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Introduction

Renewed interest has been recently shown in the subject of asymptotic symmetries, i.e.,
symmetries that emerge when one studies the behavior of a physical theory “at infinity”
or, better, at the “boundary” of spacetime. Reasons motivating the ongoing research
concerning this topic arose in particular after observations due to A. Strominger et al. [1, 2]
who noted that asymptotic gravitational symmetries, which were discovered in the sixties
by Bondi, Metzner, van der Burg and Sachs, and whose underlying group is commonly
referred to as the BMS group [3, 4, 5], appear to be closely related to soft theorems, i.e.
relations among scattering amplitudes for processes involving the emission or absorption of
massless particles in the low-energy limit [6, 7, 8, 9]. Other sources of interest concern the
potential observable effects that such symmetries are supposed to produce [10], in relation
to the so-called gravitational memory effect, together with the tantalizing, although quite
speculative, possibility that they may also suggest a possible route towards the solution
of the black-hole information paradox [11] as a consequence of the presence of infinitely-
many conserved quantities near the horizon. Recent additional insights on their role in
near-horizon geometries of extremal black holes have also been offered in [12, 13].

The interplay between asymptotic symmetries and soft theorems has been also inves-
tigated in the case of electrodynamics, where it has led to new interpretations of the
link between soft photon amplitudes and asymptotic symmetries of QED and, possibly, of
Yang-Mills theories [14, 15].

These results give us a hint that such an interplay should not occur as a peculiar feature of
gravity alone, but rather they point to the existence of a general underlying field-theoretical
mechanism, thus adding a significant piece of appeal to the subject. Indeed, the similarity
between the gravitational and the electromagnetic cases can also be recognized in the nature
of the asymptotic symmetry group itself, in both cases defined in terms of generators
possessing an arbitrary dependence on the angular coordinates of the spheres placed at
conformal infinity. More precisely, for electromagnetism it consists of gauge parameters
with arbitrary dependence on those two angular coordinates, while for the gravitational
field it is the asymptotic symmetry group of asymptotically flat spaces (BMS group), which
is not, as maybe expectable, the Poincaré group, but rather an infinite-dimensional group
given by the semidirect product of the Lorentz group and an infinite-dimensional family of
direction-dependent translations, whose generators again depend arbitrarily on two angular
coordinates.

In short, the main observation underlying all the recent related ongoing activity is that
Weinberg’s soft photon and soft graviton theorems [6] can be recast as Ward identities for



infinite-dimensional families of asymptotic symmetries of electromagnetism and gravity,
respectively.

In order to better frame the role to be played by these symmetries, the first step is to
recall the Noether theorems [16]: classically, the conserved quantities arising from local
symmetries vanish identically when such symmetries act only on a compact region or
fall off sufficiently fast at infinity. On the other hand, they can attain nontrivial values
in correspondence with transformations which do not die out “as one goes to infinity”.
Since these two kinds of local symmetries display very different asymptotic behavior, they
are commonly referred to as “small” and “large” (gauge) transformations, respectively.
Indeed, for gauge symmetries, the conserved Noether current j* takes the form of an
“improvement”, i.e. it is given by the divergence of an antisymmetric tensor, j* = 0,k""
with k#¥ = —g"¥. This property is usually referred to as “local Gauss law” since it
closely resembles the case of the Maxwell equations for electrodynamics, while also being
crucial in order to characterize gauge theories even at the quantum level [17, 18, 19]. Any
improvement is conserved, 0,j* = 0 (as a consequence of the antisymmetry of x,,), and
the corresponding charges, obtained by integrating j* on a spacelike hypersurface X, are
in fact given by integrals over the boundary o = 0% by Stokes’ theorem, and are therefore
intrinsically related to the behavior of the theory near the edge of spacetime.

An additional key ingredient of the whole framework is given by the spontaneous break-
ing of these asymptotic or large gauge symmetries, where soft gravitons and photons are
interpreted as the massless particles predicted by Goldstone’s theorem.

Now, two questions in particular naturally arise in the light of the previous discussion.
First of all, since Weinberg’s soft theorems are valid for arbitrary spin, does the above
analysis admit a nontrivial extension to spins higher than two? In other words, do these low
energy results on scattering amplitudes correspond to some previously neglected symmetry
group also in the case of higher-spin theories? And second, given that such theorems can
be extended to any dimensions, is it possible to give a meaning to the notion of higher-
dimensional asymptotic symmetries?

Another physical motivation for the extension to higher spins is the following: in view
of both the impossibility of infrared effects due to massless higher-spin messengers already
implied by Weinberg’s results, and of the established lore against interacting higher-spin
theories in flat space [20], one may hope that answering these questions could lead to non-
trivial physical implications on our understanding of the infrared structure of higher-spin
theories. Efforts in this direction could shed some light on the open questions concerning
infrared problems in gauge theories, as the generators of asymptotic symmetries have been
recognized to be closely related to soft photons and gravitons, while the infrared structure
displayed by asymptotic quantization [21] bears strong resemblance to that of the infrared
problem in QED [22, 23, 24]. On the other hand, Weinberg’s theorem puts severe limita-
tions to the long-range behavior of massless fields with spin higher than two, effectively
ruling out the possibility that a macroscopic higher-spin interaction could emerge in the



soft limit on flat space.

This issue has been shown to be even more acute in a series of no-go results, indicating
that, for perturbatively local theories on flat space, no consistent interaction involving
massless fields of spin higher than two appears to be allowed beyond the cubic level. Once
again, the problem appears to be intimately related to the infrared behaviour of such
systems, as also indicated by the two main positive solutions presently known.

As originally suggested by Fradkin and Vasiliev in their seminal paper [25], a non-
vanishing cosmological constant can indeed provide the infrared regulator needed for con-
sistent interactions among massless higher-spin particles to be possible. Their suggestions
paved the way to the complete on-shell construction to all orders by Vasiliev and his
school, up to the more recent developments taking place in the context of the AdS/CFT
correspondence (for references, see e.g. [26, 27]).

Another possible way of evading the conclusions of these no-go theorems relies on string
theory: in such a theory, almost all the fields in the spectrum, and in particular all the
fields with spin higher than two, are lifted to being massive, the square mass of a given
field being roughly proportional to its spin and to the string tension, playing the role in
this context of the needed infrared regulator [28]. A long-standing conjecture relates the
appearance of the string tension as a result of some higher-spin gauge symmetry breaking
mechanism [29, 30], and it is conceivable that a more concrete understanding of the infrared
physics of higher-spin interactions should be ultimately related to this type of picture.

It is also worth noting that the novel approach to infrared problems suggested by the
interplay between asymptotic symmetries and soft theorems may also have relevant con-
nections to the recent developments in massive gravity and its multi-metric extensions, i.e.
theories of gravitation where the usual, massless, graviton is accompanied by one or more
massive particles of spin two, producing models of gravity with different infrared behavior.
(See e.g. [31] for a recent review.)

These arguments indicate that the tools developed in the understanding of asymptotic
symmetries and their connection to higher spins have chances to be exported in other
interesting sectors of the physics of gauge theories.

Results

We show that it is possible, with suitably-defined boundary conditions which essentially
generalize the current notion of gravitational asymptotic flatness to the framework of
higher-spin theories, to obtain an infinite-dimensional family of large gauge symmetries
for any integer spin entirely analogous to those which have been found for gravity and
QED; furthermore, we extend the method used in the literature to link these symmetries
to Weinberg’s theorems, showing that indeed Weinberg’s factorization results are equiva-
lent to Ward identities stemming from such asymptotic symmetries. Part of the strategy
employed in order to achieve this goal also allows to improve the results obtained for the
spin two case [1, 2] by performing the derivation with greater generality: while in the lit-



erature Weinberg’s soft graviton theorem is derived from BMS Ward identities under the
assumption that the equivalence principle holds, we are able to perform this proof with-
out relying on this hypothesis, or, in other words, to prove the equivalence principle as a
consequence of BMS invariance.

The extension to higher spins is again tackled in a more specific way by generalizing an
old, but elegant, result concerning large gauge symmetries of QED by Ferrari and Picasso
[32, 33]: working with linear large gauge symmetries, which are in fact a finite-dimensional
family of asymptotic symmetry transformations, allows to recover all soft theorems of QED,
gravity and higher-spin theories as consequences of the Goldstone theorem applied to the
breaking of such symmetries.

As far as the question concerning higher-dimensional asymptotic symmetries is con-
cerned, let us note that, in view of the results of [1, 2], it would appear quite bizarre if the
factorization theorem, while holding for any D, admitted an interpretation as the Ward
identity of an underlying symmetry group only in specific dimensions. However, in the
case of gravity, a number of negative results suggested an effective trivialization of asymp-
totic gravitational symmetries in higher dimensions (see e.g. [34]). Recent investigations,
differently, have pointed out that suitable choices of boundary conditions allow in fact to
implement the full asymptotic symmetry group, from which the soft graviton theorem can
be derived, in arbitrary even dimensions, at least. [35, 36] The strategy currently employed
in this direction amounts essentially to a “change of attitude” towards these symmetries.
In the past, infinite-dimensional asymptotic symmetries were regarded as a mathematical
oddity and the tendency was to look for ways of getting rid of them, rather than to look
for them. In four dimensions, one can in principle impose more rigid boundary conditions
that shrink the asymptotic symmetry group of asymptotically flat spacetimes down to the
Poincaré group, but doing so effectively rules out the possibility of gravitational radiation,
which appears to be too stringent a condition. On the other hand, higher-dimensional grav-
itational systems admit boundary conditions which allow for gravitational radiation, while
still selecting a (finite-dimensional) Poincaré asymptotic symmetry group. On account of
the new understanding on the physical significance of such symmetries, authors nowadays
propose to relax the boundary conditions for the metric tensor which define asymptotic
flatness, in order to allow for the presence of a full, infinite-dimensional symmetry group of
gravity in any dimension: the key point is to decide whether the angular part of the metric
should differ from the flat, Euclidean one by corrections of order at most O(T(G_D)/ 2) or
rather O(r), where r is a suitable radial coordinate and D is the dimension of spacetime.

A more geometric approach to the definition of higher-dimensional asymptotic symme-
tries of gravity may offer a more convincing justification of such falloff conditions in terms
of geometric properties of the conformal boundary of spacetime, as it does for the four-
dimensional case: instead of defining asymptotic flatness by prescribing falloff conditions
to be imposed on the metric tensor using an appropriate radial coordinate, it is in gen-
eral preferred to define a four-dimensional spacetime to be asyptotically flat if it admits a



conformal compactification with the same properties as the compactification of Minkowski
spacetime, the latter solution being also favoured due to its explicit covariance. We show
that the same procedure can be essentially carried out also for systems of dimension D, with
some adjustments and some caveats. In addition, we also argue that infinite-dimensional
“BMS-like” symmetries may be completely characterized by the intrinsic properties of the
conformal compactification of spacetime and then, once their formal structure is defined,
linked back to the asymptotic behaviour of the physical spacetime.

Plan of the work

The material is organized as follows. Chapter 1 reviews some fundamental aspects of
the physics and geometry of asymptotically flat spacetimes together with their symmetry
groups, while also offering a brief account of Ashtekar’s strategy for performing an asymp-
totic quantization of gravity. In Chapter 2 we recall Weinberg’s soft theorems, while the
following Chapters 3, 4 are devoted to analyzing the current strategy which links these
theorems, in the case of spin two and spin one fields, to asymptotic symmetries of gravity
and electrodynamics respectively.

Our original results are presented in Chapters 5, 6 and 7. In Chapter 5, after a brief
revisitation of the results for spin one and two, needed in order to bring them in a broader
perspective, we present the main new results of this thesis, namely their generalization
to higher spins, by defining higher-spin asymptotic symmetries near null infinity, and the
proof of their equivalence to Weinberg’s factorization results. The generalization to higher
spins is then discussed from a different prespective using the Ferrari-Picasso approach in
Chapter 6.

Finally, in Chapter 7, we discuss the extension of the notion of gravitational asymptotic
symmetries to arbitrary-dimensional spacetimes.



1 Asymptotic Flatness

The notion of asymptotically flat spacetimes, which is thoroughly adressed in [37, Chap-
ter XI], was introduced in order to describe ideally isolated systems in general relativity:
indeed, even though no physical system truly can be isolated from the rest of the universe,
while performing the study of a specific class of systems, such as compact stars or black
holes for instance, it should be possible to neglect the influence of distant matter or the
cosmological curvature and hence simplify the problem by assuming that the spacetime
becomes flat at large distances. Furthermore, in order to give a particle interpretation to
field theories, one needs to define asymptotic states and hence generators of translations
“at infinity”: therefore the description of gravitational radiation motivates the study of the
geometry of asymptotically flat spacetimes; as we shall see, this approach allows in fact to
describe the fully nonlinear regime of gravitational radiation.

The main issue, in comparison with electromagnetism in special relativity, is that in
general relativity one has no natural global inertial coordinate system to define a preferred
radial coordinate, r, for use in specifying falloff rates. One could define a D-dimensional
spacetime to be asymptotically flat if there exists any system of coordinates 2z, 2!, ..., ¢,
for D = d + 1, such that the metric components behave appropriately at large coordinate
values, e.g.

G = N + O(1)7), as r — o0, (1.0.1)

where 7,,, is the Minkowski metric and r = [(z!)? + ... + (z%)?]. However, since this defi-
nition is not coordinate-independent, the coordinate invariance of all statements obtained
in this approach must be carefully checked; furthermore, from a technical point of view, it
is rather difficult to specify precisely how the large distance limit 7 — o0 is to be taken, a
notable example being the calculation of the energy flux radiating away from a system.

The main idea to solve these issues is to “add in” to the spacetime the points at infinity
in a manifestly coordinate-independent way, a strategy allowing to give fully satisfactory
definitions of the total energy of an isolated system and of the energy carried away from
the system by gravitational radiation. Moreover, the extension makes it possible to provide
a geometric description of the symmetries of asympotically flat spacetimes, which will be
relevant for our discussion.



1.1 Conformal Infinity

The main technical tool allowing to give a precise definition of the notion of asymptotic
flatness and to specify a meaningful notion of “limits as one goes to infinity” is the so-called
“conformal infinity”, which will be first reviewed in the case of flat spacetime.

1.1.1 Minkowski spacetime

In spherical coordinates, the metric of the D-dimensional Minkowski spacetime takes the
form
ds? = —dt* + dr* + r?dy?, (1.1.1)

where dv? is the line element on the Euclidean unit (D — 2)-sphere (e.g. dy? = df? +
sin?0 d¢? in D = 4, where 6 and ¢ are the usual polar and azimuthal angles).

Suppose we are interested in expressing the energy carried to infinity by some massless
field, for instance a scalar field: this requires to compute limits as one goes to null infinity;
to this purpose it is convenient to introduce the light-cone coordinates

v=_t+r, t=(v+u)/2,

1.1.2
u=t-—r, r=(v—u)/2, ( )
and write the Minkowski metric as
1
ds* = —dudv + Z(U —u)?dy2. (1.1.3)

These coordinates represent affine parameters along outgoing and incoming null geodesics,
respectively. Now, in order to “add in” future null infinity, which corresponds to letting
v — o0 at fixed u, a naive idea would be to introduce the coordinate V' = 1/v, so that null
infinity be represented by the point V' = 0. The metric in these coordinates takes the form

2
ds? =~ aqudv + 1 (L —u) ay? (1.1.4)
e A\V T -

However, the point V' = 0 is singular in this spacetime. To circumvent this problem, one
introduces a new unphysical spacetime conformally related to the original one, d5?> = Q2ds?
where Q = V. Now the metric reads

1
ds® = dudV + il uV)2dv?, (1.1.5)
and in particular it is well behaved at V' = 0. The conformal factor, however, blows up

at the events v = 0 in the original spacetime and furthermore this construction does not
allow to extend g,,, symmetrically to past null infinity, i.e. u — —o0 at fixed v.

10



A Dbetter idea is to perform the following conformal transformation on (1.1.3) choosing

the conformal factor A

(14 02)(1+u?)

02 (z) = (1.1.6)

which treats v and v on equal footing.
Now, in order to obtain the usual compactification of Minkowski spacetime, define new
coordinates T and R by
T =tan"'v 4 tan ' u, v =tan(«/2), a=T + R,

» » - (1.1.7)
R =tan™ " v —tan™ " u, u=tan(B/2), B =T — R;

note in particular that 7" and R have ranges restricted by the following inequalities: R is
non-negative, since v > u, and tan~! ranges from —7/2 to /2, so
—T<T—-R<T+R<m. (1.1.8)

In other words, the Minkowski spacetime coordinates t,r have been mapped into the tri-
angle of vertices i®(,0), i*(0,7), i~ (0, —) in the R, T plane as in Figure 1.1.

i+

Figure 1.1: The conformal compactification of Minkowski spacetime in R, T' coordinates,
where the angular coordinates have been suppressed. The script capital .# is
usually pronounced “scr-1”.

The components of g, read therefore
ds® = —dT? + dR* + (sin®R)d~%. (1.1.9)

This is just the natural Lorentz metric on S? x R, known as the Einstein static universe,
apart from the restrictions imposed on R, T. Indeed, the Friedmann-Robertson-Walker

11



metric reads )

1 — kr2

and, since the Einstein universe is static a(t) = 1 and closed k = +1, letting ¢ = T and
r =sin R, we get (1.1.9).

dr? = —dt* + d®(t) ( + r2d72) (1.1.10)

Figure 1.2: The Einstein cylinder: conformal completion of the Minkowski spacetime (shad-
owed region), as an embedding in Einstein’s static universe (full cylinder).

We recall that, given two spacetimes (M, g) and (M’ ¢'), i.e. two differentiable manifolds
provided with a symmetric, non degenerate tensor of type (0,2), a conformal isometry [38]
of (M, g) into (M’,¢') is a diffeomorphism 1 : M — M’ such that ¥*¢’ = Q?¢.! Indeed in
our case ¥*j = Q2g, where ¢ : R* — O, where O is an open subset (region) of S% x R.

We define the conformal infinity of Minkowski spacetime (figure 1.2) to be the boundary
O of O. Aside from the angular coordinates, this boundary can be identified as follows:

e Past timelike infinity i~, corresponding to r = 0, t — —o0, or v = u — —00, i.e.
R =0, T = —m, the bottom vertex of the above described triangle;

e Past null infinity #—, which is the boundary line connecting i~ and i°, T = R —
m, 0 < R < m, the bottom right side of the triangle. Indeed, for v =constant,
u — —o0, we get T =tan"'v — 7/2, R = tan"' v + 7/2 and hence —T + R = 7.

! The pullback ¥* of a diffeomorphism ¢ : M — M’ acts on one-forms defined on M’ in the following
way: let pe M, ap € T;* M and let 14, be the derivative of ¢ at p, then for each vector X, € T, M,

(w*a)p(Xp) = ay(p) (Yap Xp).- (1.1.11)

12



e Spacelike infinity i°, corresponding to r — +o0, t = 0, or v = —u — +00, i.e.
R =m, T = 0, the right vertex of the triangle;

e Future null infinity £+, linear interpolation of i® and it, T = —R+m, 0 < R <,
the top right side of the triangle. Indeed, for u =constant, v — 400, we get T =
7/2 +tan"'u, R = m/2 —tan"!u and hence T + R = 7.

e Future timelike infinity i*, corresponding to r = 0, ¢t — 400, or v = u — +00, i.e.
R =0, T = +m, the top vertex of the triangle.

Note that the vertical side of the triangle does not belong to the boundary, since, for ex-
ample, a straight line joining (¢ = 0,7,0,¢) and (¢t = 0,r,0, —¢) crosses it while obviously
belonging to the original spacetime. Notice that null geodesics start at .# ~ and end at .+
whereas timelike geodesics start at ¢~ and end at T and spacelike geodesics start and end
at V.

1.1.2 Asymptotically flat curved spacetimes

Motivated by the above example, we define [21] a spacetime to be asymptotically flat at
null infinity if it admits a conformal completion in which the boundary “resembles” the
Minkowskian .#.

More formally, a spacetime (M, g), which may be thought of as the gravitational field
of an isolated body emitting gravitational waves, or as a pure gravitational radiation field
itself, is asymptotically flat if there exists a manifold M with boundary OM = .7, equipped
with a smooth metric § of Lorentzian signature, such that the interior M ~ . of M is
diffeomorphic to M and:

e there exists a smooth function Q on M such that Q = 0 on .#, @MQ # 0 on £, and
the pullback of § to M is Q2g;

e g satisfies the vacuum Einstein equations Ry, = 0 in the intersection with M of a
neighborhood of .# in M (i.e., near infinity);

e .7 is topologically SP~2 x R, the vector field n* = §**V,Q on .# is complete and
the space of its orbits is diffeomorphic to SP—2.

The intuitive idea underlying the first condition is that, since .# represents the set of
points at infinity in the physical spacetime, an “infinite amount of stretching”, given by
Q) = 0, is needed in the conformal mapping from the physical to the unphysical spacetime.
Moreover, the requirements on the derivatives of {2 allow us to use € itself as a coordinate
in a neighborhood of .#, parametrizing how far we are from infinity (see below for the
explicit construction of such a coordinate system). The second condition follows naturally
from our understanding of an isolated gravitational system and can be in fact relaxed by

13



admitting an energy-momentum tensor of matter with appropriate falloff conditions as one
approaches .#, e.g. by requiring Q_QTW to have a smooth extension to .#. Finally, the
third requirement reflects the idea that an asymptotic observer sitting at .# should be able
to characterize any observation, e.g. parametrize an incoming gravitatational wave packet,
by its angular position and retarded time.

Notice immediately that there is a considerable arbitrariness or gauge freedom in the as-
sociation of an unphysical spacetime (M, §) with an asymptotically flat physical spacetime
(M, g): indeed, another spacetime (M,w?j) satisfies the properties of the definition with
a sufficiently smooth conformal factor w2, provided w > 0 everywhere.

By the validity of the asymptotic field equations and the smoothness of g, we show below
that .# is a null 3-surface and n* is tangential to it. To further justify the above definition,
we will also derive a coordinate form of the condition on the asymptotic behavior of the
physical metric as one approaches future null infinity, .# ", showing that it indeed reduces
to the Minkowski metric near .# ", as one would intuitively expect. To carry out this
program we are first going to need a few technical steps, which are given below.

Recall that, under the conformal mapping g, (z) — g (z) = Q*(2)g,u(z), the compo-
nents of the Ricci tensor transform as follows [37, Appendix D], A being a shorthand for
log €2:

Ry — Ry, = Ry +(2—D)(V, VA~V AV, A) + 66" [(2 — D)V,AV,A — V,V,A],

(1.1.12)
then, performing the inverse transformation amounts to interchanging quantities with and
without tildes and changing the sign of A, obtaining [39, Appendix A]

~ D -2

1
R)u’l/ = RMV + Q -~

L . 1-D. .
ViV + 3ud” (vav,,ﬂ + 2vp9v09> . (1.1.13)

Q
The vanishing of the right-hand side of this equation is the vacuum Einstein equation
expressed in terms of the new unphysical variables.

Multiplying (1.1.13) (with R, = 0)? by Q and taking the limit Q — 0 which brings us
to £, we find

- L. L. 1—-D-~ .
0=QR,u + (D —2)V,V,Q + G (vpng + vavm) : (1.1.14)

now, since g, R, and Q are smooth at # ", the first three terms are smooth as well and
hence the quantity Q1 gpaﬁpsﬁaﬁ can be smoothly extended to .#*. In particular, this
implies gﬂaﬁpQ?gQ =0at .7 or, in other words, that n* = "'V, is null at .#*. This
result also follows from the fact that € is constantly zero on #* and .7 is a null surface.

2 Note that, if the original spacetime were asymptotically (A)dS, the left-hand side would be a constant
times g = Q 2G,0.
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Now we use the gauge freedom () +— w() mentioned above; note that g,, — w2§W,
g +— w2G" and finally (recall that covariant derivatives are inessential since Q and w
are scalar quantities)

Q_lgﬁ“’@uQ@VQ — w3 [Q@Hw@yw + Zw@HQ@,,w + wQQ_I@uQ@VQ] . (1.1.15)
By choosing w to satisfy the ordinary differential equation
. 1 .

n*v,logw = —59’1§‘“’VMQVVQ (1.1.16)

on £, one gets rid of the second and third term in the previous expression, while the first
one is zero since 2| s+ = 0. Note that the gauge-fixing condition (1.1.16) is well-defined
on .# 1 since Q_lg’“’@MQ@VQ is smooth there, as we have just seen.

Therefore, without loss of generality, we can always assume to have chosen the conformal
factor so as to ensure

Q7 15°V,QV,02=0 on st (1.1.17)

The vacuum Einstein field equation then yields
(D —2)V,VuQ + 3,3 V,VoQ =0 on 7", (1.1.18)
and finally, since tracing this equation one has 2(D — 1) gpaﬁﬁaﬂ =0,
V,.V,Q=0 on.s", (1.1.19)

if D # 1,2. We shall sometimes refer to this property of #* by saying that it is “divergence-
free”. By the previous equation, the null tangent n* = gV, to £ is covariantly
constant

Vi, =0, (1.1.20)

and satisfies the geodesic equation
n*V,n” =0 on .77 (1.1.21)

Therefore it is also called the null geodesic generator of .#+.

The gauge choice (1.1.16), which led to the gauge condition (1.1.19), still permits the
additional freedom of choosing w arbitrarily on any given cross section of .1, i.e. on a
(D — 2)-dimensional surface ., in .#*, which intersects each null geodesic generator of
* at precisely one point. This is because equation (1.1.19) only constrains the behavior
of € along null geodesics.

Restricting ourselves to D = 4, it follows from the fact that .#* has the topology of
S? x R that . must be a topological two-sphere; since every Riemannian metric iLW on
& is conformally equivalent to the Euclidean unit two-sphere metric fLW = thW [37,
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Problem 3.2], we can use the residual freedom in the choice of conformal factor to make
. a metric sphere of unit radius. As we shall discuss in Chapter 7, this is a keypoint of
the discussion needed for the extension to any D of the notion of asymptotic flatness.

