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Introduction

The quantum Teichmiiller space is an algebraic object associated with a punc-
tured surface, admitting an ideal triangulation. Two somewhat different ver-
sions of it have been introduced, as a quantization by deformation of the Te-
ichmiiller space of a surface, independently by Chekhov and Fock |[CF99| and
by Kashaev |[Kas95|. As in the article [BLO7|, we follow the exponential version
of the Chekhov-Fock approach, whose setting has been established in [Liu09].
In this way the study is focused on non-commutative algebras and their finite-
dimensional representations, instead of Lie algebras and self-adjoint operators
on Hilbert spaces, as in |[CF99] and [Kas95|.

Given S a surface admitting an ideal triangulation A, we can produce a
non-commutative C-algebra 7y generated by variables Xiil corresponding to
the edges of A and endowed with relations X; X; = q>%ii X X, where o;; is an
integer number, depending on the mutual position of the edges A; and A; in A,
and ¢ € C* is a complex number. The algebra 7\ is called the Chekhov-Fock
algebra associated with the surface S and the ideal triangulation A. Varying
A in the set A(S) of all the ideal triangulations of S, we obtain a collection of
algebras, whose fraction rings Tq are related by isomorphisms @9, : 7A'>\q, — 7A;\q.
This structure allows us to consider an object realized by "gluing" all the 7A'Aq
through the maps ®9,,. The result of this procedure is an intrinsic algebraic
object, called the quantum Teichmiiller space of S and denoted by T¢, which
does not depend on the chosen ideal triangulation any more.

The explicit expressions of the 1, reveal the geometric essence of this alge-
braic object. These isomorphisms are designed in order to be a non-commutative
generalization of the coordinate changes on the ring of rational functions on the
classical Teichmiiller space T(S) of a surface S (here 7(S) denotes the space of
isotopy classes of complete hyperbolic metrics on S). More precisely, the clas-
sical Teichmiiller space 7(S) admits a branched covering T(S) — T(S) such
that the exponential shear coordinates, associated with an ideal triangulation
A, induce a homeomorphism vy : R} — T(S). The maps Yy oty turn out
to be rational and the isomorphisms ®9,, are constructed so that the following
equality holds

O3 (X)) = (W' o) (X1, .., Xn)

where (13,' 0 ¥5)? denotes the i-th component of (¥},' 0 ¢,) and ®},, is the
isomorphism between TA, and 7j\ , the fraction rings of the Chekhov-Fock alge-
bras in the commutative case ¢ = 1 (see |Liu09] for details). This fact tells us
that, for varying ¢ € C*, the quantum Teichmiiller space is a non-commutative
deformation of the algebra of rational functions on the space 7 (.5), which makes
sense because the coordinate changes (w;,l o1)y) are rational. The classical case
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can be recovered by setting ¢ = 1.

The main purpose of this thesis is the study of the quantum Teichmiiller
space and the investigation of its finite-dimensional representations. A necessary
condition for the existence of a finite-dimensional representation of 7y is that
¢? is a root of unity, hence we always assume that ¢ is a primitive N-th root
of unity, for a certain N € N. The first Chapter of our work is devoted to
the study of the isomorphism classes of the Chekhov-Fock algebras of closed
punctured surfaces and polygons and their multiplicative centers. This analysis
is crucial in Chapter 2 for the classification of irreducible finite-dimensional
representations of such algebras, as exposed in |[BLO7|]. In Chapter 2 we also
define a different type of representations of 7y, called local representations,
firstly introduced by Bai, Bonahon, and Liu [BBLO07|. Local representations
are constructed as "fusion" of irreducible representations of the Chekhov-Fock
algebras associated with the triangles composing an ideal triangulation A\. These
representations have a simpler set of invariants than the irreducible ones and
have a good behaviour with respect to the operation of gluing surfaces along
edges of ideal triangulations. In both cases, irreducible or local, the invariant
of a representation p: 7! — End(V) is

a collection of numbers z; € C*, one for each edge of the ideal triangulation
A, together with a choice of a N-th (or square) root for each of certain
explicit monomials in the x;.

The set of monomials depends on the kind of representations considered: if p is
local, then we only need to specify a N-th root of x1 ---z,, the product of all
the weights on the edges of A\, whereas if p is irreducible, we also need to select
N-th roots of monomial related to the punctures of S and, if NV is even, square
roots of monomial associated with a basis of Hy(S;Z2). However, in both cases
the relation between the representation p: 7, — End(V') and the invariants ;
associated with the edges \; is that p(XV) = z; idy .

In the first part of Chapter 3 we describe the construction of the isomor-
phisms ®f,,, which are characterized by the combinatorics of the ideal triangu-
lations and the moves conducing from one to the other. Then, following [BL07],
we give a notion of finite-dimensional representation of the quantum Teichmiiller
space, defined as a collection

p={px: T = End(V\) } encs)

of representations of all the Chekhov-Fock algebras associated with the surface
S, verifying a compatibility condition in terms of the isomorphisms ®%,,. More
precisely, two representations py: 7 — End(Vy) and px : T, — End(Vy) are
compatible if py/ is isomorphic to py o ®%,,. A representation p = {PA},\eA(S)
of the quantum Teichmiiller space is local (or irreducible) if every py is local (or
irreducible).

In order to envelope a proper theory of invariants for these kinds of represen-
tations, we need to introduce another object associated with an ideal triangula-
tion A and a system of weights x; € C* on the edges of ), that is a pleated surface
with pleating locus A and exponential shear-bend parameters (z;); € (C*)™. Ev-
ery pleated surface has a monodromy representation, which is a homomorphism



from the fundamental group of S to the group of orientation preserving isome-
tries of H3. The pleated surfaces provide a bridge conducing from a local (or
irreducible) representation of the Chekhov-Fock algebra to a well-defined conju-
gacy class of a homomorphism 7: 7 (S) — Isomy (H?) =2 PSL(2,C). Because of
the strong relation between the isomorphisms ®9,, with the coordinate changes
(3" o 1y), given p = {Pr}ren(s) @ local (or irreducible) representation of the
quantum Teichmiiller space, the conjugacy class of the homomorphism r as-
sociated to py turns out to be independent from the choice of A € A(S). In
conclusion, we reach a classification theorem for local representations with the
following statement:

Theorem. Let S be a surface admitting an ideal triangulation and fix q a
primitive N-th root of (—1)N*1. Then a local representation of the quantum
Teichmaller space is classified by the following data:

e the conjugacy class of a homomorphism r: m1(S) — PSL(2,C);

e for each peripheral subgroup m of the fundamental group 71 (S) (cor-
responding to a puncture of S), a choice of a point &, € OH? fized by
;

e a choice of a N-th root of the product x; ---x, (indeed the quantity
x1 - Xy depends only on (r,{&x}.)).

The result in the irreducible case has the same flavour, but there are more roots
of certain monomials in the x; to be determined, just as in the classification
result for representations of the Chekhov-Fock algebras. Not every enhanced
homomorphism as above is realized as invariant of a representation of the quan-
tum Teichmiiller space, but a huge meaningful family is, like the injective ones.
Chapter 3 ends with the proof of a theorem, due to Toulisse [Toul4|, concern-
ing the irreducible decomposition of local representations of the Chekhov-Fock
algebra.
Let now

p=1{px: T} = End(V)\)})\eA(S) P ={p\: TN — End(vi)}xe/\(s)

be two isomorphic local representations of the quantum Teichmiiller space of .S.
By definition, for every X\, A" € A(S), the representations py o ®%,, and p), are

isomorphic. Therefore, there exists a linear isomorphism Lf&l/ such that
(pr 0 @9, (X') = Lf\f\', oph(X")o (Lf\il,)_l for every X' € T},

Such a Lﬁf\/, is called an intertwining operator. Because local representations are
not irreducible in general, an intertwining operator like above is not unique (not
even up to multiplicative factor - we stipulate that from now on all operators
are considered up to such projective equivalence). One of the main purposes of
|IBBLO7| was to select a unique intertwining operator Lf&l, for every p, p’ local
representations and for every A, \ ideal triangulations, by requiring that the



whole system of operators (for varying A\, \' € A(S), the representations p, p’
and the surface S) verifies some natural Fusion and Composition properties,
concerning their behaviour with respect to the fusion of representations and
changing of triangulations. However, in our investigation of the ideas exposed
in [BBLO7|, we have found a difficulty that compromises the original statement
|IBBLO7, Theorem 20|, in particular the possibility to select a unique intertwin-
ing operator for every choice of p, p’, A\, \'. Indeed, by requesting that the Fusion
and Composition properties hold, we are able to select just a set 2% /{’,/ of inter-
twining operators for each choice of p, p’, A and ), instead of a unique linear
isomorphism. Each set fo,/ turns out to be endowed with a natural free and
transitive action of H;(S;Zy), so its cardinality is always finite, but it goes
to oo by increasing the complexity of the surface S and the number N € N
(recall that ¢* is a primitive N-th root of unity). In Chapter 4 we describe
this difficulty and we provide our solution, by incorporating the affine space
structure over H;(S;Zy) and its behaviour with respect to compositions and

fusions. We also prove that the system of sets {fffj } obtained in this way is
minimal, hence canonical, in the sense that every set of intertwining operators
which verifies "weak" Fusion and Composition properties (in practice the ones
of the original statement in [BBL07|) necessarily contains such a distinguished
one.

In addition, we reformulate the theory of invariants for pseudo-Anosov dif-
feomorphisms developed in [BBLO7| in light of these facts. The final product is
the conjugacy class of a set of linear isomorphisms, defined up to scalar multi-
plication, instead of the one described in |[BBL07|, which was a conjugacy class
of a single linear isomorphism.

We also expose in Subsection [£:2:3] an explicit calculation of an intertwining
operator when X and )\ differ by diagonal exchange and S is an ideal square,
which is basically the elementary block needed to express a generic intertwining
operator.

vi



CHAPTER O

Preliminaries

Unless specified differently, we will always assume that a surface S is oriented
and obtained, from a compact oriented surface S with genus g and b boundary
components, by removing p > 1 punctures vy, ...,v,, with at least a puncture
in each boundary component. Suppose further that 2x(S) < ps — 1, where pg
is the number of punctures lying in 0S. These are the necessary and sufficient
conditions in which S admits an ideal triangulation, whose definition is the
following:

Definition 0.1. Let S be a surface. We define an ideal triangulation A of S as a
triangulation of S, which has as vertices exactly the set of punctures {vy,...,v,},
endowed with a indexing of the 1-cells ()\;);. We identify two triangulations of
S if they are isotopic. Also, we denote by A(S) the set of all ideal triangulations
of S.

Given A € A(S), let n be the number of 1-cells in the ideal triangulation A
and m the number of faces of A. Easy calculations show the following relations
hold:

n = —3x(S) + 3p —pa
= —3x(5) + 2ps
m = —2x(S) + pa

In all the thesis n and m will always denote such quantities.

Definition 0.2. Given S a surface and A an ideal triangulation of .S, we denote
by I's x the dual graph of A, i. e. I'g ) is a CW-complex of dimension 1, whose
vertices T} correspond to the triangles 7j of A, and, for every A, internal edge
of A, there is a 1-cell A’ in I'g;\ that connects the vertices corresponding to the
triangles on the sides of A4, even if the triangles are the same.

It follows from the definition that all the vertices have valency < 3. In
particular, the valency of a vertex T;" in I'g ) is equal to the number of internal
edges that are sides of T,.

Given A € A(S) an ideal triangulation, we can modify A in the following
ways:

e for every permutation 7 € &,,, we define X = 7()\) the triangulation with
the same 1-cells of A, but with the ordering ] := A.(;). This operation is
called re-indexing;



2 0 Preliminaries

Figure 1: The Pentagon relation

e let \; be an edge adjacent to two distinct triangles in A composing a
square @. Then we denote by A;(A) the triangulation obtained from A by
replacing the diagonal A; of @ with the other diagonal \;. By definition,
we set A;(A) = X\ when the two sides of \; belong to the same triangle.
This operation is called diagonal exchange.

These operations verify the following relations:
COMPOSITION RELATION: for every a, 5 in &,, we have a(5(A)) = (o B)(N);
REFLEXIVITY RELATION: (A;)? = id;
RE-INDEXING RELATION: A;oa = ao A, for every a € &,;

DiSTANT COMMUTATIVITY RELATION: if A; and A; do not belong to a common
triangle of A, then (A; 0 Aj)(X) = (A 0 A;)(N);

PENTAGON RELATION: if three triangles of a triangulation A\ compose a pen-
tagon with diagonals A; and A; and if we denote by «a;; € &,, the (ij)
transposition, then we have

(AioAjoAioljol)(N)=ai(N)

The following results are due to Penner and the proofs can be found in
|Pen87]:

Theorem 0.3. Given two ideal triangulations \, N € A(S), there exists a finite
sequence of ideal triangulations X = \O ..  XE=D X)) = X' such that, for
every j =0,...,k—1, the triangulation \Ut1) is obtained from A9 by a diagonal
exchange or by a re-indexing of its edges.

Theorem 0.4. Given two ideal triangulations X\, N € A(S) and given two se-
quences A = NO . AE=D A®) = N gpg A = N O D ) =y of



diagonal exchanges and re-indexing connecting X and X', then we can obtain
the second sequence from the first by the applications of a finite number of the
following mowves or their inverses:

e using the Composition relation, replace

L a(AD), Bla(ADY), . ..

with
(o BYAW), .

e using the Reflexivity relation, replace
D\

with
GAD A Y NG

e using the Re-indexing relation, replace
AD a(AD), Aj(a(AD)), ..

with
~-'7)‘(l)7Aa(i)()\(l)); (oo Aa(i))(}\(l))7 o

e using the Distant Commutativity relation, replace
A0
with
G ADA DY (A 0 ANAD), A; (MDY, D

where (AD); and (A\D); are two edges of \I) which do not lie in a common
triangle;

e using the Pentagon relation, replace
IO
with
A A DY (Ao Ao Ao ANADY, a (A AD
where (AW); and (A1), are two diagonals of a pentagon in A\,

Definition 0.5. Let S be a surface and select an ideal triangulation A of it.
We can construct, starting from S and the choice of certain internal 1-cells
Aiys---s Ny, a surface R obtained by splitting S along these selected edges
Aiyy- -+ Ny, - In other words, R is realized by removing the identifications, along
Ai;, between the ideal triangles having A;; as side. On R we can clearly find an
ideal triangulation p and an orientation induced by A and by the orientation on
S. In this circumstances, we will say that S is obtained from R by fusion, and
analogously that the ideal triangulation A € A(S) is obtained from p € A(R) by
fusion.






CHAPTER 1

The Chekhov-Fock algebra

In this Chapter we introduce a non-commutative C-algebra 7!, called the
Chekhov-Fock algebra associated with a surface S and an ideal triangulation
. Its lack of commutativity depends on the combinatorics of the ideal triangu-
lation A.

The main purpose in this Chapter is to give a characterization of this algebra
and of its multiplicative center, which will be key ingredients in Chapter 2 in
order to classify irreducible representations of 7,'. These results, concerning
the case of a closed punctured surface, have been exposed by Bonahon and Liu
IBLO7| and we basically follow their presentation.

In addition, we give a similar and simpler description when S is an ideal
polygon, proving a fact announced in the proof of [BBLO7, Lemma 21].

1.1 First definitions

Let S be a surface (see Chapter [0] for details). Since S is oriented, on each trian-
gle of A we have a natural induced orientation. With respect to this orientation,
it is reasonable to speak about a left and a right side of each spike of a triangle.
We select an order \q,..., A\, on the set of 1-cells of the triangulation A\. Given
A; and A; two 1-cells of A, we denote by a;; the number of spikes of triangles in
A in which we find A; on the left side and \; on the right. Now we name

Uij = aij — aji

Definition 1.1.1. Given ¢ € C*, we define the Chekhov-Fock algebra associ-
ated with the ideal triangulation A\ and the parameter g as the non-commutative
C-algebra T,!, generated by X fﬂ, ..., X! and endowed with the following re-
lations

XzXJ = q2”” Xle

for every i,7 = 1,...,n, where n indicates the number of 1-cells of A.

By virtue of Corollary [AZ3] it can be easily seen the Chekhov-Fock algebra
is always a bilateral Noetherian integral domain.

Given )\ € A(S), we designate the free Z-module generated by the 1-cells of
the triangulation A\ as H(A;Z). A choice of an ordering on the 1-cells of A gives

5



6 1 The Chekhov-Fock algebra

Figure 1.1: How a spike of a triangle 7" contributes to o;;

us a natural isomorphism of H(\;Z) with Z™ and through it we can define a
bilinear skew form on H(\;Z) given by

g iai )\i,ibj Aj = i aibjoij (11)
i=1 j=1

ij=1

Observe o0;; is determined by the mutual positions of A; and A;, hence o is
independent from the choice of an ordering on A and it is a bilinear skew form
intrinsically defined on H(\;Z).

Now we fix an ordering in A and we choose a = (aq,...,a,) and § =
(B1,---Bn) in Z" = H(X;Z). We can associate with « a monomial in 7Y,
which we briefly denote by X, defined as

chn e X0
and analogously for X?. Introduce also the following notation
XO‘ e q— Zi<j QiQjOij YO q— EKJ- Ofiajm'jxfél . Xrolzn

Lemma 1.1.2. For every a, f € Z™ = H(\;Z), the following relations hold in
NG

xoxh — q20(a7B)XBXa _ q2(27',>j @ifjoij) xoth (1.2)
KO‘X[& _ qQG(Qﬂ)KﬁKOf — qﬂ(aﬁ)za-i-ﬁ (1.3)

Furthermore, for every permutation T € &;, we have

q7 Zh,<k Tipip )(le e Xil — q7 Zh,<k Ui,-(h,)ir(k) X,

ir1)

X

ir(1)

(1.4)

Proof. The first relations easily follow by direct calculations, it is sufficient to
control how the coefficients change by the appropriate permutation. We will see
how to deduce the relations in [I33| using [[.2] The first equality is obvious, it is
enough to multiply both the members 0 by ¢~ i< @i%i%i g~ 2ic; BiBicii
We would like to show that X*X? = ¢7(®-#) X+ holds. By virtue of it is
sufficient to prove that the exponents of ¢, multiplying the elements X*X? and
q2(zi>ﬂ‘ @ifjois) X ot respectively, coincide. It is simple to show we can reduce
to prove the following equality

— Z Q0G5 — Zﬂiﬁjaij = — Z(a+ﬁ)i(a+ﬁ)jo’ij +O’(Oz, 5) — 220(1',6]'0'@‘]'

i<j i<j i<J i>7



1.2 Punctured closed surfaces 7

Using the fact that o is skew-symmetric, we deduce

- Z(Ot + B)i(a+ B)0: + (o, B) — QZaiﬁjO‘ij =

1<j i>j
==Y (a+B)ila+B);05+ > @iBioy+ > iboiy — Y aibjoy+
i<j i<j i>j i>j
=Y aiBjoi;
i>j
== Z(a + B)ila+ B)joij + Z aifjoij + Z,@ia]‘m‘j
i<j i<j i<j
== o — Y BiBjoi;
i<j i<j

that concludes the proof.
For what concerns the relation [1.4] it is simple to prove it when 7 is a
transposition of consecutive elements and the general case easily follows. O

Remark 1.1.3. The elements X, for varying o € Z"™, just as the X%, compose
a C-basis of T}!. Denoting by M the monomial multiplicative group of 7}, we
have a natural projection M} — Z" that associates with the element aX* the
vector o € Z". Identifying C* with the subgroup of the elements aX° € M,
the following sequence is exact

0 —C — M —2"—0

Marking as Z{ the center of M$, the monomial multiplicative center of T, it is
immediate to verify the multiplicative center of 7 is the C-span of Z{. Given
X e MY, it belongs to the monomial center if and only if, for every § € Z", we
have ¢2?(®#) = 1, in light of the relation Therefore, there are the following
possibilities:

e if ¢ is not a root of unity, then X* belongs to Z{ if and only if, for every
B € Z", we have o(a, 8) = 0;

e if ¢? is a primitive N-th root of unity, then X belongs to Z{ if and only
if, for every 8 € Z™, we have o(«, 8) € NZ.

1.2 Punctured closed surfaces

Let us focus our attention on the case of a surface S obtained by removing p
points from a closed compact oriented surface S. We mark as I' = T'gy the
non-oriented dual graph associated with the triangulation A of S, defined in
Chapter @ and we construct from it a new oriented graph I' as follows:

e the set of vertices f,j of T' coincides with the set of vertices TF of T

o for every 1-cell A} of I' we take two 1-cells X;"l and sz that connect the
vertices in I' corresponding to the ends of \;, with opposite orientations.



8 1 The Chekhov-Fock algebra

A /:;i“_ﬁ ~ )\k/\ ?/\
NS ;

~

*
71

Figure 1.2: Local behaviour of 7

There is a natural projection mapA?r: T — T that is the identity on the vertices
and that carries each 1-cell A}, of I' in the corresponding 1-cell A} of I'. It turns
out to be a bijection on the set of vertices and a 2 — 1 map on the interior of
the 1-cells of T'. Starting from 7: I' — T', we construct a oriented surface S that
verifies the following conditions:

e the graph T can be identified to a deformation retract of S ;

e turning around each vertex TA“,:‘ of T'in S , we meet the 1-cells entering in
Ty with alternating orientations;

e the projection map 7: T — T can be extended to a branched _covering
7: 8 — S with set of ramification points that coincide with F(O) the
set of vertices of F, and with every ramification point having mlﬂtlphmty
equal to 2. Moreover, we assume that on all the 2 — 1 points of .S the map
T is orientation preserving.

Denoting by 7: S — S the involution of the branched covering 7, then 7
acts like a m-rotation around every vertex, as in Figure [[.2]

Observe we can associate with every element o € H(\;Z) a weight system
& on the 1-cells of f, setting on every 1-cell //\\;‘. of T the multiplicity given by
a on %(X;-*,) = A}, that is a;. Because of the structure of T, such a @ defines an
element of H 1(§ ; Z) that verifies 7, (@) = —a. Conversely, given a in

{a € H(S:Z) | 7v(a) = —a}

there exists a unique representative ¢ of a belonging to Hl(f; Z), because T is
a deformation retract of S and it is a graph. By construction 7(c). = —c, as

elements of C (f, Z), and this relation immediately imply that there exists a
a € H(XN;Z) such that & = a.

Lemma 1.2.1. In the above notations, the following relation holds
o(a, B) = i(@, B)

for every «, B € H(N\;Z), where we are denoting by i(-,-) the intersection form
of the surface S.

Proof. Because both o and i are Z-bilinear and the association a — @ is Z-linear,
it is sufficient to prove the relation on couples of elements belonging to a basis of



1.2 Punctured closed surfaces 9

H(X;Z). Fix an ordering of the 1-cells of the triangulation A and the resulting
isomorphism #H(A; Z) = Z™. Then we can interpret o(\;, \j) = 045 = a;; —aj; as
a sum of as many £1 as the spikes of triangles in A in which A\; and \; appear as
sides, with positive sign if A; is on the left and A; on the right and with negative
sign otherwise. If €; and €; are the elements in H; (S;7Z) corresponding to \;
and A; in H(X\;Z), then €; and €; have an intersection whenever A; and \; are
sides of the same triangle T. We will prove that every +1, coming from any such
triangle 7" in the sum o;;, corresponds to a same £1 in the algebraic intersection
of e; and €;. We must understand which is the contribute of each triangle in
both the expressions. Let us represent what happens when, in the triangle T,
we have a spike with )\ on the left and \; on the rlght as in Figure [1.2| (in the
notation of Figure € = /\ + A ¥y and €; = P} o1t )\* 5). This conﬁguration
contributes in o;; Wlth a +1, exactly as in z(el,ej) because the couple €;,€;
has a positive intersection in 771(T). Analogously, it can be observed that, in
the opposite situation, we have a —1 in both the sums, fact that concludes the
proof. O

Now we are going to study the behaviour of the involution 7 on S. Let ¢
be a curve in S going _counter-clockwise around a puncture of S. Analysing
the local structure of S we observe that c¢ is uniquely represented by a chain
cop € C1(T;Z) having coefficients with the same sign. If the coefficients of ¢
are positive, then the representative 7(c)o of 7(c) has negative signs, and vice
versa in the opposite case. This means that there is no puncture in S that is
preserved by 7 and so the number of punctures in S is equal to 2p. Moreover, 7
can be extended to a branched covering 7 of R on S, where R denotes the surface
obtained from S by filling the punctures, and 7 has the same ramification set
of #. The map 7 is determined by its restriction on the subspace (S \ V),
where V is the union of small open discs centred in the ramification points of
7. The restriction of 7 on 7 1(S \ V) is an ordinary covering of S\ V and it is
identified by a homomorphism ¢: 71(S\ V) — Zs, or equivalently by a cocycle
[¢] € HY(S \ V;Zs). Because of the Poincaré’s Duality Theorem (see [Hat02,
Theorem 3.43|), the class [p] is dual of an element [c] € H1(S\ V,0V;Zs). We
want to show how to construct a representative K of [c] realized as a disjoint
union of arcs connecting distinct components of V': choose any representative
K of [c] that is a smooth immersion with transverse self-intersections and modify
it as follows:

e every component of JV must intersect K in a odd number of points,
because the covering is not trivial along V. By adding a proper relative
boundary near the components of 9V, we can assume that for every ball
of V there exists exactly an arc having an end in its boundary. We still
denote with K this possibly different representative of [c];

e for every self-intersection, we can modify K, up to adding a boundary as
described in Figure in order to remove any self-intersection of K;

e K is now a sum of disjoint closed curves and arcs connecting two different
boundary components of S\ V. Assume that there exists a closed com-
ponent in K. Because the covering is not trivial near the removed balls,
there exists at least an arc component too. It is easy to see that we can
found a closed component and an arc component in K that are linked in
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S by a path v whose internal part does not intersect K. By adding to
K the boundary of a collar neighbourhood of v, we obtain another rep-
resentative K’ of [c] having a closed component less and which is still a
disjoint union of arcs and closed curves. Repeating this process, we obtain
a representative for which the requested condition holds.

Moreover, by perturbing K, we can assume it does not go through the punc-
tures of S. The covering 7 is trivial near the punctures of S and its restriction
on S is equal to 7. By duality between [p¢] and K, if a closed path does not meet
K, then in S\ V it has trivial monodromy for the covering 7. Then, taken an
embedded disc D in S such that D D K UV (here we are using the conditions
requested on the representative K of [c]) and designated the preimage under 7
of D as D, the restriction 7: §\ D — \ D is a trivial covering. Let S; and
Sg be the two connected components of S \ D7 which are homeomorphically
mapped by 7 in S\ D.

In what follows, we are going to study H; (§ Z) and the action of 7 on it,
by decomposing Hl(S Z) in a direct sum of subgroups related to Sl, 5'2 and
D. We firstly focus on the branched covering 7: D — D: it has m = —2x(95)
ramification points of multeplicity 2 and so, by the Riemann-Hurwitz formula,
the following relation holds

X(D) = 2x(D) — (—2x(9))
=2+ 2x(95)

Since 0D does not intersect K by construction, the surface D has exactly two
boundary components, which coincide with the two distinct lifts through 7 of
0D. Consequently, the genus of D is equal to

9(B) = 52~ x(D) - p(D) - (D))
= (D)= —x(8) - 1

Moreover, the restriction of the involution 7 on Disa diffeomorphism of D with
itself, having order 2 and

m = —2x(85) = 2 + 2¢(D)
fixed points. R R R R R
The surface S is obtained from Si, Sy and D by gluing 951 and 95, along

the two boundary components of D. We denote these two curves in D by 7
and 7, respectively, endowed with the orientations induced as boundaries of D.

N X N\
AN N\

Figure 1.3: How to remove intersections in K
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Analysing the Mayer-Vietoris sequence of the decomposition S = (§1 U §2) ubD
we obtain the following

0 — Hy(y1 Ura) — Hy(Sy USs) @ Hy(D) — Hy(S) — 0 (1.5)

where we omit Z as coefficient ring. Now we can construct, starting from SZ,
the surface SO by filling all the punctures and the boundary components of Sz,

for i = 1,2. Select, in S?, a collection of disjoint discs {Bj )};;:1 centred in the
punctures of §¢, which are as much as those of S, and denote by B(i) the disc
in §? whose boundary is ;. We can assume that n(BJ(l)) = n(B(2)) B; for
every j = 1,...,p, where B; is a small disc in S that contains the j-th puncture,
possibly by a re-indexing. Now select the following subspaces of §?

P
|_| B( Iy B(l V@ .= S0\ ({punctures of S°} U éél))

and apply the Mayer-Vietoris sequence to the decomposition §? =UOyye,
Then

0 — Hy(8) — Hi(UD nVD) — Hy(UD) & H (VD) — H(5%) — 0

which can be rewritten as

0 — Hy(8 —>@H 0By @ Hy(v:) — Hi(S:) — H(5%) — 0

Denote by F; the Z-module obtained as quotient Qf the second element Qf the
exact sequence above by the relation [v;] + Z[@B](z)] = 0, where the [8B§Z)] are

oriented as boundaries of the BJ(-i). Then the sequence can be expressed as
0 — E; — Hy(S5;) — Hy(8%) — 0 (1.6)

where the map F; — Hl(S ) is the application on E; induced by the inclusions
of the paths ~; and 8B](- in Si. Observe that this exact sequence spits because
H 1(§?) is free. The restriction of 7 on §1 L §2 exchanges the two components
and can be extended to a homeomorphism 7° of $91159 with itself, switching the
connected components and carrying v; and 5‘B§1) in 9 and BB](-Q) respectively.

Consequently 7 induces a natural isomorphism between the two exact sequences
constructed from S? and S9.

