

UNIVERSITÁ DEGLI STUDI DI PISA
Dipartimento di Informatica

Dottorato di ricerca in Informatica

Ph. D. Thesis

Methodologies and formalism for
modeling macroscopic biological

problems

Pasquale Bove

Supervisors
Prof. Roberto Barbuti
Dott. Paolo Milazzo

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79622745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2016-04-22

Contents

1 Introduction 3
1.1 Motivations . 3
1.2 Contribution and Thesis . 5
1.3 Publications . 6

2 Background and notations 7
2.1 Multisets and Indexing . 7
2.2 Markov chain . 8
2.3 P systems . 9
2.4 Background on probabilistic and statistical model checking 11

3 State of the Art 13
3.1 Biology problems and process algebra . 13
3.2 Biology problems with agent-based solutions 15
3.3 Biology problems by rule based and rewriting systems (P systems) 17
3.4 Other solutions for Biology problems . 22

4 Minimal Probabilistic P Sysyems (MPP systems) 25
4.1 Introduction to MPP systems, formal de�nition and semantics 25
4.2 Probabilistic Rules and Control Objects . 28
4.3 A simple example . 29
4.4 A case study for the MPP systems: Population dynamics of Lessonae-

Esculentus complexes . 30
4.4.1 Lessonae -Esculentus complexes: the MPP systems model 32
4.4.2 Parameters of the model . 34
4.4.3 Results . 34
4.4.4 Invasion of translocated P. ridibundus 35
4.4.5 The MPP systems model of invasion. 37
4.4.6 Parameters of the invasion . 37
4.4.7 Results of the invasion . 38

4.5 Translation of MPP systems into the PRISM input language 38
4.5.1 Translation . 40
4.5.2 Results of the translation of the frog model 42

4.6 Conclusion and general overview about MPP systems 45

5 Attributed Probabilistic P systems (APP systems) 47
5.1 From MPP to APP systems . 47
5.2 Introduction to APP systems . 48
5.3 Attributed Probabilistic P systems, formal de�nition and semantics 49
5.4 Simple example of modelling: the protozoans 51
5.5 Discussion about APP main features . 51

5.5.1 Attributes and control objects . 53

3

5.5.2 Attributes and probabilistic functions 53
5.6 Modelling social interaction in primates with APPS 54

5.6.1 Parameters of the simulation . 58
5.6.2 Use of parameters in the model . 59

5.7 Experimental results . 60
5.8 Conclusion . 63

6 Multilevel Attributed Probabilistic P systems (MAPP systems) 65
6.1 From APP to MAPP systems . 65
6.2 Introduction to MAPPS and informal de�nition 65
6.3 Multilevel Attributed Probabilistic P systems: formal de�nition and semantic 68
6.4 A simple example . 76
6.5 Case Study: Modelling social life of Serengeti Lions 82
6.6 Modelling the Lion Model with MAPPS . 84
6.7 Experimental results . 94
6.8 Data and results . 95
6.9 Conclusion . 98

7 Conclusions and future developments 99
7.1 The use of MPP, APP and MPP systems and other considerations 99
7.2 Use of MAPP systems to emulate agent based models 101
7.3 PRISM translations . 103

Abstract

This work presents a new computational approach, based on the formalism of P systems,
for modelling and running simulations of animal population dynamics phenomena.

Population and ecosystem dynamics models are de�ned by the description of processes
that involve several elements to be taken into account. Populations include individuals
that belong to the same species, while one ecosystem includes di�erent species often split
in various sub-populations with peculiar genetic features.

We use P systems as a starting point for the development of derived formalisms to-
gether with the study of speci�c population dynamics case studies. This to illustrate the
features of the presented formalisms and the power of their modelling capability.

The three formalisms proposed are. MPP systems (Minimal Probabilistic P systems),
APP systems (Attributed Probabilistic P systems) and MAPP systems (Multilevel At-
tributed Probabilistic P systems). All of them are formally de�ned by providing their
syntax notations and formal semantics as inference rules.

The Minimal Probabilistic P systems are derived from �at P systems and enrich the
evolution rules with functional rates, enforce the probabilistic maximal parallelism and use
rule promoters.
The objects represent various individuals that belong to the modelled population. Special
objects, named "control objects", are used as promoters to model the subsets of active
rules at various stages of the computation process. Also control objects can be used to
model abiotic factors of the ecosystems (e.g. temperature, humidity, pollution level and so
on) which can a�ect the dynamics of the considered population.

The Attributed Probabilistic P systems are an extension of the previous model in which
objects de�nitions are enriched with annotated attributes. In APP systems we still have
rules with rating functions and control objects but we also include attributes to allow a
better characterization of the models. The attributes of objects consumed by the rules
in�uence the the rating obtained by rating functions associated with each rule. Thus cor-
relation between attributes, functions and rate of rules, generate a �exible probabilistic
system.

The APP systems keep the maximal parallelism like �at P systems and MPP systems.
The main advantages of this formalism are the readability of the developed models and
the unambiguous model description.
Also, the presence of the variables in the rules, greatly improves the compactness of the
models.

The Multilevel Attributed Probabilistic P systems are based on a hierarchical system
of membranes like the original P systems. Membranes are used to model various levels of
aggregation of individuals, both spatial and logical, or social separation/aggregation. The

1

adoption of a multi-membrane perspective causes the loss of some features introduced in
the previous formalisms (i.e. the maximum parallelism), however the use of multiple mem-
branes allows the development of multilevel computational models to study hierarchical
systems, a class of problems very interesting to study and model.
The study of dynamical e�ects that spread along di�erent layers of the hierarchical or-
ganization of a population is an important ecological aspect that really deserves to be
investigated and modelled.

The three case studies that have been chosen to go with the formalizations of these
methodologies highlight the path that entwines their evolution.
For the �rst case study a probabilistc modeling of events in the stability of sympatric sys-
tems between P. lessonae e P. Esculentus frogs is required, while individuals need a very
simple representation.
In the second case study the model highlights the relationship between the lemurs' troop
topography and their social structure. In this case is necessary introducing a strong char-
acterization of individuals, using attributes that in�uence the probabilistic structure of
rules.

In the third case study we study a lion's pride social life, with data collected in the
Serengeti park as a starting point. Beside the probabilistic structure of rules, the attribues
for a detailed de�nition of individuals, we hereby introduce the possibilty of using among
the rules groups of individuals considered as separate entities, and giving them speci�c
attributes. This computational model will generate a a computation that is no longer
parallel but cascading.

The most important aspect that we want to emphasize in this thesis is the idea behind
all three formalism: we always try to introduce the least possible number of features needed
to model the proposed case studies.
It is always possible to de�ne a formalism richer of operators and constructs but, following
this direction, we will lose the characteristic of minimality, readability and generality which
are ours goals in this thesis.
It is obvious that a formalism ad hoc designed with one speci�c model already in mind, can
exploit the structure of the model. What we try to de�ne here is something �t for general
purpose, able to deal with a large class of population problems, so the design process of
these formalisms is a continuous trade-o� between readability and minimality.
The expressive power of all the three formalism is equivalent to that of a standard P sys-
tems, which is proved to be able to emulate a register machine. Anything we will de�ne
in this thesis can be modelled in standard P systems form, however the use of the plain P
systems to describe our models would have a huge cost in terms of readability and com-
pactness.

Chapter 1

Introduction

1.1 Motivations

Biological problems are one of the most challenging and fruitful application �elds for in-
formation technology. Population biology and ecology require speci�c modelling strategies
and methodologies like population viability analyses (PVAs) [63] are used in critical con-
servation decision-making [62].
Biological systems typically involve large numbers of components with complex, highly
parallel interactions and intrinsic stochasticity. The design of models about this kind of
problems is one of the most e�ective ways to generate:

• Assumptions on system's evolution starting from initial conditions and a certain
parameterization of a model.

• Development of plausible hypotheses and theories to guide the choice of real experi-
ments to be performed, optimizing the resources in consideration of time and cost.

• A better comprehension of the reactions of complex systems to interferences, or the
introduction of foreign elements as invasive species, or the appearance of a speci�c
mutation or a sudden mutation in the habitat balance. Thanks to a model previously
veri�ed by the experimental data, it is possible to hypothesize and model a whole
series of relevant hypothetical scenarios.

• Optimization of resources for intervention. A model can indicate the best action
to be taken within a given ecosystem. For example, it can propose to maintain a
stable ecosystem or propose changes for a compromised system. Resource optimiza-
tion can help money and workforce management, and improve the e�ectiveness of
interventions on the territory.

This short list of applications suggests that we refer, more than anything else, to macro-
scopic problems.
The cell biology and molecular biology are very large �elds of application for these models
and formalisms, which we will use as a starting point for our direction of research.
However, the models proposed by us are focused on macro-biology, since we work with
animal populations, and their internal and external dynamics, at di�erent levels of in-
teraction between di�erent species, on their adaptation to the environment and all that
can be associated with the study of individuals in a speci�c population of the object model.

When attempting to create a model which describes the evolution of individuals com-
posing a population, some approaches have been greatly exploited.
The �rst approach starts with individuals, chooses a set of attributes that de�ne the main

3

features, gives to each individual a behavior algorithm and regulates the interactions be-
tween two or more individuals de�ning the proper protocols.
We generate an arbitrary number of these individuals, we choose whether or not to synchro-
nize them to a universal clock, we de�ne a way to represent space (continuous or discrete)
and we start the simulation.
This approach is called �agent based� [61], where modeling consists in de�ning individuals
and their interactions, generates a number of individuals and observes both numerically
and statistically their behavior in a given habitat according to given parameters.

The strength of the agent based approach is its simplicity [60] following that approach
is possible to de�ne di�erent elements of the model independently. The simple de�nition
of a single agent with its simple rules of behavior determines the global behavior of the
entire system. The simulation of phenomena such as the movement of a �ock of birds, a
social model on gorilla behavior or the simulation of a stock of �sh is quite simple.
The weak point of this method is the lack of a standard. It is di�cult to prove formal
properties of this type of models as well as make a statistical analysis. Attempts have
been made to de�ne standards within the community that uses these models, or at least
to create benchmarks to be followed in the creation of the various models [59],[58], but un-
certainties persist for what concerns the de�nition of a unique method to model individuals.

Another classical approach is the analytical one, by means of systems of ordinary di�eren-
tial equations [57]. There is a vast literature in this regard with a number of well-studied
mathematical models [56] [55].
Individuals are not handled individually but quantitatively as variables of the whole sys-
tem. In this kind of approach we de�ne a system of equations, some initials conditions
evaluated at one speci�c time t0, and then the system is able to provide a continuous
function which describes the system's own evolution. It is possible to study the variables'
values which de�ne the system's state and their evolution up to a generic instant ti which
follows the initial state t0.
This approach is de�nitely more structured than the previous one, it is easy to demonstrate
the models' properties, and get a comprehensive study of its complexity.
All this is obtained at the cost of a much greater complexity of formulation. The systems
of equations often require elaborate solutions through appropriate numerical methods.
Another problem with this type of solutions is the lack of adaptability to some random
elements intrinsic to these models and the di�culty to incorporate elements of probabilistic
type.

Another approach is obtained considering the very strong parallelism between the pro-
cess algebras and evolution of biological systems. One of the best ways to model the
complexity of biological problems is using one of numerous formalisms based on process
calculi.

A process can be seen as a living entity which has a creation moment, can reproduce
creating copies of itself, can react to stimuli it receives on special channels and can change
its behavior.
We have processes/animals that are born, live, reproduce and die, a series of interactions
with other processes or with a permanent process/habitat.

There is another approach, which will be hereafter the �eld of interest of our work
and will represent the starting point from which to build a formal apparatus of modeling.
This kind of approach de�nes the class of �rewriting systems�, [54] [53]. We will cover a
particular computational model belonging to �rewriting systems� called P systems. For an

introduction to P System see chapter two.

1.2 Contribution and Thesis

This thesis is intended to show our contribution to the evolution of the P System formal-
ism. The formalism variants we want to introduce in this work can be used as tools for
modeling macro-biological phenomena.
We want to use as starting point the P systems with their high parallelism to obtain a
formalism able to describe complex biological population problems. We �rst introduce a
probabilistic structure to the rules of P systems, then we introduce elements which can be
detailed and expanded with custom attributes. Interactions between elements are mod-
elled by rules, to any possible outcome of a speci�c interaction is associated a speci�c rule.
Rules associated to di�erent interaction outcomes can be applied at same time on di�erent
elements.

Elements can be grouped in social or spatial structures. Set of individuals can interact
each other in di�erent stages of the simulation as a group rather than as single individuals.
In case studies and examples we show step by step how it is possible to create a model. We
start by describing which kind of elements we have, what attributes these elements have
associated with them, choosing some empirical facts, de�ning these facts as interactions
between elements and de�ning rules associated to these interaction outcomes.
In a simple way we can create models able to provide predictions and data output con-
�rmed by empirical data sets of our case studies.
Our formalism can be used to model continuous space, successions of time-phases and other
metrics. The rules, gathered in sets and subsets, provide a very modular and easy way
to add new facts to a working model and extend the probabilistic structure of the formalism.

In chapter two we introduce some background notions. In particular, we formally de�ne
the P systems, explaining why we use this formalism as starting point.

We show that the most important feature of this formalism is given by its innate paral-
lelism. A powerful characteristic that explains our e�orts to adapt P systems to the study
of groups of animals instead of chemical reactions into a cell.

In the third chapter a list of previous works on similar topics is presented, showing that
scholars have already used P systems to represent population problems model, producing
a signi�cant number of results, papers and formalisms. We will focus on those papers
that represent the basis of this work and part of the state of the art. Also, we will brie�y
explore other ways to model macroscopic biological phenomena like agent-based models
and languages which take inspiration from process algebras.

From this chapter onwards we will show the evolution of our work which takes form
in three formalisms, Minimal Probabilistic P systems (MMP), Attributed Probabilistic P
systems (APP), Multilevel Attributed Probabilistic P systems (MAPP).
Each of these chapters will start with the reason why we need to add more features to the
previous formalism and what new kind of phenomena we can model with such new tools.
After a formal description of the proposed formalism we present one simple model to better
understand the features of the formalism, then we go ahead with a real case study to show
what we can do with our tools on a real problem, by comparing empirical observations on
the �eld with our model-based predictions.

We take one step ahead with each formalism, and for each of them we have a dedicated
chapter:

• in chapter four we show the �rst formalism, MPP systems, in detail. In this chapter
we show the formalism associated with a real case study about European water frog
populations. The proposed model generates the outcomes for many scenarios, and
this outcomes are validated by empirical observation on the �eld.

• chapter �ve is dedicated to APP systems, reasons to pass from MPP to APP, a for-
mal de�nition, an example and a case study about social structure in primates.

• chapter six is about MAPP systems, following the structure of the two previous chap-
ters we introduce what we add to APP to obtain the MAPP systems, the reasons
behind the new features, the formal de�nitions and two detailed case studies.

In the last chapter, the seventh, we show some possible future developments. In particu-
lar, a little discussion about the possible necessity of another step after MAPP systems to
de�ne a richer formalism, and what kind of problem can require this more advanced tool.
Also a discussion about one particular way to use MAPP systems to produce models very
similar to agent-based ones.

1.3 Publications

In �Barbuti R., Bove P., Schettini A. M., Milazzo P. and Pardini G. (2013). A computa-
tional formal model of the invasiveness of eastern species in European water frog popula-
tions. In Software Engineering and Formal Methods (pp. 329-344). Springer International
Publishing� we provide in detail the de�nition of MMP systems in Chapter 4.

In �Barbuti R., Bove P., Milazzo P. and Pardini G. (2015). Minimal probabilistic P systems
for modelling ecological systems. Theoretical Computer Science, 608, 36-56.� we expand
the MMP formalism and give a translation in to PRISM language.

In �Barbuti R., Bompadre A., Bove P., Milazzo P. and Pardini G. (2015). Attributed
Probabilistic P systems and Their Application to the Modelling of Social Interactions in
Primates. In Software Engineering and Formal Methods (pp. 176-191). Springer Berlin
Heidelberg� we present the APP systems we will detail in Chapter 5

The paper �Multi-level Attributed Probabilistic P systems, a computational model for
social and spatial ecological system (working title)� about the MAPP systems is still un-
published. We will introduce the MAPP systems in Chapter 6.

Chapter 2

Background and notations

In this chapter we will present a brief list of key concepts we use in the following chapters
and also we will give formal de�nition of P systems. Moreover, we give background notions
on probabilistic and stochastic model checking. Such form of model checking will be used
to study properties of case studies in combination with Monte Carlo simulation.

2.1 Multisets and Indexing

The formalism of P systems, and everything that we develop from them, use a lot of the
concepts of set, multiset, indexed set. In this section we de�ne some notation we will use
about those concepts:

• free commutative monoid: Given a set A, the free commutative monoid on A is
the set of all �nite multisets with elements drawn from A, with the monoid operation
being multiset sum and the monoid unit being the empty multiset.
For example, if A = {a, b, c}, elements of the free commutative monoid on A are of
the form:
{ε, a, ab, a2b, ab3c4, ...}
The free commutative monoid extends the concept of free monoid and gives us the
main tool we use in this thesis to work with sets and multisets in our formalisms.

• multiset is a generalization of the concept of a set that, unlike a set, allows multiple
instances of the multiset's elements. The multiplicity of an element is the number of
instances of the element in a speci�c multiset.
We use strings to represent multisets of elements, where a character represents a
symbol of an element of a multiset and we simply ignore the order of characters
present in each string.
So, to describe a multiset on the set of elements A = {a, b, c} we use the strings s over
A used as alphabet or s ∈ A∗. We use the operator star �*� (Kleene Star) over the
alphabet of symbols to generate possibly in�nite set of �nite strings of elements. For
our purpose the string �aaab�, �abaa�, �aaba� are equivalent and describe the same
multiset.
This way to describe multisets is useful when we use the operator �+� to append a
string to another to describe the union over multisets].
In this way to represent the operation 〈a2, b〉] 〈a, b〉 = 〈a3, b2〉 We use �aab�+ �ab�
= �aabab�.
With |s| we denote the size (number of elements) of the multiset described by the

7

string s, and with |s|a the number of instances of element a of the set A contained
in multiset.

• one-to-one correspondences between sets and their indexing In the following
discussion we use �nite ordered sets associated with other sets of the same cardinality.
We use the elements of the ordered set to index the elements of associated set. The
resulting indexing produces an order in the associated set. For instance the ordered
�nite set A = {a1, . . . , an} is associated to the set B = {ba1 , . . . , ban} where elements
of A are in one-to-one correspondence with elements of B so that ba1 is associated
with a1, ba2 is associated with a2 and so on. Sometimes the associated set is a set of
sets. For instance B = {B1, . . . , Bn} is a set of sets where the j-th elements of the
i-th set is referred as Bi,j .

2.2 Markov chain

AMarkov chain (discrete-time Markov chain or DTMC [132]), named after Andrey Markov,
is a random process that undergoes transitions from one state to another on a state space. It
must possess a property that is usually characterized as �memorylessness�: the probability
distribution of the next state depends only on the current state and not on the sequence
of events that preceded it. In the �gure 2.1 we have a simple two state Markov chains.

Figure 2.1: A simple two-state Markov chain

A Markov chain is collection of random variables Xt (where the index t runs through 0,
1, ...) having the property that, given the present, the future is conditionally independent
of the past, in other words:

P (Xt = j|X0 = i0, X1 = i1, . . . , Xt−1 = it−1) = P (Xt = j|Xt−1).
If a Markov sequence of random variates Xn take the discrete values a1, . . . , aN , then
P (Xn = an|Xn−1 = an−1, . . . , Xt−1 = a1) = P (Xn = an|Xn−1 = an−1).
and the sequence is called a Markov chain, a simple random walk is an example of a Markov
chain.

2.3 P systems

P systems were introduced by P�aun in [131] [130] as distributed parallel computing devices
inspired by the structure and the functioning of a living cell.
A P system consists of a hierarchy of membranes, each of them containing a multiset of
objects, representing molecules, a set of evolution rules, representing chemical reactions,
and possibly other membranes. For each evolution rule there are two multisets of objects,
describing the reactants and the products of the chemical reaction.
A rule in a membrane can be applied only to objects in the same membrane. Some objects
produced by the rule remain in the same membrane, others are sent out of the membrane,
others are sent into the inner membranes, which are identi�ed by their labels.
Evolution rules can be applied more than once to di�erent objects, with maximal paral-
lelism, namely it cannot happen that some evolution rule is not applied when the objects
needed for its triggering are available and not consumed by the application of any other
rule.
Many variants and extensions of P systems exist that include features which increase their
expressiveness and which are based on di�erent evolution strategies.

The formalisms that we de�ne in this thesis are variants of P systems which include
features that allow us to describe populations dynamics and ecosystems. In particular,
maximal parallelism is one of the features of P systems that can be useful for the modelling
of this kind of systems. Indeed, the population studied by means of modelling techniques
often evolve by stages in which all of the individuals are involved in the same activity
(e.g. reproduction stages, hibernation, survival selection in winter, etc.). Stages are often
determined by year seasons, but can also be determined by speci�c biological aspects of
the species under study. Maximal parallelism, together with the use of evolution rule
promoters [129], o�er a simple and e�ective way of dealing with stage-based evolutions.

Maximal parallelism is not the only feature of P systems that could be useful for mod-
elling populations and ecosystems.
Evolution rules, for instance, can easily describe interactions between individuals of a popu-
lation described as a multiset of objects. On the other hand, we believe that the membrane
hierarchy of P systems is not really necessary for the ecological application domain.
In facts, the membrane structure of a P systems can often be �attened into a single mem-
brane [119] as we do in MPP and APP systems. Moreover, if spatial (and social) aspects
of ecosystems and populations have to be taken into account, it is possible to resort to
formalisms that explicitly deal with spatiality [118, 117, 116, 115] like the last one of our
formalisms, the MAPP systems.

A P System consists of a hierarchy of membranes that do not intersect, with a dis-
tinguishable membrane, called the skin membrane, surrounding them all. As usual, we
assume membranes to be labeled by natural numbers. Given a set of elements V , a mem-
brane m contains a multiset of elements in V ∗, a set of evolution rules, and possibly other
membranes, called child membranes (m is also called the parent of its child membranes).
Elements represent molecules swimming in a chemical solution, and evolution rules repre-
sent chemical reactions that may occur inside the membrane containing them. For each
evolution rule there is a multiset of elements representing the reactants, and a multiset
of elements representing the products of the chemical reaction. A rule in a membrane m
can be applied only to elements in m, meaning that the reactants should be precisely in
m, and not in its child membranes. The rule must contain target indications, specifying
the membranes where the new elements produced by applying the rule are sent. The new
objects either remain in m, or can be sent out of m, or can be sent into one of its child
membranes, precisely identi�ed by its label. Formally, the products of a rule are denoted

with a multiset of messages of the following forms:

• (v, here), meaning that the multiset of elements v produced by the rule remain in
the same membrane m;

• (v, out), meaning that the multiset of elements v produced by the rule are sent out
of m;

• (v, inl), meaning that the multiset of elements v produced by the rule are sent into
the child membrane l.

We can assume that all evolution rules have the following form, where {l1, . . . , ln} is a set
of membrane labels in N.

u→ (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)

An evolution rule in a membrane m is called dissolving if its application causes the
disappearance of m. In this case, the elements in m and the child membranes of m remain
free in the parent membrane ofm, and the evolution rules ofm are lost. The skin membrane
cannot be dissolved. A dissolving evolution rule is denoted by adding to the products the
special message δ such that δ 6∈ V :

u→ (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)δ

Application of evolution rules is done in parallel, parallelism is maximal: namely at each
evolution step a multiset of instances of evolution rules is chosen non-deterministically,
such that no other rule can be applied to the system obtained, by removing all the ele-
ments necessary to apply all the chosen rules. The application of rules consists of removing
all the reactants of the chosen rules from the system, adding the products of the rules by
taking into account the target indications, and dissolving all the membranes in which a δ
message has been produced.

Now, we formally de�ne P systems:

De�nition 1. A P System Π is given by

Π = (V, µ, (w1, . . . , wn), (R1, . . . , Rn))

where:

• V is an alphabet whose elements are called objects;

• µ ⊂ N×N is a membrane structure, such that (i, j) ∈ µ denotes that the membrane

labeled by j is contained in the membrane labeled by i;

• wi with 1 ≤ i ≤ n are strings from V ∗ is the initial multisets over V associated with

the membranes 1, 2, . . . , n of µ ;

• Ri with 1 ≤ i ≤ n are �nite sets of evolution rules associated with the membranes

1, 2, . . . , n of µ;

We show in Fig. 2.2 an example of P System over the alphabet V = {a, c, d, e} in which
all the main features of the formalism are used.

In this example the alphabet is V = {a, c, d, e}, we have two membranes, 1 and 2, so
µ = {(1, 2)} to model the fact membrane 1 is the skin membrane and contain membrane

Figure 2.2: An example of P System with all kind of possible rules.

2.
The setsRi are composed by the rules for membranes of the mode, R1 = {a→ (cd, out), e→
(a, in2)} and the rule set for membrane 2 R2 = {a → (aa, here), a → (a, here), ac →
(a, out)δ}.
The initial tuple w is w = (w1, w2) with w1 empty and w2 = {c}.
A computation works from an initial starting state towards an end state through a number
of discrete steps. Each step involves iterating through all membranes in the P system and
the application of rules, which occurs in both a maximally parallel and non-deterministic
manner.
Working step-by-step, a computation halts when no further evolution can take place (i.e.
when no rules can be applied). At this point whatever objects have been passed to the
environment, or into a designated �result� membrane, are counted as the result of the com-
putation. For istance the example system will use the rule a → (cd, out) to produce the
output and push outside the skin membrane ”cd” elements during the computation as his
output.

2.4 Background on probabilistic and statistical model check-
ing

In this section we present the PRISM probabilistic model checker as tool to apply proba-
bilistic and statistical model checking to MPP models while still lot of work is required to
adapt this tool to APP and MAPP systems too. Here we provide some background about
this kind of model and a translation of MPP systems into the PRISM input language.

Model checking [113] is a technique for the veri�cation of properties (expressed as
logical formulae) holding in a system, based on the thorough exploration of its state space.
Applicability of model checking is often limited to �nite-state systems; in practice for many
interesting systems the state space (albeit �nite) is too big to be examined, therefore many
techniques have been developed to tackle this problem.

Formally, properties are expressed in a temporal logic, such as the Computational Tree

Logic (CTL) [112], constructed from a basic set of atomic propositions AP which are
composed through the operators provided by the logic. A system's behavior is described
by a Kripke structure M over AP , which is a tuple M = (S, S0, R, L) where: (i) S is the

�nite set of states; (ii) S0 ⊆ S is the set of initial states; (iii) R ⊆ S × S is the transition
relation; (iv) L : S → 2AP is the labeling function associating, to each state, the set of
atomic propositions which are true in that state.

The transition relation can describe non-deterministic behaviors, and it is assumed to
be total (∀s ∈ S. ∃s′ ∈ S. (s, s′) ∈ R). Executions of the system are represented by the
in�nite paths π = s0, s1, s2, . . ., where s0 ∈ S0, s1 ∈ S and ∀i. (si, si+1) ∈ R. In this paper
we are mostly interested in analyzing probabilistic systems described by means of Discrete
Time Markov Chains (DTMC), for which a probabilistic distribution is associated with
the transitions exiting from a state. The memoryless property ensures that the probability
of passing from one state to another depends only on the current state and, therefore, they
are not a�ected by how the current state has been reached.

Temporal logics are used to describe sequences of transitions between states in the
Kripke structure. In the non-probabilistic setting, we consider the Computation Tree
Logic (CTL), which is composed of atomic propositions in AP , path quanti�ers (A,E) and
temporal operators (X,F,G,U). Path quanti�ers are used to deal with branching in the
Kripke structure, i.e. the di�erent transitions exiting from a state.

A Kripke structureM veri�es a CTL formula F over a path π = s0, s1, s2, . . . ((M,π) |=
F) according to the following rules.

(M,π) |= true
(M,π) |= ap i� ap ∈ L(s0)
(M,π) |= ¬ϕ i� (M,π) 6|= ϕ
(M,π) |= ϕ ∧ ϕ′ i� (M,π) |= ϕ ∧ (M,π) |= ϕ′

(M,π) |= Aϕ i� ϕ holds for all paths starting from s0

(M,π) |= Eϕ i� ϕ holds for some path starting from s0

(M,π) |= Xϕ i� (M,π′) |= ϕ with π′ = s1, s2, . . .
(M,π) |= Fϕ i� ϕ holds for some state si ∈ π
(M,π) |= Gϕ i� ϕ holds for all the states s0, s1, s2, . . . ∈ π
(M,π) |= ϕ1 U ϕ2 i� there exist si ∈ π such that

ϕ1 holds in s0, s1, s2, . . . si and ϕ2 holds in si+1

In our work, we make use of a probabilistic extension of the CTL, called Probabilistic

CTL (PCTL) [111], which provides operators to query about quantitative properties of
probabilistic systems. In particular, we are interested in the P operator, used to query
about the probability of di�erent executions. Among the di�erent forms, we consider
queries of the form P=? [ϕ], which gives the probability that the evolution of the DTMC
follows a path which satis�es the path property ϕ containing temporal operators.

We use the PRISM probabilistic model checker [109] to model and analyse the evolu-
tion of populations. The PRISM model checker is a mature tool which provides both exact

model checking algorithms, based on iterative algorithms for approximating the measure
of paths satisfying the formula being analyzed, and algorithms for statistical model check-
ing, which are instead simulation-based. In statistical model checking [110], many random
simulations are performed, and used to derive the probability measures of di�erent sys-
tem's executions, with some non-zero risk of erroneous results. However, simulation-based
methods are far less demanding than exact methods (both in terms of space and time
needed for their execution), and moreover the probability of erroneous results can always
be bound by any small amount. Hence they constitute a powerful tool for the analysis of
systems with a big state space on commodity hardware.

Chapter 3

State of the Art

The state of the art in the formal modelling of ecosystems consists of studies in which
formal notations are used to model and simulate population and ecosystems dynamics.
Also we will mention some notable examples of formalisms used over the years and which
are part of the classical methods for modeling macro-biological systems.
Some of them, like rewriting systems, have been de�ned with the speci�c purpose of de-
scribing biochemical networks and activity of membranes inside cells.
Moreover, some of them have been inspired by process algebras based on language for
concurrency theory.
A di�erent approach to the problem is the use of the so called �agents�. The agent-based
models consist of a set of individual entities interacting with each other. The behavior of
each agent is individually determined by an internal algorithm and external inputs.

According to this introduction we will divide this chapter in four sections:

- in the �rst section we present solutions derived by process algebra
- in the second section we present solutions derived by agent-based model
- in the third section we present solutions derived by rule based and rewriting systems
- in last section we present all other remarkable solutions which are not classi�able in pre-
vious sections

All these approaches have strong and weak points, to better understand what a �weak�
or �strong� means in this context we will �nd a very interesting point of view in [133] where
all these solutions are evaluated with properly reasoned criteria (�challenges�).