Now, let us introduce the following coordinates in a neighborhood of .#": since, by
hypothesis, @MQ\ s+ # 0, we may use 2 itself as one of the coordinates; we introduce the
natural spherical coordinates (6, ¢) on a cross section, ., and carry these coordinates to
other points of .#* along the null geodesic generators of .#*; we define a coordinate on
# 7T to be the affine parameter, measured from .#, along the null geodesic generators of
S, with u scaled so that

n'vVu = 1; (1.1.22)

finally, we extend these coordinates (u, 0, ¢) off of #* by holding their values fixed along
each null geodesic of the family orthogonal to the 2-spheres of constant u on .# ", except
the one which generates .#*. In such coordinates

d3?| s+ = 2dQdu + db? + sin®6 dp>. (1.1.23)

These coordinates are particularly well-suited for studying the asymptotic behavior of the
metric components in the physical spacetime, as we will see shortly. Since 9,0 = §%2, the
gauge condition (1.1.19), reads

0,0, — fﬁy(?pQ = 0, and hence fffl, = 0; (1.1.24)
in other words, since §** = §, and Ouuy = 0 at I+,
~ 1 5 5
0=T5, = 5 (Qufuw + vun) - (1.1.25)
Fixing p = Q and v = u, 0, ¢, thanks to dggun = 0 = 0pgus at # T, one has
00guu = 00gus = 0adug = 0 on I, (1.1.26)

meaning that Jyy, gug and gues must be O(Q?) as 0 — 0. Thus, in a neighborhood of #*,
the components of the physical metric, g, = Q_Qgﬂ,,, take the form

ds® =2Q72dQ du + Q2(d6* + sin®0 d¢?)
+ O1)(du? dudf, dudep) (1.1.27)
+0Q Y (db? dodep, de¢? dQdu, dQ? dQde, dQdo).
Now let v = 2/, so that
ds® = — dvdu + %vQ(d92 + sin?6 d¢?)
- O( )(du?, dudf, dude)

O(v)(db? db dep, dd? (1.1.28)
O(1/v )(dvdu dv df, dvde)
O(

1/v°)dv
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A further coordinate transformation v — v + f(u, 8, ¢) can get rid of the terms O(1)du?
at the expense of introducing terms O(1)(dv df, dvde): for example if O(1)du? = —du?,
letting v — v — u gives (notice the resemblance with (1.1.3))

1
ds® = —dv du + 1= w)?(d6* + sin®0 do?) + ... . (1.1.29)

Having done this, we transform to “asymptotically cartesian coordinates” defined by

v+ u v—u . v
t= , T=— sinf cosf, y=

. —Yosh. (1.1.30)

—u . .
sinf sinf, z=

The components of the physical metric in these coordinates are of the form
ds® = —dt® + da* + dy? +d2* + ... (1.1.31)

and differ from diag(—1,1,1,1) only by terms at most of order 1/v as v — o0, since each
angular differential behaves as 1/v; this also clarifies the convenience of eliminating the
O(1)du? terms in the previous step.

We have shown that our definition of asymptotic flatness at null infinity in terms of
the conformal completion of the spacetime, together with Einstein’s equations, requires
the physical spacetime to become asymptotically Minkowskian as one goes toward null
infinity. A similar notion of flatness for spatial infinity has also been given [37, 39], but to
our purposes it will not be necessary to illustrate it.

1.1.3 Universal structure and asymptotic symmetries

Minskowski spacetime (R*,7) has a 10-parameter group of isometries: the Poincaré group.
What are the corresponding asymptotic symmetries of asymptotically flat spacetimes? To
answer this question, we need to introduce the concept of asymptotic symmetry.

The intuitive notion of infinitesimal asymptotic isometry at, say, future null infinity, is
represented by a vector field € in the physical spacetime such that Killing’s equation

£eg =0 (1.1.32)

is satisfied to “as good an approximation as possible” as one goes to & 7.

In a more formal approach, we may require that £, viewed now as a vector field in the
unphysical spacetime (i.e. is pushforward via the conformal mapping), have a smooth
extension to # . Then we further require that the tensor field Q?£ ¢g also have a smooth
extension to .#* which vanishes on #*. Finally we identify two vector fields £ and & on
the physical spacetime as the same infinitesimal asymptotic symmetry if their extensions
to £ 1 are equal there.

The asymptotic symmetry group arising from this definition is universal, in the sense
that one gets the same abstract group for all asymptotically flat spacetimes. Perhaps
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surprisingly, this group is not the Poincaré group: it is the infinite-dimensional Bondi-
Metzner-Sachs (BMS) group [3, 4, 5].

As an example, consider Minkowski spacetime in coordinates (v, u, 6, ¢) and an arbitrary
function f = f(6, ¢); the vector

v of v of
= £(0,0)0, — 79 1.1.33
§=10.9)0u+ 555 O 22 sin0 06 " ( )
is nonvanishing at .#* but
Q*£en =0, at I, (1.1.34)

One can give an equivalent characterization of the BMS group in terms of the mappings
of #7 into itself. In the unphysical spacetime, the metric g, induces a degenerate metric
G on the null hypersurface .# . Since n# = §"V,Q is tangent to .#*, the vector field n*
may be viewed as a vector field of .# " itself. Under a change of conformal gauge Q — w2,
one has: ¢, — w2qW, n* — w ln#. The structure (£*,§,n), identified under such
conformal rescalings, is universal: indeed, we have shown above that for any .#* there
exists a conformal gauge such that g, dztdz” = d6? + sin?d¢? and n = d,,.

The BMS group is the group of diffeomorphisms of .#* which preserves this universal
structure, i.e. of the diffeomorfisms 1 : £ — #* such that the linear maps induced by
1 correspond to a rescaling associated with a change of conformal gauge, which has no
intrinsic meaning being a redundancy in the description of asymptotically flat spacetimes.
This characterization turns out to be very helpful when dealing with the properties of
asymptotic symmetries especially because it is intrinsically defined at .#, without any
reference to the interior of the spacetime.

The infinitesimal supertranslations are defined as the vector fields on .1 of the form
¢ = an, where a satisfies n“@ua = 0, i.e., it is constant on each null generator, but
otherwise is an arbitrary function. Examples of supertranslations are the vectors of the
form (1.1.33), since the function f = f(6, ¢) is clearly constant along the trajectories of n#
and & reduces to f(0, $)d, at £t giving rise to a family of direction-dependent translations;
the intuitive idea as to why these supertranslations should be asymptotic symmetries is that
the deformations they induce, due to their angular dependence, are eventually stretched
out by the conformal factor.

The supertranslations are an infinite-dimensional Abelian normal subgroup, ST, of the
BMS group, G, and the factor group obtained by quotienting the BMS group by the
supertranslations is isomorphic to the Lorentz group:

G/ST ~ SO(3,1). (1.1.35)

There exists a unique four-dimensional subgroup of supertranslations which is a normal
subgroup of the BMS group. In the case of Minkowski spacetime, it consists of asymptotic
symmetries associated with the exact translational symmetries of Minkowski spacetime:
this motivates us to define the asymptotic translations of a general asymptotically flat
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spacetime as the elements belonging to this unique four-dimensional normal subgroup of
the supertranslation group.

A similar procedure for boosts and rotations fails, as we shall see below: there is no
normal subgroup of the BMS group which is isomorphic to the Poincaré group.

Another interesting feature is that in four spacetime dimensions one could, in principle,
impose stronger requirements on asymptotically flat spaces at null infinity in order to re-
cover a unique Poincaré group: this, however, would exclude the possibility of gravitational
radiation, which is too stringent a condition to impose (see [37, 40] and references therein).
As we shall discuss in Chapter 7, this is no longer the case in higher-dimensional spaces,
where one can in fact impose more strict conditions which select a Poincaré asymptotic
symmetry group while still allowing for the presence of gravitational waves.

Below, we prove in detail a few of these properties of the BMS group, following mostly
[21, 39]. We begin by summarizing the structures introduced until now:

o .7 ~ S? x R is ruled by the trajectories of its null normal n*.

e The intrinsic metric ¢ on .# is degenerate (signature 0 + +) and its pullback h on
the space S of integral curves of n* is conformally related to the Euclidean 2-sphere
metric.

e The permissible conformal rescalings, i.e. those who leave .# divergence free, are
Q) — w) where w is a nowhere-vanishing, smooth function on M such that

£pw=0on .7; (1.1.36)

under these rescalings, we have ¢ — w?q, and n — w™'n.

At the Lie algebra level, a vector field v* is an infinitesimal asymptotic symmetry if the
diffeomorphism it generates leaves the integral curves of n# invariant and maps a pair (g, n)
in an equivalent pair (w?q,w™'n), where £,w = 0 on .#.

Clearly, denoting by gaq(f) the diffeomorphism generated by v in a neighborhood of the
identity, letting ¢§,t3 stand for the push-forward it induces on vector fields and expanding
w(t) =€ =1+ta+... with £,a = 0, leads to:

gpl(,t,znzw_lnzn—tom%—...

1/ o (1.1.37)
P PpxM —M ) = —an+ ... .
This proves that v* is an infinitesimal asymptotic symmetry if and only if
£yn = —an (1.1.38)
and similarly
£vq = 2aq. (1.1.39)
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It is clear that such vector fields form a Lie algebra g, with respect to the usual vector field
Lie bracket:

£ppppon = pLon + @ £yn = — (ap—o'p)n (1.1.40)
Lipon = [£o, £y]n = £, (=a'n) — £y (—an) = — (£y0/ — £ya)n=—an, (1.1.41)

where £,& = 0 since [n,v] = 0 = [n,v’]. The Lie algebra g admits, in particular, vectors
v in the form v = fn, where (3 is a function on .#. Indeed, using (1.1.39), together with
qun” =0, and V,n, = 0 on .#, we see that

200, = (£Uq)wj =4 (.fnq)W + 1P qpu0u B + 1P qp 0.8 = BV () =0, on I (1.1.42)
therefore @ = 0, which in turn implies
0=~£Lmn=—Lyw=—£,00n)=—(£,)n = £,5=0. (1.1.43)

We define the space of supertranslations as the set st of all vector fields in g of the form
Bn, such that £,8 = 0. st is clearly a vector subspace of g; moreover, we see that, given
any infinitesimal asymptotic symmetry v € g,

[v,6n] = £,(Bn) = (£,8)n —afn = (£,8 —aB)n = B'n; (1.1.44)

since g is closed under Lie bracket, [v, Sn] is in g, and hence [v, Bn] € st. This shows that
st is in fact a Lie ideal of g.

Consider now the quotient algebra g/st. By (1.1.38), its natural projection 7 : . — S,
i.e. the quotient map, projects down on the space S of null generators of .# and vector
fields v, v/ on . are projected in the same vector field mov = 70" on S if and only if
they differ by a supertranslation, whereas supertranslations themselves project down to
zero. Furthermore, if v € g, then m,v is a conformal Killing vector field on S, with positive
definite metric h, as a consequence of (1.1.39). It follows that g/st is the Lie algebra of
conformal Killing vector fields on (S, h) and since the conformal structure of a 2-sphere is
unique, this Lie algebra is unique: it is the Lie algebra of the Lorentz group SO(3,1).

We already note here that, in fact, since the conformal group of the (D — 2)-dimensional
sphere is isomorphic to the Lorentz group SO(D —1, 1), this part of the construction carries
through in any dimension [38]; we will discuss a few developments of this observation in
Chapter 7.

To move to the group level, denote by G the BMS group and by ST the group of
supertranslations. Note that, since st is a commutative Lie ideal of b, i.e. if £, =0 =
£,8, veb, then

[Bn, B'n] =0, [v, Bn] € st, (1.1.45)

it follows that st exponentiates to a commutative normal subgroup ST of the BMS group
G. Thus, aside from the technicalities arising form the infinite dimensionality of G, this
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proves that, as anticipated, the BMS group is the semi-direct product of the Lorentz group
with the infinite-dimensional, Abelian, normal subgroup ST of supertranslations. It is
worth keeping in mind that ST is isomorphic to the additive group of functions on the
two-sphere while the Lorentz groups acts on ST as the conformal group on the two-sphere.

Explicitly, from the above discussion it follows that a mapping (u,0,¢) — (4,0, ) is a
BMS transformation if and only if letting

0=H0,¢), ¢=10,9), u=K"[u+ald )], (1.1.46)
one finds
ds* = d6* + sin? 0d¢* = K*(0,¢) (d6? + sin® 0d¢?) = K*(0, ¢)ds>, (1.1.47)
where « is a smooth angular function parametrizing supertranslations by
uw=u+af, o), (1.1.48)

whereas H and I are the expressions of a conformal transformation of conformal factor K,
i.e.
Note that the conformal factor K~! = w appears in the transformation law of u as well,

according to n = gV, and hence 0, — w~'0, [41]. Historically, this was one of the first
ways of defining the BMS group, as done by Sachs in [5]. The supertranslations for which

o = €y + €15in6 cos ¢ + ez sinfsin ¢ + €3 cos 0 (1.1.50)
form the translation subgroup 7" this identification is apparent if one recalls the definition
uw = t —r, and the transformation laws z° = t, 2! = rsinfcos¢, > = rsinfsin e,

3 = rcosé.

Now, any translation commutes with any supertranslation and, as can be seen from
the Lorentz group, the commutator of an infinitesimal translation with an infinitesimal
conformal transformation is again a translation, which proves that T is a 4-dimensional
normal subgroup of the BMS group G. In [5], Sachs also proved that this is also the
only possible 4-dimensional normal subgroup: the strategy consists in proving that any
4-dimensional normal subgroup of G must be contained in the supertranslation group and
that assuming that 7" is not unique leads to a contradiction with the fact that conformal
transformation “mix up” all supertranslations, which are not translations, with each other.

Rotations and boosts, instead, are not unique: consider the subgroup L of conformal
transformations and let ¢ be any finite supertranslation, then M = tLt~! is a new subgroup
of G distinct from L and again isomorphic to the Lorentz group.
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1.2 Energy

In special relativity, given the stress-energy tensor 7, of a classical field, the total energy
is defined in terms of a time-translation Killing field ¢* on a spacelike Cauchy hypersurface?
3. as follows

E= f T, Pt dA, (1.2.1)
by

where n# denotes the unit normal to 3. The condition 0,7" = 0 ensures that the total
energy is conserved, i.e. that it is independent of the choice of 3, by Stokes’ theorem.

In general relativity the energy properties of matter are, again, represented by a stress-
energy tensor T),,: it represents the local energy density as measured by a local observer.
Because of general covariance this tensor satisfies V,7*” = 0, which may be interpreted as
expressing a local conservation law, but does not in general lead to a global conservation
law. This apparent trouble may be actually understood on general grounds, since 7},
represents only the energy content of matter and ignores the contribution of “gravitational
field energy”.

However, there is no known meaningful notion of energy density of the gravitational
field in general relativity. In order to define such a quantity one usually has to abandon
manifest covariance: for instance introducing a preferred coordinate system, or performing
a decomposition into a background metric and dynamical metric, g, = N + huw-

A notion of total energy on an isolated system, however, does exist: below, we will define
an energy-momentum 4-vector in the case of asymptotically flat spacetimes, following the
discussion in [37, Chapter 11].

In special relativity, a particle is assigned an energy momentum 4-vector P*; the energy
of the particle is taken to be the time component of this vector, or, more covariantly, the
projection £ = —P,£# of P* with respect to a time-translation Killing vector field £. The
mass of the particle is given by M = (—PMP“)l/ 2 so that if the particle is “at rest” with
respect to &, i.e. it follows an integral curve of the Killing field, we have E = M.

In the Newtonian theory, the Newtonian potential ¢ satisfies Poisson’s equation Ay =
47p and is linked to the total mass of the system by the “Gauss’s Law” formula

1 (=~ =~

M=— -NdA 1.2.2

= §Fe- Naa, (122)
S

where S is a topological 2-sphere which encloses all the sources and N is the unit outward
normal to S. M is independent of the choice of S since, outside the mass distribution, ¢
satisfies Laplace’s equation Ay = 0.

Note that 690 is the force that must be exerted on a unit test mass to hold it fixed in the
gravitational field generated by p, so, by eq. (1.2.2), 47 M is just the outward force that

3 Intuitively, a Cauchy surface ¥ is a space-like surface such that any point in the spacetime M can be
influenced by or can influence points on X. See [37, Chapter VIII] for a more rigorous definition.
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must be applied to hold in place test matter with unit surface mass density distributed
over S.

1.2.1 Komar mass

The previous discussion motivates the following procedure aimed at obtaining a globally
meaningful notion of energy. Let us consider a static, asymptotically flat spacetime, which
is by our definition vacuum in a neighborhood of infinity (even though, as we have seen,
one could allow for the presence of energy and momentum near infinity with suitable
falloff conditions), and whose timelike Killing vector field £ can be normalized so that the
“redshift factor”, V = (—5“5“)1/2, approaches 1 at infinity. Let us also define a static
observer as an observer following an orbit of the Killing vector field &, i.e. whose four-
velocity reads u® = £¥/(—€,£M)/2 = €2/V; since the spacetime is static, there exists
a (spacelike) hypersurface orthogonal to the integral curves of £ and therefore, choosing
local coordinates on this surface, static observers indeed “stay” at fixed spatial coordinates
according to this definition. The acceleration of such an orbit is

1 1
a' = uPV,ut = (P /V)V,(EH)V) = W{’vaﬁ“ = —WSPV“@, = V¥(logV), (1.2.3)
where we used

EPV V2 = —EPV,(E1€,) = —26PEMV €, = —EPENV () = 0, (1.2.4)

in the third equality and the Killing equation itself in the next to last equality.
Thus, the local force which must be exerted on a unit (m = 1) test mass to be held in
place by a static observer is given by eq. (1.2.3):

1
Fioe = (—a"a,)'? = Z(V,VVIV)12, (1.2.5)

The force which must be applied by a distant observer at infinity is computed as follows.
Suppose that the particle is held fixed by a long massless string, with the other end of
the string held by a stationary observer at a large distance. The energy “as measured at
infinity” of a particle of unit mass moving with 4-velocity u® by an observer who moves
along the vector field { is given by E' = —§,u". So, in our case:

By = —£a8%/(—€u6")"? = (=€u.eM)? = V. (1.2.6)

The force exerted by the string on the particle is given by eq. (1.2.5), whereas the force
applied by the observer on the string is therefore

(Fo)y = =V uEp = =V, V — Fy = (V,VV*V)/2 (1.2.7)
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thus
Fyp =V Fqc. (1.2.8)

The force at infinity differs from the local force by a redshift factor V. Now, consider a
topological 2-sphere S having unit outward pointing normal 71 and lying in the hypersurface
orthogonal to £&. The quantity

F= %(f“/‘/)vuguﬁyd/l (1.2.9)
S

is the total outward force that must be exerted by a distant observer to keep in place a
unit surface mass density distributed over S. Since £#/V and n” are both normal vectors
to S, we can write this surface integral as the integral of a two form over S

F= ffeaﬂwv#g”dxa A daP. (1.2.10)
S

The integrand satisfies

Gpaaﬁva (eaﬁuuvﬂgy) = Epaaﬁeaﬂuyvgvuéﬂ
o av,(VIE - )

(1.2.11)
AV, VP
= - 4Rp0507
where we have used the identity e*“Peyg,, = —2(604 — 656%), the Killing equation and

its corollary [J¢# + R",€ = 0. Hence, using the identity e°*#7Ve /g, = —(5"‘[a,56ﬁ, (577,] we
find

6p'y&'fpaaﬁvcr (Eaﬁuuvuéy) = _4Rp0506p'y57'7

1 o 2 o (1.2.12)

gv[’y(e&—]yuv § ) = gR =3 €poT-

Hence, the 2-form o, s = €p5., V#E” is closed in a vacuum region:
da = 0, where R, = 0. (1.2.13)

We define the total mass of a static, asymptotically flat spacetime as
1

M = ~%n %epUWV“f”daﬁp A dz?. (1.2.14)

S

More generally, since the key property which makes this quantity, known as the Komar
mass, independent of the choice of the surface S is the fact that £ is a timelike Killing field,
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we can adopt this expression also to define the notion of total mass in any stationary, and
not necessarily static, asymptotically flat spacetime.
If S is the boundary of a spacelike hypersurface 3 such that ¥ U .S is a compact manifold
with boundary, then by Stokes’ theorem*
M= — 1f Vi, ( Ve ) dxY A dad A da”
167 5 [y\€s7] v
1

_EE

1
f R,,&"n"dV,
b

RM, €% €apydz® A dzP A da? (1.2.16)

4mr

where n is the unit future-pointing normal on 3, so that e,3, = nf€,q3; finally, using
Einstein’s equation,

1
R, — igw,R =8rT, = R= —87T’

1 (1.2.17)
R, = 8w <T/w — 2T’gW> ,
so one can relate the Komar mass to the energy-momentum tensor as follows
1 / 4
M =2 Ty — QT G | nHEYAV. (1.2.18)
r

This formula allows to check whether constants and signs have been chosen correctly in
the definition of the Komar mass: in the Newtonian limit the energy-momentum tensor
will have Tpg = p as its only nonzero component and g, = diag(—1,+1,+1,+1) hence
M = {pdV, as desired.

1.2.2 Bondi mass

To extend the above definition to a general (even non-stationary) asymptotically flat space-
time, we will follow this strategy: first we will look for a notion of energy-momentum at
a fixed “retarded” time, by selecting the behavior of the spacetime at null infinity on an
asymptotically null surface, which we will again denote by 3. Our goal is to quantify the
energy carried away by the gravitational radiation, keeping in mind that only the asymp-
totic properties of ¥ should count. Then, in order to single out a preferred time direction,
we will specify an asymptotic notion of time translation using the unique four-parameter
subgroup of translations provided by the BMS group.

jﬁa = L da. (1.2.15)

ox

4
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Let . be a given cross section of £ (or .#7): we are looking for a way of associating
< to a suitable linear map from the four-dimensional vector space of BMS translations
into R. The value of this map applied to a given, say, time translation would then define
the notion of energy associated with this time direction at the retarded time defined by
. To this purpose, let £ be the generator of an asymptotic time translation symmetry.
We define the energy associated with & by means of a one-parameter family of spheres
{S.} which approaches . on .#* in the unphysical spacetime, according to the following
formula:

E=— lim % §euya5V”§dea A daP. (1.2.19)
Sa
It turns out that this limit always exists and is independent of the details of how S, ap-
proaches .. Indeed this limit exists whenever £ is an arbitrary asymptotic symmetry, so
that this definition also works for asymptotic spatial translations defining spatial momen-
tum.

However, F is not invariant under a change of the choice of representative £ in the
equivalence class associated with the given BMS time translation. In order to achieve
independence of the choice of representative, and thereby give unambiguous meaning to
the notion of energy, one needs to impose the following gauge condition [42]:

VM =0, (1.2.20)

in a neighborhood of .#*. Note that this requirement is always satisfied if £ is a Killing vec-
tor field, being the trace of the Killing equation, but that it does not hold in general for vec-
tor fields representing infinitesimal asymptotic symmetries. Similarly the four-momentum
vector P, is defined by the action of the above linear functional on arbitrary BMS transla-
tions; we will return to this point during our computations in linearized gravity in Chapter
5.

The expression (1.2.19) of the energy of an isolated system agrees with the one given by
Bondi, van der Burg, Metzner [3, 4, 5] in coordinate form, prior to the geometric formulation
of the notion of asymptotic flatness, and is called the Bondi mass. An important result
is the following: given a cross section, .7, and a “later”® one, .%, the energy difference
between them is expressed as the integral of a function f over the region 7 of .#* bounded
by the two cross sections

E[%)] - E[.#1] = _J fav, (1.2.21)

where f is interpreted as the flux of energy carried away to infinity by the gravitational
radiation. It can be shown that f is non-negative, i.e. that gravitational radiation always
carries positive energy away from a radiating system [42, 39].

5 “Later” in terms of the retarded time parametrizing the space of cross sections of .# 1.
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When approaching spatial infinity, the formulas for energy and momentum become those
given by Arnowitt, Deser, Misner (ADM), which in asymptotically Euclidean coordinates
on a spacelike surface ¥ which approaches i® smoothly enough, read

1
E = 16771' TILII(}O Z_l J; (6111” @h“) n]dA
;’9* (1.2.22)
1.
Pj= o lim X;L (Kijn; — Kynj) dA

where h;; is the metric fluctuation over the Minkowski background while K;; is the spatial
stress-energy tensor. Both these quantities are independent of the choice of asymptotically
FEuclidean coordinates. The ADM energy can be interpreted as the total energy available
in the spacetime, whereas the Bondi energy can be thought of as the energy remaining
in the spacetime at the retarded time given by the cross section . after the emission of
gravitational radiation.

The comparison between these two quantities is made possible by the fact that each
BMS translation at .#* (or .#7) can be naturally associated with a tangent vector at i’;
in this way, it can be seen that the ADM energy and the Bondi energy differ precisely by
the integral of the energy flux, f, over the portion of .#* to the causal past of .%.

For completeness we list here some relevant positivity results:

e The Bondi energy flux is always positive, as stated above [42, 39];

e The ADM energy is always positive in a nonsingular, asymptotically flat spacetime
with locally nonnegative matter energy density (see [43] for the very elegant proof
due to Witten);

e The Bondi energy is always positive under the same conditions, or in other words the
total energy radiated away by a system is bounded by its total energy content [44].

Another way to obtain the above expression for the Bondi mass is to compute the
Noether current of the Einstein-Hilbert action corresponding to the invariance under the
infinitesimal diffeomorphism generated by the vector field £#: this current turns out to be
the divergence of an antisymmetric tensor, in accordance with Noether’s second theorem,
and hence, the associated conserved charge can be computed as a boundary integral [16].
Indeed a generic variation of

S = JdDat\/—gR (1.2.23)
reads

58S = dew«ﬁ—g <RW — ;gWR> SgM + f dPx\/=gg" SR, ; (1.2.24)
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the first term gives the vacuum Einstein equations and vanishes on-shell, whereas the
second term can be recast in the following form using the Palatini identity

68 = dex«/—g (V.Vy — gul) 66", (1.2.25)

where [J = ¢g"V,,V,; the infinitesimal diffeomorphism generated by the vector £ induces
0e9ur = V& + Vi€, so

58 = f AP /=g (V,V, VI + V06" — 200V .64, (1.2.26)

and finally using that (V£ = V,V ,V¥H because R, = 0 yields

3¢S = deIHVMVV (VVEr — VHeY) = —% f dP2\/=ge" PN,V (€appe VFET)

(1.2.27)
which is recast as the integral of the two form x#” = VFEY — VYEF on a surface of codi-
mension 2, as done above in (1.2.14), and defines a conserved quantity associated with
diffeomorphism invariance. Again, considering absence of matter (or an appropriate falloff
of its energy-momentum tensor) is not restrictive, since this is always the case in asymp-
totically flat space. This quick procedure, stemming from Noether’s theorem, allows to
recover the Komar and Bondi masses from a field-theoretical point of view, more akin to
the general language of gauge theories.

1.3 Radiative Modes

While the intrinsic metric g, on .# and the null normal n* to .# describe a structure which
is independent of the asymptotically flat spacetime under discussion, and may therefore
be regarded as the “leading order” fields, we have yet to exhibit the dynamical, or “higher
order”, objects which contain the relevant dynamical information typical of a particular
spacetime. We shall accomplish the task in this section, following [21].
Recall that
quw ~ g and nt ~ g"'V, Q, (1.3.1)
“—puv

where ¢ denotes the pullback of g to .# via the embedding map and, from now on, “~
<

9
will stand for “equals, at points of .#, to”.
The connection D defined intrinsically on ., i.e. the second order structure on .7, is
given by
DY ~ YV (1.3.2)

for any one-form V' in a neighborhood of .#. Since 2 ~ 0, n 0 and V,n, ~ 0, it

follows that, if for any pair of one-forms V' and A one has V = A, then D,V = D, A.
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In other words, D,, is a well-defined covariant derivative on covectors at .#. D can be
extended to any kind of tensor on .# by exploiting linearity, Leibnitz rule, equality with
partial derivative on functions and vanishing torsion. For example, if £ is a vector field on
# and A is a one form on .#, since the action of D, on the function A(§) must be that of
the usual partial derivative, then D¢ is specified via the Leibnitz rule

0u(A(©)) = Du(A©) = (DL A)(E) + A(D,). (1.3.3)
The connection D has the following properties:
D,qap =~ 0, Dyn” ~0 (1.3.4)
which follow from V,g,5 = 0 and from ntq,, = 0 respectively, and

1 1
iD[,uVl/] + §£unu if Vunﬂ =0, (135)

where the vector field V#* used to compute the Lie derivative is defined by V# = ¢**V,,
q" being a generalized inverse of g, in the sense that

D,V, ~

Q,uozanQVB = quv- (136)

Note that ¢"¥ is not unique: since qafmﬂ — 0, one can add to it terms of the type n(#w”),
where w# is any vector field on .#, but since V,, satisfies n*V,, = 0, then (¢*8 —I—n(awﬁ))v,g =
q*PVs + n®(wPVs), so that £ Vqu is defined unambiguously,

£ (wivynd = w'VsL£ng = 0. (1.3.7)

Equations (1.3.4) imply that the induced connection D, on .# is compatible with the
“kinematical structure” thereon, whereas (1.3.5) states that the action of D,, is the same
on every one-form orthogonal to n#, and hence that its action on a one-form L, such that
Lyn# =1 determines the connection completely.

