
 

 
 

Università degli Studi di Pisa 
 

Facoltà  di Scienze Matematiche,  Fisiche e  Naturali 

Corso di Laurea in Geofisica d’Esplorazione ed Applicata 

 

 

 

                           Tesi di Laurea Magistrale 

 

Algorithmic Seismic predictions of 

overpressure in AVA in fluid line 

 

 

 

 

 

 

 
 

Relatore: 

prof. Alfredo Mazzotti 

Correlatore:  

dott.  Mattia Aleardi 

 

Laureando:  

Natale Cristian 
Rugna

 
 

                                                                ANNO  ACCADEMICO 2015–2016 



1 
 

 

                              Ringraziamenti 
 

Il ringraziamento più grande va ai miei genitori per avermi sostenuto in 

questo percorso universitario, assieme a loro ringrazio mia nonna. 

 

Un grazie infinito va a tutti gli amici di Pisa, che in questi anni sono stati 

come una seconda famiglia. 

 

Un ringraziamento speciale al prof. Mazzotti e al dott. Aleardi per gli 

insegnamenti dati durante il mio percorso di laurea magistrale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Abstract 

The subject of detection of abnormally high pressured zones from seismic has received a 

great deal of attention in exploration and production geophysics because of increasing 

activities in frontier areas or offshore and a need to lower cost without compromising 

safety and environment, and managing risk and uncertainty associated with very 

expensive drilling. An estimation of pore pressure can be obtained from seismic velocity 

as well as from well logs. Pore pressure is one of the most important parameters for 

drilling plan and for geomechanical and geological analyses. If the pore pressure is higher 

than the hydrostatic pressure (normal pore pressure), it is abnormal pore pressure. When 

pore pressure exceeds the normal pressure, it is overpressure. In the present study, 

amplitude variation with angle (AVA), will be evaluated. AVA analysis can provide 

important information about reservoir rocks such as lithology, porosity, and pore fluids 

that can be used to reduce hydrocarbon exploration risk. Seismic amplitudes reflecting 

from an interface change when the angle increases between the source and receveir points 

at the surface. AVA analysis is normally carried out in a deterministic way to predict 

lithology and fluids from seismic data. Amplitude variation with angles (AVA) 

interpretations may be facilitated by crossplotting the AVA Intercept (A) and Gradient 

(B).  In the present study an algorithm has been developed, with the goal to discover 

wheter it was possible to predict overpressure phenomenons from the seismic data. It 

considers and compares an AVA Analytical and Experimental response. In the AVA 

Experimental response, well logs of the seismic velocities and density have been exploited  

to derive the synthetic seismograms (CMP) using the convolutional method, and the 

Intercept and Gradient values extracted from synthetic seismograms. In the AVA 

analytical response well logs of the seismic velocities have been used, and the Intercept 

and Gradient values extracted from the velocities (Vp, Vs) and density well logs. The 

strategy followed to tackle the problem has been  Shuey’s approximation. Shuey’s 

approximation was used for AVA crossplot analysis. The primary attributes extracted for 

AVA analysis are Intercept (A) and the Gradient (B), which are obtained from velocity 

corrected CMP records. This Gradient (“slope”) AVA attribute is calculated from a least 

square regression analysis of the amplitudes for angles from 0-30 degrees, using an X-

axis of sine squared theta (where theta is the incidence angle), and the Intercept is zero-

offset amplitude determined (using an Y-axis the amplitude) by extrapolating the AVA 

Gradient. This yields two AVA attributes, basically the Slope and Intercept of a straight 
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line, which describes, in simpler terms how the amplitude behaves with angle of incidence. 

Each point in the AVA crossplot is mapped using the amplitude of Intercept (A) and 

Gradient (B) in a time window. The extraction provides band-limited information on 

which attempt to discover anomalies caused by overpressure phenomens. AVA 

crossplotting can play a significant role in minimizing the risk associated with an 

exploration play. The stability of the Background Trend (Vp/Vs) can have an impact on 

what is being interpretated as anomalous, be it fluid or lithology induced outliers. The 

third and fourth chapters deal with the direct problem. We shall start with an initial model 

in which the Vp/Vs ratio is known, after which I shall apply Shuey’s approximation, and 

through the methodology of least squares and the “ Singular Value Decomposition” 

method, I obtain two values of Vp/Vs to predict two empirical equations, Costant Density 

and Gardner Density. Several examples were evaluated. The first example, it started from 

a Vp/Vs model that varied linearly. The second example added a bit of random noise to 

the initial model (Vp/Vs). The third example is considered to show the correct relationship 

of Vp/Vs. The fourth example considered a ratio Vp/Vs that varied linearly from 4 to 2 

and then returned again to a ratio of Vp/Vs = 4, with the addition of random noise. As 

previously explained, it is considered an AVA Analytical and Experimental response. 

Using an Analytical AVA response, the Vp/Vs ratio that was predicted was very close to 

the Vp/Vs ratio of the initial model. Using an Experimental AVA response, the predicted 

Vp/Vs ratio deflected from the Vp/Vs ratio of the initial model, especially when we 

consider the Gardner Density equation. This present study, attempts to define a low 

resolution profile of Vp/Vs ratio and not its local variations of high frequency. It was 

necessary to study many strategies which make the method robust and reliable. The 

present study is partitioned in four chapters. The first chapter attempts to analyze the 

problems of overpressure from the theoretical and practical points of view. The second 

chapter  focuses on the use of AVA seismic attributes, and how that seismic attribute can 

provide information about possible presence of overpressure from seismic data. The third 

and fourth chapters illustrate the algorithm developed in Matlab and provide information 

about the possible presence of overpressure. 
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Chapter 1 

 

Basic pressure concepts 

This chapter provides general information about the pressure theory. It indroduces the 

terminology used to describe the various types of pressure that are encountered during 

drilling. It explains the different mechanisms can  generate overpressure phenomenons. It 

indroduces some methods of pore pressure prediction. 

 

1.1  Definitions and pressure concepts 

Pore pressure is defined as the fluid pressure in the pore space of the rock matrix. In a 

geologic setting with perfect communication between the pores, the pore pressure is the 

hydrostatic pressure due to the weight of the fluid. The pore pressure at depth z can then 

be computed as : 

  

                                                      Ph = ρ f g z                                                                 (1.1) 

 

where z, ρ f and g are the height of the column, the fluid density, and acceleration due to 

gravity, respectively. The size and shape of the cross-section of the fluid column have no 

effect on hydrostatic pressure. The fluid density depends on the fluid type, concentration 



7 
 

of dissolved solids and gasses in the fluid column, and the temperature and pressure. Thus, 

in any given area, the fluid density is depth dependent. In SI system, the unit of pressure 

is pascal (abbreviated by Pa), and in the British system, the uniti is pounds per square 

inch (abbreviated by psi). We note that 1 Pa= 1.45 × 10-4  psi = 1 N/m2 . This is a rather 

small unit and for most practical applications, it is customary to use megapascals (MPa), 

where 1 MPa = 106  N/m2 . The formation pressure gradient, expressed usually in pounds 

per square inch per foot (abbreviated by psi/ft) in the British system of units, is the ratio 

of the formation pressure, P (in psi) to the depth, z  (in feet). It is not the true instantaneous 

gradient, dP/dz. Hydrostatic pressure is often referred to as normal pressure conditions. 

Conditions that deviate from normal pressure are said to be either overpressured or 

underpressured, depending on whether the pore pressure is greater than or less than the 

normal pressure. In general, the hydrostatic pressure gradient, Pg (in psi/ft), can be defined 

by 

 

                              Pg = 0.433 × fluid density ( in g/cm3 ).                                          (1.2) 

 

The overburden pressure S (z) is defined as the combined weight of sediments and fluid 

in the pore space overlying a formation. Mathematically, the overburden pressure can be 

defined as 

 

                             𝑆(z) = g ∫ ρ
z

0
(z) g dz                                                                        (1.3) 

 

where 

 

                         𝜌 (𝑧) =  𝜙 (𝑧) 𝜌𝑓 (𝑧) + (1 − 𝜙 (𝑧)) 𝜌𝑚 (𝑧).                                         (1.4)  

 

In equation (1.4), ϕ is the porosity , while 𝜌𝑓 and 𝜌𝑚 are the fluid and rock matrix 

densities, respectively. If the density is known, the overburden pressure can be measured. 
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The overburden pressure is depth dependent and increases with depth. The overburden 

pressure ha salso been referred to as the geostatic or lithostatic pressure [Dutta, 2002]. 

 

 

The effective pressure or differential pressure is defined as  

 

                                     Pe = S – n p ,                                                                              (1.5) 

Where p is the pore fluid pressure, and n is called the Biot coefficitent. For static 

compression of the rock frame, the Biot coefficient is defined as (Fjær, 1989) 

 

                                       n = 1 −
𝐾𝑓𝑟

𝐾𝑠
                                                                               (1.6) 

 

where 𝐾𝑓𝑟 is the bulk modulus of the rock frame and Ks is the bulk modulus of the mineral 

that the rock is composed of. For soft materials, n = 1. 

 

Pore pressure can be calculated from Eq. (1.5) when one knows overburden and effective 

stresses. Overburden stress can be easily obtained from bulk density logs, while effective 

stress can be correlated to well log data, such as resistivity, sonic travel time/velocity, bulk 

density and drilling parameters. Fig. (1.1) demonstrates the hydrostatic pressure, 

formation pore pressure, overburden stress and vertical effective stress with the true 

vertical depth (TVD) in a typical oil and gas exploration well. The pore pressure profile 

with depth in this field is similar to many geologically young sedimentary basins  where 

overpressure is encountered at depth. At relatively shallow depths (less than 2,000 m), 

pore  pressure is hydrostatic, indicating that a continuous, interconnected column of pore 

fluid extends from the  surface to that depth. Deeper than 2,000 m the overpressure starts, 

and pore pressure increases with depth  rapidly, implying that the deeper formations are 

hydraulically isolated from shallower ones. By 3,800 m,  pore pressure reaches to a value 

close to the overburden stress, a condition referred to as hard 106 overpressure. The 
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effective stress is conventionally defined to be the subtraction of pore pressure from 

overburden stress, as shown in Fig. (1.1). The increase in overpressure causes reduction 

in the effective stress. The pore pressure gradient is more practically used in drilling 

engineering, because the gradients are more convenient to be used for determining mud 

weight (or mud density), as shown in (Fig. 1.2). The pore pressure gradient at a given 

depth is the pore pressure divided by the true vertical depth. The mud weight should be 

appropriately selected based on pore pressure gradient, wellbore stability and fracture  

gradient prior to setting and cementing a casing. The drilling fluid (mud) is applied in the 

form of mud  pressure to support the wellbore walls for preventing influx and wellbore 

collapse during drilling. To  avoid fluid influx, kicks and wellbore instability in an open 

hole section, a heavier mud pressure than the  pore pressure is needed. However, when 

mud weight is higher than the fracture gradient of the drilling  section, it may fracture the 

formation, causing mud losses or even lost circulation. To prevent wellbore  from 

hydraulic fracturing by the high mud weight, as needed where there is overpressure, casing 

needs to  be set to protect the overlying formations from fracturing, as illustrated in (Fig. 

1.2). Pressure gradients and mud weight are expressed in the metric unit, g/cm3in Fig(1.2).        

 

Fig. 1.1. Hydrostatic pressure, pore pressure, overburden stress, and effective                                     

stress in borehole ( Figure from Zhang, 2011).  
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Fig. 1.2. Pore pressure gradient, fracture gradient, overburden stress gradient (lithostatic 

gradient),mud weight, and casing shoes with depth ( Figure  from Zhang, 2011). 

 

       

 

    Pore pressure analyses include three aspects: pre-drill pore pressure prediction, pore 

pressure  prediction while drilling and post-well pore pressure analysis. The pre-drill pore 

pressure can be predicted  by using the seismic interval velocity data in the planned well 

location as well as using geological, well  logging and drilling data in the offset wells. The 

pore pressure prediction while drilling mainly uses the  logging while drilling (LWD), 

measurement while drilling (MWD), drilling parameters, and mud logging  data for 

analyses. The post-well analysis is to analyze pore pressures in the drilled wells using all  

available data to build pore pressure model, which can be used for pre-drill pore pressure 

predictions in the future wells. 

 

   Fracture pressure is the pressure required to fracture the formation and cause mud loss 

from wellbore into  the induced fracture. Fracture gradient can be obtained by dividing 

the true vertical depth from the  fracture pressure. Fracture gradient is the maximum mud 

weight; therefore, it is an important parameter  for mud weight design in both drilling 
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planning stage and while drilling. If mud weight is higher than the formation fracture 

gradient, then the wellbore will have tensile failure (be fractured), causing losses of  

drilling mud or even lost circulation. Fracture pressure can be measured directly from 

downhole leak-off test (LOT). There are several approaches to calculate fracture gradient. 

The following two methods are  commonly used in the drilling industry, the minimum 

stress method and tensile failure method.    

 

 

1.2   Overpressure Mechanisms 

 Development of overpressure indicates that fluid movement is retarded both vertically 

and laterally. This can be caused by a rapid burial of low-permeability sediments (rapid 

enough to prevent compaction water to leave the system), or expansion of pore fluid from 

diagenetic and lithologic changes, or both [Hubbert and Rubey, 1959]. Some of the 

important mechanisms related to geopressure are: 

 

1) Mechanical compaction disequilibrium. 

2) Clay dehydration and alteration due to burial diagenesis. 

3) Dipping or lenticular permeable beds embedded in shales. 

4) Buoyancy. 

5) Tectonism / uplift and erosion. 

6) Aquatermal pressuring. 

