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Abstract

The design of modern computing systems largely exploits structured sets of declarative
rules called policies. Their principled use permits controlling a wide variety of system
aspects and achieving separation of concerns between the managing and functional parts
of systems.

These so-called policy-based systems are utilised within different application domains,
from network management and autonomic computing to access control and emergency
handling. The various policy-based proposals from the literature lack however a com-
prehensive methodology supporting the whole life-cycle of system development: speci-
fication, analysis and implementation. In this thesis we propose formally-defined tool-
assisted methodologies for supporting the development of policy-based access control and
autonomic computing systems.

We first present FACPL, a formal language that defines a core, yet expressive syntax for
the specification of attribute-based access control policies. On the base of its denotational
semantics, we devise a constraint-based analysis approach that enables the automatic ver-
ification of different properties of interest on policies.

We then present PSCEL, a FACPL-based formal language for the specification of auto-
nomic computing systems. FACPL policies are employed to enforce authorisation controls
and context-dependent adaptation strategies. To statically point out the effects of policies
on system behaviours, we rely again on a constraint-based analysis approach and reason
on progress properties of PSCEL systems.

The implementation of the languages and their analyses provides us some practical
software tools. The effectiveness of the proposed solutions is illustrated through real-
world case studies from the e-Health and autonomic computing domains.
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Chapter 1

Introduction

The secret of getting ahead is getting
started.

Mark Twain

Computing systems are nowadays pervading our daily activities, fostering new services
and carrying out critical applications, like, e.g., the management of cyber physical infras-
tructures and of sensitive datasets. In their design, the major challenges to address come
from the highly dynamic operating environment and the massive number of the involved
heterogeneous entities, featuring distributed control, unpredictable interactions and huge
amounts of data to manage. Given their importance and societal impact, it is of paramount
importance to ensure that modern computing systems are

• secure, that is they cannot enter into a non-secure configuration and their misuses
cannot affect trustworthiness of the managed data; and

• autonomic, that is they are able to react and adapt themselves to changes of the
operating environment.

To systematically ensure these characteristics, the use of linguistic approaches based
on policies, i.e. structured sets of declarative rules, is largely advocated in the literature.
Policies are employed to control a wide variety of system aspects and to achieve separation
of concerns between the managing and functional parts of a system. These so-called policy-
based systems have been recently exploited within different application domains. In this
thesis, we address policy-based solutions for computer security, in particular concerning
access control, and for autonomic computing.

1



Chapter 1. Introduction

In the rest of this chapter, we briefly introduce first the computer security and au-
tonomic computing application domains and their more relevant open issues, then we
outline the main contributions of the thesis. Section 1.1 concludes by commenting on the
structure of the thesis and its related publications.

Computer security

Computer security is a broad field, covering several different approaches, using different
technologies and involving various degrees of complexity. To define a system secure, a
security policy expressing the allowed or forbidden behaviours needs to be provided. The
enforcement of such a policy relies on a combination of various approaches, ranging, e.g.,
from cryptography to access control, and depends on the security aspects it addresses. A
crucial one is managing the accesses to system resources, which is commonly addressed
by identifying two different stages: authentication and authorisation. Authentication is the
process of verifying if subjects are who they claim to be, while authorisation is the process
of establishing if (already authenticated) subjects are allowed to access to a resource. Our
focus is on authorisation and, in particular, on how it is enforced in term of an access
control system.

The expected duties of an access control system amount to

control every access to the controlled system and its resources, ensuring that all
and only authorised accesses can take place.

It decides whether an access request should be permitted, thus to ensure that the resources
are protected against unauthorised disclosure (confidentiality) and improper modification
due to unauthorised accesses (integrity), while the effective use of resources by authorised
subjects is ensured (availability).

Modern access control systems are defined by sets of policies containing the access
rules used to filter out insecure accesses. These rules are based on attributes, i.e. security-
relevant information exposed by the system, and define flexible, fine-grained controls. To
support the specification of such systems, different proposals have been advocated in the
recent years. A well-established one is the standard eXtensible Access Control Markup Lan-
guage (XACML) [OAS13], which offers an XML formalism for the specification of access
control policies and a structured evaluation process for their enforcement. Unfortunately,
the management of XACML and, in general, of attribute-based policies is in practice cum-
bersome, hence it should be supported by rigorous analysis approaches, like, e.g., those
in [ACC14, FKMT05, TdHRZ15]. However, the proposed approaches usually dealt only
with a limited set of typical aspects of modern access control policies. Above all, they
do not fully support the development of such policies with a comprehensive methodology
encompassing specification, analysis and enforcement functionalities

Therefore, even though access control may seem a straightforward concept, its design
and enforcement is complex and error-prone in practice. Due to the pervasive exploitation
of access control in modern computing systems, a principled approach to the specification,
analysis and implementation of access control systems is needed to improve their effec-
tiveness and reliability.

2



Autonomic Computing

Autonomic computing is a recently devised paradigm for dealing with the difficulties of
modern computing systems. This vision was proposed by IBM [Hor01] and consists in en-
hancing computing systems with self-managing functionalities. Such systems have indeed
the ability to

manage their behaviours and dynamically adapt to operating changes in accor-
dance with business policies and computational objectives.

To achieve this type of behaviours, systems must enforce the so-called self-* properties,
that is capabilities of taking the appropriate decisions based on the information sensed
from the operating environment. For example, enforcing the self-configuring property
means that the system dynamically reconfigures itself to react to a sensed information
change. However, due to the highly dynamic nature of the behaviours to design and the
massive number of components to manage, the specification of autonomic computing sys-
tems must adhere to principled approaches supported by analysis functionalities.

Among other specification approaches, the use of high-level linguistic abstractions is
a widely exploited solution that also advocates the use of policies to define and enforce
adaptation strategies [HM08]. A rigorous framework exploiting policies is the Software
Component Ensemble Language (SCEL) [DLPT14], which offers a set of linguistic abstrac-
tions expressly devised for the specification of autonomic computing systems. However,
SCEL abstracts from the specific policy formalism to use and, hence, from the practical
effects of policies on system behaviours.

Therefore, the SCEL rigorous framework has to be enriched with an effective policy
formalism and appropriate analysis approaches aiming at statically reasoning on the dy-
namic behaviours enforced by systems.

Contributions

Policies are widely used means for the specification of access control and autonomic com-
puting systems. The declarative nature of policies makes indeed them intuitive and easy
to maintain. However, the various policy-based proposals from the literature lack a com-
prehensive methodology supporting the whole development life-cycle of such policy-based
systems, i.e. from specification to analysis and implementation. This thesis aims at filling
this gap by proposing formally-defined tool-assisted methodologies to support the whole
development life-cycle of policy-based access control and autonomic computing systems.
To devise such methodologies, our approach crucially relies on formal methods like, e.g.,
formal semantics and constraint formalisms.

The main contribution of this thesis is the Formal Access Control Policy Language
(FACPL), a language devoted to the specification of attribute-based access control sys-
tems. FACPL is equipped with practical formally-defined analysis approaches and sup-
porting tools. Furthermore, the thesis introduces Policed-SCEL (PSCEL), a full-fledged
FACPL-based instantiation of SCEL supported by static analysis approaches to reason on
the effects of policies on system behaviours.

Thus, the thesis features the specification, analysis approaches and supporting tools of
the following languages

3



Chapter 1. Introduction

Formal Access Control Policy Language (FACPL): a specification language for attribute-
based access control systems;

Policed-SCEL (PSCEL): a FACPL-based instantiation of SCEL supporting the specification
of context-dependent authorisation controls and adaptation strategies.

The evaluation processes of these languages are formalised by rigorous formalisms
that lay the basis for the formal development of analysis approaches. We indeed exploit
constraints to uniformly and precisely represent policies and to enable automatic verifi-
cation of properties of interest. Specifically, we rely on the so-called satisfiability modulo
theories (SMT) formulae that permit a combined use of formulae from multiple theories,
like, e.g., boolean and linear arithmetics. To validate the effectiveness of these languages,
as well as of their analysis and enforcement functionalities, we exploit some real-world
case studies.

Concerning the scientific contributions, the languages and their functionalities advance
the current state-of-the-art towards a twofold direction. On the one hand, FACPL fills the
gap of a single, fully-integrated methodology supporting the specification, analysis and
implementation of access control policies. On the other hand, PSCEL advances the cur-
rent specification formalisms for autonomic computing systems by formalising a principled
exploitation of policy-based adaptation strategies and, most of all, addresses for the first
time a flow analysis of policies that can be used to reason on the dynamic behaviours of
autonomic systems. Finally, it is worth noticing that each ingredient of both FACPL and
PSCEL is first formally introduced and then implemented via Java-based tools.

1.1 About this Thesis

The rest of the thesis is organised as follows

Chapter 2 sets the scene by introducing the background concepts of access control and
autonomic computing, presenting the research objectives of the thesis and outlining
the case studies we focus on in the remaining chapters.

Chapter 3 reports the full account of the FACPL language, starting from the evaluation
process to the syntax and formal semantics. After presenting some properties of the
semantics, it outlines the Java-based toolchain supporting FACPL. This chapter is
based on [MMPT13b, MMPT16].

Chapter 4 presents the constraint-based analysis for FACPL, a set of properties of interest
on policies, and the automatic tools for property verification. To motivate the anal-
ysis, it also introduces a FACPL-based formalisation of traditional security policies.
This chapter is based on [MPT15, MMPT16].

Chapter 5 reports the full account of the PSCEL language, starting from the design princi-
ples to the syntax and formal semantics. It also outlines a Java runtime environment
to practically support the development of PSCEL systems. This chapter is based
on [MPT13, LMPT14, ACH+15, DLL+15, MRNNP16a, MRNNP16b].

Chapter 6 presents the constraint-based analysis for PSCEL. It introduces a specific flow
graph and its exploitation to reason on the effects of policy evaluations on the
progress of PSCEL systems. This chapter is based on [MRNNP16a, MRNNP16b].

4



1.1. About this Thesis

Chapter 7 reviews more closely related works to the FACPL and PSCEL languages, their
analysis approaches and supporting tools.

Chapter 8 concludes the thesis with some final remarks and touches upon directions for
future works.

Publications

The main publications at the basis of this thesis can be divided between those referring to
FACPL and those to PSCEL. In the case of FACPL we have:

• [MMPT16]: it contains the complete presentation of the FACPL language, its analysis
functionalities and supporting tools;

• [MPT15]: it contains a preliminary version of the analysis of FACPL policies;

• [MMPT13b]: it contains the application of a preliminary version of FACPL to model
an e-Health case study;

• [MMPT13a, CBT+15]: they contain an application of the FACPL supporting tools for
the definition of a Cloud manager. The contents of these works are not reported in
the thesis for the sake of presentation.

While, in the case of PSCEL we have:

• [MRNNP16a]: it contains the complete presentation of the PSCEL language, its anal-
ysis functionalities and supporting tools;

• [MRNNP16b]: it contains a preliminary version of the analysis of PSCEL specifica-
tions;

• [MPT13, DLL+15]: they contain a preliminary version of PSCEL;

• [LMPT14, ACH+15]: they contain a preliminary description of the PSCEL supporting
tools.
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Chapter 2

Setting the Scene

Computer science is no more about
computers than astronomy is about
telescopes.

Edsger Dijkstra

In this introductory chapter, we set the scene of the whole thesis by presenting the
background concepts of access control and autonomic computing, and by outlining the
main research objectives of the thesis.

We present first access control, one of the key ingredient of computer security. After a
general overview of the main access control models proposed in the literature, we focus
on the newer Attribute-Based Access Control (ABAC) [HKF15] model. Specifically, we intro-
duce the policy-based evaluation process commonly exploited by ABAC systems and then
eXtensible Access Control Markup Language (XACML) [OAS13], an XML-based standard by
OASIS that is largely used in real-world applications to realise ABAC systems.

We then introduce autonomic computing, a recent paradigm envisioned by
IBM [Hor01] for the design of self-managing computing systems. Its main objective is
enhancing computing systems with self-managing functionalities that permit autonomous
and continuous adaptation to changing operating conditions. Besides a brief intro-
duction to autonomic computing, we present Software Component Ensemble Language
(SCEL) [DLPT14], a formal language expressly devised to design and program autonomic
systems.

We conclude by presenting the case studies we use in the rest of the thesis to illustrate
our approach and its effectiveness.
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Structure of the chapter. The rest of this chapter is organised as follows. Section 2.1
presents access control, its models and the standard XACML. Section 2.2 presents the
autonomic computing paradigm and the SCEL language. Section 2.3 introduces the case
studies we will use in the rest of the thesis.

2.1 Access Control

Access control systems are the first line of defence for the protection of computing systems.
They are defined by rules that establish under which conditions a subject’s request aiming
at accessing a resource has to be permitted or denied. In practice, this amounts to restrict
physical and logical access rights of subjects to system resources. It is worth noticing that
we focus on access control and abstract from the issues of authenticating access requests.
Indeed, we assume that requests have been already authenticated by means of one of
the various well-established authentication technologies that are nowadays available (see,
e.g., OAuth [Har13] or SAML [OAS05]), so that the information included within requests
trustwhorty describes the identity of the subjects issuing them.

Over the years, different models for the definition of access controls have been pro-
posed and exploited. Traditional models assign access rights on the base of the identity of
subjects and resources, either directly — e.g. Access Control Matrix (ACM) [GD72, Lam74]
— or through predefined features, such as roles or groups — e.g. Role-Based Access Con-
trol (RBAC) [FK92]. However, they are inadequate to deal with modern distributed sys-
tems, where the population of subjects can be unknown at the assignment time of access
rights. Moreover, they cannot easily encompass information representing the evaluation
context, as e.g. system status or current time. An alternative model that permits over-
coming these issues is ABAC [HKF15]. Here, the rules are based on arbitrary information
from the system and organised in structured collections called policies. Their evaluation,
which is based on the evaluation process introduced in [YPG00], ensures the enforcement
of flexible, context-aware controls.

In the context of access control-related topics, the enforcement of security require-
ments in programming languages is worth to mention due to the large effort it has at-
tracted and the wide literature available. In this area, security policies commonly concern
information flow, i.e. asserting that secret input data cannot be inferred by observing
system outputs. The main approaches in this area concern language-based solutions like,
e.g., type systems and other static analysis techniques (see, e.g., [SM03] for a survey).
However, the frame of reference of this thesis does not concern information flow. Instead,
it refers to the methodologies used to define, analyse and implement access control sys-
tems being part of more complex computing systems, rather than as controls defined on
a top of a programming language. In the rest of the thesis, we therefore do not take into
account information flow and its related issues.

In the following, first we comment on the access control-related terminology we use
throughout the thesis (Section 2.1.1). Then, after a brief introduction to the main access
control models (Section 2.1.2), we present the policy-based evaluation process of ABAC
systems (Section 2.1.3) and an XML-based standard for their specification (Section 2.1.4).
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2.1. Access Control

2.1.1 Terminology

Access control and, in general, computer security are wide and deep fields whose termi-
nology is used in the literature, from time to time, with slightly different meanings. Here,
we report our intended meanings of the main access control-related terminology we use.

An authorisation is the decision taken by the system regarding a request for access
performed by a subject. The term subject is used to denote any principal willing to perform
an access request. For the sake of presentation, the terms access and decision will be
sometimes used in place of authorisation.

An access control policy is a structured collection of rules defining the precise condi-
tions leading to positive or negative authorisations. When it is clear from the context, the
term policy is used in isolation to mean access control policy.

An access control system is a set of access control policies mediating all the accesses
to the resources of the controlled system. The development of access control systems
requires to adhere to the specificities of the application domain and the used technology.
To this aim, it is usually carried out in terms of a multi-step process that concerns different
levels of abstractions: security policy, security model, security mechanism; their descriptions
follow.

• Security policy (or high-level policy): it describes the behaviours an access control
system has to enforce. It is usually defined as a set of (structured) descriptions
written in natural language, like, e.g., “Doctors can write e-Prescription documents”.

• Security model: it provides a formal representation of the security policy. It enables
the formalisation and proof of properties on the enforced authorisations. We thus
consider access control policies be part of the security model.

• Security mechanism: it defines the low level (software and hardware) machinery
implementing the controls imposed by the security policy and formalised in the se-
curity model.

This conceptualisation of access control systems is borrowed from [SdV00] and mainly
coincides with the others from the literature, like, e.g., those in [Bis02, NIS09, Gol11].

An access control model refers to the design and distinguishing concepts on which
an access control system is built up on. For instance, attribute is the peculiar concept of
the ABAC model, as we will see below.

To conclude, we remark that this terminology is intended to be consistent for the topics
of this thesis and within the confines of the thesis itself.

2.1.2 Models

Access control systems have the purpose of maintaining the controlled system in a secure
state. The description of states and the conditions checked by controls characterise each
access control model.

Traditional models are based on the identity of subjects and resources, and on their
identification by means of unique names. Among others, two well-known examples are
Access Control Matrix (ACM) and Role-Based Access Control (RBAC).

ACM [GD72, Lam74] is the simplest identity-based model. It came up in the context
of operating systems and requires that each action a subject can perform on each system
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resource has to be enumerated. The relationship between subjects and resources can
thus be detailed by means of the so-called access control matrix. Despite its conceptual
simplicity, this model suffers from scalability issues, as it is cumbersome to compactly
manage a massive number of subjects and resources.

RBAC [FK92] was proposed to overcome scalability issues of ACM. Specifically, it pro-
poses grouping authorisations in terms of conditions on roles. A role identifies a collection
of authorisations on a set of resources that are associated to a predefined feature identi-
fying a set of subjects. However, despite its multiple variants (see, e.g., those described
in [SCFY96]), RBAC hardly permits the specification of fine-grained controls. In fact, to
introduce authorisations on single resources, RBAC requires the definition of new roles.
This demand leads to a proliferation of roles, whose management, however, has turned
out to be a difficult task over time, especially in distributed settings.

An alternative model that permits tackling the weaknesses of the identity-based models
is Attribute-Based Access Control (ABAC) [HKF15]. Here, the rules are based on attributes,
i.e. arbitrary security-relevant information exposed by the system, the involved subjects,
the action to be performed, or by any other entity of the evaluation context that are
relevant to the rules at hand. The use of attributes allows ABAC policies to define both
group-based and fine-grained controls.

In recent ABAC proposals, the exploitation of attributes has proceeded in pair with a
combined use of positive and negative authorisations. Traditionally, positive and negative
authorisations were used in mutual exclusions, but their principled combination permits
convenient design strategies for supporting authorisation exceptions. Due to the possible
presence of conflictual authorisations, access controls need to be managed according to ex-
plicit conflict resolution strategies, the so-called combining algorithms [JSSS01]. Attribute-
based rules are typically hierarchically structured in the form of specifications called poli-
cies; from this name derives the terminology Policy-Based Access Control (PBAC) [NIS09],
sometimes used in place of ABAC. To sum up, ABAC permits defining hierarchically struc-
tured, flexible and context-aware access controls that, as reported in [JKS12], are expres-
sive enough to uniformly represent all the other models.

To complete this outline, we report an additional classification of access control models
that is based on the ownership of the controls: Discretionary Access Control (DAC) and
Mandatory Access Control (MAC). In the former, the specification of controls is left to the
discretion of the owner, while in the latter the system controls the access and the resource
owner cannot circumvent them. In this respect, ACM better fits the DAC approach, while
RBAC and ABAC can be used both for the MAC and DAC approaches. Hybrid approaches
are also possible.

2.1.3 Policy-based Evaluation Process

The evaluation process of ABAC systems needs to be flexible and powerful at the same
time, thus to uniformly deal with complex, context-dependent controls within systems of
different natures. To this aim, ABAC systems typically exploit the policy-based evaluation
process introduced in [YPG00], whose aim was to support the evaluation of the general-
purpose policy-based specifications of [MESW01]. As distinguishing feature, it decouples
the calculation of policy decisions from their subsequent enforcement in the system.

The evaluation process relies on three main architectural components: the Policy Repos-
itory (PR), the Policy Decision Point (PDP) and the Policy Enforcement Point (PEP). These
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Figure 2.1: Policy-based evaluation process

components can be described as follows

• PR: it stores and provides the policies to the PDP;

• PDP: it calculates the decision for a request on the basis of the available policies;

• PEP: it enforces the decision calculated by the PDP in the controlled system.

The interactions among these components are graphically represented in Figure 2.1.
The evaluation process assumes that each system request is managed by some policies that
are stored in the PR and made available to the PDP (step 1). When a request to evaluate
is received by the PEP (step 2), it is sent for evaluation to the PDP (step 3). The PDP
evaluates the request on the base of the available policies and by possibly interacting with
the environment (step 4). The calculated decision is then returned to the PEP (step 5),
which finally enforces it in the system (step 6).

This structured process for the enforcement of access control systems guarantees sep-
aration of concerns among policies, their evaluation and the system itself. Among others,
the main advantages it ensures are: (i) different types of requests can be accepted, as the
PEP can appropriately encode them in the format required by the PDP; (ii) the PDP can be
placed in any part of the system, thus with the PEP acting as gateway or proxy; (iii) the
PR can be instantiated to support dynamic, possibly regulated, modifications of policies1.

This process provides a general workflow that each policy language, as e.g. XACML,
can tailor to its specific needs. In Section 3.1 we will present the FACPL-based refinement
of this workflow.

2.1.4 An Attribute-based Specification Language: XACML

Many languages have been proposed for the practical specification and enforcement of
access control policies (see, e.g., [HL12] for a survey). Among the proposed languages that
exploit the ABAC model, the OASIS standard eXtensible Access Control Markup Language
(XACML) [OAS13] is probably the best-known one.

XACML is a well-established language for the specification of attribute-based access
control policies and requests. It relies on an XML-based syntax and on an instantiation of
the policy-based evaluation process presented in Section 2.1.3. Besides combining algo-
rithms and complex control functions, it supports the specification of obligations2, that is

1When PR provides support for the specification of administration controls on policy modifications, it is
usually called Policy Administration Point (PAP).

2Obligations were originally introduced in [Slo94] to adapt systems as result of policy evaluations.
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additional actions returned as result of policy evaluations (e.g. logging or mailing actions)
that have to be discharged by the PEP in order to enforce PDP decisions.

In the rest of this section, we outline the main aspects of the XACML syntax, together
with an informal presentation of its evaluation process. As a matter of notation, the words
emphasised in sans-serif, e.g. Rule, are XML elements, while attributes of such elements
are in italics, e.g. combining algorithm.

The access control policies defined by XACML are hierarchically structured as Policys
(i.e., collections of Rules) and PolicySets (i.e., collections of Policys and other PolicySets).

A Rule represents the basic element of a policy. It defines a Target, that consists of
conditions on request attributes, whose evaluation establishes if the rule applies to the
considered request. Additionally, a rule defines a positive or negative effect (aka authori-
sation decision), that is returned when the rule applies. Obligations possibly associated
to the effect are instead defined in the form of ObligationExpressions and AdviceExpressions
elements. The former corresponds to mandatory enforcement actions, while the latter to
optional ones.

Besides their own Target, ObligationExpressions and AdviceExpressions, Policys and Poli-
cySets specify a combining algorithm that is used to combine the evaluation results of the
enclosed elements.

The AttributeDesignator and AttributeSelector elements are used within Targets to iden-
tify and retrieve attribute values from a request. Specifically, an AttributeDesignator spec-
ifies an identifier, e.g. “role”, and an attribute category, e.g. “subject”, while an Attribute-
Selector specifies an XPath [CD15] expression. Each of these elements explicitly defines
a value type that must match for the attribute values to be retrieved; the special type
anyUri matching any value can be used. If no value is retrieved, the evaluation of the en-
closing element correspond to either an error or a not-matching comparison, it depends,
respectively, on whether the option MustBePresent is set to true or false.

A Target has to adhere to a rigid element structure. Indeed, it consists of a (conjunc-
tive) sequence of AnyOf elements, each one containing a (disjunctive) sequence of AllOf
elements, each one containing in its turn a (conjunctive) sequence of Match elements. A
Match element represents the basic building-block of targets and specifies a control on
request attributes in the form of: an AttributeDesignator or an AttributeSelector, a typed
literal and a matching function.

The main intricacies of the evaluation of XACML policies are due to the evaluation
of Targets. Specifically, it can return true (resp., false), meaning that the parent element
is applicable (resp., not applicable) to a request, or indeterminate, meaning that an error
occurs. In details, a Target returns true when all enclosed AnyOfs are true, while it returns
false when at least one AnyOf is false. An AnyOf returns true if at least an enclosed AllOf
is true, while it returns false when all AllOf are false. An AllOf returns true if all enclosed
Matchs are true, while it returns false when at least one Match is false. Instead, a Match
returns true if at least a value, among those retrieved through the designed attribute,
matches the literal according to the matching function; otherwise it returns false. Instead,
a Target returns indet if no AnyOf returns false and at least one returns indet. An AnyOf
returns indet if no AllOf returns true and at least one returns indet. An AllOf returns indet if
no Match returns false and at least one returns indet. A Match returns indet if the requested
attribute is missing and the option MustBePresent is set to true, or if an error occurs in the
evaluation of the matching function.

By way of example, we report in Listing 2.1 an example of an XACML policy that aims
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<PolicySet
PolicySetId="AliceEPrescription"
PolicyCombiningAlgId="policy -combining -algorithm:permit -overrides">
<Target >

<AnyOf>
<AllOf>

<Match MatchId="string -equal">
<AttributeValue DataType="string">

Doctor
</AttributeValue >
<AttributeDesignator

DataType="string" MustBePresent="false"
Category="subject" AttributeId="role" />

</Match >
</AllOf >

</AnyOf >
</Target >
<Policy PolicyId="ePrescription"

PolicyCombiningAlgId="rule -combining -algorithm:permit -overrides">
<Target >

<AnyOf>
<AllOf>

<Match MatchId="string -equal">
<AttributeValue DataType="string">

e-Prescription
</AttributeValue >
<AttributeDesignator

DataType="anyURI" MustBePresent="false"
Category="resource" AttributeId="type" />

</Match >
</AllOf >

</AnyOf >
</Target >
<Rule RuleId="permitAll" Effect="Permit"> <Target /> </Rule>

</Policy >
</PolicySet >

Listing 2.1: An XACML Policy

at regulating the access of subjects with role Doctor to resources named e-Prescription; for
presentation’s sake, we omit the XML namespaces and many XML elements. Looking at
the XML code, it is possible to individuate the rigid structure of targets, the hierarchical
organisation of policies and the references to request attributes by means of AttributeDes-
ignator elements.

Furthermore, XACML represents the accesses to authorise as Requests formed by a
collection of (possibly multi-valued) attributes. Each attribute is identified by a category
and an identifier, and is associated to a (set of) value(s). An example of XACML request
is reported in Listing 2.2. The request is defined by two attributes: that with category
subject and name role is assigned to the value “Doctor”, while that with category resource
and name type is assigned to the value “e-Prescription”.

The evaluation of XACML policies proceeds according to the policy structure and the
matching of targets. When the target matches, the evaluation of rules returns the rule
effect, while that of policies and policy sets returns the combined result of the evaluations
of the enclosed elements according to the chosen combining algorithm. Notably, all results
can be possibly paired with obligations. From this description, it is easy to believe that the
policy in Listing 2.1 authorises the request in Listing 2.2 to permit, i.e. it grants the access.
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<Request >
<Attributes Category="subject">

<Attribute IncludeInResult="false" AttributeId="role">
<AttributeValue DataType="string">

Doctor
</AttributeValue >

</Attribute >
</Attributes >
<Attributes Category="resource">

<Attribute IncludeInResult="false" AttributeId="type">
<AttributeValue DataType="string">

e-Prescription
</AttributeValue >

</Attribute >
</Attributes >

</Request >

Listing 2.2: An XACML Request

To sum up, due to its XML-based syntax and the numerous functionalities it provides,
XACML is commonly used in many real-world application domains, e.g. e-Health and
service-oriented computing, and is supported by several tools3. The use of XML clearly
ensures wide interoperability, but limits the readability of policies only to trained devel-
opers. Furthermore, it is generally acknowledged that XACML lacks a formally-defined
semantics (see, e.g., [RLB+09, CM12, RRNN12, ACC14]), thus the specification and real-
isation of analysis techniques supporting policy developers is cumbersome.

2.1.5 Research Objectives

Besides the various proposals like, e.g., XACML, the development of ABAC systems is
lacking of a comprehensive methodology encompassing not only a specification language,
but also analysis functionalities and tool support.

Therefore, the main objectives of our research activities conducted on access control-
related topics have been as follows.

O1 Provide a compact, yet expressive language for the specification of ABAC systems.

O2 Formally and precisely define the evaluation process of ABAC systems.

O3 Formally devise an analysis approach capable of taking into account all the peculiar-
ities of ABAC.

O4 Implement the language, its evaluation process and the analysis approach by means
of practical software tools.

The ultimate goal is to allow access control system developers to use formally-defined
functionalities without requiring them to be familiar with formal methods.

3An excerpt of the tools supporting XACML can be found at http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=xacml#other.
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2.2 Autonomic Computing

Autonomic computing is a paradigm to build computing systems that are able to manage
themselves. This vision was introduced by IBM [Hor01] with the aim of dealing with the
ever growing complexity of modern software-intensive systems. The key idea is to intro-
duce within systems self-managing functionalities that can relieve users and administrators
from the burden of low-level activities. The term ‘autonomic’ was indeed coined by look-
ing at the human autonomic nervous system, where multiple self-managing functionalities
are seamlessly embedded in our bodies that we barely notice them.

An autonomic system, from a practical point of view, is intended to be formed by
multiple collaborating autonomic entities that adapt their behaviours for reacting to op-
erating changes. Their computational power is usually limited to sensing the evaluation
context, reading/updating their (limited) knowledge or exchanging messages. Therefore,
to provide complex behaviours, autonomic systems rely on cooperative and collaborative
interactions among components that lead to emergent behaviours, i.e. collaborative be-
haviours that single components could not achieve working in isolation. To this aim, it
is commonly advocated that components should be able to self-organise themselves into
goal-oriented groups, the so-called ensembles [Pro07].

The design and deployment of autonomic systems can concern a variety of aspects and
pursue even more design choices. Among others, the architectural design of components is
of paramount importance. A well-known approach is that called MAPE-K [KC03, IBM06],
which defines a control loop that, by relying on component knowledge, aims at contin-
uously monitoring, analysing, planning and executing possible adaptation strategies on
the managed element. On the base of MAPE-K, multiple design proposals have been sug-
gested in the literature and exploited in real applications (see, e.g., [HM08] for a survey
or [LMD13] for a text book). The use of high-level models and languages is one of the
most widely exploited proposal, see, e.g., in [BCL+06, SGP12, HK14]. Our focus is on
Software Component Ensemble Language (SCEL) [DLPT14], a formal language fostering a
component-based approach to design and program autonomic systems. We introduce the
main ingredients of SCEL in the next section.

2.2.1 The SCEL Specification Language

The SCEL approach to autonomic systems relies on the notions of autonomic components
(ACs) and autonomic-component ensembles (ACEs). ACs are the building blocks of the
systems and represent the computational units whose dynamical organisation forms ACEs.
The aim of SCEL is thus to define an appropriate set of linguistic abstractions that permit
specifying the behaviours of ACs, their interactions and the formation of ACEs.

An AC consists of: Interface, Processes, Knowledge and Policies. How these constituent
elements are organised to form an AC is graphically illustrated in Figure 2.2; their descrip-
tion follows.

• Interface: it publishes information on the component itself in the form of features4.

• Processes: they describe how computations may progress and are modelled in the
style of process calculi.

4Notably, in the SCEL reference paper [DLPT14], the term attribute is used in place of feature. In this thesis
we choose feature to not overload attribute with different meanings.
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Figure 2.2: SCEL Autonomic Component

• Knowledge: it stores and manages component information.

• Policies: they control and adapt the processes by enforcing adaptation strategies and
guaranteeing the accomplishment of tasks.

The design choice of taking Processes apart from Policies ensures a clear separation
of concerns: the normal computational behaviour is defined through processes, while the
authorisation and adaptation strategies are defined through policies. At the same time,
the use and exploitation of the Knowledge allow components to acquire information about
their status (self-awareness) and their environment (context-awareness) in order to perform
self-adaptation and to initiate self-healing or self-optimising actions. All these self-* prop-
erties, as well as self-configuration, can be naturally expressed by exploiting SCEL higher-
order features, namely the capability to store/retrieve (the code of) processes in/from the
knowledge repositories and to dynamically trigger execution of new processes.

Another distinguishing trait of the SCEL approach is the flexibility of communication
means. A particular type of communication, called predicate-based, allows processes to
implicitly select the set of components, i.e. the ensemble, acting as communication part-
ners. Indeed, processes can create predicates defining conditions on component inter-
face features, whose referred values are dynamically checked at runtime to establish if a
component can take part in a communication. The use of predicates supports a highly
dynamic and flexible formation of ensembles, as it is graphically shown in the example of
Figure 2.3. Specifically, according to the features exposed in component interfaces, which
are exemplified as the colours green and red, two (abstract) predicates are used to identify
two (overlaid) ensembles of components.

2.2.2 Research Objectives

Although SCEL is equipped with a formal operational semantics (see [DLPT14] for a full
account), the prediction of the dynamic evolutions of SCEL systems is challenging. In-
deed, SCEL abstracts from the formalism used to specify policies and, hence, from how
adaptation strategies can be precisely defined and enforced in system components. Fur-
thermore, the use of predicates, their runtime evaluation and the dynamic enforcement
of adaptation strategies can cause that behaviours unforeseen at design time may arise at
runtime and lead to unexpected consequences.

Therefore, our research activities on autonomic computing-related topics have been as
follow.
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Figure 2.3: Abstract representation of SCEL Autonomic Component Ensembles

O5 Instantiate SCEL with an appropriate policy language capable of regulating interac-
tions among components and enforcing adaptation strategies.

O6 Devise a static analysis approach for the language aiming at pointing out the effects
on system behaviours of policy-based adaptation strategies.

O7 Implement the language, its evaluation process and analysis approach by means of
practical software tools.

The ultimate goal is to deploy a full-fledged policy-based instantiation of SCEL both as a
formal language and as a runtime environment, and to support its analysis.

2.3 Case Studies

The languages, analysis techniques and tools we propose for the development of secure
or autonomic computing systems have been extensively validated by means of real-world
case studies covering a large spectrum of aspects of interest. The case studies we consider
in the thesis are as follows.

• E-Health: it concerns the provision of e-Health (aka electronic healthcare) services
for the exchange of private health data among European countries. Chapters 3 and 4
specify and analyse, respectively, an access control system for securing these services.

• Robot-swarm: it concerns the modelling of a collaborative, goal-oriented swarm of
rescuing robots. Chapter 5 presents the modelling of the swarm and a runnable
simulation of it.

• Autonomic Cloud: it concerns the modelling of an illustrative autonomic cloud plat-
form whose nodes cooperate to ensure certain requirements. Chapter 6 models the
platform and uses it as a motivating example for the static analysis approach.

The last two case studies are taken from the ASCENS project [FP715], where the research
activities concerning this thesis were partially conducted.
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Figure 2.4: E-Health case study: e-Prescription service protocol

In the following, we first outline the e-Health case study (Section 2.3.1), then we
introduce the robot-swarm (Section 2.3.2) and the autonomic cloud (Section 2.3.3) ones.

2.3.1 An e-Health Provisioning Service

To improve the effectiveness of healthcare systems, e-Health services aim at allowing
healthcare professionals (such as doctors, nurses, pharmacists, etc.) to remotely access
and exchange patients data. We outline here a standardised European service solution.

The exchange of patients health data among European points of care (such as clinics,
hospitals, pharmacies, etc.) has been pursued by the EU through the large scale pilot
project epSOS5, with the goal of improving healthcare treatments to EU citizens that are
abroad. This exchange must respect a set of requirements in order to fulfil country-specific
legislations [Eur95, The13] and to enforce the patient informed consent, i.e. the patients
informed indications pertaining to personal data processing.

These data exchanging services, standardised by epSOS, are currently used by many
European countries to facilitate the cross-board interoperability of their healthcare sys-
tems [Kov14]. As a case study, we take into account the electronic prescription (e-
Prescription) service. This service allows EU patients, while staying in a foreign country
B participating to the project, to have dispensed a medicine prescribed by a doctor in the
country A where the patient is insured. The protocol implemented by this service is illus-
trated in the message sequence diagram in Figure 2.4. The e-Prescription service helps
pharmacists in country B to retrieve (and properly convert) e-Prescriptions from country
A; this relies on trusted actors named National Contact Points (NCPs). Therefore, once
a pharmacist has identified the patient (Alice), the remote access is requested to the lo-
cal NCP (NCP-B), which in its own turn contacts the remote NCP (NCP-A). The latter
one retrieves the e-Prescriptions of the patient from the national infrastructure and, for
each e-Prescription, performs through PEP-A an authorisation check against the patient
informed consent. In details, PEP-A asks PDP-A to evaluate the pharmacist request with
respect to the e-Prescription and the policies expressing the patient consent. Once all

5epSOS (Smart Open Services for European Patients) - http://www.epsos.eu
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Eh- # Description
Eh-1 Doctors can write e-Prescriptions
Eh-2 Doctors can read e-Prescriptions
Eh-3 Pharmacists can read e-Prescriptions
Eh-4 Authorised user accesses must be recorded by the system
Eh-5 Patients must be informed of unauthorised access attempts
Eh-6 Data exchanged should be compressed

Table 2.1: Requirements for the e-Prescription service

decisions are enforced by PEP-A, NCP-A creates the list of e-Prescriptions, by transcoding
and translating them into the code system and language of the country B. Finally, the
pharmacist dispenses the medicine to the patient and updates the e-Prescription, i.e. it
returns e-Dispensation documents to the NCPs.

By looking at the epSOS specifications, we can deduce a set of business requirements
concerning the access control system managing the e-Prescription service. For instance, it
is forbidden to pharmacists to write e-Prescriptions, which is instead obviously granted to
a doctor having a specific set of permissions. In Table 2.1, we report in a closed-world form
(i.e., everything not reported has to be forbidden) the self-explanatory requirements we
focus on when we deal with this case study. The first three requirements concern access
restrictions, while the others concern additional functionalities that sophisticated access
control systems, like the one we will present, can provide.

The specification of the access control system enforcing the requirements of Table 2.1 is
reported in Chapter 3, while its analysis is used in Chapter 4 to present the functionalities
of the approach we propose.

2.3.2 A Robot-Swarm Disaster Scenario

Robot-swarm [Ben05] is a typical example of autonomic system. It consists of a large
collection of robots that collaborate together to achieve desirable objectives, such as ro-
bustness to individual failures and enhanced performance. This kind of systems is studied
within a large variety of application domains. We consider here a disaster recovery sce-
nario [PBMD15] where a search-and-rescue operation must be performed by a swarm of
robots in an hazardous environment.

Figure 2.5 graphically depicts a disaster scenario. The swarm of robots is placed in
a deployment area and aims at spreading throughout the given area where some kind of
disaster has happened. The goal of the robots is to locate and rescue possible victims. As
a matter of fact, a single robot cannot rescue a victim alone: a task-oriented ensemble of
robot is needed.

Our focus is not on the design of single robots, but on the behaviour of the robot
swarm as a whole. Such behaviour emerges from the collaboration and interactions of
single robots, which are all defined by the same specification. Thus, we organise the
behaviours of single robots in terms of abstract roles, whose dynamic variation, according
to the information sensed from the environment, permits rescuing the victims.

Table 2.2 reports in the form of requirements the expected behaviours a robot playing
a certain role has to ensure. Each robot initially plays the explorer role in order to look
within the arena for victims. When a robot finds a victim, it changes to the rescuer role
starting the victim rescuing and indicating the victim’s position to the other robots. As
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Figure 2.5: Robot-swarm case study: disaster scenario

soon as another robot receives the victim’s position, it changes to the helpRescuer role
going to help other rescuers. During the exploration, in case of critical battery level, a
robot changes to the lowBattery role to activate the battery charging.

The specification of the case study is given in Chapter 5, together with a Java-based
runnable simulation.

Rs- # Description
Rs-1 Explorers look for victims throughout the arena
Rs-2 Explorers notify the position of a not-discovered victim as soon as they find one
Rs-3 Rescuers cooperate in a 4-robot ensemble for rescuing a discovered victim
Rs-4 HelpRescuers move towards the received position of a victim to help other rescuers
Rs-5 LowBatterys move towards the deployment area to recharge critical batteries

Table 2.2: Requirements for the disaster scenario (robot roles are in italics)

2.3.3 An Autonomic Cloud Platform

Cloud computing is a well-established technology for the provisioning of IT resources
in a dynamic and on-demand fashion. It easily supports the request of new services by
adapting its infrastructure to the ever changing load configurations.

The autonomic cloud [MVK+15] is a platform-as-a-service computing infrastructure,
named Science Cloud, that is formed by a loose collection of voluntarily provided hetero-
geneous nodes. The individual nodes correspond to (virtual) machines running a Science
Cloud Platform instance (SCPi), an expressly developed middleware offering peer-to-peer
communications among geographically distributed nodes. The cooperative and collabo-
rative interactions of nodes permit offering computational services and ensuring certain
quality of service. In this context, the case study considers a high load scenario where, for
each location-based ensemble, a special application, named APP, running on one or more
nodes has the duty of offering computational services to the other nodes.
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Figure 2.6: Autonomic cloud case study: high-load scenario

A small-size setup of the Science Cloud is depicted in Figure 2.6: a group of SCPis
is located at UNIPI and another group at UNIFI, and another one (running on top of a
mobile device) at the UNIFI Sesto Campus. For each group, one member has the duty of a
gateway, i.e. it collects information about the whole platform and, if necessary, notifying
the other members. We assume that, besides a node with role gateway, a node running the
application APP has the role server, while the nodes requesting the computational service
have the role client. Differently from the robot-swarm case study, here a node cannot
change dynamically its role and to each role corresponds a different specification.

Table 2.3 reports in the form of requirements the expected behaviours each role has
to ensure. Each location initially has a single (node with role) server offering the com-
putational service and a collections of clients preparing tasks to be computed. Servers
dynamically retrieve tasks from clients by enforcing a confidentiality security policy based
on the MAC model. Specifically, each server and client has associated a security level,
i.e. high and low, and a server with level low cannot retrieve tasks from clients with level
high. To ensure the availability of the computational service, servers can dynamically
spawn a co-located server when their load is over a certain threshold. Besides the asso-
ciated security level, it is requested to clients to incrementally enumerate the tasks. To
avoid overloading of clients, the space for storing tasks is assumed to be limited. Finally,
gateways collect information from clients about the tasks retrieved by servers.

The specification of the case study is given in Chapter 6 and its runtime behaviour is
used as motivating example for a static analysis approach we will present.

Cl- # Description
Cl-1 Servers offer a computational service
Cl-2 Servers enforce a MAC security policy on the tasks to compute
Cl-3 Servers ensure the availability of the service by possibly spawning a new server
Cl-4 Clients locally enumerate and store tasks to be computed
Cl-5 Clients can store tasks provided that their load is under a given threshold
Cl-6 Gateways collect information on the computed tasks

Table 2.3: Requirements of the High Load scenario (node roles are in italics)
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Chapter 3

The FACPL Language

ABAC systems are nowadays a state-of-the-art solution to design secure computing sys-
tems. A well-established specification approach for ABAC is that based on the XACML
standard. However, as pointed out in the previous chapter, its verbose XML-based syntax
and the lack of a formal semantics do not permit the specification of compact policies and
the development of rigorous analysis techniques.

In this chapter, we introduce Formal Access Control Policy Language (FACPL), a formal
language that defines a core, yet expressive syntax for the specification of attribute-based
access control policies. It is partially inspired by XACML (with which it shares the main
traits of the policy structure), but it refines some aspects of XACML and introduces novel
features from the access control literature. Indeed, the FACPL formal semantics, which is
defined in a denotational style, permits a precise management of intricate aspects of access
controls like, e.g., management of missing attributes (i.e., attributes requested by a policy
but not provided by the request to authorise) and formalisation of combining algorithms
(i.e., strategies to resolve conflictual decisions that policy evaluation can generate). To
effectively deploy the language, FACPL is equipped with a fully-implemented Java-based
toolchain. The key software tool is an Eclipse-based Integrated Development Environment
(IDE) that offers a tailored development environment for FACPL policies.

The FACPL language, together with its denotational semantics, provides solid formal
foundations that can be used as the basis of the security model of ABAC systems. In
particular, the semantics has been exploited towards a twofold direction: to provide a
precise formalisation of the evaluation process, thus to drive the implementation of the
FACPL Java-based library, and to support the formalisation and verification of properties
on policies. In particular, by relying on the semantics, the constraint-based representation
of FACPL policies (which is presented in Chapter 4) has been proved sound.
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Figure 3.1: FACPL evaluation process

Structure of the chapter. The rest of this chapter is organised as follows. Section 3.1
overviews the FACPL evaluation process. Section 3.2 presents the syntax of FACPL. Sec-
tion 3.3 informally explains the semantics of FACPL. Section 3.4 describes the FACPL
policies defining the access control system of the e-Health case study presented in Sec-
tion 2.3.1. Section 3.5 provides the formal account of the FACPL semantics. Section 3.6
outlines the main features of the FACPL toolchain. Section 3.7 concludes with some final
remarks.

3.1 Evaluation Process

The evaluation process at the basis of FACPL-based access control systems is the policy-
based evaluation process introduced in Section 2.1.3. Such a process has been tailored
according to the specific features of FACPL and is shown in Figure 3.1.

The evaluation process assumes that system resources are paired with one or more
FACPL policies, which define the credentials necessary to gain access to such resources.
The PR stores the policies and makes them available to the PDP (step 1).

When a request is received by the PEP (step 2), the credentials contained in the request
are encoded as a sequence of attribute elements (i.e., name-value pairs) forming a FACPL
request (step 3).

The context handler sends the request to the PDP (step 4), by possibly adding environ-
mental attributes, e.g. request receiving time, that may be used in the evaluation.