The third order structure is obtained by pulling back to . the curvature tensor of g. It
can be proved that the Weyl tensor C,, s of g, vanishes on .# for conformal boundaries
of 4-dimensional spacetimes [39, Theorem 11]. Thus, it makes sense to consider the Ricci
tensor alone: the most convenient approach is, in fact, to consider the restriction to .# of
the combination

v v 1 v
S, =R} — éR(s“ , (1.3.8)
in D = 4. The pullback of S, to .#,
S =8 (1.3.9)

contains information about the flux of gravitational radiation across .#; however, to extract
this information, one needs to remove from s,, a certain piece which is “pure gauge”. To
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achieve this purpose one can use the unique tensor field p,s on .# given by [39, Theorem
5], which satisfies:
(0)pag = P> (i)puwn” =0,
(1) pp @™ = K, (iv)Dpppars = 0,
where £ is the pullback to .# of the scalar curvature of the metric A on the 2-sphere S
of the generators of I. For example, if the conformal factor is so chosen that h,, is the
Euclidean unit 2-sphere metric, p,, turns out to be the equal to h,,; however, under

conformal rescalings, p,, has a complicated behavior.
Define then

(1.3.10)

Ny = Spw — puw- (1.3.11)

This is called the Bondi news tensor and is a crucial quantity in our analysis, since it is
closely related to the notion of energy flux at infinity. It can be shown that

Nyn’ =0,  Nyg" =0. (1.3.12)

Instead of proving these propertes, we shall note that they are nicely illustrated by the
conformal completion of Minkowski’s spacetime in terms of a region of the Einstein static
universe,® given above. Clearly, since this conformal completion is spatially maximally
symmetric, we have (in D = 4) R = 6, whereas the intrinsic curvature of the space of
generators is the usual unit sphere curvature x = 2; in fact, also the whole Ricci tensor is
not difficult to work out explicitly:” it must be given by

R
RNV = Eg’“/ = 29/“/ (1314)

since d = D — 1 = 3 is the dimensionality of the maximally symmetric curved space, so
(t*R) g™ = 2quuq"" = 4; finally

R
(FR)wg™ — 5 —r=4-2-2=0. (1.3.15)

5 Note that this conformal completion, unlike all the others we are considering, is not divergence-free.
This does not affect the argument, since the result is independent of the conformal gauge we adopt.
"The nonvanishing Christoffel symbols read:

Fﬁ) = —sin Rcos R, Ff¢ = —sin R cos Rsin® 0,
o _ cosR 0o
%y = L I'4y = —sinfcosb, (1.3.13)
¢ :cosR ® :COSQ.
*R 7 sinR’ *9 " sin@
The nonvanishing components of the covariant Riemann tensor are Rprore = sin? R, Rogoe

sin® Rsin? 0, Rggps = sin® Rsin?@. Finally, the diagonal elements of the Ricci tensor are Rrr = 2,
Rog = 2sin® R, Rsy = 2sin® Rsin? . R=6.
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The Bondi news tensor is gauge invariant, since it can be shown that the conformal
transformations of s, and p,, cancel out, and its square

f=q""NayNg, g™ (1.3.16)

defines the local flux of energy density carried away by gravitational radiation [45, 46], as
we mentioned below (1.2.21), when discussing the positivity of the Bondi mass in Section
1.2.2.

1.3.1 Properties and physical degrees of freedom

A relevant result, due to Ashtekar [21], is that it is also possible to repeat the whole
construction adopting a more abstract point of view, without making any reference to any
particular spacetime and using only notions defined at .#. This is a conceptually more
economic procedure, that allows to single out the relevant quantities which are needed for
a complete definition of asymptotic gravitation.

Even without going through the details of the construction, it is worthwhile to note that,
from the point of view of an abstract .#, which is just a mathematically refined way to say
“from the perspective of an observer at infinity in an asymptotically flat spacetime”, one
cannot distinguish between two conformal factors which agree on .# itself. This observation
leads to the following consequences. Let us consider the transformation law of the intrinsic
connection D under the permitted conformal rescalings (i.e. those satisfying £,w = 0):

2 1
Dkaﬁ X Dakﬁ - ;k‘(aDﬁ)w + ;(w“ku)qag, (1.3.17)

where wt = g""V, w; set w = const = 1 at .#, so that Dgw ~ 0 and w” ~ fn#, for some
function f, and hence
Dl ks ~ Doks + fn'kuqas; (1.3.18)

since conformal factors which are equal at .# must correspond to the same intrinsic con-
nection, we are forced to introduce an equivalence relation among connections:

D~D <= (D,—Dp)k, = fnkagu- (1.3.19)

It follows that the true basic dynamical variables, representing the radiative modes of
the (exact, non-linear) gravitational field, are the equivalence classes {D} of connections
identified by (1.3.19) and therefore satisfying:

2
(Dl = {Dubky = ~k(uDyw. (1.3.20)

Denote by C the collection of intrinsic connections D on .#, defined abstractly as the
torsion-free connections D on .# satisfying

Dygos =0,  Dyn” =0, (1.3.21)
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and denote by I' the space of equivalence classes {D} subject to the equivalence relation
(1.3.19).
Both C and I' are affine spaces: in virtue of (1.3.21), elements of C are related to each
other via
(D, — D;)kl, = XunTky (1.3.22)

where Y, = X, and X,,n” = 0.

Indeed, (D, — D}k, = Tk, for some T'),; from D,n” = 0 one gets 0 = I'ji,n,, hence
I}, = 38,07, for some ¥,,; clearly ¥, = 3,, for torsion-free connections; finally, from
lyn* =1, we have 0 = n*(D, — D,)l,, = T),n*ly = X,,n".

Since {D} = {D'} if and only if ¥,, = fgu. for some f, the difference {D} — {D’} of
elements of I' is completely characterized by the traceless part of X,

1
Oy = Yy — quazpaqlw- (1.3.23)
These 0,,’s can be used to endow I' of a set of coordinates by fixing an element {D’} and
regarding it as the origin; since .# is a three-dimensional manifold and o, is a traceless
symmetric 3 x 3 tensor bound by the three constraints ¥,,n” = 0, we see that the number
of independent components of o, is

3B+1)

s —3-1=2 (1.3.24)

in agreement with the number of independent polarizations of the graviton. I' is therefore
a good canidadate as phase space of physical radiative modes at infinity in exact general
relativity.

1.3.2 Symplectic geometry of radiative modes

One can introduce on I' a symplectic structure [47, 48], i.e. a weakly nondegenerate® two-
form  (of course, not to be confused with the conformal factor Q2): given any two tangent
vectors 0, and JI’W (which is the same as saying coordinate vectors, since the space is
affine) at a point {D} of T,

1

Q¢py (o, o) = & f] (Uuyfndgﬂ — ULV£HUQ5) ¢Bgredds, (1.3.25)

where d3¢ is the natural volume element on .#. ) is conformally invariant: under a con-
formal rescaling (g, n") — (wW?qu,w™'n"), one has ¢" — w2¢" and d37 — wW3d3s;
furthermore, given any two elements D and D’ in C, they will be related by (1.3.22) for

8 An antisymmetric, bilinear form Q : V x V' — R is weakly nondegenerate if Q(u,v) = 0 for every v e V
implies v = 0. In addition 2 admits an inverse, i.e. is strongly nondegenerate, if and only if the vector
space V' coincides with its double dual.
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some Y, and their images D and D’ under the conformal rescaling are therefore related
by
(D= D) b = Stk = Sk, (1.3.26)

where (1.3.17) has been used, so that ZNIW = wX,, and 0, = Wop.

It can be shown that a BMS transformation, i.e. a one-parameter diffeomorphism ®*)
on .# that preserves the universal structure, not only induces a natural isomorphisms from
I" to itself, indicating that I' is indeed the right phase space of asymptotic radiative modes,
but its action on I' is also a symplectomorphism, i.e.

Qpy(o,0') = Q{w;—mD}(wg)J, Mo (1.3.27)

For simplicity, we restrict ourselves to infinitesimal BMS transformations satisfying (1.1.38)
and (1.1.39) for a = 0, namely £¢q = 0 = £¢n. The symplectic vector field &, ~ 0, on
I' that generates the one-parameter family of symplectomorphisms 1) is given by the
equation

owlipy = (£eDy — Dy Le)ly, (1.3.28)

up to terms with non-vanishing trace (I, is any covector satisfying {,n* = 0).
It can be further shown that such a vector field is also Hamiltonian: the function

1 (87 v
Hie(D)) = =3 | Moo (£eDy= Dyute) e s (1.3.29)

is its Hamilton function, which means that for any vector field X on I,
£xHey = QEy, X). (1.3.30)

The result is independent on the particular choice of [, on the conformal frame (¢, n) and on
the specific inverse ¢"” under consideration. Note that BMS supertranslations & = an, for
Lo = 0, automatically fall under the additional assumption £¢q = 0 = £L¢n. In particular,
for BMS translations, which are singled out by the relation D, D, + ap,, = (const.) X qu,

(see [39]), one has

1
H D}) = — N, Nozq"*q"Pd3s 1.3.31
(an)({D}) 327 |, N Nagd™a : ( )

which is the Bondi four-momentum.

1.3.3 Classical vacua and Poincaré reduction of the BMS group

Borrowing some terminology from gauge theories, we shall call an element {D°} of T' a
classical vacuum if the corresponding field N, vanishes identically. This definition is
made reasonable by the fact that, at these points {D"}, the corresponding Hamiltonians
vanish for each BMS symmetry: in particular, in a classical vacuum, there is no flux of
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energy across .#. Let D and DV be two connections giving rise to classical vacua. It can
be shown that they must be related by

(DY) — DK, = %,,n"K, (1.3.32)
where
Ew/ = DuDVf + fp;w (1333)

for some angular function f, i.e. £,f = 0. We immediately recognize that & = fn
defines an infinitesimal supertranslation; furthermore, it also defines a BMS translation
if in addition D, D, f + fpu, = (const.) x g, but this is just the equivalence relation
(1.3.19) identifying different intrinsic connections as representative of the same physical
configuration. We have obtained the following important result:

Two, a priori distinct, classical vacua D° and D are always related by a
supertranslation and define, in fact, the same classical vacuum if and only if
they are related by a BMS translation.

The action of BMS supertranslations on I' maps each classical vacuum into a classical
vacuum, meaning that it leaves stable the affine space I'? of classical vacua. Under the
action of the translation group T, each classical vacuum is invariant, whereas under a
general supertranslation it is mapped to a different classical vacuum. This means that the
group ST/T acts simply” and transitively'? on T'.

There is another interesting result: for a fixed classical vacuum {D°}, the subgroup of
the BMS group G which leaves {D°} invariant (a sort of little group) is precisely a Poincaré
subgroup of G; furthermore, ST /T acts simply and transitively also on the space Sp of
Poincaré subgroups of G and I'V is isomorphic to Sp in a natural way.

1.4 Asymptotic Quantization

In order to decide which classical observables are to be selected and promoted to quantum
operators [49], we are led to look to the generators of canonical transformations that
preserve the affine structure of I'; in the infinitesimal form they correspond to constant
vector fields on I, i.e. symmetric tensor fields f,,, on .# satisfying f,,n" = 0 and f,,¢"" =
0. Let fu be such a tensor and let it be rapidly decreasing in u € (—00,400); we then
define the smeared news observable by

1

— Wfagq“aq”ﬂd??ﬂ (1.4.1)
87'[' 7

N(f)py = —

9 That is, with trivial stabilizers.
10 An action v of a group G on a manifold M is transitive if for any z, y € M there exists g € G such that

e = y.
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which is nothing but the Hamiltonian for the vector field f,,, on I'. The Poisson brackets
satisfy

{N(f),N(9)} = Q(f, 9)- (1.4.2)

Now, we construct the quantum C*-algebra'l 2 as follows: introduce the operator-valued
distribution Ny, the news operator, subject to the canonical commutation relations

[N(f), N(9)] = —inS2(f, 9)1, (1.4.3)

where N(f) = § o N f1 d37 denotes the smeared out news operator. In analogy with
electromagnetism, N, corresponds to the field strength and {D} plays the same role as
the vector potential.

The algebra 2 is the C*-algebra generated by the smeared out news operators N(f)
with the above specified commutation relations.

1.4.1 The Fock representation

It is rather straightforward to construct the Fock representation of . Given an f,, (u, 8, ¢),
rapidly decreasing in u, its Fourier transform fW(w, 0, ¢) with respect to u is again rapidly
decreasing in w.'? The positive-frequency and negative-frequency parts of the test field Juw
are given by

+00

1 .
f*(u, 0,9) = o . fw/(w,g,(;s)eJrMudw

1 0 ‘ 1 [t% . - 4.
f*(u, 9, (Zs) — % foo fuu(wa 07 ¢)e+zwudw _ %L f:u(w7 07 (Zﬁ)eilwudw (1 4 4)
= (f*(u,0,9))"
and the operation

(f*g")= %Q(f‘,gﬂ

1 27 T +oo
. * ~pv
= WL d¢J;) SIHGdQJ;) w ,uygﬂ dw

1A C*-algebra 2 is a linear associative algebra over the field C where in addition a norm || - || : 2 — R*
and an involution * : 2 — 2 are defined, which satisfy the following properties:

(1.4.5)

e the product is continuous ||[AB|| < ||A]| || B|| and 2 is complete with respect to the topology defined
by the norm;

o (A+ B)* = A* + B¥, (MA)* = MA*, (AB)* = B¥A* and (A*)* = A;
o ||[A*A]| = ||A]]? (called C*-condition).

The algebraic approach to quantization is especially relevant when discussing different possible phases of
a physical system and, hence, symmetry breaking.

12Gince u has the interpretation of retarded time, it seems appropriate to keep the symbol w for its corre-
sponding angular frequency; no confusion should arise with the conformal factor w.
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defines a Hermitian inner product on the space of positive-frequency test fields. Denote
by H the Cauchy completion of the so-obtained pre-Hilbert space. This is the one-particle
space, or the one-graviton space of states. Denote by § the symmetric Fock space based on
H: to each one-graviton state f* in H there corresponds a creation operator C(f*) and an
annihilation operator A(f") acting as ladder operators on §, i.e. increasing or decreasing
the graviton occupation number by 1. These are densely defined (anti-)linear operators

A(f*+20g") = A(fT) + A" A(g")  C(fT+Xg") =C(fF) +AC(g") (1.4.6)

satisfying C'(f1) = A(f1)*,

[A(fT), AgT)] =0=[C(f7),C(g7)] (1.4.7)
and )
(A, Cla™] =797 = U 97). (1.4.8)
The Fock representation of 2l is the linear map A defined as
ACN()) = hA(SH) + (7). (149)

More formally, define the compatible complex structure'® Jf = if* —if~: one has N(f) =
N(f*)+ N(f~) and

A(F*) = GAING) + N (T = AV()),
: (1.4.10)
O = SAIN(G) —iN(I )] = AN(F),

and also N(Jf) =iN(fT) —iN(f™) A iC(f*) —iA(f"). Let us show that A preserves
the canonical commutation relations:

[AN()), AN (9)] = B [C(fT), Alg™)] + I [A(fT),C(g7)]
—ih[Q(f7,9") = Qg™ )1
—ih [Q(f,97) +Q(f,97)]1 (1.4.11)
—ihQ(f, g)1
= A(IN(), N9,

where we have used the fact that Q(f~,¢7) = 0 for any two negative-frequency fields.

13 A complex structure on a vector space V is a linear map J : V — V satisfying J? = —1. The complex
structure J is said to be compatible with a symplectic structure Q on V if Gs(u,v) = Q(u, Jv) is a
positive inner product on V. The symmetry of G; requires J to be a symplectomorphism Q(Ju, Jv) =
Q(u,v) and its positivity imposes Q(u, Ju) > 0, for all u # 0.
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Now, the action of the BMS group G leaves the Schwartz space and the symplectic
structure invariant, so that H provides a unitary representation of G and hence of any
Poincaré subgroup of G.

Using this action, one finds for example that the square-mass, given by m? = —p% +p? +
p% + pg, is expressed in terms of the translation generators X, = a,n, where

ag=1, a1 =sinfcosp, ag=sinfsing, a3z = cosb, (1.4.12)
by
m?fh, = (—of + of + a5 + a3) £nLafh, = 0. (1.4.13)
0

Another computation shows that this representation splits into two irreducible representa-
tions of helicity +2 and —2.

The action of the BMS group G on I preserves the symplectic structure 2 and we gave
the expressions of the corresponding generating functionals, i.e. the Hamilton functions
generating the corresponding canonical transformations. These classical observables can
be readily promoted to quantum operators on the Fock space §, using the normal ordering
prescription to regularize the product of operator-valued distributions that appear in the
expressions. Hence the BMS group can be realized as a symmetry group also in the
quantum theory.

1.4.2 Infrared sectors

The finiteness of energy requires any radiative mode {D} to approach some classical vacua
{D°}% in the limits u — +o0. Fix an origin {D°} in T' and represent any {D} € I' by the
tensor field f,,, = {D} — {D}; let the corresponding news tensor be given by

FMV = _2£nfuu7 (1414)

from which F = 21w f;w- The requirement needed for f* to be in the one-particle space
is that its norm does not diverge: therefore, substituting in (1.4.5), we need

+o0 2 dw
f ‘Fuy(w,e,qﬁ) = <4, (1.4.15)
0

This integral is infrared divergent unless F (0,0, ¢) = 0, or, equivalently, the zero-mode of
the news tensor vanishes

+0o0
Qul0.9)= | Fiuu.0.)du =0, (1.4.16)

or again, in terms of f,,,
f,ul/(+oo7€7 ¢) = fu,,(—oo,e,(ﬁ). (1'4'17)
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In turn, this implies, from a classical viewpoint, that {D} should tend to the same classical
vacuum in the limit 4 — +0c0 as it does in the limit u — —oo:

{(D"Y" = {D%~. (1.4.18)

For the linearized theory, one can show that this condition is equivalent to having trivial
scattering.
Introduce the following equivalence relation

{D} ~ {D'} if and only if Q,, = Q (1.4.19)

/
pv

which identifies modes with the same “phase” between the distant past and the distance
future classical vacua; as we have seen, only the subspace @, = 0 gives rise to one-graviton
states in the Fock representation. Are there other representations, other than the Fock one?
Consider the following (“charged”) automorphism II; defined on the C*-algebra 2:

T (Ny (1,0, 8)) = Ny (u, 0, ) + fu(u, 6, )1 (1.4.20)

We now prove that this automorphism, in general, cannot be implemented by any unitary
operator in the Fock representation: if it were, denote by U such an operator, which acts
therefore by

UAN(B)U™! = A(I1;(B)) (1.4.21)

for any B € 2; applying the previous equation to U|0), where |0) is the Fock vacuum,
UA(B)|0) = A(I1¢(B))U|0), (1.4.22)
choosing B = N(h™) so that A(B) = A(h'), for some one-graviton state h*,
0= (A(RT) + kY, f)) U|0). (1.4.23)

On the other hand, the canonical commutation relations and the Baker-Hausdorff formula'4
imply that

e CUDARTECUT) = A(RY) — (ht, 1), (1.4.26)
14 The Baker-Hausdorff formula states that
2
e MCAer = A+ \[A,C] + %[[A,C], Cl+... (1.4.24)

and it is easily derived as follows: letting f(\) = e *“ A4e*“, by direct computation f()) satisfies the
Cauchy problem

F) =14, F (V)]
f(0)=A
which is also satisfied by g(\) = e**d¢ A, where adcA = [A,C]. Hence f(\) = g(\) by uniqueness

of the solution to the Cauchy problem; note that this result holds for any A since one is dealing with
everywhere-convergent power series.

(1.4.25)
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so that the solution of (1.4.23) is
U0y = NeCUM0Y; (1.4.27)

by the same formula, |f+5 = eC(f+)|0> is a coherent state A(fT)|[fT) =<, fHOIf) and
hence
||€C(f+)|0>||2 — D (1.4.28)

so that this state exists if and only if f* belongs to the Q. = 0 sector, since above we
have seen that the norm {f*, f*) is finite if and only if @, = 0. Non-Fock representations
are built as follows: let

(B)y = 0|A(I1f(B))[0) (1.4.29)

be the expectation value on the f-vacuum; using the Gelfand-Naimark-Segal (GNS) [50]
construction, one then recovers an irreducible representation Ay of 2 which is inequivalent
to the Fock representation. Furthermore, if f and g belong to the same sector, then Ay_,
is unitarily equivalent to the Fock representation, by the above argument, meaning that
the representations are labelled by the value of Q. (6, ¢).

Even though Ay admits a cyclic vector |0); which plays the role of the vacuum, the zero
value is not a proper, discrete eigenvalue of the Hamiltonian in this representation, but
rather the infimum of its continuous spectrum; another possibility is to work, instead, in
the (non-separable) Hilbert space made up by the direct sum (or integral) of all the @,
sectors.

The @, commute with any N and hence form the elements of the center Z of the
observable algebra 2 [47]. Another way to prove that the automorphism Il is not unitarily
implementable is to note that it does not commute with Z, and hence it must be broken in
any irreducible representation of the algebra 2(. In fact, as we have seen above, 11y plays
the role of an intertwiner between various inequivalent representations obtained via the
GNS construction.

Now, what about the BMS transformations? Let us consider the subgroup of BMS
supertranslations ST'. Clearly, ST' commutes with Z: the action of a supertranslation ty)
generated by an, for £,a0 = 0, of parameter A is given, in a Bondi frame, by [51]

1
f'u,y L fuy + )\ <D/‘LDlla + quy2quDpDa-a> = f/“/ + )\AMV’ (1.4.30)

which does not alter the zero mode @, since « is u-independent. It follows that any
representation of 2 obtained by acting with ST on a given irreducible representation will
be unitarily equivalent to the starting one. Therefore, ST constitutes a Wigner symmetry
in any irreducible representation of 2[. An ordinary translation is in particular characterized
by the fact that A = 0.

This proves that the BMS group is a Wigner symmetry, i.e. it can be implemented
unitarily in any irreducible representation of the observable algebra 2l.
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As we shall see in Chapters 3, 4, 5 and 6, a key ingredient in the discussion of asymptotic
symmetries will be given by their spontaneous breaking, in apparent contradiction with
the conclusions we have just drawn concerning the BMS group. The difference in the two
approaches is given by the field algebra one chooses to consider: here we were dealing with
observable quantities exclusively, whereas in the following chapters we will consider larger
spaces, also comprising some non-radiative modes.

40



2 Weinberg’s Soft Theorems

2.1 Soft Theorems from Gauge Invariance

In his celebrated 1964 paper [6], Weinberg showed that, using only the Lorentz invariance
and the pole structure of the S matrix, together with masslessness and spins of the photon
and the graviton, it is possible to derive the conservation of electric charge and the equality
of gravitational and inertial mass. On the same grounds, he gave a possible explanation as
to why we observe no macroscopic fields corresponding to massless particles of spin 3 or
higher.

In particular, exploiting the S-matrix pole structure and Lorentz covariance only, he
could prove the following two properties:

(1) The S matrix for the emission of a photon or a graviton can be written as the
product of a polarization “vector” e* or “tensor” eHe” with a covariant vector or
tensor amplitude, and it vanishes if any of the €*’s is replaced by the photon or
graviton momentum g*;

(2) Charge, defined dynamically by the strenght of soft-photon interactions, is additively
conserved in all reactions. Gravitational mass, defined by the strength of soft graviton
interactions, is equal to inertial mass for all nonrelativistic particles (and is twice the
total energy for relativistic or massless particles).

For the moment we shall allow ourselves to think in terms of fields and to rely on the
usual notion of gauge invariance as well, in order to give a simple overview of Weinberg’s
more ambitious work.

2.1.1 Charge conservation

Let us consider a transition amplitude involving N external particles, distributed between
a set of in states |a) and a set of out states |3), together with an additional external
particle with mass m = 0, spin (helicity) 1 and momentum ¢*:

Sor,Biqn- (2.1.1)
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With respect to the same process without the additional massless particle, one can consider
two different types of diagrams, illustrated by the following cartoons.

SaBiqn = + (2.1.2)

In the soft limit ¢* — 0, diagrams of the second type display a pole singularity: letting p;
be the momentum of the outgoing external particle interacting with the photon,

1 1
(pi+q)?—m?  2p;-q

(2.1.3)

since the external particles are on shell and thus p? —m? = 0. Therefore as ¢* — 0 the
amplitude will be dominated by second contribution in (2.1.2). Weinberg showed that
under these conditions the full amplitude for the process factorizes as follows

1
2pi - q’

Sapq = 2. eil'en(@)S(p1,- ., pN) (2.1.4)
(]

where ¢, is the polarization vector for the spin-1 massless particle, while e; defines the

electric charge of the other external particles. The sum runs over all external particles,

incoming and outgoing, other than the soft one. Now, gauge invariance imposes the require-

ment that when ¢, is substituted with g,a (the Fourier transform of the gauge parameter)

the amplitude must vanish, implying

1
2pi - q

au Y, el S(p1, ..., pN) =0 = Ylei=0. (2.1.5)
7 7

This is the equation of charge conservation.

2.1.2 The equivalence principle and higher spins
In the case of a spin-2 soft massless particle, following the same line of reasoning and
denoting by f; the gravitational couplings, one finds

1
2pi-q

Saga = ), [P P ew (@S (p1, - . o) (2.1.6)

Again gauge invariance requires that substituting e,, with ¢,e, + g €,, the amplitude

vanishes,
1

- qweny,-pfpi”S(pl, - ,pN)m =0 = %Zfz‘p? =0 (2.1.7)
i ’ i
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and thus, by the arbitrariness of ¢,,, one finds the following condition on the momenta

> fif = 0. (2.1.8)

Now, recalling that energy-momentum conservation also requires >, p!' = 0, the only case
for which the interaction is nontrivial is

fi = constant, (2.1.9)

which is nothing but a form of the equivalence principle: every type of matter must couple
to gravity with the same coupling constant. We have deduced the equivalence principle
from the requirement of gauge invariance in the limit of small energies. Notice that in our
derivation the matter particles can be either massive or massless, with any spin.

In a similar manner, one sees that there can be no gauge interaction surviving the soft
limit for higher spins, s > 3, since by the factorization result for the amplitude

1
89 = S g s (@) S0, ) ST (2.1.10)
i (]
which should vanish when €, 1, .1, (9) = q(u,€ps...05) (@), ODE gets
Zgis)pfz D s (@) = 0, (2.1.11)
i

and this is incompatible with energy-momentum conservation, unless the interaction is
trivial g(s) = 0.

