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Introduction

Renewed interest has been recently shown in the subject of asymptotic symmetries, i.e.,
symmetries that emerge when one studies the behavior of a physical theory “at infinity”
or, better, at the “boundary” of spacetime. Reasons motivating the ongoing research
concerning this topic arose in particular after observations due to A. Strominger et al. [1, 2]
who noted that asymptotic gravitational symmetries, which were discovered in the sixties
by Bondi, Metzner, van der Burg and Sachs, and whose underlying group is commonly
referred to as the BMS group [3, 4, 5], appear to be closely related to soft theorems, i.e.
relations among scattering amplitudes for processes involving the emission or absorption of
massless particles in the low-energy limit [6, 7, 8, 9]. Other sources of interest concern the
potential observable effects that such symmetries are supposed to produce [10], in relation
to the so-called gravitational memory effect, together with the tantalizing, although quite
speculative, possibility that they may also suggest a possible route towards the solution
of the black-hole information paradox [11] as a consequence of the presence of infinitely-
many conserved quantities near the horizon. Recent additional insights on their role in
near-horizon geometries of extremal black holes have also been offered in [12, 13].

The interplay between asymptotic symmetries and soft theorems has been also inves-
tigated in the case of electrodynamics, where it has led to new interpretations of the
link between soft photon amplitudes and asymptotic symmetries of QED and, possibly, of
Yang-Mills theories [14, 15].

These results give us a hint that such an interplay should not occur as a peculiar feature of
gravity alone, but rather they point to the existence of a general underlying field-theoretical
mechanism, thus adding a significant piece of appeal to the subject. Indeed, the similarity
between the gravitational and the electromagnetic cases can also be recognized in the nature
of the asymptotic symmetry group itself, in both cases defined in terms of generators
possessing an arbitrary dependence on the angular coordinates of the spheres placed at
conformal infinity. More precisely, for electromagnetism it consists of gauge parameters
with arbitrary dependence on those two angular coordinates, while for the gravitational
field it is the asymptotic symmetry group of asymptotically flat spaces (BMS group), which
is not, as maybe expectable, the Poincaré group, but rather an infinite-dimensional group
given by the semidirect product of the Lorentz group and an infinite-dimensional family of
direction-dependent translations, whose generators again depend arbitrarily on two angular
coordinates.

In short, the main observation underlying all the recent related ongoing activity is that
Weinberg’s soft photon and soft graviton theorems [6] can be recast as Ward identities for
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infinite-dimensional families of asymptotic symmetries of electromagnetism and gravity,
respectively.

In order to better frame the role to be played by these symmetries, the first step is to
recall the Noether theorems [16]: classically, the conserved quantities arising from local
symmetries vanish identically when such symmetries act only on a compact region or
fall off sufficiently fast at infinity. On the other hand, they can attain nontrivial values
in correspondence with transformations which do not die out “as one goes to infinity”.
Since these two kinds of local symmetries display very different asymptotic behavior, they
are commonly referred to as “small” and “large” (gauge) transformations, respectively.
Indeed, for gauge symmetries, the conserved Noether current jµ takes the form of an
“improvement”, i.e. it is given by the divergence of an antisymmetric tensor, jµ “ Bνκ

µν

with κµν “ ´κνµ. This property is usually referred to as “local Gauss law” since it
closely resembles the case of the Maxwell equations for electrodynamics, while also being
crucial in order to characterize gauge theories even at the quantum level [17, 18, 19]. Any
improvement is conserved, Bµj

µ ” 0 (as a consequence of the antisymmetry of κµν), and
the corresponding charges, obtained by integrating jµ on a spacelike hypersurface Σ, are
in fact given by integrals over the boundary σ “ BΣ by Stokes’ theorem, and are therefore
intrinsically related to the behavior of the theory near the edge of spacetime.

An additional key ingredient of the whole framework is given by the spontaneous break-
ing of these asymptotic or large gauge symmetries, where soft gravitons and photons are
interpreted as the massless particles predicted by Goldstone’s theorem.

Now, two questions in particular naturally arise in the light of the previous discussion.
First of all, since Weinberg’s soft theorems are valid for arbitrary spin, does the above
analysis admit a nontrivial extension to spins higher than two? In other words, do these low
energy results on scattering amplitudes correspond to some previously neglected symmetry
group also in the case of higher-spin theories? And second, given that such theorems can
be extended to any dimensions, is it possible to give a meaning to the notion of higher-
dimensional asymptotic symmetries?

Another physical motivation for the extension to higher spins is the following: in view
of both the impossibility of infrared effects due to massless higher-spin messengers already
implied by Weinberg’s results, and of the established lore against interacting higher-spin
theories in flat space [20], one may hope that answering these questions could lead to non-
trivial physical implications on our understanding of the infrared structure of higher-spin
theories. Efforts in this direction could shed some light on the open questions concerning
infrared problems in gauge theories, as the generators of asymptotic symmetries have been
recognized to be closely related to soft photons and gravitons, while the infrared structure
displayed by asymptotic quantization [21] bears strong resemblance to that of the infrared
problem in QED [22, 23, 24]. On the other hand, Weinberg’s theorem puts severe limita-
tions to the long-range behavior of massless fields with spin higher than two, effectively
ruling out the possibility that a macroscopic higher-spin interaction could emerge in the
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soft limit on flat space.
This issue has been shown to be even more acute in a series of no-go results, indicating

that, for perturbatively local theories on flat space, no consistent interaction involving
massless fields of spin higher than two appears to be allowed beyond the cubic level. Once
again, the problem appears to be intimately related to the infrared behaviour of such
systems, as also indicated by the two main positive solutions presently known.

As originally suggested by Fradkin and Vasiliev in their seminal paper [25], a non-
vanishing cosmological constant can indeed provide the infrared regulator needed for con-
sistent interactions among massless higher-spin particles to be possible. Their suggestions
paved the way to the complete on-shell construction to all orders by Vasiliev and his
school, up to the more recent developments taking place in the context of the AdS/CFT
correspondence (for references, see e.g. [26, 27]).

Another possible way of evading the conclusions of these no-go theorems relies on string
theory: in such a theory, almost all the fields in the spectrum, and in particular all the
fields with spin higher than two, are lifted to being massive, the square mass of a given
field being roughly proportional to its spin and to the string tension, playing the role in
this context of the needed infrared regulator [28]. A long-standing conjecture relates the
appearance of the string tension as a result of some higher-spin gauge symmetry breaking
mechanism [29, 30], and it is conceivable that a more concrete understanding of the infrared
physics of higher-spin interactions should be ultimately related to this type of picture.

It is also worth noting that the novel approach to infrared problems suggested by the
interplay between asymptotic symmetries and soft theorems may also have relevant con-
nections to the recent developments in massive gravity and its multi-metric extensions, i.e.
theories of gravitation where the usual, massless, graviton is accompanied by one or more
massive particles of spin two, producing models of gravity with different infrared behavior.
(See e.g. [31] for a recent review.)

These arguments indicate that the tools developed in the understanding of asymptotic
symmetries and their connection to higher spins have chances to be exported in other
interesting sectors of the physics of gauge theories.

Results
We show that it is possible, with suitably-defined boundary conditions which essentially
generalize the current notion of gravitational asymptotic flatness to the framework of
higher-spin theories, to obtain an infinite-dimensional family of large gauge symmetries
for any integer spin entirely analogous to those which have been found for gravity and
QED; furthermore, we extend the method used in the literature to link these symmetries
to Weinberg’s theorems, showing that indeed Weinberg’s factorization results are equiva-
lent to Ward identities stemming from such asymptotic symmetries. Part of the strategy
employed in order to achieve this goal also allows to improve the results obtained for the
spin two case [1, 2] by performing the derivation with greater generality: while in the lit-
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erature Weinberg’s soft graviton theorem is derived from BMS Ward identities under the
assumption that the equivalence principle holds, we are able to perform this proof with-
out relying on this hypothesis, or, in other words, to prove the equivalence principle as a
consequence of BMS invariance.

The extension to higher spins is again tackled in a more specific way by generalizing an
old, but elegant, result concerning large gauge symmetries of QED by Ferrari and Picasso
[32, 33]: working with linear large gauge symmetries, which are in fact a finite-dimensional
family of asymptotic symmetry transformations, allows to recover all soft theorems of QED,
gravity and higher-spin theories as consequences of the Goldstone theorem applied to the
breaking of such symmetries.

As far as the question concerning higher-dimensional asymptotic symmetries is con-
cerned, let us note that, in view of the results of [1, 2], it would appear quite bizarre if the
factorization theorem, while holding for any D, admitted an interpretation as the Ward
identity of an underlying symmetry group only in specific dimensions. However, in the
case of gravity, a number of negative results suggested an effective trivialization of asymp-
totic gravitational symmetries in higher dimensions (see e.g. [34]). Recent investigations,
differently, have pointed out that suitable choices of boundary conditions allow in fact to
implement the full asymptotic symmetry group, from which the soft graviton theorem can
be derived, in arbitrary even dimensions, at least. [35, 36] The strategy currently employed
in this direction amounts essentially to a “change of attitude” towards these symmetries.
In the past, infinite-dimensional asymptotic symmetries were regarded as a mathematical
oddity and the tendency was to look for ways of getting rid of them, rather than to look
for them. In four dimensions, one can in principle impose more rigid boundary conditions
that shrink the asymptotic symmetry group of asymptotically flat spacetimes down to the
Poincaré group, but doing so effectively rules out the possibility of gravitational radiation,
which appears to be too stringent a condition. On the other hand, higher-dimensional grav-
itational systems admit boundary conditions which allow for gravitational radiation, while
still selecting a (finite-dimensional) Poincaré asymptotic symmetry group. On account of
the new understanding on the physical significance of such symmetries, authors nowadays
propose to relax the boundary conditions for the metric tensor which define asymptotic
flatness, in order to allow for the presence of a full, infinite-dimensional symmetry group of
gravity in any dimension: the key point is to decide whether the angular part of the metric
should differ from the flat, Euclidean one by corrections of order at most O

`

rp6´Dq{2
˘

or
rather Oprq, where r is a suitable radial coordinate and D is the dimension of spacetime.

A more geometric approach to the definition of higher-dimensional asymptotic symme-
tries of gravity may offer a more convincing justification of such falloff conditions in terms
of geometric properties of the conformal boundary of spacetime, as it does for the four-
dimensional case: instead of defining asymptotic flatness by prescribing falloff conditions
to be imposed on the metric tensor using an appropriate radial coordinate, it is in gen-
eral preferred to define a four-dimensional spacetime to be asyptotically flat if it admits a
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conformal compactification with the same properties as the compactification of Minkowski
spacetime, the latter solution being also favoured due to its explicit covariance. We show
that the same procedure can be essentially carried out also for systems of dimension D, with
some adjustments and some caveats. In addition, we also argue that infinite-dimensional
“BMS-like” symmetries may be completely characterized by the intrinsic properties of the
conformal compactification of spacetime and then, once their formal structure is defined,
linked back to the asymptotic behaviour of the physical spacetime.

Plan of the work
The material is organized as follows. Chapter 1 reviews some fundamental aspects of
the physics and geometry of asymptotically flat spacetimes together with their symmetry
groups, while also offering a brief account of Ashtekar’s strategy for performing an asymp-
totic quantization of gravity. In Chapter 2 we recall Weinberg’s soft theorems, while the
following Chapters 3, 4 are devoted to analyzing the current strategy which links these
theorems, in the case of spin two and spin one fields, to asymptotic symmetries of gravity
and electrodynamics respectively.

Our original results are presented in Chapters 5, 6 and 7. In Chapter 5, after a brief
revisitation of the results for spin one and two, needed in order to bring them in a broader
perspective, we present the main new results of this thesis, namely their generalization
to higher spins, by defining higher-spin asymptotic symmetries near null infinity, and the
proof of their equivalence to Weinberg’s factorization results. The generalization to higher
spins is then discussed from a different prespective using the Ferrari-Picasso approach in
Chapter 6.

Finally, in Chapter 7, we discuss the extension of the notion of gravitational asymptotic
symmetries to arbitrary-dimensional spacetimes.
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1 Asymptotic Flatness

The notion of asymptotically flat spacetimes, which is thoroughly adressed in [37, Chap-
ter XI], was introduced in order to describe ideally isolated systems in general relativity:
indeed, even though no physical system truly can be isolated from the rest of the universe,
while performing the study of a specific class of systems, such as compact stars or black
holes for instance, it should be possible to neglect the influence of distant matter or the
cosmological curvature and hence simplify the problem by assuming that the spacetime
becomes flat at large distances. Furthermore, in order to give a particle interpretation to
field theories, one needs to define asymptotic states and hence generators of translations
“at infinity”: therefore the description of gravitational radiation motivates the study of the
geometry of asymptotically flat spacetimes; as we shall see, this approach allows in fact to
describe the fully nonlinear regime of gravitational radiation.

The main issue, in comparison with electromagnetism in special relativity, is that in
general relativity one has no natural global inertial coordinate system to define a preferred
radial coordinate, r, for use in specifying falloff rates. One could define a D-dimensional
spacetime to be asymptotically flat if there exists any system of coordinates x0, x1, . . . , xd,
for D “ d` 1, such that the metric components behave appropriately at large coordinate
values, e.g.

gµν “ ηµν `Op1{rq, as r Ñ8, (1.0.1)

where ηµν is the Minkowski metric and r “ rpx1q2 ` . . .` pxdq2s. However, since this defi-
nition is not coordinate-independent, the coordinate invariance of all statements obtained
in this approach must be carefully checked; furthermore, from a technical point of view, it
is rather difficult to specify precisely how the large distance limit r Ñ 8 is to be taken, a
notable example being the calculation of the energy flux radiating away from a system.

The main idea to solve these issues is to “add in” to the spacetime the points at infinity
in a manifestly coordinate-independent way, a strategy allowing to give fully satisfactory
definitions of the total energy of an isolated system and of the energy carried away from
the system by gravitational radiation. Moreover, the extension makes it possible to provide
a geometric description of the symmetries of asympotically flat spacetimes, which will be
relevant for our discussion.
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1.1 Conformal Infinity
The main technical tool allowing to give a precise definition of the notion of asymptotic
flatness and to specify a meaningful notion of “limits as one goes to infinity” is the so-called
“conformal infinity”, which will be first reviewed in the case of flat spacetime.

1.1.1 Minkowski spacetime
In spherical coordinates, the metric of the D-dimensional Minkowski spacetime takes the
form

ds2 “ ´dt2 ` dr2 ` r2dγ2, (1.1.1)

where dγ2 is the line element on the Euclidean unit pD ´ 2q-sphere (e.g. dγ2 “ dθ2 `

sin2θ dφ2 in D “ 4, where θ and φ are the usual polar and azimuthal angles).
Suppose we are interested in expressing the energy carried to infinity by some massless

field, for instance a scalar field: this requires to compute limits as one goes to null infinity;
to this purpose it is convenient to introduce the light-cone coordinates

v “ t` r, t “ pv ` uq{2,

u “ t´ r, r “ pv ´ uq{2,
(1.1.2)

and write the Minkowski metric as

ds2 “ ´du dv `
1

4
pv ´ uq2dγ2. (1.1.3)

These coordinates represent affine parameters along outgoing and incoming null geodesics,
respectively. Now, in order to “add in” future null infinity, which corresponds to letting
v Ñ8 at fixed u, a naive idea would be to introduce the coordinate V “ 1{v, so that null
infinity be represented by the point V “ 0. The metric in these coordinates takes the form

ds2 “
1

V 2
du dV `

1

4

ˆ

1

V
´ u

˙2

dγ2. (1.1.4)

However, the point V “ 0 is singular in this spacetime. To circumvent this problem, one
introduces a new unphysical spacetime conformally related to the original one, ds̄2 “ Ω2ds2

where Ω “ V . Now the metric reads

ds̄2 “ du dV `
1

4
p1´ uV q2dγ2, (1.1.5)

and in particular it is well behaved at V “ 0. The conformal factor, however, blows up
at the events v “ 0 in the original spacetime and furthermore this construction does not
allow to extend ḡµν symmetrically to past null infinity, i.e. uÑ ´8 at fixed v.
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A better idea is to perform the following conformal transformation on (1.1.3) choosing
the conformal factor

Ω2pxq “
4

p1` v2qp1` u2q
(1.1.6)

which treats u and v on equal footing.
Now, in order to obtain the usual compactification of Minkowski spacetime, define new

coordinates T and R by

T “ tan´1 v ` tan´1 u, v “ tanpα{2q, α ” T `R,

R “ tan´1 v ´ tan´1 u, u “ tanpβ{2q, β ” T ´R;
(1.1.7)

note in particular that T and R have ranges restricted by the following inequalities: R is
non-negative, since v ě u, and tan´1 ranges from ´π{2 to π{2, so

´π ă T ´R ď T `R ă π. (1.1.8)

In other words, the Minkowski spacetime coordinates t, r have been mapped into the tri-
angle of vertices i0pπ, 0q, i`p0, πq, i´p0,´πq in the R, T plane as in Figure 1.1.

Figure 1.1: The conformal compactification of Minkowski spacetime in R, T coordinates,
where the angular coordinates have been suppressed. The script capital I is
usually pronounced “scr-I”.

The components of g̃µν read therefore

ds̃2 “ ´dT 2 ` dR2 ` psin2Rqdγ2. (1.1.9)

This is just the natural Lorentz metric on S3 ˆ R, known as the Einstein static universe,
apart from the restrictions imposed on R, T . Indeed, the Friedmann-Robertson-Walker
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metric reads

dτ2 “ ´dt2 ` a2ptq

ˆ

dr2

1´ kr2
` r2dγ2

˙

(1.1.10)

and, since the Einstein universe is static aptq “ 1 and closed k “ `1, letting t “ T and
r “ sinR, we get (1.1.9).

Figure 1.2: The Einstein cylinder: conformal completion of the Minkowski spacetime (shad-
owed region), as an embedding in Einstein’s static universe (full cylinder).

We recall that, given two spacetimes pM, gq and pM 1, g1q, i.e. two differentiable manifolds
provided with a symmetric, non degenerate tensor of type p0, 2q, a conformal isometry [38]
of pM, gq into pM 1, g1q is a diffeomorphism ψ : M ÑM 1 such that ψ˚g1 “ Ω2g.1 Indeed in
our case ψ˚g̃ “ Ω2g, where ψ : R4 Ñ O, where O is an open subset (region) of S3 ˆ R.

We define the conformal infinity of Minkowski spacetime (figure 1.2) to be the boundary
9O of O. Aside from the angular coordinates, this boundary can be identified as follows:

• Past timelike infinity i´, corresponding to r “ 0, t Ñ ´8, or v “ u Ñ ´8, i.e.
R “ 0, T “ ´π, the bottom vertex of the above described triangle;

• Past null infinity I ´, which is the boundary line connecting i´ and i0, T “ R ´
π, 0 ă R ă π, the bottom right side of the triangle. Indeed, for v “constant,
uÑ ´8, we get T “ tan´1 v ´ π{2, R “ tan´1 v ` π{2 and hence ´T `R “ π.

1 The pullback ψ˚ of a diffeomorphism ψ : M Ñ M 1 acts on one-forms defined on M 1 in the following
way: let p PM , αp P T

˚
p M and let ψ˚p be the derivative of ψ at p, then for each vector Xp P TpM ,

pψ˚αqppXpq “ αψppqpψ˚pXpq. (1.1.11)
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• Spacelike infinity i0, corresponding to r Ñ `8, t “ 0, or v “ ´u Ñ `8, i.e.
R “ π, T “ 0, the right vertex of the triangle;

• Future null infinity I `, linear interpolation of i0 and i`, T “ ´R ` π, 0 ă R ă π,
the top right side of the triangle. Indeed, for u “constant, v Ñ `8, we get T “
π{2` tan´1 u, R “ π{2´ tan´1 u and hence T `R “ π.

• Future timelike infinity i`, corresponding to r “ 0, t Ñ `8, or v “ u Ñ `8, i.e.
R “ 0, T “ `π, the top vertex of the triangle.

Note that the vertical side of the triangle does not belong to the boundary, since, for ex-
ample, a straight line joining pt “ 0, r, θ, φq and pt “ 0, r, θ,´φq crosses it while obviously
belonging to the original spacetime. Notice that null geodesics start at I ´ and end at I `

whereas timelike geodesics start at i´ and end at i` and spacelike geodesics start and end
at i0.

1.1.2 Asymptotically flat curved spacetimes
Motivated by the above example, we define [21] a spacetime to be asymptotically flat at
null infinity if it admits a conformal completion in which the boundary “resembles” the
Minkowskian I .

More formally, a spacetime pM, gq, which may be thought of as the gravitational field
of an isolated body emitting gravitational waves, or as a pure gravitational radiation field
itself, is asymptotically flat if there exists a manifold M̃ with boundary BM̃ “ I , equipped
with a smooth metric g̃ of Lorentzian signature, such that the interior M̃ r I of M̃ is
diffeomorphic to M and:

• there exists a smooth function Ω on M̃ such that Ω “ 0 on I , ∇̃µΩ ‰ 0 on I , and
the pullback of g̃ to M is Ω2g;

• g satisfies the vacuum Einstein equations Rµν “ 0 in the intersection with M of a
neighborhood of I in M̃ (i.e., near infinity);

• I is topologically SD´2 ˆ R, the vector field nµ ” g̃µν∇̃νΩ on I is complete and
the space of its orbits is diffeomorphic to SD´2.

The intuitive idea underlying the first condition is that, since I represents the set of
points at infinity in the physical spacetime, an “infinite amount of stretching”, given by
Ω “ 0, is needed in the conformal mapping from the physical to the unphysical spacetime.
Moreover, the requirements on the derivatives of Ω allow us to use Ω itself as a coordinate
in a neighborhood of I , parametrizing how far we are from infinity (see below for the
explicit construction of such a coordinate system). The second condition follows naturally
from our understanding of an isolated gravitational system and can be in fact relaxed by
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admitting an energy-momentum tensor of matter with appropriate falloff conditions as one
approaches I , e.g. by requiring Ω´2Tµν to have a smooth extension to I . Finally, the
third requirement reflects the idea that an asymptotic observer sitting at I should be able
to characterize any observation, e.g. parametrize an incoming gravitatational wave packet,
by its angular position and retarded time.

Notice immediately that there is a considerable arbitrariness or gauge freedom in the as-
sociation of an unphysical spacetime pM̃, g̃q with an asymptotically flat physical spacetime
pM, gq: indeed, another spacetime pM̃, ω2g̃q satisfies the properties of the definition with
a sufficiently smooth conformal factor ωΩ, provided ω ą 0 everywhere.

By the validity of the asymptotic field equations and the smoothness of g, we show below
that I is a null 3-surface and nµ is tangential to it. To further justify the above definition,
we will also derive a coordinate form of the condition on the asymptotic behavior of the
physical metric as one approaches future null infinity, I `, showing that it indeed reduces
to the Minkowski metric near I `, as one would intuitively expect. To carry out this
program we are first going to need a few technical steps, which are given below.

Recall that, under the conformal mapping gµνpxq ÞÑ g̃µνpxq “ Ω2pxqgµνpxq, the compo-
nents of the Ricci tensor transform as follows [37, Appendix D], Λ being a shorthand for
log Ω:

Rµν ÞÝÑ R̃µν “ Rµν `p2´Dqp∇µ∇νΛ´∇µΛ∇νΛq` gµνg
ρσ rp2´Dq∇ρΛ∇σΛ´∇ρ∇σΛs ,

(1.1.12)
then, performing the inverse transformation amounts to interchanging quantities with and
without tildes and changing the sign of Λ, obtaining [39, Appendix A]

Rµν “ R̃µν `
D ´ 2

Ω
∇̃µ∇̃νΩ` g̃µν g̃

ρσ

ˆ

1

Ω
∇̃ρ∇̃σΩ`

1´D

Ω2
∇̃ρΩ∇̃σΩ

˙

. (1.1.13)

The vanishing of the right-hand side of this equation is the vacuum Einstein equation
expressed in terms of the new unphysical variables.

Multiplying (1.1.13) (with Rµν “ 0)2 by Ω and taking the limit Ω Ñ 0 which brings us
to I `, we find

0 “ ΩR̃µν ` pD ´ 2q∇̃µ∇̃νΩ` g̃µν g̃
ρσ

ˆ

∇̃ρ∇̃σΩ`
1´D

Ω
∇̃ρΩ∇̃σΩ

˙

; (1.1.14)

now, since g̃µν , R̃µν and Ω are smooth at I `, the first three terms are smooth as well and
hence the quantity Ω´1g̃ρσ∇̃ρΩ∇̃σΩ can be smoothly extended to I `. In particular, this
implies g̃ρσ∇̃ρΩ∇̃σΩ “ 0 at I ` or, in other words, that nµ “ g̃µν∇̃νΩ is null at I `. This
result also follows from the fact that Ω is constantly zero on I ` and I ` is a null surface.

2 Note that, if the original spacetime were asymptotically (A)dS, the left-hand side would be a constant
times gµν “ Ω´2g̃µν .
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Now we use the gauge freedom Ω ÞÑ ωΩ mentioned above; note that g̃µν ÞÑ ω2g̃µν ,
g̃µν ÞÑ ω´2g̃µν and finally (recall that covariant derivatives are inessential since Ω and ω
are scalar quantities)

Ω´1g̃µν∇̃µΩ∇̃νΩ ÞÝÑ ω´3g̃µν
”

Ω∇̃µω∇̃νω ` 2ω∇̃µΩ∇̃νω ` ω2Ω´1∇̃µΩ∇̃νΩ
ı

. (1.1.15)

By choosing ω to satisfy the ordinary differential equation

nµ∇̃µ logω “ ´
1

2
Ω´1g̃µν∇̃µΩ∇̃νΩ (1.1.16)

on I `, one gets rid of the second and third term in the previous expression, while the first
one is zero since Ω|I` “ 0. Note that the gauge-fixing condition (1.1.16) is well-defined
on I `, since Ω´1gµν∇̃µΩ∇̃νΩ is smooth there, as we have just seen.

Therefore, without loss of generality, we can always assume to have chosen the conformal
factor so as to ensure

Ω´1g̃ρσ∇̃ρΩ∇̃σΩ “ 0 on I `. (1.1.17)

The vacuum Einstein field equation then yields

pD ´ 2q∇̃µ∇̃νΩ` g̃µν g̃
ρσ∇̃ρ∇̃σΩ “ 0 on I `, (1.1.18)

and finally, since tracing this equation one has 2pD ´ 1qg̃ρσ∇̃ρ∇̃σΩ “ 0,

∇̃µ∇̃νΩ “ 0 on I `, (1.1.19)

if D ‰ 1, 2. We shall sometimes refer to this property of I ` by saying that it is “divergence-
free”. By the previous equation, the null tangent nµ “ g̃µν∇̃νΩ to I ` is covariantly
constant

∇̃µnν “ 0, (1.1.20)

and satisfies the geodesic equation

nµ∇̃µnρ “ 0 on I `. (1.1.21)

Therefore it is also called the null geodesic generator of I `.
The gauge choice (1.1.16), which led to the gauge condition (1.1.19), still permits the

additional freedom of choosing ω arbitrarily on any given cross section of I `, i.e. on a
pD ´ 2q-dimensional surface S , in I `, which intersects each null geodesic generator of
I ` at precisely one point. This is because equation (1.1.19) only constrains the behavior
of Ω along null geodesics.

Restricting ourselves to D “ 4, it follows from the fact that I ` has the topology of
S2 ˆ R that S must be a topological two-sphere; since every Riemannian metric h̃µν on
S is conformally equivalent to the Euclidean unit two-sphere metric h̃µν “ f2hµν [37,
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Problem 3.2], we can use the residual freedom in the choice of conformal factor to make
S a metric sphere of unit radius. As we shall discuss in Chapter 7, this is a keypoint of
the discussion needed for the extension to any D of the notion of asymptotic flatness.

Now, let us introduce the following coordinates in a neighborhood of I `: since, by
hypothesis, ∇̃µΩ|I` ‰ 0, we may use Ω itself as one of the coordinates; we introduce the
natural spherical coordinates pθ, φq on a cross section, S , and carry these coordinates to
other points of I ` along the null geodesic generators of I `; we define a coordinate on
I ` to be the affine parameter, measured from S , along the null geodesic generators of
I `, with u scaled so that

nµ∇̃µu “ 1; (1.1.22)

finally, we extend these coordinates pu, θ, φq off of I ` by holding their values fixed along
each null geodesic of the family orthogonal to the 2-spheres of constant u on I `, except
the one which generates I `. In such coordinates

ds̃2|I` “ 2dΩ du` dθ2 ` sin2θ dφ2. (1.1.23)

These coordinates are particularly well-suited for studying the asymptotic behavior of the
metric components in the physical spacetime, as we will see shortly. Since BνΩ “ δΩ

ν , the
gauge condition (1.1.19), reads

BµBνΩ´ Γ̃ρµνBρΩ “ 0, and hence Γ̃Ω
µν “ 0; (1.1.24)

in other words, since g̃Ωρ “ δρu and Bug̃µν “ 0 at I `,

0 “ Γ̃Ω
µν “

1

2
pBµg̃uν ` Bν g̃uµq . (1.1.25)

Fixing µ “ Ω and ν “ u, θ, φ, thanks to Bθg̃uΩ “ 0 “ Bφg̃uφ at I `, one has

BΩg̃uu “ BΩg̃uθ “ BΩg̃uφ “ 0 on I `, (1.1.26)

meaning that g̃uu, g̃uθ and g̃uφ must be OpΩ2q as Ω Ñ 0. Thus, in a neighborhood of I `,
the components of the physical metric, gµν “ Ω´2g̃µν , take the form

ds2 “2Ω´2dΩ du` Ω´2pdθ2 ` sin2θ dφ2q

`Op1qpdu2, du dθ, du dφq

`OpΩ´1qpdθ2, dθ dφ, dφ2, dΩ du, dΩ2, dΩ dθ, dΩ dφq.

(1.1.27)

Now let v “ 2{Ω, so that

ds2 “´ dv du`
1

4
v2pdθ2 ` sin2θ dφ2q

`Op1qpdu2, du dθ, du dφq

`Opvqpdθ2, dθ dφ, dφ2q

`Op1{vqpdv du, dv dθ, dv dφq
`Op1{v3qdv2.

(1.1.28)
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A further coordinate transformation v ÞÑ v ` fpu, θ, φq can get rid of the terms Op1qdu2

at the expense of introducing terms Op1qpdv dθ, dv dφq: for example if Op1qdu2 “ ´du2,
letting v ÞÑ v ´ u gives (notice the resemblance with (1.1.3))

ds2 “ ´dv du`
1

4
pv ´ uq2pdθ2 ` sin2θ dφ2q ` . . . . (1.1.29)

Having done this, we transform to “asymptotically cartesian coordinates” defined by

t “
v ` u

2
, x “

v ´ u

2
sin θ cos θ, y “

v ´ u

2
sin θ sin θ, z “

v ´ u

2
cos θ. (1.1.30)

The components of the physical metric in these coordinates are of the form

ds2 “ ´dt2 ` dx2 ` dy2 ` dz2 ` . . . (1.1.31)

and differ from diagp´1, 1, 1, 1q only by terms at most of order 1{v as v Ñ 8, since each
angular differential behaves as 1{v; this also clarifies the convenience of eliminating the
Op1qdu2 terms in the previous step.

We have shown that our definition of asymptotic flatness at null infinity in terms of
the conformal completion of the spacetime, together with Einstein’s equations, requires
the physical spacetime to become asymptotically Minkowskian as one goes toward null
infinity. A similar notion of flatness for spatial infinity has also been given [37, 39], but to
our purposes it will not be necessary to illustrate it.

1.1.3 Universal structure and asymptotic symmetries
Minskowski spacetime pR4, ηq has a 10 -parameter group of isometries: the Poincaré group.
What are the corresponding asymptotic symmetries of asymptotically flat spacetimes? To
answer this question, we need to introduce the concept of asymptotic symmetry.