The PDP authorisation process computes the PDP response for the request by checking
the attributes, that may belong either to the request or to the environment (steps 5-8),
against the controls contained in the policies. Hence, an appropriate use of the context
handler allows the authorisation process to depend on the evaluation environment and,
e.g., to address location-based or data-dependent controls. The PDP response (steps 9-10)
contains an authorisation decision and possibly some obligations.

A decision is the authorisation calculated for an access request and is one among
permit, deny, not-app and indet. Their corresponding meanings follow

• permit: the access request is granted;
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• deny: the access request is forbidden;

• not-app: there is no policy that applies to the access request;

• indet: some errors have occurred during the evaluation of the access request1.

We will see that policies can automatically manage errors by using operators that combine,
according to different strategies, indet decisions with the others.

Obligations, that is additional enforcement actions connected to authorisation deci-
sions, are discharged by the PEP through appropriate obligation services (steps 11-12). In
practice, obligations usually correspond to, e.g., updating a log file, sending a message
or executing a command. The enforcement process performed by the PEP determines the
enforced decision (step 13) on the basis of the obligation results. This decision could differ
from the PDP one and is the overall outcome of the evaluation process.

Finally, it is worth noticing that obligations are intended to be actions executed dur-
ing the enforcement process, rather than constraints on the future usage of the possibly
granted accesses. The obligations used by FACPL are those used by XACML and proposed
in [Slo94]. The management of obligations on future access usage is a topic worth to be
studied in the context of, e.g., usage control [LMM10], and is indeed one of the research
directions we want to further investigate (see Chapter 8 for more details).

3.2 Syntax

FACPL policies are hierarchically structured lists of elements containing controls on FACPL
request attributes. Together with permit or deny decisions, policies define the combining
algorithms to be used in their evaluation and the obligations for the enforcement process.

Formally, the syntax of FACPL is defined in Table 3.1. It is given through EBNF-like
grammars, where as usual the symbol ? stands for optional items, ∗ for (possibly empty)
sequences, and + for non-empty sequences.

A top-level term is a Policy Authorisation System (PAS) encompassing the specifications
of a PEP and a PDP. The PEP is defined in terms of the enforcement algorithm applied
for establishing how decisions have to be enforced, e.g. if only decisions permit and deny
are admissible, or also not-app and indet can be returned. The PDP is instead defined
by a sequence of policies Policy+ and an algorithm Alg for combining the results of the
evaluation of these policies.

A policy can be a basic authorisation rule (Effect target :Expr obl :Obligation∗ ) or
a policy set {Alg target :Expr policies : Policy+ obl :Obligation∗} collecting rules and
other policy sets, so that it defines policy hierarchies. A policy set specifies a target, that
is an expression indicating the set of access requests to which the policy applies, a list of
obligations, that defines mandatory or optional actions to be discharged by the enforce-
ment process, a sequence of enclosed policies and an algorithm, that is used for combining
the enclosed policies. A rule specifies an effect, that is the permit or deny decision returned
when the rule is successfully evaluated, a target, that refines the one of the enclosing
policy, and a list of obligations. Notably, obligations may be missing.

1Notably, the formal specification of FACPL, for the sake of presentation, only addresses a single indetermi-
nate value, rather than the extended indeterminate values used by XACML. However, the FACPL supporting
tools can also deal with these extended indeterminate values; see Section 3.6 for further details.
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Policy Authorisation Systems PAS ::= ( pep : EnfAlg pdp : PDP )

Enforcement algorithms EnfAlg ::= base | deny-biased | permit-biased

Policy Decision Points PDP ::= {Alg policies : Policy+}

Combining algorithms Alg ::= p-overδ | d-overδ | d-unless-pδ | p-unless-dδ
| first-appδ | one-appδ | weak-conδ | strong-conδ

Fulfilment strategies δ ::= greedy | all

Policies Policy ::= (Effect target :Expr obl : Obligation∗ )
| {Alg target :Expr policies : Policy+ obl : Obligation∗ }

Effects Effect ::= permit | deny

Obligations Obligation ::= [ Effect ObType PepAction(Expr∗) ]

Obligation types ObType ::= M | O

Expressions Expr ::= Name | Value
| and(Expr ,Expr) | or(Expr ,Expr) | not(Expr)
| equal(Expr ,Expr) | in(Expr ,Expr)
| greater-than(Expr ,Expr) | add(Expr ,Expr)
| subtract(Expr ,Expr) | divide(Expr ,Expr)
| multiply(Expr ,Expr)

Attribute names Name ::= Identifier/Identifier

Literal values Value ::= true | false | Double | String | Date

Requests Request ::= (Name,Value)+

Table 3.1: Syntax of FACPL

An attribute name is used to refer to the value of an attribute. This can either be con-
tained in the request or retrieved from the environment by the context handler (steps 5-8
in Figure 3.1). To group attributes under categories, FACPL uses structured names of the
form Identifier/Identifier , where the first identifier stands for a category name and the
second for an attribute name. For example, the structured name subject/role represents
the value of the attribute role within the category subject. Categories permit a fine-grained
classification of attributes, varying from the classical categories of access control, i.e. sub-
ject, resource and action, to possibly application-dependent ones.

Expressions are built from attribute names and literal values, i.e. booleans, doubles,
strings, and dates, by using standard operators. As usual, string values are written as
sequences of characters delimited by double quotes. The expression syntax does not ex-
plicitly take into account the types of attribute names, because policies must be able to
evaluate all possible access requests. However, at evaluation-time errors will be gen-
erated, and possibly managed, when expression operators are applied to arguments of
unexpected types. Notably, FACPL supporting tools implement a type system to statically
check how expression operators are combined, however it abstracts from the actual types
assumed by attribute names, because they can represent any value. Moreover, the syn-
tax of expressions accepted by the tools can be extended with additional operators (see
Section 3.6 for further details).

A combining algorithm aims at resolving conflicts among the decisions resulting from
policy evaluations, e.g. whenever both decisions permit and deny occur. The reported
algorithms offer various strategies (e.g., the p-overδ algorithm stating that ‘decision permit
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PDP responses PDPResponse ::= 〈Decision FObligation∗〉

Decisions Decision ::= permit | deny | not-app | indet

Fulfilled obligations FObligation ::= [ ObType PepAction(Value∗) ]

Table 3.2: Auxiliary syntax for FACPL responses

takes precedence over the others’) and can be specialised by choosing different strategies
for the fulfilment of obligations (e.g., the greedy strategy stating that ‘only the obligations
resulting from the evaluated policies are returned’). Note that algorithm names use ‘p’ and
‘d’ as shortcuts for permit and deny, respectively.

An obligation [ Effect ObType PepAction(Expr∗) ] specifies an applicability effect, a
type, i.e. mandatory (M) or optional (O), and the identifier and the arguments of an
action to be performed by the PEP. The set of action identifiers accepted by the PEP can
be chosen, from time to time, according to the specific application (therefore, PepAction
is intentionally left unspecified). Action arguments are expressions.

A request consists of a non-empty sequence of attributes, i.e. name-value pairs, that
enumerate request credentials in the form of literal values. Attributes are organised un-
der categories by exploiting their structured names. Multi-valued attributes, i.e. names
associated to a set of values, are rendered as multiple attributes sharing the same name.

The responses resulting from the evaluation of a FACPL request are written using the
auxiliary syntax reported in Table 3.2.

The two-stage evaluation process described in Section 3.1 produces two different kinds
of responses: PDP responses and decisions (i.e. responses by the PEP). The former ones,
in case of decision permit and deny, pair the decision with a (possibly empty) sequence of
fulfilled obligations. A fulfilled obligation is a pair made of a type (i.e., M or O) and an
action whose arguments are values.

In the sequel, to simplify notations, we omit the keyword preceding a sub-term gen-
erated by the grammar in Table 3.1 whenever the sub-term is missing or is the expres-
sion true. Thus, e.g., the rule (deny target : true obl : ) will be simply written as (deny).
Moreover, when in the PDPResponse the sequence of fulfilled obligations is empty, we
sometimes write Decision instead of 〈Decision〉.

3.3 Informal Semantics

We now informally explain how the FACPL linguistic constructs are dealt with in the eval-
uation process of access requests described in Section 3.1. We first present the PDP autho-
risation process and then the PEP enforcement process.

When the PDP receives an access request, first it evaluates the request on the basis
of the available policies. Then, it determines the resulting decision by combining the
decisions returned by these policies through the top-level combining algorithm.

The evaluation of a policy with respect to a request starts by checking its applicability
to the request, which is done by evaluating the expression defining its target. Let us
suppose that the applicability holds, i.e. the expression evaluates to true. In case of rules,
the rule effect is returned. In case of policy sets, the result is obtained by evaluating the
contained policies and combining their evaluation results through the specified algorithm.
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In both cases, the evaluation ends with the fulfilment of the enclosed obligations. Let
us suppose now that the applicability does not hold. If the expression evaluates to false,
the policy evaluation returns not-app, while if the expression returns an error or a non-
boolean value, the policy evaluation returns indet. Clearly, a policy with target expression
true (resp., false) applies to all (resp., no) requests.

Evaluating expressions amounts to apply operators and to resolve the attribute names
occurring within, that is to determine the value corresponding to each such name. If this
is not possible, i.e. an attribute with that name is missing in the request and cannot be
retrieved through the context handler, the special value ⊥ is returned. This value can be
exploited to enforce different strategies for managing the absence of attributes. In details,
dealing with ⊥ as an error would mean that all occurring attributes must be present in the
request, otherwise the policy evaluation immediately returns indet. Instead, as chosen by
the FACPL semantics, dealing with ⊥ in a way similar to value false allows attributes to be
missing without always generating errors. Indeed, using ⊥ rather than an error value for
dealing with missing attributes permits enforcing an appropriate management of requests
only containing limited sets of attributes and reasoning on the role of missing attributes
in the policy evaluation (see the formal analysis in Chapter 4 for further details).

The evaluation of expressions takes into account the types of the operators’ arguments,
and possibly returns the special values ⊥ and error. In details, if the arguments are of the
expected type, the operator is applied, else, i.e. at least one argument is error, error is
returned; otherwise, i.e. at least one argument is ⊥ and none is error, ⊥ is returned. The
operators and and or enforce a different treatment of these special values. Specifically, and
returns true if both operands are true, false if at least one operand is false, ⊥ if at least
one operand is ⊥ and none is false or error, and error otherwise (e.g. when an operand is
not a boolean value). The operator or is the dual of and. Hence, and and or may mask ⊥
and error. Instead, the unary operator not only swaps values true and false and leaves ⊥
and error unchanged. In the following, we use operators and and or in infix notation, and
assume that they are commutative and associative, and that operator and takes precedence
over or.

The evaluation of a policy ends with the fulfilment of all obligations whose applicability
effect coincides with the decision calculated for the policy. The fulfilment of an obligation
consists in evaluating all the expression arguments of the enclosed action. If an error
occurs, the policy decision is changed to indet. Otherwise, the fulfilled obligations are
paired with the policy decision to form the PDP response.

Evaluating a policy set requires the application of the specified combining algorithm.
Given a sequence of policies in input, the combining algorithms prescribe the sequential
evaluation of the given policies and behave as follows:

• p-overδ (d-overδ is specular): if the evaluation of a policy returns permit, then the
result is permit. In other words, permit takes precedence, regardless of the result of
any other policy. Instead, if at least one policy returns deny and all others return
not-app or deny, then the result is deny. If all policies return not-app, then the result
is not-app. In the remaining cases, the result is indet.

• d-unless-pδ (p-unless-dδ is specular): similarly to p-overδ, this algorithm gives prece-
dence to permit over deny, but it always returns deny in all the other cases.

• first-appδ: the algorithm returns the evaluation result of the first policy in the se-
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quence that does not return not-app, otherwise the result is not-app.

• one-appδ: when exactly one policy is applicable, the result of the algorithm is that
of the applicable policy. If no policy applies, the algorithm returns not-app, while if
more than one policy is applicable, it returns indet.

• weak-conδ: the algorithm returns permit (resp., deny) if some policies return permit
(resp., deny) and no other policy returns deny (resp., permit); if both decisions are
returned, the algorithm returns indet. If policies only return not-app or indet, then
indet, if present, takes precedence.

• strong-conδ: this algorithm is the stronger version of the previous one, in the sense
that to obtain permit (resp., deny) all policies have to return permit (resp., deny),
otherwise indet is returned. If all policies return not-app then the result is not-app.

The algorithms described in the first four items above are those popularised by XACML.
They combine decisions according to a given precedence criterium or to policy applicabil-
ity. The remaining two algorithms, instead, are borrowed from [LWQ+09] and compute
the combined decision by achieving different forms of consensus.

If the resulting decision is permit or deny, each algorithm also returns the sequence of
fulfilled obligations according to the chosen fulfilment strategy δ. There are two possible
strategies. The all strategy requires evaluation of all policies in the input sequence and
returns the fulfilled obligations pertaining to all decisions. Instead, the greedy strategy
prescribes that, as soon as a decision is obtained that cannot change due to evaluation
of subsequent policies in the input sequence, the execution halts. Hence, the result will
not consider the possibly remaining policies and only contains the obligations already ful-
filled. Therefore, the fulfilment strategies mainly affect the amount of fulfilled obligations
possibly returned. Notice that the greedy strategy may significantly improve the policy
evaluation performance and that it is inspired to the XACML management of obligations.
Instead, the all strategy may require additional workload, but it ensures that all the policies
and their obligations are always taken into account.

As last step, the calculated PDP response is sent to the PEP for the enforcement. To this
aim, the PEP must discharge all obligations and decide, by means of the chosen enforce-
ment algorithm, how to enforce decisions not-app and indet. In particular, the deny-biased
(resp., permit-biased) algorithm enforces permit (resp., deny) only when all the correspond-
ing obligations are correctly discharged, while enforces deny (resp., permit) in all other
cases. Instead, the base algorithm leaves all decisions unchanged but, in case of deci-
sions permit and deny, enforces indet if an error occurs while discharging obligations. This
means that obligations not only affect the authorisation process due to their fulfilment, but
also the enforcement one. It is worth noticing that errors caused by optional obligations,
i.e. with type O, are safely ignored.

3.4 FACPL at work on the e-Health Case Study

We now use the FACPL linguistic abstractions to define an access control systems ensuring
the requirements for the e-Health case study reported in Table 2.1. Indeed, such a system
has to prevent unauthorised access to patient data and hence to ensure their confidential-
ity and integrity. The specification of this FACPL-based access control system is introduced
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bottom-up, from single rules to whole policies, thus illustrating in a step-by-step fashion
the combination strategies that could be pursued and their effects.

The system resources to protect via the access control system are e-Prescriptions. The
access control rules need to deal with requester credentials, i.e. doctor and pharmacist
roles, along with their assigned permissions, and with read or write actions.

Requirement (Eh-1), allowing doctors to write e-Prescriptions, can be formalised as a
positive FACPL rule (i.e., with effect permit) as follows

( permit target : equal(subject/role, “doctor”) and equal(action/id, “write”)
and in(“e-Pre-Write”, subject/permission)
and in(“e-Pre-Read”, subject/permission))

The rule target2 checks if the requester role is doctor, if the action is write, and if the
permissions include those for writing and reading an e-Prescription. Notably, that the re-
source type is equal to e-Prescription will be controlled by the target of the policy enclosing
the rule. Due to the hierarchical processing of FACPL elements, this target is enough to
ensure that the rule will only be applied to e-Prescriptions.

Requirement (Eh-2) can be expressed like the previous one: it differs for the action
identifier and for the required permissions, i.e. only e-Pre-Read. Requirement (Eh-3) only
differs from the second one for the role value.

These three rules, modelling Requirements (Eh-1), (Eh-2) and (Eh-3), can be com-
bined together in a policy set whose target specifies the check on the resource type
e-Prescription3. Since all granted requests are explicitly authorised, choosing the p-overall

algorithm as combining strategy seems a natural choice. Let thus Policy (Eh-A) be defined
as follows

{ p-overall

target : equal(resource/type, “e-Prescription”)
policies : ( permit target : equal(subject/role, “doctor”)and equal(action/id, “write”)

and in(“e-Pre-Write”, subject/permission)
and in(“e-Pre-Read”, subject/permission))

( permit target : equal(subject/role, “doctor”)and equal(action/id, “read”)
and in(“e-Pre-Read”, subject/permission))

( permit target : equal(subject/role, “pharmacist”)and equal(action/id, “read”)
and in(“e-Pre-Read”, subject/permission))

obl : [ permit M log(system/time, resource/type, subject/id, action/id) ] }

(Eh-A)

Policy (Eh-A) reports not only access controls but also an obligation formalising Require-
ment (Eh-4) about the logging of each authorised access. The arguments of the obligation
action are separated by commas to increase their readability.

Let us now consider a FACPL request and evaluate it with respect to Policy (Eh-A).
For the sake of presentation, hereafter we write A , t to assign the symbolic name A
to the term t. Let us suppose that doctor Dr. House wants to write an e-Prescription; the

2To improve code readability, we use the infix notation for operators, a textual notation for permissions and
an additional check on the subject role. Of course, in a setting with semantically different roles, a standardised
permission-based coding, as e.g. HL7 (http://www.hl7.org), should be used for defining role checks.

3Again, to improve code readability, the resource is encoded as text; in a real application, for interoper-
ability reasons, the LOINC (http://loinc.org/) universal code system for clinical data should be used.

30

http://www.hl7.org
http://loinc.org/


3.4. FACPL at work on the e-Health Case Study

corresponding request is defined as follows

req1 , (subject/id, “Dr. House”) (subject/role, “doctor”) (action/id, “write”)
(resource/type, “e-Prescription”) (subject/permission, “e-Pre-Read”)
(subject/permission, “e-Pre-Write”) . . .

where attributes are organised into the categories subject, resource and action. Additional
attributes possibly included in the request are omitted because they are not relevant for
this evaluation. Notice that subject/permission is a multi-valued attribute and it is properly
handled in the previous rules by using the in operator, which verifies the membership of
its first argument to the set that constitutes its second argument.

The authorisation process of req1 returns a permit decision. In fact, the request matches
the policy target, as the resource type is e-Prescription, and exposes all the permissions
required in the first rule for the write action and the doctor role. The response, that is a
permit including a log obligation, is defined, e.g., as follows

〈 permit [ M log(2016-01-22 10:15:12, “e-Prescription”, “Dr. House”, “write”) ]〉

The fulfilled obligation indicates that the PDP succeeded in retrieving and evaluating all
the attributes occurring within the arguments of the action; runtime information, such as
the current time, is retrieved through the context handler.

The evaluation of req1 returns the expected result. We might be led to believe that due
to the simplicity of Policy (Eh-A), this is true for all requests. However, this correctness
property cannot be taken for granted as, in general, even though the meaning of a rule is
straightforward, this may not be the case for a combination of rules. Depending on the
chosen combination strategy, some unexpected results can arise. For example, a request
from a pharmacist for a write action on an e-Prescription must be forbidden. In fact, this be-
haviour is not explicitly allowed (see Table 2.1), hence due to the closed-world assumption
it has to be forbidden. However, the corresponding request

req2 , (subject/id, “Dr. Wilson”) (subject/role, “pharmacist”) (action/id, “write”)
(resource/type, “e-Prescription”) (subject/permission, “e-Pre-Read”) . . .

would evaluate to not-app. In fact, all enclosed rules do not apply (i.e., their targets do
not match) and the resulting not-app decisions are combined by the p-overall algorithm to
not-app as well. Therefore, the enforcement algorithm of the PEP is entrusted with the
task of taking the final decision for request req2. Even though this is correct in a setting
where the PEP is well-defined, e.g. the epSOS system, it is not recommended when design
assumptions on the PEP implementation are missing. In fact, a biased algorithm might
transform not-app into permit, possibly causing unauthorised accesses.

To prevent not-app decisions to be returned by the policy, we can replace the combining
algorithm of Policy (Eh-A) with the d-unless-pall one. This implies that deny is taken as
the default decision and is returned whenever no rule returns permit. Alternatively, we
can obtain the same effect by using a policy set defined as the combination, through the
p-overall algorithm, of Policy (Eh-A) and a rule forbidding all accesses. This rule is simply
defined as (deny): the absence of the target and the negative effect means that it always
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returns deny. Now, let Policy (Eh-B) be defined as

{ p-overall

policies :
{ . . .Policy (Eh-A) . . . }
(deny)

obl : [ deny M mailTo(resource/patient-mail,“Data request by unauthorised subject”) ]
[ permit O compress( ) ] }

(Eh-B)

Policy (Eh-B) reports two obligations formalising, respectively, the last two requirements
of Table 2.1: (i) a patient is informed about unauthorised attempts to access her data and
(ii) if possible, data are exchanged in compressed form. Notably, the type ‘optional’ is
exploited so that compressed exchanges are not strictly required but, e.g., only whenever
the corresponding service is available.

Policy (Eh-B) can be used as a basis for the definition of the patient informed con-
sent (see Section 2.3.1). For instance, Alice’s policy for the management of her health
data could be simply obtained by adding target : equal(“Alice”, resource/patient-id) to Pol-
icy (Eh-B), i.e. a check on the patient identifier to which the policy applies. In this way,
Alice grants access to her e-Prescription data to the healthcare professionals that satisfy the
requirements expressed in her consent policy. Another patient expressing a more restric-
tive consent, where e.g. writing of e-Prescriptions is disabled, will have a similar policy set
where the rule modelling Requirement (Eh-1) is not included. In a more general perspec-
tive, the PDP could have a policy set for each patient, that encloses the policies expressing
the consent explicitly signed by the patient. This is the approach followed, e.g., in the
Austrian e-Health platform4.

The FACPL-based access control system just presented highlights the mnemonic and
compact notations provided by FACPL for the specification of access control policies. As
a matter of fact, the XACML policy reported in Listing 2.1 could be defined in FACPL in
few lines. However, as shown before, it can be challenging to identify unexpected autho-
risations and to determine whether policy fixes affect authorisations that should not be
altered. The specification and combination of (a large number of) access control policies
is indeed an error-prone task that has to be supported by effective analysis techniques.

Therefore, we equip FACPL with a formal semantics and then, as described in Chap-
ter 4, we define a constraint-based analysis enabling the (automated) verification of mul-
tiple properties on policies.

3.5 Formal Semantics

In this section we present the formal semantics of FACPL by formalising the evaluation
process introduced in Section 3.1 and detailed in Section 3.3. The semantics is defined by
following a denotational approach which means that

• we introduce some semantic functions mapping each FACPL syntactic construct to
an appropriate denotation, that is an element of a semantic domain representing the
meaning of the construct;

• the semantic functions are defined in a compositional way, so that the semantic of
each construct is formulated in terms of the semantics of its sub-constructs.

4For additional details see the Austria’s ELGA system — http://www.elga.gv.at/
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Syntactic Generic Semantic Syntactic Semantic
category synt. elem. function domain domain

Attribute names n Name
Literal values v Value

Requests req R Request R , Name → (Value ∪ 2Value ∪ {⊥})
Expressions expr E Expr R→ Value ∪ 2Value ∪ {error,⊥}

Effects e Effect
Obligation Types t ObType

Pep Actions pepAct PepAction
fulfilled obligations fo FObligation

Obligations o O Obligation R→ FObligation ∪ {error}
PDP Responses res PDPReponse

Policies p P Policy R→ PDPReponse

Policy Decision Points pdp Pdp PDP R→ PDPReponse

Combining algorithms a A Alg × Policy+ R→ PDPReponse

Decisions dec Decision
Enforcement algorithms ea EA EnfAlg PDPReponse → Decision

Policy Auth. System pas Pas PAS Request → Decision

Table 3.3: Correspondence between syntactic and semantic domains

To this purpose, we specify a family of semantic functions mapping each syntactic domain
to a specific semantic domain. These functions are inductively defined on the FACPL
syntax through appropriate semantic clauses following a ‘point-wise’ style. For instance,
on the syntactic domain Policy representing all FACPL policies, we formalise the function
P that defines a semantic domain mapping FACPL requests to PDP responses.

In the sequel, we convene that the application of the semantic functions is left-as-
sociative, omits parenthesis whenever possible, and surrounds syntactic objects with the
emphatic brackets [[ and ]] to increase readability. For instance, E [[n]]r stands for (E(n))(r)
and indicates the application of the semantic function E to (the syntactic object) n and (the
semantic object) r . We also assume that each nonterminal symbol in Tables 3.1 and 3.2
(defining the FACPL syntax) denominates the set of constructs of the syntactic category
defined by the corresponding EBNF rule, e.g. the nonterminal Policy identifies the set of
all FACPL policies. The used notations are summarised in Table 3.3 (the missing semantic
domains coincide with the corresponding syntactic ones).

In the rest of this section we detail the semantics of requests (Section 3.5.1), PDP
(Sections 3.5.2 and 3.5.3), PEP (Section 3.5.4), PAS (Section 3.5.5) and we conclude with
some properties of the semantics (Section 3.5.6).

3.5.1 Requests

The meaning of a request5 is a function of the set R , Name → (Value ∪ 2Value ∪ {⊥}),
that is a total function that maps attribute names to either a literal value, or a set of values
(in case of multi-valued attributes), or the special value ⊥ (if the value for an attribute
name is missing). The mapping from a request to its meaning is given by the semantic

5For simplicity’s sake, here we assume that, when the evaluation of a request takes place, the original
request has been already enriched with the information that would be retrieved at run-time through the
Context Handler (steps 5-8 in Figure 3.1).
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function R : Request → R, defined as follows:

R[[(n ′, v ′)]]n =

{
v ′ if n = n ′

⊥ otherwise

R[[(ni, vi)
+

(n ′, v ′)]]n =

{
R[[(ni, vi)

+
]]n d v ′ if n = n ′

R[[(ni, vi)
+

]]n otherwise

(S-1)

The semantics of a request, which is a function r ∈ R, is thus inductively defined on the
length of the request. To deal with multi-valued attributes we introduce the operator d,
which is straightforwardly defined by case analysis on the first argument as follows

v d v′ = {v, v′} V d v′ = V ∪ {v′} ⊥ d v′ = v′

where we let V ∈ 2Value . Specifically, it composes an element of the set Value∪2Value∪{⊥},
which is returned by R[[(ni, vi)

+]]n, with a literal value in Value.

Remark 3.1. In the definition of the semantic function R, by making use of the abstraction
notation from the λ-calculus to denote functions, the clause for a request formed by a single
attribute could be expressed as follows

R[[(n ′, v ′)]] = λm. if [m = n ′] then v ′ else ⊥ .

From the principle of extensional equality among functions, it follows that the returned
function r is equivalent to that previously defined point-wise on the elements of its domain
Name, as it can be easily seen by applying r to an argument n. For the sake of presentation,
although in general we could define the semantic functions using the λ-notation, we prefer to
use the more compact and intuitive ‘point-wise definition style’.

3.5.2 Policy Decision Process

We start defining the semantics of expressions and obligations that will be then exploited
for defining the semantics of policies.

In Table 3.4 we report (an excerpt of) the clauses defining the function E : Expr →
(R→ Value ∪ 2Value∪{error,⊥}) modelling the semantics of expressions. This means that
the semantics of an expression is a function of the form R → Value ∪ 2Value ∪ {error,⊥}
that, given a request, returns a literal value, or a set of values, or the special value ⊥, or an
error (e.g. when an argument of an operator has unexpected type). The evaluation order
of sub-expressions is not relevant, as they do not generate side-effects.

The first raw of the table contains the clauses for basic expressions, i.e. attribute names
and literal values. The semantics of the expression formed by a name n is a function that,
given a (semantic) request r in input, returns the value that r associates to n. This is
written as the clause E [[n]]r = r(n). Similarly, the case of a value v is a function that
always returns the value itself, that is the clause E [[v ]]r = v.

The remaining clauses in Table 3.4 present (an excerpt of) the semantics of expression
operators. In particular, each clause, one for each operator, uses straightforward seman-
tic operators for composing denotations (e.g. = corresponds to equal), and enforces the
management strategy for the special values ⊥ and error. They establish that error takes
precedence over ⊥ and is returned every time the operator arguments have unexpected
types; whereas⊥ is returned when at least an argument is⊥ and there is no error. Notably,
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E [[n]]r = r(n) E [[v ]]r = v

E [[or(expr1, expr2)]]r =
true if E [[expr1]]r = true ∨ E [[expr2]]r = true
false if E [[expr1]]r = E [[expr2]]r = false
⊥ if E [[expr i]]r =⊥ ∧ E [[expr j ]]r ∈ {false,⊥}
error otherwise

E [[not(expr)]]r =
true if E [[expr ]]r = false
false if E [[expr ]]r = true
⊥ if E [[expr ]]r =⊥
error otherwise

E [[and(expr1, expr2)]]r =
true if E [[expr1]]r = E [[expr2]]r = true
false if E [[expr1]]r = false ∨ E [[expr2]]r = false
⊥ if E [[expr i]]r =⊥ ∧ E [[expr j ]]r ∈ {true,⊥}
error otherwise

E [[equal(expr1, expr2)]]r =
(E [[expr1]]r = E [[expr2]]r) if E [[expr1]]r

∧ E [[expr2]]r ∈ T
⊥ if E [[expr i]]r = ⊥

∧ E [[expr j ]]r 6= error
error otherwise

E [[in(expr1, expr2)]]r =
(E [[expr1]]r ∈ E [[expr2]]r) if E [[expr1]]r ∈ T ∧ E [[expr2]]r ∈ 2T

⊥ if E [[expr i]]r = ⊥ ∧ E [[expr j ]]r 6= error
error otherwise

E [[add(expr1, expr2)]]r =
(E [[expr1]]r + E [[expr2]]r) if E [[expr1]]r , E [[expr2]]r ∈ Double
⊥ if E [[expr i]]r =⊥ ∧ E [[expr j ]]r 6= error
error otherwise

Table 3.4: Semantics of (an excerpt of) FACPL expressions (T stands for one of the sets of
literal values or for the powerset of the set of all literal values, and i, j ∈ {1, 2} with i 6= j)

the clauses of operators and and or possibly mask these special values by implementing the
behaviour informally described in Section 3.3. It is worth noticing that the explicit man-
agement of missing attributes and evaluation errors ensure a full account of crucial aspects
of access control policy evaluations, usually neglected by other proposals from the litera-
ture (see, e.g., [JSS97, RRNN12, ACC14]). The only proposal taking into account the role
of missing attributes is that in [CM12]. However, it considers a simplified language, e.g.
obligations are missing, and assumes that expressions cannot generate errors.

Function E is straightforwardly extended to sequences of expressions by the clauses

E [[ε]]r = ε E [[expr ′ expr∗]]r = E [[expr ′]]r • E [[expr∗]]r (S-2)

The operator • denotes concatenation of sequences of semantic elements and ε denotes the
empty sequence. We assume that • is strict on error and ⊥, i.e. error is returned whenever
an error or ⊥ is in the sequence. Therefore, the evaluation of E [[expr∗]]r fails if any of the
expressions forming expr∗ evaluates to error or ⊥.

The semantics of the fulfilment of obligations is formalised by the function O :
Obligation → (R→ FObligation ∪ {error}) defined by the following clause

O[[[ e t pepAct(expr∗) ]]]r =

{
[ t pepAct(w∗) ] if E [[expr∗]]r = w∗

error otherwise
(S-3a)

where w stands for a literal value or a set of literal values. Thus, the fulfilment of an
obligation, given a request, returns a fulfilled obligation when the evaluation of every
expression argument of the action returns a value. Otherwise, it returns an error.
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Function O is straightforwardly extended to sequences of obligations as follows

O[[ε]]r = ε O[[o′ o∗]]r = O[[o′]]r • O[[o∗]]r (S-3b)

Notably, a sequence of fulfilled obligations is returned only if every obligation in the se-
quence successfully fulfils; otherwise, error is returned (indeed, • is strict on error).

We can now define the semantics of a policy as a function that, given a request, returns
an authorisation decision paired with a (possibly empty) sequence of fulfilled obligations.
Formally, it is given by the function P : Policy → (R → PDPReponse) that has two
defining clauses: one for rules and one for policy sets. The clause for rules is

P[[(e target : expr obl : o∗ )]]r =
〈e fo∗〉 if E [[expr ]]r = true ∧ O[[o∗|e ]]r = fo∗

not-app if E [[expr ]]r = false ∨ E [[expr ]]r = ⊥
indet otherwise

(S-4a)

Thus, the rule effect is returned as a decision when the target evaluates to true, which
means that the rule applies to the request, and all obligations with the same applicability
effect as the rule successfully fulfil. In this case, the fulfilled obligations are also part
of the response. Otherwise, it could be the case that (i) the rule does not apply to the
request, i.e. the target evaluates to false or to ⊥, or that (ii) an error has occurred while
evaluating the target or fulfilling the obligations with the same effect as the rule. Notation
o∗|e indicates the subsequence of o∗ made of those obligations whose effect is e. Formally,
its definition is as follows

ε|e = ε

([ e ′ t pepAct(expr∗) ] o∗)|e =

{
[ e ′ t pepAct(expr∗) ] (o∗|e) if e ′ = e

o∗|e otherwise

The semantics of policy sets relies on the semantics of combining algorithms. Indeed,
as detailed in Section 3.5.3, we use a semantic function A to map each combining algo-
rithm a to a function that, to a sequence of policies, associates a function from requests to
PDP responses. The clause for policy sets is

P[[{a target : expr policies : p+ obl : o∗ }]]r =
〈e fo∗1 • fo∗2〉 if E [[expr ]]r = true ∧ A[[a, p+]]r = 〈e fo∗1〉 ∧ O[[o∗|e ]]r = fo∗2
not-app if E [[expr ]]r = false ∨ E [[expr ]]r = ⊥

∨ (E [[expr ]]r = true ∧ A[[a, p+]]r = not-app)

indet otherwise

(S-4b)

Thus, the policy set applies to the request when the target evaluates to true, the semantic of
the combining algorithm a (which is applied to the enclosed sequence of policies and the
request) returns the effect e and a sequence of fulfilled obligations fo∗1, and all enclosed
obligations with effect e successfully fulfil and return a sequence fo∗2. In this case, the PDP
response contains e and the concatenation of sequences fo∗1 and fo∗2. Instead, if the target
evaluates to false or to ⊥, or the combining algorithm returns not-app, the policy set does
not apply to the request. In the remaining cases, an error has occurred and the response
is indet.

Finally, the semantic of a PDP is that function from requests to PDP responses obtained
by applying the combining algorithm to the enclosed sequence of policies, that is

Pdp[[{a policies : p+}]]r = A[[a, p+]]r (S-5)
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3.5.3 Combining Algorithms

The semantics of combining algorithms is defined in terms of a family of binary opera-
tors. Let alg denote the name of a combining algorithm (i.e., p-over, d-over, etc.); the
corresponding semantic operator is identified as ⊗alg and defined by means of a two-
dimensional matrix that, given two PDP responses, calculates the resulting combined re-
sponse. The combining matrices of the ⊗alg operators are reported in Table 3.5. Basically,
the matrices specify the precedences among the permit, deny, not-app and indet decisions,
and show how the resulting (sequence of) fulfilled obligations is obtained, i.e. by con-
catenating the fulfilled obligations of the responses whose decision matches the combined
one. Notice that the operators are not commutative (in fact, the matrices are not symmet-
ric because the order in which sequences of obligations are combined does matter).

The semantics of the combining algorithms can be now formalised by the function
A : Alg × Policy+ → (R → PDPReponse). This function is defined in terms of the
iterative application of the binary combining operators by means of two definition clauses
according to the adopted fulfilment strategy: the all strategy always requires evaluation
of all policies, while the greedy strategy halts the evaluation as soon as a final decision is
determined (i.e. without necessarily taking into account all policies in the sequence). If
the all strategy is adopted, the definition clause is as follows

A[[algall, p1 . . . ps]]r = ⊗alg(⊗alg(. . .⊗ alg(P[[p1]]r ,P[[p2]]r), . . .),P[[ps]]r) (S-6a)

meaning that the combining operator is sequentially applied to the denotations of all input
policies6. Instead, if the greedy strategy is used, the definition clause is as follows

A[[alggreedy, p1 . . . ps]]r =

res1 if P[[p1]]r = res1 ∧ isFinalalg(res1)

res2 elseif ⊗alg(res1,P[[p2]]r) = res2 ∧ isFinalalg(res2)
...

...
ress-1 elseif ⊗alg(ress-2,P[[ps-1]]r) = ress-1 ∧ isFinalalg(ress-1)

⊗alg(ress-1,P[[ps]]r) otherwise

(S-6b)

where the elseif notation is a shortcut to represent mutually exclusive conditions. The
auxiliary predicates isFinalalg (one for each combining algorithm alg), given a response in
input, check if the response decision is final with respect to the algorithm alg, i.e. if such
decision cannot change due to further combinations. Their definition is in Table 3.6; as a
matter of notation, we use res.dec to indicate the decision of response res. These predi-
cates are straightforwardly derived from the combination matrices of the binary operators,
thus we only comment on salient points. In case of the p-over algorithm (and similarly
for the others in the first two rows of the table), the permit decision is the only decision
that can never be overwritten, hence, it is final. Instead, in case of the first-app algorithm,
all decisions except not-app are final since they represent the fact that the first applicable
policy has been already found. Both consensus algorithms have indet as final decision,
because no form of consensus can be reached once an indet is obtained. Similarly, the
one-app algorithm has indet as final decision.

6Notably, in case of a single policy, operators ⊗p-unless-d and ⊗d-unless-p turn the not-app and indet
responses into, respectively, 〈permit ε〉 and 〈deny ε〉, while the remaining operators leave them unchanged.
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⊗p-over res1\res2 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1•FO2〉 〈permit FO1〉 〈permit FO1〉 〈permit FO1〉
〈deny FO1〉 〈permit FO2〉 〈deny FO1•FO2〉 〈deny FO1〉 indet
not-app 〈permit FO2〉 〈deny FO2〉 not-app indet
indet 〈permit FO2〉 indet indet indet

⊗d-over res1\res2 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1•FO2〉 〈deny FO2〉 〈permit FO1〉 indet
〈deny FO1〉 〈deny FO1〉 〈deny FO1•FO2〉 〈deny FO1〉 〈deny FO1〉
not-app 〈permit FO2〉 〈deny FO2〉 not-app indet
indet indet 〈deny FO2〉 indet indet

⊗d-unless-p res1\res2 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1•FO2〉 〈permit FO1〉 〈permit FO1〉 〈permit FO1〉
〈deny FO1〉 〈permit FO2〉 〈deny FO1•FO2〉 〈deny FO1〉 〈deny FO1〉
not-app 〈permit FO2〉 〈deny FO2〉 〈deny ε〉 〈deny ε〉
indet 〈permit FO2〉 〈deny FO2〉 〈deny ε〉 〈deny ε〉

⊗p-unless-d res1\res2 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1•FO2〉 〈deny FO2〉 〈permit FO1〉 〈permit FO1〉
〈deny FO1〉 〈deny FO1〉 〈deny FO1•FO2〉 〈deny FO1〉 〈deny FO1〉
not-app 〈permit FO2〉 〈deny FO2〉 〈permit ε〉 〈permit ε〉
indet 〈permit FO2〉 〈deny FO2〉 〈permit ε〉 〈permit ε〉

⊗first-app res1\res2 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1〉 〈permit FO1〉 〈permit FO1〉 〈permit FO1〉
〈deny FO1〉 〈deny FO1〉 〈deny FO1〉 〈deny FO1〉 〈deny FO1〉
not-app 〈permit FO2〉 〈deny FO2〉 not-app indet
indet indet indet indet indet

⊗one-app res1\res2 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 indet indet 〈permit FO1〉 indet
〈deny FO1〉 indet indet 〈deny FO1〉 indet
not-app 〈permit FO2〉 〈deny FO2〉 not-app indet
indet indet indet indet indet

⊗weak-con res1\res2 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1•FO2〉 indet 〈permit FO1〉 indet
〈deny FO1〉 indet 〈deny FO1•FO2〉 〈deny FO1〉 indet
not-app 〈permit FO2〉 〈deny FO2〉 not-app indet
indet indet indet indet indet

⊗strong-con res1\res2 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1•FO2〉 indet indet indet
〈deny FO1〉 indet 〈deny FO1•FO2〉 indet indet
not-app indet indet not-app indet
indet indet indet indet indet

Table 3.5: Combination matrices for ⊗alg operators (res1 and res2 indicate the first and
the second argument, respectively)
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isFinalp-over (res) =

{
true if res.dec = permit
false otherwise

isFinald-over (res) =

{
true if res.dec = deny
false otherwise

isFinald-unless-p(res) =

{
true if res.dec = permit
false otherwise

isFinalp-unless-d(res) =

{
true if res.dec = deny
false otherwise

isFinalfirst-app(res) =

{
false if res.dec = not-app
true otherwsise

isFinalone-app(res) =

{
true if res.dec = indet
false otherwsise

isFinalweak-con(res) =

{
true if res.dec = indet
false otherwsise

isFinal strong-con(res) =

{
true if res.dec = indet
false otherwsise

Table 3.6: Definition of the isFinalalg(res) predicate

It is worth noticing that the combination matrices we propose are a refined ver-
sion of those in [LWQ+09], i.e. we explicit address the combination of obligations.
Furthermore, differently from other formalisations of combining algorithms (see, e.g.,
[RLB+09, RRNN12, CM12, ACC14]), we formalise their semantics in terms of different
fulfilment strategies, thus to further take into account the role of obligations in algorithm
evaluation. In general, the introduction of δ paves the way to the definition of more so-
phisticated management strategies as, e.g., only obligations that are not in conflict each
other (due to the type of actions they define) are combined and then returned.

3.5.4 Policy Enforcement Process

The semantics of the enforcement process defines how the PEP discharges obligations and
enforces authorisation decisions. To define this process, we use the auxiliary function
(( )) : FObligation∗ → {true, false} that, given a sequence of fulfilled obligations, executes
such obligations and returns a boolean value that indicates whether the evaluation is
successfully completed. Notably, since failures caused by optional obligations can be safely
ignored by the PEP, only failures of mandatory obligations (i.e. of type M) have to be taken
into account. The function is thus defined as follows

((ε)) = true

(([ O pepAct(w∗) ] • fo∗)) = ((fo∗))

(([ M pepAct(w∗) ] • fo∗)) =

{
((fo∗)) if pepAct(w∗) ⇓ ok

false otherwise

where ⇓ ok denotes that the discharge of the action pepAct(w∗) succeeded. Since the
set of action identifiers is intentionally left unspecified (see Section 3.2), the definition of
predicate ⇓ ok is hence unspecified too (in other words, the syntactic domain PepAction
is a parameter of the syntax, while ⇓ ok is a parameter of the semantics); we just assume
that it is total and deterministic.

The semantics of PEP is thus defined with respect to the enforcement algorithms. For-
mally, given an enforcement algorithm and a PDP response, the function EA : EnfAlg →
(PDPReponse → Decision) returns the enforced decision. It is defined by three clauses,
one for each algorithm. The clause for the deny-biased algorithm follows

EA[[deny-biased]]res =

{
permit if res.dec = permit ∧ ((res.fo))
deny otherwise

(S-7a)

Likewise res.dec that indicates the decision of the response res, notation res.fo indicates
the sequence of fulfilled obligations of res. The permit decision is enforced only if this
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is the decision returned by the PDP and all accompanying obligations are successfully
discharged. If an error occurs, as well as if the PDP decision is not permit, a deny is
enforced. The clause for the permit-biased algorithm is the dual one, whereas the clause
for the base algorithm is as follows

EA[[base]]res =


permit if res.dec = permit ∧ ((res.fo))

deny if res.dec = deny ∧ ((res.fo))

not-app if res.dec = not-app

indet otherwise

(S-7b)

Both decisions permit and deny are enforced only if all obligations in the PDP response are
successfully discharged, otherwise indet is enforced. Instead, decisions not-app and indet
are enforced without modifications.

3.5.5 Policy Authorisation System

The semantics of a PAS is defined in terms of the composition of the semantics of PEP
and PDP. It is given by the function Pas : PAS → (Request → Decision) defined by the
following clause

Pas[[{ pep : ea pdp : pdp }, req ]] = EA[[ea]](Pdp[[pdp]](R[[req ]])) (S-8)

Basically, given a request req in the FACPL syntax, this is converted into its functional
representation by the function R (see Section 3.5.1). This result is then passed to the
semantics of the PDP, i.e. Pdp[[pdp]], which returns a response that on its turn is passed to
the semantics of the PEP, i.e. EA[[ea]]. The latter function returns then the final decision
of the PAS when given the request req in input.

3.5.6 Properties of the Semantics

We conclude this section with some properties and results of the FACPL semantics. In par-
ticular, we address the so-called ‘reasonability’ properties of [TK06] that precisely char-
acterise the expressiveness of a policy language. These properties are written in italics
between double quotes and accompanied by their informal description.

The main result is that FACPL semantics is “deterministic” and “total”, i.e. the semantic
is a total function. Informally, this means that, given a FACPL specification, i.e. a PAS, and
a possible request, multiple evaluations of such request produce the same decision.

To formally prove this result, we reason by induction on the depth of policies, i.e. the
number of nested policies, that is defined by induction on the syntax of policies as follows

depth((e target : expr obl : o∗ )) = 0
depth({a target : expr policies : p+ obl : o∗ }) = 1 +max{depth(p) | p ∈ p+}

Indeed, policies with depth 0 are rules, the other ones are policies containing other poli-
cies. Notationally, we will use pi to mean that policy p has depth i and (p+)i to mean that
at least a policy in the sequence p+ has depth i and the others have depth at most i.

