

UNIVERSITY OF PISA

DEPARTMENT OF INFORMATION ENGINEERING

Master of Science in Computer Engineering

Automatic code generation for security

requirements in AUTOSAR based on the Crypto

Service Manager

September 2016

SUPERVISORS

Prof. Gianluca Dini

Prof.ssa Cinzia Bernardeschi

CANDIDATE

Dario Varano

Abstract

ABSTRACT

The increasing complexity and autonomy of modern vehicles make security

a key issue of the design and development in the automotive industry. A

careful analysis of the security requirements and adequate mechanisms for

ensuring integrity and confidentiality of data are required to guarantee

safety. In the automotive domain, AUTOSAR (AUTomotive Open System

ARchitecture) is the standard de facto. It provides a component-based

system design at different levels of abstraction.

In this thesis a library has been developed to implement the Crypto Service

Manager (CSM) of AUTOSAR. It offers a standardized access to

cryptographic services for applications. The library is implemented in

C-language and supports the modules for MAC generation/verification and

encryption/decryption, according to the standard. In particular, modelling

extensions in AUTOSAR are proposed to address confidentiality and

integrity security constraints at the design stage. Software components are

automatically extended according to security annotations with security

elements (ports and interfaces), used to call the CSM functions.

Table of Contents

TABLE OF CONTENTS

1 Introduction ... 1

2 AUTOSAR ... 6

2.1 AUTOSAR Architecture ... 7

2.1.1 Application Layer ... 8

2.1.2 RTE Layer ... 10

2.1.3 BSW Layer .. 11

2.2 AUTOSAR Tool .. 11

2.3 AUTOSAR meta-models .. 12

2.3.1 Software components ... 12

2.3.2 Ports ... 14

2.3.3 Interfaces ... 15

2.3.4 AUTOSAR Services ... 20

3 Cyber Security: a use case .. 23

3.1 System description ... 23

3.2 Assumptions and limitations .. 25

3.3 Warning and degradation concept .. 27

3.4 System Modeling .. 28

Table of Contents

3.4.1 Modeling Tool .. 28

3.4.2 System’s Components Definition .. 29

3.4.3 Software Components Behavior ... 30

3.4.4 ECU Mapping ... 31

3.4.5 Communication failure handling ... 32

3.4.6 IBM Rational Rhapsody Model .. 34

3.4.7 Security problem ... 35

3.5 Safety and Security Concepts ... 36

3.5.1 Hazard Analysis and Risks Assessment 36

3.5.2 Relevant Failure Modes ... 38

3.5.3 Functional Safety and Security Requirements 38

3.5.4 Technical Safety Requirements ... 39

3.6 Use case Based Threat Modeling ... 45

3.6.1 Tool used ... 45

3.6.2 Threat Model ... 46

3.6.3 Threat Model for Front Light Manager use case 47

3.6.4 Attack tree ... 48

3.7 Risk Analysis ... 51

Table of Contents

3.7.1 Severity Classes ... 52

3.7.2 Attack Potential ... 53

3.7.3 Controllability .. 56

3.7.4 Estimating Risk ... 57

3.7.5 Applying the risk analysis to FLM use case 59

4 Security annotations and Software Component extensions 62

4.1 AUTOSAR Security Mechanisms ... 62

4.1.1 Crypto Abstraction Library .. 62

4.1.2 Crypto Service Manager .. 63

4.1.3 CSM and CAL .. 65

4.2 Using the CSM to provide security functionalities 66

4.3 Security modeling and automatic code generation in AUTOSAR .. 68

4.4 Application to the Front Light Manager use case 69

5 Crypto Service Manager implementation 71

5.1 General Behavior .. 71

5.2 Configuration .. 71

5.3 Synchronisation between application and CSM module 72

5.3.1 Initialization ... 72

Table of Contents

5.3.2 Update ... 73

5.3.3 Finish .. 73

5.4 API Types .. 74

5.4.1 Enumerators and typedef ... 74

5.5 Symmetrical Block Interface .. 76

5.5.1 Csm_SymBlockEncryptStart .. 76

5.5.2 Csm_SymBlockEncryptUpdate .. 77

5.5.3 Csm_SymBlockEncryptFinish ... 78

5.5.4 Csm_SymBlockDecryptStart .. 78

5.5.5 Csm_SymBlockDecryptUpdate .. 79

5.5.6 Csm_SymBlockDecryptFinish .. 80

5.6 Symmetrical Interface .. 80

5.6.1 Csm_SymEncryptStart ... 80

5.6.2 Csm_SymEncryptUpdate ... 81

5.6.3 Csm_SymEncryptFinish ... 82

5.6.4 Csm_DecryptStart .. 83

5.6.5 Csm_SymDecryptUpdate .. 83

5.6.6 Csm_SymDecryptFinish ... 84

Table of Contents

5.7 MAC Interface .. 85

5.7.1 Csm_MacGenerateStart .. 85

5.7.2 Csm_MacGenerateUpdate .. 86

5.7.3 Csm_MacGenerateFinish .. 86

5.7.4 Csm_MacVerifyStart .. 87

5.7.5 Csm_MacVerifyUpdate ... 87

5.7.6 Csm_MacVerifyFinish .. 88

5.8 Primitives .. 89

6 Conclusions .. 90

References ... 92

Section 1: Introduction

1

1 INTRODUCTION

Nowadays modern cars include technologies for the interconnection with

the outside world, which provides new functionalities for users. These

features help drivers to monitor the status of the vehicles and are helpful

for supporting safety. An example of these functionalities is the vehicle

telematics. It is a method of monitoring a vehicle. It combines a GPS system

with on-board diagnostics to record and map car’s position and speed. If the

3G network is available on the vehicle, it can be used together with the

telematics to send and receive data to a central management system. The

telematics can also include functionalities for live weather, traffic and

parking on the dashboard, apps, voice-activated features and even

Facebook integration. However, with this increased connectivity, also the

potential security threats increase.

The starting point for the security analysis objective of this thesis is the fact

that an adversary already obtained the access to the CAN 1 . It’s a hard

assumption, but it has been shown that such intrusion is possible with

different attacks. Several papers studied car’s vulnerabilities, [1] shows how

1 A Controller Area Network (CAN bus) is a vehicle bus standard designed to
allow microcontrollers and devices to communicate with each other in applications without a host
computer.

Section 1: Introduction

2

they can be exploited. Authors focused on 3 possible intrusion scenarios,

involving:

 Indirect physical access;

 Short-range wireless access;

 Long-range wireless access.

The first kind of vulnerability involves the On-Board Diagnostic port OBD-II2

and the Entertainment system (Disc, USB and iPod). It’s the easiest attack,

but also the one with the shortest window of opportunity.

The short-range wireless access involves short-range connection, such as

Bluetooth, Remote Keyless Entry, Tire pressure, RFID car keys and Emerging

short-range channels. For all these channels, if a vulnerability exists (as it is)

in the ECU software responsible for parsing channel messages, then an

adversary may compromise the ECU (and, by extension, the entire vehicle)

simply by transmitting a malicious input within the automobile’s vicinity.

Long-range wireless access involves long distance (greater than 1km) digital

access channels, such as Broadcast channel and addressable channels. The

first category comprehends channels which are not specifically directed

towards a given automobile, but can be “tuned into” by receivers

2 The OBD-II standard specifies the type of diagnostic connector and its pinout, the electrical
signalling protocols available, and the messaging format. It also provides a candidate list of vehicle
parameters to monitor along with how to encode the data for each.

Section 1: Introduction

3

on-demand. In addition, attackers may command multiple receivers at once

and don’t require to obtain precise addressing for their victims. In general,

these channels are implemented in automobile’s media system (radio, CD

player, satellite receiver) which frequently provides access via internal

automotive networks to other key automotive ECUs. The second category

of channels are perhaps the most important part of long-range wireless

attack surface, as they are exposed by the remote telematics system that

provide continuous connectivity via cellular voice and data networks. The

features which these channels support are crash reporting, diagnostics (e.g.

early alert of mechanical issues), anti-theft (remote track and disable) and

convenience (weather and driving directions). These cellular channels offer

many advantages for attackers, they can be accessed over arbitrary distance

in a largely anonymous fashion and are individually addressed [1].

This thesis is conceptually divided into 4 parts. The first one explores

AUTOSAR, the actual standard for the modelling and developing of vehicle’s

applications. The second part shows a simple use case, where all the

concepts stated in the first part are used and an analysis of the possible

threats which may affect the system is reported. The use case analyzed is

the Front Light Management System [2]. In particular, connections have

been inspected. After the modelling phase of the system, according to the

current standard, a safety and security analysis has been performed. The

Section 1: Introduction

4

next step performed has been the identification of possible threats

following the standard S.T.R.I.D.E. threat category [3], starting from that, a

possible attack tree has been designed. The risk analysis performed on the

attack tree follows the statement of the European Project EVITA [4], which

suggests a way to estimate the attack’s potential of the possible threats over

the attack tree designed. The third part of the thesis has the aim of

inspecting how AUTOSAR allows users to include security during the

modelling phase. This can be done through an AUTOSAR service called

Crypto Service Manager, which provides cryptographic functionalities to

applications. It will be discussed how the official method is complex and

error-prone. An extension of the security modelling concepts currently

available in AUTOSAR is proposed. Developers specify integrity and

confidentiality security requirements by adding security tags in the

description field of AUTOSAR software components. A tool for the

automatic generation of security elements from the security annotations

will be presented. The last part of the thesis proposes a possible

implementation of the AUTOSAR Crypto Service Manager, in particular the

Mac Interface, the Symmetrical Block Interface and the Symmetrical

Interface have been developed. The implementation proposed follows the

AUTOSAR standard.

Section 1: Introduction

5

This work was conducted as part of the European project SAFURE [5] (Safety

And Security By Design For Interconnected Mixed-Critical CyberPhysical

Systems). The project targets the design of cyber-physical systems by

implementing a methodology that ensures safety and security "by

construction". The goals of the SAFURE project are the following:

 to implement a holistic approach to safety and security of embedded

dependable systems, preventing and detecting potential attacks;

 to empower designers and developers with analysis methods,

development tools and execution capabilities that jointly consider

security and safety;

 to set the ground for the development of SAFURE-compliant

mixed-critical embedded products.

Section 2: AUTOSAR

6

2 AUTOSAR

Modern cars have up to 80 different ECUs 3 interacting with each other

through a complex wired network. ECUs are made by different

manufacturers and each ECU has a software embedded in it, which provides

a specific functionality. For these reasons, software of an ECU could not

work on a different manufacturers’ ECU, this means that software is not

portable. Additionally, the increasing number of ECUs (in some top of the

line models there are more than 100 such devices) and the increasing

complexity of embedded software, increase the complexity of the car’s

software development process, both in time-to-market and in the final cost.

Because of this, AUTOSAR (AUTomotive Open System ARchitecture) has

been founded.

AUTOSAR is a worldwide development partnership of automotive

interested parties founded in 2003. Some of AUTOSAR partners are BMW,

Bosch, Continental, General Motors, Volkswagen, Ford, Toyota and Renault.