Mechanical compaction disequilibrium is believed to be the primary cause of 

geopressure in sedimentary basins [Hubert and Rubey, 1959]. There, low-

permeability sediments (such as high-porosity clay) accumulate at rates faster than 

they can dewater and compact due to gravity. Therefore, the pore fluid is forced to 

support some portion of the combined weight of the overlying rocks and fluids. The 

magnitude of the overpressure due to mechanical disequilibrium and the depth 

where the pressure deviates from hydrostatic condition are dictated by the burial 

history of the sediments and the hydraulic communication with neighboring 

formations and faults. Smectite or swelling clay is a common component of clay, 

especially in the Gulf of Mexico. It contains a considerable amount of water bound 
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in the clay platelets. At 150–250±F, smectite begins to dehydrate and transform to 

illite, with potassium feldspar acting as a catalytic agent. This process releases 

interlayer bound water from the smectite into free pore water, and causes an 

additional increase in pore pressure and decrease of effective stress. In addition, the 

process also causes a longrange ordering of clay platelets and redistribution of 

effective stress (Hower et al., 1976). The interlayering of smectite and illite layers 

is characterized by an ordering parameter RN. RN means that at least N illite layers 

separate every pair of smectite layers [Dutta, 1987]. The entire process is kinetic in 

nature and controlled by the temperature and time history of burial of the sediments. 

The third mechanism, due to flow of fluids through dipping or lenticular sands, is a 

local phenomenon. When these sands are embedded in geopressured shales, they 

provide a very efficient mechanism by which high-pressured shales can dewater, 

especially if the sand has a considerable structural relief. This is because the sand 

has much higher permeability than the encasing shales which, in turn, causes the 

pore fluid pressure gradient within the sand to be hydrostatic. This causes a 

transmittal of high pressure from the downdip positions of the sands to their crestal 

positions. This can also happen when sands are juxtaposed by faulting. This 

phenomenon, in principle, can cause lateral changes in the velocity field around the 

sand with a significant structural relief. In the literature this has also been termed as 

the centroid phenomenon [Traugott, 1997]. Oil and gas are lighter than water. 

Hence, when water is replaced by hydrocarbons, it results in an increase in the pore 

pressure at the reservoir level due to buoyancy effect. The key factors that dictate 

the amount of overpressuring caused by this mechanism are the density of 

hydrocarbons, the height of the column of hydrocarbons, and the density of pore 

water at that depth. In provinces such as Orinoco Delta, Venezuela, Trinidad, 

Sumatra, and California, tectonic compression and shear (tectonic wrench faulting) 

can cause significant geopressure. Rapid uplifting and erosion of a sealed 

compartment, while maintaining the pore fluid pressure within the compartment, 

will also cause pore pressure to be abnormally high at its depth of burial. Seismic 

detection of pore pressure due to these mechanisms is very difficult. Aquathermal 

pressuring has been a much-discussed phenomenon in the literature. It is also 

controversial. This phenomenon is due to the fact that the coefficients of thermal 

expansion of pore fluids are greater than the corresponding coefficients of the rock 

matrix. Consequently, when a compartment is sealed and buried, the pore fluids are 
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subjected to a high pressure due to the pore fluid volume expansion caused by 

increased temperature. However, there is considerable disagreement as to how 

perfect the seal must be for this mechanism to significantly contribute to high pore 

pressure. As far as the seismic detection of abnormally high pore pressure is 

concerned, the first two mechanisms (mechanical compaction disequilibrium and 

clay dehydration) can be detected relatively easily compared to the remaining 

mechanisms. This is because the compaction properties of sediments dealing with 

both mechanical disequilibrium and clay dehydration are relatively well behaved 

and easier to describe and model using well-known rock physics and seismic 

principles. Further, these mechanisms can be reconciled with observations easier 

relative to the other mechanisms. However, there still remains a certain ambiguity; 

the contribution from the other mechanisms can never be ruled out completely. 

 

    

 

 

   1.3  Pore pressure prediction methods 

 

Hottmann and Johnson  were probably the first ones to make pore pressure prediction 

from shale properties derived from well log data (acoustic travel time/velocity and 

resistivity). They indicated that porosity decreases as a function of depth from analyzing 

acoustic travel time in Miocene and Oligocene shales in Upper Texas and Southern 

Louisiana Gulf Coast. This trend represents the “normal compaction trend” as a function 

of burial depth, and fluid pressure exhibited within this normal trend is the hydrostatic. If 

intervals of abnormal compaction are penetrated, the resulting data points diverge from 

the normal compaction trend. They contended that porosity or transit time in shale is 

abnormally high relative to its depth if the fluid pressure is abnormally high. Most 

methods of pore pressure predictions are based on Terzaghi’s effective stress relation 

[Terzaghi, 1943] that expresses elastic wave velocity as a function of vertical effective 

stress. Since the stress is normal, it can otherwise be called pressure and be used 
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interchangeably. If the relation between elastic wave velocity and vertical effective stress 

is known, the pore pressure P can be calculated from Equation (1.1), and the total 

overburden stress determined from Equation (1.3). Most common methods used for 

determining pore pressure from compressional seismic velocity include the Eaton’s 

method, Bowers’ method. The choice for each method depends on the overpressure 

generation mechanism in the area of interest. Browers calculated the effective stresses 

from measured pore pressure data of the shale and overburden stresses and analyzed the 

corresponded sonic interval velocities from well logging data. He proposed that the sonic 

velocity and effective stress a power relantionship as follows: 

 

                     Vp = Vml + AσB                                                                                                             (1.7) 

  

 

where Vp is the complessional velocity at a given depth; Vml is the compressional velocity 

in the mudline ( the sea floor or the ground surface, normally Vml  ≈5000 ft/s, or 1520 

m/s); A and B are the parameters calibrated with offset velocity versus effective stress 

data. Rearranging Eq. (1.7) and considering Pe = S(z) – Ph, the pore pressure can be 

obtained from the velocity as described in Eq. (1.7), as: 

 

                                                                             

                                        𝑃ℎ =  𝑆(𝑧) −
(𝑉𝑝−𝑉𝑚𝑙)

(𝐴)

1/𝐵
                                                            (1.8)             

 

   For Gulf of Mexico wells, A = 10-20 and B = 0.7-0.75 in the English units ( with Ph, 

S(z) in psi and vp, Vml in ft/s).  

Eaton presented the following empirical equation for pore pressure gradient prediction 

from sonic compressional transit time: 

 

                       Ppg = OBG – ( OBG – Png)  ( 
𝛥𝑡𝑛

𝛥𝑡
)

3

                                                          (1.9) 
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where Ppg is the formation pore pressure gradient; OBG is the overburden stress gradient; 

Png is the hydrostatic pore pressure gradient (normally 0.45 psi/ft or 1.03 MPa/km, 

dependent on water salinity), Δtn is the sonic transit time or slowness in shales at the 

normal pressure; Δt is the sonic transit time in shales obtained from well logging, and it 

can also be derived from seismic interval velocity. This method is applicable in some 

petroleum basins, but it does not consider unloading effects. This limits its application in 

geologically complicated area, such as formations with uplifts. To apply this method, one 

needs to determine the normal transit time (Δtn).   

                        

 In young sedimentary basins where under-compaction is the major cause of overpressure,  

the Gulf of Mexico, North Sea, the well-log-based resistivity method can fairly predict 

pore pressure. Eaton (1972) presented the following equation to predict pore pressure 

gradient in shales using resistivity log: 

 

                               Ppg = OBG – ( OBG – Png)  ( 
𝑅

𝑅𝑛
)

𝑛

                                               (1.10) 

 

where R is the shale resistivity obtained from well logging; Rn is the shale resistivity at 

the normal ( hydrostatic) pressure; n is the exponent varied from 0.6 to 1.5, and normally 

n = 1.2. Eaton's resistivity method is applicable in pore pressure prediction, particularly 

for young sedimentary basins, if the normal shale resistivity is properly determined. One 

approach is to assume that the normal shale resistivity is a constant.  

In Eaton's original equation, it is difficult to determine the normal shale resistivity or the 

shale resistivity in the condition of hydrostatic pore pressure. One approach is to assume 

that the normal shale resistivity is a constant. However, the normal resistivity (Rn) is not 

a constant in most cases, but a function of the burial depth, as shown in Fig 1.2. Thus 

normal compaction trendline needs to be determined for pore pressure prediction. Based 

on the relationship of measured resistivity and burial depth in the formations with normal 

pressures, the following equation of the normal compaction trend of resistivity can be used 

: 
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                                          Rn = Ro ebz                                                                                         (1.11) 

 

Where Rn is the shale resistivity in the normal compaction condition; Ro is the shale 

resistivity in the mudline; b is the costant; and Z is the depth below the mudline. 

Substituting Eq. (1.11) into Eq. (1.10), the Eaton’s resistivity equation can be expressed 

in the following form: 

 

                                       Ppg = OBG – ( OBG – Png)  ( 
𝑅

𝑅0𝑒𝑏𝑧)
𝑛

                                        (1.12) 

    

where R is the measured shale resistivity at depth of Z; Ro is the normal compaction shale 

resistivity in the mudline; b is the slope of logarithmic resistivity normal compaction 

trendline. A case study is examined to verify the adapted Eaton’s resistivity method with 

depth dependence. The studied basini s located in a deepwater field in Green Canyon of 

the Gulf of Mexico, U.S.A [Zhang, 2011]. The water  depth is 5000 ft, and the Tertiary 

formations are mainly shales (mudstones) with some sandstones. The target reservoir is 

located in the Miocene sandstones. Several offset wells are analyzed to examine  pore 

pressures in this field. Fig (1.3) shows the pore pressure calculation in an oil well from 

the modiefild Eaton’s resistivity method in this basin. Prior to the pore pressure 

calculation, the normal resistivity compaction trend  is firstly analyzed based on Eq. 

(1.12), as shown in Fig. 1.3.a. With calibration of the measured pore pressure data, the 

normal compaction trendline is obtained with the following parameters in this basin. 
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Fig. 1.3. Schematic resistivity (a) and pore pressure (b) in an undercompacted basin. The 

inclined line in (a) represents the resistivity in normally compacted formation (normal 

resistivity, Rn). In the under- compacted section the resistivity (R) reversal occurs, 

corresponding an overpressured formation in (b). In the under-compacted/overpressured 

section, resistivity is lower than that in the normalcompaction trendline (Rn). In the figure, 

σv or S(z) = lithostatic or overburden stress; σe or Pe = the effective vertical stress; Pn = 

normal pore pressure; p = pore pressure (Figure from Zhang, 2011).         

 

Fig. 1.3 indicates that the formation is in normal compaction when depth is less than 4900 

ft below the sea floor. Deeper than this depth (from 4900 to 7600 ft), the formation is 

slightly under-compacted with a lower resistivity than the normal compaction trend (Fig. 

1.3.a), implying that the pore pressure increases, as shown in Fig. 1.3.b. From  7600 to 

13,000 ft, the  formation is further under-compacted and more elevated pore pressure exist. 

Fig 1.3 demonstrates that the adapted Eaton’s resistivity method gives a fairly good result 

in pore pressure calculation. It should be noted that the pore pressure in the formation near 

the wellbore is affected by drilling-induced stresses [Zhang and Roegiers, 2005]. 

Therefore, in order to obtain the formation pore pressure the deep resistivity is needed for 

the pore pressure calculation. 
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Fig.1.3. Pore pressure calculated by adapted Eaton's resistivity method with depth-

dependent compaction trendline in a deepwater post-well analysis in the Gulf of Mexico. 

The left figure (a) plots the resistivity in shale and the normal resistivity calculated from 

Eq. (1.11), and the resistivity is plotted in logarithmic scale. The right figure (b) shows 

the overburden stress gradient (OBG), mud weight used while drilling (MW), measured 

pore pressure gradient (RFT) and pore pressure gradient (Pp Res) calculated from 

resistivity using Eq. (1.12), (Figure from Zhang, 2011). 

 

Slotnick (1936) recognized that the compressional velocity is a function of depth, velocity 

increases with depth in the subsurface formations. Therefore, the normal compaction 

trendline of travel time should be a function of depth. The oldest and simplest normal 

compaction trend of seismic velocity is a linear relationship given by Slotnick (1936) in 

the following form: 

 

                                             V = V0 + KZ                                                                               (1.13) 

 

Where V is the seismic velocity at depth of Z; V0  is the velocity in the ground surface or 

at the sea floor; K is a costant.  

Sayers (2002) used this relationship as the normally pressured velocity for pore pressure 

prediction. A normal compaction trend for shale acoustic travel time with depth in the 
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Carnarvon Basin was established by fitting an exponential relationship to averaged 

acoustic travel times from 17 normally pressured wells [van Ruth, 2004]: 

 

                                 Δtn = 225 + 391e-0.00103Z                                                                                             (1.14) 

 

Where Δtn
     is the acoustic transit time from the normal compaction trend at the depth of 

investigation (µs/m); Z in meters.  

A similar relationship was used for a petroleum basin in Brunei [Tingay,  2009]: 

 

                                       Δtn = 176.5 + 461.5e -0.0007Z                                                                              (1.15) 

 

Based on the data of the measured sonic transit time in the formations with normal pore 

pressures, as illustrated in (Fig. 1.4), the following general relationship of the normal 

compaction trend of the transit time is proposed: 

 

                                      Δtn = Δtm + (Δtml – Δtm)e – cZ                                                                      (1.16) 

 

where Δtm   is the compressional transit time in the shale matrix (with zero porosity); Δtml  

is the mudline transit time; and c is the costant. 
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 Fig. 1.4. Schematic plots showing sonic transit time (Δt) measured in shale, the normal 

compaction trend of the transit time in the normal pressure condition (Δtn) and the pore 

pressure response to the transit time (Δt), (Figure from Zhang, 2011]. 

