

substituting s(x) and t(x) in �1(s, t) we have

(�1(s(x), t(x)))
0 = 1,

from which we get
�1(s(x), t(x)) = x+ c,

for some constant c. So
�1(s(x� c), t(x� c)) = x

and
y = �2(s(x� c), t(x� c))

is a rational solution of the differential equation F (x, y, y0) = 0. Consider a differential
polynomial G 2 K(x){y} such that G(y) = 0. Let

R = Prem(G,F )

be the differential pseudo remainder of G with respect to F. It follows that R(y) = 0. We
have to prove that R = 0. We want to prove that R = 0, this will imply that y is a generic
zero. Assume that R 6= 0. Then

R(�1(s, t),�2(s, t),�3(s, t)) =
W (s, t)

Z(s, t)
,

where W (s, t), Z(s, t) 2 K[s, t]. On the other hand,

R(�1(s(x), t(x)),�2(s(x), t(x)),�3(s(x), t(x))) = 0.

Hence,
W (s(x), t(x)) = 0.
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By Lemma 4.3 we must have W (s, t) = 0. Thus

R(�1(s, t),�2(s, t),�3(s, t)) = 0.

Since F is irreducible and deg
y

0R < deg
y

0F, we have R = 0 2 K[x, y, z]. Therefore, y is a
rational general solution of F (x, y, y0) = 0.

What we said above leads to the following algorithm

INPUT: A non-autonomous algebraic ODE F (x, y, y0) = 0.
OUTPUT: A rational general solution of F (x, y, y0) = 0, if it exists.

1. Compute a rational proper parametrization � = (�1,�2,�3) of the solution surface
F (x, y, z) = 0.

2. Compute the associated system of F (x, y, y0) = 0 with respect to �.

3. Compute a rational general solution (s(x), t(x)) of the associated system.

4. Compute c = �1(s(x), t(x))� x.

5. Return y = �2(s(x� c), t(x� c)).

Example 4.4 (Continuing Example 4.3). A rational general solution of the system in the
Example 4.3 is given by

(s(x), t(x)) = (
1

2
x+ C1, x+ C2),

where C1, C2 are arbitrary constants. We compute c = �1(s(x), t(x))� x and we get

c = C2.

From the theorem above we obtain that a rational general solution of the equation
F (x, y, y0) = 0 is

y = �4(s(x� C2))
2 · (2s(x� C2)� t(x� C2)) = �C(x+ C)2,

where C = 2C1 � C2.

4.2 A criterion for existence of rational general solu-
tions

In the previous section we proved that finding a rational general solution of an algebraic
ODE F (x, y, y0) = 0 is equivalent to finding a rational general solution of its associated
system with respect to a rational proper parametrization of its solution surface. Since both
equations in the associated system are autonomous we can derive a criterion of existence
of rational general solution of non-autonomous equations from the Gao’s differential
polynomial in an similar way as we have done for the autonomous case.
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Theorem 4.7. Let M1, N2,M2, N2 2 K[s, t], with M1,M2 6= 0. The autonomous system
8

>

<

>

:

s0 = N1(s,t)
M1(s,t)

,

t0 = N2(s,t)
M2(s,t)

,

(4.8)

has a general rational solution (s(x), t(x)) with degree deg(s(x))  n and deg(t(x))  m if
and only if

⇢

Prem(D
n,n

(s),M1s
0 �N1,M2t

0 �N2) = 0,
Prem(D

m,m

(t),M1s
0 �N1,M2t

0 �N2) = 0,
(4.9)

where D
n,m

(x) is the Gao’s differential polynomial defined by

D
n,m

(s) =

�

�

�

�

�

�

�

�

�

�

n+1
0

�

s(n+1)
�

n+1
1

�

s(n) · · · �

n+1
m

�

s(n+1�m)
�

n+2
0

�

s(n+2)
�

n+2
1

�

s(n+1) · · · �

n+2
m

�

s(n+2�m)

...
... . . . ...

�

n+m+1
0

�

s(n+m+1)
�

n+m+1
1

�

s(n+m) · · · �

n+m+1
m

�

s(n+1)

�

�

�

�

�

�

�

�

�

Proof. Suppose that the system (4.8) has a rational general solution (s(x), t(x)) with
degree deg(s(x))  n and deg(t(x))  m. Thanks to the Lemma 3.1 (s(x), t(x)) is a
solution of D

n,n

(s) and D
m,m

(t). Then by definition of rational general solutions of the
system (4.8) we have

⇢

Prem(D
n,n

(s),M1s
0 �N1,M2t

0 �N2) = 0,
Prem(D

m,m

(t),M1s
0 �N1,M2t

0 �N2) = 0.

On the other hand, if the conditions in (4.9) are fulfilled, then D
n,n

(s) and D
m,m

(t) belong
to the ideal I defined by

I = {G 2 K(x){s, t}|prem(G,M1s
0 �N1,M2t

0 �N2) = 0}.
We have seen that I is a prime differential ideal so it has a generic zero ⌘. ⌘ is a zero of
D

n,n

(s) and D
m,m

(t), then it is a rational function for Lemma 3.1.

Remark 4.4. If we have a degree bound of the rational solutions of the system (4.8), then
the previous theorem gives us a criterion of existence of a rational general solution of the
system (4.8).

4.3 Invariant algebraic curves of a differential system
The proof of Lemma 4.8 is original, all the other results are treated in [CNW11].

First of all we consider a polynomial differential system of the form
⇢

s0 = P (s, t),
t0 = Q(s, t),

(4.10)

where P and Q are polynomials in K[s, t] with K is algebraically closed and of characteristic
zero, as so far has been.
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Definition 4.7. An invariant algebraic curve of the polynomial differential system (4.10)
is an algebraic curve G(s, t) = 0 such that

@G

@s
· P +

@G

@t
·Q = GK, (4.11)

for some polynomial K 2 K[s, t], K is called cofactor of the invariant algebraic curve
G(s, t) = 0.

The invariant algebraic curves of a polynomial system are well studied in literature,
they can be computed by setting up an upper bound for the degree of the polynomial
G(s, t) = 0 and deriving a system of a algebraic equations with variables the coefficient of
G(s, t) by undetermined coefficients method.

Observe that the polynomial K in (4.11) is uniquely defined by the quotient of the
division of the lefthand side of (4.11) by G, moreover we have an upper bound for the
degree of K given by max{degP, degQ}� 1. Thanks to the following lemma we can reduce
the problem to finding only irreducible invariant algebraic curves.
Lemma 4.8. Let G(s, t) = 0 be an algebraic curve and G(s, t) =

Q

m

i=1 G
ni
i

(s, t) be the
decomposition of G(s, t) = 0 into irreducible factors. G(s, t) = 0 is an invariant algebraic
curves of the system

⇢

s0 = P (s, t),
t0 = Q(s, t),

(4.12)

if and only if the irreducible curves G
i

(s, t) = 0 are invariant algebraic curves of the same
system (4.12) with cofactors K

i

and K =
P

m

i=1 ni

K
i

.

Proof. Assume that each G
i

(s, t) = 0 is an invariant algebraic curve of the system (4.12)
with cofactor K

i

.

P
@G(s, t)

@s
+Q

@G(s, t)

@t
= P

@

@s
(

m

Y

i=1

Gni
i

(s, t)
�

+
@

@t
(

m

Y

i=1

Gni
i

(s, t)
�

= P
�

m

X

i=1

Y

j 6=i

n
i

Gni�1
i

@G
i

(s, t)

@s
G

nj

j

�

+Q
�

m

X

i=1

Y

j 6=i

n
i

Gni�1
i

@G
i

(s, t)

@t
G

nj

j

�

=
m

X

i=1

Y

j 6=i

n
i

Gni�1
i

G
nj

j

�

P
@G

i

(s, t)

@s
+Q

@G
i

(s, t)

@t

�

=
m

X

i=1

Y

j 6=i

n
i

Gni�1
i

G
nj

j

K
i

G
i

=
m

X

i=1

Y

j 6=i

n
i

Gni
i

G
nj

j

K
i

=
m

X

i=1

n
i

K
i

G(s, t)

= KG
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where K =
P

m

i=1 ni

K
i

. Therefore, G(s, t) = 0 is an invariant algebraic curve of the system
(4.12).
Conversely, if G(s, t) = 0 is an invariant algebraic curve of the system (4.12), first of all we
consider a special case. If G(s, t) = G0(s, t)k with k 2 N and G0(s, t) irreducible we have

KG(s, t) = P
@

@s
G+Q

@

@t
G = PkG0(s, t)k�1 @

@s
G0(s, t) +QkG0(s, t)k�1 @

@t
G0(s, t).

Dividing both sides by G0(s, t)k�1 we have

1

k
KG0(s, t) = P

@

@s
G0(s, t) +Q

@

@t
G0(s, t).

Suppose now that G(s, t) = A(s, t) · B(s, t) with gcd(A,B) = 1. Then we have

KAB = KG = P
@

@s
G+Q

@

@t
G = P (

@

@s
A · B + A · @

@s
B) +Q(

@

@t
A · B + A · @

@t
B),

KAB = (P
@

@s
A+Q

@

@t
A) · B + (P

@

@s
B +Q

@

@t
B) · A,

(KB � P
@

@s
B �Q

@

@t
B)A = (P

@

@s
A+Q

@

@t
A)B.

Note that A must divide the righthand side of last equality, since gcd(A,B) = 1 we must
have A|P @

@s

A+Q @

@t

A, that means

K
A

A = P
@

@s
A+Q

@

@t
A,

for some polynomial K
A

. The same thing can be done for B(s, t). The special case and
this last result give us the thesis easily.

Remark 4.5. Let H = gcd(P,Q) and P = P1H,Q = Q1H. Then every invariant algebraic
curve G0(s, t) = 0 of the system

⇢

s0 = P1(s, t),
t0 = Q1(s, t)

is an invariant algebraic curve of (4.10), indeed

@

@s
G0 · P1 +

@

@t
G0 ·Q1 = G0 ·K,

for some polynomial K, then it is enough to multiply both sides by H. If G(s, t) = 0 is
and invariant algebraic curve of (4.10), then

� @

@s
G · P1 +

@

@t
G ·Q1

� ·H = G ·K,

for some polynomial K. Since G(s, t) is irreducible we have either G|H or G|( @
@s

G · P1 +
@

@t

G · Q1). In the second case, G(s, t) = 0 is an invariant algebraic curve for the system
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just above. In the first case, G(s, t) is an irreducible factor of H(s, t). If (s(x), t(x)) is a
parametrization of G(s, t) = 0 then

P (s(x), t(x)) = Q(s(x), t(x)) = 0.

In this case, (s(x), t(x)) is a solution of the system (4.10) if and only if s(x) and t(x) are
both constants.

Notice that if G(s, t) = 0 is an irreducible invariant algebraic curve of (4.10) the
polynomial P @

@s

G+Q @

@t

G is in the ideal generated by G. Then finding invariant algebraic
curves of a polynomial system is a membership problem. It follows that the algorithm to
compute the invariant algebraic curves of a system is

INPUT: A polynomial differential system, as (4.10).
OUTPUT: The set of irreducible invariant algebraic curves of the system given in
input.

1. Consider a monic generic polynomial of degree k in s and t.

2. Compute the remainder R of the division of P @

@s

G+Q @

@t

G by G

3. Put R = 0, and derive the algebraic system ⌃ given by vanishing of coefficients of
R.

4. Solving the system ⌃.

5. Return the set of irreducible algebraic invariant curves of the system

Clearly to make this algorithm terminate we need an upper bound for the degree of
the irreducible invariant algebraic curves. Such bound is given in the paper [Car94] in
terms of foliations for a special case, when there are not dicritical singularities. This case
results to be the general one. More details on this facts can be found in [Car94] and [Ngo].
Concerning the practical point of view we choose a reasonable upper bound.

Example 4.5. Consider the differential polynomial system
⇢

s0 = st,
t0 = s+ t2.

Notice that we use the degree lexicographic order with s > t. We start looking for the
invariant algebraic curve of the system of degree 1. Then we consider the two monic
irreducible generic polynomials of degree 1

G(s, t) = t+ c, G(s, t) = s+ bt+ c.

If G(s, t) = t+ c we have G
t

= 0, G
t

= 1, and

G
s

P +G
t

Q = s+ t2. (4.13)
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Since the righthand side of (4.13) is not divisible by G(s, t), so G(s, t) = 0 can not be an
invariant algebraic curve. If G(s, t) = s+ bt+ c we have G

t

= b and G
s

= 1.

G
s

P +G
t

Q = st+ b(s+ t2). (4.14)

The remainder of the division of the righthand side of (4.14) by G(s, t) is

R(s, t) = (�c� b2)t� bc.

It follows that G(s, t) = s + bt + c defines an invariant algebraic curve if and only if
b = c = 0. therefore, G(s, t) = s is an invariant algebraic curve. Similarly, we ask for the
invariant algebraic curves of degree 2. Consider the generic polynomials

G(s, t) = t2 + ds+ et+ f, G(s, t) = st+ ct2 + ds+ et+ f,

G(s, t) = s2 + bst+ ct2 + ds+ et+ f.

If G(s, t) = t2 + ds+ et+ f, then the remainder of the division of G
s

P +QG
t

by G is

R(s, t) = ef + (e2 � 2f)t+ (de+ e)s+ (2� d)st.

So we need d = 2 and e = f = 0. Then G(s, t) = t2 + 2s is an invariant algebraic curve for
the system. Again with the same computations if G(s, t) = st+ ct2 + ds+ et+ f we get
that G(s, t) is not an invariant algebraic curve for any choice of its coefficients. instead if
G(s, t) = s2 + bst+ ct2 + ds+ et+ f , G(s, t) = 0 is an invariant algebraic curve if and only
if b = e = f = 0 and d = 2c, i.e. G(s, t) = s2 + ct2 + 2cs, in this case G(s, t) = 0 depends
on an arbitrary constant and it defines a whole family of invariant algebraic curves of the
system.

Let’s now move on a more general case, consider again a system of the form
8

>

<

>

:

s0 = N1(s,t)
M1(s,t)

t0 = N2(s,t)
M2(s,t)

,

(4.15)

where N1, N2,M1,M2 are polynomials with M1 6= 0 and M2 6= 0.

Definition 4.8. An algebraic curve G(s, t) = 0 is called an invariant algebraic curve of
the rational system (4.15) if

@

@s
G(s, t)M2(s, t)N1(s, t) +

@

@t
G(s, t)M1(s, t)N2(s, t) = G(s, t)K(s, t)

for some polynomial K(s, t). An invariant algebraic curve G(s, t) = 0 of the rational system
(4.15) is called a rational invariant algebraic curves if G(s, t) = 0 is a rational curve.

This means that the invariant algebraic curves of the rational system (4.15) are the
invariant algebraic curves of the polynomial system

⇢

s0 = M2N1,
t0 = M1N2.