It pursues the objective of creating and establishing an open and

standardized software architecture for automotive electronic control units.

3 ECU (Electronic Control Unit): is a generic term for any embedded system that controls one or
more of the electrical system or subsystems in a motor vehicle (e.g. Door Control Unit, Human
Machine Interface, Telematics Control Unit, and so on)

Section 2: AUTOSAR

7

2.1 AUTOSAR ARCHITECTURE

As shown in Figure 1, AUTOSAR has a three-layer architecture [6]:

1. Application layer;

2. Runtime Environment (RTE) layer;

3. Basic Software (BSW) layer.

The application layer contains the Software Components (SWCs), pieces of

information providing specific functionalities. The RTE layer is the

middleware, which provides a communication abstraction for SWCs. BSW

provides basic services and basic software modules to SWCs.

SWCs can’t access to BSW directly, all communications, both between SWC-

SWC and SWC-BSW, have to pass through the RTE. Because of the RTE

abstraction layer, SWCs can be developed independently of the underlying

hardware, so software providing specific functionalities may be reused on

vehicle having ECU made by different vendors.

Section 2: AUTOSAR

8

Figure 1: AUTOSAR: three-layer Architecture

2.1.1 Application Layer

In AUTOSAR, “application” software [7] is conceptually located above the

AUTOSAR RTE and consists of:

 AUTOSAR application software-components, that are ECU and

location independent;

 AUTOSAR sensor-actuator components, that are dependent on ECU

hardware and thus not readily relocatable for reasons of

performance/efficiency.

Section 2: AUTOSAR

9

Due to the RTE Abstraction Layer, they can be implemented independently

of the underlying hardware. Software components encapsulate the

implementation of their functionality and behavior and they expose well-

defined connection points, called PortPrototypes, which are the only mean

through which they can communicate with the outside world. Figure 2

shows a graphical representation of a SWC in AUTOSAR.

Figure 2: AUTOSAR: Graphical rapresentation of a SWC

The main communication paradigms between software components are

client/server, for operation-based communication, and sender/receiver, for

data-based communication:

 Sender-receiver communication involves the transmission and

reception of signals consisting of atomic data elements that are sent

by one component and received by one or more components. A

Section 2: AUTOSAR

10

sender-receiver interface can contain multiple data elements.

Sender-receiver communication is one-way: any reply sent by the

receiver is sent as a separate sender-receiver communication;

 Client-server communication involves, the client which is the require

(or user) of a service and the server that provides the service. The

client initiates the communication, requesting that the server

performs a service, transferring a parameter set if necessary. The

server, in the form of the RTE, waits for incoming communication

requests from a client, performs the requested service and

dispatches a response to the client’s request. The invocation of a

server is performed by the RTE itself when a request is made by a

client. The invocation occurs synchronously with respect to the RTE

(typically via a function call) however the client’s invocation can be

either synchronous (wait for server to complete) or asynchronous

with respect to the server.

2.1.2 RTE Layer

The RTE [6] provides the infrastructure services that enable communication

to occur between AUTOSAR software components as well as acting as the

means by which software components access basic software modules

including the Operating System (OS) and communication service. As already

Section 2: AUTOSAR

11

stated, the RTE make software components independent from the mapping

to a specific ECU.

2.1.3 BSW Layer

The BSW Layer is divided into three sublayers [8], this approach allows for a

better reuse of the more abstract parts of the description:

1. The upper layer, the BswModuleDescription, contains the

specification of all the provided and required interfaces including the

dependencies to other modules;

2. The middle layer, the BswInternalBehavior, contains a model of some

basic activity inside the module. This model defines the requirements

of the module for the configuration of the OS and the BSW Scheduler.

Note that it is restricted only to the scheduling behavior here and

does not describe the algorithmic behavior of the module;

3. The bottom layer, the BswImplementation contains information on

the individual code.

2.2 AUTOSAR TOOL

AUTOSAR tool refers to all tools that support the tasks of creation,

modification and interpretation of AUTOSAR models. In the development

process of an AUTOSAR compliant system, many tools (coming from

different vendors) may be involved. The data exchanged between these

Section 2: AUTOSAR

12

different tools need to agree on a common understanding about the

wording and the semantics. AUTOSAR formally defines the structure and

semantics of data by means of Unified Modeling Language (UML) class

diagrams. In addition, AUTOSAR has chosen eXtensible Markup Language

(XML) as a language for exchange of data between different AUTOSAR tools

[9]. Therefore, an AUTOSAR system can be described in AUTOSAR XML

(ARXML).

2.3 AUTOSAR META-MODELS

2.3.1 Software components

Software Component (SWC) are one of the most important architectural

elements of the AUTOSAR meta-model. They represent piece of software

which provide specific functionalities and they provide and/or require

interfaces and are connected to each other to fulfill architectural

responsibilities.

Section 2: AUTOSAR

13

Figure 3: AUTOSAR: SWC metamodel

Figure 3 shows the meta-model for SWCs:

• ApplicationSwComponentType and

SensorActuatorSwComponentType represent, respectively, the

application software and the software running on sensor/actuator

(there are other types of SwComponentType which are not shown in

figure, because they are not interesting for our purposes);

• CompositionSwComponentType is used to aggregate two or more

SwComponentPrototype (every one of which is typed by a

SwComponentType). This can be useful to represents a system

composed by two or more software components and to see how they

are connected between each other;

Section 2: AUTOSAR

14

• SwComponentPrototype represents an instance of a

SwComponentType (ApplicationSwComponentType,

SensorActuatorSwComponentType or other not shown in figure)

within a CompositionSwComponentType. Every

SwComponentPrototype is typed by one SwComponentType.

2.3.2 Ports

Software components can communicate between each other, only by

means of their PortPrototype. Every port is typed by one interface. Two

ports can be connected only if they are typed by the same interface.

Figure 4: AUTOSAR: Port meta-model

Figure 4 shows the meta-model for ports and their relations with software

components:

Section 2: AUTOSAR

15

• Every SwComponentType (ApplicationSwComponentType,

SensorActuatorSwComponentType, etc.) can have 0 or more ports;

• Ports can be:

– PPortPrototype: a port which provides services or data;

– RPortPrototype: a port which requires services or data;

– PRPortPrototype: a port which can provides and requires

services or data.

• Every port can be typed by one and only one interface.

2.3.3 Interfaces

A PortInterface is used to specifies what kind of information is exchanged

between two PortPrototypes. PortInterface represents also a

"compatibility" between two ports, because the communication between

two ports is possible only if they have the same interface. In this section we

focus on two kinds of interfaces:

• sender-receiver interface;

• client-server interface.

2.3.3.1 Sender-Receiver interface

Sender-receiver interface (SenderReceiverInterface in the AUTOSAR meta-

model) can be used for the specification of the typically asynchronous

communication pattern, where a sender provides data that are required by

Section 2: AUTOSAR

16

one or more receivers. A PortPrototypes typed by a SenderReceiverInterface

may be connected to establish a 1..n (i.e. one sender, multiple receivers)

communication relationship. SenderReceiverInterface is also used to

specifies the data elements sent and received over the ports which are

typed by that interface.

The meta-model for SenderReceiverInterface is shown in Figure 3.7.

Figure 5: AUTOSAR: Sender-Receiver Interface meta-model

• PortInterface is the base class from which SenderReceiverInterface

derives. The public attributes isService and serviceKind are used to

specify if the interface is related to an AUTOSAR service or not (this

aspect is better explained in section 3.3);

• SenderReceiverInterface is the class used to specify that the

communication is of type sender-receiver. This class contains one or

more dataElement of type VariableDataPrototype, which represents

the piece of information transmitted among PortPrototypes typed by

a SenderReceiverInterface.

Section 2: AUTOSAR

17

2.3.3.2 Client-server interface

A client-server interface (ClientServerInterface in the AUTOSAR meta-

model) is used to define a client-server communication, where a client may

initiate the execution of an operation by a server which supports that

operation. The server executes the operation and, when completed, it

provides the client with the result (synchronous operation call) or else the

client checks for the completion of the operation by itself (asynchronous

operation call). A client shall not be connected to multiple servers.

The meta-model for ClientServerInterface is shown in Figure 6:

• ClientServerInterface defines a collection of client-server operations

(ClientServerOperation in figure);

• ClientServerOperation consists of 0..* ArgumentDataPrototypes (the

parameters for the operation). Every parameter has a direction,

which can be:

– in: the parameter is passed to the operation;

– inout: the parameter is passed to, and returned from the

operation;

– out: the parameter is returned from the operation.

Section 2: AUTOSAR

18

Figure 6: AUTOSAR: Client-Server Interface meta-model

2.3.3.3 Internal Behavior

Internal behavior (SwcInternalBehavior in the AUTOSAR meta-model)

provides means for formally defining the behavior of a software

component. In other words, it describes the relevant aspects of the

software-component with respect to the Runtime Environment (RTE), i.e.

the runnable entities (which are the smallest code-fragments that are

provided by a software component) and the RTE events they respond to.

The meta-model for internal behavior is shown in Figure 7:

• SwcInternalBehavior can contain one or more RunnableEntity;

Section 2: AUTOSAR

19

Figure 7: AUTOSAR: Internal Behavior meta-model

• implicitInterRunnableVariables and explicitInterRunnableVariables

are variables which can be written and read by runnable entities

belonging to the same software component; the difference between

the two is that:

– implicitInterRunnableVariable is used to avoid concurrent

access to a variable, by creating copies of it (one for every

runnable entity that want to access the variable);

– explicitInterRunnableVariable is used to block potential

concurrent accesses to a variable; it is used to get data

consistency;

• RTEEvents are used to trigger the execution of runnable entities; it is

important to note (as stated in Section 2.2.4 of [6]) that all activities

within an AUTOSAR application is initiated by the triggering of

Section 2: AUTOSAR

20

runnable entities by the RTE as a result of RTE events. Relation

between a runnable entity and an RTEEvent is specified by means of

startOnEvent reference (as shown in figure); this means that when

an RTEEvent occurs, it is the responsibility of the RTE to trigger the

execution of the corresponding runnable entity.

One of the most common RTE events is the TimingEvent: a periodic

event whose period can be specified (in seconds) in the period

attribute of the TimingEvent class. The complete list of events is

written in section 4.2.2.4 of [6].

2.3.4 AUTOSAR Services

AUTOSAR Services can be seen as a hybrid concept between Basic Software

Modules and Software components. Software components that requires

AUTOSAR services use standardized AUTOSAR interfaces to communicate

with them.

The dependency of a software component from an AUTOSAR service is

modeled by adding provided or required ports (hereinafter referred to as

’service ports’) to the software component. The interface for these ports

needs to be one of the standardized service interfaces defined in the

AUTOSAR documentation, and the attribute isService of the interface must

be set to true. Furthermore, the internal behavior of the software

Section 2: AUTOSAR

21

component shall contain a SwcServiceDepencency, which is used to add

more information about the required service.