 

 

As introduced before, the under-compaction is the primary reason to cause formation 

overpressured, which occur primarily in rapidly subsiding basins and in rocks with low 

permeability. The indicators of under-compaction are higher pore pressure and larger 

formation porosity than those in the normal compaction condition. It is commonly 

accepted that porosity decreases exponentially as depth increases in normally compacted 

formations [Athy, 1930]: 

 

                                           ϕ = ϕ0 e -cZ                                                                                 (1.16)  

 

where ϕ is porosity; ϕ0 is the porosity in the mudline; Z is the true vertical depth below 

the mudline; c is the compaction constant in 1/m or 1/ft. 

As discussed previously, porosity is an indicator (a function) of effective stress and pore 

pressure, particularly for the overpressures generated from under-compaction and 

hydrocarbon cracking. Therefore, pore pressure can be estimated from formation porosity. 

Fig. 1.5 illustrates how to identify under-compaction and overpressure from porosity 
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profile. When the porosity is reversal, the under-compaction occurs and overpressure 

generates. The starting point of the porosity reversali s the top of under-compaction or top 

of overpressure. In the formation with under-compaction, porosity and pore pressure are 

higher than those in the normally compacted one. 

                       

Fig. 1.5. Schematic porosity (a) and corresponding pore pressure (b) in a sedimentary 

basin. The dash porosity in (a) represents normally compacted formation. In the 

overpressured section the porosity reversal occurs (heavy line). In the overpressured 

section, porosity is larger than that in the normal compaction trendline (ϕn ), (Figure from 

Zhang, 2011).  

 

                                                                                                                                                                    

1.4 Seismic velocity for overpressure analysis 

Seismic data acquisition with multifold coverage is done in shot-receiver (s, g) 

coordinates. Figure 1.6a is a schematic depiction of the recording geometry and ray paths 

associated with a flat reflector. Seismic data processing, on the other hand, conventionally 

is done in midpoint-offset (y, h) coordinates. The required coordinate transformation is 

achieved by sorting the data into CMP gathers. Based on the field geometry information, 

each individual trace is assigned to the midpoint between the shot and receiver locations 

associated with that trace. Those traces with the same midpoint location are grouped 

together, making up a CMP gather. Albeit incorrectly, the term common depth point 

(CDP) and common midpoint (CMP) often are used interchangeably. Figure 1.6b depicts 
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the geometry of a CMP gather and raypaths associated with a flat reflector. Note that CDP 

gather is equivalent to a CMP gather only when reflectors are horizontal and velocities do 

not vary horizontally. However, when there are dipping reflectors in the subsurface, these 

two gathers are note quivalent and only the term CMP gather should be used. The dotted 

area represents the coverage used in recording the seismic profile along the midpoint axis, 

Oy. Each dot represents a seismic trace with the time axis perpendicular to the plane of 

paper. The following gather types are identified in: 

(1) Common-shot gather (shot record, field record), 

(2) Common-receiver gather, 

(3) Common-midpoint gather (CMP gather, CDP gather), 

(4) Common-offset section (constant-offset section), 

(5) CMP-stacked section (zero-offset section). 

 

For most recording geometries, the fold of coverage nf for CMP stacking is given by 

 

                                               nf = 
𝑛𝑔 𝛥𝑔

2 𝛥𝑠
                                                                        (1.17) 

 

where Δg and Δs are the receiver-group and shot intervals, respectively, and ng is the 

number of recording channels. By using this relationship, the following rules can be 

established: 

(a) The fold does not change when alternating traces in each shot record are dropped. 

(b) The fold is halved when every other shot record is skipped, whether or not alternating          

traces     in each record are dropped. 
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FIG. 1.6. (a) Seismic data acquisition is done in shot-receiver (s, g) coordinates. The 

raypaths are associated with a planar horizontal reflector from a shot point (indicated by 

the solid circles) to several receiver locations (indicated by the triangles). The processing 

coordinates, midpoint-(half) offset, (y, h) are defined in terms of (s, g): y = (g + s)/2, h = 

(g − s)/2. The shot axis here points opposite the profiling direction, which is to the left. 

On a flat reflector, the subsurface is sampled by reflection points which span a length that 

is equal to half the cable length. (b) Seismic data processing is done in midpoint-offset (y, 

h) coordinates. The raypaths are associated with a single CMP gather at midpoint location 

M. A CMP gather is identical to a CDP gather if the depth point were on a horizontally 

flat reflector and if the medium above were horizontally layered (Figure from Yilmaz, 

1987). 

 

 

All seismic methods for pressure prediction use a relation between the rock velocity and 

the effective pressure. The rock velocities provides information for both pore pressure and 
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effective pressure. The rock velocity is described how the acustic wave velocity throught 

a rock sample [Dutta, 2001]. 

The seismic method detects changes of interval velocity with depth from velocity analysis 

of the seismic data. These changes are in turn related to lithology, pore fluid type, rock 

fracturing and pressure changes within a stratigraphic column. When the factors affecting 

the velocity are understood for a given area, a successful pressure prediction can be made. 

In general, the interval velocity of the rocks increases with depth because of compaction. 

In areas deviations from normal compaction trends are related to abnormally high pore 

pressures. The seismic velocity versus depth is translated into pore pressure gradient 

versus depth in any place where seismic velocity analysis has been performed. In 

seismology we are concerned with the speed of propagation of a seismic wave in the earth. 

The seismic velocity, therefore, refers to the speed of wavefront in the direction of energy 

propagation (perpendicular to the wavefront for isotropic earth). Unfortunately, we cannot 

directly measure the seismic velocity using reflection seismic data. We must measure 

normal moveout (NMO) velocity, interpret root means square (RMS) velocity from NMO 

velocity and then convert RMS velocity to interval velocity. Interval velocities thus 

derived are our best estimate of the velocity of rocks required for overpressure prediction. 

In the reflection method the two primary measurements we can make for estimating 

velocity are distance between the shot and receiver and the travel time from the shot to 

the receiver. In the order to exploit these measurements effectively, the common midpoint 

(CMP) method is used. This method provides multiple measurements of source-to-

reveiver distance (offset) and time for any given interface in the subsurface. As shown in 

Fig. 1.6, the CMP method consists of recording a number of seismic traces for which the 

midpoint between the source and reveiver are the same surface location. Each trace has a 

different offset distance. The group of traces which have a common midpoint is called a 

CMP gather. When the traces are assembled so that the offset distance progressively 

increases, the arrival time for a given reflection also increases. These velocities are 

obtained from an analysis of the traveltime equation valid for the horizontally stratifield 

earth model, assuming that the offset is small compared to the depth (small spread 

approximation). In this case, the series coefficient can be truncated as follows: 

 

                                       T 2 (x) = T 2 (0) + 
𝑥2

𝑉2𝑅𝑀𝑆
                                                                 (1.18) 
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This may be compared with the well known NMO equations: 

 

                                    T 2 (x) = T 2 (0) + 
𝑥2

𝑉2𝑁𝑀𝑂.
                                                                                                           (1.19) 

 

Comparing equation (1.19) with equation (1.18), we realize that the velocity required for 

NMO correction for a horizontally stratiefied medium is equal to the RMS velocity, 

provided the small-spread approximation is made. The hyperbolic moveout velocity 

should be distinguished from the stacking velocity that optimally allows stacking of traces 

in CMP gather. The hyperbolic form is used to define the best stacking path: 

 

                                                    T 2st (x) = T 2 (0) + 
𝑥2

𝑉2𝑠𝑡
 ,                                                                                                     (1.20)   

           

where Vst
  is the velocity that allows the best fit of the traveltime curve on a CMP gather 

to a hyperbola within the spread lenght. This hyperbola is not necessarily the small-spread 

hyperbola implied by either equation (1.18) or equation (1.19). The differences can be 

significant as shown in figure (1.7).   

  Fig. 1.7. Errors associated with NMO assumptions. The NMO approximation assumes 

a small-spread hyperbola. The stacking velocity is derived from the best-fit hyperbola 

over the entire offset range. Here, (a) is the actual traveltime, (b) is the best-fit hyperbola 

over the full offset range 0A, and (c) is the small-spread hyperbola ( Figure from Dutta, 

2002). 
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In this figure, label (a) denotes the actual traveltime, (b) denotes the best-fit hyperbola 

over the full offset range, and (c) is the small-spread hyperbola. The difference between 

the stacking velocity, Vst,  and  the NMO velocity, VNMO,  is called the spread-lenght bias 

and should be accounted for any velocity analysis. The equation (1.20) contains the basis 

for velocity analysis for a CMP gather. This describes a straight line on the  t2 versus x2 

plane. The slope of the line is 1/V2st , and the intercept value at x = 0 is t (0). In practise, 

a least- squares method is used to do the curve fitting. The traditional form of the Dix’s 

interval velocity equatin for the N th layer in terms of the rms velocities and travel times 

(valid horizontal layers) is  

 

                          VN = 
√𝑉2𝑟𝑚𝑠,𝑁𝑡𝑁−𝑉2𝑟𝑚𝑠,𝑁−1𝑡𝑁−1

𝑡𝑁−𝑡𝑁−1
                                                                             (1.21) 

 

where VN  is the interval velocity of the N th layer, Vrms, N   is the rms velocity of the N th 

layer and tN is the traveltime to the N th layer. Considering costant velocity for every 

layer, for this reason we consider a velocity smoothing. Velocity smoothing (and 

interpolation) is an essential step in conditioning velocities for pore pressure prediction 

work. This oprerations have the attempt to close from the velocity obtained to real; and to 

reduce the mistakes due inversion from the interval velocity. The last operation, we have 

to convert from time to depth domain. With all these operations we can start from the 

VRMS, and obtain a velocity that can be consider an approximation of the real. These 

operations are obligated and they can introduce mishakes and approximations with a less 

reliable estimate of pressures. 

 

1.5  Relationship between Poisson’s ratio (Vp/Vs) and overpressure 

 

Laboratory investigations suggest that a precise relationship exists between Poisson’s 

ratio, pore pressure and fluid type. Values of Poisson’s ratio (Vp/Vs) for dry samples are 

significantly smaller than those for fluid-saturated samples. The values are anomalously 

high for high pore pressure, with the possibility of differentiating between gas saturated, 
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brine-saturated and oil saturated porous rocks. High pore pressures reduce the total 

effective pressure acting on the framework of the sediment in both consolidated and 

unconsolidated formations. However, the amount of effective pressure reduction due to 

increased pore pressure depends on the state of the formation. In unconsolidated 

sediments, pore pressure reduces the overburden pressure, so that the total effective 

pressure. As a consequence, the frame is softened and, in extreme conditions of very high 

pore pressure (low effective pressure), the formation approaches a state of suspension. 

Since P-wave velocity in a suspension is close  to that of the suspending fluid (usually 

water) and S-waves cannot propagate in suspensions, theVp/Vs ratio or Poisson’s ratio 

must dramatically increase as a sediment passes through the transition zone from load 

bearing to a suspension. Thus, at low effective pressures when the sediment approaches 

critical porosity and starts to loose its shear strenght, Vp/Vs ratio shows large changes and 

can be used to predict overpressured zones. Figure 1.8 shows a plot of Poisson’s ratio 

versus effective stress based on the data from Stanford Rock Physics laboratory for two 

cases: sand filled with water and sand filled with gas. Note the behavior of Poisson’s ratio 

at low effective stress. For the water filled case, the ratio increases with increases pressure 

(lowering effective stress), whereas the opposite is true for the gas-filled case. The increse 

of the saturated-rock Poisson’s ratio with increasing pore pressure has a physical basis. 

The higher the pore pressure, the softer the rock and the larger the relative increase in the 

bulk modulus between dry and water-saturated samples. With the shear modulus being 

the same for dry and saturated rock [Gassmann, 1951], Poisson’s ratio is larger in the 

saturated than in the dry sample, especially in soft rocks. An example of saturated-rock 

Poisson’s ratio increasing with decreasing differential pressure is given in Figura 2A 

(mettere il numero della figura giusto). However, one may observe the opposite effect as 

well Figura (2b). The direction of the saturated-rock Poisson’s ratio change depends on 

the porosity and elastic moduli of the sample and has to be calibrated by using fluid 

substitution with site-specif rock data. 
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Figure 1.8. Poisson’s ratio and water-saturated samples versus differential pressure              

(Figure from Prasad, 2002). 

 

 

 Decreasing Poisson’s ratio with increasing pore pressure in rocks with gas can be used as 

a physical basis for more reliable pore pressure and pore fluid monitoring and 

overpressure detection.                    
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Chapter 2 
Amplitude Versus Angle 

Having a relationship between Poisson’s ratio and overpressure (as shown in the first 

chapter), a fundamental question one must ask is: how can estimate the Vp/Vs ratio? A 

metodology is AVA analysis. This chapter provides general information about the AVA 

theory. It indroduces the AVA interpretations may be facilitated by crossplotting AVA 

Intercept (A) and Gradient (B). Seismic AVA crossplotting can be a diagnostic tool for 

classifying AVA response, and for identyfyng hydrocarbon deposit and anomaly caused 

by overpressure phenomens. 