Denote by DY the surface obtained from D by filling its boundary compo-
nents. The involution 7|5 can be extended to a self-homemorphism 7 of DO,
which switches the filling discs and, in particular, has the same fixed points
of 7|5. By virtue of Proposition 7.15 and corollaries in [FM11|, 7. acts on

H, (lA)O; Z) as —id. Just as in the case of §?, we have the exact sequence
0 — F — Hy(D) — Hy(D°) — 0 (1.7)

where F is the module Hi (v, U72) with the relation [y1] +[72] = 0 and the map
from F' to H; (D) is induced by the inclusion of 3 Livs in D. The homomorphism
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~

T« 18 equal to —id on Hy(D) too, because of the sequence and the fact that
T. acts on F' as —id.
Putting together all these observations and the relations [L.5] [L.6] and [L.7}

.

the group H;(S) can be expressed as

p p
(D) & H\(5) @ @ 11 (0B]") @ H1(53) © €D H1(9B?)
j=1 j=1

with the relation Z§=1 [0B ](.1)] + [8B§2)] = 0. Moreover, the following properties
hold

e since the isomorphism is constructed with maps induced by inclusions, the
intersection form of S splits as the sum of the intersection forms on each
factor;

e the action of 7, on H1(§) is equal to —id on the term H; (ﬁo) and it iso-
morphically switches the S? factors, by the isomorphism described above
between the exact sequences related to SY.

The surfaces §? are clearly homeomorphic to S in a natural way, so the above
decomposition can be rewritten as

z[oBM, 0B | j=1,...,p]

(Zj[angl)] N [83](2)] _ O) (1.8)

Hy{(D%) ® H\(S)* @

In this expression we can describe the action of 7, as the following

(e;dv,das [RSY, 0, RSO RD]) T (—eday di; [, RS, D RED))

) My s
Hence, the subspace of H; (§) defined as
{a € Hy(S) | 7.(a) = —a}
corresponds, in this decomposition, to the submodule of the elements
(¢;d,—d;[h1,—h1,..., hp,—hyp]) (1.9)

for varying c € Hl(ﬁo), d € Hy(S) and h; € Z. This submodule is isomorphic
to
H,(D°) & H,(S) o ZP

and the restriction of the intersection form is expressed in this context as ip @
2ig @ 0 (for a more detailed analysis of the factor Z” we refer to the proof of

Lemma [1.2.6). Now we can select a basis of Hy(D°) and H;(S) such that,
in their induced coordinates, the intersection forms split as the direct sum of
elementary bilinear application represented by the matrix

G )

Thanks to Lemma we have proved:
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Theorem 1.2.2. The couple (H(\;Z),0) is isomorphic, through a certain Z-
linear isomorphism A: H(\, Z) — Z", to (Z™,5), where & is represented, in the
canonical basis, by the block diagonal matriz that has:

o k= g(ﬁo) blocks of size 2 X 2 equal to
0 -1
1 0
e g = g(S) blocks of size 2 x 2 equal to
0 -2
2 0
e the remaining block p X p globally zero;

where k = -1 — x(S) =29+ p—3.

Definition 1.2.3. Let W* = W?*[U, V] be the non-commutative C-algebra
generated by U*! and V*!, endowed with the relation UV = o?VU.

Now we are able to show an important consequence of the above analysis:

Theorem 1.2.4. Let S be a surface, obtained by removing p punctures from an
oriented closed surface S of genus g with x(S) < 0, and let X\ € A(S) be a certain
ideal triangulation of S. Then the Chekhov-Fock algebra T,! of S associated with
A is isomorphic to

k

g p
Wi, =QRwie W ¢ &) ClzH

i=1 j=1 h=1
where k = —1 — x(S) =29+ p— 3.

Proof. Let U be the non-commutative C-algebra generated by Ylil, I
and endowed with the relations

YY) = ¢*9Y;Y;

for varying i,j = 1,...,n, where ¢ is the bilinear skew-symmetric form on Z"
described in Theorem It is immediate to observe that { is isomorphic to
the algebra described in the assertion. Therefore, we want to exhibit an isomor-
phism between ¢ and 7. Let A: Z" — Z™ = H(\;Z) be the isomorphism of
Theorem [[.2:2] Define, in the introduced notations, the following map

U — T
Yi — X

where we have labelled as e; the i-th vector of the canonical basis of Z". Thanks
to the relations we can show that this map is well defined, indeed:

f(y;yvj) _ XAQXACJ _ q2U(Ae,i,Aej)XAerAei
= ¢*7u XA X A% = 27 f(V;Y))
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as desired. By definition of f, taken u € Z™, the following holds:

FOCM) =g 2 T f (Y1) - (V)"
=q" e Tij Uity (&Ael)ﬂq o (XA@,L)un

= g~ Ticj Tuuivg xuwder . yunden Relation [[3]

—q iy Tijuiti 3, g U(AeivAej)ui“]'XAu Relation
Au

=X

Now it is easy to verify that, by defining
g: T8 — u
X s YAe
we have fog =idys and g o f = idy, which prove the isomorphism. O

Thanks to Remark the study of the monomial center of 7} is equivalent
to the characterization of the following submodules of H(\;Z):
Kero :={a e H(NZ)|VE € H(NZ), o(a,B) =0}
Keryo:={a € H(\Z) | VB € H(NZ), o(a, B) € NZ}
In particular the second one will have a special role in the case in which ¢ € C*

is a primitive N-th root of unity, and this will be the case of main interest for
our purposes.

Definition 1.2.5. Let S be a surface, obtained by removing p points from an
oriented closed surface S of genus g with x(S) < 0, and let A € A(S) be an
ideal triangulation of S. For every puncture p; of S and for every \; 1-cell of
the triangulation A, we denote by k;; € {0, 1,2} the number of ends of \; that
approach the puncture p;. For every i = 1,...,p, define

k; = (kih .. 7k1n) ezZ”

Since every \; has exactly two ends counted with multiplicity, the following
relation holds ,
> ki=(2,...,2)
i=1

Lemma 1.2.6. In H(X\;Z) the subspace Kero is a free subgroup and the ele-
ments (1,...,1) and k;, fori=1,...,p— 1, compose a basis for Kero.

Proof. Through the isomorphism constructed in Theorem denoting by
the intersection form of S, the subspace Keri corresponds to the submodule

_ 20BN, 08P | j=1,...,p]

~ Z2p—1
(1081 + 0B] = 0)

in the expression described in [I.8] By virtue of Theorem [I.2.2] the subspace
Ker o is identified to

Vi=A{lh,—h1,....,hp,—hpl e W | h; € Z} CW
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Hence V is generated by the elements [8351)] — [8B§2)], for varying j = 1,...,p
The involution 7 carries 8B](»1) in aB]@). Moreover, the map 7 switches the
orientations of the edges in f(l), then exactly one curve between GBJ(-D and GBJ(?)
is consistent with the orientations on T, Now, observing the local behaviour
of @, it is simple to show that the vector k; € Z" = H(A;Z) corresponds in
H,(S) to the element
e; (0B}"] - [0B;”))
where ¢; is +1 or —1 if [8351)] is or is not coherent with the orientations of T.
Defining a :=3_; [8Bj(.1)], then a belongs to V, indeed

r(a) =7 | Y [0BV] | =Y 0B = - Y 9BV = —a
J J J
where we are using the relation }, [8BJ(1)] [8B(-2)] = 0. Now think to W as
the quotient of Z2?? by the submodule {(1,...,1,1,...,1)), in which the [6351)]

correspond to the first p elements of the canonical basis of Z?P and the [8B](.2)]
to the second p. Now, taking the following basis of Z2P

11
Ip—l Ip—l
1 1
0 01 10 0
0 1
—I, : 0
0 1
0 0010 --- 0

we see that V, as subspace of W, is the free Z-module having as basis the first
p columns of the matrix above.
Observe that

P p—1
Z (0B~ 10BP]) = 3 (e; — &) (10B] — [0BP))+
j=1 j=1
3 1) 2)
+ pr ([aBj ] - [8Bj ) (1.10)
j=1
p—1
=236 (0B - 10BP)]) + ¢pa
j=1
with §; := %52 € Z. Now we can easily conclude: the first member of the

equality corresponds in Z™ = H(M\ Z) to Y k; = (2,...,2), hence we have

1,...,1) <->§@([an& ~[0BP)) +epacV (1.11)

j=1
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Thanks to what observed and to the relation the elements k;, for i =
1,...,p—1, and a define a basis of Ker o, as desired. [

Now, let w: H(A\;Z) — H(X;Zn) be the projection on the quotient by the
submodule NH(X;Z). It is clear that Kery o 2 NH(\;Z), so Kery o coincides
with 7=!(r(Kery )). Denoting by & the skew-symmetric form induced by o
on H(N;Zy), it is easy to see that m(Kery o) = Kero. Following the proof of
Theorem we observe that H(A;Zy) has a characterization analogous to
the one found of H(\;Z), i. e. we have the following isomorphism

H(\Zy) = Hy (D% Zy) ® Hi(S;Zy) & (V @z Zy)

and the form & corresponds to 4 po @ 2ig ® 0. Note that the proof of Lemma
[I:2:6]shows us that there exists a retraction of W on V, hence the inclusion map
V — W induces an inclusion V ® Zy — W ® Zy. Moreover, V is free and
generated by the elements (1,...,1)and k; fori =1,...,p—1,80 VN : =V RZx
is a free Zy-submodule of W ® Zx having as basis the images of the elements
k; and (1,...,1).

Lemma 1.2.7. If N is odd, Kery o is the preimage through © of the free Zy -
submodule Vi of H(A;Zy), having as basis the elements (1,...,1) and k; for
it=1,...,p—11n (Zn)™.

Proof. We have seen that the preimage under 7 of Kerog C H(A\;Zy) is equal
to Kern 0. Since 2 is invertible in Zy if N is odd, Theorem [I.2:2] and the above
observations tell us that Ker ¢ is isomorphic to V ®z Zx, which has as basis the
elements k; and (1,...,1) in (Zy)", for varying i =1,...,p— 1. O

Let ai,...,az, be a basis of H1(S;Z2). We can represent o as a curve a;
immersed in I', which passes at most one time through each 1-cell of I'. Denote
by 1;; € {0,1} the number of times that a; passes through A;.

Lemma 1.2.8. If N = 2M is even, Kery o is the preimage through m of the
direct sum 0 ® B® Vy C H(\; Zy), where B is the submodule generated by the
elements Ml; € H(\; Zy), with j =1,...,2g.

Proof. In these hypotheses, 2 is not invertible in Zy, so the form ¢ has a non-
trivial kernel also on the summand H;(S;Zy). By virtue of the above analysis,
we have Kerd = B’ @ Vi, where B’ = M H,(S;Zy).

Consider the application T': H{(S;Zy) — H1(§; Zs), induced by the chain
map that associates with each singular simplex the sum of its lifts. The image
of T is contained in

{a € H{(S:Z) | 7.(a) = a} = H(\; Zs)

If of € Hy(S;Zs) is represented by the curve a;, as previously chosen, then
T(c) is identified to I; € H(A;Zs) C Hy(8;Zy). Given a € Hy(S;Zs), we
want to describe the element T'(«) in the decomposition of H(A; Zz) previously
seen: representing « as a curve a lying in S\ D, the element T'(a) coincides,
in H1(§; Zs), with the class of a; + as, where a; are paths in §i obtained by
lifting a. In particular, T'(«) is zero on the component H; (50; Zs) of H(\; Zs).
Moreover, starting from an element « € H;(S;Z2), and selecting a lift o’ of
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a in Hy(S;Z3), we can consider the element T'(«/). By construction of the
decomposition R B
H(A;Za) = Hi(D% Zy) & Hy(S;Z2) & Vo

the projection of T'(a/) on the component Hj(S;Zz) is exactly a. Therefore
0® H((S;Zs) @ Vo C H(\; Zs) is isomorphic to B” @ V,, where B denote the
submodule H(A; Zz) generated by the elements T'(a).

Identifying M H; (S;Zy) with the image of the M-multiplication homomor-
phism from H;(S;Z2) to Hy(S;Zy), we have that Ker & = 06 M H; (S; Zn)® VN
coincides with the submodule 0 ® B ® Vi, with B := M - B”, generated by the
elements M;. O

Now we introduce the following notations:

H = X(l ----- 1) — q—ZKj o-i'le"'Xn
P, = sz =q Dect k‘iskitastX{fil ,_.Xﬁm
A] = le — q* Zs<t, ljsljtdstXiil Y. Xi;n

Recalling Remark by virtue of Lemma the elements H and P; belong
to the monomial center Z{, because (1,...,1) and k; are in Kero.

Moreover, in light of relation if X belongs to Z{ then, for every € Z",
we have

q20(a,ﬁ) -1 19
X XP = qolePh xoth (1.12)

Proposition 1.2.9. If g is not a root of unity, then the monomial center Z} is
isomorphic to the direct sum of C* and the abelian free subgroup of Z{ generated
by the elements H and P; fori=1,....,p— 1.

Proof. Remark[I.1.3]tells us that the monomial center is isomorphic to the direct
sum of C* and of the abelian group Ker o, by virtue of relation and the
fact that ¢ is not a root of unity. Then the assertion follows from Lemma [1.2.6]
and the definition of the elements H and P;. O

If ¢? is a primitive N-th root of unity, then, by virtue of and the
monomial center is isomorphic to the direct sum of C* and of the Z-module
Kery 0. The last thing we need to do is to find a good description of Kery o
and to translate it in a description of Z{.

Proposition 1.2.10. If ¢ is a primitive N-th root of unity, with N odd, then
Z1 is isomorphic to the direct sum of C* and of the abelian subgroup generated
by the elements XN withi=1,...,n, H and P; withj=1,...,p—1, endowed
with the following relations

oY = q_NZEKj XN XN
PiN = qu’" Yect kiskitost (va)ku .. (szv)ki"
Proof. Recall that V' = Kero is a direct summand of H(A;Z), so the matrix

@, having as columns the vectors k; and (1,...,1), has a minor p x p with
determinant equal to 1. Without lost of generality we can assume that the
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leading principal minor of order p A verifies det(A4) = £1 (so A is invertible).
Decompose @ in blocks as follows

A

K/

As seen in Lemma[T.2.7] the submodule Kery o can be identified with the image
of the linear map represented by the following matrix:

T NI, 0 A
0 NI,_, K
The first n columns represent a basis of NH(\; Z), and the others represent the
basis of Ker o selected above. Observe that the following relation holds

(NI,, 0 A) 8 IO ;(4, _( I, 0 0)
1] n—p - 1 A—1
0 Nhop KU\ 50T g K'A™' NI,_, 0

The matrix U, by which we have multiplied T, is an automorphism of Z",
because A is invertible. Moreover, this equality tells us that the last p columns of
U are a basis of KerT. So Kery o is isomorphic to the free Z-module generated
by the elements Ne;, with ¢« = 1,...,n, by k; with j = 1,...,p — 1 and by
(1,...,1), endowed with the relations
n
Z k‘ji(Nei) = Nkj
i=1
n
> (Nei)=N(1,...,1)
i=1
By virtue of the relation and the definition of Kery o, the following map
is a group isomorphism
C*®Keryo — Z{
(¢, ) — X
Hence the assertion follows from the equations found above, translated in the
context of Z{. We are doing the explicit calculation for the first equation, the
second is analogous. Recalling the relation [[.12] we deduce

PN — (ng)N :XNk'j :Kzi kji(Nes)

J
= q*N2 2ot kiskjeose (XNyka (XN Ykin

O

Proposition 1.2.11. If ¢? is a primitive N-th root of unity, with N = 2M even,
then Z{ is isomorphic to the direct sum of C* and of the abelian subgroup of
Z{ generated by the elements XN withi=1,...,n, H, P;withj=1,...,p—1
and Ay with k =1,...,2g, endowed with the relations

HN — q—N2 X<y Ui.iX{V . X;lv

PiN _ (]_N2 Dot kiskitost (XlN)ku . (erl\f)km

Ai _ q*NZ Dect leslitost (X{V)lkl . (XTILV)lm
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Proof. See |BLO7), Proposition 16]. O

1.3 Polygons

In this Section, we will assume S is an ideal polygon with p vertices, i. e. a
surface obtained from D = D? by removing p punctures in 0D, with p > 3.
Let A € A(S) be an ideal triangulation and let T’ be the dual graph of A. In
this case, the valence of a vertex T%, associated with a triangle T, coincides
with the number of edges of T' that do not lie in S. What still holds is that
I is a deformation retract of S. Therefore, T' is a tree, by virtue of the simply
connectedness of S. Moreover, the leaves of T' exactly correspond to those
triangles that have two edges lying in dS. Our purpose is to find a presentation
of (H(X;Z), o) analogous to the one in Theorem in order to simplify the
study of Ty

Firstly we must deal with the most simple case, in which S is just an ideal
triangle:

Remark 1.3.1. Let T be an oriented ideal triangle, with a fixed indexing of the
edges that proceeds in the opposite way of the one given by the orientation, as
in Figure

In these notations, the bilinear form o is represented by the matrix

By taking the basis €} := ey, €}, 1= ea, €§ = e1 + e + e3, the matrix representing
o becomes

0 1 0

-1 0 O

0 0 0
The surface T clearly admits a unique ideal triangulation and its Chekhov-Fock
algebra is

ClX", X5 X5
(XiXit1 = ?Xi1 X | i € Zy)

Denote by H the element XL = ¢ 'X1X2X5 € T/. Then H belongs to the
monomial center Z7 and, if ¢? is a primitive N-th root of unity, then the same
holds for (X)V, (X5)N, (X3)". From the expression of ¢ with respect to the

A3 A1

A2

Figure 1.4: Standard indexing on a triangle
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Figure 1.5: A leaf of T

basis (¢});, we observe that T{ is isomorphic, through the isomorphism given
by

X1 — X{

X2 — Xé

Xz — q(X5) (XD e H

to the algebra WI[X|, X}] @ C[(H')*!].

Going back to the generic case of an ideal polygon, with p > 4, with simple
calculations we can show that the following relations hold

m=p—2
n=2p—3

where n is the number of 1-cells of A and m is the number of triangles in .
Now, let T = T}j be a triangle of )\ corresponding to a leaf in I'. In order to
simplify the notations, assume that the edges of T are the 1-cells A1, A2, A3 of
A, ordered as in Figure [I.5] Because A\; and )y belong to the only triangle T,
the following holds

o(e1,e5) =0
o(ez,e;) =0 (1.13)
oler,ez) =1

oler +ex+esej) =oles, e;) (1.14)

for every j > 4. Now define a new basis (e}); of Z" = H(\; Z) given by

6/1 =e€1

6/2 = €2

/.

ez =¢€1 +eytes
/

ej = Ej

with j > 4. The block diagonal matrix that represents ¢ in this new basis is

0 1
-1 0

thanks to relations The equation tells us that ¢’ coincides with the
bilinear form associated with the surface S’, obtained from S by removing the
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triangle T, with the obvious induced triangulation \'. Because S’ is an ideal
polygon with p — 1 punctures, we can reiterate this procedure until the (m — 1)-
th step, obtaining a surface S(™~1) composed of a single triangle. Analogously
to what we have seen in Remark we construct an isomorphism between
(H(X;Z),0) and (Z™, A), where A is a bilinear skew-symmetric form, represented
in the canonical basis of Z™ by the block diagonal matrix

-1 0

-1 0
0

with m = p — 2 blocks 2 x 2 and a block 1 x 1 equal to zero. By inspection of
the iterative procedure, we can see that the vector in H(A;Z) corresponding to
en € Z™ is the element (1,...,1) € H(X\; Z).

Theorem 1.3.2. Let S be an ideal polygon with p > 3 vertices and let A € A(S)
be an ideal triangulation. Then the Chekhov-Fock algebra T, of S associated with
A is isomorphic to

Wi o1 = QW@ Clz*H]
i=1

where m = p — 2. Moreover, the element 1®---®@1® Z € W}, | corresponds
to H= X1 ¢ T2,
Proposition 1.3.3. The following facts hold:

e if q is not an N-th root of unity, then Z3 is isomorphic to the direct sum
of C* and of the abelian subgroup generated by H = XLl ¢ T

o if g% is a primitive N-th root of unity, then Z1 is isomorphic to the direct
sum of C* and of the abelian subgroup generated by the elements XN with
i=1,...,n, and H, endowed with the relation

N —N2S._.oij vN N
H =q Z,<] JXl Xn

Proof. Analogous to what done in Propositions [I.2.9] and [I.2.10] O






CHAPTER 2

Local and irreducible
representations

In this Chapter we study finite-dimensional representations of the Chekhov-Fock
algebra, with the instruments provided by the previous analysis. In the first part
we focus on irreducible representations and we give a complete classification
result, due to Bonahon and Liu [BL0O7]. We give also a similar and simpler
statement when the surface S is an ideal polygon.

Later, we introduce a new kind of representations called local representations,
firstly presented in [BBLO7|, which are constructed as the result of gluing irre-
ducible representations of the Chekhov-Fock algebras of the triangles composing
an ideal triangulation \. Even in this case, we are able to prove a classification
theorem, whose statement is similar than the irreducible case but simpler.

We follow the exposition in [BLO7| and [BBLO7| to these subjects.

2.1 Irreducible representations

Let V be a d-dimensional C-vector space, with d < oo, and let p: 7, — End(V)
be a representation of the Chekhov-Fock algebra associated with an ideal tri-
angulation A of a surface S. Applying p to the identity X;X; = ¢*°% X; X; and
calculating the determinant of both sides we obtain

det(p(X,)) det(p(X;)) = det(p(¢> X, X,)
= ¢?7 det(p(X,)) det(p(X;))

On the other hand det(p(X;)) det(p(X;)) is not zero, because both X; and X
have an inverse in 7,’. Therefore, ¢? is needed to be a d-th root of unity in order
to have the existence of a finite dimensional representation 7. From now on,
we will assume ¢2 is a primitive N-th root of unity.

Definition 2.1.1. Given p: A — End(V) a representation of a K-algebra A in
a K-vector space V', p is reducible if there exists a proper p-invariant subspace
W of V, in other words there exists a subspace 0 C W C V such that, for every
X € A, we have p(X)(W) C W.

Moreover, p is decomposable if there exist two p-invariant proper subspaces
W1 and W5 of V' such that W73 N Wy = {O} and Wy + Wy =V,

23
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Remark 2.1.2. Let p: A — End(V) be an irreducible representation of a K-
algebra A in a K-vector space V', where K is an algebraically closed field. Sup-
pose further that there exists an element X € A\ {0} in the multiplicative
center of the algebra.

Now fix g € C an eigenvalue of p(X) (here we are using K algebraically
closed) and denote by V,, the eigenspace of p(X) associated with p. Because X
belongs to the multiplicative center of A, for every Y € A, we have

From this commutativity relation immediately follows that V), is a p-invariant
subspace of V. Because p is irreducible, we have V,, =V and so p(X) = pidy.
This argument shows that every element of the multiplicative center of the
algebra goes, under an irreducible finite dimensional representation, necessarily
in a scalar multiple of idy .

Proposition 2.1.3. Assume ¢? is a primitive N-th root of unity and there
exists an irreducible representation p: W9 — End(V'), where V is a C-vector
space of dimension d. Then d = N and there exist x1,x9 € C* such that

p(X1') = wyidy
p(Xév) = X2 idv

where W1 = WI[X1, Xs]|. Moreover, two irreducible representations p: W1 —
End(V) and p': W1 — End(V') are isomorphic if and only if x1 = x} and
x9 = xh, where the x; are the scalars defined above for p and the x} for p'. In
addition, for every choice of values of x1,x9 € C* there exists an irreducible
representation, unique up to isomorphism, that realizes them as above.

Proof. The elements X go in scalar multiples of the identity because they
belong to the center of WY and because of what observed in Remark 2.1.2]

Let us try to select an expressive form for this kind of representations by
choosing a suitable basis. Let y; € C* be an eigenvalue of p(X7) and let e; be
a y;-eigenvector. Because p(Xi') = z1idy, we have (y1)Y = x;. Now define
eir1 = p(Xa)e; for every i = 1,..., N. Thanks to what observed, we deduce
that exyy1 = p(X3¥)e; = x5 e,. Moreover

p(X1)eirr = p(X1)p(X3)er
=" p(X3)p(X1)ex
= ¢*'y1 p(X3)er

y
=q"'n €i+1

Then, for every i = 0,...,N — 1, ;11 is an eigenvector of p(X;) with respect
to the eigenvalue ¢?y;. If W is the subspace of V generated by the elements
e1,...,en, then both p(X;) and p(X2) keep W invariant, so W is a p-invariant
non-zero subspace. By irreducibility, the equality V' = W must holds and the
set {e1,...,en} composes a basis of V (because ¢? is a primitive N-th root of
unity, the eigenvalues y;,¢?* are distinct for i = 0,..., N — 1). Hence we have
shown that dim V' = N and we have found a basis {es,...,ex} in which p(X;)
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and p(Xa) are represented, respectively, by the matrices
1 0 - 0 x

Y1
IN, 1 .
qZ(N— 1) 0
We fix now y, € C* a N-th root of z5. By conjugating p by the automorphism
A(yz) of V, represented, with respect to the basis {e1,...,en}, by the matrix
v !

N-2
Ya

1

we obtain that the elements A(y2)p(X1)A(y2)~! and A(y2)p(X2)A(y2) ™! are
represented by the matrices

1
e
Y1 . =y1 By
2N=1)
q
2.1
0 0 1 (2.1)
0
Y2 - .| =y2B2
IN—l :
0

A simple calculation shows us that, by conjugating the representation

Aly2)p()A(y2) "

by the linear isomorphism represented by By 1 we obtain

By ' A(y2)p(X1)A(y2) "' Bs = ¢°y1 B
By ' A(y2)p(X2)A(y2) "' By = y2 By

Now we have all the tools to conclude the proof. Let p: W? — End(V) and
P W7 — End(V’) be two irreducible representations of W9. It is clear that,
if they are isomorphic, then their respective scalars x; and x} must coincide.
Vice versa, assume that xz; = z}. By virtue of what previously seen, up to
considering Lp’L~!, with L: V' — V a suitable isomorphism, we can assume
that V = V' and that there exists a basis in which the representations p and p’
are represented in coordinates as follows

p(X1) =1 By

(X2) = y2 Bo
p'(X1) =y1 Ba
p'(X2) = ys B2



26 2 Local and irreducible representations

with (y;)V = z; = 2% = (y)" for i = 1,2. Because yo and ) are both N-th
roots of z2, by conjugating p’ by A(y2(y5)~1), we can assume y, = y5. Moreover,
if z1 = ¢?*2), then conjugating p’ by B, k we can furthermore assume that
y1 = y;. What just said shows that the representations p and p’ are conjugate,
which concludes the proof that the x; compose a complete set of invariants for

irreducible representations of the algebra W1.
Finally, it is clear, by the calculations made, that every couple of values
1,22 € C* can be realized as invariants of a irreducible representation of W¥4.
O

In the following proposition we will make the technical hypothesis on ¢ to be a
primitive N-th root of (—1)¥*1. When N is odd, this is equivalent to ask that ¢
is a primitive N-th root of unity but, in the even case, it is a stronger assumption.
This choice will make a lot of following relations concermng invariants much
more pleasant. For example, with this assumption we have ¢V~ = (=1)N(N+1) —
1 and this simplifies the relations in Lemma [[.:2.7 and Proposition [[.2.11]

Proposition 2.1.4. Assume that there exists an irreducible representation
p:T{ — End(V)

with V' a C-vector space of dimension d and with T} that denotes the Chekhov-
Fock algebra associated with the ideal triangle T, which admits a unique ideal
triangulation. Then d = N and there exist x1,x2,x3,h € C* such that

p(XN) = z;idy fori=1,2,3

7

p(H) = hidy

where the X; denote the generators associated with the edges A1, Ao, A3 of T' and
H:=q¢ 'X1X,X3. In addition, the following holds

hN = T1X2X3

Moreover, two irreducible representations p: T/ — End(V') and p': T} —
End(V') are isomorphic if and only if z; = x}, and h = h', where the z;, h are
the above quantities related to p and the x, h' related to p'. Furthermore, for
every choice of values x1,xs,x3,h € C* verzfymg WV = zyx9x3, there exists an
irreducible representation p, unique up to isomorphism, that realizes them as
muariants.

Proof. A first way conducing to the proof is to deduce this result from Propo-
sition 2.1.3] and Remark [I.3.1] In the following, we will give a proof that does
not need these results, basically because this is a good situation in order to
introduce some notations that will become useful in the next Section, when we
will speak about local representations.

The elements XY and H belong to the multiplicative center of T4, so Remark
[2.1:2] tells us that they go, under the representation, in scalar multiples of the
identity. Moreover, we have

HY = g Sy VXN XY = XXX
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which implies the relation h"Y = x12923. Taken p: T — End(V) an irreducible
representation, we select vectors ey, ..., en exactly in the same way of the proof
of Proposition [2.1.3] which means

p(X2)e; = e foreveryi=1,...,N —1
p(Xo)en =x2e1
p(X1)eit1 = 7y €it+1 for every i =0,...,N —1

The element X3 in 77} coincides with ¢ X, ' X, ' H, so it verifies
p(Xs)eir1 = plg X5 ' X7 H)ein
= ¢ 2 hy p(X2) e
= ¢! 2yl
ifi=1,...,N — 1. Moreover
p(Xs)er = p(q Xy ' X1 H)ey
= qhy; " p(X2)er
= qhy; 2y en

These relations imply that W := (ey,...,en) is invariant under p(X3) so, by
irreducibility of p, we have that V' = W is a N-dimensional vector space, having
{e1,...,en} as basis. Just like in Proposition we see that, by conjugating
p by A(yz), with y2 a certain N-th root of zq, we find

1
q2
Aly2)p(X1)A(y2) ™" = w1 - . =y1 By
2D
0 0 1
Aly2)p(X2)Aly2) ™ =2 - .| =v2 B2
In_q .
0
0 gi—2e-D
-1_ . |: _
Aly2)p(X2)A(y2) ™ = u3 0 -2 y3 Bs
q 0 0

where we have labelled y3 := hy; 1y; 1. The following relations hold
()N = = fori=1,2,3
h = y1y2y3
With simple calculations we observe that, by conjugating p by By ! we obtain
By A(y2)p(X1)A(y2) ™' Ba = ¢°y1 By
By ' Ay2)p(X2)Ay2) ™' B2 = y2 Bo (2.2)
By ' A(y2)p(X3)Ay2) "By = ¢ %y3 Bs
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Let p: W4 — End(V) and p': W? — End(V’) be two irreducible repre-
sentations of WY. Clearly if they are isomorphic, they need to have the same
constants z; and h. Assume that x; = «; and h = h’. As previously done, up
to considering Lp' L™, with L: V’ — V a suitable isomorphism, we can assume
that V' =V’ and that there exists a basis in which p and p’ are represented as
follows

p(Xi) = yi Bi
p(Xi) =y Bi
with (y;)V = z; = 2} = (y})V for i = 1,2,3. Since y; and yj are both N-th

roots of z2, up to conjugating p’ by A(y2(y5)~!), we can assume that yo = y5.
In addition, there exist t1,t3 € Zxy such that

2y
Ys

Y1 =49

ys = ¢**

Because h = I/, yo = yb, h = y1y2y3 and b’ = yjybys, the relation t1 +t3 =0 €
Z must holds.