7

2.2 Weinberg's Covariant S-matrix Approach

We turn now to the proof of Weinberg’s theorems in the spirit of the original paper men-
tioned above. For some important technical results on the implications of covariance on
the S-matrix structure, which are here assumed to hold, we refer to the appendices of
Weinberg’s paper [6].

2.2.1 Amplitudes for massless particles of integer spin

Consider a process in which a massless particle is emitted with momentum q and helicity
+s.! The Lorentz transformation property of the S matrix can be inferred from the

'"We limit ourselves to integer spins.
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transformation law for one-particle states; using p as a shorthand for the p;’s of the previous
section, we find

|Aq| /2 +is0(q,A)
Sts(a,p) = o) T S+s(Aq, Ap), (2.2.1)

where O is a function of the massless particle momentum ¢ and of the Lorentz transfor-
mation A. It is always possible to write S1; as a product of a “polarization tensor” and
an “M function” in the following way:

1
Sis(q7p) = ﬁgil*(q) e gis*(q)Mi,uL..,us (Aq7 Ap): (222)

where M denotes a symmetric Lorentz tensor. The “polarization vector” &’ follows the
transformation rule

n .
(8= A0 ) = =@Vt o), (223)

Since apparently 6i is not a vector, an auxiliary condition will be needed to make sure
that S5 satisfies Lorentz invariance. The S-matrix transformation law is then

(Ag)H
q|

Auoglj_r] My, ..p, (A, Ap).

eiis@(q,/\) [5i1 (Aq) -

(Ag)Hs
|q|

For an infinitesimal Lorentz transformation A*, = §*, + w”,,, we can use (2.2.2) and the
symmetry of M to put the previous equation in the form

Si’s(qap) :m Ayogl_ji_:| .

(2.2.4)
<[ -

|Aq| 12 +is©(q,A)
Sis(a,p) = v ™S4 s(Aq, Ap)

1

v/ 2]q]3

Hence the necessary and sufficient condition for this transformation law not to contradict
the first one is that S; vanishes when one of the ¢4 is replaced with ¢/

¢ (q) (@) My (@) = 0. (2.2.6)

(2.2.5)

(w,°%(q)) [ e2*(q) - . - (@) My () ] -

— S

2.2.2 Dynamic definition of charge ¢ and gravitational mass f

Considering the vertex amplitude for a very-low-energy massless particle of integer helicity
+s, emitted by a particle of spin 0 and mass m (perhaps zero), and momentum p* = (p, E),
the only tensor which can be used to form M} " is p#1 ... ps, since terms involving g"*
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do not contribute to the S matrix because of eey, = 0,2 so that the vertex amplitude

must be of the form .

e P
2E(p)y/2la)

In the next section we will see that, even for emitting particles with spin greater than
0, the S matrix elements will be given by this expression, times d,,» where o and ¢’ are
respectively the initial and final helicity of the emitting particle.

We define the soft photon coupling constant e by the statement that the s = 1 vertex
amplitude is

e (q) ... e (q). (2.2.7)

2ie(2m) 0, pue't (q)
(2m)°22E(q)+/2ld]

and similarly for the “gravitational charge” we state that the s = 2 vertex amplitude is

(2.2.8)

2i f (87)Y2(27) 40 (pu€i*(Q))2
(2m)9/22E(q)+/2]q] '

2.2.3 Conservation of ¢ and universality of f

(2.2.9)

Let S, be the S matrix for some reaction o — 3, the states o and 3 consisting of various
charged and uncharged particles, perhaps including gravitons and photons. The same
reaction can occur with emission of a very soft extra photon or graviton of momentum q
and helicity +1, or +2, and we will denote the corresponding S-matrix element as S;—r; (q)
or S;—:f (q).

As illustrated above, these emission matrix elements will have poles at q = 0, corre-
sponding to the Feynman diagrams in which the extra photon or graviton is emitted by
one of the incoming or outgoing particles in states a or 8, since then the n-th outgoing,
respectively incoming, particle of mass m, and momentum p,, gives rise to a term of the

form
- == L . (2.2.10)
(pn £ @) =m3 " 2pn-q
In the limit q — 0 we will get, denoting by S, the remainder of the diagram once we have
factored out the pole and tensor structure,

S o Pnocil@)
S a(q) ~ (271_)3/2\/% [Znn n P - q ]Sﬂa
<q>>2]

e (2.2.11)

Sij(‘l) (2r 3/2 [Z nnfn SBas

2 This follows from the fact that external particles are on-shell and the corresponding tensors live in
traceless representations of the stability group of p*.
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1y being +1 or —1 according to whether the particle n is outgoing or incoming.

As we have learned in the previous sections, Lorentz invariance requires the vanishing
of the vertex amplitude when a polarization is substituted with the corresponding four-
momentum. This yields for s =1

D nen =0 (2.2.12)

and for s = 2

D i fupl = 0. (2.2.13)

The first one is precisely the conservation of the electric charge, whereas the second, when
compared with the equation of momentum conservation »n,p, = 0, yields the universality
of the gravitational coupling constant f, = 1, for all n.

Weinberg exploits these calculations also in order to justify the choice of pf' ...ph" in
(2.2.7) as the only possible form of the M function emitting particles with spin 1 or higher,
since any other helicity-dependent term could never give rise to cancellations between
different poles needed to satisfy the Lorentz invariance condition.

2.2.4 Higher-spin soft emission

For higher helicities s = 3,4, ... one still has a factorization of the form
N ei(q)®
Szala) o 3/2 Znn g\ 771 . Sbers (2.2.14)
and the requirement )
D inng) [pn €5 (@)] =0, (2.2.15)
n
which contradicts momentum conservation unless ggf) = (. This tells us that the low energy

interaction for higher spins is trivial or, in other words, that massless higher-spin particles
cannot propagate long-range forces. On the Lagrangian side, this implies that higher-
spin interactions should be of multipolar type, i.e. the vertices should contain enough
derivatives so that they vanish in the soft limit.

An expression like (2.1.11) or (2.2.15) looks like some sort of conservation law, and one
may wonder whether it can be derived from some underlying symmetry. This question
was addressed long ago for s = 1 in a couple of papers [32, 33] by Ferrari and Picasso,
and received recently a renewed attention after the contribution of Strominger et al., who
linked it to the BMS symmetry presented in the previous chapter. We shall illustrate the
corresponding findings in the next two chapters, to then move to face the main issue at
stake in this work: investigating the higher-spin symmetry underlying (2.1.11).
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3 BMS Ward ldentities and the Soft
Graviton Theorem

Weinberg’s soft graviton theorem, which was described in the previous chapter, has been
recast in [2] as the Ward identity following from BMS supertraslation symmetry. To build
a bridge between these two results, which are naturally expressed in two very different
languages, we will need to find a way to link the boundary data at null infinity, expressed
in terms of the Bondi news, to the properties of scattering of momentum-space plane waves.

We will also have to define the physical phase space of gravitational modes, which needs
to include the Bondi news as well as all soft graviton degrees of freedom which do not decou-
ple from the S matrix. Notice that this contrasts with Ashtekar’s asymptotic quantization,
where only observable quantities were considered.

This space will turn out to contain the usual radiative modes plus the Goldstone modes
of spontaneously broken supertranslation invariance.

3.1 Vacuum-to-Vacuum Geometries

We start by fixing the notation and by introducing a useful set of local coordinates near
#* called the Bondi coordinates.

3.1.1 Bondi coordinates for asymptotically flat spacetimes
0

As derived in [4, 5], a general Lorentzian metric can be written in local coordinates u = z°,

t=a',0=2a2 ¢=23as

Ve2s
= —du® = 2% dudr + r*hap (da’ — U'du) (da® — UPdu) (3.1.1)

ds®

where A and B take the values 2,3, and det (hap) = b(u,0,¢), where b(u,0,¢) is an
arbitrary but fized function; V, 8, U4 and hup are any six functions of the coordinates.
This result relies only on the properties of the above coordinates, in the sense that such a
component expansion for ds? is allowed if and only if the following conditions hold:

(i) the hypersurfaces u = const. are tangent to the local light cone at each point;

(ii) # and ¢ are constant along each ray, where a ray is defined as the line with tangent
Kt = —g"o,u;
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(iii) r is the corresponding luminosity distance given by'
L 10,070, 6,00%0 5 — (0,09, sin?0} 3.1.2
r g v Cb,ag ¢,ﬁ ( ad ¢,,u) sin . ( L. )

By analyzing the field equations it was shown (see [4, 5] and references therein) that, in
the case of asymptotically flat spacetimes, the asymptotic behavior of the quantities in the
above component expansion compatible with the presence of gravitational radiation is the
following: denoting by do? = hapdz?dz® the two-dimensional line element,

V= —r+2M(u,6,¢)+ O,
B = —c(u,0,¢)c* (u,0,¢)(2r) 2+ O™,
U4 =02, (3.1.3)
do® = df? + sin® 0dp? + O(r~)
= ’yABd:L'Adl'B +r Y Aqgdz?da® + (’)(r_2),
where Ayp = O(1). The function M (u, 0, ¢) is called the Bondi mass aspect and its integral

on the two-sphere coincides with the Bondi mass defined in Section 1.2.2. This allows to
expand the metric in the following form:

ds? = — du® — 2dudr + r? (d92 + sin® 9d¢2)
oM (3.1.4)
+ Zdu? + rAapdatda® — 2r2UAfyABdude + ...
r
the dots denoting subleading terms in 7~! with respect to those explicitly written (note

that r2U4 = O(1)). Using the standard complex coordinates? z = tan(6/2)e’®, in place of

! Recall that the area element on the sphere is given by , [eges — (eo - ep)? = r?sin @, where el = dz" /00
and el = dz"/0¢.
2 The transformation rules from the usual spherical coordinates to these complex coordinates read

; 0 0 -
z =€ tan 5 2Z= tan® T t* 0 =2tan" " (vzz) (3.1.5)
; 0 z ; 1., z
7 —e " tan ~ 2 29 ——InZ 1
z =e "®tan 2 ~=¢ 5 10 (3.1.6)
and hence 5 1 B
a' +ix® = rsinfe’® = r Z_, 2® =rcosh = r— = (3.1.7)
1+ 22 1+ 22
The line and surface elements are given by
do? + sin® Od¢® = 02 gz df sin Od¢ = 2 s (3.1.8)
(14 22)2 ’ (14 22)? ’ o
whereas the non-vanishing Christoffel symbols read
2z _
. = — =TIz 3.1.9
zz 1 + ZZ zZzZ) ( )

so that R.z = v,z and [Dz, D] X" = X;.
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the usual spherical coordinates 6, ¢ and relabelling the last terms appropriately, we finally
obtain:

ds® = — du® — 2dudr + 2r*~.zdzdz

9mp (3.1.10)

+ du? + rC,,dz* + rCs5dz* — 2U,dudz — 2Usdudz + . . .

r

where we have defined v,z = 2/(1 + 22)? and mp(u, 2,2) = M(u, 0, ¢); the quantities C.,,
C5s, U,, Us are independent of 7.

The coordinates (u,r, z, Z) are called retarded Bondi coordinates: the retarded time u
parametrizes the null generators of .#* whereas z and z parametrize the conformal two-
sphere, whose metric is 2v,:dzdz. D will denote the y-covariant derivative.

Furthermore, using an appropriate Ansatz for the angular terms of the metric, Barnich

and Troessaert [52] also derived
1

U. = —5D*Cse. (3.1.11)
A similar expansion is available near past null infinity . ~:
ds® = — dv® + 2dvdr + 2r2'yzgdzd2

(3.1.12)

-
4+ ZB 02 4 1D, .de? + rDasdz? — 2Vidodz — 2Vadvdz + . .
T

(mp will always denote the Bondi mass aspect at #*, unless otherwise specified), where

1
V.= ;DD (3.1.13)

We use the following shorthand notation for the causal future and past of #%: J, (%) =

. The outgoing and incoming Bondi news are, respectively, (see [1, 52])
N., = 0,C.., M,, = 0,D,,. (3.1.14)
Their physical meaning is given by the following relation, which follows from the Einstein
equations: assuming no matter fields,
1 1 .
Qump = =7 N N** = 20y (D*U: + D*U,) (3.1.15)

or, in other words, the news tensor controls the mass loss (see [4, 53]), since integrating on
a cross-section . yields

0 1
— d’Q=—>=1| N, N¥*d*Q 11
ou )y e 4 Lﬂ ’ (3.1.16)

analogous to the expression (1.2.21) in Section 1.2.2. This confirms
1
Tuu = ZN“sz (3.1.17)
as the total outgoing energy flux of gravitational radiation.
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3.1.2 BMS supertranslations

As we have seen, BMS™ supertranslations are generated by the infinite-dimensional family
of vector fields

& = [ou— 1 (f70: + f70.) + D*D. iy, (3.1.18)

labeled by the functions f = f(z, z) defined on the conformal two-sphere. BMS™ acts on
Z T by Lie derivative and asymptotic Killing vector fields form a faithful representation of
the BMS algebra when equipped with the standard Lie bracket [52].

For example, the (zz)-component of the variation of the metric tensor under the in-
finitesimal supertranslation ; is given by (letting £ = £¢,)

1 - 1
(°€fg)zz = fOugzz — ; (f’zaégzz + f’zazgzz) + 5 (Af) Orgzz + 2gzuaz€u
=T (fauczz - 2D,Zf) + 0(1)7

(3.1.19)

and since by confrontation with the original form of the metric (£¢g).. = r£:C.. + O(1),
we finally have:
£¢Cy, = f0,0,, — 2D2f. (3.1.20)

Similarly BMS™ transformations act on .#~ and contain the supertranslations labelled
by f7(z,2) ,
f 0, — ;(fo—ag + D?f~0,) — D*D,f~ 0, (3.1.21)
under which
Ly-D.. = f0,D.. +2D3f". (3.1.22)

3.2 Supertranslation Generators

In this section we construct the physical phase space, the symplectic form and the canonical
generators of supertranslations at .#*, following [1, 2].

3.2.1 Poisson brackets on .

The Ashtekar symplectic form (see [47, 48, 21]) on the space I' of radiative modes defined
in Chapter 1, i.e. the space of equivalence classes of connections identified under suitable
relations due to the conformal structure of null infinity, is defined as follows with our choice
of normalization

1 _
Q{D}(a, o) =— (0550400, — agzﬁuagg)*yzzdud%z (3.2.1)
167‘( 7+
and
{N::(u, 2,2), N,,(u',w,w)} = —1670,6(u — u’)52(z - w)ygz. (3.2.2)
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The generator of BMS™ supertranslations on these physical modes is [1, 2]

1

T an

T (f) J e fmpd. (3.2.3)
I

Note that this generator reduces to the Arnowitt-Deser-Misner Hamiltonian when f =1,

i.e. TT(1) = M. Using the (3.1.15), assuming no matter fields and dropping a term

proportional to the late time mass aspect mp| ,+, which vanishes for the classical solutions,
+

we find .
TH(f)=——1| [[v*NeNzz +20,(0.Uz + 0:U.)| dud’ (3.2.4)
167 g+

leading to
{T+ (f)y sz} = fﬁusz (3.2.5)

since the second term of TF(f) can be recast as a boundary term. The analogous expres-
sions for 4~ read

1 1 i
Qo = 7Moo M* + 50, (D*V. + D*V;)

4
_ 1 _
() = 55 | ereetmy (3.26)
<+
1
= T4 dv dQZ f [P)/zZMzzMZZ + Qav(azvé + a%vz)] .

Since these generators involve non-radiative modes, however, we would like to define
their action on an elarged phase space I't which includes some non-radiative modes but
which is able to generate the BMS symmetry transformations. That is to say: we enlarge
our field algebra from the algebra of observables to a bigger one which ensures that the
symmetry automorphisms are inner automorphisms.

One way to do this is to identify this larger space by the one parametrized by C,, and
hence to integrate the above bracket (3.2.2) with respect to u and v, obtaining thus

{Cs:(u, 2, 2), Co (v, w, w)} = 87 sign(u — u')6(z — w)7.z, (3.2.7)

where the antisymmetry of the bracket fixes the constant in the integration of 0,0 (u — u')
and requires the sign function.?
If we use this result, together with

TH(f) = —

- F[V#0uC.20,Cs5 + 20,(0.Us + 0:U.) | dud*z (3.2.8)
167T g+

we obtain ~
{T+(f)7 sz} = fﬁuczz + 'YzEaZDZf

3.2.9
= f0uCsy — D*f # £4C,, ( )

3 Note that this bracket already appears in [21, (C.17)], but with a different interpretation.
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where (3.1.11) and (3.1.14) have been taken into account: a factor of two appears to
be missing with respect to (3.1.20). To solve this problem one introduces the auxiliary
boundary conditions

[0:Uz = 0:U:] =0, (3.2.10)
Nzz| s = 0. (3.2.11)

Equivalently, by (3.1.11), the first one may be written
[D3C:; — Dgczz]j++ = 0. (3.2.12)
The general solution of these additional constraints_can be expressed as follows:
C..| ,+ = D2C,

© (3.2.13)
f N..du = D?N,
—Q0

where the boundary fields C, N are real.
We may then take as our coordinates on the phase space the boundary and bulk fields:

't ={C(z,2),N(z2),C,.(u,2,2),Czz(u, 2,2)} . (3.2.14)

Now, equation (3.2.7) remains valid as the bulk-bulk Dirac bracket; we impose (3.2.13) for
bulk-bulk or bulk-boundary brackets in the following manner
+o0

D?{N(z,%), Cow(u,w,w)} = J du' {N.(v, 2, 2), Cp(u, w, )} (3.2.15)

—00
and then we constrain the boundary-boundary bracket by requiring continuity
D2{N(z,2),C(w, )} = limoo{N(z, Z), Copw(u, w, w)}. (3.2.16)
Uu——
This is a nontrivial request: there may be other, inequivalent, extensions of the symplec-
tic form to the enlarged phase space, corresponding to inequivalent quantizations of the

boundary sector. These conditions determine the brackets uniquely. A similar construction
is available at .# .

3.2.2 Canonical generators

The supertraslation generator can be recast as follows, using (3.1.11) and the boundary
constraints,

1 _
T+ (f) :m o+ f [72z6u0226u022 + 28u(8ng + 65Uz)] du d2z
1 . -
= Ta_ f ['YZZauszauCEE - 'YZZ(DgNEZ + Dgsz)] du d2Z (3.2.17)
167 J 7+
1 - 1 _
= Ta f’)/zzauczzaucz,i du d2 - 5 f ’}/ZZDngNdQZ.
167w 7+ [ E];r
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The non-vanishing brackets are
{T*(f), N2z} = fOuN.,
{(T*(f),Csz} = f0uC.. — 2D2f,
{T7(f),N} =0,
{T7(f),C} = -2,

so that, as desired, the realization of supertranslations is canonical on I'*. We refer to [1]
for the details of the analogous construction for .# .

These transformation laws indicate that supertranslations do not leave the in or out
vacua invariant and are spontaneously broken in our enlarged phase space: in particular
the last bracket in (3.2.18) identifies —%C as the Goldstone mode associated with this
symmetry breaking.

As was mentioned during the discussion of asymptotic quantization, however, the soft
graviton zero mode,

(3.2.18)

+00
Q..(2,2) = N..(u,z,2)du = D2N, (3.2.19)

—Q0

commutes with all physical observables, and hence is an element of the center of the ob-
servable [47] algebra, its different values labelling different, physically inequivalent sectors
of the theory. In the quantum case [21, Section II1.C.3], the Fock representation is selected
by the value Q.. = 0, whereas non-vanishing values of the central element correspond to
non-Fock representations intimately related to infrared problems: the non-Fock states are
determined by “clouds” of coherent soft gravitons. Then it is also clear that supertransla-
tions are unbroken in the representations of the observable algebra, only, as made apparent
by the third relation in (3.2.18).

3.3 Supertranslations and the Soft Graviton Theorem

3.3.1 Supertranslation invariance of the S matrix

In the conformal compactification of asymptotically flat spacetimes, the sphere at spatial
infinity is identified as i® (see figure 1.1 on page 11): the null generator n* of £+ flows
from .~ to .#* through i°; carrying the coordinates (z,z) along this flow we identify
points on the conformal spheres at .#~ with those at .# T and this procedure allows to
define a matching or continuity relation between final and initial boundary data. We call
BMS? the diagonal subgroup of BMST x BMS™ which preserves this continuity relation. In
particular, the diagonal supertranslation generators are those which are constant on the
null generators of .7 i.e.

f_(z,é) = f(Z,Z) (331)
Christodoulou-Klainerman spaces are just smooth and regular enough [1] as to make these
matchings possible: their properties ensure that in weakly gravitating systems the null
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generators going from .#~ to .1 are suitable for the above identification. As we will see
in Chapter 5, this choice can be also justified by thinking the action of the BMS group on
the whole physical spacetime, and not only on its null boundary: this allows to argue that
the condition f~(z,2) = f(z,z) follows naturally by computing the charge for the same
supertranslation on both #* and /. [16]

One may remark that, since BMS? supertranslation generators commute and obey
T*(f) =T (f), and since the S matrix is constructed from exponentials of the Hamilto-
nian 7'(1) = M, infinitesimal BMS? transformations should commute with the S matrix.
The BMSY subgroup is therefore conjectured to be an exact symmetry of both classical
gravitational scattering and of the quantum gravity S matrix. More precisely, the conjec-
ture states that the S matrix obeys

TH(f)S—ST (f) =0. (3.3.2)

The Ward identity corresponding to this relation is obtained by taking the matrix ele-
ments of the previous equation between Fock states (as stated above, the Fock represen-
tation is only allowed for vanishing @),,) with n incoming and m outgoing particles at

210, respectively z", on the conformal sphere at .#, denoted by |iny = |2i",...,zI") and
(out| = (29", ..., 22" |. These carry energies E}* and EQ", where Y E}* = Y ES" by total

energy conservation.
Choosing, for fixed direction z on the outgoing sphere, the function

1

Z—w

flw, w) = (3.3.3)

and the “soft graviton current”

1 +00 +00 1
PZ = % <J . av‘/zd’l) — J_OO é’uUzdu> = % <‘/Z

-
+
- U,
I

jj) : (3.3.4)

]+

we can show that the matrix elements of (3.3.2) between the above states are

] ) m Egut n Ellcn
{out| : P,S : |iny = {out|S|in) Z R - Z | (3.3.5)
k=1 k=1 k
where the symbol : : denotes time-ordering. The argument [1] goes as follows: the oper-

ator

1 1 1
() = 4 L/ A%y fmy = o f dvd* f [%ZTW + 500 (0:Vz + azvz)] (3.3.6)
+

generates supertranslations on ¢, where Ty, is the total incoming radiation energy flux,
rescaled by 4w, given by M,,M??, and hence obeys the relation

T (f)liny = F-lin) + > B f(20)fin) (3.3.7)
k=1
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where F'~ denotes the incoming soft graviton operator with polarization tensor proportional
to D2 f:

1 1 ]
F(f) = sz  dvd’zf0,05V. = o dvd*>D2fM?Z. (3.3.8)

Note that we have used the boundary condition
0.Vz = 0:V, at I, (3.3.9)

which is the counterpart of (3.2.10) on .#~, in order to get rid of Vz. Combing with the
analogous result for .# ™, one can write

F=F" F‘——Jd VD2 f U dezerf dusz]. (3.3.10)
I+

Exploiting the supertranslation invariance of the S matrix:

n m

{out| : F'S : |out) = [Z B f(2) = > B Out)] {out|S|out). (3.3.11)

k=1 k=1

-1

Computing F for f = (z —w) ™", in particular, gives

p— -~ [aze, (az ! )U oM, + J duNZZ.] (3.3.12)
87 zZ—w - I+

Integrating by parts, using equations (3.1.11), (3.1.13) and 0:1 = 2m6%(z), this reverts to
the above soft graviton current and its Ward identity is precisely the desired one.

3.3.2 From momentum space to position space

Much of the work needed, in order to make apparent the connection between (3.3.5) and
Weinberg’s result

. * 2
S;,—g(q) ~ g {Z %W} Sgq for k? = 327, (3.3.13)

n

consists in translating the latter formula, which is written in momentum space, into the
language of position space. To begin with, recall that the usual Minkowski coordinates
(t,z', 22, 23) = (¢,x), in which the Minkowski metric is written as

ds® = —dt* + (dz')? + (d2®)* + (dz®)? = —dt* + dx - dx, (3.3.14)
are related to the retarded Bondi coordinates used above by the transformation

2 1—2z
t=u+r, xt +iz? = rz_, z® = LZ_Z), (3.3.15)
1+ 22 1+22
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where r = [(z')? + (2%)? + (ac3)2]1/2 = |x|. Consider now a wave packet for a massless
particle with spatial momentum centered around p and satisfying the mass-shell relation
p? = w? or, in other words, with four-momentum p = (w,p). At large times and large r

this wave packet becomes localized on the conformal sphere near the point

w
1+ 2z

(z+z,—i(z—2),1 — 22), (3.3.16)

p=wX=
so that the momentum of massless particles may be equivalently characterized by p* or
(w, 2, Z).

At late times t — oo the gravitational field becomes free and can be approximated by
the mode expansion

out d3
0 = 3 |

where ¢° = wq = |q| for brevity, a = + are the two helicities and

1 (e ou iq-xT (e} ou —1iq-x
5 e (@ag™ (@)e™™ + ef (a)ag™ (@) e 7], (3.3.17)
q

[ (a), agh" ()] = 2wq(27)*aard(q — ). (3.3.18)

The polarization tensors can be chosen [54] such that e*# = ¢*#ct¥ where

q) = 1w /, —W
\? (3.3.19)
e (q) = ﬁ

note that, by direct calculation using the Minkowski metric, et*¢, = 0 and et u = 0.
Transforming to retarded Bondi coordinates, we get

Ha) = aga,j(q) = \/?I i(t;;;)

) = ) = Y

(w7 1,1, —'LU) =t (Q);

(3.3.20)

By comparison with the expression of the metric in retarded Bondi coordinates, one has

1
C.:(u,z,2) = k lim ;hggt(r,u,z,i). (3.3.21)

r—00
Using the transformation rule h.. = d.2#0.2"h,,, we get
1
C:z(u,2,2) = k lim fﬁzx“é’zz‘l’hfﬂ(r, u,z,2), (3.3.22)

r—w 7
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where h,,,, is given by the above mode expansion. Denoting by 6 the angle between X and q,
recalling that ¢ = w+7 and hence iq-z = —iwq(u+7) +iwgr cos§ = —iwg|u+7(1—cos )],
and using the above properties of the polarization tensors, we have

C,. =k hm = (0,2t 0,a” Z J 2ﬂ— - 2w oz;k(q)agut(q)e—iwq[u+r(1—c0s9)] + h.C.]

r—owr

+00 +1 2 %2 )
— e lim — Z J quJ Wq [(%ﬂ‘élflaout(q)e—zwq[u+r(1—m)] + h'C} de,

rowr S 472 [ (14 22)* @
(3.3.23)
where
G- 3 i
A, = JF@=2) dta=t A* =A_,. (3.3.24)
1+wz fa=—

Integrals of this form can be treated as follows: integrating by parts, the integral is split
into the sum of three terms

+00 +1 '
f dwqf(wq)wqf g(a:)rew‘lr(xfl)dx
0 —1

=i [ s eala) (3.3.29

+00 , +00 +1 '

+ ZJ dwqf(wq)g(—1)e 2war 4 zf dwq f(wq) f g (z)eam @D dg;
0 0 -1

in the large r limit, the second and third terms tend to zero by the Riemann-Lebesgue

lemma, and only the first one contributes. Thus only the contribution from z = 1, i.e.