3.1 Biology problems and process algebra

k-calculus was introduced in [143],[144] and is a calculus speci�cally designed for the task
of representing and studying biological networks at the molecular level. Sites, proteins,
protein complexes, and signatures have speci�c representations and operators. De�nition
of well-formedness for complexes are provided. Solutions are de�ned starting from sets of
proteins and complexes. Reactions are de�ned by rewriting rules. We can have two kinds
of basic reactions: activation and complexation with di�erent activation condition. We can
have basic reactions (all reactant are simple protein) or otherwise it will be said complex.
In the end we de�ne a k-system a pair < S,R > where S is a solution and R is a �nite set
of basic reactions.
K-calculus can model commuting and competing behaviours and even some forms of syn-
chronization, also a de�nition of bisimilarity is provided (barbed bisimilarity).

13

k-calculus is a simple language of complexations and activations targeting core molecular
biology. Synthesis and degradation were not considered, neither were decomplexations. No
locations were introduced in the language either: the idea here was to have the simplest
meaningful language equipped with a barebone operational semantics and see if anything
interesting happens. In conclusion a translation is provided for k-calculus in π− calculus,
another more evolved process algebra formalism.

Bio-PEPA (2008) Developed by Ciocchetta and Hillston [42, 41], Bio-PEPA is a
process algebra for the modelling and the analysis of biochemical networks. Bio-Pepa is

Figure 3.1: Schema of the Bio-PEPA framework

an extension of PEPA, a process algebra originally de�ned for the performance analysis of
computer systems. A major feature of Bio-PEPA is the possibility to represent explicitly
some features of biochemical models, such as stoichiometry and the role of the species in
a given reaction. Furthermore functional rates are introduced to express general kinetic
laws. Each action type represents a reaction and it's associated with a functional rate.
Bio-PEPA is equipped with an operational semantic and a stochastic labeled transition
system based on discrete levels of concentrations. The representation in terms of discrete
levels of concentration is also re�ected in the de�nition of the continuous time Markov
chains (CTMC) derived from the system.
Bio-PEPA can be used, with some little foresights, to model macroscopic population prob-
lem too, but its features are better used for bio chemistry problems.

PALPS [48] [47] is a Process Algebra with Locations for Population systems. PALPS
allows us to produce spatially-explicit individual-based ecological models and to reason
about their behavior. PALPS has two abstraction levels: At the �rst level, PALPS may
de�ne the behavior of an individual of a population and, at the second level, it may specify
a system as the collection of individuals of various species located in the space. In PALPS,
individuals move through their life cycle while changing their location, and interact with
each other in various ways such as predation, infection or mating. Furthermore, they pro-
pose a translation of a subset of PALPS into the probabilistic model checker PRISM.
The structure of PALPS is based on basic entities describing: species, locations (with
topological relations), channels and sets of attributes. Expressions (both logical and arith-
metic) over these entities de�ne models following the syntax of the language. Technically,
PALPS can be considered as an extension of CCS with probabilistic choice, locations and
location attributes.
PALPS is another important inspiration for our work, we try to do the same by proposing
a translation of subset of MPP systems (the �rst of our formalisms we propose in Chapter
4) into the probabilistic model checker PRISM. Also the idea of multilevel abstraction

used to model ecological models was important to de�ne the MAPP System formalism (in
Chapter 6).

Other relevant biological applications of process algebras include:
Bio-calculus (1999) Nagasaki, Onami, Miyano and Kitano in [4] de�ne the Bio-calculus
as an expression system designed to make a bridge between biology and computer science.
It can be used to describe and simulate some kind of molecular interaction.
Applications of π−calculus (1992) More than a decade ago, Regev and Shapiro pub-
lished their pioneer work on the representation of signaling pathways with π−calculus [22,
21]. Their idea is to describe metabolic pathways as π−calculus processes and in [26] they
showed how the stochastic variant of the model (BioSpi), de�ned by Priami in [27], can be
used to represents both qualitative and quantitative aspects of the systems described.

Brane Calculi (2005) More details of membrane interactions have been considered
by Cardelli in the de�nition of Brane Calculi [1, 25], which are elegant formalisms for
describing intricate biological processes involving membranes. Moreover, a re�nement of
Brane Calculi have been introduced by Danos and Pradalier in [24].

SpacePi (2008) John, Ewald and Uhrmacher devolepd an extension of π-calculus
called SpacePi [5]. In this formalism π-processes are embedded into a vector space and
move individually. Only processes that are su�ciently close can communicate. The SpacePi
extends π-calculus also in time, the operational semantics of SpacePi de�nes the interac-
tions between movement, communication, and time-triggered events.

3.2 Biology problems with agent-based solutions

VORTEX [46] is an individual-based simulation program that models the e�ects of mean
demographic rates, demographic stochasticity, environmental variation in demographic
rates, catastrophes, inbreeding depression, harvest and supplementation, and metapop-
ulation structure on the viability of wildlife populations. The model facilitates analysis of
density-dependent reproduction and changing habitat availability, and most demographic
rates can optionally be speci�ed as �exible functions of density, time, population gene di-
versity, inbreeding, age, and sex. VORTEX projects changes in population size, age and
sex structure, and genetic variation, as well and estimates probabilities and times to ex-
tinction and recolonization.
More model which use VORTEX can be �nd in [45], [44], [43], all of them are very well
documented and easy to be implemented.

Multi-scale DISPAS [51] is one of major sources of inspiration for the MAPP sys-
tems we present in Chapter 6. From the abstract of the papers we quote �DISPAS is an
agent-based simulator for �sh stock assessment developed as a decision making support for
the sustainable management of �shery. In this work we enlarge the underlying model of
DISPAS allowing it to model and simulate a multi-scale scenario.We retain the currently
available spatial scale, able to represent a limited average region of the sea, and we in-
troduce a new spatial macro-scale, able to represent the whole sea. At the macro-scale a
single agent represents an area of �ve square nautical miles and manages groups of �sh in
di�erent age classes. The interactions among the macro agents permit the exchange of in-
dividuals of each class among neighbor areas [..]�. Multi-scale DISPAS propose a two level
simulator model. The space is represent in a hexagon grid, inside any of the hexagon of
the grid agent-�sh are managed locally (�rst level of the simulation) then exchange of �sh
among neighboring hexagons is managed in the whole grid (second level of the simulation).

This management of the phenomena on multi-scale level is a very important feature we try
to add to our formalism. The multi-level computational step allows us to represent very
complex and structured problems like the case study we propose in Chapter 6.

Figure 3.2: A Scale Separation Map (left) showing that the two CAs can be coupled by a
micro-macro Coupling Template (right)

In [37] an individual based stochastic modelling approach to derive models for studying
speciation by sexual selection is proposed. Speci�c models can be derived by instantiating
genotypes of individuals, and production and cancellation rates relative to such genotypes.
The methodology is based on Gillespie's algorithm for the simulation of chemical reac-
tions [39]. The algorithm, unlike most procedures for the numerical solution of di�erential
equations describing chemical kinetics, never approximates in�nitesimal time increments
by �nite time steps. Consequently, the time is increased exactly to the time in which the
next event occurs. Thus, the resulting simulation algorithm is characterized by a higher
precision with respect to other simulation methods.
Therefore, in the paper it is proposed, rather than a model, a systematic methodology for
the construction of computational models for sympatric speciation. The purpose of the
paper is twofold: to provide biologists with a methodology for specifying individual based
speciation models, and to show how, by means of a simulator, these models can be used
to validate evolutionary hypotheses.
The proposed methodology and the purpose of the paper help us in this thesis to balance
the complexity of our formalism, the goal is very similar and what we propose in this thesis
is aimed to be used by biologist with some basic modeling knowledge.

In the paper [36] is described a stochastic, individual-based, explicit genetic model tai-
lored for the cichlid system living in the lake Apoyo in Nicaragua.
The results show that relatively rapid (< 20 000 generations) colonization of a new ecolog-
ical niche and (sympatric or parapatric) speciation via local adaptation and divergence in
habitat and mating preferences are theoretically plausible if: (i) the number of loci under-
lying the traits controlling local adaptation, and habitat and mating preferences is small;
(ii) the strength of selection for local adaptation is intermediate; (iii) the carrying capacity
of the population is intermediate; and (iv) the e�ects of the loci in�uencing nonrandom
mating are strong.
This model is interesting because it is used to verify property of the system and to validate
theories with in silico experiment. Is not the model itself but its use which perfectly shows
what we want from this kind of solutions. What kind of data output we desire when we

apply our modelling tools to real problems with real data.

3.3 Biology problems by rule based and rewriting systems (P
systems)

Rule base systems [139] roughly speaking consists of a knowledge base and an inference
engine (see Figure 3.3). The knowledge base contains rules and facts. Rules always express
a conditional, with an antecedent and a consequent component. The interpretation of a
rule is that if the antecedent can be satis�ed the consequent can too. When the conse-
quent de�nes an action, the e�ect of satisfying the antecedent is to schedule the action for
execution.

Figure 3.3: A simple RBS consists of storage and processing elements, which are often
referred to respectively as the knowledge base and the inference engine. The basic cycle
of a BBS consists of a select phase and an execute phase. During the execute phase, the
system interprets the selected rule to draw inferences that alter the system's state. System
storage includes components for long-term static data and short-term dynamic data. The
long term store, which is this knowledge base, contains rules and facts. Rules specify
actions the system should initiate when certain triggering conditions occur.

When the consequent de�nes a conclusion, the e�ect is to infer the conclusion.
Because the behavior of all RBSs derives from this simple regimen, their rules will always
specify the actual behavior of the system when particular problem-solving data are entered.
In so doing, rules perform a variety of distinctive functions:

1. They de�ne a parallel decomposition of state transition behavior, thereby inducing
a parallel decomposition of the overall system state that simpli�es auditing and
explanation. Every result can thus be traced to its antecedent data and intermediate
rule based inferences.

2. They can simulate deduction and reasoning by expressing logical relationships (con-
ditionals) and de�nitional equivalences.

3. They can simulate subjective perception by relating signal data to higher level pattern
classes.

4. They can simulate subjective decision making.

Rewriting systems was a special class of rule-based systems and, in non-deterministic
form, brings us to the core concept of P systems. The idea of rules, which modify a state
following some sort of deterministic or probabilistic structure, was born with rule-based
models and is the main idea on which we will be working in this thesis to model events.
Some very interesting works about development of this formalism can be found in [140]
and [142].

Probabilistic P systems [50], [49] is another important formalism for our work.
Probabilistic P systems introduce probabilities associated to the rules of the system and
others features we will propose in Chapter 4 with our MMP systems.

Figure 3.4: Structure of the P system computational step divided in the four stages

What we �nd in this interesting model is:
- constant probabilities associated to the rules
- The P system model of the case study implements a computational step composed by four
stages (see �g3.4). The �rst one is devoted to the reproduction of the diverse species in the
ecosystem. Then, the animals' mortality is analyzed according to di�erent criteria. The
third stage analyzes the amount of food in the ecosystem. In the last stage, the removal
of animals due to lack of food takes place.
- in the alphabet of the system the individuals are represented by symbols X, Y and Z.
Each of these symbols represented the same animal but in di�erent states. Moreover, each
symbol is indexed with two indexes i and j (index i is associated with the species and index
j is associated with their age). In Chapter 5 with APP systems we want to extend this
concept and to give to that kind of index the intuitive semantic of attributes associated to
individuals of the system

In conclusion, probabilities associated to rules, multi stage running of simulation, index

(attributes) associated to symbol of the alphabet are all very important concept used in
this work and which we expand in our formalisms in the following chapters.

In [40] the authors presented one P systems based general framework for modeling
ecosystems dynamics.

Figure 3.5: multienvironment structure

In this framework ecosystems are described by means of multienvironment P systems con-
sisting of a �nite number of environments, each of them having a speci�c P system with
active membranes.
Inside these speci�c P systems each rule has associated a real number from [0, 1] which
depends on the left-hand side of the rule and the current state of the system run. This
framework is an extension of the previous one [50] and adds the possibility to de�ne more
than one speci�c habitat with a speci�c set of rules to allow the elements to move between
habitats.
This formalism is another interesting attempt to model population problems over a large
territorial extension and with not only one kind of habitat. The problems the authors face
in the paper are very well de�ned and helped us in the development of our formalisms.

Metabolic P systems presented in [38] is a variant of P systems used to de�ne, in a
biochemically realistic way, the evolution of P systems representing biological phenomena.
This formalism is not related with population problems but gives an interesting point of
view about the use of rules in P systems.
The leading principles of the MPA are the following:
- Reactants are distributed among all the rules step by step according to a �competition�
strategy.
- If di�erent rules need the same reactant, then each of these rules gets a portion of the
available substance, in a percentage that is proportional to its reaction strength (reactiv-
ity) at that step.
- The reactivity of a rule at a given instant depends on the state of the system, de�ned as
the concentration and localization of all substances.
- According to its stoichiometric �reading�, any rule determines its own reaction unit and
therefore the amount of substances which it consumes and produces.

We summarize these principles with four statements:
(1) Rules compete for object populations.
(2) Objects are allocated to rules according to a mass partition principle.
(3) Partition factors are determined by �reaction maps�.
(4) A �Metabolic rule� r consumes/produces integer multiples of a reaction unit ur which
generalizes the notion of molar unit (Avogadro's principle).
These pinciples can be not directly associated to population problems but the idea behind
them can be ispiring in order to �nd new solutions.

in Quorum sensing P systems [135] is proposed one P systems variant by consid-
ering bacterium quorum sensing (QS) phenomena as the basis of the new approach. The
QS mechanism is a communication strategy based on di�usible signals, which kick-in un-
der high cellular density. In particular, it is generally observed that, when a QS process
is activated, the concentration of the signal molecules re�ects the number of cells in the
colony, or at least the number of cells in a particular physiological state. Bacteria can then
respond to variations of the concentration of signal molecules and, when this value exceeds
a speci�c threshold limit that indicates the population is �quorated�, they start to behave
in a coordinated way. The resulting systems is a multi-environment models where single
cells:
- a cell can store a natural number s ≥ 0, which can become arbitrarily large and which
represents the number of signal molecules currently present inside the cell
- a cell can store at most one symbol from a given alphabet Q, which represents the par-
ticular physiological state of the cell, we in fact call the alphabet Q the set of states
- a cell, depending on the value s, can change its state and simultaneously consume some
signal molecules in order to produce some new ones inside the cell and/or release more
signal molecules into a given environment
- an environment can store a natural number t ≥ 1, which cannot exceed a given capacity,
and which represents the number of signal molecules currently present in that environment.
Environments are in fact considered as being passive repositories for signal molecules that
act as �nite bu�ers for communication between cells
- �nite amounts of signal molecules can di�use from an environment to a certain cell de-
pending on the values s and t
The evolution of the system consist in steps where:
- all the cells that can evolve by means of at least one rule must evolve in parallel at the
same time within the same transition step
- at most one rule per each cell can be used to modify the content of a cell within the same
transition step
- the content of an environment j, with 1 ≥ j ≥ h, can be modi�ed by di�erent releasing
and di�usion rules, which may be applied in parallel to di�erent cells connected to the
environment j, these rules must be selected such as to make sure that, after their use, the
value stored by this environment will be at least zero and no larger than the capacity cj
(capacity associated to the environment j).
The Quorum sensing P systems was important to help us to design the features of our
MAPP systems (which will be shown in Chapter 6) and was useful to understand what
kind of tools we will need when we want to model multi-environment phenomena. Also
the signal structure between elements of the systems will be another important feature to
manage in our work using a multilevel computation (only parallel among the membranes
of the same level).

Dynamical Probabilistic P systems [145] are very interesting since they have to

face the same problem that led to the de�nition of the �rst formalism that we presented
in this thesis (MPP systems).
With Probabilistic P systems (cited above) as a starting point, two assumptions which
seem quite unnatural from a biological point of view are made:
(1) one uses the notion of priority relations among rules, which should be implicitly de-
scribed by probabilities.
(2) probability values are initially assigned to rules and never changed during a computa-
tion, which means giving a static description of a dynamical system.
To overcome these two assumptions, a probabilistic structure which weighs the di�erent
rules on every interaction is created.
Summarizing, for each evolution step:
for each membrane, the probability distribution is computed.
for each membrane, the objects are assigned to the rules for as long as possible.
for each membrane, the multisets are updated accordingly.

The critical phase is when probability distributions are computed. This part is divided,
as in MPP systems in:

Checking for rule applicability: we evaluate which is the applicable subset of rules,
starting from the reactants multiset present in the current state.
Evaluation of pseudo-probabilities: we evaluate, in a parallel and independent way from
any other rule, the probabilistic function of every rule that can be applied.
Evaluation of normalized probabilities: we normalize the weight of every rule, to have their
overall probabilities ready to be used in the next phase.
In the related work some implementations of Lotka-Volterra models that show the sys-
tem potential are presented. In conclusion, Dynamical Probabilistic P systems have been
shown to be an extremely valid example of how non-static probabilistic structures can be
attributed to P systems to describe events happening to biological populations. This model
has also reinforced and validated the questions which gave birth to the idea of developing
the formalisms present in this thesis.

We can �nd a valid alternative to the use we make of the PRISM language in chapter
4 in article Executable Speci�cations of P Systems [146], where Maude is proposed as an
analytic tool and P system emulator.
Maude is a software system developed around the Maude language. Core Maude is the
Maude interpreter implemented in C++, it provides the Maude 's basic functionality. Full
Maude is an extension written in Maude itself, allowing combination of various Maude
modules to build more complex modules. Maude can be used for many applications with
competitive performance and advantages over the conventional code. The current Maude
implementation can execute syntactic rewriting with speeds from half a million to several
million rewrites per second, depending on the particular application and machine. It is
able to work well with multisets having millions of elements.
Maude is essentially a mathematical language. The basic programming statements are
equations, membership assertions, and rules. Their rewriting semantics is given by the
fact that instances of the left hand side pattern are replaced by corresponding instances of
the right hand side. A Maude program containing only equations and membership asser-
tions is called a functional module.
The equations are used as rules (equational rewriting), and the replacement of equals for
equals is performed only from left to right.
A Maude program containing both equations and rules is called a system module. Rules
are not equations, they are local transition rules in a possibly concurrent system. Unlike

for equations, there is no assumption that all rewriting sequences will lead to the same �nal
result, and for some systems there may not be any �nal states. The functional modules
de�ne a functional sub-language of Maude, and the system modules extend the purely
functional semantics of equations to the concurrent rewriting semantics of rules.

A P system can be naturally represented as a collection of Maude modules, the Maude
semantics of the module M is not the same with the P system semantics, therefore we must
associate with M the appropriate semantics based on the maximal parallel rewrite relation.
The article shows some simple P systems translated in Maude and emphasizes its use as
a complex tool, able to execute P systems speci�cations, and then to verify in a rigorous
way the desired properties of the speci�ed P system.

3.4 Other solutions for Biology problems

Obviously di�erential equations can be used to create models about a large array of
phenomena. These models use mathematical equations that contain derivatives, either
ordinary derivatives or partial derivatives. They describe the rate of change of continuous
variables. They are typically used for modeling dynamical systems in several areas other
than biology.
Systems of non-linear ordinary di�erential equations (ODEs) have been used in systems bi-
ology to describe the variation of the amount of species in the modeled system as a function
of time. They have been applied to all kinds of biological pathways [35, 34, 33, 31]. With a
fully detailed kinetic model, one can perform time-course simulations, predict the response
to di�erent inputs and design system controllers. However, building ODE models requires
insight into the reaction mechanisms to select the appropriate rate laws, and experimental
data to estimate the kinetic parameters. Other types of di�erential equations, such as
stochastic di�erential equations (SDEs) and partial di�erential equations (PDEs) can be
used respectively to account for stochastic e�ects and spatial distribution [30]. Piecewise-
linear di�erential equations (PLDEs) have been used to integrate discrete and continuous
features in gene regulatory networks [29, 32].

Cellular automata Were created by von Neumann and Ulam in the 40's [28]. They are
discrete dynamic models that consist on a grid of cells with a �nite number of states. A
cellular automaton has an initial con�guration that changes at each time step through a
prede�ned rule that calculates the state of each cell as a function of the state of its neigh-
bors at the previous step. They are specially suited for modeling complex phenomena in
a scale-free manner and have been used in biological studies for a long time [13]. Due to
their spatial features their main applications are related to molecular dynamics and cellular
population dynamics.

Petri nets Were created by Carl Adam Petri in the 60's for the modeling and analy-
sis of concurrent systems. They are bipartite graphs with two types of nodes, places and
transitions, connected by directed arcs. Places hold tokens that can be produced (respec-
tively, consumed) when an input (respectively, output) transition �res. The execution of a
Petri net is non-deterministic and specially suited for distributed systems with concurrent
events.
Their application to biological processes began in 1993, by the work of Reddy and cowork-
ers, to overcome the limitations in quantitative analysis of metabolic pathways [20]. There
are currently several Petri net extensions (e.g.: colored, timed, stochastic, continuous, hy-
brid, hierarchical, functional), forming a very versatile framework for both qualitative and
quantitative analysis. Due to this versatility, they have been used in metabolic [3, 19, 18],

gene regulatory [137, 138], and signaling networks [17, 23, 6, 16]. Also, they are suited for
integrating di�erent types of networks, such as gene regulatory and metabolic [2].

Lindenmayer systems (or L systems) are one of the oldest formalisms introduced
and developed in 1968 by Aristid Lindenmayer [15].
An L system is a formal grammar most famously used to model the growth processes of
plant development.

Boolean networks In 1969 Kau�man introduced Boolean networks to model gene regu-
latory networks [14]. They consist of networks of genes, modeled by boolean variables that
represent active and inactive states. At each time step, the state of each gene is determined
by a logic rule which is a function of the state of its regulators. The state of all genes forms
a global state that changes synchronously. For large network sizes (n nodes) it becomes
impractical to explore all possible states cause the exponential time complexityO(2n).
This type of model can be used to �nd steady-states (called attractors), and to analyze
network robustness [8]. Boolean networks can be inferred directly from experimental gene
expression time-series data [12, 11]. They have also been applied in some studies to model
signaling pathways [7, 136]. To cope with the inherent noise and the uncertainty in biologi-
cal processes, stochastic extensions like Boolean networks with noise [10] and Probabilistic
Boolean networks [9] were introduced.

Chapter 4

Minimal Probabilistic P Sysyems
(MPP systems)

4.1 Introduction to MPP systems, formal de�nition and se-
mantics

The variant of P systems we de�ne in this chapter has a minimal set of features useful for
modelling population dynamics. We consider for our purpose �at P system [114], namely P
systems consisting of a single membrane. The key ingredients we consider are (i) evolution
rules with functional rates, (ii) probabilistic maximal parallelism and (iii) rule promoters.
The aim of this �rst variant of P systems is to make modelling of populations easier, by
avoiding unnecessary functionalities in the modelling formalism.

In models of population dynamics, evolution rules are used to describe events such as
reproduction, death, growth, and so on. In general, there may be several rules describing
one of these events, and any of these rules can possibly be applied to the same individual
but only one among them will be selected. In fact rules, to be applied, compete over indi-
vidual (as reagents) with each other.

For instance, the same female individual may be involved in the event �reproduction�
and the event is described by one rule for each possible outcome. Let us suppose there
sexist one rule that models the birth of one male o�spring and is in competition with
one rule which models the birth of one female o�spring and in our model just one female
individual is present. These two rules compete with each other over that female individual
to model the di�erent outcomes of the mating.
If the �rst rule is selected then that rule consumes the female individual and one male
o�spring is added to the system, the second rule �loses� the chance to use the object rep-
resenting the female individual. No female o�spring will be born because the second rule
cannot be applyed.

Some rules may be more likely to be applied than others since the events they describe
are more likely than others (for instance, some females may have a sexual preference for
some speci�c kind of male).
Associating rates with rules allows us to choose them in a probabilistic way, where prob-
abilities are proportional to the rates. Moreover, by allowing rates to be functions, rather
than constant values, we achieve that the probability of applying a rule can depend on the
current state of the system (for instance on the size of the population, or on the number
of individuals of a speci�c kind). Probabilistic choice of rules have been considered in
many formalisms for modelling biological systems as we have seen in the previous chapter

25

[127],[126], [125], [124], [123], [122], [121]. In our formalism we use the probabilities of rules
in conjunction with maximal parallelism.

Populations often evolve by stages (e.g. reproduction, selection, etc.) in which (almost)
all of the individuals are involved. By combining maximal parallelism with probabilistic
choice of reactions we allow the whole population to evolve in a coherent way and, at the
same time, each individual to follow its own fate.

Finally, since in di�erent stages of the evolution of a population di�erent kinds of
events may happen, we need a way to enable di�erent sets of rules depending on the
current stage. For instance, during a reproduction stage only reproduction rules should be
enabled, whereas during a selection stage only death/survival rules should be enabled. In
order to obtain this result we exploit rule promoters, which can be used to enable/disable
a set of rules by simply including/removing an object from the state of the system.

De�nition 2 (MPP system). AMinimal Probabilistic P system is a tuple 〈V,w0, R〉 where:
• V is a possibly in�nite alphabet of objects, with V ∗ denoting the universe of all mul-

tisets having V as support;

• w0 ∈ V ∗ is a multiset describing the initial state of the system;

• R is a �nite set of evolution rules having the form

u
f−→ v |pr

where u, v, pr ∈ V ∗, u 6= ∅, are multisets (often denoted as strings) of reactants,
products and promoters, respectively, and f : V ∗ 7→ R≥0 is a rate function.

The semantics of MPP systems are de�ned as a Discrete Time Markov Chain, where
a state (or con�guration) is a multiset of objects in V ∗, and each probabilistic transition
models a maximally-parallel step according to the semantics presented in the following.

Apart from what concerns probabilities, the de�nition of the MPP semantics follows
the lines of the semantics of P systems proposed in [120]. The idea is to represent a
maximally parallel application of rules as a sequence of applications of single rules. During
this sequence of rule applications, reactants are removed from (a copy of) the current state
and added to a temporary multiset. When no more rules can be applied to the remaining
objects, the temporary multiset is merged with remaining objects to obtain the next state
of the system, ready for another maximally parallel step. The formal de�nition of this
process requires the use of di�erent transition relations: one for single rule applications,
one for sequences of single rule applications, and one for maximally parallel steps.

Formally, the evolution of a MPP system 〈V,w0, R〉 is given by a sequence of proba-
bilistic maximally parallel steps described by transitions of the form

w
r, p7−→R w

′

where: w and w′ are respectively the source and target con�guration; r is a sequence of
(instantiations of) evolutions rules from R; and p ∈ [0, 1] is the probability of the transition.
In order to de�ne the semantics, we make use of an auxiliary transition relation used to
derive maximal multiset of rule applications. The inference rules de�ning the semantics
are formally de�ned as follows:

(rule application)

ri : u
k−→ v |pr∈ R u ⊆ wa pr ⊆ w

K = {|k′|u′ k
′
−→ v′ |pr′∈ R, u′ ⊆ wa, pr′ ⊆ w|} p = k∑

k′∈K
k′

(wa, wp)
ri, p−−−→(R,w) (wa − u,wp + v)

(single rule
sequence)

(wa, wp)
ri, p−−−→(R,w) (w′a, w

′
p)

(wa, wp)
[ri], p−−−→

+

(R,w) (w′a, w
′
p)

(multi-rules
sequence)

(wa, wp)
ri, pi−−−→(R,w) (w′a, w

′
p) (w′a, w

′
p)

r, p−−→
+

(R,w) (w′′a, w
′′
p)

(wa, wp)
r@[ri], pi·p−−−−−−−→

+

(R,w) (w′′a, w
′′
p)

(step rule)
(w, ∅) r, p−−→

+

(R(w),w) (wa, wp) (wa, wp) 6−→(R(w),w)

w
r, p7−→R wa + wp

where [ri] denotes the sequence of rule application composed by the single element ri, and
@ denotes the concatenation of sequences. Given a system state, w, the rule (step rule)

describes the evolution in a new state by the
r, p7−→R relation, where p is the probability

of the transition, and r is the sequence of applied rules. According to (step rule), both

r and p are derived from (w, ∅) r, p−−→
+

(R(w),w) (wa, wp), which represents the application of
the sequence of evolution rules r from the state w. In this case, we denote as R(w) the
set of all rules in which each rate function f has been replaced by the constant obtained
by applying f to the current state w. The function f is total on all possible multiset
over V ∗ and depends only on the current state, when all constants for all rules are ob-
tained applying the di�erent f functions then the probability of each rule is obtained using
some normalization process (where each single probability depends on the rate of all rules).

More formally, we have:

R(w) =

{
u

f(w)−−−→ v |pr
∣∣∣∣ u f−→ v |pr∈ R

}
.

The use of such an instantiation function allows us to assume in the rest of the semantic
rules that the rate associated with an evolution rule is simply a constant k.
Intuitively, the semantic de�nition states that all the rules to be applied in a step are
selected in a probabilistic way, one by one, from the set of applicable rules. To keep track
of the e�ect of the application of a rule, a pair (wa, wp) is modi�ed after the application
of each rule, where wa denote the reactants still /empavailable in the current step, and wp
denote the products to be added at the end of the step. Therefore, each rule application
causes their reactants to be removed from the available reactants wa, and their product to
be added to multiset wp. When no further rule can be applied to wa the new state, which is
composed be the unused objects in wa plus the suspended products in wp, is produced. The

transition relation
r, p−−→

+

(R,w) used in the premises of (step rule) is de�ned in rules (multiple

rules sequence) and (single rule sequence) as the transitive closure of
r, p−−→(R,w). The latter

is, in turn, de�ned in rule (rule application) and corresponds to the application of a single
evolution rule ri ∈ R(w). When a rule is selected, its application consists in removing its
reactants from wa and adding its products to wp. The wp multiset will collect all products
of all applied rules. Note that each rule is applied with a probability that is proportional to
the rate of the rule computed in the original state w and properly normalized. Moreover,
the conditions for applicability of a rule are evaluated with respect to the original state w
as concerns promoters, and with respect to the intermediate state w′ as concerns reactants.
Once objects in wp are such that no further rule in R can be applied to them, as captured
by the premise (wn, wn) 6−→(R(w),w) of (step rule), then this means that the sequence of

applications r yields the con�guration wa + wp, composed of the unused objects wa and
of the new products wp. Finally, the probability of a transition between two states of the
DTMC is given the following rule:

(state transition probability)

PR = {(r, p)| w r, p7−→R w
′} p =

∑
(r,p)∈PR

p

w
p

=⇒R w′

which states that the probability to pass from a state w to a state w′ is given by the
sum of the probabilities to pass from w to w′ by means of any possible sequence of rule
applications. Note that relation

ri, p−−−→(R,w) essentially corresponds to the transitions of a

Discrete Time Markov Chain, while relation
r, p7−→R corresponds to paths in such Markov

Chain.
Consequently, in w

p
=⇒R w′, p is the sum of the probabilitis of all path leading from w

to w′ in the Markov Chain gived by
ri, p−−−→(R,w). Hence,

p
=⇒R is, in turn, a Discrete Time

Markov Chain.

4.2 Probabilistic Rules and Control Objects

In the formal de�nition of the formalism we see how probabilistic rules were introduced,
and the promoters were used as control objects.
Probabilistic functions associated to the rules manage the non-determinism present in P
systems. Facts and actions are described in the model by rules, how much likely this facts
will happen within the population is described by the probabilistic function associated to
the rules.

The probabilistic structure supervise both what facts will happen and the outcomes of
the facts that happened.