 

 

2.1 Introduction to AVA analysis 

 

Seismic amplitude-versus angle (AVA) analysis has been a powerful geophysical method 

in aiding the direct detection of overpressures from seismic records. This method of 

seismic reflection data is widely used to infer the presence of overpressure and 

hydrocarbon. The main thrust of AVA analysis is to obtain subsurface rock properties 

using conventional surface seismic data. The Poisson‟s ratio change across an interface 

has been of particular interest.  These rock properties can then assist in determining 

lithology, fluid saturants, and porosity. It has been shown through solution of the 

Zoeppritz equations that the energy reflected from an elastic boundary varies with the 

angle of incidence of the incident wave. This behavior was studied further by Koefoed 

(1962). He established in 1955 that, the change in reflection coefficient with the incident 

angle is dependent on the Poisson’s ratio difference across an elastic boundary. Poisson’s 

ratio is defined as the ratio of transverse strain to longitudinal strain [Sheriff, 1973],  and 

is related to the P-wave and S-wave velocities and density. The Poisson’s ratio σ has a 

physical definition described by the formula : 

 

                                                               𝜎 =
       (

𝑉𝑝

𝑉𝑠
)

2
− 1   

2 (
𝑉𝑝

𝑉𝑠
)

2
−1

                                                  (2.1)                                                                                    
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It varies in function of Vp and Vs :  

 

Vp = 
√𝐾+

4

3
 µ

√𝜌
                                                                (2.2) 

 

 

                                                   Vs = √µ

√𝜌
                                                                         (2.3) 

 

That in turn are dependent on three fundamental parameters that describe a material : 

 

K = Bulk modulus 

µ = Share modulus 

ρ = density 

 

 

The Bulk Modulus represents the parameter that is more influenced by the saturation 

changes (gas or brine). In presence of brine saturated sediments its value become bigger 

because brine is stiffer than gas; so the Poisson’s ratio will decrease in presence of gas 

and in turn the Vp too. Vs slightly increase with gas saturation because it reduces the 

density of the material. 

 

 

AVA is  used as a method of detecting overpressure. The variation in amplitude can be 

fitted in this form of function (amp = A + Bsin2θ), where A is the intercept of AVA, B is 

the AVA gradient and θ is the angel of incidence. In practical world, both the estimated 

intercept and the gradient volumes are used in locating gas fields and other anomalies 

[Rutherford, 1989]. Seismic traces-recordings of transmitted and reflected sound are 

sorted into pairs of source-receiver combinations that have different offsets but share a 

common reflection point midway between each source-receiver pair. This collection of 

traces is referred to as a common midpoint (CMP) gather. In geophysics, amplitude versus 

angle (AVA) is a variation in seismic reflection amplitude with change in distance 

between shot point and receiver that indicates differences in lithology and fluid content in 
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rocks above and below the reflector. AVA studies are being done on CMP data, the offset 

increases with the angle. An AVA anomaly is most commonly expressed as increasing 

(rising) AVA in a sedimentary section, often where the hydrocarbon reservoir is "softer" 

(lower acoustic impedance) than the surrounding shale. Typically amplitude decreases 

(falls) with offset due to geometrical spreading, attenuation and other factors. An AVA 

anomaly can also include examples where amplitude with offset falls at a lower rate than 

the surrounding reflective events [Schlumberger Oilfield Glossary]. AVA analysis lies in 

the dependence of the offset-dependent-reflectivity of reflected compressional waves on the 

elastic properties of the subsurface. As different lithologies may exhibit distinct Poisson’s 

ratios and gas bearing strata usually exhibit anomalously low Poisson’s ratios. AVA has been 

recognized as a potential seismic lithology tool and direct hydrocarbon and overpressure 

indicator.  

 

 

 

 

2.2 Theory 

 

In exploration geophysics, we rarely deal with simple isolated interfaces. However, we 

must begin our understanding of offset-dependent reflectivity with the partitioning of 

energy at just such an interface [Castagna , 1993]. In Figure (2.1), the angles for incident, 

reflected and transmitted rays synchronous at the boundary are related according to Snell’s 

law by: 

 

     𝑃 =
𝑠𝑖𝑛𝜃1

𝑉𝑝1
=

𝑠𝑖𝑛𝜃2

𝑉𝑝2
=

𝑠𝑖𝑛𝜃1

𝑉𝑠1
=

𝑠𝑖𝑛𝜃2

𝑉𝑠2
                                                                                            (2.4) 

 

Where 𝑉𝑝1   = P- wave velocity in medium 1, 𝑉𝑝2  = P- wave velocity in medium 2; 𝑉𝑠1 

= S- wave velocity in medium 1; 𝑉𝑠2 = S-wave velocity in medium 2; θ1 = incident P-

wave angle, 𝜃2 = trasmitted P-wave angle; O1 =  reflected S-wave angle, O2 = transmitted 

S-wave angle, and P is the ray parameter. 
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FIG. 2.1. Reflection and transmission at an interface between two infinite elastic half-

spaces for an incident P-wave (Figure from Castagna and Backus, 1993). 

 

 

Seismic reflectivity and reflection amplitudes were first calculated by Karl Bernhard 

Zoeppritz (1919). Zoeprittz equations calculate the amplitudes of reflected and refracted 

P waves at an interface. The seismic amplitude is a function of incidence angle and some 

elastic properties. Because it is difficult to understand the algebra of the equations, 

geophysicists have used approximations instead. Before Zoeprittz, Cargill Gilston Knott’s 

equations were proposed to find partitioning seismic wave energy. Reflection coefficients 

can be analyzed as a function of angle with Aki & Richard’s (1980) approximation: 

 

Rpp (𝜃) ≈  
1

2
( 1 − 4𝑝2𝑉𝑠2) ( 

𝛥𝜌

𝜌
) +

1

2𝑐𝑜𝑠2(𝜃)
 
𝛥𝑉𝑝

𝑉𝑝
− 4𝑉𝑠2𝜌2 𝛥𝑉𝑠

𝑉𝑠
                                  (2.5) 

 

Where ΔVp is the change in compressional velocity across the interface ( Vp2 – Vp1), Vp 

is  the average compressional velocity across the interface [(Vp2 – Vp1)/2], Δρ is the 

change in density across the interface (ρ2 – ρ1), ρ is the average density across the 

interface, ΔVs is the change in shear velocity across the interface (Vs2 – Vs1), Vs is the 

average shear velocity across the interface [(Vs2 – Vs1)/2], with Vp1, Vs1, ρ1 and Vp2, Vs1, 
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ρ2 being the medium properties in the first (overlying) and second (underlying) media, 

respectively. 

By simplifying the Zoeppritz equations, Shuey (1985) presented another form of the Aki 

and Richards (1980) approximation: 

 

                R (𝜃) ≈ Ro + G sin2 𝜃 + [ tan2 𝜃 – sin2 𝜃]                                                                     (2.6) 

 

             G = 
1

2
+

𝛥𝑉𝑝

𝑉𝑝
− 2

𝑉𝑠2

𝑉𝑝2 ( 
𝛥𝜌

𝜌
+ 2

𝛥𝑉𝑠

𝑉𝑠
)                                                                          (2.7) 

 

              G = R (0) - 
𝛥𝜌

𝜌
− ( 

1

2
+ 2

𝑉𝑠2

𝑉𝑝2) − 4
𝑉𝑠2

𝑉𝑝2  
𝛥𝑉𝑠

𝑉𝑠
  

                                        

                  F = 
1

2
 
𝛥𝑉𝑝

𝑉𝑝
                                                                                                                    (2.8) 

 

R (𝜃) form can be interpreted in terms of different angular ranges. Ro  is the normal-

incidence reflection coefficient. G is the gradient and describes the variation in the 

intermediate offsets. F dominates the far offsets near the critical angle. For incidence 

angles less than 30°, this can be reduced to: 

                                      R (𝜃) ≈ Ro + G sin2 𝜃                                                                             (2.9) 

 

The knowledge of these two parameters enable us to identify and classify the presence of 

a fluid saturation within an horizon that exhibits anomalous amplitude values in the 

seismic data. In my study, Shuey’s approximation (1985) was used for cross plotting data. 
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2.3 AVA behavior for gas sands 

 

In a clastic sequence, a typical top reservoir is represented by the interface between shale 

and an hydrocarbon-saturated sand. The AVA analysis proposed by Ostrander (1984) was 

applied in presence of amplitude anomalies produced by gas sands that have lower 

impedance of the encasing shale and an increasing amplitude with offset. Appling the 

equation (2.9) to this situation, the intercept value Ro, measured at zero offset, and the 

reflecting coefficients, measured at different angles of incidence, will have negative 

values; also the measured gradient G will have a negative value. Then, both negative 

values of G and Ro describe the most general situation of the AVA behavior of a reflector 

produced by a gas sand covered by a shale. Its seismic evidence is depicted by the classical 

bright spot. Unfortunately, gas presence is not always evidenced by a bright spot and gas 

sands could manifest different AVA characteristics. 

 

AVA responses have been discriminated by Rutherford and Williams (1989) into 3 

classes in function of the values of  Ro and G as defined by equation (2.9). 

 

Figure (2.2) shows the Zoeppritz’s P-wave reflection coefficients for a shale-gas sand 

interface for a range of values of Ro. The Poisson’s ratio and density of the shale were 

assumed, by Rutherford and Williams (1989), to be 0.38 and 2.4 g/cm3, and for the gas 

sand to be 0.15 and 2.0 g/cm3, respectively. 

Class 1 response (blue line) is characterized by an increase in impedance downwards 

across the interface, causing a decreasing amplitude with increasing incident angles; the 

magnitude of reflectivity can change polarity with adequate offset/angle rate. The polarity 

change, if pronounced, might cancel out the reflection response from the stacked section 

or can produce polarity opposite to that predicted by normal incidence modeling. 

 

Class 2 response (green lines) has nearly the same impedance of the encasing material and 

small normal incidence amplitude (positive or negative), but the AVA leads to high 

negative amplitudes at far offsets. The polarity change occurs if Ro is positive but it is not 

usually detectable because this happens at small offset where the signal is often below the 

overall noise level. Class 3 response (red line) has large negative impedance contrast and 

the negative gradient leads to increasing amplitude with angles; such sands are usually 
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unconsolidated and undercompacted, producing amplitude anomalies on the stacked 

profile and large reflectivity along the offset. 

 

                             

 

Figure 2.2 AVO sand classes of Rutherford and Williams (1989) and Castagna and Swan  

(1997) in a model originally based on shale/brine sand interface (Figure from Bacon, 

2009). 

 

 

Castagna and Swan (1997) introduced a Class 4 gas sand (yellow line) representing low 

impedance gas sands for which the reflection coefficients decrease with increasing offset, 

in particular when the shear wave velocity of the gas sand is lower than in the shale. In a 

clastic sequence, the AVA classes are related to differences of consolidation of sand and 

shales with depth. The general increase in impedance with depth reflects the decrease in 

porosity due to compaction. Class 1 results are characteristic of deep well consolidate 

sediments and class 3 responses, as said before, of relatively unconsolidated and shallow 

sediments. Class 4 may occur in very unconsolidates and very shallow (up to 1000m) 

sands, or when they are covered by an hard non clastic layer. With respect to class 3, class 

4 has very low gradient. 

 

 

2.4 Crossplot visualization of AVA Gradient and Intercept 

 

Castagna and Swan (1997) used the crossplot representation of the AVA Gradient versus 

the AVA Intercept to make easier the interpretation of the AVA method. The Intercept 
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and Gradient can be calculated on every CMP gather in a seismic survey, by measuring 

the amplitude and the best fit to a plot of R(θ) as a function of sin2(𝜃). The resulting pairs 

of Ro and G values may be display in a crossplot graph and they give information about 

fluid filling, saturation and lithology. 

 

To better understand the Crossplot analysis of AVA, in this section the theoretical analysis 

of Castagna et al., (1998), will be considered in detail. The Shuey’s approximation of the 

Zoeppritz equation is described by: 

 

          R (𝜃) ≈ Ro + G sin2𝜃    =  R (𝜃) ≈ A + B sin2𝜃                                                          (2.10) 

 

with: 

   

A =   
1

2
( 

𝛥𝑉𝑝

<𝑉𝑝>
+

𝛥𝜌

<𝜌>
) ;                                                                                                      (2.11) 

 

B = 
1

2
 

𝛥𝑉𝑝

<𝑉𝑝>
− 2 (

<𝑉𝑠>

<𝑉𝑝>
 )

2

(2 
𝛥𝑉𝑠

<𝑉𝑠>
+

𝛥𝜌

<𝜌>
) ;                                                                       (2.12) 

 

The crossplot analyzes the variations of the AVA Gradient B as a function of the AVA 

Intercept A; the correlations between these two parameters can be explained considering 

the variation of Vp/Vs at an interface, and the values of the density. 

Let us start from the basic assumption of the “mudrock line” and the Gardner’s equation. 

Castagna (1985), demonstrated that a succession of brine-saturated sand and shale, 

defined as “background”, follows a specific trend defined as “mudrock” line where a 

linear relationship between Vp e Vs exists.  

Within a fixed depth window the relation is: 

 

                                                           Vp = mVs + c                                                                    (2.13) 

 

where m and c are empirical coefficients depending by the lithology characteristics. 

Within the “background”, the Gardner’s equation asserts that the density is the 

multiplicationbetween a constant factor a time the velocity V, raised to a power factor g: 
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                                                                   ρ = aVg                                                                                                                 (2.14) 

 

so 

 

                                                                (
𝛥𝜌

<𝜌>
~𝑔

𝛥𝑉𝑝

<𝑉𝑝>
)                                                           (2.15) 

 

 

Gardner (1974), demonstrated that g is close to 0.25 for most of the sedimentary rocks. 