Theorem 3.1 (Total Semantics). For all pas ∈ PAS , req ∈ Request and dec, dec′ ∈
Decision, it holds that

Pas[[pas, req ]] = dec ∧ Pas[[pas, req ]] = dec′ ⇒ dec = dec′

that is, Pas is a total function.
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Proof. We prove that Pas is a total function, i.e. it uniquely associates a decision to every input
(pas, req). From the clause (S-8) we have

Pas[[{ pep : ea pdp : pdp }, req ]] = EA[[ea]](Pdp[[pdp]](R[[req ]]))

thus, since the composition of total functions is a total function, it is enough to prove that R, Pdp
and EA are total functions. The proofs proceed by inspecting their defining clauses with aim of
checking that they satisfy the two requirements below

R1 there is one, and only one, clause that applies to each syntactic domain element (this usually
follows since the definition is syntax-driven and considers all the syntactic forms that the
input can assume);

R2 for each defining clause,

• the conditions of the right hand side are mutually exclusive (from the systematic use
of the otherwise condition, it directly follows that they cover all the possible cases for
the syntactic domain elements of the form occurring in the left hand side),

• the values assigned in each case of the right hand side are obtained by only using total
functions and/or total and deterministic operators/predicates.

Case R From its defining clauses (S-1) we get that R is defined on all non-empty sequences of
attributes, i.e. all requests. Moreover, the conditions of the right hand side of each clause
are mutually exclusive and the operator d is total and deterministic by definition. Thus R1
and R2 hold, which means that R is a total function.

Case Pdp To prove this case, we first prove that E , O, A and P are total functions.

Case E By an easy inspection of the clauses defining E , an excerpt of which are in Table 3.4,
it is not hard to believe that they satisfy R1 (since the application of the clauses is driven
by the syntactic form of the input expression) and R2 above, hence E is a total function.
Moreover, since the operator • is total and deterministic, from the clauses (S-2) it
follows that E remains a total function also when extended to sequences of expressions.

Case O Since E is a total function also on sequences of expressions, from the clauses (S-3a)
and (S-3b) it follows that requirements R1 and R2 hold, thus O is a total function both
on single obligations and on sequences of obligations.

Cases A and P The definitions of P and A are syntax-driven and consider all the syntactic
forms that the input can assume, thus R1 is satisfied. Now, since P and A are mutually
recursive, we prove by induction on the depth of their arguments that their defining
clauses satisfy R2 for all input policies.

Base Case (i = 0) Let us start from P. p0 is of the form (e target : expr obl : o∗). We
have hence to prove that the clause (S-4a), which is the defining clause of P that
applies to p0, satisfies R2. This directly follows from the fact that E and O are
total functions, as well as it is by definition the function corresponding to notation
o∗|e . Now, let us consider A and proceed by case analysis on a.
(a = algall for any alg) Since the clause (S-4a) satisfies (R1 and) R2, for each p0

j

in (p+)0, P[[p0
j ]]r is uniquely defined. Thus, since each operator ⊗alg is total

and deterministic by construction, the clause (S-6a), to be used since the form
of a, satisfies R2 (when all the input policies have depth 0).
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(a = alggreedy for any alg) This case is similar to the previous one, but involves
the clause (S-6b) that satisfies R2 (when all the input policies have depth 0)
since its conditions of the right hand side are mutually exclusive by construc-
tion (notably, each predicate isFinalalg and each operator ⊗alg is total and
deterministic).

Inductive Case (i = n+ 1) Let us start from P. pn+1 is of the form
{a target : expr policies : (p+)n obl : o∗}. By the induction hypothesis, for any r , a
and pk

j in (p+)n, with k ≤ n, the clauses defining P and A satisfy (R1 and) R2,
that is P[[pk

j ]]r and A[[a, (p+)n]]r are uniquely defined. Hence, the clause (S-4b),
to be used since the form of pn+1, satisfies R2 as well. For A, we can reason like
in the base case by exploiting the induction hypothesis. We can thus conclude that
both the clauses (S-6a) and (S-6b) satisfy R2 (for any input policies).

Therefore, P and A are total functions.

Now, that Pdp is a total function directly follows from its defining clause (S-5).

Case EA The requirement R1 is satisfied by definition. Moreover, since the predicate ⇓ ok is total
and deterministic, the same holds for the function (( )). Therefore, also R2 is satisfied by
each defining clause (the conditions on res.dec are trivially mutually exclusive). Hence, EA
is a total function.

Notably, the fact that FACPL has a total semantics is somehow expected due to its
domain-specific nature, indeed FACPL is not a general-purpose Turing-complete language.

Furthermore, concerning compositionality of policies, FACPL ensures “independent
composition”, i.e. the results of the combining algorithms depend only on the decisions of
the policies given in input. This clearly follows from the use of combination matrices.

On the contrary, FACPL ensures neither “safety”, i.e. a request that is granted (resp.,
forbidden) may not be granted (resp., forbidden) anymore if new attributes are introduced
in the request, nor “monotonicity”, i.e. a request that is granted (resp., forbidden) may not
be granted (resp., forbidden) anymore if a new policy is introduced in a combination.
These properties are ensured neither by XACML nor by other policy languages featuring
deny rules and combining algorithms like those we have shown.

In addition to these properties, we finally highlight the relationship between attribute
names occurring in a policy and names defined by requests. By letting Names(p) to indi-
cate the set of attribute names occurring in (the expressions within) p, we can state the
following result.

Lemma 3.2. For all p ∈ Policy and r , r ′ ∈ R such that r(n) = r ′(n) for all n ∈ Names(p),
it holds that P[[p]]r = P[[p]]r ′.

Proof. The statement is based on an analogous result concerning expressions

for all expr ∈ Expr and r1, r
′
1 ∈ R such that r1(n) = r ′1(n) for all

n ∈ Names(expr), it holds that E [[expr ]]r1 = E [[expr ]]r ′1
(R)

which can be easily proven by structural induction on the syntax of expressions. Functions r1 and
r ′1 are only exploited in the base case when evaluating a name n ∈ Names(expr) for which, by
definition and hypothesis, we have E [[n]]r1 = r1(n) = r ′1(n) = E [[n]]r ′1.
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Since for any expr occurring in p, we have that Names(expr) ⊆ Names(p), from (R), by taking
r1 = r and r′1 = r′, it follows that

for all expr occurring in p, E [[expr ]]r = E [[expr ]]r ′ (R-E)

From (R-E), it also immediately follows that

for all o occurring in p, O[[o]]r = O[[o]]r ′ (R-O)

Now we can prove the main statement by induction on the depth i of p.

Base Case (i = 0) p0 has the form (e target : expr obl : o∗), thus the clause (S-4a) is used to
determine P[[p]]r . The thesis then trivially follows from (R-E) and (R-O).

Inductive Case (i = n+ 1) pn+1 is of the form {a target : expr policies : (p+)n obl : o∗}, thus the
clause (S-4b) is used to determine P[[p]]r . By the induction hypothesis, for any pk

j in (p+)n,
with k ≤ n, it holds that P[[pk

j ]]r = P[[pk
j ]]r ′. This, due to the clauses (S-6a) and (S-6b),

implies that A[[a, (p+)n]]r = A[[a, (p+)n]]r ′, for any algorithm a. The thesis then follows
from this fact and from (R-E) and (R-O).

3.6 Supporting Tools

To effectively support the specification, coding and enforcement of FACPL-based access
control systems, we develop a fully integrated Java-based software toolchain7, graphically
depicted in Figure 3.2. The key element of the toolchain is an Eclipse-based IDE that
provides features like, e.g., static code checks and automatic generation of runnable Java
code. An expressly developed Java library is used to compile and execute the Java code.
The figure also reports the SMT-based functionalities supporting the analysis we introduce
in Chapter 4. Additional comments on these tools are reported in Section 4.5.

To provide interoperability with the standard XACML and the variety of available tools
supporting it (e.g. XCREATE [BDLM12], Margrave [FKMT05] and Balana [WSO15]), the
IDE automatically translates FACPL code into XACML one and vice-versa. Because of a
slightly different expressivity (e.g. FACPL supports more combining algorithms), there
are some limitations in FACPL and XACML interoperability. Section 7.1 reports a detailed
comparison between them.

Furthermore, to allow newcomer users to directly experiment with FACPL, the web
application “Try FACPL in your Browser”, reachable from the FACPL website, offers an
online editor for creating and evaluating FACPL policies; the e-Health case study is there
reported as a running example. Additionally, it is also available from such web application
a proof-of-concept interface showing how a FACPL-based access control system can be
exploited for provisioning e-Health services.

In the rest of this section, we detail the FACPL Java library (Section 3.6.1) and IDE
(Section 3.6.2). Instead, performance and functionality comparisons with other similar
tools are reported in Section 7.5.

7The FACPL supporting tools are freely available and open-source; binary files, source files, unit tests and
a user’s guide can be found at the FACPL website [FAC16].
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Figure 3.2: FACPL toolchain

3.6.1 The FACPL Library

The Java library we provide aims at representing and evaluating FACPL policies, hence at
fully implementing the evaluation process formalised in Section 3.5. To this aim, driven by
the formal semantics, we have defined a conformance test-suite that systematically verifies
each library unit (e.g., expressions and combining algorithms) with respect to its formal
specification.

For each element of the language the library contains an abstract class that provides
its evaluation method. In practice, a FACPL policy is translated into a Java class that
instantiates the corresponding abstract one and adds, by means of specific methods (e.g.,
addObligation), its forming elements. Similarly, a request corresponds to a Java class
containing the request attributes and a reference to a context handler that can be used to
dynamically retrieve additional attributes at evaluation-time.

Evaluating requests amounts to invoke the evaluation method of a policy, which coor-
dinates the evaluation of its enclosed elements in compliance with its formal specification.
In addition to the authorisation process, the library supports the enforcement process by
defining the three enforcement algorithms and a minimal set of pre-defined PEP actions,
i.e. log, mailTo and compress. Additional actions can be dynamically introduced by
providing their implementation classes to the PEP initialisation method.

By way of example, we report in Listings 3.1 (an excerpt of) the Java code of Pol-
icy (Eh-A) introduced in Section 3.4. Besides the specific methods used for adding policy
elements, the previous Java code highlights the use of class references for selecting ex-
pression operators and combining algorithms. This design choice, together with the use
of Java reflection and best-practices of object-oriented programming, allows the library
to be easily extended with, e.g., new expression operators, combining algorithms and en-
forcement actions. Note also that rules are defined as private inner classes, because they
cannot be referred by policy sets different from the enclosing one.

Besides the four-valued decisions considered so far, the FACPL library also supports
the extended indeterminate values used by XACML, i.e. indetP, indetD and indetDP. They
specify the potential decision (permit, deny and both, respectively) that could have been
taken if an error, leading to the decision indeterminate, would not have occurred during
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public class PolicySet_e -Prescription extends PolicySet{

public PolicySet_e -Prescription (){
addCombiningAlg(PermitOverrides.class);
addTarget (... new ExpressionFunction(Equal.class , "e-Prescription",

new AttributeName("resource","type"))...);
addPolicyElement(new rule1 ());
addPolicyElement(new rule2 ());
addPolicyElement(new rule3 ());
addObligation(new Obligation("log",Effect.PERMIT ,ObligationType.M,

new AttributeName("system","time"),new AttributeName("resource","type"),
new AttributeName("subject","id"),new AttributeName("action","id")));

}

private class Rule_rule1 extends Rule{
Rule_rule1 (){

addEffect(Effect.PERMIT);
addTarget (... new ExpressionFunction(In.class ,

new AttributeName("subject","permission"),"e-Pre -Write") ,...);
}

}

private class Rule_rule2 extends Rule{
Rule_rule2 (){...}

}

private class Rule_rule3 extends Rule{
Rule_rule3 (){...}

}
}

Listing 3.1: E-Health case study: (an excerpt of) Java code of the e-Prescription policy

the evaluation. Extended indeterminate values allow the PDP to obtain additional infor-
mation about policy evaluation, which can be exploited, e.g., during policy debugging for
improving the treatment of errors. However, their usage may require additional work-
load. For example, if the target of a policy set evaluates to error, rather than terminating
the evaluation process, it continues the computation by processing the enclosed policies
in order to calculate an extended indeterminate value. Therefore, the use of extended
indeterminate values can be enabled or disabled, by setting a boolean parameter, each
time the PDP decision process is invoked.

3.6.2 The FACPL IDE

The FACPL IDE is developed as an Eclipse plug-in and aims to bring together the avail-
able functionalities and tools. Indeed, it fully supports writing, evaluating and analysing
of FACPL specifications. Its development rests on Xtext [Bet13, Xte16], a Java Eclipse
framework for the design and implementation of domain-specific languages.

The plug-in accepts an enriched version of the FACPL language, which contains high-
level features facilitating the coding tasks. In particular, each policy has an identifier that
can be used as a reference to include the policy within other policies, while specific linguis-
tic handles enable the definition of new expression operators and combining algorithms.
Notably, to ease the organisation of large policy specifications, the plug-in supports mod-
ularisation of files and import commands extending file scopes.

The development environment provided by the plug-in is standard, as it is shown in
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Figure 3.3: FACPL Eclipse plug-in

Figure 3.3. It offers graphical features (e.g., keywords highlighting, code suggestion and
navigation within and among files), static controls on code (e.g., uniqueness of identifiers
and type checking), and automatic generation of Java, XACML and SMT-LIB code. As the
latter functionalities require additional libraries to work, a dedicated wizard creates an
opportunely configured FACPL-type project.

As previously pointed out, the Java library is flexible enough to be easily extended.
The plug-in facilitates this task by means of dedicated commands. For instance, to define
a new expression operator, once a developer has defined the signature of the new function
(which is used for type checking and inference), a template of its Java implementation
is automatically generated. The actual implementation of the Java class is left to the
developer.

Finally, we report a general insight on the usage of the FACPL IDE tool8. All the men-
tioned FACPL functionalities are offered via the customised FACPL project created by the
dedicated wizard. Once the project has been created, the policy developer can start coding
from the basic FACPL and XACML examples already provided or starting from scratch. A
FACPL file is a generic text file with extension .fpl, which has dedicated text editor, outline
view and contextual menus. The supporting code functionalities, e.g. code suggestion and
auto-completion, are available via the classical Eclipse shortcuts and menus. In particu-
lar, from either the toolbar menu or the right-click editor menu, the developer can find a
set of pre-defined commands to generate Java, XACML and SMT-LIB code, or to open a
step-by-step wizard for the definition of authorisation and structural properties.

3.7 Concluding Remarks

In this chapter we have presented the FACPL language, its formal semantics and support-
ing tools. Here, we conclude by briefly commenting on the contributions of FACPL with
respect to the research objectives of the thesis and to related and prior publications.

The syntax of FACPL, as shown in Section 3.4, accomplishes the objective O1, hence
it provides compact, yet expressive means for the specification of ABAC systems. Indeed,
it is expressive enough to represent real-world case studies with compact specifications,

8The FACPL user’s guide can be found at http://facpl.sourceforge.net/guide/.
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e.g. the FACPL epSOS policies are about 90% shorter than the corresponding XACML ones
(see Section 7.1 for further details). The semantics of FACPL provides instead a full formal
account of the evaluation of ABAC policies, hence accomplishing the objective O2. From
an implementation point of view, the FACPL toolchain offers practical tools supporting the
specification of policies and their practical deployment in real application domains. This
accomplishes the objective O4; the details concerning the analysis tools are presented in
Chapter 4.

In a more general perspective, FACPL brings together the benefits deriving from using
a high-level, mnemonic rule-based language with the rigorous means provided by denota-
tional semantics. In fact, the formal semantics provides a formalisation of complex access
control features —including obligations and missing attributes, which are instead over-
looked by many other proposals (see Section 7.2 for further details)— and lays the basis
for developing analysis techniques and tools. Concerning the performance of the FACPL
Java library, we ensure a mean request evaluation time comparable with that of state-of-
the-art XACML tools. Indeed, by using a benchmark of reference, we obtain a mean time of
2,14ms for FACPL library and 1,85ms for the considered XACML tool. A full performance
evaluation of the supporting tools is reported in Section 7.5.

The contents of this chapter are mainly based on the work in [MMPT16]; an initial
modelling of the considered e-Health case study is also present in [MMPT13b]. The FACPL
language and its Java library have also been exploited in [MMPT13a, CBT+15] within the
context of Cloud computing to enforce resource usage strategies. This application, for the
sake of presentation, is not reported here.

A preliminary version of FACPL was introduced in [MPT12] and was part of the Ph.D.
thesis of Dr. Massimiliano Masi [Mas12]. The aim of this initial version was the formali-
sation of the semantics of XACML. The language presented here addresses a wider range
of aspects concerning access control. Specifically, the syntax of the language is cleaned
up and streamlined (e.g., rule conditions are integrated with rule targets and the policy
structure is simplified) and, at the same time, it is extended with additional combining
algorithms, the PEP specification, an explicit syntax for expressions, and obligations. This
latter extension widens FACPL applicability range and expressiveness, as it provides the
policy evaluation process with further, powerful means to affect the behaviour of con-
trolled systems (see e.g. [MMPT13a] for a practical example of a policy-based manager
for a Cloud platform). Additional significative differences concern the definition of the
policy semantics: in [MPT12, Mas12] it is given in terms of partitions of the set of all
possible requests, while here it is defined in a functional fashion with respect to a generic
request. The new approach also features the formalisation of combining algorithms in
terms of binary operators and fulfilment strategies, and the automatic management of
missing attributes and evaluation errors throughout the evaluation process. Most of all,
the aim of the version of FACPL here presented is significantly different: we do not only
propose a different language, but we provide a complete methodology that encompasses
all phases of the policy development life-cycle, i.e. specification, analysis and implementa-
tion. We indeed present the analysis in the next chapter. Finally, to effectively support all
the functionalities, we provide a fully integrated software toolchain, that was not available
before.
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Analysis of FACPL Policies

Attribute-based access control policies, like those expressible in FACPL, are sufficiently
flexible and expressive to permit enforcing different types of security policies and rep-
resenting different security models [JKS12]. Therefore, verifying if certain properties of
interest are correctly enforced by an access control policy is essential. However, the hierar-
chical structure of policies, the presence of conflict resolution strategies and the intricacies
deriving from the many involved controls do not permit a straightforward verification of
properties. We thus need a formally-defined technique that can be supported by effective
and practical software tools.

In this chapter, we address the specification and implementation of an analysis tech-
nique, based on constraints, for FACPL policies. Specifically, we devise a constraint formal-
ism that permits defining a uniform, flat constraint-based representation of FACPL policies
and performing (automatic) extensive checks. This constraint-based representation speci-
fies satisfaction problems in terms of formulae based on multiple theories as, e.g., boolean
and linear arithmetics. Such kind of formulae are usually called satisfiability modulo theo-
ries (SMT) formulae and are largely employed in diverse analysis applications [dB11].

The analysis of access control policies aims at verifying properties on the enforced
authorisations. To precisely define properties on FACPL policies, we introduce and for-
malise a set of relevant authorisation properties, which explicitly address the peculiarities
of attribute-based controls. Additionally, to reason on the whole set of authorisations
enforced by one or more policies, we formalise a set of structural properties from the liter-
ature. The verification of all these properties can be automatically achieved by exploiting
the constraint-based representation of FACPL policies and by using an SMT solver.
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Before presenting the formalisation and implementation of this constraint-based anal-
ysis approach, we show the expressiveness of ABAC by providing a FACPL-based formali-
sation of traditional security policies concerning confidentiality and integrity. The verifica-
tion that such FACPL policies enforce the expected authorisations exemplifies the intrinsic
difficulties to tackle for defining and implementing an analysis technique.

Structure of the chapter. The rest of this chapter is organised as follows. Section 4.1 in-
troduces the attribute-based formalisation of traditional security policies. Section 4.2 out-
lines the main issues to address in policy analysis. Section 4.3 introduces the constraint-
based representation of FACPL policies. Section 4.4 formalises a set of properties of inter-
ests. Section 4.5 outlines the strategies for automatising the verification of properties by
means of an SMT solver. Section 4.6 concludes with some final remarks.

4.1 Attribute-based Formalisation of Security Policies

The results in [JKS12] imply that the ABAC model subsumes the main other access control
models, i.e. DAC, MAC and RBAC. To practically show this expressiveness of ABAC, we
exploit FACPL to present an attribute-based formalisation of traditional security policies
concerning confidentiality and integrity. In particular, we consider the formalisations of
such policies given by established security models. Recall that, as described in Section 2.1,
we only take into account access control systems being part of more complex systems, and
that information flow and its related issues are here out of scope.

Classical security models are based on a state machine capturing the secure states of the
controlled system. Each state corresponds to a secure configuration of the system, while
each transition between states represents a permitted, hence secure, access to the system.
These models thus rely on the so-called closed-world security policy, i.e. all accesses that
are not explicitly granted must be forbidden.

The attribute-based formalisation we present addresses the well-known Bell-
LaPadula [BL76] and Biba [Bib77] models concerning, respectively, confidentiality and
integrity. Additionally, still in the context of integrity, we address the concept of Separation
of Duty (SoD), which was introduced in the Clark-Wilson model [CW87] and since then
has been largely adopted, especially in RBAC systems.

Therefore, we first characterise in terms of FACPL rules the accesses these models
allow (Section 4.1.1), then we formalise the semantic conditions corresponding to the
enforcement of the closed-world policy (Section 4.1.2).

4.1.1 Attribute-based Characterisation

We start by providing a precise attribute-based definition of confidentiality and integrity
in the context of access control. Given a controlled system, we let res ∈ Res, Sub′ ⊆ Sub
and Act′ ⊆ Act, where Res, Sub and Act are respectively the set of resources, subjects
and actions involved in the access requests. The definitions thus follow

• confidentiality: the resource res has the property of confidentiality with respect to
subjects Sub′ and actions Act′ if none of the subjects in Sub′ can execute actions in
Act′ on res;
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• integrity: the resource res has the property of integrity with respect to subjects Sub′

and actions Act′ if actions in Act′ executed by subjects in Sub′ cannot alter the
trustworthiness of res.

On the base of these general definitions, we present the attribute-based characterisa-
tion of the considered models. Notably, since they are defined with respect to read and
write actions, we assume that the set Act is only formed by those two actions. In the fol-
lowing, we use attribute names of the form subject/∗, actions/∗ and resource/∗ to identify
the characteristics of a subject willing to perform a given action on a resource. For instance,
action/id returns the identifier of the requested action (in this case, one between “read”
and “write”).

Confidentiality

The security policies commonly referred to as multi-level security [BL76, San93] concern
confidentiality and represent the type of access controls at the basis of MAC. Their goal
is to prevent that a resource with a certain confidentiality level can be disclosed to a
subject with a lower level. Hence, it is assumed that each subject and resource is as-
signed, through a function fL, to a confidentiality level from a given partially ordered set
< L,≤L> of levels. Multiple approaches for the formalisation of these policies are present
in the literature, our focus is on that of the Bell-LaPadula model [BL76].

This model permits the accesses that adhere to the following security properties

• no read-up: a subject s can read a resource res only if the security level of the subject
dominates that of the resource, i.e. fL(res) ≤L fL(s);

• no write-down: a subject s can write a resource res only if the level of the subject s
is dominated by that of the resource, i.e. fL(s) ≤L fL(res).

If we let the attributes subject/level and resource/level denote the confidentiality level
assigned by function fL to subjects and resources, respectively, then the previous proper-
ties can be characterised in terms of FACPL rules as follows

(permit target : equal(action/id, “read”) and leq(resource/level, subject/level))

(permit target : equal(action/id, “write”) and leq(subject/level, resource/level))
(4.1)

where the function leq is assumed to be a relational function corresponding to the partial
order relation ≤L.

The Bell-LaPadula model is usually extended to also consider a discretionary security
policy, i.e. the resource owner has the discretion to establish for each action the subjects
allowed to perform it. Thus, by assuming that the list of allowed subjects is grouped with
respect to the resources (i.e., in terms of access control list [Sal74]), this security property
on, e.g., the read action is characterised by the following FACPL rule

(permit target : equal(action/id, “read”) and in(subject/id, resource/read.ids)) (4.2)

where we assume that the attribute resource/read.ids returns the set of all subjects allowed
to execute the read action on the resource.
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Integrity

The integrity property can concern multiple system aspects, but, since we only focus on
access control, we address it in terms of the Biba model [Bib77] and the concept of SoD.

The Biba model formalises integrity with respect to read and write actions, and to
integrity levels associated to subjects and resources. Assuming that the integrity levels are
defined in the same way as the confidentiality ones, the Biba model is the ‘dual’ of the
Bell-LaPadula one, i.e. it relies on the no read-down and no write-up security properties,
which can thus be characterised as before.

The SoD ensures instead that when two or more actions are required to perform a
critical transaction, these actions are performed by at least two different subjects. SoD is
valuable in deterring fraudulent behaviours, since no single subject has the possibility to
perform complex actions, but only well-defined, elementary actions.

A basic example of SoD is to prevent that a subject with assigned two conflicting roles
can execute certain actions, i.e. there is no separation of duties among the actions that
these roles permit. For instance, if we assume roles “role1” and “role2” to be in conflict,
we can define a FACPL rule that permits a write action only when a subject exposes the
first role but not the second one; the corresponding rule is as follows

(permit target : equal(action/id, “write”) and
in(“role1”, subject/role) and not(in(“role2”, subject/role)))

(4.3)

Indeed, the rule checks that the roles assigned to the subject, i.e. those obtained through
the attribute subject/role, include “role1”, which is required for executing the read action,
and not “role2”.

To sum up, exploiting attributes ensures a high level of abstraction to ABAC policies.
In fact, by appropriately asserting on the information each attribute represents, we can
easily characterise any type of security policy.

4.1.2 Semantic-based Formalisation

To formalise when a set of security properties of a considered model is correctly enforced
by a FACPL policy, we need to explicitly reason on the authorisations the policy enforces.
Thus, we use sets of access requests, expressed in the form of FACPL requests, to represent
the (non)secure accesses with respect to a given property. The authorisations calculated
for each request of these sets permit checking if a security property is correctly enforced.

Formally, given a security property pr of a security model, we let Rpr (resp., Rpr) be
the set of secure (resp., nonsecure) requests with respect to pr , and Subpr (resp., Respr)
be the subset of subjects (resp., resources) for which the property pr is defined. Thus, a
FACPL policy p containing the rules characterising pr correctly enforces it if the following
conditions hold

∀ r ∈ Rpr : r(resource/id) ∈ Respr , r (subject/id) ∈ Subpr ⇒ P[[p]]r = 〈permit fo〉
∀ r ∈ Rpr : r(resource/id) ∈ Respr , r(subject/id) ∈ Subpr ⇒ P[[p]]r = 〈deny fo〉

for some sequence of fulfilled obligations fo. Notice that these sets are formed by func-
tional FACPL requests of the form shown in Section 3.5.1 and that notation r(attr_name)
indicates the value assigned to the attribute named attr_name by the request r . Hence,
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we require that all the (secure) requests in Rpr evaluate to permit and all the (nonsecure)
requests in Rpr evaluate to deny. Notably, we consider the requests that only refer to
the subset of subjects and resources that the property pr takes into account. This means
that the set Rpr is not the complementary set of Rpr with respect to the universe of all
the possible requests of the system; rather it represents those requests that are consid-
ered nonsecure by the property pr due to the closed-world policy assumed by the security
model.

In the sequel we report the definition of the (non)secure sets of requests for the prop-
erties we presented before.

Confidentiality

The secure accesses identified by the no read-up property corresponds to the set of requests
Rnru whose elements r satisfy the following conditions

r(action/id) = “read” , r(resource/level) = l1 , r(subject/level) = l2 : l1, l2 ∈ L, l1 ≤L l2

The set Rnru instead contains those requests satisfying the following conditions

r(action/id) = “read” , r(resource/level) = l′1 , r(subject/level) = l′2 : l′1, l
′
2 ∈ L, l′1 6≤L l′2

The sets for the no write-down property are defined similarly. In case of the discretionary
security properties as e.g. that defined by Rule (4.2), the requests of the set Rdac are
characterised by the following conditions

r(action/id) = “read” , r(resource/read.ids) = Subres , r(subject/id) = s : s ∈ Subres

where Subres is set of all subjects allowed to execute the read action on the resource res.
Instead, the elements of the deny set Rdac must satisfy the following conditions

r(action/id) = “read” , r(resource/read.ids) = Sub′res , r(subject/id) = s : s 6∈ Sub′res

Indeed, the set of discretionally granted subjects Sub′res does not contain the subject s.

Integrity

The no read-down and the no write-up properties, representing the Biba model, are for-
malised similarly to the confidentiality ones.

Let us consider SoD for a write action expressed by Rule (4.3). If we let Rol be the
collection of authorised non conflicting sets of roles, i.e. the collection of all the sets
containing “role1” and not “role2”, the secure accesses Rsod are defined as follows

r(action/id) = “write” , r(subject/role) = rol : rol ∈ Rol

The non secure accesses Rsod are instead defined as follows

r(action/id) = “write” , r(subject/role) = rol′ : rol′ ∈ Rolall\Rol

where the set Rolall represents the collection of all sets of roles that a subject can play in
the system. Thus, a request is non secure when the set of subject roles does not contain
“role1”, i.e. the subject has not the right to execute the write action, or contains “role1”
and “role2” at the same time, i.e. the exposed roles are in conflict.
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4.2 Verification of Security Policy Enforcement

The formalisation of security policies presented in the previous section determines the con-
ditions stating when a policy correctly enforces a certain security property. We consider
here two of the presented properties and propose different combinations of the corre-
sponding FACPL rules. This allows us to demonstrate the difficulties to address for verify-
ing the correct property enforcement. In particular, the hierarchical structure of policies
and the various elements occurring in the policy evaluation make the analysis of policies
cumbersome and error-prone.

By way of example, we consider a FACPL policy that has to enforce both the no read-up
property and discretionary property for read actions requested by a set of subjects Sub′ on
the resource “res”. We thus present different combinations of the Rules (4.1) and (4.2)
by commenting on the properties that each combination actually enforces.

The first combination of the two rules is defined as follows

{p-overall

target : equal(resource/id, “res”) and in(subject/id, Sub′)
policies :

(permit target : equal(action/id, “read”) and leq(resource/level, subject/level))
(permit target : equal(action/id, “read”) and in(subject/id, resource/read.ids))}

The chosen combining algorithm is p-overall, which seems the natural choice since each
allowed behaviour is explicitly authorised. However, likewise the specification of the e-
Health case study commented in Section 3.4, the considered properties are not correctly
enforced as we show below.

We consider the no read-up property. As formalised in Section 4.1.2, its secure accesses
correspond to all the requests containing the resource and subject levels that respect the
partial ordering relation. These ones clearly match the target of the first rule, hence this
rule, as well as the p-overall algorithm, returns permit. The nonsecure accesses are in-
stead represented by all the requests containing resource and subject levels not properly
ordered. In this case, both internal rules do not apply and the p-overall algorithm returns
not-app, because neither permit nor deny are returned by the rules. However, the nonse-
cure requests should be evaluated as deny, hence we can conclude that the policy does
not properly enforce the no read-up property. The same also holds for the discretionary
property.

To fix this drawback, we can replace the p-overall algorithm with the d-unless-pall one,
which ensures that deny is taken as the default decision whenever no rule evaluates to
permit. In this case all the nonsecure requests of both properties are properly forbidden.
However, as we are addressing two properties, the secure accesses are all those ones that
are secure, at the same time, for both properties. This means that permit must be re-
turned only when the two rules apply at the same time as well, but this does not happen
in the presented policies. In fact, the combining algorithm does not enforce any form of
consensus between the two rules. For example, a subject only having the correct confi-
dentiality level and not the discretionary access can circumvent the access control system
when reading a resource.

This additional issue can be addressed by adding a new policy layer and requesting a
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strong consensus between the rules. The modified policy is thus as follows

{d-unless-pall

policies :
{strong-conall

target : equal(resource/id, “res”) and in(subject/id, Sub′)
policies :

(permit target : equal(action/id, “read”) and leq(resource/level, subject/level))
(permit target : equal(action/id, “read”) and in(subject/id, resource/read.ids)) }}

The algorithm d-unless-pall is thus used at top level to ensure that the resulting decisions
will be only permit or deny. In the inner policy, the algorithm strong-conall ensures that
permit is returned only when both internal rules apply at the same time. In this case,
all secure and nonsecure accesses of the two intended properties are properly enforced.
Notably, we could achieve the same result by merging the two rules, thus avoiding the
additional policy layer; however, taking apart the two rules improves readability and fa-
cilitate maintenance.

Verifying that a policy properly enforces a set of properties is indeed not straightfor-
ward. This example, which seems easy enough for being manually checked, shows us that
also in case of simple policies we need an automated verification approach. Specifically,
this approach must be capable to take into account all the aspects of a policy specifica-
tion, e.g. policy stratification and combining algorithms, and to exhaustively check all
the significant requests representing the possible accesses. A viable approach towards an
automated verification of multiple properties of interest is outlined in the next subsection.

4.2.1 Towards an Automated Verification Approach

The analysis of FACPL policies is a challenging task that has to be supported by providing,
on the one hand, a formalism capable of uniformly representing policies and, on the other
hand, a set of properties expressively defined for FACPL policies, which hence addresses
the peculiarities of attribute-based controls.

The formalism should be sufficiently flexible to deal with multiple domain values for
attribute assignments and, at the same time, powerful enough to represent the different
elements forming a policy. To this aim, we propose a constraint-based formalism and a
formally-defined translation function.

The choice of constraints has been advocated by their flexibility and the numerous
constraint solvers freely available. Specifically, constraints permit specifying satisfaction
problems based both on boolean formulae and on formulae dealing with different the-
ories as, e.g., linear arithmetics; the so-called satisfiability modulo theories (SMT) for-
mulae. Recently, due to the relevant progress made in the development of automatic
SMT solvers (e.g., Z3 [dB08], CVC4 [BCD+11], Yices [Dut14]), SMT has been extensively
employed in diverse analysis applications [dB11], even in the context of access control
policies (see, e.g., [ACC14, TdHRZ15]). In this context, the SMT-based approach has also
been demonstrated more effective than many others from the literature, like, e.g., decision
diagrams [FKMT05] and description logic [KHP07].

Regarding the properties of interest for access control policies, we can identify two
main groups: authorisation properties, concerning the expected authorisations for (a set
of) requests, and structural properties, concerning the structure of the sets of authorisations
enforced by one or multiple policies, e.g. if a policy enforces the same set of authorisations
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Constraints Constr ::= Value | Name | isMiss(Constr) | isErr(Constr) | isBool(Constr)

| ¬ Constr | ¬̇ Constr | Constr cop Constr

cop ::= ∧ | ∨ | ∧̇ | ∨̇ | = | > | ∈ | + | − | ∗ | /

Table 4.1: Constraint syntax

of another. In the literature, many structural properties have been proposed (see, e.g.,
in [FKMT05, KHP07]), whereas, to our knowledge, there is no well-established proposal
for the specification of authorisation properties that takes into account the peculiarities of
attribute-based policies, e.g. the fact that the “safety” property (see Section 3.5.6) is not
usually guaranteed.

Therefore, we introduce in Section 4.3 a constraint formalism and a formal translation
function for (automatically) representing FACPL policies in terms of constraints. Then, we
formalise in Section 4.4 a set of properties of interest and we present in Section 4.5 the
strategies for their automatic verification by means of an SMT solver.

4.3 A Constraint-based Representation for FACPL

This section introduces the constraint-based representation of FACPL policies. In partic-
ular, we first introduce the constraint formalism (Section 4.3.1), then we formalise how
to generate constraints from FACPL policies (Section 4.3.2) and the properties enjoyed by
this constraint-based representation (Section 4.3.3). We conclude with some examples of
constraints obtained from the e-Health case study (Section 4.3.4).

4.3.1 A Constraint Formalism

The constraint formalism we present here extends boolean and inequality constraints with
a few additional operators aiming at precisely representing FACPL constructs. Intuitively,
a constraint is a relation defined by conditions on a set of attribute names1. An assign-
ment of values to attribute names satisfies a constraint if its conditions are matched. Our
formalism, besides classical operators and values, explicitly considers the role of missing
attributes, by assigning ⊥ to attribute names, and of run-time errors, i.e. type mismatches
in constraint evaluations.
Syntax. Constraints are written according to the grammar shown in Table 4.1 (the nonter-
minals Value and Name are defined in Table 3.1). Thus, a constraint can be a literal value,
an attribute name, or a more complex constraint obtained through predicates isMiss(),
isErr() and isBool(), or through boolean, comparison and arithmetic operators. Notably,
operators ¬, ∧ and ∨ are the classical boolean ones, while ¬̇, ∧̇ and ∨̇ correspond to the
4-valued ones used by FACPL expressions.

In the sequel, in addition to the notations of Table 3.3, we use the letter c to denote a
generic element of the set of all constraints identified by the nonterminal Constr .
Semantics. The semantics of constraints is modelled by the function C : Constr → (R →
Value ∪ 2Value ∪{error,⊥}) inductively defined by the clauses in Table 4.2 (the clauses for

1In the literature, constraints are typically defined on a set of variables. In our framework, the role of
variables is played by attribute names. Therefore, to maintain a coherent terminology throughout the thesis,
we refer to constraint variables as attribute names.
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C[[n]]r = r(n) C[[v ]]r = v

C[[isMiss(c)]]r ={
true if C[[c]]r =⊥
false otherwise

C[[isErr(c)]]r ={
true if C[[c]]r = error
false otherwise

C[[isBool(c)]]r ={
true if C[[c]]r ∈ {true, false}
false otherwise

C[[¬ c]]r ={
true if C[[c]]r = false or C[[c]]r =⊥
false otherwise

C[[¬̇ c]]r =
true if C[[c]]r = false
false if C[[c]]r = true
⊥ if C[[c]]r =⊥
error otherwise

C[[c1 ∧ c2]]r ={
true if C[[c1]]r = true and C[[c2]]r = true
false otherwise

C[[c1 ∧̇ c2]]r =
true if C[[c1]]r = C[[c2]]r = true
false if C[[c1]]r = false or C[[c2]]r = false
⊥ if C[[ci]]r =⊥ and C[[cj ]]r ∈ {true,⊥}
error otherwise

C[[c1 ∨ c2]]r ={
true if C[[c1]]r = true or C[[c2]]r = true
false otherwise

C[[c1 ∨̇ c2]]r =
true if C[[c1]]r = true or C[[c2]]r = true
false if C[[c1]]r = C[[c2]]r = false
⊥ if C[[ci]]r =⊥ and C[[cj ]]r ∈ {false,⊥}
error otherwise

C[[c1 = c2]]r =
true if C[[c1]]r , C[[c2]]r ∈T and C[[c1]]r = C[[c2]]r
false if C[[c1]]r , C[[c2]]r ∈T and C[[c1]]r 6= C[[c2]]r
⊥ if C[[ci]]r =⊥ and C[[cj ]]r 6= error
error otherwise

C[[c1 + c2]]r =
C[[c1]]r + C[[c2]]r if C[[c1]]r , C[[c2]]r ∈Double

⊥ if C[[ci]]r =⊥ and C[[cj ]]r 6= error
error otherwise

Table 4.2: Semantics of constraints (T stands for one of the sets of literal values or for the
powerset of the set of all literal values, and i, j ∈ {1, 2} with i 6= j)

>, ∈, −, ∗ and / are omitted as they are similar to those for = or +). Hence, the semantics
of a constraint is a function that, given the functional representation of a request (i.e., an
assignment of values to attribute names), returns a literal value or a set of literal values
or the special values ⊥ and error.

The semantics of constraints, except for the cases of predicates and classical boolean
operators, mimics the semantic definitions of the ‘corresponding’ FACPL expression oper-
ators defined in Table 3.4 (e.g., the constraint operator ∨̇ corresponds to the expression
operator or, as well as + corresponds to add). The clause defining the semantics of predi-
cate isMiss(c) (resp. isErr(c)) returns true only if the constraint c evaluates to ⊥ (resp.
error), while that of predicate isBool(c) returns true only if the constraint c evaluates to
a boolean value. The clauses for classical boolean operators are instead defined ensuring
that only boolean values can be returned. Specifically, they explicitly define conditions
leading to result true, while in all the other cases the result is false. Notably, constraint ¬ c
evaluates to true not only when the evaluation of c returns false, but also when it returns
⊥. This is particularly convenient for translating FACPL policies because, in case of not-app
decisions, ⊥ is treated as false.

We conclude by proving that the constraint semantics is deterministic and total.
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Theorem 4.1 (Total Constraint Semantics). For all c ∈ Constr , r ∈ R and el , el ′ ∈
(Value ∪ 2Value ∪ {error,⊥}), it holds that

C[[c]]r = el ∧ C[[c]]r = el ′ ⇒ el = el ′

Proof. The proof proceeds by structural induction on the syntax of c.

Base Case If c = v, the thesis immediately follows since C[[v]]r = v; otherwise, i.e. c = n, we have
C[[n]]r = r(n) and the thesis follows because r is a total function.

Inductive Case It is easy to check that all the defining clauses of C are such that the conditions
of the right hand side are mutually exclusive and cover all the necessary cases. For each
different form that c can assume, the thesis then directly follows by the induction hypothesis.

4.3.2 From FACPL Policies to Constraints

The constraint-based representation of FACPL policies is a logical combination of the con-
straints representing targets, obligations and combining algorithms occurring within poli-
cies. We present a compositional translation, defined by a family of translation functions
T·, that formally defines the constraints representing FACPL terms. We use the emphatic
brackets {| and |} to represent the application of a translation function to a syntactic term.
It is worth noticing that constraint-based representation of FACPL policies can only deal
with statical aspects of policy evaluation, thus disregarding pure dynamic aspects like the
greedy fulfilment strategy and the PEP evaluation.

We start by presenting the translation of FACPL expressions, whose operators are very
close to (some of) those on constraints. The translation is formally given by the function
TE : Expr → Constr , whose defining clauses are given below

TE{|v |} = v TE{|n|} = n TE{|not(expr)|} = ¬̇TE{|expr |}

TE{|op(expr1, expr2)|} = TE{|expr1|} getCop(op) TE{|expr2|}
(T-1)

Thus, TE acts as the identity function on attribute names and values, and as an homo-
morphism on operators. In fact, FACPL negation corresponds to the constraint operator ¬̇,
while the binary FACPL operators correspond to the constraint operators returned by the
auxiliary function getCop(), which is defined as follows

getCop(and)= ∧̇ getCop(or)= ∨̇ getCop(equal)= =

getCop(in)= ∈ getCop(greater-than)= > getCop(add)= +

getCop(subtract)= − getCop(multiply)= ∗ getCop(divide)= /

The translation of (sequences of) obligations returns a constraint whose satisfiability
corresponds to the successful fulfilment of all the obligations. The translation function
TOb : Obligation∗ → Constr is defined as follows

TOb{|ε|} = true TOb{|o o∗|} = TOb{|o|} ∧ TOb{|o∗|}

TOb{|[e t PepAction(expr∗)]|} =
∧

expr∈expr∗ ¬isMiss(TE{|expr |}) ∧ ¬isErr(TE{|expr |})
(T-2)

Hence, a sequence of obligations corresponds to the conjunction of the constraints rep-
resenting each obligation. When translating a single obligation, predicates isMiss() and
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isErr() are used to check the fulfilment conditions, i.e. that the occurring expressions
cannot evaluate to ⊥ or error. Notably, the n-ary conjunction operator returns true if the
considered obligation contains no expression (i.e., when expr∗ = ε).

The translation function for policies, TP , exploits the translation functions previously
introduced, as well as a function TA representing the effect of applying a combining al-
gorithm to a sequence of policies. Functions TP and TA are indeed mutually recursive.
Moreover, for representing all the decisions that a policy can return, both these two func-
tions return 4-constraint tuples of the form

〈permit : cp deny : cd not-app : cn indet : ci 〉

where each constraint represents the conditions under which the corresponding decision
is returned. We call these tuples policy constraint tuples and denote their set by PCT .
As a matter of notation, we will use the projection operator ↓l which, when applied to a
constraint tuple, returns the value of the field labelled by l′, where l is the first letter of l′

(e.g., ↓p returns the permit constraint cp).
The function TP : Policy → PCT is defined by two clauses for rules, i.e. one for each

effect, and one clause for policy sets. The clause for rules with effect permit is as follows

TP {|(permit target : expr obl : o∗ )|} =

〈 permit : TE{|expr |} ∧ TOb{|o∗|permit |}
deny : false

not-app : ¬ TE{|expr |}
indet : ¬ (isBool(TE{|expr |}) ∨ isMiss(TE{|expr |}))

∨ (TE{|expr |} ∧ ¬TOb{|o∗|permit |}) 〉

(T-3a)

(the clause for effect deny is omitted, as it just swaps the permit and deny constraints).
The clause takes into account the rule constituent parts and combines them according to
the rule semantics (see clause (S-4a)). Notably, because of the semantics of the constraint
operator ¬, the not-app constraint is satisfied when the constraint corresponding to the
target expression evaluates to false or to ⊥. Instead, the negation of a constraint corre-
sponding to a sequence of obligations represents the failure of their fulfilment. Likewise
FACPL semantics, the operator |e returns the subsequence of obligations defined on the
effect e. In the indet constraint, together with condition ¬ isBool(TE{|expr |}), we intro-
duce ¬ isMiss(TE{|expr |}) because we want to exclude that TE{|expr |} =⊥ (otherwise,
we would fall in the case of decision not-app ).