Now we are able to conclude that p and p’ are conjugated: indeed, up to
conjugate p’ by BL', by virtue of relation and ¢; +t3 = 0, we obtain y; = y}
for every i = 1,2, 3.

Finally, as in Proposition the calculations tell us that is possible to
realize every choice of values x;, h € C* verifying h’V = 2,293 as invariants. [

The invariant h of an irreducible representation p of T is called the central
load of p.

Remark 2.1.5. The proof of Proposition shows us that every irreducible
representation p: 77 — End(V) admits a basis of V' in which p is represented
as

,O(Xi) =1y, B;

with (y;)V = x; for i = 1,2,3 and h = y1y2y3. Moreover, for any choice of
t1,ta,t3 € Zy such that t; +t2 +t3 = 0 € Zy, we can conjugate p by a suitable
linear isomorphism A, composition of the matrices B; and their inverses, in
order to obtain Ap(X;)A~! = y|B;, where

vl = ¢y for every i =1,2,3 (2:3)
W = yiyhys = ¢ gy = h '

Lemma 2.1.6. Let ¢* be a primitive N-th root of unity, let W1 = WI[X;, X5]
denote the algebra defined in Definition [1.2.3 and let A be a C-algebra. Then
every irreducible representation of W9 ® A is isomorphic to the tensor product
PR p2: Wi A — End(Vh ® Vi) of two irreducible representations p1 and
p2 of W2 and A, respectively. Moreover, for every p;: W% — End(Vy) and
p2: A — End(Va) irreducible representations, the tensor product py ® p2 is an
irreducible representation of W1 & A.

Proof. Let p: W? ® A — End(W) be an irreducible representation of W7 ® A.
Let y;1 be an eigenvalue of p(X; ® 1) and W its relative eigenspace. Then, with
the same calculations made in the proof of Proposition [2.1.3] we observe that
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the element p(X§ ® 1) carries W in the eigenspace W; 11 of p(X; ® 1), related
to the eigenvalue ¢?'y;. Because XY ® 1 belongs to the center of W7 ® A, its
image under p is a scalar multiple of the identity x5 ¢dy , by irreducibility. In
particular, p(X2 ® 1) carries Wy in W7, as the following relation shows

p(X2 @ )(Wx) = p(Xoa @ YN (W1) = 25 - Wy = W)

Therefore, the subspace @fil W; is invariant under the action of W1 ® 1. Fur-
thermore, because 1 ® A commutes with W? ® 1, this selected subspace of W
is indeed p-invariant. Then, by irreducibility, we deduce W = @ZJ\LI W;. More
precisely, 1 ® A preserves every W;, because it commutes with p(Xs ® 1) and
the subspaces W; are eigenspaces of p(X2 ® 1). Denote by py the restriction of
p on the algebra 1 ® A, acting only on the subspace Wj. This representation
is irreducible. Indeed, if there existed a proper subspace W] of W invariant
under the action of ps then, with the same observations made above, we would

show that the subspace
N-1

@PX2® /)

=0

is p-invariant, which contradlcts the hypothesis of irreducibility of p.

Fix a basis {v{,...,v}} of Wi and denote by {v},...,v}} the basis of W;
obtained by defining v} = p(Xp ® 1)""'(vj) for i = 2,...,N. If (e;); is the
canonical basis of CV, we consider the isomorphism

L: W — (CN®W1
v;- — el®v

We are going to show that LpL~! is equal to the tensor product of an irreducible
representation p;: W9 — CV and of po: A — W, which we have already shown
to be irreducible. This fact will conclude the proof of the first part of the
assertion. Now, let v =} a;v; v} be an element of Wy. Observe that

(Lop(Xo®@1) oL (e;®@v) = (Lop(Xa®1)) Zaj vj

— i+1
=L (> av
j

= Z%‘ (eit1 ®U]1') =ei+1 QU
J
Consequently, for every U € A, we deduce the following equalities
(Lop(X1®U)oL ") (e; ®v}) = (Lop(1®U)op(Xy®1))(v})
= (Lop(1®U))(@*" Dy v})
= (Lop(X3 @ U))(¢*" Vy1v))
= (Lop(X5 ' @ 1))(¢* V1 p2(U) (v)))
= (Lop(X5~ ' ®@1) o L7H(@*Myrer @ pa(U)(v)))
= ¢?Vyre; @ pa(U)(v))
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Analogously, we have

(Lop(X2®U) OL_l)(ei ®U]1~) = €it+1 ®p2(U)(UJ1~) ifi=1,...,.N—1

(Lop(Xa®@U)o L") (en ®vj) = x2e1 ® pa(U)(vy)

Therefore, we have shown that p splits as the tensor product of ps and of a
representation p; of W?. Observe that p; is a representation with values in CV,
so it is necessarily irreducible, because we have shown, in Proposition [2.1.3] that
every irreducible representation of W7 has dimension N.

Now, let p1: W? — End(V7) and ps: A — End(V2) be two irreducible repre-
sentations, we want to show that the tensor product p := p; ®p is an irreducible
representation of W? ® A. We can assume that p; is in the form described in
Proposition relation Let V,,, be the eigenspace in V; of pi(X;) with
respect to the eigenvalue y;. Hence V,, ® V5 is the eigenspace of p(X; ® 1) with
respect to the eigenvalue y;. Assume that there exists a non-trivial subspace
V' C V1 ®V, of Vi @ V; that is p-invariant. In particular, it is invariant under
the action of p(W?®1), so we can find a subspace V" of V", still invariant under
p(W? ® 1), such that the restriction of the representation of W? ® 1 on V" is
irreducible. Thanks to what said in the proof of Proposition [2.1.3] we can find
in V", and so in V', an eigenvector of p(X; ® 1) with respect to the eigenvalue
y1. In particular, the subspace W := V' N (V,, @ V2) is non-zero.

On the other hand, V,,, ® V5 is invariant under the action of p(1®.4) because
every element in 1®.4 commutes with p(X;®1) and V,,, ® V5 is the y;-eigenspace
of p(X; ® 1). In addition, the representation p|ig.4, restricted on V,, ® V5, is
isomorphic to pa, because V,,, has dimension 1, so it is irreducible. Therefore
W =V'n(V,, ® V) is equal to the whole V;;, ® V5 by irreducibility of ps, or
equivalently V/ O V,, ® Va. Because p(X§ ® 1)(V,, ® Va) = V,or,, ® Vo, in

9= Y1

order to be invariant V' must contains Vj2x,, ® V; for every k € Zy, and so
V' = V1 ® V4, which proves the irreducibility of p. O

Lemma 2.1.7. Let A be a C-algebra. Then every irreducible representation
of C[Z*] ® A is isomorphic to the tensor product py ® pa: C[Z¥ ] @ A —
End(V; ® Va) of two irreducible representations of C[Z*1] and A respectively.
Moreover, for every p;: (C[Zil] — End(V1) and py: A — End(Va) irreducible
representations, the tensor product p1 ® ps is an irreducible representation of

ClZ* 1 ® A.

Proof. Tt is easy to see that every irreducible representation of C[ZT!] is 1-
dimensional and it is classified, up to isomorphism, by the number z € C*
such that the image of Z is equal to zid. Taken p: C[Z*'] ® A — End(V) an
irreducible representation of C[Z*!]®.A4, the element Z®1 is in the multiplicative
center of the algebra, so by irreducibility there exists a scalar z € C* such
that p(Z ® 1) = zidy. Hence p is isomorphic to the tensor product of the
evaluation homomorphism p; : C[Z*!] — C, which carries Z in z € C*, and of
the representation % pliga. The second part of the assertion is obvious, because
of the simple behaviour of the irreducible representations of C[Z*!]. O

2.1.1 Punctured closed surfaces

Let p: T — End(V) be an irreducible representation of the Chekhov-Fock al-
gebra T} associated with the ideal triangulation A € A(S) of a closed punctured
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surface S. Then every element of the monomial center Z{ goes under p in in a
scalar multiple of idy, as seen in Remark [2.1.2] So the representation p induces
an evaluation homomorphism, which we still denote by p: Z{ — C*, sending
every element Z of Z{ in the number z € C* such that p(Z) = zidy.

Theorem 2.1.8. Let S be a surface, obtained by removing p punctures from a
closed oriented surface S with genus g such that x(S) < 0, and let A € A(S) be
an ideal triangulation of S. In addition, fit ¢ € C* such that ¢° is a primitive N -
th root of unity. Then every irreducible representation p: T\ — End(V') of the
Chekhov-Fock algebra T, has dimension N39+P=3 f N is odd, or N39tP=3279 4f
N is even, and it is uniquely determined up to isomorphism by its induced eval-
uation homomorphism p: Z{ — C* on the monomial center. Moreover, every
homomorphism p: Z{ — C* can be realized by a certain irreducible representa-
tion p: T\ — End(V), unique up to isomorphism.

Proof. We have shown in Theorem that the Chekhov-Fock algebra 7! is
isomorphic to W,Z’ P with k = 2g+p—3, and that we can select an isomorphism
between them sending monomials in monomials. Therefore, the assertion can
be reformulated in terms of W,gy g.p instead of T{. In light of Lemmas
and an irreducible representation p: W,g, gp End(V) is isomorphic to a
tensor product p1 ®- - - ® pg4g+p, Where p; is an irreducible representation of W4
ifi=1,... kof W ifi=k+1,... k+g, of C[ZF]ifi = k+g+1,... , k+g+p.
Denote by U;, V; the generators of the i-th factor in the tensor product

k

g P
Wi, =QRWie W @ &) ClzH

i=1 j=1 h=1

ifi=1,...,k+g, and by Zj 44, the generator of the i-th factor C[Z*!].

Assume that N is odd. In this case W7 is isomorphic to W9, because ¢*
is sill a primitive N-th root of unity. Consequently, the elements U¥, VN with
i=1,...,k+gand Z; with j = 1,..., p generate the monomial center of W}

(it is sufficient to study Ker &, where & is the one in Theorem . By virtue
of the analysis made concerning irreducible representations of W7 and C[Z*!]
in Propositions 2.1.3] and 2.1.4] every irreducible factor p; is determined, up
to isomorphism, by the images of UN, VN ifi =1,...,k+g, or Z; otherwise.
Then the isomorphism class of p is determined by the evaluation homomorphism
p: 2} — C*. The dimension of an irreducible representation p1 @ -+ ® prygtp
is equal to

NFEN91P = N39tP=3

If N is even, then ¢* is a primitive N/2-th root of unity. In this situation,
the monomial center is generated by the elements UM, VN with i = 1,... .k,

UN/2,V-N/2 with i =k +1,...,k+g, and Z; with j = 1,...,p. Because of

K3 K3

Propositions and every irreducible factor p; is determined, up to iso-
morphism, by the images of the elements UYN, V2V if i = 1,...,k, of UiN/2, ViN/2
ifi=k+1,...,k+g, and of Z; otherwise. So even in this case the evaluation
homomorphism on the monomial center determines, up to isomorphism, the

representation p and its dimension is equal to

NF(N/2)91P = N39tP=3279
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Now we are going to prove the second part of the assertion. Assume that N is
odd, with the same argument can be proved the even case too. Let p: Z] — C*
be a certain homomorphism. The map p induces a homomorphism p’ on the

monomial center of W/ gp- Denote by u;,v; € C* the images under p’ of the

generators U;, V; € WY and by z; the images of Z; € (C[Ziil]. Because of what
seen in Propositions and we know that, for every i = 1,...,k +
g, there exists an irreducible representation p;: WI[U;,V;] — W, such that
pi(UY) = wiidw, and p;(V;") = wiidw,. Defining §' := p1 @ -+ @ prygip,
we just have to check that its evaluation homomorphism is equal to p’, but this

follows from the fact that the monomial center of W} 4.p 18 generated, as already

observed, by the elements U, V.V if i = 1,...,k + g and Z;. O

3

Denote by Z;+(A) the set of isomorphism classes of finite-dimensional irre-
ducible representations of the algebra A. We can summarize all the achieved
results in the following theorem:

Theorem 2.1.9. Let S be a surface, obtained by removing p punctures from a
closed oriented surface S with genus g and such that x(S) < 0, and let X € A(S)
be an ideal triangulation of S, with n 1-cells A1, ..., \,. Fiz g € C* such that
q? is a primitive N-th root of unity.

If N is odd, Zir(Ty!) is in bijection with the elements ((x;)i; (pj);;h) of
(CH)™ x (C*)P~L x C* verifying:

o for every j =1,...,p— 1 the number p; is an N-th root of

—N2 ., kjskjiose Kit kin
q s<t Njsij ey

o the number h is an N-th root of

2
qu Zs<t USfxl c Ty

and the correspondence associates, with the isomorphism class of an irreducible
representation p: T,' — End(V), the element ((x;):; (p;);; h) defined by the fol-
lowing relations

p( X)) = z;idy
p(P;) = pjidy
p(H) = hidy

witht=1,...,n and with j=1,...,p— 1.
If N is even, Zir(Ty!) is in bijection with the elements ((x;):; (p;);; h; (ar)k)
of (C*)™ x (C*)P~L x C* x (C*)* werifying:

o for every j =1,...,p—1 the number p; is an N-th root of

—N2S ., kjskjeose kit kj
q <t I8 S‘/L.l ...mnﬂn

o the number h is an N-th root of

2
-N Zs<t UStI

q 1Ty
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o for every k=1,...,2g the number ay is an N-th root of

N2
qu Zs<t lkslktUstIllkl . 1‘5{“"

and the correspondence associates, with the isomorphism class of an irreducible
representation p: T\ — End(V), the element ((x;)i; (pj);; h; (ak)k) defined by
the following relations

P(XZN) =z;idy
p(P;) = pjidy
p(H) = hidy
p(Ak) = Qg idv

withi=1,...,n, withj=1,...,p—1 and withk=1,...,2g.

Proof. By virtue of Theorem [2.1.8 the set %;-(Ty!) is in bijection with the
set of homomorphisms p: Z{ — C* on the monomial center of 7,!. Thanks to
Propositions [1.2.10 and |1.2.11] every homomorphism p: Z{ — C* is uniquely
determined by the images of the elements X for i = 1,...,n, P; for j =
1,...,p— 1, H and, when N is even, Ay for k = 1,...,2¢g. In light of the
relations exposed in Propositions [1.2.10| and [1.2.11} the numbers p(P;), p(H)
(and p(Ay)) are identified by a choice of an N-th (and square) roots of the
values

q- De<t kjskjto'stmlfjl C x’:Ljn q_NZ Pt Tatpy - Ty,
(and g X<t lkoleesiglin - glin) - Vice versa, an element ((z;)i;(p;);;h) (or
((x:)s; (pj);; h; (ax)k)), verifying the conditions exposed in the assertion, induces
a unique evaluation homomorphism p: Z{ — C*, because of what observed in
Propositions [T.2.10] and [T.2.11] and hence it determines a unique isomorphism
class of irreducible representation, in light of Theorem O

2.1.2 Polygons

Theorem 2.1.10. Let S be an ideal polygon with p > 3 vertices and let A € A(S)
be an ideal triangulation of S. Fix q € C* such that ¢* is a primitive N -th root
of unity. Then every irreducible representation p: T,! — End(V') has dimension
NP2 qand it is uniquely determined, up to isomorphism, by the induced eval-
uation homomorphism p: Z{ — C* on the monomial center. Moreover, every
homomorphism p: Z} — C* is realized by a certain irreducible representation
p: T — End(V), unique up to isomorphism.

Proof. Analogous to what done in the proof of Theorem [2.1.8] using Theorem

[[-3:2] Proposition 2.1.3] Lemmas 2.1.6] and 2.1.7] O

Theorem 2.1.11. Let S be an ideal polygon withp > 3 vertices and let A € A(S)
be an ideal triangulation of it, with n 1-cells A1, ..., \n. Fiz g € C* such that
¢? is a primitive N-th root of unity. Then R (T,!) is in bijection with the set
of elements ((z;)i; h) € (C*)™ x C*, where h is an N-th root of

2
-N Zs<t UStm

q 1Ty
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and the correspondence associates, with the isomorphism class of an irreducible
representation p: T — End(V'), the element ((x;);; h) defined by the relations
p(XN) = yidy

?

p(H) = hidy
fori=1,...,n.

Proof. Analogous to what done in the proof of Theorem using Theorem

[2.1.10] and Proposition [1.3.3] O

2.2 Local representations

In this Subsection we will always assume that ¢ is a primitive N-th root of
(_1)N+1.

Let R be a surface, p an ideal triangulation of R and denote by S a cer-
tain surface obtained from R by fusion (see Chapter |§| for details), with A the
ideal triangulation of S obtained by fusion from p. We can construct a map
Jur: H(NZ) — H(w; Z), which associates with each \; € H()\;Z) the vector
v = 3051 vij by € H(p;Z), defined by

1 if p; goes by fusion in A;
Vi =
K 0 otherwise
It is easy to verify that map j,» is an inclusion. Indeed, every element v; has at
most two non-zero components on the p; and, if ¢ # j, the supports of vectors
v; and v; are disjoint. Denote by o and 7 the skew-symmetric bilinear forms

on H(X;Z) and H(u;Z), respectively, defined as in the beginning of the first
Chapter. Then the following holds

(v, w) = n(Gur(v), jur(w))

In order to prove it, it is sufficient to verify the equality on a set of generators,
so we just need to prove that, for every i, j, we have o;; = n(v;,v;). Recalling
the definition, we can express o;; as follows

Z Z S,\(C,)\i,)\j)

T triangle c spike
of A of T
where sx(c, A;, ;) is equal to +1 if ¢ has A; on the left and A; on the right, —1
if ¢ has A; on the left and A; on the right, and is equal to 0 otherwise. Suppose
that the edge A; is the result of the identification of the edges p;, , i, in u, and
that analogously \; is the result of the identification of the edges p;,, pj,. The
faces of the ideal triangulation A are in natural bijection with the faces of p,
and consequently the respective spikes too. Hence it is sufficient to prove that

SA(Ca A )‘j) = s,u(cv :uilhuh) + S#(Ca /‘iu:u'jz) + S#(Ca /u'izvﬂh) + su(c, /Lizhufjfz)

for every spike c of the ideal triangulation. In the right member there exists at
most one non-zero term and it is immediate to see that, thanks to the coherent
choice of orientations on the faces of both triangulations, the equality holds.
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Denote now by Xi,..., X, the generators of Ty associated with the edges
of A and by V1,...,Y; the ones of 7,7 associated with the edges of y. Define the
map

Lux * 7;\(1 — 77:1
X — yin(@

Using the relation [I.3] and what just shown, we can verify that

L;LA(XaXﬁ) — LHA(QU(Q’B)KQJFﬁ) — qcr(a,ﬁ)xjm(wrﬁ)
= q"(jw(a)vjw(B))Yjux(a)ﬂ’ux(ﬁ) — yim(a)yiua(B)

= lux (Ka ) L (Kﬁ>

The injectivity of j,x: H(A; Z) — H(u; Z) immediately implies the injectivity of
tux. Hence we have proved that, if (S, ) is obtained from (R, p1) by fusion, then
there exists an inclusion ¢,: 7)) — T, between the respective Chekhov-Fock
algebras.

These maps, for varying S, R, A and u as above, verify a sort of composition
property. More precisely, assume that (S, A), (S',\) and (S”,\’) are three
surfaces endowed with ideal triangulations, with (S, A) obtained from (S’, \') by
fusion and with (S’, \’) obtained from (S”,\”) by fusion. Then, by definition,
the homomorphisms jxvx: H(NZ) — H(AN;Z) and jara o jar: H(NZ) —
H(N';Z), coincide, so, on the Chekhov-Fock algebras, the following relation
holds

L/\///\ = [,)\///\/ O L)\'k (24)

Now let us focus on a more specific situation. Given S a surface and A € A(S)
an ideal triangulation of it, S can be obtained by fusion from a surface S’ realized
by splitting S along all its internal edges. S’ admits a unique ideal triangulation
A" and its Chekhov-Fock algebra associated with X’ is naturally isomorphic to

7‘;{1 R ® ,TTqm
In this case we will denote simply by ¢y the inclusion map tyy: T = &), TTqi,
defined as above.

Each triangle T; is endowed with an orientation, determined by the one
on S. Order the edges )\gi),/\g),)\gi) of T; € S’ clockwise, as in Figure
and denote the generators of 7,! associated with these edges by X 1(1), X2(l)7 X 31)
respectively. For the sake of simplicity, given F() ® .. ® F(™) a monomial
in @, TTqi, we will omit the tensor product by those terms verifying F(9) = 1.
Recalling the definition of ¢y, we want to give an explicit description of the
image, under this inclusion, of the generators X; associated with the edges of
the ideal triangulation X of S:

o if )\; is a boundary edge, then it is side of a single ideal triangle T},, so
we have 1) (X;) = xM e ), 7., where a; is the index of the edge of Ty,
identified in S with A;;

e if \; is an internal edge and it is side of two distinct triangles 7;, and T;.,,
then we have ¢)(X;) = Xt(ll) ® X;:i) € ®i7}%, where a; and b; are the
indices of the edges of T}, and T,,, respectively, identified in S with \;;
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e if )\; is an internal edge and it is side of a single triangle T}, , then we have
(X)) = q—lXt(llfi)Xlgfi) = qXéf")Xélfi) € @, 77, where a; and b; are the
indices of the edges of T}, identified in S with A; and )\l(llfi), /\1(71:1') lie on
the left and on the right, respectively, of their common spike.

Now we are ready to give the definition of local representation, whose study
will be the main topic of this Section.

Definition 2.2.1. Let S be a surface and select an ideal triangulation A\ of

it. A local representation of T\ is an equivalence class of m-tuples [p1, ..., pm),
where p;: ’7}‘2 — End(V}) is an irreducible representation of the Chekhov-Fock
algebra of the triangle 7} in the ideal triangulation A for every j = 1,...,m.

We will say that (p1,...,pm) is locally equivalent to (py,...,p.,) if and only if
the following relations hold:

e for every j = 1,...,m, if p; has values in End(V;) and p; has values in
End(V}), then V; = V/;

e for every i = 1,...,n we have:

— if \; is a boundary edge, side of a single triangle Tj,, then
P (X)) = pl, (XEE)

where a; is the index of the edge of Tk, identified in S with \;;

— if ); is an internal edge and it is side of two distinct triangles 7;, and
T,,, then there exists ¢ € C* such that the following hold

i (X)) =t pp (X))
pr (XY = 7l (XT)

where a; and b; are the indices of the edges of T}, and T, respectively,
identified in S to Ay;

— if )A; is an internal edge and it is side of a single triangle T},, then
there exists t € C* such that the following hold

P (XED) =t ol (X))
k)i — ki
pr (X)) = 47 gl (X))
where a; and b; are the indices of the edges of T}, identified in S
with \; and )\,(llfi)7 )\Igf"') lie on the left and on the right, respectively,
of their common spike.

Given [p1, ..., pm] alocal representation of 7')?, we can define a representation
of T as follows

pi=(p1® - @pm)own: Ty — End(V1 ®---®V,,)

By definition of the locally equivalence relation between m-tuples of represen-
tations, this p does not depend on the choice of the representative of the equiv-
alence class [p1, ..., pm].
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Definition 2.2.2. If S is obtained by fusion of R and A € A(S) is obtained
by fusion of 1 € A(R), then every local representation of 7,7 leads to a local
representation of 7y!. Indeed, denoting with ~g and ~p the equivalence re-
lations that define local representations on (S, ) and on (R, u) respectively,
then ~p is finer than ~g. This implies in particular that a local representation
[p1,- -, pm]r on R with respect to the ideal triangulation p determines a unique
local representation [p1,. .., pm]s of S with respect to A, where we are implicitly
using the natural identification between the triangles in A and in p. In this case
we will say that [p1,..., pm]s is obtained from [p1,..., pm|r by fusion or that

[p1,- -, pm]R TEpTEsents [p1,...,Pmls-

Remark 2.2.3. Note that requiring that [p1,..., pm]r represents [p},...,p0]s
is stronger than saying that the representations

pxi=(p) @ @ ply) 0t Pui=(P1® @ pm) 0ty

are related by the relation p, 01,y = px. Indeed, take R equal to Sp, the surface
obtained by splitting S along every edge of A, and p1 ®- - - ®py,, p1 @ -®pl, two
local representations of Sy. If there are identified couples of edges that belong
to the same triangle, the fact that (p1 ® -+ @ pp) o tx = (P} @ --- @ pl,,) 0 L
does not provide sufficient conditions to show that they are equivalent (See the
definition of local representation).

Definition 2.2.4. Given S a surface, A € A(S) an ideal triangulation and two
local representations [p1, ..., pml, [P, .-, ph) of T), with

gl T — End(V])

we will say that [p1,...,pm] and [p], ..., pl,] are isomorphic if there exist rep-
resentatives (p1,...,pm) and (p},..., pl,) of them, respectively, and there exist
linear isomorphisms L;: V; — Vj’ such that, for every j = 1, ..., m and for every

Xec 7}‘2, we have
Ljopj(X)o Lyt = pi(X)

Assume that [p1,...,pn] and [p], ..., p},] are isomorphic and let (p1, ..., pm)
and (p},...,pl,) be two representatives of them such that there exist linear
isomorphisms L;: V; — Vj’ with Ljop;o L;l = p;-. Then, for any other choice
of a representative (p1,...,om) of [p1,...,pm], the m-tuple of representations
pj = Ljopjo Lj_1 is ~g-locally equivalent to (p},...,p),). From this fact
immediately follows that the isomorphism relation defined above is indeed an
equivalence relation.

Lemma 2.2.5. Let [p1,...,pm] be a local representation of T,!. Then, for
every generator X; € T\ associated with the edge X;, the representation p :=
(p1 @+ ® pm) oLy verifies

P(XiN) = 21y, 8@V,
for a certain x; € C*. In addition, there exists h € C* such that

p(H) = hidv,g...av,,
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Proof. Consider the following cases:

e if \; is a boundary edge, side of a single triangle Tk,, we have 1) (X)) =
(X((llfi))N € ®, T1,, where a; is the index of the edge of Ty, identified in
S with A;. Therefore p(XN) = pp. (X)) = 28 idy, .01, , thanks
to what observed about irreducible representations of 77 .

e if )\; is an internal edge, side of two distinct triangles 7;, and T, then
(X)) = X,ﬁl;) ® X;:i) € @, Tr,, where a; and b; are the indices of the
edges of T;, and 7)., respectively, identified in .S with A;. So

p(X) = o (XENWN) @ pr (X)) = 2l idvio.sv,

e if )\; is an internal edge, side of a single triangle Ty, then \(X;) =
q‘lX(S]f"')Xéfi) = leE:W)Xéfi) € @, T, where a; and b; are the indices of
the edges of Ty, identified in S with \; and )\El}:i), )\l()]:i) lie on the left side
and on the right side, respectively, of their common spike. So

— . k‘l
p(X) = pr (g N (XD X))
N NWN-1) oo ) i
= pnlg ™R (XN (G )

i

—N?_ (ki) ,.(ki)
= ¢ Va2l idye. v,
_ (k) (Ri)
= xfl )xbi idy,®--aV,,

where we have used ¢V = (—1)V*1 in the last equality.

For what concerns the second part of the assertion, we observe that, denoting
by jx: H(N;Z) — H(N;Z) the map through which is defined ¢y, we have

HNZ) =TS (1,..., 1) ¥ (1,...,1) € Z8™ = H(N; Z)

Label as H; € 77 the element qilX{i)XQ(i)Xéi). Because each H;, as element
of @, 7'Tqi, lies in the multiplicative center, it is simple to verify that

M®m®mFE1”a§ﬁ ’’’’’
i=1
Hence we conclude
w(H) = XS D)y =ytD =B - @ Hy, (2.5)
and then
p(H)=pi(H1) ® - @ pm(Hm) = hi - b idv, -0V,
as desired. ]

We will designate the number h € C* as the central load of the local repre-
sentation p.