0 = 0, is relevant in the r — oo limit, corresponding to w = z, w = Z and

Ay =0= A%, (3.3.26)
At =1+z22=A_, (3.3.27)
finally yielding
C., = L JOO dwqg [a2™ (wgX)e™™a% — a2 (wgX)*e™a¥] . (3.3.28)
4r2(1 4 22)2 ),  ° d -
Defining
+o
N¥ (2,7) = f ¢, Cndu, (3.3.29)
—a0
and using the previous limiting expression for C,,, we find
K * b, o 6
Ny, = _27T(1+ZZ)2J0 dwqwq [a3" (WeX)d(wq — w) + a2 (wgX)*6(wgq +w)]|, (3.3.30)
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so that, letting w be a positive quantity,

kwad™ (wX) kwat (wx)*
Nf¥(2,2) = ——F "2 N (z,2) = —————. 3.3.31
We regulate the zero mode by computing the Hermitian combination
1 _
Nz(')z = 11%1+ §(N;;w + szw)
“ (3.3.32)

K
= ———  _ lim [wa%(wX) + wa®"t (wX)*];
471'(1+22)2w—>0+[ + %) HwR)"]
we shall see in Chapter 6 how this issue can be dealt with in a more rigorous fashion by
smearing with suitable test functions. A parallel construction on .# ~, where

+oo
M (z,2) = f 0y D, dv, (3.3.33)
—o0
gives, for w > 0,
_ Kwa'™ (WX) e Kwa® (wX)*
M == M_¥ = 3.3.34
B(nE) = it M) - = (3:3:34)
and, for the zero mode,
M2 (z,2) = i lim [waif(wi\() + waif(wfc)*] ) (3.3.35)

An(1 4 22)2 w0t

It follows from the definitions of N¥, and M,

« , and from the constraint solutions (3.2.13),
that

N (z,2) = D3N, MY (z,2) = D>M. (3.3.36)

Defining O,, = N2,(z,2) + MY, (z, 2), the soft graviton current (3.3.4) can be written as

1 +0o0 +00 1 B
Pzzi vVz - ulz :7222 22 cJ.
°C (J_OO 0y Vzdv J_OO 0 Udu) Tl 0:0 (3.3.37)

where again (3.1.11) and (3.1.13) have been taken into account.

3.3.3 Weinberg’'s soft graviton theorem as a BMS Ward identity

Using the expressions for the zero modes given above, we find
K

(out| : 0:.5 : [in) = —mu}f{]ﬂ [wlout|a?™ (wX)S|in) + wout|Sa™ (wK)*|in)] ,
(3.3.38)
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where we have used the time ordering prescription together with the fact that a®"t (wx)*

(respectively alf(wX)) annihilates the out (in) state for w — 0; note that this holds even
when the asymptotic states contain soft gravitons because of the w factor in the commu-
tation relations.

The two matrix elements in the previous formula are equal by crossing symmetry: they
describe symmetric processes involving a positive helicity outgoing graviton or a negative
helicity incoming graviton.

Weinberg’s soft graviton theorem for a positive helicity outgoing graviton reads

wlirél [wlout|a®™ (wX)S|iny| = = lim [Z Z wlps - (@) ](out|5|1n>.

2 w0t el
(3.3.39)
We now employ the above described reparametrization of momenta:
- <1 R R z}fz}f)
1—i-z/,€nz,C 11+zkzk 1+ 22"
pk _ Eout ( out + Zout 1 Zout ggut 1— Zgutzgut>
T2z g“t 014 2 E 1 4 ZutEout (3.3.40)
z+z2 1lz—2z 1—2Z2
q =w 17 —y . _ — )
142211422 1+22
1
+ — . —
€ = —(z,1,—1,—2),
(a) \/5( )
with respect to which
ol @ L ERGE)
— = = — 2z
p;§ . q (Z _ Zk )(1 + Zout out) (3 3 41)
wlpi et (@) Bz -7 N
2t DL 142
Pk 4 (z =) (1 + 22"
leading to
(out| : 0,8 : |in) = _<0ut|5’|in>
i Eout (2 ng i Eln (2 ;Cn)
= _ out ( out out = Z—Zk (1 +Zln 111)
(3.3.42)
Plugging this expression into (3.3.37) we can relate the insertion of P, to that of O,,:
1
(out| : P,S : |in) = 4G’y P <out| 0..S : |in); (3.3.43)
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the contribution of the sum over outgoing states yields

0 1 m EOUt(Z _ Zout)
t1Shny (1 + 2522 k k
Cout|lin)(1 +22)"7 {1 + 2z [Z (z — 22) (1 + 20750)

k=1
INES —2(Z — Z3") + (1 + 2%)
=(out|Sliny | Y E"* — — 3.3.44
;1 Pz = 22 (1 + 2QutEu ( )

m t out yout
B Btz
={out|S|i k kE_“k
(out|Slin) L; <z — ot T ) |

then, combining with the analogous result for incoming states,

| S B B
(out| : P,S : |in) =(out|S|in) Z ~_ out Z i

=17 %k m1E A
m _ n in =i
[Eout zout Einzin (3345)
+ {out|S|in —k Zk —kk |
< | | >[];1 14+ Zzutzzut ];1 1+ Z;cnz,z:n
—A

On the other hand, A is zero due to total momentum conservation, since

Ekizm 17,1 ., 2) Ekg}cn 1 ( 1. 2)
izt = 5 (Ph k) e = 5 (k! o) 3.3.46
1+ zguizont — 2 (vi' vk 1+ znzn  2\PF T (3:3.46)

it should be stressed that this cancellation is possible only thanks to the constancy of
the gravitational coupling (equivalence principle): we will discuss in Chapter 5 a slightly
improved method which allows to avoid using this fact and we will see what role this
improvement plays in the extension to higher spins.

We have shown that Weinberg’s soft graviton theorem implies the BMS supertranslation
Ward identity (3.3.5); as already stressed, under the a priori assumption of the equivalence
principle, we can also run the above argument backwards to show that this supertransla-
tion Ward identity implies Weinberg’s soft graviton theorem, thus eventually proving the
equivalence of the statements under given assumptions.

3.3.4 A higher-spin formula

9 _

We conclude this chapter by employing the same “momentum space”-“position space”
dictionary, as above, to recast the Weinberg factorization result in terms of z and Z in the
more general case of arbitrary integer helicity s, i.e.

, wt (YOl T o Pn - e+(a))° .
ul)lirb@ut\wa?r (q)S|1n>——ul}1LnO ;nngg)ﬁ {out|S|in), (3.3.47)

n *
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where 7, is defined to be + when incoming, — when outgoing. Using

w(pn'€+(Q))8 o (_1\s9s/2—1 23 (Bn)* 'z = 20)°!
P e P (RSN

one has
lin% (out|wal"(q)S|in)
w—>

E)) Yz —2z,)5! .
(Z( - ,)zn)(i + znzi)sl (out[Slin).

= lim (—1)*2°/271(1 + 27) Znngff)
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4 U(1) Large Gauge Symmetries and the
Soft Photon Theorem

What are the asymptotic symmetries at + of electrodynamics with massless
charged particles? [14]

At first sight, this appears to be just a toy version of the question asked by BMS. It is
however of interest in its own right as well as for a warm-up to the higher-spin case: part of
this problem is defining both what is meant by asymptotic symmetries and how they act;
this allows us to illustrate the concept of asymptotic or “large” gauge symmetry, which
will be crucial in the sequel.

We will also see how Weinberg’s result for spin one (2.1.5) is equivalent to suitable large
gauge symmetries for massless electrodynamics.

4.1 Electrodynamics in “Radial Gauge”

In a recent paper [15], the physical relevance of U(1) asymptotic symmetries has been
stressed, using a strategy similar to the one adopted for gravity in the previous chapter.
4.1.1 Action and asymptotic equations of motion in radial gauge

One starts from Minkowski spacetime, whose metric in retarded coordinates reads
ds?® = gudxtdx” = —du?® — 2dudr + 2r2’yzgdzd2, (4.1.1)

where, as already mentioned, 7,5 = 2/(1+ 22)? is the Euclidean metric of the sphere in con-
formal coordinates, while the transformation rules from the usual Minkowski coordinates
are given by

2 1—2z22
t=u+r, ol tin? = 2 z® = LZ_Z) (4.1.2)
1+22 1+ 22
The Christoffel symbols compatible with g, are
4 ]' z u T
Iy, = o I'Z, = 0,1log7.z, 'Yy =rvy.z, I =—rvy.s. (4.1.3)
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Consider now U(1) electrodynamics coupled to an external source, subsuming the role of
the matter sector, thus given by the action

1
S = ~12 d4a:\/—g.7:u,,fagg”°‘g”5 — fd%«/—g JHAL, (4.1.4)
where F,, = V, A, — V, Ay; the U(1) gauge invariance under

0e A, (u,r,2,2) = V,E(u,r, 2, Z), (4.1.5)

which is automatically satisfied by the first term, requires V,J# = 0 from the second term:
— J dtoy/—g T'6:A, = — f d*z/—g T'V ,é

(4.1.6)
=— J d*x0, (vV—gJ"é) + Jd4x\/jg (VT e,
Where we used the standard identity /—gV,V#* = 0,(1/—gV*). The first contribution can
be reduced to integrals over spacelike hypersurfaces in the far past and in the far future,
where J* is supposed to vanish, and the second requires covariant conservation of J*, by
the arbitrariness of €. Since we will be interested in writing down Ward identities at %%,
at least for now J* will be thought of as a massless charged current.
The equations of motion are the Maxwell equations V*F,, = e2J* in curved coordi-
nates. The energy-momentum tensor 7}, of the electromagnetic field is on the other hand
obtained by varying the action with respect to g":

1 o 1 v
SgurS = ~53 Jd‘lx\/ig []—"W]-'l, = 9 (F? —4e*T - A)] Sghv, (4.1.7)

_

~
=T,

where F2 = F, Fapg"®g”® and J - A = J #A,. The energy stored at future null infinity
7T is given as follows: recall that here the conformal factor defining .#* is Q = r, hence
nt = g""V,r = g"", and that the asymptotic time translation vector at null infinity is
given by t¥ = (0,)" = 0¥, thus, recalling equation (1.2.1), we find

E(sT) =j

o T, mht? = f ™, = F.F° (4.1.8)

I+ I+

where the natural measure element is understood; note that the terms proportional to g,
vanish in this step. Now, we fix the gauge by imposing

A, =0

-Au ]+:O7

(4.1.9)
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which is called retarded radial gauge. Explicitly, in this gauge,

+a0
Hfﬂ=f MJ&WZZ(ﬂ%%+%&+&M%%—%%% (4.1.10)
—00

a=z,z

where the 72 coming from the metric determinant gets cancelled in the non-vanishing
contractions. As for the gravitational case, a delicate point in the discussion of asymptotic
symmetries consists in the assignment of proper falloff conditions on the remaining field
components; the very existence and meaning of asymptotic symmetries depends on the
choice of the functional class of solutions to the dynamics one considers to be physically
sensible, in relation to this behavior at large distances.

In view of our gauge choice and of the expression of the energy flux at future null infinity,
a sensible falloff choice for the components of the gauge potential in this case appears to
be

A, 2,2) = A, 2,2) + A0 (4, 2,2) + ..

z

) " (4.1.11)
Ay (ryu, 2, Z) :;Au(u,z,é) +...

and hence
Foz =0, A5 — 054, + ...
Fuz =0y As + ...
E%:_iAm+“. (4.1.12)
r2 F
1
r

We shall denote the leading order coefficients in (4.1.12) as F.z, F,., F,, and F,,, respec-
tively. Using the Christoffel symbols written above, the equation of motion for v = u at
leading order reads

VozOuAy = 0u(0.As + 0zA.) + €2ju.z, (4.1.13)

where jy(u,z,2) = limy o [r27u(r, u, 2, Z)|; using this equation and imposing the bound-
ary conditions

Fur :Fuz

(4.1.14)

o+ +
U g7

for A, and A,, we can express A, in terms of A, and Az, given j,. Therefore A, and Az
play the role of coordinates of the asymptotic phase space at .#+.
4.1.2 Large gauge transformations

The gauge fixing (4.1.9) can be operatively defined in the following way: starting from an
unconstrained A, (r,u, z, Z), one can choose a gauge parameter &(r,u, 2, ) satisfying the

64



boundary problem

Oré(ryu, 2, 2) + Ap(r,u, 2, 2) =0,
A T ( i ) T'( _) (4.1'15)
Oué(r = 0,u, z,2) + Ay (r = 00, u, z, z2) =0.

Performing a gauge transformation with this gauge parameter ¢ indeed enforces the re-
tarded radial gauge, as requested. We see now that ¢ is still determined only up to an
arbitrary function €(z, Z) of the angular coordinates on the sphere at null infinity: we have
therefore residual or large' gauge transformations acting at .#* via

0:A,(u, 2, 2) = 0,¢(z, 2), (4.1.16)

and similarly for Z. The conserved charge associated to this symmetry can be computed
by the Noether procedure. The Lagrangian is invariant up to a total divergence

1
0L =— g\/—g (VuocAy) FHY =/ —gT 6 A,

1 (4.1.17)
=~ V9 (VuVie) FY = =gV e = ~0u (V=9T"€) .
and, on the other hand, integration by parts gives
1
0L =— ?«/—g (VuocAy) FH — /=g T"6: A,
1 y 1 y y 4.1.18
== 50 (V=9F""Vue) + 5/=g (VuF" = €2 J") 8 Au, (4.1.18)
=0 ozshell
so that the current
1
gt = 2V (=F"' Ve + 625“5) satisfies 0,5/ = 0; (4.1.19)

again integrating by parts, employing the equations of motion and using the antisymmetry
of F,,, one also gets

L1 y
=0 (vV—gF"e). (4.1.20)

Gravity can be understood as a gauge theory of diffeomorphism symmetry. One therefore expects to
identify states that differ by a diffeomorphism; however, as we have seen, there is a class of diffeomor-
phisms that fall off slowly enough at large r to affect the radiative data and give finite asymptotically
conserved charges (e.g. the Bondi mass). These “large diffeomorphisms” should not be quotiented out
of the space of states, in contradistinction to the familiar “small diffeomorphisms”.

In gauge theories involving spin-one fields, one can make similar consideration and therefore distin-
guish between small and large U(1) (local) transformations, also in analogy with the fact that one does
not quotient out the global part of the gauge group. This issue only arises because we have a manifold
with boundary, and boundary conditions, meaning that there can also be forbidden diffeomorphisms
that violate the boundary conditions. The asymptotic symmetry group can be thought of as the small
diffeomorphism equivalence classes of the allowed diffeomorphisms. The classification of large versus
small diffeomorphisms is part of the definition of the theory that depends on the boundary conditions,
and is determined by which states are to be regarded as physically equivalent and which are not [36, 55].
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This is the local Gauss law, a consequence of Noether’s second theorem: the local invariance
of the action under gauge transformations ensures that (when the gauge fields are on shell)
the corresponding Noether current is equal to the divergence of an antisymmetric tensor.
The Noether charge is computed as the integral of j# on a three-dimensional Cauchy
hypersurface, in our case £, and can be recast as the integral over the boundary .73 of
# 71 as a consequence of the local Gauss law:?

v 1 v
Q:;r = J W == au (\/_g]:'u 5) ny
I+ et Jr+

1
2 (j _j )tu\/jgfwgnl"
€ st Jot

Using the appropriate unit normal vectors n, = V,r = ¢, and t, = 55, recalling that
V—g = r%v.z and Fy, = r2F,,, with F,, defined below (4.1.12), we find

1
Q: =2 f _J /YzZFurEd%' (4123)
€ gb o Jat

(4.1.22)

and given the assumption Fm| s+ =0, finally,
s
+_ 1 2 -
QF = = | d2v:2Fruc(z, 2). (4.1.24)

e2

Using (4.1.13) and since F,, = —A,, one gets

1

Qf =—— d% (0,As — 0:A.) (2, 2) + j dud®y.zjue (2, 2)
e” Jgt I+

(4.1.25)

1 . _
-3 jdu d* [6u (0, Az — 0:A,) + eQ'ngju] e(z, 2).

For e(z,z) = 1, noting that total derivatives of angular variables vanish, one recovers the
total electric charge accumulated at &,

Qf = J dud*.57u, (4.1.26)
7+

2 This is again a general consequence of Noether’s second theorem: since the conserved current j* satisfies
j* = d,k"", where k*¥ is antisymmetric, the associated conserved charge, defined as the integral of
j" over a (D — 1)-dimensional Cauchy hypersurface X, can be recast as the integral of k*” over the
(D — 2)-dimensional boundary o of X:

Q= J jhds, = J K" do . (4.1.21)
b)) o
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whereas for functions (z, z) peaked at some generator (w,w), approximating 62(z — w),
one has the radiated electric charge at a given angle

b = = (Ao — 00 Ay)

wWW o2

+o0
—i—f AduYwo Ju- (4.1.27)
u=—00

—00

The charge Q7 is assumed to act on a massless matter field ® carrying charge ¢ in the
usual way
[QF, ®(u, 2, 2)] = —ee(z,2)®(u, 2, 2). (4.1.28)

4.2 Asymptotic Phase Space and Canonical Formulation

The commutators on the physical radiative phase space {F,., Fyz} at £ were found by
Ashtekar [21]
-2
_ _ ie
[Fu:(u,2,2), Fuz(u/,w, )] = 76u5(u —u)0%(z — w), (4.2.1)
where §2(z) is a shorthand notation for §(z, 2); just like in the gravitational case, however,
one wishes to enlarge this asymptotic phase space so as to take the role of soft modes into
account. Again note that the zero-mode of F,,, i.e. the soft photon given by

+00
f du F,., (4.2.2)

—00

has vanishing commutator with the physical phase space, or, in other words, it generates
the center of this observable algebra.
Such an enlargement is achieved as follows. First, one considers the fields A, and Az,
with the following bulk commutator
ie?

[A.(u, 2, 2), Az (v, w, w)] = —Isign(u —u)0?%(z — w), (4.2.3)
obtained by integrating the previous one and fixing the integration constants by antisym-
metry. Then, motivated by the fact that the charge QF does not generate the correct
transformation law on A, with this symplectic form (in particular, it is off once again by
a factor of two as in Section 3.2), one introduces the boundary fields

Af(z,2) = lim A.(u,z,%2), (4.2.4)

u—=+00

with the constraint that there should be no long-range magnetic fields at .+, i.e.

F: _=o. (4.2.5)

z
+
‘ﬂir
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This can be also read as an integrability condition for AF, which can therefore be expressed

as
AE(2,2) = 20,04 (2, %), (4.2.6)

for some scalar fields ¢4 (z, z) living on the boundary JJ_:F of #*. For the boundary fields
AZ, we impose

[AF (2, 2), Az (v, w,@)] = lim [A.(u,z,2), Az (v, w, )]

z u—=+00

e (4.2.7)
=7F Zé (z —w)
and
[Az (Zv 2) - Az_(zv Z)v Azi (wv 17))] = U,ILIEOO[A—F(Z’ Z) - Az_(z7 Z)7 Ai(u/’ w, ’LD)]
i (4.2.8)
=— ?52(,2 —w)

11
[(Z)i(za 5)7 AZ(ul7 w, 2)] =+ <=
Z,87T Z—u (4.2.9)
[6+(22), 6 (w, 0)] = log 2 — wf’
Now the charge, rewritten as
QF = ZJ 0,0:(¢y — ¢_)e(2,2)d* + J dud*:e(2, 2) juyzz, (4.2.10)
S2 S+

clearly generates the correct transformation on the gauge field A, (thanks to the factor of
two appearing in front)

[QF, Ax(u, 2, 2)] = i0,e(z, 2), (4.2.11)

and in general satisfies the following commutation relations
+, —(z,z =is Z,Z),
[QF,0-(.9)] = 52(=,2) o)
[Q;, eine%b,] _ ngeine2¢,,

where the last one is easily derived using the Baker-Hausdorff formula. The so-derived
algebra is Abelian

[QF, Q1 =0. (4.2.13)

Notice in particular that, in a vacuum |0), defined by ¢_(z,z)|0) = 0, we have

(6:6-) = ~i[QF 6 (5, 2)]) = e(2,2) %0 (4.2.14)
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which indicates the spontaneous breaking of residual gauge symmetry in |0). This dis-
cussion shows how the observable algebra generated by F,,. and F,z can be consistently
enlarged to include the soft modes ¢4 (z,z) as Goldstone modes of spontaneously broken
large U(1) symmetry.

4.2.1 Ward identities for large U(1) gauge symmetry

After performing at .#~ a construction similar to the one discussed in the previous sec-
tion, with large gauge symmetries generated by charges )7, labelled by angular functions
£~ (2, z), one identifies generators at .# " with those at .#~ under the requirement

£(z,2) =€ (2,2), (4.2.15)

which is the usual antipodal identification. Notice that now £(z, Z) is a function of the
space of null generators of the whole .7.

Large gauge symmetries are now postulated to be symmetries of the S matrix, i.e.,
employing the same notation as the one in the previous chapter, one assumes that

(out|(SQ- — QF S)|in) = 0, (4.2.16)
where
Q=1 f Pedu 6, (0,45 — 0:A,) (2, 2) + f Poduyszjue (2, ), (4.2.17)
¢ f. i
o - 6% Padv 6, (0. As — 05 A.) (2, 7) + szzdv aziue(z, ). (4.2.18)
\ =P~ ()

Assuming the semiclassical identity

(out|QF = (out|F* () + {out| > ene(zn, 2n) (4.2.19)

together with a similar one for ()7, and denoting
F(e) = F'(e) — F(e), (4.2.20)
we can recast the large gauge symmetry of the S matrix in the following form

(out| : SF(e) : |in) = Zann5(Zn, Zn){out|S|iny, (4.2.21)

where 7, is +1 (resp. —1) for incoming (resp. outgoing) particles in the process.
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Now, expanding the vector potential near .#* and using a stationary phase approxima-
tion analogous to the one employed in the previous chapter, one is able to express F(¢) in
terms of soft photon creation operators in the following manner: near .# ", writing A,,(z)
in terms of a free-field mode decomposition and using

V2rz(w — %) V2r(1 + zw)

Ha) = . (q) = 4.2.22
== =@ e (4.2.22)
one has
A, (u,2,2) = lim Az(u, T2, Z)
i 2e P o (4.2.23)
Rk Jo dwq [a3" (wad)e ™" — a2 (wqd) e ™a"].
Upon defining
+00 ,
NY(z,2) = J du e 0, A, (4.2.24)
—00
and
0 ) — 13 w —w
N;(z, %) = wlgg+ (NS + N¢) (4.2.25)
one finds in addition
1
N%(z,%) = V2e lim [wad™(wE) + wa®™ (wz)*] . (4.2.26)

8l + 2Z w—0+

On the other hand, including the corresponding term M? from .# ~, we have, recalling that
F,. = 0,A, and 05(1/2) = 2m62(2),

N o= Cpl ] (4.2.27)
z Fodn |z —w]|’ o
Notice that the auxiliary boundary condition
0. A5 = 0:A, at I (4.2.28)

has been used. Substituting in the Ward identity (4.2.21) this reads

lim_ [w(out|a%" (wi)S|in)] = — “ZZ% ™ (out|S|in), (4.2.29)

w—0t

which we eventually recognize as Weinberg’s soft photon theorem in position space as
summarized in (3.3.49) for s = 1.
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5 Asymptotic Symmetries and Soft
Theorems for Arbitrary Spin

This chapter is mainly devoted to the extension of the results which we presented in
Chapters 3 and 4 to higher spins.

The main new result is the proof that Weinberg’s factorization theorem follows as the
Ward identity of spin-s large gauge symmetries. Moreover, as a byproduct of our approach,
we shall also be able to provide a slight improvement of the proof of the soft graviton
theorem from supertranslation symmetry, without assuming the equivalence principle from
the start.

As an intermediate step, it is worthwhile to carefully revise both the spin-one and spin-
two cases in order to bring out some elements which will be necessary for the subsequent
extension to all spins; in particular, we provide a treatment of U(1) large gauge symmetries
more similar to the one given in [16] for electromagnetism, together with a thorough analysis
of the BMS group from the perspective of the linearized theory.

Eventually we shall deal with the extension to higher spins. For the sake of clarity, we
shall first illustrate the spin-3 case, where all the new ingredients are already present in a
relatively simpler setting, to then move to illustrating the general case of arbitrary integer
spin s.

5.1 Electromagnetism Revisited

As we have seen, the action for electromagnetism coupled to a locally conserved current
JH,
1
S = _4ffuyfﬂydD - J‘Auj‘ude> (511)

being invariant under 0.4, = 0J,& up to the boundary term, possesses the canonical current

gt = Fose + Jle. (5.1.2)

5.1.1 Large U(1) gauge charge

In Bondi coordinates, near .#*, in the case J = 0,

Q= f G yzzridud?. (5.1.3)
g+
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Choosing retarded radial gauge
Ay =Ay(u, 2, 2) /1 + ...
A, =0
Ay =A,(u,2,2) + ...
Az =Az(u,2,2) + ...
where the dots denote further subleading terms in 1/r, and using (5.1.2), the charge asso-

ciated to the residual gauge freedom given by angular functions ¢(z, zZ) computed at £+
reads

(5.1.4)

QF = J £(2,2) [0u(DP A, + DPA2) + T | yazdud?, (5.1.5)
I+
where
J(u,z,2) = linélo 2T (u,r, 2, Z). (5.1.6)

Since this charge acts on matter fields by 0®(x) = i[Q, ®(x)] = iec(x)P(x), any correlation
function will satisfy

N N N
(0 H P, (zn)) =i(0| <Q+ H P (zn) — H (I)n(xn)Q_> 0)

N (5.1.7)

N
=1 Z ene(Tn){| | Pnlzn))-
n=1 1

n=

Performing LSZ reduction of the previous formula yields the Ward identity (4.2.21)

N
(out|(QtTS — SQ7)|in) = Z Mnené(zn, Zn){out|S|in). (5.1.8)

n=1
This derivation is given in [16], who also noted that Strominger’s antipodal identification
essentially consists in choosing the same gauge transformation for .# " and .# ~, and that,
since the charge is computed on a surface approximating .#* which necessarily cuts through
time-like infinity, the results also hold for massive fields. Using the auxiliary boundary con-

dition 0, Az = 054, at ,ﬂ;, choosing €(z, z) = ﬁ, where w is a fixed complex parameter,
1

zZ—w

srout] [(f du&qu) S—s ( f dv&UAz>} in) — n]zi DO out| Sy, (5.09)

where we have used that J annihilates the vacuum, since the global U(1) symmetry is
unbroken. Using the free mode expansion for A, near .# and the usual stationary phase
approximation, we obtain

i V2

iwu ou AN, —iwql out AN L iwq U
Jdue OuA; = gl ey | dwqg [a+t(wqx)e at —q” T(wqa:)e E ] (5.1.10)

and exploiting 0 = 2162 (z — w) gives
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so that

+o0
f dud, A, = 1 V2 lim [wa‘ft(wi”) + wa(iuﬂ(wfc)] . (5.1.11)

. 8wl + 2Z w—0+

Substituting this result into (5.1.9), together with the analogous one for .#~, and using
crossing symmetry yields
1+

. out v+ - zZ TIn€n .
01}310 |w(out|a$™ S|iny] = 72 Zn: P Zn<out|5\1n>, (5.1.12)

which is Weinberg’s theorem (3.3.49).