(4.16)

Remark 4.6. A non-constant common factor of M1,M2 defines an invariant algebraic curve
of the system (4.15). However, it willl not generate any solution to the system (4.15). See
also Remark 4.5.
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4.4 Rational solutions of the rational differential sys-
tems

The contents of this section can be found in [CNW11].

Our goal is computing rational solutions of a differential system like (4.15), each
solution defines a rational invariant algebraic curve of the system, we want to use rational
invariant algebraic curves as candidates to be a rational solution of the system, in fact we
will see that not all invariant algebraic curves define a rational solution for the system.

Proposition 4.9. Let (s(x), t(x)) be a non-trivial rational solution of the system (4.15).
Let G(s, t) = 0 be the implicit form of the irreducible curve parametrized by (s(x), t(x)).
Then

@

@s
G(s, t)M2(s, t)N1(s, t) +

@

@t
G(s, t)M1(s, t)N2(s, t) = G(s, t)K(s, t)

for some polynomial K(s, t).

Proof. Clearly by definition of G(s, t) = 0 we have

G(s(x), t(x)) = 0.

Differentiating this equation with respect to x we obtain

@

@x
G(s(x), t(x)) =

@

@s
G(s(x), t(x)) · s0(x) + @

@t
G(s(x), t(x)) · t0(x) = 0.

Since (s(x), t(x)) is a solution of the system we have

@

@s
G(s(x), t(x)) · N1(s(x), t(x))

M1(s(x), t(x))
+
@

@t
G(s(x), t(x)) · N2(s(x), t(x))

M2(s(x), t(x))
= 0.

Hence, the polynomial @

@s

G ·M2N1 +
@

@t

G ·M1N2 is in the ideal of the curve generated by
G(s, t). In other words

@

@s
G ·M2N1 +

@

@t
G ·M1N2 = G ·K,

for some polynomial K.

Lemma 4.10. Let G(s, t) = 0 be an irreducible rational invariant algebraic curve of the
system (4.15). Let (s(x), t(x)) be a rational proper parametrization of G(s, t) = 0. Then
we have

s0(x) ·M1(s(x), t(x))N2(s(x), t(x)) = t0(x) ·M2(s(x), t(x))N1(s(x), t(x)).

Moreover, if G - M1 and G - M2, then

s0(x) · N2(s(x), t(x))

M2(s(x), t(x))
= t0(x) · N1(s(x), t(x))

M1(s(x), t(x))
.
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Proof. Since G(s(x), t(x)) = 0, differentiating we have

@

@s
G(s(x), t(x)) · s0(x) + @

@t
G(s(x), t(x)) · t0(x) = 0.

But G(s, t) = 0 is an invariant algebraic curve too, so we have

@

@s
G(s(x), t(x))M2(s(x), t(x))N1(s(x), t(x))+

@

@t
G(s(x), t(x))M1(s(x), t(x))N2(s(x), t(x)) = 0.

Note that @

@s

G(s(x), t(x)) 6= 0 and @

@t

G(s(x), t(x)) 6= 0 because G(s, t) = 0 is irreducible.
Therefore,

�

�

�

�

s0(x) t0(x)
M2(s(x), t(x))N1(s(x), t(x)) M1(s(x), t(x))N2(s(x), t(x))

�

�

�

�

= 0.

Moreover, if G - M1 and G - M2, then M1(s(x), t(x)) 6= 0 and M2(s(x), t(x)) 6= 0, hence

s0(x) · N2(s(x), t(x))

M2(s(x), t(x))
= t0(x) · N1(s(x), t(x))

M1(s(x), t(x))
.

As announced the lemma tells us that not every rational parametrization of a rational
invariant algebraic curve will provide a rational solution of the system. But they are good
candidates for being rational solutions of the system.

Definition 4.9. A rational invariant algebraic curve of the system (4.15) is called a
rational solution curve if it admits a rational parametrization which is a solution of the
system.

Now we need a sufficient and necessary condition to say when a rational invariant
algebraic curve is a solution curve, next theorem provides this condition.

Theorem 4.11. Let G(s, t) = 0 be a rational invariant algebraic curve of the system
8

>

<

>

:

s0 = N1(s,t)
M1(s,t)

t0 = N2(s,t)
M2(s,t)

,

(4.17)

such that G(s, t) - M1(s, t) and G(s, t) - M2(s, t). Let (s(x), t(x)) be a rational proper
parametrization of G(s, t) = 0. Then G(s, t) = 0 is a rational solution curve of the system
(4.17) if and only if one of the following differential equations has a rational solution T (x) :

1. When s0(x) 6= 0 :

T 0 =
1

s0(T )
· N1(s(T ), t(T ))

M1(s(T ), t(T ))
.
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2. When t0(x) 6= 0 :

T 0 =
1

t0(T )
· N2(s(T ), t(T ))

M2(s(T ), t(T ))
.

If there is such a rational solution T (x), then the rational solution of the system (4.17)
corresponding to G(s, t) = 0 is given by

(s(T (x)), t(T (x))).

Proof. Assume that (s̄(x), t̄(x)) is a rational solution of the system (4.17) corresponding
to G(s, t) = 0. Then (s̄(x), t̄(x)) is a rational proper parametrization of G(s, t) = 0. Since
(s(x), t(x)) is a proper parametrization of G(s, t) = 0, there exists a rational function T (x)
such that

s̄(x) = s(T (x)), t̄(x) = t(T (x)). (4.18)

Since (s̄(x), t̄(x)) is a rational solution of the system (4.17) we have
8

>

<

>

:

s̄0(x) = N1(s̄(x),t̄(x))
M1(s̄(x),t̄(x))

t̄(x)0 = N2(s̄(x),t̄(x))
M2(s̄(x),t̄(x))

.

On the other hand, from (4.18) we obtain
⇢

s̄0(x) = s0(T (x)) · T 0(x),
t̄0(x) = t0(T (x)) · T 0(x).

Therefore,

T 0(x) · s0(T (x)) = N1(s̄(x), t̄(x))

M1(s̄(x), t̄(x))
,

T 0(x) · t0(T (x)) = N2(s̄(x), t̄(x))

M2(s̄(x), t̄(x))
.

If s0(x) 6= 0 or t0(x) 6= 0, we have

T 0 =
1

s0(T )
· N1(s(T ), t(T ))

M1(s(T ), t(T ))

or
T 0 =

1

t0(T )
· N2(s(T ), t(T ))

M2(s(T ), t(T ))
,

respectively. Conversely, we can assume without loss of generality that s(x) is non-constant
and T (x) is a rational solution of the fist differential equation. Thanks to Lemma 4.10 we
have

s0(T ) · N2(s(T ), t(T ))

M2(s(T ), t(T ))
= t0(T ) · N1(s(T ), t(T )

M1(s(T ), t(T )))
.
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If t0(T ) ⌘ 0, then N2(s(T ),t(T ))
M2(s(T ),t(T )) = 0 and t(x) = c for some constant c. Clearly (s(T (x)), c) is

a rational solution of the system (4.17), so G(s, t) = 0 is a rational solution curve of the
system. If t0(T ) is not 0, then

1

t0(T )
· N2(s(T ), t(T ))

M2(s(T ), t(T ))
=

1

s0(T )
· N1(s(T ), t(T ))

M1(s(T ), t(T ))
.

Therefore, T (x) is also a rational solution of the second differential equation.

@

@x
s(T (x)) = s0(T (x)) · T 0(x) = s0(T (x)) · 1

s0(T )
· N1(s(T ), t(T ))

M1(s(T ), t(T ))
=

N1(s(T ), t(T ))

M1(s(T ), t(T ))
,

and

@

@x
t(T (x)) = t0(T (x)) · T 0(x) = t0(T (x)) · 1

t0(T )
· N2(s(T ), t(T ))

M2(s(T ), t(T ))
=

N2(s(T ), t(T ))

M2(s(T ), t(T ))
,

hence (s(T (x)), t(T (x))) is a rational solution of the system (4.17). So G(s, t) = 0 is a
rational solution curve.

Last Theorem tells us that if we are in the case s0(x) not zero, we need to find a rational
solution of the autonomous differential equation

T 0 =
1

s0(T )
· N1(s(T ), t(T ))

M1(s(T ), t(T ))

to compute a rational solution of the system (4.17).

We want now to prove that the solvability of the autonomous differential equations in
Theorem 4.11 do not depend on the choice of the proper rational parametrization of the
rational invariant algebraic curve G(s, t) = 0.

Theorem 4.12. Let G(s, t) = 0 be a rational invariant algebraic curve of the system
(4.17) such that G(s, t) - M1(s, t) and G(s, t) - M2(s, t). Let �1(x) = (s1(x), t1(x)) and
�2(x) = (s2(x), t2(x)) be two proper rational parametrizations of the curve G(s, t) = 0 such
that s01(x) 6= 0 and s02(x) 6= 0. Then the two autonomous differential equations

T 0
1 =

1

s01(T1)
· N1(s1(T1), t1(T1))

M1(s1(T1), t1(T1))
(4.19)

and
T 0
2 =

1

s02(T2)
· N1(s2(T2), t2(T2))

M1(s2(T2), t2(T2))
(4.20)

are such that one of them have a rational solution if and only if the other one has. Moreover
T1 and T2 can be chosen such that

�1(T1) = �2(T2).
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Proof. Suppose that (4.19) has a rational solution T1(x). Then the rational general solution
of (4.17) corresponding to G(s, t) = 0 is (s1(T1(x)), t1(T1(x))). Since (s1(T1(x)), t1(T1(x)))
and (s2(x), t2(x)) are both a proper rational parametrization of the same curve G(s, t) = 0,
there exists a rational function T2(x) such that

s2(T2(x)) = s1(T1(x)), t2(T2(x)) = t1(T1(x)).

Hence,

s02(T2(x))T
0
2(x) = s01(T1(x))T

0
1(x) =

N1(s1(T1), t1(T1))

M1(s1(T1), t1(T1))
=

N1(s2(T2), t2(T2))

M1(s2(T2), t2(T2))
.

This means that T2(x) is a rational solution of (4.20). Exactly the same thing can be done
starting from (4.20).

Theorem 4.13. Suppose that s(x) is a non constant rational function and N1(s(x), t(x)) 6=
0. Then every rational solution of

T 0 =
1

s0(T )
· N1(s(T ), t(T ))

M1(s(T ), t(T ))

is of the form
T (x) =

ax+ b

cx+ d
,

where a, b, c and d are constants.

Proof. Assume that T (x) is a rational solution of the above differential equation. Then,
by Proposition 3.5 (T (x), T 0(x)) forms a proper parametrization of the algebraic curve
H(T, U) = 0 defined by the numerator of

s0(T ) ·M1(s(T ), t(T )) · U �N1(s(T ), t(T )).

Since the degree of H(T, U) with respect to U is 1, the degree of T (x) is also 1 because of
the degree bound of proper parametrizations (Chapter 2).

Corollary 4.14. Every non-trivial rational solution of the system (4.17) is proper, i.e. It
defines a rational proper parametrization of the rational solution curve.

Proof. By Theorem 4.11, a non-trivial rational solution of the system (4.17) is a composition
of a proper parametrization with an invertible linear rational function, hence, it is a proper
parametrization.

Observe that if (s(x), t(x)) is a rational solution of the system (4.17), then, because
the equations in (4.17) are autonomous ones,

(s(x+ c), t(x+ c))

is also a rational solution of the system for every constant c. Next Theorem tells us that
this the only way to obtain rational general solution from the same rational solution curve.
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Theorem 4.15. Let (s1(x), t1(x)) and (s2(x), t2(x)) be non-trivial rational solutions of
the differential system (4.17) corresponding to the same rational invariant algebraic curve.
Then there exists a constant c such that

(s1(x+ c), t1(x+ c)) = s2((x), t2(x)).

Proof. By Corollary 4.14, we have proven that this solutions are proper. Since (s1(x), t1(x))
and (s2(x), t2(x)) are rational parametrizations of the same invariant algebraic curve, there
exists a linear rational function T (x) such that

(s2(x), t2(x)) = (s1(T (x)), t1(T (x))).

So
8

>

<

>

:

s01(T (x))T
0(x) = s02(x) =

N1(s2(x),t2(x))
M1(s2(x),t2(x))

= N1(s1(x),t1(x))
M1(s1(x),t1(x))

t01(T (x))T
0(x) = t02(x) =

N2(s2(x),t2(x))
M2(s2(x),t2(x))

= N2(s1(x),t1(x))
M2(s1(x),t1(x))

.

(4.21)

It follows that
T 0(x) = 1.

Therefore, T (x) = x+ c for some constant c.

What we said above leads to the following algorithm to solve a linear rational differential
system as (4.17)

INPUT: A rational differential system as (4.17).
OUTPUT: The corresponding rational solution of (4.17), if it exists.

1. Compute the set of irreducible invariant algebraic curves of the system.

2. Find a rational invariant algebraic curve G(s, t) = 0 such that G - M1 and G - M2.

3. Compute a rational proper parametrization ⌘ of the curve G(s, t) = 0.

4. If it exists, compute a rational solution of one of the following equations:

If s0(x) ⌘ 0

T 0 =
1

t0(T )
· N2(s(T ), t(T ))

M2(s(T ), t(T ))
,

else
T 0 =

1

s0(T )
· N1(s(T ), t(T ))

M1(s(T ), t(T ))
.

5. If T (x) exists, return
(s(T (x)), t(T (x))).
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Example 4.6. Consider the rational differential system
8

>

<

>

:

s0 = �2(�(t�1)2+s

2)(t�1)2

((t�1)2+s

2)2

t0 = �4(t�1)3s
((t�1)2+s

2)2 .

(4.22)

First we compute the set of invariant algebraic curves of the system (4.22),

{t� 1 = 0, s±p�1(t� 1) = 0, s2 + t2 + (�1� c)t+ c = 0},
where c is an arbitrary constant. Note that one can prove that the system has no
irreducible invariant curves of degree higher than 2. Observe that we discard the curves
s±p�1(t� 1) = 0 because they divide the denominators of the system. The invariant
algebraic curve t� 1 = 0 can be parametrized by (x, 1). s0(x) = 1, so the corresponding
equation is

T 0 = 0.

Hence, T (x) = C for some constant C. So (s(x), t(x)) = (C, 1) is a rational solution
corrensponding to the rational solution curve t � 1 = 0. Consider now the invariant
algebraic curves

s2 + t2 + (�1� c)t+ c = 0.

This is a family of conic curves depending on the constant parameter c. Let c = �1. Then
we obtain the curve

s2 + t2 � 1 = 0,

which is the unit circle. Consider the parametrization given by the stereographic projection

�(x) =
� �2x

x2 + 1
,
�x2 + 1

x2 + 1

�

.

Hence, the corresponding equation is

T 0 = T 2.

This implies that
T (x) = �1

x
.

A rational solution of the system is

(s(x), t(x)) =
� 2x

x2 + 1
,
x2 � 1

x2 + 1

�

.