Denote by Zo.(Ty!) the set of isomorphism classes, as local representations,
of local representations of 7.
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Theorem 2.2.6. Let S be a surface (see C’hapter@for details) and fix ¢ € C*
a primitive N-th root of (—=1)N*1. Then the set Zio.(Ty!) is in bijection with
the set of elements ((x;);;h) in (C*)™ x C* verifying

N
h :xluu.l'n

and the correspondence associates with the isomorphism class as local represen-
tations of [p1,. .., pm], the element ((x;);; h) defined by the relations

p(XY) = ziidv,g..ov,
p(H) = hidv,g...av,,

fori=1,....n, where p=(p1 @+ Q pm) © Lx-

Proof. The map [p1,...,pm] —> ((x;);;h) is clearly well defined on the iso-
morphism classes, we firstly want to show its injectivity. Let [p1,..., pm],
[p1,- -, ph,) be two local representations with the same invariants ((x;);;h).
Select two representatives (p1,...,pm), (p1,--.,p},) of them, with p;: 77 —
End(V;), p}: T{ — End(V}). Up to conjugating the representations p; and pf;
and recalling the notations introduced in the proof of Proposition [2.1.4] we can
assume that the following relations hold:

e for every j =1,...,m we have V; :Vj’:(CN;
e for every j = 1,...,m the representations p; and pg» have the following
form
,X(j) _ (j)B for h =
p;i (X)) =y, By or h=1,2,3
pi(X7) =27 By, for h =1,2,3

for certain yéj ), z,(lj ) e C*, where X }(Lj ) denote the generators of the algebra
TT?;"
Let us find the relations holding between ygj ), 29) and the invariants i, h. In
the notations introduced in the proof of Lemma because BiY = I, we have

e if )\; is a boundary edge, then

p(X) = pre, (XIDN)
= ¥V idvie. e,
= T; idv1®..4®vm
e if ); is an internal edge and it is side of two distinct triangles 7;, and 7.,
then
p(XN) = pr (XEDN) @ pr (7))
= (yéai)yzgji))Nidv1®~~®vm

=z idy, @@V,



40 2 Local and irreducible representations

e if )\; is an internal edge and it is side of a single triangle T,, then

p(X]) = pr (N (X XN
_N_NWDo "
= a5 ()

=q (y,(lk ‘) (7; WY idyie. e,
= (yi )yé Widv,e...av,,

= T 1dv, 0@V,
With the same calculations for (pf,...,p,,), we find the following identities

W u Y =i = 2l = (0] (26)
WY =i = 2 = ()N

depending on whether ); is internal or in the boundary. Furthermore, recalling
the relation [2.5] we deduce also that

I_Iy(J)y(J)y3 —h=} = HZ(J) (J) (2.7)

The equations [2.6] tell us that, for every i = 1,...,n, there exists a t; € Zy such
that

yffl)y(,)—q i (l) ( i)

b; b;

0 = g2

depeding on whether ); is internal or in the boundary. Moreover, from relation

(2.7 we observe

m m m
H yy)yéj)ygj) _ H Z§J)Z£J)z§J) — g 2Tt H yy)ygj)ygj) (2.8)
j=1 j=1

j=1

So we must have Y " | t; = 0 € Zy. Our purpose is now to prove that, up to
conjugating in a suitable way the representations p;, we can assume that ¢; =0

for every ¢ = 1,...,n. Temporarily accepting this fact, let us conclude the prove

(L) (n _ (l) (n

of the mJecthlty of the map. If the relation yq, ) holds for every

internal \; and y(l D= zt(l ) for every A; in the boundary7 then the n-tuples

of representations (p1,...,pm) and (p},...,pl,) are locally equivalent. Indeed,
fixed i = 1,...,n with )\; internal, we observe

(1:) (13)
; Ya; Ya, ) )
uXE) = i) Bay = a0 B =y o (XG) = e (X0
Za,
() (rs) ylgm (rs) vy, (o) (rs)
Pn( :l ) = ybrl B (Tl) Zb:z Bbi (”) pln- (Xb:l ) =B le (Xbin )
b, Zp,
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Assuming y(l ) (” = zt(llj)zé:i), we obtain exactly ; = 8;'. If ); is in the
boundary, the relatlon is obviously verified, so we can conclude that the n-tuples
of representations are locally equivalent.

We just need to prove that, by conjugating the representations p}, we can
suppose that for every i =1,...,n we have t;, = 0 (observe that conjugating
the representations ,oJ we do not change the isomorphism class, as local rep-
resentation, of p’). Recall that, as observed in Remark -, for every choice
of uy,us,us € Zyn with u; + ug +ug = 0 and for every j = 1,...,m, we can
conjugate the representation p} in order to change the numbers zi(j ) as follows

— z =q""z
(J) N %J) _ q2u225j) (2.9)
(J) N Z(J) _ q2u32§3)

The vector t = (t1,...,t,) can be thought as an element of H(\;Z). Define

=1

M = {t: (t1,.. . tn) € H(\Z)

M' = (N, = Xj € H(NZ) | N, \j sides of a common triangle )

The submodule M’ is obviously contained in M, because each generator of M’
belongs to M. Assume that the equality holds, i. e. M = M’. Then, ¢ could
be expressed as a Z-linear combination Zs,t cst (As — A¢) in M. Taken Ag, \; a
couple of edges that are sides of a common triangle 7 then, by conjugating the
representation p; as in relation with a suitable choice of u;, we can obtain a
new m-tuple of representations such that its corresponding vector ¢ differ from
the previous one by cgt (As — A¢). In particular, iterating this process, we could
reduce the proof to the case t = 0 and so conclude.

Let I' = I'g » be the dual graph of the ideal triangulation A of S (see Chapter
|§| for details about notations) and select A a tree in I' maximal with respect to
the inclusion. Let \; be a 1-cell of A that does not correspond to any element
of the 1-skeleton A of A. Then we have two possibilities:

e )\, lies in the boundary, so it is side of a single triangle T} in \;

e )\; is an internal edge, so it is side of one or two triangles in A. Denote by
Ty, one of these triangles, as in the previous case;

In both cases, the vertex T} must belong to A by maximality. The triangle T}
has \; as a side and we can assume that it has at least another side \; that is
internal and corresponding to a 1-cell A7 in I' belonging to AM (if there did not
be any such A;, then the surface S would be a single triangle and this situation
has already been proved in Proposition . Taking t' =t — t; (\i — Aj),
we obtain another element of M verifying: ¢, = t; if h ¢ {4,j} and ¢] = 0.
So we have modified ¢ on the component corresponding to A € AWM obtaining
another element of M that has the i-th component equal to zero. Iterating this
procedure, we can assume that ¢ has support contained in the set of internal
1-cells of A corresponding to A, the 1-skeleton of the fixed tree A.

Now we take a leaf T of A, which is a vertex with valence equal to 1.
Because A is a tree, there exists at least one leaf. The vertex T is an end of
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Figure 2.1: A leaf vy in the tree A

a single 1-cell A7 in A. If the other end T}* # T of A} is not a vertex of other
1-cells in AM) | then the tree is composed of the vertices T7, Ty and the single
1-cell A} between them. Because ¢ has support in AWM and >t =0, we must
have t = 0, so we conclude.

Therefore, we assume that there exists another 1-cell AT # A7 in AWM having
T} as end. Now consider t' := t — ¢; (A; — A;). This element has support
in A\ {\#}, because we have erased the component related to \; possibly
by modifying the one on \;, where \} € AM N\ {)\}. The subgraph A’ of T,
defined by (A’)©) := AN\ {TF} and (A)D) := AM\ {\*}, is still a tree, so we
can repeat the procedure just described on A’. After a number of these steps
bounded by n, the number of edges in A, we will have reduced the support of ¢
enough to obtain t = 0.

We have shown the injectivity of the map associating with every isomorphism
class of local representation the collection of its invariants. The surgectivity is
simpler. Select numbers z;, h € C*, with h¥ =21 ---z,. Foreveryi=1,...,n
we choose a N-th root y; of x; so that the relation h = y; - -y, holds. We
also choose a square root yl1 /2 of y; for every i such that \; is an internal edge.
Fixed T}, a triangle of A, assume that its edges are labelled as A;, A;, A, clockwise,
possibly with coincidences. Now define pj: 77, — End(C"V) as follows

on(XM) =y B,
pn(X$) =y} B,

pn(X) == y,/* By

if all the edges A;, Aj, A are internal, otherwise replace the number ytl /% with Yt
if A; is in the boundary, for every ¢t € {i, j,k}. By inspection, it is easy to see

that the invariants of the local representation [p1,. .., p;m], defined in this way,
are exactly the numbers z;, h € C* previously selected. O
Corollary 2.2.7. Let [p1,...,pm]| and [p}, ..., pL,] be two local representations

of TI. Then they are isomorphic to each other as local representations if and
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only if pr=(pP1 @ @pm)otx and p' :== (P} ®--- @ pl,) otx are isomorphic as
representations.

Proof. Obviously, if [p1,...,pm] and [p},...,p,,] are isomorphic as local rep-
resentations, then p e p’ are isomorphic, in particular through a tensor-split
linear isomorphism L; ® -+ ® L,,. Vice versa, if p and p’ are isomorphic, then
x; =}, h = h. So, thanks to Theorem 2.2.6] [p1,...,pm] and [}, ..., p),] are
isomorphic as local representations. O

Proposition 2.2.8. Let S be an ideal polygon with p > 3 wvertices. Then,
for every A triangulation of S and for every local representation [p1, ..., pm] of
the Chekhov-Fock algebra Ty, the representation p := (p1 ® -+ @ pp) 0 Ly is
irreducible.

Proof. 1t is sufficient to observe that the representation p has dimension N™,
just as any irreducible representation, as seen in Theorem [2.1.11] Therefore, if p
had a proper invariant subspace 0 C W C V] ® - - - ® V,,,, then we would find an
irreducible representation of 7y with dimension strictly lower than N, which
is absurd by virtue of Theorem [2.1.11] O






CHAPTER 3

The quantum Teichmiiller space

In this Chapter we deal with the construction of an intrinsic algebraic object,
depending only on the surface S, starting from the collection of the Chekhov-
Fock algebras {7}, . A(s)- The most important instrument of this procedure is

a family of isomorphisms ®%,, between the fraction rings A}\q/ and 7\')? of T3} and
Ty, respectively. These isomorphisms can be thought as non-commutative de-
formations of the coordinate changes of the classical Teichmiiller space, induced
by different choices of ideal triangulations.

Let us try to be more detailed on this fact. Given S a closed punctured sur-
face (with x(S) < 0) and g € T(S) a complete hyperbolic metric of .S, the ends
of (S, g) can be finite-area cusps, bounded by horocycles, or funnels, bounded
by a simple closed geodesic. If Conv(S,g) denotes the convezx core of (S,g)
(see [Rat06] for the definition), then the cusps ends are the ones contained in
Conv(S, g), whereas the funnels are in bijection with the simple closed geodesics
in @ Conv(S, g). We can endow the metric g € T(S) with an additional choice
of orientations on the simple closed geodesics in d Conv(S, g). The set of these
enhanced isotopy classes of metrics is called the enhanced Teichmiiller space
of S and it is denoted by 7(S). This space can be endowed with a natural
topology, simply by asking that the forgetful map 7~'(S ) — T(95) is a branched
covering. Now, given A € A(S) an ideal triangulation and x; € R, real positive
numbers, one for each edge A; of A, we can define a hyperbolic metric 1) ((z;);)
on S setting on each triangle an hyperbolic structure and defining the coordi-
nate changes in terms of this choice of parameters (z;);. The numbers (z;); are
called the shear coordinates of the hyperbolic metric ¥ ((z;);): each number
x; € Ry measures how the triangles are slided along \; (we refer to [Bon96| for
details). This give us a possibly uncompleted metric, but its completion, which
is homeomorphic to S, can be identified with the enhanced convex core of a
certain enhanced complete metric on S (see [Liu09| for details). In this way we
can define a map ¥y: R} — 7~’(S ), which turns out to be a homeomorphism
between these topological spaces. These applications are called the exponential
shear parametrizations of 7(5). The main point is that the coordinate changes
w;,l o1 turn out to be rational and the isomorphisms ®4,, are constructed in
order to verify, in the commutative case ¢ = 1, the identity

Dy () = (V3" o a)(2s) (3.1)

The first part of our work in this Chapter is devoted to a proof of the

45
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existence of such isomorphisms, involving less case-to-case arguments than the
original one exposed in |Liu09], following a suggestion in [BBL07].

Later, we give a notion of finite dimensional representations of the quantum
Teichmiiller space, in particular we study its irreducible and local representa-
tions. This part requests some efforts because of certain technical obstructions,
due to the non-commutativity of the Chekhov-Fock algebras and the fact that
the isomorphisms are not defined on the rings 7y but only on their fraction
rings. Once we have this notion, we envelop a classification statement for local
and irreducible representations. The resulting invariants are complex non-zero
scalars x; associated with the edges \; of the ideal triangulations A, together
with a choice of N-th roots of certain functions of them. A crucial point is
that the numbers x; € C* associated with a certain A are related to the ones
of another triangulation A’ by the isomorphisms ®3,,. This fact, together with
the relation implies that the algebraic invariants of local (or irreducible)
representations can be related with a more geometric object, in particular with
a peripherally generic enhanced homomorphism. This class of homomorphisms,
from the fundamental group of S to the orientation-preserving isometries of the
3-dimensional hyperbolic space, contains a huge set of geometrically meaningful
homomorphisms, like the injective ones. In order to show this link, we need
to define the notion of pleated surface, which makes the bridge between the
algebraic and the geometric aspects. All these facts are exposed in [BLO7] and
[BBLO7|, focusing on the irreducible and local case, respectively.

In the last part, we describe the irreducible decomposition of a local repre-
sentation of a closed punctured surface, result due to Toulisse [Toul4].

3.1 Coordinate change isomorphisms

We have already observed that the Chekhov-Fock algebra is a bilateral Noethe-
rian integral domain and so, by virtue of Proposition [A.T4] it is a Ore integral
domain. Therefore, we can construct 7/, the classical right quotient ring of 7},
as in Remark [ALGl

Recall what we have described in Chapter [0] about operations on ideal tri-
angulations.

Theorem 3.1.1. Let S be a surface (see C’hapter@ for details). Then there
exists a unique family (®%,,)x,r, where X and X' are varying in the set of all
ideal triangulations of S and ®%,, : ﬁq, — ’ﬁq are algebra isomorphisms, which
satisfies the following properties:

COMPOSITION RELATION: for every A\, N, A" € A(S) ideal triangulations, we
y b b g )
have
éqAA// = ¢§>\/ o Qq)\/A//

RE-INDEXING: if X' = (), then ®%,,(X;) = Xo();

NATURALITY: let o: S — R be a diffeomorphism that sends the triangulations
MA € A(S) in p, i € A(R), respectively. It induces an isomorphism
Prx: 7A'Aq — 71‘1, defined by sending each generator X; of Ty!, associated
with the edge A\; of A, in the generator Y; of T, associated with the edge
©(Ni) = p; of p, and extended to the quotient rings. Analogously we
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define @, xr. Then, the isomorphisms @ZH, and @9, respect the following
relation
(PZ#/ o @Z/}\/ == @qu)\ o (I)i]\/\’
D1sJOINT UNION: let S be the disjoint union of Sy and Sa, let A1, N} be trian-
gulations of S1 and Aa, N triangulations of Se. Setting A := A\ U A2 and
N = XN UM, with A, X € A(S), the isomorphism ®Y,, is the extension to
Ty, of the following algebra homomorphism

q q q Tq o T4 (Dil*'1® i2*/2 Tq o T4 Tq
N =T @y — Ty @y, P T 0T, — Ty

where the first and the third maps are the natural inclusions.

FusioN: if S is obtained by fusing a surface R and if \,\' € A(S) are obtained
by fusing p, ' € A(R) respectively, then

~ q _ q ~
Lux © CI)A)\’ = CI)MM' O Ly )

where i,y and iy are the inclusions induced on the quotient rings by the
maps tux and vy defined in Section [2.3;

DIAGONAL EXCHANGE: let S = Q be the ideal square and let \, N € A(Q) be
the two possible ideal triangulations of Q, with edges labelled as in Figure

[31l Then

Oy (X)) = X!

Yy (X)) = (1 + ¢Xy)X;

5 (X)) = (1+¢X; 1) 71Xy
5\ (X)) = (1 + X)Xy

L (X)) = (L+ X, )71 X

Figure 3.1: The ideal triangulation A, ', respectively, of Q

Proof. In what follows, we will ignore the re-indexing property, because from
the construction it is quite clear that this relation holds, but it would be very
annoying to carry on all the indices in order to verify it.

Given S a surface like above, we will firstly define the isomorphisms ®{,,
in the case in which A and )\ differ by an elementary move. We need to in-
troduce some notations: we denote by @’ the square in S in which there is the
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diagonal exchange and we designate Ty, T and 77,74 the triangles in A and X,
respectively, that compose the square Q’. Furthermore, let Sy be the surface
obtained from S by splitting it along all the edges of A (or \') except for the
diagonal A; of @ (or A}). Then Sy is the disjoint union of an embedded square
Q@ and triangles T; = T} for i > 2. Sy is endowed with two triangulations Ao,
0, and A, A" are obtained from them, respectively, by fusion on S. We clearly
have that A\g and A, coincide on all the triangles T; = T/ for i > 2, except on
Q, where they coincide with the only two possible triangulations Ag and )\’Q,
respectively, that () admits. By the Naturality, Disjoint Union and Diagonal
Exchange properties, the isomorphism @), is forced to be the extension to
the quotient ring A)\qé of the following injective map
~ ~ ‘biQwQ ®; idr; ~ ~
a _ 74 q q q q q q
=T, QT —T, QT = T, QT —T

1,2 J#1,2 J#1,2

It can be easily verified that (@?\Q v )l=9 YSVS by explicit calculations on the

formulae expressed in the Diagonal Exchange property. Hence we deduce that

®f |, is an isomorphism and (®{ ,,)~! = ®%,, . We would like to define ®f,,
0Ap 020 00

as 5;01)\ © @), © iy n but, in the first place, we must verify that the image of

Pox, 00y is contained in E,\O,\(ﬁq). In order to prove this assertion, we have to

discuss all the possible configurations of the square @’ in S. Denote by X;, X,
—

X}, X; the generators of the algebras T, T\ , TJ, Tf&, respectively, and assume

that the edges in Ag C A\p and XQ C )| are indexed as their identifications in A

and ), respectively. We refer to the cases of |Liu09] in the following discussion:

CASE 1 Aj, Ak, A, Ay, are all distinct.

Suppose that the edge A; € A is the result of the identification of the edge
(Ao)1 € Mg and of an edge (Ao)yn, belonging to a certain triangle different
from 77 and 75 in X\. Then observe

9 N /5 -\
((I))I\(J)\{) o l’/\éx\’)(Xll) = (I)/\OAB(XlX’ﬂ) = (1 + qXZ)Xan
= o (1 + ¢X)X0)

Notice that the polynomial (1 4+ ¢X;)X; coincides with the image of X
in the case of an embedded square. This situation arise for every external
edge of the square that is not identified to an other side of it. In the
following, we will always omit the calculations for these cases and we will
focus on the identified couples of sides of the square, if there is any. In
conclusion, when the edges A;, A, A;, Ay, are all distinct, the expressions
of the images of the elements X/ under @q/\o , © ixya are the following

Y\ (X)) = Don(X7H)

5V (Xg/) = DA ((1 4 ¢Xi)X;)
9,/ (Xp) = Daoa((T+¢X; )71 X5)
D\ (X]) = iapa((1 + ¢X3) X))

Y,/ (X7,) = ioa (14X, 1) 71 X0)
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CASE 2 A\; = A and A, # A\,
Studying the case of A\; = Ay, we obtain
(@5, © inga ) (X)) = Doy (71X X)
= ¢ (14 gX)X;(1+X; )1y
= ¢ 1+ qX)(1+¢ X, )X X
= ¢ g Xi(X;Xy)
= oA (X X))

The image of the other elements have the same appearance of the ones in
the Case 1.

CASE 3 )\j = A\, and Mg 7é Al
In same spirit as in the previous case, we have

@?\OA;) 0 i )(X}) = iaga(XiX;)

The image of the other elements have the same appearance of the ones in
the Case 1.

CASE 4 \; = A and A # Ay,
We observe

(@,n; © i) (X)) = Daoa (1 + ¢X:) (1 + ¢° X0) X))

The image of the other elements have the same appearance of the ones in
the Case 1.

CASE 5 A\ = Ay and Aj # Ay
We observe

(DS, n, © iapa ) (X) = ixoa (14X )71+ ¢* X7 7 Xy

The image of the other elements have the same appearance of the ones in
the Case 1.

CASE 6 A\; = A\ and A\, = .
We observe
(‘I’ioxg 0 ina)(X}) = ixga(XiX;)
(q’?\o,\g 0 i) (X]) = inga (X X))

CASE 7 Aj = Ay, and A, = Ay

We observe
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CASE 8 Aj = A and M\ = Ap..

‘We observe

(D5n, © Eapa ) (X7) = Daoa (1 +¢X0) (1 + ¢° X3) X;)
(PFon, © bapa ) (X)) = Daoa (L +¢X )T A+ X7 71 X)

The above discussion allows us to define ®%,, as (ix,a) ™" © ®aga; © iagn,
for every S and for every A, N € A(S) that differ by a diagonal exchange. By
definition, we have

q)qu)\f) e} LAA{)A’ = LAAOA o (I)(i)\, (32)

Now, let R be a surface with u, ' € A(R) triangulations that differ by a
diagonal exchange along u;. Suppose that S is obtained from R by fusion and
that A\, \ are the triangulations of S induced by u, p’ respectively. We want to
prove that, in this situation, the following holds

(I)ZH' o Z#/)\/ = Z/M o (I)KA’ (33)
Denoting by po and pf the triangulations of Ry and R{, that appear in the
definition of @iw, as above, then we clearly have Ry = Sp and pg = Ao, py = Ap,
by construction. Because of the injectivity of i,,,, it is sufficient to prove

A~ A q . A q ~
Eop © bux © @5\ = Lpgp © @ML, O Ly xs

Now observe

Cpop © Lux 0 @Yy, = Ty © Pan Relation 2.4]
_ - q _
= lIxor 0 D5y Ho = Ao
= (I)io)\’ o [:)‘6)‘/ Relation

0

i q ~ _ !/ !
=P © bupx po = Ao and 15 = Ay
— & - - .
= CIJMO% 0 By © byt Relation 2.4]
_ . a :
= Gpop © @0 0 Ly Relation

and hence the relation that is a "baby" version of the general Fusion prop-
erty, holds whenever we are in the above situation.

Now we are going to define the ®%,, in the general case and to prove that the
Composition relation holds. In order to do this, it is necessary to show that the
isomorphisms, defined in the elementary cases, respect the Pentagon relation
(the other relations between ideal triangulations in Theorem are easier and
can be verified in the same way).

Select in S a triangulation A € A(S) and A;, A\; two diagonals of a certain
pentagon in \. Designate also with A9, X1 A% the following sequence of
triangulations

A DG AGAGN) AGAGAGN), AGAAGA;(N), AiAANN(X) = Ti(N)
Then we have to prove that

q q q _ &4
Qe 0Py O 0 Py, = Py
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Assuming for a moment that this relation holds for every A\, \' € A(S), we
can select a sequence A = X0 ... A*) = X’ by virtue of the Theorem ﬁ and
define ®{,, as

P 0o Py

Now, by virtue of the Theorem and the assumed Pentagon relation (together
with the others, on which we will not focus), it easy to verify that this is a good
definition and that the Composition relation naturally holds.

Let S be a surface and A € A(S) a certain triangulation. Select also A\; and
A;j diagonals of a pentagon in S. Let R be the surface obtained by splitting S
along all the edges of A except for A; and A;. Hence R is the disjoint union of an
embedded pentagon P and some triangles. Let u = u(©, ..., 1 the triangula-
tions of R such that their fusions induce the triangulations A = A9, ... A(®) of
S. Suppose that the following holds

® od = idﬁ,

q e q
pp® © v p

and observe

ZH/\ o @A)\(n O0---0 (I))\(l))\ = (I)yp(5) o 2#(5»\(5) o (b)\(l))\(Z) S Oq))\(E)))\ Rel. m

.. q o
() 0--+0 (I)H(E’)H SR Rel.
= ZHA

Then, because of the injectivity of 7,5, the assumption of (I)Zml) 0---0 (I)Z<5)u =
idﬁ implies that the Pentagon relation holds in the general case. From the
definition given of the ®,,¢i11),) it is clear that the identity (I)Zu(” o-- 'O(DZ“’)M =
id7~_: follows from the proof of the pentagon relation in case in which S is an
embedded pentagon. For the proof of this case we refer to |[Liu09, Proposition
9].

Finally we have defined the isomorphisms ®{,, in the general case and we
have proved that the Composition relation holds. It remains to verify that, with
this definition, all the properties hold. The validity of the Naturality property
is clear from the definition, just as the Disjoint Union property in case of \;
and A, that differs by a diagonal exchange. Now, by applying the Composition
property, it is straightforward to prove the general case of the Disjoint Union
property.

In the matter of the fusion property, we we have already shown it when u and
' differ by an elementary move in[3.3] In what follows, we will see how to deduce
the general case from [3:3]and from the Composition relation. Suppose that S is
obtained by fusing a surface R and that A, ) € A(S) are constructed as fusion of
u, 1" € A(R), respectively. Connect the triangulations p and g’ with a sequence
p=pO 1 u®) =/ in which ptY is obtained from p® by a diagonal
exchange. Then we can define an induced sequence A = A0 X1 A\K) = N/
where A) € A(S) is obtained by fusion of u(). Now, using the Composition
property, we see

~ q 7 q q
Lx 0 O3y =l 0 @y gy 0 0 DYy,

T oi ., — @ 0 Y »
(I)MM’ Olyn = (buu(l) 0---0 (bu(k_”lt/ 0 by
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Applying the relationto XD XCED ) and gD for every i = 0,..., k—1
we observe
ZMO@?\)\, LMOCI)M(I) o(I)A(k 1\

— & Y
= (I)Hu(l o L#(I)A(l) ° CI))\u))\(z) o Q/\(k—l))\/

q ~
=97 10 q)#(k—l)#/ O L\

pp ©
f— (I)'uu, O LM/A/

as desired.
As said in the very beginning of this construction, the definition of the
isomorphisms <I>/\ Ve when Sy is a disjoint union of triangles and a square,

is obliged by the Naturahty, the Disjoint Union and the Diagonal Exchange
properties. Furthermore, retracing the above discussion, we see that from the
uniqueness of this base case, follows the uniqueness of the ®,, in the general
case and so we conclude the proof of the assertion. O

Lemma 3.1.2. Let S be a surface (see Chapter[(] for detazls) and let X\, ' be
two ideal tmangulatzons of S. Then the isomorphism (I>M, :TE — Tq sends the
central element H' of T, q/ in the central elements H of Tq and if S is a closed
punctured surface (with x(S) < 0), then ®,, sends also Py,..., P} € Tq, in
Py,...,Pye ’?/\q respectively.

Proof. See |Liu09, Proposition 14]. O

The quantum Teichmiiller space 7§ is defined as the quotient

L 7

AEA(S)

where ~ is an equivalence relation that identifies two elements X € 7A;\q and
X' e T, if and only if ®9,,(X) = X'. By virtue of the Composition relation, it
is clear that this is an equivalence relation. We have natural bijections ¢ : 7A;\q —
T4, which satisfy i)' oiy = ®%,, for every \,\ € A(S). As a consequence,
the set 74 can be naturally endowed with an algebra structure that makes the
bijections i) algebra isomorphisms. Therefore, the maps ®{,, can be seen as
coordinate changes, determined by the ideal triangulations A, \’, of the intrinsic
object T4.

3.2 Representations of the
quantum Teichmiiller space

We would like to give sense to a notion of finite-dimensional representation of
the quantum Teichmiiller space T¢. The first obstruction is that 7¢, as algebra,
does not admit any finite-dimensional representation in the usual sense. Indeed,
suppose that there exists a representation p: 7, — End(V), then the homo-

morphism p should have a huge kernel, because 7y is an infinite-dimensional
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C-vector space. But every element in 7A')\q \ {0} has an inverse in 'ﬁ? \ {0}, so
though p should go in an invertible endomorphism, fact that is clearly absurd.
The space T is isomorphic to 7§, then the same can be observed for 7.

Hence the first idea does not work for our purpose. Nevertheless, we have
seen that 7y! has a rich finite-dimensional representation theory, so we could try
to define a representation of 7§ as a collection p = {px: T{ — End(V)}ieacs)
of representations of all the Chekhov-Fock algebras that match up in some sense.
Because of the existence of the coordinate change ®9,,, it would be reasonable
to ask that, for every A, ) € A(S) the corresponding representations py and pys
verify a condition

px o @5y = py

as applications from 77 in End(V). The problem of this relation is that the
image of ®%,, of T} is not necessarily contained in Ty}, so py o ®,, is not well
defined a priori. Because of this remark, we introduce the following definition:

Definition 3.2.1. Given A\, N € A(S) two ideal triangulations of S and
pa: T — End(V) pa: T — End(V)

two representations in the same finite-dimensional vector space, we say that
pxn is compatible with py, and we write pxr = py o ®9,,, if, for every generator
X! € T}, the element ®%,,(X/) can be written as P,Q; ' € 7\, with P;, Q; € T,
in such a way that p,(Q;) is invertible and py (X]) = pa(P;)pa(Q:) L.

Observe that, by considering py/ ((X/)™1), the element py(P;) has to be in-
vertible too.

Lemma 3.2.2. Let \(V X3 . X*) be o sequence of triangulations of S, in
which A0t is obtained by a re-indexing or a diagonal exchange from X\ for
everyi=1,...,k—1 and let p; :== pyi): 7;?@) — End(V) be a finite-dimensional
representation for every i = 1,... k. If p; is compatible with p;11 for every
i=1,....,k =1, then p1 = px o @) o) and px = p10 Py, (-

Consequently, the compatibility relation is symmetric, transitive and obuvi-
ously reflexive.