The clause for policy sets is as follows

TP {|〈a target : expr policies : p+ obl : o∗ 〉|} =

〈 permit : TE{|expr |} ∧ TA{|a, p+|} ↓p ∧ TOb{|o∗|permit |}
deny : TE{|expr |} ∧ TA{|a, p+|} ↓d ∧ TOb{|o∗|deny |}
not-app : ¬ TE{|expr |} ∨ (TE{|expr |} ∧ TA{|a, p+|} ↓n)

indet : ¬ (isBool(TE{|expr |}) ∨ isMiss(TE{|expr |}))
∨ (TE{|expr |} ∧ TA{|a, p+|} ↓i)
∨ (TE{|expr |} ∧ TA{|a, p+|} ↓p ∧¬ TOb{|o∗|permit |})
∨ (TE{|expr |} ∧ TA{|a, p+|} ↓d ∧¬ TOb{|o∗|deny |} ) 〉

(T-3b)

With respect to the clauses for rules, it additionally takes into account the effect of the ap-
plication of the combining algorithm according to the policy set semantics (see clause (S-
4b)). It is worth noticing that the exclusive use of operators ¬, ∧ and ∨ ensures that
constraint tuples are only formed by boolean constraints.
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p-over(A,B) = 〈 permit : A ↓p ∨ B ↓p
deny : (A ↓d ∧ B ↓d) ∨ (A ↓d ∧ B ↓n) ∨ (A ↓n ∧ B ↓d)
not-app : A ↓n ∧ B ↓n
indet : (A ↓i ∧ ¬B ↓p) ∨ (¬A ↓p ∧ B ↓i)〉

d-over(A,B) = 〈 permit : (A ↓p ∧ B ↓p) ∨ (A ↓p ∧ B ↓n) ∨ (A ↓n ∧ B ↓p)
deny : A ↓d ∨ B ↓d
not-app : A ↓n ∧ B ↓n
indet : (A ↓i ∧ ¬B ↓d) ∨ (¬A ↓d ∧ B ↓i)〉

d-unless-p(A,B) = 〈 permit : A ↓p ∨ B ↓p
deny : ¬A ↓p ∧ ¬B ↓p ∧ (A ↓d ∨ A ↓n ∨ A ↓i) ∧ (B ↓d ∨ B ↓n ∨ B ↓i)
not-app : false
indet : false〉

p-unless-d(A,B) = 〈 permit : ¬A ↓d ∧ ¬B ↓d ∧ (A ↓p ∨ A ↓n ∨ A ↓i) ∧ (B ↓p ∨ B ↓n ∨ B ↓i)
deny : A ↓d ∨ B ↓d
not-app : false
indet : false〉

first-app(A,B) = 〈 permit : A ↓p ∨ (B ↓p ∧ A ↓n)
deny : A ↓d ∨ (B ↓d ∧ A ↓n)
not-app : A ↓n ∧ B ↓n
indet : A ↓i ∨ (A ↓n ∧ B ↓i)〉

one-app(A,B) = 〈 permit : (A ↓p ∧ B ↓n) ∨ (A ↓n ∧ B ↓p)
deny : (A ↓d ∧ B ↓n) ∨ (A ↓n ∧ B ↓d)
not-app : A ↓n ∧ B ↓n
indet : A ↓i ∨ B ↓i ∨ ((A ↓p ∨ A ↓d) ∧ (B ↓p ∨ B ↓d))〉

weak-con(A,B) = 〈 permit : (A ↓p ∧ B ↓p) ∨ (A ↓p ∧ ¬B ↓d) ∨ (¬A ↓d ∧ B ↓p)
deny : (A ↓d ∧ B ↓d) ∨ (A ↓d ∧ ¬B ↓p) ∨ (¬A ↓p ∧ B ↓d)
not-app : A ↓n ∧ B ↓n
indet : (A ↓p ∧ B ↓d) ∨ (A ↓d ∧ B ↓p) ∨ A ↓i ∨ B ↓i

strong-con(A,B) = 〈 permit : A ↓p ∧ B ↓p
deny : A ↓d ∧ B ↓d
not-app : A ↓n ∧ B ↓n
indet : A ↓i ∨ B ↓i ∨ (A ↓n ∧ ¬B ↓n) ∨ (¬A ↓n ∧ B ↓n)

∨ (A ↓p ∧ B ↓d) ∨ (A ↓d ∧ B ↓p)〉

Table 4.3: Constraint combination strategies for the combining algorithms

Combining algorithms are dealt with by the function TA : Alg ×Policy+ → PCT that,
given an algorithm (using the all fulfilment strategy) and a sequence of policies, returns a
constraint tuple representing the effect of the algorithm application. Its definition is

TA{|algall, p1 . . . ps|} = alg(. . . alg(TP {|p1|}, TP {|p2|}), . . . , TP {|ps|}) (T-4)

By means of TP , the policies given in input are translated into constraint tuples which are
then iteratively combined, two at a time, according to the algorithm combination strategy.
Table 4.3 reports the combination of two constraint tuples, say A and B, according to the
various combining algorithms. If s = 1, i.e. the algorithm must be applied to one tuple
only, all the algorithms leave the input tuple unchanged, but for p-unless-d, which given
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an input tuple A returns the tuple

〈permit : A ↓p ∨ A ↓n ∨ A ↓i deny : A ↓d not-app : false indet : false〉

and d-unless-p, which behaves similarly.
Finally, the translation of top-level PDP terms {Alg policies : Policy+} is the

same as that of the corresponding policy sets with target true and no obligations,
i.e. {Alg target : true policies : Policy+ }.

4.3.3 Properties of the Representation

We formalise the key results ensured by the constraint-based approach described so far:
the correspondence between the semantics of the constraint-based representation of a
policy and the semantics of the policy itself. The correspondence is clearly limited to only
those policies using the fulfilment strategy all.

Before presenting the semantic correspondence result (Theorem 4.5), we show that
the semantics correspondence is guaranteed by the constraint-based representation of ex-
pressions (Lemma 4.2), obligations (Lemma 4.3) and combining algorithms (Lemma 4.4).
Therefore, the theorem means that the properties verified over constraints would return
the same results if they were directly proven on FACPL policies. Hence, it ensures that the
verification of properties we present in Section 4.4 is sound.

Lemma 4.2. For all expr ∈ Expr and r ∈ R, it holds that

E [[expr ]]r = C[[TE{|expr |}]]r

Proof. We proceed by structural induction on the syntax of expr according to the translation rules
of the clause (T-1).

(expr = n) Since TE{|n|} = n, the thesis follows because E [[n]]r = r(n) = C[[n]]r .

(expr = v) Since TE{|v |} = v , the thesis follows because E [[v ]]r = v = C[[v ]]r .

(expr = not(expr1)) Since TE{|expr |} = ¬̇ TE{|expr1|} and, by the induction hypothesis,
E [[expr1]]r = C[[TE{|expr1|}]]r , the thesis follows due to the correspondence of the seman-
tic clause of the operator ¬̇ in Table 4.2 and that of the operator not in Table 3.4.

(expr = op(expr1, expr2)) Since TE{|expr |} = TE{|expr1|} getOp(op) TE{|expr2|} and, by the induc-
tion hypothesis, E [[expr1]]r = C[[TE{|expr1|}]]r and E [[expr2]]r = C[[TE{|expr2|}]]r , the thesis
follows due to the correspondence of the semantic clause of the expression operator op in
Table 4.2 and that of the constraint operator getOp(op) in Table 3.4.

Lemma 4.3. For all o ∈ Obligation and r ∈ R it holds that

O[[o]]r = fo ⇔ C[[TOb{|o|}]]r = true and O[[o]]r = error ⇔ C[[TOb{|o|}]]r = false

Proof. We only prove the (⇒) implication as the proof for the other direction proceeds in a specular
way. Let o = [e t PepAction(expr∗)] with expr∗ = expr1 . . . exprn. By the clause (T-2), it is
translated into the constraint

c =
∧

exprj∈expr∗
¬isMiss(TE{|expr j |}) ∧ ¬isErr(TE{|expr j |})

We now proceed by case analysis on O[[o]]r .
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(O[[o]]r = fo) We have to prove that C[[c]]r = true. By the definition of C, C[[c]]r = true corresponds
to

∀j ∈ {1, . . . , n} : C[[¬ isMiss(TE{|expr j |})]]r = true ∧ C[[¬ isErr(TE{|expr j |})]]r = true

According to the constraint semantics of ¬, isMiss and isErr, this corresponds to

∀j ∈ {1, . . . , n} : C[[TE{|expr j |}]]r 6=⊥ ∧ C[[TE{|expr j |}]]r 6= error

By the hypothesis O[[o]]r = fo and the clauses (S-3a) and (S-2), we have

E [[expr∗]]r = E [[expr1]]r • . . . • E [[exprn]]r = w1 . . .wn

where wj stands for a literal value or a set of values. Thus, by Lemma 4.2, we get that

∀j ∈ {1, . . . , n} : C[[TE{|expr j |}]]r = wj 6∈ {⊥, error}

which proves the thesis.

(O[[o]]r = error) We have to prove that C[[c]]r = false. By the definition of C, C[[c]]r = false corre-
sponds to

∃j ∈ {1, . . . , n} : C[[¬ isMiss(TE{|expr j |})]]r = false ∨ C[[¬ isErr(TE{|expr j |})]]r = false

According to the constraint semantics of ¬, isMiss and isErr, this corresponds to

∃j ∈ {1, . . . , n} : C[[TE{|expr j |}]]r =⊥ ∨ C[[TE{|expr j |}]]r = error

By the hypothesis O[[o]]r = error and the clauses (S-3a) and (S-2), we have

E [[expr∗]]r = E [[expr1]]r • . . . • E [[exprn]]r 6= w∗ ⇒ ∃j ∈ {1, . . . , n} : E [[expr j ]]r ∈ {⊥, error}

Thus, by Lemma 4.2, we obtain that

∃j ∈ {1, . . . , n} : C[[TE{|expr j |}]]r ∈ {⊥, error}

which proves the thesis.

Lemma 4.4. For all algall ∈ Alg, r ∈ R and policies p1, . . . , ps ∈ Policy such that ∀ i ∈
{1, . . . , s} : P[[pi]]r = 〈deci fo∗i 〉 ⇔ C[[TP {|pi|} ↓deci ]]r = true , it holds that

A[[algall, p1 . . . ps]]r = 〈dec fo∗〉 ⇔ C[[TA{|algall, p1 . . . ps|} ↓dec ]]r = true

Proof. Since the considered algorithms use the all fulfilment strategy, by the hypothesis and the
clauses (S-6a) and (T-4), the thesis is equivalent to prove that

⊗alg(⊗alg(. . .⊗ alg(〈dec1 fo∗1〉, 〈dec2 fo∗2〉), . . .), 〈decs fo∗s〉) = 〈dec fo∗〉
⇐⇒

C[[alg(alg(. . . alg(TP {|p1|}, TP {|p2|}), . . .), TP {|ps|}) ↓dec ]]r = true

The proof proceeds by case analysis on alg. In what follows, we only report the case of the p-over
algorithm, as the other ones are similar and derive directly from Tables 3.5 and 4.3.

Notably, when s = 1, we have ⊗p-over(P[[p1]]r) = P[[p1]]r and p-over(TP {|p1|}) = TP {|p1|}
by definition, hence the thesis directly follows from the hypothesis that P[[p1]]r = 〈dec1 fo∗1〉 ⇔
C[[TP {|p1|} ↓dec1

]]r = true . For the remaining cases, we proceed by induction on the number s of
policies to combine.
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Base Case (s = 2) We must prove that

⊗p-over(〈dec1 fo∗1〉, 〈dec2 fo∗2〉) = 〈dec fo∗〉 ⇔ C[[p-over(TP {|p1|}, TP {|p2|}) ↓dec ]]r = true .

For the sake of simplicity, in the following we omit the sequences of fulfilled obligations, as
their combination does not affect the decision dec returned by ⊗p-over. We proceed by case
analysis on the decision dec.

(dec = permit) It follows that dec1 = permit or dec2 = permit. Moreover, by definition we
have p-over(TP {|p1|}, TP {|p2|}) ↓p= TP {|p1|} ↓p ∨ TP {|p2|} ↓p.

(dec = deny) It follows that dec1, dec2 ∈ {deny, not-app}. Moreover, by definition we have
p-over(TP {|p1|}, TP {|p2|}) ↓d= (TP {|p1|} ↓d ∧TP {|p2|} ↓d) ∨ (TP {|p1|} ↓d ∧TP {|p2|} ↓n
) ∨ (TP {|p1|} ↓n ∧ TP {|p2|} ↓d).

(dec = not-app) It follows that dec1 = dec2 = not-app. Moreover, by definition we have
p-over(TP {|p1|}, TP {|p2|}) ↓n= TP {|p1|} ↓n ∧ TP {|p2|} ↓n.

(dec = indet) It follows that dec1 = indet or dec2 = indet and dec1, dec2 6= permit. More-
over, by definition we have p-over(TP {|p1|}, TP {|p2|}) ↓i= (TP {|p1|} ↓i ∧¬TP {|p2|} ↓p)
∨ (¬TP {|p1|} ↓p ∧ TP {|p2|} ↓i).

In any case, thesis follows from the hypothesis on TP {|pi|} and the definition of C.

Inductive Case (s = k + 1) By the induction hypothesis the thesis holds for k policies, that is

⊗alg(⊗alg(. . .⊗ alg(〈dec1 fo∗1〉, 〈dec2 fo∗2〉), . . .), 〈deck fo∗k〉) = 〈dec′ fo′∗〉
⇐⇒

C[[alg(alg(. . . alg(TP {|p1|}, TP {|p2|}), . . .), TP {|pk|}) ↓dec′ ]]r = true

The thesis then follows by repeating the case analysis on decision dec of the ‘Base Case’
once we replace 〈dec1 fo∗1〉, 〈dec2 fo∗2〉, TP {|p1|} and TP {|p2|} by 〈dec′ fo′∗〉, 〈decs fo∗s〉,
p-over(p-over(. . . p-over(TP {|p1|}, TP {|p2|}), . . .), TP {|pk|}) and TP {|ps|}, respectively.

Theorem 4.5 (Policy Semantic Correspondence). For all p ∈ Policy enclosing combining
algorithms only using all as fulfilment strategy, and r ∈ R, it holds that

P[[p]]r = 〈dec fo∗〉 ⇔ C[[TP {|p|} ↓dec ]]r = true

Proof. The proof proceeds by induction on the depth i of p (see definition of depth in Sec-
tion 3.5.6).

Base Case (i = 0) This means that p is of the form (e target : expr obl : o∗ ). We proceed by case
analysis on dec.

(dec = permit) By the clause (S-4a), it follows that

E [[expr ]]r = true ∧ O[[o∗|permit]]r = fo∗

Thus, by Lemma 4.2, it follows that

C[[TE{|expr |}]]r = true

and, by Lemma 4.3 and the clause (T-2), it follows that

C[[TOb{|o∗|permit |}]]r = true
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On the other hand, by the clause (T-3a), we have that

TP {|(permit target : expr obl : o∗ )|} ↓p= TE{|expr |} ∧ TOb{|o∗|permit |}

Hence, by the definition of C, we can conclude that

C[[TP {|(permit target : expr obl : o∗ )|} ↓p]]r =

C[[TE{|expr |}]]r ∧ C[[TOb{|o∗|permit |}]]r =
true ∧ true = true

which proves the thesis.

(dec = deny) We omit the proof since it proceeds like the previous case.

(dec = not-app) By the clause (S-4a), it follows that

E [[expr ]]r = false ∨ E [[expr ]]r =⊥

By the clause (T-3a), we have that

TP {|(e target : expr obl : o∗ )|} ↓n= ¬ TE{|expr |}

Hence, the thesis directly follows by Lemma 4.2 and the definition of C.

(dec = indet) By the clause (S-4a), the otherwise condition holds, that is

¬(E [[expr ]]r = true ∧ O[[o∗|e ]]r = fo∗) ∧ ¬(E [[expr ]]r = false ∨ E [[expr ]]r =⊥)

By applying standard boolean laws and reasoning on function codomains, this condi-
tion can be rewritten as follows

¬(E [[expr ]]r = true ∧ O[[o∗|e ]]r = fo∗) ∧ ¬(E [[expr ]]r = false ∨ E [[expr ]]r =⊥)
= (E [[expr ]]r 6= true ∨ O[[o∗|e ]]r = error) ∧ (E [[expr ]]r 6∈ {false,⊥})
= E [[expr ]]r 6∈ {true, false,⊥} ∨ (E [[expr ]]r 6∈ {false,⊥} ∧ O[[o∗|e ]]r = error)
= E [[expr ]]r 6∈ {true, false,⊥} ∨

(E [[expr ]]r 6∈ {true, false,⊥} ∧ O[[o∗|e ]]r = error) ∨
(E [[expr ]]r = true ∧ O[[o∗|e ]]r = error)

= E [[expr ]]r 6∈ {true, false,⊥} ∨ (E [[expr ]]r = true ∧ O[[o∗|e ]]r = error)

On the other hand, by the clause (T-3a), we have that

TP {|(e target : expr obl : o∗ )|} ↓i=
¬ (isBool(TE{|expr |}) ∨ isMiss(TE{|expr |})) ∨ (TE{|expr |} ∧ ¬TOb{|o∗|e |})

The thesis then follows by Lemmas 4.2 and 4.3 and the definition of C.

Inductive Case (i = k + 1) p is of the form {algall target : expr policies : (p+)k obl : o∗ }. We pro-
ceed by case analysis on dec.

(dec = permit) By the clause (S-4b), it follows that

E [[expr ]]r = true ∧ A[[algall, (p
+)k]]r = 〈permit fo∗1〉 ∧ O[[o∗|permit]]r = fo∗2

Thus, by Lemma 4.2, it follows that

E [[expr ]]r = C[[TE{|expr |}]]r = true

and, by Lemma 4.3 and the clause (T-2), it follows that

C[[TOb{|o∗|permit |}]]r = true
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Since by the induction hypothesis, for all ph
i in (p+)k with h ≤ k, it holds that

P[[ph
i ]]r = 〈deci fo∗〉 ⇔ C[[TP {|ph

i |} ↓deci
]]r = true

then, by Lemma 4.4, it follows that

TA{|algall, (p+)k|} ↓p= true

On the other hand, by the clause (T-3b), we have that

TP {|{algall target : expr policies : (p+)k obl : o∗ }|} ↓p=
TE{|expr |} ∧ TA{|algall, (p

+)k|} ↓p ∧ TOb{|o∗|permit |}

Hence, by the definition of C, we can conclude that

C[[TP {|{algall target : expr policies : (p+)k obl : o∗ }|} ↓p]]r =

C[[TE{|expr |}]]r ∧ C[[TA{|algall, (p
+)k|} ↓p]]r ∧ C[[TOb{|o∗|permit |}]]r =

true ∧ true ∧ true = true

which proves the thesis.

(dec = deny) We omit the proof since it proceeds like the previous case.

(dec = not-app) By the clause (S-4b), it follows that

E [[expr ]]r = false ∨ E [[expr ]]r =⊥ ∨ (E [[expr ]]r = true ∧ A[[algall, (p
+)k]]r = not-app)

By the clause (T-3b), we have that

TP {|{algall target : expr policies : (p+)k obl : o∗ }|} ↓n=

¬ TE{|expr |} ∨ (TE{|expr |} ∧ TA{|algall, (p
+)k|} ↓n)

The thesis then directly follows by Lemmas 4.2 and 4.4, due to the induction hypothesis
and the definition of C.

(dec = indet) By the clause (S-4b), the otherwise condition holds, that is

¬(E [[expr ]]r = true ∧ A[[algall, (p
+)k]]r = 〈e fo∗1〉 ∧ O[[o∗|e ]]r = fo∗2) ∧

¬(E [[expr ]]r = false ∨ E [[expr ]]r = ⊥ ∨ (E [[expr ]]r = true ∧ A[[algall, (p+)k]]r = not-app))

By applying standard boolean laws and reasoning on function codomains, this condi-
tion can be rewritten as follows

¬(E [[expr ]]r = true ∧ A[[algall, (p
+)k]]r = 〈e fo∗1〉 ∧ O[[o∗|e ]]r = fo∗2) ∧

¬(E [[expr ]]r = false ∨ E [[expr ]]r = ⊥ ∨ (E [[expr ]]r = true ∧ A[[algall, (p+)k]]r = not-app))

=

(E [[expr ]]r 6= true ∨ A[[algall, (p+)k]]r ∈ {not-app, indet} ∨ O[[o∗|e ]]r = error)∧
(E [[expr ]]r 6∈ {false,⊥} ∧ (E [[expr ]]r 6= true ∨ A[[algall, (p+)k]]r 6= not-app))

=

(E [[expr ]]r 6= true ∨ A[[algall, (p+)k]]r ∈ {not-app, indet} ∨ O[[o∗|e ]]r = error)∧
(E [[expr ]]r 6∈ {true, false,⊥} ∨ (E [[expr ]]r 6∈ {false,⊥} ∧ A[[algall, (p

+)k]]r 6= not-app))
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=

E [[expr ]]r 6∈ {true, false,⊥}∨
(E [[expr ]]r 6∈ {true, false,⊥} ∧ A[[algall, (p

+)k]]r 6= not-app)∨
(E [[expr ]]r 6∈ {true, false,⊥} ∧ A[[algall, (p

+)k]]r ∈ {not-app, indet})∨
(E [[expr ]]r 6∈ {false,⊥} ∧ A[[algall, (p+)k]]r 6= not-app ∧ A[[algall, (p

+)k]]r ∈ {not-app, indet})∨
(E [[expr ]]r 6∈ {true, false,⊥} ∧ O[[o∗|e ]]r = error)∨
(E [[expr ]]r 6∈ {false,⊥} ∧ A[[algall, (p+)k]]r 6= not-app ∧ O[[o∗|e ]]r = error)

=

E [[expr ]]r 6∈ {true, false,⊥}∨
(E [[expr ]]r 6∈ {false,⊥} ∧ A[[algall, (p+)k]]r = indet)∨
(E [[expr ]]r 6∈ {false,⊥} ∧ A[[algall, (p+)k]]r 6= not-app ∧ O[[o∗|e ]]r = error)

=

E [[expr ]]r 6∈ {true, false,⊥}∨
(E [[expr ]]r 6∈ {true, false,⊥} ∧ A[[algall, (p

+)k]]r = indet)∨
(E [[expr ]]r = true ∧ A[[algall, (p

+)k]]r = indet)∨
(E [[expr ]]r 6∈ {true, false,⊥} ∧ A[[algall, (p

+)k]]r 6= not-app ∧ O[[o∗|e ]]r = error)∨
(E [[expr ]]r = true ∧ A[[algall, (p

+)k]]r 6= not-app ∧ O[[o∗|e ]]r = error)

=

E [[expr ]]r 6∈ {true, false,⊥}∨
(E [[expr ]]r = true ∧ A[[algall, (p

+)k]]r = indet)∨
(E [[expr ]]r = true ∧ A[[algall, (p

+)k]]r 6= not-app ∧ O[[o∗|e ]]r = error)

=

E [[expr ]]r 6∈ {true, false,⊥}∨
(E [[expr ]]r = true ∧ A[[algall, (p

+)k]]r = indet)∨
(E [[expr ]]r = true ∧ A[[algall, (p

+)k]]r = indet ∧ O[[o∗|e ]]r = error)∨
(E [[expr ]]r = true ∧ A[[algall, (p

+)k]]r = 〈e fo∗〉 ∧ O[[o∗|e ]]r = error)

=

E [[expr ]]r 6∈ {true, false,⊥}∨
(E [[expr ]]r = true ∧ A[[algall, (p

+)k]]r = indet)∨
(E [[expr ]]r = true ∧ A[[algall, (p

+)k]]r = 〈e fo∗〉 ∧ O[[o∗|e ]]r = error)

=

E [[expr ]]r 6∈ {true, false,⊥}
(E [[expr ]]r = true ∧ A[[algall, (p+)k]]r = indet )∨
(E [[expr ]]r = true ∧ A[[algall, (p

+)k]]r = 〈permit fo∗〉 ∧ O[[o∗|permit]]r = error)∨
(E [[expr ]]r = true ∧ A[[algall, (p+)k]]r = 〈deny fo∗〉 ∧ O[[o∗|deny]]r = error)

where the last step exploits the fact that e ∈ {permit, deny}.
On the other hand, by the clause (T-3b), we have that

TP {|{algall target : expr policies : (p+)k obl : o∗ }|} ↓indet =

¬ (isBool(TE{|expr |}) ∨ isMiss(TE{|expr |}))
∨ (TE{|expr |} ∧ TA{|a, (p+)k|} ↓i)
∨ (TE{|expr |} ∧ TA{|a, (p+)k|} ↓p ∧¬ TOb{|o∗|permit |} )
∨ (TE{|expr |} ∧ TA{|a, (p+)k|} ↓d ∧¬ TOb{|o∗|deny |} )

The thesis then follows by Lemmas 4.2, 4.3 and 4.4, due to the induction hypothesis
and the definition of C.

It is worth noticing that these results can be easily tailored to extensions of FACPL. For
instance, in case of additional expression operators, it only requires devising a constraint
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operator (or a combination thereof) that faithfully represents the semantics of the new
operator.

Additionally, from the previous theorems it follows that policy constraint tuples parti-
tion the set of input requests, that is each request satisfies only one of the constraints of a
tuple. Basically, the following corollary extends Theorem 3.1 to constraint tuples.

Corollary 4.6 (Constraint-based partition). For all r ∈ R and p ∈ Policy , such that
TP {|p|} = 〈permit : c1 deny : c2 not-app : c3 indet : c4 〉, it holds that

∃!k ∈ {1, . . . , 4} : C[[ck]]r = true ∧
∧
j∈{1,...,4}\{k}C[[cj ]]r = false

Proof. The thesis immediately follows from Theorems 3.1 and 4.5.

4.3.4 Constraint-based Representation of the e-Health Case Study

We now apply the translation functions just introduced to (a part of) the e-Health case
study formalised in Section 3.4. For the sake of presentation, we shorten the attribute
names used within the defined FACPL policies. For instance, the rule addressing Require-
ment (Eh-1) becomes as follows

( permit target : equal(sub/role, “doctor”) and equal(act/id, “write”)
and in(“e-Pre-Write”, sub/perm) and in(“e-Pre-Read”, sub/perm))

Its translation starts by applying function TE to the target expression. The resulting con-
straint is as follows

ctrg1 , sub/role = “doctor” ∧̇ act/id = “write” ∧̇ “e-Pre-Write” ∈ sub/perm
∧̇ “e-Pre-Read” ∈ sub/perm

The translation proceeds by considering obligations; in this case they are missing (i.e.,
they correspond to the empty sequence ε), hence the constraint true is obtained. Function
TP finally defines the constraint tuple for the rule as follows

〈 permit : ctrg1 ∧ true deny : false

not-app : ¬ctrg1 indet : ¬(isBool(ctrg1) ∨ isMiss(ctrg1)) ∨ (ctrg1 ∧ ¬true) 〉

The tuples for the rules addressing Requirements (Eh-2) and (Eh-3) are defined similarly,
they only differ in the constraints representing their targets, which are denoted as ctrg2
and ctrg3, respectively.

We can now define the constraint-based representation of Policy (Eh-A). Besides the
target expression, which is straightforwardly translated to the constraint ctrgP , res/typ =
“e-Pre”, the constraint tuple is built up from the result of function TA representing the ap-
plication of the algorithm p-over. Specifically, the constraint tuples of rules are iteratively
combined according to Table 4.3. For example, the combination of the first two rules
generates the following tuple

〈 permit : (ctrg1 ∧ true) ∨ (ctrg2 ∧ true)
deny : (false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1 ∧ false)
not-app : ¬ctrg1 ∧ ¬ctrg2

indet : ((¬(isBool(ctrg1) ∨ isMiss(ctrg1)) ∨ (ctrg1 ∧ ¬true)) ∧ ¬(ctrg2 ∧ true))
∨(¬(ctrg1 ∧ true) ∧ (¬(isBool(ctrg2) ∨ isMiss(ctrg2)) ∨ (ctrg2 ∧ ¬true))) 〉
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Notably, the deny constraint is never satisfied, because it is a disjunction of conjunctions
having at least one false term as argument. This is somewhat expected, because the rules
have the permit effect and the used combining algorithm is p-over. This tuple is then
combined with that of the remaining rule in a similar way.

To generate the constraint tuple of the policy, we also need the constraint-based rep-
resentation of its obligations. The policy contains only one obligation, which has effect
permit. The corresponding constraint is as follows

cobl_p ,
∧

n∈{sys/time,res/typ,sub/id,act/id} ¬isMiss(n) ∧ ¬isErr(n)

The constraint for obligations with effect deny, which are missing, is instead true.
Finally, the constraint tuple of Policy (Eh-A) generated by function TP is as follows

〈permit : ctrgP ∧ ((ctrg1 ∧ true) ∨ (ctrg2 ∧ true) ∨ (ctrg3 ∧ true)) ∧ cobl_p

deny : ctrgP ∧ ((((false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1
∧ false)) ∧ false)

∨(((false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1 ∧ false)) ∧ ¬ctrg3)
∨((¬ctrg1 ∧ ¬ctrg2) ∧ false)) ∧ true

not-app : ¬ctrgP ∨ (ctrgP ∧ (¬ctrg1 ∧ ¬ctrg2 ∧ ¬ctrg3))

indet : ¬(isBool(ctrgP ) ∨ isMiss(ctrgP ))
∨(ctrgP ∧ (((¬(isBool(ctrg1) ∨ isMiss(ctrg1)) ∨ (ctrg1 ∧ ¬true)) ∧ ¬(ctrg2 ∧ true))
∨ ¬((ctrg1 ∧ true) ∧ (¬(isBool(ctrg2) ∨ isMiss(ctrg2)) ∨ (ctrg2 ∧ ¬true))) ∧ ¬(ctrg3 ∧ true))
∨ (¬((ctrg1 ∧ true) ∨ (ctrg2 ∧ true)) ∧ (¬(isBool(ctrg3) ∨ isMiss(ctrg3)) ∨ (ctrg3 ∧ ¬true)))
∨(ctrgP ∧ ((ctrg1 ∧ true) ∨ (ctrg2 ∧ true) ∨ (ctrg3 ∧ true)) ∧ ¬cobl_p)
∨(ctrgP ∧ ((((false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1 ∧ false)) ∧ false)
∨(((false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1 ∧ false)) ∧ ¬ctrg3)
∨((¬ctrg1 ∧ ¬ctrg2) ∧ false)) ∧ ¬true) 〉

This example demonstrates that the constraints resulting from the translation are a
single-layered representation of policies that fully details all the aspects of policy evalua-
tion. It is also worth noticing that the translation functions are applied without considering
possible optimisations, e.g., simplifications of unsatisfiable constraints like that of deny. It
is also evident that the evaluation, as well as the generation, of such constraints cannot be
done manually, but requires a tool support.

4.4 Formalisation of Properties

This section formalises a set of properties of interest for FACPL policies. In particular, we
formalise properties that refer to the expected authorisation of single requests, i.e. au-
thorisation properties (Section 4.4.1), and to the relationships among policies with respect
to the authorisations they enforce, i.e. structural properties (Section 4.4.2). We conclude
with some examples of properties from the e-Health case study (Section 4.4.3).

4.4.1 Authorisation Properties

An authorisation property aims at predicting the possible authorisations a policy calculates
for a given (partial) request. Since FACPL policies and, in general, ABAC policies, do not
enjoy the safety property (see Section 3.5.6), authorisation properties should also analyse
how additional attributes possibly added to a request, thus extending it, might change its
authorisation in a possibly unexpected way. Intuitively, it is important to consider not only
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the authorisation decisions of specific requests, but also those of their extensions because,
e.g., a malicious user could try to exploit them to circumvent the access control system.
To this aim, we introduce and exploit the notion of request extension set.

The request extension set of a given request r is defined as follows

Ext(r) , {r ′ ∈ R | r(n) 6=⊥ ⇒ r ′(n) = r(n)}

The set is formed by all those requests that possibly extend request r with new attributes
assignments not already defined by r .

The formalisation of the authorisation properties we propose follows.

Evaluate-To. This property, written r eval dec, requires the policy under examination to
evaluate the request r to decision dec. The satisfiability, written sat, of the Evaluate-To
property by a policy p is defined as follows

p sat r eval dec iff P[[p]]r = 〈dec fo∗〉

In practice, the verification of the property boils down to apply the semantic function P to
p and r , and check that the resulting decision is dec.

May-Evaluate-To. This property, written r evalmay dec, requires that at least one request
extending the request r evaluates to decision dec. The satisfiability of the May-Evaluate-To
property by a policy p is defined as follows

p sat r evalmay dec iff ∃ r ′ ∈ Ext(r) : P[[p]]r ′ = 〈dec fo∗〉

This property, as well as the next one, addresses additional attributes extending the re-
quest r by considering the requests in its extension set Ext(r).

Must-Evaluate-To. This property, written r evalmust dec, differs from the previous one as
it requires all the extended requests to evaluate to decision dec. The satisfiability of the
Must-Evaluate-To property by a policy p is defined as follows

p sat r evalmust dec iff ∀r ′ ∈ Ext(r) : P[[p]]r ′ = 〈dec fo∗〉

Notably, additional properties can be obtained by combining the previous ones, like
a property requiring, e.g., that all requests in Ext(r) may evaluate to dec and must not
evaluate to dec′. Indeed, request extensions can be exploited to track down possibly un-
expected authorisations.

It is worth noticing that the formalisation approach based on request extensions is
practically feasible, although such sets might be infinite. Indeed, Lemma 3.2 ensures
that the attribute names whose assignments generate significant extensions of a given
request are only those belonging to the finite set of attribute names occurring within the
considered policy. This fact paves the way for carrying out property verification by means
of SMT solvers.

4.4.2 Structural Properties

A structural property refers to the structure of the sets of authorisations enforced by one
or multiple policies. In case of multiple policies, the properties aim at characterising the
relationships among the policies. Different structural properties have been proposed in
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the literature (e.g. in [FKMT05] and [KHP07]) by pursuing different approaches for their
definition and verification. Here, we consider a set of commonly addressed properties and
provide a uniform characterisation thereof in terms of requests and policy semantics.
Completeness. A policy is complete if it applies to all requests. Thus, the satisfiability of
the property by a policy p is defined as follows

p sat complete iff ∀ r ∈ R : P[[p]]r = 〈dec fo∗〉, dec 6= not-app

Essentially, we require that the policy applies to any request, i.e. it always returns a deci-
sion different from not-app. Notably, in this formulation indet is considered as an accept-
able decision; a more restrictive formulation could only accept permit and deny.
Disjointness. Disjointness among policies means that such policies apply to disjoint sets of
requests. Thus, this property, written disjoint p′, requires that there is no request for
which both the policy under examination and the policy p′ evaluate to permit or deny. The
satisfiability of the property by a policy p is defined as follows

p sat disjoint p′ iff ∀ r ∈ R :

P[[p]]r = 〈dec fo∗〉,P[[p′]]r = 〈dec′ fo ′∗〉, { dec, dec′ } 6⊆ {permit, deny}

It is worth noticing that disjoint polices can be combined with the assurance that the
allowed or forbidden authorisations enforced by each of them are not in conflict, which
simplifies the choice of the combining algorithm to be used.
Coverage. Coverage among policies means that one of such policies enforces the same
decisions as the other ones. More specifically, the property cover p′ requires that for each
request r for which p′ evaluates to an admissible decision, i.e. permit or deny, the policy
under examination evaluates to the same decision. The satisfiability of the property by a
policy p is defined as follows

p sat cover p′ iff ∀ r ∈ R :

P[[p′]]r = 〈dec fo∗〉, dec ∈ {permit, deny} ⇒ P[[p]]r = 〈dec fo′∗〉

Thus, p calculates at least the same admissible decisions as p′. Consequently, if p′ also
covers p, the two policies enforce exactly the same admissible authorisations.

These structural properties statically predicate the relationships among policies and
support system designers in developing and maintaining policies. One technique they
enable is the change-impact analysis [FKMT05]. This analysis examines the effect of policy
modifications for discovering unintended consequences of such changes.

4.4.3 Properties on the e-Health Case Study

By way of example, we address in terms of authorisation and structural properties the case
of pharmacists willing to write an e-Prescription in the e-Health case study.

Given the patient consent policies in Section 3.4, i.e. Policies (Eh-A) and (Eh-B), we
can verify whether they disallow the access to a pharmacist that wants to write an e-
Prescription. To this aim, we define an Evaluate-To property2 as follows

(sub/role, “pharmacist”)(act/id, “write”)(res/typ, “e-Pre”) eval deny (Pr1)
2For the sake of presentation, in this subsection we write requests using the FACPL syntax (i.e., they are

specified as sequences of attributes) rather than using their semantics, i.e. functional representation.
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which requires that such request evaluates to deny. Alternatively, by exploiting request
extensions, we can check if there exists a request for which a pharmacist acting on e-
Prescription can be evaluated to not-app. This corresponds to the May-Evaluate-To property
defined as follows

(sub/role, “pharmacist”)(res/typ, “e-Pre”) evalmay not-app (Pr2)

The verification of these properties with respect to Policy (Eh-A) results in

Policy (Eh-A) unsat (Pr1) Policy (Eh-A) sat (Pr2)

where unsat indicates that the policy does not satisfy the property. Indeed, as already
discussed in Section 3.4, each request assigning to act/id a value different from read eval-
uates to not-app, hence property (Pr1) is not satisfied while property (Pr2) holds. On the
contrary, the verification with respect to Policy (Eh-B) results in

Policy (Eh-B) sat (Pr1) Policy (Eh-B) unsat (Pr2)

Both results are due to the internal policy (deny) which, together with the algorithm p-over,
prevents not-app to be returned and enforces deny as default decision.

The analysis can also be conducted by relying on the structural properties. By verifying
completeness, we can check if there exists a request that evaluates to not-app, and we get

Policy (Eh-A) unsat complete Policy (Eh-B) sat complete

As expected, Policy (Eh-A) does not satisfy completeness, i.e. there is at least one request
that evaluates to not-app, whereas Policy (Eh-B) is complete. Instead, we can check if
Policy (Eh-B) correctly refines Policy (Eh-A) by simply verifying coverage. We get

Policy (Eh-B) sat cover Policy (Eh-A)

This follows from the fact that Policy (Eh-B) evaluates to permit the same set of requests
as Policy (Eh-A) and that Policy (Eh-A) never returns deny; the opposite coverage property
does not clearly hold. It is also worth noticing that the two policies are not disjoint (in
fact, they share the set of permitted requests).

4.5 Automated Property Verification

The verification of the properties we have just introduced requires extensive checks on
large (possibly infinite) amounts of requests, hence, in order to be practically effective,
tool support is essential. To this aim, we express the constraint formalism introduced in
Section 4.3 by means of the SMT-LIB language [BST10], that is a standardised constraint
language accepted by most of the SMT solvers. Intuitively, SMT-LIB is a strongly typed
functional language expressly defined for the specification of constraints. On the basis of
this SMT-LIB coding, we can define the strategies to follow for automatising the verifica-
tion of properties by means of an SMT solver. Of course, the feasibility of the SMT-based
reasoning crucially depends on decidability of the satisfiability checks to be done; in other
words, the used SMT-LIB constructs must refer to decidable theories, as e.g. uninterpreted
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v ∈ Bool

Γ ` v : Bool | true

v ∈ Double

Γ ` v : Double | true

v ∈ String

Γ ` v : String | true

v ∈ Date

Γ ` v : Date | true

v ∈ 2Value

Γ ` v : 2Value | true

Γ(n) = X

Γ ` n : X | true

Γ ` expr : U | C
Γ ` not(expr) : Bool | C ∧U = Bool

Γ ` expr1 : U1 | C1 Γ ` expr2 : U2 | C2

Γ ` eop(expr1, expr2) : Bool | C1 ∧ C2 ∧U1 = Bool ∧U2 = Bool
eop ∈ {and, or}

Γ ` expr1 : U1 | C1 Γ ` expr2 : U2 | C2

Γ ` equal(expr1, expr2) : Bool | C1 ∧ C2 ∧U1 = U2

Γ ` expr1 : U1 | C1 Γ ` expr2 : 2U2 | C2

Γ ` in(expr1, expr2) : Bool | C1 ∧ C2 ∧U1 = U2

Table 4.4: Type inference rules for (an excerpt of) FACPL expressions (we use X as a type
variable, U as a type name or a type variable, and we assume that Bool , Double, String ,
Date, 2Value identify both the values’ domains and their type names)

function and array theories. All these tasks are fully supported by automatic functionalities
of the FACPL tools.

In the rest of this section, we first outline the SMT-LIB coding of our constraints (Sec-
tion 4.5.1), then we present the strategies for the automated verification of properties
(Section 4.5.2), and we conclude by commenting on the functionalities of the FACPL anal-
ysis tools (Section 4.5.3).

4.5.1 Expressing Constraints with SMT-LIB

We provide here a few insights on the SMT-LIB coding of our constraints. The key element
of the coding strategy is the parametrised record type representing attributes. This type,
named TValue, is defined as follows

(declare-datatypes (T) ((TValue (mk-val (val T)(miss Bool)(err Bool)))))

Hence, each attribute consists of a 3-valued record, whose first field val is the value with
parametric type T assigned to the attribute, while the boolean fields miss and err indi-
cate, respectively, if the attribute value is missing or has an unexpected type. Additional
assertions, not shown here for the sake of presentation, ensure that the fields miss and
err cannot be true at the same time, and that, when one of the last two fields is true,
it takes precedence over val. Of course, a specification formed by multiple assertions is
satisfied when all the assertions are satisfied.

The declaration of TValue outlines the syntax of SMT-LIB and its strongly typed nature.
This means that each attribute occurring in a policy has to be typed, by properly instanti-
ating the type parameter T. Since FACPL is an untyped language, to reconstruct the type
of each attribute, we define the type inference system (whose excerpt is) reported in Ta-
ble 4.4. The rules are straightforward and infer the judgment Γ ` expr : U | C which,
under the typing context Γ, assigns the type (or the type variable) U to the FACPL expres-
sion expr and generates the typing constraint C. Specifically, Γ is an injective function that
associates a type variable to each attribute name, while C is basically made of conjunc-
tions and disjunctions of equalities between variables and types. The generated typing
constraint will be processed at the end of the inference process to establish well-typedness
of an expression. Thus, a FACPL expression is well-typed if C is satisfiable, i.e. there exists
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a type assignment for the typing variables occurring in C that satisfies C. Moreover, a
FACPL policy is well-typed if the typing constraints generated by all the expressions occur-
ring in the policy are satisfied by a same assignment. These type assignments are used to
instantiate the type parameters of the SMT-LIB constraints representing well-typed poli-
cies.

The type inference system aims at statically discarding policies containing expressions
that are not well-typed. For instance, given the expression or(cat/id, equal(cat/id, 5)) and
the typing context Γ(cat/id) = Xcat/id, the inference rules assign the type Bool to the ex-
pression and generate the constraint Xcat/id = Double∧Xcat/id = Bool ∧Bool = Bool . This
constraint is clearly unsatisfiable (as attribute cat/id cannot simultaneously be a double
and a boolean), hence a policy containing such expression is not well-typed and would be
statically discarded. Notably, the use of the field err allows the analysis to still address
the role of errors in policy evaluations, i.e. reasoning on the authorisations of requests
assigning unexpected values to attribute names.

On top of the TValue datatype we build the uninterpreted functions expressing the
constraint operators of Table 4.1. By way of example, the 4-valued operator ∧̇ corresponds
to the FAnd function defined as follows

(define-fun FAnd ((x (TValue Bool)) (y (TValue Bool))) (TValue Bool)
(ite (and (isTrue x) (isTrue y))

(mk-val true false false)
(ite (or (isFalse x) (isFalse y))

(mk-val false false false)
(ite (or (err x) (err y))

(mk-val false false true)
(mk-val false true false)))))

where mk-val is the constructor of TValue records. Hence, the function takes as input
two TValue Bool records, i.e. type Bool is the instantiation of the type parameter T, and
returns a Bool record as well. The conditional if-then-else assertions ite are nested to
form a structure that mimics the semantic conditions of Table 4.2, so that different TValue
records are returned according to the input. The function isFalse (resp. isTrue) is used
to compactly check that all fields of the record are false (resp. only the field val is true).
All the other constraint operators, except ∈, are defined similarly.

To express the operator ∈, we need to represent multi-valued attributes. Firstly, we
define an array datatype, named Set, to model sets of elements as follows

(define-sort Set (T) (Array Int T))

where the type parameter T is the type of the elements of the array. By definition of array,
each element has an associated integer index that is used to access the corresponding
value. Thus, a multi-valued attribute is represented by a TValue record with type an
instantiated Set, e.g. (TValue (Set Int)) is an attribute whose value is a set of integers.
Consequently, we can build the uninterpreted function modelling the constraint operator
∈. In case of integer sets, the function is

(define-fun inInt ((x (TValue Int)) (y (TValue (Set Int)))) (TValue Bool)
(ite (or (err x)(err y))

(mk-val false false true)
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(ite (or (miss x) (miss y))
(mk-val false true false)
(ite (exists ((i Int)) (= (val x) (select (val y) i)))

(mk-val true false false)
(mk-val false false false)))))

where the command (select (val y) i) takes the value in position i of the set in the
field val of the argument y. In addition to the conditional assertions, the function uses
the existential quantifier exists for checking if the value of the argument x is contained
in the set of the argument y.

The coding approach we pursue generates, in most of the cases, fully decidable con-
straints. In fact, since we support non-linear arithmetic, i.e. multiplication, it is possible
to define constraints for which a constraint solver is not able to answer. Anyway, modern
constraint solvers are actually able to resolve nontrivial nonlinear problems that, for what
concerns access control policies, should prevent any undefined evaluation3. Similarly, the
quantifier-based constraints are in general not decidable, but solvers still succeed in evalu-
ating complicated quantification assertions due to, e.g., powerful pattern techniques (see,
e.g., the documentation of Z3). Notice anyway that if we assume that each expression
operator in (and, consequently, constraint operator ∈) is applied to at most one attribute
name, the quantifications are bounded by the number of literals defining the other opera-
tor argument.

Concerning the value types we support, SMT-LIB does not provide a primitive type
for Date. Hence, we use integers to represent its elements. Furthermore, even though
SMT-LIB supports the String type, the Z3 solver we use does not. Thus, given a policy as
an input, we define an additional datatype, say Str, with as many constants as the string
values occurring in the policy. The string equality function is then defined over TValue
records instantiated with type Str.

By way of example, the SMT-LIB code for the constraint ctrg1 (see Section 4.3.4) is

(define-fun cns_target_Rule1 () (TValue Bool)
(FAnd (equalStr n_sub/role cst_doc)

(FAnd (equalStr n_act/id cst_write)
(FAnd

(inStr cst_permWrite n_sub/perm) (inStr cst_permRead n_sub/perm)))))

where identifiers starting with n_ (resp. cst_) represent attribute names (resp. literals)
of the represented expression. The whole SMT-LIB code for Policy (Eh-A) can be found at
http://facpl.sourceforge.net/eHealth/.