The Proposition 4.5 gives us a necessary and sufficient condition for a rational solution
of a rational differential system, as (4.17), to be a rational general solution of the system.
According to this proposition the solution must have at least a coefficient which depends
on an arbitrary constant. From the algorithmic point of view we can obtain a rational
general solution for the system starting from a rational parametrization of a whole family
of invariant algebraic curves as in the following example
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Example 4.7 (Continuing Example 4.6). We now consider the whole family of invariant
algebraic curves of the system (4.22) depending on the constant parameter c

G(s, t) = s2 + t2 + (�1� c)t+ c = 0.

This determines a rational curve in A2(K(c)), which has the proper rational parametrization

�(x) =
�(c� 1)x

1 + x2
,
cx2 + 1

1 + x2

�

.

The corresponding autonomous differential equation is

T 0 = � 2T 2

c� 1
.

Hence
T (x) =

c� 1

2x
.

Now we substitute T (x) into �(x) to obtain a rational general solution of the system (4.17)

(s(x), t(x)) =
� 2(c� 1)2x

4x2 + (c� 1)2
,
c(c� 1)2 + 4x2

4x2 + (c� 1)2
�

.

4.5 Some examples
Now we are able to compute rational general solutions of an autonomous algebraic ODE

F (x, y, y0) = 0 given a rational proper parametrization of the solution surface F (x, y, z) = 0.
As in the autonomous case we implemented the algorithms of the previous sections in two
different computer algebra systems: Singular and CoCoA. In next examples we consider
parametrizations of the solution surface easy computable or known in literature.

Example 4.8. Equation:

F (x, y, y0) = xy02 + yy0 � y4 = 0

Solution surface:
F (x, y, z) = xz2 + yz � y4 = 0

Solution surface’s parametrization:

�(s, t) =
�

s,
t

t2 � s
,

�t3

s(t2 � s)2
�

Singular1:

1
My algorithm gives in output two elements (1) and (2) respectively numerator and denominator of

the rational solution.
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(1) -1

(2) x-1

CoCoA:

-1/(x-1)

Example 4.9. Equation:

F (x, y, y0) = y02 + 3y0 � 2y � 3x = 0

Solution surface:
F (x, y, z) = z2 + 3z � 2y � 3x = 0

Solution surface’s parametrization:

�(s, t) =
�2s+ st+ t2

s2
,
�t2 � 3s

s2
,
t

s

�

Singular:

(1) x2

(2) 2

CoCoA:

1/2x^2

Example 4.10. Equation:

F (x, y, y0) = x2y02 � 4x(y + 2)y0 + 4y(y + 2) = 0

Solution surface:

F (x, y, z) = x2z2 � 4x(y + 2)z + 4y(y + 2) = 0

Solution surface’s parametrization:

�(s, t) =
�

s,
�2st(st� 4)

(st� 2)2
,

8t

(st� 2)2
�

Singular:

(1) 2x2+4x



CHAPTER 4. NON-AUTONOMOUS ALGEBRAIC ODE 54

(2) 1

CoCoA:

2x^2+4x

Example 4.11. Equation:

F (x, y, y0) = xy02 + yy0 + y4 = 0

Solution surface:
F (x, y, z)xz2 + yz + y4 = 0

Solution surface’s parametrization:

�(s, t) =
�

s,
t3

�s6 + s3t2
,

�t5

s10 � 2s7t2 + s4t4
�

Singular:

(1) -1

(2) x-1

CoCoA:

-1/(x-1)

4.6 Affine transformations and rational general solu-
tions

The main results in this section are from [CNSW12], but the Lemma 4.20 and the
proposition 4.21 are original. In the algorithm to compute a rational general solution of
a non-autonomous differential equation F (x, y, y0) = 0 given in Section 4.1 the hardest
step is computing a proper rational parametrization of the solution surface F (x, y, z) = 0.
To avoid this step we want to investigate on affine transformations which send rational
general solutions in general solutions, thanks to such transformations we can transform an
equation into an easier one to solve.

Definition 4.10. A parametric curve of the form C(x) = (x, f(x), f 0(x)), where f(x) is a
rational function, is called integral curve of the space.
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We define a group of affine linear transformations on K(x)3 mapping an integral curve
of the space to another one. This group can act on the set of all algebraic ODEs of order
1 and it is compatible with the solution curves of the corresponding differential equations.
Let L : K(x)3 ! K(x)3 be an affine linear transformation defined by

L(v) = Av +B,

where A is an invertible 3 ⇥ 3 matrix over K, B is a column vector over K and v is a
column vector over K(x). We want to determine A and B such that for any f(x) 2 K(x),
there exists g 2 K(x) with

L

0

@

x
f(x)
f 0(x)

1

A =

0

@

a11 a12 a13
a21 a22 a23
a31 a32 a33

1

A ·
0

@

x
f(x)
f 0(x)

1

A+

0

@

b1
b2
b3

1

A =

0

@

x
g(x)
g0(x)

1

A . (4.23)

From (4.23) we have the following equalities
8

<

:

x = a11x+ a12f(x) + a13f
0(x) + b1

g(x) = a21x+ a22f(x) + a23f
0(x) + b2

g0(x) = a31x+ a32f(x) + a33f
0(x) + b3.

(4.24)

Differentiating the second equation of (4.24) we obtain
⇢

x = a11x+ a12f(x) + a13f
0(x) + b1

a21 + a22f
0(x) + a23f

00(x) = a31x+ a32f(x) + a33f
0(x) + b3.

(4.25)

Since (4.25) must be true for every f(x) 2 K(x) we have

a11 = 1, b1 = a12 = a13 = a23 = a32 = a31 = 0

a21 = b3 = b, a22 = a33 = a, b2 = c,

with a, b, c 2 K. Therefore,

A =

0

@

1 0 0
b a 0
0 0 a

1

A , B =

0

@

0
c
b

1

A .

Since we want A to be invertible we ask a 6= 0. We call G the set of all such affine
transformations. We represent the elements of G by a pair of matrices

⇥

A B
⇤

.

Proposition 4.16. The set G with the usual composition of functions is a group.

Proof. Consider L1, L2 2 G,

L
i

=

2

4

0

@

1 0 0
b
i

a
i

0
0 0 a

i

1

A

0

@

0
c
i

b
i

1

A

3

5 , for i = 1, 2.
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We must verify that (L1 � L2) 2 G and the existence of the inverse for every L 2 G and
of the unit element. Clearly, the associative property is verified since the composition of
functions is associative in general. As unit element we take the element

⇥

Id3 0
⇤

, where
Id3 is the identity matrix 3⇥ 3.

(L1 � L2)

0

@

x
f(x)
f 0(x)

1

A = L1

0

@

0

@

1 0 0
b2 a2 0
0 0 a2

1

A

0

@

x
f(x)
f 0(x)

1

A+

0

@

0
c2
b2

1

A

1

A

= L1

0

@

x
b2x+ a2f(x) + c2

a2f
0(x) + b2

1

A

=

0

@

1 0 0
b1 a1 0
0 0 a1

1

A

0

@

x
b2x+ a2f(x) + c2

a2f
0(x) + b2

1

A+

0

@

0
c1
b1

1

A

=

0

@

x
(b1 + a1b2)x+ a1a2f(x) + a1c2 + c1

a1a2f
0(x) + b2a1 + b1

1

A

=

0

@

1 0 0
b1 + a1b2 a1a2 0

0 0 a1a2

1

A

0

@

x
f(x)
f 0(x)

1

A+

0

@

0
a1c2 + c1
b2a1 + b1

1

A .

Hence, L1 � L2 2 G.
Consider now the element H of G

H =

2

4

0

@

1 0 0
� b1

a1

1
a1

0
0 0 1

a1

1

A

0

@

0
� c1

a1� b1
a1

1

A

3

5 ,

thanks to the above computations we have

H � L1 =

2

4

0

@

1 0 0
0 1 0
0 0 1

1

A

0

@

0
0
0

1

A

3

5 ,

and

L1 �H =

2

4

0

@

1 0 0
0 1 0
0 0 1

1

A

0

@

0
0
0

1

A

3

5 .

So H = L�1
1 and G is a group as wanted.

Now we want to define how the group G just defined acts on the set AODE .
' : G ⇥AODE ! AODE

(L, F ) 7! L · F = (F � L�1)(x, y, y0) = F
�

x,� b

a
x+

1

a
y � c

a
,�b

s
+

1

a
y0
�

,
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where

L =

2

4

0

@

1 0 0
b a 0
0 0 a

1

A

0

@

0
c
b

1

A

3

5 .

Lemma 4.17. The map ' : G ⇥AODE ! AODE defined above is a group action of G
on AODE .
Proof. We have

(L1 � L2) · F = F � (L1 � L2)
�1

= F � (L�1
2 � L�1

1 )

= (F � L�1
2 ) � L�1

1

= L1 · (L2 · F ),

and I · F = F. Therefore, this is an action of the group G on AODE .
Remark 4.7. Let F 2 PODE ⇢ AODE and  (s, t) be a proper rational parametrization
of the solution surface of F, then L �  (s, t) is a proper rational parametrization of the
solution surface of (L · F ), because

(L · F )((L �  (s, t))) = F (L�1((L �  (s, t)))) = F ( (s, t)) = 0.

Therefore, (L · F ) 2 PODE and ' is a group action on the set PODE too.

Theorem 4.18. Let F 2 PODE and L 2 G. For every proper rational parametrization
 (s, t) of the surface F (x, y, z) = 0 the associated system of F (x, y, y0) = 0 with respect to
 and the associated system of (L · F )(x, y, y0) = 0 with respect to L �  (s, t) are equal.

Proof. Let  (s, t) = (�1(s, t),�2(s, t),�3(s, t)) be a proper rational parametrization of
F (x, y, y0) = 0. Then L · F can be parametrized by (L �  )(s, t). The associated system of
F (x, y, y0) = 0 with respect to  (s, t) is

n

s0 = f1

g

, t0 = f2

g

o

where

f1 =

�

�

�

�

�

�

1 @

@t

�1

�3
@

@t

�2

�

�

�

�

�

�

, f2 =

�

�

�

�

�

�

@

@s

�1 1

@

@s

�2 �3

�

�

�

�

�

�

, and g =

�

�

�

�

�

�

@

@s

�1
@

@t

�1

@

@s

�2
@

@t

�2

�

�

�

�

�

�

.

We have
(L �  )(s, t) = (�1, b�1 + a�2 + c, b+ a�3),

where a, b, c are constants and a 6= 0. So the associated system of (L · F )(x, y, y0) = 0 with
respect to (L �  ) is

n

s0 = f̃1

g̃

, t0 = f̃2

g̃

o

where

f̃1 =

�

�

�

�

�

�

1 @

@t

�1

b+ a�3 b @
@t

�1 +
@

@t

a�2

�

�

�

�

�

�

= af1, f̃2 =

�

�

�

�

�

�

@

@s

�1 1

b @
@s

�1 + a @

@s

�2 b+ a�3

�

�

�

�

�

�

= af2,
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and

g̃ =

�

�

�

�

�

�

@

@s

�1
@

@t

�1

b @
@s

�1 + a @

@s

�2 b @
@t

�1 + a @

@t

�2

�

�

�

�

�

�

= ag.

Therefore, the associated system of F (x, y, y0) = 0 with respect to  and the associated
system of (L · F )(x, y, y0) = 0 with respect to (L �  )(s, t) are equal.

In Chapter 3 we have seen the algorithm to compute rational general solutions of
autonomous algebraic ODEs, if they exist. Since the autonomous case is much more easier
than the non-autonomous one it can be interesting to see when a non-autonomous equation
can be transformed into an autonomous one. Next corollary gives us necessary condition
for that.

Corollary 4.19. Let F 2 PODE and L 2 G such that (L · F )(x, y, y0) = 0 is an
autonomous algebraic ODE. There exist a proper rational parametrization  (s, t) of
F (x, y, z) = 0 such that its associated system is of the form

n

s0 = 1, t0 =
M(t)

N(t)

o

. (4.26)

Proof. Since (L · F )(x, y, y0) = 0 is an autonomous parametrizable ODE, the plane
algebraic curve (L · F )(y, z) = 0 is rational, and for every proper rational parametrization
(f(t), g(t)) of (L · F )(y, z) = 0 the associated system of (L · F )(x, y, y0) = 0 with respect
to  (s, t) = (s, f(t), g(t)) is of the form

n

s0 = 1, t0 =
g(t)

f 0(t)

o

.

Remark 4.8. The inverse of the corollary is not true. Consider the equation

F (x, y, y0) = y � y02 � y0 � y0x = 0.

It belongs to PODE and
 1(s, t) = (s, t2 + t+ s, t).

is a proper rational parametrization of F (x, y, z) = 0. The associated system with respect
to  1 is

�

s0 = 1, t0 = 0
 

,

which is of the form (4.26). Consider L the generic element of G, we have

(L · F )(x, y, y0) = � 1

a2
y02 � 1

a
y0 + 2

b

a2
y0 � 1

a
xy0 +

1

a
y +

b

a
� b2

a2
� c

a
,

to make this autonomous we must have
1

a
= 0,

but this is impossible.
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We want to discover when an equation F 2 PODE can be transformed into an easier
one by the action of G. Algorithmically we work as in Remark 4.8, i.e. we apply the generic
element L of G to the F then we try to obtain a new equation of a special form easy
to solve (L · F ) by vanishing some coefficients. We obtain an algebraic system ⌃ in the
unknowns a, b, c. By solving the system we obtain the transformation L which is used to
obtain a rational general solution of F from a rational general solution of (L · F ). We said
we would like to avoid computing a rational proper parametrization of the solution surface,
so we try to transform non-autonomous equation into autonomous ones, or into equation
of a particular form which allow us to obtain easily a proper rational parametrization of
the solution surface.

Definition 4.11. An equation F 2 PODE is called solvable for y0, respectively for y and
for x, if it is of the form

y0 = h(x, y),

where h(x, y) is a rational function, or

y = h(x, y0),

or
x = h(y, y0),

respectively.

Remark 4.9. If an equation F 2 PODE is solvable for a variable, it as an obvious rational
proper parametrization. For instance, if F is solvable for y0 its obvious proper rational
paramterization is of the form

(s, t, h(s, t)).

This parametrization is proper since h(s, t) is a rational function we have

K(s, t, h(s, t)) = K(s, t).

Note now that the equations which are solvable for y0 and y are closed under the action
of G, i.e. we can not enlarge these classes by applying the transformations in G. In fact, if
F 2 PODE can be written in the form

y0 = h(x, y)

for some rational function h(x, y), by applying L 2 G we have

(L · F )(x, y, y0) = � b

a
+

1

a
y0 � h

�

x,� b

a
x+

1

a
y � c

a

�

.

Therefore, the new differential equation is of the same form. The same thing happens if F
is solvable for y.

So we must check only if an equation F 2 PODE can be transformed into an au-
tonomous equation or into a solvable for x one.
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Example 4.12. Consider the differential equation

F (x, y, y0) = y02 + 3y0 � 2y � 3x = 0.