Proof. We will prove p1 = pp o ‘I)(;(m)\(n by induction on h. Given Xi(l) a

generator of 7}},,, we need to show that there exist P Q) ¢ T\ such that

pr(PM), pr(Q™) are invertible, the relation ®7, ,, (X{") = PM) (QM)~1

holds and p,(P™) pp,(QM)~1 = pl(Xi(l)). When A and A= differ by a

re-indexing, then the property follows from the inductive hypothesis and the

fact that @'/I\(h))\(h_l) is just a reordering. We will suppose from now on that A(*)
(h—1)

10 N

Let C{Z{",..., Z*'} denote the algebra of non-commutative polynomials

in the variables Zlil, ..., ZFL. So, by inductive hypothesis, there exist P, Q €
C{zF',..., ZF"} such that

and A"~V differ by a diagonal exchange along X

(I)q)\(h,—l))\(l)(Xi(l)) = P((Xgh_l))s) Q((Xgh_l))s)_l
with pp_1 (P(X),), pro1(Q((X™Y),)) invertible and such that

P (X)) = oot (PUX D)) pa (QUXD) )
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By virtue of the Composition relation, we have

T (X37) = B yomn (PUXETD)) QUX D))

= P((®5 )50 1>(X§h71)))s)Q((‘I’q,\wmhfl)(X(ghfl)))s)fl
From the discussion in the proof of Theorem we observe that the ele-
ments P((@g\(hu(h,l)(Xs(h_l)))s) and Q((P5 )y n- 1)(X(h_l)))s) are polynomi-
als in (X](-h))il7 (14 q(Xi(Oh))il)_1 and (1+¢q (X(h))il) L. The terms (1 +
q(Xi(:))il)_1 and (14 q?’()(i(:))il)_1 appear in relations of this kind

P

X" = (x M)+ gx )
(h)

D )y (X
LS. 1)(X(” Y)
(h— 1)) 1

1+g(x)=H 1 x M
h) 3 v (h) (h)y—1

X7+ X)) (1 + gX,))

LX) ™) 1+ P (x () )~

(h))\

(pA(h)A(h 1) ((

(
(
(
o (

)
A(R) \(h—1) (X(h 1))

Now, using the fact that pp_1 = pp © ®yn)yn-1) and the above expressions, we
deduce the following equalities

h)

pn(L+gx M)

0
pn(1+q(x”)7h)
pr(l+ le'(:))Ph(l + q?’X?;(f))
pn(L+ (X)) (1 4+ g(x) ) =

n (X)) o (XY

P )
pn(XI)pn_a (XY
p )~

)

h(X h) lph (X(h—l))

(h)
J
Ph(X(h) Ph— 1(X(h 1))71

J

Since ph(X](h)) and ph_l(X;h_l)) are invertible and V' is finite-dimensional, we
conclude that

Facr 1: pp(1 +q(Xi(:))i1) and pp(1+ qS(Xi(;L))il) are invertible endomor-
phisms of V.

Expressing P as a sum of monomials ) P,, we obtain
P((q)(,l\wu(h—l)(x o= ZP ,\(h),\(h—l)(Xs(hil)))s)

In each monomial, by using the relation
h —1y(h o h _1y(h
(1 JrqQIc+1(AXi(0 )):I:l) IX( ) _ (1 +q2k+1:i:2 ig (Xz( )):i:l) IXJ(» ) (3.4)

we can push all the (1 + q(X(h))il) and (1 +q (X(h))il) on the right, in
order to obtain an expression hke

P((®Y iy (XY ZP' Rao(X)~1

where P! and R, are Laurent polynomials. Recalling the definition of the sum

we see that P((P?

S At (Xs(h 1))) ) can be expressed in the following

/\(h) )
form

P((®% )y (X)) = P(XM) ) R(XV) ! (3.5)
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where P’((Xs(h))s) is a Laurent polynomial in the variables Xl(h), X and

R(Xi(:)) is a Laurent polynomial in Xi(oh).

Now, applying pp to the relation
(1 +q2k+1(Xi((fL))i1)Xj(h) _ X](.h)(l 4 g2k H1E204; (Xi(oh))il)

we see that each term of the form (1 + @~ +1(X(h))il), appearing in the ex-
pression [3.5] has invertible image in End(V), s

Fact 2: the endomorphism ph(R(Xi(Oh))) is invertible

because it is product of factors of this kind. Using Facts 1 and 2 and the relation
obtained by applying p;, to we can repeat the operations done before on the
ph(XS(h)) instead of Xgh) obtaining

pr-1(P(X"D)0) = P(pn-1(X 7))

= P((pr(D ) y(n— 1)(X(h 1))))5) Ph—1 = Pr O ég\(h))\(h—l) and Fact 1
= P'((pn(X{)) ) R(pn(X M)~ pn(Relation [3-4)
= pr(P'(X{")2)) pu(R(X{M)) ! Fact 2

By definition of P and @ the endomorphism ph_l(P((Xs(h_l))s)) is invertible,
hence the previous equation and Fact 2 imply that pj, (P’ ((X gl))s)) is invertible
too. By the same arguments we observe that there exist a Laurent polynomial
Q' in the variables th), . ,Xy(lh) and a Laurent polynomial S in XZ-(:) such
that

QU o (X)) = Q' (X)) S(X V)~
pr-1 (QUXT D)) = pr(Q'((XIM),)) pr(S(X )1
Now, we have found the following decomposition
q’?\(hu(l)(Xi(l)) P((®S ) o H (X)) QUi s H(XP )
= P'(XI))R(XI) (@ (X)) s(x M) ~1) !
= (P'((X))S(XIN (@ (X)) R(X M)~

where the equality holds because R(Xi(oh)) and S (Xz(oh)) commute, and analo-
gously

p1(X) = ot (PUX)0) pra (QUXD))7
= pr(P' (X))o (R(XI) ™ (on(Q' (X)) pn (S(XM)) 1)~
= pn(P (X)) SXM) (o (@ (X)) R(X M )))

so we have finally proved that p; = py o ®?
of <I>/\(h))\(1)(X( )) given by (P'S)(RQ")~!

(
(

N Py taking the decomposition
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With similar arguments and the explicit form of the isomorphisms <I>§ (h) A(h—1)

and @g(h,l))\(h) we can see that pp_1 = pp 0 @y \in-1) implies p, = pp_1 0
Dy (n-1)\n), s0 with the same argument we conclude also that p = p10®ya)\n)-
O

Definition 3.2.3. A finite-dimensional representation of the quantum Teich-
miiller space T4 is a collection p = {px: T{ — End(V)},cp(s), in which for
every A\, N € A(S) py is compatible with py.

Because of Lemma in order to verify that a collection p = {px: T/ —
End(V)},¢ A(S) 18 @ finite-dimensional representation of the quantum Theich-
miiller space, it is sufficient to control the compatibility for the couples of tri-

angulations A\, \’ that differ by a re-indexing or a diagonal exchange.

Lemma 3.2.4. Let p = {px: T/ = End(V)}\cp(s) e a finite-dimensional
representation of T§. Then, for every A, X' triangulations of S, and for every

X' e T there exist P,Q,R,S € Tyl such that
e 1, (X')=PQ ' =S5""'R;
e pr(Q) and px(S) are invertible;
and for every such decomposition
px(X") = pa(P)pa(Q) ™ = pa(S) "' pa(R)

Proof. See |BLO7, Lemma 26]. O

Now we state a fact that will be useful for what follows:
Lemma 3.2.5 (Quantum Binomial Formula). Let W be the non-commutative

C-algebra W = WU, V] (see Definition m If a € C* verifies ot # 1 for
every k € {1,...,N — 1}, then the following relation holds

N

N

T+VN=> <k) yN=kyk
k=0 @

where (J,Z)a is defined as

<N> _ {Hf—_éllf;ﬁ ifke{l,... ,N—1}

k B 1 otherwise

for every N, k € N with k < N. Moreover, we have

i () = (3)

where (]Z) is the usual binomial coefficient.
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Proof. The proof of the relation can be straightforwardly done by induction on
N and we omit it. For what concern the second assertion it is sufficient to
observe that, for a — 1, we have

N 1ot T -(N-i)(a-1D+ola—1)
<k>a ]-_-[ — aitl 71_1}) —(i+1)(a—1)+o(a—1)
(Hf (V=) (g = 1) +ol(g = 1)*)
(I z+1)<q—1>k+o<(q—1>k>

(k)=

Observe in particular that, if «v is a primitive N-th root of unity, then ( N )a =
1 for every k # 0, N, so we have (U + V)N = UN 4 VN,

O

3.2.1 Irreducible representations

Definition 3.2.6. A finite-dimensional representation

p=A{px: T = End(v)}AeA(S)

of the quantum Teichmiiller space is said to be irreducible if, for every A € A(S),
pa is irreducible.

Definition 3.2.7. Given
p=1{pn: T — End(v)}AeA(S) r={r\: T — End(V/)},\eA(S)

two representations of the quantum Teichmiiller space, we say that p and p’
are tsomorphic if there exists an isomorphism of vector spaces L: V — V' such
that, for every A € A(S) and for every X € T}, we have

Lopa(X)o L1 = (X)
Remark 3.2.8. In order to prove that two representations
p=A{px: Ty — End(v)},\eA(s) Pl =Ap\: T — End(‘//)})\e/\(s)

are isomorphic, it is sufficient to show that for a fixed A € A(S) the represen-
tations py and p) are isomorphic through a certain isomorphism L: V' — V.
Indeed, if this happens, by virtue of Lemma [3.2.4] and of the compatibility of
pa, pa and ph,, ph, for every X € A(S) we have

Lopy(X)oL™ =Lo(pro®{\)(X)o L™}
= (ph 0 25, (X)
= P (X')

for every X’ € T,}. Moreover, if py and p) are irreducible, then the linear iso-
morphisms carrying py in p), are equal to each other up to scalar multiplication.
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As seen in Theorem any irreducible representation p: 7,/ — End(V') of
the Chekhov-Fock algebra associated with a triangulation of a closed punctured
surface S is classified by the numbers z; € C* and by some N-th roots of
certain functions of the same z;. Starting from p, we can define a representation
p': T} — End(C) of the commutative algebra 7! setting

pH(X;) == z; € End(C)

We will say that p' is the non-quantum shadow of the irreducible representation
p-

Starting from an irreducible representation of the quantum Teichmiiller space
p={px: T = End(V)}AeA(S), we can take, for each triangulation A € A(S),
the non-quantum shadow p} : 73! — End(C) of the representation py. We denote
by p! the collection of representation

{px: Tx = End(C)}encs)

In what follows, it is crucial the hypothesis that ¢ is a primitive N-th root of
(_1)N+1.

Lemma 3.2.9. Let A\, X be two ideal triangulations, which differ by an el-
ementary move, of a closed punctured surface S with x(S) < 0. Consider
pa: T = End(V) and px: Ty, — End(V) two irreducible representations and
suppose that py = pxo®S,,. Then the corresponding non-quantum shadows are
compatible, that is p}, = p} o @},

Proof. Denote by z; and x}, respectively, the invariants of the representations
px and py/, which define the non-quantum shadows pl, pl,. If A is obtained
from )\ by re-indexing, then the assertion is obvious. Suppose for the moment
that X\ and )\ differ by a diagonal axchange along a diagonal \; of an embedded
square @, with edges labelled as in Figure [3.1]

Through Lemma we have

zyidy = px (X)N) = pa(@4, (X))
= (XN =27 Vidy

K3 3

so = 2;'. Now we analyse the case of z;. We have that X;X; = X X;
then, by virtue of the quantum Binomial formula, we obtain
O\ (X)) = 05, (XN = (1 +Xi) X))

= (Xi +¢X:i X))V = V(X X)N + XY
=gV NINDX NN 4 XN = (1+ XN)XN

where we are taking advantage of the facts that

° (1;:;[)(12 is equal to O for every k = 1,..., N — 1, because ¢2 is a primitive
N-th root of unity;

e by hypothesis, we know that ¢ is a primitive N-th root of (—1)N+1

qu _ (_l)N(NA) 1.

SO
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Hence we conclude immediately that 2, = (1+x;)z;. With the same calculations
we obtain the following relations

oh =t
vl = (14 zi)z;
!
=(1
mf (1427 )ty (3.6)
)= (1+z)x
o =14z ),
xy =ap it h¢{i,jkl,m}

By inspection of the definition of ®},,, we see that these are exactly the relations
needed in order to prove p}, = py o ®},,.

Now we will discuss the non embedded case. We are going to analyse only
the Case 2 (as in the proof of Theorem , in which A\; = X and A\, # Ap,
the other possibility can be treated in the same way.

In this context we have X;X; = X X ;- We have to discriminate the case
in which N is odd or not in order to apply the quantum Binomial formula.

Firstly, suppose that N is odd. In this case, ¢* is still a primitive N-th root
of unity so, denoting with U := (1 + ¢*X;) X, we observe that

L (X)) = @4, (XY = (U + ¢ X,U)Y
= (@XU)N +UN = VT XN UN p oY
= XN+ U
where we are using that U(¢X,;U) = ¢*(¢X;U)U and ¢V = (—=1)N*1 = 1 because
N is odd. Similarly, we have
UY = ((1+@X)X)N = (@x,x,)N + XN
q3N+4(N LN XNXN " XN
= (1+XM)X;
So, in conclusion,
@ ((X)N) = (14 X))

which implies #; = (1 + x;)*x;. Moreover, with the same calculations of the
embedded case, we obtain the relations:

1

xh=x;

o = (14 z)%x

=1+ z; ) Tk (3.7
o =14z,

;foh it he{ijkl,m}

When N is even, we have to be a little more careful, because ¢* is a primitive
%—th root of unity, instead of the previous case. With analogous arguments,
remembering that N is even and that ¢ = (—1)"*! = —1, we obtain the
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relation

B, (X)) = 8, (X2 = (U 4 4 X,0)
= (quU)N/Q + UN/2 _ qN/2+4MXiN/2UN/2 + UN/Q

Furthermore,
UN/2 (qSXin)N/2 + X]{V/z
= PN NN g N

_ _1\N/2 N/2 v N/2\ N/2
= (1+ ()N XN x|

So we have that @%\,((X;)N/Q) =(1+ XiN)X]J-V/z. By virtue of the fact that

XZ»N /% and X JN /? commute, we deduce finally that
O (X)) = 24, (XHN2)? = (1+ X2 X

Therefore, in this case too the relation 2y = (1 + x;)%z; holds, and in the same
way can be proved all [3.7] O

Theorem 3.2.10. Given p = {px: Ty = End(V)},cp(s) an irreducible repre-
sentation of the quantum Teichmiiller space T¢, the collection p' = {p}: T,! —
End(C)} of the non-quantum shadows of p is a representation of the non-
quantum space Tg, called the non-quantum shadow of p.

Proof. 1t is sufficient to apply Lemmas [3.2.9] and [3:2.2] O

Lemma 3.2.11. Let A and X be two triangulations of a closed punctured S,
which differ by a diagonal exchange or a re-indexing. Consider py: Tl —
End(V) an irreducible representation of the Chekhov-Fock algebra Ty, with non-
quantum shadow p}: T,! — End(C). Suppose that there exists a non-quantum
representation p},: T, — End(C) such that p}, = p} o ®1,,, then there exists a
unique irreducible representation py : Ty, — End(V') with non-quantum shadow
py and such that py = px o ®%,,.

Proof. The assertion is obvious in the case of re-indexing, so in the following
we will assume that )\’ is obtained from A by a diagonal exchange along \;. We
will focus on the case in which )\; is the diagonal of an embedded square, the
other cases can be proved trough the calculations of Lemma

In the notation of Figure observe that

pa((1+ X)) X;)N = pa((1+ X)X )
= (L +zi)z; idy = p\/ (X)) idy
Because py, (X)) = @, # 0, we conclude that py((1+ X;)X;) is invertible. With

exactly the same computations we obtain that py((1+ X;)X;) is invertible too.
Moreover, we have

pA(X (L4 g X)) = pa (X N+ X))
= (L+ay Hay Hidy = pi ((X3) ™ Hidy
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and in the same spirit we obtain that py (X' (1+¢X; )N = pb, (X],) " Didy .
Hence we have shown that X, '(1+¢X; ') and X' (14 ¢X; ') have invertible
images through p). Now we define py, on the generators X, as follows

X, — (X))t

X! X114+ gXx7h)) !
o (X, (T+gX;))
X — pa((1+¢X;)Xy)
X! o (X4 gX )

It can be proved that the above definition respects the relations
X[ = g7 X[X]
q

so py is indeed a representation of 757, it is irreducible because of the dimension
of V, and by construction verifies px = py o ®9,,. O

Let Zirr(Tg) denote the set of the isomorphism classes of irreducible rep-
resentations of the quantum Teichmiiller space 7§. If Repr(74,C) is the set
of all the (irreducible) representations of the non-quantum Teichmiiller space
T4 in End(C), then Repr(7g,C) is clearly a natural set of representatives for
Rirr(T§)-

Now we have all the elements to state the following classification theorem
for irreducible representations of the quantum Teichmiiller space:

Theorem 3.2.12. Let S be a closed punctured surface with genus g and p punc-
tures such that x(S) < 0 and let ¢ € C* be a primitive N-th root of (—1)N+1.
Then, the application

Rire(Td) — Repr(74,C)
[p] — p*

sending an isomorphism class of a representation p in its non-quantum shadow
p* is well defined and onto. Moreover, the fibre on every element of Repr(Tg, C)
is composed of NP classes in Ri(TS) if N is odd, and by 229 NP classes if N
is even. Fired A\ € A(S) a triangulation, each element of the fibre on p' is
determined by the choices an N-th root of the following functions of the x; =
PA(X;) € C*:

o xlfjlx];jz o ghan forj=1,...,p—1, where k; is the vector associated with

the j-th puncture, as in Definition [1.2.5;

® 1T Tp.

and, if N is even, also by a square root of the xi’“lmé’“ gl fork=1,...,2¢,
where the vectors I, = (g1, - .., lkn) are defined before Lemma .

Proof. 1t is immediate to verify that this application is well defined, in view of
the definition of isomorphism between representations and of Theorem [3.2.10] It
is onto by virtue of the combinations of Theorem and Lemma [3.2.11] Also
the assertion on the cardinality of the fibre follows immediately from Theorem

and Lemma [3.2.11] Indeed, given p' a representation of 7,' and fixed A €
A(S), we can construct an irreducible representation py of 7y with non-quantum
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shadow p} by choosing certain roots as in the statement and, thanks to Lemma
we can extend it to an irreducible representation of 7§ . Different choices
of py, endowed with the same roots, conduce to isomorphic representations.
Moreover, all the possible choices of roots can be realized as invariants of a py
that is part of a representation of 7}, still because of Theorem and Lemma
3.2.11] and this concludes the proof. O

3.2.2 Local representations

Given S a surface and A a certain triangulation of it, recall that a local repre-
sentation of the Chekhov-Fock algebra 7! is an equivalence class [p1, ..., pm],
where p;: T — End(V) ;) is an irreducible representation of 7}‘1]_ for each tri-
angle T in A. We have seen that a local representation [p1,. .., p,] induces a
representation of 7y in the ordinary sense, by defining

pi= (pl R ® pm) oly: 7;:1 — End(V)\J R V/\,m) = EHd(V)\)

Hereafter, with abuse, we will denote a local representation [p1, ..., py,] by the
representation p: Ty — End(Vy).

Definition 3.2.13. A local representation of the quantum Teichmiiller space is
a collection p = {px: T} — End(Vi)} ea(s): Where

e for every A € A(S) the map py: 7! — End(V)) is a local representation
of T,

e for every A\, ) € A(S) there exists a linear isomorphism Lyy : Vi — Vy
such that the representation Lyy o py/ ()0 (L,\X)_l is compatible with py.

The difference between this definition and the one given in[3.2.3|is motivated
by the fact that the vector space in which a local representation of 7y arrives
is naturally endowed with a decomposition as tensor product of vector spaces
associated with the triangles of A\, and there is not a canonical way to identify
decompositions associated with different triangulations.

Definition 3.2.14. Two local representations p = {px: 7/ = End(Va)},ca(s)
and p' = {p\: T = End(V{)},ca(s) are said to be isomorphic if, for every
X € A(S) the representations py and p', are isomorphic (as local representations,

recall Corollary [2.2.7)).

Observe that, in the proof of Lemma [3.2.9] the only property of irreducible
representations used is the fact that py(X7V) is a multiple of the identity map,
so, by replacing py with Ly o px(+) o L;/\l,, the same proof leads us to an
equivalent statement for local representations (in [BBLO7, Proposition 10| can
be found a proof of this fact for local representations, which is less intimidating
that the one of Lemma but it is specifically for the local case). Hence, we
immediately deduce the following theorem for local representations:

Theorem 3.2.15. Given p = {px: T/ = End(Vi)}yea(s) @ local representation
of the quantum Teichmiiller space T, the collection p* = {p}: T,¥ — End(C)}
of the non-quantum shadows of p is a representation of the non-quantum space
T4, called the non-quantum shadow of p.
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The non-quantum shadow of a local representation is defined just as in
the irreducible case. We define the central load of a local representation p =
{ox: T{ = End(Va)} ¢ Aes) of the quantum Teichmiiller space as the central

load of py, for any A € A(S). This is a good definition, in light of Lemma

Definition 3.2.16. Let R and S be surfaces, with S obtained by fusion from
R. Given n = {n,: T — End(W,.)},,cp(r) @ local representation of Ta and
p = {px: T = End(Vi)} ca(s) a local representation of 7, p is said to be
obtained by fusion from 7 if 1, represents py (recall Definition for every
ideal triangulation u € A(R), where A denote the ideal triangulation on S
obtained by fusion from p.

Remark 3.2.17. Tt is possible that there exist representations 7 of 7 such that
there is not any local representation p of T¢ that is obtained by fusion from 7.
For example, take R = T7 U T, and S = @, the square obtained by identifying
a certain couple of edges in 77 and 75. R admits only one ideal triangulation
Lo, so a local representation of T4 is just a local representation of 7. Now
choose a local representation 7,, such that its fusion p) on A, the induced
triangulation on @, has —1 as invariant of the diagonal in A of ). Such a
Nu, can be clearly constructed. Now it is evident that px can not be extended
to a whole representation 7§, because py o ®%,, does not make sense (we are
denoting by A’ the triangulation on @ obtained by diagonal exchange from \),
see Theorem The point is that ', the non-quantum shadow of 7, can
lead to a collection of non-quantum shadows that can not be extended to a
non-quantum representation of ’7'51

Lemma 3.2.18. Let R be a surface (see Chapter@for details), endowed with an
ideal triangulation pu € A(R). Suppose that S is a surface constructed by fusion
of R, and denote by X the triangulation of S induced by p. If px: T,! — End(Vy)
s a local representation of T constructed as fusion of a local representation

: T — End(Vy,) of T, with Vy =V, then the non- quantum shadow ps of
p>\ 18 the fusion of the non quantum shadow pu of pu, i. e. py = pu O lxy-

Proof. We will denote by X; the generators of 7', 7\ (it will be clear which is
from the contest) and by Y; the generators of 7;1, T,1. Recall the definition of
the maps ¢,» and observe

e if )\; is an edge in the boundary of S, then it comes from only one edge
fa; of pin R, so 1,z (X]Y) = (Ya,)N € T)2. Hence
PA(Xi)idv,e..ov,, = pA (X)) = pu (YY)
Pi(y ZdV1® ®Vim

= (p, 0 ®}\)(Xy) idv, g0V,

The same can be said in the case in which )\; is internal, but is not the
result of a fusion of a couple of edges in p.

e if ); is an internal edge of A, which is the fusion of a couple of edges p,,,
b, , then we have

PA(Xi) idvyg.wv,, = pA(X]Y)
= pu((g~ 7" Y, Y, )N)
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= Pu(q ;ibfaé‘ibiN(Nfl)YaIng)
= P,lL( Yy,) idvig--oV,,

(,0 ;D\)( Z) ZdVl@"'®Vm
where we are using the hypothesis ¢ = (—1)V*1.
[

Lemma 3.2.19. Let p' = {p}: T} — End(C)},cx(g) be a representation of
the non-quantum Teichmiiller space Tg. Fiz Ao € A(S) and consider h an N-
th root of @1 ---x,. Then, there exists a local representation p = {px: T\l —
End(Va)}yen(s) with non-quantum shadow p' and such that, for every \ € A(S)
h is the invariant associated with the element H € T\, as in Theorem . In
addition, such a p is unique up to isomorphism of local representations of'TSq.

Proof. Thanks to Lemma if p={px: T = End(Vi)} ca(s) is a local
representation having h as 1nvarlant for a fixed trlangulatlon Ao, then for every
A € A(S) h is the invariant associated with py.

Fix, for every A € A(S), a local representation py: 7,/ — End(V)) with non-
quantum shadow pi and with central load h, which exists by Theorem
In order to prove that this collection of representations is a local representation
of the quantum Teichmiiller space 7¢, Lemma tells us that it is sufficient
to show the compatibility for A and )\ that differ by a diagonal exchange (the
re-indexing case is, as usual, obvious). Split S along the sides of the square
in which the diagonal exchange occurs, obtaining the disjoint union of an em-
bedded square @) and of a surface R, possibly disconnected. Let Ar denote the
triangulation induced by A (and \') on R and Aq, A\, denote the two possible
triangulations of the square @), so that X is obtained by fusion of the triangula-
tion y1 1= AgUAg on QU R, and \" of u' := Ay UAg. Without loss of generality,
we can assume that Q = T7 U Ty = T7 U T4, where the T; and T} are the faces
of the triangulations A and X', respectively. Fixed a representative (p1,...,pm)
of py, the representation py can be realized as the fusion of py, ® pxp, where
Prg = Pp1 @ p2 and py, = p3 @ - @ pp,. Assume for the moment that there
exists a representation

P, :7';{@ — End(VXQ)

such that py, is isomorphic to py, o ®? ,, and let us conclude the proof.
Q Q@ ° Ty,

Denote by p, the fusion of Pr, @ Prg OD S. By construction, the central

load of p), is equal to the central load of p) and so to the one of py/. In addition,
the following relations hold

1 1 1
P = Px o Py

= (Pi\Q ® pip) © bux 0 DAy Lemma 3.2.18
= (P%\Q ® Pry) © ‘I),lmf MY Fusion property
= (ph, © <I>}\Q/\?g ® Pr,) © by Disjoint Union property
= (P%«Q ® Pag) © burx Theorem
= (p\)' Lemma
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Hence, having the same non-quantum shadow and central load, the representa-
tions pys and p), are isomorphic. On the other hand, the representation p), is
isomorphic to py o ®9,, too, indeed

P = (Px, ® Pag) © Luwx

1%

(Pro ® Pagr)© ‘I)Zu/ ol by contruction + Disjoint Union property

1%

(Prg ® pag) © Lun 0 oy Fusion property

— q
=pro Py

Therefore, we have proved that py and py o ®%,, are isomorphic, as desired.
The last thing we need to check is that there exists a local representation
P, such that py, o @KQA, is isomorphic to P - The first obstruction for the
Q

existence of such a Px, is the well definition of the composition p}\Q o @%\Q/\,Q.
The map p}\ ) @}\ y makes sense, because p! is a non-quantum representation
of T4 and, by inspection of the relations defining ®} ,,, this implies p} (X;) # —1.
On the other hand, Lemma tells us that piQ(Xi) is equal to p}(X;).
Therefore we have py,(X;) # —1 and this implies the composition p}\,Q =

p}\Q o (I)}\@ X, is well defined, still by inspection of @}\Q e Now it is sufficient
to choose a representation P, having p}\,Q as non-quantum shadow and the

central load of py, as its own central load, choice that can be done by virtue of
Theorem The uniqueness follows immediately from Theorem [2.2.6] O

Let %ZOC(TS‘]) denote the set of the isomorphism classes of local representa-
tions of the quantum Teichmiiller space T4.

Theorem 3.2.20. Let S be a surface (see C’hapter@for details) and let ¢ € C*
be a primitive N-th root of (—1)N*t1. Then, the application

%loc(Ts{‘l) — Repr(Tgl,(C)
(] — '

that sends an isomorphism class of a local representation p in its non-quantum
shadow p' is well defined and onto. Moreover, the fibre on every element of
Repr(74,C) is composed of N classes in Zioc(Tg) and each element of the
fibre on p' is determined by the choice an N-th root of the x1xy---,, where
z; = pi(Xi), for a certain X € A(S).

Proof. Tt is analogous to the proof of Theorem we only need to make
use of Lemma [3.2.19 and Theorem 2.2.6] instead of Lemma [3.2.17] and Theorem
2.1.9 O

3.3 Pleated surfaces

In this Section we restrict our attention to the case in which S is a closed
punctured surface, i. e. it is obtained from a closed orientable surface~§ by
removing p > 1 punctures, with x(S) < 0. We will always denote by p: S — S
the universal covering of S.
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24

om® A

Figure 3.2: Shear-bend coordinates

Definition 3.3.1. Given A € A(S) an ideal triangulation, a pleated surface
with pleating locus A is a pair (f,r), where f: S — H3 is a continuous map
from S to the 3-dimensional hyperbolic space H? and r: 7 (S) — PSL(2,C)
is a group homomorphism from the fundamental group of S in the group of
orientation-preserving isometries of H?, such that:

e if \ is the preimage in S of the ideal triangulation A of S, then fhomeo-
morphically sends each edge of A in a complete geodesic of H?;

. ]""V homeomorphically sends the closure of each component of S \ X in an
ideal triangle of H3;

) f is r-equivariant, i. e. for every v € m(S) and for every ¥ € S we have

FO@) = r() (@)

Let (f, r) be a pleated surface with pleating locus A, let A; be an edge of
A and choose X a preimage of \A; through the universal covering p: S = S.
Fix arbitrarily an orientation on ); and the induced one on A;. Denote by T;
and T, the components of S \ X on the left and on the right, respectively, of i
(remember that S is orlented) Let 24,2z € OH? be the ends of the geodesic
F(X\), the one in which f()X) converges and the one from which it comes from
respectively. Moreover, let z; be the vertex of the triangle ]?(Tl) opposite to the
edge f(Xz) and analogously z, for f(TT) (see Figure . Now we define z;,
namely the exponential shear-bend parameter of the pleated surface (ﬁ r) along
i, as the complex number

(Zl — Z-‘r)(ZT’ B Z—) (38)

S PR [ PR

It is clear from the definition that x; does not depend on the choice of the
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orientation of \;, because of its symmetries as function of z_, z;, 2z;, z,.. It does
not depend on the lift sz of \; either, because fis r-equivariant and r acts by
isometries, so any automorphism in 71 (S) preserves x; (recall that orientation
preserving isometries of H? act like projective isomorphisms of OH? and hence
they preserve cross ratios). Observe that, by post-composing f with a certain
isometry, we can suppose that, in the half-space model of H3, the boundary
points z;,z_,2 are equal to 00,0,—1 € C := C U {oc} = 9H?3, respectively.
Then the shear-bend parameter associated with \; assumes the following form

—~

—1—00)(z — 0)
(=1 =0)(2, — 0)

Ty = — = Zr
Consequently, the argument of z; is equal to the external dihedral angle of the
ridge of f(9) along A;, and log|z;| is the signed distance between the intersec-

tions of f();) and the two geodesics in H? that are perpendicular to f(\;) and
that arrive in the points z; and z, of OH?, respectively (see Figure [3.2)).