4.5.2 SMT-LIB-based Property Verification

The SMT-LIB coding permits using SMT solvers to automatically verify the properties for-
malised in Section 4.4. In the following, given a FACPL policy p, we denote by 〈permit :
smtlib-cp deny : smtlib-cd not-app : smtlib-cn indet : smtlib-ci〉 the tuple of SMT-LIB codes
representing the formal constraints TP {|p|} = 〈permit : cp deny : cd not-app : cn indet : ci〉.
Below, we present first the verification strategies to follow for the authorisation properties,
then those for the structural properties.

3Notably, if at least one argument of each occurrence of the multiply operator is a numeric constant, the
resulting non-linear arithmetic constraints are decidable.
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Authorisation Properties

The automated verification of authorisation properties requires: (i) to introduce into the
policy constraint of interest, which is chosen according to the property, the SMT-LIB coding
of the request defined by the property; (ii) to check the satisfiability (or validity) of the
resulting constraint.

Given a request r , the SMT-LIB coding of the request is defined as follows

rsmtlib ,

{
(assert (= (val n) v))
(assert (and (not (miss n)) (not (err n))))

r(n) = v

}

Indeed, all attribute names n in r are asserted to be equal to their value v and to be neither
missing nor erroneous. Furthermore, given a FACPL policy p, we also define the following
SMT-LIB coding of the request

rsmtlib ,
{

(assert (miss n)) n ∈ Names(p) ∧ r(n) =⊥
}

where, as in Section 3.5.6, Names(p) indicates the set of attribute names occurring in p.
Indeed, all the names n that occur in p and are not assigned to a value in r are asserted
as missing attributes.

By exploiting this SMT-LIB coding of requests, we define the automated verification
(i.e., via an SMT solver) of the authorisation properties as follows

p sat r eval dec iff smtlib-cdec ◦ rsmtlib ◦ rsmtlib is sat

p sat r evalmay dec iff smtlib-cdec ◦ rsmtlib is sat

p sat r evalmust dec iff smtlib-cdec ◦ rsmtlib is valid

where ◦ is used to indicate the concatenation of SMT-LIB code and valid means that the
corresponding SMT-LIB code is a valid set of assertions. Some comments follow.

The Evaluate-To property does not exploit request extensions, hence all attribute names
not assigned by the considered request can only assume the special value ⊥. This means
that the request r is coded in SMT-LIB with rsmtlib and rsmtlib. The satisfiability of the
property thus corresponds to that of the resulting SMT-LIB code.

To verify the May-Evaluate-To property, since it considers request extensions, the re-
quest has to be coded only with rsmtlib. As before, the satisfiability of the property corre-
sponds to that of the resulting SMT-LIB code.

Finally, to verify the Must-Evaluate-To property, we code again the request with rsmtlib,
but we check the validity of the resulting SMT-LIB code, i.e. that it is satisfied by all the
assignments for the attribute names. This amounts to check if the negation of the resulting
SMT-LIB code is not satisfiable, in which case the property holds.

Structural Properties

The automated verification of structural properties does not require to modify policy con-
straints, but rather to check the unsatisfiability of combinations of constraints. The auto-
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mated verification of the structural properties is as follows

p sat complete iff smtlib-cn is unsat

p sat disjoint p′ iff


smtlib-cp ◦ smtlib-c′p is unsat

smtlib-cp ◦ smtlib-c′d is unsat

smtlib-cd ◦ smtlib-c′p is unsat

smtlib-cd ◦ smtlib-c′d is unsat

p sat cover p′ iff

{
¬ smtlib-cp ◦ smtlib-c′p is unsat

¬ smtlib-cd ◦ smtlib-c′d is unsat

where smtlib-c′dec refers to the SMT-LIB code modelling decision dec of policy p′. Some
comments follow.

The trivial case is that of the completeness property, which only amounts to check if the
constraint modelling the decision not-app is not satisfiable, i.e. if its negation is valid; if it
is, the property holds.

The disjointness of two policies is verified by checking, one at a time, if the conjunctions
between the permit or deny constraint of the first policy and the permit or deny constraint
of the second policy are not satisfiable4. If this holds for the four possible combinations of
those constraints, the property holds.

The coverage of policy p on policy p ′ is verified by checking if the conjunction between
the negation of the permit (resp., deny) constraint of p and the permit (resp., deny) con-
straint of p′ is not satisfiable. Intuitively, if the policy p does not calculate a permit or deny
decision (i.e., ¬ smtlib-cp and ¬ smtlib-cd hold), policy p ′ cannot do it as well, otherwise
the property is not satisfied. Therefore, if this holds for the two conjunctions separately,
the property holds.

Finally, it is worth noticing that we are not considering the setR of all possible requests
because, due to Lemma 3.2, only the attribute names occurring in the policies of interest
are relevant for the analysis; any other name cannot affect policy evaluation.

4.5.3 Supporting Tools

To effectively support the analysis of FACPL policies, the FACPL software toolchain intro-
duced in Section 3.6 offers automatic generation of SMT-LIB code and aided specification
of authorisation and structural properties. These functionalities, graphically depicted in
Figure 3.2, are offered by the FACPL IDE.

The generation of SMT-LIB code is defined by using the code generator offered by
Xtext and by pursuing the coding strategies outlined in Section 4.5.1. Indeed, the IDE
implements the type inference system of Table 4.4 in order to properly instantiate the
generated SMT-LIB constructs, that are generated according to the properly implemented
translation function of Section 4.3.2. To support date/time and string values, an automatic
procedure creates the appropriate numeric and datatype representations, respectively.

The FACPL IDE supports the specification of authorisation and structural properties
by means of graphical wizards. These wizards permit choosing the type of the property
and its forming elements (i.e., one or more policies and possibly a request), and then

4Notably, the satisfiability of two (sets of) SMT-LIB assertions amounts to check if they both hold at the
same time, hence checking their conjunction.
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they generate the corresponding SMT-LIB file ready to be evaluated. Such SMT-LIB file
is generated by appropriately extending the SMT-LIB code representing the considered
policy (or policies) according to the strategies reported in Section 4.5.2. To facilitate the
evaluation of such file, it is also generated an execution script for the Z3 solver [dB08].
It is worth noticing that the generated SMT-LIB files can also be evaluated by any other
solver accepting SMT-LIB and supporting the theories we use. Our choice has been Z3 due
to its large support of SMT-LIB and its remarkable performance, see, e.g., the results of
the last SMT competitions5.

4.6 Concluding Remarks

In this chapter we have presented a constraint-based analysis approach for FACPL policies,
from its formal definition to its implementation in terms of automatic functionalities of the
FACPL IDE. Here, we conclude by briefly commenting on the contributions of the analysis
with respect to the research objectives of the thesis and to related and prior publications.

The analysis approach, together with the expressly developed authorisation properties,
accomplishes the objective O3, hence it provides a formally-defined analysis approach that
is capable of taking into account the peculiarities of ABAC. On the basis of the FACPL se-
mantics, we have also formally proved the soundness of this constraint-based analysis.
From an implementation point of view, the analysis is supported by practical functionali-
ties of the FACPL IDE. Together with the rest of the FACPL software tools, this contributes
accomplishing the objective O4.

Concerning other analysis approaches from the literature, our proposal addresses all
the elements forming access control policies and permits reasoning on missing and er-
roneous attributes. The latter functionalities are the main improvements with respect to
other approaches, like, e.g., those in [FKMT05, ACC14, TdHRZ15]. Additionally, the au-
thorisation properties formalised in Section 4.4 permit defining properties that, differently
from other proposals, explicitly address the peculiarities of ABAC. The concept of request
extension set, that we exploit for property specifications, is similarly defined in [CMZ15],
but there it has the aim of defining completely different probabilistic properties on access
control policies. It is also worth noticing that the FACPL analysis tools ensure remarkable
performance. For example, the verification of the complete property on a benchmark of
reference requires around 120ms. Further details are reported in Section 7.5.

Generally speaking, with the development of FACPL, its constraint-based analysis and
its software tools, we aim at devising a comprehensive methodology supporting the whole
development life-cycle of policy-based access control systems, from their specification and
analysis to their implementation. Each ingredient has been first formally defined and then
implemented as a software tool. Moreover, our methodology allows access control system
developers to use formally-defined automated functionalities without requiring them to
be familiar with formal methods.

From a practical perspective, the analysis of the e-Health FACPL policies we proposed
sheds light on some inconsistencies that were found in a preliminary specification of ep-
SOS. Such an issue could have been found immediately by means of the FACPL analysis
tools. In general, the automated analysis of FACPL policies can be exploited to reason on
dynamic modifications of the access control policies enforced in a system.

5SMT Competition - http://smtcomp.sourceforge.net/
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Chapter 4. Analysis of FACPL Policies

The contents of this chapter are mainly based on the work in [MMPT16], with the
exception of the formalisation of security policies of Sections 4.1 and 4.2 that are based
on the work in [MPT15]. The preliminary version of FACPL presented in [MPT12, Mas12]
does not address any of the contents reported in this chapter.
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The PSCEL Language

It’s not about keeping pace with
Moore’s Law, but rather dealing with
the consequences of its decades-long
reign.

Paul Horn [Hor01]

Autonomic computing is a recently devised paradigm to build computing systems. The
self-managing functionalities fostered by the autonomic approach aim at simplifying the
management and interoperability of systems. However, to practically develop autonomic
systems, we need a principled approach that permits structured design of the forming
components and precise formalisation of their interactions [BCG+12]. A crucial aspect to
address in the development is how to specify and enforce adaptation strategies, i.e. the
means that allow systems to autonomously adapt to changing operating conditions.

In this chapter, we present Policed-SCEL (PSCEL), a FACPL-based instantiation of the
SCEL language. SCEL, as outlined in Section 2.2.1, provides a set of linguistic abstrac-
tions to specify autonomic systems, but it is parametric with respect to the formalism to
be concretely used for the specification and enforcement of adaptation strategies. To this
aim, we opportunely specialise FACPL, i.e. its targets and obligations, to regulate SCEL
process interactions and to define rule-based adaptation strategies. Intuitively, target func-
tions are specialised so that it is possible to define pattern-matching controls on process
actions, while obligations are instantiated as SCEL process actions. Indeed, FACPL poli-
cies act as Event-Condition-Action (ECA) rules, where the event is an authorisation request
representing a process action to authorise, the condition is a rule target and the action is
an adaptation strategy defined in term of obligations. The interplay between policies and
processes, generated by the evaluation of FACPL policies, is precisely formalised in terms
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of a formal semantics. To effectively deploy the language, PSCEL is also equipped with
a Java runtime environment providing a practical framework for developing autonomic
systems and an IDE supporting the PSCEL coding and analysis tasks.

Structure of the chapter. The rest of this chapter is organised as follows. Section 5.1
outlines the main design principles of PSCEL. Section 5.2 presents the syntax of PSCEL.
Section 5.3 describes the PSCEL formal semantics. Section 5.4 describes the PSCEL system
modelling the robot-swarm case study presented in Section 2.3.2. Section 5.5 outlines the
main functionalities of the PSCEL supporting tools. Section 5.6 concludes with some final
remarks.

5.1 PSCEL: a FACPL-based Instantiation of SCEL

The PSCEL language is a full-fledged instance of SCEL, where policies are defined by a
dialect of the FACPL language. We present here the main design principles underlying the
conceptualisation of PSCEL and its functionalities.

The use of declarative policies for defining self-adaptation strategies is largely advo-
cated in the literature (see, e.g., in [HM08, LMD13]). Since adaptation strategies usually
consist of sets of actions to be executed by the controlled system, we can opportunely
exploit FACPL obligations to define such strategies. Choosing FACPL obligations ensures
a dynamical fulfilment of adaptation actions, i.e. action arguments can be dynamically
retrieved at evaluation time. This approach clearly ensures high flexibility, but it also
requires a technique for enforcing obligations.

Techniques for achieving self-adaptation in computing systems have received large at-
tention and prompted the introduction of various approaches like, e.g., Aspect Oriented
Programming (AOP) [KLM+97, KHH+01]. AOP crucially relies on the idea that definite
parts of a program, called join-points, trigger the execution of before and after actions,
i.e. actions that will be performed before or after the join-point. The AOP approach is
widely used and has proven to be flexible and effective enough to easily deal with mul-
tiple adaptation and behavioural strategies. For example, it has been used in [DL06] to
enforce adaptation in the component-based framework FRACTAL [BCL+06] and in [CM07]
to dynamically compose web services. Therefore, in order to define FACPL-based adapta-
tion strategies in SCEL, we instantiate FACPL obligations as SCEL process actions and, by
taking inspiration from AOP, we specialise each obligation with a type representing if the
corresponding actions are before or after actions. Additionally, we consider all process ac-
tions as join-points triggering the evaluation of policies. We represent each process action
and its evaluation context as an attribute-based request that is evaluated by the FACPL
policies in order for the corresponding action to be authorised for execution.

The principled combination of attribute-based requests, authorisation rules and obliga-
tions allows policies to regulate the authorisation of process actions, filter the interactions
among components, and enforce adaptation strategies. Furthermore, as requests contain
context information, policies can base their evaluation on the system context, like, e.g.,
location and availability of computing resources. This ensures that context awareness can
drive system evolution.

To sum up, FACPL policies are specialised by instantiating obligation actions as the set
of SCEL process actions and by defining adequate target functions that permits checking
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5.2. Syntax

SYSTEMS: S ::= I[K,Π, P ] | S1 ‖ S2 | (νn)S

INTERFACES: I ::= (id : n (, n : e)∗)

PROCESSES: P ::= nil | a.P | P1 + P2 | P1 | P2 | X | A(p̃)

ACTIONS: a ::= get(T )@c | qry(T )@c | put(t)@c | fresh(n) | new(I,K,Π, P )

| upd(n, e) | read(? x , n)

DESTINATIONS: c ::= n | x | self | P

PREDICATES: P ::= true | n = e | n < e | ¬ P | P1 ∨ P2

KNOWLEDGE: K ::= ∅ | 〈t〉 | K1 ‖ K2

ITEMS: t ::= e | c | P | t1, t2

TEMPLATES: T ::= e | c | ? x | ? X | T1,T2

EXPRESSIONS: e ::= v | x | X | ¬ e | e1 op e2 op ∈ {∧,=, <,+,−}
VALUES: v ::= true | false | n | i

Table 5.1: Programming constructs (POLICIES Π are defined in Table 5.2; n and n range
over the set of names N , while i ranges over integers)

conditions on the attribute-based requests representing process actions. Instead, the SCEL
semantics is extended thus to interact with FACPL policies both by asking authorisation to
execute process actions and by enforcing the obligations possibly returned by policies.

5.2 Syntax

The syntax of PSCEL includes the following two sets of constructs

• programming constructs: they define the components forming a system and their
computational behaviours, i.e. the component processes;

• policy constructs: they define the policies of components specifying the authorisation
and adaptation logic of a system.

The programming constructs are mainly borrowed from SCEL, but we introduce the man-
agement of contextual information by defining a syntax for component interfaces, predi-
cates and actions to operate on interfaces. Instead, the policy constructs are a simplified
version of FACPL and provide specification means for the definition of authorisation con-
trols on process actions and of adaptation strategies in the form of AOP-inspired before
and after obligations.

The syntax of programming and policy constructs is given by the BNF grammars in
Tables 5.1 and 5.2; as before, the symbol * stand for (possibly empty) sequences, and +
for non-empty sequences. We convene that variables are underlined, e.g. x. Moreover, we
assume that a set of names N is given and we will use n to denote a generic name and n
to denote the name of a specific syntactic element1.

Programming Constructs. The key construct is the component, I[K,Π, P ], consisting of
an interface I, a knowledge repository K, a (FACPL) policy Π and a process P .

1Different notations for names are used only for the sake of presentation. Their different meaning should
be always clear from the context where they occur (e.g. names occurring in predicates are references to
interface elements)
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SYSTEMS aggregate components through the composition operator S1 ‖ S2 . The name
restriction operator (νn)S restricts the scope of the name n to S.

INTERFACES are non empty lists of features, i.e. pairs n : e. We assume that the names
n in the interface features are pairwise distinct and act as references to closed (i.e. without
variables) expressions. Notably, the features can be dynamically modified by the com-
ponent process except for the feature id, which represents the component name and, by
design assumption, is uniquely and persistently defined. The expressions reported at the
outset in the interface specification correspond to the initialisation values.

PROCESSES are the active computational units. Each process is built up from the inert
process nil via action prefixing (a.P ), nondeterministic choice (P1 + P2), interleaved paral-
lel composition (P1 | P2), process variable (X ), and parametrised process invocation (A(p̃)).
Process variables support higher-order communication, while parametrised process identi-
fiers, that are ranged over by A, permit defining recursive processes. We assume that each
process identifier A has a single definition of the form A(f̃ ) , P . Notably, p̃ and f̃ denote
lists of values/processes and variables, respectively.

Processes can perform seven different types of ACTIONS. Actions get(T )@c, qry(T )@c
and put(t)@c are used to manage knowledge repositories by withdrawing/retriev-
ing/adding information items from/to the, possibly remote, repositories identified by c.
Actions get and qry rely on a classical pattern-matching mechanism and block the en-
closing process until a knowledge item t that matches the template T is available in the
repositories identified by c; the two actions differ because get removes the item t from
the repository, while qry leaves the repository unchanged. Action fresh(n) introduces a
scope restriction for the name n, while action new(I,K,Π, P ) creates a new component
I[K,Π, P ]. The remaining actions are used to act on interface features. Action upd(n, e)
updates the value referred to by n with the (evaluation of) e, while action read(? x , n)
assigns the value referred to by n to the variable x .

The DESTINATION c of an action can be either a component name n, or a variable x ,
or the reserved variable self, which refers to the name of the component executing the
action, or a predicate P . PREDICATES are boolean expressions on feature names and are
used to dynamically identify the component(s) destination of an action. Using a name
or a predicate as a destination produces different forms of communication: point-to-point
or (a sort of) group-oriented communication, respectively. Indeed, the group variant of
put generates a broadcast, while the get and qry ones define interactions with a non
deterministically chosen component among those satisfying the predicate.

Knowledge ITEMS and TEMPLATES are sequences of different elements. Both can con-
tain expressions and destinations but differ for the fact that items can contain processes,
while templates can contain binders for variables. We convene that variables x and X
refer to values and processes, respectively, thus ?x and ?X are their respective binders.
KNOWLEDGE repositories are, possibly empty, multisets of evaluated items (i.e. items with
no occurring variables). EXPRESSIONS can be either VALUES (i.e. booleans, names or inte-
gers) or variables, or can be built by applying standard operators to simpler expressions2.

Policy Constructs. These constructs represent a dialect of FACPL expressly designed to in-
teract with the just presented programming constructs. To get a better intuition of the role

2We only take into account linear arithmetic operators to ensure the full decidability of our analysis.
Nonlinear arithmetic operators, as e.g. ∗, are not decidable, although they can be managed in nontrivial
expressions by the automatic solvers we exploit.
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POLICIES: Π ::= 〈alg rules : ρ+〉
ALGORITHMS : alg ::= d-unless-p | p-unless-d

RULES: ρ ::= n(d target : τ obl : o∗ )

DECISIONS: d ::= permit | deny

TARGETS: τ ::= true | f (sn, pv) | τ1 ∧ τ2 | τ1 ∨ τ2 | ¬ τ
FUNCTIONS: f ::= equal | greater-than | less-than | pattern-match

STRUCTURED NAMES: sn ::= action/n | subject/n | object/n

POLICY VALUES: pv ::= pt | (pt) | put | get | qry | new | fresh | upd | read | this

POLICY TUPLES: pt ::= pe | _ | pt1, pt2

POLICY EXPRESSIONS: pe ::= v | n | ¬ pe | pe1 op pe2 op ∈ {∧,=, <,+,−}
OBLIGATIONS: o ::= [B a(. a)∗] | [A a(. a)∗]

Table 5.2: Policy constructs (OBLIGATIONS use the ACTIONS a of Table 5.1 where struc-
tured names can occur instead of names n; v stands for the VALUES of Table 5.1, while n
range over the set of names N )

of each syntactic construct, consider that policies will be evaluated against authorisation
requests that are generated at runtime to enable the execution of process actions. Indeed,
policies act as ECA rules, where the event is an authorisation request, the condition is a
rule target and the action is an adaptation strategy.

POLICIES are formed by a combining algorithm and a sequence of rules. The combining
ALGORITHM can be d-unless-p or p-unless-d. RULES are identified by a name n and consist of
a positive or negative DECISION, i.e. permit or deny, a target and a sequence of obligations.

A TARGET is a boolean expression: it is either true, or an atomic target, or a combination
of simpler targets through the boolean operators ∧, ∨ and ¬. An atomic target f (sn, pv)
is a triple denoting the application of a relational FUNCTION to a structured name and a
policy value.

STRUCTURED NAMES are a specialised form of attribute name. They are composed
by a category name among action, subject and object, and by a name n. Indeed, all the
authorisation requests adhere to a pre-defined structure, i.e. the category name of each
attribute must be of the three ones just reported. By way of example, action/id refers to
the name of the action generating the request, while subject/label refers to the value of
the interface feature label of the component executing the action.

POLICY VALUES can be either policy tuples (round brackets are used to delimit them),
or the action identifiers (i.e. get, qry, put, fresh, new, upd and read), or the reserved vari-
able this, which refers to the name of the component where the policy is in force. POLICY

TUPLES are sequences of elements containing policy expressions and the symbol ‘_’, which
is a wildcard representing any value. POLICY EXPRESSIONS are values, name references or
can be built by applying standard operators to simpler expressions (differently from the
EXPRESSIONS of Table 5.1, they cannot contain variables).

OBLIGATIONS are made of a type and a sequence of process actions. The type, i.e. B or A,
indicates if the obligation has to be executed before or after the action whose authorisation
request has triggered the evaluation. We assume that within obligation actions structured
names can occur instead of names n. Thus, e.g., the action put(log , action/id)@self can
be used to locally add an item formed by log and the action identifier referred to by the
structured name action/id.
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Remark 5.1 (On the differences with FACPL). The policy constructs reported in Table 5.2 are
a dialect of the FACPL language whose syntax is defined in Table 3.1. These constructs share
their main traits with FACPL, but they have the following substantial differences: (i) there
is only a basic set of combining algorithms; (ii) target expressions are specialised to express
controls on process actions; (iii) obligation actions are instantiated as process actions; (iv)
obligation types are “before” and “after” instead of “mandatory” and “optional”. Notably,
only p-unless-d and d-unless-p algorithms are supported, because we want to ensure that only
permit and deny decisions are returned by policy evaluations. These observations explain the
choice of a few different names and notations for the PSCEL policy constructs with respect to
the FACPL ones.

5.3 Formal Semantics

The semantics of PSCEL consists of two parts: a denotational semantics of policy con-
structs, and three Labeled Transition Systems (LTSs) defining the operational semantics
of the programming constructs. The LTSs exploit the denotational semantics in order to
check policy evaluation results.

As a general insight, each process action in order to be executed has to be first au-
thorised by the policies of the involved components. Since processes can perform three
different kinds of actions, we have the following cases: local actions (i.e. actions for which
executing and destination components coincide) only involve one component, point-to-
point actions involve two specific components, while group-oriented actions can involve
more than two components dynamically determined through a destination predicate. The
first authorisation phase amounts to evaluate the action arguments, check the policies of
the involved components, possibly install adaptation actions and, when permission for ex-
ecution is provided, mark the evaluated action as authorised. The consequent execution
phase amounts to execute the authorised actions and apply the effects of their execution
to the involved components. When a process wants to execute a group-oriented action,
the authorisation phase determines the actual component(s) authorised to act as a desti-
nation: in case of get and qry, the destination is a component randomly chosen among
those satisfying the destination predicate; in case of put, all the components satisfying the
predicate act as a destination (thus, if one of them is not authorised by the policy of the
executing component, the action itself is not authorised).

In the sequel, to define the PSCEL semantics, we rely on the auxiliary functions whose
signatures are reported in Table 5.3. Most (co)domains are sets of terms generated by the
BNF rules of Tables 5.1 and 5.2. The correspondence is obvious: e.g. Actions identifies the
set of all actions. Instead, Requests (ranged over by req) is the set of all (authorisation)
requests. A request req is a (syntactical) collection of attributes, i.e. pairs of the form
(sn, pv), mapping structured names to policy values. Hence, differently from FACPL (see
Section 3.5.1), PSCEL semantics is defined on the base of syntactical requests, i.e. they
have not any name associated to the special value ⊥. Anyway, when convenient, we
interpret a syntactical request req = {(sni, pv i) | i ∈ I ⊆ N} as a function mapping the
structured name sni to the policy value pv i, for each i ∈ I. Hence, the notation req(sn)
has the obvious meaning. Furthermore, both semantics are parametric with respect to
the primitive function [[ · ]] that, given a (policy) expression, returns a (boolean, name or
integer) value. Notationally, we will use ε to denote an empty sequence of elements and
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Aux. Function Domain Codomain

[[ · ]] Expressions ∪ PolicyExpressions Values

Policy Constructs
F Actions × Requests Actions

Programming Constructs
A Actions ×N Actions

sat Predicates × Interfaces {true, false}
req Interfaces ×Actions × Interfaces Requests

acid Actions {put, get,qry,new, fresh,upd, read}
dst Actions Destinations

match Templates × Items 2{x ,X} ×Values

Table 5.3: Auxiliary functions

s to denote a sequence of actions (Actions∗ is the set of all sequences of actions); if s is
empty, s.s′ (and s′.s) and s.P stand for s′ and P , respectively.

In the rest of this section, we present first the semantics of the policy constructs (Sec-
tion 5.3.1), then that of the programming constructs (Section 5.3.2).

5.3.1 Policy Constructs

The semantics of policy constructs is expressed by a family of semantic functions mapping
each syntactic domain to a specific semantic domain in a way similar to what presented for
FACPL. The functions are reported in Table 5.4. As they correspond to a simplified form
of those of FACPL (see Section 3.5), we only comment on the crucial points. Moreover,
the semantics is only defined for policy constructs without occurrences of the reserved
variable this.

Remark 5.2 (On the use of this in policy constructs). By using this to refer to the name of
the component where a policy is in force, we can statically assign the same policy to different
system components. During system evolution, the occurrences of the variable this in the policy
of any component will be replaced by the name of the component itself. Hence, when a request
must be authorised, the involved policy does not contain occurrences of this (see the semantics
of the programming constructs in Section 5.3.2).

The semantics of policies and rules is defined by the function P : Policies ∪ Rules →
(Requests → {permit, deny, not-app} × Actions∗ × Actions∗) that, given a request, returns
a decision d and two (possibly empty) sequences sB and sA of before and after actions,
respectively. It is worth noticing that the semantics of rules can return the not-app deci-
sion, while the semantics of policies, since the application of algorithms always provides
a default permit or deny decision (see the matrices in Table 5.5), never returns not-app.

The case of function P defining the evaluation of policies corresponds to the applica-
tion of the algorithm alg to the sequence of enclosed rules. The semantics of algorithm
is defined by the function Alg : Algorithms × Rules∗ → (Requests → {permit, deny} ×
Actions∗ × Actions∗). Its definition corresponds to the case of the FACPL fulfilment strat-
egy all (see Section 3.5.3) according to the combination matrices reported in Table 5.5.

The case of function P defining the evaluation of rules is as expected. If the target
matches the request, i.e. it evaluates to true, the rule decision is returned, together with

85



Chapter 5. The PSCEL Language

POLICIES AND RULES

P[[〈alg rules : ρ+〉]]req = d, sB, sA if Alg[[alg , ρ+]]req = d, sB, sA

P[[n(d target : τ obl : o∗ )]]req =

{
d, sB, sA if E [[τ ]]req = true ∧ O[[o∗]]req = sB, sA

not-app, ε, ε if E [[τ ]]req = false

ALGORITHMS

Alg[[alg , ρ1 . . . ρs]]req = ⊗alg(⊗alg(. . .⊗ alg(P[[ρ1]]req ,P[[ρ2]]req), . . .),P[[ρs]]req)

TARGETS

E [[true]]req = true E [[¬τ ]]req = ¬E [[τ ]]req

E [[τ1 ∧ τ2]]req = E [[τ1]]req ∧ E [[τ2]]req E [[τ1 ∨ τ2]]req = E [[τ1]]req ∨ E [[τ2]]req

E [[f (sn, pv)]]req =

{
true if f ([[ req(sn) ]], [[ pv ]]) = true

false if f ([[ req(sn) ]], [[ pv ]]) = false

OBLIGATIONS

O[[ε]]req = ε, ε

O[[o o∗]]req = s ′B.s
′′
B , s
′′
A .s
′
A if O[[o]]req = s ′B, s

′
A ∧ O[[o∗]]req = s ′′B , s

′′
A

O[[[B a(. a)∗]]]req = sB, ε if F(a, req)(.F(a, req))∗ = sB

O[[[A a(. a)∗]]]req = ε, sA if F(a, req)(.F(a, req))∗ = sA

Table 5.4: Semantics of policy constructs (s is a sequence of actions)

the two sequences of actions resulting from the evaluation of obligations. If the target
does not match the request, i.e. it evaluates to false, the not-app decision is returned.

The semantics of targets is defined by the function E : Targets → (Requests →
{true, false}) that, given a request, returns a boolean value. Obviously, a target matches a
request req if E returns true; otherwise, i.e. when it returns false, the target does not match
the request. A target true matches all possible requests, while the boolean operators have
the classical two-valued semantics. An atomic target f (sn, pv) matches req according to
the application of function f to the value identified by the structured name sn in the re-
quest, i.e. [[req(sn)]], and the value resulting from the evaluation of the policy value pv , i.e.
[[ pv ]]. Thus, when f returns true the target matches, otherwise it does not match. Notably,
evaluation of policy values requires to evaluate the possible occurring expressions.

The semantics of obligations is defined by the function O : Obligations∗ →

⊗d-unless-p permit, s ′′B , s
′′
A deny, s ′′B , s

′′
A not-app, ε, ε

permit, s ′B, s
′
A permit, s ′B.s

′′
B , s
′′
A .s
′
A permit, s ′B, s

′
A permit, s ′B, s

′
A

deny, s ′B, s
′
A permit, s ′′B , s

′′
A deny, s ′B.s

′′
B , s
′′
A .s
′
A deny, s ′B, s

′
A

not-app, ε, ε permit, s ′′B , s
′′
A deny, s ′′B , s

′′
A deny, ε, ε

⊗p-unless-d permit, s ′′B , s
′′
A deny, s ′′B , s

′′
A not-app, ε, ε

permit, s ′B, s
′
A permit, s ′B.s

′′
B , s
′′
A .s
′
A deny, s ′′B , s

′′
A permit, s ′B, s

′
A

deny, s ′B, s
′
A deny, s ′B, s

′
A deny, s ′B.s

′′
B , s
′′
A .s
′
A deny, s ′B, s

′
A

not-app, ε, ε permit, s ′′B , s
′′
A deny, s ′′B , s

′′
A permit, ε, ε

Table 5.5: Combination matrices for ⊗alg operators
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(Requests → Actions∗ × Actions∗) that, given a request, fulfils each obligation in the se-
quence in input and composes the results according to the obligation type and the order of
occurrence. In case of an empty sequence of obligations, two empty sequences of actions
are returned. Fulfilling an obligation amounts to evaluate each enclosed action through
the function F . This function takes in input an action a and a request req , and returns a
modified by replacing the possibly occurring structured names sn with the value (resulting
from the evaluation of the policy value) which they are mapped to by req , i.e. [[ req(sn) ]].
F can be defined inductively on the syntax of actions and their subterms. Its definition is
lengthy but straightforward, hence it is omitted.

Differently from FACPL semantics, it is worth noticing that this semantics is only de-
fined with respect to: (i) authorisation requests mapping all the structured names occur-
ring within the policy constructs; (ii) relational functions applied to values of the expected
type. The semantics could be easily extended to overcome these limitations and return,
e.g., the not-app decision when the two conditions above are not met (see Remark 5.3
below). However, since in PSCEL neither not-app decisions nor explicit managements of
errors are crucial, we prefer to work under the previous two simplifying assumptions.

Remark 5.3 (Partial Requests and Type Mismatch). For the sake of completeness, we report
below a straightforward management, based on the special value ⊥, of evaluation errors due
to, e.g., partial requests or type mismatches of function arguments. Specifically, the definition
of function E is updated as follows

E [[true]]req = true

E [[¬τ ]]req =

{
¬E [[τ ]]req if E [[τ ]]req ∈ {true, false}
⊥ otherwise

E [[τ1 ∧ τ2]]req =

{
E [[τ1]]req ∧ E [[τ2]]req if E [[τ1]]req , E [[τ2]]req ∈ {true, false}
⊥ otherwise

E [[τ1 ∨ τ2]]req =

{
E [[τ1]]req ∨ E [[τ2]]req if E [[τ1]]req , E [[τ2]]req ∈ {true, false}
⊥ otherwise

E [[f (sn, pv)]]req =


true if f ([[ req(sn) ]], [[ pv ]]) = true

false if f ([[ req(sn) ]], [[ pv ]]) = false

⊥ otherwise

Indeed, the new rules return the special value ⊥ when an evaluation error occurs.
As now targets can also evaluate to ⊥, we also need to modify the case of function P for

the rule evaluation as follows

P[[n(d target : τ obl : o∗ )]]req =

{
d, sB, sA if E [[τ ]]req = true ∧ O[[o∗]]req = sB, sA

not-app, ε, ε if E [[τ ]]req ∈ {false,⊥}

which ensures that a rule evaluates to not-app when its target evaluates to ⊥. In this way, the
decision returned by the evaluation of the policy is entrusted to the other rules of the policy
and to the combining algorithm. Finally, notice that unsuccessful applications of the function
F could be managed similarly.
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5.3.2 Programming Constructs

The operational semantics of programming constructs provides a full description of sys-
tem behaviour, addressing as two distinguished steps the authorisation and execution of
process actions. The presentation is structured into two parts. First, the process seman-
tics specifies the commitments, that is the actions that processes are willing to perform
and the continuation process obtained after each such action. Then, by considering com-
mitments and system configurations, the system semantics describes the effects of action
authorisation and execution at system level.

To define the semantics we need to introduce the notions of bound and free variables/-
names. Actions qry(T ) and get(T ) bind the variables occurring in T preceded by the
symbol ‘?’, as well as action read(? x , n) binds the variable x , in the continuation process.
Recall that variables x and X refer to values and processes, respectively. Action fresh(n)
binds the name n in the continuation process and, similarly, the restriction operator (νn)
binds n in the system to which it is applied. Variables and names which are not bound are
called free. Function n(_) returns the set of (free and bound) names occurring in the term
_. We say that two terms are alpha-equivalent, written ≡, if one can be obtained from the
other by renaming bound variables/names.

The semantics is only defined for closed extended systems. These are systems defined by
the grammars in Tables 5.1 and 5.2 where all variables are bound and pairwise distinct,
bound names are pairwise distinct and different from the free ones, and the syntax of
actions is extended to also include authorised actions. These actions are process actions
that have already obtained permission to be executed and whose arguments have been
evaluated, i.e. items and templates do not contain composed expressions and destinations
do not contain the reserved variable self. As a matter of notation, we write a to denote an
evaluated action and ā to denote an authorised action; α will indicate either an action a
or an authorised action ā. Moreover, we use I and J to range over interfaces.

Semantics of Processes

We use P and Q to range over processes and write P ↓α Q to mean that “P can commit
to perform action α and become Q after doing so”. The relation ↓ defining the semantics
of processes is the least relation induced by the inference rules in Table 5.6. The first
rule says that a process of the form α.P can commit to perform action α and continue
as process P . The following two pairs of rules deal with (non-deterministic) choice and
(interleaving) parallel operators, respectively, and are quite explicative. The next rule
states that a process invocation A(p̃) behaves like the invoked process P , where the formal
parameters f̃ are replaced by the actual parameters p̃. The last rule states that alpha-
equivalent processes have the same commitments.

−
α.P ↓α P

P ↓α P ′

P + Q ↓α P ′
Q ↓α Q′

P + Q ↓α Q′
P ↓α P ′

P | Q ↓α P ′ | Q

Q ↓α Q′

P | Q ↓α P | Q′
P{p̃/f̃} ↓α P ′

A(p̃) ↓α P ′
A(f̃) , P

P ′ ↓α P ′′

P ↓α P ′′
P ≡ P ′

Table 5.6: Semantics of processes
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−
sat(true, I) = true

sat(P , I) = b

sat(¬ P , I) = ¬ b

sat(P1, I) = b1 sat(P2, I) = b2

sat(P1 ∨ P2, I) = b1 ∨ b2

(n : e ′) ∈ I [[ e ′ = e ]] = b

sat(n = e, I) = b

(n : e ′) ∈ I [[ e ′ < e ]] = b

sat(n < e, I) = b

Table 5.7: Evaluation of predicates (b stands for a boolean value)

Semantics of Systems

The operational semantics of systems is defined by three LTSs: (i) the first one models
the authorisation of actions with respect to the policies of components; (ii) the second
one models the execution of authorised actions; (iii) the third one models the semantics
of generic systems by considering name restrictions, which are instead neglected by the
previous two LTSs. The LTSs, together with the definitions of the auxiliary functions they
exploit, are presented in the following paragraphs.

Semantics of Systems (1 of 3): authorisation rules. The rules defining the transition
relation modelling the authorisation of actions use the following auxiliary functions: (i)
dst, to get the destination of an action, i.e. a name n or a predicate P ; (ii) acid, to get
the action identifier, e.g. put; (iii) sat, to establish if an interface satisfies a predicate;
(iv) A, to evaluate actions with respect to a name; (v) req, to generate the authorisation
request corresponding to a process commitment. Actions that do not explicitly specify
a destination (e.g. actions new or upd) have the name of the executing component as
destination. We also use the following notations: I.id (resp., I.π) indicates the name
(resp., the policy) of the component having interface I; (n : e) ∈ I means that the feature
n : e is exposed by I and the name n is referring to the expression e in I.

The function sat, inductively defined on the syntax of predicates by the rules in Ta-
ble 5.7, returns true when the interface taken as a second argument satisfies the predicate
taken as a first argument. All rules are straightforward and amount to evaluate the predi-
cate, once the feature names possibly occurring within are replaced by the value (resulting
from evaluating the expression) which they refer to in I.

The function A, inductively defined on the syntax of actions and their arguments
(i.e. items, templates and destinations) by the rules in Table 5.8, evaluates the (argu-

A(put(t)@c,n) = put(A(t ,n))@A(c,n)

A(qry(T )@c,n) = qry(A(t ,n))@A(c,n) A(get(T )@c,n) = get(A(t ,n))@A(c,n)

A(fresh(n ′),n) = fresh(n ′) A(new(I,K,Π ,P),n) = new(I,K,Π, P )

A(upd(n, e),n) = upd(n,A(e,n)) A(read(? x , n),n) = read(? x , n)

A((t1 , t2 ),n) = A(t1 ,n),A(t2 ,n) A((T1 ,T2 ),n) = A(T1 ,n),A(T2 ,n)

A(? x ,n) =? x A(? X ,n) =? X A(v ,n) = v A(P ,n) = P A(P ,n) = P

[[ e ]] = v ′ [[ ¬ v ′ ]] = v

A(¬ e,n) = v

[[ e1 ]] = v1 [[ e2 ]] = v2 [[ v1 op v2 ]] = v

A(e1 op e2 ,n) = v

−
A(self,n) = n

Table 5.8: Evaluation of actions
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ments of the) action taken as first argument by using the name taken as second argument.
Applying the function to an action amounts to apply it to its arguments. On action argu-
ments, the function acts as the identity, except for (closed) expressions that are evaluated
and for the occurrences of the reserved variable self that are replaced by the name taken in
input. For instance, A(put(1 + 2 )@self, nm1) returns the evaluated action put(3 )@nm1.

The function req generates the authorisation request corresponding to a process com-
mitment. The request collects attributes representing the action to authorise and the
interface features of executing and destination components. The function req is defined
by case analysis on the syntax of actions as follows

req(I, fresh(n), I) = {(subject/n, e) | (n : e) ∈ I} ∪ {(action/id, fresh)}
∪ {(object/n, e) | (n : e) ∈ I}

req(I,new(J ,K,Π, P ), I) = {(subject/n, e) | (n : e) ∈ I}
∪ {(action/id,new)} ∪ {(object/n, e) | (n : e) ∈ I}

req(I,get(T )@c,J ) = {(subject/n, e) | (n : e) ∈ I} ∪ {(action/id, get)}
∪ {(action/arg, (|A(T , I.id)|))} ∪ {(object/n, e) | (n : e) ∈ J }

req(I,qry(T )@c,J ) = {(subject/n, e) | (n : e) ∈ I} ∪ {(action/id,qry)}
∪ {(action/arg, (|A(T , I.id)|))} ∪ {(object/n, e) | (n : e) ∈ J }

req(I,put(t)@c,J ) = {(subject/n, e) | (n : e) ∈ I} ∪ {(action/id,put)}
∪ {(action/arg, (|A(T , I.id)|))} ∪ {(object/n, e) | (n : e) ∈ J }

req(I,upd(n, e), I) = {(subject/n, e ′) | (n : e ′) ∈ I} ∪ {(action/id,upd)}
∪ {(action/arg, (|n,A(e, I.id)|))} ∪ {(object/n, e ′) | (n : e ′) ∈ I}

req(I, read(? x , n), I) = {(subject/n, e) | (n : e) ∈ I} ∪ {(action/id, read)}
∪ {(action/arg, (|?x, n|))} ∪ {(object/n, e) | (n : e) ∈ I}

The attributes with category action describe the action identifier and the policy tuple rep-
resenting the evaluated action arguments, while those with category subject (resp., object)
report the contextual information bound to the interface features of the component exe-
cuting (resp., destination of) the action. Actions fresh, new, upd and read are local,
i.e. they only involve the component I. Besides actions fresh and new that operate nei-
ther on the knowledge repository nor on the interface, the remaining actions define the
attribute named action/arg. This attribute is associated to the policy tuple obtained by
possibly applying first the function A for evaluating the action arguments and then the
function (| · |) for abstracting from all those elements of items/templates that cannot occur
in policy tuples, i.e. variable binders, predicates and processes (compare ITEMS and TEM-
PLATES of Table 5.1 with POLICY TUPLES of Table 5.2); all these elements are replaced by
the wildcard ‘_’. Formally, the function (| · |) is defined as follows

(|t1, t2|) = (|t1|), (|t2|) (|T1, T2|) = (|T1|), (|T2|) (|v|) = v

(|?x|) = _ (|?X|) = _ (|P |) = _ (|P |) = _

Notably, (| · |) is only defined on evaluated items/templates of committed actions.
The transition relation modelling the authorisation of actions is defined by the rules

in Tables 5.9 and 5.10. Table 5.9 reports first the rules for local actions, then those for
point-to-point actions, and finally those for the group-oriented variants of get and qry.
The rules for the group-oriented variants of put are instead in Table 5.10. The generated
transition labels are as follows:
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• τ , representing a single policy authorisation;

• I : a, p, sB, sA, representing (part of) a multiparty communication taking place to
authorise the group-oriented variant of put.

Additionally, we use the following abbreviations: rI,Ja indicates the request req(I,a,J );
ΠI indicates the policy obtained by replacing all the occurrences of the reserved variable
this in Π with I.id.

We now comment the rules in Table 5.9. Rules (l-p) and (l-d) regulate, respectively,
the permit and deny authorisation of local actions. In case of permit, the resulting process
contains the evaluated action marked as authorised (i.e. by using notation ā), and the
sequences of actions sB and sA returned by the policy evaluation. Notably, the before
actions sB prefix ā, while the after actions sA follow ā and prefix the continuation process
P ′. This ensures that all adaptation actions will be executed in the correct order with
respect to action ā and, in any case, before the rest of the process. When the authorisation
is deny, although the action is forbidden, the resulting sequences of actions are installed;
they in fact might adapt the system to permit a subsequent successful authorisation of the
action or to enable an alternative execution path. The sequences sA and sB both prefix P ,
hence the forbidden action a, thus to not cause unexpected deadlocks. For instance, if
an action in sB has the duty of taking a lock and one in sA of releasing it, such lock will
be never released if a would never be authorised. Notably, since we assumed that bound
variables are all distinct, the variable bindings possibly occurring within obligation actions
do not change the scope of those variables that are already bound in the process.

The authorisation of remote actions is established by considering the possibly different
authorisations resulting from the involved components. First, we comment the rules for
point-to-point actions, then those for group-oriented actions.

A point-to-point action involves two different components and for its authorisation
we may have three different cases. When both components authorise the action (rule
(ptp-pp)), it is marked as authorised and the appropriate sequences of actions are installed
in both components. When the executing component authorises the action while the des-
tination component does not (rule (ptp-pd)), the sequences of actions are installed in the
destination component, while the executing component remains unchanged. When the
executing component does not authorise the action (rule (ptp-d*)), only such component
installs the returned sequences of actions, while the other component remains unchanged.

Authorisation of the group-oriented variants of get/qry operates similarly. In fact,
yet again the interaction only involves two components, although the destination one is
nondeterministically chosen at runtime among those components satisfying a destination
predicate. In case of positive authorisations from both components, the evaluated action
is marked as authorised and modified by letting the destination to be the name I2.id of the
interacting component. Rules (gr-get-pp) and (gr-qry-pp) detail this case for get and qry,
respectively. The other two cases, dealt with by rules (gr-get-qry-pd) and (gr-get-qry-d), are
similar to the point-to-point variants previously described.