We apply a generic L 2 G to F to get

(L · F )(x, y, y0) =
1

a2
y02 +

3

a
y0 � 2b

a2
y0 � 2

a
y +

2b

a
x� 3x� 3b

a
+

b2

a2
+

2c

a
.

In this case we have the following equation

2b

a
� 3 = 0, (4.27)

so for every a 6= 0 and b which satisfy (4.27) we get an autonomous algebraic ODE. For
a = 1, b = 3

2 and c = 0 we get

L =

2

4

0

@

1 0 0
3
2 1 0
0 0 1

1

A

0

@

0
0
3
2

1

A

3

5 ,

i.e. we obtain
F (L�1(x, y, y0)) = y02 � 2y � 9

4
= 0.

Example 4.13. Consider the differential equation

F (x, y, y0) = �3x� 4x2 + 4xy � y2 + 2xy0 + 2y � yy0 + 8 + 8y0 + 2y02 = 0.

Applying a generic L 2 G to F we obtain

(L · F )(x, y, y0) = �3x� 4x2 � 4b

a
x2 +

4

a
xy � 4c

a
x� b2

a2
� 1

a2
y2 � c2

a2
+

2b

a2
xy +

2

a
xy0

�2b

a
+

b

a2
xy0 � b2

a2
x� 1

a2
yy0 +

b

a2
y +

c

a2
y0 +

b

a2
+ 8� 8

a
y0

+
8b

a
+

2

a2
y2 +

2b2

a2
� 4b

a2
y0.

The coefficient of x2 is
�(2a+ b)2

a2
,

from this we get
2a+ b = 0.

Putting a = 1, b = �2 and c = 0 we have

(L · F )(x, y, y0) = x� y2 � yy0 + 2y02.

We have the following algorithm
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INPUT: A non-autonomous parametrizable algebraic differential equation F (x, y, y0) =
0.
OUTPUT: A rational solution of F (x, y, y0) = 0, if F can be transformed into an
equation of special form and if a rational solution exists.

1. Check if F can be transformed into an equation of special form. If yes, compute
the transformation L.

2. Compute a rational solution of (L · F ).

3. (a) If (L · F ) is autonomous:
i. Compute a rational general solution ⌘(x) of (L · F ).

ii. Return
⌘̂ = ⇡2(L

�1 � ⌘),
where ⇡2 : K(x)3 ! K(x) is the projection on the second coordinate.

(b) If (L · F ) is solvable for x:
i. Compute the parametrization of

F (x, y, y0) = 0

such that its associated system and the one of (L · F ) are equal.
ii. Compute a rational general solution of F (x, y, y0) = 0 following the

algorithms in the previous sections and return it.

Example 4.14 (Continuing Example 4.12). A rational general solution of the equation

F (L�1(x, y, y0)) = y02 � 2y � 9

4
= 0

is given by
ŷ(x) =

1

2

⇣

(x+ c)2 � 9

4

⌘

,

where c is an arbitrary constant. Then a rational general solution of the given equation is

y(x) = ŷ(x)� 3

2
x.

Define now G 0 ⇢ G the set of all elements L of G of the form

L =

2

4

0

@

1 0 0
b 1 0
0 0 1

1

A

0

@

0
c
b

1

A

3

5 .

Lemma 4.20. G 0 is a subgroup of G.
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Proof. It is enough to verify that the subgroup is closed by composition. Consider
L1, L2 2 G 0 wirh

L
i

=

2

4

0

@

1 0 0
b
i

1 0
0 0 1

1

A

0

@

0
c
i

b
i

1

A

3

5 , for i = 1, 2.

Then

(L1 � L2)

0

@

x
f(x)
f 0(x)

1

A = L1

0

@

0

@

1 0 0
b2 1 0
0 0 1

1

A

0

@

x
f(x)
f 0(x)

1

A+

0

@

0
c2
b2

1

A

1

A

= L1

0

@

x
b2x+ f(x) + c2

f 0(x) + b2

1

A

=

0

@

1 0 0
b1 1 0
0 0 1

1

A

0

@

x
b2x+ f(x) + c2

f 0(x) + b2

1

A+

0

@

0
c1
b1

1

A

=

0

@

x
(b1 + b2)x+ f(x) + c2 + c1

f 0(x) + b2 + b1

1

A

=

0

@

1 0 0
b1 + b2 1 0

0 0 1

1

A

0

@

x
f(x)
f 0(x)

1

A+

0

@

0
c2 + c1
b2 + b1

1

A .

So L1 � L2 2 G 0.

The next proposition tells us that we can reduce to the transformations in G 0.

Proposition 4.21. Let F 2 PODE and L 2 G such that (L · F ) is of special form, i.e.
autonomous or sovable for x, then there exists L0 2 G 0 such that (L0 · F ) is of the same
form.

Proof. Suppose

L =

2

4

0

@

1 0 0
b a 0
0 0 a

1

A

0

@

0
c
b

1

A

3

5 ,

and that deg(F ) = n then F (x, y, y0) = 0 can be written as

F (x, y, y0) =
X

i+j+kn

�
ijk

xiyjy0k.

Therefore,
(L · F ) =

X

i+j+kn

�
ijk

xi

⇣

� b

a
x+

1

a
y � c

a

⌘

j

⇣1

a
y0 � b

a

⌘

k

.
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Fix now (i, j, k) and consider the monomial xiyjy0k, after the action of L it becomes

�
ijk

xi

⇣

� b

a
x+

1

a
y � c

a

⌘

j

⇣1

a
y0 � b

a

⌘

k

=

�
ijk

j

X

r=0

r

X

s=0

k

X

t=0

✓

j

r

◆✓

r

s

◆✓

k

t

◆

(�1)s+j+k�r�t

bs+k�t · cj�r

aj+k

xi+syr�sy0t.

For a triple (r, s, t) we get the term

�
ijk

✓

j

r

◆✓

r

s

◆✓

k

t

◆

(�1)s+j+k�r�t

bs+k�t · cj�r

aj+k

xi+syr�sy0t. (4.28)

Consider now another monomial �
efg

xeyfy0g such that (i, j, k) 6= (e, f, g) and we do the
same substitution and choose u, v, w such that

xe+uyv�uy0w = xi+syr�sy0t, (4.29)

if this is not possible change (e, f, g). From (4.29) we have the following equalities
8

>

>

<

>

>

:

t = w
e+ u = i+ s
r � s = v � u
e+ v = i+ r.

(4.30)

The coefficient of the monomial xe+uyv�uy0w after the substitution is

�
efg

✓

f

v

◆✓

v

u

◆✓

g

w

◆

(�1)d
bu+g�w · cf�v

af+g

xe+uyv�uy0w. (4.31)

Note that

j + k = s+ k � t+ j � r + r � s+ t

f + g = u+ y � w + f � v + v � u+ w

If b0 = b

a

and c0 = c

a

(4.28) and (4.31) can be written as

�
ijk

✓

j

r

◆✓

r

s

◆✓

k

t

◆

(�1)d
0 b0s+k�t · c0j�r

ar�s+t

xi+syr�sy0t,

�
efg

✓

f

v

◆✓

v

u

◆✓

g

w

◆

(�1)d
b0u+g�w · c0f�v

av�u+w

xe+uyv�uy0w,

but ar�s+t = av�u+w. So the coefficient of xi+syr�sy0t in (L · F )(x, y, y0) can be written in
the form

1

am

⇣

X

l

✏
l

b0h
b
l c0h

c
l

⌘

,
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for some positive integers m,hb

l

, hc

l

. Since L transforms F into a special form equation if
i+ s � 1 (or i+ s > 1 in the solvable for x case) we have

1

am

⇣

X

l

✏
l

b0h
b
l c0h

c
l

⌘

= 0,

which is true if and only if
X

l

✏
l

b0h
b
l c0h

c
l = 0.

From above we have m = r � s+ t and note that 1
a

r�s and 1
a

t are the contributions of y
and y0 respectively. So

X

l

✏
l

b0h
b
l c0h

c
l

is the coefficient of xi+syr�sy0t after the action of

G =

2

4

0

@

1 0 0
b0 1 0
0 0 1

1

A

0

@

0
c0

b0

1

A

3

5 ,

which belongs to G 0.

We can modify the algorithm to compute rational general solutions of non-autonomous
algebraic ODEs checking if the equation given in input is or can be transformed into an
equation of special form by the an element of G 0. Clearly that makes the computation
easier since we have only two unknowns b and c.

As done for the other algorithms we implemented this one in Singular and CoCoA.
Here some examples follow.

Example 4.15. Equation:

F (x, y, y0) = xy02 � yy0 + 2 = 0

Solution surface:
xz2 � yz + 2 = 0

Singular2:

• (1) -x-2

(2) 1

• (1) (alpha^2)*x+2
2
My algorithm gives in output two elements (1) and (2) respectively numerator and denominator of

the rational solution.
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(2) alpha

CoCoA:

-x-2

Example 4.16. Equation:

F (x, y, y0) = xy02 � 2yy0 + 2y + x = 0

Solution surface:
xz2 � 2yz + 2y + x = 0

Singular:

(1) -x^2+2*x-2

(2) 2

CoCoA:

-1/2x^2+x-1

Example 4.17. Equation:

F (x, y, y0) = (x+ 1)y02 � (y + x)y0 + y = 0

Solution surface:
(x+ 1)z2 � (y + x)z + y = 0

Singular:

• (1) -2x-1

(2) 2

• (1) (alpha^2-alpha)*x+(alpha^2)

(2) (alpha-1)

CoCoA:

-x-1/2



Chapter 5

Implementation

In this chapter I want to present the structure of the implementation of the method for
computing rational general solutions of first-order algebraic ordinary differential equation
described in previous chapters, analysing what can be done so far and next steps to
improve the method. The algorithms have been implemented in two computer algebra
system: Singular, by the University of Kaiserslautern, and CoCoA, by the University
of Genova. All codes of the programmes described in this chapter can be found in the
Appendix A. Almost every content of this chapter is original, I point out that the algorithm
for computing invariant algebraic curves of a first-order autonomous rational differential
system can be found in [Man93].

5.1 The implementation in Singular
In this chapter we consider as base field the algebraic closure of the rationals Q̄. The

final product of the implementation in Singular can be split in three parts. The first
part is a programme which takes in input an autonomous algebraic ODEs, i.e. a bivariate
polynomial, and it computes a rational general solution of the differential equation, if it
exists. That procedure is called fenggao.
The Singular’s Library paraplanecurves.lib contains a function to compute rational
parametrizations of homogenous algebraic curves of genus zero, we use this function in
our implementations. It is based on the algorithm of Van Hoeij for computing integral
basis, more details can be found in [VH94] and in [DGPS].
Since in Singular rational functions are not defined instead we consider a list of two
polynomials, where the first one is the numerator and the second one is the denominator
of the rational function. When we need to make computations or to substitute a rational
function to a variable we make a wise choice of the ring and we treat the variable of the
rational function as a constant parameter.

66
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fenggao(F(x,y));

Let F̃ (x, y, z) be the homogenisation of F ;

if genus(F̃ ) 6= 0 then print "F is not a rational curve" ;

else Compute a rational parametrization  (s, t) = ( 1, 2, 3) of F̃ (x, y, z) = 0; deho-
mogenise  and obtain a rational parametrization (p(s), q(s), w(s)) of F (x, y) = 0
where w(s) is the common denominator.

if (p(s), q(s), w(s)) is not proper then print "not proper parametrization" ;

else A = @

@s

�

p(s)
w(s)

�

=
�

@

@s

p(s) · w(s)� @

@s

w(s) · p(s), w(s)2�;
B = q(s)

w(s) = (q(s), w(s));

R = B

A

;
Change ring. We consider x and c as parameters.
if R = a for a constant a then return y = s(a · (x+ c));

else if R = a(x�b)2 for some constants a and b then return y = (b� 1
a(x+c));

else print"no rational solution"

Thanks to this programme we are able to compute rational general solutions of every
autonomous first-order algebraic ODEs which admits a rational parametrization. The
hardest step is computing such parametrizations.

The second part of the implementation in Singular covers the method presented
in the first part of Chapter 4 for computing rational general solution of non-autonomous
algebraic ODE. Unfortunately in Singular there is no library which contains a function
to compute a proper rational parametrization of an algebraic surface. So our programme
takes in input a rational proper parametrization of the solution surface F (x, y, z) = 0,
where F (x, y, y0) = 0 is the first-order non-autonomous algebraic equation that we want to
solve. This programme is called chauwinkler.
The procedures asssystem and invalgcurve computes, respectively, the associated system
of F with respect to the parametrization given as input in chauwinkler and the set of its
invariant algebraic curves, an analogous of these functions will be described in details in
next section.
The rational parametrization of the solution surface is given as a list of four polynomials,
where the last one is the least common multiple of denominators.
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chauwinkler(P = (p1, p2, p3, p4));

⌃ = (⌃11,⌃12,⌃21,⌃22) = asssystem(p);
Inv = invalgcurve(p);
Sol = emptylist;

for each G 2 Inv Let G̃(x, y, z) be the homogenisation of G;

if genus(G̃) 6= 0 then change G;
else Compute a rational proper parametrization  (s, t) = ( 1, 2, 3) of

G̃(x, y, z) = 0; dehomogenise  and obtain a rational proper parametrization
(p(s), q(s), w(s)) of G(x, y) = 0 where w(s) is the common denominator.
if
�

@

@s

q(s) ⌘ 0
�

T = fenggao(⌃12(p(s), q(s), w(s)) · p0(s)t� ⌃11(p(s), q(s), w(s)));
Add to Sol (p2(p(T ), q(T ), w(T )), p4(p(T ), q(T ),W (T )));
Change G;

else T = fenggao(⌃22(p(s), q(s), w(s)) · p0(s)t� ⌃21(p(s), q(s), w(s)));
Add to Sol (p2(p(T ), q(T ), w(T )), p4(p(T ), q(T ),W (T )));
Change G;

end for each return Sol;

When we used this algorithm to compute rational solution we considered differential
equations such that a proper rational parametrization of its solution surface can be found in
literature, or such that it can be computed easily. The computer algebra system MAGMA,
developed by the University of Sydney, is the only one in which is available a function
to compute rational parametrizations of surfaces directly. I used this computer algebra
system to compute some rational parametrizations, in Appendix A.3 can be found the
lines of the programme I wrote, but unfortunately the parametrizations obatained in such
way are not suitable for our method. Indeed, using rational parametrizations obtained
in such way our programme returned invariant algebraic curves such that they divide
the denominators of the rational functions in the associated system, so we must discard
them, or the programme stick in the computation of the invariant algebraic curves of the
associated system. That suggests us that if we want to improve our method we should
investigate on a criterion for proper rational parametrizations of surfaces to be suitable,
i.e. that can be used to find rational solutions, this can be done by a systematic study of
the correspondence between associated system and its invariant algebraic curves. As well
we should work on new ways to compute invariant algebraic curves of a system and on



CHAPTER 5. IMPLEMENTATION 69

rational proper parametrizations from a computational point of view.