The intuitive notion of infinitesimal asymptotic isometry at, say, future null infinity, is
represented by a vector field ξ in the physical spacetime such that Killing’s equation

£ξg “ 0 (1.1.32)

is satisfied to “as good an approximation as possible” as one goes to I `.
In a more formal approach, we may require that ξ, viewed now as a vector field in the

unphysical spacetime (i.e. is pushforward via the conformal mapping), have a smooth
extension to I `. Then we further require that the tensor field Ω2£ξg also have a smooth
extension to I ` which vanishes on I `. Finally we identify two vector fields ξ and ξ1 on
the physical spacetime as the same infinitesimal asymptotic symmetry if their extensions
to I ` are equal there.

The asymptotic symmetry group arising from this definition is universal, in the sense
that one gets the same abstract group for all asymptotically flat spacetimes. Perhaps
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surprisingly, this group is not the Poincaré group: it is the infinite-dimensional Bondi-
Metzner-Sachs (BMS) group [3, 4, 5].

As an example, consider Minkowski spacetime in coordinates pv, u, θ, φq and an arbitrary
function f “ fpθ, φq; the vector

ξ “ fpθ, φqBu `
v

2r2

Bf

Bθ
Bθ `

v

2r2 sin2θ

Bf

Bφ
Bφ (1.1.33)

is nonvanishing at I ` but
Ω2£ξη “ 0, at I `. (1.1.34)

One can give an equivalent characterization of the BMS group in terms of the mappings
of I ` into itself. In the unphysical spacetime, the metric g̃µν induces a degenerate metric
q̃µν on the null hypersurface I `. Since nµ “ g̃µν∇̃νΩ is tangent to I `, the vector field nµ

may be viewed as a vector field of I ` itself. Under a change of conformal gauge Ω ÞÑ ωΩ,
one has: q̃µν ÞÑ ω2qµν , nµ ÞÑ ω´1nµ. The structure pI `, q̃, nq, identified under such
conformal rescalings, is universal: indeed, we have shown above that for any I ` there
exists a conformal gauge such that qµνdx

µdxν “ dθ2 ` sin2θdφ2 and n “ Bu.
The BMS group is the group of diffeomorphisms of I ` which preserves this universal

structure, i.e. of the diffeomorfisms ψ : I ` Ñ I ` such that the linear maps induced by
ψ correspond to a rescaling associated with a change of conformal gauge, which has no
intrinsic meaning being a redundancy in the description of asymptotically flat spacetimes.
This characterization turns out to be very helpful when dealing with the properties of
asymptotic symmetries especially because it is intrinsically defined at I , without any
reference to the interior of the spacetime.

The infinitesimal supertranslations are defined as the vector fields on I ` of the form
ξ “ αn, where α satisfies nµ∇̃µα “ 0, i.e., it is constant on each null generator, but
otherwise is an arbitrary function. Examples of supertranslations are the vectors of the
form (1.1.33), since the function f “ fpθ, φq is clearly constant along the trajectories of nµ

and ξ reduces to fpθ, φqBu at I ` giving rise to a family of direction-dependent translations;
the intuitive idea as to why these supertranslations should be asymptotic symmetries is that
the deformations they induce, due to their angular dependence, are eventually stretched
out by the conformal factor.

The supertranslations are an infinite-dimensional Abelian normal subgroup, ST , of the
BMS group, G, and the factor group obtained by quotienting the BMS group by the
supertranslations is isomorphic to the Lorentz group:

G{ST » SOp3, 1q. (1.1.35)

There exists a unique four-dimensional subgroup of supertranslations which is a normal
subgroup of the BMS group. In the case of Minkowski spacetime, it consists of asymptotic
symmetries associated with the exact translational symmetries of Minkowski spacetime:
this motivates us to define the asymptotic translations of a general asymptotically flat
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spacetime as the elements belonging to this unique four-dimensional normal subgroup of
the supertranslation group.

A similar procedure for boosts and rotations fails, as we shall see below: there is no
normal subgroup of the BMS group which is isomorphic to the Poincaré group.

Another interesting feature is that in four spacetime dimensions one could, in principle,
impose stronger requirements on asymptotically flat spaces at null infinity in order to re-
cover a unique Poincaré group: this, however, would exclude the possibility of gravitational
radiation, which is too stringent a condition to impose (see [37, 40] and references therein).
As we shall discuss in Chapter 7, this is no longer the case in higher-dimensional spaces,
where one can in fact impose more strict conditions which select a Poincaré asymptotic
symmetry group while still allowing for the presence of gravitational waves.

Below, we prove in detail a few of these properties of the BMS group, following mostly
[21, 39]. We begin by summarizing the structures introduced until now:

• I » S2 ˆ R is ruled by the trajectories of its null normal nµ.

• The intrinsic metric q on I is degenerate (signature 0 ` `) and its pullback h on
the space S of integral curves of nµ is conformally related to the Euclidean 2-sphere
metric.

• The permissible conformal rescalings, i.e. those who leave I divergence free, are
Ω ÞÑ ωΩ where ω is a nowhere-vanishing, smooth function on M such that

£nω “ 0 on I ; (1.1.36)

under these rescalings, we have q ÞÑ ω2q, and n ÞÑ ω´1n.

At the Lie algebra level, a vector field vµ is an infinitesimal asymptotic symmetry if the
diffeomorphism it generates leaves the integral curves of nµ invariant and maps a pair pq, nq
in an equivalent pair pω2q, ω´1nq, where £nω “ 0 on I .

Clearly, denoting by ϕ
ptq
v the diffeomorphism generated by v in a neighborhood of the

identity, letting ϕ
ptq
v˚ stand for the push-forward it induces on vector fields and expanding

ωptq “ etα “ 1` tα` . . ., with £nα “ 0, leads to:

ϕ
ptq
v˚n “ ω´1n “ n´ tαn` . . .

1

t

´

ϕ
ptq
v˚n´ n

¯

“ ´αn` . . . .
(1.1.37)

This proves that vµ is an infinitesimal asymptotic symmetry if and only if

£vn “ ´αn (1.1.38)

and similarly
£vq “ 2αq. (1.1.39)
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It is clear that such vector fields form a Lie algebra g, with respect to the usual vector field
Lie bracket:

£µv`µ1v1n “ µ£vn` µ
1£v1n “ ´

`

αµ´ α1µ1
˘

n (1.1.40)

£rv,v1sn “ r£v,£v1sn “ £v

`

´α1n
˘

´£v1 p´αnq “ ´
`

£vα
1 ´£v1α

˘

n ” ´ᾱn, (1.1.41)

where £nᾱ “ 0 since rn, vs “ 0 “ rn, v1s. The Lie algebra g admits, in particular, vectors
v in the form v “ βn, where β is a function on I . Indeed, using (1.1.39), together with
qµνn

ν “ 0, and ∇µnν “ 0 on I , we see that

2αqµν “ p£vqqµν “ β p£nqqµν ` n
ρqρµBνβ ` n

ρqρνBµβ “ β∇pµnνq “ 0, on I ; (1.1.42)

therefore α “ 0, which in turn implies

0 “ £vn “ ´£nv “ ´£n pβnq “ ´p£nβqn ùñ £nβ “ 0. (1.1.43)

We define the space of supertranslations as the set st of all vector fields in g of the form
βn, such that £nβ “ 0. st is clearly a vector subspace of g; moreover, we see that, given
any infinitesimal asymptotic symmetry v P g,

rv, βns “ £vpβnq “ p£vβqn´ αβn “ p£vβ ´ αβqn ” β1n; (1.1.44)

since g is closed under Lie bracket, rv, βns is in g, and hence rv, βns P st. This shows that
st is in fact a Lie ideal of g.

Consider now the quotient algebra g{st. By (1.1.38), its natural projection π : I Ñ S,
i.e. the quotient map, projects down on the space S of null generators of I and vector
fields v, v1 on I are projected in the same vector field π˚v “ π˚v

1 on S if and only if
they differ by a supertranslation, whereas supertranslations themselves project down to
zero. Furthermore, if v P g, then π˚v is a conformal Killing vector field on S, with positive
definite metric h, as a consequence of (1.1.39). It follows that g{st is the Lie algebra of
conformal Killing vector fields on pS, hq and since the conformal structure of a 2-sphere is
unique, this Lie algebra is unique: it is the Lie algebra of the Lorentz group SOp3, 1q.

We already note here that, in fact, since the conformal group of the pD´2q-dimensional
sphere is isomorphic to the Lorentz group SOpD´1, 1q, this part of the construction carries
through in any dimension [38]; we will discuss a few developments of this observation in
Chapter 7.

To move to the group level, denote by G the BMS group and by ST the group of
supertranslations. Note that, since st is a commutative Lie ideal of b, i.e. if £nβ “ 0 “
£nβ

1, v P b, then
rβn, β1ns “ 0, rv, βns P st, (1.1.45)

it follows that st exponentiates to a commutative normal subgroup ST of the BMS group
G. Thus, aside from the technicalities arising form the infinite dimensionality of G, this
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proves that, as anticipated, the BMS group is the semi-direct product of the Lorentz group
with the infinite-dimensional, Abelian, normal subgroup ST of supertranslations. It is
worth keeping in mind that ST is isomorphic to the additive group of functions on the
two-sphere while the Lorentz groups acts on ST as the conformal group on the two-sphere.

Explicitly, from the above discussion it follows that a mapping pu, θ, φq ÞÑ pū, θ̄, φ̄q is a
BMS transformation if and only if letting

θ̄ “ Hpθ, φq, φ̄ “ Ipθ, φq, ū “ K´1 ru` αpθ, φqs , (1.1.46)

one finds

ds2 “ dθ2 ` sin2 θdφ2 “ K2pθ̄, φ̄q
`

dθ̄2 ` sin2 θ̄dφ̄2
˘

“ K2pθ̄, φ̄qds̄2, (1.1.47)

where α is a smooth angular function parametrizing supertranslations by

ū “ u` αpθ, φq, (1.1.48)

whereas H and I are the expressions of a conformal transformation of conformal factor K,
i.e.

θ̄ “ Hpθ, φq, φ̄ “ Ipθ, φq. (1.1.49)

Note that the conformal factor K´1 “ ω appears in the transformation law of u as well,
according to n “ gµν∇ν and hence Bu ÞÑ ω´1Bu [41]. Historically, this was one of the first
ways of defining the BMS group, as done by Sachs in [5]. The supertranslations for which

α “ ε0 ` ε1 sin θ cosφ` ε2 sin θ sinφ` ε3 cos θ (1.1.50)

form the translation subgroup T : this identification is apparent if one recalls the definition
u “ t ´ r, and the transformation laws x0 “ t, x1 “ r sin θ cosφ, x2 “ r sin θ sinφ,
x3 “ r cos θ.

Now, any translation commutes with any supertranslation and, as can be seen from
the Lorentz group, the commutator of an infinitesimal translation with an infinitesimal
conformal transformation is again a translation, which proves that T is a 4-dimensional
normal subgroup of the BMS group G. In [5], Sachs also proved that this is also the
only possible 4-dimensional normal subgroup: the strategy consists in proving that any
4-dimensional normal subgroup of G must be contained in the supertranslation group and
that assuming that T is not unique leads to a contradiction with the fact that conformal
transformation “mix up” all supertranslations, which are not translations, with each other.

Rotations and boosts, instead, are not unique: consider the subgroup L of conformal
transformations and let t be any finite supertranslation, then M “ tLt´1 is a new subgroup
of G distinct from L and again isomorphic to the Lorentz group.
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1.2 Energy
In special relativity, given the stress-energy tensor Tµν , of a classical field, the total energy
is defined in terms of a time-translation Killing field tµ on a spacelike Cauchy hypersurface3

Σ as follows

E “

ż

Σ
Tµνn

µtνdA, (1.2.1)

where nµ denotes the unit normal to Σ. The condition BµT
µν “ 0 ensures that the total

energy is conserved, i.e. that it is independent of the choice of Σ, by Stokes’ theorem.
In general relativity the energy properties of matter are, again, represented by a stress-

energy tensor Tµν : it represents the local energy density as measured by a local observer.
Because of general covariance this tensor satisfies ∇µTµν “ 0, which may be interpreted as
expressing a local conservation law, but does not in general lead to a global conservation
law. This apparent trouble may be actually understood on general grounds, since Tµν
represents only the energy content of matter and ignores the contribution of “gravitational
field energy”.

However, there is no known meaningful notion of energy density of the gravitational
field in general relativity. In order to define such a quantity one usually has to abandon
manifest covariance: for instance introducing a preferred coordinate system, or performing
a decomposition into a background metric and dynamical metric, gµν “ ηµν ` hµν .

A notion of total energy on an isolated system, however, does exist: below, we will define
an energy-momentum 4-vector in the case of asymptotically flat spacetimes, following the
discussion in [37, Chapter 11].

In special relativity, a particle is assigned an energy momentum 4-vector Pµ; the energy
of the particle is taken to be the time component of this vector, or, more covariantly, the
projection E “ ´Pµξ

µ of Pµ with respect to a time-translation Killing vector field ξ. The
mass of the particle is given by M “ p´PµP

µq1{2, so that if the particle is “at rest” with
respect to ξ, i.e. it follows an integral curve of the Killing field, we have E “M.

In the Newtonian theory, the Newtonian potential ϕ satisfies Poisson’s equation ∆ϕ “
4πρ and is linked to the total mass of the system by the “Gauss’s Law” formula

M “
1

4π

¿

S

~∇ϕ ¨ pNdA, (1.2.2)

where S is a topological 2-sphere which encloses all the sources and pN is the unit outward
normal to S. M is independent of the choice of S since, outside the mass distribution, ϕ
satisfies Laplace’s equation ∆ϕ “ 0.

Note that ~∇ϕ is the force that must be exerted on a unit test mass to hold it fixed in the
gravitational field generated by ρ, so, by eq. (1.2.2), 4πM is just the outward force that

3 Intuitively, a Cauchy surface Σ is a space-like surface such that any point in the spacetime M can be
influenced by or can influence points on Σ. See [37, Chapter VIII] for a more rigorous definition.
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must be applied to hold in place test matter with unit surface mass density distributed
over S.

1.2.1 Komar mass
The previous discussion motivates the following procedure aimed at obtaining a globally
meaningful notion of energy. Let us consider a static, asymptotically flat spacetime, which
is by our definition vacuum in a neighborhood of infinity (even though, as we have seen,
one could allow for the presence of energy and momentum near infinity with suitable
falloff conditions), and whose timelike Killing vector field ξ can be normalized so that the
“redshift factor”, V “ p´ξµξ

µq1{2, approaches 1 at infinity. Let us also define a static
observer as an observer following an orbit of the Killing vector field ξ, i.e. whose four-
velocity reads uα “ ξα{p´ξµξ

µq1{2 “ ξα{V ; since the spacetime is static, there exists
a (spacelike) hypersurface orthogonal to the integral curves of ξ and therefore, choosing
local coordinates on this surface, static observers indeed “stay” at fixed spatial coordinates
according to this definition. The acceleration of such an orbit is

aµ “ uρ∇ρuµ “ pξρ{V q∇ρpξµ{V q “
1

V 2
ξρ∇ρξµ “ ´

1

V 2
ξρ∇µξρ “ ∇µplog V q, (1.2.3)

where we used

ξρ∇ρV 2 “ ´ξρ∇ρpξµξµq “ ´2ξρξµ∇ρξµ “ ´ξρξµ∇pρξµq “ 0, (1.2.4)

in the third equality and the Killing equation itself in the next to last equality.
Thus, the local force which must be exerted on a unit (m “ 1) test mass to be held in

place by a static observer is given by eq. (1.2.3):

Floc “ p´a
µaµq

1{2 “
1

V
p∇µV∇µV q1{2. (1.2.5)

The force which must be applied by a distant observer at infinity is computed as follows.
Suppose that the particle is held fixed by a long massless string, with the other end of
the string held by a stationary observer at a large distance. The energy “as measured at
infinity” of a particle of unit mass moving with 4-velocity uα by an observer who moves
along the vector field ξ is given by E “ ´ξµu

µ. So, in our case:

E8 “ ´ξαξ
α{p´ξµξ

µq1{2 “ p´ξµξ
µq1{2 “ V. (1.2.6)

The force exerted by the string on the particle is given by eq. (1.2.5), whereas the force
applied by the observer on the string is therefore

pF8qµ “ ´∇µE8 “ ´∇µV ùñ F8 “ p∇µV∇µV q1{2 (1.2.7)

23



thus
F8 “ V Floc. (1.2.8)

The force at infinity differs from the local force by a redshift factor V . Now, consider a
topological 2-sphere S having unit outward pointing normal pn and lying in the hypersurface
orthogonal to ξ. The quantity

F “

¿

S

pξµ{V q∇µξνpnνdA (1.2.9)

is the total outward force that must be exerted by a distant observer to keep in place a
unit surface mass density distributed over S. Since ξµ{V and pnν are both normal vectors
to S, we can write this surface integral as the integral of a two form over S

F “

¿

S

εαβµν∇µξνdxα ^ dxβ. (1.2.10)

The integrand satisfies

ερσαβ∇σ pεαβµν∇µξνq “ ερσαβεαβµν∇σ∇µξν

“ ´ 2∇σp∇ρξσ ´∇σξρq
“ 4∇σ∇σξρ

“ ´ 4Rρσξ
σ,

(1.2.11)

where we have used the identity εµναβεαβρσ “ ´2pδµρ δνσ ´ δµσδνρq, the Killing equation and

its corollary lξµ `Rµνξν “ 0. Hence, using the identity εραβγερα1β1γ1 “ ´δ
α
rα1δ

β
β1δ

γ
γ1s we

find
εργδτ ε

ρσαβ∇σ pεαβµν∇µξνq “ ´4Rρσξ
σεργδτ ,

1

3!
∇rγpεδτ sµν∇µξνq “

2

3
Rρσξ

σεργδτ .
(1.2.12)

Hence, the 2-form αρσ “ ερσµν∇µξν is closed in a vacuum region:

dα “ 0, where Rµν “ 0. (1.2.13)

We define the total mass of a static, asymptotically flat spacetime as

M “ ´
1

8π

¿

S

ερσµν∇µξνdxρ ^ dxσ. (1.2.14)

More generally, since the key property which makes this quantity, known as the Komar
mass, independent of the choice of the surface S is the fact that ξ is a timelike Killing field,
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we can adopt this expression also to define the notion of total mass in any stationary, and
not necessarily static, asymptotically flat spacetime.

If S is the boundary of a spacelike hypersurface Σ such that ΣYS is a compact manifold
with boundary, then by Stokes’ theorem4

M “ ´
1

16π

ż

Σ
∇rγpεδτ sµν∇µξνqdxγ ^ dxδ ^ dxτ

“ ´
1

4π

ż

Σ
Rµνξ

νεµαβγdx
α ^ dxβ ^ dxγ

“
1

4π

ż

Σ
Rµνξ

νnµdV,

(1.2.16)

where n is the unit future-pointing normal on Σ, so that εαβγ “ nρεραβγ ; finally, using
Einstein’s equation,

Rµν ´
1

2
gµνR “ 8πTµν ùñ R “ ´8πT 1

Rµν “ 8π

ˆ

Tµν ´
1

2
T 1gµν

˙

,
(1.2.17)

so one can relate the Komar mass to the energy-momentum tensor as follows

M “ 2

ż

Γ

ˆ

Tµν ´
1

2
T 1gµν

˙

nµξνdV. (1.2.18)

This formula allows to check whether constants and signs have been chosen correctly in
the definition of the Komar mass: in the Newtonian limit the energy-momentum tensor
will have T00 “ ρ as its only nonzero component and gµν “ diagp´1,`1,`1,`1q hence
M “

ş

ρ dV , as desired.

1.2.2 Bondi mass
To extend the above definition to a general (even non-stationary) asymptotically flat space-
time, we will follow this strategy: first we will look for a notion of energy-momentum at
a fixed “retarded” time, by selecting the behavior of the spacetime at null infinity on an
asymptotically null surface, which we will again denote by Σ. Our goal is to quantify the
energy carried away by the gravitational radiation, keeping in mind that only the asymp-
totic properties of Σ should count. Then, in order to single out a preferred time direction,
we will specify an asymptotic notion of time translation using the unique four-parameter
subgroup of translations provided by the BMS group.

4
¿

BΣ

α “

ż

Σ

dα. (1.2.15)
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Let S be a given cross section of I ` (or I ´): we are looking for a way of associating
S to a suitable linear map from the four-dimensional vector space of BMS translations
into R. The value of this map applied to a given, say, time translation would then define
the notion of energy associated with this time direction at the retarded time defined by
S . To this purpose, let ξ be the generator of an asymptotic time translation symmetry.
We define the energy associated with ξ by means of a one-parameter family of spheres
tSau which approaches S on I ` in the unphysical spacetime, according to the following
formula:

E “ ´ lim
SaÑS

1

8π

¿

Sa

εµναβ∇µξνdxα ^ dxβ. (1.2.19)

It turns out that this limit always exists and is independent of the details of how Sa ap-
proaches S . Indeed this limit exists whenever ξ is an arbitrary asymptotic symmetry, so
that this definition also works for asymptotic spatial translations defining spatial momen-
tum.

However, E is not invariant under a change of the choice of representative ξ in the
equivalence class associated with the given BMS time translation. In order to achieve
independence of the choice of representative, and thereby give unambiguous meaning to
the notion of energy, one needs to impose the following gauge condition [42]:

∇µξµ “ 0, (1.2.20)

in a neighborhood of I `. Note that this requirement is always satisfied if ξ is a Killing vec-
tor field, being the trace of the Killing equation, but that it does not hold in general for vec-
tor fields representing infinitesimal asymptotic symmetries. Similarly the four-momentum
vector Pµ is defined by the action of the above linear functional on arbitrary BMS transla-
tions; we will return to this point during our computations in linearized gravity in Chapter
5.

The expression (1.2.19) of the energy of an isolated system agrees with the one given by
Bondi, van der Burg, Metzner [3, 4, 5] in coordinate form, prior to the geometric formulation
of the notion of asymptotic flatness, and is called the Bondi mass. An important result
is the following: given a cross section, S1, and a “later”5 one, S2, the energy difference
between them is expressed as the integral of a function f over the region τ of I ` bounded
by the two cross sections

ErS2s ´ ErS1s “ ´

ż

τ
f dV, (1.2.21)

where f is interpreted as the flux of energy carried away to infinity by the gravitational
radiation. It can be shown that f is non-negative, i.e. that gravitational radiation always
carries positive energy away from a radiating system [42, 39].

5 “Later” in terms of the retarded time parametrizing the space of cross sections of I `.
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When approaching spatial infinity, the formulas for energy and momentum become those
given by Arnowitt, Deser, Misner (ADM), which in asymptotically Euclidean coordinates
on a spacelike surface Σ which approaches i0 smoothly enough, read

E “
1

16π
lim
rÑ8

3
ÿ

i,j“1

ż

Σ
pBihij ´ BjhiiqnjdA

Pj “
1

8π
lim
rÑ8

3
ÿ

i“1

ż

Σ
pKijni ´Kiinjq dA

(1.2.22)

where hij is the metric fluctuation over the Minkowski background while Kij is the spatial
stress-energy tensor. Both these quantities are independent of the choice of asymptotically
Euclidean coordinates. The ADM energy can be interpreted as the total energy available
in the spacetime, whereas the Bondi energy can be thought of as the energy remaining
in the spacetime at the retarded time given by the cross section S after the emission of
gravitational radiation.

The comparison between these two quantities is made possible by the fact that each
BMS translation at I ` (or I ´) can be naturally associated with a tangent vector at i0;
in this way, it can be seen that the ADM energy and the Bondi energy differ precisely by
the integral of the energy flux, f , over the portion of I ` to the causal past of S .

For completeness we list here some relevant positivity results:

• The Bondi energy flux is always positive, as stated above [42, 39];

• The ADM energy is always positive in a nonsingular, asymptotically flat spacetime
with locally nonnegative matter energy density (see [43] for the very elegant proof
due to Witten);

• The Bondi energy is always positive under the same conditions, or in other words the
total energy radiated away by a system is bounded by its total energy content [44].

Another way to obtain the above expression for the Bondi mass is to compute the
Noether current of the Einstein-Hilbert action corresponding to the invariance under the
infinitesimal diffeomorphism generated by the vector field ξµ: this current turns out to be
the divergence of an antisymmetric tensor, in accordance with Noether’s second theorem,
and hence, the associated conserved charge can be computed as a boundary integral [16].
Indeed a generic variation of

S “

ż

dDx
?
´gR (1.2.23)

reads

δS “

ż

dDx
?
´g

ˆ

Rµν ´
1

2
gµνR

˙

δgµν `

ż

dDx
?
´ggµνδRµν ; (1.2.24)

27



the first term gives the vacuum Einstein equations and vanishes on-shell, whereas the
second term can be recast in the following form using the Palatini identity

δS “

ż

dDx
?
´g p∇µ∇ν ´ gµνlq δgµν , (1.2.25)

where l ” gµν∇µ∇ν ; the infinitesimal diffeomorphism generated by the vector ξµ induces
δξgµν “ ∇µξν `∇νξµ so

δξS “

ż

dDx
?
´g p∇µ∇ν∇µξν `∇µlξµ ´ 2l∇µξµq , (1.2.26)

and finally using that l∇µξµ “ ∇α∇µ∇αξµ because Rµα “ 0 yields

δξS “

ż

dDx
?
´g∇µ∇ν p∇νξµ ´∇µξνq “ ´

1

2

ż

dDx
?
´gεµναβ∇µ∇ν pεαβρσ∇ρξσq ,

(1.2.27)
which is recast as the integral of the two form κµν “ ∇µξν ´ ∇νξµ on a surface of codi-
mension 2, as done above in (1.2.14), and defines a conserved quantity associated with
diffeomorphism invariance. Again, considering absence of matter (or an appropriate falloff
of its energy-momentum tensor) is not restrictive, since this is always the case in asymp-
totically flat space. This quick procedure, stemming from Noether’s theorem, allows to
recover the Komar and Bondi masses from a field-theoretical point of view, more akin to
the general language of gauge theories.

1.3 Radiative Modes
While the intrinsic metric qµν on I and the null normal nµ to I describe a structure which
is independent of the asymptotically flat spacetime under discussion, and may therefore
be regarded as the “leading order” fields, we have yet to exhibit the dynamical, or “higher
order”, objects which contain the relevant dynamical information typical of a particular
spacetime. We shall accomplish the task in this section, following [21].

Recall that
qµν « g

ÐÝµν
and nµ « gµν∇νΩ, (1.3.1)

where g
ÐÝ

denotes the pullback of g to I via the embedding map and, from now on, “«”

will stand for “equals, at points of I , to”.
The connection D defined intrinsically on I , i.e. the second order structure on I , is

given by
DV
ÐÝ
« ∇V
ÐÝÝ

(1.3.2)

for any one-form V in a neighborhood of I . Since Ω « 0, n
ÐÝµ

« 0 and ∇µnν « 0, it

follows that, if for any pair of one-forms V and A one has V
ÐÝ
“ A
ÐÝ

, then Dµ VÐÝ “ Dµ AÐÝ.
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In other words, Dµ is a well-defined covariant derivative on covectors at I . D can be
extended to any kind of tensor on I by exploiting linearity, Leibnitz rule, equality with
partial derivative on functions and vanishing torsion. For example, if ξ is a vector field on
I and A is a one form on I , since the action of Dµ on the function Apξq must be that of
the usual partial derivative, then Dµξ is specified via the Leibnitz rule

BµpApξqq “ DµpApξqq “ pDµAqpξq `ApDµξq. (1.3.3)

The connection D has the following properties:

Dµqαβ « 0, Dµn
ν « 0 (1.3.4)

which follow from ∇µgαβ “ 0 and from nµqµν “ 0 respectively, and

DµVν «
1

2
DrµVνs `

1

2
£V qµν if Vµn

µ “ 0, (1.3.5)

where the vector field V µ used to compute the Lie derivative is defined by V µ “ qµνVν ,
qµν being a generalized inverse of qµν in the sense that

qµαq
αβqνβ “ qµν . (1.3.6)

Note that qµν is not unique: since qαβn
β “ 0, one can add to it terms of the type npµwνq,

where wµ is any vector field on I , but since Vµ satisfies nµVµ “ 0, then pqαβ`npαwβqqVβ “
qαβVβ ` n

αpwβVβq, so that £V qµν is defined unambiguously,

£pwβVβqnq “ wβVβ£nq “ 0. (1.3.7)

Equations (1.3.4) imply that the induced connection Dµ on I is compatible with the
“kinematical structure” thereon, whereas (1.3.5) states that the action of Dµ is the same
on every one-form orthogonal to nµ, and hence that its action on a one-form Lµ such that
Lµn

µ “ 1 determines the connection completely.
The third order structure is obtained by pulling back to I the curvature tensor of g. It

can be proved that the Weyl tensor Cµνρσ of gµν vanishes on I for conformal boundaries
of 4-dimensional spacetimes [39, Theorem 11]. Thus, it makes sense to consider the Ricci
tensor alone: the most convenient approach is, in fact, to consider the restriction to I of
the combination

S ν
µ ” R ν

µ ´
1

6
Rδ ν

µ , (1.3.8)

in D “ 4. The pullback of Sµν to I ,

sµν “ S
ÐÝµν

, (1.3.9)

contains information about the flux of gravitational radiation across I ; however, to extract
this information, one needs to remove from sµν a certain piece which is “pure gauge”. To
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achieve this purpose one can use the unique tensor field ραβ on I given by [39, Theorem
5], which satisfies:

piqραβ “ ρβα, piiqρµνn
ν “ 0,

piiiqρµνq
µν “ κ, pivqDrµραsβ “ 0,

(1.3.10)

where κ is the pullback to I of the scalar curvature of the metric h on the 2-sphere S
of the generators of I. For example, if the conformal factor is so chosen that hµν is the
Euclidean unit 2-sphere metric, ρµν turns out to be the equal to hµν ; however, under
conformal rescalings, ρµν has a complicated behavior.

Define then
Nµν “ sµν ´ ρµν . (1.3.11)

This is called the Bondi news tensor and is a crucial quantity in our analysis, since it is
closely related to the notion of energy flux at infinity. It can be shown that

Nµνn
ν “ 0, Nµνq

µν “ 0. (1.3.12)

Instead of proving these propertes, we shall note that they are nicely illustrated by the
conformal completion of Minkowski’s spacetime in terms of a region of the Einstein static
universe,6 given above. Clearly, since this conformal completion is spatially maximally
symmetric, we have (in D “ 4) R “ 6, whereas the intrinsic curvature of the space of
generators is the usual unit sphere curvature κ “ 2; in fact, also the whole Ricci tensor is
not difficult to work out explicitly:7 it must be given by

Rµν “
R

d
gµν “ 2gµν (1.3.14)

since d “ D ´ 1 “ 3 is the dimensionality of the maximally symmetric curved space, so
pi˚Rqµνq

µν “ 2qµνq
µν “ 4; finally

pi˚Rqµνq
µν ´

R

3
´ κ “ 4´ 2´ 2 “ 0. (1.3.15)

6 Note that this conformal completion, unlike all the others we are considering, is not divergence-free.
This does not affect the argument, since the result is independent of the conformal gauge we adopt.

7The nonvanishing Christoffel symbols read:

ΓRθθ “ ´ sinR cosR, ΓRφφ “ ´ sinR cosR sin2 θ,

ΓθRθ “
cosR

sinR
, Γθφφ “ ´ sin θ cos θ,

ΓφφR “
cosR

sinR
, Γφφθ “

cos θ

sin θ
.

(1.3.13)

The nonvanishing components of the covariant Riemann tensor are RRθRθ “ sin2 R, Rθφθφ “

sin2 R sin2 θ, Rθφθφ “ sin4 R sin2 θ. Finally, the diagonal elements of the Ricci tensor are RRR “ 2,
Rθθ “ 2 sin2 R, Rφφ “ 2 sin2 R sin2 θ. R=6.
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The Bondi news tensor is gauge invariant, since it can be shown that the conformal
transformations of sµν and ρµν cancel out, and its square

f ” qαβNανNβµq
µν (1.3.16)

defines the local flux of energy density carried away by gravitational radiation [45, 46], as
we mentioned below (1.2.21), when discussing the positivity of the Bondi mass in Section
1.2.2.