  

  

A =   
1

2
( 

𝛥𝑉𝑝

<𝑉𝑝>
+

𝛥𝜌

<𝜌>
) =  

1

2

𝛥𝑉𝑝

<𝑉𝑝>
 (1 + 𝑔)                                                                      (2.16) 

 

B = 
1

2
 

𝛥𝑉𝑝

<𝑉𝑝>
− 2 (

<𝑉𝑠>

<𝑉𝑝>
 )

2

(2 
𝛥𝑉𝑠

<𝑉𝑠>
+

𝛥𝜌

<𝜌>
) =                                                                      (2.17) 

 

      =
𝐴

1+𝑔
 −2 (

<𝑉𝑠>

<𝑉𝑝>
 )

2

(2 
𝛥𝑉𝑠

𝑚<𝑉𝑠>
+ +𝑔

𝛥𝑉𝑝

<𝑉𝑝>
)                                                            (2.18) 

 

If ΔVp = 
2 𝐴<𝑉𝑝>

1+𝑔
                                                                                                              (2.19) 

 

,then 

 

 B = 
𝐴

1+𝑔
 −2 (

<𝑉𝑠>

<𝑉𝑝>
 )

2

(2 
2𝐴𝛥𝑉𝑝

(1+𝑔)𝑚<𝑉𝑠>
+ 𝑔

2𝐴

1+𝑔
) =  

      =
𝐴

1+𝑔
 − 

4𝐴

1+𝑔
 [

<𝑉𝑠>2

<𝑉𝑝>2  (2 
<𝑉𝑝>

𝑚<𝑉𝑠>
+ 𝑔) ]  

                
       =                   

     = 
𝐴

1+𝑔
[1 − 4 

<𝑉𝑠>

<𝑉𝑝>
 ( 

2

𝑚
+ 𝑔

<𝑉𝑠>

<𝑉𝑝>
 ) ]

                
                                                            (2.20) 

 

 



38 
 

The equation (2.20) represents the general equation for the background reflection in the 

A-B plane. Starting from this general relation, 2 specific relation between Vp, Vs and ρ 

can be considered. 

 

1) Costant Vp/Vs and costant density 

 

If Vp/Vs is costant, c must vanish and, from Gardner’s relation 

 

m = Vp/Vs = < Vp > / < Vs > = 
𝛥𝑉𝑝

𝛥𝑉𝑠
                                                             (2.21) 

 

Assuming Δρ = 0 (costant ρ values) in the equation (2.16) and substituting g = 0  

 

        A =   
1

2
( 

𝛥𝑉𝑝

<𝑉𝑝>
)                                                                                                                    (2.22) 

 

     B =  [1 − 8 (
<𝑉𝑠>

<𝑉𝑝>
 )

2

 ]  𝐴                                                                                                   (2.23) 

 

 

2) Costant Vp/Vs and Gardner’s density 

 

For limited depth ranges we can assume the Gardner’s value of g = ¼. 

  

m = < Vp > / < Vs > (costant Vp/Vs)                                                           (2.24) 

 

A =   
5

8
( 

𝛥𝑉𝑝

<𝑉𝑝>
)                                                                                                            (2.25) 

 

B =  
4

5
[1 − 9 (

<𝑉𝑠>

<𝑉𝑝>
 )

2

 ]  𝐴                                                                                          (2.26)                                                              

 

This last equation shows that all the lines cross the origin and that the slope of the 

background trend depends only by < Vp > / < Vs > (figure 2.3a ). 
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With increasing of < Vp > / < Vs > the slope becomes more positive and the line rotates 

counterclockwise. 

If < Vp > / < Vs > = 2, then B = - A, irrespective of the density and velocity relantionship. 

 

From this relationship, we observe that the background trend passes through the origin 

and, as < Vp > decreases, the background becomes more positive (rotates 

counterclockwise). In the Figure 2.3b (where m = 1.16 and  c = 1.36k km/s from Castagna, 

1985) the background trend changes dramatically for velocities lower than about 2.5 km/s. 

These conclusions are similar for costant < Vp > / < Vs >, but we have to consider that 

along an interface, this ratio varies rather than remaining costant and this will produce 

different slopes for the bacground trend. 

 

 

     

 

Figure 2.3: background trend with VP/VS constant and Gardner’s relation; b: 

background trend with linear VP/VS and m =1.16 and c = 1.36km/s (from Castagna, 

1998). 

 

 

 
Comparing the results of the different case analysis (Figure 2.4), we observe that the B/A 

trend is more affected by the variation of  < Vp > / < Vs >  than by the variation of 

density: constant and linear relation between the two velocities gives very different 
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background trends. Moreover, for all the examined cases B/A increases with increasing  < 

Vp > / < Vs > . Thus, if the depth range selected is too large, the < Vp > / < Vs > 

background varies significantly (due to compaction) and several background trends may 

be superimposed. Also, for very high < Vp > / < Vs > , as for soft and shallow brine-

saturated sediments , the background trend B/A becomes more positive and even non 

hydrocarbon-related reflection may exhibit increasing AVA, depicting false positive 

anomalies. 

 

                 

Figure 2.4. B/A versus <VP >/<VS> for various background trend assumptions: 

constant VP/VS and constant density, constant VP/VS and Gardner density, mudrock VP 

versus VS and constant density, mudrock VP versus VS and Gardner density. In all cases, 

B/A increases with increasing background <VP >/<VS> (Figure from Castagna, 1998). 
 

 

 

 

 

 

 

The rotation of the line gives evidence that the background trend is also an implicit 

function of rock physic properties such as clay content and porosity. Increasing the clay 

content at a reservoir level will cause a counterclockwise rotation, as the < Vp > / < Vs 

> increases. Increasing porosity related to less compaction will also cause a 

counterclockwise rotation, because less-compacted sediments tend to have relatively high 

< Vp > / < Vs >. 
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2.5 Deviations from petrophysical relationship 

 

The AVA analysis studies the interpretation of magnitude of the deviation from the 

background trend, once introduced hydrocarbons in the clastic sequence. The most 

interesting deviation from background petrophysical relationship results, in fact, from 

replacement of brine by gas in the pore spaces: it reduces the < Vp > / < Vs > and causes 

ΔVp and Δρ to become more negative. Thus, the equations (2.11) and (2.12) for a top of 

sand reflection, with partial gas saturation, causes both A and B to become more negative 

than for a fully brine saturated sand. Figure (2.5) well explains the difference of the 

calculated AVA Gradient and Intercept between pairs of shale/gas sands and shale/brine 

sands reflectors. For a shale over the brine-sand, reflection coefficients vary from strong 

positive to strong negative values. The Intercept and the Gradient lie along the straight 

line predicted using the linear relationship between <Vp> and <Vp> crossing the origin 

(blue line). With the introduction of gas fluids and calculating the effects of the variation 

bulk modulus with the Gassmann’s equations, we observe that the reflecting coefficients 

also fall along a straight line but they lie to the lower left of the background trend (green 

line). This line moves towards negative values of A and B from brine to gas sand. 

                               

                                

 

Figure 2.5.  Brine sand–gas sand tie lines for shale over brine-sand reflections having an 

average P-wave velocity of 3 km/s and which conform to Gardner and mudrock 

petrophysical trend curves (g = 0,25, m = 1,16, c =1,36 km/s) and Gassmann’s equations 

(Figure from Castagna, 1998). 
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The measure of the deviation from the line of background trend was introduced by 

Smith and Gidlow (1987) by calculating the parameter called “Fluid Factor”: 

 

𝛥𝐹 = [  (
𝛥𝑉𝑝

<𝑉𝑝>
− 𝑚 

<𝑉𝑠>

<𝑉𝑠>
 

𝛥𝑉𝑠

<𝑉𝑠>
) ]                                                                                (2.26) 

 

The gas sand classification of Rutherford and Williams (1989) was based only on normal 

incidence reflection coefficient (RP=A); all the 3 classes exhibit a reflection coefficients 

to become more negative with increasing offset, but the reflection coefficients need not to 

increase with offset for gas sands. As we can see from Figure (2.5) a gas sand could have 

coefficients becoming more positive with increasing offsets; thus, introduced a 4th class 

representing this situation [Castagna and Swan, 1997]. 

The AVA behavior is well-explained by the crossplot of A versus B, in which we recognize 

all the four classes and their collocation inside the crossplot quadrants (Figure 2.6). 

 

 

 

                       

 

Figure 2.6. AVA Gradient (B) versus Intercept (A) crossplot showing four possible 

quadrants. For a limited time window, brine-saturated sandstones and shales tend to fall 

along a well-defined background trend. Top of gas-sand reflection tend to fall below the 

background trend, whereas bottom of gas-sand reflections tend to fall above the trend 

(from Castagna, 1998). 
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Chapter 3 

 

 Analytical Response 

This chapter shows an algorithm has been developed. It consideres an AVA Analytical 

Response. The AVA Analytical Response well logs of the seismic have been used, and 

the Intercept and Gradient values extracted from the P-S velocities and density well logs. 

Shuey’s approximation was used for AVA crossplot analysis. Each point in the AVA 

crossplot is mapped using the amplitude of Intercept (A) and Gradient (B) in a time 

window. Within this time window, it has calculated the Singular Value Decomposition 

(SVD), and obtained the eingenvector associated with the first singular value that gives the 

direction of maximum variance. The angle was calculated from the eingenvector that meet 

with the horizontal, it characterizes the Background Trend (Vp/Vs) was subsequently 

converted into Vp/Vs ratio value to predict two empirical equations, Costant Density and 

Gardner Density (as showed the chapter 2). The stability of the Background Trend 

(Vp/Vs) can have an impact on what is being interpretated as anomalous, be  it fluid or 

lithology induced outliers. It was necessary to study many strategies which make robust 

and reliable method. To stabilize the estimation of Vp/Vs from the slope of the 

Background Trend, to do this, proceeded through the operation of outlier removal in 

Itercept and Gradient domain. 

 

3.1 Linear Least Squares Regression 

Linear least squares regression is by far the most widely used modeling method. It plays 

a strong underlying role in many  modeling methods. Used directly, with an appropriate 

data set, linear least squares regression can be used to fit the data with any function of the 

form : 

                        

                                                    Y = B0 + B1X                                                                      (3.1) 

 

http://www.itl.nist.gov/div898/handbook/pmd/section3/pmd32.htm
http://www.itl.nist.gov/div898/handbook/pmd/section3/pmd32.htm
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where B0   is a constant, B1  is the regression coefficient, X is the value of the 

independent variable, and Y  is the value of the dependent variable. 

Given a random sample of observations, the population regression line is estimated by: 

  

                          ŷ = b0 + b1x                                                                                                                                   (3.2) 

   b1 = Σ [ (xi - x)(yi - y) ] / Σ [ (xi - x)2]                                                 (3.3) 

                      b1 = r * (sy / sx)                                                                (3.4) 

                        b0 = y - b1 * x                                                                                                         (3.5) 

where b0 is the constant in the regression equation, b1 is the regression coefficient, r is the 

correlation between x and y, xi is the X value of observation i, yi is the Y value of 

observation i, x is the mean of X, y is the mean of Y, Sx is the standard deviation of  X, and 

Sy is the standard deviation of Y. 

When the regression parameters (b0 and b1) are defined as described above, the regression 

line has the following properties: 

1)The line minimizes the sum of squared differences between observed values 

(the y values) and predicted values (the ŷ values computed from the regression equation). 

2)The regression line passes through the mean of the X values (x) and through the mean 

of the Yvalues (y). 

3)The regression constant (b0) is equal to the y intercept of the regression line. 

4)The regression coefficient (b1) is the average change in the dependent variable (Y) for a 

1-unit change in the independent variable (X). It is the slope of the regression line. 

The least squares regression line is the only straight line that has all of these properties. 

 

In statistical terms, any function that meets these criteria would be called a "linear 

function". The term "linear" is used, even though the function may not be a straight line, 

because if the unknown parameters are considered to be variables and the explanatory 

variables are considered to be known coefficients corresponding to those "variables", then 

http://stattrek.com/Help/Glossary.aspx?Target=Y%20intercept
http://stattrek.com/Help/Glossary.aspx?Target=Slope
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the problem becomes a system (usually overdetermined) of linear equations that can be 

solved for the values of the unknown parameters. To differentiate the various meanings 

of the word "linear", the linear models being discussed here are often said to be "linear in 

the parameters" or "statistically linear". In the least squares method the unknown 

parameters are estimated by minimizing the sum of the squared deviations between the 

data and the model. The minimization process reduces the overdetermined system of 

equations formed by the data to a sensible system of p,(where p is the number of 

parameters in the functional part of the model) equations in p unknowns. This new system 

of equations is then solved to obtain the parameter estimates. Linear least squares 

regression has earned its place as the primary tool for process modeling because of its 

effectiveness and completeness. Though there are types of data that are better described 

by functions that are nonlinear in the parameters, many processes in science and 

engineering are well-described by linear models. This is because either the processes are 

inherently linear or because, over short ranges, any process can be well-approximated by 

a linear model. The estimates of the unknown parameters obtained from linear least 

squares regression are the optimal estimates from a broad class of possible parameter 

estimates under the usual assumptions used for process modeling. Practically speaking, 

linear least squares regression makes very efficient use of the data. Good results can be 

obtained with relatively small data sets. Finally, the theory associated with linear 

regression is well-understood and allows for construction of different types of easily-

interpretable statistical intervals for predictions, calibrations, and optimizations. These 

statistical intervals can then be used to give clear answers to scientific and engineering 

questions. The main disadvantages of linear least squares are limitations in the shapes that 

linear models can assume over long ranges, possibly poor extrapolation properties, and 

sensitivity to outliers. Linear models with nonlinear terms in the predictor variables curve 

relatively slowly, so for inherently nonlinear processes it becomes increasingly difficult 

to find a linear model that fits the data well as the range of the data increases. As the 

explanatory variables become extreme, the output of the linear model will also always 

more extreme. This means that linear models may not be effective for extrapolating the 

results of a process for which data cannot be collected in the region of interest. Of course 

extrapolation is potentially dangerous regardless of the model type. Finally, while the 

method of least squares often gives optimal estimates of the unknown parameters, it is 

very sensitive to the presence of unusual data points in the data used to fit a model. One 

or two outliers can sometimes seriously skew the results of a least squares analysis.  
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3.2 Singular Value Decomposition (SVD) Theory 

For the solution of sets of linear equations defined by matrices that are either singular or 

numerically very close to singular a very robust method exists: the so-called singular value 

decomposition (SVD) method. The decomposition of a matrix is often called 

a factorization. The decomposition of a matrix is useful when the matrix is not of full rank. 

That is, the rows or columns of the matrix are linearly dependent. One can use Gaussian 

elimination to reduce the matrix to row echelon form and then count the number of 

nonzero rows to determine the rank. However, this approach is not practical when working 

in finite precision arithmetic. 