In the last part of Chapter 4 we presented a way to compute rational solutions of
algebraic ODE avoiding the computation of proper rational parametrizations of algebraic
surfaces. We use a group G of affine transformations of the space such that an element
of G sends rational solutions into rational solutions to transform an algebraic ODE into
an autonomous equation or into an equation such that it has an obvious rational proper
parametrization. The last part of the implementation in Singular concerns such affine
transformations. The procedures specialAODEratsolver follows the scheme:

F (x, y, y0) = 0 is autonomous?

fenggao can it be transformed into
an autonomous equation?

transform the equation can it be transformed into
a "solvable for x" equation?

fenggao transform the equation is it "solvable for y"?

chauwinkler with a
parametrization of the form

(f(s, t), s, t)

is it "solvable for y0"?chauwinkler with a
parametrization of the form

(s, f(s, t), t)

chauwinkler with a
parametrization of the form

(s, t, f(s, t))

return
no special case

No

Y es

Y es

No

Y es

No

No

Y es

No

Y es
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This programme allows us to compute almost every rational solution of special form
first-order algebraic ODE. We must say almost because it may happen that during chauwin-
kler the programme gets stuck in the computation of invariant algebraic curves of the
system, since in that computation we need to compute a Gröbner basis and we know it
can be really expensive. I used this procedure to compute the examples in Section 4.6.

If a User want to compute a rational solution of a first-order algebraic ODE F (x, y, y0) =
0, He or She should follow

1. if F = 0 is autonomous then use fenggao.

else Use specialAODEratsolver.

2. if specialAODEratsolver does not give a solution, then find a rational proper
parametrization of F (x, y, z) = 0 and use chauwinkler

5.2 Implementation in CoCoA

In CoCoA there are no default functions such that we can compute proper rational
parametrizations of curves or surfaces. So we write a programme to compute rational
general solutions of algebraic ODE like an interpreted language, i.e. it is asked to the user
to insert some informations in intermediate steps, for instance the parametrizations of
algebraic objects. I created a CoCoAprocedure for each step of the algorithm described in
previous steps. I used CoCoA4.7, and not the latest CoCoA5, since the rational functions
are not defined in the version 5.

FengGao

The function to compute rational general solutions of autonomous first-order algebraic
ODEs is called FengGao and it takes in input a bivariate polynomial F, which defines the
equation and two rational functions R, S which are the rational parametrization of the
curve F = 0. It clearly follows the algorithm given in Chapter 3.
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FengGao(F,R,S)

1. If the parametrization (R, S) is not proper Then Return "not proper parametriza-
tion":

2. Else If (Deg(F, x) < Deg(F, y) � 1 or Deg(F, x) > 2Deg(F, y)) Then Return
"no rational general solution exists";

3. Else Compute H = @

@x

R.

4. Discuss the form of
A =

S

H
.

5. Return the rational general solution, if it exists.

AssSystem

Consider the non-autonomous first-order algebraic ODE F (x, y, y0) = 0. The function
to compute the associated system of F (x, y, y0) = 0 with respect to a parametrization
� = (�1,�2,�3) of the solution surface is called AssSystem and it takes in input three
rational function C1, C2 and C3 such that Ci = �

i

(s, t). The function returns a list of two
rational functions which are the right hand sides of the associated system of F (x, y, y0) = 0
with respect to the parametrization �.

AssSystem(C1,C2,C3)

1. Compute G = @

@t

C2 · @

@s

C1� @

@t

C1 · @

@s

C2.

2. Compute H = @

@t

C2� @

@t

C1 · C3.

3. If (G = 0 And num(H) non constant) Return L = [num(G), num(H)].

4. Else Compute K = � @

@s

C2 + @

@s

C1 · C3.

5. Return L = [H/G,K/G].

By num(·) we mean the numerator of the argument, usually a rational function.
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InvAlgCurve

To compute invariant algebraic curves of a differential system of the form
(

s0 = N1(s,t)
M1(s,t)

,

t0 = N2(s,t)
M2(s,t)

.

I use an improvement of the algorithm present in [Man93]. That function, named InvAl-
gCurve, takes in input two rational functions S and T, which are the righthand sides of
the system above. It returns the set of irreducible invariant curves of the system up to a
fixed degree k. I used k = 3 because for a greater k the computation can be really heavy,
since we need to compute a Gröbner basis of an ideal with a large number of generators.

By LT (·) and LC(·) we mean respectively leading term and leading coefficient of the
argument. By interreduce we mean that since in feqns there are polynomial relations
among the undetermined coefficients of f

i

. If there is a linear relation we can use that
relation to describe a coefficient in terms of the other ones. This allows us to reduce the
number of unknowns and to reach a zero dimensional ideal.

InvAlgCurve(S,T) S
f

= ;;
k = 1;
P = num(S) · den(T );
Q = num(T ) · den(S);
While (k  degreebound) do

1. Construct all monic polynomials with undetermined coefficients f
i

of degree  k.

2. For each f
i

Do

• Compute Df
i

= P @

@x

f
i

+Q @

@y

f
i

;

• g
i

= 0;

• indivisible = false;

• feqns = ;;
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• While (indivisible = false and Df
i

6= 0) Do

– If LT (f
i

) divides LT (Df
i

) Then

⇤ g
i

= g
i

+ LT (Dfi)
LT (fi)

;

⇤ Df
i

= Df
i

� f
i

· LT (Dfi)
LT (fi)

;

– Else If LC(Df
i

) is a constant Then indivisible = true;

– Else If LC(Df
i

) contains one f
i

variable (say var) only Then
⇤ s = Solve(LC(Df

i

), var);

⇤ f
i

= Subst(s, f
i

);

⇤ g
i

= Subst(s, g
i

);

⇤ feqns = Subst(s, feqns);

– Else
⇤ feqns = LC(Df

i

) [ feqns;

⇤ Df
i

= Df
i

� LT (Df
i

);

• End While

• If (indivisible = false and feqns 6= 0) Then

– Interreduce feqns;
– Compute Gröbner basis of feqns with respect to undetermined coeffi-

cients of f
i

;

– If the system feqns is consistent Then all unknown coefficients in f
i

can be determined;
– Else Try next f

i

;

• If (indivisible = false and f
i

is irreducible) Then S
f

= S
f

[ f
i

;

3. End For each

k = k + 1;
End While
Return S

f

;
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Finalstep

The function Finalstep computes a rational solution of an algebraic ODE F (x, y, y0) = 0
starting from a rational parametrization of an invariant algebraic curve of the associate
system with respect to a proper rational parametrization of F (x, y, z) = 0, i.e. it computes
at first a rational solution of the system and then it returns the solution of the equation.
It takes in input three lists P, L,Q, the list Q is a rational proper parametrization of the
solution surface F (x, y, z) = 0, L is a list which contains the two righthand sides of the
associated system of F (x, y, y0) = 0 with respect to the parametrization given in Q, finally
P is a proper rational parametrization of an invariant algebraic curve of the system given
in L.

Finalstep(P, L,Q);

1. • If @

@x

P [1] = 0 Then Compute a rational solution Sol of

T =
1

@

@x

P [2]
· L[2](P [1], P [2]);

• Else Compute a rational solution Sol of

T =
1

@

@x

P [1]
· L[1](P [1], P [2]);

2. Compute C = x�Q[1](Sol[1], Sol[2]);

3. Compute Ỹ = Q[2](Sol[1], Sol[2]);

4. Return Y = Ỹ (x� C);
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Check

The last function concerns the last section of Chapter 4. The function Check takes in
input a polynomial F of three or two variables, and it decides if the polynomial is of a
special form, i.e., autonomous, solvable for x, for y or for y0, and if it is not of one of these
forms, it tries to transform the polynomial into one autonomous or a solvable for x one
and, in this case, it returns the new polynomial. Moreover, If the equation is of the form
solvable for an indeterminate the functions also returns the obvious parametrization.

Check(F );

1. • If Deg(F, y0) = 1 Then Compute G(x, y) such that y0 = G(x, y);

• Return "Solvable for y’" and Return (x, y,G(x, y));

2. • Else If Deg(F, y) = 1 Then Compute G(x, y0) such that y = G(x, y0);

• Return "Solvable for y" and Return (x,G(x, y0), y0);

3. • Else If Deg(F, x) = 1 Then Try to transform F into an autonomous
equation;

– If F is in the same class of an autonomous equation Then Return the
new equation;

– Else Return "Solvable for x" and Return (G(y, y0), y, y0);

4. Else Try to transform F into an autonomous equation;

• If F is in the same class of an autonomous equation Then Return the new
equation;

• Else Return "no special case"



Appendix A

Codes

All the codes in this Appendix are available at the following links:

• Singular:

https://dl.dropboxusercontent.com/u/49368831/Singular_F_Zucca_Library

• CoCoA:

https://dl.dropboxusercontent.com/u/49368831/CoCoA_F_Zucca_Library

A.1 Singular
Prologue: before using these codes declare the following

LIB "normal.lib";
LIB "zeroset.lib";
LIB "solve.lib";
LIB "paraplanecurves.lib";
LIB "monomialideal.lib";
ring q=0,(x,y,z),dp;
ring r=(0,alpha,h,c),(x,y,z,s,t),dp;
ring ri=0,(x,y,s,t),(Dp(2),Dp(2));
ring qbc=(0,a),(x,y,z,b,c), (lp);
setring q;
int B=0;

The function degiac returns the degree of poly f with respect to the monomial poly v,
which usually is a variable. It is written to work inside the function invalgcurve.

proc degiac(poly f, poly v)
{

76
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int i;
int dd=0;
poly h=f;
int u=univariate(v);
for (i=1;i<=nvars(w);i=i+1) { //(for#1)
if (i!=u) { //(if#1)
h=subst(h,var(i),a);
}} //(end if#1,end for#1)
dd=deg(h);
return(dd);
}

The function chauwinkler is described in Section 5.1.

proc chauwinkler(list p)
{
setring ri;
list P=imap(r,p);
list Inv=invalgcurve(P);

if (size(Inv)==0) { //(if#1)
print("no invariant invariant algebraic curves with coefficients in QQ");}
//(end if#1);
else { //(else if #1)
setring r;
list Inv=imap(ri,Inv);
list sigma=asssystem(p);
def Sol=finalstep(Inv,sigma,p);
poly Sgcd;
list S1,S;
for (int i=1;i<=size(Sol);i=i+1) { //(for#1)
S=subst(numerator(number(Sol[i])),h,x),subst(denominator(number(Sol[i])),h,x);
Sgcd=gcd(S[1],S[2]);
S=S[1]/Sgcd,S[2]/Sgcd;
S1=insert(S1,S,size(S1)); } //(end for#1)
S1;
} //(end else if#1)
}

The function Deg returns the degree of poly f with respect to the monomial poly v,
which usually is a variable.

proc Deg(poly f, poly v)
{
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int dd=0;
int u=univariate(v);
ring qa=(0,a),(x,y,z,b,c),dp;
setring qa;
poly f=imap(qbc,f);
if (u==1) { //(if#1)
poly h=subst(f,y,a,z,a,b,a,c,a);
dd=deg(h);
setring q;
return(dd)} //(end if#1)
else { if (u==2) { //(if#2)
poly h=subst(f,x,a,z,a,b,a,c,a);

dd=deg(h);
setring q;
return(dd)} //(end if#2)
else {
poly h=subst(f,y,a,x,a,b,a,c,a);
dd=deg(h);
setring q;
return(dd)}} //(end else if#2,end else if#1)
}

The function Degree is the same as Deg, but it is written to work in the function Spe-
cialAODEratsolver.

proc Degree(poly f, poly v)
{
int dd=0;
int u=univariate(v);
ring qa=(0,a),(x,y,z),dp;
setring qa;
poly f=imap(q,f);
if (u==1) { //(if#1)
poly h=subst(f,y,a,z,a);
dd=deg(h);
setring q;
return(dd)} //(end if#1)
else { if (u==2) { //(if#2)
poly h=subst(f,x,a,z,a);

dd=deg(h);
setring q;
return(dd)} //(end if#2)
else {
poly h=subst(f,y,a,x,a);



APPENDIX A. CODES 79

dd=deg(h);
setring q;
return(dd)}} //(end else if#2,end else if#1)
}

The function fenggao is described in Section 5.1.

proc fenggao(poly f)
{
f=subst(f,y,x,z,y);
f=homog(f,z);
if (genus(f)==0) { //(if#1)
def Rp = paraPlaneCurve(f);
setring Rp;
PARA[1]=subst(PARA[1],t,1);
PARA[2]=subst(PARA[2],t,1);
PARA[3]=subst(PARA[3],t,1);
ring F= (0,c,h),(x,s,t),lp;
setring F;
def L=imap(Rp,PARA);
ideal C=L[1],L[2],L[3];
if (tracindex(C)=="not proper") { //(if#2)
string j="not proper parametrization";
return(j); } //(end if#2)
else { //(else if#2)
def P=diff(L[1],s)*L[3]-L[1]*diff(L[3],s);
poly Q=L[2]*L[3];
def d=Div(Q,P);
if (d[2]==0) { //(if#3)
if (deg(d[1])==0) { //(if#4)
list S=subst(L[1],s,d[1]*(x)),subst(L[3],s,d[1]*(x));
poly Gcd=gcd(S[1],S[2]);
S=S[1]/Gcd,S[2]/Gcd;
setring q;
def S=imap(F,S);
return(S); } //(end if#4)
else { //(else if#4)
if (deg(d[1])==2) { //(if#5)
def v=sqrfree(d[1]);
if (deg(v[1][2])==2) { //(if#6)
print("no rational solution"); }//(end if#6)
else { //(else if#6)
def a=v[1][1];
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def b=subst(v[1][2],s,0)/leadcoef(v[1][2]);
b=-b;
list S=subst(L[1],s,(a*b*(h)-1)/(a*(h))),subst(L[3],s,(a*b*(h)-1)/(a*(h)));
def S0=S[1]/S[2];
S=numerator(number(S0)),denominator(number(S0));
S[1]=subst(S[1],h,x);
S[2]=subst(S[2],h,x);
poly Gcd=gcd(S[1],S[2]);
S=S[1]/Gcd,S[2]/Gcd;
setring q;
def S=imap(F,S);
return(S); }} //(end else if#6, end if#5)
else { //(else if#5)
print("no rational solution"); }}} //(end else if#5, end else if#4,end if#3)
else { //(else if#3)
print("no rational solution"); }}} //(end else if#3, emd else if#2, end if#1)
else { //(else if#1)
print("no rational curve"); } //(end else if#1)
}

The function fenggaoX is just fenggao modified to work in the function specialAODErat-
solver.

proc fenggaoX(poly f,poly lambda,poly gamma)
{
def s1=fenggao(f);
s1=s1[1]-lambda*x*s1[2]-gamma*s1[2],s1[2];
return(s1);
}