1.3.1 Properties and physical degrees of freedom
A relevant result, due to Ashtekar [21], is that it is also possible to repeat the whole
construction adopting a more abstract point of view, without making any reference to any
particular spacetime and using only notions defined at I . This is a conceptually more
economic procedure, that allows to single out the relevant quantities which are needed for
a complete definition of asymptotic gravitation.

Even without going through the details of the construction, it is worthwhile to note that,
from the point of view of an abstract I , which is just a mathematically refined way to say
“from the perspective of an observer at infinity in an asymptotically flat spacetime”, one
cannot distinguish between two conformal factors which agree on I itself. This observation
leads to the following consequences. Let us consider the transformation law of the intrinsic
connection D under the permitted conformal rescalings (i.e. those satisfying £nω “ 0):

D1αkβ « Dαkβ ´
2

ω
kpαDβqω `

1

ω
pωµkµqqαβ, (1.3.17)

where ωµ ” gµν∇νω; set ω “ const “ 1 at I , so that Dβω « 0 and ωµ « fnµ, for some
function f , and hence

D1αkβ « Dαkβ ` fn
µkµqαβ; (1.3.18)

since conformal factors which are equal at I must correspond to the same intrinsic con-
nection, we are forced to introduce an equivalence relation among connections:

D „ D̃ ðñ pDµ ´ D̃µqkν “ fnαkαqµν . (1.3.19)

It follows that the true basic dynamical variables, representing the radiative modes of
the (exact, non-linear) gravitational field, are the equivalence classes tDu of connections
identified by (1.3.19) and therefore satisfying:

tD1µukν “ tDµukν ´
2

ω
kpµDνqω. (1.3.20)

Denote by C the collection of intrinsic connections D on I , defined abstractly as the
torsion-free connections D on I satisfying

Dµqαβ “ 0, Dµn
ν “ 0, (1.3.21)
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and denote by Γ the space of equivalence classes tDu subject to the equivalence relation
(1.3.19).

Both C and Γ are affine spaces: in virtue of (1.3.21), elements of C are related to each
other via

pDµ ´D
1
µqkν “ Σµνn

γkγ (1.3.22)

where Σµν “ Σνµ and Σµνn
ν “ 0.

Indeed, pDµ ´D
1
µqkν “ Γγµνkγ , for some Γγµν ; from Dµn

ν “ 0 one gets 0 “ Γγµνnγ , hence
Γγµν “ Σµνn

γ , for some Σµν ; clearly Σµν “ Σνµ for torsion-free connections; finally, from
lµn

µ “ 1, we have 0 “ nµpDν ´D
1
νqlµ “ Γγµνnµlγ “ Σµνn

ν .
Since tDu “ tD1u if and only if Σµν “ fqµν for some f , the difference tDu ´ tD1u of

elements of Γ is completely characterized by the traceless part of Σµν :

σµν ” Σµν ´
1

2
qρσΣρσqµν . (1.3.23)

These σµν ’s can be used to endow Γ of a set of coordinates by fixing an element tD1u and
regarding it as the origin; since I is a three-dimensional manifold and σµν is a traceless
symmetric 3ˆ 3 tensor bound by the three constraints Σµνn

ν “ 0, we see that the number
of independent components of σµν is

3p3` 1q

2
´ 3´ 1 “ 2, (1.3.24)

in agreement with the number of independent polarizations of the graviton. Γ is therefore
a good canidadate as phase space of physical radiative modes at infinity in exact general
relativity.

1.3.2 Symplectic geometry of radiative modes
One can introduce on Γ a symplectic structure [47, 48], i.e. a weakly nondegenerate8 two-
form Ω (of course, not to be confused with the conformal factor Ω): given any two tangent
vectors σµν and σ1µν (which is the same as saying coordinate vectors, since the space is
affine) at a point tDu of Γ,

ΩtDupσ, σ
1q ”

1

8π

ż

I

`

σµν£nσ
1
αβ ´ σ

1
µν£nσαβ

˘

qµβqναd3I , (1.3.25)

where d3I is the natural volume element on I . Ω is conformally invariant: under a con-
formal rescaling pqµν , n

µq ÞÑ pω2qµν , ω
´1nµq, one has qµν ÞÑ ω´2qµν and d3I ÞÑ ω3d3I ;

furthermore, given any two elements D and D1 in C, they will be related by (1.3.22) for

8 An antisymmetric, bilinear form Ω : V ˆ V Ñ R is weakly nondegenerate if Ωpu, vq “ 0 for every v P V
implies u “ 0. In addition Ω admits an inverse, i.e. is strongly nondegenerate, if and only if the vector
space V coincides with its double dual.
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some Σµν and their images D̃ and D̃1 under the conformal rescaling are therefore related
by

´

D̃µ ´ D̃
1
µ

¯

kν “ Σ̃µν ñ
ρkρ “ Σµνn

ρkρ, (1.3.26)

where (1.3.17) has been used, so that Σ̃µν “ ωΣµν and σ̃µν “ ωσµν .
It can be shown that a BMS transformation, i.e. a one-parameter diffeomorphism ψpλq

on I that preserves the universal structure, not only induces a natural isomorphisms from
Γ to itself, indicating that Γ is indeed the right phase space of asymptotic radiative modes,
but its action on Γ is also a symplectomorphism, i.e.

ΩtDupσ, σ
1q “ Ω

tψ
p´λq
˚ Du

pψ
pλq
˚ σ, ψ

pλq
˚ σ1q. (1.3.27)

For simplicity, we restrict ourselves to infinitesimal BMS transformations satisfying (1.1.38)
and (1.1.39) for α “ 0, namely £ξq “ 0 “ £ξn. The symplectic vector field ξψ » σµν on
Γ that generates the one-parameter family of symplectomorphisms ψpλq is given by the
equation

σµν |tDu “ p£ξDµ ´Dµ£ξq lν , (1.3.28)

up to terms with non-vanishing trace (lµ is any covector satisfying lµn
µ “ 0).

It can be further shown that such a vector field is also Hamiltonian: the function

HpξqptDuq “ ´
1

2

ż

I
Nαβ p£ξDµ ´Dµ£ξq lνq

αµqβνd3I (1.3.29)

is its Hamilton function, which means that for any vector field X on Γ,

£XHpξq “ Ωpξψ, Xq. (1.3.30)

The result is independent on the particular choice of lµ, on the conformal frame pq, nq and on
the specific inverse qµν under consideration. Note that BMS supertranslations ξ “ αn, for
£nα “ 0, automatically fall under the additional assumption £ξq “ 0 “ £ξn. In particular,
for BMS translations, which are singled out by the relation DµDνα`αρµν “ pconst.qˆqµν
(see [39]), one has

HpαnqptDuq “
1

32π

ż

I
αNµνNαβq

µαqνβd3I , (1.3.31)

which is the Bondi four-momentum.

1.3.3 Classical vacua and Poincaré reduction of the BMS group
Borrowing some terminology from gauge theories, we shall call an element tD0u of Γ a
classical vacuum if the corresponding field Nµν vanishes identically. This definition is
made reasonable by the fact that, at these points tD0u, the corresponding Hamiltonians
vanish for each BMS symmetry: in particular, in a classical vacuum, there is no flux of
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energy across I . Let D0 and D10 be two connections giving rise to classical vacua. It can
be shown that they must be related by

pD0
µ ´D

10
µ qKν “ Σµνn

ρKρ (1.3.32)

where
Σµν “ DµDνf ` fρµν (1.3.33)

for some angular function f , i.e. £nf “ 0. We immediately recognize that ξ “ fn
defines an infinitesimal supertranslation; furthermore, it also defines a BMS translation
if in addition DµDνf ` fρµν “ pconst.q ˆ qµν , but this is just the equivalence relation
(1.3.19) identifying different intrinsic connections as representative of the same physical
configuration. We have obtained the following important result:

Two, a priori distinct, classical vacua D0 and D10 are always related by a
supertranslation and define, in fact, the same classical vacuum if and only if
they are related by a BMS translation.

The action of BMS supertranslations on Γ maps each classical vacuum into a classical
vacuum, meaning that it leaves stable the affine space Γ0 of classical vacua. Under the
action of the translation group T , each classical vacuum is invariant, whereas under a
general supertranslation it is mapped to a different classical vacuum. This means that the
group ST {T acts simply9 and transitively10 on Γ0.

There is another interesting result: for a fixed classical vacuum tD0u, the subgroup of
the BMS group G which leaves tD0u invariant (a sort of little group) is precisely a Poincaré
subgroup of G; furthermore, ST {T acts simply and transitively also on the space SP of
Poincaré subgroups of G and Γ0 is isomorphic to SP in a natural way.

1.4 Asymptotic Quantization
In order to decide which classical observables are to be selected and promoted to quantum
operators [49], we are led to look to the generators of canonical transformations that
preserve the affine structure of Γ; in the infinitesimal form they correspond to constant
vector fields on Γ, i.e. symmetric tensor fields fµν on I satisfying fµνn

ν “ 0 and fµνq
µν “

0. Let fµν be such a tensor and let it be rapidly decreasing in u P p´8,`8q; we then
define the smeared news observable by

NpfqtDu “ ´
1

8π

ż

I
Nµνfαβq

µαqνβd3I (1.4.1)

9 That is, with trivial stabilizers.
10 An action ψ of a group G on a manifold M is transitive if for any x, y PM there exists g P G such that

ψgx “ y.
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which is nothing but the Hamiltonian for the vector field fµν on Γ. The Poisson brackets
satisfy

tNpfq, Npgqu “ Ωpf, gq. (1.4.2)

Now, we construct the quantum C˚-algebra11 A as follows: introduce the operator-valued
distribution Nµν , the news operator, subject to the canonical commutation relations

rNpfq, Npgqs “ ´i~Ωpf, gq1, (1.4.3)

where Npfq “
ş

I Nµνf
µνd3I denotes the smeared out news operator. In analogy with

electromagnetism, Nµν corresponds to the field strength and tDu plays the same role as
the vector potential.

The algebra A is the C˚-algebra generated by the smeared out news operators Npfq
with the above specified commutation relations.

1.4.1 The Fock representation
It is rather straightforward to construct the Fock representation of A. Given an fµνpu, θ, φq,
rapidly decreasing in u, its Fourier transform f̃µνpω, θ, φq with respect to u is again rapidly
decreasing in ω.12 The positive-frequency and negative-frequency parts of the test field fµν
are given by

f`pu, θ, φq “
1

2π

ż `8

0
f̃µνpω, θ, φqe

`iωudω

f´pu, θ, φq “
1

2π

ż 0

´8

f̃µνpω, θ, φqe
`iωudω “

1

2π

ż `8

0
f̃˚µνpω, θ, φqe

´iωudω

“
`

f`pu, θ, φq
˘˚

(1.4.4)

and the operation

xf`, g`y ”
1

i~
Ωpf´, g`q

“
1

32~π3

ż 2π

0
dφ

ż π

0
sin θdθ

ż `8

0
ωf̃˚µν g̃

µνdω

(1.4.5)

11 A C˚-algebra A is a linear associative algebra over the field C where in addition a norm || ¨ || : AÑ R`
and an involution ˚ : AÑ A are defined, which satisfy the following properties:

• the product is continuous ||AB|| ď ||A|| ||B|| and A is complete with respect to the topology defined
by the norm;

• pA`Bq˚ “ A˚ `B˚, pλAq˚ “ λ̄A˚, pABq˚ “ B˚A˚ and pA˚q˚ “ A;

• ||A˚A|| “ ||A||2 (called C˚-condition).

The algebraic approach to quantization is especially relevant when discussing different possible phases of
a physical system and, hence, symmetry breaking.

12Since u has the interpretation of retarded time, it seems appropriate to keep the symbol ω for its corre-
sponding angular frequency; no confusion should arise with the conformal factor ω.
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defines a Hermitian inner product on the space of positive-frequency test fields. Denote
by H the Cauchy completion of the so-obtained pre-Hilbert space. This is the one-particle
space, or the one-graviton space of states. Denote by F the symmetric Fock space based on
H: to each one-graviton state f` in H there corresponds a creation operator Cpf`q and an
annihilation operator Apf`q acting as ladder operators on F, i.e. increasing or decreasing
the graviton occupation number by 1. These are densely defined (anti-)linear operators

Apf` ` λg`q “ Apf`q ` λ˚Apg`q Cpf` ` λg`q “ Cpf`q ` λCpg`q (1.4.6)

satisfying Cpf`q “ Apf`q˚,

rApf`q, Apg`qs “ 0 “ rCpf`q, Cpg`qs (1.4.7)

and

rApf`q, Cpg`qs “ xf`, g`y “
1

i~
Ωpf´, g`q. (1.4.8)

The Fock representation of A is the linear map Λ defined as

ΛpNpfqq “ ~
“

Apf`q ` Cpf`q
‰

. (1.4.9)

More formally, define the compatible complex structure13 Jf “ if`´if´: one has Npfq “
Npf`q `Npf´q and

Apf`q “
1

2
Λ rNpfq ` iNpJfqs “ ΛpNpf´qq,

Cpf`q “
1

2
Λ rNpfq ´ iNpJfqs “ ΛpNpf`qq,

(1.4.10)

and also NpJfq “ iNpf`q ´ iNpf´q
Λ
ÞÑ iCpf`q ´ iApf`q. Let us show that Λ preserves

the canonical commutation relations:

rΛpNpfqq,ΛpNpgqqs “ ~2
“

Cpf`q, Apg`q
‰

` ~2
“

Apf`q, Cpg`q
‰

“ ´i~
“

Ωpf´, g`q ´ Ωpg´, f`q
‰

1

“ ´i~
“

Ωpf, g`q ` Ωpf, g´q
‰

1

“ ´i~Ωpf, gq1

“ Λ prNpfq, Npgqsq ,

(1.4.11)

where we have used the fact that Ωpf´, g´q “ 0 for any two negative-frequency fields.

13 A complex structure on a vector space V is a linear map J : V Ñ V satisfying J2
“ ´1. The complex

structure J is said to be compatible with a symplectic structure Ω on V if GJpu, vq ” Ωpu, Jvq is a
positive inner product on V . The symmetry of GJ requires J to be a symplectomorphism ΩpJu, Jvq “
Ωpu, vq and its positivity imposes Ωpu, Juq ą 0, for all u ‰ 0.
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Now, the action of the BMS group G leaves the Schwartz space and the symplectic
structure invariant, so that H provides a unitary representation of G and hence of any
Poincaré subgroup of G.

Using this action, one finds for example that the square-mass, given by m2 “ ´p2
0`p

2
1`

p2
2 ` p

2
3, is expressed in terms of the translation generators Xµ “ αµn, where

α0 “ 1, α1 “ sin θ cosφ, α2 “ sin θ sinφ, α3 “ cos θ, (1.4.12)

by
m2f`µν “ p´α

2
0 ` α

2
1 ` α

2
2 ` α

2
3q

looooooooooooomooooooooooooon

“0

£n£nf
`
µν “ 0. (1.4.13)

Another computation shows that this representation splits into two irreducible representa-
tions of helicity `2 and ´2.

The action of the BMS group G on Γ preserves the symplectic structure Ω and we gave
the expressions of the corresponding generating functionals, i.e. the Hamilton functions
generating the corresponding canonical transformations. These classical observables can
be readily promoted to quantum operators on the Fock space F, using the normal ordering
prescription to regularize the product of operator-valued distributions that appear in the
expressions. Hence the BMS group can be realized as a symmetry group also in the
quantum theory.

1.4.2 Infrared sectors
The finiteness of energy requires any radiative mode tDu to approach some classical vacua
tD0u˘ in the limits u Ñ ˘8. Fix an origin tD0u in Γ and represent any tDu P Γ by the
tensor field fµν “ tDu ´ tD

0u; let the corresponding news tensor be given by

Fµν “ ´2£nfµν , (1.4.14)

from which F̃µν “ 2iωf̃µν . The requirement needed for f` to be in the one-particle space
is that its norm does not diverge: therefore, substituting in (1.4.5), we need

ż `8

0

ˇ

ˇ

ˇ
F̃µνpω, θ, φq

ˇ

ˇ

ˇ

2 dω

ω
ă `8. (1.4.15)

This integral is infrared divergent unless F̃ p0, θ, φq “ 0, or, equivalently, the zero-mode of
the news tensor vanishes

Qµνpθ, φq ”

ż `8

´8

Fµνpu, θ, φqdu “ 0, (1.4.16)

or again, in terms of fµν ,
fµνp`8, θ, φq “ fµνp´8, θ, φq. (1.4.17)
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In turn, this implies, from a classical viewpoint, that tDu should tend to the same classical
vacuum in the limit uÑ `8 as it does in the limit uÑ ´8:

tD0u` “ tD0u´. (1.4.18)

For the linearized theory, one can show that this condition is equivalent to having trivial
scattering.

Introduce the following equivalence relation

tDu „ tD1u if and only if Qµν “ Q1µν , (1.4.19)

which identifies modes with the same “phase” between the distant past and the distance
future classical vacua; as we have seen, only the subspace Qµν “ 0 gives rise to one-graviton
states in the Fock representation. Are there other representations, other than the Fock one?
Consider the following (“charged”) automorphism Πf defined on the C˚-algebra A:

Πf pNµνpu, θ, φqq “ Nµνpu, θ, φq ` fµνpu, θ, φq1. (1.4.20)

We now prove that this automorphism, in general, cannot be implemented by any unitary
operator in the Fock representation: if it were, denote by U such an operator, which acts
therefore by

UΛpBqU´1 “ ΛpΠf pBqq (1.4.21)

for any B P A; applying the previous equation to U |0y, where |0y is the Fock vacuum,

UΛpBq|0y “ ΛpΠf pBqqU |0y, (1.4.22)

choosing B “ Nph´q so that ΛpBq “ Aph`q, for some one-graviton state h`,

0 “
`

Aph`q ` xh`, f`y
˘

U |0y. (1.4.23)

On the other hand, the canonical commutation relations and the Baker-Hausdorff formula14

imply that
e´Cpf

`qAph`qeCpf
`q “ Aph`q ´ xh`, f`y, (1.4.26)

14 The Baker-Hausdorff formula states that

e´λCAeλC “ A` λrA,Cs `
λ2

2!
rrA,Cs, Cs ` . . . (1.4.24)

and it is easily derived as follows: letting fpλq ” e´λCAeλC , by direct computation fpλq satisfies the
Cauchy problem

9fpλq “ rA, fpλqs

fp0q “ A
(1.4.25)

which is also satisfied by gpλq “ eλadCA, where adCA “ rA,Cs. Hence fpλq “ gpλq by uniqueness
of the solution to the Cauchy problem; note that this result holds for any λ since one is dealing with
everywhere-convergent power series.
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so that the solution of (1.4.23) is

U |0y “ N eCpf`q|0y; (1.4.27)

by the same formula, |f`y ” eCpf
`q|0y is a coherent state Apf`q|f`y “ xf`, f`y|f`y and

hence
ˇ

ˇ

ˇ

ˇeCpf
`q|0y

ˇ

ˇ

ˇ

ˇ

2
“ exf

`,f`y (1.4.28)

so that this state exists if and only if f` belongs to the Qµν “ 0 sector, since above we
have seen that the norm xf`, f`y is finite if and only if Qµν “ 0. Non-Fock representations
are built as follows: let

xByf ” x0|ΛpΠf pBqq|0y (1.4.29)

be the expectation value on the f -vacuum; using the Gelfand-Naimark-Segal (GNS) [50]
construction, one then recovers an irreducible representation Λf of A which is inequivalent
to the Fock representation. Furthermore, if f and g belong to the same sector, then Λf´g
is unitarily equivalent to the Fock representation, by the above argument, meaning that
the representations are labelled by the value of Qµνpθ, φq.

Even though Λf admits a cyclic vector |0yf which plays the role of the vacuum, the zero
value is not a proper, discrete eigenvalue of the Hamiltonian in this representation, but
rather the infimum of its continuous spectrum; another possibility is to work, instead, in
the (non-separable) Hilbert space made up by the direct sum (or integral) of all the Qµν
sectors.

The Qµν commute with any N and hence form the elements of the center Z of the
observable algebra A [47]. Another way to prove that the automorphism Πf is not unitarily
implementable is to note that it does not commute with Z, and hence it must be broken in
any irreducible representation of the algebra A. In fact, as we have seen above, Πf plays
the role of an intertwiner between various inequivalent representations obtained via the
GNS construction.

Now, what about the BMS transformations? Let us consider the subgroup of BMS
supertranslations ST . Clearly, ST commutes with Z: the action of a supertranslation ψpλq
generated by αn, for £nα “ 0, of parameter λ is given, in a Bondi frame, by [51]

fµν ÞÝÑ fµν ` λ

ˆ

DµDνα` qµν
1

2
qρσDρDσα

˙

” fµν ` λ∆µν , (1.4.30)

which does not alter the zero mode Qµν since α is u-independent. It follows that any
representation of A obtained by acting with ST on a given irreducible representation will
be unitarily equivalent to the starting one. Therefore, ST constitutes a Wigner symmetry
in any irreducible representation of A. An ordinary translation is in particular characterized
by the fact that ∆ “ 0.

This proves that the BMS group is a Wigner symmetry, i.e. it can be implemented
unitarily in any irreducible representation of the observable algebra A.
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As we shall see in Chapters 3, 4, 5 and 6, a key ingredient in the discussion of asymptotic
symmetries will be given by their spontaneous breaking, in apparent contradiction with
the conclusions we have just drawn concerning the BMS group. The difference in the two
approaches is given by the field algebra one chooses to consider: here we were dealing with
observable quantities exclusively, whereas in the following chapters we will consider larger
spaces, also comprising some non-radiative modes.
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2 Weinberg’s Soft Theorems

2.1 Soft Theorems from Gauge Invariance
In his celebrated 1964 paper [6], Weinberg showed that, using only the Lorentz invariance
and the pole structure of the S matrix, together with masslessness and spins of the photon
and the graviton, it is possible to derive the conservation of electric charge and the equality
of gravitational and inertial mass. On the same grounds, he gave a possible explanation as
to why we observe no macroscopic fields corresponding to massless particles of spin 3 or
higher.

In particular, exploiting the S-matrix pole structure and Lorentz covariance only, he
could prove the following two properties:

(1) The S matrix for the emission of a photon or a graviton can be written as the
product of a polarization “vector” εµ or “tensor” εµεν with a covariant vector or
tensor amplitude, and it vanishes if any of the εµ’s is replaced by the photon or
graviton momentum qµ;

(2) Charge, defined dynamically by the strenght of soft-photon interactions, is additively
conserved in all reactions. Gravitational mass, defined by the strength of soft graviton
interactions, is equal to inertial mass for all nonrelativistic particles (and is twice the
total energy for relativistic or massless particles).

For the moment we shall allow ourselves to think in terms of fields and to rely on the
usual notion of gauge invariance as well, in order to give a simple overview of Weinberg’s
more ambitious work.

2.1.1 Charge conservation
Let us consider a transition amplitude involving N external particles, distributed between
a set of in states |αy and a set of out states |βy, together with an additional external
particle with mass m “ 0, spin (helicity) 1 and momentum qµ:

Sα,β;qµ . (2.1.1)
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With respect to the same process without the additional massless particle, one can consider
two different types of diagrams, illustrated by the following cartoons.

Sα,β;qµ “� `� (2.1.2)

In the soft limit qµ Ñ 0, diagrams of the second type display a pole singularity: letting pi
be the momentum of the outgoing external particle interacting with the photon,

1

ppi ` qq2 ´m2
“

1

2pi ¨ q
(2.1.3)

since the external particles are on shell and thus p2
i ´m2 “ 0. Therefore as qµ Ñ 0 the

amplitude will be dominated by second contribution in (2.1.2). Weinberg showed that
under these conditions the full amplitude for the process factorizes as follows

Sαβ;q “
ÿ

i

eip
µ
i εµpqqSpp1, . . . , pN q

1

2pi ¨ q
, (2.1.4)

where εµ is the polarization vector for the spin-1 massless particle, while ei defines the
electric charge of the other external particles. The sum runs over all external particles,
incoming and outgoing, other than the soft one. Now, gauge invariance imposes the require-
ment that when εµ is substituted with qµα (the Fourier transform of the gauge parameter)
the amplitude must vanish, implying

qµ
ÿ

i

eip
µ
i Spp1, . . . , pN q

1

2pi ¨ q
“ 0 ùñ

ÿ

i

ei “ 0. (2.1.5)

This is the equation of charge conservation.

2.1.2 The equivalence principle and higher spins
In the case of a spin-2 soft massless particle, following the same line of reasoning and
denoting by fi the gravitational couplings, one finds

Sαβ;q “
ÿ

i

fip
µ
i p

ν
i εµνpqqSpp1, . . . , pN q

1

2pi ¨ q
. (2.1.6)

Again gauge invariance requires that substituting εµν with qµεν ` qνεν , the amplitude
vanishes,

´ qiµεν
ÿ

i

fip
µ
i p

ν
i Spp1, . . . , pN q

1

2pi ¨ q
“ 0 ùñ εµ

ÿ

i

fip
µ
i “ 0 (2.1.7)
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and thus, by the arbitrariness of εµ, one finds the following condition on the momenta

ÿ

i

fip
µ
i “ 0. (2.1.8)

Now, recalling that energy-momentum conservation also requires
ř

i p
µ
i “ 0, the only case

for which the interaction is nontrivial is

fi “ constant, (2.1.9)

which is nothing but a form of the equivalence principle: every type of matter must couple
to gravity with the same coupling constant. We have deduced the equivalence principle
from the requirement of gauge invariance in the limit of small energies. Notice that in our
derivation the matter particles can be either massive or massless, with any spin.

In a similar manner, one sees that there can be no gauge interaction surviving the soft
limit for higher spins, s ě 3, since by the factorization result for the amplitude

S
psq
αβ;q “

ÿ

i

g
psq
i pµ1

i p
µ2
i . . . pµ2

i εµ1µ2...µspqqSpp1, . . . , pN q
1

2pi ¨ q
, (2.1.10)

which should vanish when εµ1µ2...µspqq “ qpµ1
εµ2...µsqpqq, one gets

ÿ

i

g
psq
i pµ2

i . . . pµ2
i εµ2...µspqq “ 0, (2.1.11)

and this is incompatible with energy-momentum conservation, unless the interaction is

trivial g
psq
i “ 0.

2.2 Weinberg’s Covariant S-matrix Approach
We turn now to the proof of Weinberg’s theorems in the spirit of the original paper men-
tioned above. For some important technical results on the implications of covariance on
the S-matrix structure, which are here assumed to hold, we refer to the appendices of
Weinberg’s paper [6].

2.2.1 Amplitudes for massless particles of integer spin
Consider a process in which a massless particle is emitted with momentum q and helicity
˘s.1 The Lorentz transformation property of the S matrix can be inferred from the

1We limit ourselves to integer spins.
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transformation law for one-particle states; using p as a shorthand for the pi’s of the previous
section, we find

S˘spq, pq “

ˆ

|Λq|

|q|

˙1{2

e˘isΘpq,ΛqS˘spΛq,Λpq, (2.2.1)

where Θ is a function of the massless particle momentum q and of the Lorentz transfor-
mation Λ. It is always possible to write S˘s as a product of a “polarization tensor” and
an “M function” in the following way:

S˘spq, pq “
1
?

2q
εµ1˚
˘ pqq . . . εµs˚˘ pqqM˘µ1...µspΛq,Λpq, (2.2.2)

where M denotes a symmetric Lorentz tensor. The “polarization vector” εν˘ follows the
transformation rule

ˆ

Λ µ
ν ´

qµ

|q|
Λ 0
ν

˙

εν˘pΛqq “ e˘iΘpq,Λqεµ˘pqq. (2.2.3)

Since apparently εµ˘ is not a vector, an auxiliary condition will be needed to make sure
that S˘s satisfies Lorentz invariance. The S-matrix transformation law is then

S˘spq, pq “
1
?

2q
e˘isΘpq,Λq

„

εµ1
˘ pΛqq ´

pΛqqµ1

|q|
Λ 0
ν ε

ν
˘



. . .

ˆ

„

εµs˘ pΛqq ´
pΛqqµs

|q|
Λ 0
ν ε

ν
˘



M˘µ1...µspΛq,Λpq.

(2.2.4)

For an infinitesimal Lorentz transformation Λµν “ δµν ` ωµν , we can use (2.2.2) and the
symmetry of M to put the previous equation in the form

S˘spq, pq “

ˆ

|Λq|

|q|

˙1{2

e˘isΘpq,ΛqS˘spΛq,Λpq

´ s
1

a

2|q|3

`

ω 0
ν ε

ν˚
˘ pqq

˘ “

qµ1εµ2˚
˘ pqq . . . εµs˚˘ pqqM˘µ1...µspq, pq

‰

.

(2.2.5)

Hence the necessary and sufficient condition for this transformation law not to contradict
the first one is that S˘ vanishes when one of the εµ˘ is replaced with qµ:

qµ1εµ2˚
˘ pqq . . . εµs˚˘ pqqM˘µ1...µspq, pq “ 0. (2.2.6)

2.2.2 Dynamic definition of charge e and gravitational mass f

Considering the vertex amplitude for a very-low-energy massless particle of integer helicity
˘s, emitted by a particle of spin 0 and mass m (perhaps zero), and momentum pµ “ pp, Eq,
the only tensor which can be used to form Mµ1...µs

˘ is pµ1 . . . pµs , since terms involving gµµ
1
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do not contribute to the S matrix because of εµ˘ε˘µ “ 0,2 so that the vertex amplitude
must be of the form

1

2Eppq
a

2|q|
pµ1 . . . pµsε

µ1˚
˘ pqq . . . εµs˚˘ pqq. (2.2.7)

In the next section we will see that, even for emitting particles with spin greater than
0, the S matrix elements will be given by this expression, times δσσ1 where σ and σ1 are
respectively the initial and final helicity of the emitting particle.

We define the soft photon coupling constant e by the statement that the s “ 1 vertex
amplitude is

2iep2πq4δσσ1pµε
µ˚
˘ pqq

p2πq9{22Epqq
a

2|q|
, (2.2.8)

and similarly for the “gravitational charge” we state that the s “ 2 vertex amplitude is

2ifp8πq1{2p2πq4δσσ1
`

pµε
µ˚
˘ pqq

˘2

p2πq9{22Epqq
a

2|q|
. (2.2.9)

2.2.3 Conservation of e and universality of f

Let Sβα be the S matrix for some reaction αÑ β, the states α and β consisting of various
charged and uncharged particles, perhaps including gravitons and photons. The same
reaction can occur with emission of a very soft extra photon or graviton of momentum q
and helicity ˘1, or ˘2, and we will denote the corresponding S-matrix element as S˘1

βα pqq

or S˘2
βα pqq.

As illustrated above, these emission matrix elements will have poles at q “ 0, corre-
sponding to the Feynman diagrams in which the extra photon or graviton is emitted by
one of the incoming or outgoing particles in states α or β, since then the n-th outgoing,
respectively incoming, particle of mass mn and momentum pn gives rise to a term of the
form

1

ppn ˘ qq2 ´m2
n

“ ˘
1

2pn ¨ q
. (2.2.10)

In the limit qÑ 0 we will get, denoting by Sβα the remainder of the diagram once we have
factored out the pole and tensor structure,

S˘1
βα pqq «

1

p2πq3{2
a

2|q|

«

ÿ

n

ηnen
pn ¨ ε

˚
˘pqq

pn ¨ q

ff

Sβα

S˘2
βα pqq «

p8πq1{2

p2πq3{2
a

2|q|

«

ÿ

n

ηnfn
ppn ¨ ε

˚
˘pqqq

2

pn ¨ q

ff

Sβα,

(2.2.11)

2 This follows from the fact that external particles are on-shell and the corresponding tensors live in
traceless representations of the stability group of pµ.
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ηn being `1 or ´1 according to whether the particle n is outgoing or incoming.
As we have learned in the previous sections, Lorentz invariance requires the vanishing

of the vertex amplitude when a polarization is substituted with the corresponding four-
momentum. This yields for s “ 1

ÿ

n

ηnen “ 0 (2.2.12)

and for s “ 2
ÿ

n

ηnfnp
µ
n “ 0. (2.2.13)

The first one is precisely the conservation of the electric charge, whereas the second, when
compared with the equation of momentum conservation

ř

ηnpn “ 0, yields the universality
of the gravitational coupling constant fn “ 1, for all n.