The authorisation rules for the group-oriented variants of action put are in Table 5.10.
Such an action is authorised when all those components dynamically identified by the
destination predicate are authorised by the executing component and at least one of them
authorises the action too. Rule (gr-put-p) models indeed the positive authorisation by both
the executing component and an arbitrarily chosen destination component. In addition
to the interface of the executing component and the evaluated action, the transition label
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LOCAL ACTIONS

P ↓a P ′ a = A(a, I.id) dst(a) = I.id P[[ΠI ]]rI,Ia = permit, sB, sA

I[K,Π, P ]
τ- I[K,Π, sB.ā.sA.P ′]

(l-p)

P ↓a P ′ a = A(a, I.id) dst(a) = I.id P[[ΠI ]]rI,Ia = deny, sB, sA

I[K,Π, P ]
τ- I[K,Π, sB.sA.P ]

(l-d)

POINT-TO-POINT ACTIONS

P1 ↓a P ′1 a = A(a, I1 .id) dst(a) = I2.id

P[[ΠI11 ]]rI1,I2a = permit, sB, sA P[[ΠI22 ]]rI1,I2a = permit, s ′B, s
′
A

I1[K1,Π1, P1] ‖ I2[K2,Π2, P2]
τ- I1[K1,Π1, sB.ā.sA.P

′
1] ‖ I2[K2,Π2, s

′
B.s
′
A.P2]

(ptp-pp)

P1 ↓a P ′1 a = A(a, I1 .id) dst(a) = I2.id

P[[ΠI11 ]]rI1,I2a = permit, sB, sA P[[ΠI22 ]]rI1,I2a = deny, s ′B, s
′
A

I1[K1,Π1, P1] ‖ I2[K2,Π2, P2]
τ- I1[K1,Π1, P1] ‖ I2[K2,Π2, s

′
B.s
′
A.P2]

(ptp-pd)

P1 ↓a P ′1 a = A(a, I1 .id) dst(a) = I2.id P[[ΠI11 ]]rI1,I2a = deny, sB, sA

I1[K1,Π1, P1] ‖ I2[K2,Π2, P2]
τ- I1[K1,Π1, sB.sA.P1] ‖ I2[K2,Π2, P2]

(ptp-d*)

GROUP GET/QRY

P1 ↓get(T)@P P
′
1 a = get(A(T , I1 .id))@P sat(P , I2) = true

P[[ΠI11 ]]rI1,I2a = permit, sB, sA P[[ΠI22 ]]rI1,I2a = permit, s ′B, s
′
A

I1[K1,Π1, P1] ‖ I2[K2,Π2, P2]
τ-

I1[K1,Π1, sB.get(A(T , I1 .id))@I2 .id.sA.P ′1] ‖ I2[K2,Π2, s
′
B.s
′
A.P2]

(gr-get-pp)

P1 ↓qry(T)@P P
′
1 a = qry(A(T , I1 .id))@P sat(P , I2) = true

P[[ΠI11 ]]rI1,I2a = permit, sB, sA P[[ΠI22 ]]rI1,I2a = permit, s ′B, s
′
A

I1[K1,Π1, P1] ‖ I2[K2,Π2, P2]
τ-

I1[K1,Π1, sB.qry(A(T , I1 .id))@I2 .id.sA.P ′1] ‖ I2[K2,Π2, s
′
B.s
′
A.P2]

(gr-qry-pp)

P1 ↓a P ′1 a = A(a, I1 .id) dst(a) = P acid(a) 6= put sat(P , I2) = true

P[[ΠI11 ]]rI1,I2a = permit, sB, sA P[[ΠI22 ]]rI1,I2a = deny, s ′B, s
′
A

I1[K1,Π1, P1] ‖ I2[K2,Π2, P2]
τ- I1[K1,Π1, P1] ‖ I2[K2,Π2, s

′
B.s
′
A.P2]

(gr-get-qry-pd)

P1 ↓a P ′1 a = A(a, I1 .id) dst(a) = P

acid(a) 6= put sat(P , I2) = true P[[ΠI11 ]]rI1,I2a = deny, sB, sA

I1[K1,Π1, P1] ‖ I2[K2,Π2, P2]
τ- I1[K1,Π1, sB.sA.P1] ‖ I2[K2,Π2, P2]

(gr-get-qry-d)

Table 5.9: Semantics of programming constructs (1 of 3): authorisation rules (1 of 2) (rI,Ja

stands for req(I,a,J ), ΠI stands for the policy obtained by replacing all the occurrences
of the variable this in Π with I.id)

also reports a predicate indicating the name of those components already authorised to
act as a destination component, and the sequences of before and after actions representing
the results of local authorisation. These latter sequences are updated while the inference
proceeds, i.e. other components join this multiparty interaction, and finally used to replace
the placeholder • prefixing the continuation process P ′1. Indeed, when a system produces a
label of the form I : a, p, sB, sA, any additional component satisfying the destination predi-
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GROUP PUT

P1 ↓put(t)@P P
′
1 a = put(A(t , I1 .id))@P sat(P , I2) = true

P[[ΠI11 ]]rI1,I2a = permit, sB, sA P[[ΠI22 ]]rI1,I2a = permit, s ′B, s
′
A

I1[K1,Π1, P1] ‖ I2[K2,Π2, P2]
I1:a,id=I2.id,sB,sA- I1[K1,Π1, •.P ′1] ‖ I2[K2,Π2, s

′
B, s
′
A.P2]

(gr-put-p)

P1 ↓put(t)@P P
′
1 a = put(A(t , I1 .id))@P sat(P , I2) = true P[[ΠI11 ]]rI1,I2a = deny, sB, sA

I1[K1,Π1, P1] ‖ I2[K2,Π2, P2]
τ- I1[K1,Π1, sB.sA.P1] ‖ I2[K2,Π2, P2]

(gr-put-d)

S
I:a,p,sB,sA- S′ a = put(t)@P sat(P ,J ) = true

P[[I.πI ]]rI,Ja = permit, s ′B, s
′
A P[[ΠJ ]]rI,Ja = permit, s ′′B , s

′′
A

S ‖ J [K,Π, P ]
I:a,p∨id=J .id,sB.s′B,s

′
A.sA- S′ ‖ J [K,Π, s ′′B .s ′′A .P ]

(gr-put-pp)

S
I:a,p,sB,sA- S′ a = put(t)@P sat(P ,J ) = true

P[[I.πI ]]rI,Ja = permit, s ′B, s
′
A P[[ΠJ ]]rI,Ja = deny, s ′′B , s

′′
A

S ‖ J [K,Π, P ]
I:a,p,sB,sA- S′ ‖ J [K,Π, s ′′B .s ′′A .P ]

(gr-put-pd)

S
I:a,p,sB,sA- S′ a = put(t)@P sat(P ,J ) = false

S ‖ J [K,Π, P ]
I:a,p,sB,sA- S′ ‖ J [K,Π, P ]

(engr-put)

S1
τ- S′1

S1 ‖ S2
τ- S′1 ‖ S2

(as-aut)

Table 5.10: Semantics of programming constructs (1 of 3): authorisation rules (2 of 2)
(rI,Ja stands for req(I,a,J ), ΠI stands for the policy obtained by replacing all the occur-
rences of the variable this in Π with I.id, I.π is the policy of the component with interface
I)

cate and authorising the action can join the interaction (rule (gr-put-pp)): in the transition
label, the predicate p is enriched by a disjunctive assertion of the form id = J .id and the se-
quences sB and sA are extended as well. Instead, rule (gr-put-pd) deals with any component
satisfying the predicate but not authorising the action: in this case, the transition label is
left unchanged. Notably, those components not satisfying the predicate do not affect the
authorisation of a group-oriented put (rule (engr-put)). Instead, when a group-oriented
put is not locally authorised, rule (gr-put-d) locally installs the sequences of before and
after actions produced by policy evaluation and generates a τ -labelled transition. Finally,
rule (as-aut) states that all those authorisations different from the positive authorisation of
a group-oriented put can be performed by only involving some of the components. This
exclusion ensures that when a component is going to authorise a group-oriented put all
potential destination components are considered.

Remark 5.4 (On the approach followed by the rules in Table 5.10). The authorisation of
a group-oriented put must be denied if a component satisfing the destination predicate is not
authorised by the policy of the executing component. The authorisation rules in Table 5.10
enforce this behaviour by relying on the fact that at most one of the inferences generated from
the rules (gr-put-p) and (gr-put-d) can actually take place. Indeed, given an action put(t)@P ,
let F be the set of (the interfaces of) the components satisfying P , i.e. the destination compo-
nents. If the policy of the executing component authorises the action for each component in
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match(v , v) = ∅ match(P , P) = ∅

match(? x , v) = [v/x ] match(? x , P) = [P/x ] match(? X , P ) = [P/X ]

match(T1, t2) = σ1 match(T3, t4) = σ2

match((T1, T3) , (t2, t4)) = σ1 ] σ2

Table 5.11: Matching rules

F and at least one of them authorises the action too, the only applicable rules are (gr-put-p),
(gr-put-pp) (gr-put-pd) and (engr-put), and the action is actually authorised. Similarly, when
all local authorisations are denied, only rules (gr-put-d) and (as-aut) apply, hence the action is
denied. Instead, if the policy of the executing component authorises the action for some com-
ponents in F and denies it for the remaining ones, then only the inference starting from rule
(gr-put-d) successfully terminates by returning the expected system behaviour, i.e. the action is
denied, whereas the inference starting from rule (gr-put-p) gets stuck because there is no rule
able to manage the transition label it generates in presence of local negative authorisations.

Semantics of Systems (2 of 3): execution rules. Tables 5.12 and 5.13 report the rules
defining the transition relation modelling the execution of authorised local and remote
actions, respectively. In case of action put, rules and transition labels for point-to-point
actions differ from those for group-oriented variants. The set of transition labels, ranged
over by λ, is generated by the following productions

λ ::= n : get(T )@n ′ | n : qry(T )@n ′ | n : fresh(n ′) | n : new(J ,K,Π, P )

| n : put(t)@n ′ | n : put(t)@p | n : upd(n, e) | n : read(n)

where T/t are templates/items of evaluated actions, while p are predicates defined by the
authorisation rules for group-oriented variants of put.

The execution rules for get and qry rely on the partial function match that, given a
template T and an item t in input, implements a classical pattern-matching mechanism.
Its definition is reported in Table 5.11. The rules state that a template T matches an
item t, if they have the same number of elements and the corresponding elements have
matching values or variable binders; variable binders match any value of the same type
and two values match only if they are identical. When the arguments match, the function
returns a substitution σ associating to the variables bound by T the corresponding values
in t; otherwise, it is undefined. We use ∅ to denote the empty substitution and σ1 ] σ2 to
denote the composition of substitutions σ1 and σ2 when they have disjoint domains.

We now comment the rules for local actions in Table 5.12. Rules (l-put), (l-get) and
(l-qry) model the management of local knowledge, i.e. when the destination of actions
put/get/qry is the executing component itself. As effect of execution of action put, the
item t (which has been evaluated during the authorisation phase) argument of the action
is added to the local knowledge. Instead, as effect of execution of action get, the item t
matching the template T argument of the action is removed from the knowledge reposi-
tory. Execution of action qry only differs because the item is read but not removed from
the knowledge. If more items match the template, one of them is arbitrarily chosen. In
any case, the substitution σ generated by match is applied to the process continuation P ′

for replacing the variables bound by T with the corresponding values contained in the
matched item.
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LOCAL ACTIONS

P ↓put(t)@n P
′ n = I.id

I[K,Π, P ]
I.id:put(t)@n- I[K ‖ t,Π, P ′]

(l-put)
P ↓get(T)@n P

′ n = I.id match(T, t) = σ

I[K ‖ t,Π, P ]
I.id:get(t)@n- I[K,Π, P ′σ]

(l-get)

P ↓qry(T)@n P
′ n = I.id match(T, t) = σ

I[K ‖ t,Π, P ]
I.id:qry(t)@n- I[K ‖ t,Π, P ′σ]

(l-qry)
P ↓fresh(n) P

′ n 6∈ n(I[K,Π,nil])

I[K,Π, P ]
I.id:fresh(n)- (νn) I[K,Π, P ′]

(freshn)

P ↓new(J ,Kj ,Πj ,Pj) P
′

I[K,Π, P ]
I.id:new(J ,Kj ,Πj ,Pj)- I[K,Π, P ′] ‖ J [Kj ,Πj , Pj ]

(newc)

P ↓upd(n,v) P
′ n 6= id

((n′ : e ′, )∗ n : e (, n′′ : e ′′)∗)[K,Π, P ]
I.id:upd(n,v)- ((n′ : e ′, )∗ n : v (, n′′ : e ′′)∗)[K,Π, P ′]

(upd)

P ↓read(? x ,n) P
′ σ = [A(e, I.id)/x]

((n′ : e ′, )∗ n : e (, n′′ : e ′′)∗)[K,Π, P ]
I.id:read(n)- ((n′ : e ′, )∗ n : e (, n′′ : e ′′)∗)[K,Π, P ′σ]

(read)

Table 5.12: Semantics of programming constructs (2 of 3): execution rules (1 of 2)

Execution of action fresh (rule (freshn)) introduces a scope restriction for the name
n. To this aim, the name n must not be used in the executing component except for
its process (that indeed will likely use n). This condition, expressed by the hypothesis
n 6∈ n(I[K,Π,nil]), can be always satisfied by exploiting alpha-equivalence among terms.
Execution of action new (rule (newc)) causes the creation of the new component argument
of the action.

Execution of action upd (rule (upd)) updates the value referred to by the interface fea-
ture n to the value v which has been obtained by evaluating the expression e during the
authorisation phase; the condition n 6= id ensures that the feature id cannot be changed.
Execution of action read (rule (read)) retrieves the value (obtained by evaluating the ex-
pression e) referred to by the name n argument of the action and generates a substitution
σ for the variable x . The substitution is then applied to the process continuation P ′. Both
the rules (upd) and (read) exploit the notation ((n′ : e ′, )∗ n : e (, n′′ : e ′′)∗) to indicate that
the feature n can be at any position of the list of pairs defining an interface.

The comments on the rules for remote actions in Table 5.13 follow. Rules (rem-get)
and (rem-qry) deal with execution of remote variants of actions get and qry, respectively.
The rules differ from the corresponding local ones only for the condition on the action
destination, i.e. the destination name n has to be equal to the name of the component
(with interface) J appearing in (the left-hand side of the conclusion of) the rule. Checking
this condition is possible both for point-to-point and group-oriented variants because, due
to the authorisation phase, an authorised get or qry action always contains the name of
the destination component. Rule (ptp-put), modelling execution of point-to-point variants
of action put, differs from its local counterpart for similar aspects.

Execution of group-oriented variants of action put requires to add the action argument
t to all the components authorised to receive it, i.e. all those components whose name sat-
isfies the predicate p determined during the authorisation phase. Therefore, rule (gr-put)
generates a label of the form I.id : put(t)@p reporting the needed information so that,
thanks to rule (gr-put-y), the intended destination components can receive t. Rule (gr-put-n)
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REMOTE ACTIONS

P ↓get(T)@n P
′′ n = J .id match(T, t) = σ

I[K,Π, P ] ‖ J [K′ ‖ t,Π′, P ′] I.id:get(t)@n- I[K,Π, P ′′σ] ‖ J [K′,Π′, P ′]
(rem-get)

P ↓qry(T)@n P
′′ n = J .id match(T, t) = σ

I[K,Π, P ] ‖ J [K′ ‖ t,Π′, P ′] I.id:qry(t)@n- I[K,Π, P ′′σ] ‖ J [K′ ‖ t,Π′, P ′]
(rem-qry)

P ↓put(t)@n P
′′ n = J .id

I[K,Π, P ] ‖ J [K′,Π′, P ′] I.id:put(t)@n- I[K,Π, P ′′] ‖ J [K′ ‖ t,Π′, P ′]
(ptp-put)

P ↓put(t)@p P
′

I[K,Π, P ]
I.id:put(t)@p- I[K,Π, P ′]

(gr-put)

S
I.id:put(t)@p- S′ sat(p,J ) = true

S ‖ J [K,Π, P ]
I.id:put(t)@p- S′ ‖ J [K ‖ t,Π, P ]

(gr-put-y)

S
I.id:put(t)@p- S′ sat(p,J ) = false

S ‖ J [K,Π, P ]
I.id:put(t)@p- S′ ‖ J [K,Π, P ]

(gr-put-n)

S1
λ- S′1 λ 6= I.id : put(t)@p

S1 ‖ S2
λ- S′1 ‖ S2

(as-ex)

Table 5.13: Semantics of programming constructs (2 of 3): execution rules (2 of 2) (p
stands for the predicate determined by the rules in Table 5.10)

ensures that the components not satisfying the predicate cannot affect its execution.
Finally, similarly to rule (as-aut), rule (as-ex) states that execution of all actions differ-

ent from group-oriented variants of put can be performed by only involving some of the
system components. This exclusion ensures that when a component is going to execute a
group-oriented put all potential destination components are taken into account.

Semantics of Systems (3 of 3): system transition rules. Table 5.14 reports the rules
defining the transition relation modelling the semantics of a generic system (with names
restrictions). The rules generate τ -labelled transitions, corresponding to action autho-
risations, or λ-labelled transitions, corresponding to action executions. As a matter of
notation, γ ranges over both kinds of transition labels. Moreover, ñ denotes a (possibly
empty) sequence of names and ñ,n ′ is the sequence obtained by composing ñ and n ′.
(νñ)S abbreviates (νn1)((νn2)(· · · (νnm)S · · · )), if ñ = n1,n2, · · · ,nm with m > 0, and S,
otherwise. S{n ′/n} denotes the system obtained by replacing any free occurrence of n in
S with n ′.

Rule (acc-put) deals with the authorisation of a group-oriented action put. When it
is applied, all system components possibly matching the predicate have been taken into
account to determine the predicate p, thus the placeholder • can be safely replaced by the
sequence of actions sB.put(t)@p.sA formed by the elements carried by the label. Notably,
the action put has the predicate p as destination and it is prefixed (resp., followed) by
the collected sequence of before (resp., after) actions. Hence, finally, the authorisation of
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S
I:a,p,sB,sA- S′ a = put(t)@P

(νñ)S �τ−→ (νñ)S′[sB.put(t)@p.sA/•]
(acc-put) S

γ- S′

(νñ)S �γ−→ (νñ)S′
(aut-exec)

(νñ,n ′)(S1 ‖ S2) �γ−→ S′

(νñ)(S1 ‖ (νn ′)S2) �γ−→ S′
(top)

(νñ)(S2 ‖ S1) �γ−→ S′

(νñ)(S1 ‖ S2) �γ−→ S′
(comm)

(νñ)((S1 ‖ S2) ‖ S3) �γ−→ S′

(νñ)(S1 ‖ (S2 ‖ S3)) �γ−→ S′
(assoc)

Table 5.14: Semantics of programming constructs (3 of 3): system transition rules

a group-oriented put boils down to a τ -labelled transition as well. Rule (aut-exec) states
that all the other transitions corresponding to action authorisations and all the transitions
corresponding to action executions generate a system transition.

Rule (top) manipulates the syntax of systems for moving all name restrictions at top
level, thus ensuring that one of the first two rules apply. These rules indeed apply only
when all (possible) name restrictions are at top level (otherwise the transitions in the
premises could not be inferred). Finally, rules (comm) and (assoc) make system composition
a commutative and associative operator.

5.4 PSCEL at work on the Robot-Swarm Case Study

In this section we employ PSCEL, enriched with support for adaptive policies, to model
the robot-swarm case study presented in Section 2.3.2. Therefore, we first introduce the
PSCEL extension supporting adaptive policies (Section 5.4.1), then we present the PSCEL
specification of the case study (Section 5.4.2).

5.4.1 A PSCEL Extension: Adaptive Policies

The PSCEL language, in the context of the ASCENS project, has been extended in order
to support additional functionalities [DLL+15]. Here, we only illustrate the support of
adaptive policies, i.e. policies that can dynamically change while components evolve.

To explicitly express the fact that the policy in force at any given component can dy-
namically change over time, we use an automaton, somehow reminiscent of security au-
tomata [Sch00], whose states identify FACPL policies and transitions between states model
possible modifications of the policy actually in force at the component. From time to time,
the policy of the current state is the policy actually in force. We outline below the needed
modifications to PSCEL syntax and semantics for supporting this extension.

Syntactically, the policy Π of components is replaced by a POLICY AUTOMATON formed
by a pair 〈A, p 〉. Its definition follows

• A is an automaton of the form 〈Pol ,Trg , T r〉 where: (i) Pol ⊆ Policies is the set of
states identifying all the policies that can be in force at different times; (ii) Trg ⊆
Targets is the set of conditions that can trigger policy modifications; (iii) T r ⊆
(Pol × Trg × Pol) is the set of all the labelled transitions between states;

• p ∈ Pol is the current state of A.

The sets Policies and Targets represent, respectively, the sets of all POLICIES and TARGETS

from Table 5.2.
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Semantically, the automaton intervenes when the authorisation requests correspond-
ing to process actions are evaluated. Namely, the premise P[[ΠI ]]rI,Ja = d, sB, sA occurring
in Tables 5.9 and 5.10 has to address the evaluation of the automaton and its possi-
ble modifications. Therefore, if we let Π , 〈A, p〉 the previous premise is replaced by
PA[[ΠI ]]rI,Ja = d, sB, sA,Π

′. Its definition follows

PA[[ΠI ]]rI,Ja =



d, sB, sA, 〈A, p ′〉 if P[[p[I.id/this]]]rI,Ja = d, sB, sA
∧ 〈p, τ, p ′〉 inA ∧ E [[τ ]]rI,Ja = true

d, sB, sA,Π if P[[p[I.id/this]]]rI,Ja = d, sB, sA
∧ ((〈p, τ, p ′〉 not inA)

∨(〈p, τ, p ′〉 inA ∧ E [[τ ]]rI,Ja = false))

where notation ΠI is used to identify the component interface I whose feature id is used
to replace the occurrences of the variable this. The semantic function makes use of the
semantics of targets and policies of Table 5.4. Intuitively, an action a is authorised to
decision d, together with the sequences of additional actions sB and sA, by the policy p of
current automaton state. Moreover, if for some target τ ∈ Targets, such that E [[τ ]]rI,Ja =
true, the automaton A has a transition 〈p, τ, p′〉, then the state of A after the request
evaluation becomes Π′. Notably, the current policy in Π does not change unless there is
a target τ matching the request and producing a transition in the policy automaton. Of
course, if the automaton has a single state or an empty set of transitions, the policy in
force at a component never changes. Instead, to address the automaton modifications, we
need to enforce the possibly modified automaton Π′ in the resulting components of the
rules in Tables 5.9 and 5.10. By way of example, the rule modelling the authorisation of
local actions is updated as follows

P ↓a P ′ a = A(a, I.id) dst(a) = I.id PA[[ΠI ]]rI,Ia = permit, sB, sA,Π
′

I[K,Π, P ]
τ- I[K,Π′, sB.ā.sA.P ′]

(l-p)

Indeed, the automaton Π′ returned by the evaluation of Π is placed as the policy automa-
ton of the resulting component.

Dynamically changing policies is a powerful mechanism that permits controlling, in
a natural and clear way, the evolution of adaptive systems. We exploit it in the PSCEL
modelling of the robot-swarm case study.

5.4.2 PSCEL Specification

According to the separation of concerns principle fostered by PSCEL, to model the robot-
swarm case study we define (i) a process, defining the functional behaviour of robots; and
(ii) a collection of policies organised in term of a policy automaton, regulating the inter-
actions among robots and with the environment, and generating the adaptation actions
necessary to react to the changing operating conditions. The interplay between processes
and policies permits a convenient design and enacts a collaborative swarm behaviour aim-
ing at implementing the robot behaviours described by the Requirements of Table 2.2,
hence at accomplishing the goal of rescuing victims.

The specification relies on the fact that processes can read from the knowledge items
produced by robot sensors (e.g. the item 〈collision, true〉 indicating that an imminent col-
lision with an arena wall has been detected), and can add items triggering robot actuators
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that force the activation of specific functionalities (e.g. the item 〈stop〉 forcing the robot to
halt its movement). As a matter of fact, we do not explicitly model sensors and actuators,
because our focus is on the collaborative behaviours of robots. We only assume that the
actuator triggered by items of the form 〈goTo,nDest , x, y〉 forces the robot to reach the po-
sition (x, y) and signals the arrival at such position by means of the item 〈arrived ,nDest〉.

The robot-swarm case study is modelled as the following PSCEL system

IR1 [KR1 ,ΠR, PR] ‖ . . . ‖ IRn [KRn ,ΠR, PR]

Each robot interface IR contains, besides id, the features role, battery, xRobot, yRobot,
xStart and yStart. In details, role represents the abstract role currently played by the
robot, i.e. one among explorer , rescuer , helpRescuer , lowBattery; battery represents the
level of charge of the battery, i.e. an integer between 0 and 100; xRobot and yRobot
represent the current position of the robot; xStart and yStart represent the starting position
of the robot and where the recharging station is placed. Thus, a robot interface can be
of the form IR1 , (id: r1, role: explorer , battery: 56, xRobot: 4.35, yRobot: 8.17, xStart:
1.2, yStart : 5.3). It follows that updating, e.g., the role amounts to execute the action
upd(role, rescuer), while reading the value of, e.g., the feature xStart amounts to execute
the action read(? x , xStart). Notice that initially the robot role is explorer .

Intuitively, the robot behaviours are structured as follows: process PR specifies all
the basic behaviours a robot can do, while the policy automaton ΠR controls and adapts
such behaviours according to the current role of the robot, i.e. depending on the policy
enforced by the current automaton state.

The process PR of each robot is defined as follows

PR, (qry(victimPerceived , true)@self.read(? x , xRobot).read(? y , yRobot).

put(victim, x , y , 3 )@self.put(rescue)@self

+get(victim, ?xVictim, ?yVictim, ?count)@(role=rescuer∨role=helpRescuer).

HelpingRescuer )
| RandomWalk | IsMoving

According to Requirement (Rs-1) the robots follow a random walk to explore the arena.
To this aim, the process RandomWalk randomly selects a direction that is followed until
either a wall is hit or a stop signal is sent to the wheel actuator. The robot recognises the
presence of a victim by means of the qry action, while the action get permits it to help
other robots to rescue a victim, that is robots that have role rescuer or helpRescuer (i.e. it is
used the predicate role=rescuer ∨ role=helpRescuer). When a victim is found, information
about its position, which is retrieved by means of actions read reading features xRobot
and yRobot, and the number of additional robots, i.e. 3, needed for rescuing the victim is
locally published. This behaviour corresponds to Requirement (Rs-2). To effectively start
the rescuing procedure, the item 〈rescue〉 is then locally added.

The RandomWalk process calculates the random direction followed by the robot to ex-
plore the arena. The robot starts moving as soon as the first direction is calculated. When
the proximity sensor signals a possible collision, by means of the item 〈collision, true〉, a
new random direction is calculated. This behaviour corresponds to the following process

RandomWalk , put(direction, 2πrand())@self.qry(collision, true)@self.RandomWalk
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where 2πrand() is assumed to be a random angular direction. Notice that the process
defines only the direction of the motion and not the will of moving.

The HelpingRescuer process is defined as follows

HelpingRescuer , if (count > 1) then { put(victim, xVictim, yVictim, count-1 )@self }.
put(goTo, victim, xVictim, yVictim)@self.

get(arrived , victim, xVictim, yVictim)@self. put(rescue)@self

where the high-level construct if -then is used, with its obvious meaning, to simplify the
process specification3. This process is triggered by a victim (knowledge) item retrieved
from the ensemble of robots satisfying the predicate role=rescuer∨role=helpRescuer (see
process PR). The item indicates that additional robots (whose number is stored in count)
are needed at position (xV ictim, yV ictim) to rescue a victim. If more than one robot is
needed, a new victim item is published (with decremented counter). Then, the robot goes
towards the victim position and once it reaches it (i.e. the get action completes), the local
addition of the item 〈rescue〉 triggers the rescuing procedure; this behaviour, together with
the qry action of PR, corresponds to Requirements (Rs-3) and (Rs-4). It is worth noting
that, if more victims are in the arena, different groups of rescuers will be spontaneously
organised to rescue them. To avoid that more than one group is formed to assist the
same victim, we assume that the sensor used to perceive the victims is configured so that
a victim that is already receiving assistance by some rescuers is not detected as a victim
by further robots. This assumption is also feasible in a real scenario, where a light-based
message communication among robots can be used [OGCD10]: when a robot reaches a
victim, it uses a specific light colour to signal that the victim is already receiving assistance.

Notably, the effectiveness of this discover-and-rescue procedure relies on the assump-
tion that robots cannot fail. In fact, when a robot that knows the victim position fails,
it cannot be ensured that such position is correctly communicated. Anyway, specific han-
dling can be used in such a case, e.g. by enabling the perception of a victim if the stationary
robots close to it are not active.

Finally, in order for the policy to control the battery level during the exploration,
we need to capture the movement status. This information is represented by the item
〈isMoving〉, which is produced by the wheel sensor, and read by the following process

IsMoving , qry(isMoving)@self.IsMoving

The authorisation of this action allows policies to check the battery level and, when it is
critical, to opportunely adapt the robot behaviour in order to recharge the battery accord-
ing to Requirement (Rs-5).

The processes just presented need to be controlled and adapted in order to check con-
text information, e.g. the battery level, and to execute additional actions, e.g. halting the
movement and executing the battery recharging procedure. To this aim, each robot fea-
tures the policy automaton ΠR reported in Figure 5.1. The automaton states correspond to
the policy in force when the robot plays the same role as the state name. By design choice,
we manage the role changing by means of obligation actions dynamically enforced (in
fact, processes do not contain any upd action updating the feature role). Thus, the con-
sequent authorisation of these obligation actions triggers automaton state changes. The

3Since count can assume a finite range of values, i.e. from 0 to 3, the if -then construct is just an abbrevi-
ation for a more lengthy specification based on pattern-matching conditions.
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EXPLORER RESCUER

LOWBATTERY HELPRESCUER

τRescuer

τLowBattery

τHelpRescuer
τExplorer τRescuer

Figure 5.1: Robot-swarm case study: policy automaton

transition conditions are reported in Table 5.15. In the following, we present some of the
policies of the automaton states and we informally comment on their runtime interplay
with the process PR.

The EXPLORER state identifies the Policy (Rs-E), which is defined as follows

〈 p-unless-d
rules :

E1 (permit target : equal(action/id,qry)
∧ pattern-match(action/arg,(victimPerceived , true))

obl : [ A put(stop)@self.upd(role, rescuer)] )
E2 (permit target : equal(action/id,get)

∧ pattern-match(action/arg,(victim, _, _))
obl : [ A upd(role, helpRescuer)] )

E3 (deny target : equal(qry,action/id) ∧ pattern-match(action/arg,isMoving)
∧ less-than(subject/battery,20)

obl : [ B put(goTo, start , subject/xStart, subject/yStart)@self.
upd(role, lowBattery).get(arrived , start)@self] )〉

(Rs-E)

The rule E1 has the purpose of positively authorising the action qry sensing the perception
of a victim and of returning the obligation actions put(stop)@self and upd(role, rescuer).
The action put instructs the wheel actuator to halt the robot movement. Thus, as
soon as a victim is sensed (i.e. the corresponding action qry completes), such action,
which is authorised by this policy (i.e. due to the p-unless-d algorithm), is executed
and the robot stops. The subsequent upd action is authorised as well by also trigger-
ing an automaton state change; its execution changes the robot role to rescuer . Sim-
ilarly, the rule E2 authorises the action get of the process PR by returning a upd ac-
tion that, when such get has completed, changes the robot role to helpRescuer. Fi-
nally, the rule E3 is used to check the battery and when the level is critical (i.e. lower
than 20), it forbids the action qry of the IsMoving process and returns the obliga-
tion put(goTo, start , subject/xStart, subject/yStart)@self for instructing the robot to reach
the recharging station. The dynamical fulfilment of the attributes subject/xStart and
subject/yStart permits retrieving (through the attribute-based request under evaluation)

Name Condition

τRescuer equal(action/id,upd) ∧ pattern-match(action/arg, (role, rescuer))

τHelpRescuer equal(action/id,upd) ∧ pattern-match(action/arg, (role, helpRescuer))

τExplorer equal(action/id,upd) ∧ pattern-match(action/arg, (role, explorer))

τLowBattery equal(action/id,upd) ∧ pattern-match(action/arg, (role, lowBattery))

Table 5.15: Robot-swarm case study: policy automaton transition conditions

101



Chapter 5. The PSCEL Language

the needed position from the robot interface. The additional obligations actions upd and
get are used, respectively, to change the robot role to lowBattery and check when the
robot arrives at destination.

The policy of the HELPRESCUER state has only the duty of managing the change from
the helpRescuer role to the rescuer one. Indeed, when the action get of the process
HelpingRescuer is authorised, the corresponding upd action is returned.

The LOWBATTERY state is instead associated to the following policy

〈 d-unless-p
rules :

L1 (permit target : equal(action/id,get)
∧ pattern-match(action/arg,(arrived , start))

obl : [ A put(charge)@self.get(charged)@self.upd(role, explorer)])〉

(Rs-L)

Policy (Rs-L) forbids all actions by means of the algorithm d-unless-p, but the get action
checking the arrival of the robot at the recharging station. Such action is that enforced,
while the robot is an explorer , by the rule E3 of Policy (Rs-E). This action needs to be au-
thorised by the Policy (Rs-L), because the upd action preceding such get, i.e. that enforced
by rule E3, changes the robot role to lowBattery and the automaton state accordingly. As
result of the authorisation, the rule L1 returns three actions. The first two ones are used
to trigger and observe, respectively, the start and the end of the charging procedure, while
the last one changes the robot state to explorer .

Finally, Policy (Rs-R) associated to the RESCUER state is defined as follows

〈 p-unless-d
rules :

R1(permit target : equal(put,action/id) ∧ pattern-match(action/arg,rescue)
∧ greater-than(subject/battery,40)

obl : [ A put(camera, on)@self] ) 〉

(Rs-R)

This policy does not forbid any action, it is only used for turning on the robot camera if
there is enough battery; other functionalities could be activated as well.

5.5 Supporting Tools

In this section we present the supporting tools of PSCEL4: (i) jRESP, a Java runtime envi-
ronment for developing autonomic systems according to the PSCEL approach; (ii) a PSCEL
Eclipse-based IDE supporting coding and analysis of PSCEL specifications.

In the rest of this section, we outline the main functionalities of jRESP (Section 5.5.1)
and of the PSCEL IDE (Section 5.5.2).

5.5.1 The PSCEL Java Runtime Environment

To effectively deploy PSCEL systems we provide the jRESP Java runtime environment.
jRESP was originally proposed to support SCEL [DLPT14] by offering a set of APIs for the
development of distributed applications based on (a part of) the programming constructs
of Table 5.1. Thus, to fully support PSCEL, we enhanced the jRESP functionalities with

4The PSCEL supporting tools are freely available and open-source; binary files, source files, unit tests and
a user’s guide can be found at the PSCEL website [PSC16].
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Figure 5.2: Architecture of Java PSCEL components

the support for the specification and evaluation of FACPL-based policy automata (compo-
nents featuring single policies are supported as well, i.e. such policies are represented as
automata with one state and no transitions).

In the following, we first present the design principles underlying the design of jRESP,
then we outline the integration strategies of the FACPL-based policy automata, and we
conclude by commenting on the jRESP simulation of the robot-swarm case study.

Design Principles

The key part of the jRESP framework is the implementation of PSCEL components. They
are modelled via the class Node and their architecture is shown in Figure 5.2. A node
aggregates an interface, a knowledge repository, a set of running processes, and a set
of policies. A node interacts with other nodes via ports, which provide support to both
point-to-point and group-oriented communications.

The node knowledge is modelled by the interface Knowledge, which indicates the high-
level primitives to manage knowledge elements. By default, jRESP provides an item-based
implementation of the knowledge (see Table 5.1) and supports the corresponding pattern-
matching mechanism. The items can be produced by processes or by sensors. Each sensor
can be associated to a logical functionality that produces data. Similarly, actuators can be
used to send data, e.g., to external services.

The support for communication is achieved via the abstract class AbstractPort. Accord-
ing to the underlying communication infrastructure, this class is appropriately refined,
e.g. the classes InetPort and P2PPort implement the TCP/UPD and peer-to-peer commu-
nications, respectively. Additionally, to enable local simulations of distributed communi-
cations, the class VitualPort models node interactions via a buffered memory.

The node processes are implemented as threads via the abstract class Agent. This class
provides the methods implementing all the process actions.

The node policies are defined by the interface IPolicy, which defines the methods to be
used to authorise local and remote actions. In details, when a method of the class Agent
corresponding to a process action is invoked, its execution is delegated to the policy in
force at the node where the agent is running. The policy can thus authorise or not the
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execution of the action and possibly adapt the process behaviour by enforcing adaptation
strategies. By default, IPolicy is instantiated by the class DefaultPermitPolicy, which allows
any action to be executed.

FACPL Integration

To support the specification of FACPL-based policy automata, we instantiate the interface
IPolicy accordingly. Specifically, we define a generic policy automaton and instantiate its
state definition in order to refer to FACPL policies.

The class PolicyAutomaton implements a generic automaton whose current state con-
tains the reference to the policy actually in force at the jRESP node. An automaton consists
of (i) a set of classes IPolicyAutomatonState, each of which identifies the possible policies
in force at the node; (ii) a set of transitions; (iii) a reference to the current automaton
state identifying the actual policy.

The evaluation of the automaton is defined by instantiating the interface IPolicy. In
details, the provided methods invoke the evaluation of the policy of the current state
by taking as argument an instance of the class AutorisationRequest, which represents the
action to authorise and its context (i.e. the request produced by the function req defined
in Section 5.3.2). Each invocation can trigger in its own turn an update of the automaton
state according to the satisfied transitions (see Section 5.4.1).

The full PSCEL support can be now achieved by defining the class FacplPolicyState,
which extends IPolicyAutomatonState and wraps the Java-translated FACPL policies. This
class overwrites the automaton evaluation methods and renders FACPL obligation actions
as appropriate Agent instances. Clearly, the integration of FACPL policies relies on the
FACPL Java library presented in Section 3.6.1.

Simulation of the Robot-Swarm Case Study

We comment here on the jRESP implementation of the PSCEL specification modelling the
robot-swarm case study5.

Each robot corresponds to a Node implementing the presented interface IR and
equipped with the appropriate sensors and actuators. For example, sensors include those
used to detect victims, access the battery level and detect possible collisions. Instead,
actuators include those used to set the robot direction, stop the movement and start the
battery recharging procedure.

The node process is defined by four Agent instantances: Explorer, HelpingRescuer, Ran-
domWalk and isMoving. Agents Explorer and HelpingRescuer represent, respectively, the two
branches of the non-deterministic choice of the process PR

6.
By way of example, we report in Listing 5.1 the jRESP code of the Explorer agent.

Looking at the code, it is easy to see an almost one-to-one correspondence between the
code itself and the corresponding branch of the PSCEL process PR.

The policies in force at each node are managed by an instance of the class PolicyAu-
tomaton implementing the automaton reported in Figure 5.1. The Java code of each FACPL

5The complete code for the scenario, together with a simulation environment, can be downloaded from
the jRESP code repository [jRE16] or from the PSCEL website [PSC16].

6Non-deterministic choice is rendered as a concurrent execution of agents, i.e. Java threads, that are
regulated by checks on the current robot role.

104



5.5. Supporting Tools

public class Explorer extends Agent {

public Explorer () {
super("Explorer");

}

protected void doRun () throws Exception {
query(

new Template(new ActualTemplateField("victimPerceived"),
new ActualTemplateField(true)),

Self.SELF
);
Object x = readAttribute("xRobot");
Object y = readAttribute("yRobot");
put(new Tuple("victim", x, y, 3, Self.SELF);
put(new Tuple("rescue"), Self.SELF);

}
}

Listing 5.1: Robot-swarm case study: jRESP code of the Explorer agent

policy has the form of that reported in Section 3.6.1, while the transition conditions of
Table 5.15 are straightforwardly translated to Java code and integrated as part of the
automaton.

5.5.2 The PSCEL IDE

The PSCEL IDE is an Eclipse plug-in offering a tailored development environment for
PSCEL. Indeed, it supports with graphical features the coding of PSCEL code and permits
automated generation of runnable jRESP and SMT-LIB code. The SMT-LIB code is used in
the analysis of PSCEL specifications presented in Chapter 6; additional comments on the
support of this analysis are reported in Section 6.4.2.

As in the case of FACPL, the PSCEL IDE relies on the Xtext framework. The plug-
in accepts an enriched version of the PSCEL language, which contains a few high-level

Figure 5.3: PSCEL Eclipse plug-in
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features facilitating the coding tasks. Specifically, interface features and variables have a
type, processes can contain conditional and loop commands, and specific linguistic handles
are provided to define sensors and actuators of components.

The PSCEL development environment is standard and is shown in Figure 5.3. Besides
the code generation and the graphical features like, e.g., code highlighting and sugges-
tion, the plug-in defines static type controls. Similar to the FACPL IDE, this IDE offers
a customised Java project where PSCEL files, i.e. those with extension .pscel, are auto-
matically translated into Java and SMT-LIB files as soon as they are saved. The PSCEL
features supporting the coding are available via the classical contextual menus and views
of Eclipse.

5.6 Concluding Remarks

In this chapter we have presented the PSCEL language, starting from the design principles
to the formal semantics and the supporting tools. Here, we conclude by briefly comment-
ing on the contributions of PSCEL with respect to the research objectives of the thesis and
to related and prior publications.

The specification of PSCEL accomplishes the objective O5, hence it instantiates SCEL
with a tailored version of the FACPL language that, as formalised in Section 5.3 and shown
in Section 5.4.2, is capable of regulating interactions among components and enforcing
adaptation strategies. From an implementation point of view, the jRESP environment and
the PSCEL IDE provide a practical framework to be used for the development of PSCEL-
based autonomic systems. This accomplishes the objective O7; the details concerning the
analysis tools are presented in Chapter 6.

The PSCEL specification approach features multiple powerful and flexible ingredients
that, with respect to other approaches from the literature, offer many advantages. For
example, differently from the rigid communication functionalities typical of component-
based approaches like, e.g., FRACTAL [BCL+06], PSCEL permits defining flexible self-
adaptive predicate-based communications. Further details are reported in Section 7.4.
In a more general perspective, the main advantage of PSCEL is the fostered separation of
concerns: the normal computational behaviour is defined through the processes, while the
authorisation and adaptation logic is defined through the policies. This approach permits
indeed a clear identification of the context-dependent adaptation strategies.

The interplay among processes and policies is a powerful feature of the language.
Specifically, the dynamic fulfilment of obligation actions allows adaptation strategies to
retrieve their arguments at runtime. These obligation actions, when injected in a process,
are however normal process actions, that is they have to be authorised for execution. This
design choice ensures that all actions a system executes adhere to the component policies,
but it may generate recursive policy evaluations that pave the way to unforeseen interplays
among processes and policies. On the base of the PSCEL semantics, we introduce in
Chapter 6 an expressly devised analysis approach that aims at statically pointing out the
potential evaluations of policies at runtime and their effects on the progress of systems.

The contents of this chapter are mainly based on the work in [MRNNP16a,
MRNNP16b]. A preliminary version of PSCEL is also presented in [MPT13, DLL+15],
while its application to the robot-swarm case study is outlined in [LMPT14]. The jRESP
framework, besides its exploitation for the robot-swarm case study in [LMPT14], is de-
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scribed in [ACH+15].
The development of PSCEL has taken advantage of the formal semantics framework

of SCEL [DLPT14]. Besides the integration of the FACPL dialect, in the development of
PSCEL we have also refined and fully instantiated different aspects abstracted by SCEL. In
details, we give a syntax and a precise semantics to expressions, predicates and interfaces
(indeed, the actions upd and read are not present in SCEL). Most of all, to enforce
AOP-inspired adaptation strategies, we modify the semantics of programming constructs
by decoupling, for each process action, the authorisation to perform it from its actual
execution.

To conclude, we briefly comment on other specification approaches that PSCEL could
support to define adaptation strategies. Currently, PSCEL defines adaptation strategies in
terms of sequences of obligation actions and such design solution has been proven expres-
sive enough to enforce the adaptation strategies requested by the considered case studies.
More in general, we could take into account the enforcement of obligations formed by
general processes rather than only sequences of actions. This extension can be easily
implemented by acting on the syntax of obligations. The main benefit of this extension
is a higher flexibility of process modifications, however appropriate analysis techniques
should be provided to statically identify, e.g., possible deadlocks caused by unexpected
interactions of the enforced processes.
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Analysis of PSCEL Specifications

Autonomic computing systems, like those expressible in PSCEL, experiment highly dy-
namic behaviours that are crucially affected by the authorisations and adaptation strate-
gies enforced by system policies. The runtime evaluation of policies, possibly depending
on the context, can indeed generate unforeseen behaviours leading to unexpected con-
sequences, e.g. the preclusion of the system progress. Supporting the analysis of sys-
tem policies is thus crucial to ensure that system behaviours are correctly regulated and
adapted.

In this chapter, we address the analysis of the effects of policy evaluations in PSCEL
systems. Specifically, since obligation actions are dynamically enforced and their execution
requires additional policy evaluations, we aim at statically pointing out the potential policy
evaluations and the possible flows of evaluation between rules, called policy-flows. To this
aim, we need to reason on policy rules and their applicability to process and obligation
actions. By relying on the PSCEL formal semantics, we devise a PSCEL-oriented SMT-
based constraint formalism that permits representing policy rules and approximating their
applicability to actions. This constraint-based representation of policies permits defining
a flow graph, called Policy-Flow graph, that represents all the policy-flows and the context
dependencies that can take place at runtime. Additionally, we show that the graph can be
used for inspecting the effects of policy evaluations on the progress of systems. The graph
construction is also supported by practical functionalities of the PSCEL IDE.

Before presenting this analysis approach, we exemplify, by means of the PSCEL system
modelling the autonomic cloud case study, a few of the unexpected behaviours generated
by the interplay of PSCEL processes and policies.
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Structure of the chapter. The rest of this chapter is organised as follows. Section 6.1
outlines the motivations underlying the policy analysis of PSCEL specifications. Section 6.2
describes the PSCEL system modelling the autonomic cloud case study presented in Sec-
tion 2.3.3. The notion of policy-flow and the constraint-based representation of policies
are introduced in Section 6.3. The Policy-Flow graph is defined in Section 6.4, while Sec-
tion 6.5 exploits the graph to address the verification of progress properties on processes.
Section 6.6 concludes with some final remarks.