 

The SVD represents an expansion of the original data in a coordinate system where the 

covariance matrix is diagonal. Using the SVD, one can determine the dimension of the 

matrix range or more-often called the rank. The rank of a matrix is equal to the number of 

linear independent rows or columns. This is often referred to as a minimum spanning set or 

simply a basis. The SVD can also quantify the sensitivity of a linear system to numerical 

error or obtain a matrix inverse. Additionally, it provides solutions to least-squares 

problems and handles situations when matrices are either singular or numerically very 

close to singular. 

 

We assume that the number of equations is equal or larger than the number of 

unknowns, M ³ N. Any corresponding M x N matrix A can be written as the product of 

an M x N column-orthogonal matrix U (UTU = I), an N x N diagonal matrix with positive 

or zero elements, and the transpose of an N x N orthogonal matrix V (VTV=I), where I is 

the unitary matrix. 

 

                                                        A = U × L × VT                                                                                          (3.6) 

 

L is a diagonal matrix with non-negative matrix elements having the same dimension 

as A, Wi ≥ 0. The diagonal elements of L are the singular values of matrix A. 
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Calculating the SVD consists of finding the eigenvalues and eigenvectors of AAT and ATA. 

The eigenvectors of ATA from the columns of V, the eigenvectors of  AAT form the columns 

of U. Also, the singular values in L are square roots of eigenvalues from AAT or ATA. The 

singular values are the diagonal entries of the L matrix and are arranged in descending 

order. The singular values are always real numbers. If the matrix A is a real matrix, 

then U and V are also real. For M = N, matrices U and V are square and the inverse matrix 

of A is 

 

                             A-1 = (U L VT)-1 = (VT)-1 L -1U -1 = V L -1UT                                       (3.7) 

where the diagonal elements of L-1 are 1/ Li. The matrices U and V are orthogonal 

and their inverse matrices are equal to their transposes 

                                          U-1 = UT  and  V-1 = VT                                                                  (3.8) 

If one or more Wi  are zero or very close to zero then in this case A is singular. 

For a system of linear equations, 

                                                      AX = Y                                                                   (3.9) 

where A is a square matrix, and X and Y are column matrices, A-1 can be used to 

obtain X: 

                                            X = A-1Y = VL*UTY                                                   (3.10) 

where L* is a diagonal matrix with elements L*i = 1/Li if Li ≥ e , else 0, where e is 

the so-called singularity threshold. In other words, if Li is zero or close to zero 

(smaller than e), one must replace 1/Li with 0. The value of e depends on the 

precision of the hardware. This method can be used to solve linear equations 

systems even if the matrices are singular or close to singular. 
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Additionally an important property is that if there does not exists a solution when 

the matrix A is singular but replacing 1/Li with 0 will provide a solution that 

minimizes the residue |AX -Y|. SVD finds the least squares best compromise 

solution of the linear equation system. Interestingly SVD can be also used in an 

over-determined system where the number of equations exceeds that of the 

parameters. 

 

3.3 AVA Methodology 

Let it considers two semi-infinite isotropic homogeneous elastic half-spaces in contact at 

a plane interface. For an incident plane  wave, the reflection coefficient variation with 

angle of incidence is given by the well-known Knott-Zoeppritz equations. For small 

variations in layer parameters and angles of incidence commonly encountered in seismic 

reflected applications, these equations can be accurately approximated using in terms of 

the angular reflection coefficients A, B:  

 

                         R (𝜃) ≈ A + B sin2𝜃                                                                             (3.11)    

        

Where R is the reflection coefficient as a funcition of different angular (𝜃) ranges. The 

AVA Analytical Response well logs of the seismic have been used, and the Intercept and 

Gradient values extracted from the P-S velocities and density well logs, using Shuey’s 

approximation: 

 

A =   
1

2
( 

𝛥𝑉𝑝

<𝑉𝑝>
+

𝛥𝜌

<𝜌>
) ;                                                                                                      (3.12) 

 

B = 
1

2
 

𝛥𝑉𝑝

<𝑉𝑝>
− 2 (

<𝑉𝑠>

<𝑉𝑝>
 )

2

(2 
𝛥𝑉𝑠

<𝑉𝑠>
+

𝛥𝜌

<𝜌>
) ;                                                                 (3.13)                       
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 Where ΔVp is the change in compressional velocity across the interface ( Vp2 – Vp1), Vp 

is  the average compressional velocity across the interface [(Vp2 – Vp1)/2], Δρ is the 

change in density across the interface (ρ2 – ρ1), ρ is the average density across the 

interface, ΔVs is the change in shear velocity across the interface (Vs2 – Vs1), Vs is the 

average shear velocity across the interface [(Vs2 – Vs1)/2], with Vp1, Vs1, ρ1 and Vp2, Vs1, 

ρ2 being the medium properties in the first (overlying) and second (underlying) media, 

respectively. A is the linearized form of the normal-incidence compressional-wave 

reflection coefficient (Rp). The parameters Vp, Vs, ρ are often highly correlated, with 

deviations attributable to hydrocarbons or unusual lithologies. These  correlations imply 

relationship between the angular reflection coefficients A and B. 

Starting from these general approximations (3.12, 3.13), two specif equations can be 

considered, Costant Density and Gardner Density. From these equations, it has been able 

to extract  Vp/Vs values, as follows: 

 

 

1) costant density        

 

   B =  [1 − 8 (
<𝑉𝑠>

<𝑉𝑝>
 )

2

 ]  𝐴                                                                                              (3.14) 

   
𝐵

𝐴
 =  [1 − 8 (

<𝑉𝑠>

<𝑉𝑝>
 )

2
 ]                                                                                              (3.15) 

   
𝐵
𝐴

8

− 1 =  −  (
<𝑉𝑠>

<𝑉𝑝>
 )

2
                                                                            (3.16) 

     
<𝑉𝑝>

<𝑉𝑠>
=

√− 8

√
𝐵

𝐴
−1

                                                                                                                                  (3.17) 
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2) Gardner density 

 

  B =  
4

5
[1 − 9 (

<𝑉𝑠>

<𝑉𝑝>
 )

2

 ]  𝐴                                                                                              (3.18) 

 

  
𝐵
𝐴

8

( 
4

5
 ) − 1 =  −  (

<𝑉𝑠>

<𝑉𝑝>
 )

2
                                                                (3.19) 

 

   
<𝑉𝑝>

<𝑉𝑠>
=

√− 9

√( 
5

4
 ) 

𝐵

𝐴
 − 1

                                                                                    (3.20) 

 

Three important logs were considered in this present study, P-S velocities (m/s) and 

density logs (g/cm3), they are available from well logging (recording time = 355 ms). 

 

   

                                Fig. 3.1. Vp,Vs and Ro well logs. 
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In the Analytical Response three several examples were evaluated, applying of the time 

windows of 71 (ms) and 91 (ms). 

It begins from the simplest case where the Vp/Vs ratio remains costant throughout the 

interval described by pseudo logs. In this case, it is clearly noted that the variations of 

Vp/Vs value, the slope of the Background Trend (and simultaneously that of the 

interpolating straight line) rotates counterclockwise. To improve the essessment of Vp/Vs 

from the slope of the Background Trend, it proceeded through the operation of outlier 

removal in Intercept and Gradient Domain. It considered the distance from the points to a 

straight line, and it  has done a average of the distances from the straight line. Distances 

over two standard deviation were rimoved, and were considered as outliers. Background 

Trend rotations observed in AVA crossplot, is a function of time/depth. It has showed 

several AVA crossplot:  
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Fig. 3.2. Intercept and Gradient values calculated analytically, applying the Shuey’s 

equation to pseudo logs of Vp, Vs and density with the variation of Vp/Vs ratio. The green 

line represent the slope of the Background Trend with outliers (green points), while, the 

red line represents the slope of the Background Trend without outliers (point circled in 

red). 
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In this case, the prediction made by the straight line of the Background Trend always 

overstimate the real Vp/Vs ratio, especially when we consider the Gardner Density. 

 

 

      
 
Fig. 3.3. Vp/Vs model (left) with outliers, and without outliers (right). Applying a time 

window of 71 (ms). 
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Fig. 3.4. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 91 (ms). 

 

 

 

 

Considering now a more realistic case where the Vp/Vs ratio does not remain constant 

throughout the interval described by the pseudo logs, but varies with a standard deviation 

of 0.01. The inclusion of changes in the Vp/Vs ratio simulates the presence of rapid 

discontinuity of Vp/Vs in correspondence of hypothetical layers of the subsoil. In this 

other case the slope of the Background Trend rotates counterclockwise. It notes that 

increasing the rate variation  of Vp/Vs along the pseudo logs, it determines a greater divert 

of the Vp/Vs values predicted by Background Trend compared to the real values. 
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Fig. 3.5. Intercept and Gradient values calculated analytically, applying the Shuey’s 

equation to pseudo logs of Vp, Vs and density with the variation of Vp/Vs ratio. The green 

line represent the slope of the Background Trend with outliers (green points), while, the 

red line represents the slope of the Background Trend without outliers (point circled in 

red). We can note, in this case the Vp/Vs ratio changes with a standard deviation = 0.01. 

  

 

                  
 

Fig. 3.6. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 71 (ms). Applying a standard deviation = 0.01. 
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Considering a time window of 91 (ms) : 
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Fig. 3.7. Intercept and Gradient values calculated analytically, applying the Shuey’s 

equation to pseudo logs of Vp, Vs and density with the variation of Vp/Vs ratio. The green 

line represent the slope of the Background Trend with outliers (green points), while, the 

red line represents the slope of the Background Trend without outliers (point circled in 

red). We can note, in this case the Vp/Vs ratio changes with a standard deviation = 0.01. 

 

 

      

Fig. 3.8. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 91 (ms). Applying a standard deviation = 0.01. 
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This divert becomes even more evidenti if we increase the standard to 0.05. We simulate 

the presence of even more significant fluctuations of Vp/Vs. The variation of Vp/Vs along 

the pseudo logs influence the assessment of the slope of Background Trend, particularly 

in cases of low Vp/Vs values (less than 3.5). A variations of Vp/Vs ratio produces a strong 

variation of the slope of the Background Trend. 

 

   

 

   

 

   

 

 



60 
 

   

Fig. 3.9. Intercept and Gradient values calculated analytically, applying the Shuey’s 

equation to pseudo logs of Vp, Vs and density with the variation of Vp/Vs ratio. The green 

line represent the slope of the Background Trend with outliers (green points), while, the 

red line represents the slope of the Background Trend without outliers (point circled in 

red). We can note, in this case the Vp/Vs ratio changes with a standard deviation = 0.05. 

 

 

Considering the correct relationship of Vp/Vs ratio, the variations  of Vp/Vs along the 

pseudo logs, it determines a small divert of the Vp/Vs values predicted by Background 

Trend compared to the correct relationship of Vp/Vs ratio. Considering a time window of 

71 (ms): 

   

Fig. 3.9. Intercept and Gradient values calculated analytically, applying the Shuey’s 

equation to pseudo logs of Vp, Vs and density with the variation of Vp/Vs ratio. The green 

line represent the slope of the Background Trend with outliers (green points), while, the 

red line represents the slope of the Background Trend without outliers (point circled in 

red). Correct relationship of Vp/Vs ratio.  
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Fig. 3.10. Vp/Vs model (left) with outliers, and (right) without  outliers. Correct 

relationship of Vp/Vs ratio. 

 

         

Fig. 3.11. Vp/Vs model (left) with outliers, and (right) without outliers. Correct 

relationship of Vp/Vs ratio.   
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Fig. 3.12. Vp/Vs model (left) with outliers, and (right) without outliers. Correct    

relationship of Vp/Vs ratio. 

                     
 

 

 
Considering a time window of 91 (ms):

 

   

Fig. 3.13. Intercept and Gradient values calculated analytically, applying the Shuey’s 

equation to pseudo logs of Vp, Vs and density with the variation of Vp/Vs ratio. The green 

line represent the slope of the Background Trend with outliers (green points), while, the 

red line represents the slope of the Background Trend without outliers (point circled in 

red). Correct relationship of Vp/Vs ratio.  
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Fig. 3.14. Vp/Vs model (left) with outliers, and (right) without outliers. Correct 

relationship of Vp/Vs ratio.  