The function finalstep†is the version in Singularof the function Finalstep in CoCoAdescribed
in Section 5.2.

proc finalstep(list b, list sigma, list p)
{

list S,F;
int i=1;
int j;
poly X,c1,f,phi1,phi2,g,T;
list a=1,1,1;

for (i=1;i<=size(b);i=i+1) { //(for#1)
for (j=1;j<=size(b[i]);j=j+1) { //(for#2)
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def k=Para(b[i][j]);
if (k!=0) { //(if#1)
k[1]=subst(k[1],s,y,t,1);
k[2]=subst(k[2],s,y,t,1);
k[3]=subst(k[3],s,y,t,1);
phi1=diff(k[1],y)*k[3]-k[1]*diff(k[3],y);
phi2=(diff(k[2],y)*k[3]-k[2]*diff(k[3],y));
def E1=subst(k[1],y,h)/(subst(k[3],y,h));
def E2=subst(k[2],y,h)/(subst(k[3],y,h));
def den1=(subst(phi1,y,h)*subst(sigma[1][2],s,E1,t,E2));
def den2=(subst(phi2,y,h)*subst(sigma[2][2],s,E1,t,E2));

if ((phi1==0)and(den2!=0)) { //(if#2)

def theta1=(subst(sigma[2][1],s,E1,t,E2)*(subst(k[3],y,h))^2)/den2;
number theta=number(theta1);
F=subst(numerator(theta),h,y),subst(denominator(theta),h,y);
g=gcd(F[1],F[2]);
F=F[1]/g,F[2]/g;
if ((deg(F[1])==0)and(deg(F[2])==0)and(F[2]!=0)) { //(if#3.1)
T=F[1]/F[2]*(h);
a[1]=subst(k[1],y,T);
a[2]=subst(k[2],y,T);
a[3]=subst(k[3],y,T);
def dom=subst(p[4],s,a[1]/a[3],t,a[2]/a[3]);
if (dom!=0) { //(if#1*)
c1=(subst(p[1],s,a[1]/a[3],t,a[2]/a[3]))/(subst(p[4],s,a[1]/a[3],t,a[2]/a[3]))-h;
a[1]=subst(numerator(number(a[1])),h,h-c1)/subst(denominator(number(a[1])),h,h-c1);
a[2]=subst(numerator(number(a[2])),h,h-c1)/subst(denominator(number(a[2])),h,h-c1);
a[3]=subst(numerator(number(a[3])),h,h-c1)/subst(denominator(number(a[3])),h,h-c1);
X=(subst(p[2],s,a[1]/a[3],t,a[2]/a[3]))/(subst(p[4],s,a[1]/a[3],t,a[2]/a[3]));
S=insert(S,X,size(S));
}//(end if#1*)
}//(end if#3)
else { if ((deg(F[1])==2)and(deg(F[2])==0)and(F[2]!=0)) { //(else if#3.1)(if#3.1.1)
def v=sqrfree(F[1]);
if (deg(v[1][2])==1) { // (if#3.1.2)

def a1=v[1][1]/F[2];
def b1=subst(v[1][2],y,0)/leadcoef(v[1][2]);
b1=-b1;
T=b1-1/(a1*h);



APPENDIX A. CODES 82

a[1]=subst(k[1],y,T);
a[2]=subst(k[2],y,T);
a[3]=subst(k[3],y,T);
def dom=subst(p[4],s,a[1]/a[3],t,a[2]/a[3]);
if (dom!=0) { //(if#2*)
c1=(subst(p[1],s,a[1]/a[3],t,a[2]/a[3]))/(subst(p[4],s,a[1]/a[3],t,a[2]/a[3]))-h;
a[1]=subst(numerator(number(a[1])),h,h-c1)/subst(denominator(number(a[1])),h,h-c1);
a[2]=subst(numerator(number(a[2])),h,h-c1)/subst(denominator(number(a[2])),h,h-c1);
a[3]=subst(numerator(number(a[3])),h,h-c1)/subst(denominator(number(a[3])),h,h-c1);
X=(subst(p[2],s,a[1]/a[3],t,a[2]/a[3]))/(subst(p[4],s,a[1]/a[3],t,a[2]/a[3]));
S=insert(S,X,size(S));
}//(end if#2*)
}//(end if#3.1.2)
}//(end if#3.1.1)
}//(end(else if#3.1)
}//(end if#2)
else { if (den1!=0){//(else if#2,if#@)
def theta1=(subst(sigma[1][1],s,E1,t,E2)*(subst(k[3],y,h))^2)/den1;
number theta=number(theta1);
F=subst(numerator(theta),h,y),subst(denominator(theta),h,y);
g=gcd(F[1],F[2]);
F=F[1]/g,F[2]/g;
if ((deg(F[1])==0)and(deg(F[2])==0)and(F[2]!=0)) { //(if#3.2)
T=F[1]/F[2]*(h);
a[1]=subst(k[1],y,T);
a[2]=subst(k[2],y,T);
a[3]=subst(k[3],y,T);
def dom=subst(p[4],s,a[1]/a[3],t,a[2]/a[3]);
if (dom!=0) { //(if#3*)
c1=(subst(p[1],s,a[1]/a[3],t,a[2]/a[3]))/(subst(p[4],s,a[1]/a[3],t,a[2]/a[3]))-h;
a[1]=subst(numerator(number(a[1])),h,h-c1)/subst(denominator(number(a[1])),h,h-c1);
a[2]=subst(numerator(number(a[2])),h,h-c1)/subst(denominator(number(a[2])),h,h-c1);
a[3]=subst(numerator(number(a[3])),h,h-c1)/subst(denominator(number(a[3])),h,h-c1);
X=(subst(p[2],s,a[1]/a[3],t,a[2]/a[3]))/(subst(p[4],s,a[1]/a[3],t,a[2]/a[3]));
S=insert(S,X,size(S));
}//(end if#3*)
}//(end if#3.2)
else { if ((deg(F[1])==2)and(deg(F[2])==0)and(F[2]!=0)) { //(else if#3.1)(if#3.2.1)
def v=sqrfree(F[1]);
if (deg(v[1][2])==1) { // (if#3.2.2)

def a1=v[1][1]/F[2];
def b1=subst(v[1][2],y,0)/leadcoef(v[1][2]);
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b1=-b1;
T=b1-1/(a1*h);
a[1]=subst(k[1],y,T);
a[2]=subst(k[2],y,T);
a[3]=subst(k[3],y,T);
def dom=subst(p[4],s,a[1]/a[3],t,a[2]/a[3]);
if (dom!=0) { //(if#4*)
c1=(subst(p[1],s,a[1]/a[3],t,a[2]/a[3]))/(subst(p[4],s,a[1]/a[3],t,a[2]/a[3]))-h;
a[1]=subst(numerator(number(a[1])),h,h-c1)/subst(denominator(number(a[1])),h,h-c1);
a[2]=subst(numerator(number(a[2])),h,h-c1)/subst(denominator(number(a[2])),h,h-c1);
a[3]=subst(numerator(number(a[3])),h,h-c1)/subst(denominator(number(a[3])),h,h-c1);

X=(subst(p[2],s,a[1]/a[3],t,a[2]/a[3]))/(subst(p[4],s,a[1]/a[3],t,a[2]/a[3]));
S=insert(S,X,size(S));
}//(end if#4*)
}//(end if#3.2.2)
}//(end if#3.2.1)
}//(end else if#3)
}//(end if#@)
}//(end else if#2)
}//(end if#1)
}//(end for#2)
}//(end for#1)
if (size(S)==0) { //(if#4)
print("no rational solution found");
}//(end if#4)
else { return(S); } //(else if#4)(end else if#4)
}

The function lin takes in input a polynomial poly f, it returns the action of a generic
element of G 0 on poly f. For the definition of G 0 see Section 4.6.

proc lin(poly f)
{
f=subst(f,y,-bx+y-c,z,z-b);
return(f);
}

The function genpoly takes in input an integer int d and it returns the set of monic
polynomials up to degree int d with undetermined coefficients. It is used in the function
invalgcurve.

proc genpoly(int d)
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{
int i,j,l,m;
poly h1,h2,f,h;
poly p=c(1)(1);
for (i=1; i<=d; i=i+1) {
l=i;
m=0;
while ((l+m==i)&&(l>=0)) {
h=c(i+1)(m+1);
h1=x^l;
h2=y^m;
p=p+h*h1*h2;
l=l-1;
m=m+1;
}}
list X;
for (i=0; i<=d; i=i+1){
f=p;
for (j=0; j<=i; j=j+1){
if (i==j) {f=subst(f,c(d+1)(i+1),1);}
else { f=subst(f,c(d+1)(j+1),0);}
}
X=insert(X,f,size(X));
}
return(X);
}

The function invalgcurve is the version in Singular of the function InvAlgCurve in
CoCoAdescribed in Section 5.2. The difference is that this function takes in input the
rational proper parametrization of the solution surface of the equation studied and the
associated system is computed by this function.

proc invalgcurve(list p) {
int k=1;
list Curves;
list sigma,b1,f,l1,l2;
ring tau=0,x,dp;
setring ri;
int Ind=0;
sigma=asssystem(p);
sigma[1][1]=subst(sigma[1][1],s,x,t,y);
sigma[1][2]=subst(sigma[1][2],s,x,t,y);
sigma[2][1]=subst(sigma[2][1],s,x,t,y);
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sigma[2][2]=subst(sigma[2][2],s,x,t,y);
while (k<=2) { // (while #1) ring w=(0,a),(x,y,c(1..(k+1))(1..(k+1))),(Dp(2),lp);
setring w;
list b,b1;
def sigma=imap(ri,sigma);
poly D,ltD,lcD,ltl,alpha;
int k1,n,u,i,j;
def l=genpoly(k);
for (n=1; n<=size(l); n=n+1) { //(for #1)
D=sigma[2][2]*sigma[1][1]*diff(l[n],x)+sigma[1][2]*sigma[2][1]*diff(l[n],y);
list f,l1;
b1=list();
Ind=0;
while ((Ind==0)and(D!=0)) {// (while #2)
ltD=lterm(D);
lcD=lcoef(D);
ltl=lterm(l[n]);
if (membershipMon(ltD,ideal(ltl))==1) { D=D-l[n]*ltD/ltl;} //(if #1, end if#1)
else { if (deg(lcD)==0) { Ind=1;} //(else if#1, if#2, end if#2)
else { //(else if#2)
u=univariate(lcD);
if (u!=0) //(if#3)
{ def r1=Ratroot(lcD);

if (r1!=(a)) { //(if#4)
l[n]=subst(l[n],var(u),r1[1]);

for (i=1;i<=size(f);i=i+1) { //(for#1’, end for#1’)
f[i]=subst(f[i],var(u),r1[1]);}
D=subst(D,var(u),r1[1]); }//(end if#4)

else {Ind=1;} //(else if#4, end else if#4)
} //(end if#3)
else { f=insert(f,lcD,size(f)); //(else if#3)
D= D-ltD; }}}} //(end else if#3, end else if#2, end else if#1, end while #2)
list DD;
poly DDQ, F1;
int o,XX;
for (i=1;i<=(k+1);i=i+1) { //(for#1+)
for (j=1;j<=(i);j=j+1) { //(for#2+)
XX=1;
while (XX<=size(f)) { //(while#1+)
if (f[XX]!=0) {//(if#1+)
DD=Div(f[XX],c(i)(j));
DDQ=DD[1];
if ((degiac(f[XX],c(i)(j))==1)and(deg(DDQ)==0)) { //(if#2+)
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F1=subst(f[XX],c(i)(j),0);
for (o=1;o<=size(f);o=o+1) { //(for#3+)
f[o]=subst(f[o],c(i)(j),-1/DDQ*F1);
if (f[o]==0) {f=delete(f,o); } //(if#1@, end if#1@)
} //(end for#3+)
l[n]=subst(l[n],c(i)(j),-1/DDQ*F1);
XX=1+size(f); } //(end if#2+)
else{ //(else if #2+);
XX=XX+1;
}}//(end else if#2+, end if#1+)
else{ //(else if#1+)
XX=XX+1;
} //(end else if#1+)
}}} //(ed while#1+, end for#2+, end for#1+)
if ((Ind==0)and(size(f)!=0)) { //(if#5)
for (i=1; i<=k+1; i=i+1){ //(for #2)
for (j=1; j<=i; j=j+1){ //(for #3)
k1=1;
while (k1<=size(f)) { //(while#3)
if (f[k1]!=subst(f[k1],c(i)(j),a)) { //(if#6)
l1=insert(l1,var(univariate(c(i)(j))),size(l1));
k1=size(f)+1;}//(end if#6)
else{ k1=k1+1; }}}} //(else if#6, end else if#6, end while#3, end for#3)
//(end for#2)
list l2=ringlist(tau);
l2[2]=l1;
tau=ring(l2);
setring tau;
ideal Id;
def f=imap(w,f);
for (i=1;i<=size(f);i=i+1) { //(for #7)
Id=Id+ideal(f[i]);} //(end for #7)
def F=std(Id);
if (dim(F)==0) { //(if#7)

def e=zeroSet(F);
def A=imap(e,newA);
if (A==0) { //(if#8)
setring w;
def Z=imap(e,theZeroset);
alpha=l[n];
for (i=1;i<=size(Z); i=i+1) { //(for#4)
for (j=1;j<=size(l1); j=j+1){ //(for#5)
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alpha=subst(alpha,l1[j],Z[i][j]);} //(end for #5)
b1=insert(b1,alpha,size(b1));
} } //(end for#4, end if#8)

else {Ind = 1;}} //(else if#8,end else if#8, end if#7)
else {Ind = 1;}} //(else if#7, end else if#7, end if#5)
else { if (Ind==0) { //(else if#5, if#11)
b1=insert(b1,l[n],size(b1));
}} //(end if#11, end else if#5)
setring w;
if (Ind==0) { //(if#9)
for (i=1;i<=size(b1); i=i+1) { //(for#6)
if (isIrr(b1[i])==1) { //(if#10)
b=insert(b,b1[i],size(b));
}}}}//(end if#10, end for#6, end if#9, end for#1)
if (size(b)==0) { //(if#12)
k=k+1;
setring ri;
} //(end if#12)
else { //(else if#12)
for (n=1;n<=size(b);n=n+1) { //(for#7)
for (i=1;i<=k+1;i=i+1) { //(for#8)
for (j=1;j<=k+1;j=j+1) { //(for#9)
b[n]=subst(b[n],c(i)(j),1);}}} //(end for#7,end for#8,end for#9)
setring ri;
k=k+1;
def b=imap(w,b);
Curves=insert(Curves,b,size(Curves));
Curves;
}} //(end else if#12, end while#1)
return(Curves);
}

The function isAut takes in input a polynomial poly f and if it is possible it returns an
autonomous equation of the same class of poly f, i.e. it can be obtained from poly f by
the action of an element of G 0.