6.1 Towards the Analysis of PSCEL Specifications

In this section, we first review the main ingredients of the design of PSCEL specifications,
then we highlight the type of unexpected behaviours caused by inadequate design choices.
Such undesired behaviours motivate our analysis. Notably, in this chapter we take into
account the core version of the PSCEL language, i.e. we ignore the extension supporting
adaptive policies (see Section 5.4.1).

The design of a PSCEL system involves the specification of three main parts: processes,
policy rules, and obligations. Their principled interaction, which is formalised by the PSCEL
semantics, provides flexible and powerful specification means. For example, the fact that
an action can be defined as process or obligation action permits achieving different design
solutions. Namely, choosing a process action means that it is always part of the system
behaviour (it can be only denied but not removed), while choosing an obligation action
means that it can be part of the system behaviour only when it is needed, e.g. according
to context conditions. Generally speaking, the principles at the basis of the PSCEL design
approach can be informally described as follows

• processes: they contain the actions that must be executed provided that authorisation
rules grant them for execution;

• policy rules: they decide, possibly on the base of the context, whether to authorise
an action and to enforce adaptation strategies;

• obligations: they define dynamically fulfilled actions that, if enforced, can be exe-
cuted.

Therefore, the use of obligation actions is advocated when such actions do not need to
be always executed or their execution is subordinated to certain context configurations.

As in the main development approaches for self-adaptive systems (see, e.g., the MAPE-
K control loop [KC03] or the EDLC system life cycle [HKP+15]), PSCEL process actions
(including obligations) are controlled and authorised before being executed. The addi-
tional authorisations of obligations can lead to unforeseen behaviours if the policies are
not adequately designed. Indeed, the design of policy rules must consider that rules can
apply not only to process actions, but also to the obligation actions possibly injected due to
adaptation strategies. This interplay between policies and processes makes the prediction
of the overall behaviour of PSCEL systems challenging. It is then worthwhile to devise a
static analysis approach supporting the development of PSCEL systems.

Our analysis approach is based on constraints and on a flow graph, called Policy-Flow
graph. The aim of the graph is to statically point out the relationships among the different
policy rules whose dynamic evaluation can affect the system progress. Specifically, we first
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investigate whether a policy may generate an infinite sequence of evaluations (because the
obligations injected due to an evaluation recursively trigger further evaluations). Then, we
analyse whether the progress of an authorised process action can be precluded (because
the authorisation of some injected obligations is denied). Satisfiability of both properties
is proved by defining specific conditions on the structure of the Policy-Flow graph. Before
presenting this analysis approach, in the next section we further comment on the factors
affecting the progress of PSCEL systems.

6.2 PSCEL at work on the Autonomic Cloud Case Study

In this section we employ PSCEL to model the autonomic cloud case study presented in
Section 2.3.3. For simplicity’s sake, we consider only a group of nodes placed at the
locality UNIFI. After presenting the PSCEL system, we outline unexpected behaviours that
unforeseen interplays between processes and policies can generate (Section 6.2.1).

The considered group of nodes can be rendered as the following PSCEL system

I1[K,ΠS , PS ] ‖ JG[K′,ΠG, PG] ‖ IC1 [KC ,ΠC , PC ] ‖ . . . ‖ ICk [KC ,ΠC , PC ]

where each component represents a (virtual) node of the platform. The component with
interface I1 represents the server node, the one with interface JG represents the gateway
node. The other components represent client nodes. We report the specification of client
and server components implementing the behaviours described by the Requirements of
Table 2.3. The gateway component is not explicitly described because, in our simplified
setting with only one locality, it does not have any duty besides collecting logs from clients.

Each component interface I contains, besides id, the features role, locality, level and
load. In details, role is the type of the represented node, i.e. server, client or gateway;
locality is the name of the physical locality where the node is placed, i.e. UNIFI; level is the
confidentiality level of the node, i.e. 1 and 2 corresponding to low and high confidentiality
levels respectively; load is the percentage of load of the hosting machine, i.e. an integer
between 0 and 100 that, for simplicity’s sake, aggregates both cpu and memory loads.
E.g., the server interface is of the form I1 , (id : s1, role : server, level : 1, locality :
UNIFI , load : 70). Consequently, the execution of, e.g., upd(load, 75 ) has the effect of
updating the feature load to the value 75.

Let us first focus on the (single-threaded) server component I1[K,ΠS , PS ], that is the
node offering the computational service to the other nodes of the locality. Its process PS
is defined as follows

PS , get(task , ?owner , ?X , ?taskId)@(locality=UNIFI ).
( X | get(result , ?res)@self.put(result , taskId , res)@owner . PS )

The group-oriented get (non-deterministically) retrieves a task from a component among
those that dynamically match the predicate locality=UNIFI . A task is any processQ stored
in an item of the form 〈task, n,Q, i〉 (n and i are a name and an integer), which is ex-
pected to terminate its execution by locally producing an item of the form 〈result, v〉. The
retrieved task (bound to the process variable X) is sent for execution by process PS which
then waits for the result via a local get. The retrieved result is then sent to the owner of
the task through a point-to-point put and the process proceeds by retrieving a new task.
This behaviour corresponds to Requirement (Cl-1).
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The server policy ΠS controls PS ensuring that Requirements (Cl-2) and (Cl-3) are
guaranteed. Indeed, tasks are retrieved only from components with the same or lower
confidentiality level than the local one, and availability of the computational service is
ensured, even though the node is highly loaded. Therefore, when the value of load is
greater than 90, the policy forbids the retrieval of new tasks and dynamically creates an
additional (virtual) server node. Hence, the contextual information on the load triggers a
self-adaptive behaviour of the system. The policy ΠS is defined as follows

〈 p-unless-d
rules :

S1 (deny target : equal(action/id,get) ∧ equal(subject/id,this)
∧ pattern-match(action/arg,(task, _, _, _))
∧ equal(subject/level,1) ∧ equal(object/level,2))

S2 (deny target : equal(action/id,get) ∧ equal(subject/id,this)
∧ pattern-match(action/arg,(task, _, _, _))
∧ greater-than(subject/load,90)

obl : [B fresh(n ′).new(I1[id := n′],K,ΠS , PS).read(? load , load)])

S3 (deny target : equal(action/id, read) ∧ pattern-match(action/arg,(_, load)))
∧ greater-than(subject/load,60)

S4 (permit target : equal(action/id,put) ∧ equal(subject/id, this)
obl : [A put(log , action/arg)@self]) 〉

(ΠS)

where, for simplicity’s sake, we omit the keyword obl : whenever the sequence of obliga-
tions is empty. The policy is made of four rules and uses the p-unless-d algorithm. Rules
S1 and S2 manage the action get for retrieving a new task, that is the action executed
by the local process (as checked by equal(subject/id, this)) having as argument a specific
template (as checked by pattern-match(action/arg,(task, _, _, _))). In details, rule S1 for-
bids the action get (i.e. the rule decision is deny) if the confidentiality level of the local
component (i.e. the subject of the action) is low and that of the component from where
the task should be retrieved (i.e. the object of the action) is high. Rule S2 enforces the
adaptation strategy, thus it forbids the action get when the local load is greater than 90 and
spawns a new server component, which only differs from the creating one for its name,
via the action new(I1[id := n′],K,ΠS , PS) (I1[id := n′] denotes the interface obtained
from I1 by initialising id with n′). Afterwards, the local process is blocked until the load is
higher than 60, this is due to the combination of the last returned action read and rule S3.
Finally, rule S4 records in a log, via an additional put, the action put that sends the result
of the task to the owner. Notably, S4 is only needed to introduce the obligation, as actions
put are authorised by the combining algorithm. Indeed, p-unless-d authorises any request
when no specific rule applies. Additional controls on, e.g., the spawned component or
task executions, are out of scope here.

Remark 6.1 (Variation of Load). According to the autonomic computing paradigm, the
feature load is modified by a sensor attached to the component when significant variations of
the load occur. The behaviour of such a sensor can be modelled as a sequence of upd(load, v)
actions updating the value of the feature. For simplicity’s sake, process PS does not include
this behaviour.

Let us now focus on the client components ICk [KC ,ΠC , PC ]. We expect that process
PC , besides some other actions, performs actions of the form put(task , loc_res,Q)@self
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that locally add an item containing a new task Q to execute, together with a component
name loc_res where the result of the task execution should be sent. According to Re-
quirement (Cl-4), before being executed, these tasks are incrementally numbered. This
behaviour, together with those corresponding to Requirements (Cl-5) and (Cl-6), is en-
forced by the policy ΠC defined as follows

〈 p-unless-d
rules :

C1 (permit target : equal(action/id,put) ∧ pattern-match(action/arg,(task, _, _))
∧ equal(subject/id,this)

obl : [A get(taskId , ?num)@self.put(action/arg,num)@self.
put(taskId ,num + 1 )@self])

C2 (permit target : equal(action/id,get) ∧ equal(subject/role,server)
obl : [A put(log , task retrieved , subject/id)@(role = gateway)])

C3 (deny target : equal(action/id,put) ∧ equal(object/id, this)
∧ greater-than(object/load,90)) 〉

(ΠC)

Rule C1 applies to put actions of process PC locally adding a new task, i.e. with subject the
local component and as argument an item formed by task and two elements. The rule thus
accomplishes the incremental enumeration of tasks by means of three additional actions:
action get retrieves the current task number, the first put locally adds the argument of
the authorised put appropriately extended with the retrieved number, and the second put
increments the task number1. Rule C2 injects a put action informing the gateway about
the retrieval of a task by a get action originated by a server, while rule C3 forbids any put
action with object the local component when the local load is higher that 90. These last
two rules correspond, respectively, to Requirements (Cl-6) and (Cl-5).

6.2.1 Interplay between Policies and Processes

We now focus on unforeseen interplays between policies and processes. Indeed, the obli-
gation actions injected in a process, like any other process action, need to be authorised
before being executed. On the other hand, policy rules are initially designed to apply to
certain process actions. Thus, if afterwards rules also apply to injected actions, as effect
of policy evaluation they can possibly prevent processes from actually proceed.

For example, let us consider process PS and its controlling policy ΠS . Actions get
retrieving new tasks can be either authorised or not; moreover, application of rule S2
causes the injection of additional actions. Actions fresh and new are authorised due to
the default decision of the algorithm, while actions read are authorised only when rule S3
does not apply, otherwise they are forbidden without injecting any obligation. In case of
actions put, rule S4 also injects a new action put for logging purposes. As result of such
an authorisation, process PS dynamically evolves as follows

put(result , 12 , 5 )@n ′.put(log , result , 12 , 5 )@self. PS

where, bound variables occurring in the process syntax are replaced by realistic values
(i.e., owner, taskId and res have been replaced by n′, 12 and 5, respectively). Notably,
the obligation action has been fulfilled by replacing the structured name action/arg with

1We assume that at the outset the repository KC contains the item 〈taskId , 0〉.
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the argument of the authorised put (i.e., the overlined action). Once the authorised put
has been executed, the authorisation of the injected put modifies the process as follows

put(log , result , 12 , 5 )@s1 .put(log , log , result , 12 , 5 )@self. PS

Basically, rule S4 has been applied again and injected an additional logging put! Clearly,
this leads to an infinite introduction of actions, and hence of policy evaluations, which
prevents process PS from proceeding further.

A similar interplay might occur between PC and ΠC . Indeed, local put actions adding
new tasks trigger the evaluation of rule C1 that, consequently, injects a get. This action,
on its own turn, can trigger rule C2 that injects a new put action. This might potentially
generate a cyclic dependency. However, by reasoning in details on targets, we can easily
see that C2 cannot trigger C1. In fact, the put injected by C2 has as argument an item with
log as first element, while the pattern-match control of C1 requires task as first element.
Similar situations can occur due to conflicting controls on features defined by the involved
rules.

A different interplay can concern the type of authorisations enforced by rules. In
particular, when an action is positively authorised, the action itself or its continuation can
be precluded from progressing due to an injected action that is forbidden. This interplay
can occur between rules C1 and C3: when rule C1 positively authorises an action put, the
injected put action could be denied by rule C3, i.e. whenever the load of the destination
component is higher than 90.

6.3 Policy-Flow: Definition and Constraint-based Analysis

The interplays presented in the previous section are due to unforeseen policy evaluations
caused by dynamically injected obligation actions. Indeed, the injection of actions can trig-
ger additional evaluations of rules and, thus, generate at runtime a sort of flow between
policy rules, that we call policy-flow. To statically over-approximate all the potential flows,
we now start introducing an analysis approach based on a constraint-based representation
of policies that enables extensive (automated) checks on the applicability of obligation ac-
tions to policy rules.

Due to the static nature of our approach, the injected actions a to consider are those
produced by the syntax. Hence, they may contain open terms, i.e. terms where variables
and structured names can occur. To make these actions evaluable through A, we must
apply to them a ‘closing’ substitution, denoted by ξ, i.e. a function mapping their variables
and structured names to values.

As a matter of notation, we write Interf(S) to denote the set of component interfaces
in a system S, I.id to refer to the name of the component having interface I, and Π(S,m)
to make it explicit that the policy Π is in force at the component named m in S. Hence,
we set the following definition of policy-flow.

Definition 6.1 (Policy-Flow). Given a system S with I,J ∈ Interf(S), there is a flow from
rule ρi to rule ρj in the policy Π(S, I.id) if, for any request req , it holds that

P[[ρi]]req = d, sB, sA and ∃ a ∃sB.sA , ξ : P[[ρj ]]req(I,A(aξ, I.id),J ) = d′, s ′B, s
′
A

where a ∃sB.sA means that action a occurs in the sequence of actions sB.sA.
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Constraints cstr ::= true | ¬ cstr | cstr1 ∧ cstr2 | cstr1 ∨ cstr2 | var = pv | var > pv

| var < pv | var match pv var ∈ AΠ ∪ FS

Table 6.1: Constraint Syntax (pv stands for the POLICY VALUES of Table 5.2)

The flows in a policy can be statically determined by checking whether the authori-
sation requests corresponding to obligation actions match rule targets. To this aim, we
represent targets in terms of constraints and authorisation requests in terms of assign-
ments for constraints. Existence of a flow is thus equivalent to satisfiability of a constraint
with applied an assignment.

In the following, first we introduce a constraint formalism and the representation of
obligation actions it enables (Section 6.3.1), then we formalise a translation procedure
from rule targets to constraints (Section 6.3.2). Both the representation and the transla-
tion are proved to be in agreement with the PSCEL semantics.

6.3.1 A PSCEL-Oriented Constraint Formalism: Syntax and Exploitation

Constraints are written according to the grammar shown in Table 6.1. A constraint can be
either the value true, or a comparison between a variable var and a policy value pv through
a relational operator, or a boolean combination of simpler constraints. Policy values are
the values referred to by the attribute names of authorisation requests like, e.g., the action
identifier get or an item argument of an action. Variables model the structured names sn
occurring within rule targets and can either belong to the set AΠ or to the set FS .

The set AΠ, given a policy Π , 〈alg rules : ρ1 . . . ρk〉, is defined as follows

AΠ , {id-h, arg-h, sub-h, obj-h | h ∈ {id(ρ1) . . . id(ρk)}}

where id(ρj) stands for the name of the rule ρj . Variables in AΠ model: (i) action identi-
fiers referred to by action/id; (ii) action arguments referred to by action/arg; (iii) the name
of the subject (resp., object) component referred to by subject/id (resp., object/id). Due to
the definition of function req (see Section 5.3.2) and the syntax of obligation actions, the
domains of values that the variables in AΠ can assume are

dom(id-h) = {put, get,qry,new, fresh,upd, read}
dom(arg-h) = ExtendedPolicyTuples dom(sub-h) = dom(obj-h) = Destinations

where ExtendedPolicyTuples is the set of all POLICY TUPLES where open terms can occur.
Notationally, we use cv (which stands for constraint value) to indicate an element of any
of the domains of values that the variables in AΠ can assume.

The set FS includes variables modelling the features of the components in S. Given a
system S, the set FS is defined as follows

FS , {z-n | ∃ I ∈ Interf(S) : I.id = n ∧ (z : e) ∈ I ∧ z 6= id}

thus, a variable z-n models the feature with name z of the component (whose feature id
has value) n. By definition, features are associated to closed expressions, thus the domain
of the variables in FS is the set of values, i.e. Values.

Our constraint formalism can represent targets, however, to enable (automated) rea-
soning on obligation actions, we need to represent authorisation requests (corresponding
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to obligation actions) as assignments for constraint variables. To this aim, we use the func-
tion 〈〈·〉〉hm which, given in input an obligation action, the name m of a component (i.e. the
intended subject) and the name h of a policy rule, returns the assignments (induced by the
obligation action) for the variables of AΠ corresponding to rule h. The function is defined
by case analysis on the syntax of obligation actions as follows

〈〈get(T )@c〉〉hm = [id-h := get, arg-h := (|T [m/self]|), sub-h := m, obj-h := 〈〈c〉〉hm]

〈〈put(t)@c〉〉hm = [id-h := put, arg-h := (|t[m/self]|), sub-h := m, obj-h := 〈〈c〉〉hm]

〈〈qry(T )@c〉〉hm =[id-h := qry, arg-h := (|T [m/self]|), sub-h := m, obj-h := 〈〈c〉〉hm]

〈〈fresh(n)〉〉hm = [id-h := fresh, sub-h := m, obj-h := m]

〈〈new(J ,K,Π, P )〉〉hm = [id-h := new, sub-h := m, obj-h := m]

〈〈upd(n, e)〉〉hm =[id-h := upd, arg-h := (|n, e[m/self]|), sub-h := m, obj-h := m]

〈〈read(? x , n)〉〉hm =[id-h := read, arg-h := (|?x, n|), sub-h := m, obj-h := m]

〈〈self〉〉hm = m 〈〈n〉〉hm = n 〈〈x〉〉hm = x 〈〈sn〉〉hm = sn 〈〈P 〉〉hm = x

(A-1)

The action identifier is assigned to the variable id-h, while the name m of the subject
component is assigned to sub-h and that of the action destination 〈〈c〉〉hm is assigned to
obj-h. Notably, if c is a predicate P , it is mapped to some variable x (to which any name
can be assigned), because the components satisfying the predicate cannot be statically
determined. Instead, the policy tuple corresponding to the action arguments, obtained by
applying the function (| · |) introduced in Section 5.3.2, is assigned to arg-h. For dealing
with open terms, (| · |) is extended as follows

(|e|) = e (|x|) = x (|sn|) = sn (|X|) = _

Thus, (| · |) acts as an identity function for generic expressions e, value variables x and
structured names sn, while it abstracts from process variables X that are replaced by
the wildcard ‘_’. For example, given the action a , put(taskId ,num + 1 )@self, we have
〈〈a〉〉hm = [id-h := put, arg-h := (taskId,num + 1), sub-h := m, obj-h := m].

Since constraint variables are possibly mapped to elements containing open terms,
checking the satisfiability of a constraint means deciding if there exists a substitution ξ
mapping variables and structured names to values such that the constraint evaluates to
true. For instance, checking the satisfiability of a constraint with applied the previous
assignment means identifying a substitution ξ for the variable num such that the constraint
is satisfied. We write ξ |= cstr〈〈a〉〉hm to mean that the constraint cstr , under the assignment
〈〈a〉〉hm induced by the obligation action a, is satisfiable through the substitution ξ.

Finally, we conclude by showing that any obligation action possibly executed at run-
time can be statically approximated starting from its syntactical definition.

Lemma 6.1. For any obligation action a such that A(aξ′,m) = a for some substitution ξ′, it
holds that

∃ ξ : 〈〈a〉〉hm = [[ 〈〈a〉〉hmξ ]]

where [[ 〈〈a〉〉hmξ ]] denotes the assignment obtained from 〈〈a〉〉hmξ by evaluating all the expres-
sions occurring within.

Proof. From the definition of 〈〈·〉〉hm, it follows that

〈〈a〉〉hm = [id-h := cv1, arg-h := cv2, sub-h := cv3, obj-h := cv4]

〈〈a〉〉hm = [id-h := cv′1, arg-h := cv′2, sub-h := cv′3, obj-h := cv′4]

116



6.3. Policy-Flow: Definition and Constraint-based Analysis

where cvi identifies an element of the corresponding variable domain. Thus, the statement
amounts to prove that

∃ ξ : ∀i ∈ {1, 2, 3, 4} cvi = [[ cv′i ξ ]]

From (A-1), it follows that cv1 = cv′1 and cv3 = cv′3; hence, we only need to consider the remaining
cases.

(cv2 = cv′2) From (A-1) we have that cv2 and cv′2 are sequences of elements of same length that
differ for the possible occurrence of open terms x and sn in cv′2 (variables X cannot occur).
Hence, we proceed by induction on the length of the sequences and by only analysing the
different pairs.

Base Case v = (e1 op)∗ e (op e2)∗ with e ∈ {x, sn}. As op indicates boolean and
linear arithmetic operators, it is always possible to compute a value v′ such that
[[ (e1 op)∗ v′ (op e2)∗ ]] = v. Hence, with ξ , [v′/e] the thesis follows.

Inductive Case cv2, v = cv′2, (e1 op)∗ e (op e2)∗ with e ∈ {x, sn}. From inductive hy-
pothesis we have that ∃ξ′ : cv2 = cv′2ξ

′. As we can compute a value v′ such that
[[ (e1 op)∗ v′ (op e2)∗ ]] = v, with ξ , [v′/e] ] ξ′ the thesis follows.

(cv4 = cv′4) We proceed by case analysis on the possible different pairs.

(n = x) The thesis immediately follows with ξ , [n/x] for some n ∈ N .

(n = sn) The thesis immediately follows with ξ , [n/sn] for some n ∈ N .

6.3.2 From PSCEL Policies To Constraints

To represent targets in terms of constraints, we define a formal translation procedure
which, intuitively, works in two steps. First, we approximate the potential subject and ob-
ject components of those actions matching the target. Then, we exploit them to translate
targets into their corresponding constraints.

Step (1 of 2): Potential Subject and Object Components. The components possibly in-
volved in the actions matching the target of a rule can be over-approximated by inspecting
the controls occurring in the rule target. In fact, controls concerning component names,
i.e. subject/id and object/id, or features, e.g. subject/level, statically limit the components
that can be represented by those authorisation requests that match the target. The sets of
the potential subject and object components of the actions matching the target, S and O
resp., are determined by functions Sbj and Obj , resp. The function Sbj is defined induc-
tively on the syntax of targets by the clauses in Table 6.2. The definition of Obj is similar,
hence it is omitted. It only differs from that of Sbj because it swaps the categories subject
and object.

The function Sbj , given in input a target τ and a system S, returns a set of component
names. Without loss of generality, we only consider targets belonging to policies like
Π(S,m), that is where the reserved variable this does not occur, and where the operator
¬ is only applied to relational functions or the value true2. Let us now briefly comment
the clauses. A target true matches all requests, thus the set S includes the names of all the

2This follows since, when a target is evaluated, each occurrence of this has been replaced by a component
name and since, by means of standard boolean laws, the syntax of the target expression can be manipulated
so that it is of the required form.
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SbjS(true) = {I.id | I ∈ Interf(S)} SbjS(¬ true) = {}
SbjS(τ1 ∧ τ2) = SbjS(τ1) ∩ SbjS(τ2) SbjS(τ1 ∨ τ2) = SbjS(τ1) ∪ SbjS(τ2)

SbjS(f (subject/id, pv)) ={
{n} if [[ pv ]] = n ∧ f ∈ {equal, pattern-match}
{} otherwise

SbjS(¬ f (subject/id, pv)) ={
{I.id | I ∈ Interf(S)} \ {n} if [[ pv ]] = n ∧ f ∈ {equal, pattern-match}
{} otherwise

SbjS(f (subject/z, pv)) = SbjS(¬ f (subject/z, pv)) = with z 6= id

{I.id | I ∈ Interf(S) ∧ (z : e) ∈ I}

SbjS(f (object/z, pv)) = SbjS(¬ f (object/z, pv)) =

{I.id | I ∈ Interf(S)}

SbjS(f (action/z, pv)) = SbjS(¬ f (action/z, pv)) =

{I.id | I ∈ Interf(S)}

Table 6.2: The function Sbj determining the set of the potential executing components

components of S. Conversely, a target ¬ true does not match any request, hence the set S
is empty. The set resulting from a conjunction (resp., disjunction) of targets corresponds
to the intersection (resp., union) of the sets calculated for the sub-targets. In case of
relational functions, the resulting set S mainly depends on the occurring structured name
sn. Let sn be subject/id. If f is an equality function and the policy value pv evaluates to a
name n, S only contains such a name. Therefore, when the operator ¬ is applied to f , S
contains all names except n. If f is not an equality function or the policy value pv does not
evaluate to a name n, the target cannot match any request, hence S is empty. Let sn be
subject/z with z 6= id. The set S includes the names of those components exposing such a
feature. Finally, when sn has category action or object, all component names are included
in S, because no additional information to restrict the potential subject components can
be deduced.

Step (2 of 2): Generating the Constraints. The formal translation of targets into con-
straints is given by the function T inductively defined on the syntax of targets by the
clauses in Table 6.3. The emphatic brackets {| and |} enclose the target τ to translate;
in addition to it, the function takes in input the sets S and O calculated from τ and the
name h of a policy rule. Thus, the translation of the target true corresponds to the value
true itself, while that of a composed target is given compositionally using the correspond-
ing constraint operators. The translation of function f(sn, pv) exploits the sets S and O.
Indeed, if the structured name sn is a subject/object feature different from id, the gen-
erated constraint has as many variables z-n representing the feature z as the component
names n in the set S/O. The disjunction ensures that the constraint addresses each pos-
sibly involved component. Instead, if the structured name represents the feature id or
an attribute with category action, the generated constraint uses the variables referring to
the rule named h. Notably, f is mapped to the corresponding constraint operator by the
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T {|true|}hS,O = true T {|¬τ |}hS,O = ¬ T {|τ |}hS,O
T {|τ1 ∧ τ2|}hS,O = T {|τ1|}hS,O ∧ T {|τ2|}hS,O T {|τ1 ∨ τ2|}hS,O = T {|τ1|}hS,O ∨ T {|τ2|}hS,O
T {|f(sn, pv)|}hS,O =

∨
n∈S z-n getOp(f) pv if sn = subject/z and z 6= id∨
n∈O z-n getOp(f) pv if sn = object/z and z 6= id

sub-h getOp(f) pv if sn = subject/id

obj-h getOp(f) pv if sn = object/id

id-h getOp(f) pv if sn = action/id

arg-h getOp(f) pv if sn = action/arg

Table 6.3: Translation function for rule targets

function getOp defined as follows

getOp(equal) = = getOp(greater-than) = >

getOp(less-than) = < getOp(pattern-match) = match

This means that the semantics of relational functions on targets is assumed to coincide
with that of the corresponding constraint operator.

To conclude, we prove that the satisfiability of the constraints representing targets
under the assignments induced by (authorisation requests corresponding to) obligation
actions correctly over-approximates the set of policy flows (Corollary 6.4). This follows
from the main result proving that the satisfiability of the constraint-based representation
of targets over-approximate target applicability (Theorem 6.3). Before, we show that S
and O correctly approximate the sets of potential subject and object components of those
actions matching the rule target (Lemma 6.2).

Lemma 6.2. Given a system S with I,J ∈ Interf(S), for any rule of the policy Π(S, I.id)
with target τ , and for any obligation action a such thatA(aξ′, I.id) = a for some substitution
ξ′, it holds that

E [[τ ]]req(I,a,J ) = true ⇒ I.id ∈ Sbj S(τ) and J .id ∈ Obj S(τ) .

Proof. We only prove that I.id ∈ SbjS(τ), as the proof that J .id ∈ ObjS(τ) proceeds similarly. We
let reqa , req(I,a,J ) and proceed by structural induction on the syntax of targets where, without
loss of generality, we assume that the operator ¬ is only applied to relational functions or the value
true.

(τ = true) We have S , SbjS(true) = {H.id | H ∈ Interf(S)} hence we have I.id ∈ S;

(τ = ¬ true) As the target cannot match any request, i.e. @ I : E [[τ ]]req(I,a,J ) = true, the thesis
immediately holds.

(τ = f (sn, pv)) We proceed by case analysis on sn.

(sn = subject/id) Let us suppose f ∈ {equal, pattern-match}. As the target matches the re-
quest, by definition of reqa, we have that I.id = n = [[pv]] for some name n ∈ N . Hence,
we have I.id ∈ S = SbjS(f (subject/id, pv)) = {[[ pv ]]}. Let us suppose [[ pv ]] 6∈ N or
f 6∈ {equal, pattern-match}. As the target cannot match any request, the thesis immedi-
ately holds.
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(sn = subject/z with z 6= id) As the target matches the request, by definition of reqa, we
have that (z : e) ∈ I ∧ [[ e ]] = v for some value v. Hence, as z 6= id, we have
I.id ∈ S = SbjS(f(subject/z, pv)) = {H.id | H ∈ Interf(S) ∧ (z : e ′) ∈ H}.

(sn = action/z) We have S , SbjS(f(action/z, pv)) = {H.id | H ∈ Interf(S)} hence we
certainly have I.id ∈ S;

(sn = object/z) We have S , SbjS(f(object/z, pv)) = {H.id | H ∈ Interf(S)} hence we
certainly have I.id ∈ S;

(τ = ¬ f(sn, pv)) We proceed by case analysis on sn.

(sn = subject/id) Let us suppose f ∈ {equal, pattern-match}. As the target matches the re-
quest, by definition of reqa, we have that I.id 6= [[ pv ]] and [[ pv ]] ∈ N . Hence, we
have I.id ∈ S = SbjS(¬ equal(subject/id, pv)) = {H.id | H ∈ Interf(S)} \ {[[ pv ]]}. Let
us suppose [[ pv ]] 6∈ N or f 6∈ {equal, pattern-match}. As the target cannot match any
request, the thesis immediately holds.

(sn = subject/z with z 6= id) As the target matches the request, by definition of reqa, we
have that (z : e) ∈ I ∧ [[ e ]] = v for some value v. Hence, as z 6= id, we have
I.id ∈ S = SbjS(¬ f(subject/z, pv)) = {H.id | H ∈ Interf(S) ∧ (z : e ′) ∈ H}.

(sn = action/z) We have S , SbjS(¬ f(action/z, pv)) = {H.id | H ∈ Interf(S)} hence we
certainly have I.id ∈ S;

(sn = object/z) We have S , SbjS(¬ f(object/z, pv)) = {H.id | H ∈ Interf(S)} hence we
certainly have I.id ∈ S;

(τ = τ1 ∧ τ2) We have S = SbjS(τ1 ∧ τ2) = SbjS(τ1) ∩ SbjS(τ2); the thesis immediately follows by
structural induction.

(τ = τ1 ∨ τ2) We have S = SbjS(τ1 ∧ τ2) = SbjS(τ1) ∪ SbjS(τ2); the thesis immediately follows by
structural induction.

Theorem 6.3. Given a system S with I,J ∈ Interf(S), for any rule ρ of the policy Π(S, I.id)
with id(ρ) = h and target τ , and for any obligation action a such that A(aξ′, I.id) = a for
some substitution ξ′, it holds that:

E [[τ ]]req(I,a,J ) = true ⇒ ∃ ξ : ξ |= T {|τ |}hS,O〈〈a〉〉hm .

Proof. We let reqa , req(I,a,J ) and proceed by structural induction on the syntax of targets; the
rules referred to throughout the proof are those of Table 5.4.

(τ = true) From the definition of E , we have E [[true]]reqa = true for any reqa. Since T {|true|}hS,O =

true and ξ |= true〈〈a〉〉hm for any ξ and a, the thesis follows due to Lemma 6.1.

(τ = f(sn, pv)) From the definition of E , we have E [[f (sn, pv)]]reqa = true⇒ f ([[reqa(sn)]], [[pv ]]) =
true. As constraint operators resulting from getOp(f ) have, by definition, the same semantics
of f , i.e. getOp(f ) ≡ f , we proceed by case analysis on sn.

(sn = action/id) As the target matches the request, by definition of reqa, we have
that reqa(action/id) = acid(a) such that f (acid(a), [[ pv ]]) = true. Since
T {|f(action/id, pv)|}hS,O = id-h getOp(f) pv and 〈〈a〉〉hm = [id-h := acid(a), . . .] where
acid(a) = acid(a) by definition, due to getOp(f ) ≡ f and Lemma 6.1, there exists ξ so
that the thesis follows.
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(sn = action/arg) As the target matches the request, by definition of reqa, we have that
reqa(action/arg) = pt such that f (pt, [[ pv ]]) = true for a policy tuple pt = (|t|)/(|T |)
with t/T argument of a. Since T {|f(action/arg, pv)|}hS,O = arg-h getOp(f) pv and
〈〈a〉〉hm = [arg-h := cv . . .], we have, due to Lemma 6.1, that there exists ξ such that
pt = cvξ. Hence, due to getOp(f ) ≡ f and Lemma 6.1, the thesis follows.

(sn = subject/id) As the target matches, by definition of reqa, we have that
reqa(subject/id) = I.id = m such that f (m, [[ pv ]]) = true. Since
T {|f(subject/id, pv)|}hS,O = sub-h getOp(f) pv and 〈〈a〉〉hm = [sub-h := m, . . .], due
to getOp(f ) ≡ f and Lemma 6.1, there exists ξ so that the thesis follows.

(sn = object/id) As the target matches, by definition of reqa, we have that reqa(object/id) =
J .id = n such that f (n, [[ pv ]]) = true. Since T {|f(object/id, pv)|}hS,O =

obj-h getOp(f) pv and 〈〈a〉〉hm = [obj-h := cv , . . .], we have, due to Lemma 6.1, that
there exists ξ such that n = cvξ. Hence, due to getOp(f ) ≡ f and Lemma 6.1, the
thesis follows.

(sn = subject/z with z 6= id) As the target matches the request, by definition of reqa, we
have that (z : e) ∈ I and [[ e ]] = v for some value v so that f (v, [[ pv ]]) = true.
Since T {|f(subject/z, pv)|}hS,O =

∨
l∈S z-l getOp(f) pv , we have, due to Lemma 6.2,

that I.id = n ∈ S = SbjS(τ), hence z-n occurs. Thus, with ξ , [v/z-n, . . .] and due to
getOp(f ) ≡ f and Lemma 6.1, the thesis follows.

(sn = object/z with z 6= id) As the target matches the request, by definition of reqa, we have
that (z : e) ∈ J and [[ e ]] = v for some value v so that f (v, [[ pv ]]) = true. Since
T {|f(object/z, pv)|}hS,O =

∨
l∈O z-l getOp(f) pv , we have, due to Lemma 6.2, that

J .id = n ∈ O = ObjS(τ), hence z-n occurs. Thus, with ξ , [v/z-n, . . .] and due
to getOp(f ) ≡ f and Lemma 6.1, the thesis follows.

(τ = ¬τ1) We have T {|¬τ1|}hS,O = ¬T {|τ1|}hS,O; due to the definition of E , the thesis immediately
follows by structural induction.

(τ = τ1 ∧ τ2) We have T {|τ1 ∧ τ2|}hS,O = T {|τ1|}hS,O ∧ T {|τ2|}hS,O; due to the definition of E , the
thesis immediately follows by structural induction.

(τ = τ1 ∨ τ2) We have T {|τ1 ∨ τ2|}hS,O = T {|τ1|}hS,O ∨ T {|τ2|}hS,O; due to the definition of E , the
thesis immediately follows by structural induction.

Corollary 6.4. Given a system S with I,J ∈ Interf(S), for any rule ρ of the policy Π(S, I.id)
with id(ρ) = h, and for any obligation action a such that A(aξ′, I.id) = a for some substitu-
tion ξ′, it holds that:

P[[ρ]]req(I,a,J ) = d′, s ′B, s
′
A ⇒ ∃ ξ : ξ |= T {|τ |}hS,O〈〈a〉〉hm .

Proof. From the definition of P we have that a rule ρ controls an action a when its corresponding
request reqa = req(I,a,J ) matches the rule target, i.e. it evaluates to true. Hence, the thesis
immediately follows from Theorem 6.3.

6.4 Policy-Flow Graph

We now define the construction of a graph, called Policy-Flow graph, that, by relying on the
previous constraint-based representation of rule targets and authorisation requests, graph-
ically and compactly represents all the potential flows in a policy. Afterwards, we apply
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the graph to the case study (Section 6.4.1) and outline the SMT-LIB coding of constraints
that allows the PSCEL IDE to automatise the construction of flow graphs (Section 6.4.2).

As policies can check conditions on the context (which is made of the component fea-
tures), the edges are annotated with the contextual conditions holding when the corre-
sponding flow takes place. For convenience, we re-organise the constraints representing
targets so that the constraints involving variables from the set AΠ are separated from those
involving variables from the set FS3. In the following, we thus assume they are written in
the form act ∧ ctx , where act is the constraint on the action, while ctx is that on the con-
text; if a constraint is empty, it corresponds to true. Furthermore, as a matter of notation,
we use ρ �act∧ctx s to indicate that act ∧ ctx is the constraint representing the target of
rule ρ and that s is the sequence of before and after obligations generated when the rule
applies.

Intuitively, the nodes of the graph represent policy rules, or its combining algorithm,
while the directed edges represent the flows. Hence, the graph paths estimate the se-
quences of policy evaluations that might occur at runtime. Formally, the Policy-Flow graph
is defined as follows.

Definition 6.2 (Policy-Flow Graph). The Policy-Flow graph GΠ of a policy Π(S,m) ,
〈alg rules : ρ1 . . . ρk〉 is a doubly labelled directed graph (N,F, T, L) where

• N , i.e. the set of nodes, is {id(ρ1), . . . , id(ρk), alg} (recall that id(ρj) is the name of
rule ρj);

• F , i.e. the set of edge labels, is {ctx j | ρj �actj∧ctx j sj with j = 1, . . . , k};

• T ⊆ N × F ×N , i.e. the set of labelled directed edges, contains the elements

– (id(ρj), ctx j , id(ρl)): for each rule pair ρj and ρl, with ρj �actj∧ ctx j sj and
ρl �act l∧ ctx l sl, such that ∃ a ∃sj ,∃ ξ : ξ |= (act l ∧ ctx l)〈〈a〉〉lm;

– (id(ρj), ctx j , alg): for each rule ρj , with ρj �actj∧ ctx j sj , such that ∃ a ∃sj , 6 ∃ ρl,
with ρl �act l∧ ctx l sl, such that ∀ξ : ξ |= (act l ∧ ctx l)〈〈a〉〉lm;

• L : N → {p, d}, i.e. the node labelling function, is defined as follows

L(id(ρj)) = p if ρj has decision permit L(alg) = p if alg = p-unless-d
L(id(ρj)) = d if ρj has decision deny L(alg) = d if alg = d-unless-p

The graph has two types of edges: one representing a flow between two rules, the
other representing a flow from a rule to the combining algorithm. In the first edge type,
id(ρj) is connected to id(ρl) when there exists in the sequence sj an action a whose in-
duced assignment 〈〈a〉〉lm makes the constraint corresponding to the target of the rule ρl
satisfiable, i.e. there exists ξ such that ξ |= (act l ∧ ctx l)〈〈a〉〉lm holds. The edge is annotated
with the contextual conditions ctx j asserted by the target of ρj . In the second edge type,
id(ρj) is connected to alg when there exists in the sequence sj an action a whose induced
assignment 〈〈a〉〉lm cannot make the constraint corresponding to the target of any rule ρl
always satisfiable, i.e. there does not exist ρl such that for all substitutions ξ the condition
ξ |= (act l ∧ ctx l)〈〈a〉〉lm holds; the edge is annotated with ctx j as well. If multiple edges

3This splitting can always be done by appropriately applying standard boolean laws because each relational
operator takes at most one variable as argument.
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with the same label connect a node id(ρj) to node alg , only one of them is retained. No-
tably, the same action a can cause, due to different substitutions, the creation of edges of
both types. Since combining algorithms neither define controls nor obligations, alg has no
outgoing edges. Notice that determining the set of edges T has a worst case complexity
of O(k2θ), where k is the number of policy rules and θ is the maximum number of actions
forming the obligations of the policy rules (e.g., in the case of policy ΠS , θ has value 3
because of the obligation actions of rule S2). Indeed, both edge types require examining
all the k×k pairs of rules. Each pair of both types requires examining at most θ obligation
actions.

To sum up, the edges of the graphs approximate the flows between the policy rules,
while the paths in the graph, i.e. sequences of connected edges, estimate the sequences of
policy evaluations that might occur at runtime.

6.4.1 Policy-Flow Graph at work on the Autonomic Cloud Case Study

The policies ΠS and ΠC presented in Section 6.2 generate the flows graphically depicted
by the graphs in Figure 6.1. Before commenting the construction of the graphs, we outline
the constraint-based representation of some of the rule targets. For simplicity’s sake, we
consider a system S formed by three components: one server and two clients named sr1 ,
cl1 and cl2 , respectively. The set of system interfaces Interf(S) is defined as {I1, IC1 , IC2}.

Let us first determine the sets of variables AΠ and FS . The set FS contains as many
variables as the interface features of each of the three components, that is role, level, locality
and load. Instead, the set AΠ depends on the policy. For example, in the case of ΠS , it
is {id-h, arg-h, sub-h, obj-h | h ∈ {S1, S2, S3, S4}}. For ease of reference, as a subscript
of constraint names we use the name of the rule enclosing the represented target; e.g.,
the constraint named actS1 represents the action conditions of rule S1. Furthermore,
to increase readability of constraints, we underline constraint variables, e.g. id-S1, and
structured names occurring in constraint assignments, e.g. action/arg.

We report now some examples of constraint-based representation of targets. Let us
consider rule S1 of the policy ΠS in force at the component sr1 . Firstly, we determine the
sets S and O, i.e. via functions Sbj and Obj . We have that S = {sr1} due to the control
equal(subject/id, sr1 )4, while O = {sr1 , cl1 , cl2}, i.e. it contains the names of all system
components, because the only control restricting the set of names is that on the feature
level that is anyway exposed by all components. Secondly, the translation function T is
applied to the target of rule S1 and returns

(id-S1 = get) ∧ (sub-S1 = sr1 ) ∧ (arg-S1 match (task, _, _, _))

∧ (level-sr1 = 1) ∧ ((level-sr1 = 2) ∨ (level-cl1 = 2) ∨ (level-cl2 = 2))
(6.1)

The sub-constraints in the first row represent the target controls referring to the action;
their conjunction forms the constraint actS1. The sub-constraints in the second row rep-
resent the two target controls on the feature level: (level-sr1 = 1) is obtained from the
control equal(subject/level, 1) by exploiting the set S, while the disjunction following the
operator ∧ is obtained from the control equal(object/level, 2) by exploiting the set O. The
conjunction of the sub-constraints in the second row forms the constraint ctxS1.

4The name sr1 of the component where the policy ΠS is assumed to be in force is that referred to by the
variable this occurring in the definition of rule S1.
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Figure 6.1: Autonomic cloud case study: Policy-Flow graphs (some conditions ctxh are
detailed in the text): (a) policy ΠS of servers; (b) policy ΠC of clients

In case of rule S4 of the policy ΠS , its target is represented by the constraint

(id-S4 = put) ∧ (sub-S4 = sr1 ) (6.2)

It forms the constraint actS4, while the constraint ctxS4 is true since there are no contex-
tual controls in the rule target.

Let us consider rule C2 of the policy ΠC ; its target is represented as follows

(id-C2 = get) ∧ (role-sr1 = server ∨ role-cl1 = server ∨ role-cl2 = server) (6.3)

where S = {sr1 , cl1 , cl2} is used to define the constraints on the feature role.
The constraints just introduced can now be exploited to construct the Policy-Flow

graphs of the policies ΠS and ΠC according to Definition 6.2. For simplicity’s sake, we
use the name of the rules and of the algorithm to identify the corresponding node in the
graph. Since the policy rules that do not define obligations cannot trigger other rules the
corresponding nodes have no outgoing edges. As depicted in Figure 6.1, this is the case,
e.g., of rules S1 and S3 of policy ΠS . In the remaining cases, to determine the outgoing
edges of a node, we check if any obligation action of its corresponding rule induces an
assignment that makes the constraint representing a rule target satisfiable.

Let us consider the construction of the graph of the policy ΠS . Rule S4 returns the obli-
gation action put(log , action/arg)@self that, relatively to node S4, induces the assignment
[id-S4 := put, arg-S4 := (log, action/arg), sub-S4 := sr1 , obj-S4 := sr1 ]. This assignment
makes the applicability constraint of S4, reported in (6.2), satisfiable. In fact, by applying
the assignment, we get the constraint put = put ∧ (sr1 = sr1 ) that clearly evaluates to
true. Hence, there is a self loop on node S4 labelled by the contextual constraint ctxS4,
i.e. true. The other flows in policy ΠS are generated by the obligation actions within rule
S2. By reasoning as before we can easily establish that its fresh and new actions do not
match the target of any rule, therefore there is a flow from node S2 to node p-unless-d,
while its read action can match the target of rule S3 when the subject load is higher than
60, hence there is a flow from node S2 to node S3. Notice that, when the load is less than
60, the action read does not match the target of rule S3, hence, as there does not exist
a rule always applicable to such action, there can be also a flow to node p-unless-d. On
the contrary, node S4 is not connected to node p-unless-d, because the rule itself is always
applicable to its obligation (it follows directly from the fact that constraint (6.2), with
applied the corresponding assignment, is satisfied and does not contain open terms).
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The graph of the policy ΠC is constructed similarly. We only comment on the flow
from node C1 to node C2 meaning that the obligation action get returned by rule C1 can
be controlled by rule C2. Indeed, C2 applicability constraint, reported in (6.3), is sat-
isfiable by applying the assignment [id-C2 := get; arg-C2 := (taskId,num); sub-C2 :=
cl1 , obj-C2 := cl1 ] induced by the obligation action of C1 relatively to node C2. How-
ever, this flow cannot actually occur, because rule C2 checks if the action subject has role
server , while the injected action get is locally executed by a client component. This over-
approximation derives from the fact that the static analysis we pursue abstracts from the
actual values (and their modifications) of the context features.