Figure 8: AUTOSAR: Service Dependency meta-model

The meta-model of the SwcServiceDepencency is shown in Figure 8, a

description for each element is the following:

• SwcServiceDepencency is used to associate ports, port groups and (in

special cases) data defined for a software component to a given

ServiceNeeds element;

• ServiceNeeds are used to provide detailed information about what a

software component expects from the AUTOSAR service. For

instance, CryptoServiceNeeds can be used to specify a maximum

length for the key used in cryptographic services;

Section 2: AUTOSAR

22

• RoleBasedPortAssignment is used to specify an assignment of a role

to a particular service port of a software component. With this

assignment, the role of the service port can be mapped to a specific

ServiceNeeds element. The attribute portPrototype of this class, is

used to refer a service port of the software component.

From ServiceNeeds can be derived other classes, shown in Figure 9, which

will not been considered, as they are not useful for our purpose.

Figure 9: AUTOSAR: ServiceNeeds meta-model

Section 3: Cyber Security: a use case

23

3 CYBER SECURITY: A USE CASE

3.1 SYSTEM DESCRIPTION

The system which this work will analyze is the Front Light Manager (based

on the system defined in [2]). It’s in charge of managing the low beams

feature of a car. All other light functionalities like parking orientation light,

fog lights, etc. are excluded. A graphical description of the system is shown

in Figure 10.

Figure 10: Front Light Manager: System overview

The general purpose of the low beams system is to illuminate the roadway

in the dark. The low beams are turned on by the user through the Light

Switch, if the Ignition Key is ON. System status (malfunctions included) shall

Section 3: Cyber Security: a use case

24

be reported to the driver through the Human Machine Interface (HMI in

Figure 10). In case of low beams malfunctions the Onboard Computer shall

signal the closest repair center to the driver. The functioning rules for the

Front Light Management (FLM) are the following:

1. Detection of a low beams request:

 The FLM shall evaluate the Ignition Key position;

 The FLM shall read the Light Switch position;

2. Evaluate the low beams light request:

 The FLM shall evaluate the Light Switch status;

 The FLM shall create a switch event (ON) if the Light Switch

status changes from OFF to ON;

 The FLM shall create a switch event (OFF) if the Light Switch

status changes from ON to OFF;

3. Control the low beams lights:

 The FLM shall activate the low beams light if the Ignition Key

position is ON and a Light Switch event is detected;

 The FLM shall deactivate the low beams light if the Ignition

Key position is OFF, or a Light Switch event (OFF) is detected;

4. Monitoring the low beams light functioning:

 The FLM shall supervise the low beams lights;

 The FLM shall report a malfunctioning of the low beams lights;

Section 3: Cyber Security: a use case

25

 The FLM shall display the low beams lights status to the user

by means of the HMI; in case of low beams malfunctioning,

FLM shall display the closest repair center through the On-

board Computer (OBC);

5. Activation of the daytime running lights:

 The FLM shall activate the daytime running lights in case of a

low beams lights malfunctioning.

A communication focused view of the technical interfacing is shown in

Figure 11.

Figure 11: Front Light Management: communication focused view

3.2 ASSUMPTIONS AND LIMITATIONS

As starting point, the following assumptions are defined:

1. Implementation of Front Light Management software on one ECU;

Section 3: Cyber Security: a use case

26

2. Activation of light via switch which provides one output that is a

digital I/O;

3. Emergency light functionality is provided by hardware and not

intended to use AUTOSAR software parts;

4. All memory (volatile and non-volatile) is protected against reversible

transient faults. It is assumed that mechanisms like ECC are available;

5. Hardware means for memory partitioning are available;

6. The analysis of failure modes of the micro-controller is performed

and safety measures are defined and implemented;

7. Physical cyber-attacks are not taken into account, as they are a

special case and they have to be treated in different ways.

Additionally, subsequent constraints are defined:

1. Assuming that the ECU is working as required:

1.1. The ECU is waking up; running and going to sleep correctly;

1.2. The necessary communication network is available, up and running

correctly;

1.3. The necessary Basic Software Modules are triggered as required.

2. Failures in the board wiring system, battery or power supply are not

considered. Even though the battery is external to the FLM, its failures

will directly affect the FLM and any other vehicle’s electronics systems;

3. A startup test of the bulbs is assumed to be in place;

Section 3: Cyber Security: a use case

27

4. The light switch signal is already filtered/de-bounced. Furthermore, it is

assumed that the signal is provided in an adequate quality to match

requirements of ISO 2626.

3.3 WARNING AND DEGRADATION CONCEPT

For the low beams lights the following 2-step degradation concept shall be

implemented:

Normal Mode:

• The system work as described in 3.1.

Degraded Mode Step 1 - loss of one low beams:

• The second low beams still fulfills its function;

• A warning shall be provided to the driver (by means of HMI),

indicating partial loss of low beams, while low beams is requested

but not successfully activated (fault detected);

• The Onboard Computer shall provide the closest repair center.

Degraded Mode Step 2 - loss of both low beams4:

4 Additional driver assistance functions could be activated in this mode to assist the driver, but this
is not part of this example.

Section 3: Cyber Security: a use case

28

• Day time running lights shall be activated, whenever low beams is

requested but not successfully activated (fault detected)5;

• A warning shall be provided to the driver (by means of HMI),

indicating loss of low beams and activation of daytime running lights,

while low beams is requested.

• The OBC shall provide the closest repair center.

3.4 SYSTEM MODELING

3.4.1 Modeling Tool

The tool used to model the system is IBM Rational Rhapsody Developer. It’s

a visual development environment for embedded, real time or technical

application software development based on the Unified Modeling Language

(UML). It helps to improve productivity throughout the embedded software

development lifecycle—from requirements capture to implementation, test

and deployment. In our purpose I used it to model the system, starting from

requirements and system’s description. The tool is used also within the

project SAFURE6 [5] and by Magneti Marelli7 [10].

5 This kind of usage of day time running light as fallback is just used as an example to demonstrate
a degraded function.
6 SAFURE (Safety And Security By Design For Interconnected Mixed-Critical Cyber-Physical
Systems): the project targets the design of cyber-physical systems by implementing a methodology
that ensures safety and security "by construction".
7 Magneti Marelli is an international Group committed to the design and production of hi-tech
systems and components for the automotive sector

Section 3: Cyber Security: a use case

29

3.4.2 System’s Components Definition

The system can be modeled using the following Software Components

(SWC):

• Sensor SWC (Light Switch);

• Sensor SWC (Ignition Key);

• Application SWC (Light Request);

• Application SWC (Front Light Management, FLM);

• Actuator SWC (Headlights);

• Application SWC (HMI);

• Application SWC (Onboard Computer).

Figure 12 shows the interactions between components. Communication

flow between components is shown in Figure 13.

Figure 12: Front Light Management: system Software Components overview

Section 3: Cyber Security: a use case

30

Figure 13: Front Light Management: sequence diagram

3.4.3 Software Components Behavior

• Light Switch: it waits for an incoming request from Light Request and

provide the switch status as a response;

• Ignition Key: it waits for an incoming request from Light Request and

provide the Ignition Key status;

• Light Request: it waits for an incoming request from Front Light

Management and asks Light Switch and Ignition Key for their status,

it waits for their reply and it provides this information to the Front

Light Management.

• Front Light Management:

1. it asks to the Light Request for Light Switch and Ignition Key

status;

Section 3: Cyber Security: a use case

31

2. it processes the status information obtained in the previous step

and reacts by activating/deactivating the low beams using the

Headlights actuator;

3. it sends a notification the HMI.

If one or both low beams lights fails, a notification is sent to the HMI

and to On Board Computer. In addition, if both low beams fail, Front

Light Management sends to the Headlights actuator the command to

activate the daytime running lights.

• Headlights: it applies the commands received from the Front Light

Management.

• HMI: it shows the low beams status to the user (e.g. green light if low

beams are ON and working, red light in case of low beams

malfunction).

• OBC: in case of malfunction of one or both the low beams, On Board

Computer shows the closest repair center location to the user.

3.4.4 ECU Mapping

The system shall be mapped as shown in Figure 14. The Front Light

Management and Light Request elements shall reside on the same ECU. The

technical interfacing of system elements with Front Light Management ECU

is assumed as shown in Table 1.

Section 3: Cyber Security: a use case

32

Figure 14: Front Light Manager: Components ECU mapping

System Element Interface of FLM ECU

Light Switch Position DIO

Ignition Key Position CAN Interface

Headlight PWM

HMI CAN Interface

On-Board Computer CAN Interface

Table 1: Interfaces of FLM ECU

3.4.5 Communication failure handling

The AUTOSAR standard provides a mechanism to detect and handle, at

runtime, communication failures within a communication link. The provided

mechanism is the End-to-End (E2E) protection [11]. The AUTOSAR E2E

protection can be used to protect data element within a sender-receiver

communication. It is not applicable to client-server communication

paradigm. By applying the E2E protection, basically the sender adds

protection information (such as CRC, sequence counter) to the data and the

Section 3: Cyber Security: a use case

33

receiver evaluates the received message and indicates the result to the

application. The E2E protection has the following characteristics:

1. it protects the safety-related data elements to be sent over the RTE

by attaching control data;

2. it verifies the safety-related data elements received from the RTE

using this control data;

3. it indicates that received safety-related data elements faulty, which

then has to be handled by the receiver Software Components.

Regardless where E2E is executed, the E2E Protection is for data elements.

A data element is either completely E2E-protected, or it is not protected. It

is not possible to protect a part of it. An appropriate usage of the E2E Library

alone is not sufficient to achieve a safe E2E communication according to ASIL

D (the highest ASIL value) requirements. Solely the user is responsible to

demonstrate that the selected profile provides sufficient error detection

capabilities for the considered network.

E2E communication protection aims to detect and mitigate the causes for

or effects of communication faults arising from:

1. (systematic) software faults;

2. (random) hardware faults;

Section 3: Cyber Security: a use case

34

3. transient faults due to external influences (repetition of information,

loss or delay of information, masquerading, corruption of

information and so on).

3.4.6 IBM Rational Rhapsody Model

Software Components have been implemented using Application SW

Component (FLM and Light Request) and Sensor-Actuator SW Component

(HMI, OBC, Headlight, IgnitionKey and LightSwitch).

All the interfaces defined are Sender-Receiver, as components need to

exchange data. In order to do that, communicating ports must have the

same interfaces.

At Software Component level, all the components are interconnected using

a Virtual Functional Bus (VfB), which acts as a communications matrix

connecting I/O units and Software Components.

The model obtained by modeling the use case using IBM Rational Rhapsody

is shown in Figure 15.

Section 3: Cyber Security: a use case

35

Figure 15: Front Light Manager: model from IBM Rational Rhapsody

3.4.7 Security problem

Looking at the model presented in the previous section, it is clear that no

security is modeled (or requested). At Software Component level there is no

easy way to request security services.

Security nowadays is a fundamental problem when designing a service.