Definition 3.3.2. Two pleated surfaces (f, r) and (f’, r’) are isometric if there
exist a hyperbolic isometry A € PSL(2,C) and a lift ¢: S— Sofa isotopically
trivial diffeomorphism of S such that, for every v € m1(S), we have r'(v) =
Aor(y)o A~ € PSL(2,C) and /' = Ao fo &

Proposition 3.3.3. Let A € A(S) be an ideal triangulation. Two pleated sur-
faces (f, r) and (ﬁ,r') with pleating locus \ are isometric if and only if they
have the same shear-bend parameters x; € C* for every edge \; in A\. Con-
versely, every set of weights x; € C* on the edges of A\ can be realized as the
shear-bend parameters of a pleated surface with pleating locus A.

Proof. Fix \; an edge of A whose shear-bend coordinate is x; # —1, and Xi a
lift of A; to the universal covering S. Moreover, choose an arbitrary orientation
on \;. Let z_, zy, 2z and z. be the points in OH3 associated with (f,r) as
described above, and analogously 2’ , 2/, 2/ and z, for (f’,r’ ). Then we can
find an orientation-preserving isometry A € Isom™ (H?®) that takes the ordered
triple (2, 2—, 24 ) in (2], 2", 2/.). Now it is immediate to check that, since (f.r)
and (f’, r’) have the same shear-bend coordinates, the maps Ao f and f’ sends
each edge of X and each component of S \ X in the same geodesic and in the
same ideal triangle. Moreover, the following holds

Aor(y)o A7l =7'(y)

for every v € 71(S). In conclusion, we can easily construct a 7 (S)-equivariant
isotopy ¢: S — S with @0 = idg and such that Ao fo @ is equal to .

To prove the second assertion, it is clear how to construct fon a fundamental
domain for S in order to obtain the candidate shear-coordinates, then it is
sufficient to extend it by r-equivariance on all S. O

Definition 3.3.4. A peripheral subgroup m of 71(S), the fundamental group of
S, is a subgroup obtained in the following way: there exist a puncture of S, a
small neighbourhood A of it and a choice of base points and paths such that m
is the image of the map induced by the inclusion 71 (A4) — 71 (5).

We will denote by II the set of all the peripheral subgroups of 7 (.5).
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Let A be the preimage of A through the universal covering p. Then each
component of A corresponds to a certain peripheral subgroup. If A is a compo-
nent corresponding to the subgroup 7, then the images under f of the triangles
of § \ A that meet A, all have a vertex z; € C = 9H? in common, and this
vertex is fixed by all the isometries in r(7). So f associates with each periph-
eral subgroup 7 a point z, € C in the stabilizer of r(m). This association is
r-equivariant, in the sense that z,.,-1 = r(v)(zx) for every v € 71(S) and 7
peripheral subgroup.

Definition 3.3.5. An enhanced homomorphism (r,{zx}.cr) from m1(S) to the
group PSL(2, C) consists of a group homomorphism r: 7 (S) — PSL(2,C) and
a r-equivariant assignment of a fixed point z, € C to each peripheral subgroup
7 of m1(9).

An enhanced homomorphism (7, {zx},.cp;) realizes the ideal triangulation A
if it is associated with a pleated surface (]7, r) with pleating locus A, as above.
It is peripherally generic if it realizes every ideal triangulation A of S.

Lemma 3.3.6. Every enhanced homomorphism (v, {2z}, cp) in which r is in-
jective is peripherally generic.

Proof. We want to show that, because of the injectivity of r, there can not exist
m, 7" peripheral subgroup such that z; = z,. Suppose, by contradiction that
this happens, then we would have that both r(7) and r(n’) are contained in
the stabilizer in PSL(2, C) of the point z; = 2, € H3, which is isomorphic to
Aff(C), and so solvable. Hence we would have that the subgroup generated by
m and 7/, which is free of rank 2, would be embbedded through r in a solvable
group, and so it would be solvable too, which is absurd. So the association
7w+ zp € C is injective. _

Therefore, we can construct a pleated surface (f,r) with pleating locus A by
sending each XZ—, lift of some J;, in the complete geodesic in H? joining the points
Zmy Znt € OH? associated with the peripheral subgroup corresponding to the ends
of A;. This operation can be done r-equivariantly, and leads us to a f defined
on A. Now we send every component T of S\ A\, with boundary /\ U U )\k,
in the unique triangle in H? that has as edges the geodesics f( i)s f(/\ ), f(/\k)
Even in this case the definition can be done in order to obtain a r-equivariant
map f defined on all S. O

Lemma tells us that the set of peripherally generic enhanced homo-
morphisms contains a large class of geometrically interesting homomorphisms.

Observe that a generic homomorphism 7: 71(S) — PSL(2,C) admits a few
possible enhancements. Indeed, if the subgroup () is generated by a hyperbolic
or elliptic transformation, then it has exactly two fixed points in OH?, the ends
of the axis of (). If r(7) is parabolic, then it has only one fixed point in OH?,
so there is a unique enhancement that can be realized. The unique case in which
we have infinite possibilities is the one in which r(7) is the trivial group, but it
is clear that this is non-generic.

Definition 3.3.7. Two enhanced homomorphisms (7, {zx},cr), (7', {2} rem)
are said to be conjugated if there exists an isometry A € PSL(2,C) such that
r(y) = Aor'(y) o A7t for every v € m1(S) and z, = A(z.) for every peripheral
subgroup 7 € II.
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We can associate, with each non-quantum representation p} : 75\ — End(C),
the isometry class of a pleated surface (fy,rx) with pleating locus A € A(S)
realizing the numbers x; := p*(X;) € C* as shear-bending coordinates, and this
map is well defined by virtue of Proposition [3:3.3] It is clear that two isometric
pleated surfaces provide two conjugated enhanced homomorphisms, so we have
described a way to associate with a non-quantum representation p}: T,!
End(C) the conjugation class of an enhanced homomorphism (7, {2}, cp)-

Lemma 3.3.8. Let A\, X € A(S) be two ideal triangulations of a surface S, which
differ by a diagonal exchange or a re-indezing. Given p}: Ty} — End(C) and
py i Ty — End(C) two compatible non-quantum representations, i. e. p3, =
pio®l,,, then the pleated surfaces (]F,\, r)) and (ﬁ\/, T\), associated with p} and
pi, respectively, define the same conjugation class of enhanced homomorphisms
(r{zn frem), with T =17y =1

Proof. When ) is obtained by re-indexing from ), the assertion is obvious.
Hence we assume that A’ is obtained from A\ by diagonal exchange along ;.
Choose a component ); of the preimage of A;, with an arbitrary orientation, and
denote by T; and T, the triangles on the left and on the right of \;, respectively,
and by Zoy 2y, 212 € C* the vertices as prev10usly done. We label as @Q; the
square . )\ U Tl U T in S having )\ as dlagonal in A and )\’ as diagonal in X
where )\i is the component of the preimage X of X in S that is contained in Q;.
Q; is also equal to \, U T} UT!, where T} and T/ are the triangles in S on the
left and on the right, respectively, of X; in Q;.

By hypothesis, the composition p}, o ®},, is well-defined, hence z; # —1
or, equivalently, the points z; and 2, are distinct. Then it is reasonable to
consider the geodesm s joining z_ and 2 Now we modify f) in order to
obtain a - map f>\7 which sends the diagonal )\’ in the geodesic s and the triangles
Tl and T/ in the ideal triangles Conv(z_, z;, 2r) and Conv(zy, 21, 2,). Now we
perform the modification of f)\ on all the components of the preimage of A; in
a ry-equivariant way by acting with the deck transformations. The resulting
pleated surface, with pleating locus X, is composed of the new map f} and the
homomorphism 7, as (f,\, ), and its enhanced homomorphism (7, {2 }cr)
is exactly the same of (]?A, r)), by construction.

Now, showing that the shear-bend coordinates of (ﬂ\, r)) are the ones defined
by pl o ®,, then we will conclude that (f},rs) and (f},r}) are isometric
and in particular that they lead to the same conjugation class of enhanced
homomorphisms, as desired.

We should consider all the possible configurations of the square in A with
diagonal \; as in the proof of Theorem We will focus on Case 4 only, i.
e. when \; = )\ and A\, # Ay, as in Figure The other cases can be treated
in the same way. ); is an embedded square and the condition )\] = )\l tells us
that there exists a deck transformation v € 7T1(S) such that v(\) = /\ If the
vertices of f,\ (Q:) are labelled as z_, z;, 24, 2z € (C starting clockwise from the
corner )\ N )\k, then the shear-bend parameter of f » associated with A; and the
one of f;\ associated with X; are related in the following way

= 7(27, —z_ )z — 24) L (z— — 21) (24 — 21) ol

(zr — 24) (21 — 2-) (- —z)(z4 —2)
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The edge Xk is mapped under J?,\ in a diagonal of the ideal square having
vertices z4,2_, 2 and zj, for some z; € C. The original coordinate relative to
>\k is
(zk —21) (24 —2-)

(21 = 2-)(24 — 21)

T = —

and the new one is
/ (zk — 20)(2r — 2-) —1y-1

and in the same spirit =/, = 1+ m;l)*lmm. The case of A\; = A; is different

because of the identification. In A the edge A; is the diagonal of a square whose
vertices go under fy in z_ = r(y)(z1), 2+, r(7)(2r) = 2z and 7(7)(2-), whereas
A} is the diagonal of a square whose vertices go under fy in z— = r(v)(z), i,
zr = r(y)(2z4) and r(y)(z-). Then we have

) ) ) (e — )
T M) — ) — )
,_ r()(e) = () (@) — =)

Y5~ () (ze) = () (z4) (2 — 2-)

)
( )
() = 1) ) = 22) (1)) = 1()(4)) (24 = 2-)
(r(M () = rMED) (= 22) (r()(E-) = (@) = 2)
= (ZZ_ZT>(Z+—IZ7) 2!@‘— T 2;[:,
- <(Zl —z-)(z4 zr)) i =1+,

and this relation concludes the proof, in light of the explicit relations exhibited
in the proof of Theorem [3.1.1] O

Zj

Proposition 3.3.9. Buery representation p' = {p}: T} — End(C)},c, s
of the mon-quantum Teichmdiller space Tsl uniquely determines a conjugation
class of peripherally generic enhanced homomorphisms (r, {2z} .c) such that,
for every A € A(S) (r,{zx}.cn) 45 the enhanced homomorphism associated

with a pleated surface (jN}\,r) with pleating locus A\ and shear-bend coordinates
z; == py(X;) € C*. Moreover, two representations 0f7tg1 leading to the same
conjugation class of enhanced homomorphisms must be equal.

Proof. The first part of the assertion is an immediate consequence of Lemma
In order to prove the second statement, let p and p’ be two non-quantum
representations that lead to two conjugated enhanced homomorphisms. Fix
A € A(S) an ideal triangulation and construct (fx,rx) and (f3,73) two pleated
surfaces with shear-bend coordinates given by py and p), respectively. Possibly
by replacing (f,rx) with (Ao fy, Aoryo A1) for some A € Isom™ (H3), we can
assume that r = r) = r} and that the set {2} . is the enhancement induced
on r by both f,\ and f/’\

Now fand f’ must send each component of X in the same geodesics, because
the ends are obliged to go in the same points z_ and z,, determined by certain
peripheral subgroups. Then it is sufficient to repeat the procedure described in
the proof of Proposition in order to prove that (fx,rx) and (f},r)) are
isometric, and in particular that they have the same shear-bend coordinates,
which clearly implies the equality of py and p. O
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Proposition 3.3.10. Let (r,{zx},c) be an enhanced homomorphism from
71(S) to Isom™ (H®) which is peripherally generic. In particular, for any two
ideal triangulations A\, N € A(S), it associates weights x; € C* with the edges of
A, and weights z; € C* to the edges of N'. If we denote by p}: T} — End(C)
and p},: T, — End(C) the non-quantum representations defined by

p%\(Xl) = T; idc
pa(X}) = aide

then the two representations are compatible, i. e. p}, = p}\ o @}\/\,,

Proof. The proof of the previous Proposition shows that, given a peripher-
ally generic enhanced homomorphism (r, {zr},. ;) and taken two pleated sur-
faces with pleating locus A that both lead to the enhanced homomorphism
(r,{zx}rem)s then they are isometric. Therefore, the induced non-quantum
representation p} is well-defined and independent from the choice of the pleated
surface.

Now, to prove the assertion, it is sufficient to consider the case of A and )\
that differ by a diagonal exchange along the edge A;, thanks to the Composition
relation for ®},,. Fix a pleated surface (fy,r) with pleating locus X that realizes
(r,{2x }ren) @s induced enhanced homomorphism, and assume for a moment

that x; # —1. Then we can perform the modification of (]?,\,r) done in the

proof of Lemma in order to obtain a pleated surface (ﬂ\, r), with pleating
locus X, shear-bend coordinates p} o ®3,, and having (r,{zr},cp;) as induced
enhanced homomorphism, and this concludes.

It remains to prove that (ja,r) has shear-bend coordinate x; # —1. As

before, fix a lift A; of A; and an arbitrary orientation on it, and let z_, 2z, 2, 2,

be the corresponding points. z; = —1 if and only if z; = z,, but this can not
happen because (7,{zx}, <) is peripherally generic, so in particular it can be
realized by the ideal triangulation A;()). O

Theorem 3.3.11. There exists a bijection between the set of conjugation classes
of peripherally generic enhanced homomorphisms (r,{zx} .c), from m1(S) to
Isom™ (H?), and the set of non-quantum representations

pt={pi: T = End(C)} e (s

of the non-quantum Teichmiiller space T4, which sends the conjugation class of a
peripherally generic enhanced homomorphism (r,{zx}.cy) in the non-quantum
representation of T4 in which, for every X\ € A(S), p} is defined by the relation

o5 (X)) = z;ide

for every X; generator of T!, where x; is the shear-bend coordinate associated

with A; for a certain pleated surface (f,r) having (r, {2z} ren) as enhanced ho-
momorphism.

Proof. In order to obtain the assertion, it is sufficient to combine Propositions

3.3.10 and [3.3.9] O
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Denote by &7(S) the set of conjugation classes of peripherally generic en-
hanced homomorphisms (r, {2 }..), from 71(S) to Isom™* (H?). Starting from a
quantum irreducible (resp. local) representation p, we can associate with it its
non-quantum shadow p', and consequently construct the corresponding conju-
gation class of peripherally generic enhanced homomorphisms [r, {z.}. ], which
we will call the hyperbolic shadow of the irreducible (resp. local) representation
p. Now we can combine this result with our Classification Theorems for local
and irreducible representations and obtain the following statements:

Theorem 3.3.12. Let S a closed punctured surface, with x(S) < 0 and let
q € C* be a primitive N-th root of (—1)N*L. Then the application

Rirr(TS) —  EH(S)
[p] — [ {ze )]

which sends an isomorphism class of an irreducible representation p in its hy-
perbolic shadow [r,{z.}._| is well defined and onto. Moreover, the fibre on every
element of &(S) is composed of N classes in Rirr(T3) if N is odd, and by
229 NP classes if N is even. Fized X € A(S) a triangulation, each element of
the fibre on [r,{zx}.] is determined by the choices an N-th root of the follow-
ing functions of the shear-bend coordinates x; € C*, associated with a certain
pleated surface (fx,r) with pleating locus X realizing [r,{2x},] as enhanced ho-
momorphism:

k1 kj Ejn ) . . )
o w7 wy’ - ay" forj=1,...,p—1, where kj is the vector associated with

the j-th puncture, as in Definition|1.2.5;
® T1X2 " "Tp.

and, if N is even, also by a square root of the a:llklxlz’“z coeglen fork=1,...,2¢,
where the vectors ly = (lg1, ..., lgn) are defined before Lemma ,

Theorem 3.3.13. Let S be a surface (see Chapter@for details) and let ¢ € C*
be a primitive N-th root of (—1)N*1. Then, the application

<%100(723('1) — g%(s)
[p] — [ {zr )]

that sends an isomorphism class of a local representation p in its hyperbolic
shadow [r,{zx} | is well defined and onto. Moreover, the fibre on every element
of £H(S) is composed of N classes in Ryoc(TS). Fized X € A(S), each element
of the fibre on p' is determined by the choice an N-th root of the x1xs - - Tp,
where the_x; are the shear-bend coordinates associated with a certain pleated
surface (fx,r) with pleating locus X\ realizing [r,{zx}.] as enhanced homomor-
phism.

3.4 Irreducible decomposition
for local representations

In this Section we will always assume N odd. Moreover, we will consider closed
punctured surfaces S, with genus ¢ > 1 and with s + 1 punctures vy, ..., v;.
Recall that, in these hypotheses, the following relation holds

m=-2x(S)+2(s+1) =49 —2+2s
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where m denotes the number of ideal triangles composing an ideal triangulation
of S. Fix an ideal triangulation A € A(S) and p: 7Y — End(V) a local rep-
resentation of the Chekhov-Fock algebra 7, with invariants ; € C* for every
i=1,...,nand h € C*. In Theorem [2.1.9| we have proved that every irreducible
representation 7 of 7\ is classified up to isomorphism by the following data:

e for every i = 1,...,n a number z; € C* such that n(X}) = z; id;

e for every j =1,...,s (observe that we are not considering the 0-th punc-
ture) an N-th root t;/N of

such that n(P;) = tjl/N id;

e an N-th root h of
1‘1 .. -.rn

such that n(H) = hid.

Given a € C a complex number, we denote by U(N, «) the set of the N-th
roots of a. We are going to prove the following result, exposed in |[Toul4]:

Theorem 3.4.1. Let S be a surface with genus g > 1 and with s+ 1 punctures.
Moreover, fix q a primitive N-th root of unity, with N odd, an ideal triangulation
A€ A(S) and p: T} — End(V) a local representation of the Chekhov-Fock
algebra T\ having invariants x; € C* for every i = 1,...,n and h € C* as
central load. Then, for every d = (dy,...,ds) in

U= Hu(N,tj(l'law'axn))

j=1
the subspace
Va={veV|p(P)(v) =djv for every j=1,...,s}

s invariant for the representation p. For varying d, we obtain a direct sum
decomposition of V' on which the representation p splits as p = @ ;¢ 2, with

pi : 'T)? — End(Vd)

Moreover, for every d € U, the subspace Vy has dimension equal to N49—2+p
and the representation p is isomorphic to a direct sum of N9 irreducible repre-
sentations p%, all having central load equal to h, invariants for the j-th puncture
equal to d; for every j = 1,...,s and invariants for the edges equal to x; for
everyi=1,...,n.

Observe that the decomposition of p given by &, p? is natural and it does
depend only on the representation p. Nevertheless, the irreducible decomposi-
tion of each p? is not unique.

We will firstly focus on the case in which the ideal triangulation is con-
structed with the following procedure: fix A an ideal triangulation of S U
{v1,...,vs} = S\ {vo}, where vy,...,v, are the punctures of S. Now choose
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a triangle of A such that 7' D {v1,...,vs} and define the triangulation A on S
produced by taking Aon S \ 7" and the triangulation in Figure on 7. The
number of triangles in A\ composing S\ T is 4g — 3 and the triangles composing
the triangulation on T are 2s + 1.

Now, given p a local representation of 7}17 we choose a representative of p
and we label it as follows

e we denote by py the representation on the algebra of the triangle Tp, with
values in End(W?);

o we denote by pi, and pj, the representations on the algebras of the triangles
T). and T} respectively, with values in End(W*) and End((W*)"), for
k=1,...,s;

e we denote by p the tensor product of the representations on the triangles

not contained in 7', with values in End(W).

Consequently, the representation p is the equivalence class of the representation

o @ Qo © pi) @ p
k=1

with values in

V=w'e@We W) eW=weWw
k=1
Having fixed a representative of p, we are able to define an action of the elements
p(P;) on the single terms WO Wk and (W*)'. Indeed, fixed j € {1,...,s} and
k € {0,...,s}, we define the element Y}, € Tﬁk as follows: denoting with

X{k), Xék), Xék) the generators of ’Tiﬁk associated with the edges of T}, we define
Yip =X at® (we are using the notation introduced in relation . The vector
ak) ¢ {0,1,2}3 has components aﬁlk) for h = 1,2,3 and aglk) is equal to the
numbers of ends of the side of T} corresponding to X ,(Lk) that are identified in

Vo Vo

To

U1

Vo

Figure 3.3: The triangulation on T’
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A with v;. Analogously we construct the elements Yj',C € T} for every k €
k
{1,...,s}. In this way, for every j =1,...,p we have constructed a monomial

YVjo@Yn®Y,®---®Y;,0Y®1

that belongs to the algebra

S

T8 = Th o QTE & ) & T3

0o X\T
k=1

where g is the ideal triangulation on the surface obtained by splitting S along
all the edges of A\. This tensor split element has the property that

(Yo @Y @Y @ 0Y; @Y/, @l) =P eT]
for every j =1,...,s. Hence we have
p(F;) = po(Yjo) @ pr(Yj1) @ pi (Y1) @ - @ pr (V) @ pr (V) @ 1

With this explicit tensor split decomposition of p(P;) we can define the following
actions
Pj - vo = pr.(Yjo)(vo) Yoy € WP
P; - (ve @ vi) = (pe(Yj) @ o (Vi) ok @ v)  Vop @ v € WF @ (WFEY
For the moment assume further that p has invariants z; = 1 for every

i =1,...,n and central load h € U(N) := U(N,1). Then we can choose a
representative

po® Q)(pr @ pl) @ P
k=1

of p having all the invariants on the edges of \g equal to 1 and all the central
loads of the triangles in U (N). Now, given ¢ € U(N)*, we define the following
sets

WQO ={z e W' | Pj-z=cjz foreveryj=1,...,s}

ng = {xGWk®(Wk)’ | Pj-x=cjx foreveryj=1,...,s}
for every k=1,...,s.
Lemma 3.4.2. In the assumptions above, the following relations hold:

1.

Jim 0 — 1 ifc; =1 foreveryj #1
€ 0 otherwise

1 ifec; =1 forevery j ¢ {k,k+1}

dim WF = ,
= 0 otherwise

foreveryk=1,...,s—1;
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dim W* = {N if ¢j = .1 for every j # s

= 0  otherwise
Proof. 1. 1If j # 1, then the vertex v; does not belong to Ty, so Yo =1 € T:,?D.
This means that, for every j # 1, the element P; acts on WO as the identity. In
particular, if there exists an index j # 1 such that ¢; # 1, then we have W? = 0.
Hence we can assume c; = 1 for every j # 1. In this assumption the following
equality holds

Wo={zeW' | P -z=cu}

Labelling the variables corresponding to the edges of Tp as in Figure [3.4] we
see that Yip = ¢~ 'Y Z. If Hy is the central element of 7'7?0 and hg the central
load of pg, then we have

po(Y10) = po(q~ 'Y Z)
= po(q~ 'Y ZHy " H)
=hopolg 'Y ZqZ 'Y 1X )
= ho po(X) ™"

As seen in Proposition the spectrum of po(X) is equal to U(N) and every
eigenvalue has multiplicity 1. Hence we have dim W£0 =1 for every ¢ such that
c; = 1forall j#1.

2. Given ke {l,...,s—1} and j ¢ {k,k + 1}, the vertex v; does not belong
to neither Ty, nor Ty, so Yy, = 1 € T/ and Y}, =1 € ’qu;. This means that,

for every j ¢ {k,k + 1}, the element P; acts on W* @ (W*)’ as the identity. In
particular, if there exists an index j ¢ {k, k+ 1} such that c¢; # 1, then we have
WPF = 0. Hence we can assume c¢; = 1 for every j & {k,k + 1}. In this case, the
following equality holds

ngz{xGWk@(Wk)’\Pk-x:ckx, Py -z =cpp1a}

We want to study how Py, and Py 1 act on W* and (W*)’. We label the variables
corresponding to the edges as in Figure

Vo Vo

Vk+1

Figure 3.4: Notations for Ty, T} and T},
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With calculations similar to the ones done in the previous part of the proof,
we can prove that
Wk as hip Z~1
(WF) as hy(2")~
Wk as hpY !
(W) as hp(Y') ™!

Py, acts on {

Pr41 acts on {

Recalling what seen in Proposition we can select a basis {e{,...,€y_1}
of (Wk)" such that

Pe(X') = Iy, By
pr(Y') = B>
pr(Z") = Bs

~

where the equality holds in the coordinates induced by this choice of basis
{eo,...,€_1}, the B; are the matrices introduced in the proof of Proposition
and hj, is the central load of pj,. In the same way, we can select a basis
{e0,...,en—1} of W such that

pr(X) = hy By
pr(Y) = Bo
pi(Z) = B3
where B is the matrix B;; := B;; for every i,j (B;; is denoting the complex

conjugate of B;;) and hy is the central load of p). The reason why we must
consider the conjugate matrices is that the edges X,Y, Z are ordered counter-
clockwise instead of clockwise. From these equalities we deduce the following

Py-ep=hpg e vie{0,...,N -1}
Py €)= hi¢g" " ey vie{0,...,N -1}
Pri1-ep=hrer— vie{0,...,N—1}
Pyiq-ep=hje 1 vie{0,...,N—1}

Denote by ex; € Wk ® (WF) the element e, ® €], for k,1 € {0,..., N — 1}, and
by ap, m the vector

N-1
- E 2h
Qpm = q m€h,h+n
h=0

Then, with simple calculations, we see that
Pk CQpom = hkh;gq2(n_7n)an,m
Pk+1 cQpom = hkh;qq%nan,m

The set {nm | n,m = 0,...,N — 1} is a basis of W* @ (W*)’ and, thanks
to the achieved relations, it is a basis of eigenvalues for both Py and Py
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on W* @ (Wk)'. The number hih} is an N-th root of unity and for every
Cks Ck+1 € U(N) there exists a unique couple (n,m) € Z3% such that

¢; = hy, h;ch(”*m)
Ci+1 = hk h;ﬂqu

So, for every ¢ € U(N)® such that ¢; = 1 for every j ¢ {k,k + 1}, there exists
a unique ay ,, which is both a ci-eigenvector of P, and a cj1-eigenvector of
P41, and so

dimWJ =1

as desired.

3. If there exists a j € {1,...,s — 1} such that ¢; # 1, then W is equal to 0,
because all the P; acts on W* ® (W*)" as the identity when j # s. It remains
the case ¢; = 1 for every j # s. In these assumptions, we have

We={zeW*'®(W?") | P ax=ca}
Thanks to the previous calculations, we see that
Ps cQpm = hsh;qz(n_m)an7m

where the o, ,, are defined as in the previous Section. Hence we have that
dim W > N for every c¢; € U(N). On the other hand, the following holds

N? =dim(W* @ (W*))= > dmW;> > N=N?
cs EU(N) cs EU(N)

So dim W7 = N for every c such that ¢; =1 for every j # s. O

Proof of Theorem[3./.1. We firstly deal with the case in which p has invariants
x; =1for every i =1,...,n. Fixed ¢ € U(N)*, we have the following inclusion

V.o @ Whe--aWiaW)

c0

~cS=c

A (s 4 1)-tuple of ¢’ verifying [], ¢’ = c is associated with a non-zero subspace
Wh®--- @ Wi @ W if and only if the following relations hold

c? =1 for every j # 1

=1 for every j ¢ {k,k+ 1} and k€ {1,...,s — 1}
ci=1 for every j # s

c1 = el

ey = cic3

cs =ci1es

The number of solutions of this system of equations is exactly N°. Hence there
are exactly N® non-trivial addends in the above expression and each of them
has dimension

1. 1-N.N9-3 = Ny49-2
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Therefore, we have shown that dim V, > N%972%5 for every ¢ € U(N)*. On the
other hand

N4972+25 —_ dlmV 2 Z ‘/Q 2 Z N4g72+s — N4972+28
cE€U(N)® cEU(N)*®

SoV =@,V and dimV, = 49 — 2 + s for every c. Every V; is obviously
invariant for the representation p: indeed, every eigenspace of a central element
is invariant under the action of the representation p; the subspaces V. are inter-
sections of eigenspaces of the elements p(P;), so they are invariant. Being V' the
direct sum of these subspaces, we have proved the existence of the decomposition
p =P, p¢ when p has invariants z; = 1 for every i.

If p is a generic representation of TXq, we can choose, for every i = 1,...,n,

an N-th root y; on x;, the invariant of p associated with the i-th edge of \, and
define

p(Xi) = y; ' p(Xs)
The map p is indeed a representation of the algebra ’7;?0 and has invariants on

the edges equal to 1. Moreover, the images of the elements P; under p are equal
to B, p(P;), where §; is

g~ Zi<m Otmkjikim yfil Ceyln

that is a certain N-th root of ¢j(x1,...,2,) = x’f-“ 2B Now, fixed d an
element of

U= Ut .. x))
j:l

we observe

Vf:{mev | p(P;)(z) =djx for every j=1,...,N}
={z eV |p(P)(x) zﬁfldjx for every j=1,...,N}

where ¢ € U(N)* is defined by ¢; := ijldj € U(N). From what proved in the
first part we deduce that ~
V=@V

deu

Notice that V" is invariant under the action of p, because it is an intersection

of eigenspaces of central elements, just as in the previous case. This proves

the first part of the assertion and the relation dim Vg = N4972+5 when \ = \.