Weinberg exploits these calculations also in order to justify the choice of pµ1
n . . . pµsn in

(2.2.7) as the only possible form of the M function emitting particles with spin 1 or higher,
since any other helicity-dependent term could never give rise to cancellations between
different poles needed to satisfy the Lorentz invariance condition.

2.2.4 Higher-spin soft emission
For higher helicities s “ 3, 4, . . . one still has a factorization of the form

S˘sβαpqq «
1

p2πq3{2
a

2|q|

«

ÿ

n

ηng
psq
n

ppn ¨ ε
˚
˘pqqq

s

pn ¨ q

ff

Sβα, (2.2.14)

and the requirement
ÿ

n

ηng
psq
n

“

pn ¨ ε
˚
˘pqq

‰s´1
“ 0, (2.2.15)

which contradicts momentum conservation unless g
psq
n “ 0. This tells us that the low energy

interaction for higher spins is trivial or, in other words, that massless higher-spin particles
cannot propagate long-range forces. On the Lagrangian side, this implies that higher-
spin interactions should be of multipolar type, i.e. the vertices should contain enough
derivatives so that they vanish in the soft limit.

An expression like (2.1.11) or (2.2.15) looks like some sort of conservation law, and one
may wonder whether it can be derived from some underlying symmetry. This question
was addressed long ago for s “ 1 in a couple of papers [32, 33] by Ferrari and Picasso,
and received recently a renewed attention after the contribution of Strominger et al., who
linked it to the BMS symmetry presented in the previous chapter. We shall illustrate the
corresponding findings in the next two chapters, to then move to face the main issue at
stake in this work: investigating the higher-spin symmetry underlying (2.1.11).
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3 BMS Ward Identities and the Soft
Graviton Theorem

Weinberg’s soft graviton theorem, which was described in the previous chapter, has been
recast in [2] as the Ward identity following from BMS supertraslation symmetry. To build
a bridge between these two results, which are naturally expressed in two very different
languages, we will need to find a way to link the boundary data at null infinity, expressed
in terms of the Bondi news, to the properties of scattering of momentum-space plane waves.

We will also have to define the physical phase space of gravitational modes, which needs
to include the Bondi news as well as all soft graviton degrees of freedom which do not decou-
ple from the S matrix. Notice that this contrasts with Ashtekar’s asymptotic quantization,
where only observable quantities were considered.

This space will turn out to contain the usual radiative modes plus the Goldstone modes
of spontaneously broken supertranslation invariance.

3.1 Vacuum-to-Vacuum Geometries
We start by fixing the notation and by introducing a useful set of local coordinates near
I ˘, called the Bondi coordinates.

3.1.1 Bondi coordinates for asymptotically flat spacetimes
As derived in [4, 5], a general Lorentzian metric can be written in local coordinates u “ x0,
t “ x1, θ “ x2, φ “ x3 as

ds2 “
V e2β

r
du2 ´ 2e2βdudr ` r2hAB

`

dxA ´ UAdu
˘ `

dxB ´ UBdu
˘

, (3.1.1)

where A and B take the values 2, 3, and det phABq ” bpu, θ, φq, where bpu, θ, φq is an
arbitrary but fixed function; V , β, UA and hAB are any six functions of the coordinates.
This result relies only on the properties of the above coordinates, in the sense that such a
component expansion for ds2 is allowed if and only if the following conditions hold:

(i) the hypersurfaces u “ const. are tangent to the local light cone at each point;

(ii) θ and φ are constant along each ray, where a ray is defined as the line with tangent
kµ “ ´gµνBνu;
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(iii) r is the corresponding luminosity distance given by1

r4 “

!”

θ,µg
µνθ,ν φ,αg

αβφ,β ´ pθ,αg
αµφ,µq

2
ı

sin2 θ
)´1

. (3.1.2)

By analyzing the field equations it was shown (see [4, 5] and references therein) that, in
the case of asymptotically flat spacetimes, the asymptotic behavior of the quantities in the
above component expansion compatible with the presence of gravitational radiation is the
following: denoting by dσ2 ” hABdx

AdxB the two-dimensional line element,

V “ ´r ` 2Mpu, θ, φq `Opr´1q,

β “ ´cpu, θ, φqc˚pu, θ, φqp2rq´2 `Opr´4q,

UA “ Opr´2q,

dσ2 “ dθ2 ` sin2 θdφ2 `Opr´1q

” γABdx
AdxB ` r´1AABdx

AdxB `Opr´2q,

(3.1.3)

where AAB “ Op1q. The function Mpu, θ, φq is called the Bondi mass aspect and its integral
on the two-sphere coincides with the Bondi mass defined in Section 1.2.2. This allows to
expand the metric in the following form:

ds2 “´ du2 ´ 2dudr ` r2
`

dθ2 ` sin2 θdφ2
˘

`
2M

r
du2 ` rAABdx

AdxB ´ 2r2UAγABdudx
B ` . . .

(3.1.4)

the dots denoting subleading terms in r´1 with respect to those explicitly written (note
that r2UA “ Op1q). Using the standard complex coordinates2 z “ tanpθ{2qeiφ, in place of

1 Recall that the area element on the sphere is given by
b

e2
θe

2
φ ´ peθ ¨ eφq

2 “ r2 sin θ, where eµθ “ Bx
µ
{Bθ

and eµφ “ Bx
µ
{Bφ.

2 The transformation rules from the usual spherical coordinates to these complex coordinates read

z “eiφ tan
θ

2
zz̄“ tan2 θ

2
” t2 θ “2 tan´1

`?
zz̄
˘

(3.1.5)

z̄ “e´iφ tan
θ

2

z

z̄
“ ei2φ φ “

1

2i
ln
z

z̄
(3.1.6)

and hence

x1
` ix2

“ r sin θeiφ “ r
2z

1` zz̄
, x3

“ r cos θ “ r
1´ zz̄

1` zz̄
. (3.1.7)

The line and surface elements are given by

dθ2
` sin2 θdφ2

“ 2
2

p1` zz̄q2
dzdz̄, dθ sin θdφ “

2

p1` zz̄q2
dzdz̄, (3.1.8)

whereas the non-vanishing Christoffel symbols read

Γzzz “ ´
2z̄

1` zz̄
“ Γz̄z̄z̄, (3.1.9)

so that Rzz̄ “ γzz̄ and rDz̄, DzsX
z
“ Xz̄.
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the usual spherical coordinates θ, φ and relabelling the last terms appropriately, we finally
obtain:

ds2 “´ du2 ´ 2dudr ` 2r2γzz̄dzdz̄

`
2mB

r
du2 ` rCzzdz

2 ` rCz̄z̄dz̄
2 ´ 2Uzdudz ´ 2Uz̄dudz̄ ` . . .

(3.1.10)

where we have defined γzz̄ “ 2{p1` zz̄q2 and mBpu, z, z̄q “Mpu, θ, φq; the quantities Czz,
Cz̄z̄, Uz, Uz̄ are independent of r.

The coordinates pu, r, z, z̄q are called retarded Bondi coordinates: the retarded time u
parametrizes the null generators of I ` whereas z and z̄ parametrize the conformal two-
sphere, whose metric is 2γzz̄dzdz̄. D will denote the γ-covariant derivative.

Furthermore, using an appropriate Ansatz for the angular terms of the metric, Barnich
and Troessaert [52] also derived

Uz “ ´
1

2
DzCzz. (3.1.11)

A similar expansion is available near past null infinity I ´:

ds2 “´ dv2 ` 2dvdr ` 2r2γzz̄dzdz̄

`
2m´B
r

dv2 ` rDzzdz
2 ` rDz̄z̄dz̄

2 ´ 2Vzdvdz ´ 2Vz̄dvdz̄ ` . . .
(3.1.12)

(mB will always denote the Bondi mass aspect at I `, unless otherwise specified), where

Vz “
1

2
DzDzz. (3.1.13)

We use the following shorthand notation for the causal future and past of I ˘: J˘pI ˘q ”

I ˘
˘ . The outgoing and incoming Bondi news are, respectively, (see [1, 52])

Nzz “ BuCzz, Mzz “ BvDzz. (3.1.14)

Their physical meaning is given by the following relation, which follows from the Einstein
equations: assuming no matter fields,

BumB “ ´
1

4
NzzN

zz ´
1

2
Bu

`

DzUz̄ `D
z̄Uz

˘

(3.1.15)

or, in other words, the news tensor controls the mass loss (see [4, 53]), since integrating on
a cross-section S yields

B

Bu

ż

S
mB d

2Ω “ ´
1

4

ż

S
NzzN

zzd2Ω, (3.1.16)

analogous to the expression (1.2.21) in Section 1.2.2. This confirms

Tuu “
1

4
NzzN

zz (3.1.17)

as the total outgoing energy flux of gravitational radiation.
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3.1.2 BMS supertranslations
As we have seen, BMS` supertranslations are generated by the infinite-dimensional family
of vector fields

ξf ” fBu ´
1

r
pf ,zBz̄ ` f

,z̄Bzq `D
zDzfBr, (3.1.18)

labeled by the functions f “ fpz, z̄q defined on the conformal two-sphere. BMS` acts on
I ` by Lie derivative and asymptotic Killing vector fields form a faithful representation of
the BMS algebra when equipped with the standard Lie bracket [52].

For example, the pzzq-component of the variation of the metric tensor under the in-
finitesimal supertranslation ξf is given by (letting £f ” £ξf )

p£fgqzz “ fBugzz ´
1

r

`

f ,zBz̄gzz ` f
,z̄Bzgzz

˘

`
1

2
p∆fq Brgzz ` 2gzµBzξ

µ

“ r
`

fBuCzz ´ 2D2
zf

˘

`Op1q,
(3.1.19)

and since by confrontation with the original form of the metric p£fgqzz ” r£ξCzz `Op1q,
we finally have:

£fCzz “ fBuCzz ´ 2D2
zf. (3.1.20)

Similarly BMS´ transformations act on I ´ and contain the supertranslations labelled
by f´pz, z̄q

f´Bv ´
1

r
pDz̄f´Bz̄ `D

zf´Bzq ´D
zDzf

´Br (3.1.21)

under which
£f´Dzz “ f´BuDzz ` 2D2

zf
´. (3.1.22)

3.2 Supertranslation Generators
In this section we construct the physical phase space, the symplectic form and the canonical
generators of supertranslations at I ˘, following [1, 2].

3.2.1 Poisson brackets on I

The Ashtekar symplectic form (see [47, 48, 21]) on the space Γ of radiative modes defined
in Chapter 1, i.e. the space of equivalence classes of connections identified under suitable
relations due to the conformal structure of null infinity, is defined as follows with our choice
of normalization

ΩtDupσ, σ
1q “

1

16π

ż

I`

pσz̄z̄Buσ
1
zz ´ σ

1
zzBuσz̄z̄qγ

zz̄dud2z (3.2.1)

and
tNz̄z̄pu, z, z̄q, Nzzpu

1, w, w̄qu “ ´16πBuδpu´ u
1qδ2pz ´ wqγ2

zz̄. (3.2.2)
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The generator of BMS` supertranslations on these physical modes is [1, 2]

T`pfq “
1

4π

ż

I`
´

γzz̄fmBd
2z. (3.2.3)

Note that this generator reduces to the Arnowitt-Deser-Misner Hamiltonian when f ” 1,
i.e. T`p1q “ M . Using the (3.1.15), assuming no matter fields and dropping a term
proportional to the late time mass aspect mB|I`

`
, which vanishes for the classical solutions,

we find

T`pfq “ ´
1

16π

ż

I`

f
“

γzz̄NzzNz̄z̄ ` 2BupBzUz̄ ` Bz̄Uzq
‰

du d2z (3.2.4)

leading to
tT`pfq, Nzzu “ fBuNzz, (3.2.5)

since the second term of T`pfq can be recast as a boundary term. The analogous expres-
sions for I ´ read

Bvm
´
B “

1

4
MzzM

zz `
1

2
Bv

`

DzVz `D
z̄Vz̄

˘

T´pfq “
1

4π

ż

I´
`

d2z γzz̄fm
´
B

“
1

16π

ż

I´
`

dv d2z f rγzz̄MzzM
zz ` 2BvpBzVz̄ ` Bz̄Vzqs .

(3.2.6)

Since these generators involve non-radiative modes, however, we would like to define
their action on an elarged phase space Γ` which includes some non-radiative modes but
which is able to generate the BMS symmetry transformations. That is to say: we enlarge
our field algebra from the algebra of observables to a bigger one which ensures that the
symmetry automorphisms are inner automorphisms.

One way to do this is to identify this larger space by the one parametrized by Czz and
hence to integrate the above bracket (3.2.2) with respect to u and u1, obtaining thus

tCz̄z̄pu, z, z̄q, Cwwpu
1, w, w̄qu “ 8π signpu´ u1qδpz ´ wqγzz̄, (3.2.7)

where the antisymmetry of the bracket fixes the constant in the integration of Buδpu´ u
1q

and requires the sign function.3

If we use this result, together with

T`pfq “
1

16π

ż

I`

f
“

γzz̄BuCzzBuCz̄z̄ ` 2BupBzUz̄ ` Bz̄Uzq
‰

du d2z , (3.2.8)

we obtain
tT`pfq, Czzu “ fBuCzz ` γzz̄BzD

z̄f

“ fBuCzz ´D
zf ‰ £fCzz,

(3.2.9)

3 Note that this bracket already appears in [21, (C.17)], but with a different interpretation.
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where (3.1.11) and (3.1.14) have been taken into account: a factor of two appears to
be missing with respect to (3.1.20). To solve this problem one introduces the auxiliary
boundary conditions

rBzUz̄ ´ Bz̄UzsI`
˘
“ 0, (3.2.10)

Nzz

ˇ

ˇ

I`
˘

“ 0. (3.2.11)

Equivalently, by (3.1.11), the first one may be written

rD2
zCz̄z̄ ´D

2
z̄CzzsI`

˘
“ 0. (3.2.12)

The general solution of these additional constraints can be expressed as follows:

Czz
ˇ

ˇ

I`
´

“ D2
zC,

ż 8

´8

Nzzdu “ D2
zN,

(3.2.13)

where the boundary fields C, N are real.
We may then take as our coordinates on the phase space the boundary and bulk fields:

Γ` ” tCpz, z̄q, Npz, z̄q, Czzpu, z, z̄q, Cz̄z̄pu, z, z̄qu . (3.2.14)

Now, equation (3.2.7) remains valid as the bulk-bulk Dirac bracket; we impose (3.2.13) for
bulk-bulk or bulk-boundary brackets in the following manner

D2
z tNpz, z̄q, Cw̄w̄pu,w, w̄qu “

ż `8

´8

du1
 

Nzzpu
1, z, z̄q, Cw̄w̄pu,w, w̄q

(

(3.2.15)

and then we constrain the boundary-boundary bracket by requiring continuity

D2
w̄tNpz, z̄q, Cpw, w̄qu “ lim

uÑ´8
tNpz, z̄q, Cw̄w̄pu,w, w̄qu. (3.2.16)

This is a nontrivial request: there may be other, inequivalent, extensions of the symplec-
tic form to the enlarged phase space, corresponding to inequivalent quantizations of the
boundary sector. These conditions determine the brackets uniquely. A similar construction
is available at I ´.

3.2.2 Canonical generators
The supertraslation generator can be recast as follows, using (3.1.11) and the boundary
constraints,

T`pfq “
1

16π

ż

I`

f
“

γzz̄BuCzzBuCz̄z̄ ` 2BupBzUz̄ ` Bz̄Uzq
‰

du d2z

“
1

16π

ż

I`

f
“

γzz̄BuCzzBuCz̄z̄ ´ γ
zz̄pD2

zNz̄z̄ `D
2
z̄Nzzq

‰

du d2z

“
1

16π

ż

I`

fγzz̄BuCzzBuCz̄z̄ du d
2z ´

1

8π

ż

I`
˘

γzz̄D2
zD

2
z̄Nd

2z.

(3.2.17)
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The non-vanishing brackets are

tT`pfq, Nzzu “ fBuNzz,

tT`pfq, Czzu “ fBuCzz ´ 2D2
zf,

tT`pfq, Nu “ 0,

tT`pfq, Cu “ ´2f,

(3.2.18)

so that, as desired, the realization of supertranslations is canonical on Γ˘. We refer to [1]
for the details of the analogous construction for I ´.

These transformation laws indicate that supertranslations do not leave the in or out
vacua invariant and are spontaneously broken in our enlarged phase space: in particular
the last bracket in (3.2.18) identifies ´1

2C as the Goldstone mode associated with this
symmetry breaking.

As was mentioned during the discussion of asymptotic quantization, however, the soft
graviton zero mode,

Qzzpz, z̄q “

ż `8

´8

Nzzpu, z, z̄qdu “ D2
zN, (3.2.19)

commutes with all physical observables, and hence is an element of the center of the ob-
servable [47] algebra, its different values labelling different, physically inequivalent sectors
of the theory. In the quantum case [21, Section II.C.3], the Fock representation is selected
by the value Qzz “ 0, whereas non-vanishing values of the central element correspond to
non-Fock representations intimately related to infrared problems: the non-Fock states are
determined by “clouds” of coherent soft gravitons. Then it is also clear that supertransla-
tions are unbroken in the representations of the observable algebra, only, as made apparent
by the third relation in (3.2.18).

3.3 Supertranslations and the Soft Graviton Theorem
3.3.1 Supertranslation invariance of the S matrix
In the conformal compactification of asymptotically flat spacetimes, the sphere at spatial
infinity is identified as i0 (see figure 1.1 on page 11): the null generator nµ of I ˘ flows
from I ´ to I ` through i0; carrying the coordinates pz, z̄q along this flow we identify
points on the conformal spheres at I ´ with those at I ` and this procedure allows to
define a matching or continuity relation between final and initial boundary data. We call
BMS0 the diagonal subgroup of BMS`ˆBMS´ which preserves this continuity relation. In
particular, the diagonal supertranslation generators are those which are constant on the
null generators of I , i.e.

f´pz, z̄q “ fpz, z̄q. (3.3.1)

Christodoulou-Klainerman spaces are just smooth and regular enough [1] as to make these
matchings possible: their properties ensure that in weakly gravitating systems the null

53



generators going from I ´ to I ` are suitable for the above identification. As we will see
in Chapter 5, this choice can be also justified by thinking the action of the BMS group on
the whole physical spacetime, and not only on its null boundary: this allows to argue that
the condition f´pz, z̄q “ fpz, z̄q follows naturally by computing the charge for the same
supertranslation on both I ` and I ´. [16]

One may remark that, since BMS0 supertranslation generators commute and obey
T`pfq “ T´pfq, and since the S matrix is constructed from exponentials of the Hamilto-
nian T p1q “ M , infinitesimal BMS0 transformations should commute with the S matrix.
The BMS0 subgroup is therefore conjectured to be an exact symmetry of both classical
gravitational scattering and of the quantum gravity S matrix. More precisely, the conjec-
ture states that the S matrix obeys

T`pfqS ´ S T´pfq “ 0. (3.3.2)

The Ward identity corresponding to this relation is obtained by taking the matrix ele-
ments of the previous equation between Fock states (as stated above, the Fock represen-
tation is only allowed for vanishing Qzz) with n incoming and m outgoing particles at
zin
k , respectively zout

k , on the conformal sphere at I , denoted by |iny ” |zin
1 , . . . , z

in
n y and

xout| ” xzout
1 , . . . , zout

m |. These carry energies Ein
k and Eout

k , where
ř

Ein
k “

ř

Eout
k by total

energy conservation.
Choosing, for fixed direction z on the outgoing sphere, the function

fpw, w̄q “
1

z ´ w
(3.3.3)

and the “soft graviton current”

Pz ”
1

2G

ˆ
ż `8

´8

BvVzdv ´

ż `8

´8

BuUzdu

˙

“
1

2G

ˆ

Vz

ˇ

ˇ

ˇ

I´
`

I´
´

´ Uz

ˇ

ˇ

ˇ

I`
`

I`
´

˙

, (3.3.4)

we can show that the matrix elements of (3.3.2) between the above states are

xout| : PzS : |iny “ xout|S|iny

«

m
ÿ

k“1

Eout
k

z ´ zout
k

´

n
ÿ

k“1

Ein
k

z ´ zin
k

ff

, (3.3.5)

where the symbol : : denotes time-ordering. The argument [1] goes as follows: the oper-
ator

T´pfq “
1

4π

ż

I´
`

d2zγzz̄fm
´
B “

1

4π

ż

dvd2zf

„

γzz̄Tvv `
1

2
Bv pBzVz̄ ` Bz̄Vzq



(3.3.6)

generates supertranslations on I ´, where Tvv is the total incoming radiation energy flux,
rescaled by 4π, given by MzzM

zz, and hence obeys the relation

T´pfq|iny “ F´|iny `
n
ÿ

k“1

Ein
k fpzkq|iny (3.3.7)
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where F´ denotes the incoming soft graviton operator with polarization tensor proportional
to D2

zf :

F´pfq “
1

4π

ż

I´

dvd2zfBvBz̄Vz “
1

8π

ż

I´

dvd2zD2
z̄fM

z̄
z . (3.3.8)

Note that we have used the boundary condition

BzVz̄ “ Bz̄Vz at I ´
˘ , (3.3.9)

which is the counterpart of (3.2.10) on I ´, in order to get rid of Vz̄. Combing with the
analogous result for I `, one can write

F ” F` ´ F´ “ ´
1

8π

ż

d2zγzz̄D2
z̄f

„
ż

I´

dvMzz `

ż

I`

duNzz



. (3.3.10)

Exploiting the supertranslation invariance of the S matrix:

xout| : FS : |outy “

«

n
ÿ

k“1

Ein
k fpz

in
k q ´

m
ÿ

k“1

Eout
k fpzout

k q

ff

xout|S|outy. (3.3.11)

Computing F for f “ pz ´ wq´1, in particular, gives

Pz “ ´
1

8π

ż

d2zBz

ˆ

Bz̄
1

z ´ w

˙„
ż

I´

dvMzz `

ż

I`

duNzz.



(3.3.12)

Integrating by parts, using equations (3.1.11), (3.1.13) and Bz̄
1
z “ 2πδ2pzq, this reverts to

the above soft graviton current and its Ward identity is precisely the desired one.

3.3.2 From momentum space to position space
Much of the work needed, in order to make apparent the connection between (3.3.5) and
Weinberg’s result

S˘2
βα pqq «

κ

2

#

ÿ

n

ηn

“

pn ¨ ε
˚
˘pqq

‰2

pn ¨ q

+

Sβα for κ2 “ 32π, (3.3.13)

consists in translating the latter formula, which is written in momentum space, into the
language of position space. To begin with, recall that the usual Minkowski coordinates
pt, x1, x2, x3q “ pt,xq, in which the Minkowski metric is written as

ds2 “ ´dt2 ` pdx1q2 ` pdx2q2 ` pdx3q2 “ ´dt2 ` dx ¨ dx, (3.3.14)

are related to the retarded Bondi coordinates used above by the transformation

t “ u` r, x1 ` ix2 “
2rz

1` zz̄
, x3 “

rp1´ zz̄q

1` zz̄
, (3.3.15)
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where r “
“

px1q2 ` px2q2 ` px3q2
‰1{2

“ |x|. Consider now a wave packet for a massless
particle with spatial momentum centered around p and satisfying the mass-shell relation
p2 “ ω2 or, in other words, with four-momentum p “ pω,pq. At large times and large r
this wave packet becomes localized on the conformal sphere near the point

p “ ωpx “
ω

1` zz̄
pz ` z̄,´ipz ´ z̄q, 1´ zz̄q, (3.3.16)

so that the momentum of massless particles may be equivalently characterized by pµ or
pω, z, z̄q.

At late times t Ñ 8 the gravitational field becomes free and can be approximated by
the mode expansion

hout
µν pxq “

ÿ

α“˘

ż

d3q

p2πq3
1

2ωq

“

εα˚µν pqqa
out
α pqqeiq¨x ` εαµνpqqa

out
α pqq˚e´iq¨x

‰

, (3.3.17)

where q0 “ ωq “ |q| for brevity, α “ ˘ are the two helicities and

raout
α pqq, aout

α1 pq
1q˚s “ 2ωqp2πq

3δαα1δpq´ q1q. (3.3.18)

The polarization tensors can be chosen [54] such that ε˘µν “ ε˘µε˘ν where

ε`pqq “
1
?

2
pw̄, 1,´i,´w̄q

ε´pqq “
1
?

2
pw, 1, i,´wq “ ε`pqq;

(3.3.19)

note that, by direct calculation using the Minkowski metric, ε˘µνqν “ 0 and ε˘µµ “ 0.
Transforming to retarded Bondi coordinates, we get

ε`z pqq “
Bxµ

Bz
ε`µ pqq “

?
2rz̄pw̄ ´ z̄q

p1` zz̄q2

ε´z pqq “
Bxµ

Bz
ε´µ pqq “

?
2rp1` z̄wq

p1` zz̄q2

(3.3.20)

By comparison with the expression of the metric in retarded Bondi coordinates, one has

Czzpu, z, z̄q “ κ lim
rÑ8

1

r
hout
zz pr, u, z, z̄q. (3.3.21)

Using the transformation rule hzz “ Bzx
µBzx

νhµν , we get

Czzpu, z, z̄q “ κ lim
rÑ8

1

r
Bzx

µBzx
νhout

µν pr, u, z, z̄q, (3.3.22)
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where hµν is given by the above mode expansion. Denoting by θ the angle between px and q,
recalling that t “ u`r and hence iq ¨x “ ´iωqpu`rq` iωqr cos θ “ ´iωqru`rp1´cos θqs,
and using the above properties of the polarization tensors, we have

Czz “ κ lim
rÑ8

1

r
pBzx

µBzx
νq

ÿ

α“˘

ż

d3q

p2πq3
1

2ωq

”

εα˚µν pqqa
out
α pqqe´iωqru`rp1´cos θqs ` h.c.

ı

“ κ lim
rÑ8

1

r

ÿ

α“˘

ż `8

0
dωq

ż `1

´1

ωq

4π2

„

2r2A˚2
α

p1` zz̄q4
aout
α pqqe´iωqru`rp1´xqs ` h.c.



dx,

(3.3.23)
where

Aα ”

#

z̄pw̄ ´ z̄q if α “ `

1` wz̄ if α “ ´
and A˚α ” A´α. (3.3.24)

Integrals of this form can be treated as follows: integrating by parts, the integral is split
into the sum of three terms

ż `8

0
dωqfpωqqωq

ż `1

´1
gpxqreiωqrpx´1qdx

“´ i

ż `8

0
dωqfpωqqgp1q

` i

ż `8

0
dωqfpωqqgp´1qe´i2ωqr ` i

ż `8

0
dωqfpωqq

ż `1

´1
g1pxqeiωqrpx´1qdx;

(3.3.25)

in the large r limit, the second and third terms tend to zero by the Riemann-Lebesgue
lemma, and only the first one contributes. Thus only the contribution from x “ 1, i.e.
θ “ 0, is relevant in the r Ñ8 limit, corresponding to w “ z, w̄ “ z̄ and

A` “ 0 “ A˚´, (3.3.26)

A˚` “ 1` zz̄ “ A´, (3.3.27)

finally yielding

Czz “ ´
iκ

4π2p1` zz̄q2

ż 8

0
dωq

“

aout
` pωqpxqe

´iωqu ´ aout
´ pωqpxq

˚eiωqu
‰

. (3.3.28)

Defining

Nω
zzpz, z̄q ”

ż `8

´8

eiωuBuCzzdu, (3.3.29)

and using the previous limiting expression for Czz, we find

Nω
zz “ ´

κ

2πp1` zz̄q2

ż 8

0
dωq ωq

“

aout
` pωqpxqδpωq ´ ωq ` a

out
´ pωqpxq

˚δpωq ` ωq
‰

, (3.3.30)
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so that, letting ω be a positive quantity,

N`ωzz pz, z̄q “ ´
κωaout

` pωpxq

2πp1` zz̄q2
, N´ωzz pz, z̄q “ ´

κωaout
´ pωpxq˚

2πp1` zz̄q2
. (3.3.31)

We regulate the zero mode by computing the Hermitian combination

N0
zz ” lim

ωÑ0`

1

2
pN`ωzz `N

´ω
zz q

“ ´
κ

4πp1` zz̄q2
lim
ωÑ0`

“

ωaout
` pωpxq ` ωaout

´ pωpxq˚
‰

;
(3.3.32)

we shall see in Chapter 6 how this issue can be dealt with in a more rigorous fashion by
smearing with suitable test functions. A parallel construction on I ´, where

Mω
zzpz, z̄q ”

ż `8

´8

eiωvBvDzzdv, (3.3.33)

gives, for ω ą 0,

M`ω
zz pz, z̄q “ ´

κωain
`pωpxq

2πp1` zz̄q2
, M´ω

zz pz, z̄q “ ´
κωain

´pωpxq
˚

2πp1` zz̄q2
, (3.3.34)

and, for the zero mode,

M0
zzpz, z̄q “ ´

κ

4πp1` zz̄q2
lim
ωÑ0`

“

ωain
`pωpxq ` ωa

in
´pωpxq

˚
‰

. (3.3.35)

It follows from the definitions of Nω
zz and Mω

zz, and from the constraint solutions (3.2.13),
that

N0
zzpz, z̄q “ D2

zN, M0
zzpz, z̄q “ D2

zM. (3.3.36)

Defining Ozz ” N0
zzpz, z̄q `M

0
zzpz, z̄q, the soft graviton current (3.3.4) can be written as

Pz “
1

2G

ˆ
ż `8

´8

BvVzdv ´

ż `8

´8

BuUzdu

˙

“
1

4G
γzz̄Bz̄Ozz, (3.3.37)

where again (3.1.11) and (3.1.13) have been taken into account.

3.3.3 Weinberg’s soft graviton theorem as a BMS Ward identity
Using the expressions for the zero modes given above, we find

xout| : OzzS : |iny “ ´
κ

4πp1` zz̄q2
lim
ωÑ0`

“

ωxout|aout
` pωpxqS|iny ` ωxout|Sain

´pωpxq
˚|iny

‰

,

(3.3.38)
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where we have used the time ordering prescription together with the fact that aout
´ pωpxq˚

(respectively ain
`pωpxq) annihilates the out (in) state for ω Ñ 0; note that this holds even

when the asymptotic states contain soft gravitons because of the ω factor in the commu-
tation relations.

The two matrix elements in the previous formula are equal by crossing symmetry: they
describe symmetric processes involving a positive helicity outgoing graviton or a negative
helicity incoming graviton.

Weinberg’s soft graviton theorem for a positive helicity outgoing graviton reads

lim
ωÑ0`

“

ωxout|aout
´ pωpxqS|iny

‰

“
κ

2
lim
ωÑ0`

«

m
ÿ

k“1

ωrp1k ¨ ε
`pqqs2

p1k ¨ q
´

n
ÿ

k“1

ωrpk ¨ ε
`pqqs2

pk ¨ q

ff

xout|S|iny.

(3.3.39)
We now employ the above described reparametrization of momenta:

pk “ Ein
k

ˆ

1,
zin
k ` z̄

in
k

1` zin
k z̄

in
k

,
1

i

zin
k ´ z̄

in
k

1` zin
k z̄

in
k

,
1´ zin

k z̄
in
k

1` zin
k z̄

in
k

˙

,

p1k “ Eout
k

ˆ

1,
zout
k ` z̄out

k

1` zout
k z̄out

k

,
1

i

zout
k ´ z̄out

k

1` zout
k z̄out

k

,
1´ zout

k z̄out
k

1` zout
k z̄out

k

˙

,

q “ ω

ˆ

1,
z ` z̄

1` zz̄
,
1

i

z ´ z̄

1` zz̄
,
1´ zz̄

1` zz̄

˙

,

ε`pqq “
1
?