They determine if a frog will go hunting or mating, and also what will be the outcome
of the mating action. Rules can apply to a single individual (e.g. its survival) or model
the interaction between two (or more) individuals (e.g. reproduction).
Probabilistic functions give rates from the state of the membrane, rates are transformed
into probabilities by normalization, the probabilities determine how rules are selected to
construct a maximal multiset for the computational step.
Di�erent rates associated to the rules model how much one event is likely to happen with
respect to another. For example a female can give a birth to one, two or three o�spring.
For each of these outcomes a rule is present with a rate empirically observed on the �eld.
In this way we can model the outcomes of phenomena like: one youngling survive to a
parasite, a new member is accepted in the pack, a genetic trait is passed down to new
generation, a speci�c mutation is inherited by the o�spring and so on.

Control objects use the idea of promoters to split the computational steps of the model
into di�erent phases. For each phase the control objects enable the associated subset of
rules. For example in our case study we use the control objects REPR and SEL to switch
between the subset of rules model the reproduction phase and the subset of rules model
the survival and aging of the specimen.
Any phase has then associated one (or more) control object which enables the correct sub-
set of rules associated to that phase. The subset of rules must also include rules to manage
the control object and switch the current one into the correct next one.
To any subset of rules associated to a phase we add the rule to switch the control object
into the next one.

For example the presence of control object SEL enables the subset of rules which models
the selection of the population of frogs. For any species of frog we have two rules which
model the outcome �the frog survives� and the outcome �the frog dies�. We also add to
this subset of rules one to switch SEL to REPR �SEL→ REPR�.
We can use di�erent control objects to have di�erent and more accurate subset of rules.
For example with the control objects �SEL� and �REPR� we can have �Dry_Season� and
�Wet_Season�. The presence at same time of the control object �SEL� and �Dry_Season�
describes a speci�c subset of rules while �REPR� and �Wet_Season� describe another one.
Of course it is responsibility of the creator of the model to avoid that two control objects
present at the same time are in con�ict using special rules to manage the transition between
them.

4.3 A simple example

As an example, to show the features of the formalism, we consider a MPP system repre-
senting a reproductive event in a sexual population with XY sex-determination system. In
the initial population there are females (f) and two types of males (m1,m2). Suppose that
females preferm1 males with a preference value of 0.7, while they mate withm2 males with
a preference value of 0.3. We consider that the di�erent traits of m1 and m2 are coded on
the Y sexual chromosome. Thus the males in the o�spring produced by m1 and m2 males
are of kind m1 and m2, respectively. We consider also that each mating generates a single
juvenile. The actual matings, in addition to female preferences depend on the availability
of the two kinds of male.

The MPP system representing the described reproductive event is the triple 〈Vfm, w0fm, Rfm〉.
The alphabet Vfm is de�ned as follows:

Vfm = {f,m1,m2, f
j ,mj

1,m
j
2}

where the j superscript indicates juveniles.
The reproduction rules are presented in the form:

[femaleparent][maleparent]
preference(female,male)→ [femaleparent][maleparent][offspring]

Any of these rules consume as reagents one male, one female and put back as product
one male, one female and one o�spring to model the happened reproduction of the two
parents.
The set of reproduction rules Rfm contains the following rules:

r1 : f m1
fm1−−→ f m1 f

j r2 : f m1
fm1−−→ f m1 m

j
1

r3 : f m2
fm2−−→ f m2 f

j r4 : f m2
fm2−−→ f m2 m

j
2

where the rates in R(wfm) are: fm1(wfm) = 0.7 · |wfm|m1 · 0.5 and fm2(wfm) = 0.3 ·
|wfm|m2 · 0.5. Note that the result of fm1(wfm) is given by the preference of females for
m1 males multiplied by the number of m1 males in the population and the probability of
producing a male or a female (0.5). fm2(wfm) function is analogous.

Suppose also that the MPP system takes deaths of adult individuals into account. This
is represented by the following rules:

r5 : m1
0.2−−→ ε r6 : m2

0.2−−→ ε r7 : f
0.2−−→ ε

The death rate for each individual is given by the constant 0.2, which is independent
from the population consistency.

Given the following initial population:

w0fm = m1m2m2 f f f f f

we obtain the following rates: fm1(w0fm) = 0.35 and fm2(w0fm) = 0.3. Note that at least
two females cannot �nd a partner for reproduction in this event because there are not
enough males.

A possible evolution step from w0fm, according to the semantics de�ned in section
4.1, is the following. Rule (step rule) calls (w0fm, ∅) −→+

(R(w0fm),w0fm) which proceeds by

choosing a rule to apply. In the premises of (rule application) the computation of the
probabilities of the rules in R(w0fm) is performed. This consists in normalizing the rates
of the rules, thus obtaining a probability for each rule as follows.

r1 : f m1
0.184−−−→ f m1 f

j r2 : f m1
0.184−−−→ f m1 m

j
1

r3 : f m2
0.158−−−→ f m2 f

j r4 : f m2
0.158−−−→ f m2 m

j
2

r5 : m1
0.105−−−→ ε r6 : m2

0.105−−−→ ε r7 : f
0.105−−−→ ε

The computed probabilities are then used, together with the applied rule, as labels
of the transition described by (rule application). Suppose that rule r1 is chosen, then

the system will make the (internal) transition (w0fm, ∅)
r1,0.184−−−−−→(R(w0fm),w0fm) (w0fm −

{m1, f}, {m1, f, f
j})

For the second transition the probabilities of the rules must be updated (premises of
(rule application)) because r1, r2 and r5 are no longer applicable (the unique m1 male was
already used). The probabilities of the applicable rules become:

r3 : f m2
0.3−−→ f m2 f

j r4 : f m2
0.3−−→ f m2 m

j
2

r6 : m2
0.2−−→ ε r7 : f

0.2−−→ ε

We suppose to choose �rst rule r6 and then r4. Thiese two rules use all the males
elements in the initial states. At this point only the rule for female death, r7, is applicable
(with probability equal to 1) and, because of maximal parallelism, it must be selected and
applied three times.

With the above choice of the sequence of applicable rules, the (step rule) produces:

w0fm
r,0.0117−→ R m1m2 f f f

jmj
2

where r = [r1, r6, r4, r7, r7, r7], and 0.01104 is the product of the probabilities of the
applied rules.

4.4 A case study for the MPP systems: Population dynamics
of Lessonae-Esculentus complexes

Lake frog (Pelophylax ridibundus Pallas, 1771) and pool frog (Pelophylax lessonae Cam-
erano, 1882) can mate producing the hybrid edible frog (Pelophylax esculentus Linneus,
1758). The edible frog can coexist with one or both of the parental species giving rise to
mixed populations.

LL LR

LyL LyL LL LyR LR

LyR LR RR not viable

Table 4.1: Reproductive pattern of water frogs

Usually the genotypes of P. ridibundus, P. lessonae and P. esculentus are indicated by
RR, LL, and LR, respectively. In Europe there are mainly mixed populations containing
P. lessonae and P. esculentus, called L-E systems. Hybrids in these populations reproduce
in a particular way, called hybridogenesis [108]. Hybridogenesis consists in a particular
gametogenetic process in which the hybrids exclude one of their parental genomes premei-
otically, and transmit the other one, clonally, to eggs and sperm.
This particular way of reproduction requires that hybrids live sympatrically with the
parental species the genome of which is eliminated. In this way hybrids in a L-E sys-
tem eliminate the L genome thus producing P. esculentus when mating with P. lessonae,
and generating P. ridibundus when mating with other hybrids.
Usually P. ridibundus generated in L-E complexes are inviable due to deleterious mutations
accumulated in the clonally transmitted R genome [107, 106, 105]. Because of inviability
of P. esculentus × P. esculentus o�spring, edible frog populations cannot survive alone,
but they must act as a sexual parasite of one of the parental species. In L-E complexes
the reproductive pattern is the one in Table 4.1 where the subscript Y indicates the male
sexual chromosome.

Note that the Y chromosome, determining the sex of frog males, can occur only in the
L genome, due to primary hybridization which involved, for size constraints, P. lessonae
males and P. ridibundus females. Table 4.1 shows that only one of the three possible
matings resulting in viable o�spring produce LL genotypes. This would give an advantage
to edible frogs which could outnumber P. lessonae and eventually eliminate them. This
situation would result in an extinction also of P. esculentus which cannot survive without
the parental species. In addition to their relative abundance which can be promoted by
the above reproductive pattern, edible frogs show, by heterosis, a greater �tness than the
parental species [104, 103, 102]. The sum of relative abundance and heterosis should out-
compete P. lessonae in L-E complexes.
The widespread distribution of L-E complexes reveals the existence of mechanisms which
contribute to the stability of such complexes, namely the ability of such populations to
self-maintain their structure.
Among such mechanisms sexual selection seems to be one of the most important: P.

esculentus females prefer P. lessonae males with respect to males of their own species
[101, 100, 99, 98, 97]. Many mathematical and computational models were devoted to the
study of the in�uence of sexual selection in the evolution of populations, the models in
[95, 94] show how female preference is able to stabilize L-E complexes by counterbalancing
both heterosis and reproductive advantage of edible frogs.

In this case study we are interested in modelling and simulating the dynamics of L-
E complexes. Such dynamic is also studied in [96] by means of a computational model
programmed in C, where also the genesis of L-E complexes is considered.
The study of conditions for population stability and of possible threats to endangered
species is of particular importance for the maintenance of biodiversity.

In this section we use MMP systems for studying the dynamics of European water frog

populations. In particular, we show that female preferences and the inviability of P. ridi-
bundus o�spring can stabilize L-E complexes. Moreover, we show how the introduction of
translocated P. ridibundus in stable L-E complexes can lead to the collapse of the systems.

4.4.1 Lessonae -Esculentus complexes: the MPP systems model

We model an L-E complex by means of an MPP system 〈ΣLE , w0LE , RLE〉 in which each
individual of the population is represented by an object in the state of the system. Hence,
the alphabet ΣLE contains one object for each possible genotype of an individual. We use
di�erent objects for juveniles (immature individuals) and adults. Moreover, the alphabet
includes some control objects used to realize alternation of reproduction and selection
stages. As a consequence, we de�ne ΣLE = ΣLEa ∪ ΣLEj ∪ Σctrl, where ΣLEa represents
adults, ΣLEj represents juveniles and Σctrl are control objects.

Since the R genome may contain a deleterious mutation or not, we use di�erent objects
for representing P. esculentus and P. ridibundus individuals carrying or not a mutation in
their genotype. Thus, the alphabet representing adults is

ΣLEa = {LL , LyL , LR∗ , LyR∗ , LR◦ , LyR◦ , R∗R◦ , R◦R◦}

where y represents the Y chromosome, and ∗ and ◦ respectively represent the presence and
the absence of a deleterious mutation. Note that according to the reproductive pattern
of L-E complexes in Table 4.1 males with RR genotypes cannot be produced in a L-E
complex. Moreover, note that object R◦R∗ is not present in VLEa since the individual it
represents is indistinguishable from the one represented by R∗R◦, and hence we use only
one object to represent it.

The alphabet representing juveniles is

ΣLEj = {LLj , LyLj , LRj∗ , LyRj∗ , LRj◦ , LyRj◦ , R∗Rj∗ , R∗Rj◦ , R◦Rj◦ }

where j denotes that the individual is a juvenile, and the other notations are as before.
Note that R∗R

j
∗ is allowed although it represents non viable genotype since in our model

individuals with such a genotype will be allowed to be born, but they will not be allowed
to become adults.

Finally, the alphabet of control objects is

Σctrl = {0, . . . , n} ∪ {REPR , SEL }

where REPR and SEL represent reproduction and selection stages, respectively, and
natural numbers will be used as objects regulating the alternance of the two considered
stages, where n is the largest number of iteration a stage of the model will take, for example
if the computation alternates three reproduction stages and one selection stage n = 3 and
Σctrl = {0, 1, 2, 3} ∪ {REPR , SEL }.

The set of evolution rules RLE contains reproduction, selection and control rules.
Hence, we have RLE = RLEr ∪RLEs ∪Rctrl.

Reproduction rules RLEr are of the following form:

x y
fxy−−→ x y z |REPR

where x ∈ ΣLEa is any object representing a female and y ∈ ΣLEa is any object representing
a male. Function fxy gives the rate of mating of females of type x with males of type y by
taking into account the sexual preferences of x females and the quantities of individuals of
types x and y. In particular, given a multiset of objects w (a system state), we have

fxy(w) = kmate(x, y) · |w|x · |w|y · 1/ko_kind(x, y)

where kmate(x, y) is the preference of a female x for a male y, and ko_kind(x, y) is the
number of possible kinds of o�spring that can be generated by the mating of x with y.
Please notice that 1/ko_kind(x, y) distributes the rate of the mating event of x and y over
the rules for this mating.

Finally, z ∈ ΣLEj is an object representing the newborn, and it is related with x and
y as described in Table 4.1. For example, for x = LL and y = LyL there are two rules,
one with z = LyL

j and the other with z = LLj . On the other hand, for x = LR∗ and
y = LyR◦ there is one single rule with z = R∗R

j
◦. As a consequence, ko_kind(LL,LyL) = 2

whereas ko_kind(LR∗, LyR◦) = 1. The other combinations of x and y are analogous.
Regarding selection rules RLEs, they contain two rules for each individual of the pop-

ulation describing its survival and its death during the selection stage, respectively. The
presence of these two rules for each type of individual, together with maximal parallelism,
ensure that during a selection stage each individual will be faced with one of the two fates.

Survival and death rules are of the forms that follow. For each object x ∈ ΣLEa

representing an adult individual we have:

x
gx−→ x |SEL x

g′x−→ ε |SEL

where ε represent the empty multiset and gx and g′x give the probability of survival and
death, respectively, of an individual of type x. Function gx takes into account the size of
the population, the carrying capacity of the environment and the �tness of the individual.
More precisely, given w ∈ Σ∗ representing a system state, parameter cc representing the
carrying capacity of the environment and parameter kfit(x) representing the �tness of
individuals of type x, we have:

gx(w) =
1

σ + |w|
kfit(x)·cc

Function g′x is such that for all w ∈ V ∗ it holds g′x(w) = 1− gx(w).
For each object xj ∈ (ΣLEj \ {R∗Rj∗}) representing a juvenile (but not R∗Rj∗) we have:

xj
g
xj−−→ x |SEL xj

g′
xj−−→ ε |SEL

where x ∈ ΣLE is the object representing the adult of the same type of xj , and ε, gxj and
g′
xj

are as before. In the case of R∗R
j
∗ we consider only the death rule, since such a kind

of juvenile is considered too un�t to be able to grow up. Hence, we have only

R∗R
j
∗
f1−→ ε |SEL

where for all w ∈ Σ∗ it holds f1(w) = 1.
Finally, regarding control rules Rctrl, they are responsible for the appearance and dis-

appearance of objects REPR and SEL in order to activate alternatively reproduction and
selection rules.
For the sake of simplicity, we assume that the o�spring of each female in each reproductive
stage are exactly n. We also assume that each of the o�spring is the result of a di�erent
mating (this is a very rough simpli�cation that however should not change signi�cantly the
global population dynamics). Hence, the object REPR has to be present for n subsequent
steps, then it has to be replaced by SEL for one step, and these n + 1 steps should be
iterated forever. This result is obtained by ensuring that REPR is in the initial state of
the system and by using the following control rules:

1
f1−→ 2 2

f1−→ 3 · · · (n− 1)
f1−→ n

LL LR RR

LyL LyL LL LyR LR LyR LR

LyR LR RR RR

Table 4.2: Reproductive pattern of water frogs without deleterious mutations.

n REPR
f1−→ SEL SEL

f1−→ 1 REPR

where, as before, for all w ∈ Σ∗ it holds f1(w) = 1.
The initial state w0LE of the MPP system will change in di�erent simulations. In

general, it will contain the control objects 1 and REPR, and one object for each individual
present in the considered initial population.

4.4.2 Parameters of the model

In order to perform simulations we consider the following initial parameters (some of them
will be changed later on). Parameters are a very important element in the description of
the model:

• No sexual preference: for every female x and male y we have kmate(x, y) = 1.

• 10% higher �tness for hybrids (heterosis e�ect), namely

kfit(x) =

0.55 if x ∈ {LyR∗, LyR◦, LyR∗, LyR◦} (hybrid specimen adults)

0.5 if x ∈ {LL, LyL, R◦R◦, R∗R◦} (parental specimen adults)

0.88 if x ∈ {LyRj∗, LyRj◦, LyRj∗, LyRj◦} (hybrid specimen juveniles)

0.8 if x ∈ {LLj , LyLj , R◦Rj◦, R∗Rj◦} (parental specimen juveniles)

• The carrying capacity cc is set to 400.

• The number of reproduction stages n is set to 3.

4.4.3 Results

We study the stability of L-E complexes by considering populations without deleterious
mutations in the R genome of P. esculentus. We performed 1000 simulations with initial
populations composed by P. lessonae frogs and a share of 10% of mutation-free edible
frogs. The initial state of the system is hence described by the multiset w0LE consisting
of 90 instances of LL, 90 of LyL, 10 of LR◦, 10 of LyR◦ and of the control objects 1 and
REPR.

We observe that, in all the simulations, the population evolves towards a mono-speci�c
population of viable all-females P. ridibundus which eventually collapses for the absence of
males (recall that the Y chromosome can occur only on the L genome). Figure 4.1 shows
the outcome of a typical simulation. If viable P. ridibundus females are produced, the
reproductive pattern becomes the one depicted in Table 4.2. Edible frogs are numerically
advantaged from possible mating between P. ridibundus females and P. lessonae males. It
is clear from the table that this reproductive pattern generates a numerical disadvantage for
pool frogs, the population of which decreases. The decrease in the P. lessonae population

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

LLLL LRLR

RRRR

Iteration

N
um

be
r

of
in

di
vi

du
al

s

Figure 4.1: Result of a simulation of a L-E complex without deleterious mutations.

has, as a consequence, a decrease of produced L gametes, which, in turn, results in a
bigger production of lake frogs. Thus the population of P. ridibundus females grows and
eventually they out-compete the other species.

Let us now consider an initial population with the same percentages of edible frogs
(10%), but in which all the P. esculentus individuals carry the deleterious mutations on
the R genome, so that P. ridibundus females are not viable and they do not appear in
the population. The initial state of the system is hence described by the multiset w0LE

consisting of 90 instances of LL, 90 of LyL, 10 of LR◦, 10 of LyR∗ and of the control
objects 1 and REPR.

We performed 1000 simulations. We observe that also in this case the population
collapses in all simulations. The cause of the collapse is due to the fact that both the
reproductive pattern of Table 4.1 and the greater �tness of edible frogs give an advantage
to P. esculentus frogs forcing the complex towards a mono-speci�c population. A popula-
tion with P. esculantus alone cannot survive. Figure 4.2 shows the outcome of a typical
simulation in this case.

Finally we introduce in the population a female preference towards LyL males (ob-
served experimentally in [101, 97, 99]). In particular, we set kmate(LL,LyL) = 6 and
kmate(LR,LyL) = 2. Also in this case we performed 1000 simulations with the same initial
state as before.

We observe that in all simulations the complex evolves towards a stable L-E complex.
Figure 4.3 shows the outcome of a typical simulation in this case.

Note that we do not show the outcome of simulations in a population with female
preferences but without deleterious mutations in the R genome. Actually in this case the
population also evolves towards a all-females P. ridibundus population.

4.4.4 Invasion of translocated P. ridibundus

The main point that we study with our model is the consequence of the introduction of
P. ridibundus in stable L-E complexes. P. ridibundus can mate both with P. esculen-

tus, producing P. ridibundus, and with P. lessonae (primary hybridization), producing P.

esculentus.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

LLLL LRLR

Iteration

N
um

be
r

of
in

di
vi

du
al

s

Figure 4.2: Result of a simulation of a L-E complex with deleterious mutations.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

LLLL LRLR

Iteration

N
um

be
r

of
in

di
vi

du
al

s

Figure 4.3: Result of a simulation of a L-E complex with deleterious mutations and sexual
selection.

4.4.5 The MPP systems model of invasion.

In order to study the dynamics of a L-E complex in which P.ridibundus can be introduced
we need to extend our previous model including objects and rules describing the behaviour
of P.ridibundus males.

Consequently, we de�ne a MPP system 〈ΣLER, w0LER, RLER〉 where ΣLER = ΣLERa∪
ΣLERj ∪ Σctrl and RLER = RLERr ∪RLERs ∪Rctrl, where, in turn, we have:

• ΣLERa = {LL , LyL , LR∗ , LyR∗ , LR◦ , LyR◦ , R∗R◦ , Ry∗R◦ , Ry◦R∗ ,
R◦R◦ , Ry◦R◦}

• ΣLERj = {LLj , LyLj , LRj∗ , LyRj∗ , LRj◦ , LyRj◦ , R∗Rj∗ , Ry∗Rj∗ , R∗Rj◦ ,
Ry∗R

j
◦ , Ry◦R

j
∗ , R◦R

j
◦ , Ry◦R

j
◦}

• RLERr and RLERs extend RLEr and RLEs, respectively, with analogous rules for
P.ridibundus males

• Σctrl and Rctrl are as before

Note that, given the impossibility of mating between P. ridibundus male with P.

lessonae females (for size reasons), L∗Ry◦ individuals cannot be produced. Note also that
in reproduction rules involving P.ridibundus males with one mutation, namely R∗Ry◦ we
have to consider more possibilities for the genotype of the o�spring than in the previous
cases. Indeed, by means of recombination a male of this type can produce four kinds of
gametes: R∗, R◦, Ry∗ and Ry◦.

4.4.6 Parameters of the invasion

In order to perform simulations we consider the following initial parameters (some of them
will be changed later on) that we know, from the previous model, could lead to a stable
L-E complex if deleterious mutations are present.

• Sexual preference:

kmate(x, y) =

6 if x = LL and y = LyL

2 if x ∈ {LR∗ , LR◦ } and y = LyL

0 if x = LL and y ∈ {Ry∗R◦ , Ry◦R∗ , Ry◦R◦ }
1 otherwise

• 10% higher �tness for hybrids (heterosis e�ect), namely

kfit(x) =

0.55 if x ∈ {LR∗, LR◦, LyR∗, LyR◦ } (hybrid specimen adults)

0.5 if x ∈ VLERa \ {LR∗, LR◦, LyR∗, LyR◦ } (parental specimen adults)

0.88 if x ∈ {LRj∗, LRj◦, LyRj∗, LyRj◦ } (hybrid specimen juveniles)

0.8 if x ∈ VLERj \ {LRj∗, LRj◦, LyRj∗, LyRj◦ } (parental specimen juveniles)

• The carrying capacity cc is set to 400.

• The number of reproduction stages n is set to 3.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

LLLL LRLR

RRRR

Iteration

N
um

be
r

of
in

di
vi

du
al

s

Figure 4.4: Simulation of invasion leading to replacement of the population by lake P.

ridibundus frogs.

4.4.7 Results of the invasion

We performed 1000 simulations with initial populations composed by 80% of P. lessonae
frogs, 15% of mutation-free edible frogs and 5% of P. ridibundus frogs. The initial state of
the system is hence described by the multiset w0LER consisting of 80 instances of LL, 80
of LyL, 15 of LR∗, 15 of LyR∗, 5 of R◦R◦, 5 of Ry◦R◦, and of the control objects 1 and
REPR.

The results in this case are of two kinds: 73% of simulations result in a mono-speci�c P.
ridibundus population while 27% of simulations result in a collapse of the whole population.
Figure 4.4 and 4.5 show typical population dynamics. Because the introduce lake frogs are
mutation-free and because they can mate with P. esculentus frogs, deleterious mutations
are gradually purged. Thus, the population evolves towards a mono-speci�c P. ridibundus
system. In this situation, if males are present, the P. ridibundus population can survive,
otherwise it will collapse. The survival of P. ridibundus males is threatened by female
preferences towards LL males and the advantage of P. esculentus for their heterosis. In all
cases, the initial L-E complex is destroyed, as predicted in [52].

4.5 Translation of MPP systems into the PRISM input lan-
guage

The PRISM translation of a MPP system follows the operational semantics of MPP systems
de�ned above. The translation of MPP systems in to the PRISM input language is rather
simple, although the obtained PRISM code is quite complex and di�cult to read.

Multiset of objects of MPP systems are translated into integer PRISM variables, one
for each kind of object in the multiset. The value of each variable represents the number
of instances in the multiset of the corresponding kind of object.

In accordance with the semantics of MPP systems, the states of the considered tran-
sitions systems require di�erent multisets of objects to be represented. In particular, this
in necessary to represent the pairs of multisets corresponding to the states on which the
semantic rules (rule application), (single rule sequence) and (multiple rule sequence) op-
erate. Consequently, in the PRISM translation we have to include three di�erent sets of

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

LLLL LRLR

RRRR

Iteration

N
um

be
r

of
in

di
vi

du
al

s

Figure 4.5: Simulation of invasion leading to replacement of the population by lake P.

ridibundus frogs.

variables: one for representing the state of (step rule) and two for representing the pairs
used as states of the other rules. Evolution rules of MPP systems are then translated into
transitions in the PRISM language that change the state of the system in accordance with
what speci�ed in (rule application). Before showing the formal de�nition of the translation,
we introduce (a subset of) the syntax and semantics of PRISM.

PRISM syntax and semantics

A PRISM model is de�ned as a tuple (V arP,maxP, RP, initP) where V ar is a �nite set
of variable names; maxP : V ar → N is a function giving, for each variable, the maximum
value it can hold; RP is a �nite set of probabilistic rules; init : V ar → N is a function
giving the initial value of each variable. For the sake of simplicity, only integer variables
are allowed, where each variable v ∈ V ar can hold values in the set {0, 1, . . . ,max(v)}.

De�nition 3. The syntax of the probabilistic rules in RP is de�ned by the following gram-

mar:

Rule ::= Cond→
(
Exp : Update

)
+ · · ·+

(
Exp : Update

)
Cond ::= Atom Rel Atom | Cond ∨ Cond | Cond ∧ Cond | ¬Cond
Atom ::= V ar | N
Rel ::= = | > | <

Update ::= true | (V ar′ = Exp) | Update & Update

Exp ::= V ar | Nt | Exp+ Exp | Exp− Exp | Exp/Exp | Expr ∗ Exp | Cond ? Exp : Exp

where Cond represents boolean conditions, and Exp represent arithmetic expressions
(which also includes the ternary operator _ ?_ :_ to denote conditional expressions). A
rule Cond→

(
Exp : Update

)
+ · · ·+

(
Exp : Update

)
is composed of a boolean condition

de�ning its applicability, followed by a set of pairs
(
Exp : Update

)
describing probabilistic

transitions, where Exp is an expression giving the probability of the transition, and Update
describes how the variables are to be updated. In any update (x′1 = e1)& . . .&(x′n = en) ∈
Update, each variable xi is assumed to occur at most once among the left-hand sides of all
the updates.

The semantics of a PRISM model (V arP,maxP, RP, initP) is de�ned as a Discrete
Time Markov Chain (DTMC) where states are functions σ : V arP → N such that ∀a ∈
V arP. σ(a) ∈ {0, . . . ,max(a)}. Given a condition C ∈ Cond, we denote as Cσ the truth
value obtained from the evaluation of the condition in state σ, while, given an expression
e ∈ Exp, we denote as eσ the real value obtained from its evaluation in state σ.

We assume that the set of rules RP is such that the conditions of all rules do not
overlap, namely:

∀r1, r2, σ. C(r1)σ ∧ C(r2)σ = false.

where C(ri) denotes the condition for the application of rule ri, i ∈ {1, 2}. Moreover, if a
rule r = C →

∑n
i=1(ei : updi) is enabled in a state σ, then the sum of the probabilities of

all cases must be equal to 1, namely:

∀σ. (Cσ = true) =⇒
n∑
i=1

eiσ = 1.

Before de�ning the probability of transition between states, we introduce the following
transition relation describing the application of a rule:

rk = C →
∑n

i=1(ei : updi) Cσ = true ∃j. ejσ = p

σ
k,j,p−−−→r σ / updj

where the application of upd to σ, σ / upd, is de�ned as follows:

σ / true = σ;

σ / ((x′ = e) &upd) = (σ / upd)[eσ/x].

Finally, the probabilistic transitions of the DTMC are derived as follows:

p =
∑
{p′ | σ k,j,p−−−→r σ

′}
σ

p−→ σ′

σ 6→r

σ
1−→ σ

The �rst inference rule allows deriving transitions corresponding to the application of one
or more rules, whose probability is given by the sum of the probabilities to pass from σ to
σ′ by means of the application of that rules. The second inference rule states that, if no
rules are applicable, the probability to remain in the same state is 1. Recall that at most
one rule is ever enabled in a state, and the sum of the probabilities of all the cases of a
rule must sum up to 1. Thus, it is easy to see that, according to the above inference rules,
the sum of the probabilities of all the transitions exiting from a state σ is equal to 1, as
required for DTMCs.

4.5.1 Translation

Let 〈V,w0, R〉 be an MPP system where R = {r1 : u1
f1−−→ v1|pr1 , . . . , rs : us

fs−−→ vs|prs}.
Since PRISM models are �nite, we assume a function max : V → N giving the max-
imum number of occurrences of each symbol. The translation gives a PRISM model
(V arP,maxP, RP, initP) where:

• V arP = {a0, a1, a2 | a ∈ V };

• ∀a ∈ V. maxP(a0) = maxP(a1) = maxP(a2) = max(a);

• ∀a ∈ V. initP(a0) = |w0|a, initP(a1) = |w0|a, initP(a2) = 0.

The translation uses, for each symbol a ∈ V , three variables a0, a1, a2 to describe, respec-
tively, the (i) the multiset w of symbols at the beginning of the step, (ii) the multiset
w′ of symbols not yet consumed in the current step, and (ii) the multiset w′ of products
created by the rules being applied. We assume that, for each evolution rule rk ∈ R, the
rate function fk has an equivalent de�nition f̃k de�ned as a PRISM expression over the
variables {a0 | a ∈ V }. Finally, the set of rules RP is composed of the following two rules:

rp1 :

(
s∨
t=1

cond(ut, prt)

)
→

s∑
k=1

(
cond(uk, prk)?f̃k : 0∑s
z=1 cond(uz, prz)?f̃z : 0

: update(uk, vk)

)
;

rp2 : ¬

(
s∨
t=1

cond(ut, prt)

)
→ 1 : &

a∈V

 a′0 = a1 + a2 ≤ maxP(a0)?a1 + a2 : maxP(a0)
)

&
a′1 = a1 + a2 ≤ maxP(a1)?a1 + a2 : maxP(a1)

)
&

a′2 = 0

 ;

where

cond(u, pr) =

(∧
a∈u

a1 ≥ |u|a

)
∧

(∧
a∈pr

a0 ≥ |pr|a

)

update(u, v) =

(
&
a∈u

a′1 = a1 − |u|a

)
&

(
&
a∈v

a′2 = a2 + |v|a ≤ maxP(a2)?a2 + |v|a : maxP(a2)

)

The rules rp1, rp2 are mutually exclusive, since their conditions are complementary. Intu-
itively, rule rp1 is used to model the application of a single evolution rule as described by
(rule application) from the semantics of the MPP systems, while rule rp2 models the actual
maximally-parallel step as described by (step rule). In particular, cond(u, pr) encodes the
condition needed for the application of an MPP rule with reactants u and promoters pr,
while update(u, v) describes how the variables a1, a2 are updated to re�ect the application
of a rule having reactants u and products v. Note that, in both rp1 and rp2, the variables
cannot exceed their upper bounds.