Furthermore, the observations above prove that:

Remark 3.4.3. Fixed X\ € A(S) a certain triangulation, knowing that the first

part of the assertion holds for a certain isomorphism class of representation on
V, we can deduce that the same holds for every local representation on 7.

In the following we will prove that the first part of the assertion holds for
every A € A(S) and finally we will deal with the irreducible decomposition. By
virtue of what said above, it is sufficient to prove that for every A € A(S) there
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exists a local representation 7} verifying the condition. S is a closed surface
having genus > 1 and at least a puncture. Hence there exists a complete finite-
volume hyperbolic structure, having holonomy r: m(S) — PSL(2,R). By The-
orem there exists a local representation n = {ny: 7! — End(VA)}AeA(S)
of the whole quantum Teichmiiller space having hyperbolic shadow r. Therefore,
for every A € A(S) the composition 7y o . makes sense and it is isomorphic
to mx. So there exists a linear isomorphism L: V) — Vi such that, for every
XeT)]

(ny o @1 )(X) = Lom(X)o L™ (3.9)

The element 7y is a local representation of 7}1, so we know that the decompo-

sition
vy =P x)z
deu

is preserved by 71y and, by virtue of relation every subspace L™!((Vy)7) is
invariant under 7. Moreover, as observed in Lemma the elements P; in
’TX‘I go under <I>‘/1\X in the P; in 7, so it is immediate to see that the spaces
L™'((Vx)z) are exactly the (Vy)7 related to nx. This proves that, for every
A € A(S) there exists a local representation of 7, that verifies the first part of
the assertion. Thanks to the previous remark, we have concluded the proof of
the first part of the assertion and the dimension relation.

For what concerns the last part of the statement, fixed p a local representa-
tion of Tf, we can choose a representative p1 ®- - -®py,, with py: TZ%-, — End(V).
For every k = 1,...,m, we can fix a basis of V} in which p; is represented by
multiples of the B;, introduced in Proposition By taking the tensor prod-
uct of these bases, we obtain a standard presentation of p. If we endow the
space V1 ® --- ® V,;, with the hermitian product in which this selected basis is
orthonormal, we obtain a conformal class that is preserved by the action of the
generators X; € 7\ via the representation p. This is an immediate corollary of
the fact that the matrices B; are unitary. Consequently, if V'’ is a subspace of
Vi ® -++ ® V,, invariant under the action of p, then the same holds for (V')*.
Moreover, if V' is a subspace of Vj invariant under the action of p2, then the
same holds for (V’)+, where now we are taking the orthogonal in V instead
of the whole V. From this fact immediately follows that every pZ is the direct
sum of irreducible representations p;i. The numbers of these representations is
N49-2+s=(39-2+s) — N9 because every irreducible representation has dimen-
sion N3972+ as seen in Theorem Moreover, because on Vg every P; goes

under p¢ in d; id, all the p;i have the same invariants and so they are isomorphic
to each other. This concludes the proof of Theorem [3.41] O



CHAPTER 4

Intertwining operators

Let p = {pr: Ty — End(Va)}yea(s) and p' = {p}: ! — End(Vy)}yeacs) be
two isomorphic local representations of the quantum Teichmiiller space T¢. By
definition, for every A, X € A(S), the representations py o ®%,, and py are
isomorphic and py itself is isomorphic to p),. Therefore, there exists a linear

isomorphism L2, : VY, — Vj such that
(b2 0 B4, )(X') = L5G, o gy (X') o (LE5,) (41)

for every X’ € T{}. Such a Lﬁf\l, is called an intertwining operator. In general,
fixed p, p’ and A, ), there is not a unique intertwining operator. For example,
by multiplying a certain Lﬁf\’/ by a non-zero scalar, we clearly obtain another
isomorphism that verifying the condition above. When two linear isomorphisms
A, B differ by a non-zero scalar, we will briefly write A = B. Actually this is
not the only difference that can be observed between two intertwining operators
verifying [4.1] Indeed, we have seen in Section [3.4] that, in the most interesting
situations, local representations are far from being irreducible, so they admit
a lot of non-trivial automorphisms (see for example the case p = p’ and A =
). One of the main purposes of [BBL07| was to select a unique intertwining
operator E’;@\,, for every p, o', A\, A, by requesting some additional properties on
them. More precisely, one of the results stated in [BBLO7| was the following
theorem:

Theorem ([BBLO07, Theorem 20]). For every surface S (see Chapter|(] for

details) there exists a unique family of intertwining operators L%, , indexed
by couples of isomorphic local representations of Tg and by couples of ideal
triangulations A, X' € A(S), individually defined up to scalar multiplication,
such that:

COMPOSITION RELATION: for every A, N, N € A(S) and for every triple of
o~ 17 ~ ’ o~ 1 I
isomorphic local representations p, p', p'’, we have L83, = LS, 0L8 £, ;

FUSION RELATION: let S be a surface obtained from another surface R by
fusion, and let A\, N be two triangulations of S obtained by fusion of

81
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two triangulations p, 1’ of R. If n,n’ are two isomorphic local repre-
sentations of T and p,p’ are two isomorphic local representations of

Td obtained by fusion (recall Definition|3.2.16) fromn,n’ respectively,
then we have EZZ, = f’;’;\,.

However, in the investigation of the ideas exposed in [BBL07|, we have found
a problem that compromises this statement, in particular the possibility to select
a unique intertwining operator for every choice of p, p’, A\, \'.

Let us try to describe this obstruction. Let A be an ideal triangulation of
S. Denote by Sy the surface obtained by splitting S along all the edges of the
ideal triangulation A. Sy admits a unique ideal triangulation Ay, being a disjoint
union of ideal triangles. In [BBL07| the procedure to select the isomorphism

/

LS5, was the following: we fix two representatives (p;)7L; and (p})72, of px and
P\, respectively, that are isomorphic to each other as local representations of
the Chekhov-Fock algebra T)?O. As observed in the proof of [BBL07, Lemma 21|,
a local representation of 7;\'10 is irreducible, so there exists a unique isomorphism
Mfﬁ/ between (p;)7L; and (p;)7-;, up to scalar multiplication. Then the isomor-
phism Ef\’;\/, was defined in [BBLO7, Lemma 22] as fﬁ‘;\l, =M fﬁl. The problem
we will observe is that this choice does depend on the selected representatives.
In other words, the representation py has representatives that are non-trivially
isomorphic to each other, so different choices of (p;)L; and (p})7-, lead us to a
(finite) collection of intertwining operators, in general not to a unique element.
We will focus on this problem in the first Section and in particular in Remark
4.2.2

The main purpose of this Chapter is to understand this phenomenon and to
try to recover a result on intertwining operators similar to the one in [BBL07,
Theorem 20]. A few steps will be necessary: we will produce the fundamental
objects in Section [1.2] we will investigate on their properties in Section [£.3] and
finally we will complete the procedure in Section [4.4] where we will prove the
following Theorem:

Theorem (Existence Theorem). For every surface S there exists a collec-

tion {(fff,,, ﬁ’;{,)}, indexed by couples of isomorphic local representations
p,p’ of the quantum Teichmiiller space T¢ and by couples of ideal triangu-
lations A\, X' € A(S) such that

INTERTWINING: for every couple of isomorphic local representations
p=1{px: T} = End(Vi) }hensy 2 =1{p5: T3 = End(Vi)}cacs)

and for every A, N € A(S), ff/{'; is a set of linear isomorphisms L%\C
from VY, to V such that
(px 0 @5 ) (X)) = LR, 0 ph (X") o (L)

for every X' € T%;
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ACTION: every set fff,/ is endowed with a transitive and free action wiil,
of Hi(S;Zn);

FUSION PROPERTY: let R be a surface and S be obtained by fusion from R.
Fix

n= {77“! 77? — End(Wu)}HeA(R) n = {77;;: 77:1 - End(W;i)}HeA(R)
two isomorphic local representations of T3 and
p=1{px: T} = End(Vi) }aensy # =1{0h: T = End(Vi)}cacs)

two isomorphic local representations of Tg, with p and p’ obtained by
fusion from n and 1/, respectively. Then, for every u,u’ € A(R), if
AN € A(S) are the corresponding ideal triangulations on S, there

’ ’
exists a natural inclusion j: X;’;’, — L, such that for every L in

flg: the following holds

(Goti)(e, L) = X (me(c), 4 (L))
for every ¢ € Hi(R;Zy), where m: R — S is the projection map;

COMPOSITION PROPERTY: for every p,p’,p" isomorphic local representa-
tions of T§ and for every \, N, X" € A(S), the composition map

/ rr "
L0 x L0800 — 2L
(L, M) — LoM

is well defined and it verifies

(c-L)yo(d-M)=(c+d)-(LoM)

Therefore, we will produce a collection of families of intertwining operators,
endowed with a transitive and free action of Hy(S;Zy), verifying a Fusion and
a Composition properties similar to the ones stated in [BBL0O7, Theorem 20].
Moreover, we will observe that this collection verifies a uniqueness property, as
described in the following Theorem that we are going to prove in Section [4.4}

Theorem (Uniqueness Theorem). Suppose that { 4} f: } is a collection in-
dexed by couples of isomorphic local representations p,p’ of the quantum
Teichmiiller space T§ and by couples of ideal triangulations A, X' € A(S)
such that

INTERTWINING: for every couple of isomorphic local representations

p=1{px: T} = End(Va)}yensy P ={Ph: T = End(V) }rencs)
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and for every \, N € A(S), ///fff is a non-empty set of linear isomor-
phisms M{S, from VY, to Vy such that

(pa 0 P{)(X") = MLK, 0 ph (X7) o (ML5) ™

for every X' € T%;

WEAK FUSION PROPERTY: let R be a surface and S obtained by fusion
from R. Fizx

n={n.: T} = End(W,)},cnr) n ={n,:TI— End(W[L)}HeA(R)
two isomorphic local representations of T4 and
p=A{px: T = End(Va)}ieacs) pl={\: Ty — End(vﬁ)}xe/\(s)

two isomorphic local representations of T, with p and p' obtained
by fusion from n and v, respectively. Then, for every u,p’ € A(R),
if A, X € A(S) are the corresponding ideal triangulations on S, the
set //l::z: is contained in ///ff,/ (it makes sense because they are both
contained in Hom(Vy,, V) );

WEAK COMPOSITION PROPERTY: for every p,p',p” isomorphic local rep-
resentations of Tg and for every A\, N, \" € A(S), the composition
map

%ff/ X %){)/fu — %)’\Jf//
(M,N) — MoN
is well defined.

Then, for every p and p' isomorphic local representations and for every
AN € A(S) we have
LN Cu,

where {Z)\pf,l} is the family described in the previous theorem.

Hence the collection {.ZY f/l} of intertwining operators we will exhibit is min-
imal in the family of collections of intertwining operators verifying the Weak
Fusion and the Weak Composition properties. Observe that, if the statement of

[BBLOT, Theorem 20| was true and so we were able to select a unique Z’;’;\/H then
the collection of families {272} defined by £ = {L£%,} would verify the
Weak Fusion and the Weak Composition properties of the previous Theorem.
This would lead us to a contradiction, because each set .Z%%, would contain
L, but Z{{, has cardinality equal to |H1(S;Zy)|, instead of Z{¥,, which is
composed of a single element.

These results tell us that the collection {Diﬂ)f’/(’,l} is the best object we can
produce by imposing the Weak Fusion and the Weak Composition properties.

Moreover, each £ /(’,, is endowed with a transitive and free action of H;(S;Zy),
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which will clarify which are the linear isomorphisms composing the sets £ f,/ .

Finally, in Section [4.5]we will focus on the development of a theory of invari-
ants of pseudo-Anosov diffeomorphisms, as done in [BL07| and [BBL07|, with
the tools achieved in the previous Sections. The resulting invariant is more
complicated to the ones described in the mentioned works, but the way we will
produce is the same.

4.1 Preliminary observations

We will assume that ¢ is a primitive N-th root of (—1)V*! (in particular ¢? is
a primitive N-th root of unity).

First notations Fix A € A(S) an ideal triangulation of S and, for every
edge \; of A\, choose an arbitrary orientation on it. Now orient the edges of
the dual graph I' = I'g » (see Chapter |§| for details) as follows: the 1-cell A¥,
dual of the internal edge A;, is oriented in such a way that the intersection
number i(A;, Af) in S is equal to +1 (remember that we are considering oriented
surfaces). Moreover, we assume that all the vertices T} have positive sign.

Let n be the number of 1-cells of A\ and m the number of triangles composing
A. Given a = 1,...,n with A, an internal edge having two different triangles on
its sides, we define

+1 if Ty is on the left of Ay
g(a,b) := < —1 if Ty is on the right of )\,

0 otherwise

for every b =1,...,m. If A\, is internal and it has the same triangle on its sides,
we define e(a,b) = 0 for every b = 1,...,m. Observe that a triangle T} is on
the left of )\, if and only if the previously fixed orientation on A, coincides with
the orientation determined as boundary of T,. Moreover, it is immediate to see
that the definition of €(a, b) can be reformulated as follows

+1 if A} goes towards Ty
e(a,b) := ¢ =1 if X comes from T}

0 otherwise

if A% has different ends, otherwise £(a,b) = 0 for every b = 1,...,m. Denote
by (Ce(I';ZnN), De) the cellular chain complex of I'. Then Cy(T'; Zy) is the Zy-
module freely generated by the vertices T of I' and C1(I'; Zy) is the Zy-module
freely generated by the oriented 1-cells A} of I'. Because I" has dimension 1, all
the other C;(I'; Zy) are equal to zero. Thanks to what observed, we can describe
the boundary 0; in terms of the triangulation A. Given A} a 1l-cell of I, the
boundary 01 (A¥) verifies

m

h(Ny) = Za(a,b) Ty € Co(T;Zn)

b=1

Hence the first group of cellular homology H;(T';Zy) is equal to the subgroup
Ker 0; of C1(S;Zy), whose elements are the Z y-combinations ZZ:1 Cq Ak such
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that, for every b =1, ..., m, the following relation holds

n

Zs(a,b)ca =0€Zn

a=1

The dual graph I' is a deformation retract of S, so the group H;(I';Zy) can be
identified to Hy(S;Zy) via a certain inclusion of I' in S, which is well defined
up to homotopy.

4.1.1 Local representations

Fixed an orientation on an ideal triangulation A, the definition of local repre-
sentation of 7j\q can be reformulated as follows:

Definition 4.1.1. Let A € A(S) be an ideal triangulation, with triangles
Ty,...,Tm,andlet (p1,...,pm), (P1,-- ., pm) be two m-tuples in which, for every
j=1,....m, pj: T, — End(V;) and p;: T — End(W)) are irreducible repre-
sentations of the triangle algebra T4 . The elements (P1y--spm)y (P1y--v s Pm)
are locally equivalent if the followingJ hold

e for every j = 1,...,m the vector spaces V; and W; are equal;

e for every i = 1,...,n, we have:

— if A\; is a boundary edge, then there is a unique triangle 7, that has
A; on its side. In this case we ask that

Ps; (X§f7)) = Ps; (X(Si))

a;

where a; is the index of the edge in T}, that is identified to A;;

— if A\; is an internal edge and 7j,, T, are distinct triangles on the
left and on the right, respectively, of A; (recall that we have fixed
orientations on the edges J\;), then there exists o; € C* such that

P (XE) = i i (X(9) = a5y, (X))
pr (X)) = i e (X)) = S B (X7

k3 T k3

where a; and b; are the indices of the edges in 73, and T, respectively,
that are identified to A;;

— if A; is an internal edge and it has the triangle T}, on both its sides,
then there exists a; € C* such that

P (X)) = it i (X))
ki -1 = ki

where a; and b; are the indices of the edges in T}, that are identified
to A\; and the a;-th side, unlike the b;-th one, has the orientation as
boundary of T}, coherent with the orientation of A;.

A local representation p of Ty is a local equivalence class of m-tuples of
representations (pi, ..., pm) as above.
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We will confuse a representative (p1, ..., pm) of a local representation p with
the obvious corresponding representation p; ® --- ® p,, on the Chekhov-Fock
algebra T/\qo of the surface Sy, where Sy is the surface obtained by splitting S
along all its edges and ) is its ideal triangulation, which is unique since Sy is
a disjoint union of triangles.

Definition 4.1.2. Let A\ € A(S) be an ideal triangulation of S and p: T/ —
End(V) a local representation of 7,!. We denote by Zg,(p) the set of represen-
tatives of p as local representation, which are local (and irreducible) represen-
tations of the Chekhov-Fock algebra T/\qo of the surface Sy, obtained by splitting
S along A\. Moreover, fixed an orientation on A and given p; ® -+ ® p,, and
P1® - ® pm two elements of Fg,(p), we will write

PL® @ pm = L@@

if p1®- - ®pm and p1 ®- - - ® py, are related by the numbers (a;); as described in
Definition The (a;); are called the transition constants from p1 ® -+ ® pm,
top1 ®-++ & pm.-

It is very simple to see that, with these notations introduced, the following
hold:

Lemma 4.1.3. Let ( = Q), pi, (' = Q), p} and " = Q), pi be three representa-
tives of a local representation p. Then the following properties hold:

1. there exists a unique collection of transition constants, depending on the
chosen orientation on X, such that ¢ =% (';

2. if ¢4 ¢ and ¢! B¢ then ¢ 2% ¢

3. if C ¢, then ¢! ™ (.

Given A € A(S) and p: 7! — End(V) a local representation, we can define
an action of Hy(S;Zy) on the set Fg,(p) as follows:

Definition 4.1.4. Given ¢ = ) . ¢; A} an element of Hy(I';Zy) = H1(S;Zn)
and fixed a representative p; ® --- ® p,, of p, we can produce another m-tuple
of representations p; ® - -+ ® p,, of p defined as follows: for every [ =1,...,m

e if T} has distinct sides in A, labelled clockwise as A;, Aj, A, then p; is
equal to
ALY = g0 py ()
a(xy)) = =00 py (X)) (42)
pr(xg) = =D pr(X)

where the edges A;, A;j, A\x of T correspond to the variables Xl(l), Xél),
Xél) € T4, respectively;



88 4 Intertwining operators

o if T} has two sides that are identified to A; in A and A; is the other one,
then p; is equal to

_ l i 1

a(X{") =g pi(X1")

pu(xs)) = g7 pr (X)) (4.3)
pux) = g2 00 (X

where the variables X 1(l), Xél) correspond to the sides of 7 identified to
A; and Xl(l) is associated with the side having its boundary orientation
coherent with the orientation of A; (the other cases are treated in the
same way). Effectively the number ¢; is necessarily equal to zero, because
cisacyclein C1(T';Zn).

It is immediate to see that, by construction, the representation p; ® - -+ ® p,, is
a representative of p and, in the notations introduced above, the relations [4.2]
can be summarized as

2¢;

PO ®pm T L@ ® P

We will denote by ¢- (p1 ® - - - ® py,) the representation p1 ® - - - ® py, constructed
in this way.

Now we are able to enunciate the main result of this Section:

Proposition 4.1.5. Let p be a local representation of T!. Then there exists an
action of H1(S;ZN) on Fs,(p), which verifies:

o two elements p1 @+ ® P, and p1 @ -+ - @ Py, of Fg,(p) are isomorphic as
representations of ’T)\qo if and only if there exists an element ¢ € Hy(S;Zy)
such that

c (M@ ®pm)=p1® @ pnm

e the action is free, i. €. ¢+ (p1 ® -+ @ pm) is equal to p1 @ -+ @ py, if and
only if c=0¢€ Hy(S;Zn).

Proof. Let p1®- - ®pm, and p1®- - -®pyy, be two representatives of p. Let us focus
on a single triangle 7; and observe how the representations p;: 7':,% — End(V})
and py: Tqu — End(V}) differ. Label clockwise as \;, \; and Ay the edges of T;
in A and as X 1(l), Xél), Xél) the corresponding variables in Tqu The relations
between p; and p; are the following

l il) — l
p(X) = af Y 5y(x ()

l i) — l
p(XP) = o500 5y (x )

l k) _ l
p(X5)) = g™ gy (x )

where we are assuming that the sides of T are distinct, the other cases can be
treated in a similar way. Denote by xgl), mg), .rél), R the invariants of the

irreducible representation p;, and by igl), fg), fgl), E(l) the ones of p;. Then we
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deduce the following relations

2O = N0

1 %
&) = o NNz
20— al]c\’e(k,l)fél)

B — af(“)a;(j’l)ai(k’l)ﬁ(”

Now assume further that the representations p; and p; are isomorphic. By virtue
of Proposition [2.1.4] this is equivalent to ask that the invariants coincide. Then,
for every triangle T; with edges labelled as before, we must have

ai\’s(i,l) -1
a;\’s(j,l) =1
aé\/e(k,l) -1

af(i’l)a;(j’l)ai(k’l) -1

N = al¥ = al =1 because the

The first three equations can be rewritten as o j
appearing terms (a,l) are all equal to +1. Hence, there exist ¢;,cj,c, € Zn

such that

2¢;

o =q
_ 2c;
o =(q J
2c

ag =q°™*

Then the last condition can be rewritten as
cie(i,l)+cief,l) +ere(k,l)=0€Zy (4.4)

Observe that the number ¢; e(%,1)+c; €(j, 1) +cx €(k, 1) is exactly the coefficient of
T} of the combination 9y (), ca A}). This relation must hold for every triangle
T} in the ideal triangulation A, so the element ) cq A} is a cycle in C1(I'; Zy),
or equivalently it belongs to H1(I';Zy), and the representation p1 ® -+ ® pp,
coincides with ¢« (71 ® - - ® Pm)-

Vice versa, if 1 ® -+ ® P, is equal to ¢+ (p1 ® -+ ® py), then p; is defined
as in relation .2 or [f-3] Assume that the edges of T} are distinct, the other
situations are analogous. Then we can easily see that p; is isomorphic to p; for
every [ =1,...,m. Indeed

a((XIN) = p((X1)M) PNesih — 1
ﬁl((Xz(l))N) = Pl((Xg(l))N) q2N0j€(J}l) -1
A((XN) = p((XSHY) PNers(kD) — 1

p(HDY = p,(HD) g2e i +e; s Fen s(bl) =

where H® is the central element q’lel)XQ(l)X?El) of Ty, and ¢; £(i,1)+¢;j (j,1)+
¢k £(k,1) = 0 holds because c is a cycle. These relations tell us that the invariants
of p; and p; are the same, and so that the representations are isomorphic. This
concludes the proof of the first part of the assertion.

The second part is obvious because, if ¢ is not equal to zero, then the repre-
sentation ¢ (p; @ -+ ® pp,) is different from p; ® -+ & pyy. O
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The transition constants between two representatives of a local representa-
tion p clearly depend on the choice of the orientation on A, but the described
action of H;(S;Zy) does not, it depends only on the orientation of S. In order
to justify this assertion, observe that, by changing the orientation of an edge \;
we change firstly the coefficient ¢; of A7 in —c¢; of every cycle ¢, but we swap
also the left with the right, so the resulting modification on the representations
is the same. So the action is intrinsic and does not depend on the choices we
made.

Remark 4.1.6. If two elements p; @ -+ ® pp, and p; @ -+ ® ppy, of Fg,(p) are
isomorphic, then there exists a linear isomorphism that leads from one to the
other. We can give a quite explicit description of this application, which is
unique up to scalar multiplication by virtue of Proposition [2:2.8]

Recall that an irreducible representation p;: ’7'qu — End(V}) of the triangle
T; admits a basis B such that, if L: V; — C¥ is the coordinate isomorphism
induced by B, we have

Lop(X{")o L™ =y B,
Lop(X§")o L™ =y B,
Lop(X)o L™ =y By

where ygl) is a N-th root of l‘l(-l) for every i = 1,2, 3, ygl)yél)yél) = h is the
central load of p; and the B; are defined as

1
q2
Bl =
qQ(Nfl)
0
Bg = .
In_q .
0
0 q172(271)
0 q172(N71)
q 0 0

Moreover, it is immediate to verify that the conjugation homomorphisms C' —

AoC oA, with A = By, By, B3, applied to L o p o L™! change the yZ@
respectively as follows

l 1

N

l l
vy — d'yy)

l — l
vy — q %y
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l — l
y) — a7y

O] @)

Yo Y2
y() N q2y(l)
y(l) N qzy(l)
y() g 2y(l)
(l) — y:(sl)
Then, defining M; := L™ o B; o L for i = 1,2, 3, we have construct automor-

phisms M; of V; such that
My o pi (X))o Mt = py(xV)
Myopi(X§") o Mt = ¢ pu(X3")
My op(XP)o MY = 72 py(X5Y)

Mpop(X))) o My =72 pu(X]")
My o pi(X$") o Myt = pi(X5")
My o (X))o Myt = ¢ (X))

Mo pi(X(") o My = ¢ pi(X{")
My o pi(X5)) o My = g2 pu(X3")
Ms o pi(X§) o Myt = pi(X5")
The isomorphisms M, are unique up to scalar multiplication, because of
the irreducibility of the considered representations. Moreover, by means of

compositions of these applications, we can obtain every change of parameters
of the form

O] 2k1, ()

v My
ORI )
NONEIETW0

for every ki, ks, ks € Zy such that ki + ko + k3 = 0.

We observed that, given p1 ® - -+ ® pm, and p1 ® - - - ® Py, two representatives
of px such that p; is individually isomorphic to p; for every j =1,...,m, then
there exists ¢ € H1(S;Zy) such that they are related as follows

a(x{") = =00 py(x1")
p(Xy)) = #0500 ()
(X5) = =D oy (x{)

for every triangle T; of the ideal triangulation A € A(S) (if the edges of T} are
distinct, otherwise see relation [£.3). Fixed [ = 1,...,m, there exists a linear
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isomorphism M@ : V; — V; such that
MO o p(X) o (MD)~" = 5i(X)

for every X € T}, and this map can be expressed, up to scalar multiplication,
as composition of the elementary applications M; described above, because the
elements k1 = ¢;e(3,1), ko = cje(4,1) and ks = cpe(k, ) verify ki + ko + k3 =0,
by virtue of the relation [4:4]

What just noticed shows that every p1 ®- - -®pp, and p1 ®- - - ® py, isomorphic
representatives of a local representation p are isomorphic to each other through
a tensor split linear isomorphism M® @ --- @ M(™  in which every M® is a
certain composition of the applications Mlil7 M;l, M3il described above.

4.2 The elementary cases

The first part of our work is devoted to give the definitions of the sets £}’ )’f,/

and their actions wﬁ’;\/, in the simplest cases, namely when A and ) differ by an
elementary move. In particular the discussion will be divided in the following
cases

e when A and ) are equal;
e when )\ and ) differ by a reindexing;
e when X\ and ) differ by a diagonal exchange.

In all this Section we will assume that the elements

p=1{px: Ty = End(VA)},\eA(s) =1 T — End(vk/)})\e/\(s)

are isomorphic local representations of the quantum Teichmiiller space of S.

4.2.1 Same triangulation

Fixed A € A(S), the maps px: 7! — End(V)) and p): 7! — End(Vy), part of
p and p’ respectively, are two isomorphic local representations of the Chekhov-
Fock algebra T,!. Let Sy be the surface obtained by splitting S along A and let
Ao be its ideal triangulation. Define

A’;’)’: ={(¢,{") € Zs,(pr) x Fs,(Py) | ¢ and ¢ are isomorphic}

where ( = @), pj and (' = ), p; are thought as local (and irreducible) rep-
resentations of 7,/ . For every ((,(') € A’;@\/ there exists a tensor-split linear

isomorphism L =L ® @ Ly V) — V), unique up to multiplicative con-
stant, such that

L o ¢(X) o (L)1 = ¢(X) € End(V))

for every X € Tg (observe that each L; is an isomorphism between p; and p,).
The uniqueness follows from the irreducibility of local representations when the
surface is a disjoint union of ideal polygons (see Proposition [2.2.8). Now, label
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as fffl the /set of operators L¢¢ : V{ — V4, for varying (¢,¢’) in Aﬁf\'. The
elements L¢¢" are defined up to multiplicative constant, but we will always omit
the equivalence class to simplify the notation. There is an obvious surjective

map p: A’;g\/ — X)\p)’f/ that associates with a couple ({,(’) the corresponding
isomorphism LSS, o
Suppose that (¢,{’) and ({, ") go under p in the same isomorphism

L=L€ =1 =11 ® - ®@Ly: V| — Vi

In particular, ¢ = ®j pj and (= ®j p; have to be equivalent, belonging both to
ZFs,(px). Therefore, there exist transition constants o;; € C* such that { <% ¢.
On the other hand, by hypothesis, the following hold

Ljopi(X)o L' = p;(X)

Ljopj(X)o L7 = pj(X) )

where ¢/ = ®j p; and ¢ = ®j pj. By using ¢ X ¢ and the relations [4.5, we
deduce that

o for every edge \; lying in the boundary of S, if T}, is the triangle on its
side and a; is the index of the side of T}, identified in A to A;, then

ph, (X)) = Lo pr (X)) o Ly,
= Li;l © Pk, (Xc(fi)) o Ly,
= pp, (X))

e for every internal edge )\; with different triangles on its sides, in the nota-
tions of Definition we have

pi (X)) = Lo pr (X))o Iy,
= L oy, (XY oLy,
= a; p, (X))

p;'i (Xlgln)) = L;l © Pr; (Xlgln)) ° LTi
=a; L o pn (X))o Ly,
= o; ' 7, (X))

and analogously when J); is an internal edge with the same triangle on its
sides.