Networks inside cars may be victims of cyber-attacks, like classical computer

networks. Before defining which security services are needed, it’s important

to define which cyber-attacks threaten the use case.

In the next section an analysis of the possible threats will be done, which is

the starting point to provide a solution to this security lack.

Section 3: Cyber Security: a use case

36

3.5 SAFETY AND SECURITY CONCEPTS

The following subsection outlines the safety analysis on vehicle level and its

result typically created by the OEM and partially provided to a supplier.

3.5.1 Hazard Analysis and Risks Assessment

Hazard H1: Total loss of low beams (ASIL B).

This hazard potentially could cause the driver to lose control of the vehicle,

leave the road and collide with environmental parts.

Exceptions and Boundary Conditions to H1:

• The loss of low beams is only to be seen as a risk in case of bad

viewing conditions (night, fog, etc.).

• The loss of low beams on a curvy, unlighted rural road is evaluated

as a most critical situation.

• The loss of only one low beams is not considered to be directly

leading to a hazardous situation. However, it is a latent fault and will

be included in the concept advisement.

ASIL: The ASIL B rating is based on the severity rate the exposure rate and

the controllability identified during hazard analysis and risk assessment.

Safety Goal SG01: Prevent total loss of low beams

Safe State: Low beams activated

Section 3: Cyber Security: a use case

37

Hazard H2: Lose control of the system due to an external intrusion in the

system (ASIL B).

An intruder who takes control of the system can potentially alter the low

beams status and simulate a low beams malfunction. These situations could

cause the driver to lose control of the vehicle or force the driver to stop in

one specific repair center.

Exceptions and Boundary Conditions to H2:

• In case of low beams malfunction (real or caused by an external

entity), the driver not necessarily stop to closest repair center.

• A low beams malfunction, if it happens during night, may force the

driver to stop in a dangerous area.

Others exceptions and boundary conditions expressed for H1 applies also to

H2.

Security Goal SG02: Prevent an external (not authorized) entity to access to

the system.

Secure State: An external (not authorized) entity is not able to access and

take control of the system.

Note: Additional hazards could be assumed. However, to limit our example,

H1 and H2 are assumed to be the relevant hazards.

Section 3: Cyber Security: a use case

38

3.5.2 Relevant Failure Modes

The safety goal SG01 can be violated through one or more of the following

malfunctions (MF):

• MF01: Failure of the detection of the turn-on/ turn-off conditions of

lights;

• MF02: Failure of the evaluation and implementation of the light

request function which is used to turn lights on;

• MF03: Failure of the activated lights.

The security goal SG02 can be violated through one or more of the following

malfunctions:

• MF04: Malicious injection of fake messages over the CAN8 bus;

• MF05: Malicious injection of code into FLM ECU, HMI or OBC.

3.5.3 Functional Safety and Security Requirements

3.5.3.1 FunSafReq01

FLM shall detect any valid turn on condition of low beams correctly. (ASIL B)

Relates to MF01: Low beams are not activated after a “valid LB lights ON”

request.

8 A Controller Area Network (CAN bus): a vehicle bus standard designed to allow microcontrollers
and devices to communicate with each other in applications without a host computer. It is a
message-based protocol, designed originally for multiplex electrical wiring within automobiles, but
is also used in many other contexts.

Section 3: Cyber Security: a use case

39

3.5.3.2 FunSafReq02

FLM shall verify the validity for any low beams lights request received and

activate or deactivate the low beams accordingly. (ASIL B) Relates to MF02:

Switching lights off without receiving a “valid LB lights OFF” request.

3.5.3.3 FunSafReq03

FLM shall detect failures of the activated low beams and signal malfunctions

to the driver. (ASIL B) Relates to MF03: Failure of the activated lights.

3.5.3.4 FunSecReq01

FLM shall verify the authenticity of received CAN messages. Relates to

MF04.

3.5.3.5 FunSecReq02

The ECU’s software shall be developed according to software development

standards like MISRA C [12] and CERT [13]. Relates to MF05.

3.5.4 Technical Safety Requirements

3.5.4.1.1 SysSafReq01

The CAN connected Body Controller shall signal Ignition Key clamp 15 (CL15)

status via CAN bus message.

Section 3: Cyber Security: a use case

40

3.5.4.1.2 SysSafReq02

The light switch shall signal the state of the switch via digital HW line.

HW_LB_OFF (0=0V if lights on are requested, 1=5V if lights off are

requested). (ASIL B)

3.5.4.1.3 SysSafReq03

Failures within the light switch shall lead to the digital HW line. HW_LB_OFF

set to 0. (ASIL B)

3.5.4.1.4 SysSafReq04

FLM ECU shall ensure that the limits (like voltage and PWM) to power the

LB bulbs are kept, while FLM ECU detects that the condition for powering

the bulbs is fulfilled (as defined as part of nominal function). (ASIL B)

3.5.4.1.5 SysSafReq05

While CL15ON==1, FLM ECU shall switch the light off only if HW_LB_OFF ==1

condition is true continuously for 20ms 9 (CAN message: CL15_01; CAN

signal: CL15ON Boolean, ‘1’ if clamp 15 is set to on, ‘0’ if clamp 15 is set to

off). (ASIL B):

9 The timing condition to wait for a stable condition for some milliseconds is included to debounce
the signal value. The particular value of 20ms is taken as experts’ experience. Another value could
be used instead, as well.

Section 3: Cyber Security: a use case

41

3.5.4.1.6 SysSafReq06

FLM ECU shall detect circuit failures (bulbs, fuses, wiring-oc/sc) and signal

them via CAN. (ASIL B)

3.5.4.1.7 SysSafReq07

FLM ECU shall activate both daytime running lights (DRL) if a failure of both

LB bulbs is detected continuously for 200ms. (ASIL B) Note: The FTT budget

is allocated the following way: 200ms failure detection time + conservative

200ms time interval until halogen bulb reaches full intensity (failure

reaction) + 100ms buffer = 500ms.

3.5.4.1.8 SysSafReq08

FLM ECU shall use independent circuits to power left and right bulbs such

that no single fault can cause a total loss of low beams. (ASIL B)

3.5.4.1.9 SysSafReq09

HMI shall display bulb outage information according to the signal LBFailure

received via CAN. (ASIL A)

3.5.4.1.10 SysSafReq10

The data transmission via CAN between sender and receiver must be

ensured for CAN message: CL15_01 CAN signal: CL15ON Boolean, (‘1’ if

clamp 15 is set to on, ‘0’ if clamp 15 is set to off). (ASIL B)

Section 3: Cyber Security: a use case

42

3.5.4.1.11 SysSafReq11

The data transmission via CAN between sender and receiver must be

ensured for CAN message: LightStatus_01, CAN signal: LBFailure. (ASIL A)

3.5.4.1.12 SysSafReq12

FLM ECU shall activate low beams lights if a communication fault regarding

message CL15_01 is detected continuously for 200ms. Note: The FTT budget

is allocated the following way: 200ms failure detection time + conservative

200ms time interval until halogen bulb reaches full intensity (failure

reaction) + 100ms buffer = 500ms.

3.5.4.1.13 SysSafReq13

OBC shall display the closest repair center to the driver, according to the

signal LBFailure received via CAN. (ASIL A)

3.5.4.1.14 SysSafReq14

FLM ECU shall: activate both daytime running lights (DRL) if a

communication fault regarding message LightStatus_01 is detected

continuously for 200ms; provide a text message to the driver like “Light

system defect”.

Section 3: Cyber Security: a use case

43

3.5.4.2 Relation between security and safety requirements

This section shows how the non-compliance with the functional security

requirements described in section 4.3 affects the technical safety

requirements. In particular:

• if the FunSecReq01 is not satisfied, fake/replicated messages can

pass over the CAN bus;

• if the FunSecReq02 is not satisfied, system’s components can be

compromised by an external entity.

Technical safety requirements are affected by the non-compliance with the

functional security requirements according to the following statements:

• SysSafReq01: if FunSecReq01 is not respected, the CL15 status can

be altered by an external entity and thus not reflect the real status of

the ignition key;

• SysSafReq06: if FunSecReq02 is not respected, the FLM ECU can be

compromised by an external entity and then it can signal fake circuit

failures via CAN bus;

• SysSafReq09: if FunSecReq01 is not respected, LBFailure message

can be altered by an external entity and cause the HMI to display fake

bulb outage information; if FunSecReq02 is not respected, FLM ECU

Section 3: Cyber Security: a use case

44

can be compromised by an external entity and then inject fake

messages via CAN bus;

• SysSafReq10: if FunSecReq01 is not respected, the CAN message

CL15_01 can be altered by an external entity;

• SysSafReq11: if FunSecReq01 is not respected, the CAN message

LightStatus_01 can be altered by an external entity;

• SysSafReq13: if FunSecReq01 is not respected, the OBC may receive

an altered LBFailure message; if FunSecReq02 is not respected, the

FLM ECU can be compromised by an external entity and it can send

fake messages to the OBC.

Table 2 summarizes what has been specified before.

 FunSecReq01 FunSecReq02

SysSafReq01 X

SysSafReq06 X

SysSafReq09 X X

SysSafReq10 X

SysSafReq11 X

SysSafReq13 X X

Table 2: Influence of functional security requirements on technical safety requirements

Section 3: Cyber Security: a use case

45

3.6 USE CASE BASED THREAT MODELING

3.6.1 Tool used

In order to determine which threats may afflict the use case described in

the previous section, it has been used the Microsoft SDL Threat Modeling

Tool [14]. The tool helps developers in finding threats in the design phase

of software projects. A threat model is representation of the software or

device components in a system, the data flows between them and the trust

boundaries in the system. When threat-modeling, potential design

vulnerabilities can be discovered by analyzing the system’s security

properties and identifying potential threats to the information assets in the

system.

Unlike pure verification techniques, such as penetration testing or fuzzing,

threat-modeling can be performed before a product or service has been

implemented; this helps ensure that a product or service is as much as

possible secure by design.

The SDL threat-modeling approach starts with a data flow diagram. From

the diagram, potential threats are identified. For each threat, mitigations

are proposed. In some cases, the mitigation takes the form of changing the

design itself, in which case the new or changed elements must be analysed

in an additional iteration. When the mitigations have been implemented,

Section 3: Cyber Security: a use case

46

the product or service is validated against the threat model to ensure that

the mitigations work and that design functionality and performance are

sufficient. If the design has serious security issues, revisiting the design and

the threat model may be appropriate.

3.6.2 Threat Model

The Microsoft SDL Threat Modeling Tool applies a particular threat-

modeling approach called STRIDE. It’s an acronym for the threat types of

Spoofing, Tampering, Repudiation, Information disclosure, Denial of

service, and Elevation of privilege. STRIDE is a way to find a wide variety of

threats using these easy-to-remember threat types. Not all threats fit easily

into a STRIDE category and some threats may fit into more than one

category. More important than fitting a threat to a category is using the

model to help you describe the threat and design an effective mitigation.

With its matching of threats to mitigating features, STRIDE is also

convenient way of moving the focus from threat to mitigation. Each threat

is matched to the feature or property that should be present in the software

to mitigate the threat, shown in Table 3.