Lemma 1. Let P = 〈V,w0, R〉 be an MPP system, where R = {r1, . . . , rs} with ri =

ui
fi−→ vi|pri , and let max : V → N be a function. Let MP = 〈V arP,maxP, RP, initP〉 be

the translation of P . Let w,w′, w′ ∈ V ∗ be such that ∀a ∈ V. (|w|a < max(a), |w′|a <
max(a), |w′|a < max(a)), and σ : V arP → N such that ∀a ∈ V. σ(a0) = |w|a, σ(a1) =
|w′|a, σ(a2) = |w′|a. We have

(w′, w′)
ri,p−−→(R,w) (w′′, w′′) such that ∀a ∈ V. |w′′|a < max(a) ∧ |w′′|a < max(a)

⇐⇒

σ
1,i,p−−−→ σ′ such that ∀a ∈ V. σ′(a1) < maxP(a1) ∧ σ′(a2) < maxP(a2)

where σ′(a1) = |w′′|a and σ′(a2) = |w′′|a, for all a ∈ V .

Proof. Case =⇒. From the semantics of MPP systems, (rule application) is applied to
derive the transition describing the application of rule ri. From rule application we know

that ui ⊆ w′, pri ⊆ w, and p = k∑
k′∈K k′ where K = {|k′|u′ k

′
−→ v′ |pr′∈ R, u′ ⊆ w′, pr′ ⊆

w|}. This implies that cond(ui, pri)σ is true and that

eiσ =

(
cond(ui, pri)?f̃i : 0∑s
z=1 cond(uz, prz)?f̃z : 0

)
σ =

(
f̃i∑s

z=1 cond(uz, prz)?f̃z : 0

)
σ.

Let J = {j | rj ∈ R ∧ cond(uj , prj)σ = true}, we have eiσ = f̃iσ/(
∑

j∈J f̃jσ). Since j ∈ J
i� rj is applicable, we have f̃iσ = k and

∑
j∈J f̃jσ =

∑
k′∈K k

′. Thus eiσ = p.

It is easy to see that σ′(a1) < maxP(a1) and σ′(a2) < maxP(a2), then σ′(a1) = |w′′|a,
σ′(a2) = |w′′|a.
Case ⇐=. Suppose σ

1,i,p−−−→ σ′ such that ∀a1, a2 ∈ V arP. σ
′(a1) < maxP(a1) ∧ σ′(a2) <

maxP(a2). This means that cond(ui, pri) is true, and

p =

(
f̃i∑s

z=1 cond(uz, prz)?f̃z : 0

)
σ.

Analogously to the previous case, p = eiσ = f̃iσ/(
∑

j∈J f̃jσ), where J = {j | rj ∈

R ∧ cond(uj , prj)σ = true}. Thus, p = k∑
k′∈K k′ where K = {|k′|u′ k′−→ v′ |pr′∈ R, u′ ⊆

w′, pr′ ⊆ w|}. Moreover, because σ′(a1) < maxP(a1) and σ′(a2) < maxP(a2), for all
a1, a2 ∈ V arP, we have each expression (a′2 = a2 + |v|a ≤ maxP(a2)?a2 + |v|a : maxP(a2))
is equivalent to a2 + |v|a. Then |w′′|a < max(a), |w′′|a < max(a), σ′(a1) = |w′′|a, and
σ′(a2) = |w′′|a, for all a ∈ V .

Theorem 1. Let P = 〈V,w0, R〉 be an MPP system, and let max : V → N be a function.

Let MP = 〈V arP,maxP, RP, initP〉 be the translation of P . Let w ∈ V ∗ be such that

∀a ∈ V. |w|a < max(a), and σ : V arP → N such that ∀a ∈ V. σ(a0) = |w|a and σ(a1) =
0 and σ(a2) = 0. We have

(w, ∅)
ri1 ,p1−−−−→(R(w),w) (w1, w1)

ri2 ,p2−−−−→(R(w),w) · · ·
rin ,pn−−−−→(R(w),w) (wn, wn)

such that ∀i ∈ {1, . . . , n}. |wi|a < max(a), |wi|a < max(a),

and (wn, wn) 6−→(R(w),w)

⇐⇒

σ
1,i1,p1−−−−→ σ1

1,i2,p2−−−−→ · · · 1,in,pn−−−−−→ σn

such that ∀i ∈ {1, . . . , n}. σi(a1) < maxP(a1), σi(a2) < maxP(a2)

and σn
2,1,1−−−→ σf

where ∀a ∈ V. σf (a0) = σf (a1) = |wn + wn|a, σf (a2) = 0.

Proof. Follows from Lemma 1 and from the de�nition of rules rp1, rp2. In particular,
rp1 cannot be applied to σn because there no transitions from (wn, wn) in P , while rp2

is applicable to σn because its condition is the negation of the one of rp1. The relation
between σf and (wn, wn) follows from the de�nition of rp2.

As a consequence of Theorem 1, we have that if there is a sequence of (rule application)

in P such that for all a ∈ V , max(a) is never reached in any step, then a step w
r, p7−→R w

′

corresponds, in the PRISM translation of P , to a sequence of applications of rp1 followed by
an application of rp2. Moreover, the probability p is equal to the probability of passing from

σ to σf through the path σ
1,i1,p1−−−−→ σ1

1,i2,p2−−−−→ · · · 1,in,pn−−−−−→ σn
2,1,1−−−→ σf . Consequently,

if is possible to derive w
p

=⇒R w′ using the rule (state transition probability) with PR

consisting only of transitions w
r, p7−→R w

′ derived without reaching max(a) in any step, for
all a ∈ V , then we have a transition in the DTMC of the translation of P from σ to σf
with probability p, namely σ

p−→ σf .

4.5.2 Results of the translation of the frog model

The dynamics of the population in the di�erent cases is studied both by means of standard
stochastic simulation with the MPP systems interpreter and by means of statistical model

Figure 4.6: Result of a statistical model checking of a L-E complex without deleterious
mutations. Probability of extinction (above) and of a population consisting of all RoRo
individuals (below).

checking with PRISM with the translation we propose in the section above.

In Figure 4.6 we show results of statistical model checking of the same model in the case
in which deleterious mutations ae not present (Fig.4.1). In particular, we study the prob-
abilities of two properties. The �rst is the probability of extinction of the population over
time. This is expressed in PRISM by the following PCTL formula, where years_counter
is a variable, added to the translation of the MPP model, counting the number of elapsed
years, and total_population is a PRISM formula that corresponds to the sum of all vari-
ables representing individuals. The graph in Figure 4.6 is obtained by varying the value of
constant Years from 0 to 60 by steps of 3.

P=? [F total_population=0 & years_counter<=Years]

The results show that the population become extinct with probability 1.0 in nearly 40
years.

The second probability we studied is the one of having a population composed only of
P. ridibundus females (RoRo) at a given year. This is expressed by the following PCTL
formula in which Years is varied as before.

P=? [F total_population=RoRo & years_counter=Years]

Obviously, the fate of a population of only P. ridibundus females is extinction. Fig-
ure 4.6 shows that such a situation has the higher probability around 20 years. From the
two graphs in the �gure it can be concluded that the extinction of the population in this
case has as intermediate step the formation of a population of only P. ridibundus females.

Now consider an initial population with the same percentages of edible frogs (10%),
but in which all the P. esculentus individuals carry the deleterious mutations on the R

Figure 4.7: Result of a statistical model checking of a L-E complex with deleterious muta-
tions. Probability of extinction (above) and of a population consisting of all P. esculentus
individuals (below).

genome (Fig. 4.2, that is P. ridibundus females are not viable and they do not appear in the
population. In Figure 4.7 we show the results of statistical model checking for this model.
As before, we �rst study the probability of extinction of the population over time (same
PCTL formula as before). The results show that also in this case the population become
extinct with probability 1.0 in nearly 40 years in according with the MPP previsions.

The second probability we studied in this case is the one of having a population com-
posed only of P. esculentus frogs (females LRm and males LyRm)at a given year. This is
expressed by the following PCTL formula in which Years is varied as before.

P=? [F total_population=LRm+LyRm & years_counter=Years]

Figure 4.7 shows that a population with only P. esculentus individual is reached with
high probability after around 20 years. Similarly as before, from the two graphs in the �gure
it can be concluded that the extinction of the population in this case has as intermediate
step the formation of a population of only P. esculentus individuals.

When we introduce in the population a female preference towards LyL males (Fig.
4.3) results of statistical model checking show that the probability of extinction in 60 years
(same PCTL formula as before) is equal to 0.01.

Finally when we model the invasion of P. ridibundus (Fig. 4.5) results obtained by sta-
tistical model checking (Figure 4.8) substantially con�rm that the probability of extinction
of the population in 60 years (same PCTL formula as before) is nearly 20%. From sim-
ulation results we formulated the hypothesis that the extinction of the whole population
can be predicted by the early extinction of the P. ridibundus males. In order to verify this
hypothesis, we computed the probability of the following formula:

Figure 4.8: Result of a statistical model checking of a L-E complex invaded by a small
population of P. ridibundus (both males and females): probability of extinction.

P=?[F !flag_RR_all_females & total_population=0 & years_counter<=60]

In this formula, flag_RR_all_females is a boolean variable, added to the PRISM
translation of the MPP system, that becomes true if all of the P. ridibundus males die
within the �rst 10 years. Hence, the formula gives the probability of extinction of the
population when the P. ridibundus males survive after the �rst 10 years. If this probability
is very low, than there is a strong correlation between the death of P. ridibundus males in
the �rst years and the extinction of the whole population. Actually, the result of statistical
model checking of this formula gives 0.04, thus con�rming our hypothesis. Moreover, we
have checked also the probability of P. ridibundus males in the �rst 10 years, that is:

P=?[F flag_RR_all_females]

The result we have obtained is nearly 0.16, which agrees with the previous results and
is a further con�rmation of the hypothesis.

4.6 Conclusion and general overview about MPP systems

In conclusion MPP systems extend P systems with probabilistic rates associated to the
rules and with control objects to manage the di�erent phases of the computation.
These two features are enough to allow us to obtain a useful tool, which can describe and
model ecological population problems, like the case study presented in this chapter.
The computation rewrites the state of the system. Within that internal state individuals
are represented by interchangeable objects, and in each computational step probabilistic
functions and rates act together with control objects to select one possible set of rules to
be applied.
It's possible to realize a code which puts into practice a model de�ned by this formalism.
We can add some speci�c output functions to this code, functions which can map, step by
step, the state of the system and elaborate useful data.
All these tools together allow models to answer questions like :
- What is the male/female ratio of the population over time?
- How fast the population grows?
- What are a Population viability analysis (PVA) results after 100 steps?
- Does one observed mutation help the spread of a species in a speci�c habitat?

The raw output of the MPP systems is the sequence of states of the system (i.e multi-
sets of elements in the membrane) reached after any computational step. In a real coded

implementation of a MPP systems formalized model we can apply to this output, composed
by the sequence of states, appropriate functions in order to produce re�ned data like the
graph showed in the chapter above.

Chapter 5

Attributed Probabilistic P systems
(APP systems)

5.1 From MPP to APP systems

We have seen how MPP systems objects represent individuals in populations, while control
objects are used as promoters to model subsets of active rules at various stages of compu-
tation.

Individuals are often associated with attributes such as gender, age, morph. In order
to describe all possible kinds of individual, in MPP systems, it is necessary to have an
alphabet which includes one object for each possible combination of attribute values.
For example, let us assume an ecosystem with lions and sheep where individuals are dis-
tinguished by age, gender and (only for sheep) presence of a speci�c DNA mutation.
The MPP System describing such ecosystem should have an alphabet like the following:
V = {LionM0, LionM1, . . . , LionMk,LionF0, LionF1, . . . , LionFk, SheepM0,
SheepM1, . . . , SheepMw,SheepF0, SheepF1, . . . , SheepFw, SheepM0∗,
SheepM1∗, . . . , SheepMw∗, SheepF0∗, SheepF1∗, . . . , SheepFw∗}

where M|F denote Male or Female gender, k is the maximum possible age for a Lion
in the model, w is the maximum posssible age for a Sheep in the model and * denotes the
presence of the mutation in the Sheep DNA.

If attributes could assume too large an array of values, the resulting alphabet would
be so big that its management would be impractical. To solve this issue we introduce a
record of attributes associated to the object rather than introducing di�erent elements for
any possible combination of attributes value.
If, for example, we linked to the item �lion� attributes (age, sex) elements get annotated
like this: Lion(3,m) or Lion(8,f) indicating a male lion 3 years old or a female lioness 8
years old.
When the need to associate attributes to the elements arises, it becomes necessary to move
from MPP system models to something more complex. This leads to the formulation of
APP systems. In APP systems we keep using the promoters and probabilistic functions
but at the same time we add attributes to enrich the model.
The attributes of objects consumed by the rules greatly in�uence the probabilistic func-
tions associated with each rule, therefore generating a much more �exible and powerful
probabilistic system.
Attributes assist also in writing aggregate rules, for example, let us assume we have to
model Male Sheep which can reach the maximum age of four years old. In order to model
the aging, year by year, we will need rules like:

47

Sheep(0,M,_) → Sheep(1,M,_)

Sheep(1,M,_) → Sheep(2,M,_)

Sheep(2,M,_) → Sheep(3,M,_)

Sheep(3,M,_) → Sheep(4,M,_)

Sheep(4,M,_) → _

The use of attributes to de�ne rules leads to model aging as follows:

Sheep(age<4,M,_) → Sheep(age+1,M,_)

Sheep(4,M,_) → _

Another example can be some protozoans with a single attribute size, a protozoan bigger
than another one can eat the smaller to increase his size, one rule to describe this behavior
can be:

Protozoanm>n, P rotozoann → Protozoanm+n

this rule models a protozoan of any size which eats another smaller protozoan for each
couple of values m and n with m > n.

5.2 Introduction to APP systems

Like MPP systems, APP systems are intended to be used to model the dynamics of pop-
ulations and ecosystems.

We used APP systems to model social behavior of some primates species as a case
study. In particular, as an application we developed a model to compare despotic and
egalitarian behaviors in /emphlemur catta.
Social systems of this kind are usually approached by means of agent-based models, which
are often poorly documented and ambiguous. Conversely, since both syntax and semantics
of APP systems are formally de�ned, a model based on APP systems is unambiguous.
We plan to adapt our general model to represent the behavior of a large number of speci�c
primates species by changing parameters values, thus showcasing our formalism �exibility.
In this chapter we aim to show how APP systems can be used to describe real ecological
systems, and to understand the behavior of self-organizing animal populations, like schools
of �shes or �ocks of birds, just as other models already proposed do [93, 92]. Modelling
social interactions in primates is an interesting research �eld which has been usually tack-
led by means of agent-based models [91, 90, 89, 88, 87, 86, 85].
Such models have been often criticized because, in many cases, they were so poorly docu-
mented that the models themselves could not be evaluated. For these reasons some proto-
cols have been de�ned in order to create a standard structure by which all the agent-based
models could be documented [84, 83]. Such protocols document a model by providing a
check list of questions which must be answered by the model such as:

- Who (i.e. what entity) does what, and in what order?
- When are state variables updated?
- What kind of entities are in the model?
- By what state variables, or attributes, are those entities characterized?

We present as a case study an APP systems model of social interactions in primates

(lemur catta). The model is composed of quite a few unambiguous rules. Those rules can
be seen as an implementation of the rules used in agent-based models which, however, are
usually programmed �ad hoc� and their e�ect needs to be documented separately. On the
contrary, the rules of our APP-system-based model are almost self-explanatory, showing
how easy to use are formalisms for modelling real-world systems.
Simulations of our model are presented as well. We show that the obtained results are
compatible with the results of agent-based models described in literature.
Nevertheless, the use of APP systems for modelling real systems provides important ad-
vantages, mainly with respect to models readability, and the compact and unambiguous
descriptions which can be obtained.

It is worth noting that attributes can also be used successfully to model space and lo-
cations. For instance, an attribute could be used to denote the place where the individual
is located (�in the wood�, �in the nest�, . . .), or a pair (or triplet) of attributes (say x, y
and z) could be used to describe the position of individuals in 2D|3D space. The latter
approach could allow rules to be applied when, for instance, individuals are close enough
to each other.

We will give now a formal de�nition of Attributed Probabilistic P System, then we will
show a toy model. We will continue with some considerations about the main features of
the formalism and a case study to show this kind of model full potential.

5.3 Attributed Probabilistic P systems, formal de�nition and
semantics

As reminder, in this de�nition too, we denote with {a1, . . . , an} the set or the multiset
of objects a1, . . . , an. Moreover, we denote with |w| the size (number of elements) of the
multiset w, and with − and + the di�erence and the union of multisets, respectively.

De�nition 4. An Attributed Probabilistic P system, P , is a tuple 〈V, arity,Da1 , . . . , Dan , w0, R〉
where:

• V is an ordered �nite alphabet of symbols, {a1, . . . , an};

• arity : A→ N is a function which for each ai ∈ A gives the arity of Dai ;

• each Dai is a set of tuples, Dai = I1 × . . . × Iarity(ai), where each Ij is a (possibly

in�nite) set of unstructured values; the set Dai is called the set of attributes of ai;

• w0 is a multiset of values in Σ = {〈ai, di〉 | ai ∈ A, di ∈ Dai} describing the initial

state of the system, where Σ is called the set of objects of P . Then we will write

w0 ∈ Σ∗.

• given a set of variables V , R is a �nite set of evolution rules having the form

uV
f−→ vV |prV

where uV, prV ∈ Σ∗V are multisets (often denoted without brackets) of objects and

variables denoting reactants and promoters, respectively; vV ∈ Σ∗EV is a multiset of

objects and expressions with variables denoting products; and f : Σ∗ 7→ R≥0 is a

weight function. Precisely:

ΣV = {(ai, di) | ai ∈ A, di ∈ DV
ai} ΣEV = {(ai, ei) | ai ∈ A, ei ∈ EV

ai}

where DV
ai = (V ∪I1)×. . .×(V ∪Iarity(ai)); and E

V
ai = Exp(V, I1)×. . .×Exp(V, Iarity(ai)),

with Exp(V, I) denoting the set of well-typed expressions built from operators, vari-

ables V , and values of I. Moreover, we have V ars(vV) ⊆ V ars(uV) ∪ V ars(prV),
where V ars(t) denotes the set of variables occurring in t. Rules without variables are
called ground rules.

In what follows we will denote an (attributed) object 〈a, d〉 as a(d). A state (or con�g-
uration) of an APP system is a multiset of objects in Σ∗. By de�nition, the initial state is
w0, and we denote a generic state as w.

The evolution of an APP system is a sequence of probabilistic maximally parallel steps.
We formally de�ne the semantics of APP systems as a transition relation in the style of
[79]. In each step a maximal multiset of evolution rule instances is selected and applied as
described by the following semantic rules:

(rule application)

ri = u
k−→ v ∈ R u ⊆ wa

K = {|k′|u′ k′

−→ v′ ∈ R, u′ ⊆ wa|} p = k/
∑

k′∈K k′

(wa, wp)
ri, p−−−→R (wa − u,wp + v)

(single rule sequence)
(wa, wp)

ri, p−−−→R (w′a, w
′
p)

(wa, wp)
[ri], p−−−−→

+

R (w′a, w
′
p)

(multiple rules sequence)
(wa, wp)

ri, pi−−−→R (w′a, w
′
p) (w′a, w

′
p)

r, p−−→
+

R (w′′a , w
′′
p)

(wa, wp)
r@[ri], pi·p−−−−−−−→

+

R (w′′a , w
′′
p)

(step rule)
(w, ∅) r, p−−→

+

R(w) (wa, wp) (wa, wp) 9R(w)

w
r, p7−→R wa + w′p

where [ri] denotes the sequence composed of the single element ri, and @ denotes the
concatenation of sequences.

Given a system state, w, the (step rule) describes the evolution in a new state by

the
r, p7−→R relation, where p is the probability of the transition, and r is the sequence of

applied ground rules. (step rule) invokes (w, ∅) r, p−−→
+

R(w) (wa, wp) where R(w) is the set of
applicable ground rules in the state w, with their weights, namely:

R(w) =

{
uVσ

f(w)−−−→ vVσ

∣∣∣∣ uV
f−→ vV |prV

∈ R, ∃σ. uVσ ⊆ w ∧ prVσ ⊆ w
}

where (i) σ : V → flat(Da1) ∪ . . . ∪ flat(Dan), with flat(Dai) = I1 ∪ . . . ∪ Iarity(ai), for
all ai ∈ A; (ii) uVσ (uV ∈ Σ∗V) is the well-typed multiset obtained by substituting values
for variables in uV according to σ; and (iii) vVσ (vV ∈ Σ∗EV) is the well-typed multiset
obtained by evaluating the expressions in vV under the substitution σ. Transition relation
r, p−−→

+

R is the transitive closure of
r, p−−→R.

A transition (wa, wp)
ri, p−−−→R (wa−u,wp + v) corresponds to the application of a single

rule. When a rule is selected, its application consists in removing its reactants from wa and
adding its products to wp. The wp multiset will collect all products of all applied rules.
Note that R(w) takes into account that each rule is applied with respect to the weights of
the rules computed in the initial state w. Moreover, R(w) contains only the ground rules.
Their promoters are present in the initial state w (prVσ ⊆ w). Once objects in wa are
such that no further rule in R(w) can be applied to them, by (step rule) the new system
state is wa + wp (where wa are the unused objects and wp are the new products).

Intuitively, the semantic de�nition states that all the rules to be applied are selected
in a probabilistic way from the set of applicable rules, their reactants are removed for the

available reactants, wa, and their products are added to a suspended multiset wp. When no
further rule can be applied to wa the new state, which is composed by the unused objects
in wa plus the suspended products in wp, is produced. Finally we give the probability of
a transition between two states by means of the following rule:

(state transition prob.)

PR = {(r, p)| w r, p7−→R w
′} p =

∑
(r,p)∈PR

p

w
p

=⇒R w′

5.4 Simple example of modelling: the protozoans

The purpose of this �rst example is to show some features of APP systems. We propose a
simple model with a representation of the space, some example of rules a�ect attributes of
reagents and the use of control objects who last more than one computational step. This
example will help to get along some basic concepts before the chapter's real case study.
We consider a population of sexually reproducing protozoans in which two individuals are
necessary to produce o�spring.
Protozoans are free ranging on a laboratory Petri dish. The Petri dish is abstracted by a
n × n grid and protozoans can move one step at a time on the grid. They can reproduce
if they meet in the same grid entry. They have a �nite lifespan, at the end of which they
die.
Each individual is represented by an attributed object p(a,x,y) in which p stands for �pro-
tozoan�, attribute a is an integer representing the age of the individual, and attributes x
and y are the coordinates of the position of the individual on the Petri dish.
The evolution cycles among three phases: a movement phase, a reproduction phase, and
an aging phase.
Each phase is represented by a di�erent symbol, namely move, repr, and aging, respec-
tively, which are used as promoters to enable di�erent sets of rules for each phase. The
movement phase has a duration of two maximally-parallel steps, hence the move symbol
has an attribute taking values from the set {1, 2} to allow modelling it.

For the sake of simplicity we assume a 4 × 4 grid and a lifespan of 3 age units. We
consider an initial con�guration in move(1) phase with two individuals, of age 1, in posi-
tions (1, 2) and (2, 0), respectively.
The APP system is shown in Figure 5.1.

Rules from r1 to r8 model the movement phase, with a di�erent rule for each possible
direction of movement: rule r1 for eastward movement, rule r2 for northward movement,
and so on, also allowing diagonal movement as exempli�ed by rule r8. Rule r9 handles the
reproduction phase, while rules r10, r11 model the aging phase. Finally, rules r12�r15 are
used to switch phases. Note that all the weights associated with the rules are constant
and equal to 1, thus for each phase all (and only) the rules that are speci�c to that phase
can be applied, and such rules are equiprobable. An example of evolution of the system
is shown in Figure 5.2 with (a)�(f) representing a possible sequence of states reached by
the system. The caption of each �gure contains the complete multiset of objects present
in the system.(For compactness, only the age attributes are shown for the objects in the
�gures, that is, p(a,x,y) is depicted as pa.

5.5 Discussion about APP main features

In the example and in APP systems formal de�nition we see how attributes help us to
de�ne elements and are used in rules to give multivalue de�nition, but still, in this section,

aPprot = (A, arity,Dp, Dmove, Drepr, Daging, w0, R) where:

A = {p,move, repr, aging} arity = {p 7→ 3,move 7→ 1, repr 7→ 0, aging 7→ 0}
Dp = {0, 1, 2} × {0, 1, 2, 3} × {0, 1, 2, 3};
Dmove = {1, 2}; Dmove2 = Drepr = Daging = ∅ w0 = {|move(1), p(1,1,2), p(1,2,0)|}

R =

r1 : p(a,x,y)
1−→ p(a,x+1,y) |move(n)

if x < 3

r2 : p(a,x,y)
1−→ p(a,x,y+1) |move(n)

if y < 3

r3 : p(a,x,y)
1−→ p(a,x−1,y) |move(n)

if x > 0

r4 : p(a,x,y)
1−→ p(a,x,y−1) |move(n)

if y > 0

r5 : p(a,x,y)
1−→ p(a,x−1,y+1) |move(n)

if x > 0 ∧ y < 3

r6 : p(a,x,y)
1−→ p(a,x+1,y−1) |move(n)

if x < 3 ∧ y > 0

r7 : p(a,x,y)
1−→ p(a,x+1,y+1) |move(n)

if x < 3 ∧ y < 3

r8 : p(a,x,y)
1−→ p(a,x−1,y−1) |move(n)

if x > 0 ∧ y > 0

r9 : p(a1,x,y), p(a2,x,y)
1−→ p(a1,x,y), p(a2,x,y), p(0,x,y) |repr

r10 : p(a,x,y)
1−→ p(a+1,x,y) |aging if a < 2

r11 : p(2,x,y)
1−→|aging

r12 : move(1)
1−→ move(2) r13 : move(2)

1−→ repr

r14 : repr
1−→ aging r15 : aging

1−→ move(1)

Figure 5.1: APP system modelling protozoans

p1

p1

(a) move(1), p(1,1,2), p(1,2,0)

p1 p1

(b) move(2), p(1,1,1), p(1,3,1)

p1 p1

(c)repr, p(1,2,1), p(1,2,1)

p1 p1
p0

(d)aging, p(1,2,1), p(1,2,1), p(0,2,1)

p2 p2
p1

(e)move(1), p(2,2,1), p(2,2,1), p(1,2,1)

p1

p1p2

(f)move(2), p(1,1,0), p(1,3,2), p(2,1,2)

Figure 5.2: Example of the evolution of the protozoans model, with (a)-(f) representing
a possible sequence of states reached by the system. The caption of each �gure contains
the complete multiset of objects present in the system. (For compactness, only the age
attributes are shown for the objects in the �gures, that is, p(a,x,y) is depicted as pa).

we want to highlight two other speci�c uses of attributes in APP systems.

5.5.1 Attributes and control objects

Attributes have a special use associated to control object. Control objects are elements of
the alphabet and so they can have attributes like any other elements of the model alphabet.
One of the most intuitive attributes a control object can have is how many computational
steps we want the control object to last.
For example we want the movement phase associated with the control object MOV to last
three consecutive computational steps before shifting into another phase. To model that
fact we can use the attribute �last� and set its value to �3� to de�ne MOV3.
Associated to the control object we will have two rules:
MOVlast>0 −→MOVlast−1|MOV
MOV0 −→ AGGAgg_step|MOV

The �rst rule reduces the attribute �last� of the control object until it reaches zero, the
second rule switch the control object MOV0 in the control object AGG with the attribute
last = Agg_step, Agg_step is a parameter of the simulation and de�nes how many con-
secutive computational steps we want the �AGG� phase to last.

5.5.2 Attributes and probabilistic functions

We consider now the role of attributes in the probabilistic function associated to the rules.
Now, in the probabilistic functions, we can use attributes too as input and this is a very
powerful tool to model the non-determinism with a �ner probabilistic structure.
For example we consider two rules which clearly describe the outcome of a �ght between
two protozoans of antagonist species (ProtozoanRed and ProtozoanBlue). Each protozoan
has a di�erent value for the attribute �size� and they try to eat each other

ProtozoanRedsize1, P rotozoanBluesize2
f(size1,size2)→ ProtozoanRedsize1+size2/2|AGGr

ProtozoanRedsize1, P rotozoanBluesize2
g(size1,size2)→ ProtozoanBluesize2+size1/2|AGGr

If these two rules are the only two rules enabled during the AGG (aggression) phase,
then it is easy to see that the chance to win for the Red Protozoan is:

PwinRed(size1, size2) = f(size1,size2)
f(size1,size2)+g(size1,size2)

and it depends on the sizes of the two protozoans.
In APP systems the probability of the outcome depends not only on the state of the mem-
brane but also on the attributes of the reagents.
This kind of probabilistic function can take as input attributes of promoters as well. For
example a model can have one element which models the acidity of the Petry dish. Taking
into account the presence of these elements we will have a upgraded version of the rules
above:

ProtozoanRedsize1, P rotozoanBluesize2
f(size1,size2,n)→ ProtozoanRedsize1+size2/2|AGGr, ACIDn

ProtozoanRedsize1, P rotozoanBluesize2
g(size1,size2,n)→ ProtozoanBluesize2+size1/2|AGGr, ACIDn

Again the Red Protozoan chance to prevail is :

PwinRed(size1, size2, n) = f(size1,size2,n)
f(size1,size2,n)+g(size1,size2,n)

Probabilistic functions of this kind are used in APP systems as a natural consequence
of the introduction of attributes associated to individuals.
If we analyze a simple �aging� rule over the element Protozoanage like :

Protozoann
f(n)→ Protozoann+1

This rule will be selected with rate r = f(n). The reagent Protozoann is removed from the
state of the membrane and the product Protozoanm is added to the state of the membrane
where f(n) = m = n+ 1 is the function which give a value to the attribute of the product.
The e�ect of the rule is trivial, just add one to the age of the Protozoan, but the idea behind
is not so simple. Something is consumed, something is created anew and the description
of the rule contains not only the probabilistic rate but also all the functions associated to
any attributes of the product(s). This happens because the formalism does not admit an
�unde�ned� value for the attribute associate to one element in the state of the system. The
value of attributes of any product must be speci�ed in the rule which create them.

5.6 Modelling social interaction in primates with APPS

In this model, we describe the behaviour of male monkeys and how it changes when a
female monkey enters the oestrum taking as reference species the lemur catta.
This is a perfect case study to show the potential of APP systems. We can exploit the
parallelism inherited by original P systems, model the outcome of �ghts between male
monkeys with the probabilistic structure over rules, use attributes to characterize the dif-
ferent specimens and model the space with attributes over a coordinate system. We also
use two sets of control objects to manage di�erent phases of computations asynchronously.
The model is inspired by the social behaviors of species of lemur catta as described
in [82, 81, 80]. The population taken into account is dispersed in an environment, which is
modelled as a continuous 2D space. Each individual is associated with coordinates (x, y).
Male and female monkeys are represented by symbols MMonkey and FMonkey, respec-
tively, and both have attributes in the domain R2×N. Beyond the actual position, we also
keep track of the dominance level of each individual, which is used to derive the likeliness
of the individual to win (or just engage in) a �ght against another individual.