2
pz̄, 1,´i,´z̄q,

(3.3.40)

with respect to which

ω rp1k ¨ ε
`pqqs

2

p1k ¨ q
“ ´p1` zz̄q

Eout
k pz̄ ´ z̄out

k q

pz ´ zout
k qp1` zout

k z̄out
k q

,

ω rpk ¨ ε
`pqqs

2

pk ¨ q
“ ´p1` zz̄q

Ein
k pz̄ ´ z̄

in
k q

pz ´ zin
k qp1` z

in
k z̄

in
k q
,

(3.3.41)

leading to

xout| : OzzS : |iny “
8G

1` zz̄
xout|S|iny

ˆ

«

m
ÿ

k“1

Eout
k pz̄ ´ z̄out

k q

pz ´ zout
k qp1` zout

k z̄out
k q

´

n
ÿ

k“1

Ein
k pz̄ ´ z̄

in
k q

pz ´ zin
k qp1` z

in
k z̄

in
k q

ff

.

(3.3.42)
Plugging this expression into (3.3.37) we can relate the insertion of Pz to that of Ozz:

xout| : PzS : |iny “
1

4G
γzz̄

B

Bz̄
xout| : OzzS : |iny; (3.3.43)
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the contribution of the sum over outgoing states yields

xout|S|inyp1` zz̄q2
B

Bz̄

#

1

1` zz̄

«

m
ÿ

k“1

Eout
k pz̄ ´ z̄out

k q

pz ´ zout
k qp1` zout

k z̄out
k q

ff+

“xout|S|iny

«

m
ÿ

k“1

Eout
k

´zpz̄ ´ z̄out
k q ` p1` zz̄q

pz ´ zout
k qp1` zout

k z̄out
k q

ff

“xout|S|iny

«

m
ÿ

k“1

ˆ

Eout
k

z ´ zout
k

`
Eout
k z̄out

k

1` zout
k z̄out

k

˙

ff

,

(3.3.44)

then, combining with the analogous result for incoming states,

xout| : PzS : |iny “xout|S|iny

«

m
ÿ

k“1

Eout
k

z ´ zout
k

´

n
ÿ

k“1

Ein
k

z ´ zin
k

ff

` xout|S|iny

«

m
ÿ

k“1

Eout
k z̄out

k

1` zout
k z̄out

k

´

n
ÿ

k“1

Ein
k z̄

in
k

1` zin
k z̄

in
k

ff

loooooooooooooooooooooomoooooooooooooooooooooon

”∆

.
(3.3.45)

On the other hand, ∆ is zero due to total momentum conservation, since

Ekz̄
out
k

1` zout
k z̄out

k

“
1

2

´

p1k
1
´ ip1k

2
¯

,
Ekz̄

in
k

1` zin
k z̄

in
k

“
1

2

´

pk
1 ´ ipk

2
¯

; (3.3.46)

it should be stressed that this cancellation is possible only thanks to the constancy of
the gravitational coupling (equivalence principle): we will discuss in Chapter 5 a slightly
improved method which allows to avoid using this fact and we will see what role this
improvement plays in the extension to higher spins.

We have shown that Weinberg’s soft graviton theorem implies the BMS supertranslation
Ward identity (3.3.5); as already stressed, under the a priori assumption of the equivalence
principle, we can also run the above argument backwards to show that this supertransla-
tion Ward identity implies Weinberg’s soft graviton theorem, thus eventually proving the
equivalence of the statements under given assumptions.

3.3.4 A higher-spin formula
We conclude this chapter by employing the same “momentum space”-“position space”
dictionary, as above, to recast the Weinberg factorization result in terms of z and z̄ in the
more general case of arbitrary integer helicity s, i.e.

lim
ωÑ0

xout|ωaout
` pqqS|iny “ ´ lim

ωÑ0

«

ÿ

n

ηng
psq
n

ppn ¨ ε`pqqq
s

pn ¨ q

ff

xout|S|iny, (3.3.47)
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where ηn is defined to be ` when incoming, ´ when outgoing. Using

ω
ppn ¨ ε`pqqq

s

pn ¨ q
“ ´p´1qs2s{2´1p1` zz̄q

pEnq
s´1pz̄ ´ z̄nq

s´1

pz ´ znqp1` znz̄nqs´1
, (3.3.48)

one has

lim
ωÑ0

xout|ωaout
` pqqS|iny

“ lim
ωÑ0

p´1qs2s{2´1p1` zz̄q

«

ÿ

n

ηng
psq
n

pEnq
s´1pz̄ ´ z̄nq

s´1

pz ´ znqp1` znz̄nqs´1

ff

xout|S|iny.
(3.3.49)
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4 Up1q Large Gauge Symmetries and the
Soft Photon Theorem

What are the asymptotic symmetries at I ` of electrodynamics with massless
charged particles? [14]

At first sight, this appears to be just a toy version of the question asked by BMS. It is
however of interest in its own right as well as for a warm-up to the higher-spin case: part of
this problem is defining both what is meant by asymptotic symmetries and how they act;
this allows us to illustrate the concept of asymptotic or “large” gauge symmetry, which
will be crucial in the sequel.

We will also see how Weinberg’s result for spin one (2.1.5) is equivalent to suitable large
gauge symmetries for massless electrodynamics.

4.1 Electrodynamics in “Radial Gauge”
In a recent paper [15], the physical relevance of Up1q asymptotic symmetries has been
stressed, using a strategy similar to the one adopted for gravity in the previous chapter.

4.1.1 Action and asymptotic equations of motion in radial gauge
One starts from Minkowski spacetime, whose metric in retarded coordinates reads

ds2 “ gµνdx
µdxν “ ´du2 ´ 2dudr ` 2r2γzz̄dzdz̄, (4.1.1)

where, as already mentioned, γzz̄ “ 2{p1`zz̄q2 is the Euclidean metric of the sphere in con-
formal coordinates, while the transformation rules from the usual Minkowski coordinates
are given by

t “ u` r, x1 ` ix2 “
2rz

1` zz̄
, x3 “

rp1´ zz̄q

1` zz̄
. (4.1.2)

The Christoffel symbols compatible with gµν are

Γzrz “
1

r
, Γzzz “ Bz log γzz̄, Γuzz̄ “ rγzz̄, Γrzz̄ “ ´rγzz̄. (4.1.3)
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Consider now Up1q electrodynamics coupled to an external source, subsuming the role of
the matter sector, thus given by the action

S “ ´
1

4e2

ż

d4x
?
´gFµνFαβgµαgνβ ´

ż

d4x
?
´gJ µAµ, (4.1.4)

where Fµν “ ∇µAν ´∇νAµ; the Up1q gauge invariance under

δε̂Aµpu, r, z, z̄q “ ∇µε̂pu, r, z, z̄q, (4.1.5)

which is automatically satisfied by the first term, requires ∇µJ µ “ 0 from the second term:

´

ż

d4x
?
´gJ µδε̂Aµ “´

ż

d4x
?
´gJ µ∇µε̂

“´

ż

d4xBµ
`?
´gJ µε̂

˘

`

ż

d4x
?
´g p∇µJ µq ε̂,

(4.1.6)

Where we used the standard identity
?
´g∇µV µ “ Bµp

?
´gV µq. The first contribution can

be reduced to integrals over spacelike hypersurfaces in the far past and in the far future,
where J µ is supposed to vanish, and the second requires covariant conservation of J µ, by
the arbitrariness of ε̂. Since we will be interested in writing down Ward identities at I `,
at least for now J µ will be thought of as a massless charged current.

The equations of motion are the Maxwell equations ∇µFµν “ e2J µ in curved coordi-
nates. The energy-momentum tensor Tµν of the electromagnetic field is on the other hand
obtained by varying the action with respect to gµν :

δgµνS “ ´
1

2e2

ż

d4x
?
´g

„

FµαF α
ν ´

1

4
gµν

`

F2 ´ 4e2J ¨A
˘



loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“Tµν

δgµν , (4.1.7)

where F2 ” FµνFαβgµαgνβ and J ¨A “ J µAµ. The energy stored at future null infinity
I ` is given as follows: recall that here the conformal factor defining I ` is Ω “ r, hence
nµ “ gµν∇νr “ gµr, and that the asymptotic time translation vector at null infinity is
given by tν “ pBuq

ν “ δνu, thus, recalling equation (1.2.1), we find

EpI `q “

ż

I`

Tµνn
µtν “

ż

I`

T ru “

ż

I`

FrαF α
u , (4.1.8)

where the natural measure element is understood; note that the terms proportional to gµν
vanish in this step. Now, we fix the gauge by imposing

Ar “0

Au
ˇ

ˇ

ˇ

I`
“0,

(4.1.9)
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which is called retarded radial gauge. Explicitly, in this gauge,

EpI `q “

ż `8

´8

du

ż

d2zγzz̄
ÿ

a“z,z̄

p´BuAa ` BaAu ` Brq pBuAā ´ BāAuq , (4.1.10)

where the r2 coming from the metric determinant gets cancelled in the non-vanishing
contractions. As for the gravitational case, a delicate point in the discussion of asymptotic
symmetries consists in the assignment of proper falloff conditions on the remaining field
components; the very existence and meaning of asymptotic symmetries depends on the
choice of the functional class of solutions to the dynamics one considers to be physically
sensible, in relation to this behavior at large distances.

In view of our gauge choice and of the expression of the energy flux at future null infinity,
a sensible falloff choice for the components of the gauge potential in this case appears to
be

Azpr, u, z, z̄q “Azpu, z, z̄q `
1

r
Ap1qz pu, z, z̄q ` . . .

Aupr, u, z, z̄q “
1

r
Aupu, z, z̄q ` . . .

(4.1.11)

and hence
Fzz̄ “BzAz̄ ´ Bz̄Az ` . . .
Fuz “BuAz ` . . .

Frz “´
1

r2
Ap1qz ` . . .

Fur “
1

r2
Au ` . . . .

(4.1.12)

We shall denote the leading order coefficients in (4.1.12) as Fzz̄, Fuz, Frz and Fur, respec-
tively. Using the Christoffel symbols written above, the equation of motion for ν “ u at
leading order reads

γzz̄BuAu “ BupBzAz̄ ` Bz̄Azq ` e
2juγzz̄, (4.1.13)

where jupu, z, z̄q “ limrÑ8

“

r2Jupr, u, z, z̄q
‰

; using this equation and imposing the bound-
ary conditions

Fur

ˇ

ˇ

ˇ

I`
`

“ 0 “ Fuz

ˇ

ˇ

ˇ

I`
`

(4.1.14)

for Au and Az, we can express Au in terms of Az and Az̄, given ju. Therefore Az and Az̄
play the role of coordinates of the asymptotic phase space at I `.

4.1.2 Large gauge transformations
The gauge fixing (4.1.9) can be operatively defined in the following way: starting from an
unconstrained Aµpr, u, z, z̄q, one can choose a gauge parameter ε̂pr, u, z, z̄q satisfying the
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boundary problem
Brε̂pr, u, z, z̄q `Arpr, u, z, z̄q “0,

Buε̂pr “ 8, u, z, z̄q `Aupr “ 8, u, z, z̄q “0.
(4.1.15)

Performing a gauge transformation with this gauge parameter ε̂ indeed enforces the re-
tarded radial gauge, as requested. We see now that ε̂ is still determined only up to an
arbitrary function εpz, z̄q of the angular coordinates on the sphere at null infinity: we have
therefore residual or large1 gauge transformations acting at I ` via

δεAzpu, z, z̄q “ Bzεpz, z̄q, (4.1.16)

and similarly for z̄. The conserved charge associated to this symmetry can be computed
by the Noether procedure. The Lagrangian is invariant up to a total divergence

δεL “´
1

e2

?
´g p∇µδεAνqFµν ´

?
´gJ µδεAµ

“´
1

e2

?
´g p∇µ∇νεqFµν ´

?
´gJ µ∇µε “ ´Bµ

`?
´gJ µε

˘

,

(4.1.17)

and, on the other hand, integration by parts gives

δεL “´
1

e2

?
´g p∇µδεAνqFµν ´

?
´gJ µδεAµ

“´
1

e2
Bµ

`?
´gFµν∇νε

˘

`
1

e2

?
´g

`

∇µFµν ´ e2J ν
˘

loooooooooomoooooooooon

“0 on shell

δεAν ,
(4.1.18)

so that the current

jµ “
1

e2

?
´g

`

´Fµν∇νε` e2J µε
˘

satisfies Bµj
µ “ 0; (4.1.19)

again integrating by parts, employing the equations of motion and using the antisymmetry
of Fµν , one also gets

jµ “
1

e2
Bµ

`?
´gFµνε

˘

. (4.1.20)

1 Gravity can be understood as a gauge theory of diffeomorphism symmetry. One therefore expects to
identify states that differ by a diffeomorphism; however, as we have seen, there is a class of diffeomor-
phisms that fall off slowly enough at large r to affect the radiative data and give finite asymptotically
conserved charges (e.g. the Bondi mass). These “large diffeomorphisms” should not be quotiented out
of the space of states, in contradistinction to the familiar “small diffeomorphisms”.

In gauge theories involving spin-one fields, one can make similar consideration and therefore distin-
guish between small and large Up1q (local) transformations, also in analogy with the fact that one does
not quotient out the global part of the gauge group. This issue only arises because we have a manifold
with boundary, and boundary conditions, meaning that there can also be forbidden diffeomorphisms
that violate the boundary conditions. The asymptotic symmetry group can be thought of as the small
diffeomorphism equivalence classes of the allowed diffeomorphisms. The classification of large versus
small diffeomorphisms is part of the definition of the theory that depends on the boundary conditions,
and is determined by which states are to be regarded as physically equivalent and which are not [36, 55].
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This is the local Gauss law, a consequence of Noether’s second theorem: the local invariance
of the action under gauge transformations ensures that (when the gauge fields are on shell)
the corresponding Noether current is equal to the divergence of an antisymmetric tensor.
The Noether charge is computed as the integral of jµ on a three-dimensional Cauchy
hypersurface, in our case I `, and can be recast as the integral over the boundary I `

˘ of
I ` as a consequence of the local Gauss law:2

Q`ε “

ż

I`

jνnν “
1

e2

ż

I`

Bµ
`?
´gFµνε

˘

nν

“
1

e2

˜

ż

I`
`

´

ż

I`
´

¸

tµ
?
´gFµνεnν .

(4.1.22)

Using the appropriate unit normal vectors nν “ ∇νr “ δrν and tµ “ δuµ, recalling that
?
´g “ r2γzz̄ and Fur “ r´2Fur, with Fur defined below (4.1.12), we find

Q`ε “
1

e2

˜

ż

I`
`

´

ż

I`
´

¸

γzz̄Furεd
2z (4.1.23)

and given the assumption Fur
ˇ

ˇ

I`
`

“ 0, finally,

Q`ε “
1

e2

ż

d2zγzz̄Fruεpz, z̄q. (4.1.24)

Using (4.1.13) and since Fru “ ´Au, one gets

Q`ε “´
1

e2

ż

I`
´

d2z pBzAz̄ ´ Bz̄Azq εpz, z̄q `

ż

I`

dud2zγzz̄juεpz, z̄q

“
1

e2

ż

du d2z
“

Bu pBzAz̄ ´ Bz̄Azq ` e
2γzz̄ju

‰

εpz, z̄q.

(4.1.25)

For εpz, z̄q “ 1, noting that total derivatives of angular variables vanish, one recovers the
total electric charge accumulated at I `,

Q`1 “

ż

I`

dud2zγzz̄ju, (4.1.26)

2 This is again a general consequence of Noether’s second theorem: since the conserved current jµ satisfies
jµ “ Bνκ

µν , where κµν is antisymmetric, the associated conserved charge, defined as the integral of
jµ over a pD ´ 1q-dimensional Cauchy hypersurface Σ, can be recast as the integral of κµν over the
pD ´ 2q-dimensional boundary σ of Σ:

Q “

ż

Σ

jµdΣµ “

ż

σ

κµνdσµν . (4.1.21)
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whereas for functions εpz, z̄q peaked at some generator pw, w̄q, approximating δ2pz ´ wq,
one has the radiated electric charge at a given angle

Q`ww̄ “ ´
1

e2
pBwAw̄ ´ Bw̄Awq

ˇ

ˇ

ˇ

u“´8
`

ż `8

´8

duγww̄ju. (4.1.27)

The charge Q`ε is assumed to act on a massless matter field Φ carrying charge q in the
usual way

rQ`ε ,Φpu, z, z̄qs “ ´eεpz, z̄qΦpu, z, z̄q. (4.1.28)

4.2 Asymptotic Phase Space and Canonical Formulation
The commutators on the physical radiative phase space tFuz, Fuz̄u at I ` were found by
Ashtekar [21]

rFuzpu, z, z̄q, Fuz̄pu
1, w, w̄qs “

ie2

2
Buδpu´ u

1qδ2pz ´ wq, (4.2.1)

where δ2pzq is a shorthand notation for δpz, z̄q; just like in the gravitational case, however,
one wishes to enlarge this asymptotic phase space so as to take the role of soft modes into
account. Again note that the zero-mode of Fuz, i.e. the soft photon given by

ż `8

´8

duFuz, (4.2.2)

has vanishing commutator with the physical phase space, or, in other words, it generates
the center of this observable algebra.

Such an enlargement is achieved as follows. First, one considers the fields Az and Az̄,
with the following bulk commutator

rAzpu, z, z̄q, Az̄pu
1, w, w̄qs “ ´

ie2

4
signpu´ u1qδ2pz ´ wq, (4.2.3)

obtained by integrating the previous one and fixing the integration constants by antisym-
metry. Then, motivated by the fact that the charge Q`ε does not generate the correct
transformation law on Az with this symplectic form (in particular, it is off once again by
a factor of two as in Section 3.2), one introduces the boundary fields

A˘z pz, z̄q ” lim
uÑ˘8

Azpu, z, z̄q, (4.2.4)

with the constraint that there should be no long-range magnetic fields at I `, i.e.

Fzz̄

ˇ

ˇ

ˇ

I`
˘

“ 0. (4.2.5)
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This can be also read as an integrability condition for A˘z , which can therefore be expressed
as

A˘z pz, z̄q “ e2Bzφ˘pz, z̄q, (4.2.6)

for some scalar fields φ˘pz, z̄q living on the boundary I `
˘ of I `. For the boundary fields

A˘z , we impose

rA˘z pz, z̄q, Az̄pu
1, w, w̄qs “ lim

uÑ˘8
rAzpu, z, z̄q, Az̄pu

1, w, w̄qs

“ ¯
ie2

4
δ2pz ´ wq

(4.2.7)

and

rA`z pz, z̄q ´A
´
z pz, z̄q, A

˘
z̄ pw, w̄qs “ lim

u1Ñ˘8
rA`z pz, z̄q ´A

´
z pz, z̄q, Az̄pu

1, w, w̄qs

“ ´
ie2

2
δ2pz ´ wq.

(4.2.8)

In terms of the boundary fields φ˘pz, z̄q, these commutators reads

rφ˘pz, z̄q, Azpu
1, w, z̄qs “ ¯

i

8π

1

z ´ w

rφ`pz, z̄q, φ´pw, w̄qs “
i

8πe2
log |z ´ w|2.

(4.2.9)

Now the charge, rewritten as

Q`ε “ 2

ż

S2

BzBz̄pφ` ´ φ´qεpz, z̄qd
2z `

ż

I`

dud2zεpz, z̄qjuγzz̄, (4.2.10)

clearly generates the correct transformation on the gauge field Az (thanks to the factor of
two appearing in front)

rQ`ε , Azpu, z, z̄qs “ iBzεpz, z̄q, (4.2.11)

and in general satisfies the following commutation relations

rQ`ε , φ´pz, z̄qs “
i

e2
εpz, z̄q,

rQ`ε , e
ine2φ´s “ ´ nεeine

2φ´ ,

(4.2.12)

where the last one is easily derived using the Baker-Hausdorff formula. The so-derived
algebra is Abelian

rQ`ε , Q
`
η s “ 0. (4.2.13)

Notice in particular that, in a vacuum |0y, defined by φ´pz, z̄q|0y “ 0, we have

xδεφ´y “ ´ixrQ
`
ε , φ´pz, z̄qsy “

1

e2
εpz, z̄q ‰ 0 (4.2.14)
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which indicates the spontaneous breaking of residual gauge symmetry in |0y. This dis-
cussion shows how the observable algebra generated by Fuz and Fuz̄ can be consistently
enlarged to include the soft modes φ˘pz, z̄q as Goldstone modes of spontaneously broken
large Up1q symmetry.

4.2.1 Ward identities for large Up1q gauge symmetry
After performing at I ´ a construction similar to the one discussed in the previous sec-
tion, with large gauge symmetries generated by charges Q´ε , labelled by angular functions
ε´pz, z̄q, one identifies generators at I ` with those at I ´ under the requirement

εpz, z̄q “ ε´pz, z̄q, (4.2.15)

which is the usual antipodal identification. Notice that now εpz, z̄q is a function of the
space of null generators of the whole I .

Large gauge symmetries are now postulated to be symmetries of the S matrix, i.e.,
employing the same notation as the one in the previous chapter, one assumes that

xout|pSQ´ε ´Q
`
ε Sq|iny “ 0, (4.2.16)

where

Q`ε “
1

e2

ż

d2zdu Bu pBzAz̄ ´ Bz̄Azq εpz, z̄q
loooooooooooooooooooooomoooooooooooooooooooooon

”F`pεq

`

ż

d2zdu γzz̄juεpz, z̄q, (4.2.17)

Q´ε “
1

e2

ż

d2zdv Bv pBzAz̄ ´ Bz̄Azq εpz, z̄q
loooooooooooooooooooooomoooooooooooooooooooooon

”F´pεq

`

ż

d2zdv γzz̄jvεpz, z̄q. (4.2.18)

Assuming the semiclassical identity

xout|Q`ε “ xout|F`pεq ` xout|
ÿ

n

enεpzn, z̄nq (4.2.19)

together with a similar one for Q´ε , and denoting

F pεq “ F`pεq ´ F´pεq, (4.2.20)

we can recast the large gauge symmetry of the S matrix in the following form

xout| : SF pεq : |iny “
ÿ

n

ηnqnεpzn, z̄nqxout|S|iny, (4.2.21)

where ηn is `1 (resp. ´1) for incoming (resp. outgoing) particles in the process.
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Now, expanding the vector potential near I ˘ and using a stationary phase approxima-
tion analogous to the one employed in the previous chapter, one is able to express F pεq in
terms of soft photon creation operators in the following manner: near I `, writing Aµpxq
in terms of a free-field mode decomposition and using

ε`z pqq “

?
2rz̄pw̄ ´ z̄q

p1` zz̄q2
, ε´z pqq “

?
2rp1` z̄wq

p1` zz̄q2
, (4.2.22)

one has

Azpu, z, z̄q “ lim
rÑ8
Azpu, r, z, z̄q

“ ´
i

8π2

?
2e

1` zz̄

ż 8

0
dωq

“

aout
` pωqx̂qe

´iωqu ´ aout
´ pωqx̂q

˚e´iωqu
‰

.
(4.2.23)

Upon defining

Nω
z pz, z̄q ”

ż `8

´8

du eiωuBuAz (4.2.24)

and
N0
z pz, z̄q ” lim

ωÑ0`

`

Nω
z `N

´ω
z

˘

(4.2.25)

one finds in addition

N0
z pz, z̄q “ ´

1

8π

?
2e

1` zz̄
lim
ωÑ0`

“

ωaout
` pωx̂q ` ωaout

´ pωx̂q˚
‰

. (4.2.26)

On the other hand, including the corresponding term M0
z from I ´, we have, recalling that

Fuz “ BuAz and Bz̄p1{zq “ 2πδ2pzq,

N0
z ´M

0
z “

e2

4π
F

„

1

z ´ w



. (4.2.27)

Notice that the auxiliary boundary condition

BzAz̄ “ Bz̄Az at I `
˘ (4.2.28)

has been used. Substituting in the Ward identity (4.2.21) this reads

lim
ωÑ0`

“

ωxout|aout
` pωx̂qS|iny

‰

“ ´
1` zz̄
?

2

ÿ

n

ηn
qn

z ´ zn
xout|S|iny, (4.2.29)

which we eventually recognize as Weinberg’s soft photon theorem in position space as
summarized in (3.3.49) for s “ 1.
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5 Asymptotic Symmetries and Soft
Theorems for Arbitrary Spin

This chapter is mainly devoted to the extension of the results which we presented in
Chapters 3 and 4 to higher spins.

The main new result is the proof that Weinberg’s factorization theorem follows as the
Ward identity of spin-s large gauge symmetries. Moreover, as a byproduct of our approach,
we shall also be able to provide a slight improvement of the proof of the soft graviton
theorem from supertranslation symmetry, without assuming the equivalence principle from
the start.

As an intermediate step, it is worthwhile to carefully revise both the spin-one and spin-
two cases in order to bring out some elements which will be necessary for the subsequent
extension to all spins; in particular, we provide a treatment of Up1q large gauge symmetries
more similar to the one given in [16] for electromagnetism, together with a thorough analysis
of the BMS group from the perspective of the linearized theory.

Eventually we shall deal with the extension to higher spins. For the sake of clarity, we
shall first illustrate the spin-3 case, where all the new ingredients are already present in a
relatively simpler setting, to then move to illustrating the general case of arbitrary integer
spin s.

5.1 Electromagnetism Revisited
As we have seen, the action for electromagnetism coupled to a locally conserved current
J µ,

S “ ´
1

4

ż

FµνFµνdDx´
ż

AµJ µdDx, (5.1.1)

being invariant under δAµ “ Bµε up to the boundary term, possesses the canonical current

jµ “ FνµBνε` J µε. (5.1.2)

5.1.1 Large Up1q gauge charge
In Bondi coordinates, near I `, in the case J “ 0,

Q` “

ż

I`

jrγzz̄r
2dud2z. (5.1.3)
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Choosing retarded radial gauge

Au “Aupu, z, z̄q{r ` . . .
Ar “0

Az “Azpu, z, z̄q ` . . .
Az̄ “Az̄pu, z, z̄q ` . . .

(5.1.4)

where the dots denote further subleading terms in 1{r, and using (5.1.2), the charge asso-
ciated to the residual gauge freedom given by angular functions εpz, z̄q computed at I `

reads

Q` “

ż

I`

εpz, z̄q
“

BupD
zAz `D

z̄Az̄q ` J
‰

γzz̄dud
2z, (5.1.5)

where
J pu, z, z̄q ” lim

rÑ8
r2J rpu, r, z, z̄q. (5.1.6)

Since this charge acts on matter fields by δΦpxq “ irQ,Φpxqs “ ieεpxqΦpxq, any correlation
function will satisfy

xδ
N
ź

n“1

Φnpxnqy “ix0|

˜

Q`
N
ź

n“1

Φnpxnq ´
N
ź

n“1

ΦnpxnqQ
´

¸

|0y

“i
N
ÿ

n“1

enεpxnqx
N
ź

n“1

Φnpxnqy.

(5.1.7)

Performing LSZ reduction of the previous formula yields the Ward identity (4.2.21)

xout|pQ`S ´ SQ´q|iny “
N
ÿ

n“1

ηnenεpzn, z̄nqxout|S|iny. (5.1.8)

This derivation is given in [16], who also noted that Strominger’s antipodal identification
essentially consists in choosing the same gauge transformation for I ` and I ´, and that,
since the charge is computed on a surface approximating I ˘ which necessarily cuts through
time-like infinity, the results also hold for massive fields. Using the auxiliary boundary con-
dition BzAz̄ “ Bz̄Az at I `

˘ , choosing εpz, z̄q “ 1
w´z , where w is a fixed complex parameter,

and exploiting Bz̄
1

z´w “ 2πδ2pz ´ wq gives

4πxout|

„ˆ
ż

duBuAz

˙

S ´ S

ˆ
ż

dvBvAz

˙

|iny “
N
ÿ

n“1

ηnen
z ´ zn

xout|S|iny, (5.1.9)

where we have used that J annihilates the vacuum, since the global Up1q symmetry is
unbroken. Using the free mode expansion for Az near I and the usual stationary phase
approximation, we obtain

ż

dueiωuBuAz “ ´
i

8π2

?
2

1` zz̄

ż 8

0
dωq

”

aout
` pωqx̂qe

´iωqu ´ aout:
´ pωqx̂qe

iωqu
ı

(5.1.10)
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so that

ż `8

´8

duBuAz “ ´
1

8π

?
2

1` zz̄
lim
ωÑ0`

”

ωaout
` pωx̂q ` ωaout:

´ pωx̂q
ı

. (5.1.11)

Substituting this result into (5.1.9), together with the analogous one for I ´, and using
crossing symmetry yields

lim
ωÑ0

“

ωxout|aout
` S|iny

‰

“ ´
1` zz̄
?

2

ÿ

n

ηnen
z ´ zn

xout|S|iny, (5.1.12)

which is Weinberg’s theorem (3.3.49).

5.2 Linearized Gravity Revisited
The action for a massless Fierz-Pauli field hµν , describing a linear perturbation of the
Minkowski metric tensor, is

S “
1

2

ż

EµνhµνdDx´
ż

Jµνhµνd
Dx, (5.2.1)

where Eµν is the linearized Einstein tensor

Eµν “ lhµν ´ BpµB ¨ hνq ´ BµBνh
1 ` ηµνpB ¨ B ¨ h´lh1q, (5.2.2)

and Jµν is a conserved “energy-momentum tensor”, BµJ
µν “ 0. The action (5.2.1) is

invariant under δhµν “ Bpµξνq up to the boundary term

ż

Bµ rpEµν ´ 2Jµνq ξνs d
Dx, (5.2.3)

since Eµν satisfies the linearized Bianchi identity B ¨ Eν “ 0 and Jµν is conserved. The
equations of motion are Eµν “ Jµν .

The variational derivatives needed for the computation of the current are

δS

δhαβ,µν
“

1

2

”

ηαβhµν ` ηµνhαβ

´
1

2

´

ηµβhνα ` ηµαhνβ ´ ηναhµβ ´ ηνβhαµ
¯

´

ˆ

ηαβηµν ´
1

2
pηµβηνα ` ηµαηνβq

˙

h1


“
1

2

„

1

2
Hµανβ `

1

2
Hµβνα



,

(5.2.4)
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where Hµανβ is defined by

Hµανβ ” ηµνhαβ ` ηαβhµν ´ ηµβhνα ´ ηναhµβ ´ pηµνηαβ ´ ηµβηναqh1. (5.2.5)

This tensor has the same symmetries of Rµανβ ,

Hµανβ “ ´Hαµνβ “ ´Hµαβν “ Hνβµα, (5.2.6)

satisfies the cyclic identity,

Hµανβ `Hµνβα `Hµβαν “ 0, (5.2.7)

and works as a superpotential for the linearized Einstein tensor, meaning

Eµν “ BαBβHµανβ . (5.2.8)

Defining the trace-reversed1 tensor h̄µν “ hµν ´ 1
2η

µνh1, one gets the simpler form

Hµανβ “ ηµν h̄αβ ` ηαβh̄µν ´ ηµβh̄να ´ ηναh̄µβ. (5.2.9)

The on-shell Noether current is given by

jµ “
δS

δhαβ,µν
δhαβ,ν ´ Bν

δS

δhαβ,µν
δhαβ ` J

µνξν , (5.2.10)

where δhαβ “ Bpαξβq. The contribution Jµνξν is given by the boundary term in the variation
of the action. Thus

jµ “
1

2

´

HµανβBνBαξβ ´ BνH
µανβpBαξβ ` Bβξαq

¯

` Jµνξν , (5.2.11)

where we have used the antisymmetry of Hµανβ in νβ and the symmetry of BνBβ (or
analogous considerations for similar contributions) for the first term and symmetrized in
αβ the second term.