Section 3: Cyber Security: a use case

47

Threat Property Threat Definition

Spoofing Authentication Spoofing threats involve and

adversary creating and exploiting

confusion about who is talking to

whom. Spoofing threats apply to

the entity being fooled, not the

entity being impersonated. Thus,

external elements are subject to a

spoofing threat when they are

confused about what or whom they

are talking to.

Tampering Integrity Tampering threats involve an

adversary modifying data, usually

as it flows across a network, resides

in memory, on disk, or in databases.

Repudiation Non-Repudiation Repudiation threats involve an

adversary denying that something

happened

Information

Disclosure
Confidentiality Exposing information to someone

not authorized to see it.

Denial of Service Availability Deny or degrade service to users.

Elevation of

Privilege
Authorization Gain capabilities without proper

authorization
Table 3: STRIDE Definitions

3.6.3 Threat Model for Front Light Manager use case

The Front Light Manager use case has been modeled using the Threat

Modeling Tool in the way showed in Figure 16.

The opacity represents components and connections which are out of the

scope, as the analysis has been done only for communication over CAN bus.

Section 3: Cyber Security: a use case

48

The step after the use case modeling, is the analysis of the threats affecting

the model. The tool did a risk analysis to apply the STRIDE threat model to

the use case. The Threat Modeling Tool is intended for computer networks,

so it has to be adapted by the user to the use case, as many threats found

are not applicable to the CAN bus. A total of 38 threats have been found, 7

of which are not applicable to the use case, 5 has been mitigated, leaving us

with 26 remaining threats, which have to be considered to evaluate possible

attacks.

Figure 16: Front Light Manager: Model from Threat Modeling Tool

3.6.4 Attack tree

An attack tree is a conceptual diagrams showing how an asset, or target,

might be attacked. The root of an attack tree (Level 0) is an abstract “attack

goal” that is associated with a benefit to the attacker of some kind. Its child

Section 3: Cyber Security: a use case

49

nodes (Level 1) represent different “attack objectives” that could satisfy this

attack goal. The attack objectives have a negative impact on the

stakeholders. Thus, the severity of the outcome can be estimated at this

level. The attack objectives may be further decomposed into a number of

“attack methods” that could be employed to achieve the attack objective.

Each attack method will in turn be based on a logical combination (AND/OR)

of attacks against one or more “assets” populating the lowest levels of the

attack tree. These are described here as “asset attacks”, and are the

terminal nodes of the tree. The tree is truncated where the probability of

success can be estimated for asset attacks. These individual probabilities

can subsequently be combined using the tree logic to assess the overall

probability for each of the attack methods.

A generic structure of an attack tree is the one shown in Figure 17.

Figure 17: Generic structure of an attack tree

Section 3: Cyber Security: a use case

50

The threats found in the previous section have been used to model an

Attack Tree applicable to the use case. The root of the tree, in this case, is

an abstraction of Hazard H2, defined in section 3.5.1. Two attack objectives

have been defined in Level 1, both can possibly lead to the root: the

corruption of on-board signals and a forced turn-off of the low beams. The

attack methods to reach these attack objectives can be found in Level 2, the

AND node shows how both attack methods “Corrupt HMI” and “Corrupt

OBC” are needed to reach the upper level of the three. Leaf nodes have

simple Asset Attacks.

The tree is shown in Figure 18.

Figure 18: Front Light Manager: attack tree

Section 3: Cyber Security: a use case

51

3.7 RISK ANALYSIS

Since now, the security requirements analysis process used in this work,

involved the identification of security requirements (Section 3.5) and the

identification of threats (Section 3.6).

In this section it will be performed a risk analysis over the attack tree

obtained previously. The objective of the analysis is to identify the most

relevant security requirements, to do so we first need to assess the level of

risk posed by potential attacks and to prioritize the identified security

requirements based on the results of the risk assessment.

There are a number of risk assessment rating and processing methods

currently in use. With these methods (and methodologies), it’s possible to

determine the risk assessment rating (or ranking) of the use case. In this

work, the model chosen is EVITA (E-safety Vehicle Intrusion Protected

Applications). Within this project, a model for performing risk analysis was

proposed to assess not only the risk associated with an attack but also the

severity of the possible outcome for stakeholders, and the probability that

such an attack can be successfully done [15].

The following subsection will explain the risk assessment and rating, using

the EVITA model.

Section 3: Cyber Security: a use case

52

3.7.1 Severity Classes

To perform a threats and risks analysis, the EVITA standard will be

considered. First of all, it’s important to asses which factors are important

during the analysis phase. The starting point or this classification scheme is

the safety severity classification of ISO/DIS 26262, which is based on the

Abbreviated Injury Scale [16]. For the purposes of this analysis, this has been

adapted and augmented to consider both the greater numbers of vehicles

that may be involved and implications for aspects other than safety,

including:

• Privacy: identification and tracking of vehicles or individuals;

• Financial: financial losses that may be experienced by individuals or

ITS operators;

• Operational: interference with vehicle systems and functions that do

not impact on functional safety.

To accommodate this more complex situation the classification proposed

here (see Table 4) separates and categorizes different aspects of the

consequences of possible security breaches.

Section 3: Cyber Security: a use case

53

Table 4: Severity Classes

3.7.2 Attack Potential

The attack potential is a measure of the minimum effort to be expended in

an attack to be successful. Essentially, the attack potential for an attack

corresponds to the effort required creating and carrying out the attack. The

higher the attackers’ motivation, the higher efforts they may be willing to

exert. There are multiple methods of representing and quantifying the

influencing factors. The following factors should be considered during

analysis of the attack potential [17]:

1. Elapsed Time: This is the total amount of time taken by an attacker

to identify that a particular potential vulnerability may exist, to

Section 3: Cyber Security: a use case

54

develop an attack method and to sustain effort required mounting

the attack.

2. Specialist Expertise: This refers to the required level of general

knowledge of the underlying principles, product types or attack

methods.

3. Knowledge of the system under investigation: This refers to specific

expertise in relation to the system under investigation. Though it is

related to general expertise, it is distinct from that.

4. Window of opportunity: This has a relationship to the Elapsed Time

factor. Identification and exploitation of a vulnerability may require

considerable amounts of access to a system that may increase the

likelihood of detection of the attack. Some attack methods may

require considerable effort off-line, and only brief access to the

target to exploit. Access may also need to be continuous or over a

number of sessions.

5. IT hardware/software or other equipment: This refers to the

equipment required to identify and exploit vulnerability.

To determine for each path in an attack tree the attack potential required

to identify and exploit it, sum up the appropriate values from Table 6 and

apply Table 5 to classify the attack potential.

Section 3: Cyber Security: a use case

55

Table 5: Attack Potential

In this context the term “attack potential” is really describing the difficulty

of mounting a successful attack, while for risk analysis purposes a

probability measure is required. A high probability of successful attack is

assumed to correspond to the “basic” attack potential, since many possible

attackers will have the necessary attack potential. Conversely, a “high”

attack potential suggests a lower probability of successful attacks, since the

number of attackers with the necessary attack potential is expected to be

comparatively small. Consequently, Table 5 also proposes an associated

numerical scale that reflects the relative probability of success associated

with the attack potential in a more intuitive manner. The “attack

probability” measure (P) is higher for easier attacks that are associated with

lower attack potentials, and lower for more difficult attacks associated with

the higher attack potentials.

Section 3: Cyber Security: a use case

56

Table 6: Rating aspect of attack potential

3.7.3 Controllability

Where the severity vector includes a non-zero safety component, the risk

assessment may include an additional probability parameter that

represents the potential for the driver to influence the severity of the

Section 3: Cyber Security: a use case

57

outcome. In the MISRA Safety Analysis Guidelines [17] and ISO/DIS 26262

[18] this possibility is reflected in a qualitative measure referred to as

“controllability” (see Table 7).

Table 7: Controllability

3.7.4 Estimating Risk

Before estimating the risk for the hazard which has been used as root for

the attack tree, we need a last information, which is the Combined Attack

Potential.

In the tree, children may be connected to their parent with an AND or and

OR connection. The AND is explicitly specified through a circle, otherwise an

OR occurs implicitly.

The attack potential for OR and AND connections are:

𝐴𝑂𝑅(𝑃𝑖) = max{𝑃𝑖}

𝐴𝐴𝑁𝐷(𝑃𝑖) = min{𝑃𝑖}

The risk level (R, a vector) is determined from the severity (S) associated

with the attack objective and the combined attack potential (A) associated

Section 3: Cyber Security: a use case

58

with a particular attack method. This is achieved by mapping the severity

and attack potential to the risk using a “risk graph” approach. For severity

aspects that are not safety related the risk graph maps two parameters

(attack potential and severity) to a qualitative risk level. Combinations of

severity and combined attack potential are mapped to a range of “security

risk levels” (denoted Ri, where “i” is an integer) in Table 8 for non-safety

security threats. The security risk level attributed to an attack increases with

increasing severity and/or attack potential (the latter corresponding to

lower attack potential).

Table 8: Security Risk Level

In order to include the additional parameter (controllability) in the

assessment of safety-related security risks it is necessary to use of a

different risk graph as proposed in Table 9, which maps three parameters

(severity, attack probability, and controllability) to qualitative risk levels.

Section 3: Cyber Security: a use case

59

Table 9: Risk Level with Controllability information

The class “R7+” that is used in Table 9 denotes levels of risk that are unlikely

to be considered acceptable, such as safety hazards with the highest

severity classes and threat levels, coupled with very low levels of

controllability.

3.7.5 Applying the risk analysis to FLM use case

The steps for applying the risk level to the attack objectives are the

following:

1. The starting point for the risk analysis is the root of the tree. The very

first step is to assign the Severity Classes and Controllability to the

root. In this case the values chosen are:

• C = 2

• S = [3, 0, 0, 2]

Section 3: Cyber Security: a use case

60

2. The next step is to move to the leaves, where, for each leaf, the

attack potential has to be assigned;

After all the leaves have the attack potential assigned, the attack potential

for each leaf’s parent has to be computed, following the formulas for

AND/OR connections;

3. Following the same reasoning, the attack potential for all the nodes

has to be computed;

4. When the attack’s objectives have been reached, the risk level is

assigned following Table 8 or Table 9.

After all the computation have been done, the tree obtained is the one

shown in Figure 19.

Section 3: Cyber Security: a use case

61

Figure 19: Attack tree after risk levels are computed

It is possible to assess, by analysing the attack tree presented previously,

that the problem related to cyber security lies in the communications

flowing on the CAN bus. This result will be useful to identify which part of

the system must be enhanced.

Next sections will present the classical method for introducing security in

AUTOSAR during the modelling phase. Then an automatic process for

avoiding errors during such phase will be presented.

Section 4: Security annotations and Software Component extensions

62

4 SECURITY ANNOTATIONS AND SOFTWARE COMPONENT

EXTENSIONS

As previous sections highlighted, security is a priority to ensure that no

inconvenient occurs, which may harm the driver (and the car itself). The

solution to the lack of security is to ensure Confidentiality and Integrity to

system’s communications, in particular to those occurring over the CAN Bus.