 

  

       
   

Fig. 3.15. Vp/Vs model (left) with outliers, and (right) without outliers. Correct 

relationship  of Vp/Vs ratio.  
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Fig. 3.16. Vp/Vs model (left) with outliers, and (right) without outliers. Correct 

relationship  of Vp/Vs ratio.   
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Chapter 4 

 

Experimental Response 

This chapter shows an algorithm has been developed in Matlab. It consideres an AVA 

Experimental Response. In the AVA Experimental response, it has made use of well logs 

of the seismic velocities and density to derive the synthetic seismograms (CMP) using the 

convolutional method, and the Intercept and Gradient values extracted from synthetic 

seismograms .Shuey’s approximation was used for AVA crossplot analysis. This Gradient 

(“slope”) AVA attribute is calculated from a least square regression analysis of the 

amplitudes for angles from 0-30 degrees, using an X-axis of sine squared theta (where 

theta is the incidence angle), and the Intercept is zero-offset amplitude determinated (using 

an Y-axis the amplitude) by extrapolating the AVA Gradient. Each point in the AVA 

crossplot is mapped using the amplitude of Intercept (A) and Gradient (B) in a time 

window. Within this time window, it has calculated the Singular Value Decomposition 

(SVD), and obtained the eingenvector associated with the first singular value that gives the 

direction of maximum variance. The angle was calculated from the eingenvector that meet 

with the horizontal, it characterizes the Background Trend (Vp/Vs) was subsequently 

converted into Vp/Vs ratio value to predict two empirical equations, Costant Density and 

Gardner Density (as showed the chapter 2 and 3).  The stability of the Background Trend 

(Vp/Vs) can have an impact on what is being interpretated as anomalous, be  it fluid or 

lithology induced outliers. To stabilize the estimation of Vp/Vs from the slope of the 

Background Trend, to do this, proceeded through the operation of outlier removal in 

Itercept and Gradient domain. 
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4.1 The Convolutional Model in Time Domain 

Suppose a vertically propagating downgoing plane wave with source signature (4.1.a) 

travels in depth and encounteres a layer boundary at 0.2-s two-way time. The reflection 

coefficient associated with the boundary is represented by the spike in (Figure 4.1.b). As 

a result of reflection, the source wavelet replicates itself such that it is scaled by the 

reflection coefficient. If we have a number of layer boundaries represented by the 

individual spikes in (Figures 4.1.b through 4.1.f), then the wavelet replicates itself at those 

boundaries in the same manner. If the reflection coefficienti is negative, then the wavelet 

replicates itself with its polarity reversed, as in (Figure 4.1.c). Now consider the ensemble 

of the reflection coefficients in (Figure 4.1.g). The response of this sparse spike series to 

the basic wavelet is a superposition of the individual impulse response. This linear 

processi s called the principle of superposition. It is achieved computationally by 

convolving the basic wavelet with the reflectivity series ( Figure 4.1.g). The response of 

the sparse spike series to the basic wavelet in Figure 4.1.g has some important 

characteristics. Note that for events at 0.2 and 0.35 s, we identify two layer boundaries. 

However, to identify the three closely spaced reflecting boundaries from the composite 

response (at around 0.6 s). 
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Fig. 4.1. A wavelet (a) traveling in the earth repeats itself when it encounters a reflector 

along its path (b, c, d, e, f). The left column represents the reflection Coefficients, while 

the right column represents the response to the wavelet. Amplitudes of the response are 

scaled by the reflection coefficient. The resulting seismogram (bottom right) represents 

the composite response of the earth reflectivity (bottom left) to the wavelet (top right), 

(Figure from Yilmaz, 1987). 

 

 

Convolution of a source signature with the impulse response yields the synthetic 

sesmogram shown in (Figure 4.2). For a more realistic representation of a recorded 

seismogram, noise is added (Figure 4.2). Mathematically, the convolutional model 

illustrated in (Figure 4.2) is given by 

                              x (t) = w (t) * e (t) + n (t),                                       (4.1) 

 

where x (t) is the recorded seismogram, w (t) is the basic seismic wavelet, e (t) is the 

earth’s impulse response, n (t) is the random ambient noise, and * denotes convolution. 

In equation (4.1),  x (t) is known (the recorded seismogram). The earth’s impulse response 

e (t) must be estimated everywhere except at the location of wells with good sonic logs. 

Also, the surce waveform w (t) normally in unknown. In certain cases, however, the source 
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waveform is partly known; for example, the signature of an air-gun array can be measured. 

However, what is measured is only the waveform at the very onset of excitation of the 

source array, and not the wavelet that is recorded at the receiver. Finally, there is no a 

priori knowledge of the ambient noise n (t). 

 

                         

Figure 4.2. The asterisk denotes convolution. The recorded seismogram                                                         

(bottom frame) is the sum of the noise free seismogram and the noise trace (Figure from 

Yilmaz, 1987). 
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 4.2 Methodology 

Seismic reflection coefficients depend on the material properties of the subsurface. An 

isotropic, elastic medium is completely described by three material parameters. We have 

chosen {α (t), β (t), ρ (t)}, where α is P-wave velocity, β is S-wave velocity, ρ is density, 

and t is the two-way vertical seismic traveltime. The inversion method is based on a weak 

contrast approximation to the PP reflection coefficient (Aki and Richards, 1980): 

                          

                      cpp (𝜃) = aα (𝜃) 
Δα

<α>
+aβ (𝜃)  

  Δβ

<β>
 + aρ (θ)

Δρ

<ρ>
                                           (4.2) 

   where 

                   aα (𝜃) = 
1

2
 (1 + 𝑡𝑎𝑛2θ),                                                                                          (4.3) 

                     aβ (𝜃) = −4 
<β>2

<α>2 𝑠𝑖𝑛2θ,                                                                                         (4.4) 

                     aρ (θ) =
1

2
 (1 − 4 

<β>2

<α>2 𝑠𝑖𝑛2θ ) .                                                               (4.5) 

                      

where, < α >, < β > and < ρ > are averages over the reflecting interface; Δα, Δβ and Δρ 

are the corresponding contrasts; and 𝜃 is the reflection angle. 

The single-interface reflection coefficient in equation (4.2) can be extended to a time- 

continuous reflectivity function (Stolt and Weglein, 1985): 

 

cpp (𝜃) = aα (t, 𝜃) 
  𝜕

𝜕𝑡
 𝑙𝑛 𝛼 (𝑡) +aβ (t, 𝜃) 

  𝜕

𝜕𝑡
 𝑙𝑛 𝛽 (𝑡)  + aρ (t, θ) 

  𝜕

𝜕𝑡
 𝑙𝑛 𝜌 (𝑡),            (4.6) 

 

 

where  aα (t, 𝜃), aβ (t, 𝜃) and aρ (t, θ) are generalizations of the coefficients in expressions 

(4.3)-(4.5) with time-dependent velocities < α (t) > and < β (t) >.  We assume that < α 

(t) > and < β (t) > can be represented by a constant or slowly varying known background 

model, such that < α (t) > and < β (t) > are the average or moving average of α (t), β (t) 

in a time window. The reflection angle 𝜃 is used as an independent variable. However, 
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the seismic data are recorded as a function of source-receiver distance h (offset). The 

trasform of the data from the (t, h) domain to the (t, 𝜃) domain depends on the 

velocity function. This transform can be performed by offset-angle relations based 

on a smooth background model.  

 

 

4.3 AVA Forward Modeling 

 

A discrete version of the continuos reflectivity function : 

 

cpp (𝜃) = aα (t, 𝜃) 
  𝜕

𝜕𝑡
 𝑙𝑛 𝛼 (𝑡) +aβ (t, 𝜃) 

  𝜕

𝜕𝑡
 𝑙𝑛 𝛽 (𝑡)  + aρ (t, θ) 

  𝜕

𝜕𝑡
 𝑙𝑛 𝜌 (𝑡),             (4.7) 

 

in a time interval and for a set of reflection angles can be written as  

  

                           C = A m’                                                                                              (4.8) 

where 

 

   

      𝐦 = [     
  𝜕

𝜕𝑡
 𝑙𝑛 𝛼 (𝑡),

  𝜕

𝜕𝑡
 ln 𝛽 (𝑡),

  𝜕

𝜕𝑡
 𝑙𝑛 𝜌 (𝑡) ]

𝑇

                
                                                 (4.9) 

 

where the elements can be regognized in the reflectivity function, expression (4.6) 

The sparse matrix A is defined by 

                                    ,                                     
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where Aα (𝜃i), Aβ (𝜃i), and Aρ (𝜃i) are (nm /3) × (nm /3) diagonal matrices containing discrete 

time samples of aα (t, 𝜃i), aβ (t, 𝜃i), and aρ (t, 𝜃i), respectively; n𝜃 is the number of reflection 

angles; and nm is the dimension of m and m’. 

The convolution of the reflection coefficients c with the wavelets can be formulated as a 

matrix-vector multiplication 

                                         dobs = Sc + e,                                                                    (4.10) 

 

where S is a block-diagonal matrix containing one wavelet for each reflection angle. In an 

expanded form, expression (  ) can be written 

     

                                           

 

Where dobs (𝜃i) is the seismic time trace for angle 𝜃i and where c (𝜃i) and e (𝜃i) are the 

corresponding reflection coefficients and error samples, respectively. The block matrix S 

(𝜃i) represents the  wavelet for angle (𝜃i) 

                       

Where (s1 (𝜃i),……., sns (𝜃i)) are the samples of the wavelet for angle 𝜃i. In this example, 

the sampling of the wavelet is equal to the sampling of the seismic data. If the sampling 
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of c and dobs are different, the rows of S contains wavelets corresponding to the sampling 

of c, and the rows are shifted relatively according to the sampling of dobs. 

 

Input parameters for seismic forward modeling: 

       

- Vp, Vs, Ro well logs (Figure 4.3). 

- The maximum incidence angle considered is approximately 30 degrees.           

- Ricker wavelet to zero phase (Figure 4.4) with: 

                                                                               - Lenght = 71 (sample) 

                                                                               - Frequency = 50 Hz 

                                                                               - Sampling interval = 2 (ms) 

- Recording Time = 355 (ms). 

                   

 

 

 

 

 

 

 



73 
 

        

                                Fig. 4.3. Vp,Vs and Ro well logs. 

 

 

 

                     

                                                 Fig.4.4. Ricker wavelet. 
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The convolutional model illustrated in (Figure 4.5): 

 

   

 

                                                                     × 

                                      

 

                                                                  = 
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      Fig. 4.5. Convolutional model (CMP). It shows the Seismic time trace for angle 𝜃i. 

 

 

 

In the AVA Experimental response, the Intercept and Gradient values extracted from 

synthetic seismograms, which are obtained from velocity corrected CMP records. This 

Gradient (“slope”) AVA attribute is calculated from a least square regression analysis of 

the amplitudes for angles from 0-30 degrees, using an X-axis of sine squared theta (where 

theta is the incidence angle), and the Intercept is zero-offset amplitude determined (using 

an Y-axis the amplitude) by extrapolating the AVA Gradient. In the Experimental 

Response several examples were evaluated, applying of the time windows of 71 (ms) and 

91 (ms). 

 

As illustrated in the third chapter (from equations 3.11, 3.14-3.20), the same equations 

were used in the Experimental response to extract Vp/Vs values, as follow: 
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1) costant density        

 

B =  [1 − 8 (
<𝑉𝑠>

<𝑉𝑝>
 )

2
 ]  𝐴                                                                                                  (4.11)   

 

<𝑉𝑝>

<𝑉𝑠>
=

√− 8

√
𝐵

𝐴
−1

                                                                                    (4.12) 

 

 

2) Gardner density 

 

B =  
4

5
[1 − 9 (

<𝑉𝑠>

<𝑉𝑝>
 )

2

 ]  𝐴                                                                                           (4.13) 

 

  
<𝑉𝑝>

<𝑉𝑠>
=

√− 9

√( 
5

4
 ) 

𝐵

𝐴
 − 1

                                                                              (4.14) 

 

 

 

 In order to simulate variations in rock properties, we introduce perturbations to the 

reference model. Seismic modeling is carried out with the perturbed model, and values 

for R0 and G are estimated. 

 

 

 

It begins from the simplest case where the Vp/Vs ratio remains costant throughout the 

interval described by pseudo logs. The assessment Vp/Vs by the slope of the Background 

Trend, it closes fit to the real. Moreover, we note, as strong reflections (such as those seen 
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between 2410 and 2500 ms) can locally perturb the Gradient and Intercept values, and 

therefore, the asses of the slope of the Background Trend.  

 

Throught a function, it has transformed vector to matrix, and it obtained a synthetic 

seismogram: 

                                    

                                   

                                            Fig. 4.6. Synthetic seismogram      
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Time window = 71 (ms): 

 

                                     

Figure 4.7: Estimated reflection coefficients from the synthetic seismic shown in Figure             

4.6. The AVA parameters R0 and G are computed from linear regression on the data. 
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Fig.4.8. Intercept and Gradient values calculated analytically, applying the Shuey’s 

equation to pseudo logs of Vp, Vs and density with the variation of Vp/Vs ratio. The green 

line represent the slope of the Background Trend with outliers (green points), while, the 

red line represents the slope of the Background Trend without outliers (point circled in 

red). 
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Fig.4.9. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 71 (ms). 
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Time window = 91 (ms): 

 

      

Fig.4.10. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 91 (ms). 

 

 

This case the prediction made by the straight line of the Background Trend always 

overstimate the real Vp/Vs ratio, especially when we consider the Gardner Density. 

 

 

Considering now the case where the Vp/Vs ratio does not remain constant throughout the 

interval described by pseudo logs, but varies with a standard deviation of 0.01.  It notes 

that increasing the rate variation of Vp/Vs ratio, it determines a divert of the Vp/Vs values 

predicted by Background Trend compared to the real values. 
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                                                    Fig. 4.11. Synthetic seismogram      

                               

 

Figure 4.12. Estimated reflection coefficients from the synthetic seismic shown in Figure           

4.11. The AVA parameters R0 and G are computed from linear regression on the data. 
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Fig.4.13. Intercept and Gradient values calculated analytically, applying the Shuey’s 

equation to pseudo logs of Vp, Vs and density with the variation of Vp/Vs ratio. The green 

line represent the slope of the Background Trend with outliers (green points), while, the 

red line represents the slope of the Background Trend without outliers (point circled in 

red). With a standard deviation = 0.01. 
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Fig.4.14. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 71 (ms). Applying a standard deviation = 0.01. 
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Fig.4.15. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 91 (ms). Applying a standard deviation = 0.01. 