It is instructive to recover the Noether tensor κµν satisfying jµ “ Bνκ
µν , whose existence

is ensured by Noether’s second theorem; for this purpose we can set Jµν “ 0 without loss of
generality. Integrating by parts each term in (5.2.11), employing the equations of motion
BαBβH

µανβ “ 0, and renaming the indices appropriately we get

jµ “
1

2

!

Bα

”

HµανβBνξβ ´ Bν

´

Hµανβ `Hµναβ `Hµβνα
¯

ξβ

ı)

, (5.2.12)

so that thanks to the cyclic identity

jµ “ Bακ
µα, κµα “

1

2
HµανβBνξβ ` ξνBβH

µανβ . (5.2.13)

1 The name is due to the fact that h̄αα “ h1 ´ 2h1 “ ´h1, i.e., the trace of h̄µν is opposite to the trace of
hµν .
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Now, we may think to have obtained these expressions in a given locally inertial frame:
to covariantize them we simply replace ordinary derivatives with covariant derivatives and
note that no ambiguity arises in their ordering, since the connection defining them is given
by the flat background metric and hence such derivatives commute; thus respectively

jµ “
1

2

´

Hµανβ∇ν∇αξβ ´∇νHµανβp∇αξβ `∇βξαq
¯

` Jµνξν , (5.2.14)

and

κµα “
1

2
Hµανβ∇νξβ ` ξν∇βHµανβ . (5.2.15)

The overall normalization constant can be checked by comparison with the ADM four-
momentum itself (see e.g. [59, Chapter 6.7]): from the Einstein equations

Gµν “ Rµν ´
1

2
gµνR “ 8πGTµν (5.2.16)

one splits the left-hand side in linear and non-linear order2 Gµν “ 1
2E

µν `GµνNL obtaining

1

2
Eµν “ 8πG

„

Tµν ´
1

8πG
GµνNL



” 8πGtµν , (5.2.19)

which defines the energy pseudo-tensor tµν . The ADM four-momentum is defined by
integrating on surfaces Σ of constant time, i.e.,

Pµ “

ż

Σ
tµ0d3x “

1

16πG

ż

Σ
Eµ0d3x “

1

16πG

ż

Σ
BαBjH

µα0jd3x

“
1

16πG

ż

BΣ
BαH

µα0jnjd
2x.

(5.2.20)

In our framework, using constant symmetry generators pξαq
µ “ δµα and integrating over BΣ

gives

Q “

ż

BΣ

BαH
µα0jnjd

2x “ 16πGPµ. (5.2.21)

2 The extra factor of 1{2 comes from the normalization in the definition of Eµν : expanding with respect
to hµν “ gµν ´ ηµν , where ηµν is the Minkowski metric, the Christoffel symbols read

Γρµν “
1

2

`

Bµh
ρ
ν ` Bνh

ρ
µ ´ B

ρhµν
˘

`Oph2
q, (5.2.17)

where indices are raised and lowered by ηµν , and hence the Ricci tensor is given by

Rµν “
1

2

`

lhµν ´ BµB ¨ hν ´ BνB ¨ hµ ` BµBνh
1
˘

`Oph2
q. (5.2.18)

Finally, Rµν ´
1
2
gµνR “ 1

2
Eµν `Oph2

q.

75



5.2.1 Bondi gauge and residual freedom: the BMS algebra
From the perspective of linearized gravity (i.e. of a generic spin-2 massless field) the Bondi
gauge is fixed by the following choice of boundary conditions, which as we saw stems from
considerations in the non-linear theory:

hµνdx
µdxν “

2mB

r
du2 ´ 2Uzdudz ´ 2Uz̄dudz̄ ` rCzzdz

2 ` rCz̄z̄dz̄
2, (5.2.22)

or, equivalently,

hµνBµBν “
2mB

r
B2
r ` 2

Uz̄
γzz̄r2

BrBz ` 2
Uz
γzz̄r2

BrBz̄ `
Cz̄z̄
γ2
zz̄r

3
B2
z `

Czz
γ2
zz̄r

3
B2
z̄ , (5.2.23)

where u, r, z, z̄ are the Bondi coordinates defined in (3.3.15) and indices are raised and
lowered by the Minkowski metric (4.1.1).

For higher spins we cannot rely on the knowledge of a full non-linear theory to the goal
of setting the asymptotic gauge conditions, as a complete interacting theory in (asymptot-
ically) flat space is not known. Rather, we will take inspiration from the chain of boundary
conditions (5.2.22), implied from the full Bondi gauge on the linear spin-two theory.

Notice that
h1 ” hαα “ 0. (5.2.24)

Forgetting for the moment what we know about the BMS group, we can then look for the
residual gauge freedom leaving this form of hµν invariant.

For simplicity, we shall start by restricting ourselves to gauge parameters ξµ which are
u-independent and which have power-like dependence on r: as we shall see, this will allow
us to recover the subgroup of supertranslations. Recall δhµν “ ξpµ;νq “ Bµξν`Bνξµ´2Γρµνξρ
and the Christoffel symbols for Minkowski space given in (4.1.3). From

ξpr;rq “ 0 ùñ ξr,r “ 0 (5.2.25)

we deduce ξr “ ´T pz, z̄q for some angular function T , since we do not allow any u-
dependence. Similarly

ξpu;rq “ 0 ùñ ξu,r “ 0 (5.2.26)

and hence ξu “ ´Spz, z̄q for some S. In principle, we could allow for some non-trivial
transformation of the uu component, but, since our parameter does not depend on u, for
now,

ξpu;uq “
1

r
ppz, z̄q “ 0 ùñ ppz, z̄q “ 0. (5.2.27)

Now we have

ξpr;zq “ 0 ùñ ξz,r ´
2

r
ξz ´ BzT pz, z̄q “ 0, (5.2.28)
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which is solved by ξz “ ´rBzT and

ξpz;z̄q “ 0 ùñ ξz,z̄ ` ξz̄,z ´ 2rγzz̄pT ´ Sq “ 0, (5.2.29)

which gives S “ T ` DzDzT or, equivalently, ξu “ ´T ´D
zDzT , recalling that mixed z

and z̄ connection symbols on the sphere are zero. In addition, the non-vanishing gauge
variations are:

δhuz “ ξpu;zq “ ´DzpT `D
zDzT q, (5.2.30)

δhzz “ ξpz;zq “ ´2rD2
zT, (5.2.31)

consistently with Bondi gauge.
This computation leads therefore to supertranslations, generated by

ξµdx
µ “ ´pT `DzDzT qdu´ T pz, z̄qdr ´ rDzTdz ´ rDz̄Tdz̄,

ξµBµ “ T pz, z̄qBu `D
zDzTBr ´

1

r
pDzTBz `D

z̄TBz̄q
(5.2.32)

which indeed leave the “Bondi gauge” defined by (5.2.22) invariant.
Incidentally, the divergence of this supertranslation parameter vanishes:

∇ ¨ ξ “ 1

γzz̄r2
pBz̄ξz ` Bzξz̄q ´

2

r
pξu ´ ξrq “ 0; (5.2.33)

therefore, we see that our representatives of the BMS supertranslations defined intrinsically
at I ` satisfy condition (1.2.20), as needed for them to produce well-defined conserved
quantities. In particular, BMS translation representatives selected by Tµpz, z̄q

T0 “ 1, T1 ` iT2 “
2z

1` zz̄
, T3 “

1´ zz̄

1` zz̄
(5.2.34)

give rise to well-defined notions of energy and momentum. However, even though the
condition hαα “ 0 is invariant, supertranslations are not in general a symmetry of the
on-shell fields satisfying the other Fierz conditions lhµν “ 0 and ∇ ¨ hµ “ 0, as can be
seen by the fact that lξµ ‰ 0. (Further remarks on this point can be found in [36].)

We can now ask ourselves whether enlarging the functional type of allowed gauge param-
eters allows us to recover the full BMS group. Indeed, this can be achieved by considering
the most general form of the residual gauge parameters ξµ, expanded in powers of r´1, and
solving the above equations as follows. From the rr and ur equations we obtain

Brξr “ 0 ùñ ξr “ ξrpu, z, z̄q, (5.2.35)

and
Brξu ` Buξr “ 0 ùñ B2

uξr “ ´BrBuξu. (5.2.36)
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From the uu equation we also require

Buξu “ O
ˆ

1

r

˙

, (5.2.37)

which, together with the previous equation, implies

B2
uξr “ O

ˆ

1

r2

˙

. (5.2.38)

Hence
ξr “ ´T pz, z̄q ´ uF pz, z̄q (5.2.39)

whereas, integrating Brξu ` Buξr “ 0 in r, we get

ξu “ ´Spz, z̄q ` rF pz, z̄q, (5.2.40)

where S cannot depend on u, by (5.2.37). Then the zr equation

Brξz ` Bzξr ´
2

r
ξz “ 0 (5.2.41)

reads

Brξz ´
2

r
ξz ´DzT ´ uDzF “ 0; (5.2.42)

looking for a solution of the type ξz “ rαψαpu, z, z̄q, for some integer α, one readily sees
that only

ψ1 “ ´DzT ´ uDzF, ψ2 “ Yzpu, z, z̄q (5.2.43)

are allowed, where YApu, z, z̄q for A “ 1, 2 is some one-form (Y A ” γABYB), hence

ξz “ ´rDzT ´ ruDzF ` r
2Yzpu, z, z̄q. (5.2.44)

From the uz equation

Buξz ` Bzξu “ Op1q ùñ Op1q ` r2BuYzpu, z, z̄q “ Op1q (5.2.45)

one infers YA “ YApz, z̄q. Now, the zz equation

Dzξz “ Oprq ùñ DzYz “ 0, (5.2.46)

implies that Y Apz, z̄q is a conformal Killing vector on the sphere: the conformal Killing
equation DpAYBq “ αγAB is equivalent to DpAYBq “ γABD ¨ Y on the sphere, where

D ¨ Y ” DAY
A, but since γAB is off-diagonal

DzYz “ 0 “ Dz̄Yz̄, (5.2.47)
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whereas DzYz̄ ` Dz̄Yz “ γzz̄D ¨ Y is identically satisfied. Notice that this property also
implies DzDz̄D ¨ Y “ ´γzz̄D ¨ Y by using rDz, Dz̄sYz “ ´γzz̄Yz.

Up to now we have

ξr “´ T pz, z̄q ´ uF pz, z̄q

ξu “´ Spz, z̄q ` rF pz, z̄q

ξz “´ rDzT pz, z̄q ´ ruDzF pz, z̄q ` r
2Yzpz, z̄q,

(5.2.48)

where Y A is a conformal Killing vector on the sphere. We substitute in the zz̄ equation

Bzξz̄ ` Bz̄ξz ´ 2γzz̄r pξu ´ ξrq “ 0 (5.2.49)

and we get

´ 2rγzz̄ pDzD
zT ` T ´ Sq ` r2 pDzYz̄ `Dz̄Yz ´ 2γzz̄F q ´ 2ur pDzDz̄F ` γzz̄F q “ 0.

(5.2.50)
This equation can be satisfied only if the coefficient of each independent monomial r, r2

and ur is zero: this requires
S “ T `DzD

zT (5.2.51)

and

F “
1

2
D ¨ Y, (5.2.52)

so that also the last condition is automatically satisfied. To sum up, the residual gauge
freedom is parametrized by ξµdx

µ whose components are

ξr “´ T ´
u

2
D ¨ Y pz, z̄q,

ξu “´ pT `DzD
zT q `

r

2
D ¨ Y,

ξA “´ rDAT ´
ru

2
DAD ¨ Y ` r

2YA.

(5.2.53)

Equivalently, the residual symmetry vector is

ξu “T `
u

2
D ¨ Y,

ξr “DzD
zT ´

1

2
pu` rqD ¨ Y,

ξA “´
1

r
DAT ` Y A ´

u

2r
DAD ¨ Y.

(5.2.54)

The corresponding vector acting on I ` is therefore

ξ “ T pz, z̄qBu ` Y
Apz, z̄qBA, (5.2.55)

which identifies the (full) BMS algebra (compare with [52]): an infinite-dimensional family
of direction-dependent translations T pz, z̄qBu together with the conformal Killing vectors
on the sphere Y Apz, z̄qBA.
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5.2.2 Supertranslation charge
We may now compute the charge associated with this residual supertranslation gauge
symmetry, starting either with the Noether tensor kµα or from the current jµ itself. In
any case, the explicit computation of the non-vanishing components of the tensor Hµανβ

is quite useful:

Hurzr “
Uz̄
γzz̄r2

, Huzrz “ ´
Cz̄z̄
γ2
zz̄r

3
, Hrzrz “

Cz̄z̄
γ2
zz̄r

3
,

Hrzzz̄ “
Uz̄

pγzz̄r2q2
, Hrzrz̄ “

2mB

γzz̄r3
,

(5.2.56)

where the components with z̄ and z interchanged are obtained by formal conjugation of all
indices. It is also convenient to compute the “commutators” ξrµ;νs “ ξrµ,νs:

ξru,rs “ 0, ξru,zs “ DzpT `D
zDzT q, ξrr,zs “ 0, ξrz,z̄s “ 0. (5.2.57)

We start computing κur from (5.2.15), since this component is selected by the measure
element of I `

´ . Observe that 1
2H

urνβ∇νξβ “ 1
4H

urνβξrβ,νs by the antisymmetry of Hurνβ

in νβ; by (5.2.57) the only potentially surviving term would be 1
4H

uruzξru,zs, which vanishes
anyway since Huruz is itself zero. The other contribution to the κµν form from (5.2.15) is

ξν∇βHurνβ “ ξνBβH
urνβ`ξνΓuρβH

ρrνβ`ξνΓrρβH
uρνβ`ξνΓνρβH

urρβ`ξνΓββρH
urνρ; (5.2.58)

the fourth term on the right-hand side vanishes by symmetry/antisymmetry in the summed

indices while Γββρ “ Bρ log
?
g in the last term. Taking into account the non-vanishing

Christoffel symbols and Hµανβ components, we get

kur “

„

2BzT
Uz̄
γzz̄r2

` TBz

ˆ

Uz̄
γzz̄r2

˙

` z Ø z̄



`

„ˆ

BzT
Uz̄
γzz̄r2

` z Ø z̄

˙

` 2T
2mB

r2



`

„

´2BzT
Uz̄
γzz̄r2

` T
Uz̄
γ2
zz̄r

2
Bzγzz̄ ` z Ø z̄



,

(5.2.59)

were “z Ø z̄” refers to formal complex conjugation in the z and z̄ indices. Hence, after
expanding the derivative in the second term,

κur “ 2T
2mB

r2
`

1

γzz̄r2
rBzpTUz̄q ` z Ø z̄s ; (5.2.60)

integrating this expression as

Q` “

ż

I`
´

kurγzz̄r
2d2z, (5.2.61)
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and recalling that the sphere has no boundary, we obtain

Q` “ 4

ż

I`
´

T pz, z̄qmBpu, z, z̄qγzz̄d
2z. (5.2.62)

Again, the factor r2 from the measure element gets canceled and the charge is meaning-
fully expressed as an integral over the boundary of null infinity. This agrees with the
supertranslation charge used in Chapter 3.

The computation of jr from (5.2.14), instead, goes as follows. Note that

Hrανβ∇ν∇αξβ “ HrανβBαBνξβ “
1

2
HrανβBαξrβ,νs (5.2.63)

by the vanishing of the Riemann tensor and by antisymmetry in νβ. Therefore, due to
(5.2.56), the only relevant component is Hrzuz „ 1{r3: this term gives a sub-leading
contribution. Altogether, always taking (5.2.56) and (5.2.57) into account, one finds that
the only leading contribution to jµ comes from the following term

BuH
rzuz∇pzξzq ` z Ø z̄ “

2

γ2
zz̄r

2

“

BuCz̄z̄D
2
zT pz, z̄q ` z Ø z̄

‰

. (5.2.64)

Thus,

jr “ ´
1

γ2
zz̄r

2

“

BuCzzD
2
z̄T pz, z̄q ` BuCz̄z̄D

2
zT pz, z̄q

‰

´ Jrrpu, r, z, z̄qT pz, z̄q (5.2.65)

and

Q` “

ż

I`

T pz, z̄q
“

´Bu
`

DzDzCzz `D
z̄Dz̄Cz̄z̄

˘

´ Jpu, z, z̄q
‰

γzz̄d
2zdu, (5.2.66)

where
Jpu, z, z̄q ” lim

rÑ8
r2Jrrpu, r, z, z̄q. (5.2.67)

Since supertranslations act on matter fields by iT pz, z̄qBu at I `, we get by LSZ reduction

xout|pQ`S ´ SQ´q|iny “
N
ÿ

n“1

ηnfnEnT pzn, z̄nqxout|S|iny, (5.2.68)

where fn is the gravitational coupling of each field. Using the auxiliary boundary condition

DzDzCzz “ Dz̄Dz̄Cz̄z̄ at I `
˘ , (5.2.69)

we have

Q` “ ´2

ż

I`

T pz, z̄qBuD
zDzCzzγzz̄d

2zdu. (5.2.70)

81



Now, in order to make contact with Weinberg’s soft theorem, instead of choosing the
simplest possible T pz, z̄q, as we did in Chapter 3, let us try with an angular function of the
following type:

T pz, z̄q “
1

w ´ z

1` wz̄

1` zz̄
. (5.2.71)

Then the left-hand side of (5.2.68), after an integration by parts in Bz̄, involves computing

Bz̄

ˆ

1

w ´ z

1` wz̄

1` zz̄

˙

“´ 2πδ2pz ´ wq
1` wz̄

1` zz̄
`

1

w ´ z

wp1` zz̄q ´ p1` wz̄qz

p1` zz̄q2

“´ 2πδ2pz ´ wq `
1

p1` zz̄q2

“´ 2πδ2pz ´ wq `
1

2
γzz̄.

(5.2.72)

Therefore

Q` “ ´4π

ż

duDwCww `

ż

DzCzzγzz̄d
2zdu, (5.2.73)

where the second term is a boundary contribution on the sphere and hence gives zero. To
sum up:

´ 4πDzxout|

„ˆ
ż

duBuCzz

˙

S ´ S

ˆ
ż

dvBvCzz

˙

|iny “
N
ÿ

n“1

ηn
fnEn
z ´ zn

1` zz̄n
1` znz̄n

xout|S|iny.

(5.2.74)
Now we need to perform the usual stationary phase approximation to express Czz in terms
of soft graviton creation and annihilation operators. As we already saw in Chapter 3, the
result is

Czz “ ´
i

8π2

2

p1` zz̄q2

ż `8

0
dωq

”

aout
` pωqx̂qe

´iωqu ´ aout:
´ pωqx̂qe

iωqu
ı

, (5.2.75)

and
ż

duBuCzz “ ´
1

8π

2

p1` zz̄q2
lim
ωÑ0`

”

ωaout
` pωx̂q ` ωaout:

´ pωx̂q
ı

. (5.2.76)

Thus, using crossing symmetry, we also have

´ 4πxout|

„ˆ
ż

duBuCzz

˙

S ´ S

ˆ
ż

dvBvCzz

˙

|iny “
2

p1` zz̄q2
lim
ωÑ0

xout|ωaout
` pωx̂q|iny,

(5.2.77)
and this implies, by comparison with (5.2.74),

lim
ωÑ0

xout|ωaout
` pωx̂q|iny “ lim

ωÑ0
p1` zz̄q

ÿ

n

ηnfn
Enpz̄ ´ z̄nq

pz ´ znqp1` znz̄nq
, (5.2.78)
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since

γzz̄Bz̄
2

1` zz̄

ÿ

n

ηnfn
Enpz̄ ´ z̄nq

pz ´ znqp1` znz̄nq
“

ÿ

n

ηnfn
Enp1` zz̄nq

pz ´ znqp1` znz̄nq
; (5.2.79)

note that we omitted the Bz̄
1

z´zn
term, since here the delta multiplies a function which

vanishes when z̄ “ z̄n.
This shows the supertranslation Ward identity to be fully equivalent to Weinberg’s fac-

torization formula (3.3.49), without assuming from the beginning fn “constant. Notice
also that our choice (5.2.70) of T is not restrictive, since we may always write

fpz, z̄q “

ż

d2w

2π
fpw, w̄qBw̄

1

w ´ z

1` wz̄

1` zz̄
(5.2.80)

and then use the linearity of the Ward identity to recover the full supertranslation invari-
ance from Weinberg’s theorem.

5.3 Weinberg’s Factorization from Spin-Three Large Gauge
Symmetry

Free spin-three gauge fields are described by the Fronsdal action [56] (see also [57] for a
more recent review)

Srϕs “
1

2

ż

EµνρϕµνρdDx´
ż

Jµνρϕµνρd
Dx, (5.3.1)

where the “Einstein” tensor is given by

Eµνρ “ Fµνρ ´ 1

2
ηpµνF 1ρq (5.3.2)

and the Fronsdal or “Ricci” tensor reads

Fµνρ “ lϕµνρ ´ BpµB ¨ ϕνρq ` BpµBνϕ1ρq; (5.3.3)

Jµνρ is a symmetric source tensor whose traceless part is locally conserved. In compact
notation, where all spacetime indices are suppressed, [58]

E “ F ´ 1

2
ηF 1, F “ lϕ´ BB ¨ ϕ` B2ϕ1, (5.3.4)

which is in fact the form of these tensors for arbitrary integer spin. The equations of motion
are E “ J and the explicit trace of F is F 1ρ “ 2lϕ1ρ ´ 2B ¨ B ¨ ϕρ ` BρB ¨ ϕ

1. The “Einstein”
tensor satisfies the “anomalous” Bianchi identity:

BµEµνρ “ ´
1

2
ηνρB ¨ F 1 or, equivalently, Bµ

ˆ

Eµνρ ` 1

2
ηνρF 1µ

˙

“ 0. (5.3.5)
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The field ϕ is subject to the gauge symmetry

ϕµνρ „ ϕµνρ ` Bpµενρq where ε1 ” εαα “ 0. (5.3.6)

Indeed, under such transformations, the Fronsdal tensor is gauge-invariant

δFµνρ “ 3BµBνBρε
1 “ 0. (5.3.7)

The variation of the action gives, for the first term,

1

2
δ

ż

EµνρϕµνρdDx “
3

2

ż

EµνρBµενρdDx “
3

2

ż

Bµ pEµνρενρq `
3

4

ż

B ¨ F 1ε1dDx, (5.3.8)

i.e. a boundary term plus a vanishing contribution, thanks to the anomalous Bianchi
identity and the trace constraint. For the second term we have

´ 3

ż

Bµ pJ
µνρενρq d

Dx, (5.3.9)

since the traceless projection of Jµνρ is conserved:

B ¨ J ´
1

D
ηB ¨ J 1 “ 0. (5.3.10)

The symmetrized derivatives needed for the computation of the Noether current are, in
compact notation,

δL
δϕ,αβ

“
1

2

"

ηαβϕ´
1

2

´

ηαϕβ ` ηβϕα
¯

` ηϕαβ ´ ηαβϕ1η

`
1

2

´

ηαηβϕ1 ` ηβηαϕ1
¯

´
1

4

´

ϕ1αηβη ` ϕ1βηαη
¯

*

.

(5.3.11)

We also define
δS

δϕµνρ,αβ
”

1

2
Kµνραβ . (5.3.12)

Then

jα “
1

2

´

Kµνραβ∇βδϕµνρ ´∇βKµνραβδϕµνρ
¯

`
3

2
Jανρενρ. (5.3.13)

5.3.1 Bondi-like gauge for spin 3 and residual symmetry
Following the pattern displayed by the spin 1 and 2 cases, we choose our “Bondi-like gauge”
near I ` to be the following set of boundary/falloff conditions: in Bondi coordinates,

• ϕrαβ “ 0, for all α, β;

• ϕzz̄µ “ 0, for all µ ‰ r ;
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• the other components scale in the following manner as r Ñ8:

ϕuuu “
ϕ

r
, ϕuuz “ ´Uz, ϕuzz “ rCzz, ϕzzz “ r2Bzzz, (5.3.14)

and similarly for z Ø z̄ components, where ϕ, Uz, Czz and Bzzz are r-independent
functions. Notice that with our choices ϕ1µ “ 0.

Again, we ask ourselves if there are residual gauge transformations leaving this structure
invariant: we look for gauge parameters εµν , subject to ε1 “ 0, such that the variation

δϕµνρ “∇µενρ `∇νερµ `∇ρεµν
“Bµενρ ` Bνερµ ` Bρεµν ´ 2Γαµνεαρ ´ 2Γαρνεαµ ´ 2Γαµρεαν

(5.3.15)

does not alter our gauge-fixing conditions.
From

εprr;rq “ 0 ùñ εrr,r “ 0 (5.3.16)

we deduce
εrr “ ´T pz, z̄q (5.3.17)

for some angular function T pz, z̄q, since we do not allow any u-dependence. Similarly

εpuu;rq “ 0 ùñ εuu,r “ 0, (5.3.18)

whence
εuu “ ´Spz, z̄q (5.3.19)

for some S, and
εpur;rq “ 0 ùñ εur,r “ 0, (5.3.20)

thus
εur “ ´Apz, z̄q. (5.3.21)

The uuu component of the field has to be invariant too (no u-dependence is considered)

εpuu;uq “
1

r
ppz, z̄q “ 0 ùñ ppz, z̄q “ 0. (5.3.22)

Now we have

εprr;zq “ 0 ùñ 2Brεrz ´
4

r
εrz ´ BzT pz, z̄q “ 0, (5.3.23)

which is solved by

εrz “ ´
r

2
BzT (5.3.24)

and

εprz;zq “ 0 ùñ Brεzz ´
4

r
εzz ´ rD

2
zT “ 0, (5.3.25)
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where we used D2
zT “ B

2
zT ´ Bz log γzz̄BzT , and which gives

εzz “ ´
r2

2
D2
zT. (5.3.26)

The trace3 constraint reads

ε1 “ 0 ùñ εzz̄ “ γzz̄
r2

2
pT ´ 2Aq . (5.3.28)

Substituting the trace constraint into

εprz;z̄q “ 0 ùñ Brεzz̄ ` Bzεrz̄ ` Bz̄εrz ´
4

r
εzz̄ ´ 2rγzz̄pT ´Aq “ 0 (5.3.29)

gives

A “
3

4
T `

1

4
DzDzT ùñ εur “ ´

ˆ

3

4
T `

1

4
DzDzT

˙

(5.3.30)

εzz̄ “ ´γzz̄
r2

4
pT `DzDzT q . (5.3.31)

By

εpru;zq “ 0 ùñ Brεuz ´
2

r
εuz ´ BzA “ 0, (5.3.32)

we have εuz “ ´rDzApz, z̄q or

εuz “ ´r

ˆ

3

4
DzT `

1

4
D2
zD

zT

˙

. (5.3.33)

From
εpuz;z̄q “ 0 ùñ Bzεuz̄ ` Bz̄εuz ´ 2γzz̄r pA´ Sq “ 0, (5.3.34)

we can determine S and thus get from (5.3.19)

εuu “ ´

ˆ

3

4
T `DzDzT `

1

4
pDzDzq

2T

˙

. (5.3.35)

Finally, the remaining consistency condition is identically satisfied4

εpzz;z̄q “ Bz̄εzz`2Dzεzz̄´4γzz̄r pεuz ´ εrzq “ ´
r2

2

´

rDz, Dz̄sDzT `γzz̄DzT
¯

“ 0. (5.3.36)

3 Using the Minkowski metric, expanded in Bondi coordinates, the trace is given by

ε1 “ εrr ´ 2εru ` 2
εzz̄
r2γzz̄

. (5.3.27)

4 To check this result, it may be useful to recall that BzBz̄ log γzz̄ “ ´γzz̄.
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The non-vanishing gauge variations are:

δϕuuz “´Dz

ˆ

3

4
T `DzDzT `

1

4
pDzDzq

2T

˙

δϕuzz “´
r

2

`

3D2
zT `D

2
zD

zDzT
˘

δϕzzz “´
3

2
r2D3

zT,

(5.3.37)

and similarly for z Ø z̄, consistently with the chosen scaling behaviors.
Therefore, the answer to our question is yes: there is residual gauge freedom, given by

the following family of tensors, parametrized by the angular function T pz, z̄q,

εµνdx
µdxν “´

ˆ

3

4
T `DzDzT `

1

4
pDzDzq

2T

˙

du2 ´ 2

ˆ

3

4
T `

1

4
DzDzT

˙

dudr

´ 2r

ˆ

3

4
DzT `

1

4
D2
zD

zT

˙

dudz ´ T pz, z̄qdr2

´ rDzTdrdz ´
r2

2
D2
zTdz

2 ´
r2

2
γzz̄ pT `D

zDzT q dzdz̄ ` z Ø z̄

(5.3.38)

and the corresponding contravariant tensor is given by

εµνBµBν “ ´T pz, z̄qB
2
u `O

ˆ

1

r

˙

. (5.3.39)

5.3.2 Charge for spin 3 residual symmetry
Like for s “ 2, the only leading contribution to the Noether charge comes from BuKzzzruδϕzzz,
with Kµνραβ defined in (5.3.12), where

Kzzzru “ ´ϕzzz “ ´ Bz̄z̄z̄
γ3
zz̄r

4
“ ´

1

r4
Bzzz (5.3.40)

and

BuKzzzruδϕzzz “
3

2r2
BuB

zzzD3
zT pz, z̄q. (5.3.41)

Hence

Q` “

ż

I`

T pz, z̄q

„

3

4
Bu

`

pDzq3Bzzz ` z Ø z̄
˘

´
3

2
Jpu, z, z̄q



γzz̄d
2zdu, (5.3.42)

where
Jpu, z, z̄q ” lim

rÑ8
r2Jrrrpu, r, z, z̄q. (5.3.43)
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Since the residual symmetry acts on matter fields by ´T pz, z̄qB2
u at I `, i.e., since Jpu, z, z̄q

generates the global group, we can write

rQ`,Φs “
3

2
gp3qn T piBq2uΦ, (5.3.44)

where g
p3q
n is the coupling of each matter field to the spin-three gauge field. By LSZ

reduction, we get

xout|pQ`S ´ SQ´q|iny “
3

2

N
ÿ

n“1

ηng
p3q
n E2

nT pzn, z̄nqxout|S|iny, (5.3.45)

Using the auxiliary boundary condition

pDzq3Bzzz “ pD
z̄q3Bz̄z̄z̄ at I `

˘ , (5.3.46)

we have

Q` “
3

2

ż

I`

T pz, z̄q
“

BupD
zq3Bzzz ´ Jpu, z, z̄q

‰

γzz̄d
2zdu. (5.3.47)

In order to get a more explicit expression we employ a suitable generalization of (5.2.71):

T pz, z̄q “
1

w ´ z

ˆ

1` wz̄

1` zz̄

˙2

. (5.3.48)

The left-hand side of (5.3.45), after an integration by parts in Bz̄, involves the following
computation

Bz̄

˜

1

w ´ z

ˆ

1` wz̄

1` zz̄

˙2
¸

“ ´2πδ2pz ´ wq `
1

2
γzz̄

1` wz̄

1` zz̄
. (5.3.49)

Therefore, leaving the J term aside, since it does not contribute to the left-hand side of
the Ward identity,

Q` “ 3π

ż

duDwDwBwww ´
3

4

ż

DzDzBzzzγzz̄
1` wz̄

1` zz̄
d2zdu; (5.3.50)

but integrating again by parts the second term one has

3

8

ż

γzz̄D
zBzzzpw ´ zqd

2z, (5.3.51)

which is a boundary contribution on the sphere and hence gives zero. To sum up:

2πpDzq2xout|

„ˆ
ż

duBuBzzz

˙

S ´ S

ˆ
ż

dvBvBzzz

˙

|iny

“

N
ÿ

n“1

ηn
gnE

2
n

z ´ zn

ˆ

1` zz̄n
1` znz̄n

˙2

xout|S|iny.