proc isAut(poly f)
{
int u,No,i;
poly lambda,gamma;
f=lin(f);
list L=lcoef1(f);
ideal Id;
for (i=1;i<=size(L);i=i+1) { //(for #1)
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Id=Id+ideal(L[i]);} //(end for#1)
Id=groebner(Id);
if (Id==1) { //(if#1)
return(No);} //(end if#1)
else { //(else if#1)
i=1;
while (i<=size(Id)){//(while#1)
u=univariate(Id[i]);
if (u>3) { //(if#2)
def root=Ratroot(Id[i]);
if (root==a) { return(No); } //(if#3)
else { f=subst(f,var(u),root); //(else if#3)
Id=subst(Id,var(u),root);
if (u==4) {lambda=root;} //(if#4, end if#4)
else {gamma=root;} }} //(else if#4, end else if4end else if#3, end if#2)
else { i=i+1; } } //(end(else if#2), end while#1)
if (groebner(ideal(subst(f,x,1,y,1,z,1)))==1) { return(f); } //(if#5, end if#5)
else { f=subst(f,var(4),0,var(5),0); } //(else if#5, end else if#5)
list res=1,f,lambda,gamma;
return(res);
} //(end else if#1)
}

The function isIrr decides if the polynomial poly f given in input is irreducible or not.

proc isIrr(poly f)
{
f=f/leadcoef(f);
def e=factorize(f,2);
if (size(e[1])>1) { return(0);}
else { if (e[2]!=1) { return(0);}
else { return(1);}}
}

The function isSx takes in input a polynomial poly f and if it is possible it returns a
solvable for x equation of the same class of poly f, i.e. it can be obtained from poly f
by the action of an element of G 0.

proc isSx(poly f)
{
int u,No,i;
poly lambda,gamma;
f=lin(f);
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list L=lcoef2(f);
ideal Id;
for (i=1;i<=size(L);i=i+1) { //(for #1)
Id=Id+ideal(L[i]);} //(end for#1)
Id=groebner(Id);
if (Id==1) { //(if#1)
return(No);} //(end if#1)
else { //(else if#1)
i=1;
while (i<=size(Id)){//(while#1)
u=univariate(Id[i]);
if (u>3) { //(if#2)
def root=Ratroot(Id[i]);
if (root==a) { return(No); } //(if#3)
else { f=subst(f,var(u),root); //(else if#3)
Id=subst(Id,var(u),root);
if (u==4) {lambda=root;} //(if#4, end if#4)
else {gamma=root;} //(else if#4,end else if#4}
}} //(end else if#3, end if#2)
else { i=i+1; }} //(end(else if#2), end while#1)
if (groebner(ideal(subst(f,x,1,y,1,z,1)))==1) {
list res=1,f,lambda,gamma;
return(res); } //(if#4, end if#4)
else { f=subst(f,var(4),0,var(5),0); } //(else if#4, end else if#4)
list res=1,f,lambda,gamma;
return(res);} //(end else if#1)

Next functions: lcoef, lcoef1, lcoef2, lterm, lterm1, lterm2 are used inside other functions
to compute the leading coefficient or the leading term of poly f given in input.

proc lcoef1(poly f)
{
list coeff;
while (Deg(leadmonom(f),x)>=1) { //(while#1)
int m=leadexp(f)[1];
int n=leadexp(f)[2];
int l=leadexp(f)[3];
poly j=x^m;
poly h=y^n;
poly k=z^l;
j=j*h*k;
def e=Div(f,j);
f=f-e[1]*j;
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coeff=insert(coeff,e[1],size(coeff));
} //(end while#1)
return(coeff);
}

proc lterm1(poly f)
{
list terms;
while (Deg(leadmonom(f),x)>=1) { //(while#1)
int m=leadexp(f)[1];
int n=leadexp(f)[2];
int l=leadexp(f)[3];
poly j=x^m;
poly h=y^n;
poly k=z^l;
j=j*h*k;
def e=Div(f,j);
f=f-e[1]*j;
terms=insert(terms,e[1]*j,size(terms));
} //(end while#1)
return(terms);
}

proc lcoef2(poly f)
{
list coeff;
while (Deg(leadmonom(f),x)>=2) { //(while#1)
int m=leadexp(f)[1];
int n=leadexp(f)[2];
int l=leadexp(f)[3];
poly j=x^m;
poly h=y^n;
poly k=z^l;
j=j*h*k;
def e=Div(f,j);
f=f-e[1]*j;
coeff=insert(coeff,e[1],size(coeff));
} //(end while#1)
return(coeff);
}
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proc lterm2(poly f)
{
list terms;
while (Deg(leadmonom(f),x)>=2) { //(while#1)
int m=leadexp(f)[1];
int n=leadexp(f)[2];
int l=leadexp(f)[3];
poly j=x^m;
poly h=y^n;
poly k=z^l;
j=j*h*k;
def e=Div(f,j);
f=f-e[1]*j;
terms=insert(terms,e[1]*j,size(terms));
} //(end while#1)
return(terms);
}

proc lcoef(poly f)
{
int m=leadexp(f)[1];
int n=leadexp(f)[2];
poly j=x^m;
poly h=y^n;
j=j*h;
def e=Div(f,j);
return(e[1]);
}

proc lterm(poly f)
{
int m=leadexp(f)[1];
int n=leadexp(f)[2];
poly j=x^m;
poly h=y^n;
j=j*h;
def e=Div(f,j);
return(e[1]*j);
}

The function Para computes a rational proper parametrization of the curve defined by
poly f given in input. In our program poly f is an invariant algebraic curve for a system
and the function is used in the function finalstep.
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proc Para(poly f) //f is an invariant algebraic curve for the system.
{
ideal k;
poly g=homog(f,z);
if (univariate(f)==0) { //(if#1)
if (deg(f)==1) { //(if#2)
if (g==f) { //(if#3)
k=s,-subst(f,x,0,y,s)/leadcoef(f),1;
} //(end if#3)
else { //(else if#3)
k=s,-((coef(g,x)[1][2])*s+coef(g,z)[1][2])/(coef(g,y)[1][2]),1;
}}//(end else if#3, end if#2)
else { //(else if#2)
if (g==f) { //(if#4)
return(k);
} //(end if#4)
else { //(else if#4)
if (genus(g)==0) { //(if#5)
ring q=0,(x,y,z),dp;
setring q;
poly f=imap(r,g);
def R=paraPlaneCurve(f);
setring r;
k=imap(R,PARA);
} //(end if#5)
else { //(else if#5)
return(0);
} //(end else if#5)
}} //(end else if#4,end else if#2)
} //(end if#1)
else { //(else if#1)
k=1,1,1;
int u=univariate(f);
if (u==1) { //(if#6)
k[1]=Ratroot1(f);
k[2]=s; } //(end if#6)
else { //(else if#6)
k[1]=s;
k[2]=Ratroot1(f);
}} //(end else if#6, end else if#1)
return(k);
}

The function Div is a polynomial division between poly f and poly g
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proc Div(poly f, poly g)
{
list qr=f/g;
qr=insert(qr, f-qr[1]*g,1);
return(qr);
}

The functions Ratroot and Ratroot1 computes a rational root of the polynomial poly f
given in input.

proc Ratroot(poly f) {
def l=factorize(f,1);
string b="yes";
number c=a;
int i=1;
while ((i<=size(l))and(b=="yes")) {
if (deg(l[i])==1) { b="not";
def c=-subst(l[i],var(univariate(f)),0)/leadcoef(l[1]);
}
else {i=i+1;}
}
return(c);
}

proc Ratroot1(poly f) {
def l=factorize(f,1);
string str="yes";
number c=alpha;
int i=1;
while ((i<=size(l))and(str=="yes")) {
if (deg(l[i])==1) {str="not";
def c=subst(l[i],var(univariate(f)),0)/leadcoef(l[1]);
}
else {i=i+1;}
}
return(c);
}

The function specialAODEratsolver is described in Section 5.1.

proc SpecialAODEratsolver(poly f)
{
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if (Degree(f,x)==0) { //(if#1)
f=subst(f,y,x,z,y);
return(fenggao(f)); } //(end if#1)
else {//(else if#1)
if (Degree(f,y)==1) { //(if#2)
setring r;
poly f=imap(q,f);
def P=Div(f,y);
poly den=subst(P[1],x,s,z,t);
list p=s*den,subst(-P[2],x,s,z,t),t*den,den;
return(chauwinkler(p));} //(end if#2)
else { //(else if#2)
if (Degree(f,z)==1) { //(if#3)
setring r;
poly f=imap(q,f);
def P=Div(f,z);
poly den=subst(P[1],x,s,y,t);
list p=s*den,t*den,subst(-P[2],x,s,y,t),den;
return(chauwinkler(p));} //(end if#3)
else { setring qbc; //(else if#3)
poly f=imap(q,f);
def g=isAut(f);
if (g[1]!=0) { setring q; //(if#4)
def gg=imap(qbc,g);
return(fenggaoX(gg[2],gg[3],gg[4]));} //(end if#4)
else { //(else if#4)
def g1=isSx(f);
if (g1[1]!=0) { //(if#5)
setring r;
def f=imap(qbc,g1);
def P=Div(f[2],x);
poly den=subst(P[1],y,s,z,t);
list p=subst(-P[2],y,s,z,t),s*den-f[3]*subst(-P[2],y,s,z,t)-f[4]*den, ---
t*den-f[3]*den,den;
return(chauwinkler(p));} //(end if#5)
else{ //(else if#5)
return("no special case") }}}}} //(end else if #5, end else if#4, end else if#3)
//(end else if#2, end else if#1)
}

The function tracindex takes an ideal ideal L in input which is the parametrization of a
curve, and verify if it is a proper rational paramerization.
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proc tracindex(ideal L)
{
poly g1=subst(L[1],s,t)*L[3]-subst(L[3],s,t)*L[1];
poly g2=subst(L[2],s,t)*L[3]-subst(L[3],s,t)*L[2];

poly g=gcd(g1,g2);

if (deg(subst(leadmonom(g),t,1))==1) {
string j="proper";
return(j);
}
else {
string j="not proper";
return(j);
}
}

The function asssystem computes the associated system of an equaiton F = 0 with solution
parametrized by list P.

proc asssystem(list P)
{
poly Ds=diff(P[4],s);
poly Dt=diff(P[4],t);
list g=(diff(P[1],s)*P[4]-Ds*P[1])*(diff(P[2],t)*P[4]-Dt*P[2])- ---
(diff(P[2],s)*P[4]-Ds*P[2])*(diff(P[1],t)*P[4]-Dt*P[1]),P[4]^4;
g=g[1]/gcd(g[1],g[2]),g[2]/gcd(g[1],g[2]);
list f1=P[4]*(diff(P[2],t)*P[4]-Dt*P[2])-P[3]*(diff(P[1],t)*P[4]-Dt*P[1]),P[4]^3;
f1=f1[1]/gcd(f1[1],f1[2]),f1[2]/gcd(f1[1],f1[2]);
if (g[1]==0) {
list S=g[1],f1[1];
return(S);
}
else
{
list f2=-P[4]*(diff(P[2],s)*P[4]-Ds*P[2])+(diff(P[1],s)*P[4]-Ds*P[1])*P[3],P[4]^3;
f2=f2[1]/gcd(f2[1],f2[2]),f2[2]/gcd(f2[1],f2[2]);
list s1=f1[1]*g[2],f1[2]*g[1];
s1=s1[1]/gcd(s1[1],s1[2]),s1[2]/gcd(s1[1],s1[2]);
list s2=f2[1]*g[2],f2[2]*g[1];
s2=s2[1]/gcd(s2[1],s2[2]),s2[2]/gcd(s2[1],s2[2]);
list S=s1,s2;
return(S);
}
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}

A.2 CoCoA

The function Finalstep is described in Section 5.2.

Define Finalstep(P,L,Q)

If Der(P[1],x)=0 Then
F:=1/(Subst(Der(P[2],x),x,y))*Subst(L[2],[[x,Subst(P[1],x,y)], ----
[y,Subst(P[2],x,y)]]);
If F=0 Or Type(F)=RATFUN Then
Print "Bad Surface parametrization";
Elsif Deg(F)=0 And Type(F)=POLY Then
T:=F*x;
Sol:=Subst(P,x,T);
CC1:=x-Subst(Q[1],[[s,Sol[1]],[t,Sol[2]]]);
Chi:=Subst(Q[2],[[s,Sol[1]],[t,Sol[2]]]);
Y:=Subst(Chi,x,x-CC1);
Return Y;
Elsif Deg(F)=2 Then
V:=Factor(F);
I:=1;
K:=[ ];
While (I<=Len(V)) Do
Append(K,V[I][2]);
I:=I+1;
EndWhile;
D:=Count(K,2);
If D=1 Then
If Len(V)=1 Then A:=1;
Else A:=V[2][1];
EndIf;
B:=V[1][1];
B:=Subst(B,x,0)/LC(B);
B:=-B;
T:=B-1/(A*x);
Sol:=Subst(P,x,T);
CC1:=x-Subst(Q[1],[[s,Sol[1]],[t,Sol[2]]]);
Chi:=Subst(Q[2],[[s,Sol[1]],[t,Sol[2]]]);



APPENDIX A. CODES 97

Y:=Subst(Chi,x,x-CC1);
Return Y;
Else Print "bad invariant algebraic curve";
EndIf;
Else Print "bad invariant algebraic curve";
EndIf;
Else
F:=1/(Subst(Der(P[1],x),x,y))*Subst(L[1],[[x,Subst(P[1],x,y)],---
[y,Subst(P[2],x,y)]]);
If F=0 Or Type(F)=RATFUN Then
Print "Bad Surface parametrization";
Elsif Deg(F)=0 Then
T:=F*x;
Sol:=Subst(P,x,T);
CC1:=x-Subst(Q[1],[[s,Sol[1]],[t,Sol[2]]]);
Chi:=Subst(Q[2],[[s,Sol[1]],[t,Sol[2]]]);
Y:=Subst(Chi,x,x-CC1);
Return Y;
Elsif Deg(F)=2 Then
V:=Factor(F);
I:=1;
K:=[ ];
While (I<=Len(V)) Do
Append(K,V[I][2]);
I:=I+1;
EndWhile;
D:=Count(K,2);
If D=1 Then
If Len(V)=1 Then A:=1;
Else A:=V[2][1];
EndIf;
B:=V[1][1];
B:=Subst(B,x,0)/LC(B);
B:=-B;
T:=B-1/(A*x);
Sol:=Subst(P,x,T);
CC1:=x-Subst(Q[1],[[s,Sol[1]],[t,Sol[2]]]);
Chi:=Subst(Q[2],[[s,Sol[1]],[t,Sol[2]]]);
Y:=Subst(Chi,x,x-CC1);
Return Y;
Else Print "bad invariant algebraic curve";
EndIf;
Else Print "bad invariant algebraic curve";
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EndIf;
EndIf;
EndDefine;

The function FengGao is described in Section 5.2.