4.1 AUTOSAR SECURITY MECHANISMS

Starting with AUTOSAR 4.0, cryptographic requirements were introduced in

order to support increasing automotive market demands in that field. In

order to implement the cryptographic requirements, AUTOSAR defines two

different specification documents:

• Crypto Abstraction Library (CAL) [19];

• Crypto Service Manager (CSM) [20].

4.1.1 Crypto Abstraction Library

The AUTOSAR library CAL provides other BSW modules and application

SWCs with cryptographic services. It offers C functions that can be called

from source code, i.e. from BSW modules, from SWC or from Complex

Drivers. As the CAL is a library, it is not related to a special layer of the

Section 4: Security annotations and Software Component extensions

63

AUTOSAR Layered Software Architecture. The services of the CAL are always

executed in the context of the calling function.

4.1.2 Crypto Service Manager

The CSM is located in the Services Layer of AUTOSAR layered architecture,

as shown in Figure 20. It offers standardized access to cryptographic services

for applications via the port mechanism.

Cryptographic services are, e.g., the computation of hashes, the verification

of asymmetrical signatures, or the symmetrical encryption of data. These

services depend on underlying cryptographic primitives and cryptographic

schemes (CRY).

CSM services use cryptographic algorithms that are implemented using a

software library or cryptographic hardware modules.

Section 4: Security annotations and Software Component extensions

64

Figure 20: AUTOSAR: Crypto Service Manager

The CSM services are generic. Consequently, the CSM allows different

applications to use the same service for different algorithms. While the

definition of the services, offered by the CSM, is part of the CSM

specification document, there is no specification in regards of the

cryptographic service primitives contained. It is up to a provider to specify,

implement and provide such for access by a CSM implementation.

Many CSM/CPL interfaces use the same cryptographic building blocks. Thus,

cryptographic building blocks should be implemented as separate modules

and be called from the CSM/CPL interfaces. This implies that the code for

cryptographic building blocks should not be implemented more than once.

Section 4: Security annotations and Software Component extensions

65

4.1.2.1 Locality of the CSM

Due to the fact that the CSM is an element of the AUTOSAR Services Layer,

the offered service can be used locally only – it is not possible to access the

service of the CSM directly via the VFB from a different ECU.

If this is needed, it is up to a provider to specify, implement and provide

some proxy for access of a CSM implementation, utilizing AUTOSAR

communication services for instance. In this case, it must be taken into

account that this raises security implications: any communication between

ECUs is done via not protected (somehow open accessible) communication

busses (e.g. CAN). This means, that unencrypted date, not yet signed data

or key material would be transmitted and might become stolen or

manipulated.

4.1.3 CSM and CAL

The AUTOSAR CSM and CAL specifications define the same cryptographic

functionality. This provided functionality covers the following areas:

 Hash calculation;

 Generation and verification of message authentication codes;

 Random number generation;

 Encryption and decryption using symmetrical algorithms;

 Encryption and decryption using asymmetrical algorithms;

Section 4: Security annotations and Software Component extensions

66

 Generation and verification of digital signature;

 Key management operations;

As already stated, the AUTOSAR CSM and CAL specifications do not define

the cryptographic algorithms to be used in order to implement the required

functionality. It is up to the implementer to decide regarding based on his

assumptions or (better) based on customer requirements that are not

provided by AUTOSAR.

The existence of two BSW modules (a service module and a library),

providing the same (or similar) functionality, is for historical reasons: the

cryptographic library has been introduced for using cryptographic

functionality directly by bypassing the RTE, after the CSM has been defined

already. Even if both modules provide mostly the same functionality, both

use different mechanisms for communication.

4.2 USING THE CSM TO PROVIDE SECURITY FUNCTIONALITIES

As stated before, the CSM offers several security mechanisms. This section

will show how to include those functionalities in an AUTOSAR (release 4.2.2)

project. The FLM use case will be taken as example.

The manual procedure to include security is simplified in the following steps:

Section 4: Security annotations and Software Component extensions

67

 Building new interfaces, as shown in Figure 21. The name of such

interfaces, as for their operations, is fixed and specified in the

AUTOSAR Standard regarding the CSM [20]. Such interfaces must

have the tag isService set to true and, optionally, the tag serviceKind

can be set to cryptoServiceManager. An interface must be added for

each service required by the CSM, in Figure 21 the interfaces added

ask for integrity (CsmMacGenerate and CsmMacVerify) and

confidentiality (CsmSymBlockEncrypt and CsmSymBlockDecrypt);

Figure 21: IBM rational Rhapsody: Interfaces for the CSM.

 Inside the internal behaviour of a software component requiring a

service, a SwcServiceDependency element must be included. Inside

Section 4: Security annotations and Software Component extensions

68

such element, it’s required to specify the client port(s)

(assignedPort), through which requiring the chosen CSM service and

the type of service (ServiceNeeds, specified in section 7.11 of [7])

required, in this case a CryptoServiceNeeds. This procedure is shown

in Figure 22.

Figure 22: IBM Rational Rhapsody: SWC Internal Behaviour specification for CSM services.

The procedure specified before has to be done for each SWC and CSM

service required. It’s clear that is a complex and error prone procedure. For

this reason, this work presents a tool for security modeling and automatic

code generation in AUTOSAR.

4.3 SECURITY MODELING AND AUTOMATIC CODE GENERATION IN

AUTOSAR

The tool produced has the aim to simplify the procedure described in the

previous section, to include security in AUTOSAR. It uses the ARXML file

Section 4: Security annotations and Software Component extensions

69

generated from the model to analyse the model and look for ad-hoc

elements inserted in the desc tag of data ports. Those elements are the

following:

 NONE: no security required;

 AUTH: authentication required, CsmSymEncrypt and CsmSymDecrypt

must be required to the CSM;

 INTEGR: integrity required, CsmMacGenerate and CsmMacVerify

must be required to the CSM;

 BOTH: both authentication and integrity are required.

In addition, the user can specify, after the security specification above, the

will of adding a brand new component (Filter) or to include security directly

inside the original component. The possible uses of the desc field is

summarized below:

 SecurityNeeds={INTEG,CONF,BOTH};

 NewComponent={TRUE,FALSE}.

4.4 APPLICATION TO THE FRONT LIGHT MANAGER USE CASE

In this section it is provided the application of the tool described in the

previous sections to the Front Light Manager use case scenario.

Section 4: Security annotations and Software Component extensions

70

The very first step is to identify which connections require security and

which kind of security they require.

 The connection between IgnitionKey and LightRequest requires

confidentiality;

 The connection between FLM and HMI requires integrity;

 The connection between FLM and OBC requires integrity.

After adding the security tags to the AUTOSAR model and producing the

ARXML file, the latter is parsed by the python tool. It produces a new ARXML

file as output. The file obtained can be loaded into IBM Rational Rhapsody

to see graphically the result, which can be seen in Figure 23.

Figure 23: FLM model after python tool parsing

Section 5: Crypto Service Manager implementation

71

5 CRYPTO SERVICE MANAGER IMPLEMENTATION

This section will present an implementation of the CSM in C-language,

according with the AUTOSAR standard documentation. The modules

implemented are the symmetrical encryption/decryption, symmetrical

block encryption/decryption and the MAC generation/verification. The

following sections will present how they are designed and implemented. In

the following, the keyword <Service> will be used in place of

SymBlockEncrypt, SymBlockDecrypt, SymEncrypt, SymDecrypt, MacGenerate

and MacVerify.

5.1 GENERAL BEHAVIOR

The CSM supports processing of a single instance of each service at a time.

The implementation of those CSM services which expect arbitrary amounts

of user data (i.e. hashing, encryption, etc.) shall be based on the streaming

approach with start, update and finish functions. This is the case of the

implementation proposed.

5.2 CONFIGURATION

Each service configuration is realized as a constant structure of type

Csm_<Service>ConfigType, and have a name which can be configured.

Section 5: Crypto Service Manager implementation

72

It is possible to configure synchronous and asynchronous job processing. In

this work the synchronous one has been chosen, so the interface functions

immediately compute the result.

5.3 SYNCHRONISATION BETWEEN APPLICATION AND CSM MODULE

CSM services which do not expect arbitrary amounts of user data, only have

to provide an API Csm_<Service>(). These services have to be handled as

simple function calls.

CSM services which expect arbitrary amounts of user data (as in the case of

this work), shall provide the APIs Csm_<Service>Start(),

Csm_<Service>Update() and Csm_<Service>Finish(). All applications have

to follow the rules presented by the next sections.

5.3.1 Initialization

The application calls the Csm_<Service>Start() request, passing a valid

service configuration to the start function. The start function checks the

validity of the configuration received.

If an instance of the service is being processed, the start function returns

CSM_E_BUSY. If no instance of the service is being processed when the

Csm_<Service>Start() is called, the function configures the CSM

immediately and return the status of the service.

Section 5: Crypto Service Manager implementation

73

5.3.2 Update

The application calls the Csm_<Service>Update() request, passing data

which are necessary for the computation of the service to the update

function. The update function checks whether the current service is already

initialized. If the service is not yet initialized, the update function returns

E_NOT_OK.

The CSM assumes that the data provided to the Csm_<Service>Update() will

not change until it returns.

If the service has been initialized, the update function immediately

processes the given data and return the status of the update.

5.3.3 Finish

The application calls the Csm_<Service>Finish() request, passing the result

buffer and optional data which is necessary for the finishing of the

cryptographic service to the finish function.

The finish function checks whether the current service is already initialized.

If it has not been initialized before, the finish function returns E_NOT_OK. If

the service has been initialized before, the finish function shall immediately

process the given data, finish the computation of the current cryptographic

service, store the result in the result buffer and returns the status of the

finish function.

Section 5: Crypto Service Manager implementation

74

The CSM assumes that the data provided to the Csm_<Service>Finish() will

not change until it returns.

5.4 API TYPES

This section will explore all the types and data structure used for the

implementation the cryptographic modules.

5.4.1 Enumerators and typedef

The starting point to describe the API types, are the description of all the

enumerators and typedefs used. The list of the typedefs follows:

 typedef uint16 Csm_ConfigIdType: numeric ID of a CSM service

configuration, unique within the service;

 typedef uint8 Csm_AlignType: scalar type which has maximum

alignment restrictions on the given platform. This value is configured

by the CsmMaxAlignScalarType.

The return type of the API implemented is of type Std_ReturnType, which

can assume the following values:

 E_OK: all the computations have been completed correctly;

 E_NOT_OK: an error occurs;

 CSM_E_BUSY: the cryptographic service is already serving another

client.

Section 5: Crypto Service Manager implementation

75

In case of a MAC verification, the result is of type Csm_VerifyResultType,

which can assume the following values:

 CSM_E_VER_OK: verification correct;

 CSM_E_VER_NOT_OK: verification failed.