(5.3.52)
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The usual stationary phase approximation for Bzzz in turn gives:

Bzzz “ ´
i

8π2

23{2

p1` zz̄q3

ż `8

0
dωq

”

aout
` pωqx̂qe

´iωqu ´ aout:
´ pωqx̂qe

iωqu
ı

(5.3.53)

and
ż

duBuBzzz “ ´
1

8π

23{2

p1` zz̄q3
lim
ωÑ0`

”

ωaout
` pωx̂q ` ωaout:

´ pωx̂q
ı

. (5.3.54)

Thus, using crossing symmetry, we also have

´ 4πxout|

„ˆ
ż

duBuBzzz

˙

S ´ S

ˆ
ż

dvBvBzzz

˙

|iny “
23{2

p1` zz̄q3
lim
ωÑ0

xout|ωaout
` pωx̂q|iny,

(5.3.55)
which implies, by confrontation with (5.3.52),

lim
ωÑ0

xout|ωaout
` pωx̂q|iny “ ´ lim

ωÑ0

?
2p1` zz̄q

ÿ

n

ηngn
E2
npz̄ ´ z̄nq

2

pz ´ znqp1` znz̄nq2
, (5.3.56)

since

pDzq2
4

p1` zz̄q2

ÿ

n

ηngn
E2
npz̄ ´ z̄nq

2

pz ´ znqp1` znz̄nq2
“ 2

ÿ

n

ηngn
E2
np1` zz̄nq

2

pz ´ znqp1` znz̄nq2
. (5.3.57)

This shows that the residual gauge symmetry Ward identity for our Bondi-like spin-three
gauge is equivalent to Weinberg’s factorization formula (3.3.49).

Let us stress the role played by our choices (5.2.71) and (5.3.48) for the function T pz, z̄q.
For the spin-two case it allowed us to avoid assuming the equivalence principle in the form
of universality of matter-graviton couplings. Prior knowledge of the latter, on the other
hand, allows for alternative, simple choices of T pz, z̄q as the one employed in [2]. For the
spin-three case, on the other hand, no sum rule is expected to hold for the corresponding
charges and we could not have hoped to reproduce the result using cancellations justifiable
for s “ 2 on account of the equivalence principle.

It should also be stressed that, just like for spin two, our residual gauge symmetry is not a
symmetry of the Fierz system identifying irreducible representations of arbitrary spin and,
although the choice of falloff conditions allowing for such a symmetry seems reasonable,
the requirements of our Bondi-like gauge are not pure gauge-fixing conditions, but rather
involve nontrivial assumptions on the behavior of the gauge fields on the boundary.

5.4 Weinberg’s Factorization from Higher-Spin Large Gauge
Symmetry

We now move to the generalization of the above program to any integer spin s. The main
logical steps required to achieve this goal are essentially the same as in the spin-three
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case: first we need to look for a reasonable definition of “Bondi-like gauge” ammitting
some suitable residual gauge freedom, and then we have to make explicit the connection
between this gauge freedom and Weinberg’s factorization theorem.

We will organize this material in a slightly different order, with respect to our discussion
of the spin-three case: after a synthetic review of the formulation of the spin-s free theory,
we will state the falloff conditions defining our asymptotic Bondi-like gauge and prove that
Weinberg’s soft theorems can be recast as Ward identities for residual gauge symmetry
associated with such a gauge choice, postponing the explicit computation of the asymptotic
symmetry group to the last section.

5.4.1 Free spin-s gauge fields
We recall now a few basic elements of the description of free massless fields with arbitrary
integer spin s. A spin-s field is usually described in terms of a totally symmetric tensor
ϕµ1...µs of rank s. Its dynamics is encoded in the Fronsdal action [56, 57]

Srϕs “
1

2

ż

Eµ1...µsϕµ1...µsd
Dx (5.4.1)

where the “Einstein” tensor is given by

Eµ1...µs “ Fµ1...µs ´
1

2
ηpµ1µ2F 1µ3...µsq (5.4.2)

and the Fronsdal or “Ricci” tensor reads

Fµ1...µs “ lϕµ1...µs ´ Bpµ1B ¨ ϕµ2...µsq ` Bpµ1Bµ2ϕ1µ3...µsq. (5.4.3)

Instead of writing down the indices explicitly, it is most convenient to suppress all indices in
the following compact notation, where the symmetrization of all free indices is understood
[58]:

E “ F ´ 1

2
ηF 1, F “ lϕ´ BB ¨ ϕ` B2ϕ1. (5.4.4)

The equations of motion are E “ 0.
For massless fields ϕ the following gauge symmetry is introduced,

ϕµ1...µs „ ϕµ1...µs ` Bpµ1
εµ2...µsq, or δϕ “ Bε, (5.4.5)

and, for s ě 4, the fields are subject to the double-trace constraint ϕα β µ5...µs
α β “ ϕ2 “ 0;

furthermore, the gauge parameter ε must be traceless εα µ3...µs
α “ ε1 “ 0 for all s ě 3.

The Fronsdal and “Einstein” tensors possess two very important properties: the Fronsdal
tensor is gauge-invariant,

δF “ 3B3ε1 “ 0, (5.4.6)
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thanks to the trace constraint ε1 “ 0, whereas the “Einstein” tensor satisfies an “anoma-
lous” Bianchi identity,

B ¨ E “ ´1

2
ηB ¨ F 1 ´ 3

2
B3ϕ2, (5.4.7)

where the second term on the right-hand side shows up for s ě 4 only and vanishes due to
the double-trace constraint ϕ2 “ 0. Using these relations, the variation of the action gives

1

2
δ

ż

EϕdDx “ 1

2

ż

EBεdDx “ s

2

ż

Eαµ2...µsBαεµ2...µsd
Dx

“
s

2

ż

Bα pEαµ2...µsεµ2...µsq d
Dx,

(5.4.8)

i.e. a boundary term.
The symmetrized derivatives needed for the computation of the Noether current are, in

compact notation,

δL
δϕ,αβ

“
1

2

"

ηαβϕ´
1

2

´

ηαϕβ ` ηβϕα
¯

` ηϕαβ ´ ηαβϕ1η

`
1

2

´

ηαηβϕ1 ` ηβηαϕ1
¯

´
1

4

´

ϕ1αηβη ` ϕ1βηαη
¯

*

.

(5.4.9)

We also define
δS

δϕµ1...µs,αβ
”

1

2
Kµ1...µsαβ. (5.4.10)

The interaction with matter is introduced via the following coupling to a symmetric
source Jµ1...µs , whose traceless projection is divergence free:

S “
1

2

ż

Eµ1...µsϕµ1...µsd
Dx´

ż

Jµ1...µsϕµ1...µsd
Dx. (5.4.11)

Now the equations of motion are E “ J and the variation of the action reads

´
s

2

ż

Bα pJ
αεq dDx. (5.4.12)

Hence, the Noether current corresponding to the spin-s gauge invariance is given by

jα “
1

2

´

Kαβ∇βδϕ´∇βKαβδϕ
¯

`
s

2
Jαε. (5.4.13)

5.4.2 Bondi-like gauge for spin s

Our Bondi-like gauge for any integer spin s is given by the obvious generalization of the
conditions we chose for spin three:

ϕrµ2...µs “ 0 “ ϕzz̄µ3...µs (5.4.14)
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and
ϕuu...u zz...z

loomoon

d

“ rd´1Bzz...z. (5.4.15)

for d “ 1, . . . , s. Notice that, in this gauge, any number of traces of these fields vanishes:
this is consistent with the fact that for spin four or higher the vanishing of the double trace
of ϕ must be enforced to recover the correct Lagrangian equations.

Assuming that there are in fact spin-s residual gauge transformations, we would like
to compute their charge, given by the variation of the zz . . . z component, postponing
the (more technical) task of proving that our Bondi-like gauge-fixing indeed admits such
residual freedom to the next section: this will allow us to immediately get to Weinberg’s
result for spin s, representing the main result of this thesis.

First, let us recall that the explicit gauge variation for a spin s field reads

δϕµ1...µs “∇pµ1
εµ2...µsq

“Bpµ1
εµ2...µsq ´ 2

ÿ

iăj

Γαµiµjεαµ1...xµi...xµj ...µs ,
(5.4.16)

where the summed indices i, j take values from 1 to s and pµi means that the corresponding
index has been omitted. From the invariance, in Bondi-like gauge, of the rr . . . r component,
we get the following definition of T pz, z̄q:

εpr...r;rq “ 0 ùñ Brεr...r “ 0, (5.4.17)

i.e.,
εr...r “ ´T pz, z̄q. (5.4.18)

Now,

εpr...r;zq “ 0 ùñ ps´ 1qBrεr...rz ´ BzT ´ 2ps´ 1q
1

r
εr...rz “ 0, (5.4.19)

which is solved by

εr...rz “ ´
r

s´ 1
DzT ; (5.4.20)

again,

εpr...rz;zq “ 0 ùñ ps´ 2qBrεr...zz ` 2Dzεr...rz ´ 4ps´ 2q
1

r
εr...zz “ 0, (5.4.21)

hence

εr...zz “ ´
r2

ps´ 1qps´ 2q
D2
zT. (5.4.22)

Proceeding this way, by induction we get

εz...zz “ ´
rs´1

ps´ 1q!
Ds´1
z T, (5.4.23)
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so that the desired variation takes the form

δϕz...zz “ ´
srs´1

ps´ 1q!
Ds
zT. (5.4.24)

The Noether current will be given by the relevant contribution to (5.4.9)

´
1

2
BuKz...zruδϕz...zz “ ´

1

2

´rs´1BuBz...zz
pγzz̄r2qs

„

´
srs´1

ps´ 1q!
Ds
zT



“ ´
s

2r2ps´ 1q!
pDzqsTBuBz...zz

(5.4.25)

so, using the auxiliary boundary condition

pDzqsBz...zz “ pD
z̄qsBz̄...z̄z̄, (5.4.26)

and integrating by parts we arrive at

Q` “ p´1qs
s

2ps´ 1q!

ż

I`

Bz̄T pD
zqs´1BuBz...zzd

2zdu´
s

2

ż

I`

γzz̄Jpu, z, z̄qd
2zdu, (5.4.27)

where
Jpu, z, z̄q ” lim

rÑ8
r2Jr...rpu, r, z, z̄q. (5.4.28)

Once again, the next important step is the choice of the function T pz, z̄q; following our
spin-two and spin-three Ansätze, we choose

T pz, z̄q “
1

w ´ z

ˆ

1` wz̄

1` zz̄

˙s´1

, (5.4.29)

which yields

xout|pQ`S ´ SQ´q|iny

“ ´ 4π
p´1qs

ps´ 1q!
pDzqs´1xout|

„ˆ
ż

duBuBz...zz

˙

S ´ S

ˆ
ż

dvBvBz...zz

˙

|iny

“
ÿ

n

ηn
g
psq
n Es´1

n

z ´ zn

ˆ

1` zz̄n
1` znz̄n

˙s´1

xout|S|iny,

(5.4.30)

where we have used the usual action of Q` on the matter fields,

rQ`,Φs “
s

2
gpsqn T piBuq

s´1Φ. (5.4.31)

The stationary phase approximation gives

´ 4πxout|

„ˆ
ż

duBuBz...zz

˙

S ´ S

ˆ
ż

dvBvBz...zz

˙

|iny

“
2s{2

p1` zz̄qs
lim
ωÑ0`

“

ωxout|aout
` S|iny

‰

(5.4.32)
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and hence

lim
ωÑ0`

“

ωxout|aout
` S|iny

‰

“ p´1qs2s{2´1p1` zz̄q
ÿ

n

ηn
g
psq
n Es´1

n

z ´ zn

ˆ

z̄ ´ z̄n
1` znz̄n

˙s´1

, (5.4.33)

due to
1

ps´ 1q!
pDzqs´1 2s´1

p1` zz̄qs´1

ÿ

n

ηn
g
psq
n Es´1

n

z ´ zn

ˆ

z̄ ´ z̄n
1` znz̄n

˙s´1

“
ÿ

n

ηn
g
psq
n Es´1

n

z ´ zn

ˆ

1` zz̄n
1` znz̄n

˙s´1

xout|S|iny.

(5.4.34)

Indeed, proving this formula amounts to proving that

1

n!
rp1` zz̄q2Bz̄s

n

ˆ

z̄ ´ ζ̄

1` zz̄

˙n

“ p1` zζ̄qn, for all n P N, (5.4.35)

and this follows by induction: we have already checked the formula for n “ 1, 2 in the
previous sections and if the formula holds for n´ 1, then

1

n!
rp1` zz̄q2Bz̄s

n

ˆ

z̄ ´ ζ̄

1` zz̄

˙n

“
1

n!
rp1` zz̄q2Bz̄s

n´1

«

n

ˆ

z̄ ´ ζ̄

1` zz̄

˙n´1

p1` zζ̄q

ff

“ p1` zζ̄q
1

pn´ 1q!
rp1` zz̄q2Bz̄s

n´1

ˆ

z̄ ´ ζ̄

1` zz̄

˙n´1

“ p1` zζ̄qp1` zζ̄qn´1 “ p1` zζ̄qn.

(5.4.36)

5.4.3 Residual gauge freedom for spin s

We now turn to the problem of verifying whether or not the presence of residual gauge
transformations parametrized by an angular function T pz, z̄q is allowed by our Bondi-like
gauge for any spin. It will turn out that there is indeed one such a family, in complete
analogy with the lower-spin cases. The keypoint of this discussion will be to identify, on
the one hand, which equations can be used to restrict the allowed gauge parameters and,
on the other hand, which should be identically satisfied as consistency conditions, if we are
to have any nontrivial symmetry left.

Recall that our Bondi-like gauge is summarized by the following conditions

ϕrµ2...µs “ 0 “ ϕzz̄µ3...µs (5.4.37)

and
ϕuu...u zz...z

loomoon

d

“ rd´1Bzz...z. (5.4.38)
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for d “ 1, . . . , s. The equations defining our residual gauge freedom are precisely those
encoding the preservation of these scaling behaviors:

δϕrµ2...µs “ 0 “ δϕzz̄µ3...µs (5.4.39)

and
δϕuu...u zz...z

loomoon

d

“ Oprd´1q. (5.4.40)

Let us observe that the independent equations of this system are labelled by the following
numbers:

• the number p of “u” indices appearing,

• the number d of “z” indices appearing without z̄ counterpart,

• the number c of pairs “zz̄”, counted ignoring their order.

For simplicity of notation, when useful, we shall indicate by ϕpd,c and εpd,c the field compo-
nents and gauge parameter components, respectively, labelled according to these counting
criteria. The remaining number of “r” indices is understood to be s ´ p ´ d ´ 2c for the
field components and ps´ 1q ´ p´ d´ 2c for the gauge parameter components.

The equations with d “ c “ 0, with increasing number p of “u” indices, are

Brεrr...r “0 ùñ εrr...r “ ´T pz, z̄q ” ´T0pz, z̄q,

Brεur...r “0 ùñ εur...r “ ´T1pz, z̄q

...

Brεuu...u “0 ùñ εuu...u “ ´Ts´1pz, z̄q

(5.4.41)

or, briefly, εp0,0 “ ´Tppz, z̄q, for some set of angular functions Tp. The first relation in the
set, εrr...r “ ´T pz, z̄q, plays a special role, since we will see that it is in fact this function
which determines all the others. The equations with p “ c “ 0, with increasing number of
“z” indices, read

ps´ 1qBrεzr...r ´ ps´ 1q
2

r
εzr...r ´DzT “0 ùñ εzr...r “ ´

r

s´ 1
DzT

ps´ 2qBrεzz...r ´ ps´ 2q
4

r
εzz...r ´

r

s´ 1
D2
zT “0 ùñ εzz...r “ ´

r2

ps´ 1qps´ 2q
D2
zT

...

Brεzz...z ´ ps´ 1q
2

r
εεzz...z ´

ps´ 1qrs´2

ps´ 1qps´ 2q ¨ ¨ ¨
Ds´1
z T “0 ùñ εzz...z “ ´

rs´1

ps´ zq!
Ds´1
z T.

(5.4.42)
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Thus, in short,

ε0
d,0 “ ´

rd

ps´ 1q ¨ ¨ ¨ ps´ dq
Dd
zT. (5.4.43)

The equations with mixed u and z indices, for fixed c “ 0, are analyzed as follows: consider
first p “ 1 “ d,

ps´ 2qBrεuzr...r ´ ps´ 2q
2

r
εuzr...r ´DzT1 “ 0 ùñ εuzr...r “ ´

r

s´ 2
DzT1 (5.4.44)

then p “ 2, d “ 1,

ps´ 3qBrεuuzr...r ´ ps´ 3q
2

r
εuuzr...r ´DzT2 “ 0 ùñ εuuzr...r “ ´

r

s´ 3
DzTp (5.4.45)

and so on, which gives

εp1,0 “ ´
r

s´ 1´ p
DzTp; (5.4.46)

also, the case for arbitrary p and d “ 2 is easily studied,

ps´ p´ 2qBrε
p
2,0 ´

4

r
εp2,0 ´

r

s´ p´ 1
D2
zTp ùñ εp2,0 “ ´

r2

ps´ p´ 1qps´ p´ 2q
D2
zTp,

(5.4.47)
and by increasing d one sees that in general

εpd,0 “ ´
rdDd

zTp
śd
k“1ps´ p´ kq

. (5.4.48)

This formula is extended to non-zero c by means of the trace constraints

εzz̄µ3...µs´1 “ ´
1

2
γzz̄r

2
`

εrrµ3...µs´1 ´ 2εruµ3...µs´1

˘

, (5.4.49)

or

εpd,c`1 “ ´
1

2
γzz̄r

2
´

εpd,c ´ 2εp`1
d,c

¯

. (5.4.50)

For instance, the relation for p “ 0 “ d and c “ 1,

εzz̄r...r “ ´
1

2
r2γzz̄p´T ` 2T1q (5.4.51)

allows to eliminate εzz̄r...r from the corresponding equation

´
2r

s´ 1
DzDz̄T ` Bz̄εzr...r ` ps´ 2q

„

Brεzz̄r...r ´
4

r
εzz̄r...r



´ 2γzz̄rpT ´ T1q “ 0 (5.4.52)

yielding

T1 “
s

2ps´ 1q
T `

1

ps´ 1q2
DzDzT, (5.4.53)
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and substituting back

εzz̄r...r “ ´
1

2
r2γzz̄

ˆ

1

s´ 1
T ` 2ps´ 1q2DzD

zT

˙

. (5.4.54)

Considering, more generally, d “ 0, arbitrary p and c “ 1, one has, exactly by the same
strategy,

Tp`1 “
s´ p

srs´ pp` 1qs
Tp `

1

rs´ pp` 1qs2
DzDzTp (5.4.55)

which determines every Tp recursively as a combination of T and its derivatives. In fact,
equations (5.4.48), (5.4.50), and (5.4.55) completely specify the components of εµ1...µs´1 in
terms of T , in a recursive way. Let us stress that, while at this point our residual gauge
freedom is completely fixed, so far we have only used a part of our Bondi-like conditions,
namely all the equations where either d “ 0 or c “ 0. As a consequence, either the
leftover equations with d, c ě 1 and arbitrary p are identically satisfied or new conditions
would arise on the gauge parameters that may well kill the infinite-dimensional asymptotic
symmetry encoded in particular in the function T pz, z̄q.

The equation with arbitrary p and with d, c ě 1 can be expressed as the vanishing of the
following quantity

Cpd,c “ps´ p´ d´ 2cq

„

Brε
p
d,c ´ pd` 2cq

2

r
εpd,c



` pd` cqDzε
p
d´1,c ` cDz̄ε

p
d`1,c´1

´ 2γzz̄rcpd` cq
´

εp`1
d,c´1 ´ ε

p
d,c´1

¯

.

(5.4.56)

The following Newton-like formula is an immediate consequence of the recurrence relation
(5.4.50):

εpd,c “ γczz̄r
2c

c
ÿ

l“0

ˆ

c

l

˙ˆ

´
1

2

˙c´l

εp`ld,0 ; (5.4.57)

by extracting the r-dependence from εp`ld,0 , we obtain

εpd,c “ rd`2cε̂pd,c (5.4.58)

and

ε̂pd,c “ γczz̄

c
ÿ

l“0

ˆ

c

l

˙ˆ

´
1

2

˙c´l

ε̂p`ld,0 . (5.4.59)

This allows to rewrite (5.4.50) as

εpd,c “ ´
1

2
γzz̄r

d`2c
´

ε̂pd,c´1 ´ 2ε̂p`1
d,c´1

¯

(5.4.60)
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and to rewrite Cpd,c, suitably rescaled, as follows

Cpd,cr
1´d´2c “

1

2
γzz̄ps´ p´ d´ 2cqpd` 2cq

´

ε̂pd,c´1 ´ 2ε̂p`ld,c´1

¯

´
1

2
γzz̄pd` cq

´

Dz ε̂
p
d´1,c´1 ´ 2Dz ε̂

p`l
d´1,c´1

¯

` cDz̄ ε̂
p
d`1,c´1

` 2γzz̄cpd` cq
´

ε̂p`ld,c´1 ´ ε̂
p
d,c´1

¯

.

(5.4.61)

Having in mind (5.4.57), we can expand Cpd,cr
1´d´2c with respect to l as follows

Cpd,cr
1´d´2c “ γc´1

zz̄

c´1
ÿ

l“0

ˆ

c´ 1

l

˙ˆ

´
1

2

˙c´1´l

Ĉ
p plq
d,c , (5.4.62)

where the components Ĉ
p plq
d,c are obtained by inserting

ε̂pd,c´1 “ ´γ
c´1
zz̄

c´1
ÿ

l“0

ˆ

c´ 1

l

˙ˆ

´
1

2

˙c´1´l Dd
zTp`l

śd
k“1ps´ p´ l ´ kq

, (5.4.63)

and read

Ĉ
p plq
d,c “´

γzz̄
2
ps´ p´ d´ 2cqpd` 2cq

ˆ

«

Dd
zTp`l

śd
k“1ps´ p´ l ´ kq

´
2Dd

zTp`l`1
śd
k“1ps´ p´ l ´ k ´ 1q

ff

`
γzz̄
2
pd` cq

«

Dd
zTp`l

śd´1
k“1ps´ p´ l ´ kq

´
2Dd

zTp`l`1
śd´1
k“1ps´ p´ l ´ k ´ 1q

ff

´ c
Dz̄D

d`1
z Tp`l

śd`1
k“1ps´ p´ l ´ kq

` 2γzz̄cpd` cq

«

Dd
zTp`l`1

śd
k“1ps´ p´ l ´ k ´ 1q

´
Dd
zTp`l

śd
k“1ps´ p´ l ´ kq

ff

.

(5.4.64)

The recursion relation (5.4.55), with l-dependence included,

Tp`l`1 “
s´ p´ l

2ps´ p´ l ´ 1q
Tp`l `

1

ps´ p´ l ´ 1q2
DzDzTp`l (5.4.65)

allows to rewrite everything in terms of Tp`l while the curvature relation

Dz̄D
d`1
z Tp`l “ Dd

zDz̄DzTp`l `
dpd` 1q

2
γzz̄D

d
zTp`l (5.4.66)
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allows to eliminate the Dz̄D
d`1
z Tp`l yielding

Ĉ
p plq
d,c “

d` 2c
śd`1
k“1ps´ p´ l ´ kq

ˆ

"

l ` 1´ c

s´ p´ l ´ 1
Dd
zDz̄DzTp`l `

γzz̄
2
rlpd` cq ` p1´ cqps´ pqsDd

zTp`l

*

;

(5.4.67)
using (5.4.65) to eliminate Dz̄DzTp`l, instead, we have

Ĉ
p plq
d,c “

γzz̄pd` 2cq
śd`1
k“2ps´ p´ l ´ kq

pl ` 1´ cqDd
zTp`l`1 ´

γzz̄pd` 2cq

2
śd
k“1ps´ p´ l ´ kq

l Dd
zTp`l.

(5.4.68)
Two successive terms in the sum (5.4.62) combine as follows

pc´ 1q . . . pc´ 1´ lq

l!
p´1qc´1´l2l

˜

Ĉ
p plq
d,c

c´ 1´ l
´ 2

Ĉ
p pl`1q
d,c

l ` 1

¸

, (5.4.69)

where in this expression the terms involving Tp`l`1 are

´
γzz̄pd` 2cq

śd`1
k“2ps´ p´ l ´ kq

Dd
zTp`l`1 `

γzz̄pd` 2cq
śd
k“1ps´ p´ l ´ k ´ 1q

Dd
zTp`l`1 “ 0; (5.4.70)

therefore the sum defining Cpd,c is telescopic. But clearly Ĉ
p p0q
d,c gives no contribution

involving Tp and neither does Ĉ
p pc´1q
d,c involve Tp`c´1 since those terms have vanishing

coefficient by (5.4.68). Thus Cpd,c “ 0 whenever d or c do not vanish, and every consistency
condition is satisfied, showing that the existence of the infinite-dimensional asymptotic
higher-spin symmetry survives this rather nontrivial stress test.

Furthermore for s “ p` d,

δϕpd,0 “ dDzε
p
d´1,0 “ ´

drd´1Dd
zTp

śd´1
k“1ps´ p´ kq

(5.4.71)

which indeed respects the scaling behavior with rd´1 imposed on ϕpd,0.
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6 Soft Theorems and Goldstone Theorem
At the beginning of the seventies [32, 33], it had already been observed in quantum elec-
trodynamics that all soft theorems of Weinberg [6, 7] and Low [8] type can be seen to arise
from the spontaneous breaking of linear large gauge symmetries, constituting a subgroup
of the usual Up1q gauge group of electrodynamics. In this section, we first review and then
extend this approach to soft theorems for any spin. For a recent review of various aspects
of symmetry breaking in QFT from a rigorous perspective see [50].

6.1 Spontaneous Symmetry Breaking in Quantum
Electrodynamics

We work in the Feynman-Gupta-Bleuler formulation of QED, corresponding to a local
gauge where

lAµpxq “ jµpxq, Bµjµpxq “ 0, (6.1.1)

where jµpxq is the conserved current associated to the global Up1q symmetry transformation
gpλq, implemented by eiλQ. Consider the following family of local gauge transformations,
given by the linear gauge parameter εpxq “ ´lµx

µ:

αplq : Aµpxq ÞÝÑ Aµpxq ´ lµ, (6.1.2)

ψpxq ÞÝÑ ψpxq expt´ielµx
µu. (6.1.3)

This αplq, parametrized by the co-vector lµ, is indeed a large gauge transformation, in that
its gauge parameter εpxq grows linearly as one approaches infinity. Denoting by τpa,Λq
the action of the Poincaré group, where aµ is a translation vector and Λ P SOp3, 1q,
we immediately see that αplq is not an internal symmetry: for example, considering its
commutation with translations

τpaqαplqψpxq “ τpaqψpxq expt´ielµx
µu

“ ψpx` aq expt´ielµx
µu

“ ψpx` aq expt´ielµpx` aq
µu exptielµa

µu

“ αplqψpx` aq exptielµa
µu

“ αplqτpaqgpl ¨ aqψpxq

(6.1.4)

thus
τpaqαplq “ αplqτpaqgpl ¨ aq. (6.1.5)
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6.1.1 Broken large gauge symmetries and Goldstone’s theorem
Let us suppose that αplq could be implemented by some unitary operator V plq. We we can
then translate (6.1.5) into the following operator relation,

UpaqV plq “ V plqUpaqeil¨aQ, (6.1.6)

where Upaq is the unitary operator implementing translations. Applying this identity to
the vacuum |0y, which is translationally invariant and has zero charge, one has

UpaqV plq|0y “ V plq|0y, (6.1.7)

which shows that V plq|0y is itself invariant under translations and, since the vacuum is the
unique translationally invariant state, it must be

V plq|0y “ |0y. (6.1.8)

On the other hand, if we compute the vacuum expectation value of

V plqAµpxqV plq
´1 “ Aµpxq ´ lµ, (6.1.9)

we easily obtain a contradiction: lµx0|0y “ 0, for every lµ. Therefore, the symmetry αplq
cannot be implemented by a unitary operator: it is a broken symmetry, as may be expected,
since vacuum expectations of Aµpxq are not left invariant under αplq, unless lµ “ 0.

We turn now to the discussion of the implications of this spontaneous breaking on the
spectrum of the theory. It is well-known that the breaking of an internal symmetry gives
rise to massless Goldstone excitations, but since αplq does not commute with translations,
we may wonder whether the Goldstone theorem still holds. In this case, the non-covariance

of the current J
plq
ρ pxq which generates αplq is explicit, thanks to (6.1.5):

UpaqJ plqρ pxqUpaq
´1 “ J plqρ px` aq ` lµa

µjρpx` aq (6.1.10)

or
J plqρ pxq “ Kplq

ρ pxq ´ lµx
µjρpxq, (6.1.11)

where K
plq
ρ pxq ” UpxqJ

plq
ρ p0qUpxq´1 is by definition translationally covariant. The smeared

charge is given by

Q
plq
R,α ”

ż

fRpxqαpx0qJ
plq
0 pxqd

4x, (6.1.12)

where the test functions fR and α satisfy

fRpxq ” f

ˆ

|x|

R

˙

, fpxq “

#

1 if x ă 1

0 if x ą 1` ε
(6.1.13)
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and
ż

αpx0qdx0 “ 1, (6.1.14)

so that the infinitesimal variation of a local operator B is

i lim
RÑ8

rQ
plq
R,α, Bs ” δplqB. (6.1.15)

The Goldstone theorem states that, if the symmetry is broken, then there are massless
one-particle modes in the Fourier transform of x0|δplqB|0y, or more precisely

lim
RÑ8

x0|rQ
plq
R,α, Bs|0y “ lim

RÑ8
x0|Q

plq
R,αE1B ´BE1Q

plq
R,α|0y, (6.1.16)

where E1 denotes the projection on zero-mass one-particle states. Notice that the left-hand
side of the previous equation is non-vanishing if and only if the symmetry is broken.

The key-point in the extension of the usual proof of Goldstone’s theorem [50] is that
the non-covariant piece of (6.1.11) involves the generator jµpxq of the unbroken global
symmetry.