At the beginning, the population is composed only by male monkeys having a dom-
inance level of 1500. All the male monkeys alternate between two phases: a movement

phase, represented by the special symbol MOV, in which they wander around slowly and
move towards other individuals in order to keep the population compact; and a �ght phase,
represented by FGT, in which they chase other individuals to �ght, yielding to variations
in their levels of dominance. Females alternate between a normal phase, denoted by the
symbol NORMAL, and an oestrum phase, denoted by OEST. In this model, for sim-
plicity, there is only one female monkey, which is explicitly represented only during the
oestrum phase. In other words, the individual FMonkey appears only at the beginning of
the oestrum phase, and is removed from the model at the end of the phase.

Formally, the model is composed of 6 symbols A = {MMonkey,FMonkey,MOV
,FGT,NORMAL,OEST}, having a corresponding set of attributes de�ned as D = {(R2×
N), (R2 × N),N,N,N,N}.

As regards symbols MOV,FGT,NORMAL,OEST, an attribute from N is associated with
each of them, denoting the length of those phases in terms of the steps taken by the

Attributed P system. The initial state of the system is the following:

w0 = {MMonkey(x1,y1,1500),MMonkey(x2,y2,1500),MMonkey(x3,y3,1500),

MMonkey(x4,y4,1500),MMonkey(x5,y5,1500),MMonkey(x6,y6,1500),

MMonkey(x7,y7,1500),MMonkey(x8,y8,1500),MOV(1),NORMAL(Snl)}

where the positions of the individuals (xi, yi) ∈ R2 are randomly generated within a square
area of cage ∈ R side length. Parameter Snl denotes the duration of the �normal� phase
for females.

The evolution rules of the model are as follows.

r1 : MOV(n)
1−→ MOV(n−1) ∀n > 1

r2 : MOV(1)
1−→ FGT(Nfl)|NORMAL(n)

r3 : MOV(1)
1−→ FGT(Ofl)|OEST(n)

r4 : FGT(n)
1−→ FGT(n−1) ∀n > 1

r5 : FGT(1)
1−→ MOV(Msn)

Rules r1�r5 model the alternation between �movement� and ��ght� phases for males. For
both MOV and FGT, their attributes decrease to keep track of the number of steps passed,
until they reach 1 and a phase switch occurs. In particular, while switching from MOV
and FGT, the number of steps that the �ght phase lasts depend on the phase of the fe-
male; namely it is either Nfl or Ofl, if the female is currently either in the normal phase
(NORMAL) or the oestrum phase (OEST), respectively.

The movement phase lasts Msn steps.

r6 : NORMAL(n)
1−→ NORMAL(n−1) ∀n > 1

r7 : NORMAL(1)
1−→

OEST(Sol), FMonkey(FemaleInitX,FemaleInitY,FemaleInitDom)

r8 : OEST(n)
1−→ OEST(n−1) ∀n > 1

r9 : OEST(1),FMonkey(x,y,dom)
1−→ NORMAL(Snl)

Rules r6�r9 model the alternation between �normal� and �oestrum� phases for the female
monkey. The durations of the oestrum phase is modelled by the parameter Sol. The ini-
tial coordinates of the female monkey are denoted by the parameters FemaleInitX and
FemaleInitY , while FemaleInitDom denotes its initial dominance level.

r10 : MMonkey(x′,y′,dom′)
f10−−→ MMonkey(move(x′,x′′,SMMA),move(y′,y′′,SMMA),dom′)

|MOV(n),NORMAL(m),MMonkey(x′′,y′′,dom′′)

r11 : MMonkey(x′,y′,dom′)
f11−−→ MMonkey(move(x′,x′′,SMMA),move(y′,y′′,SMMA),dom′)

|MOV(n),OEST(m),MMonkey(x′′,y′′,dom′′)

Rules r10�r11 handle the movement of males during either the �normal� or �oestrum� phase
for the female. In both cases, a male (in a position x′, y′) is allowed to move towards

any other male (in position x′′, y′′). The resulting position of the male which moves is
computed as (move(x′, x′′,SMMA),move(y′, y′′,SMMA)), where move is a function to move
the coordinates (x′, y′) towards coordinates (x′′, y′′) with a given speed factor described by
the parameter SMMA (Speed Male-Male approach).
Formally, this function is de�ned as:

move(a, b, γ) = a+ (b− a)/γ

The most important di�erence between rules r10 and r11 lies in the weight functions, which
are de�ned as:

f10 =

{
1 if SD/NT < dist((x′, y′), (x′′, y′′)) < SD;

0 otherwise;

f11 =

{
1 if SD/OT < dist((x′, y′), (x′′, y′′)) < SD;

0 otherwise.

where dist((x′, y′), (x′′, y′′)) is a function giving the euclidean distance between two points,
parameter SD (Spot Distance) denotes the maximum visibility distance of a monkey, and
parameters NT (Normal Tolerance) and OT (Oestrum Tolerance) are used to derive the
minimum distance allowed between two monkeys to enable the relative movement of one
towards the other.
In particular, such a minimum distance depends on the phase of the female, and it is ei-
ther SD/NT during the NORMAL phase, and SD/OT during the OEST phase. In this
manner, during the oestrum phase, males are allowed to come closer one another, hence
increasing the possibility to engage in a �ght.

r12 : MMonkey(x′,y′,dom′)
f12−−→ MMonkey(move(x′,x′′,SMFA),move(y′,y′′,SMFA),dom′)

|MOV(n),FMonkey(x′′,y′′,dom′′)

Rule r12 models the movement of a male monkey towards the female. In this case, the
speed of the male is denoted by the parameter SMFA. The corresponding weight function
is:

f12 =

{
PfF if dist((x′, y′), (x′′, y′′)) < SD and dom′ + FT > dom′′;

0 otherwise;

which enables the movement only if (i) their relative distance is less than SD, and (ii) the
dominance level of the male, plus a tolerance value FT (Female Tolerance), is greater than
that of the female. The actual weight used is denoted by the parameter PfF (Preference
for Female).

r13 : MMonkey(x′,y′,dom′),MMonkey(x′′,y′′,dom′′)
elo_rating(dom′,dom′′)−−−−−−−−−−−−−−−→

MMonkey(chase(x′,x′′,CSN),chase(y′,y′′,CSN),elow(dom′,dom′′)),

MMonkey(flee(x′,x′′,FSN),flee(y′,y′′,FSN),elol(dom′′,dom′))|FGT(n),NORMAL(m)

with dom′ ≥ dom′′, dist((x′, y′), (x′′, y′′)) ≤ NAD, and dom′ − dom′′ ≤ AN , where NAD
(Normal Aggression Distance) and AN (Avoidance Normal) and model parameters rep-
resenting the minimum distance and the maximum di�erence in dominance that enables
an aggression when the female is in normal condition. In this rule the monkey in position
(x′, y′) has a dominance that is higher or equal to that of the other monkey. The probability

that the �rst monkey wins the �ght is given by the standard Elo rating method, originally
de�ned for rating strength in games, and then used for modelling social interactions. Such
a method is based on a table that gives the probability of success in a �ght depending on
the di�erence of rating (or dominance) of the involved individuals. The Elo rating table
we consider for this model is in [78]. The function elo_rating(∆dom) looks in the table
and gives as result the probability of the victory of the stronger monkey over the weaker one.

Function chase gives the new position of the winner of the �ght; function flee gives the
new position of the loser of the �ght; elow gives the new dominance of the winner of the
�ght following the Elo rating table and method; elol the new dominance of the loser of the
�ght. These functions are de�ned as follows:

chase(a, b, ρ) = a+ ρ · (b− a) flee(a, b, ρ) = b+ ρ · (b− a)

elow(d′, d′′) = d′ +

{
(1− elo_rating(∆dom)) · stepness if d′ > d′′

elo_rating(∆dom) · stepness if d′ < d′′

elol(d′, d′′) = d′ −

{
elo_rating(∆dom) · stepness if d′ > d′′

1− (elo_rating(∆dom)) · stepness if d′ < d′′

where ∆dom = |d′ − d′′|, and stepness is a parameter representing the maximum in-
crease/decrease of dominance. The parameters CSN(Chase Speed Normal) and FSN
(Flee Speed Normal) used in rule r13 describe how fast the monkeys move.

r14 : MMonkey(x′,y′,dom′),MMonkey(x′′,y′′,dom′′)
1−elo_rating(dom′,dom′′)−−−−−−−−−−−−−−−−→

MMonkey(flee(x′,x′′,FSN),flee(y′,y′′,FSN),elol(dom′,dom′′)),

MMonkey(chase(x′,x′′,CSN),chase(y′,y′′,CSN),elow(dom′′,dom′))|FGT(n) NORMAL(m)

with dom′ > dom′′, dist((x′, y′), (x′′, y′′)) ≤ NAD, and |dom′ − dom′′| ≤ AN .
Rule r14 is analogous to rule r13, but describes the case in which the winner is the weaker
monkey.

r15 : MMonkey(x′,y′,dom′),MMonkey(x′′,y′′,dom′′)
elo_rating(dom′,dom′′)−−−−−−−−−−−−−−−→

MMonkey(chase(x′,x′′,CSO),chase(y′,y′′,CSO),elow(dom′,dom′′)),

MMonkey(flee(x′,x′′,FSO),flee(y′,y′′,FSO),elol(dom′′,dom′))|FGT(n),OEST(m)

with dom′ ≥ dom′′, dist((x′, y′), (x′′, y′′)) ≤ OAD, and dom′ − dom′′ ≤ AO.

r16 : MMonkey(x′,y′,dom′),MMonkey(x′′,y′′,dom′′)
1−elo_rating(dom′,dom′′)−−−−−−−−−−−−−−−−→

MMonkey(flee(x′,x′′,FSO),flee(y′,y′′,FSO),elol(dom′,dom′′)),

MMonkey(chase(x′,x′′,CSO),chase(y′,y′′,CSO),elow(dom′′,dom′))|FGT(n),OEST(m)

with dom′ > dom′′, dist((x′, y′), (x′′, y′′)) ≤ OAD, and |dom′ − dom′′| ≤ AO.
Rules r15 and r16 are analogous to r13 and r14, respectively, but describe the case in
which the female is in oestrum state. Parameters OAD(Oestrum Aggression Distance),
AO (Avoidance Oestrum), CSO (Chase Speed Oestrum) and FSO (Flee Speed Oestrum)

of these rules are analogous to the corresponding ones of rules r13 and r14, but with values
that depend on the fact that the female is in oestrum state.

r17 : MMonkey(x′,y′,dom′),MMonkey(x′′,y′′,dom′′)
1−→

MMonkey(chase(x′,x′′,CSN),chase(y′,y′′,CSN),dom′),

MMonkey(flee(x′,x′′,FSN),flee(y′,y′′,FSN),dom′′)|FGT(n),NORMAL(m)

with dom′ > dom′′, dist((x′, y′), (x′′, y′′)) ≤ NAD and |dom′ − dom′′| > AN .

r18 : MMonkey(x′,y′,dom′),MMonkey(x′′,y′′,dom′′)
1−→

MMonkey(chase(x′,x′′,CSO),chase(y′,y′′,CSO),dom′)

MMonkey(flee(x′,x′′,FSO),flee(y′,y′′,FSO),dom′′)|FGT(n),OEST(m)

with dom′ > dom′′, dist((x′, y′), (x′′, y′′)) ≤ OAD and |dom′ − dom′′| > AO.
Rules r17 and r18 describe the interaction between two individuals when the di�erence

in dominance is too high to motivate a �ght (greater than parameters AN and AO for
the normal and oestrum cases, respectively). In these cases the monkeys move but do not
�ght, so there is no change in dominance levels.

5.6.1 Parameters of the simulation

The complete set of parameters used to perform the simulations is:
The system parameters are just relative to computations, and are not strongly re-

lated to the species we try to model. In the next section we will better explain the idea
behind the value and the estimations of these parameters:

• SOL (starting Oestrum loop) number of consecutive computation steps under �oestrum�
condition.

• SNL (Starting Normal Loop) number of consecutive computation steps under �nor-
mal� condition.

• cage dimension of the area Male monkeys are placed randomly in during the setup
of the model.

This density parameters are related to the density of the troop of monkeys, model
di�erent population who live more or less dispersed in the habitat:

• move(x′, x′′) and move(y′, y′′) are two function both depending on the hidden pa-
rameter SMMA (Speed Male-Male approach).

• SD (Spot Distance) maximum distance within which two monkeys interact and move
one toward the other.

• NT (Normal Tolerance) fraction of the spot distance within which monkeys don't
want to move closer each other under �normal� condition.

• OT (Oestrum Tollerance) fraction of the spot distance within which monkeys don't
want to move closer to each other under �oestrum� condition.

• PfF (Preference for Female) this parameter models the preference that a male has
to move towards a female rather than to another male in �movement� loops.

The social parameters models the social behavior of the monkeys, if they are more or
less aggressive or if they have a more or less strict hierarchy

• Nfl (Normal �ght loop) number of �ght loop for anyfull computation step under
�normal�condition.

• Ofl (Oestrum �ght loop) number of �gth loop for any iterative step under �oestrum�
condition, usually Ofl > Nfl due to increased aggressiveness during Oestrum.

• FT (Female Tolerance) if male monkeys want move closer to female the gap between
the dominance of the male and the female must be less than Female Tollerance or
the female will not accept the proximity of the male.

• chasex and chasey are two functions both depending on the hidden parameters
CSN(Chase Speed Normal), CSO (Chase Speed Oestrum), FSN (Flee Speed Nor-
mal) and FSO (Flee Speed Oestrum).

• elow (elo-rating winner) and elol (elo-rating looser) take as hidden parameter the
classic elo-rating stepness and the elo-rating table with probability to win/lose de-
pending on dominance of the contenders.

• NAD (Normal Aggression Distance) distance within which two male monkeys can
engage in combat under �normal� condition.

• AN (Avoidance Normal) if gap in dominance between two male is bigger than AN
the �ght will not take place and the less dominant monkey will �ee from the most
dominant one without being engaged in combat, this under �normal� condition.

• OAD (Oestrum Aggression Distance) distance within which two male monkeys can
engage in combat under �oestrum�condition.

• AO (Avoidance Oestrum) if gap in dominance between two males is bigger than AN
the �ght will not take place and the less dominant monkey will �ee from the most
dominant one without being engaged in combat, this under �oestrum� condition.
Usually AO > AN because Male Monkeys in �oestrum� condition of the system are
more willing to �ght even with very low chances of winning.

5.6.2 Use of parameters in the model

The estimation of parameters that are used in the rules is a crucial point in modelling.
The parameters' settings depend on the model's goal: as we have shown these instruments
can be used both to generate predictive models, and to validate theories or to estimate
parameters.
In the case study that is being presented, parameters are chosen within a plausible and
realistic range; we haven't used exact parameters to show how the model could develop
predictions but, on the contrary, we chose parameters that could generate a model of possi-
ble species. The simulations' results were then compared with �eld observations to validate
their correspondence with lemurs behaviour.
Even if it cannot directly give exact predictions, this kind of approach is very useful to
show to scholars who study these kinds of animals correlations between parameters and the
possible results; moreover they can provide realistic paremeters estimations, and observing
the model's result can stimulate further observations and experiments, helping steering the
direction of the research e�ort.
In conclusion: the parameters that have been used in these simulations have been chosen
within ranges observed in the referred publications, and have been combined to model
hypotetic prossimian populations with di�erent social, density, population, and aggression
characteristics.
Combinations of these parameters can easily produce characteristics that have never been

associated to any observed species, nevertheless these simulations' results have validity
because they give researches hints on what could be expected, and suggest new research
topics.

5.7 Experimental results

We studied the dynamics of the APP model described in the previous section by running
simulations. In particular, we implemented an APP systems interpreter in C++ that al-
lows attributed objects and evolution rules to be represented as instantiations of speci�c
C++ classes.
Once an APP system model is speci�ed, the interpreter simulates it by performing a num-
ber of iterations to be given as a parameter. In each iteration, a maximally parallel step
is performed according to the APP systems semantics.
The result of a simulation is the sequence of con�gurations reached by the interpreter
at each iteration. In order for the interesting measurements to be easily readable, we
processed the simulation results and produced graphical representations by using the sta-
tistical framework R.

In Figure 5.3 and in Figure 5.4 we show the dynamics of two groups of lemurs. In
particular, Figure 5.3 refers to a group with a low level of aggression(egalitarian), while
Figure 5.4 describes a group with a higher level of aggression (despotic).
The upper part of both �gures shows the dominance level of each male in the group during
the simulation, while the lower part shows the distance of each male either from the center
of the group or from the female (when present). In the �gures we put in evidence the
lines corresponding to both the monkey with highest dominance level at the end of the
simulation (line marked with •) and the one with the lowest one (marked with +).
The main model parameters (that are di�erent in the two cases) are reported in the �gures.
The other parameters have, in both cases, the following values: iteration= 498, Sol= 20,
Snl= 80, SMMA= 0.25, SD= 100, NT = 3, OT = 2, SMFA = 0.25, PfF = 8, Msn = 1 and
Stepness = 100.
Note that we ran the simulations for 498 iterations.
The time corresponding to an iteration is, in the real world, about a few hours. Actually,
such a time could vary among the di�erent phases described by the model. However, this
is not a problem since we are not interested in a precise description of timing aspects.
The other model parameters instead have been estimated from the descriptions in [82, 81,
80].
The results we obtain are compatible with the behaviour of lemurs, as described in the
above studies.

In regard to Figure 5.3, initially all the males have the same dominance level. From
the beginning and up to about 210 iterations, the group of monkeys struggles to de�ne
a clear dominance among individuals. Between iteration 210 and 390, the dotted line is
not the dominant of the group, thus its position is not the closest neither to the group
center nor to the female. At the end of the simulation, when the monkey with dotted line
becomes the most dominant (alpha male), we can observe that it gains a central position
in the group.

Figure 5.4 shows the dynamics of a group with a more rigid hierarchy, due to the higher
level of aggressiveness. The �rst phase, up to iteration 90, in which the males establish a
�rst hierarchy, is followed by a phase (up to iteration 320) in which the hierarchy becomes

NAD = 5 OAD = 5 FT = 600

AN = 200 AO = 400 FSO = 12

CSN = 0 CSO = 0 Nfl = 1

FSN = 8 Ofl = 2

Figure 5.3: Simulation of an egalitarian group.

NAD = 10 OAD = 10 FT = 400

AN = 350 AO = 700 FSO = 15

CSN = 1 CSO = 0 Nfl = 2

FSN = 10 Ofl = 4

Figure 5.4: Simulation of a despotic group.

very stable. From iteration 320, where the monkey with the dotted line becomes the alpha
male, it gains the position that is closer to the center of the group and to the female, and
it does not allow any other monkey to come close.

Normal and oestrum periods last respectively 80 and 20 iterations. In normal phase mon-
keys are less willing to �ght and they keep a distance from each other in order to avoid
unnecessary con�icts; this corresponds to the more linear parts of the graphs. In oestrum
periods males have the female as the pole of attraction and they are more willing to �ght.
Fights can change the dominance levels of males, thus oestrum periods correspond to more
struggling parts of the graphs, where, often, the ranking of dominance changes. When the
dominance levels change, the topology of the group changes accordingly.

Simulations' results are compatible with the behavior of di�erent species of prosimians
as described in our reference texts [82, 81, 80]. The behavior presented by the simulated
troop of prosimians is quite realistic and topological property are well emulated by the
output o� APP.
It is theoretically possible to use the parameters to attempt modelling other species more
di�erent than the ones we study. Di�erence between species often is not only in numer-
ical values but also in the complexity of rules which describes social interactions. With
su�cient data and enough facts it is theoretically possible to describe very complex social
structures even like the �rst human ones.

5.8 Conclusion

The Attributed Probabilistic P systems (APP systems) are an extension of MPP systems
in which objects are annotated with attributes.
In conclusion APP systems are intended to be used to model the dynamics of populations
and ecosystems. In this context, attributes can be used to represent characteristics of the
population individuals such as age, position, and so on. Apart from attributes, the feature
that mainly makes a di�erence between APP systems and other proposals is the use of
maximal parallelism for the application of rules. This feature is particularly suitable for the
modelling of populations that evolve by stages (e.g. reproductive stages or stages related
with seasons).

We used APP systems to model social behaviors of some species of primates as case study.
In particular, as an application, we developed a model to compare despotic and egalitarian
behaviors on di�erent species of primates.
Social systems of his kind are usually approached by means of agent-based models that
are often poorly documented and ambiguous. On the contrary, since both the syntax and
the semantics of APP systems are formally de�ned, the model based on APP systems is
unambiguous.
We plan to adapt our general model to model the behavior of lemurs catta by changing
the values of the parameters, thus showing the �exibility of the formalism. The next step
will include the possibility to explore not only the social behavior of one group of social
animals but the interactions between di�erent groups, or the multilevel social association
in something more complex than a single tribe structure.

Chapter 6

Multilevel Attributed Probabilistic P
systems (MAPP systems)

6.1 From APP to MAPP systems

The decision to further develop this formalism is taken when we start to study species with
a social structure more complex than a simple linear hierarchy.
MPP and APP work as �at P System, with MAPPS we bring back the membrane hier-
archical system of the original P System. We use membranes to model various levels of
aggregation of individuals, as well as spatial or logical separation.
Two di�erent membranes can model two di�erent packs, two di�erent hunting grounds,
two di�erent clans inside a community.
We must also rede�ne the rules semantics to ensure that they can operate not only on the
usual elements, but also on the membranes, adding capabilities to create them, destroy
them and change them.

Consequently the computational step cannot be parallel any longer. A membrane has
to wait until all the states of contained membranes have calculated their internal states
and are ready to be used, to be able to calculate its own new internal state.
We de�ne a recursive computation which describes the environment of membranes' system
starting from the inner and continues to the outer ones.
We can now see in detail that this formalism incorporates features from both MPP and
APP systems, such probabilistic function attributes for elements, usage of promoters and
attributes, and all the capabilities we formally de�ned in Chapters 4 and 5.

6.2 Introduction to MAPPS and informal de�nition

We give �rst an informal de�nition of MAPP systems (Multilevel Attributed Probabilistic
P systems). The system is composed by one ordered set of element of type membrane
and a set of terminal elements that represent reagents of the standard P systems.

To better illustrate how the model works, we will gradually introduce an example of
what we have just described. When we will be done with the formalism's description and
the inference rules that show its behavior, we will have a small and complete example that
can show the main functionalities of MPP Systems.
The set of membranes is ordered and �nite, the membranes are sorted depending on which
one can incorporate the others. The �rst one, named Env can contain all the others but
itself. Every following membrane can contain all those coming after it. The last in order
cannot contain membrane elements but only terminal elements.

65

Each membrane is associated with:

• a set of domains that de�ne the types of the attributes associated with that mem-
brane.

• a set of rules that are applied within the membrane.

• a set of update functions in one to one correspondence with the attributes of the
membranes.

Each terminal element has an associated set of domains that de�ne the types of attributes
associated with it.

Γ is a set of symbols representing the types of membranes. Terminal elements are col-
lected in the set Σ, sets of attributes of membranes are collected in the set DΓ, sets of
attributes of terminal elements are collected in the set DΣ. The sets of update functions
of all membranes are collected together in the set U . Sets of rules associated with the
membranes are collected in the set R.
Of course Γ, R, DΓ and U have the same cardinality, as in one-to-one correspondence
between them. The same holds for Σ and DΣ, as they have the same cardinality.

To show how membranes and terminal elements are used, we will create an arti�cial
example for demonstration purposes.
Let's suppose we want to model a social species competing for territory. Territory is repre-
sented by our Env membrane, and we assume that along their life our elements will never
get out of the territory they live in. The territory is divided into zones, and to model
them we will use a membrane-type element contained within Env. Finally our individuals
gather into tribes, and to model the tribes too we will use membranes that contain the
individuals.
The hierarchy of membranes is thus Env, zones, tribes. To each zone we assign one at-
tribute, �resources�, that de�nes how much food is available to a tribe's gatherers.
To each tribe we assign two attributes: �harvester�, which stands for the number of work-
ers/harvester within a tribe, and �warriors�, which stands for the number of warriors within
a tribe, and the attribute �dominant� that can assume values 0,1 and de�nes if a given
tribe is the dominant one within the zone where it resides, or if it's not.
Individuals are modeled by the terminal element beast, and are de�ned by the attributes
age and role; role can assume values of juvenile, harvester, warrior. We will now give a
meaning to these elements' inclusions to explain how these mechanisms work.
Env membrane can contain zones, this models that each territory is divided into zones.
Env membrane can contain tribes, this models a tribe that is moving from one zone to
another.
Env membrane can contain a terminal element beast, this models a single individual, cast
out from a tribe which is moving from one zone to another.
A zones membrane can contain some tribes, this models the fact that the tribe is within
that speci�c zone.
A zones membrane can contain a beast terminal, this this models a single individual, cast
out from a tribe which is within that speci�c zone.
A tribe membrane can only contain beast terminals, this models individuals that are part
of that tribe.
All other possible inclusions are prohibited by the membranes' rules.

The function arity() takes as input an element of the set Σ or the set Γ and returns

the number of its attributes (and consequently, for an element of type membrane, the
number of update functions).
Elements of the system are of three types:

• a membrane: the membrane is described by a tuple 〈γi, d, s〉 where γi is an element
of Γ alphabet, d is an instantiation of Dγi attributes of γi, s is the internal state of
the membrane and describes everything that is contained in the membrane.

• a terminal element: the terminal element is described by a tuple 〈σi, d〉 where σi
is a element of Σ alphabet and d is an instantiation of Dσi attributes of σi.

• the special element ε used to describe one empty internal state.

The internal state of a membrane γi is a multiset of these elements with only one
restriction: the membranes inside the internal state of γi can only be composed of γj
elements with j > i.
A state of the system ω is given by the special membrane object Env and its internal
state s. In the de�nition of the system the initial state of the system ω0 from which
the computation starts is given.

Following the example in Fig.6.1 we show one possible state of the system.

Figure 6.1: representation of the state of the system. Inside the membrane Env the system
has three zone membranes and one beast terminal element. One zone membrane contains
only one beast terminal element, another zone membrane contains one tribe membrane and
one beast terminal element, and the last zone membrane contains one tribe membrane, and
so on. Attributes' values are associated to any element, be it membrane or terminal element

A set of rules is associated to each membrane,rules are composed by a multiset of reagents,
one of products, one of promoters, and a rating function:

• Reagents are multisets of both membranes and terminal elements. Each element
is associated with an instantiation of its attributes, even a partial one, which can
contain both properly typed values and variables. The multiset of reagents cannot
be empty.

• Products are multisets, which can also be empty, of both membranes and terminal
elements. Each attribute of elements must be associated to an expression that cal-
culates its value. Also each element is associated to a �ag which describes where the
product will be created.

• The promoters are a multiset of elements possibly empty of membranes and termi-
nals. Each element is associated with an instantiation, possibly a partial one, of its
attributes which can contain both properly typed values and variables. Promoters
cannot be modi�ed by rules and are not consumed by them.

• A rating function takes as inputs the attributes of both promoters and reagents,
and returns as an output a positive number, used as weight for the rule.

In our example, a possible environment rule, could be:

Tribe(x, y), Zone(z)
f(z)→ Tribe(x, y)inZone(z)

this represents the idea that a tribe �moving along� the environemnt chooses a new lo-
cation to �get into�, in proportion to its resources availability.

To complete the MAPPS description for each attribute of each membrane there is an
associated update function. Each function takes as input all membrane's attributes, the in-
ner state of the membrane and returns as an output a new value for its associated attribute.

.

6.3 Multilevel Attributed Probabilistic P systems: formal
de�nition and semantic

De�nition: MAPPS is a tuple: 〈Γ,Σ, arity(), DΣ, DΓ, R, U, ω0〉
which consists of the following elements:

• Γ = {γ1, .., γn} ∪ {Env} is an ordered �nite alphabet of symbols, representing the
membrane elements of our system. We order each element of the set by its own
position. The order we give to this set represents the property that a membrane has
of being able to incorporate in its internal state only membranes with a larger index.
The Env (environment) element is called skin membrane, it cannot be contained by
elements of Γ while it can contain each element of Γ

• Σ = {σ1, .., σm} ∪ {ε} is an ordered �nite alphabet of symbols, where the elements
of the alphabet represent common elements that we can �nd into an instance of a
standard P System.
The special symbol ε is used to de�ne the inner state of an empty membrane.

• arity(): Σ ∪ Γ → N is a function which for each ai ∈ Σ ∪ Γ gives the length of the
sequence Dai that describes the attributes of ai.

• DΓ = {Dγ1 . . . Dγn} Ordered set of domains, in correspondence with elements of set
Γ.
Each Dγi is a set of tuples, Dγi = Iγi,1 × · · · × Iγi,arity(γi), where each Iγi,j is a
(possibly in�nite) set of unstructured values. The sequence Dγi is called the set of
attributes of γi.

• DΣ = {Dσ1 . . . Dσm} Ordered set of domains, in correspondence with elements of set
Σ.
Each Dσi is a set of tuples, Dσi = Iσi,1 × · · · × Iσi,arity(σi), where each Iσi,j is a
(possibly in�nite) set of unstructured values. The sequence Dσi is called the set of
attributes of σi.

The generic internal state of a membrane γi is a multiset over the set:

Si={〈γj , d, s〉|j > i, γj ∈ Γ, d ∈ DΓj , s ∈ S∗j } ∪ {〈σj , d〉|σj ∈ Σ, d ∈ DΣj}

The generic element of the internal state of membrane γi is part of the resulting union
of three sets.
The �rst set is a tuple 〈γj , d, s〉 and describes a membrane with its attributes and its in-
ternal state, with the restriction j > i.
The second set is formed by the terminal symbols belonging to Σ with an instance of its
attributes.
The last set consists of the singlet ε that is used to represent the absence of elements within
a membrane.

With this de�nition of internal state, we de�ne the generic state of the system ω =
(Env, s) composed by a couple consisting of the symbol Env, representing the skin mem-
brane, and its internal state s. Following the de�nition above we consider the element Env
as γ0.

• The initial state ω0 = (Env, s) is the state of the system at the beginning of global
computation. It' s represented by terminal and not-terminal items contained in the
internal state of Env at iteration 0.

• The set R is a set of sets of rules, associated to the set Γ. For each element γi ∈ Γ
there is an associated set of rules RΓi∈R.

Given a set of variables V , RΓi is a �nite set of evolution rules having the form:

uV
f→ vV |prV

where uV ∈ ({(γj , dj , s)| j > i, γi ∈ Γ, dj ∈ DV
Γj
, s ∈ S∗Vj } ∪ {(σl, dl)|σl ∈ Σ, dl ∈ DV

Σl
})+ is

a non empty multiset of objects each one with its own attributes made explicit by values
or by variables.
prV ∈ ({(γj , dj , s)|γi ∈ Γ, s ∈ S∗Vj , dj ∈ DV

Γj
, j > i} ∪ {(σl, dl)|σl ∈ Σ, dl ∈ DV

Σl
})∗ is a pos-

sibly empty multiset of objects with its own attributes expressed by values or by variables.
Where:

S∗Vj = V ∪ {∅}
DV

Γj
= (V ∪ Iγj ,1)× · · · × (V ∪ Iγj ,arity(γj))

DV
Σl

= (V ∪ Iσl,1)× · · · × (V ∪ Iσl,arity(σl))

vV ∈ (({(γj , dj , s)|γi ∈ Γ, s ∈ ES∗Vj , dj ∈ EVΓj , j > i}∪{(σl, dl)|σl ∈ Σ, dl ∈ EVΣl}, {out,_})∪
({(γk, dk, s)|γi ∈ Γ, s ∈ ES∗Vk , dk ∈ EVΓk , k > j}∪{(σl, dl)|σl ∈ Σ, dl ∈ EVΣl}, {in(〈γj , d, s〉}))∗
where j > i
is a possibly empty multiset of pairs consisting of one object with its own attributes ex-
pressed by values or functions which can take as input attributes both from uV and prV ,
and a �ag from the set {in(〈γi, d, s〉), out,_} where 〈γi, d, s〉 ∈ uV . For the pairs �agged
by �out� or �_� the membranes of the multiset vV have an index that is greater than that
of γi, where γi is the membrane that owns the rule. Otherwise for the pair �agged by
in(〈γj>i, d, s〉) the membranes have an index that is greater than γi and γj .