5.4.1.1 Csm_<Service>ConfigType

A data structure containing all information needed to specify a

cryptographic service. It can be seen as a “context” for the services. It

contains the fields shown in Table 10.

Type Name Description

Csm_ConfigIdType ConfigId Numeric

identifier of a

configuration

Std_ReturnType *PrimitiveStartFct(<primitive

parameter list>)

Pointer to the

start

primitive

function. The

parameters are

the same of the

caller

function.

Std_ReturnType *PrimitiveUpdateFct(<primitive

parameter list>)

Pointer to the

update

primitive

function. The

parameters are

the same of the

caller

function.

Std_ReturnType *PrimitiveFinishFct(<primitive

parameter list>)

Pointer to the

finish

primitive

function. The

parameters are

the same of the

caller

function.

Void *PrimitiveConfigPtr Pointer to the

configuration

of the

underlying

Section 5: Crypto Service Manager implementation

76

cryptographic

primitive.

Table 10: elements of the service configuration structure.

5.4.1.2 Cry_<Primitive>ConfigType

A data structure containing all information needed to specify a

cryptographic primitive. It can be seen as a “context” for the primitive. The

fields of this structure differs for each primitive, as, according to the

AUTOSAR standard, they are implementation specific.

5.5 SYMMETRICAL BLOCK INTERFACE

A block cipher is a symmetric key cipher operating on a fixed-length blocks,

with an unvarying transformation. A block cipher encryption algorithm

takes a n-block of plaintext as input, and produces an output of n-bit block

of ciphertext. The transformation is controlled by a second input: the secret

key.

Decryption is similar, the decryption algorithm takes as input a n-bit block

of ciphertext and a secret key, and produce the original n-bit block plaintext.

Next sections will present the specification of the functions used for

encryption and decryption.

5.5.1 Csm_SymBlockEncryptStart

Service name Csm_SymBlockEncryptStart

Syntax Std_ReturnType Csm_SymBlockEncryptStart(

 Csm_ConfigType cfgId, const Csm_SymKeyType

*keyPtr)

Section 5: Crypto Service Manager implementation

77

Parameters
(in)

cfgId Identifier of the CSM module
configuration

keyPtr Pointer to the key structure, used
by the encryption algorithm

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used to initialize the symmetrical block
encryption service of the CSM module.
If the service is busy, the function returns CSM_E_BUSY.
Otherwise the function stores the given configuration
and call the Cry_<Primitive>Start of the primitive
identified by the cfgId and return the value returned by
that function.

5.5.2 Csm_SymBlockEncryptUpdate

Service name Csm_SymBlockEncryptUpdate

Syntax Std_ReturnType Csm_SymBlockEncryptUpdate(

 Csm_ConfigType cfgId, const uint8

*plainTextPtr,

 uint32 plainTextLength, uint8 *cipherTextPtr,

 uint32 *cipherTextLengthPtr)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

plainTextPtr Pointer to the plaintext buffer

plainTextLength Length of the plaintext

cipherTextPtr Pointer to the ciphertext buffer

cipherTextLengthPtr Pointer to the memory location
where the length of the ciphertext
is stored.
On calling, this parameter shall
contain the size of the buffer
provided by the cipherTextPtr.
When the request has finished,
the amount of data that has been
encrypted shall be stored

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed

Section 5: Crypto Service Manager implementation

78

CSM_E_BUSY: request failed,
service is still busy

Description The interface is used to feed the symmetrical block
encryption service with the input data.
If the service is not busy, the function returns E_NOT_OK.
Otherwise the function calls the Cry_<Primitive>Update
and return the value returned by that function.

5.5.3 Csm_SymBlockEncryptFinish

Service name Csm_SymBlockEncryptFinish

Syntax Std_ReturnType Csm_SymBlockEncryptFinish(

 Csm_ConfigType cfgId)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used finish the symmetrical block
encryption service.
If the service is not busy, the function returns E_NOT_OK.
Otherwise the function calls the Cry_<Primitive>Finish
and return the value returned by that function.

5.5.4 Csm_SymBlockDecryptStart

Service name Csm_SymBlockDecryptStart

Syntax Std_ReturnType Csm_SymBlockDecryptStart(

 Csm_ConfigType cfgId, const Csm_SymKeyType

*keyPtr)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

keyPtr Pointer to the key structure, used
by the encryption algorithm

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used to initialize the symmetrical block
decryption service of the CSM module.

Section 5: Crypto Service Manager implementation

79

If the service is busy, the function returns CSM_E_BUSY.
Otherwise the function stores the given configuration
and call the Cry_<Primitive>Start of the primitive
identified by the cfgId and return the value returned by
that function.

5.5.5 Csm_SymBlockDecryptUpdate

Service name Csm_SymBlockDecryptUpdate

Syntax Std_ReturnType Csm_SymBlockEncryptUpdate(

 Csm_ConfigType cfgId, const uint8

*cipherTextPtr,

 uint32 cipherTextLength, uint8 *plainTextPtr,

 uint32 *plainTextLengthPtr)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

cipherTextPtr Pointer to the ciphertext buffer

cipherTextLength Length of the ciphertext

plainTextPtr Pointer to the plaintext buffer

plainTextLengthPtr Pointer to the memory location
where the length of the plaintext
is stored.
On calling, this parameter shall
contain the size of the buffer
provided by the plainTextPtr.
When the request has finished,
the amount of data that has been
decrypted shall be stored

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used to feed the symmetrical block
decryption service with the input data.
If the service is not busy, the function returns E_NOT_OK.
Otherwise the function calls the Cry_<Primitive>Update
and return the value returned by that function.

Section 5: Crypto Service Manager implementation

80

5.5.6 Csm_SymBlockDecryptFinish

Service name Csm_SymBlockDecryptFinish

Syntax Std_ReturnType Csm_SymBlockEncryptFinish(

 Csm_ConfigType cfgId)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used finish the symmetrical block
decryption service.
If the service is not busy, the function returns E_NOT_OK.
Otherwise the function calls the Cry_<Primitive>Finish
and return the value returned by that function.

5.6 SYMMETRICAL INTERFACE

The Symmetrical Interface implements an algorithm which uses identical

cryptographic keys for both decryption and encryption. The keys are shared

secret between two or more parties.

Next sections will describe each of the function implemented.

5.6.1 Csm_SymEncryptStart

Service name Csm_SymEncryptStart

Syntax Std_ReturnType Csm_SymEncryptStart(

 Csm_ConfigType cfgId, const Csm_SymKeyType

*keyPtr,

 const uint8 *InitVectorPtr, uint32

InitVectorLength)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

keyPtr Pointer to the key structure, used
by the encryption algorithm

Section 5: Crypto Service Manager implementation

81

InitVectorPtr Holds a pointer to the initialization
vector used during the encryption
computation

InitVectorLength Holds the length of the
initialization vector used during
the encryption computation

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used to initialize the symmetrical
encryption service of the CSM module.
If the service is busy, the function returns CSM_E_BUSY.
Otherwise the function stores the given configuration
and call the Cry_<Primitive>Start of the primitive
identified by the cfgId and return the value returned by
that function.

5.6.2 Csm_SymEncryptUpdate

Service name Csm_SymEncryptUpdate

Syntax Std_ReturnType Csm_SymEncryptUpdate(

 Csm_ConfigType cfgId, const uint8

*plainTextPtr,

 uint32 plainTextLength, uint8 *cipherTextPtr,

 uint32 *cipherTextLengthPtr)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

plainTextPtr Pointer to the plaintext buffer

plainTextLength Length of the plaintext

cipherTextPtr Pointer to the ciphertext buffer

cipherTextLengthPtr Pointer to the memory location
where the length of the ciphertext
is stored.
On calling, this parameter shall
contain the size of the buffer
provided by the cipherTextPtr.
When the request has finished,
the amount of data that has been
encrypted shall be stored

Return values Std_ReturnType E_OK: request successful

Section 5: Crypto Service Manager implementation

82

E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used to feed the symmetrical encryption
service with the input data.
If the service is not busy, the function returns E_NOT_OK.
Otherwise the function calls the Cry_<Primitive>Update
and return the value returned by that function.

5.6.3 Csm_SymEncryptFinish

Service name Csm_SymEncryptFinish

Syntax Std_ReturnType Csm_SymEncryptFinish(

 Csm_ConfigType cfgId, uint8 *cipherTextPtr,

 uint32 *cipherTextLengthPtr)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

cipherTextPtr Holds a pointer to the memory
location which will hold the
encrypted text

cipherTextLengthPtr Holds a pointer to the memory
location which holds the length of
the encrypted text.
On calling, this parameter shall
contain the size of the buffer
provided by the cipherTextPtr.
When the request has finished,
the amount of data that has been
encrypted shall be stored

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used finish the symmetrical encryption
service.
If the service is not busy, the function returns E_NOT_OK.
Otherwise the function calls the Cry_<Primitive>Finish
and return the value returned by that function.

Section 5: Crypto Service Manager implementation

83

5.6.4 Csm_DecryptStart

Service name Csm_SymDecryptStart

Syntax Std_ReturnType Csm_SymDecryptStart(

 Csm_ConfigType cfgId, const Csm_SymKeyType

*keyPtr,

 const uint8 *InitVectorPtr, uint32

InitVectorLength)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

keyPtr Pointer to the key structure, used
by the encryption algorithm

InitVectorPtr Holds a pointer to the initialization
vector used during the encryption
computation

InitVectorLength Holds the length of the
initialization vector used during
the encryption computation

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used to initialize the symmetrical
decryption service of the CSM module.
If the service is busy, the function returns CSM_E_BUSY.
Otherwise the function stores the given configuration
and call the Cry_<Primitive>Start of the primitive
identified by the cfgId and return the value returned by
that function.

5.6.5 Csm_SymDecryptUpdate

Service name Csm_SymDecryptUpdate

Syntax Std_ReturnType Csm_SymDecryptUpdate(

 Csm_ConfigType cfgId, const uint8

*cipherTextPtr,

 uint32 cipherTextLength, uint8 *plainTextPtr,

 uint32 *plainTextLengthPtr)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

plainTextPtr Pointer to the plaintext buffer

plainTextLength Length of the plaintext.

Section 5: Crypto Service Manager implementation

84

On calling, this parameter shall
contain the size of the buffer
provided by the plainTextPtr.
When the request has finished,
the amount of data that has been
decrypted shall be stored

cipherTextPtr Pointer to the ciphertext buffer

cipherTextLengthPtr Pointer to the memory location
where the length of the ciphertext
is stored

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used to feed the symmetrical decryption
service with the input data.
If the service is not busy, the function returns E_NOT_OK.
Otherwise the function calls the Cry_<Primitive>Update
and return the value returned by that function.