 

 

 

 

 

 

Considering the correct relationship of Vp/Vs ratio, we can see the variations of amplitude 

with the offset (Angles) on the synthetic seismogram (Mettere il numero della figura). The 

correct relationship of Vp/Vs always overstimate the Vp/Vs values predicted by 

Background Trend straight line. It is clear that strong reflections can alter the assessment 

of Vp/Vs from the slope of the Background Trend. 
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Fig. 4.16. Synthetic seismogram      

 

 

 

Figure 4.17: Estimated reflection coefficients from the synthetic seismic shown in Figure           

4.16. The AVA parameters R0 and G are computed from linear regression on the data. 
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Fig.4.18. Intercept and Gradient values calculated analytically, applying the Shuey’s 

equation to pseudo logs of Vp, Vs and density with the variation of Vp/Vs ratio. The green 

line represent the slope of the Background Trend with outliers (green points), while, the 

red line represents the slope of the Background Trend without outliers (point circled in 

red). With a standard deviation = 0.01 
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Fig.4.19. Correct relationship of Vp/Vs ratio (top) with outliers, and (bottom) without 

outliers. Applying a time  window of 71 (ms).  
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4.4 Low Pass filter application 

FIR filters are filters having a transfer function of a polynomial in z- and is an all-zero 

filter in the sense that the zeroes in the z-plane determine the frequency response 

magnitude characteristic. The z transform of a N-point FIR filter is given by 

 

                        

                                                                                        (4.15) 

FIR filters are particularly useful for applications where exact linear phase response is 

required. The FIR filter is generally implemented in a non-recursive way which guarantees 

a stable filter. FIR filter design essentially consists of two parts, approximation problem 

and realization problem. 

 

The approximation stage takes the specification and gives a transfer function through 

four steps. They are as follows: 

 A desired or ideal response is chosen, usually in the frequency domain. 

An allowed class of filters is chosen (e.g. the length N for a FIR filters). 

A measure of the quality of approximation is chosen. 

A method or algorithm is selected to find the best filter transfer function. 

The realization part deals with choosing the structure to implement the transfer function 

which 

may be in the form of circuit diagram or in the form of a program. 

There are essentially three well-known methods for FIR filter design namely: 

(1) The window method 

(2) The frequency sampling technique 

(3) Optimal filter design methods 
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The window Method 

In this method, [Park87], [Rab75], [Proakis00] from the desired frequency response 

specification Hd (w), corresponding unit sample response hd(n) is determined using the 

following relation 

 

 

                                                                                (4.16) 

In general, unit sample response hd(n) obtained from the above relation is infinite in 

duration, so it must be truncated at some point say n= M-1 to yield an FIR filter of length 

M (i.e. 0 to M-1). This truncation of hd(n) to length M-1 is same as multiplying hd(n) by 

the rectangular window defined as 

 

                          w(n) = 1   < n > M-1  

0 otherwise 

1  

Thus the unit sample response of the FIR filter becomes 

 

                           h(n) = hd(n) w(n)  

                                   = hd(n)        < n < M-1 

                                   = 0             otherwise 

Now, the multiplication of the window function w(n) with hd(n) is equivalent to 

convolution of Hd(w) with W(w), where W(w) is the frequency domain representation of 

the window function 

 

                                                                                                (4.17) 
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Thus the convolution of Hd(w) with W(w) yields the frequency response of the truncated 

FIR Filter 

 

 

                                                                                                      (4.18)                                                               

The frequency response can also be obtained using the following relation 

                                                                                      (4.19)                                                   

But direct truncation of hd(n) to M terms to obtain h(n) leads to the Gibbs phenomenon 

effect which manifests itself as a fixed percentage overshoot and ripple before and after 

an approximated discontinuity in the frequency response due to the non-uniform 

convergence of the fourier series at a discontinuity.Thus the frequency response obtained 

by using  contains ripples in the frequency domain. In order to reduce the ripples, instead 

of multiplying hd(n) with a rectangular window w(n), hd(n) is multiplied with a window 

function that contains a taper and decays toward zero gradually, instead of abruptly as it 

occurs in a rectangular window. As multiplication of sequences hd(n) and w(n) in time 

domain is equivalent to convolution of Hd(w) and W(w) in the frequency domain, it has 

the effect of smoothing Hd(w). The several effects of windowing the Fourier coefficients 

of the filter on the result of the frequency response of the filter are as follows: 

 

A major effect is that discontinuities in H(w) become transition bands between values on 

either side of the discontinuity. 

 

The width of the transition bands depends on the width of the main lobe of the frequency 

response of the window function, w(n) and W(w). 

 

 Since the filter frequency response is obtained via a convolution relation , it is clear that 

the resulting filters are never optimal in any sense. 
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As M (the length of the window function) increases, the mainlobe width of W(w) is 

reduced which reduces the width of the transition band, but this also introduces more 

ripple in the frequency response. 

 

The window function eliminates the ringing effects at the bandedge and does result in 

lower sidelobes at the expense of an increase in the width of the transition band of the 

filter. 

 

4.6 AVA Forward Modelling with Low Pass-filter Application 

 

To improve the assesment of Vp/Vs ratio from the slope of the Background Trend straight 

line, it has tried out the effects of the application of low-pass filter to extract low frequency 

trends. It has applied a low pass filter with a cut-off frequency of 10 Hz. The frequencies 

above 10 Hz have been removed. Considering the simplest case where Vp/Vs ratio 

remains constant throughout by pseudo logs. The filter application on the seismogram, it 

improves the Vp/Vs predicted. It shows the effect which filter application on synthetic 

seismogram in AVA crossplot. In AVA crossplot there are Intercept and Gradient points 

(CIRCLED IN BLACK) representing wavelet side lobes (not geology). Another factor to 

consider during the interpretation of AVA crossplot is the signal-to-noise ratio (S/N) 

issues which tend to broaden the Intercept and Gradient reflectivity points within crossplot 

space into oval distributions. This oval distributions is more evident when Vp/Vs ratio 

varies a standard deviation of 0.01. In this case the AVA crossplot response becomes an 

oval distribution of points around the real location (the S/N decrease with offset) This is 

due to the sensitivity of the Gradient estimation to noise. This noise trend is easily 

recognized on real date, for example by crossplotting limited number of samples from the 

same horizon from a seismic section. 
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                                              Fig. 4.20. Synthetic seismogram      

 

 

 

Figure 4.21: Estimated reflection coefficients from the synthetic seismic shown in  Figure           

4.20. The AVA parameters R0 and G are computed from linear regression on the data. 
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 Fig.4.22. Intercept and Gradient values calculated analytically, applying the Shuey’s 

equation to pseudo logs of Vp, Vs and density with the variation of Vp/Vs ratio. The green 

line represent the slope of the Background Trend with outliers (green points), while, the 

red line represents the slope of the Background Trend without outliers (point circled in 

red). 
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Fig.4.23. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 71 (ms). 
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Fig.4.24. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 91 (ms). 
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Applying a standard deviation = 0.01. 

 

 

 

 

                                              Fig. 4.25. Synthetic seismogram      
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Figure 4.26: Estimated reflection coefficients from the synthetic seismic shown in  Figure           

4.25. The AVA parameters R0 and G are computed from linear regression on the data. 
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Fig.4.27. Intercept and Gradient values calculated analytically, applying the Shuey’s 

equation to pseudo logs of Vp, Vs and density with the variation of Vp/Vs ratio. The green 

line represent the slope of the Background Trend with outliers (green points), while, the 

red line represents the slope of the Background Trend without outliers (point circled in 

red). We can note, in this case the Vp/Vs ratio changes with a standard deviation = 0.01. 
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Fig.4.28. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 71 (ms). 
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Fig. 4.29. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 91 (ms). 
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    Correct relationship of Vp/Vs ratio: 

 

 

                                               Fig. 4.30. Synthetic seismogram      

 

 

Figure 4.31. Estimated reflection coefficients from the synthetic seismic shown in  Figure  

4.30. The AVA parameters R0 and G are computed from linear regression on the data. 
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Fig.4.32. Intercept and Gradient values calculated analytically, applying the Shuey’s 

equation to pseudo logs of Vp, Vs and density with the variation of Vp/Vs ratio. The green 

line represent the slope of the Background Trend with outliers (green points), while, the 

red line represents the slope of the Background Trend without outliers (point circled in 

red). We can note, in this case the Vp/Vs ratio changes with a standard deviation = 0.01. 

 

 

 

 

 

 

 



105 
 

The correct relationship of Vp/Vs always overstimate the Vp/Vs values predicted by 

Background Trend straight line. It is clear that strong reflections can alter the assessment 

of Vp/Vs from the slope of the Background Trend. 

 

    

Fig.4.33. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 91 (ms). 

 

 

 

 

 

 

 

 

 



106 
 

The fourth example considered a ratio Vp/Vs that varied linearly from 4 to 2 and then 

returned again to a ratio of Vp/Vs = 4, with a standard deviation of 0.01.  In the Vp/Vs 

(Poisson’s ratio) different depth trend, it considers the positive deviation as indicator of 

overpressure. In the interval from 2800 to 3000 (ms), where it has observed an abnormally 

high Vp/Vs depth trend,   it may interpret this interval as an overpressure interval. 

Poisson’s ratio decrease with depth in the first 2800 ms of the interval and then starts to 

gradually increase due to overpressure. 

 

 

                                                Fig. 4.34. Synthetic seismogram      
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 Figure 4.35. Estimated reflection coefficients from the synthetic seismic shown in  Figure  

4.34. The AVA parameters R0 and G are computed from linear regression on the data. 

 

 

 

          

Fig. 4.36. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 91 (ms). 
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Chapter 5 

 

Closing remarks 

Pore pressure prediction is becoming even more critical to successful drilling as 

conditions for exploration and exploitation of oil and gas reserve move into more hostile 

enviroments. In this present study I investigate the effects of changes in rocks and fluid 

properties on amplitude-variation with angle (AVA). AVA methodology has been used to 

predict anomalous pressure values directly from seismic data. I have presented in this 

work AVA attribute that can be used to evidence the anomalies associated to 

overpressured formations. The AVA attribute was derived from Intercept and Gradient 

values computed by Shuey equation. I have presented in this work AVA attribute that can 

be used to evidence the anomalues associated to overpressured formations. The AVA 

attribute was derived from the Intercept and Gradient values computed by Shuey equation.  

 

This work that is based on 1-D seismic data of empirical case study using well logs and 

seismic data, demonstrates that AVA is a suitable method in exploitation of overpressure 

zones using AVO attributes, especially the intercept and gradient. In this work, I have 

compared an Analytical and Experimental response. In all examples shown, these 

attributes don’t show anomalous responses in correspondence to overpressured layers, 

except one, when it considered a ratio Vp/Vs that varied linearly from 4 to 2 and then 

returned again to a ratio of Vp/Vs = 4, with a standard deviation of 0.01. 

 

 

I compare the Analytical and Experimental Response: 

In the examples shown, when I consider the Vp/Vs ratio remains costant throughout the 

interval described by pseudo logs (in the Experimental and Analytical response), the 

Gardner Density always shows a Vp/Vs ratio greater than the Gardner Density.                 
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Fig.5.1. It compares the Analytical (left) and Experimental (right) response, with a time 

window of 71 (ms). 

 

 

Generally, the Gardner Density follows a relationship between P-velocity and density. In 

this case the P-velocity and density well logs don’t show this relationship (Figure 5.2). 
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                          Fig.5.2. Vp velocity (left) and Ro density (right). 

 

This could be a reason because the Gardner Density shows a Vp/Vs ratio greater than 

Costant Density. 

 

 

 

 It have applied a low pass filter with a cut-off frequency of 10 Hz, attempts to define a 

low resolution profile of Vp/Vs ratio and not its local variations of high frequency. Filter 

results, improve the values Vp/Vs predicted, mostly when I apply a time window of 91 

(ms). 
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Fig. 5.3. The synthetic seismogram (left), in the middle with the low-pass filter application 

and (right) without the low-pass filter application. With a time window of 71 (ms). 
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Fig. 5.4. The synthetic seismogram (left), in the middle with the low-pass filter application 

and (right) without the low-pass filter application. With a time window of 91 (ms). 
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Considering the correct relationship of Vp/Vs ratio  with a time window of 91 (ms): 

  

Fig. 5.5. It compares the Analytical (left), and Experimental (right) response with a  low-

pass filter application, with a time window of 91 (ms). 

 

 

The values Vp/Vs predicted in the Analytical response are close to the true Vp/Vs, while, 

in Experimental response the  values Vp/Vs predicted show a deflected opposite trend 

from true Vp/Vs. The problems encountered in all Experimental response, but mostly 

when I consider the correct relationship of Vp/Vs (METTERE IL NUME>RO della figura 

di questo ultimo esempio), they could be due : 

 

In intrinsic attenuation, also referred to as absorption, the seismic wavefield loses energy 

in the form of heat as it travels through the Earth. The degree of absorption is a property 

of the material through which the energy is travelling. Absorption is frequency dependent, 

with higher frequencies being more attenuated than low frequencies. For deeper targets, 

this will lengthen the wavelet still further, causing loss of resolution as well as amplitude. 

The frequency-dependent nature of the energy loss also causes a distortion in phase. 

Extrinsic attenuation includes a number of factors such as mode conversion and scattering, 
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which also contribute to energy loss. Since far offsets travel longer in the Earth than near 

offsets, attenuation is offset dependent; because it is determined largely by lithology it 

will vary spatially. In isotropic media, thin layering causes interference between the top 

and bottom reflections. Interference tends to increase with offset when the reflection target 

has a higher velocity. 

 

 

I have considered a ratio Vp/Vs that varied linearly from 4 to 2 and then returned again to 

a ratio of Vp/Vs = 4, with a standard deviation of 0.01. In the interval from 2800 to 3000 

(ms), where it has observed an abnormally high Vp/Vs depth trend,   it may interpret this 

interval as an overpressure interval. Poisson’s ratio decrease with depth in the first 2800 

ms of the interval and then starts to gradually increase due to overpressure. 
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Low-pass filter application with a standard deviation of 0.01: 

      

Fig. 5.6. Vp/Vs model (left) with outliers, and (right) without outliers. Applying a time 

window of 91 (ms). 

 

 

 

 

 

 

 

Reccomandation 

On future work a accurate relationship between P-valocity and density well logs, these 

relationship link the petrophysical property under investigation to the observed seismic 

response. In AVA forward modelling, the option exist to include the scattering effect in 

the calculation of the effective reflection coefficient. 
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