We de�ne:

V ars(vV) ⊆ V ars(uV) ∪ V ars(prV)
ES∗Vj = Exp(V ∪ Sj)
EVΓj = Exp(V ∪ IΓj(1))× · · · × Exp(V ∪ IΓj(arity(γj)))

EVΣl = Exp(V ∪ Iσl,1)× · · · × Exp(V ∪ Iσl,arity(σl))

where Exp(V ∪Ij) denotes the set of well-typed expressions built from operators, variables
V , and values of Ij . Exp(V ∪Sj) denotes a well typed expression built on strings operator
�+�, variables V and elements and strings of set SVj .
To complete the de�nition, each rule is also associated with a rate function f typed as:
f : S+

j × S∗j → R≥0

the domain is composed by reagent (S+
j) and the promoters (S∗j), the output is a positive

real number (the weight of the rules).

• The set of set of functions Update U = {Uγ1 , . . . , Uγn} has the same number of
elements of the set Γ and its elements are in one to one correspondence with ele-
ments of Γ. Each set of functions Uγi is composed by arity(γi) functions. Uγi =
(Uγi,1, . . . , Uγi,arity(γi))

Each individual set of functions Uγi consists of a number of functions equivalent to
the number of attributes of the membrane associated with it, then |Uγi | = arity(γi). The
generic function Uγi,j belonging to Uγi is typed as:

Uγi,j : S∗i ×DΓi → DΓi,j

So, if from the set of update functions of the i-th membrane we consider the j-th update
function, then this will take as input one internal state of level i, one.
The promoters are a multiset instantiation of the attribute domain of the membrane Γi
and will give as output one value of type DΓi,j , i.e. from the j-th set of unstructured values
Iγi,j from DΓi = {Iγi,1 × · · · × Iγi,j × · · · × Iγi,arity(γi)}

Given that formal de�nition we show the semantics of MAPPS using inference rules. We
have seen that the system elements can be membranes or terminals.

We represent the structure of the internal state of Env as a tree where each node is a

membrane, each node has the membranes contained in its internal state as children.
Computing the internal state of each membrane does not happen in parallel as in regular
P System, but sequentially in the order induced by a postorder traversal of the tree.
One by one the states of the membranes are computed back to the root of the tree repre-
sented by the Env element that concludes the complete computation of the new state of
the MAPPS.

The computation of a membrane new state is managed by the single internal step rule,
and it's is composed by three steps:

- Extract the elements in the set �out� of all membrane elements present in the inter-
nal state of the one we are processing

- Choose a maximal set of rules considering internal membranes as reactants ready to
be used. Then apply in parallel the chosen set to the current state of the membrane.

- Apply the update functions on the inner state and attributes of the membrane to re-
calculate the attributes

After these three steps, the membrane has a new internal state and set of attributes.
Here below we describe, one by one, the inference rules that describe the computational
process of the entire system.

In the �rst six inference rules we describe the internal computational step of a single
membrane. In order to achieve our purpose, we de�ne three multisets: wa which indicates
the multiset of reagents ready to be used by rules, wp the multiset of products created by
the rules application, wout the multiset of products created by rules with �out� �ag.

The evolution of the internal state of a generic membrane γj is a sequence of proba-
bilistic maximally parallel steps. We formally de�ne the semantics of that computation as
a transition relation in the style of [79]. In each step a maximal multiset of evolution rule
instances is selected and applied as described by the following semantic rules:

(single rule application)

ri=u
k−→v∈R u⊆wa K={| k′|u′ k

′
−→v′∈R,u′⊆wa |} p=k/

∑
k′∈K k′

(wa,wp,wout)
ri,p−→R(wa−u,wp+v,wout)

single rule application - the rule application describes the application of a single rule
that is associated with a probability p. The rule is applied starting from an internal state
(wa, wp, wout) subtracts reagents from wa and adds products to wp. The probability p
is evaluated by normalizing the weight of the rule ri compared to the weights of all the
applicable rules of the set Rγj to reagents in wa.

(single rule applicationwith the “in′′ flag)

ri=(γj ,d,s)+u
k−→vin(γj,d,s)

∈R (γj ,d,s)+u⊆wa K={|k′|(γ,d,s)+u′ k
′
−→v′

in(γ)
∈R,(γ,d,s)+u′⊆wa|} p=k/

∑
k′∈K k′

(wa,wp,wout)
ri,p−→R(wa−((γj ,d,s)+u),wp+(γ,d,s+v),wout)

single rule application with in �ag - describes rules where products are sent into an-
other membrane. The target membrane must be among the reagents. The rule de�nition
ensures that it is not possible to send it into a membrane of higher or equal level

(single rule applicationwith the “out′′ flag)

ri=u
k−→vout∈R u⊆wa K={|k′|u′k′ u⊆w′ K={|k′|u k−→vout∈R,u′⊆wa|} p=k/

∑
k′∈K k′

(wa,wp,wout)
ri,p−→R(wa−u,wp,wout+v)

single rule application with`out` �ag - is very similar to single rule application, the
rule is applied starting from an internal state (wa, wp, wout) subtracts reagents from wa but
adds products to wout to be sent outside the membrane. The probability p is evaluated by
normalizing the weight of the rule ri compared to the weights of all applicable rules of the
set RΓj to reagents in wa.
These three single rule applications are substantially similar to those of APP systems, with
the di�erence that these sets of rules are limited to the only visible part inside a membrane
j, then RΓj is the set of rules related to the j-th element of the set Γ. K is the set of
weights associated to all applicable rules. The probability is given by the weight k of a
single rule divided by the sum of all the applicable weights in K.
In these rules the state of the membrane is represented by three multisets:
wa, wp and wout.
wa is the multiset of reagents consumed by rules, wp is the multiset of products created by
rules, wout is the multiset of products created by rules and �agged by the �out� �ag.
Any rules subtracts reagents from wa and add the reagent to wp or wout depending by the
�ag of the rule.
(single rule sequence rule)

(wa,wp,wout)
ri,p−→R(w′

a,w
′
p,w

′
out)

(wa,wp,wout)
[ri],p

+

−→ R(w′
a,w

′
p,w

′
out)

single rule sequence rule - describes the application of a sequence (of rules) composed
by a single rule. The sequence is associated with the probability of the single rule. The
set of rules of our interest is limited to those visible within a membrane which has a type
corresponding to the j-th element of Γ. The rule, conditioned by the respective probability,
makes a transition from (wa, wp, wout) to (w′a, w

′
p, w

′
out).

(multiple rules sequence)

(wa,wp,wo)
ri,p

+
i−→ R(w′

a,w
′
p,w

′
o) (w′

a,w
′
p,w

′
o)
r,p+−→R(w′′

a ,w
′′
p ,w

′′
o)

(wa,wp,wo)
r@[ri],pi.p

+

−→ R(w′′
a ,w

′′
p ,w

′′
o)

multiple rules sequence - describes the application of a sequence of rules using as basic
case �the single rule sequence�, the sequence probability is the product of rules' individual
probabilities within the sequence. Our multiple rules sequence is an update of an APP
systems rule. Moreover, here the set of rules is limited to RΓj , we can see as a sequence of
rules makes the system transition from (wa, wp, w′out) to (w

′′
a,w
′′
p w
′′
o). In our de�nition [ri]

denotes the sequence composed of the single element ri, and @ denotes the concatenation
of sequences.

(singlemembrane internal step rule)

(s,∅,∅)
r,p+−→RΓj

(s)d
(wa,wp,wout) (wa,wp,wout)9RΓj

(s)d
_

(γj ,d,s,o)
r,p−→RΓj

(γj ,d,wa+wp,wout)

Given a membrane internal state, s, the (single membrane internalstep rule) describes

the evolution in a new membrane internal state by the
r, p7−→R relation, where p is the prob-

ability of the transition, and r is the sequence of applied rules. (single membrane internal

step rule) invokes (s,∅,∅)
r, p−−→

+

R(s) (wa, wp, wout) where R(s)d is the set of applicable rules

in the state s and with membrane attribute d, with their weights, namely:

R(s)dV =

{
uVλ

f(s)−−→ vVλ

∣∣∣∣ uV
f−→ vV |prV

∈ Rγj , ∃λ. uVλ ⊆ s ∧ prVλ ⊆ s
}

where (i) λ : V → flat(Da1)∪ . . .∪flat(Dan), with flat(Dai) = Ia1 ∪ . . .∪ Iaarity(ai)
, for all

ai ∈ Γ∪Σ; (ii) uVλ, prVλ and dVλ are well-typed multiset obtained by substituting values
for variables in uV, prV and dV according to λ; and (iii) vVλ is the well-typed multiset
obtained by evaluating the expressions in vV under the substitution λ. Transition relation
r, p−−→

+

R is the transitive closure of
r, p−−→R.

A transition (wa, wp, wout)
ri, p−−−→R (wa − u,wp + v, wout + vout) corresponds to the ap-

plication of a single rule. When a rule is selected, its application consists in removing its
reactants from wa and adding its products to wp or wout according to the �ags of the prod-
ucts. The two multiset wp and wout will collect all products of all applied rules. Note that
R(s) takes into account that each rule is applied with respect to the weights of the rules
computed in the initial state s. Moreover, R(s) contains only the rules which promoters
are present in the initial state s (prVλ ⊆ s). Once objects in wa are such that no further
rule in R(s) can be applied to them, by (single membrane step rule) the new membrane is
(γj , d, wa + wp, wout) (where wa are the unused objects and wp are the new products).
(update rule)

(γj ,d,s) Uγj,1(d,s)−→d′1,....,Uγj,arity(γj)(d,s)−→d′arity(γj)

(γj ,d,s,o)
update(γj)
−→ (γj ,(d′1,...,d

′
arity(γj)

),s,o)

d = (d1, ...darity(γj))

The update rule is a feature not present in APPS. Here we obtain a new domain of at-
tributes d′ from previous attributes and the state of γj , thanks to a set of functions that
change the value of each attribute.

(getting on rule)

s′=s−](γ,d,s,o)∈s(γ,d,s,o)+](γ,d,s,o)∈s(γ,d,s,∅)+](γ,d,s,o)∈so

(γj ,d,s,o)
gettingon(γ)−→ (γj ,d,s′,o)

The (getting on rule) applied on a target membrane searches all membranes in its internal
state, and then, for each membrane found, keeps the elements present in o and adds them
to the internal state (s) of the target membrane. Moreover, this rule makes o empty for
each internal membrane. The new state of the target membrane s′ is obtained subtract-
ing the union of all internal membranes [−](γ,d,s,o)∈s (γ, d, s, o)], adding the union of all

membranes where o has been emptied [+](γ,d,s,o)∈s (γ, d, s,∅)]and adding the union of all
elements taken from the o multiset of internal membranes [+](γ,d,s,o)∈s o].

(singlemembrane step rule)

(γj , d, s,∅)
gettingon(γj)−→ (γj , d, s

′,∅)

(γj , d, s
′,∅)

r,p−→RΓj
(γj , d, s

′′, o)

(γj , d, s
′′, o)

update(d,s′′)j−→ (γj , d
′, s′′, o)

(γj ,d,s,∅)
r,p,update(d,s′)j

=⇒ (γj ,d′,s′′,o)

The single membrane step rule describes a composition of the getting on rules, an internal
computational step and the subsequent application of update functions.

These three steps are performed in the correct order on any membrane element.
For the membrane (γj , d, s) �rst we search in all membranes elements inside the internal
state s, for any of this we take the elements in wout and add them to s as described in
the getting on rules. This give us a new internal state s′, then form (γj , d, s

′) the full
single membrane internal step takes place. Similar to a computation of one APP systems
(enriched by rules over membrane elements) the internal step a�ect the internal state of
the membrane leading from (γj , d, s

′) to (γj , d, s
′′), s′′ is the new internal state computed

by the single membrane internal step rule (and all rules before that one).
After the new internal step is computed, the calculation of the attributess new values
take place. Any attributes (d1, . . . , darity(γj)) will be used togheter with the internal
state s′′ as argument for the arity(γj) functions in Uj , the new attributes values will
be d′ = (U1(d, s), . . . , Uarity(γj)(d, s)) as described by update rule.

Figure 6.2: In this example we follow the computation of membrane B, �rst all elements in
wout multiset of membranes A inside membrane B are collected and added to the internal
state of B (getting on rule)

At the end of this three steps the transition is complete and the membrane object will
have a new internal state, updated attribute values and a new multiset of elements o. The
membrane is now ready to be eventually used in upper computational step.
Figure 6.2, 6.3 and 6.4 shows one easy example of this part of the process.
After de�ned how a single membrane compute a step the next three rule manage the com-
putation of the entire system by some recursive rules.

(recursivemembrane computational step rule)

(1)

σ∈Σ d∈DΣ

(σ,d)V(σ,d)

(2)

Figure 6.3: Then rules are selected and applied inside the membrane B, in this example
we only have one rule, RB = {ax, by

1→ cx+y } (single membrane internal step rule)

Figure 6.4: Finally, to complete the step the attribute of B is updated. B has only one
attribute so the set UB has only one function B1 =

∑
cx∈s x thus the value 7 is changed in

20 (update rule)

s = x1.x2. . . . xl ∀i, 1 < i < l, xi V xi

s = x1.x2. . . . xm (γj, d, s, o)
r,p,update(d,s′)j

=⇒ (γj, d
∗, s∗, o∗)

(γj ,d,s,o)V(γj ,d∗,s∗,o∗)

(3)

s = x1.x2. . . . xl ∀i, 1 < i < l, xi V xi s = x1.x2. . . . xm

(γj,∅, s,∅)
gettingon(γj)−→ (γj,∅, s′,∅)

(γj,∅, s′,∅)
r,p−→RΓj

(γj,∅, s∗, o)
(Env,s)V(Env,s∗)

where

xi = {〈γk, d, s, o〉|k > i, γk ∈ Γ, d ∈ DΓk , s ∈ S∗k , o ∈ S∗k} ∪ {〈σk, d〉|σk ∈ Σ, d ∈ DΣk}

These three rules are related to the recursive computation of all membranes in the
system.
The rule (3) says how the whole system completes a full computational step. The Envi-
roment passes from state s to new state s∗ with computation (Env, s) V (Env, s∗). To
do that recursivly the operator V is applied to all objects in s, if the object is a terminal
element σ ∈ Σ the rule (1) tells that the terminal elements are unaltered by the operator
V, if the object is a membrane element the rule (2) recursively calls both rules (1) and (2)
on all the elements of the internal state of the membrane, and so on.

In other words the three recursive membrane computational step rules are applied to all
elements of the system: membranes represented by (γ, d, s, o), terminal elements by (σ, d),
Env represented by (Env, s). The (1) tells us that the terminal elements are unaltered by
this transformation. The (1) represents the ground rule of the recursion. The (2) is applied
to membranes. The rule (2) is recursively called to each element (xi) of the internal state
(s) of the membrane to obtain a new state s and then the single membrane step rule is
applied over the tuple (γj , d, s, o) to obtain (γj , d

∗, s∗, o∗).
The (3) describes the applyng of the rule to Env to obtain a new step of the entire system.
Instead of applying a full single membrane step rule to Env, the (3) applies to Env only
the getting on and the single membrane internal step rule. The update rule is not required
because Env has no attributes. In both rule (2) and (3) the states s and s are represented
by sequence of xi elements. Each xi can be a membrane represented by a tuple 〈γk, d, s〉
or a terminal element represented by 〈σk, d〉.

In the description of these rules we use the following sets, operator and conventions:

Rγn(s) = {uV φ
f(s)→ vV φ|uV

f→ vV |prV ∈ Rγn(φ)∃φ.uV φ ⊆ s ∧ prV φ ⊆ s}

where φ : V → flat(Da1 ∪ · · · ∪ flat(Dan), with flat(Dai) = Ia1 ∪ · · · ∪ Iarity(ai), for
all ai ∈ A ; uV φ(uV ∈ Σ∗V) is the well-typed multiset obtained by substituting values for
variables in uV according to φ; and (vV ∈ Σ∗EV)

6.4 A simple example

Before going deeper into the main case study for the MAPP System we want to show a
simple example. With this example we want to give an idea about both the formalization
of a model and how computational steps take place one after another.

We consider a basic model about wolves. We will model a few facts:
- male and female wolves live in packs.
- packs keep a hunting territory.
- packs hunt as one and share the food
- inside a pack some wolves �ght to assess dominance
- as result of a defeat a wolf can walk away from the pack and become a lone wolf
- new pups are born, wolves die.

Now we de�ne the formal elements of the MPP systems to model this facts:

- Γ is the set of terminal elements. We consider MaleWolf, FemaleWolf and Prey as
main elements. Later we will add some control objects to manage the di�erent phases of
the simulation.
Γ = {MaleWolf, FemaleWolf, Prey} ∪ ControlObjects

- Σ is the set of membrane elements ordered by inclusion. We have one generic Envi-
ronment which contains HuntingGround(s) which can contain Pack(s). The order of the
set Σ allows Packs to be directly inside both Environment and HuntingGrounds. Elements
such a lone MaleWolf can exist outside the pack and be alone inside one HuntingGround.
What is forbidden by the order is, for example, that a HuntingGround is inside a Pack or
a Pack is inside another Pack.
Σ = {Enviroment,HuntinGround, Pack}

- DΓ is the set of set of attributes of elements of Γ. We take as attributes for Male-
Wolf �age� and �dominance�, for FemaleWolf we take �age�, for Prey we take the attribute
�size�.
DΓ = {DMaleWolf , DFemaleWolf , DPrey} ∪DControlObjects

- DΣ is the set of attributes associated to membrane elements. To Packs membranes we
associated attributes �health� and �strength� and �size�, to �HuntingGround� we associate
the attribute �wealth� referred to how many preys are in the membrane and a �carrying
capacity� as a maximum level of wealth you can have in that territory. The Environment
membrane doesn't really need attributes in �rst instance.
DΣ = {DHuntingGround, DPack}

- R is the set of sets of rules associated to each membrane, so we will have a set of
rules associated to the Environment membrane, one set associated to the HuntingGround
membrane and a set of rules associated to the Pack membrane.
R = {REnv, RHuntingGround, RPack}
Later in this example we will show rules inside each set and how they apply to the system.

- U is the set of update rules associated to attributes of membrane elements. U =
{UHuntingGround, UPack}. The set UHuntingGround contains two functions, one to update
the attribute �wealth� and one to update the attribute �carrying capacity�, the set UPack
contains three functions, one to update the attribute �health�, one for �strength� and one
for �size�.

- ω0 describes one generic initial state of the models.The state of the System is described
by the internal state of each membranes of the system. For each element of these internal
states attributes value must be de�ned.

After this �rst formalization we still have to de�ne the model core: the rules set. To
manage a functional subset of sets of rules we will add control objects to the Γ alphabet,
the control objects will implicitly de�ne the simulation phases.

Figure 6.5: Example of wolf model with four Hunting Grounds and two Packs, also a
Lone Wolf in the third Hunting ground. The system is in FGT phase for the presence of
FGT control object in all membranes.

Now we have a skeleton of our model. We know what the model is about and what
is the level of aggregation we are going to suggest. What set of rules we need and the
attributes of both terminal and membranes elements. The next modeling steps we are
taking consists in:
- deciding which control objects is necessary to introduce so we can shape di�erent com-
putation phases. It is important to introduce enough control objects to keep the phases
between membranes synchronized.
- deciding what kind of facts (events) we will model with one or more rules. Usually we
have a rule for any possible outcome of an event.
- deciding to which set of rules each rule belongs, depending on the reagents involved in
the rule.
- deciding which facts (rules) are in competition which each other and fall in the same
computation phase.

We start with the rules for Pack membrane. Pack membrane is the last of the ordered
set Σ so inside this membranes we can only have terminals from set Γ and control objects.
Rules in RPack can have as reagents and products only elements of set Γ and control ob-
jects, as promoter any rule can have the membrane Pack too with the associated attributes.
We decide to have three computation phases. In the �rst one (which we call �reproduction�)
one single FemaleWolf give birth to new o�spring. In the phase ��ght� MaleWolf(s) �ght
to asses dominance over the pack. In the phase �survival� each wolf survives according to
the food hunted by the pack and the age of the individual.
For each of this phases we add to the alphabet Γ one associated control object {REPR,FGT,
SURV }.

Rules in RPack will have one of this control objects as promoters to implements the division
in subsets associated to the di�erent phases.
Also we will add rules to RPack to manage control objects and de�ne the succession of
di�erent phases.
Now we decide, phase by phase, which rules model the facts that belong to that phase:
REPR phase - in this phase we add one rule for any possible outcome of the fact �only
one female (the mate of the packleader) gives birth to new o�spring�. We describe the
rules which have as outcome one, two, three or more puppies of both sexes. We also model
the fact that the mother dies or not, depending on the age and the availability of food. All
these rules have as promoter the element REPR.
For example the rule which gives as outcome two male puppies has the following form:

FemaleWolfagef>3
f(agef,h)→ FemaleWolfagef ,MaleWolf0,0,MaleWolf0,0|REPR,Packh,_,_

if we analyze this rule we read:

- we include the Pack membrane as promoter only to access to the attribute h of the
Pack where the rule happen
- with a rate f(agef, h) depending on the age of a FemaleWolf and the health of the pack
(the parameter h)...
- we apply the rule �rst, consuming one element FemaleWolf with age attribute at least 4
from the membrane. Then we create and put back the FemaleWolf with the same age and
add two elements MaleWolf with age and dominance 0 to model the two o�spring.
If we use the reproduction rule in this form each female in the pack will have a reproduction
phase because the control objects REPR is used as promoter and enables the reproduction
rule for each FemaleWolf elements. But we want only one to reproduce during any REPR
season. To model this we use REPR object not as promoter but as reagent, in this way
the REPR control object will enable the reproduction rule just one time. The rule now is:

FemaleWolfagef>3, REPR
f(agef,h)→ FemaleWolfagef ,MaleWolf0,0,MaleWolf0,0, FGT |Packh,_,_

Now the control object REPR is consumed by the rule allowing only one female to re-
produce. We add the control object FGT to model the switch from reproduction phase to
the �ght phase.

FGT phase - in this phase wolves �ght for dominance with rules similar to the case
study for APP systems. Any of the followings outcomes is modelled by one rule with as-
sociated one rate function in accordance with the data collected by empiric observations.
The outcomes can be:
- Two males face-o�, the less dominant walks away, no �ght happens
- Two males face-o�, the most dominant wins, his dominance is raised by little, the domi-
nance of the loser goes down a little
- Two males face-o�, the less dominant wins, his dominance raise a lot, the dominance of
the loser goes down a lot
- Two males face-o�, the less dominant wins, his dominance is raised a lot, the loser walks
away from the pack to become a lone wolf
Each rule has a rate function depending on age and dominance of both the males involved
in the face-o� f(age1, age2, dom1, dom2), all these rules have as promoter the control ob-
ject FGT, in the end we add the rule to manage the control object

FGT → SURV |FGT

SURV phase - in this phase each wolf is tested to model if it survives (aging) or dies.
The two outcomes are in competition over each element of the Pack with two functions
f(age, dom, h, s) and g(age, dom, h, s) where age is the age of the wolf, dominance is the
dominance (for females this is a constant), h and s are the health and the size attributes
of the pack.
For example the rules for the male wolf are:

MaleWolfage,dom
f(age,dom,h,s)→ MaleWolfage+1,dom|SURV, Packh,_,ss

MaleWolfage,dom
g(age,dom,h,s)→ _|SURV, Packh,_,s

The �rst rule �consumes� the wolf tested and brings it back in the pack, aged by one.
The second rule �consumes� the wolf and nothing comes back, the wolf has not survived
the test. We already have seen this kind of rules in the case study of MMP systems with
frogs. Again to complete the set of rules of the phase we add one rule to manage the
control object
SURV → REPR|SURV

These three phases model what happens inside the pack. The female of the alpha gives
birth to new o�spring, males �ght for supremacy and each year some wolves age to live
another year and some others die.
To complete the de�nition of the Pack membrane we describe the set UPack which con-
tains three functions, one to update the attribute �health� (constant), one for the attribute
�strength� (function of the number of the members of the pack considering their ages) and
one for the attribute �size� (the number of the members of the pack).

We now model what happens inside the �HuntingGround� membranes. Inside this
membrane we can �nd elements of set Γ and elements �Pack� of set Σ. According to
what happens inside the Pack we divide the computation in three phases associated to the
control objects REPR, FGT and SURV.
In the Hunting Ground membrane we want to model packs which hunt together, packs
which �ght with other packs for the territory, reproduction of prey, packs which drive
away a lone wolf.
As we have done for the Pack membrane, we subdivide the facts we want to model into
the di�erents phases associated to control objects.

REPR phase in this phase any prey present in the membrane duplicates (or more).
It is a very simple way to model the reproduction of the prey but for our basic model it
is enough. The limit about how much prey is contained in a HuntingGround membrane is
given by the attribute �carrying capacity� of that membrane, the current number of preys
is given by the attribute �wealth�. We have a rule like:

preysize
f(w,cc)→ preysize, prey1, prey1|REPR,HuntingGroundw,cc

The function f(w, cc) when w is near the carrying capacity give, to the reproduction
rule, a very low rate near to zero, otherwise it gives a high chance of reproduction to any
prey in the hunting ground zone.
Again to complete the subset of rules of the phase we add :
REPR→ FGT |REPR
to manage the shift from REPR phase to FGT phase.

FGT phase - in this phase we want to model the following facts outcome:
- two packs face o� for the territory, the strongest wins and the weakest is cast out of the
Hunting Ground, both sides lose some health
- two packs face o� for the territory, the weakest win and the strongest is cast out the
Hunting Ground, both sides lose some health
- two packs face o� for the territory, the weakest walks away without a �ght
- a pack �nds a lone wolf in the territory and drives him away
- a pack tolerates the presence of one lone wolf in the territory

For any fact we want to model, we associate each possible outcome to a rule. Like
for the rule which models the �ght between wolves, we create rules for the �ght between
packs, but here the losers always leave the ground and is not dominance but health which
is lost in the process.

FGT → SURV |FGT
completes the subset relative to the phase FGT.

SURV phase in this phase packs and lone wolves hunt over prey de�ning if they sur-
vive or not. Rules are structured like:

preys, Packh,st,si
f(s,st,si)→ Packh+s,st,si|SURV

preys are hunted by packs and the health of the pack is increased. The bigger is the
prey and the bigger is the increase of the health of the pack which hunt it. We add the
usual rule about control object
SURV → REPR|SURV

To complete the description of the HuntingGround we de�ne the update function for the
attribute �wealth� of the membrane. The function simply counts the number of preys in
the membrane, then updates the value of the attribute. The attribute �carrying capacity�
is constant.
In conclusion, inside the Hunting Grounds packs �ght each other to defend the territory,
hunt to share the prey with the whole pack, and the prey reproduces taking in account the
land resources (the carrying capacity).

To complete the model we de�ne the REnv set, the set of rules about the single membrane
Environment which can contain elements from Γ as well as �Pack� and �HuntingGround�
elements from the set Σ.
If a pack (or a lone wolf) is in the Environment membrane this means the pack was just
kicked out from some Hunting Ground. The pack wanders looking for a new Hunting
Ground to claim. The fact we want to model is that the pack moves to another Hunting
Ground, and we do that with a rule like this:

Pack,HuntinGroundw,cc
f(w)→ Packw0,_ in HuntinGroundw,cc

the function f(w) makes the Hunting Ground with more prey the prefered choice for a
pack looking for food. Also if there is a lot of prey it is more liklely that there is not
another pack hunting in the location.
At the Environment membrane level we just model packs and lone wolves kicked out and
looking for a new territory. This completes the description of the model.
Now the model is complete. Running it we can discover that we need a rule to describe

some additional facts, for example:
- if there is no more prey left in one hunting ground the pack who lives there will move
away looking for another hunting ground
- a lone wolf can join another pack
- if one Pack is too big it is possible it will split in two packs and so on...

It is not hard to add facts and their associated rules to the model, in order to make
it more accurate. The correct analysis of the phenomena will lead the decision about . We
can decide we want the FGT phase last more than one computational step or add more
Hunting Grounds after a �rst instance of the model. With our formalism all this little
changes are easy to put in the model.

6.5 Case Study: Modelling social life of Serengeti Lions

Lions are the only felines that are truly social, living in prides and coalitions, the size
and dynamics of which are determined by an intricate balance of evolutionary costs and
bene�ts. Why has social behaviour, lacking in other cats, become so important to them?
Is it a necessary adaptation for hunting large prey such as wildebeest? Does it facilitate
the defence of young cubs? Has it arisen from the imperatives of competing for territory?
As details of leonine sociality have emerged, mostly over the past 40 years, many of the
key revelations have come from a continuous study of lions within a single ecosystem: the
Serengeti.

As we can read in [68], [67], [66] and [65], Serengeti National Park encompasses 5,700
square miles of grassy plains and woodlands near the northern border of Tanzania. The
park had its origin as a smaller game reserve under the British colonial government in
the 1920s and was established formally in 1951. The greater ecosystem, within which
vast herds of wildebeest, zebra, and gazelle migrate seasonally, following the rains to fresh
grass, includes several game reserves (designated for hunting) along the park's western
edge, other lands under mixed management regimes (including the Ngorongoro Conser-
vation Area) along the east, and a trans-boundary extension (the Masai Mara National
Reserve) in Kenya. In addition to the migratory herds, there are populations of mice,
reedbuck, waterbuck, eland, impalas, bu�alo, warthogs, and other herbivores living less
peripatetic lives. Nowhere else in Africa supports quite such a concentrated abundance of
hoofed meat, amid such an open landscape, and therefore the Serengeti is an important
place for lions and an ideal site for lion researchers.

For this animals, life is hard and precarious, and casualties are numerous. For them as
well as for their prey, life spans tend to be short, more often terminating abruptly than in
graceful decline. An adult male lion, if he's lucky and durable, might attain the advanced
age of 12 in the wild. Adult females can live longer, even up to 19. A typical case of
mortality in Serengeti is caused by Masai farmers and shepherds who identify the lions
as source of danger to their herds and their crops, as we can see in [73]. Life expectancy
at birth is much lower, for a lion, if you consider the high mortality among cubs, half of
which die before age two. But surviving to adulthood is no guarantee of a peaceful demise.
Continual risk of death, even more than the ability to cause it, is what shapes the social
behaviour of this ferocious but ever jeopardized animal.