5.2 Linearized Gravity Revisited

The action for a massless Fierz-Pauli field h,, describing a linear perturbation of the
Minkowski metric tensor, is

1 v v
S=2fWhW#)—fﬁhW&h (5.2.1)
where E# is the linearized Einstein tensor
Eww = hyw — 6@6 hyy — 5H0Vh’ + N (0-0-h — h'), (5.2.2)

and JM is a conserved “energy-momentum tensor”, d,J"” = 0. The action (5.2.1) is
invariant under 6h,,, = J(,,) up to the boundary term

f@ﬁ&w—zwmgyﬂu (5.2.3)

since EM¥ satisfies the linearized Bianchi identity ¢ - £ = 0 and J*” is conserved. The
equations of motion are EH = JH,
The variational derivatives needed for the computation of the current are
) 1

e
2

Ohag
1
—3 (n“ﬁhm + n“ah”ﬁ — n”“h”ﬁ — n”ﬁho‘“>

(5.2.4)
_ <,7a/3,7w _ 1( uﬁnva + U”aﬁyﬁ)) h']
2
:1 EHHCYVﬁ + lHuﬂvoz
212 2 ’

73



where HH*B is defined by
H,LLCWB = ,r,,ul/haﬁ + naﬁh,uu _ ,r,,uﬁhzza _ ,r,zzah,uﬁ _ (n,ul/naﬁ _ nuﬁnua)h/' (525)
This tensor has the same symmetries of R*V5,
HHwB — _pemh — _ grapv — pvbre (5.2.6)
satisfies the cyclic identity,
HPwB . grvbe y pgurfor _ (5.2.7)
and works as a superpotential for the linearized Einstein tensor, meaning
EMV = 0,05 HMP, (5.2.8)
Defining the trace-reversed! tensor h*¥ = W — %n‘“’h’ , one gets the simpler form
L L T i ) (5.2.9)

The on-shell Noether current is given by

08 08
it = ———0hapgy — Op—06has + JHE,, 5.2.10
] 5h0‘ﬁ7/*”j Oéﬁ7 Y 6h0‘57/*”/ aﬁ 5” ( )
where 0ha3 = 0o &g). The contribution J#”§, is given by the boundary term in the variation
of the action. Thus

1
" =3 (H“auﬁayaafg — O, HM"P (0alp + 65§a>> + 8, (5.2.11)

where we have used the antisymmetry of H#**8 in v and the symmetry of 0,03 (or
analogous considerations for similar contributions) for the first term and symmetrized in
a3 the second term.

It is instructive to recover the Noether tensor k** satisfying j* = 0, k", whose existence
is ensured by Noether’s second theorem; for this purpose we can set J*” = 0 without loss of
generality. Integrating by parts each term in (5.2.11), employing the equations of motion
0aOpH revf — 0 and renaming the indices appropriately we get

1
3 = 5 {oa [Hr 0,85 — 0, (B 4 P 4 ) g || (5.2.12)
so that thanks to the cyclic identity
1
GH = Oarhe, KM = iHW”ﬁayfﬁ + £,05HPP. (5.2.13)
! The name is due to the fact that A%, = b’ — 2k’ = —}’, i.e., the trace of h*¥ is opposite to the trace of

.

74



Now, we may think to have obtained these expressions in a given locally inertial frame:
to covariantize them we simply replace ordinary derivatives with covariant derivatives and
note that no ambiguity arises in their ordering, since the connection defining them is given
by the flat background metric and hence such derivatives commute; thus respectively

y 1 (077 oV v
J'LL = 5 (H:u‘ 5VyVoz§B - VVH'U‘ 6(VQ€B —+ VBga)) + J;U' 51/7 (5214)
and X
Kh — §Huauﬁvyé~5 + fVV5H“aV’B. (5.2.15)

The overall normalization constant can be checked by comparison with the ADM four-
momentum itself (see e.g. [59, Chapter 6.7]): from the Einstein equations

1
G' = R" — _g"" R = 8nGT" (5.2.16)

one splits the left-hand side in linear and non-linear order’ GH* = 1€ + GY; obtaining

1

55’“1/ = 8rG |:T'w/ — L

SWGG%} = 8nGtH, (5.2.19)

which defines the energy pseudo-tensor t*¥. The ADM four-momentum is defined by
integrating on surfaces ¥ of constant time, i.e.,

1 1 :
Pt = f t"0d’z = f EMdPr = f 000 H" Y dPx;
21 167G b)) 167G b)) (5220)
= Oo H" Y jd’x.
167G on “ e

In our framework, using constant symmetry generators (£,)* = 4 and integrating over 032
gives

Q= | 0.H"Yn;d*x =161GP*". (5.2.21)
Os

2 The extra factor of 1/2 comes from the normalization in the definition of &£,,: expanding with respect
to huy = Guv — Nuv, wWhere 7, is the Minkowski metric, the Christoffel symbols read

e, = % (0uh®, + 2h?, — hy) + O(K?), (5.2.17)

where indices are raised and lowered by 7,., and hence the Ricci tensor is given by
1
R;w = 5 (Dhuu - aua “hy — aya' hu + auauh’/) + O(hg)- (5'2'18)

Finally, R, — 39" R = $&u, + O(h?).
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5.2.1 Bondi gauge and residual freedom: the BMS algebra

From the perspective of linearized gravity (i.e. of a generic spin-2 massless field) the Bondi
gauge is fixed by the following choice of boundary conditions, which as we saw stems from
considerations in the non-linear theory:

2
hyydxtde” = Edzﬂ — 2U.dudz — 2Usdudz + rC.,.dz% + rCszdz>, (5.2.22)
or, equivalently,
2mp 2 Uz U. Csz 2 C.. 2
h*v 0,0, = oy +2 OOy + 2 OrOz + o; + 0z, 5.2.23
. A e A I (52:29)

where u,r, z,z are the Bondi coordinates defined in (3.3.15) and indices are raised and
lowered by the Minkowski metric (4.1.1).

For higher spins we cannot rely on the knowledge of a full non-linear theory to the goal
of setting the asymptotic gauge conditions, as a complete interacting theory in (asymptot-
ically) flat space is not known. Rather, we will take inspiration from the chain of boundary
conditions (5.2.22), implied from the full Bondi gauge on the linear spin-two theory.

Notice that

h' =h", = 0. (5.2.24)

Forgetting for the moment what we know about the BMS group, we can then look for the
residual gauge freedom leaving this form of 5, invariant.

For simplicity, we shall start by restricting ourselves to gauge parameters §, which are
u-independent and which have power-like dependence on 7: as we shall see, this will allow
us to recover the subgroup of supertranslations. Recall 6/, = &) = 0uéu + 0, —2I'€,
and the Christoffel symbols for Minkowski space given in (4.1.3). From

g(r;r) =0 = 57”,7“ =0 (5225)
we deduce &, = —T(z,z) for some angular function T, since we do not allow any u-
dependence. Similarly

é(u;r) =0 = fu,r =0 (5226)
and hence £, = —S(z,%) for some S. In principle, we could allow for some non-trivial

transformation of the uu component, but, since our parameter does not depend on u, for
now,

1
Eu) = ;p(z,é) =0 = p(z,2) =0. (5.2.27)
Now we have 9
‘S(r;z) =0 = &, — ;fz —0,T(z,2) =0, (5.2.28)
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which is solved by ¢, = —rd,T and
§z2) =0 = &2+ & — 2me:(T - 5) =0, (5.2.29)

which gives S =T + D*D,T or, equivalently, ¢, = =T — D?D,T, recalling that mixed z
and Z connection symbols on the sphere are zero. In addition, the non-vanishing gauge
variations are:

Ohzz =E&(sn) = —2r DT, (5.2.31)

consistently with Bondi gauge.
This computation leads therefore to supertranslations, generated by

Eudat = —(T + D*D,T)du —T(z,2)dr — rD,Tdz — rD;Tdz,

1 i} (5.2.32)
§'0, =1T(2,2)0y + D*D.,T0, — —(D*T0, + D*T0z)
T
which indeed leave the “Bondi gauge” defined by (5.2.22) invariant.
Incidentally, the divergence of this supertranslation parameter vanishes:

1 2
V&= —5(0:+0:&) — = (& — &) =0; (5.2.33)

V25T r

therefore, we see that our representatives of the BMS supertranslations defined intrinsically
at # satisfy condition (1.2.20), as needed for them to produce well-defined conserved
quantities. In particular, BMS translation representatives selected by 7T),(z, 2)

2z T 1—2%
1+ 22 1+ 22

To=1, Th+ilp = (5.2.34)
give rise to well-defined notions of energy and momentum. However, even though the
condition h*, = 0 is invariant, supertranslations are not in general a symmetry of the
on-shell fields satisfying the other Fierz conditions [Jh,, = 0 and V - h, = 0, as can be
seen by the fact that [J¢, # 0. (Further remarks on this point can be found in [36].)

We can now ask ourselves whether enlarging the functional type of allowed gauge param-
eters allows us to recover the full BMS group. Indeed, this can be achieved by considering
the most general form of the residual gauge parameters &, expanded in powers of r~1, and
solving the above equations as follows. From the rr and ur equations we obtain

0 =0 = & =& (u,2,2), (5.2.35)

and
Orbu + 0ulr = 0 = 02&, = —0,0460. (5.2.36)
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From the uu equation we also require

1
Oy = O (r) , (5.2.37)
which, together with the previous equation, implies
26 =0 5.2.38
Hence
& =—T(z,2) —uF(z,2) (5.2.39)

whereas, integrating 0,&, + 0,& = 0 in r, we get
&uw=—S5(2,2) +rF(z2), (5.2.40)

where S cannot depend on u, by (5.2.37). Then the zr equation

Ors + 0260 — %gz =0 (5.2.41)

reads 5
oré, — =& — D, T —uD,F = 0; (5.2.42)
r

looking for a solution of the type &, = r*,(u, 2, Z), for some integer «, one readily sees
that only
1 =—D,T —uD,F, Yo =Y, (u,2,2) (5.2.43)

are allowed, where Y4 (u, 2, 2) for A = 1,2 is some one-form (Y4 = +48Y3), hence
¢, = —rD,T —ruD,F + r?Y,(u, 2, 7). (5.2.44)
From the uz equation
Ouls + 0.6, = O(1) = O(1) +120,Y.(u, 2,2) = O(1) (5.2.45)
one infers Y4 = Y4 (z, z). Now, the zz equation
D, =0(r) = D,Y, =0, (5.2.46)

implies that YA(z, z) is a conformal Killing vector on the sphere: the conformal Killing
equation D4Yp) = ayap is equivalent to DoYp) = yapD - Y on the sphere, where
D-Y = D Y4, but since y45 is off-diagonal

D.Y, =0 = D;Yx, (5.2.47)

78



whereas D,Yz + D:Y, = ~v.:D - Y is identically satisfied. Notice that this property also
implies D,D:D -Y = —~,:D -Y by using [D,, Dz]Y, = —7.:Y..
Up to now we have
g’r = T(Z7 2) - U’F(Z7 2)
&uw=—5(2,2) +rF(z,Z2) (5.2.48)
& =—rD.T(2 %) —ruD.F(z,z) + r’Y.(z, %),

where Y4 is a conformal Killing vector on the sphere. We substitute in the zZ equation

azgi + aégz - 2’722"” (gu - fr) =0 (5249)
and we get
— 277z (D.D*T + T — S) + r* (D.Yz + DzY. — 27.:F) — 2ur (D.D:F + 7.z F) = 0.
(5.2.50)

This equation can be satisfied only if the coefficient of each independent monomial r, r?

and wur is zero: this requires

S =T+ D,D*T (5.2.51)
and !
F = §D Y, (5.2.52)

so that also the last condition is automatically satisfied. To sum up, the residual gauge
freedom is parametrized by §,dz* whose components are

& =—T- %D-Y(z,z),
§=—(T+D.DT)+ DY, (5.2.53)
§a=—1DAT — %DAD Y 4+ 12Y;.
Equivalently, the residual symmetry vector is
€4 =T + %D Y,
& =D,D*T — %(u +7r)D-Y, (5.2.54)
¢ =—%DAT+YA—%DAD-Y.
The corresponding vector acting on . is therefore

£ =T(2,2)0u + Y (2,2)0a, (5.2.55)

which identifies the (full) BMS algebra (compare with [52]): an infinite-dimensional family
of direction-dependent translations 7'(z, Z)0d, together with the conformal Killing vectors
on the sphere Y4(z,2)04.
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5.2.2 Supertranslation charge

We may now compute the charge associated with this residual supertranslation gauge
symmetry, starting either with the Noether tensor k*% or from the current j* itself. In
any case, the explicit computation of the non-vanishing components of the tensor HH53
is quite useful:

FurET — U_’227 HuAE — gﬁfgj T — gﬁzg?
Y2z Vzz" Vzz"
(5.2.56)
7% — Uz HTTE — 2mp
(722r2)% Vazr?’

where the components with z and z interchanged are obtained by formal conjugation of all
indices. It is also convenient to compute the “commutators” £[,.,] = §[.,.:

fur] =0, &z = DT+ D*D.T),  {pa1=0, €z =0 (5.2.57)

We start computing £*" from (5.2.15), since this component is selected by the measure
element of .# . Observe that %H“T”ﬁv,jfﬁ = iH“’"Vﬁg[ﬁyy] by the antisymmetry of H""8
in v3; by (5.2.57) the only potentially surviving term would be iH“T“ZE[uVZ], which vanishes
anyway since H""* is itself zero. The other contribution to the x* form from (5.2.15) is

&NV H = &,05H"™P +&, T H™P 46,17 sH PP £, T PP +§VngHW””; (5.2.58)

the fourth term on the right-hand side vanishes by symmetry/antisymmetry in the summed
indices while Fg b = dplog /g in the last term. Taking into account the non-vanishing
Christoffel symbols and H#**8 components, we get

kY = [2azTU2 + 70, <U2> +z o z]

zzr2

2zT
Us ] 2
+ [(&ZT Stz o z) + 2T:ZB} (5.2.59)

k7

Us Uz _
+ [—202T%;2 + T’YQ;'Q 02z + 2 < z] ,
zz

were “z < zZ” refers to formal complex conjugation in the z and Z indices. Hence, after
expanding the derivative in the second term,

28 L o(TUs) + 2 o 2] (5.2.60)

gYT =2T 5
YzzT

r

integrating this expression as

Qt = f . kY s d?z, (5.2.61)
B
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and recalling that the sphere has no boundary, we obtain

Qt = 4J T(z,2)mp(u, z, 2)7.zd. (5.2.62)
S

Again, the factor r? from the measure element gets canceled and the charge is meaning-
fully expressed as an integral over the boundary of null infinity. This agrees with the
supertranslation charge used in Chapter 3.

The computation of j” from (5.2.14), instead, goes as follows. Note that

1
H™BY Vs = HP0,0,65 = 5Ijr"cwﬁa,lgw,y] (5.2.63)

by the vanishing of the Riemann tensor and by antisymmetry in v3. Therefore, due to
(5.2.56), the only relevant component is H"*“* ~ 1/r3: this term gives a sub-leading
contribution. Altogether, always taking (5.2.56) and (5.2.57) into account, one finds that
the only leading contribution to j* comes from the following term

W6 2 s = o [ACDI D)+ 2] (260
Thus,
i = —73;2 [0,C.D2T (2, 2) + 0,CosDXT(2,2)] — I (w1, 2, )T(2,2)  (5.2.65)
and
QT = f L T(z,2) [0y (D*D*C.. + D*D*Csz) — J(u, 2, 2) | v:2ddu, (5.2.66)
where
J(u,2,2z) = rlingo r2 I (u, 7, 2, Z). (5.2.67)

Since supertranslations act on matter fields by iT'(z, 2)0, at £, we get by LSZ reduction

N
out|(QTS = SQ7)|in) = > i funEnT (2n, Zn){out|Slin), (5.2.68)

n=1

where f, is the gravitational coupling of each field. Using the auxiliary boundary condition
D*D*C,, = D*D*C3;  at 9, (5.2.69)

we have

Q= —QJ T(2,2)0,D*D*C,,7,zd*du. (5.2.70)
g+
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Now, in order to make contact with Weinberg’s soft theorem, instead of choosing the
simplest possible T'(z, Z), as we did in Chapter 3, let us try with an angular function of the

following type:
1 1+wz

T(z,2z) = .
(2,2) w—2z1+22

(5.2.71)

Then the left-hand side of (5.2.68), after an integration by parts in 0z, involves computing

6z< 1 1+w2>=—27r62(z—w)1+w2+ 1 w(l+22)—(1+w2)z

w—z1+42Z 1+22 w-—=z2 (14 22)2

1
= — 216%(2 — [ 9.2.72
m0“(z w)+(1+22)2 ( )

1
= —216% (2 —w) + Ve
Therefore

QT = _47deUDwaw + JDZszWngdeu, (5.2.73)

where the second term is a boundary contribution on the sphere and hence gives zero. To
sum up:

N _
B, 1
— 4xD*out] KJ duauczz> S—9 <f duavc,zz)] iy = > 7 JuBin L& 2% o041 Slin.

o B A% 1+ 2,2,
(5.2.74)

Now we need to perform the usual stationary phase approximation to express C,, in terms
of soft graviton creation and annihilation operators. As we already saw in Chapter 3, the
result is

. 2 +0o0 X .
Cy. = —;ﬁm f dwq [aiut(wq@)e_w‘*u - a(iu”(wqi“)ewqu] ; (5.2.75)
™ zz 0

and
1 2 . ou A out ~
Jdu@usz = —gmwh_{& [wa+ f(wi) + wa® T(wx)] . (5.2.76)

Thus, using crossing symmetry, we also have

2
— 4m{out| [(J du@usz> S-S (J dv&vC’ZZ)] lin) = (72 hr%<0ut‘waiut(wa%)\in>,

1+ 2%)
(5.2.77)
and this implies, by comparison with (5.2.74),
. . . En(Z — zn)
out S _ = n n
£%<out|wa+u (w)|in) = L‘1}11_200(1 + 2%) ;nnfn RPN (5.2.78)
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since
E.(z - z,) E,(1+ z%z,)

2
'Yzz(azm zn: nnfn (Z _ Zn)(l + ann) = zn:nnfn (Z _ Zn)(l + ann); (5279)

note that we omitted the Ggi term, since here the delta multiplies a function which
vanishes when z = Z,,.

This shows the supertranslation Ward identity to be fully equivalent to Weinberg’s fac-
torization formula (3.3.49), without assuming from the beginning f,, =constant. Notice
also that our choice (5.2.70) of T' is not restrictive, since we may always write

_ d?w B 1 1+wz
£:22) = | Gt m)o = T (5.2.80)

and then use the linearity of the Ward identity to recover the full supertranslation invari-
ance from Weinberg’s theorem.

5.3 Weinberg's Factorization from Spin-Three Large Gauge

Symmetry
Free spin-three gauge fields are described by the Fronsdal action [56] (see also [57] for a
more recent review)
1
S[(p] = 5 J‘(C/’HVPSOMVpde - Jj'uypsﬁ;u/pdD$7 (531)
where the “Einstein” tensor is given by
1 ’
N = FI0 — v F (5.3.2)
and the Fronsdal or “Ricci” tensor reads
FHP = kP — oo go”p) + a(uavw’p); (5.3.3)

JHYP is a symmetric source tensor whose traceless part is locally conserved. In compact
notation, where all spacetime indices are suppressed, [58]

S:f—%nf’, F=0p—00-¢+d, (5.3.4)

which is in fact the form of these tensors for arbitrary integer spin. The equations of motion
are & = J and the explicit trace of F is F), = 20}, —20- 0 ¢, + 0,0 - ¢’. The “Einstein”
tensor satisfies the “anomalous” Bianchi identity:

1 1
0, EMP = _577’4)8 - F' or, equivalently, d, (5”"’0 + 27]”p.7:’“> =0. (5.3.5)
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The field ¢ is subject to the gauge symmetry
Puvp ~ Puvp + 0(uyp) Where €' = &%, = 0. (5.3.6)
Indeed, under such transformations, the Fronsdal tensor is gauge-invariant
SFMP = 30,0,0,e" = 0. (5.3.7)
The variation of the action gives, for the first term,

1
50 J EMPp,pdPx = ;ngpaue,,pd% = g f O (EMPey,) + ifa - FedPr,  (5.3.8)

i.e. a boundary term plus a vanishing contribution, thanks to the anomalous Bianchi
identity and the trace constraint. For the second term we have

-3 f O (J'Pe,,) dPr, (5.3.9)
since the traceless projection of J*¥? is conserved:
1
0-J— 577(?- J =0. (5.3.10)

The symmetrized derivatives needed for the computation of the Noether current are, in
compact notation,

sC 1 1
5os "2 { Bip— 2 (0% + 17" +ne? =Py
o X , (5.3.11)
+5 (n“nﬁ ¢+’ n%’) - (sO’“n*B n+ " n“n)} :
We also define 5S )
= _gmraB, (5.3.12)
0Puvpas 2
Then 1 3
5 = 5 (KPP0 380y — VK050, ) + ST, (5.3.13)

5.3.1 Bondi-like gauge for spin 3 and residual symmetry

Following the pattern displayed by the spin 1 and 2 cases, we choose our “Bondi-like gauge”
near .# " to be the following set of boundary/falloff conditions: in Bondi coordinates,

® Vrap =0, for all a, 5;

® 0.z, =0, forall pu+#r;
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e the other components scale in the following manner as r — co:

Puuu = %, Puuz = -U,, Puzz = rsza Pzzz = r2Bzzzy (5-3-14)

and similarly for z < Z components, where ¢, U,, C,, and B,,, are r-independent
functions. Notice that with our choices ¢ = 0.

Again, we ask ourselves if there are residual gauge transformations leaving this structure
invariant: we look for gauge parameters €, subject to ¢’ = 0, such that the variation

0@uvp =V uevp + Ve + Ve

o o o (5.3.15)
=0uEvp + OvEpp + OpEpr — QFWEW - QFPVEW — 21““,05&1,
does not alter our gauge-fixing conditions.
From
Erryr) =0 = Eppp =0 (5.3.16)
we deduce
err = —T(2,2) (5.3.17)

for some angular function 7'(z, z), since we do not allow any u-dependence. Similarly

E(uuyr) = 0 = Euu,r = 0, (5318)
whence
cun = —9(2,2) (5.3.19)
for some S, and
5(ur;r) =0 = Euryr = 0, (5.3.20)
thus
Eur = —A(z,2). (5.3.21)
The wuu component of the field has to be invariant too (no u-dependence is considered)
1 _ _
E(uusu) = ;p(z,z) =0 = p(z,2) =0. (5.3.22)
Now we have 4
Erriz) =0 = 20,6, — —&p, — 0, T(2,2) = 0, (5.3.23)
T
which is solved by
Ers = —gazT (5.3.24)
and 4
E(ran) = 0 = 0pess — —€2, — DT =0, (5.3.25)
r
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where we used D?T = 0?T — 0,1ogv.:0,T, and which gives
2
£ = —%D?T.

The trace® constraint reads

7,2

g=0= 525=7255(T—2A).

Substituting the trace constraint into

4
g(rz;i) =0 = argzé + azEr;Z + (9257‘2 - ;522 - 2T722(T - A) =0
gives
3 1 3 1
7"2
Eyz = —’ngz (T + DZDZT) .
By
2
Elrusz) = 0 = Oreyz — ;guz —0:A=0,
we have g,, = —1rD,A(z,Z) or
3 1
Euz = —T <4DZT + 4D§DZT) .
From

E(uz;z) = 0 = 0O.6uz + Oz6uz — 27227 (A - S) =0,

we can determine S and thus get from (5.3.19)
3 z 1 z 2
Euy = — ZT+D D.T + Z(D D.,)*T ).

Finally, the remaining consistency condition is identically satisfied*

,,,,2
€(zz;2) = aéfzz + 2D2522 - 4’)/2574 (5uz - Erz) = _5 ([D27 DZ]DZT"F’YZZD,ZT) =0.

3 Using the Minkowski metric, expanded in Bondi coordinates, the trace is given by
Ezz

/
€ =€prp — 26py + 2 5
71'722

4 To check this result, it may be useful to recall that 0,0z logv.z = —7.z-
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(5.3.34)

(5.3.35)

(5.3.36)
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The non-vanishing gauge variations are:

3 1
0ouuz = — D, <4T +D*D,T + 4(DZD7;)2T)
T
0puzz = = 5 (3D?T + D2D*D.T) (5.3.37)

3
8Py = — 5rQD;”T,

and similarly for z < Zz, consistently with the chosen scaling behaviors.
Therefore, the answer to our question is yes: there is residual gauge freedom, given by
the following family of tensors, parametrized by the angular function 7'(z, z),

3 1 3., 1
edrtdr” = — <4T +D*D,T + 4(DZDZ)2T> du® — 2 (41’ - 4DZDZT> dudr

1
—2r (iDzT + 4DgD‘ZT> dudz — T(z, 2)dr? (5.3.38)

2 2
—rD,Tdrdz — %Dgsz2 — %%g (T+D?D,T)dzdz+ 2z < Z

and the corresponding contravariant tensor is given by
1
e" 0,0, = —T(2,2)02 + O <> : (5.3.39)
r
5.3.2 Charge for spin 3 residual symmetry

Like for s = 2, the only leading contribution to the Noether charge comes from 0,,K***™“d¢, .,
with K#Pe8 defined in (5.3.12), where

BZZZ 1

JCFRATY — _(pzzz _ — __ p?#z 5.3.40
y2er rt ( )
and 3

O™ 50y, = ﬁauBzzzDg’T(z, zZ). (5.3.41)

Hence

+ 13 Z\3 = 3 > 2
Q" = T(z, %) Zau (D*)’Bazz + 2 > 2) — §J(u, 2,Z) | Vzzd zdu, (5.3.42)
g+

where

J(u,z,z) = lim r2J"" (u,r, 2, Z). (5.3.43)

r—00
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Since the residual symmetry acts on matter fields by —7T'(z, 2)02 at .+, i.e., since J (u, z, 2)
generates the global group, we can write

[@*,®] = 2o T(i0)}e, (5.3.44)

where gS’) is the coupling of each matter field to the spin-three gauge field. By LSZ

reduction, we get

N
(out|(QFS — SQ7)|in) = g > g B2 (2, 2 ){out | Sin), (5.3.45)

n=1

Using the auxiliary boundary condition

(D*)’B,., = (D*)*Bsz; at I, (5.3.46)

we have 5
Qt = QJ T(2,2) [0u(D?)’B... — J(u, 2, 2)| v.2d%du. (5.3.47)

I+
In order to get a more explicit expression we employ a suitable generalization of (5.2.71):
1 1+wz\?
T(z,2) = . 3.4

(2:2) w—z<1+zz> (5.348)

The left-hand side of (5.3.45), after an integration by parts in 0z, involves the following
computation

1 1+wz\? 2 1 14wz
s =— — g 3.4
5z<w_z<1+zz>> 2oz w)+27’”1+z2 (5:3.49)

Therefore, leaving the J term aside, since it does not contribute to the left-hand side of
the Ward identity,

3 1 z
Q= 37rfduD“’D“’waw -= f D*D* B~ odu; (5.3.50)
4 1+22
but integrating again by parts the second term one has
3
3 Y2z D*B..(w — z)d2z, (5.3.51)

which is a boundary contribution on the sphere and hence gives zero. To sum up:

2m(D7)2out] K f du@uBZZZ> S—§ < J dv@szzz>] in)

N 2 _ 2 (5352)
E 1
= 3w 2 (L) Goue i)
n=1

z—zp \1+ 2,2n
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The usual stationary phase approximation for B, ., in turn gives:

i 23/2 e out AN, —lwgU outf AN iWwal
B:.. = R YL L dwq |a [ (wq)e™*at — a® (wqz)e™a ] (5.3.53)
and
dudyB.., — — P li out outt 5.3.54
U0y ZZZ__87T(1+22)3ML%1+[WG+ (wz) + wa”" " (w )] (5.3.54)

Thus, using crossing symmetry, we also have

23/2
— 47{out)| {(J du&uBzzz> S-S (J dv&szzz>] lin) = (7 hm<out|wa°“t(w§c)|in>,

1+ 2z)3
(5.3.55)
which implies, by confrontation with (5.3.52),
E2 Z—Z, 2
hm <0ut]wa°m(wi)\in> = — UIJ% V2(1 + 22) ;nngn = ;n()il fz)nin)Q’ (5.3.56)
since
4 E2(z — z,)? E2(1 + 2z,)?
D*)?———— % ngn ) =2 1, on] t 3.
(D7) (1+zz22ng 2 — zn)(1 4 2,2,)? 277 2 — zn) (1 + 2p2,)? (5.3.57)

This shows that the residual gauge symmetry Ward identity for our Bondi-like spin-three
gauge is equivalent to Weinberg’s factorization formula (3.3.49).