Remark 6.2 (Assignment induced by the structured name action/arg). The obligation ac-
tions can use the structured name action/arg which dynamically will be replaced by the
item/template argument of the action that has matched the target of the rule generating
the obligation action. To statically determine the assignment induced by the action, it is then
safe to map action/arg to a variable that can assume any policy value. For the sake of pre-
sentation, we do not introduce additional refinements, but it is worth noticing that we could
use the controls occurring in the target of a rule to better approximate the set of potential
values which action/arg can dynamically refer to. We briefly illustrate the point through the
example below.

Let us consider rule C1 and its obligation action put(action/arg,num)@self. When
the action is dynamically fulfilled, the name action/arg is replaced by the item/template
argument of the action that has matched the target of C1. Therefore, from the control
pattern-match(action/arg,(task, _, _)) we get that action/arg will necessarily represent an
item/template of three elements with the value task as its first one. Thus, since the item
of the obligation action put extends the three-element item referred to by action/arg with
num, variables arg-h can only assume four-element item/template values that have task as
their first element. By the way, the addition of an element to the original item prevents the
occurrence of a self loop on node C1 (indeed, its target only applies to three-element item-
s/templates).

6.4.2 Automated Policy-Flow Graph Construction

The construction of Policy-Flow graphs requires extensive checks on rules and obligations,
hence, in order to be practically effective, tool support is essential. To this aim, we ex-
press the PSCEL-oriented constraint formalism introduced in Section 6.3.1 by means of
the SMT-LIB language; this coding is done in a way similar to that of Section 4.5.1. On
the basis of this SMT-LIB code, the PSCEL IDE can opportunely exploit the Z3 SMT solver
to automatically construct Policy-Flow graphs.

The SMT-LIB coding of the PSCEL constraints corresponds to a simplified version of
that of the FACPL ones. In fact, as policy-flows refer only to applicable (authorisation
requests representing) actions and PSCEL rules are not applicable if an attribute is missing
or erroneous (see Remark 5.3), the SMT-LIB coding models attributes as single (typed)
variables, and not as 3-valued records like in FACPL.

First of all, given a PSCEL specification, we declare the variables forming the sets AΠ

and FS . The case of FS is straightforward: each feature of each component corresponds
to a variable. For instance, a server sr1 of the autonomic cloud case study generates the
following variable declarations
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(declare-const n_sr1_id Str)
(declare-const n_sr1_role Str)
(declare-const n_sr1_level Int)
(declare-const n_sr1_locality Str)
(declare-const n_sr1_load Int)

where the datatype Str is used to represent in Z3 string values.
The case of AΠ requires instead a slightly more complicated coding, due to the variable

arg-h and the pattern-matching function defined on it. In fact, as SMT-LIB is strongly-
typed, we cannot use a record type to code sequences of elements of different types or to
compare sequences of different lengths. Therefore, given a rule h defining a pattern match
control in its target, the variable arg-h corresponds to: (i) a set of variables representing
the elements of the template argument of the pattern match control; (ii) a variable repre-
senting the length of such template. The set of variable declarations for a rule containing,
e.g., the control pattern-match(action/arg,(task, _, _)) is as follows

(declare-const n_sub/id Str)
(declare-const n_obj/id Str)
(declare-const n_act/id ACTIONID)
(declare-const n_act/arg_1 Str)
(declare-const n_act/arg_2 Str)
(declare-const n_act/arg_3 Str)
(declare-const n_act/argN Int)

where the datatype ACTIONID represents the PSCEL action identifiers, while the SMT-LIB
variable named n_act/argN refers to the template length. Notice that the second and third
element of the template are represented by SMT-LIB variables with type Str, because the
PSCEL IDE requires a type for each template element.

Once variables are declared, the constraint functions of Table 6.1 and, consequently,
the translation procedure of Table 6.3 can be straightforwardly defined. By way of exam-
ple, we report in the following the SMT-LIB constraint cns_S1 of rule S1 corresponding to
the formal constraint reported in (6.1).

(define-fun cns_S1 () Bool
(and

(= n_act/id GET)
(= n_sub/id s_sr1)
(= n_act/arg_1 s_task)
(= n_act/argN 4)
(= n_sr1_level 1)
(or

(= n_sr1_level 2)
(= n_cl1_level 2)
(= n_cl2_level 2))))

To reason on applicability of obligations, we thus code each obligation action into a
set of assertions on constraint variables. This coding is made according to the definitions
in (A-1) and, e.g., in the case of obligation put(log , action/arg)@self is as follows
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(a) (b)

Figure 6.2: Autonomic cloud case study: Policy-Flow graphs generated by the PSCEL IDE
(PuD stands for p-unless-d): (a) policy ΠS of servers; (b) policy ΠC of clients

(define-fun cns_Obl () Bool
(and

(= n_sub/id s_sr1)
(= n_obj/id s_sr1)
(= n_act/id PUT)
(= n_act/arg_1 s_log)
(= n_act/argN 2)))

Finally, once all rules and obligations are coded into SMT-LIB, the flow graph can be
constructed by checking the conditions defining the graph edges. The first edge type
requires a satisfiability check, while the second requires a set of validity checks.

The generation of the SMT-LIB code and the checks for the edge definition are auto-
matically carried out by the PSCEL IDE. As a result, it is generated a text file representing
the flow graph, that can be automatically drawn via the Graphviz tool5. Figure 6.2 re-
ports the flow graphs generated by the PSCEL IDE for the autonomic cloud case study and
drawn by Graphviz.

6.5 Progress Analysis of PSCEL Specifications

Policy evaluations may affect the progress of controlled processes. The effects on progress
can be expressed in terms of the following properties

• finite evaluation: each action can only trigger a finite number of policy evaluations;

• undeniable executability: once an action is positively authorised, the execution of the
controlled process cannot be blocked due to the injection of an action that is denied.

For example, rule S4 in the previous section shows a violation of the former property,
while rules C1 and C3 show a violation of the latter one.

The properties above refer to the flows that a policy may generate and can be ver-
ified in terms of conditions on the structure of the Policy-Flow graph. Since the graph

5Graphviz - http://www.graphviz.org/
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paths statically address conditions on the context, we need to assume that the context
is somehow stable, that is it does not change along each path. To effectively reason on
contextual conditions, we introduce the characteristic formula of a path, which is made of
the contextual conditions occurring along the path, and the concept of feasible path.

As a matter of notation, we assume that the set N of nodes of a flow graph GΠ is
ranged over by ν and that the function cstr, given in input a node ν, returns the constraint
corresponding to the policy rule represented by ν; the function returns true if ν represents
a combining algorithm.

In the following, we first consider a simplified situation which abstracts from the con-
trolled processes (Section 6.5.1), then we illustrate how to extend our results when all
intricacies come into the picture (Section 6.5.2). We conclude by defining a syntactic
check to approximate the context stability of a policy (Section 6.5.3).

6.5.1 Context-stable Policies

Before presenting the structural conditions on the flow graph over-approximating the ver-
ification of the considered properties, we formalise the concepts of context-stable policy
and that of feasible path.

Definition 6.3 (Context-stable Policy). A policy is context-stable if, along each path of its
Policy-Flow graph, the features it checks do not change value.

Intuitively, if a policy is context-stable then, given a feature n checked by (the target
of a rule of) the policy, an action of the form upd(n, e) cannot interleave with the policy
evaluations forming a path. This check could be done manually, e.g. in the case of our
case study6, or syntactically over-approximated by checking the policy specification. We
refer to Section 6.5.3 for further details.

The paths of Policy-Flow graphs are annotated with constraints ctx , which represent
the context conditions holding when the corresponding policy evaluations occur. To con-
sider them in the analysis, we introduce the following notion.

Definition 6.4 (Characteristic Formula of a Path). Given a path formed by nodes ν1 . . . νk,
its characteristic formula is µ ,

∧k
j=1 cstr(νj).

Notably, due to the context-stability assumption, it is enough to consider the context
conditions occurring in a loop only once. A path is deemed feasible if, under the context-
stability assumption, its characteristic formula is satisfiable. Unsatisfiable paths in the
policy-flow graph represent sequences of flows that, due to conflictual contextual con-
ditions, e.g. like role-sr1 = server and role-sr1 = client, cannot actually occur in the
system.

Finite Evaluation

A (context-stable) policy enjoys the finite evaluation property when each action matching
the target of any rule can only trigger finite sequences of policy evaluations. It follows that
the property holds when the Policy-Flow graph has no feasible infinite paths, i.e. loops, as
stated by the following theorem.

6E.g., rule S2 of policy ΠS checks the feature load. Since S2 only generates paths of length one, possible
updates of load cannot interleave with policy evaluations.
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Theorem 6.5. A context-stable policy enjoys the finite evaluation property only if its Policy-
Flow graph contains no feasible loops.

Proof. Let Π be a context-stable policy enjoying the finite evaluation property. Suppose that its
graph GΠ has a feasible loop, that is a path of the form

id(ρj0)
cj0- . . .

cjk−1- id(ρjk)
cjk- . . .

cjn−1- id(ρj0)

whose characteristic formula µ is satisfiable. Then, from Definition 6.2 and Corollary 6.4, it follows
that the sequence of rules

ρj0 . . . ρjk−1
ρjk . . . ρj0

is such that, for each pair of rules ρjk−1
ρjk , at least an obligation a injected by rule ρjk−1

triggers the
evaluation of rule ρjk . This is a contradiction since rule ρj0 triggers infinite policy evaluations.

As informally pointed out in Section 6.4.1, this structural condition is not met by policy
ΠS , while it holds for policy ΠC .

Undeniable Executability

A policy enjoying the finite evaluation property can anyway undermine the progress of
a controlled process due to the authorisations it enforces. The undeniable executability
property addresses the case of injected obligation actions that are denied. Specifically,
once an action has been permitted, the denying of some of the obligations whose injec-
tion was caused by the action authorisation may prevent the execution of the controlled
process. It follows that the property holds when, in the Policy-Flow graph, each path con-
taining nodes labelled by p (i.e., enforcing permit) does not contain nodes labelled by d
(i.e., enforcing deny).

Theorem 6.6. A context-stable policy enjoys the undeniable executability property only if for
each feasible path in its Policy-Flow graph, if the path contains a node labelled by p, than
after this node there is no node labelled by d.

Proof. Let Π be a context-stable policy enjoying the undeniable executability property. Suppose
that its graph GΠ has a feasible path containing at least a node labelled by p and one labelled by
d, that is a path of the form

id(ρj0)
cj0- . . .

cjk−1- id(ρjk)
cjk- . . .

cjn−1- id(ρjn)

where L(id(ρj0)) = p and L(id(ρjn)) = d, whose characteristic formula µ is satisfiable. Thus, from
Definition 6.2 and Corollary 6.4, it follows that the sequence of rules

ρj0 . . . ρjk−1
ρjk . . . ρjn

is such that, for each pair of rules ρjk−1
ρjk , at least an obligation a injected by rule ρjk−1

triggers
the evaluation of rule ρjk . This is a contradiction since rule ρj0 has decision permit, while ρjn has
decision deny.

Concerning the graphs in Figure 6.1, it is easy to check that policy ΠC meets the
condition of Theorem 6.5 while policy ΠS does not; instead, because of the path between
rules C1 and C3, policy ΠC does not met the condition of Theorem 6.6.

The converse of Theorems 6.5 and 6.6 does not hold. This is a consequence of Theo-
rem 6.4 and of the fact that the Policy-Flow graph does not take into account the evalua-
tion of the combining algorithm, but it only considers rules separately.
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6.5.2 Context-stable Policies with respect to a Process

The progress analysis presented for context-stable policies can be refined by taking into
account the controlled process. In particular, the conditions of Theorems 6.5 and 6.6, as
well as Definition 6.3, can be relaxed according to process definitions. Intuitively, when a
process is taken into account, the theorem conditions can only address those graph paths
that the process can trigger. Before presenting the refined results, we introduce some
auxiliary notations.

Given a policy Π(S,m) and its Policy-Flow graph GΠ = (N,F, T, L), we define the set
PGΠ

of all the possible paths of the graph as follows

PGΠ
= {νj0 . . . νjn | νjk , νjk+1

∈ N , (νjk , ctx jk , νjk+1
) ∈ T with k ∈ {0, . . . , n− 1}, n ≥ 1}

While, given a process P and a policy Π(S,m), the set PPGΠ
⊆ PGΠ

of all paths of GΠ that
the process P can trigger is defined as follows

PP
GΠ

= {νj0 . . . νjn | νj0 . . . νjn ∈ PGΠ , ∃ a in P , ξ : ξ |= cstr(νj0)〈〈a〉〉j0m}

where cstr(νj0) identifies the constraint of the rule represented by the node νj0
7. Indeed,

the set PPGΠ
contains all those paths that start from a node representing a rule whose

target can match an action a occurring in P . This set contains, due to Corollary 6.4 and
Definition 6.2, each possible path triggered by the actions of process P . Notice that we can
apply the result of Corollary 6.4 because process actions are a limited version of obligation
actions, i.e. structured names cannot occur in place of names.

Definition 6.5 (Context-stable Policy with respect to a Process). A policy Π(S,m) is
context-stable with respect to a process P , if along each path of PPGΠ

, the value of the
features checked by Π do not change.

Theorems 6.5 and 6.6 can be now relaxed by only considering the set of paths PPGΠ
.

The following corollaries report, respectively, the conditions over-approximating the ver-
ification of the finite evaluation and undeniable executability properties when a process is
taken into account.

Corollary 6.7. A policy Π(S,m) context-stable with a process P enjoys the finite evaluation
property only if the set of paths PPGΠ

contains no feasible loops.

Proof. The proof proceeds like that of Theorem 6.5, but by taking a path from PP
GΠ

.

Corollary 6.8. A policy Π(S,m) context-stable with a process P enjoys the undeniable exe-
cutability property only if all the feasible paths in PPGΠ

containing nodes labelled by p do not
contain nodes labelled by d.

Proof. The proof proceeds like that of Theorem 6.6, but by taking a path from PP
GΠ

.

To sum up, if a process cannot trigger paths violating the considered property, the
policy controlling such process enjoys the property, even though it does not by itself.

7The node νj0 cannot represent a combining algorithm, because such a node would have no outgoing edge
by definition.
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6.5.3 Context-Stability: Syntactic Check

Defining if a policy is context-stable (with respect to a process) can be statically approx-
imated by examining the obligation actions defined in a policy and, if a process is taken
into account, the process actions. Indeed, the set of feature names occurring in a policy
is compared against the features possibly modified by obligation actions (and process ac-
tions). Recall that features can only be updated by actions upd(n, e) and that the feature
name n cannot be provided through variables nor structured names.

We define the function c_names that, given a target τ , returns the set of the occurring
feature names. Its definition is as follows

c_names(τ) = {n | ∃ sn = subject/n or sn = object/n in τ}

The resulting set contains all those feature names n occurring in the structured name sn.
Both subject and object categories are considered, because a component can be either the
subject or object component of an action.

The function c_names is then extended to rules and policies as follows

c_names(n(d target : τ obl : o∗ )) = c_names(τ)

c_names(〈alg rules : ρ1 . . . ρk〉) =
⋃k
j=1 c_names(ρj)

Namely, the function returns the set of names of the rule target, in the case of a rule, and
the set of names resulting from the union of the sets representing the enclosed rules, in
the case of a policy.

A policy Π is thus context-stable if the following condition holds

∀ upd(n, e) in Π ⇒ n /∈ c_names(Π)

which means that no obligation action acting on features can modify the features checked
in the policy, i.e. those in c_names(Π).

Instead, a policy Π is context-stable with respect to a process P if the previous condition
holds together with the following one

∀ upd(n, e) in P ⇒ n /∈ c_names(Π)

which refers to the process actions acting on features. Conditions on both obligation and
process actions are needed, because it is not possible to syntactically understand whether
an action comes from an obligation injected in the process.

Notice anyway that this check over-approximates the context-stability of a policy. In
fact, features checked by a policy along a path, but modified along another path, violate
the check causing false-positive.

6.6 Concluding Remarks

In this chapter we have presented a static analysis approach for PSCEL that, based on the
notion of Policy-Flow graph, permits reasoning on the potential policy evaluations and
their effects on the progress of systems. Here, we conclude by briefly commenting on the
contributions of this analysis with respect to the research objectives of the thesis and to
related and prior publications.
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The specification of this analysis approach accomplishes the objective O6, hence it
supports the analysis of PSCEL specifications by pointing out the effects on system be-
haviours of policy evaluations. Together with jRESP, the functionalities of the PSCEL IDE
supporting the automated construction of the Policy-Flow graph contribute accomplishing
the objective O7. Notice that the progress analysis based on the Policy-Flow graph can be
supported by leveraging on the SMT-LIB code generated by the PSCEL IDE.

The analysis of SCEL-like systems was also addressed in [DLL+14, DLL+15] by means
of the Spin model checker [Hol97]. Specifically, it is provided a translation of a lightweight
version of SCEL into Promela, i.e. the input language of Spin, and shown how to exploit
it to verify some properties of interest. However, the policies and some programming
constructs are not taken into account. Our approach crucially addresses the role of policies
and permits verifying progress properties related to the potential evaluations of policies.

In the literature, analysis approaches for languages featuring AOP characteristics, like,
e.g., AspectK [HNNY08], have also been proposed. For instance, [TNN12] concerns the
analysis of AspectK and proposes an approach based on communicating pushdown sys-
tems [BET03] to discover undesired infinite executions. However, AspectK has signif-
icantly less powerful functionalities than PSCEL, e.g. predicate-based communication.
Furthermore, our approach is completely statical and only relies on the abstractions of the
flow graph.

The contents of this chapter are mainly based on the work in [MRNNP16a,
MRNNP16b]. All the works concerning SCEL do not address any of the contents reported
in this chapter.

To conclude, we briefly comment on the scientific contribution of the proposed anal-
ysis. In particular, to our knowledge, the Policy-Flow graph addresses for the first time
a flow analysis of policies that can be used to reason on the dynamic behaviours of au-
tonomic systems. Generally speaking, this sort of analysis does not only refer to PSCEL,
but it can be easily adapted to any other language featuring some distinguishing traits of
PSCEL, i.e. interfaces, attribute-based requests and obligation actions.
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Related Works

In this chapter we review more closely related works to the FACPL and PSCEL languages
and their analysis approaches. Before commenting in details these works, we outline
below some other relevant application domains of policy-based systems.

The use of policies is usually advocated to decouple the managing aspects of a system
from its functional behaviour, thus to achieve separation of concerns in system design. One
of the first examples was in the context of computer security: in [WL93] policies were
used to specify authorisation rules for programs. Besides access control and autonomic
computing, other application domains that exploit policies are emergency handling and
network management.

Emergency handling concerns all those applications that have to fulfil strict require-
ments beyond merely data secrecy. For example, in healthcare systems the accomplish-
ment of patient treatment has to be always guaranteed, according to the principle that
‘nothing can interfere with delivery of care’. This is an instance of a more general princi-
ple known as ‘break the glass’ [Joi04], which means that access controls can be bypassed
in case of emergency. Many research efforts are being devoted to investigate these is-
sues. For example, [ADCdVF+10] proposes an approach based on different policy spaces
that are combined to model the additional behaviours needed in case of emergency. The
approaches in [BP09, MDS14] rely on a lattice ordering of policies, that are applied ac-
cording to the lattice value corresponding to each specific emergency. Notably, all these
proposals exploit the high abstraction level of attributes to capture emergency informa-
tion, and only require suitable ways of combining policies. Therefore, we can use FACPL
for implementing any of them. For instance, to manage emergencies within the e-Health
case study, we can simply introduce an additional policy that bypasses, in case of emer-
gency, the other ones.
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Policy Number of lines Saved Number of characters Saved

XACML FACPL lines XACML FACPL characters
e-Prescription 239 24 89,95% 10.656 894 91,61%
e-Dispensation 239 24 89,95% 10.674 914 91,43%
Consent Policy 423 38 91,01% 19.195 1.558 91,88%

Table 7.1: FACPL vs. XACML on the e-Health case study

Networks management is another significative application domain for policy lan-
guages. In fact, high-level management policies are convenient for dealing with the variety
of heterogeneous devices typically present in computer networks; such an approach is ex-
ploited, e.g., in [Ver02]. An appropriate use of attributes allows also FACPL to define
similar policies.

Structure of the chapter. The rest of this chapter is organised as follows. Section 7.1
comments on differences and interoperability of FACPL with XACML. Section 7.2 com-
pares the most relevant languages for the specification of access control policies. Sec-
tion 7.3 reviews the different approaches to the analysis of access control policies. Sec-
tion 7.4 outlines different design and analysis approaches for autonomic computing sys-
tems. Section 7.5 concludes by comparing functionalities and performance of supporting
tools.

7.1 FACPL vs XACML

XACML [OAS13] is a well-established standard for the specification of attribute-based
access control policies and requests. Its XML-based syntax and informal evaluation process
have been already introduced in Section 2.1.4. We comment here on the main syntactical
and semantic differences and similarities with FACPL.

From a merely lexical point of view, FACPL allows developers to define each policy
element via a lightweight mnemonic syntax and leads to compact policy specifications.
Instead, the XML-based syntax used by XACML ensures cross-platform interoperability, but
generates verbose specifications that developers hardly immediately understand and, most
of all, are not suitable for formally defining semantics and analysis techniques. Table 7.1
exemplifies a lexical comparison between the FACPL policies for the e-Health case study
and the corresponding XACML ones (both groups of policies can be downloaded from
http://facpl.sourceforge.net/eHealth/).

Although FACPL and XACML policies have a similar structure, there are quite a number
of (semantic) differences. In the following, we outline the main ones.

In FACPL, request attributes are referred by structured names. In XACML, they are
referred by either AttributeDesignator or AttributeSelector elements. The former one corre-
sponds to a typed version of a structured name, while the latter one is defined in terms of
XPath expressions, which are not supported by FACPL. Anyway, FACPL can represent some
of them by appropriately using structured names; e.g. an AttributeSelector with category
subject and an XPath expression like type/id/text() correspond to subject/type.id.

The XACML Target structure AnyOf-AllOf-Match can be rendered in FACPL by means of,
respectively, the expression operators and-or-and. However, slightly different results can be
obtained from target evaluations due to the management of errors and missing attributes.
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Features XACML Ponder ASL PTaCL [RLB+09] [ACC14] KAoS FACPL
Rule-based X X X
Logic-based X X X X

Ontology-based X
Mnemonic spec. X X

Comb. algorithms X X∗ X∗ X X∗ X∗ X
Obligations X X X X

Missing attributes X X X
Error handling X X

Table 7.2: Comparison of a relevant set of policy languages (where X∗ means that user
encoding are required)

Indeed, when a value is missing, XACML semantics returns false, and this occurs since
the level of Match elements, whereas the FACPL semantics of the target elements returns
⊥ until the level of policies is reached, where ⊥ is converted to false. Thus, a missing
attribute could be masked in XACML but not in the corresponding FACPL expression;
the same occurs for evaluation errors. Additionally, the evaluation of Match functions
in XACML is iteratively defined on all the retrieved attribute values. To ensure a similar
behaviour in FACPL, an XACML expression such as, e.g., an equality comparison must be
translated into an operator defined on sets, like e.g. in. Clearly, this limits the amount of
XACML functions that can be faithfully represented in FACPL. Furthermore, XACML poses
specific restrictions on PolicySet targets: they can only contain comparison functions and
each comparison can only contain one attribute name.

XACML requires that Rules can be combined with other Rules but not with PolicySets. It
supports fewer combining algorithms than FACPL, as well as fulfilment strategies (indeed,
XACML can only render the greedy one). Furthermore, XACML specialises the decision
indet into three extended indeterminate values: indetD, indetP and indetDP. As reported
in Section 3.1, we have not considered the extended indeterminate values in the formal
account of FACPL, but they are supported by the FACPL tools.

Additionally, XACML provides some constructs that do not crucially affect policy ex-
pressiveness and evaluation. For instance, Variable elements permit defining pointers to
expression declarations. These constructs are not directly supported by FACPL.

It is finally worth noticing that the aim of FACPL is to propose and deploy a com-
pact, yet expressive, language whose formal foundations enable tool-supported analysis
techniques, rather than to supersede XACML or only face its semantic issues.

7.2 Languages for Access Control Policies

Languages for the specification of access control policies have recently been the subject of
extensive research, both by industry and academia. In the following, we compare some of
the main languages with FACPL; Table 7.2 summarises the comparison.

Among the many proposed languages, we can identify three main specification ap-
proaches: (i) rule-based, as e.g. the XACML standard and Ponder [DDLS01, TDLS09]; (ii)
logic-based, as e.g. ASL [JSS97], PTaCL [CM12] and the logical frameworks in [ACC14];
(iii) ontology-based, as e.g. in KAoS [UBJ+04] and Rei [KFJ03]. Many other works, as
e.g. [LWQ+09, RLB+09, RRN14], study (part of) XACML by formally addressing peculiar
features of design and evaluation of access control policies.
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In the rule-based approach, policies are structured into sets of declarative rules. The
seminal work [Slo94] introduces two types of policies: authorisations and obligations.
Policies of the former type have the aim of establishing if an access can be performed, while
those of the latter type are basically ECA rules triggering the enforcement of adaptation
actions. This setting is at the basis of Ponder and XACML.

Ponder [DDLS01, TDLS09] is a strongly-typed policy language that, differently from
FACPL, takes authorisation and obligations policies apart. Ponder does not provide explicit
strategies to resolve conflictual decisions possibly arising in policy evaluation, rather it re-
lies on abductive reasoning to statically prevent the occurrence of conflicts, although no
implementation or experimental results are presented. On the contrary, FACPL provides
combining algorithms, as we think they offer higher degrees of freedom to policy develop-
ers for managing conflicts. Similarly to Ponder, FACPL uses a mnemonic textual specifica-
tion language and addresses value types, although they are not explicitly reported. Finally,
the FACPL evaluation process is triggered by requests and not by events as in Ponder. Any-
way, the FACPL approach is as general as the Ponder one since, by exploiting attributes,
requests can represent any event of a system.

The logic-based approach mainly exploits predicate or multi-valued logics. Most of
these proposals are based on Datalog [CGT89] (see, e.g., [JSS97, DeT02, HKTT09]),
which implies that the access rules are defined as first order logic predicates. In general,
these approaches offer valuable means for a low-level design of rules, but the lack of high-
level features, e.g. combining algorithms or obligations, prevent them from representing
policies like those of FACPL.

ASL [JSS97] is one of the firstly defined logic-based languages. It expresses authorisa-
tion policies based on user identity credentials and authorisation privileges, and supports
hierarchisation and propagation of access rights among roles and groups of users. Addi-
tional predicates enable the definition of (a posteriori) integrity checks on authorisation
decisions, e.g. conflict resolution strategies. Differently from ASL, FACPL provides high-
level constructs and offers by-construction many not straightforward features like, e.g.,
conflict resolution strategies. A suitable use of policy hierarchisation enables propagation
of access rights also in FACPL specifications.

PTaCL [CM12] follows the logic-based approach as well, but it does not rely on Data-
log. It defines two sets of algebraic operators based on a multi-valued logic: one modelling
target expressions, the other one defining policy combinations. These operators emphasise
the role of missing attributes in policy evaluation, in a way similar to FACPL, but address
errors only partially. In fact, combination operators are not defined on error values: it
is rather assumed that all target functions are string equalities that never produce errors.
Similarly to FACPL, PTaCL permits reasoning on non-monotonicity and safety properties
of attribute-based policies [TK06].

A similar study, but more focussed on the distinguishing features of XACML, is reported
in [RRN14]. It introduces a formalisation of XACML in terms of multi-valued logics, by
first considering 4-valued decisions and then 6-valued ones (i.e., including the extended-
indeterminate decisions). Most of the XACML combining algorithms are formalised as
operators on a partially ordered set of decisions, while the algorithms first-app and one-app
are defined by case analysis. Differently from FACPL, this formalisation does not deal with
missing attributes and obligations, which are instead crucial in XACML policy evaluation.

Another logic-based language is presented in [ACC14]. In this case, a policy is a list
of constraint assertions that are evaluated by means of an SMT solver. The framework
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supports reasoning about different properties, but any high-level feature, as e.g. combin-
ing algorithms, has to be encoded ‘by hand’ into low-level assertions. In addition, missing
attributes, erroneous values and obligations are not addressed.

Multi-valued logics and the relative operators have also been exploited to model the
behaviour of combining algorithms. For example, the Fine-Integration Algebra introduced
in [RLB+09] models the strategies of XACML combining algorithms by means of a set of 3-
valued (i.e., permit, deny and not-app) binary operators. The behaviour of each algorithm
is then defined in terms of the iterative application of the operators to the policies of the
input sequence. This approach significantly differs from the FACPL one since it does not
consider the indet decision. Instead, [LWQ+09] explicitly introduces an error handling
function that, given two decisions, determines whether their combination produces an
error, i.e. an indet decision. Each (binary) operator is then defined using such error
function. The formalisation of FACPL combining algorithms follows a similar approach,
but it also deals with obligations and fulfilment strategies, which require different iterative
applications of the operators. Furthermore, [LWQ+09] exploits also nonlinear constraints
for the specification of combining algorithms, e.g. to return a decision dec if the majority
of the input policies return dec. Such algorithms are not usually dealt with in the literature
and cannot be expressed in terms of iterative applications of some binary operators.

The last major approach for specifying access control policies relies on ontologies. The
use of ontologies permits representing the contextual information of an access control
system (i.e., the knowledge of the system). An example of this approach is the KAoS
framework [UBJ+04] that uses the OWL ontology language1. With respect to FACPL, the
OWL representation directly enables various reasoning techniques, but it is more complex
to read and specify (e.g., long declarative descriptions, cross-references to external re-
sources, absence of explicit combining algorithms). Moreover, the interoperability gained
by using ontologies can be somehow achieved in FACPL by means of an appropriate use of
attributes [NIS14]. Another example is the Rei language [KFJ03], where a deontic ontol-
ogy is used for specifying positive and negative authorisation controls and obligations. Rei
offers various reasoning techniques and a less verbose specification language than KAoS.
However, Rei comes without any enforcement mechanisms, as e.g. the Java FACPL library,
that can be exploited for implementing concrete access control systems.

7.3 Analysis of Access Control Policies

The increasing diffusion of access control systems has prompted the development of many
analysis approaches for access control policies. These approaches pursue different tech-
niques, ranging from SMT formulae to multi-terminal binary decision diagrams (MTBDD)
and different kinds of logics. Below, we review the most relevant approaches by comment-
ing their main differences with that we propose for FACPL.

The works that are closer to our approach are of course those exploiting SMT formu-
lae. In [TdHRZ15], a strategy for representing XACML policies in terms of SMT formulae
is introduced. The representation, which is based on an informal semantics of XACML,
supports integers, booleans and doubles, while the representation of sets of values and
strings is only sketched. The combining algorithms are modelled as conjunctions and dis-
junctions of formulae representing the policies to be combined, i.e. in a form similar to the

1Web Ontology Language (OWL) - http://www.w3.org/TR/owl-features/
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approach shown in Table 4.3. As a design choice, formulae corresponding to the not-app
decision are not generated, because they can be inferred as the complementary of the
other ones. Thus, in case of algorithms like d-unless-p, additional workload is required.
Moreover, differently from the FACPL SMT-based approach, the representation assumes
that each attribute name is assigned only to those values that match the implicit type of
the attribute, hence the analysis cannot deal with missing attributes or erroneous values.
Finally, it does not take into account obligations, which have instead an important role
in the evaluation. Again, differently from the FACPL approach, the SMT-based framework
of [ACC14], introduced in Section 7.2, suffers from similar drawbacks.

The only analysis approach that takes missing attributes into account is presented
in [CMZ15]. The analysis is based on a notion of request extension, as we have done
in Section 4.4. Differently from the FACPL approach, this analysis aims at quantifying
the impact of possibly missing attributes on policy evaluations, thus verifying probabilistic
properties.

The change-impact analysis of XACML policies presented in [FKMT05] aims at study-
ing the consequences of policy modifications. In particular, to verify structural properties
among policies by means of automatic tools, this approach relies on an MTBDD-based
representation of policies. However, it cannot deal with many of the XACML combining
algorithms and, as outlined in [ACC14], SMT-based approaches like that of FACPL scale
significantly better than the MTBDD one.

Datalog-based languages, like e.g. ASL, only provide limited analysis functionalities,
that are anyway significantly less performant than the FACPL SMT-based approach. In gen-
eral, these languages are useful to reason on access control issues at an high abstraction
level, but they neglect many of the advanced features of modern access control systems.

Description Logic (DL) is used in [KHP07] as a target formalism for representing a
part of XACML. The approach does not take into account many combining algorithms and
the not-app and indet decisions. Thus, it only permits reasoning on a set of properties
significantly reduced with respect to that supported by the FACPL SMT-based approach.
Furthermore, DL reasoners support the verification of structural properties of policies but
suffer from the same scalability issues as the MTBDD-based reasoners.

Answer Set Programming (ASP) is used in [AHLM10, RRNN12] for encoding XACML
and enabling verification of structural properties that are similar to the complete one
defined in Section 4.4.2. This approach however suffers from some drawbacks due to
the nature of ASP. In fact, differently from SMT, ASP does not support quantifiers and
various theories like datatype and arithmetic. Some seminal extensions of ASP to “Modulo
Theories” have been proposed, but, to the best of our knowledge, no effective solver like
the Z3 one used by FACPL is available. Similarly, the work in [HB08] exploits the SAT-
based tool Alloy [Jac02] to detect inconsistencies in XACML policies. However, as outlined
in [ACC14] and [FKMT05], Alloy is not able to manage even quite small policies and, more
importantly, it cannot reason on arithmetic or any additional theory.

Many other works deal with the analysis of access control policies. For instance,
[Bry05] and [ZRG05] exploit, respectively, the process algebra CSP [Hoa85] and the
description language RW [ZRG04] to verify XACML policies by means of model check-
ing. Alternatively, in [BF07] it is exploited the model-oriented specification language
VDM++ [FLM+05] to define abstract models of XACML policies. The various tools sup-
porting VDM++ permit verifying if a policy enforces the expected requirements. However,
besides the use of different off-the-shelf tools, these approaches only focus a limited part
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of XACML, e.g. neither all combing algorithms nor obligations, and suffer from scalability
issues with respect to the FACPL SMT-based approach.

It is also worth noticing that various analysis approaches using SAT-based tools have
been developed for Ponder, see e.g. [BLR03]. These approaches, however, cannot actually
be compared with ours due to the numerous differences among Ponder and FACPL.

In summary, all the approaches to the analysis of access control policies mentioned
above are deficient in several respects with respect to the FACPL SMT-based approach.
Those based on SMT formulae do not address relevant aspects like, e.g. missing attributes,
while the other ones do not enjoy the benefits of using SMT, i.e. support of multiple
theories and scalable performance.

7.4 Design and Analysis of Autonomic Computing Systems

Autonomic computing has recently been object of numerous research efforts by different
communities. In the following, we review the most closely related approaches to the
specification and analysis of PSCEL systems.

The proposed specification approaches are multiple and variegated. Some prominent
examples are multi-agent systems [vdHlW08], component-based design [MSKC04] and
context-oriented programming (COP) [HCN08].

Multi-agent approaches are largely used in the development of complex, self-adaptive
software systems (see, e.g., [Win05, BCG07, Das08]). Similarly to PSCEL, they pursue the
importance of the knowledge representation and how it is handled for choosing adapta-
tion actions. However, PSCEL components can directly access knowledge repositories of
other components (provided that it is allowed by the related policies), while agents need
additional message exchanges to access it. In general, the PSCEL predicate-based com-
munications, pattern-matching-based management of knowledge and policy-based adap-
tation strategies permit more flexible system specifications.

Component-based approaches, e.g. FRACTAL [BCL+06, DL06] and Helena [HK14],
design systems in terms of basic components that re-organise themselves according to
changes of operating conditions. FRACTAL fosters a hierarchical component model that,
in addition to standard component-based systems, permits defining systems with a less
rigid structure, where indeed components can be without completely fixed boundaries.
However, communication among components is still defined via connectors and system
adaptation is obtained by adding, removing or modifying components and/or connectors.
Communication and adaptation in PSCEL are instead more flexible and, hence, more ad-
equate to deal with highly dynamic systems. Helena suffers from similar drawbacks, but,
in a way similar to the PSCEL policy automata, it permits dynamic changes of the rules
regulating the behaviours of components.

COP-based approaches have been advocated to program autonomic systems [SGP11].
They exploit ad-hoc linguistic constructs to express context-dependent behavioural vari-
ations and their run-time activation. The most of the literature on COP is devoted to
the design and implementation of concrete programming languages (a comparison can be
found in [AHH+09]). All these approaches are however quite different from ours, that in-
stead focusses on distribution and predicate-based communications, and supports a highly
dynamic notion of policy-based adaptation strategies.

Concerning the use of policy languages, we can find in the literature some practical ex-
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ploitations of policies in the autonomic computing context, like, e.g., in [Chi06, KJT+12].
Specifically, [Chi06] proposes an XML language based on ECA rules to regulate system
behaviours. However, it comes without a precise syntax and semantics and aims only at
being integrated within IBM frameworks. Instead, [KJT+12] introduces PobSAM, a policy-
based formalism that combines an actor-based model, which specifies the computation of
system elements, and a configuration algebra, which defines autonomic managers regu-
lating system behaviours. These managers are specified by (a sort of) ECA rules that, in
response to operating condition changes, adapt the system configuration. Instead, since
PSCEL policy constructs are strictly integrated with programming ones, they permit en-
forcing more flexible and expressive adaptation strategies, mostly due to the dynamic
fulfilment of actions.

Ponder, presented in Section 7.2, has also been applied to various autonomous and
pervasive systems. As previously mentioned, the design choice of two separate types of
policies, one for authorisation and another for obligations, do not permit flexible specifi-
cation like those of PSCEL. Furthermore, obligation actions are not fulfilled at runtime.

Among other enforcement approaches for self-adaptation, many proposals address the
principles of AOP. Some examples are the AOP extension of FRACTAL [DL06] (which suf-
fers from the same drawbacks of FRACTAL) and AspectK [HNNY08], which enriches the
distributed coordination language Klaim [DFP98] with AOP concepts. With respect to
AspectK, the AOP support offered by PSCEL is more flexible and, most of all, it supports
dynamically fulfilled actions. Additionally, the following work of AspectK in [HNN09] in-
troduces Belnap policies to enforce authorisation controls on process actions. However,
differently from PSCEL, it does not support both positive and negative authorisations, and
explicit conflict resolution strategies.

Concerning the analysis of AOP-inspired systems, many works address general-purpose
AOP programming languages. For example, AspectJ [KHH+01] (i.e., an AOP extension of
Java) has been target of various analysis proposals (see, e.g., [RRST05, ZGLZ08]). A
more closely work to the analysis of PSCEL is that in [TNN12]. In details, it concerns the
analysis of AspectK specifications, hence of processes recursively modified by adaptation
actions. The authors exploit communicating pushdown systems [BET03] and, by means
of soft-constraint approximations, define a reachability analysis for discovering undesired
infinite executions. The approach we propose is instead completely statical and relies only
on the abstractions of the flow graph.

7.5 Supporting Tools

The effectiveness of supporting tools is a crucial point for the usability and exploitation
of policy languages. In the context of autonomic computing, however, there are neither
tools of reference (apart from commercial frameworks by IBM) nor tools implementing
many of the languages presented in Section 7.4. Thus, we only focus on access control by
comparing the performance of the FACPL tools with respect to that of the most represen-
tative tools from the literature. The tests we conducted are based on the CONTINUE case
study [Kri03], which has been adopted as a standard benchmark in this context2.

2The tests have been conducted on a MacBook Pro, 2.5 GHz Intel i5 - 8 Gb RAM running OS X El Capitan.
The test suite of policies and requests, as well as the test results, is available at http://facpl.sourceforge.
net/continue/.
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XACML is by now the point-of-reference for industrial access control systems. To
the best of our knowledge, the most up-to-date, freely available XACML tool is Bal-
ana [WSO15]. Balana manages XACML policies directly in XML and evaluates XACML
requests in terms of a visit of the XML files, differently from FACPL that models policies as
Java classes. We have compared the evaluation of more than 1.000 requests and obtained
that the mean request execution time is 2,14ms for FACPL and 1,85ms for Balana. It must
also be considered that Balana requires a set-up time of about 500ms to initially validate
XACML policies, while FACPL initialises Java classes in about 200ms.

Concerning the analysis tools, as previously pointed out, the tool closer to ours is
that of [ACC14], which relies on the SMT solver Yices [Dut14]. Differently from Z3,
Yices does not support datatype theory, which is instead crucial for dealing with a wide
range of policy aspects, as e.g. missing and erroneous attributes. To analyse the com-
pleteness of the CONTINUE policies, the Yices-based tool requires around 570ms3, while
our Z3-based tool requires around 120ms. Notably, other not SMT-based tools, like, e.g.,
Margrave [FKMT05], have significantly lower performance when policies scale. In fact,
as reported in [ACC14], the increment of the number of possible values for the attributes
occurring in the CONTINUE policies prevents Margrave to accomplish the analysis. On
the contrary, SMT solvers can also deal with infinite attribute values, as e.g. integers.

Finally, we conclude commenting on the IDEs closer to the FACPL one. To the best of
our knowledge, the only similar (freely available) IDEs are the ALFA Eclipse plug-in by Ax-
iomatics (http://www.axiomatics.com/alfa-plugin-for-eclipse.html) and the graphical
editor of the Balana-based framework (http://xacmlinfo.org/category/xacml-editor/).
However, differently from our IDE, they only provide a high-level language for writing
XACML policies. Additionally, ALFA does not provide any request evaluation engine, since
the Axiomatics one is a proprietary software.

3This value is taken for granted from [ACC14], because the provided CONTINUE implementation only
runs on Windows machines. Anyway, their hardware configuration is similar to ours.

141

http://www.axiomatics.com/alfa-plugin-for-eclipse.html
http://xacmlinfo.org/category/xacml-editor/




Chapter 8

Concluding Remarks

This thesis attempts to provide a formal methodology supporting a principled exploitation
of policies in the context of access control and autonomic computing systems. To sum up,
the thesis contributions can be detailed as follows

• FACPL: a formal language for the specification and implementation of attribute-
based access control systems;

• An automated analysis approach for FACPL: a constraint-based analysis approach
for the automatic verification of authorisation and structural properties on FACPL
policies;

• PSCEL: a formal language for the specification of autonomic computing systems that
relies on FACPL in order to specify and enforce authorisation controls and adaptation
strategies;

• A static analysis approach for PSCEL: a constraint-based analysis approach that aims
at pointing out the effects of PSCEL policies on system behaviours.

Each ingredient of these contributions has been first formally introduced and then im-
plemented in terms of practical software tools. To testify the effectiveness of the proposed
solutions, we have exploited diverse case studies from real application domains.

As future works, we plan, on the one hand, to enhance the functionalities of FACPL
in order to support continuative and history-dependent access controls and, on the other
hand, to devise additional verification services for PSCEL systems. These contributions
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will be first rigorously formalised and then practically implemented as additional func-
tionalities of the software tools we presented. In the following, we briefly argument on
these intended research directions.

Continuative and history-dependent access controls in FACPL. Continuative access
control consists in the guarantee that when a subject access is in progress, the
needed subject rights continue to hold. This type of access control is called Usage
Control [LMM10] and has been formalised by various models in the literature. An
established one is the UCON model [PS04], which provides a formalisation based
on attributes representing information about the access in progress, and on specific
obligations used to enforce limitations on the usage of the allowed accesses.

History-dependent access control concerns instead the evaluation of access requests
by taking into account the access history. This type of access control permits en-
forcing dynamic security policies, i.e. an access is secure according to the accesses
already authorised. Typical examples are Chinese Wall policies [BN89], where con-
fidentiality controls depend on integrity controls addressing the access history. For
example, a subject can access the resource A (resp., B) only if she has not accessed
the resource B (resp., A) yet. A similar example is the dynamic variant on SoD,
i.e. the integrity control of SoD depend on, e.g., the roles previously assumed by a
subject.

We thus intend to enhance FACPL with functionalities supporting the definition of
such continuative and history-dependent access controls. Specifically, we will appro-
priately exploit (i) attributes to both refer to the information on current and previ-
ous accesses, and (ii) obligations to enforce different types of usage limitations. The
SMT-based FACPL analysis will be also tailored to adequately verify properties about
these new types of access controls.

Model checking techniques for PSCEL. A model checking approach for PSCEL systems
permits verifying that some expected behaviours are guaranteed. Due to the dif-
ferent entities involved in a PSCEL system, defining a formal machinery laying the
basis for the exploitation of a model checker is a challenging task. A crucial point is
addressing the dynamic evaluation of policies and, hence, their effects on processes.
The approximation of the Policy-Flow graph is a starting point to opportunely repre-
sent PSCEL systems into a formalism accepted by model checkers.

To carry out this research direction, we will benefit from the work in [DLL+14],
where SCEL systems are analysed by means of the Spin model checker [Hol97].
Specifically, it proposes a translation of a lightweight version of SCEL, i.e. it neglects
policies and part of the programming constructs, into Promela, the input language
of Spin. Our approach will take into account policies and, consequently, the authori-
sations and additional actions they enforce. As the authorisations of process actions
possibly branch the evolution of PSCEL systems, we plan to define properties on
the behaviours of PSCEL systems by means of a branching-time logic. Therefore, as
Spin is a model checker for linear-time properties, we will exploit the NuSMV model
checker [CCGR00] that, besides the support for branching-time properties, effec-
tively combines state-of-the-art symbolic model checking techniques with SAT-based
ones.
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