Male lions, not strictly belonging to any pride, instead form coalitions with other males and
exert controlling interest over a pride, fathering the cubs and becoming resident, loosely

associated with the pride as we can see in [77]. They also play an important role in helping
kill prey, especially with larger and more dangerous animals, such as cape bu�alo or hip-
pos, thereby contributing something besides sperm and protection to the life of the pride
as we can see in [74].

Usually lion coalitions cast a challenge for the controlling rights of a pride. In this sit-
uation the roars play an important role, as they serve to indicate to their opponents their
numerical strength. In some cases, con�icts between lions �nish even before beginning,
when a group of lions realizes it is inferior in size to the other group [70]. If a coalition
of males takes over, it will kill the young of their rivals to bring the females quickly back
into heat. Mostly lions die because they kill each other: the number one cause of death
for lions, in an undisturbed environment, is other lions. At least 25 percent of cub loss is
owed to infanticide by incoming males. Females too, given the chance, will sometimes kill
cubs from neighbouring prides. They will even kill another adult female, if she unwisely
wanders into their ambit. Resources are limited, prides are territorial: a lot of bite wounds
visible on lions re�ect the competitive struggle for food, territory, reproductive success and
sheer survival.

As we can see in [69], it is not just the need for a joint e�ort in making and defend-
ing kills, that drives lionesses to live in prides. It's also the need to protect o�spring and
retain those premium territories. Although pride size varies widely, from just one adult
female to as many as 18, prides in the middle range succeed best at protecting their cubs
and maintaining their territorial tenure. Prides that are too small tend to lose cubs. Peri-
ods of oestrus for the adult females often are synchronized especially if an episode of male
infanticide has killed o� all their youngs and resetted their clocks so that cubs of di�erent
mothers are born at about the same time. This allows the formation of créches, lion nursing
groups in which females suckle and protect not just their own cubs but others too. Such
cooperative mothering, e�cient in itself, is further encouraged by the fact that the females
of a pride are related as mothers and daughters and sisters and aunts, sharing a genetic
interest in one another's reproductive success. But prides that are too large do poorly also,
because of excessive intra-pride competition. A pride of two to six adult females seems to
be optimal on the plains as we can see in [71].

Male coalition size is governed by similar logic. Coalitions are formed, typically, among
young males who have outgrown the natal pride and gone o� together to cope with adult-
hood. One pair of brothers may team with another pair, their half-siblings or cousins, or
even with unrelated individuals that turn up, solitary, nomadic, and needing partnership.
Put too many such males together as a roving posse, each hungry for food and for chances
to mate, and you have craziness. But a lone male, or a coalition that's too small will also
su�er disadvantages.

As we can see in this little preamble, life is very hard for a lion, but more interesting
for a realization of a model based on MAPPS. Because of the many challenges, life for
pride proves to be really complex. We tried to put the total amount of problems faced by
lions during their lifetime into this model, and we formalized MAPP systems as the main
tool to help us in this purpose. Here below we present a formal de�nition of our model for
Serengeti lions, taken as example because the most studied and known pride of lions live
in Serengeti.

6.6 Modelling the Lion Model with MAPPS

The model of the Serengeti Lions has as membrane elements:

1. Environment: the place of the simulation, where the hunting territories controlled
by pride are contained

2. Hunting ground: Locations where there is a pride, and may be subjected to invasion
by coalitions of stranger males

3. Pride: the largest social organization of lions consists of several females with their
cubs, young members and a small number of males

4. Court: group of females kindred with each other by matrilineality, and their young
or cubs

5. Coalition: group of males kindred with each other, which are part of a pride or
wander in search of a pride to take over

6. Family: a female with cubs under 18 months

7. Subcourt: a family of cubs between 18 months and 4 years, di�ers from the family,
because, in the case of a takeover of pride, cubs are not killed by the new males

8. Subcoaltion: a group of male cubs between 18 months and 4 years within the pride,
di�ers from the family, because, in the case of a pride's takeover, cubs are not killed
by new males

Terminal elements of simulation are:

1. male: age, health

2. female: age, health

3. cube: resources: health, casualty

In addition to those above, we provided a collection of control objects, to manage the
events and seasonal cycles of lions' life.

The simulation of a year of life of the lions proceedes as follows:

1. a �nite number of hunting iterations under favourable conditions:
in these the pride seeks to acquire prey, individual survival is tested as a function
of the preys captured, during the phases of hunting a shortage of prey can cause
divisions

2. take over
at this stage a coalition of nomadic males tries to chase away the previous residents
and replace them, if they succeed all the little lions are killed to make the females
fertile and available again.

3. A mating season
where the lions of the coalition within the pride mate with all adult females who
don't have cubs under the age of 18 months

4. a �nite number of hunting iterations under adverse conditions:
even in this phase, the pride seeks to acquire prey, individual survival is tested as a
function of the captured prey, so in this case the shortage of food is greater, and this
favours internal divisions

5. Births and ageing At the end of the season of adversities and with the beginning of
the abundance season, new cubs are born and new families are formed within cohorts
and each lion goes through the ageing rule

In our simulation we also manage events like:

1. creation of coalitions formed by unrelated peripatetic males

2. Expulsion of members from pride

3. Expulsion of members from location

4. Casualties during hunting phase

A �rst draft of this model is interpolated by the study of the following paper and some
videos from national geographic too. A second version was developed under counselling
of our supervisors and interviewing friendly biologists. After that, we saw we could add
complexity to the system implementing many other features, but we have tried to capture
only the most important events, leaving out what would occur on too speci�c conditions,
or as consequence of sporadic events, or what would be of little interest to the simulation.

Figure 6.6: initial state ω2

As we see in the picture above, our model is composed by eight membranes and �ve
elements. As shown by arrows, our items can pass from a membrane to another. A male
lion, for example, can leave its coalition, go to pride membrane, and, from there, enter the
court in order to mate with the lionesses of that court. A male in the environment can
also join a coalition in order to �nd allies, with the aim of trying a take over in the future.
Also a membrane can move from a parent membrane to another. For instance, a coalition
of males can enter into a pride, �ght with the resident coalition and stay there, driving out
the loser coalition. A membrane could also change into another one, copying its state. For
example, a Family when it grows enough turns into court.
We give now the formal de�nition of the model with all the rules set:

P is a tuple so composed: {Θ,Γ,Σ, ω0, R}

1. Σ is a �nite alphabet of symbols { m,f,c,r,s,winter,spring,autumn,summer } repre-
senting elements present into membranes, they respectively stand for male, female,
cub, resources, sources and seasons, season are used as control elements

2. Γ is a �nite alphabet of symbols { E,L,P,Cr,Cl,Scr,Scl,F } representing possible type
of membranes:

(a) E : Environment

(b) L : Location

(c) P : Pride

(d) Cr: Court

(e) Cl: Coalition

(f) Scr: SubCourt

(g) Scl: SubCoalition

(h) F : Family

3. Θ represents membranes' order:

(a) L ⊂ E
(b) P ⊂ L
(c) Cr ⊂ P
(d) Cl ⊂ Cr
(e) Scr ⊂ Cl
(f) Scl ⊂ Scr
(g) F ⊂ Scl

4. ω0 is a tuple of values in Σ,Γ = {. . . } who describes initial state of system, where Σ is
the set of elements that we can �nd in a membrane of P and Γ is the set of membrane
of P. The elements belonging both sets associated to some array of attributes.

5. DΓ = {DΓE , DΓL , DΓP , DΓCr , DΓCl , DΓScr,DΓScl
,DΓF
} Ordered set of domains, in a

one-to-one correspondence with elements of set Γ.

(a) DΓE = {geneticcode, privation}
Genetic code indicates the most suitable lion who can survive as a peripatetic,
Privation indicates a percentage of weakness that can a�ect lion's health.

(b) DΓL = {geneticcode, }
Genetic code indicates the most suitable lion who can survive in a speci�c
location.

(c) DΓP = {Health, Strength,Requirements, Coalitions}
Health indicates the total amount of health property taken from every members
of a Pride, Strength indicates the total amount of Strength property taken from
every members of a Pride, Requirements indicates total food requirements for
a pride, Coalitions indicates the number of coalitions present in a Pride.

(d) DΓCr = {Health, Strength,Requirements}
Health indicates the total amount of Health property taken from every members
of a Court, Strength indicates the total amount of Strength property taken from
every members of a Court, Requirements indicates total food requirements for
a pride.

(e) DΓCl = {Health, Strength,Requirements,Resident}
Health indicates the total amount of Health property taken from every mem-
bers of a Coalition, Strength indicates the total amount of Strength property
taken from every members of a Coalition, Requirements indicates total food
requirements for a pride. Resident indicates if a Coalition is resident or not.

(f) DΓScr = {Health, Strength,Requirements}
Health indicates the total amount of Health property taken from every mem-
bers of a SubCourt, Strength indicates the total amount of Strength property
taken from every members of a SubCourt, Requirements indicates total food
requirements for a pride.

(g) DΓScl = {Health, Strength,Requirements}
Health indicates the total amount of Health property taken from every members
of a SubCoalition, Strength indicates the total amount of Strength property
taken from every members of a SubCoalition, Requirements indicates total food
requirements for a pride.

(h) DΓF = {Health, Cubs,Age}
Health indicates the total amount of Health property taken from every members
of a Family, Cubs indicates the total number of Cubs within the Family, Age
indicates the age of the cubs, all cubs have the same age.

6. DΣ = {DΣm , DΣf , DΣc , DΣr} Ordered set of domains, in a one-to-one correspondence
with elements of set Σ.

(a) DΣm = {Age, Strength,Geneticcode, resident}
Age indicates how old a lion is, Strength indicates the percentage of success for
a lion to defeat other lions, according to strength of opponents, Genetic code
indicates if a lion is suitable for the location in which he lives, resident is a �ag,
representing if the male is resident into a pride from more than one year or if it
is just arrived after a take over. Instead, if he have just take over the pride, he
will kill the cubs of females.

(b) DΣf = {Age, Strength,Geneticcode, Secondarygeneticcode, }
Age indicates how old a lioness is, Strength indicates the percentage of success
for a lioness to defeat other lions, according to the strength of opponents, Ge-
netic code indicates if a lioness is suitable for the location in where she lives

while secondary genetic code indicates the genetic code of the male, if she is in
the family way, it's empty otherwise.

(c) DΣc = {Geneticcode, Sex}
Cubs don't need an age, it is recorded in the Family attributes, Genetic Code
will be useful once they will become adults, sex is necessary to produce a male
or a female from a cub.

(d) DΣr = {Rating,Amount}
Rating indicates how fast a resource grow up, Amount indicates how much food
requirements can satisfy.

(e) DΣs = {ε}
this item has no attributes it is necessary only to produce new resources.

(f) DΣspring = {duration}
duration indicates how many iterations this control item waits before it expires.

(g) DΣsummer = {duration}
duration indicates how many iterations this control item waits before it expires.

(h) DΣautumn = {duration}
duration indicates how many iterations this control item waits before it expires.

(i) DΣwinter = {duration}
duration indicates how many iterations this control item waits before it expires.

7. The system evolves within a cycle of four seasons:

In each season we can see a di�erent set of rules for each membrane:

(a) Season 1:
During season 1, new lions are born; Families are created; a coalition, stationing
in the same location of a Pride where there is only a coalition, can enter into it;
in the same season lions collect food. During the hunt some lion could die.

(b) Season 2
During season 2, there could be a take over; a Subcoalition too old to be con-
sidered a cub could be expelled from pride, Coalition or Subcoalition present in
a location could be expelled.

(c) Season 3
This is the mating season, males leave their membranes and, from Pride mem-
brane enter in court membrane, where they mate with females; this season takes
eight iterations, to allow this shifting of lions and their return to their pride

(d) Season 4
Winter has come, this is the harder season for lions, in this season, those who
survives get older otherwise they dies. We use this season to simulate ageing,
families old enough become subcourts, other families become subcoalitions, sub-
coalitions get stronger and become coalition, ready to try an internal take over
in the next season.

8. The set of rules R is divided in subsets by membranes: (E,L,P,Cr,Cl,Scr,Scl,F) to
make reading easier we decided to divide them even further according to the seasons.

(a) Season 1

i. RE = {
spring → summer
Cl, Lcoalitions<2 → Clin(L), L
}
During Season1, coalitions move from environment to locations where the
number of coalitions is less than 2. In each membrane we have an element
usually used as promoter, that changes from spring to summer.

ii. RL = {
spring → summer
P, r → P, r
Phealth, ramount → Phealth+=amount

Phealth, ramount → Phealth+=amount, win(P)

P, r → P, r, win(P)

Cl, Pcoalitions<2 → Clin(P)

}
During Season1, a Pride hunts a resource, there are four rules that managed
this event and which represent the possibility of capturing the food, or
not, and the possibility that during the hunt there would be casualties,
or injuries. In the same season a Coalitions moves into a pride where the
number of coalitions is less than 2.

iii. RP = {
spring → summer
w,Cl→ win(Cl), cl
w,Cr → win(Cr), cl
w, Scl→ win(Scl), cl
w, Scr → win(Scr), cl
}
During Season1, a wound (represented by one elements generated from �ght
rules) received by Pride goes into a coalition, a subcoalition, a subcourt or
into a court.

iv. RCr = {
spring → summer
fcode,code2,strength,age → Fhealth,age=0,litter=2({f, ccode=mix(codef , code

2
f

), ccode=mix(codef , code
2
f

)}
fcode,code2,strength,age → Fhealth,age=0,litter=3({f, ccode=mix(codef , code

2
f

), ccode=mix(codef , code
2
f

),

ccode=mix(codef , code
2
f

)})
fcode,code2,strength,age → Fhealth,age=0,litter=4({f, ccode=mix(codef , code

2
f

), ccode=mix(codef , code
2
f

),

ccode=mix(codef , code
2
f

), ccode=mix(codef , code
2
f

)})
fcode,code2,strength,age → Fhealth,age=0,litter=6({f, ccode=mix(codef , code

2
f

), ccode=mix(codef , code
2
f

),

ccode=mix(codef , code
2
f

), ccode=mix(codef , code
2
f

), ccode=mix(codef , code
2
f

)ccode=mix(codef , code
2
f

)})
Scl→ Sclout;
}
During Season1, a pregnant female, who copied in code2 the genetic code
of a male, generates a Family, four di�erent rules concur to decide whether
the number of cubs in the family will be 2, 3, 4 or 6, in this season a sub-
coalition, generated from a Family, goes out from the court to the Pride.

v. RCl = {
spring → summer
w,m→ m
w,m→ _
}
During Season1, in each membrane we have an element usually used as
promoter, that changes from spring to summer.

vi. RScr = {
spring → summer
w, f → f
w, f → _
c→ f
}
During Season1, in each membrane we have an element usually used as
promoter, that changes from spring to summer.

vii. RScl = {
spring → summer
w,m→ m
w,m→ _
c→ m
}
During Season1, in each membrane we have an element usually used as
promoter, that changes from spring to summer.

viii. RF = {
spring → summer
During Season1, in each membrane we have an element usually used as
promoter, that changes from spring to summer.

(b) Season 2

i. RE = {
summer → autumn
m→ min(Cl)|Cl
}
During Season 2, in each membrane we have an element usually used as
promoter, that changes from summer to autumn.

ii. RL = {
summer → autumn
Cl→ Clout
}
During Season 2, a Coalition exits from location to environment.

iii. RP = {
summer → autumn

Clstrenght, Clstrenght′
strenght/(strenght+strenght′)→ Clresident=true, Clout

Clstrenght, Clstrenght′
strenght′/(strenght+strenght′)→ Clresident=true, Clout

}
During Season 2, two coalitions �ght and one is expelled from pride, the
coalition who won becomes the resident one.

iv. RCr = {
summer → autumn
w, f → f
w, f → _
}
During Season 2, a wound kills a female or is consumed.

v. RCl = {
w,m→ m
w,m→ _
summer → autumn
}
During Season 2, a wound kills a male or is consumed.

vi. RScr = {
summer → autumn
w, f → _
}
During Season 2, a wound kills a female

vii. RScl = {
summer → autumn
w, c→ _
}
During Season 2, a wound kills a male

viii. RF = {
summer → autumn

(c) Season 3

i. RE = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

L,Cl→ ClL, L
}
During Season 3, in each membrane we have an element usually used as
promoter, that changes from autumn to winter, if duration > 8 else duration
is increased by one.

ii. RL = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

}
During Season 3, in each membrane we have an element usually used as
promoter, that changes from autumn to winter, if duration > 8 else duration
is increased by one.

iii. RP = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

m,Cr
duration (mod 2)=0→ min(Cr), Cr

m,Cl
duration (mod 2)=1→ min(Cl), Cl

}
During Season 3, males exit from coalition and enter into court to mate
with females.

iv. RCr = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

m
duration (mod 2)=1→ mout

f
strengthm→ fcode2=codem |m

f → f |m
F → f |mresident=false

}
During Season 3, males exit from court to pride, after that they mated with
females, if males are not resident (The coalition was set as resident but not
males inside) a Family produces a female.

v. RCl = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

m
duration (mod 2)=0→ mout

}

vi. RScr = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

}
During Season 3, in each membrane we have an element usually used as
promoter, that changes from autumn to winter, if duration > 8 else duration
is increased by one.

vii. RScl = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

c→ m;
}
During Season 3, a cub become a male.

viii. RF = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

(d) Season 4

i. RE = {
winter → spring
}
During Season 4, in each membrane we have an element usually used as
promoter, that changes from winter to spring.

ii. RL = {
winter → spring
}

During Season 4, in each membrane we have an element usually used as
promoter, that changes from winter to spring.

iii. RP = {
winter → spring
Scl→ Sclage+1

mresident
φ(age)→ mresident=resident′,age+1|Clresident′

m
φ(age)→ _

}
During Season 4, a male ages or dies according to the rules and a sub-
coalition ages. Value of resident attribute of males is set with the value of
resident of Coalition, so males that were not resident in Season 3 become
resident.

iv. RCr = {
winter → spring
Scr → Scrage+1

F → Fage+1

Fage>3 → Cl
Fage>3 → Cr

f
φ(age)→ fage+1

f
φ(age)→ _

}
During Season 4, a female ages or dies according to the rules and a subcourt
ages.

v. RCl = {
winter → spring

m
φ(age)→ mage+1

m
φ(age)→ _

}
During Season 4, a male ages or dies according to the rules.

vi. RScr = {
winter → spring

f
φ(age→ fage+1

f
φ(age→ _

}
During Season 4, a female ages or dies according to the rules.

vii. RScl = {
winter → spring

mage
φ(age)→ mage+1

mage
φ(age)→ _

}
During Season 4, a male ages or dies according to the rules.

viii. RF = {
winter → spring

fage
φ(age→ fage+1

fage
φ(age→ _

c
φ(age→ _|Fage

c
φ(age→ c|Fage

}
During Season 4, a female ages or dies according to the rules, a cubs dies
or survives according to the rules.

where φ(age) : is a function that return 1 if age < 10, 0 if age = 16, 0, 5 if
age ≥ 10, 0, 5 if age ≤ 3

9. The set of update functions U is divided in subsets by membranes:
(E,L,P,Cr,Cl,Scr,Scl,F)

(a) UE = {
Empty
}

(b) UL = {
φCoalitions : arity(Cl) ∈ L
}
this function calculates the number of Coalitions into a location.

(c) UP = {
φCoalitions : arity(Cl) ∈ P
φStrength : StrengthCr + StrengthCl + Σ∀Scl∈wPStrengthscl
}
this functions calculate the number of Coalitions into a Pride and the strength
of a Pride.

(d) UCr = {
φStrength : Σ∀f∈wCrlStrengthf + Σ∀Scr∈wCrStrengthScr
}
this function calculates the strength of a Court.

(e) UCl = {
φStrength : Σ∀m∈wClStrengthm
}
this function calculates the strength of a Coalition.

(f) UScr = {
φStrength : Σ∀f∈wScrStrengthf
}
this function calculates the strength of a subCourt.

(g) UScl = {
φStrength : Σ∀m∈wSclStrengthm
}
this function calculates the strength of a subCoalition.

(h) UF = {
φCubs : arity(Cubs) ∈ wF
} this function calculates the number of cubs into a Family.

6.7 Experimental results

The simulations we run, with di�erent sets of parameters and starting conditions, lead to
realistic outcomes in accord with the observations of the last 20 years in Serengeti Park.
Obviously to have a perfect model we have to add and model a lot of other facts about
the life and death of Lions in the park. Anyway to show the features of MAPP systems
this level of detail is more than enough.

6.8 Data and results

From our model we can observe that, once we reach a certain complexity level, which
includes a great number of elements and iterations, the system reaches a certain stability.
Where the number of elements of a pride in one location does not grow and the coalition
within it is strong enough to not su�er a take over from foreign coalitions.
In �gure 6.7 we can see a Pride that starts with only one male and one female and a
subcourt of three young females. At time t12 young females grow and become adult, so
the number of young females decreases to 0 and the number of adult females increases to
3, while an adult female dies. The pride grows as females reproduce and, between time
t25 and time t58, the number of cubs increases. At time t83 we can see 5 females, 2 young
females 1 male and 4 cubs. At time t84 three old females die because of their old age, three
young females become adult, and a family changes in one subCoalition. At time t85 10 new
cubs are born and at time t96 a subCoalition evolves in coalition, ready for an inner take
over. Graph shows the evolution of pride within a number of 120 iterations, that means 10
years, because every 12 iterations our system passes through all seasons. It is important to
note that most of the signi�cant changes take place along seven years. During this time,
females become pregnant, families grow and take their places into cohorts or coalitions,
lions begin to die. This example shows a period of only ten years, to describe what happens
from the birth of a pride, and it gives a comprehensive idea of pride's dynamics. Longer
simulations show that a situation where deaths reduce the population growth and lead to
a substantial stability of the system is �nally reached.
In �gure 6.8 we can see a Pride starting with only one family composed by an adult

Figure 6.7: Pride starts with only one male and one female and a subcourt of three young
females

female and three cubs, six young females and two coalitions each one consisting of one
male. At time t12 we see the e�ect of a take over, a family dies with its cubs. The young
females become adult and one new family with four cubs is born. At time t25 we see that
other two families are born and we have twelve cubs. The oldest four grow up and become
young females, forming a subcourt at time t59 while at time t72 four young females become
adults, four cubs become young males, forming a subpride and four cubs become young
females. At t85 the lone adult male dies, young females become adult, and young males
become adult. At time t88 four females die. At time t95 six new cubs are born.

Figure 6.8: Pride starting with only one family composed by a single adult female and
three cubs, six young females and two adult males

These are just two examples of what we can produce as output, using our model and
our software. We wanted to propose a comprehensive and at the same time easy to read
overview of the social dynamics of Serengeti lions. Changing certain settings may o�er
di�erent solutions, such as the di�culty in �nding food, or the rate of death or birth of
lions, the di�erent life expectancy between males and females, all of these are parameters
that can a�ect results.

This model can be used to predict what happens in a pride when an outside coalition
is introduced in the same environment. Su�ciently strong residents adult Lions can stand
up to any foreign coalitions and bring their own cubs to reach the age of maturity, while a
weak coalition is unable to maintain control of the pride and makes it liable to a take over.

6.9 Conclusion

In conclusion we say MAPP systems lose some features about maximum parallelism but
gain the possibility to have membranes and aggregations of elements/animals interact di-
rectly under special rules who can take them as reagents. Our results on the case study
are a good match with those of the chosen reference texts [66, 65, 72]

We want to highlight again how case studies choosen for those chapters are instrumental
in showing the instruments made available by formalisms and how their evolution brings
us to MAPP system.

Our focus, more than utilizing correct parameters and accurately predicting outcomes,
is on showing how from credible parameters estimations we can obtain scenarios useful to
extract clues about the examined model.

Those cluese can be used to suggest new experiments suitable to better evaluate para-
ments, describe an iterative modeling process which can lead us to reconsider the model
including new facts and attributes, validate theories or propose new ones.

Of course a purely predictive model is possible granted you have the right amount of
data gathered on the �eld, in this case it's possible to obrain a model useful for the decision
making or the biologist community.

Speaking of which one of the next developments we are moving towards is the creation
of an interface which could make this modeling style more appealing outside the computer
scientists community.

What we would like to propose is mainly a more standardized formalization to de�ne
the set of terminal elements, the set of membranes and rules. Through this we should be
able to obtain simpler models, as useful as more widespread agent based models.

Chapter 7

Conclusions and future developments

What drives us to de�ne MPP systems starting from P systems, APP systems starting from
MPP systems and MAPPS starting from APP systems are new families/groupings/domains
of problems which require new tools to be described and simulated successfully.

It is possible the next challenge is about problems with an entire ecosystem with di�er-
ent species living togheter. One complex grid describes relations between di�erent species,
some species living in sympatry, others in prey-predator relationship, others in symbiosis.

It is possible, to add complexity to the system, for one of the involved species to be
humans. What kind of real problems can be modelled with MAPP systems? Is this tool
for theoretical models only or can it be used by biologist too?
We already produced some general purpose engines to run simulations expressed in MAPP
formalism. This code take as input one XML-like description of the model and some initial
state (list of elements presents into the starting internal state of any membrane of the sys-
tem). After generating the model this engine can run simulations with a �xed number of
computational steps to give us as output some �nal internal state of the system to study.
Anyway, since there is still a lot to work to do with this kind of instruments, here we
propose two of many possible research avenues: in the �rst one we show how is possible to
emulate agent-based systems with MAPP with a minor change in the way we model the
system entities. In the second one we shortly describe the advantage we can obtain using
again PRISM to translate APP and MAPP systems, like we do for the MPP.

7.1 The use of MPP, APP and MPP systems and other con-
siderations

In Fig. 7.1 we can see the main features of the systems presented in this thesis, which
were introduced, from system to sytem, in order to o�er modelling tools for the various
phenomena encountered. Surely agent based systems have a big appeal for the ecologist
community and the rule based approach often results too strictly formal to be really used
outside the Computer Science academia.
Moreover, focus on rules rather than on agents gives us another perspective to the study of
phenomena. We think this change of perspective can be very useful in some speci�c cases,
for example when, in some situation or within some speci�c experiments, is more easy
observe interactions whenever they happen rather than the full behaviour of individuals.

99

Figure 7.1: here we summarize the main features of the formalism proposed in this thesis

Is hard to give an accurate comparison between MAPP systems and agent-based sys-
tems, bu I will do some very simple considerations:
- is possible to emulate simple agent-based system with an APP system, for any "action"
one agent in the agent-based system can do, you can shape a computation stage using
control objects in APP system.
In that stage you put in place two rules (or more, if the action can have more than one
outcome), one rule doesn't change the element which acts as reagent. This rule models
the fact that the agent doesn't take that action, while the other rule changes the element
which acts as reagent, to model the fact that the agent takes that action. Stage by stage
you describe the behaviour of the agent-based system, de�ning a succession of actions any
element in the system takes or not in his life.
Probabilistic function associated to rules will take as input only attributes of the object
used as reagent, to rate the possibility of the action happening (or not).

- is possible to apply the ODD protocol as a reference to analyze the APP (and MAPP)
system too. If we consider the main points only they can be applied to our system:
State variables and scales - in APP systems is possible to �nd variables and parameters in
two main features. Variables are associated to any element as attributes, any attributes are
well de�ned and their use is de�ned by the system rules. Variables are also present in the
rate functions formalization associated to the system rules. Like the case study we present
in this thesis, the documentation of the model will always clearly state any parameter used
in it.
Process overview and scheduling - often it is not speci�ed in what sequence model entities
are processed and when state variables are updated, but in this kind of system the sequence
is de�ned by control objects and by the rules which compute when one control object (and
computational stage) shifts into another. In any di�erent stage all the elements who can
be a reagent of one of the rules enabled in that stage by control objects are processed. The
updates of the variables are all parallel, after the maximal set of rules to be applied has
been computed.
emphInizialization and Input Data - the initial state of the system, as any other state of
the system is always clearly de�ned by the multiset of elements in the Env membrane with
the value of attributes associated to each element. Input data of the system are completed
by parameters of the rules and are also clearly stated in the formulation of the model.
Submodels - the idea of submodel are always present in ours systems, in MAPP system
any membrane de�ne a submodel and the cascade computation of the whole system put
in evidence the skeleton of the model. Is easy divide the model in membranes or stages
submodels and add to a model new modules adding elements to the de�nition.
In conclusion some of the point od ODD protocol can be applyed to check some strong
point of the three systems presented in the thesis as well, some features anyway can be
better described by formal de�nitions and inference rules.

- Global sensitivity analysis (SA) aims to quantify the relative importance of input vari-
ables or factors in determining the output value of the whole system. We can identify two
di�erent schools of thought: the local SA school, and the global one. In the �rst one, the
local response of the system output, obtained by varyng input factors one at a time, is
investigated while holding the others �xed to a central (nominal) value. The analysis is
a run at a given central point in the input factors space, and the volume of the region
explored is nil. The second SA school is more ambitious in two respects: �rst, the space
of the input factors is explored within a �nite (or even in�nite) region and, second, the
output variation induced by a factor is taken globally - that is, averaged over the variation
of all factors.
This kind of investigations on MPP, APP and MAPP system is hard because the system's
output depends on both the initial multiset of elements (and the associated attributes val-
ues) and on the parameters associated to rules and rate functions. Translation in PRISM
language can help in this kind of analysis of model behaviour, but any single model needs
a speci�c dissertation and study.

7.2 Use of MAPP systems to emulate agent based models

This section will not develop further MAPP systems but will try to change perspective by
using them with another goal. We plan to extend the paradigms the formalism can deal
with. We consider a MAPPS with this de�nition:
- Γ is the set of terminal elements. The set Γ is composed by the union of two sets. The
�rst one is composed by terminal elements called �motivation�, for example {hunger, fear,
procreation, aggression}. The second set contains common elements which are important
for the model but don't need a �ne modellation like {prey, predator}
- Σ is composed by the Enviroment membrane and only another level of membranes called
�Individuals�. Σ = {Enviroment, Individual}
- DΓ is empty, for now we consider all the �motivation� elements without attributes.
- DΣ is composed only by the set of attributes of Individuals DIndividual, the set DIndividual

has only the attribute �behaviour�. The domain of the attribute �behaviour� is a spe-
cial set of possible actions the �Individual� is willing to do, for example behaviour ∈
{mate, eat, hide, attack}.
-R is the set of sets of rules associated to membranes ∈ Σ, soR = {REnviroment, RIndividual}.
The set REnviroment is composed by rules that manage the interaction between membranes
modelingl individuals. All the probabilistic functions associated to the rules in REnviroment
take into account the attribute �behaviour� of any �Individual�.
For example, if we suppose our Individuals are Lions, we can have a rule in the Enviroment
to model one hungry Lion who eats some prey:

Lion(eat,S), prey → Individual(eat,S∪{prey)}

The meaning of this rule is �a lion which wants to eat something meets a prey, with
some probability p the outcome of the encounter will be the lion with the prey added
inside his internal state S to model the lion eating the prey�.
In the next computational step of that lion's internal state, the prey will satisfy the hunger
of the lion, andit will be more likely he wants to do something else than hunting.
The set RIndividual is composed by rules that manage the internal decision of the individu-
als, the �motivation� elements inside the individual interact with each other to evolve the
internal state of individuals.
For example:

hunger, prey → _,
prey, prey → fat,

The main feature of this paradigm is the work of the single function inside the set
UIndividual. This update function takes into account the internal state of each Individual
membrane and gives the new value of the attribute �behaviour� to that Individual.
In a very simple example of U(Individual,behaviour) the function will set the �behaviour� value
according with the prevalent �motivation� element present in its internal state. If the num-
ber of �hunger� elements inside Individual internal state surpasses all the other elements,
then the �behaviour� will be �eat�, if �fear� is the most present �motivation� element then
the �behaviour� will be �hide� and so on.