Let us stress the role played by our choices (5.2.71) and (5.3.48) for the function T'(z, z).
For the spin-two case it allowed us to avoid assuming the equivalence principle in the form
of universality of matter-graviton couplings. Prior knowledge of the latter, on the other
hand, allows for alternative, simple choices of T'(z, Z) as the one employed in [2]. For the
spin-three case, on the other hand, no sum rule is expected to hold for the corresponding
charges and we could not have hoped to reproduce the result using cancellations justifiable
for s = 2 on account of the equivalence principle.

It should also be stressed that, just like for spin two, our residual gauge symmetry is not a
symmetry of the Fierz system identifying irreducible representations of arbitrary spin and,
although the choice of falloff conditions allowing for such a symmetry seems reasonable,
the requirements of our Bondi-like gauge are not pure gauge-fixing conditions, but rather
involve nontrivial assumptions on the behavior of the gauge fields on the boundary.

5.4 Weinberg’s Factorization from Higher-Spin Large Gauge
Symmetry

We now move to the generalization of the above program to any integer spin s. The main
logical steps required to achieve this goal are essentially the same as in the spin-three
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case: first we need to look for a reasonable definition of “Bondi-like gauge” ammitting
some suitable residual gauge freedom, and then we have to make explicit the connection
between this gauge freedom and Weinberg’s factorization theorem.

We will organize this material in a slightly different order, with respect to our discussion
of the spin-three case: after a synthetic review of the formulation of the spin-s free theory,
we will state the falloff conditions defining our asymptotic Bondi-like gauge and prove that
Weinberg’s soft theorems can be recast as Ward identities for residual gauge symmetry
associated with such a gauge choice, postponing the explicit computation of the asymptotic
symmetry group to the last section.

5.4.1 Free spin-s gauge fields

We recall now a few basic elements of the description of free massless fields with arbitrary
integer spin s. A spin-s field is usually described in terms of a totally symmetric tensor
©Ouy..us Of rank s. Its dynamics is encoded in the Fronsdal action [56, 57]

1

Sle] = 2f5“1“'“8s0m...usd% (5.4.1)

where the “Einstein” tensor is given by
EMLts . THLfbs %n(mm]:/uamus) (5.4.2)

and the Fronsdal or “Ricci” tensor reads
FHets = Cyphtts o1 g ph2its) 4 o1 gua fHsetis), (5.4.3)

Instead of writing down the indices explicitly, it is most convenient to suppress all indices in
the following compact notation, where the symmetrization of all free indices is understood
[58]:

1
E=F—gnF, F=D0p—d ¢o+&y. (5.4.4)

The equations of motion are £ = 0.
For massless fields ¢ the following gauge symmetry is introduced,

Ppaeeps ~ Ppi...pis + a(,ulg,ug...,us)) or 6‘)0 = a&‘, (545)

and, for s > 4, the fields are subject to the double-trace constraint a’B BM bt = o = ()

furthermore, the gauge parameter ¢ must be traceless e%,/"*"#* = ¢’ = 0 for all s > 3.
The Fronsdal and “Einstein” tensors possess two very important properties: the Fronsdal
tensor is gauge-invariant,

0F =30%' =0, (5.4.6)

90



thanks to the trace constraint ¢ = 0, whereas the “Einstein” tensor satisfies an “anoma-
lous” Bianchi identity,

1
0-&= —§na-f’ - 2(93 " (5.4.7)

where the second term on the right-hand side shows up for s > 4 only and vanishes due to
the double-trace constraint ¢©” = 0. Using these relations, the variation of the action gives

1 1
26J590dD:v =3 JE&sde = g J bzt e dPx
(5.4.8)

% f do (E02-t5g, ) dPa,

i.e. a boundary term.
The symmetrized derivatives needed for the computation of the Noether current are, in
compact notation,

L1 1

=5 {na% - = (naso +1 wC“) + ™ =P’y
Pap 2 2

) | (5.4.9)

+5 (0P + g’ ) = 1 (9on'n + o nan)} :

We also define

1
L - 7IC;L1..AusaB' (5.4.10)
0Puy.ps0B 2

The interaction with matter is introduced via the following coupling to a symmetric
source JH1#s whose traceless projection is divergence free:

S = ;fﬁ“l'“”sapmm“sdl)x — JJ%-#S%__MSde. (5.4.11)
Now the equations of motion are £ = J and the variation of the action reads
. g faa (J%) d . (5.4.12)
Hence, the Noether current corresponding to the spin-s gauge invariance is given by

1
jo = 5 (Kaﬁvﬂéso _ VQ’CQ5(5$0> + gjag, (5.4.13)

5.4.2 Bondi-like gauge for spin s

Our Bondi-like gauge for any integer spin s is given by the obvious generalization of the
conditions we chose for spin three:

Prug.ps =0 = Pezus.pe (5.4.14)
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and

Puw..u zz.z — Td_lez...z' (5415)
d
for d = 1,...,s. Notice that, in this gauge, any number of traces of these fields vanishes:

this is consistent with the fact that for spin four or higher the vanishing of the double trace
of ¢ must be enforced to recover the correct Lagrangian equations.

Assuming that there are in fact spin-s residual gauge transformations, we would like
to compute their charge, given by the variation of the zz...z component, postponing
the (more technical) task of proving that our Bondi-like gauge-fixing indeed admits such
residual freedom to the next section: this will allow us to immediately get to Weinberg’s
result for spin s, representing the main result of this thesis.

First, let us recall that the explicit gauge variation for a spin s field reads

0Ppr.qrs =V (111 Epg.opia)

j— J— « —_ —_
_a(mgm-n#s) 2 Z F#iﬂjga#1~-~#i-~/»‘j-~#s7
1<j

(5.4.16)

where the summed indices 7, j take values from 1 to s and fi; means that the corresponding
index has been omitted. From the invariance, in Bondi-like gauge, of the rr. .. r component,
we get the following definition of T'(z, 2):

E(rrr) = 0 = orer.r =0, (5417)
i.€.,
er.r=—1(2,2). (5.4.18)
Now,
1
E(r..mz) = 0 = (S - 1)67‘67”...1”2 -0, T — 2(5 - 1);57«,,,17 =0, (5419)
which is solved by
r
Er..rz = _8 — 1D2T, (5420)
again,
1
E(rrzz) =0 = (5 =2)0p8r 2z +2Ds6r rr —4(s — 2);5“22 =0, (5.4.21)
hence

Er.zz = —m

Proceeding this way, by induction we get

D?T. (5.4.22)

Erizz = — (S — 1)!D§_1T, (5423)
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so that the desired variation takes the form
s—1

ST
0Qz. 2z = *WD§T~ (5.4.24)

The Noether current will be given by the relevant contribution to (5.4.9)

1 1—r*10,B srs1
20, JCEETUS _ _ = uPz..zz | DST
92 U Pz..2z 2 ('YZZTZ)S (S _ 1)| z

s (5.4.25)
= _m(DZ)STauBz...zz
so, using the auxiliary boundary condition
(DZ)SBzzz = (DE)SBE...Zév (5426)

and integrating by parts we arrive at

QF = (-1)———— |  :T(D*)* '0uB,. ..d%du — Sf Yoz (u, 2, Z)d%du, (5.4.27)
2(8 - 1)' J+ 2 g+
where
J(u, z,2) = linolO r2 I (uyr, 2, 7). (5.4.28)

Once again, the next important step is the choice of the function T'(z,z); following our
spin-two and spin-three Ansétze, we choose

T(z5) = — (sz)S,_l (5.4.29)

w—2z \ 1+ 22

which yields
fout|(Q"S — SQ7)|in)

_ 477(5_1)1; (D*)* Lout| [U duauBz...zz> §-5 U d”9v3z~~u>] [in) (5.4.30)

(s) pps—1 = s—1
gn_En ( 1+ 2% > (out|S|in),

Z— Zn 1+ 2,2,

= 2 n
where we have used the usual action of QT on the matter fields,
[QF, ] = ggg@T(z’au)S*lq). (5.4.31)

The stationary phase approximation gives

— ar(out| [( J duauBz,,,Zz> S—8 < J dv&szmzz>} in)

23/2 .
=1y Jm, [wloutlaS[in)]

(5.4.32)
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and hence

t /21 97(L)ES Lz—z, \""!
. ou : S
wh_{(r)l+ [wlout|aS™ S|iny] = (—1)°2 (1+22) E ™ — o <1 n Zn%) . (5.4.33)

due to

1 GBS oz oz,
DZ S—
(3—1)!( ) —1—22312% z2—2n \14 2,2z,

gSLs)EZ—l 1422, \* . (5.4.34)
=2 = . <1 n 2n5n> (out|S|in).
Indeed, proving this formula amounts to proving that
1 \9 z—C\" _
L+ 22)%e:]" (1 " ZZ) — (14 20)", for all n e N, (5.4.35)

and this follows by induction: we have already checked the formula for n = 1,2 in the
previous sections and if the formula holds for n — 1, then

1‘[(1+Zz) a]”(’ZC_)n: 1'[(1+zz) oz "1 [n<2§>n_1(1+z§)]

n! 142z n!

- 1
=1+ ZC)W

5.4.3 Residual gauge freedom for spin s

We now turn to the problem of verifying whether or not the presence of residual gauge
transformations parametrized by an angular function T'(z, z) is allowed by our Bondi-like
gauge for any spin. It will turn out that there is indeed one such a family, in complete
analogy with the lower-spin cases. The keypoint of this discussion will be to identify, on
the one hand, which equations can be used to restrict the allowed gauge parameters and,
on the other hand, which should be identically satisfied as consistency conditions, if we are
to have any nontrivial symmetry left.
Recall that our Bondi-like gauge is summarized by the following conditions

Prug...ps = 0= PzzZps... s (5.4.37)
and
Pun..u zz.z — Td_lez...z- (5438)

d
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for d = 1,...,s. The equations defining our residual gauge freedom are precisely those
encoding the preservation of these scaling behaviors:

0Prpgps = 0= 002z p, (5.4.39)
and
J UU... U ZZ...Z =0 -1 . 5.4.40

d

Let us observe that the independent equations of this system are labelled by the following
numbers:

e the number p of “u” indices appearing,
e the number d of “2” indices appearing without z counterpart,
e the number ¢ of pairs “zZ”, counted ignoring their order.

For simplicity of notation, when useful, we shall indicate by % de and &8 de the field compo-
nents and gauge parameter components, respectively, labelled accordmg to these counting

criteria. The remaining number of “r” indices is understood to be s — p — d — 2c¢ for the
field components and (s — 1) — p — d — 2¢ for the gauge parameter components.
The equations with d = ¢ = 0, with increasing number p of “u” indices, are
OrErr..r =0 = Epp r = _T(Zw%) = _TO(Zw%)v
Or€ur..r =0 = eyp.r = _Tl(zai)
(5.4.41)
a7‘5uu...u =0 = ecypy.u = —TS_l(Z,E)
or, briefly, 51870 = —Ty(z, z), for some set of angular functions T},. The first relation in the
set, e = —T'(z, 2), plays a special role, since we will see that it is in fact this function

which determines all the others. The equations with p = ¢ = 0, with increasing number of
“2” indices, read

2 T
(S — 1)ar5zr...r - (S — 1) Exr..r DzT =0 = Exr..r = _S — 1DZT
4 r? 2
(S - 2>ar5zz...r - (S - 2) €zzer — T 1 T =0 = € = _szT
2 s—1)rs2 _ ro!
argzz...z — (S — 1) 6522 P (S E 1)(8)_ 2) - Dj 1T =0 — Ezz..2 = — (S — Z) DS 1T
(5.4.42)
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Thus, in short,

rd

0 d
=— DIT. 5.4.43
Ed,O (8—1)-'-(8—d) z ( )
The equations with mixed v and z indices, for fixed ¢ = 0, are analyzed as follows: consider
first p=1=d,

2 T
(S - Q)arguzr---r - (8 - 2);5uzT...7‘ — D)1 =0 = cyzr.r = _S )

D.Ty  (5.4.44)

then p=2,d =1,

2 T
(5 - 3)ar5uuzr...r - (5 - 3);5uuzr..m —D,) 15 =0 = cyuzr.r = _ﬁDsz (5445)

and so on, which gives
r
o= —szTp; (5.4.46)

also, the case for arbitrary p and d = 2 is easily studied,

4 T 9 r? 9
(s —p—2)0rehy — ;512’70 piPp— 1DZTp — &by = P P Q)Dsz,
(5.4.47)
and by increasing d one sees that in general
1paT,
e B (5.4.48)
7 [Tici(s —p—F)
This formula is extended to non-zero ¢ by means of the trace constraints
1
€2zu3.. pus—1 = _5722742 (Errug..,us,l - 25ru,u3...,u5,1) ; (5.4.49)
or )
€ er1 = —57227“2 (5570 — 255?21) : (5.4.50)
For instance, the relation for p =0 =d and ¢ = 1,
1
Exzpr = — =12z (—=T + 2T1) (5.4.51)

2

allows to eliminate ¢,z,_, from the corresponding equation

2r
S_

4
1DzD5T + 0.+ (s —2) [éremmr — razgrmr} —29,:r(T—T1) =0 (5.4.52)

yielding
s 1
T = T D*D,T 5.4.53
TG T ot el ( )
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and substituting back

Exzrr = —%r%g <Si1T +2(s — 1)2DZDZT> : (5.4.54)
Considering, more generally, d = 0, arbitrary p and ¢ = 1, one has, exactly by the same
strategy, )
s$—Pp

PR R A PR R
which determines every 7T}, recursively as a combination of 7" and its derivatives. In fact,
equations (5.4.48), (5.4.50), and (5.4.55) completely specify the components of €,,,.. ,,,_, in
terms of 7', in a recursive way. Let us stress that, while at this point our residual gauge
freedom is completely fixed, so far we have only used a part of our Bondi-like conditions,
namely all the equations where either d = 0 or ¢ = 0. As a consequence, either the
leftover equations with d,c > 1 and arbitrary p are identically satisfied or new conditions
would arise on the gauge parameters that may well kill the infinite-dimensional asymptotic
symmetry encoded in particular in the function 7'(z, 2).

The equation with arbitrary p and with d,c > 1 can be expressed as the vanishing of the
following quantity

Tpi1 = D*D.T, (5.4.55)

2
Cg’c =(s—p—d—2c) |:6T€Z,c —(d+ QC)TEZ7C:|
+ (d + C)DZEZ—I,C + cDgEZJrLC_1 (5.4.56)

1
— 27y,zre(d + ) (57;;_1 — €§7C_I> .

The following Newton-like formula is an immediate consequence of the recurrence relation

(5.4.50):
c c—l1
c 2¢ c 1
Cde = Vs Z (z) <—2> 5%1; (5.4.57)

=0

by extracting the r-dependence from 5§J6l, we obtain

eh = pdt2egh (5.4.58)

,C

and

) c /e 1 c—l .
&= <l> (—2> et (5.4.59)
=0

This allows to rewrite (5.4.50) as

X pt1
€ = — 57 (EZ,C—l - 25%—1) (5.4.60)
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and to rewrite Cg .» suitably rescaled, as follows

—d— 1 A )
Chor' 72 = gesls —p = d = 20)(d 4 26) (S~ 22511

2
e+l .
+ 27,s¢(d + ¢) <€§;_1 — 5Z,c—1> )

Having in mind (5.4.57), we can expand C¥ Crlfd*ZC

1-d—2 16_1 c—1 N\ @
g S () e
1=0

Ap (D)
where the components C' de

1 _1_

oo _70?1021 (c— 1> (_1>c 1-1 DIT, .
o— 2z d )
‘ =\ ! 2 [limi(s—p—1—k)

are obtained by inserting

and read

épdﬁ(l) =— %(s —p—d—2c)(d+ 2c)

% DlijpH . 2D(ZiTp+l+1
[Ty —p—1—k) Tliy(s—p—1—k—1)
DETp 2D{Ty 141

+7;Z(d+c)[

D:DI'T,
~ a1
pei(s—p—1—k)

d d
Dsz+l+1 Dsz+l

ls—p—1-k) JIZiGs—p—1-k-1)

1 A ~p+l A
— 57:2(d +¢) (ngg—l,c—l - 2Dz5§—1,c—1> + CD25§+1,«:—1

with respect to [ as follows

|

+ 27.z¢(d + ¢)

The recursion relation (5.4.55), with [-dependence included,

s—p-—1
T, = T
Pt 2s—p—1-1) erldl_(s—p—l—l)Z

allows to rewrite everything in terms of 7}, ,; while the curvature relation

d(d+1)

D:D¥T,, = DYD:D,Tpy; + 5

’YzzDngH
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[ (s—p—l—k—=1) [l (s—p—1—k)

(5.4.61)

(5.4.62)

(5.4.63)

(5.4.64)

(5.4.65)

(5.4.66)



allows to eliminate the D; DT, ., yielding

Ap () d+ 2c
e Mis—p—1-k)
[+1— -
x {S_p_lflpgpzpz:r’p” + % [[(d+c)+ (1—c)(s—p)] DZTPH} :
(5.4.67)
using (5.4.65) to eliminate DzD,T),4;, instead, we have
A 2z d 2 Yzz 2
de,c(l) = d.t,_;y ( i C) (l +1- C)Dng-i-l-&-l - (d i C) ngTp-i-l
pea(s —p—1—k) 2Hk: (s — — k) (5.4.68)
Two successive terms in the sum (5.4.62) combine as follows
Ap (D) Ap o (I+1)
(C—l)(c—l—l) (_1)0—1—l2l Cd’C _QC d,c (5469)
1! c—1-1 [+1 ’ o

where in this expression the terms involving T},4;41 are

2z (d + 2¢) dr N 2z (d + 2¢)
s p1—k) " P s—p—l—k—1)

DTy 1 =0;  (5.4.70)

therefore the sum defining CY _ is telescopic. But clearly c? d C(O) gives no contribution

involving 7}, and neither does C’p (C_l)

involve T}, .1 since those terms have vanishing
coefficient by (5.4.68). Thus C’p = 0 whenever d or ¢ do not vanish, and every consistency
condition is satisfied, showmg that the existence of the infinite-dimensional asymptotic
higher-spin symmetry survives this rather nontrivial stress test.

Furthermore for s = p + d,

dri=1DIT,
(s —p—k)

dphg=dD.ef 1 g=— (5.4.71)

which indeed respects the scaling behavior with 74! imposed on oh 0
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6 Soft Theorems and Goldstone Theorem

At the beginning of the seventies [32, 33|, it had already been observed in quantum elec-
trodynamics that all soft theorems of Weinberg [6, 7] and Low [8] type can be seen to arise
from the spontaneous breaking of linear large gauge symmetries, constituting a subgroup
of the usual U (1) gauge group of electrodynamics. In this section, we first review and then
extend this approach to soft theorems for any spin. For a recent review of various aspects
of symmetry breaking in QFT from a rigorous perspective see [50].

6.1 Spontaneous Symmetry Breaking in Quantum
Electrodynamics

We work in the Feynman-Gupta-Bleuler formulation of QED, corresponding to a local
gauge where

OAu(x) = ju(x), Miju(x) =0, (6.1.1)
where j, () is the conserved current associated to the global U(1) symmetry transformation
g(\), implemented by ¢*?. Consider the following family of local gauge transformations,
given by the linear gauge parameter (x) = —[,a#:

a(l) s Ay(x) — Ayu(z) =1, (6.1.2)

(x) — Y(x) exp{—iel,z"}.
This «(l), parametrized by the co-vector I, is indeed a large gauge transformation, in that
its gauge parameter £(x) grows linearly as one approaches infinity. Denoting by 7(a, A)
the action of the Poincaré group, where a* is a translation vector and A € SO(3,1),

we immediately see that «(l) is not an internal symmetry: for example, considering its
commutation with translations

T(a)a()p(x) = 7(a)i(x) exp{—iel,z"}
=1 a) exp{—iel,z"}
=1 a) exp{—iel,(z + a)!} exp{iel, a"} (6.1.4)
= a(l)y(x + a) exp{iel a"'}

7(a)g(l - a)(z)

x +
x +
l

(
(
(
(

)
=« )
thus

T(a)a(l) = a(l)T(a)g(l - a). (6.1.5)
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6.1.1 Broken large gauge symmetries and Goldstone’s theorem

Let us suppose that «(l) could be implemented by some unitary operator V (I). We we can
then translate (6.1.5) into the following operator relation,

Ua)V (1) = V(DU (a)e @, (6.1.6)

where U(a) is the unitary operator implementing translations. Applying this identity to
the vacuum |0), which is translationally invariant and has zero charge, one has

U(a)V D)0y = V(1)|0), (6.1.7)

which shows that V(1)|0) is itself invariant under translations and, since the vacuum is the
unique translationally invariant state, it must be

V(1)[0) = |0). (6.1.8)
On the other hand, if we compute the vacuum expectation value of
VIAL(2)V () = Au(z) — L, (6.1.9)

we easily obtain a contradiction: 1,{0|0) = 0, for every l,. Therefore, the symmetry o(l)
cannot be implemented by a unitary operator: it is a broken symmetry, as may be expected,
since vacuum expectations of A,(x) are not left invariant under a(l), unless I, = 0.

We turn now to the discussion of the implications of this spontaneous breaking on the
spectrum of the theory. It is well-known that the breaking of an internal symmetry gives
rise to massless Goldstone excitations, but since «(l) does not commute with translations,
we may wonder whether the Goldstone theorem still holds. In this case, the non-covariance
of the current J,gl) () which generates «(l) is explicit, thanks to (6.1.5):

U(a)JP(2)U(a) ™ = JD(z + a) + l.atj,(z + a) (6.1.10)
f T (@) = K (x) = L jp(x), (6.1.11)

where K ,51) (r) = U(x)J,gl) (0)U(x)~! is by definition translationally covariant. The smeared
charge is given by

QY. = f Fr(x)a(zo) IV (z)d, (6.1.12)

where the test functions fr and « satisfy

fr(x)=f <|X|> ;o flx) = {1 o<1 (6.1.13)

R 0 fx>1+e¢

101



and

Ja(xo)dxo =1, (6.1.14)

so that the infinitesimal variation of a local operator B is
1 o) Bl = (5(1)3. 6.1.15
? le [QR,ON ] ( )

The Goldstone theorem states that, if the symmetry is broken, then there are massless
one-particle modes in the Fourier transform of (0[6() B|0), or more precisely

lim O[[Q}),. BI0) = lim (OQF, E1B — BEIQ{,|0), (6.1.16)

where 4 denotes the projection on zero-mass one-particle states. Notice that the left-hand
side of the previous equation is non-vanishing if and only if the symmetry is broken.

The key-point in the extension of the usual proof of Goldstone’s theorem [50] is that
the non-covariant piece of (6.1.11) involves the generator j,(x) of the unbroken global
symmetry.

An explicit form of the current can be obtained as follows: we know that

Jy = F,,0% + jue, (6.1.17)
from the Noether theorem, thus, using [JA, = j, and integrating by parts
Jy = 0y(Au0e) — Aule — 0,A,0"e + e[JA,; (6.1.18)
but [Je = 0 and, up to a boundary term,
TN (@) = 110,A,(x) — Mz, 0A,. (6.1.19)

Luckily, the non-covariant piece I#x,[JAy gives no contribution to the right-hand side of
(6.1.16) thanks to the spectral projector Fy, which imposes k? = 0. Hence, we can write

Jim <oy[QRa, 1105 = fd )a(0)I*{0|A,,(x)E1 B — BEy A, (2)]0) (6.1.20)

and letting
H,(x) Efdl’ooé(xo)<0|14 (z)E\B — BE, A u(2)]0), (6.1.21)

we see that by locality H,(x) has compact support and therefore its Fourier transform
H, (k) is an entire analytic function. Also

Jim <0|[QRa, BJj0) = lim defR WFH,(x) = (277)3/2&1%1“}1 (k). (6.1.22)
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In fact, the two pieces making up H (k) on the right-hand side give the same contribution:
letting

Go(x) = J dzoa (o) (01 A, () Er B + BELA,,(x)|0) (6.1.23)

and
L(x) = f dzoa(0) 0| A, () Er B — BELA,(2)[0), (6.1.24)

we see that thanks to the spectral representation and to the projector E;, which selects
w(k) = |k|, one gets

Gu(k) = —i|k|L,(k), (6.1.25)
a quantity that tends to zero as |k| — 0 by the analiticity of Eu(k). To sum up:
: O] _ 3/2 1 77
Jim (0[[Q,., BI|0) = 2(2m)*"? lim 1“H{ (k), (6.1.26)
where
B (k) = deoa(xo)<O|A#(x)ElB|O>. (6.1.27)

For convenience, let us rewrite this identity as follows: denote ZMQ’;-E o= Q%) o then

. 3/2 ;
Jim (0[[Qf . BI|0) = (2m)*? lim (k. u| B|0), (6.1.28)
where N
Ik, 1) = —2ifda:oa(xo)ElAu(k,wo)]@. (6.1.29)
The infinitesimal transformations induced by «(l) are
| lim [QY , AY(x)] = —n”  lim [Q" — —iext(x). 1.
i i (@l A ()] = . i i [Qh (2] = —ieat(e).  (6.130)

6.1.2 Soft theorems of QED
Using B = A”(x) in (6.1.28) yields
(27)3/2 lim k. | A" (2)[0) = =" (6.1.31)

Using instead B = T'(¢(z)1(0)), where now T denotes time ordering, allows to recover
(2m)*? lim (le, ] T'(p()(0))]0) = —iex”(O|T (¢ (x)1:(0))[0), (6.1.32)

which is nothing but the Ward identity

S(p)I'*(p,0)S(p) = —ie=—S(p), (6.1.33)
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where S(p) is the electron propagator and I'*(p, k) is the electron vertex function.
Again, upon choosing B = T(A*'(x1) ... A*"(x,)), one obtains
(2m)3/2 Lim ke, plT(A™ (21) ... A® (20))]0)

n - (6.1.34)
=— Z 0| T (AP (21) . .. AFi(xy), ... AP (xy,))]0)

i=1

where the hat indicates that the corresponding factor has been omitted. Using the previous
identity (6.1.31), one sees that the right-hand side reconstructs the disconnected part of
the left hand side, leaving as a consequence

ll{ir%<k, w|T(A* (z1) ... A*™(21,))|0)connected = O. (6.1.35)

Weinberg’s [6] and Low’s [8] soft theorems are instead obtained by taking insertions of n
photon fields and 2m charged fields B = T'(A* (z1)...¢¥(y1) ... ¥(z1) .. .), since then, again
reconstructing the disconnected photon contributions thanks to (6.1.31), we can write

(277)3/2 lim<k, w|T(AF (1) ... (Y1) - .&(zl) «++|0)>connected
- ) 6.1.36
Z — 2))MO|T(AM (1) ... b (y1) - (1) - - . 0. ( )

*
After Fourier-transforming, and using > to denote the sum with respect to the 2m +n —1

independent momenta, we get

HD (a-)S (L) K (p, 9, 9)S (ps)

_Z <ap apm> [ [ D(a)S®)E (PP, q)S(ps).
jn

rs

(6.1.37)

where D(q) is the photon propagator, and K*(p,p’,q) denotes the amputated amplitude
for the process K(p,p’,q) with the addition of an extra soft photon with momentum k*.
Taking into account the Ward identity (6.1.33) when applying the derivatives on the right-
hand side gives, in its turn,

K*(p,p,q) =i Y. {T*(9},0)S(0}) + S(p))T*(pj, 0)} K (p, 0/, ) (6.1.38)
j=1
+€i 76, —1—76 K(p,p,q). (6.1.39)
; 0P OPju
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The first line (6.1.38) encodes the Weinberg poles as can be easily seen by considering, for
example,

1

— /F/,L / k / k’ — a7 / . s )\ 'ul/k?,/
u(p )T (p', k)S(p' + k) = a(p) (iey” +iro )wp(p/ﬁkp”m

" (6.1.40)
Pk

= u(p')ie +...,

and is associated with those diagrams where the soft photon interaction occurs after (or
before) all other interactions, whereas the second line (6.1.39) gives finite corrections [8, 9]
to the leading singular behavior, corresponding to the other diagrams.