Define FengGao(F,R,S)
If Tracindex(R,s)="not proper" Then
Return "not proper parametrization";
Else
If (Deg(F,y)<Deg(F,z)-1) Then
Print "no rational solution";
Elsif 2*Deg(F,z) < Deg(F,y) Then
Print "no rational solution";
Else
H:=Der(R,x);
A:=S/H;
If Type(A)=POLY Or Type(A)=INT Or Type(A)=RAT Then
If Deg(A)=0 Then
RS:=Subst(R,x,A*(x+c));
Print(RS);
Elsif Deg(A)=2 Then
V:=Factor(A);
I:=1;
L:=[ ];
While (I<=Len(V)) Do
Append(L,V[I][2]);
I:=I+1;
EndWhile;
D:=Count(L,2);
If D=1 Then
If Len(V)=1 Then B:=1;
Else B:=V[2][1];
EndIf;
N:=V[1][1];
N:=Subst(N,x,0)/LC(N);
N:=-N;
RS:=Subst(R,x,(B*N*(x+c)-1)/(B*(x+c)));
Print(RS);
Else Print "no rational solution";
EndIf;
Else Print "no rational solution";
EndIf;
Else Print "bad parametrization";



APPENDIX A. CODES 99

EndIf;
EndIf;
EndIf;
EndDefine;

The function Check is described in Section 5.2.

Define Check(F)

If Deg(F,z)=1 Then

D:=DivAlg(F,[z]);
G:=-D.Remainder/D.Quotients[1];
Par:=[x,y,G];
Par:=Subst(Par,[[x,s],[y,t]]);
Print "Solvable for y’";
Return Par;
Elsif Deg(F,y)=1 Then

D:=DivAlg(F,[y]);
G:=-D.Remainder/D.Quotients[1];
Par:=[x,G,z];
Par:=Subst(Par,[[x,s],[z,t]]);
Print "Solvable for y";
Return Par;

Elsif Deg(F,x)=1 Then
A:=AutTransform(F);
If A[1]<>0 Then
Print "Autonomous equations associated:";
Return A;
Else
D:=DivAlg(F,[x]);
G:=-D.Remainder/D.Quotients[1];
Par:=[G,y,z];
Par:=Subst(Par,[[y,s],[z,t]]);
Print "Solvable for x";
Return Par;
EndIf;
Else A:=AutTransform(F);
If A[1]<>0 Then
Print "Autonomous equations associated:";
Return A;
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Else T:=Transform(F);
If T[1]<>0 Then
Return T;
Else Print "no special case";
EndIf;
EndIf;
EndIf;
EndDefine;

The function AutTransform transforms the equation defined by the polynomial F given
in input into an autonomous equation, if it is possible. It returns the new polynomial and
the constants b and c which define the transformation.

Define AutTransform(F)
Lambda:=0;
Gamma:=0;
F:=Lin(F);
L:=LCoef1(F);
L:=GBasis(Ideal(L));
If L=[1] Then
Return [0];
Else
I:=1;
While I<=Len(L) Do
U:=UnivariateIndetIndex(L[I]);
If U>5 Then
RR:=RealRootsApprox(L[I]);
If Len(RR)<>0 Then
F:=Subst(F,Indet(U),RR[1]);
L:=Subst(L,Indet(U),RR[1]);
If U=6 Then
Lambda:=RR[1];
Else Gamma:=RR[1];
EndIf;
I:=1;
Else
I:=I+1;
EndIf;
Else
I:=I+1;
EndIf;
EndWhile;
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If GBasis(Ideal(Eval(F,[1,1,1])))=[1] Then
Return F;
Else
F:=Subst(F,[[Indet(6),0],[Indet(7),0]]);
Return [F,Lambda,Gamma];

EndIf;
EndIf;
EndDefine;

The function AssSys is described in Section 5.2.

Define AssSys(C1,C2,C3)
L:=[ ];
G:=Der(C2,t)*Der(C1,s)-Der(C1,t)*Der(C2,s);
H:=Der(C2,t)-C3*Der(C1,t);
If G=0 Then
L:=[Num(G),Num(H)];
If Deg(L[2],s)=0 And Deg(L[2],t)=0 Then
Print "bad parametrization";
Else Return L;
EndIf;
Else
K:=C3*Der(C1,s)-Der(C2,s);
L:=[H/G,K/G];
Return L;

EndIf;
EndDefine;

The functions LCoef, LCoef1, LCoef2, LTerm, LTerm1, LTerm2 are used inside other
functions to compute the leading coefficient or the leading term of F given in input.

Define LCoef2(F)

L:=[ ];
While Deg(LM(F),x)>=2 Do
X:=Deg(LM(F),x);
Y:=Deg(LM(F),y);
Z:=Deg(LM(F),z);
Q:=x^X*y^Y*z^Z;
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E:=DivAlg(F,[Q]);
E:=E.Quotients;
F:=F-E[1]*Q;
Append(L,E[1])
EndWhile;
Return L;
EndDefine;

Define LTerm2(F)
L:=[ ];
While Deg(LM(F),x)>=2 Do
X:=Deg(LM(F),x);
Y:=Deg(LM(F),y);
Z:=Deg(LM(F),z);
Q:=x^X*y^Y*z^Z;
E:=DivAlg(F,[Q]);
E:=E.Quotients;
E:=E[1]*Q;
F:=F-E;
Append(L,E)
EndWhile;
Return L;
EndDefine;

Define LCoef1(F)

L:=[ ];
While Deg(LM(F),x)>=1 Do
X:=Deg(LM(F),x);
Y:=Deg(LM(F),y);
Z:=Deg(LM(F),z);
Q:=x^X*y^Y*z^Z;
E:=DivAlg(F,[Q]);
E:=E.Quotients;
F:=F-E[1]*Q;
Append(L,E[1])
EndWhile;
Return L;
EndDefine;

Define LTerm1(F)
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L:=[ ];
While Deg(LM(F),x)>=1 Do
X:=Deg(LM(F),x);
Y:=Deg(LM(F),y);
Z:=Deg(LM(F),z);
Q:=x^X*y^Y*z^Z;
E:=DivAlg(F,[Q]);
E:=E.Quotients;
E:=E[1]*Q;
F:=F-E;
Append(L,E)
EndWhile;
Return L;
EndDefine;

Define LCoef(F)

X:=Deg(LM(F),x);
Y:=Deg(LM(F),y);
Q:=x^X*y^Y;
E:=DivAlg(F,[Q]);
E:=E.Quotients;
Return E[1];
EndDefine;

Define LTerm(F)

X:=Deg(LM(F),x);
Y:=Deg(LM(F),y);
Q:=x^X*y^Y;
E:=DivAlg(F,[Q]);
E:=E.Quotients;
E:=E*Q;
Return E[1];
EndDefine;

The function Coeff takes in input a polynomial F and returns the vector of its coefficient,
the ones which are zero included.

Define Coeff(F)

S:=[LC(F)];
While F<> 0 Do
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Q:= F- LC(F)*LT(F);
If Q=0 Then
For K:=1 To Deg(F) Do
Append(S, 0);
K:= K+1;
EndFor;
F:=0;

Elsif Deg(F)-Deg(Q)>1 Then
For K:=1 To Deg(F)-Deg(Q)-1 Do
Append(S, 0);
K:= K+1;
EndFor;
F:=Q;
Append(S,LC(F));
Else
F:=Q;
Append(S,LC(F));
EndIf;
EndWhile;
Return S;
EndDefine;

The function Transform transforms the equation defined by the polynomial F given in
input into a solvable for x equation, if it is possible. It returns the new polynomial and
the constants b and c which define the transformation.

Define Transform(F)
Lambda:=0;
Gamma:=0;
F:=Lin(F);
L:=LCoef2(F);
L:=GBasis(Ideal(L));
If L=[1] Then //(If#1)
Return [0];
Else
I:=1;
While I<=Len(L) Do //(while#1)
U:=UnivariateIndetIndex(L[I]);
If U>5 Then //(If#2)
RR:=RealRootsApprox(L[I]);
If Len(RR)<>0 Then //(If#3)
F:=Subst(F,Indet(U),RR[1]);
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L:=Subst(L,Indet(U),RR[1]);
If U=6 Then //(If#4)
Lambda:=RR[1];
Else //(Else#4)
Gamma:=RR[1];
EndIf; //(EndIf#4)
I:=1;
Else //(Else#3)
I:=I+1;
EndIf; //(EndIf#3)
Else //(Else#2)
I:=I+1;
EndIf; //(EndIf#2)
EndWhile; //(EndWhile#1)

If GBasis(Ideal(Eval(F,[1,1,1])))=[1] Then //(If#5)
Return F;
Else //(Else#5)
F:=Subst(F,[[Indet(6),0],[Indet(7),0]]);
Return [F,Lambda,Gamma];
EndIf;//(EndIf#5)
EndIf;//(EndIf#2)
EndDefine;

The function Tracindex takes two rational functionR,S in input which are the parametriza-
tion of a curve, and verify if it is a proper rational paramerization.

Define Tracindex(R,S)

G1:=Subst(Num(R),s,t)*Den(R)-Subst(Den(R),s,t)*Num(R);
G2:=Subst(Num(S),s,t)*Den(S)-Subst(Den(S),s,t)*Num(S);

G:=GCD(G1,G2);

If Deg(G,s)=1 Then
Return "Proper";
Else Return "not proper";
EndIf;
EndDefine;

The function Solve computes the zeros of the univariate polynomial V given in input.

Define Solve(V)
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K:=[ ];

S:= "Good";

While Len(V)<>0 Do

If UnivariateIndetIndex(V[Len(V)])<=1 Then

S:="Bad";
Return S;
Else

R:=RealRootsApprox(V[Len(V)],10^(-15));

If Len(R)<>0 Then
Append(K,[Indet(UnivariateIndetIndex(V[Len(V)])),R[1]]);

V:=Subst(V,Indet(UnivariateIndetIndex(V[Len(V)])),R[1]);

Remove(V,Len(V));
Else Remove(V,Len(V));
EndIf;
EndIf;

EndWhile;

Return [S,K];

EndDefine;

The function IsIrr decides if the polynomial F given in input is irreducible or not.

Define IsIrr(F)
F:=Monic(F);
E:=Factor(F);
If Len(E)>1 Then
Return FALSE;
Elsif E[1][2]<>1 Then
Return FALSE;
Else
Return TRUE;
EndIf;
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EndDefine;

The function InvAlgCurve is described in Section 5.2.

Define InvAlgCurve(S,T)

B:=[ ];
K:=1;
While K<=3 Do
L:=GenPoly(K);
Using W Do
B:=BringIn(B);
S:=BringIn(S);
T:=BringIn(T);
ForEach N In 1..Len(L) Do
D:=Num(S)*Den(T)*Der(L[N],x)+Den(S)*Num(T)*Der(L[N],y);
Ind:=FALSE;
F:=[ ];
While Ind=FALSE And D<>0 Do
If IsIn(LTerm(D), Ideal(LTerm(L[N])))=True Then
D:=D-L[N]*LTerm(D)/LTerm(L[N]);
Elsif Deg(LCoef(D))=0 Then
Ind:=TRUE;
Elsif UnivariateIndetIndex(LCoef(D))<>0 Then
RR:=RealRootsApprox(LCoef(D));
If Len(RR)<>0 Then
L[N]:=Subst(L[N],Indet(UnivariateIndetIndex(LCoef(D))),RR[1]);
F:=Subst(F,Indet(UnivariateIndetIndex(LCoef(D))),RR[1]);
D:=Subst(D,Indet(UnivariateIndetIndex(LCoef(D))),RR[1]);
Else
Ind:=TRUE;
EndIf;
Else
Append(F,LCoef(D));
D:=D-LTerm(D);
EndIf;
EndWhile;
For I:=1 To (K+1) Do
For J:=1 To I Do
X:=1;
While X<=Len(F) Do
If F[X]<>0 Then
DD:=DivAlg(F[X],[c[I,J]]);
DDQ:=DD.Quotients[1];
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If Deg(F[X],c[I,J])=1 And Deg(DDQ)=0 Then
F1:=Subst(F[X],c[I,J],0);
F:=Subst(F,c[I,J],-1/DDQ*F1);
L[N]:=Subst(L[N],c[I,J],-1/DDQ*F1);
X:=1+Len(F);
Else
X:=X+1;
EndIf;
Else
X:=X+1;
EndIf;
EndWhile;
EndFor;
EndFor;
If Ind=FALSE And F<>[ ] Then
V:=GBasis(Ideal(F));
E:=Solve(V);
If E[1]="Good" Then
Remove(E,1);
For I:=1 To Len(E[1]) Do
L[N]:=Subst(L[N], E[1][I][1],E[1][I][2]);
EndFor;
Else Ind:=TRUE;
EndIf;
EndIf;
For I:=1 To (K+1) Do
For J:=1 To (K+1) Do
L[N]:=Subst(L[N],c[I,J],1);
EndFor;
EndFor;

If Ind=FALSE And IsIrr(L[N])=True Then
Append(B,L[N]);
EndIf;

EndForEach;
EndUsing;
K:=K+1;
B:=BringIn(B);
EndWhile;
Print B;
EndDefine;

The function GenPoly takes in input an integer int d and it returns the set of monic
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polynomials up to degree int d with undetermined coefficients. It is used in the function
invalgcurve.

Define GenPoly(D)
A:=NewMat(3+(D+1)^2,3+(D+1)^2,0);
A[1][1]:=1;
A[1][2]:=1;
A[2][1]:=1;
For Y:=3 To 3+(D+1)^2 Do
A[Y][Y]:=1;
EndFor;
W::=QQ[x,y,z,c[1..(D+1),1..(D+1)]], Ord(A);
Using W Do
P:= c[1,1];
For I:=1 To D Do
L:= I;M:=0;
While L+M=I And L>=0 Do
P:=P+c[I+1,M+1]*x^L*y^M;
L:=L-1;
M:=M+1;
EndWhile;
EndFor;
X:=[ ];
For O:=0 To D Do
F:=P;
For Z:=0 To O Do
If Z=O Then
F:=Subst(F,c[D+1,O+1],1);
Else F:=Subst(F,c[D+1,Z+1],0);
EndIf;
EndFor;
Append(X,F);
EndFor;
EndUsing;
Return X;
Return W;
EndDefine;

The function Lin takes in input a polynomial F, it returns the action of a generic element
of G 0 on F. For the definition of G 0 see Section 4.6.

Define Lin(F)

F:=Subst(F,[[y,-bx+y-c],[z,z-b]]);
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Return F;
EndDefine;

A.3 MAGMA
How to compute a rational parametrization of an algebraic surface of Q3 in MAGMA.

P<x,y,z,w>:=ProjectiveSpace(Rationals( ),3);
P2<X,Y,Z>:=ProjectiveSpace(Rationals( ),2);
f:= [the polynomial defining the surface];
ParametrizeProjectiveHypersurface(Surface(P,f),P2);
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