An explicit form of the current can be obtained as follows: we know that

Jµ “ FνµB
νε` jνε, (6.1.17)

from the Noether theorem, thus, using lAµ “ jµ and integrating by parts

Jµ “ BνpAµB
νεq ´Aµlε´ BµAνB

νε` εlAµ; (6.1.18)

but lε “ 0 and, up to a boundary term,

J plqρ pxq “ lµBρAµpxq ´ l
µxµlAρ. (6.1.19)

Luckily, the non-covariant piece lµxµlA0 gives no contribution to the right-hand side of
(6.1.16) thanks to the spectral projector E1, which imposes k2 “ 0. Hence, we can write

lim
RÑ8

x0|rQ
plq
R,α, Bs|0y “

ż

d4xfRpxqαpx0ql
µx0| 9AµpxqE1B ´BE1

9Aµpxq|0y (6.1.20)

and letting

Hµpxq ”

ż

dx0αpx0qx0| 9AµpxqE1B ´BE1
9Aµpxq|0y, (6.1.21)

we see that by locality Hµpxq has compact support and therefore its Fourier transform
rHµpkq is an entire analytic function. Also

lim
RÑ8

x0|rQ
plq
R,α, Bs|0y “ lim

RÑ8

ż

d3xfRpxql
µHµpxq “ p2πq

3{2 lim
kÑ0

lµ rHµpkq. (6.1.22)
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In fact, the two pieces making up rHµpkq on the right-hand side give the same contribution:
letting

Gµpxq ”

ż

dx0αpx0qx0| 9AµpxqE1B `BE1
9Aµpxq|0y (6.1.23)

and

Lµpxq ”

ż

dx0αpx0qx0|AµpxqE1B ´BE1Aµpxq|0y, (6.1.24)

we see that thanks to the spectral representation and to the projector E1, which selects
ωpkq “ |k|, one gets

rGµpkq “ ´i|k|rLµpkq, (6.1.25)

a quantity that tends to zero as |k| Ñ 0 by the analiticity of rLµpkq. To sum up:

lim
RÑ8

x0|rQ
plq
R,α, Bs|0y “ 2p2πq3{2 lim

kÑ0
lµ rH`µ pkq, (6.1.26)

where
rH`µ pkq “

ż

dx0αpx0qx0| 9AµpxqE1B|0y. (6.1.27)

For convenience, let us rewrite this identity as follows: denote lµQ
µ
R,α “ Q

plq
R,α, then

lim
RÑ8

x0|rQµR,α, Bs|0y “ p2πq
3{2 lim

kÑ0
xk, µ|B|0y, (6.1.28)

where

|k, µy “ ´2i

ż

dx0αpx0qE1
Ă9Aµpk, x0q|0y. (6.1.29)

The infinitesimal transformations induced by αplq are

i lim
RÑ8

rQµR,α, A
νpxqs “ ´ηµν , i lim

RÑ8
rQµR,α, ψpxqs “ ´iex

µψpxq. (6.1.30)

6.1.2 Soft theorems of QED
Using B “ Aνpxq in (6.1.28) yields

p2πq3{2 lim
kÑ0

xk, µ|Aνpxq|0y “ ´ηµν . (6.1.31)

Using instead B “ T pψpxqψ̄p0qq, where now T denotes time ordering, allows to recover

p2πq3{2 lim
kÑ0

xk, µ|T pψpxqψ̄p0qq|0y “ ´iexµx0|T pψpxqψ̄p0qq|0y, (6.1.32)

which is nothing but the Ward identity

SppqΓµpp, 0qSppq “ ´ie
B

Bpµ
Sppq, (6.1.33)
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where Sppq is the electron propagator and Γµpp, kq is the electron vertex function.
Again, upon choosing B “ T pAµ1px1q . . . A

µnpxnqq, one obtains

p2πq3{2 lim
kÑ0

xk, µ|T pAµ1px1q . . . A
µnpxnqq|0y

“ ´

n
ÿ

i“1

ηµµix0|T pAµ1px1q . . . {Aµipxiq, . . . A
µnpxnqq|0y

(6.1.34)

where the hat indicates that the corresponding factor has been omitted. Using the previous
identity (6.1.31), one sees that the right-hand side reconstructs the disconnected part of
the left hand side, leaving as a consequence

lim
kÑ0

xk, µ|T pAµ1px1q . . . A
µnpxnqq|0yconnected “ 0. (6.1.35)

Weinberg’s [6] and Low’s [8] soft theorems are instead obtained by taking insertions of n
photon fields and 2m charged fields B “ T pAµ1px1q . . . ψpy1q . . . ψ̄pz1q . . .q, since then, again
reconstructing the disconnected photon contributions thanks to (6.1.31), we can write

p2πq3{2 lim
kÑ0

xk, µ|T pAµ1px1q . . . ψpy1q . . . ψ̄pz1q . . . |0yconnected

“´

m
ÿ

j“1

pyj ´ zjq
µx0|T pAµ1px1q . . . ψpy1q . . . ψ̄pz1q . . . |0y.

(6.1.36)

After Fourier-transforming, and using
ř̊

to denote the sum with respect to the 2m`n´ 1
independent momenta, we get

ź

r,s

DpqrqSpp
1
sqK

µpp, p1, qqSppsq

“
ÿ̊

j

˜

B

Bp1jµ
`

B

Bpjµ

¸

ź

rs

DpqrqSpp
1
sqKpp, p

1, qqSppsq,

(6.1.37)

where Dpqq is the photon propagator, and Kµpp, p1, qq denotes the amputated amplitude
for the process Kpp, p1, qq with the addition of an extra soft photon with momentum kµ.
Taking into account the Ward identity (6.1.33) when applying the derivatives on the right-
hand side gives, in its turn,

Kµpp, p1, qq “i
m
ÿ

j“1

 

Γµpp1j , 0qSpp
1
jq ` SppjqΓ

µppj , 0q
(

Kpp, p1, qq (6.1.38)

` e
ÿ̊

j

˜

B

Bp1jµ
`

B

Bpjµ

¸

Kpp, p1, qq. (6.1.39)
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The first line (6.1.38) encodes the Weinberg poles as can be easily seen by considering, for
example,

ūpp1qΓµpp1, kqSpp1 ` kq “ ūpp1qpieγµ ` iλσµνkνq
1

iγρpp1ρ ` kρq `m

“ ūpp1qie
p1µ

p1 ¨ k
` . . . ,

(6.1.40)

and is associated with those diagrams where the soft photon interaction occurs after (or
before) all other interactions, whereas the second line (6.1.39) gives finite corrections [8, 9]
to the leading singular behavior, corresponding to the other diagrams.

This shows that Weinberg’s soft photon theorem, together with the corresponding sub-
leading corrections, can be seen as consequences of the spontaneous breaking of linear large
gauge symmetries of QED. With respect to the treatment given in the previous chapters,
the asymptotic symmetry group considered in this case is much simpler since it can be
parametrized by a co-vector lµ instead of an angular function T pz, z̄q.

6.2 Spontaneous Symmetry Breaking in Linearized Gravity
We work in the harmonic or “De Donder” gauge of linearized gravity

lhµνpxq “ jµνpxq, Bµjµνpxq “ 0; (6.2.1)

here jµνpxq encodes both the conserved stress-energy tensor of matter and the non-linear
terms of the Einstein equations in the Arnowitt-Deser-Misner formulation (see e.g. [59,
Chapter 6.7]. The tensor jµνpxq also generates global space-time translations via the ADM
energy-momentum tensor Pµ. Consider the following family of infinitesimal local gauge
transformations, given by the linear gauge parameter εµpxq “ ´lµνx

ν :

αplq : hµνpxq ÞÝÑ hµνpxq ´ 2lµν (6.2.2)

ψpxq ÞÝÑ Φpxq ´ if lµνx
µBνΦpxq, (6.2.3)

where f denotes the coupling to gravity. Thus, αplq is parametrized by the constant
symmetric tensor lµν . Denoting by τpa,Λq, for aµ a translation vector and Λ P SOp3, 1q,
the infinitesimal action of the Poincaré group, we see that αplq is not an internal symmetry:
considering its commutation with translations

rτpaq, αplqsΦpxq “ ´faρlρσB
σΦpxq “ ´ifτplµνa

νqΦpxq (6.2.4)

thus, in terms of generators, denoting Qplq “ lµνQ̃
µν ,

rPµ, Q̃ρσs “ ´ifηµρP σ. (6.2.5)
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6.2.1 Broken linear large diffeomorphisms
Supposing now that αplq could be implemented by some self-adjoint generators, which
is equivalent to the weak continuity of the corresponding unitary exponentials, we get,
applying the previous commutation relation to the vacuum |0y, which is translationally
invariant,

PµQ̃ρσ|0y “ 0; (6.2.6)

this shows that Q̃ρσ|0y is itself invariant under translations and therefore, in clear analogy
with the Up1q generators of the previous section, it must coincide with the vacuum

Q̃ρσ|0y “ |0y. (6.2.7)

Taking now the vacuum expectation value of the following expression

irQ̃ρσ, hµνpxqs “ ´ηρµησν (6.2.8)

easily allows to derive a contradiction. Consequently, as before, the symmetry αplq is a
broken symmetry. Again, the Goldstone theorem still holds, in spite of αplq not commuting

with translations, since the non-covariance of the current J
plq
ρ pxq which generates αplq is

explicit, thanks to (6.2.5):

UpaqJ plqρ pxqUpaq
´1 “ J plqρ px` aq ` l

µνaµjνρpx` aq (6.2.9)

or
J plqρ pxq “ Kplq

ρ pxq ´ l
µνxµjνρpxq, (6.2.10)

where K
plq
ρ pxq ” UpxqJ

plq
ρ p0qUpxq´1 is by definition translationally covariant. Indeed, we

will explicitly verify below that this is the case for the Noether current we will choose.

The charge Q
plq
R,α is regulated with the test functions fR and α like those appearing in the

previous section, so that the infinitesimal variation of a local operator B is

i lim
RÑ8

rQ
plq
R,α, Bs ” δplqB, (6.2.11)

independently of α. The Goldstone theorem states that, if the symmetry is broken, then
there are massless one-particle modes in the Fourier transform of x0|δplqB|0y, according to
(6.1.16), which we report here for simplicity:

lim
RÑ8

x0|rQ
plq
R,α, Bs|0y “ lim

RÑ8
x0|Q

plq
R,αE1B ´BE1Q

plq
R,α|0y. (6.2.12)

The extension of the usual proof of Goldstone’s theorem [50] is the same as in the case
of electromagnetism, since the non-covariant piece of (6.2.10) still involves the generator
jµνpxq of the unbroken global symmetry.
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An explicit form of the current can be obtained as follows: from the Noether theorem,
using lhµν “ jµν and integrating by parts,

J plqρ pxq “ 2lµνBρhµνpxq ´ l
µνxµlhνρ. (6.2.13)

Also in this case, the non-covariant piece lµνxµlhν0 gives no contribution to the right-hand
side of (6.2.12) thanks to the spectral projector E1, which imposes k2 “ 0. Hence, we can
write

lim
RÑ8

x0|rQ
plq
R,α, Bs|0y “

ż

d4xfRpxqαpx0q2l
µνx0| 9hµνpxqE1B ´BE1

9hµνpxq|0y. (6.2.14)

Using exactly the same locality and analyticity arguments of the previous section, one
arrives at:

lim
RÑ8

x0|rQµνR,α, Bs|0y “ p2πq
3{2 lim

kÑ0
xk, µν|B|0y, (6.2.15)

where

|k, µνy “ ´4i

ż

dx0αpx0qE1
r9hµνpk, x0q|0y. (6.2.16)

The infinitesimal transformations induced by αplq are

i lim
RÑ8

rQµνR,α, h
ρσpxqs “ ´2ηµρηνσ, i lim

RÑ8
rQµνR,α, ψpxqs “ ´

i

2
fxpµBνqψpxq.

(6.2.17)

6.2.2 Soft graviton theorems
Using B “ hρσpxq in (6.2.15) yields

p2πq3{2 lim
kÑ0

xk, µν|hρσpxq|0y “ ´2ηµρηνσ. (6.2.18)

Using instead B “ T pΦpxqΦ̄p0qq, where T denotes time ordering, allows to recover

p2πq3{2 lim
kÑ0

xk, µν|T pΦpxqΦ̄p0qq|0y “ ´
i

2
fxpµBνqx0|T pΦpxqΦ̄p0qq|0y, (6.2.19)

and the Ward identity

SppqΓµνpp, 0qSppq “ ´
i

2
f
B

Bppµ
pνqSppq, (6.2.20)

where Sppq is the “charged” field propagator and Γµνpp, kq is the graviton vertex function.
Again, if one chooses B “ T phµ1ν1px1q . . . h

µnνnpxnqq,

p2πq3{2 lim
kÑ0

xk, µν|T phµ1ν1px1q . . . h
µnνnpxnqq|0y

“ ´

n
ÿ

i“1

2ηµµiηννix0|B “ T phµ1ν1px1q . . . {hµiνipxiq . . . h
µnνnpxnqq|0y

(6.2.21)
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where the hat indicates that the factor has been omitted. Using the previous identity
(6.2.18), one sees that the right-hand side reconstructs the disconnected part of the left
hand side, yielding

lim
kÑ0

xk, µν|T phµ1ν1px1q . . . h
µnνnpxnqq|0yconnected “ 0. (6.2.22)

Weinberg’s soft graviton theorem [6] and the subleading corrections (corresponding to those
found in [8] for QED) are instead obtained by taking insertions of n graviton fields and 2m
charged fields B “ T phµ1ν1px1q . . .Φpy1q . . . Φ̄pz1q . . .q, since then, again reconstructing the
disconnected photon contributions thanks to (6.2.18),

p2πq3{2 lim
kÑ0

xk, µν|T phµ1ν1px1q . . .Φpy1q . . . Φ̄pz1q . . . |0yconnected

“´
1

2

m
ÿ

j“1

ˆ

y
pµ
j

B

Byjνq
´ z

pµ
j

B

Bzjνq

˙

x0|T phµ1ν1px1q . . .Φpy1q . . . Φ̄pz1q . . . |0y.
(6.2.23)

Upon Fourier-transforming, and denoting by
ř̊

the sum with respect to the 2m ` n ´ 1
independent momenta, one finds

ź

r,s

DpqrqSpp
1
sqK

µνpp, p1, qqSppsq

“
1

2

ÿ̊

j

˜

B

Bp1jpµ
p
1νq
j `

B

Bpjpµ
p
νq
j

¸

ź

rs

DpqrqSpp
1
sqKpp, p

1, qqSppsq,

(6.2.24)

where Dpqq is the graviton propagator, and Kµνpp, p1, qq denotes the amputated amplitude
for the process Kpp, p1, qq with the addition of an extra soft graviton with momentum
kµ; taking into account the Ward identity (6.2.20) when applying the derivatives on the
right-hand side gives

Kµνpp, p1, qq “i
m
ÿ

j“1

 

Γµνpp1j , 0qSpp
1
jq ` SppjqΓ

µνppj , 0q
(

Kpp, p1, qq (6.2.25)

`
f

2

ÿ̊

j

˜

B

Bp1jpµ
p
1νq
j `

B

Bpjpµ
p
νq
j

¸

Kpp, p1, qq. (6.2.26)

In complete analogy with the spin-1 case, the first line (6.2.25) encodes the Weinberg poles

Γµνpp1, kqSpp1 ` kq „
p1µp1ν

´pp1 ` kq2 `m2
„
p1µp1ν

p1 ¨ k
(6.2.27)

and is associated with those diagrams where the soft graviton interaction occurs after (or
before) all other interactions, whereas the second line (6.2.26) gives finite corrections to
the leading singular behavior, corresponding to the subleading diagrams.
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This completes the extension of the results presented in Section 6.1 to the case of spin-
two fields, showing that soft graviton theorems emerge as consequences of the spontaneous
breaking of large gauge transformations comprising a subgroup of linearized diffeomor-
phisms, parametrized by a symmetric tensor lµν .

6.3 Spontaneous Symmetry Breaking in Higher-Spin Theories
The discussion done in the previous two sections can be naturally extended the context of
spin-s gauge theories, by choosing the higher-spin De Donder gauge,

B ¨ ϕµ2...µs “
1

2
Bpµ2

ϕ1µ2...µsq
, (6.3.1)

in which the equations of motion for the gauge field ϕµ1...µs are again

lϕµ1...µs “ jµ1...µs , (6.3.2)

where jµ1...µs is a totally symmetric current whose traceless projection is locally conserved.
Then, linear large gauge transformations with parameter εµ1...µs´1 “ ´lµ1...µs´1µsx

µs ,

δϕµ1...µs “ ´slµ1...µs , δψ “ ´ifxµ1 lµ1...µsB
µ2 ¨ ¨ ¨ Bµsψ, (6.3.3)

where lµ1...µs is a totally symmetric, traceless, constant tensor, ψ denotes an elementary
matter field, and f is the spin-s coupling, are broken in each irreducible representation of
the field algebra, as one can infer from the shifts induced on gauge fields and hence on
their vacuum expectation values.

With this gauge choice, the Noether current associated to such transformations is, after
an integration by parts,

J plqρ pxq “ slµ1...µsBρϕµ1...µspxq ´ l
µ1...µsxµ1jµ2...µsρ. (6.3.4)

Note that the form of this current is again given by a translationally covariant piece plus a
non-covariant one, but the latter involves the (unbroken) matter current jµ1...µs and hence
gives no contribution to the Goldstone theorem, as it was described in the spin-one and
spin-two cases.

Now, any difficulty arising from the structure of higher-spin symmetries has been taken
care of, and hence one can perform the same computations done in Sections 6.1 and 6.2,
with straightforward modifications in the index structure of the above formulas, to extend
the link between the spontaneous breaking of linear large gauge symmetries and higher-
spin soft theorems: the latter, emerging as the rewriting of the Goldstone theorem when
applied to such a symmetry breaking.

More explicitly, limiting ourselves to the main formulae, the Ward identity linking the
matter propagator Sppq to the s-field vertex function Γµ1...µs reads

SppqΓµ1...µspp, 0qSppq “ ´
i

s
f

B

Bppµ1

pµ2 . . . pµsqSppq, (6.3.5)
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and the soft theorem expressing the amputated amplitude Kµ1...µspp, p1, qq for the process
Kpp, p1, qq with the addition of an extra soft spin-s particle with momentum kµ is encoded
in the following expression,

Kµ1...µspp, p1, qq “i
m
ÿ

j“1

 

Γµ1...µspp1j , 0qSpp
1
jq ` SppjqΓ

µ1...µsppj , 0q
(

Kpp, p1, qq (6.3.6)

`
f

2

ÿ̊

j

˜

B

Bp1jpµ1

p1µ2
j . . . p

1µsq
j `

B

Bpjpµ1

p
µ2q

j . . . p
µsq
j

¸

Kpp, p1, qq. (6.3.7)

110



7 BMS Group in D dimensions

In the same way as the validity for any spin of Weinberg’s factorization theorem motivated,
among other considerations, our investigations of higher-spin soft theorems and their con-
nection with infinite-dimensional asymptotic symmetry groups, the observation that the
factorization itself holds independently of the dimension of spacetime has aroused interest
in the study of asymptotic symmetries, in particular of those of gravity, in spacetimes of
arbitrary dimension D.

In Chapter 1, we have already reviewed the precise definition of asymptotically flat four-
dimensional spacetimes and its implications for the enlargement of the symmetry group
from the Poincaré group to the BMS group. We devote this final chapter to describing an
extension of the approach to asymptotic symmetries that still relies on the tool of conformal
compactification but extends, in principle, to spacetimes of any dimension D; this approach
both accounts for the presence of an infinite-dimensional, BMS-like asymptotic symmetry
group in any dimension and gives indications for the falloff requirements that are to be
imposed on the metric tensor in order describe asymptotic flatness.

7.1 Abstract Null Infinity
It is worthwhile to stress the elementary abstract properties that enter the definition of
the BMS group: after isolating such fundamental elements, we will be able to propose a
definition of this group in arbitrary dimension, a generalization which proves rewarding,
for instance, due to the implications that this symmetry group has shown on the infrared
properties of gravity. Indeed, the generators of the asymptotic symmetry transformations
have been interpreted as creation operators of gravitons with vanishing momentum, and,
furthermore, we have seen in the previous chapters how such symmetries are related to soft
theorems and to the equivalence principle itself.

In [41], the authors have identified the BMS group as the group of diffeomorphisms
preserving certain geometrical structure at three-dimensional null infinity (thought of as
the conformal boundary of a four-dimensional spacetime). Their strategy admits a simple
and natural generalization to D-dimensional spacetimes, which is given below.

Given the manifold N “ R ˆ SD´2, consider on it a conformal class C of degenerate
metrics of signature 0`` . . .`. A vector field n is called isotropic if qpn, ¨q “ 0 for some
q P C (and hence for all q P C , since these metric tensors are conformally related). The
integral curves of an isotropic vector field are called isotropic lines. Examples of such
objects were given by qµν and nµ below equation (1.1.34) in Chapeter 1.
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The first property we require is:

S1: The isotropic lines define a product decomposition of N into R ˆ SD´2,
the lines being transversal to the hyperspheres.

Physically, this property selects the parameter u P R as the retarded (or advanced) time
of some light wavefronts, and implies that the space Q of isotropic lines (i.e. light rays) is
the pD ´ 2q-sphere; π : N Ñ Q will denote the corresponding natural projection.

Assume also:

S2: Any diffeomorphism ϕ : N Ñ N which maps each isotropic line into itself
preserves C , i.e. it is a conformal transformation for each q P C .

By the latter requirement, Q is naturally endowed with a conformal structure of signature
` ` . . .` in the following way: picking any section τ : Q Ñ N , then q̃ “ τ˚q is positive
definite on Q and all metrics on Q constructed in this way are conformally related. Let
us denote this conformal structure by C̃ .

We shall define the pair pN ,C q, together with the axioms S1 and S2, as pre-I (“pre-
scr-I”).

We will now investigate under which conditions the geometric structure defining pre-I is
invariant. Let ϕ be a diffeomorphism of N which preserves C . Then ϕ maps isotropic lines
into isotropic lines, and consequently defines a mapping ϕ̃ on the quotient space Q; but ϕ̃
preserves the conformal structure C̃ because ϕ preserves C . Conversely, if ϕ̃ is conformal
on Q, then any lift of ϕ̃ to a diffeomorphism ϕ on N with π ˝ϕ “ ϕ̃ ˝ π preserves C . The
crucial point is that the group preserving such a conformal structure on SD´2 is isomorphic
to the orthochronous, proper Lorentz group SOpD ´ 1, 1q (see e.g. [38]). Thus we have
proved the following statement:

Proposition. The automorphisms of pre-I are all the (orientation-preserving) lifts to N
of the action of the proper, orthochronous Lorentz group SOpD ´ 1, 1q on Q.

In particular, choosing hyperspherical coordinates θA, for A “ 1, . . . , D ´ 2, on the
pD ´ 2q-hypersphere and any smooth parametrization u : N Ñ R of isotropic lines, the
automorphisms of pre-I are given by

θA ÞÑ Hjpθ
1, . . . , θD´2q (7.1.1)

and
u ÞÑ F pu, θq, (7.1.2)

for a conformal transformation H on the hypersphere, and F being an arbitrary smooth
function such that BF {Bu ą 0.

Let us add:
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S3: There exists a nowhere-vanishing tensor field S : N Ñ T 2
2 pN q of type

p2, 2q such that:

(i) S is symmetric in both pair of arguments;

(ii) S contracted twice with any one-form in N either vanishes or is in C ;

(iii) any contraction of S with itself vanishes.

The structure of pre-I together with the axiom S3 will be simply called I . This axiom
is equivalent to requiring that there is a rule which associates an isotropic vector field n
with a given degenerate metric q, and viceversa, so that

S “ q b nb n. (7.1.3)

Of course, from the perspective of introducing I as the conformal boundary of an asymp-
totic spacetime, this is totally reasonable since n “ pdΩq7, where I is defined by the
vanishing of the conformal factor Ω “ 0 and the one-form dΩ is sharpened into a vector
field using the full D-dimensional metric g̃; in components, nµ “ g̃µν∇̃νΩ. Note that,
under a change of conformal parameter Ω ÞÑ ωΩ, we get q ÞÑ ω2q and dΩ ÞÑ ωdΩ, meaning
that n ÞÑ ω´1n and hence S “ q b nb n is conformally invariant. In fact, this tensor was
also introduced in the definition of asymptotic geometry given by Geroch [39] (where it
appears as Γabcd).

Let us now look to the automorphisms of I , that is, the mappings of N to itself
preserving all of our three axioms: the additional requirement, with respect to the previous
proposition, is that S must be preserved, which restricts the arbitariness of the lifts to N
of conformal transformations of Q.

Let h P C̃ and q “ π˚h the pullback of h to N . Let n be the isotropic vector field
corresponding to q via S. Let ϕ : Q Ñ Q preserve C̃ , with ϕ̃˚h “ ω2h. Any lift ϕ of ϕ̃ to
N will map q to ω2q, but since ϕ˚S “ ϕ˚q b ϕ˚n b ϕ˚n “ ω2q b ϕ˚n b ϕ˚n, only those
lifts for which

ϕ˚n “ ω´1n (7.1.4)

will preserve S in addition to C . In the usual coordinates, chosen so that n “ B{Bu,
since ϕ˚n “ ω´1n, we have B{Bu ÞÑ ω´1B{Bu. Since ω is a function only of the angular
coordinates, this can be integrated to give

u ÞÝÑ ω´1pu` αpθqq, (7.1.5)

where α is any smooth function on SD´2. This completes the proof of the following
statement:

Proposition. The group of automorphisms of I is the (analog of the) BMS group, in D
dimensions.
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The transformations (7.1.1) and (7.1.5) indeed provide the analog of the BMS group for
D-dimensional spacetimes, in that they give rise to a group which is the semi-direct product
of the Lorentz group with an infinite-dimensional normal subgroup of angular-dependent
translations.

7.2 Boundary Expansion of the Metric Tensor
On top of the properties discussed in the previous section, it is also reasonable to assume
our abstract I to have vanishing Weyl tensor given by the connection compatible with qµν :
the reason is that this manifold is meant as the conformal equivalent of the flat boundary
of the physical spacetime. Indeed, this property has been in fact deduced [39, Theorem
11] for D “ 4 from the definition of asymptotic flatness given above. By doing so, we
also obtain that each cross section inherits, as an embedding in I , an induced metric hµν
whose compatible connection also has vanishing Weyl tensor; this follows immediately by
noting that qµν “ hµν since by definition qµνn

ν “ 0, where nµ is the isotropic normal to
the given cross section.

On the other hand, any topological pD ´ 2q-sphere with this property is conformally
equivalent to the Euclidean pD ´ 2q-sphere: in the equivalence class of metrics on a given
cross section we can always choose the metric of the standard unit sphere [60]. Now the
procedure linking I to the asymptotic behavior of the metric in the physical spacetime
can proceed as discussed after (1.1.22), without imposing D “ 4. Then, the structure of
such falloff rates turns out to be identical to the one given in (1.1.28) with θ and φ replaced
by D ´ 2 Euclidean angular coordinates θA, as done below.

One first introduces coordinates pΩ, u, θ1, . . . , θD´2q in a neighborhood of I ` in the
usual way. In such coordinates

ds̃2|I` “ 2dΩ du` dγ2, (7.2.1)

where dγ2 is the line element on the Euclidean pD ´ 2q-sphere.1 To study the asymp-

1 The line element on the Euclidean unit pn´ 1q-sphere, in coordinates

x1
“ cosφ sin θ1 sin θ2 . . . sin θn´3 sin θn´2

x2
“ sinφ sin θ1 sin θ2 . . . sin θn´3 sin θn´2

x3
“ cos θ1 sin θ2 . . . sin θn´3 sin θn´2

...

xn´1
“ cos θn´3 sin θn´2

xn “ cos θn´2,

(7.2.2)

reads
dσ2

“ dθ2
n´2 ` sin2 θn´2 dθ

2
n´3 ` sin2 θn´2 sin2 θn´3 dθ

2
n´4 ` . . . . (7.2.3)
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totic behavior of the metric components in the physical spacetime, one recalls the gauge
condition (1.1.19), which was already discussed in arbitrary dimension D in Chapter 1,

BµBνΩ´ Γ̃ρµνBρΩ “ 0, and hence Γ̃Ω
µν “ 0; (7.2.4)

but, since g̃Ωρ “ δρu and Bug̃µν “ 0 at I `,

0 “ Γ̃Ω
µν “

1

2
pBµg̃uν ` Bν g̃uµq ; (7.2.5)

fixing µ “ Ω and selecting ν “ u, θ1, θ2, . . . , θD´2, thanks to BAg̃uΩ “ 0 “ BB g̃uA at I `,
for A,B “ 1, . . . , D ´ 2, one has

BΩg̃uu “ BΩg̃uA “ 0 on I `, (7.2.6)

meaning that g̃uu and g̃uA must be OpΩ2q as Ω Ñ 0. Thus, in a neighborhood of I `, the
components of the physical metric, gµν “ Ω´2g̃µν , take the form

ds2 “2Ω´2dΩ du` Ω´2pγABdθ
AdθBq

`Op1qpdu2, du dθAq

`OpΩ´1qpdθAdθB, dΩ du, dΩ2, dΩ dθAq.

(7.2.7)

Now let r “ 2{Ω, so that

ds2 “´ dr du`
1

4
r2pγABdθ

AdθBq

`Op1qpdu2, du dθAq

`OprqpdθAdθBq
`Op1{rqpdr du, dr dθAq
`Op1{r3qdr2.

(7.2.8)

Compare with [36, Eq. (21)] and in particular with [35, Eq.(2.9)], where the authors have
noted that the crucial point allowing the presence of supertranslations is to impose that
gAB should to deviate from the Euclidean metric at most by Oprq, as in our case, rather

than at most by O
`

r
6´D

2

˘

, as was required in less recent literature.
This result shows that our conformal approach agrees with the strategy recently employed

[35] in order to extend the infinite-dimensional BMS group to spacetimes with dimension
higher than four: instead of adopting the traditional, more restrictive, boundary conditions
for the metric tensor (see e.g. [34]) which allow for the presence of gravitational radiation
but spoil the structure of the asymptotic symmetry group, it is preferable to impose the
weaker falloff requirements of type (7.2.8), which in fact allow for the presence of the full
BMS group.
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Therefore, we hope that the present discussion may shed new light on these seemingly ad-
hoc weaker boundary conditions (aside from slight differences in the subleading behaviors),
whose ultimate justification up to now lied in the fact that they allow to recover an infinite-
dimensional asymptotic symmetry group and to derive Weinberg’s graviton theorem from
supertranslation symmetry. Here we have reinterpreted these falloff behaviors in terms
of the geometric properties of null infinity, in any dimension. It is then the link of the
geometric structures on I to the physical spacetime that selects the weaker boundary
condition.

One ought to mention that analyticity problems arise near I , for perturbations around
Minkowski spacetime in odd (D “ 2n`1) spacetime dimensions, thus pointing out a poten-
tial flaw in the conformal approach to null infinity: in particular, it has been shown that, in
such solutions, the leading order behavior of the unphysical Weyl tensor in a neighborhood
of I always begins with a half-integral power of Ω [61]. The perspective we adopted in
this section is slightly different: first we studied the automorphism group of abstract I ,
which turned out to be the D-dimensional BMS group, and then we “attached” this I as
conformal boundary to a physical asymptotically flat spacetime (assuming its existence)
thus recovering the falloff conditions (7.2.8). Since the discussion of small perturbations
of flat spacetime, describing for instance weak gravitational radiation and whose confor-
mal description is ruled out by the discussion in [61], is very important for the physical
interpretation of null infinity, these problems should not be ignored; it would therefore
be desirable to perform further investigations on the matter, in order to inquire if such
analyticity problems persist when studying asymptotically flat spacetimes which are not
small perturbations of odd-dimensional Minkowski spacetimes.

Nevertheless it is our opinion that the above described strategy still provides a convincing
procedure for justifying the falloff conditions adopted in the current (less formal) treatment
of the BMS group in higher dimensions.
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Conclusions and Outlook

In order to look at the topics treated in this thesis from a broader perspective, let us review
and analyze a few relevant points of our previous discussions.

First of all, a first step towards a deeper understanding of the higher-spin asymptotic
symmetries we propose clearly entails a critical analysis of our “Bondi-like gauge”, which
consists of both gauge-fixing and falloff conditions, and of its meaning for higher spins: for
instance, how much freedom do we have in the choice of such an asymptotic gauge? How
unique may it be? Or is it conceivable that a weaker set of asymptotic conditions may give
rise to an even bigger higher-spin asymptotic symmetry group, while still being physically
acceptable?

As far as the link between Weinberg’s theorem and our asymptotic symmetries is con-
cerned, some ad hoc assumptions were made in the specific properties of the higher-spin
gauge field (in particular, the auxiliary boundary conditions (5.4.26)), which were not jus-
tified, unlike in the spin-two case, by a discussion of the canonical relations of asymptotic
degrees of freedom.

Possible further explorations on this topic include its extension to asymptotically (Anti-)
de Sitter spaces, which should be in principle physically realizable, for instance if the cor-
respondence between asymptotic symmetries and soft theorems is meant to be compatible
with cosmological observations, even though there are indications that the corresponding
analysis on cosmological backgrounds may lead to drastically different results [62]. Another
relevant direction to be considered is the analysis of the enlarged asymptotic symmetry
algebra proposed in [63], where the authors suggest that, in the case of four-dimensional
gravity, by looking at infinitesimal transformations rather than finite, globally defined ones,
one may recover an enhanced algebra, namely the semidirect sum of supertranslations and
the Virasoro algebra.

Finally, as we already mentioned at the end of Chapter 7, the conformal approach to
asymptotically flat spacetimes still elicits some questions: one cannot prove that the un-
physical Weyl tensor must vanish at I , when D ‰ 4, and one may therefore inquire as
to how general it may be to require this property, from a mathematical point of view;
furthermore, analyticity problems arise around Minkowski spacetime in the case of odd-
dimensional spacetimes, and this points to the need for further investigations on the phys-
ical meaning of such singularities, a tempting possibility being the analogy with the failure
of Huygens’ principle [61, Footnote 2].
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