5.6.6 Csm_SymDecryptFinish

Service name Csm_SymDecryptFinish

Syntax Std_ReturnType Csm_SymDecryptFinish(

 Csm_ConfigType cfgId, uint8 *plainTextPtr,

 uint32 *plainTextLengthPtr)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

plainTextPtr Holds a pointer to the memory
location which will hold the
encrypted text

plainTextLengthPtr Holds a pointer to the memory
location which holds the length of
the decrypted text.
On calling, this parameter shall
contain the size of the buffer
provided by the plainTextPtr.
When the request has finished,
the amount of data that has been
decrypted shall be stored

Section 5: Crypto Service Manager implementation

85

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used finish the symmetrical decryption
service.
If the service is not busy, the function returns E_NOT_OK.
Otherwise the function calls the Cry_<Primitive>Finish
and return the value returned by that function.

5.7 MAC INTERFACE

A Message Authentication Code (MAC) is a short piece of information used

to authenticate a message. A MAC algorithm accepts as input a secret key

and an arbitrary-length message to be authenticated, and produces a MAC

as output. The MAC protects the message both for authenticity and

integrity, as only who possesses the secret key can verify the MAC and

detect any changes to the message content.

Next sections will describe each of the function implemented.

5.7.1 Csm_MacGenerateStart

Service name Csm_SymBlockDecryptStart

Syntax Std_ReturnType Csm_SymBlockDecryptStart(

 Csm_ConfigType cfgId, const Csm_SymKeyType

*keyPtr)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

keyPtr Pointer to the key structure, used
by the encryption algorithm

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed

Section 5: Crypto Service Manager implementation

86

CSM_E_BUSY: request failed,
service is still busy

Description The interface is used to initialize the MAC generate
service of the CSM module.
If the service is busy, the function returns CSM_E_BUSY.
Otherwise the function stores the given configuration
and call the Cry_<Primitive>Start of the primitive
identified by the cfgId and return the value returned by
that function.

5.7.2 Csm_MacGenerateUpdate

Service name Csm_SymBlockDecryptUpdate

Syntax Std_ReturnType Csm_SymBlockEncryptUpdate(

 Csm_ConfigType cfgId, const uint8 *dataPtr,

 uint32 dataLength)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

dataPtr Pointer to the input buffer

dataLength Length of the input buffer

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used to feed the MAC generate service
with the input data.
If the service is not busy, the function returns E_NOT_OK.
Otherwise the function calls the Cry_<Primitive>Update
and return the value returned by that function.

5.7.3 Csm_MacGenerateFinish

Service name Csm_MacGenerateFinish

Syntax Std_ReturnType Csm_SymBlockEncryptFinish(

 Csm_ConfigType cfgId, uint8 *resultPtr,

 uint32 *resultLengthPtr, boolean

TruncationIsAllowed)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

 resultPtr Pointer to the output buffer

Section 5: Crypto Service Manager implementation

87

 resultLengthPtr Pointer to the length of the
output buffer

 TruncationIsAllowed TRUE: truncation is allowed
FALSE: truncation not allowed

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used finish the MAC generation service.
If the service is not busy, the function returns E_NOT_OK.
Otherwise the function calls the Cry_<Primitive>Finish
and return the value returned by that function.

5.7.4 Csm_MacVerifyStart

Service name Csm_SymBlockDecryptStart

Syntax Std_ReturnType Csm_SymBlockDecryptStart(

 Csm_ConfigType cfgId, const Csm_SymKeyType

*keyPtr)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

keyPtr Pointer to the key structure, used
by the encryption algorithm

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used to initialize the MAC verification
service of the CSM module.
If the service is busy, the function returns CSM_E_BUSY.
Otherwise the function stores the given configuration
and call the Cry_<Primitive>Start of the primitive
identified by the cfgId and return the value returned by
that function.

5.7.5 Csm_MacVerifyUpdate

Service name Csm_SymBlockDecryptUpdate

Syntax Std_ReturnType Csm_SymBlockEncryptUpdate(

Section 5: Crypto Service Manager implementation

88

 Csm_ConfigType cfgId, const uint8 *dataPtr,

 uint32 dataLength)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

dataPtr Pointer to the input buffer

dataLength Length of the input buffer

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used to feed the MAC verificatio service
with the input data.
If the service is not busy, the function returns E_NOT_OK.
Otherwise the function calls the Cry_<Primitive>Update
and return the value returned by that function.

5.7.6 Csm_MacVerifyFinish

Service name Csm_MacGenerateFinish

Syntax Std_ReturnType Csm_SymBlockEncryptFinish(

 Csm_ConfigType cfgId, uint8 *MacPtr,

 uint32 *MacLengthPtr, Csm_VerifyResultType

*resultPtr)

Parameters
(in)

cfgId Identifier of the CSM module
configuration

 MacPtr Pointer to the output buffer

 MacLengthPtr Pointer to the length of the output
buffer

 resultPtr Pointer to the memory location of
the result of the MAC verification.

Return values Std_ReturnType E_OK: request successful
E_NOT_OK: request failed
CSM_E_BUSY: request failed,
service is still busy

Description The interface is used finish the MAC verification service.
If the service is not busy, the function returns E_NOT_OK.
Otherwise the function calls the Cry_<Primitive>Finish
and return the value returned by that function.

Section 5: Crypto Service Manager implementation

89

5.8 PRIMITIVES

All functions above call inside their body a primitive. Primitives are divided

in:

 Cry_<Primitive>Start();

 Cry_<Primitive>Update();

 Cry_<Primitive>Finish().

Where the keyword <Primitive> is used for SymBlockEncrypt,

SymBlockDecrypt, MacGenerate and MacVerify.

All the primitives have the same argument and return type of the functions

which call them. The only exception is for start primitives, which has a

parameter of type const void *cfgPtr instead of Csm_ConfigIdType cfgId.

When calling these APIs, the parameter cfgPtr has to point to a constant

variable of type Cry_<Primitive>ConfigType, but need to be cast to const

void *. Reason for this is to have common definition of the parameter list

of this API for all primitives of one service, because in the structure

Csm_<Service>ConfigType one element is a function pointer to this API.

Section 6: Conclusions

90

6 CONCLUSIONS

This thesis analyses the problem of security in automotive applications. In

particular, integrity and confidentiality properties of inter-ECUs

communications are addressed.

An extension of the security modelling concepts currently available in

AUTOSAR have been proposed. Developers specify integrity and

confidentiality security requirements by adding security tags in the

description field of AUTOSAR software components.

A tool has been developed that, starting from the AUTOSAR model

specification with the security annotations, automatically generates

AUTOSAR security components that uses the services of the Crypto Service

Manager (CSM) to satisfy the high level requirement provided by the user.

Finally, following the standard specified for the AUTOSAR CSM, a Crypto

Service Manager library has been developed. The library, accessible by the

application layer, implements integrity by the mean of the MAC

Generation/Verification Interface and confidentiality using the Symmetric

Encryption/Decryption Interface. The library has been written in

C-programming language and uses OpenSSL as cryptographic primitives.

Section 6: Conclusions

91

As future work, the Crypto Service Manager library could be used for

simulation purposes, in particular to measure the resilience to cyber-

attacks, and for performance evaluations.

References

92

REFERENCES

[1] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham and S.

Savage, “Comprehensive Experimental Analyses of Automotive Attack

Surfaces”.

[2] “AUTOSAR Safety use case example, release 4.2.2.,” [Online].

Available: http://www.autosar.org/fileadmin/files/releases/4-

2/software-architecture/safety-and-

security/auxiliary/AUTOSAR_EXP_SafetyUseCase.pdf.

[3] Microsoft, “The STRIDE Threat Model,” [Online]. Available:

https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx.

[4] “European Project EVITA,” [Online]. Available: http://www.evita-

project.org/objectives.html.

[5] “SAFURE project,” [Online]. Available: https://safure.eu/.

[6] “AUTOSAR Specification of RTE, release 4.2.2,” [Online]. Available:

http://www.autosar.org/fileadmin/files/releases/4-2/software-

architecture/rte/standard/AUTOSAR_SWS_RTE.pdf.

References

93

[7] “AUTOSAR Software Component Template, release 4.2.2,” [Online].

Available: http://www.autosar.org/fileadmin/files/releases/4-

2/methodology-and-

templates/templates/standard/AUTOSAR_TPS_SoftwareComponent

Template.pdf.

[8] “Specification of BSW Module, release 4.2.2,” [Online]. Available:

http://www.autosar.org/fileadmin/files/releases/4-2/methodology-

and-

templates/templates/standard/AUTOSAR_TPS_BSWModuleDescripti

onTemplate.pdf.

[9] “Interoperability of AUTOSAR Tools, release 4.2.2,” [Online].

Available: http://www.autosar.org/fileadmin/files/releases/4-

2/methodology-and-

templates/tools/auxiliary/AUTOSAR_TR_InteroperabilityOfAutosarT

ools.pdf.

[10] “Magneti Marelli,” [Online]. Available:

http://www.magnetimarelli.com/.

[11] “AUTOSAR E2E Protection library, release 4.2.2,” [Online]. Available:

http://www.autosar.org/fileadmin/files/releases/4-2/software-

References

94

architecture/safety-and-

security/standard/AUTOSAR_SWS_E2ELibrary.pdf.

[12] “MISRA C standard,” [Online]. Available: http://www.misra-c.com/.

[13] “CERT secure coding standard,” [Online]. Available:

https://www.securecoding.cert.org/.

[14] “Microsoft SDL Threat Modeling Tool,” [Online]. Available:

https://www.microsoft.com/en-us/sdl/adopt/threatmodeling.aspx.

[15] Ruddle, A. Ward, D. Weyl, B. Idrees, S. Roudier, Y. Friedewald, M.

Leimbach, T. Fuchs, A. S. Gürgens, O. Henniger, R. Rieke, M. Ritscher,

H. Broberg, L. Apvrille, R. Pacalet and G. Pedroza, “Security

requirements for automotive on-board networks based on dark-side

scenarios,” Deliverable D2.3 of EVITA, 2009.

[16] “ “Abbreviated injury scale”, Association of the Advancement of

Automotive Medicine,” [Online]. Available: www.carcrash.org.

[17] M. ISBN 978 0 9524156 5 7, MISRA Guidelines for safety analysis of

vehicle based programmable systems, 2007.

[18] ISO/DIS 26262, “Road vehicles – Functional safety,” [Online].

References

95

[19] “AUTOSAR CAL, release 4.2.2,” [Online]. Available:

http://www.autosar.org/fileadmin/files/releases/4-2/software-

architecture/safety-and-

security/standard/AUTOSAR_SWS_CryptoAbstractionLibrary.pdf.

[20] “AUTOSAR CSM Module, release 4.2.2,” [Online]. Available:

http://www.autosar.org/fileadmin/files/releases/4-2/software-

architecture/safety-and-

security/standard/AUTOSAR_SWS_CryptoServiceManager.pdf.

Acknowledgement

96

7 ACKNOWLEDGEMENT

I would like to thank Prof. Marco Di Natale from Scuola Superiore Sant’Anna,

for the useful discussions and suggestions about the AUTOSAR standard.

I thank my supervisors Prof. Gianluca Dini and Prof. Cinzia Bernardeschi,

who follow me during this work. I thank them because of the kindness,

helpfulness and all the help given to me during these months.