Without others details the idea behind this particular application of the MAPP sys-
tems is to use the last membrane of Σ set to model individuals of the model. If in the
MAPP model we have terminal elements �MaleLion� and �FemaleLion�, in this application
we will have two membrane called �MaleLion� and �FemaleLion�. Any membrane which
models one individual has one attribute �behaviour�. The value assumed by the attribute
�behaviour� for any elements selects the subset of rules of the Enviroment which can take
the Individual as reagent.
The attribute �behaviour� works in a very similar way to control objects. The di�erence is
that control objects are used to divide rules in subsets associated to di�erent computational
stage, while the attribute �behaviour� is used to divide rules applicable to the individual
into subsets associated with what the Individual is willing to do.
Summing up:

- Any membrane models one Individual. The internal state of any membrane which models
an individual can be composed only by elements in Γ set, both �motivation� elements and
�common� elements.
- The internal computation step takes the internal state as input and has the new internal
state as output.
- After any �individual� membrane calculates its internal state, the update function of each
membrane calculates the new value of the �behaviour� attribute.

- When all membranes which model one Individual have a new �behaviour� attribute, the
computation step of upper membranes takes place. The rule sets of the membrane takes
the Individual's membranes as reagents taking into account the �behaviour� attribute.

- All the internal states of all membranes are calculated like MAPP systems till the com-
putational full step is completed, and so on.

We still use a formalism derived from P systems, but the individual membranes work
in a similar way to agents in a classic agent-based model. The membranes/Individuals
independently decide on their internal state what actions are possible, and run in parallel,
interacting with each other to make the system evolve.
In [134] something very similar is proposed, but at cellular and tissue level. Cells are
described as membranes with their internal composition (and computations). They are
inside an enviroment membrane which contains all the system. Cells can be of di�erent
kinds (like we model di�erent species), also cells can be born or die and interact with each
others with some communication rules. �Population P systems� will provide a good guide
to what kind of property is necessary to enforce when we will be working on this kind of

formalisms. Anyway this use of MAPP systems still needs lot of work but we think this can
be a good direction to improve the use of the formalism and his way to model agents-like
in general.

7.3 PRISM translations

MPP system models can be easily simulated and translated into the PRISM input lan-
guage to enable statistical model checking of properties. In chapter four case study we
have demonstrated that the use of such two analysis techniques allows complementary as-
pects of the systems to be studied, and hypotheses to be veri�ed. As a future research
direction we hope to provide translations in PRISM for the others two formalisms (APP
and MAPP systems). Attributes and membranes raise some problems to overcome for
a correct translation. For sureit will be useful to have this kind of analysis tool for our
models, in order to give better previsions and to de�ne more rigorously the models' prob-
abilistic properties.

Bibliography

[1] Cardelli Luca �Brane Calculi, Interactions of biological membranes.� Proceedings of
Computational Methods in systems Biology. 2004.

[2] Simao, E., et al. �Qualitative modelling of regulated metabolic pathways: application
to the tryptophan biosynthesis in E. coli.� Bioinformatics 21.suppl 2 (2005): ii190-
ii196.

[3] Ku�ner, Robert, Ralf Zimmer, and Thomas Lengauer. �Pathway analysis in
metabolic databases via di�erential metabolic display (DMD).� Bioinformatics 16.9
(2000): 825-836.

[4] Nagasaki, Masao, et al. �Bio-calculus: its concept and molecular interaction.�
Genome Informatics 10 (1999): 133-143.

[5] John, Mathias, Roland Ewald, and Adelinde M. Uhrmacher. �A Spatial Extension
to the p Calculus.� Electronic notes in theoretical computer science 194.3 (2008):
133-148.

[6] Breitling, Rainer, et al. �A structured approach for the engineering of biochemical
network models, illustrated for signalling pathways.� Brie�ngs in bioinformatics 9.5
(2008): 404-421.

[7] Gupta, Simone, et al. �Boolean network analysis of a neurotransmitter signaling
pathway.� Journal of theoretical biology 244.3 (2007): 463-469.

[8] Li, Fangting, et al. �The yeast cell-cycle network is robustly designed.� Proceedings
of the National Academy of Sciences of the United States of America 101.14 (2004):
4781-4786.

[9] Shmulevich, Ilya, et al. �Probabilistic Boolean networks: a rule-based uncertainty
model for gene regulatory networks.� Bioinformatics 18.2 (2002): 261-274.

[10] Akutsu, Tatsuya, Satoru Miyano, and Satoru Kuhara. �Inferring qualitative relations
in genetic networks and metabolic pathways.� Bioinformatics 16.8 (2000): 727-734.

[11] D'haeseleer, Patrik, Shoudan Liang, and Roland Somogyi. �Genetic network in-
ference: from co-expression clustering to reverse engineering.� Bioinformatics 16.8
(2000): 707-726.

[12] Akutsu, Tatsuya, Satoru Miyano, and Satoru Kuhara. �Identi�cation of genetic net-
works from a small number of gene expression patterns under the Boolean network
model.� Paci�c symposium on biocomputing. Vol. 4. 1999.

[13] Ermentrout, G. Bard, and Leah Edelstein-Keshet. �Cellular automata approaches to
biological modeling.� Journal of theoretical Biology 160.1 (1993): 97-133.

105

[14] Kau�man, Stuart A. �Metabolic stability and epigenesis in randomly constructed
genetic nets.� Journal of theoretical biology 22.3 (1969): 437-467.

[15] Prusinkiewicz, Przemyslaw, and Aristid Lindenmayer. The algorithmic beauty of
plants. Springer Science & Business Media, 2012.

[16] Hardy, Simon, and Pierre N. Robillard. �Petri net-based method for the analysis
of the dynamics of signal propagation in signaling pathways.� Bioinformatics 24.2
(2008): 209-217.

[17] Sackmann, Andrea, Monika Heiner, and Ina Koch. �Application of Petri net based
analysis techniques to signal transduction pathways.� BMC bioinformatics 7.1 (2006):
1.

[18] Koch, Ina, Bjorn H. Junker, and Monika Heiner. �Application of Petri net theory for
modelling and validation of the sucrose breakdown pathway in the potato tuber.�
Bioinformatics 21.7 (2005): 1219-1226.

[19] Zevedei-Oancea, Ionela, and Stefan Schuster. �Topological analysis of metabolic net-
works based on Petri net theory.� In silico biology 3.3 (2003): 323-345.

[20] Reddy, Venkatramana N., Michael L. Mavrovouniotis, and Michael N. Liebman.
�Petri net representations in metabolic pathways.� ISMB. Vol. 93. 1993.

[21] Regev, Aviv, and Ehud Shapiro. �Cellular abstractions: Cells as computation.� Na-
ture 419.6905 (2002): 343-343.

[22] Regev, Aviv, William Silverman, and Ehud Shapiro. �Representation and simulation
of biochemical processes using the-calculus process algebra.� Paci�c symposium on
biocomputing. Vol. 6. 2001.

[23] Chen, Li, et al. �Modelling and simulation of signal transductions in an apoptosis
pathway by using timed Petri nets.� Journal of biosciences 32.1 (2007): 113-127.

[24] Danos, Vincent, and Sylvain Pradalier. �Projective brane calculus.� Computational
Methods in systems Biology. Springer Berlin Heidelberg, 2004.

[25] Cardelli L. Computational Methods in systems Biology. Springer, Berlin Heidelberg;
2005

[26] Priami, Corrado, et al. �Application of a stochastic name-passing calculus to repre-
sentation and simulation of molecular processes.� Information processing letters 80.1
(2001): 25-31.

[27] Priami, Corrado. �Stochastic π-calculus.� The Computer Journal 38.7 (1995): 578-
589.

[28] Penna, Pierluigi, et al. �DISPAS: an agent-based tool for the management of �shing
e�ort.� Software Engineering and Formal Methods. Springer International Publish-
ing, 2013. 362-367.

[29] De Jong, Hidde, et al. �Qualitative simulation of genetic regulatory networks using
piecewise-linear models.� Bulletin of mathematical biology 66.2 (2004): 301-340.

[30] Turner, Thomas E., Santiago Schnell, and Kevin Burrage. �Stochastic approaches
for modelling in vivo reactions.� Computational biology and chemistry 28.3 (2004):
165-178.

[31] Theobald, Uwe, et al. �In vivo analysis of metabolic dynamics in Saccharomyces cere-
visiae: I. Experimental observations.� Biotechnology and bioengineering 55.2 (1997):
305-316.

[32] Batt, Grégory, et al. �Validation of qualitative models of genetic regulatory networks
by model checking: analysis of the nutritional stress response in Escherichia coli.�
Bioinformatics 21.suppl 1 (2005): i19-i28.

[33] Chen, Ting, Hongyu L. He, and George M. Church. �Modeling gene expression with
di�erential equations.� Paci�c symposium on biocomputing. Vol. 4. No. 29. 1999.

[34] Tyson, John J., Katherine C. Chen, and Bela Novak. �Sni�ers, buzzers, toggles and
blinkers: dynamics of regulatory and signaling pathways in the cell.� Current opinion
in cell biology 15.2 (2003): 221-231.

[35] Chassagnole, Christophe, et al. �Dynamic modeling of the central carbon metabolism
of Escherichia coli.� Biotechnology and bioengineering 79.1 (2002): 53-73.

[36] Gavrilets, Sergey, et al. �Case studies and mathematical models of ecological specia-
tion. 1. Cichlids in a crater lake.� Molecular Ecology 16.14 (2007): 2893-2909.

[37] Barbuti, Roberto, et al. �A methodology for the stochastic modeling and simulation of
sympatric speciation by sexual selection.� Journal of Biological systems 17.03 (2009):
349-376.

[38] Manca, Vincenzo, and Luca Bianco. �Biological networks in metabolic P systems.�
Biosystems 91.3 (2008): 489-498.

[39] Gillespie, Daniel T. �Exact stochastic simulation of coupled chemical reactions.� The
journal of physical chemistry 81.25 (1977): 2340-2361.

[40] Cardona, Mónica, et al. �A computational modeling for real ecosystems based on P
systems.� Natural Computing 10.1 (2011): 39-53.

[41] Ciocchetta, Federica, and Jane Hillston. �Bio-PEPA: A framework for the modelling
and analysis of biological systems.� Theoretical Computer Science 410.33 (2009):
3065-3084.

[42] Ciocchetta, Federica, and Jane Hillston. �Bio-PEPA: an extension of the process
algebra PEPA for biochemical networks.� Electronic Notes in Theoretical Computer
Science 194.3 (2008): 103-117.

[43] Grimm, Volker, and Ilse Storch. �Minimum viable population size of capercaillie
Tetrao urogallus: results from a stochastic model.� Wildlife Biology 6.4 (2000): 219-
225.

[44] Lindenmayer, D. B., et al. �Predictions of the impacts of changes in population size
and environmental variablitity on Leadbeater's possum, Gymnobelideus leadbeateri
McCoy (Marsupialia: Petauridae) using population viability analysis: an application
of the computer program VORTEX.� Wildlife Research 20.1 (1993): 67-85.

[45] Bustamante, Javier. �Use of simulation models to plan species reintroductions: the
case of the bearded vulture in southern Spain.� Animal Conservation 1.4 (1998):
229-238.

[46] Lacy, Robert C. �Structure of the VORTEX simulation model for population viability
analysis.� ecological Bulletins (2000): 191-203.

[47] Efthymiou, Xenia, and Anna Philippou. �A process calculus for spatially-explicit
ecological models.� Application of Membrane Computing, Concurrency and Agent-
based Modelling in Population Biology (AMCA-POP 2010) (2010): 84-78.

[48] Philippou, Anna, Mauricio Toro, and Margarita Antonaki. �Simulation and Veri�ca-
tion in a Process Calculus for Spatially-Explicit Ecological Models.� Sci. Ann. Comp.
Sci. 23.1 (2013): 119-167.

[49] Cardona, Mónica, et al. �P System based model of an ecosystem of the scavenger
birds.� (2009).

[50] Cardona, Mónica, et al. �Modeling ecosystems using P systems: the bearded vulture,
a case study.� Membrane Computing. Springer Berlin Heidelberg, 2008. 137-156.

[51] Coria, Cesar Augusto Nieto, et al. �Sea-scale agent-based simulator of solea solea in
the Adriatic sea.� Software Engineering and Formal Methods. Springer International
Publishing, 2014. 259-275.

[52] Vorburger, Christoph, and Heinz-Ulrich Reyer. �A genetic mechanism of species re-
placement in European waterfrogs?.� Conservation Genetics 4.2 (2003): 141-155.

[53] Giavitto, Jean-Louis, Grant Malcolm, and Olivier Michel. �Rewriting systems and the
modelling of biological systems.� Comparative and Functional Genomics 5.1 (2004):
95-99.

[54] Nagl, Manfred. �Graph rewriting systems and their application in biology.� Lecture
Notes in Biomathematics 11 (1976): 135-156.

[55] Holmes, Elizabeth E., et al. �Partial di�erential equations in ecology: spatial inter-
actions and population dynamics.� Ecology (1994): 17-29.

[56] Brauer, Fred, Carlos Castillo-Chavez, and Carlos Castillo-Chavez. Mathematical
models in population biology and epidemiology. Vol. 40. New York: Springer, 2001.

[57] May, Robert M. �Simple mathematical models with very complicated dynamics.�
Nature 261.5560 (1976): 459-467.

[58] Grimm, Volker, et al. �The ODD protocol: a review and �rst update.� Ecological
modelling 221.23 (2010): 2760-2768.

[59] Grimm, Volker, et al. �A standard protocol for describing individual-based and agent-
based models.� Ecological modelling 198.1 (2006): 115-126.

[60] Evans, Matthew R., et al. �Do simple models lead to generality in ecology?.� Trends
in ecology & evolution 28.10 (2013): 578-583.

[61] Grimm, Volker, and Steven F. Railsback. �Individual-based Modeling and Ecol-
ogy:(Princeton Series in Theoretical and Computational Biology).� (2005).

[62] Hamilton, S., and H. Moller. �Can PVA models using computer packages o�er useful
conservation advice? Sooty shearwaters Pu�nus griseus in New Zealand as a case
study.� Biological conservation 73.2 (1995): 107-117.

[63] Brook, Barry W., et al. �Predictive accuracy of population viability analysis in con-
servation biology.� Nature 404.6776 (2000): 385-387.

[64] Pérez-Jiménez, Mario Jesús, and Francisco José Romero-Campero. �P systems, a new
computational modelling tool for systems biology.� Transactions on Computational
systems Biology VI. Springer Berlin Heidelberg, 2006. 176-197.

[65] Sinclair, A. R. E. �Serengeti past and present.� Serengeti II: Dynamics, management,
and conservation of an ecosystem 2 (1995): 3.

[66] Sinclair, Anthony Ronald Entrican, and Peter Arcese. Serengeti II: dynamics, man-
agement, and conservation of an ecosystem. Vol. 2. University of Chicago Press,
1995.

[67] Saundry, Peter. �Protected areas.�

[68] Brendel, Jason. �Geography and Climate.�

[69] Bygott, J. David, Brian CR Bertram, and Jeannette P. Hanby. �Male lions in large
coalitions gain reproductive advantages.� (1979): 839-841.

[70] Grinnell, Jon, and Karen McComb. �Roaring and social communication in African
lions: the limitations imposed by listeners.� Animal Behaviour 62.1 (2001): 93-98.

[71] VanderWaal, Kimberly L., Anna Mosser, and Craig Packer. �Optimal group size,
dispersal decisions and postdispersal relationships in female African lions.� Animal
Behaviour 77.4 (2009): 949-954.

[72] Bauer, H., H. H. De Iongh, and I. Di Silvestre. �Lion (Panthera leo) social behaviour
in the West and Central African savannah belt.� Mammalian Biology-Zeitschrift fur
Saugetierkunde 68.4 (2003): 239-243.

[73] Woodro�e, Rosie, and Laurence G. Frank. �Lethal control of African lions (Panthera
leo): local and regional population impacts.� Animal Conservation 8.1 (2005): 91-98.

[74] Funston, P. J., et al. �Hunting by male lions: ecological in�uences and socioecological
implications.� Animal Behaviour 56.6 (1998): 1333-1345.

[75] Heinsohn, Robert. �Group territoriality in two populations of African lions.� Animal
behaviour 53.6 (1997): 1143-1147.

[76] Mosser, Anna, and Craig Packer. �Group territoriality and the bene�ts of sociality
in the African lion, Panthera leo.� Animal Behaviour 78.2 (2009): 359-370.

[77] Grinnell, Jon, Craig Packer, and Anne E. Pusey. �Cooperation in male lions: kinship,
reciprocity or mutualism?.� Animal Behaviour 49.1 (1995): 95-105.

[78] Albers, Paul CH, and Han de Vries. �Elo-rating as a tool in the sequential estimation
of dominance strengths.� Animal Behaviour 61.2 (2001): 489-495.

[79] Barbuti, Roberto, et al. �An overview on operational semantics in membrane com-
puting.� International Journal of Foundations of Computer Science 22.01 (2011):
119-131.

[80] Palagi, Elisabetta, Tommaso Paoli, and Silvana Borgognini Tarli. �Aggression and
reconciliation in two captive groups of Lemur catta.� International Journal of Pri-
matology 26.2 (2005): 279-294.

[81] Cavigelli, Sonia A., and Michael E. Pereira. �Mating season aggression and fecal
testosterone levels in male ring-tailed lemurs (Lemur catta).� Hormones and Behavior
37.3 (2000): 246-255.

[82] Nakamichi, Masayuki, and Naoki Koyama. �Social relationships among ring-tailed
lemurs (Lemur catta) in two free-ranging troops at Berenty Reserve, Madagascar.�
International Journal of Primatology 18.1 (1997): 73-93.

[83] Grimm, Volker, et al. �The ODD protocol: a review and �rst update.� Ecological
modelling 221.23 (2010): 2760-2768.

[84] Grimm, Volker, et al. �A standard protocol for describing individual-based and agent-
based models.� Ecological modelling 198.1 (2006): 115-126.

[85] Hemelrijk, Charlotte K., and Ivan Puga-Gonzalez. �An individual-oriented model on
the emergence of support in �ghts, its reciprocation and exchange.� PLoS One 7.5
(2012): e37271.

[86] McLane, Adam J., et al. �The role of agent-based models in wildlife ecology and
management.� Ecological Modelling 222.8 (2011): 1544-1556.

[87] Macal, Charles M., and Michael J. North. �Tutorial on agent-based modelling and
simulation.� Journal of simulation 4.3 (2010): 151-162.

[88] Puga-Gonzalez, Ivan, Hanno Hildenbrandt, and Charlotte K. Hemelrijk. �Emergent
patterns of social a�liation in primates, a model.� PLoS Comput Biol 5.12 (2009):
e1000630.

[89] Hemelrijk, Charlotte K. �Self-organization and natural selection in the evolution of
complex despotic societies.� The Biological Bulletin 202.3 (2002): 283-288.

[90] Hemelrijk, Charlotte K. �An individual-orientated model of the emergence of despotic
and egalitarian societies.� Proceedings of the Royal Society of London B: Biological
Sciences 266.1417 (1999): 361-369.

[91] Hemelrijk, Charlotte K. �Spatial centrality of dominants without positional prefer-
ence.� Arti�cial Life VI. Vol. 6. 1998.

[92] Gautrais, Jacques, et al. �Deciphering interactions in moving animal groups.� PLoS
Comput Biol 8.9 (2012): e1002678.

[93] Hemelrijk, Charlotte K., and Hanno Hildenbrandt. �Schools of �sh and �ocks of
birds: their shape and internal structure by self-organization.� Interface focus (2012):
rsfs20120025.

[94] Som, Christian, Bradley R. Anholt, and Heinz-Ulrich Reyer. �The e�ect of assortative
mating on the coexistence of a hybridogenetic waterfrog and its sexual host.� The
American Naturalist 156.1 (2000): 34-46.

[95] Hellriegel, B., and H-U. Reyer. �Factors in�uencing the composition of mixed popu-
lations of a hemiclonal hybrid and its sexual host.� Journal of Evolutionary Biology
13.6 (2000): 906-918.

[96] Bove, Pasquale, Paolo Milazzo, and Roberto Barbuti. �The role of deleterious mu-
tations in the stability of hybridogenetic water frog complexes.� BMC evolutionary
biology 14.1 (2014): 107.

[97] Roesli, Marzia, and Heinz-Ulrich Reyer. �Male vocalization and female choice in
the hybridogenetic Rana lessonae/Rana esculenta complex.� Animal behaviour 60.6
(2000): 745-755.

[98] Reyer, H., Gerhard Frei, and Christian Som. �Cryptic female choice: frogs reduce
clutch size when amplexed by undesired males.� Proceedings of the Royal Society of
London B: Biological Sciences 266.1433 (1999): 2101-2107.

[99] Engeler, Beat, and Heinz-Ulrich Reyer. �Choosy females and indiscriminate males:
mate choice in mixed populations of sexual and hybridogenetic water frogs (Rana
lessonae, Rana esculenta).� Behavioral Ecology 12.5 (2001): 600-606.

[100] Bergen, Kathrin, Raymond D. Semlitsch, and Heinz-Ulrich Reyer. �Hybrid female
matings are directly related to the availability of Rana lessonae and Rana esculenta
males in experimental populations.� Copeia (1997): 275-283.

[101] Abt, Gaby, and Heinz-Ulrich Reyer. �Mate choice and �tness in a hybrid frog: Rana
esculenta females prefer Rana lessonae males over their own.� Behavioral Ecology
and Sociobiology 32.4 (1993): 221-228.

[102] Tejedo, Miguel, Raymond D. Semlitsch, and Hansjurg Hotz. �Di�erential morphology
and jumping performance of newly metamorphosed frogs of the hybridogenetic Rana
esculenta complex.� Journal of Herpetology (2000): 201-210.

[103] Hotz, Hansjurg, et al. �Spontaneous heterosis in larval life-history traits of hemiclonal
frog hybrids.� Proceedings of the National Academy of Sciences 96.5 (1999): 2171-
2176.

[104] Anholt, Bradley R., et al. �Overwinter survival of Rana lessonae and its hemiclonal
associate Rana esculenta.� Ecology 84.2 (2003): 391-397.

[105] Guex, Gaston-Denis, Hansjurg Hotz, and Raymond D. Semlitsch. �Deleterious alle-
les and di�erential viability in progeny of natural hemiclonal frogs.� Evolution 56.5
(2002): 1036-1044.

[106] Vorburger, Christoph. �Fixation of deleterious mutations in clonal lineages: evidence
from hybridogenetic frogs.� Evolution 55.11 (2001): 2319-2332.

[107] Semlitsch, Raymond D., et al. �Genetic compatibility between sexual and clonal
genomes in local populations of the hybridogeneticRana esculenta complex.� Evolu-
tionary Ecology 10.5 (1996): 531-543.

[108] Berger, Leszek. �Systematics and hybridization in European green frogs of Rana
esculenta complex.� Journal of Herpetology (1973): 1-10.

[109] Kwiatkowska, Marta, Gethin Norman, and David Parker. �PRISM 4.0: Veri�cation
of probabilistic real-time systems.� Computer aided veri�cation. Springer Berlin Hei-
delberg, 2011.

[110] Sen, Koushik, Mahesh Viswanathan, and Gul Agha. �Statistical model checking of
black-box probabilistic systems.� Computer Aided Veri�cation. Springer Berlin Hei-
delberg, 2004.

[111] Hansson, Hans, and Bengt Jonsson. �A logic for reasoning about time and reliability.�
Formal aspects of computing 6.5 (1994): 512-535.

[112] Clarke, Edmund M., E. Allen Emerson, and A. Prasad Sistla. �Automatic veri�cation
of �nite-state concurrent systems using temporal logic speci�cations.� ACM Trans-
actions on Programming Languages and systems (TOPLAS) 8.2 (1986): 244-263.

[113] Clarke, Edmund M., Orna Grumberg, and Doron Peled. Model checking. MIT press,
1999.

[114] Barbuti, Roberto, et al. �AP systems �at form preserving step-by-step behaviour.�
Fundamenta Informaticae 87.1 (2008): 1.

[115] Cardona, Mónica, et al. �A computational modeling for real ecosystems based on P
systems.� Natural Computing 10.1 (2011): 39-53.

[116] Barbuti, Roberto, et al. �Simulation of spatial P system models.� Theoretical Com-
puter Science 529 (2014): 11-45.

[117] Barbuti, Roberto, et al. �Spatial P systems.� Natural Computing 10.1 (2011): 3-16.

[118] Barbuti, Roberto, et al. �Spatial calculus of looping sequences.� Electronic Notes in
Theoretical Computer Science 229.1 (2009): 21-39.

[119] Barbuti, Roberto, et al. �AP systems �at form preserving step-by-step behaviour.�
Fundamenta Informaticae 87.1 (2008): 1.

[120] Busi, Nadia. �Using well-structured transition systems to decide divergence for cat-
alytic P systems.� Theoretical Computer Science 372.2 (2007): 125-135.

[121] Barbuti, Roberto, et al. �Maximally parallel probabilistic semantics for multiset
rewriting.� Fundamenta Informaticae 112.1 (2011): 1-17.

[122] Barbuti, Roberto, et al. �The calculus of looping sequences.� Formal Methods for
Computational systems Biology. Springer Berlin Heidelberg, 2008. 387-423.

[123] Spicher, Antoine, et al. �Stochastic P systems and the simulation of biochemical
processes with dynamic compartments.� Biosystems 91.3 (2008): 458-472.

[124] Ciobanu, Gabriel, and Laura Cornacel. �Probabilistic transitions for P systems.�
Progress in Natural Science 17.4 (2007): 432-441.

[125] Pescini, Dario, et al. �Dynamical probabilistic P systems.� International Journal of
Foundations of Computer Science 17.01 (2006): 183-204.

[126] Barbuti, Roberto, et al. �A probabilistic model for molecular systems.� Fundamenta
Informaticae 67.1-3 (2005): 13-27.

[127] Madhu, Mutyam. �Probabilistic rewriting P systems.� International Journal of Foun-
dations of Computer Science 14.01 (2003): 157-166.

[128] Milner, Robin. Communicating and mobile systems: the π calculus. Cambridge uni-
versity press, 1999.

[129] Bottoni, Paolo, et al. �Membrane systems with promoters/inhibitors.� Acta Infor-
matica 38.10 (2002): 695-720.

[130] Paun, Gheorghe, and Grzegorz Rozenberg. �A guide to membrane computing.� The-
oretical Computer Science 287.1 (2002): 73-100.

[131] Paun, Gheorghe. Membrane computing: an introduction. Springer Science & Busi-
ness Media, 2012.

[132] Norris, James R. Markov chains. No. 2008. Cambridge university press, 1998.

[133] Cerone, Antonio, and Marco Scotti.�Research challenges in modelling ecosystems.�
Software Engineering and Formal Methods. Springer International Publishing, 2014.
276-293.

[134] Bernardini, Francesco, and Marian Gheorghe. �Population P systems.� J. UCS 10.5
(2004): 509-539.

[135] Bernardini, Francesco, Marian Gheorghe, and Natalio Krasnogor. �Quorum sensing
P systems.� Theoretical Computer Science 371.1 (2007): 20-33.

[136] Calzone, Laurence, FranÃ�ois Fages, and Sylvain Soliman. �BIOCHAM: an envi-
ronment for modeling biological systems and formalizing experimental knowledge.�
Bioinformatics 22.14 (2006): 1805-1807.

[137] Zevedei-Oancea, Ionela, and Stefan Schuster. �Topological analysis of metabolic net-
works based on Petri net theory." In silico biology 3.3 (2003): 323-345.

[138] Hardy, Simon, and Pierre N. Robillard. �Petri net-based method for the analysis
of the dynamics of signal propagation in signaling pathways.� Bioinformatics 24.2
(2008): 209-217.

[139] Hayes-Roth, Frederick. �Rule-based systems.�Communications of the ACM 28.9
(1985): 921-932.

[140] Pierreval, Henri. �Rule-based simulation metamodels.� European Journal of Opera-
tional Research 61.1 (1992): 6-17.

[141] shibuchi, Hisao, and Takashi Yamamoto. �Rule weight speci�cation in fuzzy rule-
based classi�cation systems.� IEEE Transactions on Fuzzy Systems 13.4 (2005): 428-
435.

[142] Danos, Vincent, and Cosimo Laneve. �Formal molecular biology� Theoretical Com-
puter Science 325.1 (2004): 69-110.

[143] Danos, Vincent, and Cosimo Laneve. �Core formal molecular biology.� European
Symposium on Programming. Springer Berlin Heidelberg, 2003.

[144] Wilson-Kanamori, John, et al. �Kappa Rule-Based Modeling in Synthetic Biology.�
Computational Methods in Synthetic Biology (2015): 105-135.

[145] Pescini, Dario, et al. �Dynamical probabilistic P systems� International Journal of
Foundations of Computer Science 17.01 (2006): 183-204.

[146] Andrei, Oana, Gabriel Ciobanu, and Dorel Lucanu. �Executable speci�cations of P
systems� International Workshop on Membrane Computing. Springer Berlin Heidel-
berg, 2004.

[147] Obtulowicz, Adam. �Probabilistic P systems.� Workshop on Membrane Computing.
Springer Berlin Heidelberg, 2002.

	Introduction
	Motivations
	Contribution and Thesis
	Publications

	Background and notations
	Multisets and Indexing
	 Markov chain
	 P systems
	Background on probabilistic and statistical model checking

	State of the Art
	Biology problems and process algebra
	Biology problems with agent-based solutions
	Biology problems by rule based and rewriting systems (P systems)
	 Other solutions for Biology problems

	 Minimal Probabilistic P Sysyems (MPP systems)
	Introduction to MPP systems, formal definition and semantics
	Probabilistic Rules and Control Objects
	A simple example
	A case study for the MPP systems: Population dynamics of Lessonae-Esculentus complexes
	Lessonae -Esculentus complexes: the MPP systems model
	Parameters of the model
	Results
	Invasion of translocated P. ridibundus
	The MPP systems model of invasion.
	Parameters of the invasion
	Results of the invasion

	Translation of MPP systems into the PRISM input language
	Translation
	Results of the translation of the frog model

	Conclusion and general overview about MPP systems

	Attributed Probabilistic P systems (APP systems)
	From MPP to APP systems
	Introduction to APP systems
	Attributed Probabilistic P systems, formal definition and semantics
	 Simple example of modelling: the protozoans
	 Discussion about APP main features
	 Attributes and control objects
	Attributes and probabilistic functions

	Modelling social interaction in primates with APPS
	Parameters of the simulation
	Use of parameters in the model

	Experimental results
	Conclusion

	Multilevel Attributed Probabilistic P systems (MAPP systems)
	From APP to MAPP systems
	Introduction to MAPPS and informal definition
	Multilevel Attributed Probabilistic P systems: formal definition and semantic
	A simple example
	 Case Study: Modelling social life of Serengeti Lions
	Modelling the Lion Model with MAPPS
	Experimental results
	Data and results
	Conclusion

	Conclusions and future developments
	The use of MPP, APP and MPP systems and other considerations
	Use of MAPP systems to emulate agent based models
	PRISM translations