This shows that Weinberg’s soft photon theorem, together with the corresponding sub-
leading corrections, can be seen as consequences of the spontaneous breaking of linear large
gauge symmetries of QED. With respect to the treatment given in the previous chapters,
the asymptotic symmetry group considered in this case is much simpler since it can be
parametrized by a co-vector [, instead of an angular function T'(z2, 2).

6.2 Spontaneous Symmetry Breaking in Linearized Gravity
We work in the harmonic or “De Donder” gauge of linearized gravity
Oh () = juw (@), *jun(x) = 0; (6.2.1)

here j..(x) encodes both the conserved stress-energy tensor of matter and the non-linear
terms of the Einstein equations in the Arnowitt-Deser-Misner formulation (see e.g. [59,
Chapter 6.7]. The tensor j,, () also generates global space-time translations via the ADM
energy-momentum tensor FP,. Consider the following family of infinitesimal local gauge
transformations, given by the linear gauge parameter ¢, (v) = —l,2":

a(l) : hy(x) — hy () — 20 (6.2.2)
Y(x) — @(z) — ifluyg;”a”@(:p),

where f denotes the coupling to gravity. Thus, «(l) is parametrized by the constant
symmetric tensor ,,. Denoting by 7(a,A), for a* a translation vector and A € SO(3,1),
the infinitesimal action of the Poincaré group, we see that «(l) is not an internal symmetry:
considering its commutation with translations

[T(a), a())]®(z) = — fall,e0° ®(z) = —ifT(la”)P(z) (6.2.4)
thus, in terms of generators, denoting Q) = ZWQ‘“’,

[P*, Q7] = —ifnt*P°. (6.2.5)
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6.2.1 Broken linear large diffeomorphisms

Supposing now that «(l) could be implemented by some self-adjoint generators, which
is equivalent to the weak continuity of the corresponding unitary exponentials, we get,
applying the previous commutation relation to the vacuum |0), which is translationally
invariant,

PHQP710) = 0; (6.2.6)

this shows that Qp‘7|0> is itself invariant under translations and therefore, in clear analogy
with the U(1) generators of the previous section, it must coincide with the vacuum

Q*’|0) = |0). (6.2.7)
Taking now the vacuum expectation value of the following expression
i[Q7, W (x)] = =y (6.2.8)

easily allows to derive a contradiction. Consequently, as before, the symmetry a(l) is a
broken symmetry. Again, the Goldstone theorem still holds, in spite of a(l) not commuting
with translations, since the non-covariance of the current Jél)(x) which generates a(l) is
explicit, thanks to (6.2.5):

U(a)JP(2)U(a)™ = T (z + a) + 1" aujup(a + a) (6.2.9)
or
JD (@) = KD (2) — 1" 250, (2), (6.2.10)

where K ,(,l)(af) =U (a:)J,gl) (0)U(x)~! is by definition translationally covariant. Indeed, we
will explicitly verify below that this is the case for the Noether current we will choose.
The charge QEQ o is regulated with the test functions fr and « like those appearing in the
previous section, so that the infinitesimal variation of a local operator B is

i lim [QY,. B] = 6"B, (6.2.11)

R—00

independently of a. The Goldstone theorem states that, if the symmetry is broken, then
there are massless one-particle modes in the Fourier transform of (0|6() B|0), according to
(6.1.16), which we report here for simplicity:

lim (0/[QY . B0y = 1im 0|QY E,B — BEQY)_|0). (6.2.12)
R—o0 ’ R—o0 ’ ’
The extension of the usual proof of Goldstone’s theorem [50] is the same as in the case

of electromagnetism, since the non-covariant piece of (6.2.10) still involves the generator
Juv(x) of the unbroken global symmetry.

106



An explicit form of the current can be obtained as follows: from the Noether theorem,
using [Jh,, = ju and integrating by parts,

T (@) = 20 Aphy (x) — 1" 2, Thop. (6.2.13)

Also in this case, the non-covariant piece [*”z,[Jh, gives no contribution to the right-hand
side of (6.2.12) thanks to the spectral projector E1, which imposes k% = 0. Hence, we can
write

hm<0][QRa, 110> = f 4% fr(x)a(20) 20 (0| by (2) By B — BEyhy (2)|0). (6.2.14)

Using exactly the same locality and analyticity arguments of the previous section, one
arrives at:

Jim (0[[Qfry., BI[0) = (2m)* lim (k, | B0), (6.2.15)
where
|k, pv) = — fdmoa xo)E h v(k, 20)]0). (6.2.16)
The infinitesimal transformations induced by «(l) are
i lim [Q,, 7 (2)] = 2070”7, i lim [QfF, ¥ (@)] = —5 fad (@),
(6.2.17)

6.2.2 Soft graviton theorems
Using B = h*?(z) in (6.2.15) yields
(2m)3/2 lim e, pav| 0¥ ()[0) = =21/ (6.2.18)

Using instead B = T'(®(2)®(0)), where T denotes time ordering, allows to recover
(22" im (ke T(@()BO)]0) = — L faHe OT@@BO)0),  (6219)
and the Ward identity

SE)I"(p,0)S(p) = _Efap( S(p), (6.2.20)

where S(p) is the “charged” field propagator and I'*”(p, k) is the graviton vertex function.
Again, if one chooses B = T'(h*V1(xq) ... h#*"" (xy,)),

(2912 Y, (W73 () . () [0)
(6.2.21)

= — Nogig i 0|B = T(W (1) ... WV (z;) ... B (2,))]0)
=1
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where the hat indicates that the factor has been omitted. Using the previous identity
(6.2.18), one sees that the right-hand side reconstructs the disconnected part of the left
hand side, yielding

llin%]<k, uv|T (R (x1) ... R (21,))]0)connected = 0. (6.2.22)

Weinberg’s soft graviton theorem [6] and the subleading corrections (corresponding to those
found in [8] for QED) are instead obtained by taking insertions of n graviton fields and 2m
charged fields B = T'(h*1"1(z1) ... ®(y1) ... ®(21)...), since then, again reconstructing the
disconnected photon contributions thanks to (6.2.18),

(2m)3/2 lim<k, | T (W7 (1) ... ®(y1) ... @(21) - . - |0Dconnected

(6.2.23)

m)
%2 ( Gy zf('“aju)<O’T(h’“”<x1>---‘Nyl)--@(zl).-.|0>.

Upon Fourier-transforming, and denoting by Y the sum with respect to the 2m +n — 1
independent momenta, one finds

]_[D (ar)S @) EH (0,0, 0)S (ps)

12 0 (6.2.24)
S 7])
2 J (?p;.(u ’ 8p (“

HD (¢-)S(Ps) K (p, 7', 4)S(ps),

TS
where D(q) is the graviton propagator, and K**(p,p’, q) denotes the amputated amplitude
for the process K(p,p’,q) with the addition of an extra soft graviton with momentum
k#; taking into account the Ward identity (6.2.20) when applying the derivatives on the
right-hand side gives

K™ (p,p',q) =i Y. {T"™(p},0)S(;) + S(p;) T* (p;,0)} K (p, ', q) (6.2.25)
=1
f a 0 lu) 0 V))
+ = p; p; | K, p',q) (6.2.26)
2;(&]);.(# ’ OPj(u

In complete analogy with the spin-1 case, the first line (6.2.25) encodes the Weinberg poles

/v

p'tp" p'Hp
—(p' + k)2 +m? = vk

™ (' k)Sp' + k) ~ (6.2.27)

and is associated with those diagrams where the soft graviton interaction occurs after (or
before) all other interactions, whereas the second line (6.2.26) gives finite corrections to
the leading singular behavior, corresponding to the subleading diagrams.
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This completes the extension of the results presented in Section 6.1 to the case of spin-
two fields, showing that soft graviton theorems emerge as consequences of the spontaneous
breaking of large gauge transformations comprising a subgroup of linearized diffeomor-
phisms, parametrized by a symmetric tensor [, .

6.3 Spontaneous Symmetry Breaking in Higher-Spin Theories

The discussion done in the previous two sections can be naturally extended the context of
spin-s gauge theories, by choosing the higher-spin De Donder gauge,

1
0- Pug..ps = 5@#290;2_._”5)7 (6.3.1)
in which the equations of motion for the gauge field ¢,,,.. ., are again
U = Jpnopis» (6.3.2)
where j,,, .. ., is a totally symmetric current whose traceless projection is locally conserved.
Then, linear large gauge transformations with parameter €, ., = —lu;.. usqus 2",
0Ouy.ops = =Sy opiss 0 = —ifar . 00 - 0, (6.3.3)

where [, ., is a totally symmetric, traceless, constant tensor, 1) denotes an elementary
matter field, and f is the spin-s coupling, are broken in each irreducible representation of
the field algebra, as one can infer from the shifts induced on gauge fields and hence on
their vacuum expectation values.

With this gauge choice, the Noether current associated to such transformations is, after
an integration by parts,

']p(l) (@) = sl 0pppy e () = UM Gy - (6.3.4)

Note that the form of this current is again given by a translationally covariant piece plus a
non-covariant one, but the latter involves the (unbroken) matter current j,, ,, and hence
gives no contribution to the Goldstone theorem, as it was described in the spin-one and
spin-two cases.

Now, any difficulty arising from the structure of higher-spin symmetries has been taken
care of, and hence one can perform the same computations done in Sections 6.1 and 6.2,
with straightforward modifications in the index structure of the above formulas, to extend
the link between the spontaneous breaking of linear large gauge symmetries and higher-
spin soft theorems: the latter, emerging as the rewriting of the Goldstone theorem when
applied to such a symmetry breaking.

More explicitly, limiting ourselves to the main formulae, the Ward identity linking the
matter propagator S(p) to the s-field vertex function I'*1--Hs reads

S(p)IH45 (p,0)S(p) = —— C p P*)S(p), (6.3.5)
8" OP(u,

109



and the soft theorem expressing the amputated amplitude K#1#s(p,p q) for the process
K(p,p',q) with the addition of an extra soft spin-s particle with momentum k* is encoded
in the following expression,

KHts (p,pl, q) =i Y T4 (p,0)S(p)) + S(p) T+ (p;,0)} K(p, 9, ) (6.3.6)
j=1
f < < 0 o I1ts) 0 ) u)) /
+ = — ! pr + p2 o p | K(p,p',q). (6.3.7)
2; T T
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7 BMS Group in D dimensions

In the same way as the validity for any spin of Weinberg’s factorization theorem motivated,
among other considerations, our investigations of higher-spin soft theorems and their con-
nection with infinite-dimensional asymptotic symmetry groups, the observation that the
factorization itself holds independently of the dimension of spacetime has aroused interest
in the study of asymptotic symmetries, in particular of those of gravity, in spacetimes of
arbitrary dimension D.

In Chapter 1, we have already reviewed the precise definition of asymptotically flat four-
dimensional spacetimes and its implications for the enlargement of the symmetry group
from the Poincaré group to the BMS group. We devote this final chapter to describing an
extension of the approach to asymptotic symmetries that still relies on the tool of conformal
compactification but extends, in principle, to spacetimes of any dimension D; this approach
both accounts for the presence of an infinite-dimensional, BMS-like asymptotic symmetry
group in any dimension and gives indications for the falloff requirements that are to be
imposed on the metric tensor in order describe asymptotic flatness.

7.1 Abstract Null Infinity

It is worthwhile to stress the elementary abstract properties that enter the definition of
the BMS group: after isolating such fundamental elements, we will be able to propose a
definition of this group in arbitrary dimension, a generalization which proves rewarding,
for instance, due to the implications that this symmetry group has shown on the infrared
properties of gravity. Indeed, the generators of the asymptotic symmetry transformations
have been interpreted as creation operators of gravitons with vanishing momentum, and,
furthermore, we have seen in the previous chapters how such symmetries are related to soft
theorems and to the equivalence principle itself.

In [41], the authors have identified the BMS group as the group of diffeomorphisms
preserving certain geometrical structure at three-dimensional null infinity (thought of as
the conformal boundary of a four-dimensional spacetime). Their strategy admits a simple
and natural generalization to D-dimensional spacetimes, which is given below.

Given the manifold .# = R x SP~2, consider on it a conformal class € of degenerate
metrics of signature 0 + +...+. A vector field n is called isotropic if ¢(n,-) = 0 for some
q € € (and hence for all ¢ € ¥, since these metric tensors are conformally related). The
integral curves of an isotropic vector field are called isotropic lines. Examples of such
objects were given by ¢, and n* below equation (1.1.34) in Chapeter 1.
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The first property we require is:

S1: The isotropic lines define a product decomposition of .4 into R x SP~2
the lines being transversal to the hyperspheres.

Physically, this property selects the parameter u € R as the retarded (or advanced) time

of some light wavefronts, and implies that the space 2 of isotropic lines (i.e. light rays) is

the (D — 2)-sphere; 7 : A" — 2 will denote the corresponding natural projection.
Assume also:

S2: Any diffeomorphism ¢ : A4~ — .4 which maps each isotropic line into itself
preserves %, i.e. it is a conformal transformation for each q € €.

By the latter requirement, 2 is naturally endowed with a conformal structure of signature
+ + ...+ in the following way: picking any section 7 : £ — 4 then ¢ = 7%¢ is positive
definite on 2 and all metrics on 2 constructed in this way are conformally related. Let
us denote this conformal structure by %.

We shall define the pair (A4, %), together with the axioms S1 and S2, as pre-# (“pre-
ser-17).

We will now investigate under which conditions the geometric structure defining pre-.# is
invariant. Let ¢ be a diffeomorphism of .4 which preserves ¥’. Then ¢ maps isotropic lines
into isotropic lines, and consequently defines a mapping ¢ on the quotient space 2; but ¢
preserves the conformal structure 4 because ¢ preserves €. Conversely, if ¢ is conformal
on 2, then any lift of ¢ to a diffeomorphism ¢ on .4 with mo @ = ¢ on preserves . The
crucial point is that the group preserving such a conformal structure on SP~2 is isomorphic
to the orthochronous, proper Lorentz group SO(D — 1,1) (see e.g. [38]). Thus we have
proved the following statement:

Proposition. The automorphisms of pre-# are all the (orientation-preserving) lifts to N
of the action of the proper, orthochronous Lorentz group SO(D — 1,1) on 2.

In particular, choosing hyperspherical coordinates 84, for A = 1,...,D — 2, on the
(D — 2)-hypersphere and any smooth parametrization u : .4~ — R of isotropic lines, the
automorphisms of pre-.# are given by

04 — H; (60", ...,6072) (7.1.1)

and
u— F(u,0), (7.1.2)

for a conformal transformation H on the hypersphere, and F' being an arbitrary smooth
function such that 0F/du > 0.
Let us add:
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S3: There exists a nowhere-vanishing tensor field S : .4 — TZ(A) of type
(2,2) such that:

(i) S is symmetric in both pair of arguments;
(ii) S contracted twice with any one-form in .4 either vanishes or is in %’;

(iii) any contraction of S with itself vanishes.

The structure of pre-.# together with the axiom S3 will be simply called .#. This axiom
is equivalent to requiring that there is a rule which associates an isotropic vector field n
with a given degenerate metric ¢, and viceversa, so that

S=¢qgR®nn. (7.1.3)

Of course, from the perspective of introducing .# as the conformal boundary of an asymp-
totic spacetime, this is totally reasonable since n = (dQ)f, where .# is defined by the
vanishing of the conformal factor 2 = 0 and the one-form df? is sharpened into a vector
field using the full D-dimensional metric §; in components, n* = §**V,Q. Note that,
under a change of conformal parameter  — w$), we get ¢ — w?q and dQ — wdf), meaning
that n — w!n and hence S = q ®n ®n is conformally invariant. In fact, this tensor was
also introduced in the definition of asymptotic geometry given by Geroch [39] (where it
appears as Fabcd).

Let us now look to the automorphisms of ., that is, the mappings of A4 to itself
preserving all of our three axioms: the additional requirement, with respect to the previous
proposition, is that .S must be preserved, which restricts the arbitariness of the lifts to 4"
of conformal transformations of 2.

Let h € € and ¢ = m*h the pullback of h to .#. Let n be the isotropic vector field
corresponding to ¢ via S. Let ¢ : 2 — 2 preserve %, with @*h = w?h. Any lift ¢ of  to
A will map q to w?q, but since VLS = P ® PN ® PN = W?q® PN @ p4n, only those
lifts for which

Ysn =w 'n (7.1.4)

will preserve S in addition to %. In the usual coordinates, chosen so that n = d/du,
since psn = w™ln, we have d/0u — w~'0/0u. Since w is a function only of the angular
coordinates, this can be integrated to give

u— w (u+ a(f)), (7.1.5)

where o is any smooth function on SP~2. This completes the proof of the following
statement:

Proposition. The group of automorphisms of .Z is the (analog of the) BMS group, in D
dimensions.
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The transformations (7.1.1) and (7.1.5) indeed provide the analog of the BMS group for
D-dimensional spacetimes, in that they give rise to a group which is the semi-direct product
of the Lorentz group with an infinite-dimensional normal subgroup of angular-dependent
translations.

7.2 Boundary Expansion of the Metric Tensor

On top of the properties discussed in the previous section, it is also reasonable to assume
our abstract .# to have vanishing Weyl tensor given by the connection compatible with g,
the reason is that this manifold is meant as the conformal equivalent of the flat boundary
of the physical spacetime. Indeed, this property has been in fact deduced [39, Theorem
11] for D = 4 from the definition of asymptotic flatness given above. By doing so, we
also obtain that each cross section inherits, as an embedding in .#, an induced metric h,
whose compatible connection also has vanishing Weyl tensor; this follows immediately by
noting that q,, = hy, since by definition g,,n" = 0, where n* is the isotropic normal to
the given cross section.

On the other hand, any topological (D — 2)-sphere with this property is conformally
equivalent to the Euclidean (D — 2)-sphere: in the equivalence class of metrics on a given
cross section we can always choose the metric of the standard unit sphere [60]. Now the
procedure linking .# to the asymptotic behavior of the metric in the physical spacetime
can proceed as discussed after (1.1.22), without imposing D = 4. Then, the structure of
such falloff rates turns out to be identical to the one given in (1.1.28) with § and ¢ replaced
by D — 2 Euclidean angular coordinates 64, as done below.

One first introduces coordinates (€, u,0',...,0°72) in a neighborhood of .#* in the
usual way. In such coordinates

d5?%| s+ = 2dQdu + d?, (7.2.1)

1

where dy? is the line element on the Euclidean (D — 2)-sphere.! To study the asymp-

! The line element on the Euclidean unit (n — 1)-sphere, in coordinates

1 . . . .
x =cos¢sinfysinfs...sinf,_3sinb,_o

2 . . . . .
x” =sin¢gsinfy sinfs...sinf,_3sinb,_o

3 . . .
z° =cosfysinfs...sinb,_3sinf,_»

(7.2.2)
2"t =cosO,_3sinb,_o
z" =cosbp_2,
reads
do”® = df2_y +sin® 0,2 dOr_5 +sin” 0, _osin® O, _5dOi_4 + ... . (7.2.3)
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totic behavior of the metric components in the physical spacetime, one recalls the gauge
condition (1.1.19), which was already discussed in arbitrary dimension D in Chapter 1,

040, —T%,0,Q = 0, and hence T}, = 0; (7.2.4)

but, since % = 5 and 0, = 0 at I,

~ 1 5 _
0= Fﬁu = 9 (auguu + al/gu,u) ; (7.2.5)

fixing 1 = Q and selecting v = u,6',62,...,0P2, thanks to 04juq = 0 = dGua at I+,
for A,B=1,...,D — 2 one has

00Guu = 0qgua = 0 on I+, (7.2.6)

meaning that G, and §,4 must be O(Q?) as Q@ — 0. Thus, in a neighborhood of .#*, the
components of the physical metric, g, = Q_QLE]W, take the form

ds? =2072dQ du + Q™3 (yapdo*do®)
+O1)(du? dudo?) (7.2.7)
+ O(Q~ Y (d02dOB, dy du, dQ? dQde).

Now let r = 2/Q, so that

1
ds® = — dr du + i r2(yapdo*do?)

O1)(du? duds™)

O(r) (0™ do") (7.2.8)
o@1)r )(drdu dr d6™)

O(1/r®)dr

Compare with [36, Eq. (21)] and in particular with [35, Eq.(2.9)], where the authors have
noted that the crucial point allowing the presence of supertranslations is to impose that
gap should to deviate from the Euclidean metric at most by O(r), as in our case, rather

than at most by O(r%), as was required in less recent literature.

This result shows that our conformal approach agrees with the strategy recently employed
[35] in order to extend the infinite-dimensional BMS group to spacetimes with dimension
higher than four: instead of adopting the traditional, more restrictive, boundary conditions
for the metric tensor (see e.g. [34]) which allow for the presence of gravitational radiation
but spoil the structure of the asymptotic symmetry group, it is preferable to impose the
weaker falloff requirements of type (7.2.8), which in fact allow for the presence of the full
BMS group.
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Therefore, we hope that the present discussion may shed new light on these seemingly ad-
hoc weaker boundary conditions (aside from slight differences in the subleading behaviors),
whose ultimate justification up to now lied in the fact that they allow to recover an infinite-
dimensional asymptotic symmetry group and to derive Weinberg’s graviton theorem from
supertranslation symmetry. Here we have reinterpreted these falloff behaviors in terms
of the geometric properties of null infinity, in any dimension. It is then the link of the
geometric structures on .# to the physical spacetime that selects the weaker boundary
condition.

One ought to mention that analyticity problems arise near .#, for perturbations around
Minkowski spacetime in odd (D = 2n+ 1) spacetime dimensions, thus pointing out a poten-
tial flaw in the conformal approach to null infinity: in particular, it has been shown that, in
such solutions, the leading order behavior of the unphysical Weyl tensor in a neighborhood
of .# always begins with a half-integral power of 2 [61]. The perspective we adopted in
this section is slightly different: first we studied the automorphism group of abstract .#,
which turned out to be the D-dimensional BMS group, and then we “attached” this .# as
conformal boundary to a physical asymptotically flat spacetime (assuming its existence)
thus recovering the falloff conditions (7.2.8). Since the discussion of small perturbations
of flat spacetime, describing for instance weak gravitational radiation and whose confor-
mal description is ruled out by the discussion in [61], is very important for the physical
interpretation of null infinity, these problems should not be ignored; it would therefore
be desirable to perform further investigations on the matter, in order to inquire if such
analyticity problems persist when studying asymptotically flat spacetimes which are not
small perturbations of odd-dimensional Minkowski spacetimes.

Nevertheless it is our opinion that the above described strategy still provides a convincing
procedure for justifying the falloff conditions adopted in the current (less formal) treatment
of the BMS group in higher dimensions.
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Conclusions and Outlook

In order to look at the topics treated in this thesis from a broader perspective, let us review
and analyze a few relevant points of our previous discussions.

First of all, a first step towards a deeper understanding of the higher-spin asymptotic
symmetries we propose clearly entails a critical analysis of our “Bondi-like gauge”, which
consists of both gauge-fixing and falloff conditions, and of its meaning for higher spins: for
instance, how much freedom do we have in the choice of such an asymptotic gauge? How
unique may it be? Or is it conceivable that a weaker set of asymptotic conditions may give
rise to an even bigger higher-spin asymptotic symmetry group, while still being physically
acceptable?

As far as the link between Weinberg’s theorem and our asymptotic symmetries is con-
cerned, some ad hoc assumptions were made in the specific properties of the higher-spin
gauge field (in particular, the auxiliary boundary conditions (5.4.26)), which were not jus-
tified, unlike in the spin-two case, by a discussion of the canonical relations of asymptotic
degrees of freedom.

Possible further explorations on this topic include its extension to asymptotically (Anti-)
de Sitter spaces, which should be in principle physically realizable, for instance if the cor-
respondence between asymptotic symmetries and soft theorems is meant to be compatible
with cosmological observations, even though there are indications that the corresponding
analysis on cosmological backgrounds may lead to drastically different results [62]. Another
relevant direction to be considered is the analysis of the enlarged asymptotic symmetry
algebra proposed in [63], where the authors suggest that, in the case of four-dimensional
gravity, by looking at infinitesimal transformations rather than finite, globally defined ones,
one may recover an enhanced algebra, namely the semidirect sum of supertranslations and
the Virasoro algebra.

Finally, as we already mentioned at the end of Chapter 7, the conformal approach to
asymptotically flat spacetimes still elicits some questions: one cannot prove that the un-
physical Weyl tensor must vanish at .#, when D # 4, and one may therefore inquire as
to how general it may be to require this property, from a mathematical point of view;
furthermore, analyticity problems arise around Minkowski spacetime in the case of odd-
dimensional spacetimes, and this points to the need for further investigations on the phys-
ical meaning of such singularities, a tempting possibility being the analogy with the failure
of Huygens’ principle [61, Footnote 2].
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