Therefore, we have shown that p(¢,(’) = p(¢, ") implies that the transition
constants a; from ¢ to ¢ are exactly the same as those from ¢’ and (’, that is

- oy

We will briefly denote this phenomenon between (¢,¢’) and (¢, (") by (¢, ¢) =~
(9t
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Vice versa, suppose that two couples (¢,¢’) and ((,{’) in Aff\' are in ~-
relation, with ¢ <% ¢ and ¢’ = ¢/, and label ¢ = @, p;, ¢ = ®; 0}, ¢ = Q, pj»
¢ = &, P} Because (¢, (') is in AK’;\/, there exists an isomorphism L¢¢": V{ —
Vi between ¢ and ¢/, with L¢¢ = L; ® -+ ® L,,,. Then the following hold

o for every edge A; lying in the boundary of S, if T}, is the triangle on its
side and a; is the index of the side of T}, identified in X\ to A;, then

P (X)) = i, (XED)
= Ly, o pf, (X))o L)
= Ly, 0 7 (X)) o ;!

o for every internal edge A; with different triangles on its sides, in the nota-
tions of Definition we have

P (X8) = a7 o (XE)) = a; Ly, o 7 (X(D) 0 Ly
=L o, (X)) o Ly
Pri(X3) = i pr (X)) = i Ly, 0 0], (X)) 0 L}
= Ly, 0, (X)) o L}
and analogously when A; has the same triangle on its sides.

Since these hold for every ¢ varying from 1 to n, we have shown that LS¢ is an
isomorphism between ¢ and (', so by irreducibility LSS = 16¢". The equivalence
relation ~ on A%% is therefore COfnpatibltla with the map p and the corresponding
application on the quotient «{’{ := Af% / ~, which we denote by

by — 2
is a bijection. Moreover, we can let H{(S,Zy) act on Aif\/ as follows

¢ (¢ ¢ = (¢ () (4.6)

where ¢- ' = ¢ (p} ® - ® p),) is the action defined previously, in this case
on Zg,(py). Now we want to show that the definition in [4.6is compatible with
the relation ~ and then it leads to an action

o0 Hy(S;ZN) x Y —
(Ca [Ca C/]) — [Cv c- CI}
of Hy(S;Zy) on the quotient <7{{ " and equivalently, through p, on .,%Ap/{’,

Theorem 4.2.1. The action of H1(S;ZN) on ,Qf)\p){)/, and equivalently on f)’\))’\’/,

is well defined, transitive and free. Moreover, for every [(,('] € ;2//\”)7/ and for
every ¢ € Hi(S;Zyn) we have

C- [Cv CI] = [(_C) : Cv C/] (47)
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Proof. In order to show the good definition, suppose that
¢= ®Pi T ®ﬁi =
(=Qr Q=

By definition of ¢-, we have

Then
—2¢; o = g2C _
s S0se O
soc-¢ % ¢ . On the other hand, we have ¢ %ELaHd these facts together
tell us that c- (¢,(’) == ((,¢-¢') = (C,e- () =t ¢+ (¢, (), as desired.

Now we will prove that the action is transitive. Let [¢, ('], [¢, ('] be two
elements of @7{ and (¢, ('), (¢, ') two representatives of them, with ( = ;P
(=Q;r; (= &, pj and ¢ = &, Pj- Both ¢ and ¢ belong to fsg(p)\), then
there exists a family (a;); of transition constants such that ¢ % ¢. Because
(¢,¢') is an element of AR, there exist isomorphisms L; : Vj’ — V; such that
E,j op; oLj_1 = p; forevery j = 1,...,m. Now we can construct a representation
(' = ®, p; defined by

for every j = 1,...,m. The representation ¢’ belongs to Fs,(py) because by
construction it can be obtained from ¢’, which is an element of Fg,(p}), as

So (¢, ') belongs to A’;’j\/ and (', ¢’ are related by the transition constants (c);,
just like ¢ and ¢. This means that the couples (¢, ¢’) and (¢, (') are ~-equivalent,
i. e. [¢,{'] = [(,¢']. Moreover, both ¢’ and (" are isomorphic to ¢ and then

they are isomorphic to each other. By Proposition [£.1.5] there exists a unique
¢ € Hi(S;Zy) such that ¢- ' = ', so

c- [<7CI] =cC: [57 g/] = [E,C' 6/] = [Ea E/]

and this proves that the action is transitive.
Now suppose that there exist a ¢ € H(S;Zy) and an element [(,(] €

df/\p/ such that [(,¢'] = ¢-[¢,{’]. This means that, passing on representatives,
the couples (¢,¢’) and (¢,c¢ - (') are ~-equivalent. Because the first terms of
the couples are exactly the same, they are in particular related by transition
constants all equal to 1, and the same must hold for ¢’ and ¢ - {’. This means
that ¢/ = c-¢’ and so, by the second assertion of Proposition [£.1.5 we conclude.
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For what concerns the equation [4.7] we firstly note that [¢,('] = [c- ¢, ¢+ (']

2¢; 2¢;
Indeed, we have ¢ “ ¢-C and ¢’ = ¢-¢’, which means that (¢, ') = (¢-¢, ¢-(').
Now it is immediate to prove the relation:

[Ce-dT=1[(=c) ¢ (=c+ ) - T=1[(=c)- (. (]
O

We will denote the action of H;(S;Zy) on .fff/ by ’(/Jii)\,.

Remark 4.2.2. An important consequence of this fact concerns the definition of
the intertwining operators exposed in [BBLO7]. Recall the following assertion:

Theorem (|IBBLO7, Theorem 20]). For every surface S there exists a unique
family of intertwining operators E’;ﬁ:,, indexed by couples of isomorphic local
representations of T4 and by couples of ideal triangulations X\, N € A(S),
individually defined up to scalar multiplication, such that:

COMPOSITION RELATION: for every A, A'; A" € A(S) and for every triple of
isomorphic local representations p, p', p” , we have E’;’;\/,,/ = Ef\‘:\l,to\/&C’/ ;
FUSION RELATION: let S be a surface obtained from another surface R by
fusion, and let A\, N be two triangulations of S obtained by fusion
of two triangulations p,p’ of R. If n,n' are two isomorphic local
representations of Ta and p,p’ are two isomorphic local representa-
tions of Tg obtained by fusion from n,n respectively, then we have

~ ’ ~ ’
n - ypPp
L, = L45,.

In what follows we want to describe how the facts observed in Theorem F.2.1]
show a problem in the definition of the intertwining operators L%, of [BBLO7,
Theorem 20], in particular in the case in which A = X',

Fix p = {px: T = End(Vi)}hea(sy and o = {p): T = End(Va)}yca(s)
two isomorphic local representations of 7¢, where S is a certain surface with non-
trivial H1(S;Zy). Since p and p’ are isomorphic, we can choose representatives
(=p® - Qpmand ¢ = pl @ ---®pl, of pp and p}, respectively, such
that p;: Tqu — End(V}) is individually isomorphic to p/: Tqu — End(V]) by a
linear isomorphism L;: V; — Vj’ . Denoting as before by Sy the surface obtained
by splitting S along A and by )\ its triangulation, we have that ¢ and ¢’ are
two local representations of quo and by construction they are isomorphic by the
linear transformation

L1 ® @ Ly, : Vi — V),
Moreover, this application is unique, up to scalar multiplication, because (
and ¢’ are irreducible. Sy is a disjoint union of triangles, then it admits a
unique ideal triangulation Ag. This means that ¢ and ¢’ can be thought as local
representations of the whole quo and that Zg\gl)\o =11 ®: - ® Ly,. Assuming
that [BBLO7, Theorem 20] holds, the element E’;\’j\/ must be equal to Eggl/\o up
to scalar multiplication by virtue of the Fusion Property, so

I =0,® - ®Ly (4.8)
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Now we are going to show that different choices of representatives for py and p)
produce a contradiction in relation [4.8] Take the same representative ¢ for py
and replace ¢’ with ¢ - {’, for a certain non-trivial ¢ € Hy(I'; Zy) = H1(S;ZnN).
Thanks to Proposition the representations ¢’ and ¢ - ¢’ are isomorphic
via an automorphism MW @ .. @ M™) of V/ @ - ® V!, which is non-trivial
up to scalar multiplication because ¢ # 0. Define ¢’ := ¢ - ¢’. This is a local
and irreducible representation of 7y and it represents p) on S, just like ¢’.

Moreover, the representations ¢ and ¢’ are isomorphic via
(Ly o M(l)) ® @ (L OM(m))
Applying the Fusion property as before, but on ¢’ instead of ¢/, we obtain
B = I,
= (L1 oMY@ @ (L o M™)

but this is in contradiction with because M) @ --- @ M ™ is not equal to
the identity up to scalar multiplication.

4.2.2 Reindexing

In the investigation of local representations we have intentionally ignored the
problems concerning the case in which the ideal triangulations A and X\’ differ by
reindexing, i. e. A’ = y(\) with v € &,,. We did not focus on that because all the
properties of representations are basically intrinsic and does not really depend
on the ordering of the edges, but only on the structure of the triangulation.
Indeed, the coordinate change isomorphisms ®9,, in this case are just the maps
on the fraction rings induced by the reordering applications from 7} to 7'7'1( NS

Moreover, the described action of Hy(S;Zy) clearly does not depend on the
fixed order of the edges. We will continue to be vague on that, we want just to
enunciate the fact we will use later, analogous to Theorem [1.2.1]

Let X\, ) € A(S) be two ideal triangulations differing by a reindexing of the

edges, with \' = y()\). Define A’;\’;\/, as the set of couples ((,, (:;\6), where (), is an

element of s, (px), Cy; is an element of Fs, (p),) and (5, 0§ ,, is isomorphic
0

to Ci\{) (X and X clearly induce the same splitted surface Sy, we should give

details of indexing of triangulations Ag and Aj in order give a sense to @go AL’

but we omit this boring procedure). We say that (QO,C;()), (Cros 7&6) € Af\’;\,,
are ~~-equivalent if

Cro — Cao
N

Oy — Oy
with 8; = a.(;) for every i. As before ,fof,/ denotes the quotient of A’;’;\/, by
the relation ~. On A{}, we consider a natural map p: @, — Hom(VY,,Vy),
sending an element [C,\O,Cf\()] in the linear isomorphism between (), and (:3\6.
The map is injective and we designate its image as f/\pf:. We can define on
(¥, an action Y55, of Hy(S;Zy) setting c- [Q\O,Cg\d = [Ch, c-Cf\a]. In light of
Theorem [£.277] it is straightforward to prove that the following holds
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Theorem 4.2.3. The action of H\(S;Zy) on m/f/(’:, and equivalently on f/\pf,’,
1s well defined, transitive and free. Moreover, for every [C,\O,C;(,J] e A and
for every ¢ € H1(S;ZN) we have

¢ [C)\oa Cf\{)] = [(_C) : C>\07 C;\(’]]

4.2.3 Diagonal exchange

Assume that A and ) are ideal triangulations of S that differ by a diagonal
exchange along \;. Designate as R the surface obtained from S by splitting it
along all the edges of A except for \;. R is the disjoint union of an ideal square @
and m — 2 ideal triangles. In order to simplify the notation, we will assume that
the triangles composing Q) are labelled as T7 and T5 and the others as T3, ..., Ty,.
The triangulations A and X' induce on R two ideal triangulations p, . p is
just the disjoint union of an ideal triangulation ;1o of @ and the only possible
triangulation ug on the disjoint union of the triangles 7; for j > 3. Analogously
W = pg U po where pg is the only ideal triangulation on @ different from pq.
Observe that the Chekhov-Fock algebras associated with the triangulation p
and g’ on R are canonically isomorphic to the tensor products

q q q q q
7;?@@) 5L® QT , 7;/@@ LR QT

We will denote by Sy the surface obtained by splitting S along A, by S{ the
surface obtained by splitting S along A" and by Ag and Aj the respective trian-
gulations on these surfaces.

Fix p = {py: T;} = End(V))},en(s) and o = {p}: T = End(Vy)}, cn (s
two local representations of 7¢. We introduce the following notations

Vi=Vo1®--- @ Vym
! ! !/
Vi=Voa® 0V

Denote by .Zg,(px) the set of local representations of 7')?0 that represent p)
on S and analogously label as Fg; (p),) the set of local representations of Tq6
that represent p), on S. Given (), an element of Fg, (pr), (5, represents a
local representation ¢, of the Chekhov-Fock algebra 7,7, and in the same way a
representation C/Xi) € Fs;(p)s) induces a representation ¢, of 77:1/

Now we define

A28, = {(Crar Chy) € Fsa(pn) X Ty () | G0 B2, is isomorphic to ¢}

It is easy to verify that the composition ¢, o @ZM, makes sense because py o ®f,,
does (the key ingredient is that the invariant of the representation ¢, associated
with p; coincides with the one of py for A;, which is not equal to —1 because
px o ®4,, makes sense, being py part of a global representation of the quantum
Teichmiiller space). Given ¢y, in Fs,(pxr), Cu is equal to the tensor product of a
representation (,, of 7:?@ and a representation (,, of T = 793 R ® ’TTqm. In
the same way, given Cj\g € Fs;(P\r), C;s is the tensor product of a representation

/ q . . 7 . e e . .
¢ e of 7;,@ and a representation ¢, of 7 . Recalling the Disjoint union property
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of ®1,, exposed in Theorem the restriction of (I)Zu’ on 70 =Tl @ T
coincides with @ZQI% ® id. Thus the representation ¢, o (I)Zu' is equal to

(Cug © Py ) ® g (4.9)

HQHg

By virtue of the irreducibility of ¢, and ¢/, (observe that R is a disjoint union

of ideal polygons) there exists an isomorphism LC“C;‘Q unique up to scalar mul-
tiplication, such that

LS 0 (X' o (L) ™ = (G0 @, )(X)

for every X" € T. In analogy with the case A = X', we designate as fff,/ the
set of operators LC"CZL’, for varying (C,L,CL,) in Af\’;\/,. Because of relation

every LS is the tensor product of an isomorphism

C/LQ CI

L sV, @ Vi — Va1 ® Vi

between o and ¢’, , and of an isomorphism
C/LQ ILQ/»‘/Q C#/Qv p

LCU’UCZLO . V){’,B R R V)(,wm — V)\’g Q- V)\,m

between (,,, and Cl’m, which is tensor-split.
As before, we define the map

p: AY 2
(C)\ov Cg\é) — LC“CMI

The map p is tautologically surjective, we want to characterize its injective
quotient. If ¢, and (), belong to .Zg,(pa), then they both represent py. Fixed
arbitrary orientations on the edges of A, there exist transition constants (c;);

a - _ _ _
such that Cx, = Cxg- If Cu = Cup ® B @+ @ G and (i, ® (3@ -+ ® (4 are
the induced representations on 77, then, for every A; with j # i, the following
hold

e if )\; is on the boundary of S, then the two representations must coincide
on the only variable in 7] corresponding to A;;

e if )\; is internal and it is side of two triangles 7}, and T;.,, with [;,r; > 3,
on the left and on the right respectively of A;, then
¢, (Xé?)) = (Xz(z_lf))
Cr (X)) = a5 G (X))
where a; and b; are the indices of the sides in T}, and T, respectively,
identified to A; in S (analogously if T}, = T, );

e if )\; is internal and it is side of a triangle T}, and of the square @), then

Cuo (XLD) = 50D ¢, (X[

a;j

= k]' g -,k:]’ k}j
ij (XZSJ )) — aj(] )CkJ (XIE] ))
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2]

Figure 4.1: The ideal triangulations uq, g € A(Q)

where a; and b; are the indices of the sides in @ and T,, respectively,
identified to A; in S, £(j, Q) is equal to +1 if the orientation of A; coincides
with the boundary orientation of @, —1 otherwise, and (4, k;) is equal to
+1 if the orientation of \; coincides with the boundary orientation of T},
—1 otherwise;

and analogously in the case in which A; has on both sides the square Q). Ob-
serve that the constant «; does not appear in the discussion because we are
considering the equivalence classes (,, (,, of local representation of 77, instead
of the representations ¢, and Z’)\g We will say that the constants «;, for j # 4,
are the transition constants from ¢, to CL,, which can be thought as supported
on A\ \;. The same can be noted for a couple of Cf\67 E/AO in Zg,(p),), provid-
ing a collection of transition constants /3; from C;/u to C;y- The two collections
(cj) and (f;) can be compared in a natural way because there is a canonical
correspondence between A\ A; and A"\ A.

Given two couples (CAoaC/Ag )77 (Cr>s QT’)\(,]) e AR%,, they are in %—rta}ation if the
transition constants from ¢, to ,, are the same of those from ¢}, to (},. Observe
that the relation ~ can be expressed in terms of the transition constants ¢y, it
(>, and 6\6 ﬁ# 5/6 by asking a; = f3; for every j # i, and by not requiring any
restriction on a; and S;. -

We want to show that, if (CAmC;\g) ~ (E)\O,f’)\g), then LS = L#Sw . Tt is
sufficient to prove that the following hold

LCHQCL’Q - LEMQE:LQ
L0 = [ noCho

The second equality can be obtained with exactly the same observations of the
case A = )\ done above. Therefore, we will concentrate only on the first one,
for which we must pay a little more attention because we have to manage the

composition (., o (I)ZQN, )
@

Assume that the edges of the square are labelled as in Figure [£.1] and, in
order to simplify the notation, that they are oriented counter-clockwise with
respect to the orientation of ). Then there exist a, € C* for h € {j, k,I,m}
such that

Cug (X}(LQ)) = Qp EMQ (XI(zQ))
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where we are denoting by X ,SQ) the element of the Chekhov-Fock algebra 77,
associated with the edge pj,. Using the fact that ¢, (XZ(Q)) = Cuo (Xi(Q)) (this
equality holds because both (,, and ¢ u represent py and the edge p; correspond-
ing to \; is already fused in p) and the explicit formulas for @ZQ , , we obtain

HQ
that

Gua (X5 = an g (X4) & (Gug © @ YY) = 0 (Cug 0 @

)Y
(4.10)
Now the same argument of the previous case can be applied in order to con-
clude the desired equality, the only difference is that in this case one of the
representations is on the square @) instead of a triangle.
The map p induces on the quotient

/
) APP
A =T

an application p. With the same argument done in the case 7{{ " and using
relation we can prove that p is injective, and so bijective, since the sur-

jectivity is obvious. Moreover, we can describe an action of Hy(S;Zy) on & f,,
when A\ and )\ differ by a diagonal exchange along \;, by defining

’ / /
8 : Hy(S;Zn) x A, — AL,

(Cv [C)\O? C;g}]) — [C)xo? c- C;\d

where ¢ - C;\/O is the action of ¢ on (3\6 in Zg (p)s) as in Proposition

Theorem 4.2.4. The action of Hi(S;ZN) on %fff, and equivalently on fff\’:,
1s well defined, transitive and free. Moreover, for every [Q\O,C;a] € ssz/\p,/ and
for every ¢ € Hy(S;ZN) we have

c- K)\ovc;\{)] = [(_C) ' C/\o’ Cf\{)] (4'11)

Proof. The proof will be very similar to the one of Theorem Take two
couples (Q\O,Cf\()), (Ca>s 51\6) in AR%, that are ~-equivalent. Then

o -
C)\o _J> C)\o
/ Bi =
Gy — Oy
/
with a; = 8, for every j # i. By definition of the action ¥{5, we have
C/ q?i} c- C/
Ao A
=1 qzcj =1
Cyy — ¢ Cyy

Then

/ qucj / Bi = qzcj 1
-Gy — Gy — Oy ¢ Cy

We conclude that ¢, X (>, and C'C//\é BN c- ¢ z with a; = j; for every j # 1,

hence (¢, c- G\é) ~ (Cry, cf’)\&), which proves the good definition of the action.
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In order to prove the transitivity, fix two elements [(,\O,ng)], [Cxo> 7’)\6] in
.;szf,/ and two respective representatives (Cx,C}, ); (Cro» 71)\6)' Denote by («);

the transition constants from (), to (y,. The element ((y,, G\S) belongs to Aﬁ‘:\l,,

hence the induced local representations ¢, o (I)Zu’ and C;L/ are isomorphic via an
isomorphism

CHQC;//Q ® LCHOCIL{) . V)(/ — V,\

Lo = L
We can construct a representation Z/A;, such that ((x,, ZS\S) belongs to Aﬁ‘:\l, and

(C,\U,Cg\é) ~ (Cxys Ej\é)’ simply by defining E;\,O as the representation verifying
AN
Gy — Oy

where the a; are the transition constants from ¢y, to (>, (it is not important
which is the transition constant in the edge A). Because (,, and CZL, verify

LSS o C/;/(X/) ° (LCMCM/)fl _ (Cu o (I);JL#/)(X/)

for every X' € 7;1, and because (), X (>, then we have also
L 0 Gy (X") o (L) ™h = (Cu o @, ) (X)

The proof can be done using relation [£.10] and the irr(iducibility of the cgnsid—
ered representations. This justifies the fact that (Cy,, Cf\{)) belongs to A5, and
(Q\m(f\é) ~ (Cxgs (:\6). Both the representations C;/t’ and C/u’ are isomorphic to
Cuo @Z#,, so they are isomorphic to each other. Possibly by changing C;\(,] in its
class of local representation of 77, we can assume that C/AS and CS\S are isomor-
phic. Indeed, change Ci\g in its class of local representation of 7 is equivalent
to take a representation 173\6 defined by 53\6 X %6 with v; = 1 for every j # 1.
We assert that v; can be chosen so that ﬁg\é is isomorphic to ¢ //\6' We know that
the central loads h and h, associated with @, of C;I/ and C;L, are the product of
the central loads of ng, and C')\é on the triangles composing (). Moreover, being
¢, and (,, isomorphic, we have h = h. Denoting by h! and h2 the central loads
of @\6 on the triangles in () and by 517 R’ the ones of E/Ag)v we observe that the
relative central loads of %6 change like v;h! and v, 'h2. Then there exists a

unique ; such that Bl = %ﬁl. Doing this choice, the following holds

h —-172

" RY ikt K

Now the central loads on the triangles are equal. It remains to prove that the

invariants on the couple of edges in A corresponding to A; are equal, but this

is clear because we already know that, for both the triangles in @, their repre-

sentations have the same central loads and two invariants of edges coinciding.
Recalling that hN = zyz925 the assertion follows.
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Hence we can assume that 6&6 and @\6 are isomorphic. Via Proposition
there exists a ¢ € H;(S;Zy) such that c- Z;,D = 5/6’ hence

c- [C)\mé_;\&] =cC- [QTAm&&] = [E/\mc ' 63\6] = [Z)\mél)\[’)]

and so the transitivity is proved.

Now suppose that there exist a ¢ € Hi(S;Zy) and an element [(y,, C\g] €

ﬂff/{’: such that [¢ ,\U,Cf\é} =c-[C /\o’CIAg]' This means that, passing on represen-
tatives, the couples (Q\O,Cg\é) and ((yy,cC - C;\(,]) are ~-equivalent. Because the
first terms of the couples are exactly the same, they are in particular related by
transition constants all equal to 1, and the same must hold for Cﬁ\() and c - (,‘3\6,
except possibly along the edge \;, where there are not restrictions. But (\})*
has distinct vertices, so there are not elements of H;(S;Zy) that act only in
the edge \;, hence ¢ must be trivial. Therefore the action is free.

Finally, the relation [I.11] can be proved exactly in the same way of relation
in Theorem £2.1] O

An explicit calculation

/
The previous discussion shows us that the elements in .Z{¥, are tensor products

. . 4 . . ¢ CIL/
of a tensor split isomorphism LS#0%0 and an isomorphism L “® *@ between
. . . q
two irreducible representations (y, © @HQM,Q ) and C#’Q, on the square Q). In
what follows we want to give an explicit description of this linear isomorphism
LCMQ C;/Q

Redefine the notations: let @ be an ideal square and let A, A’ be its ideal
triangulations, with edges labelled as in Figure Given p = {px,px} a
local representation of Tg, we know that there exists a linear isomorphism
L8R, Vv — Vi, unique up to scalar multiplication, such that

L85 0 px (X7) o (L85,)7F = (pa 0 @5,)(X)

Let us describe in a explicit way this linear isomorphism. We firstly reduce to
the standard situation, which means that p) and p, are represented by the
tensor product of standard irreducible representations of the triangle algebras
(here standard means that the representation sends each generator X, of 77 in
a N x N matrix, which is a multiple of the B; described in Proposition|2.1.4)). In
order to identify a standard representation of the triangle algebra, we need the
following data: a clockwise indexing of the edges of each triangle and the choice
of N-th roots of the invariants on the edges of the square. We will order the edges
of each triangle as described in Figure by red numbers (the square on the
left represents the ideal triangulation A and the indexing on its triangles 77 and
T>, the square on the right represents the ideal triangulation A\’ and the indexing
on its triangles 7] and T3). The representations py: 7,/ — End(CY @ CV) and
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ot Tk — End(CYN ® CV) have the following form

pA(Xi) = yi By ® By
px(Xj) =y Bi®l
PA(Xr) = yu I ® By
pA(X1) =y 1 ® Bs
pA(Xm) =ynBs®1I
px(X}) = v; B3 ® By
pn(X)) =v; Bi@ 1
px(Xp) =vp Bo® T
px (X)) = vl ® By
px(Xp,) = vm I ® By

where the numbers y;, y;, Yx, ¥i, Yym are N-th roots of x;,x;, Tk, 1, Trm and the
numbers v;, vj, Vg, Uy, U, are N-th roots of 33271, (14 z)z;, (1 + m;l)_lmk, (1+
x;)xy, (14 x;l)_lxm. Moreover, the product of the y, and the product of the
vs are equal and coincide with the central load of the representations py) and

pxa. Denote by z; the number in Zy such that v; = yi_lqzzi.

Because of the expression of ®{,,, the representation py o ®%,, has the fol-
lowing behaviour

(pr 0 @5 )(X)) =y ' Byt @ B!

(pro @, )( X)) =y, U T+ qyi B ® B1)B1 @ I
(pro®L (X)) =y T T+ qy By @ BrY) 1 ® By
(pr o @ )(X)) =y (I ® 1+ qy; B, ® B)I @ Bs
(pr 0 @\ ) (X)) =ym ([ @ T +qy; ' By ' @By ) ' By@ 1

Now we define, for a € N, the following function

fla) = {<y)a [l (U4 ig! 20420) ifa #0
1 ifa=0

Figure 4.2: Useful notations
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Observe that, because ¢ is a primitive N-th root of (—1)N*! we have
N
[T+ wig20=0) = 1Y =1+
u=1

On the other hand, ¥ is an N-th root of (14 2;)~!, indeed
J

vj 1+ xi)xj
These facts imply immediately that, for every a € N, the following relation holds
fla+N) = f(a)

Moreover, we define the following polynomial

~ [y \*
L LYkYi d
)= 3 (M)
d=0
Now we have all the tools required for the description of the isomorphism
L%, up to scalar multiplication.

Proposition 4.2.5. The map L{5,: CN @ CV — CN @ CN has components
(L2526 equal to

s,t

) N\ ¢tz N-1
q—s2+2z,y(b—c—z,-)+2bc (yjykyz> p(qQ(s—i—t—c—Zq:)) <Z q2a(b—s)f(a)> (4_12)
a=0

UV

for varying s,t,b,c € {0,..., N—1} and the indices of e_, ,_(s4¢+2,) are thought
as elements of Zn = {[0],...,[N —1]}.

Recall that L{%, is defined up to scalar multiplication, so by multiplying the
relations above, for varying k£ and [, by a common scalar, we obtain another
linear isomorphism verifying the property

L5, 0 pu (X)) 0 (E§5) 71 = (pr 0 @9,)(X) X' € T

Proof of Proposition[{.2.5 In what follows we will describe the strategy con-
ducing to the relation Firstly, we choose an indexing on the edges of the
triangles different from the one of Figure but more appropriate in order to
do an explicit calculus. In particular, we have chosen the indexing in Figure 3]
Denote by py and py/ the standard representations determined by this choice of
indexing and by the N-th roots ys; and v, respectively, the same that we have
chosen above. In particular, in this case we have the following relations

(X)) =y B1 ® By
(X)) =y;Bs®1
Pr(Xk) =y [ ® Bo
pA(X1) =y; I ® Bs
Pr(Xm) =ym Ba®1I
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P (X]) =v; By ® By
(X)) =v;By@ T
px(Xy) =ve Bs® 1
px (X)) =v1® By
P (Xp,) = vm I ® Bs

As previously done, we will denote by z; € Zy the number verifying v; =
qQZly . The representation py o ®%,, has the following behaviour

=y, 'Bi'e B!
(I®I+qy;B1®B1)Bs®1

Oq)i)«) )

D=y

Y=y I@T+qy;'By'@B ) 'I® B,
)=y

) = Ym

(Px (X;
(P © @55 (X
(P O‘I’A,\')(lef

(Px ! (I®I+qy; Bi ®B1)I ® Bs
Dx 0

( )\)\’)(Xrln (I®T+qy;'Bi'@B ) !Byl

The main benefits of this choice are

e the matrices I ® I + qy; B1 ® By and (I ® I +qy; " By' @ ByY)~! are
diagonal;

e it is very simple to find the family of isomorphisms 1) verifying
Yo (px o ®5\)(X) o v = p (X))

Indeed, they both are diagonal matrices, so it is sufficient to ask that
carries the a-eigenspace of py (X;) in the a-eigenspace of () o ®9,,)(X/)
for every «. In particular, such a 1 has the following behaviour

N—-1
€s,t — § Qr,s,t €C—rr—(s+t+z;)
r=0

where the indices of e_,.,_(s4¢4-,) must be thought as elements of Zy =

{[0],..., [N —1]}.

Now we require that 1 carries the whole representation py o ®%,, in py by
conjugation and we find equations in the constants a, s, which determine these
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elements a, s+ up to a common multiplicative scalar. In particular, we obtain
the following equations
yj(l +yiq—2(s+t+zi+1)+1)q1+2(r—1) a,

—1,5,t = Uj Qr 541t

-1 2 t+z;,—1)+1\—1 _ 1-2
e A B N e
—2 t+z;+1)+1),14+2 t+2z;— —
yl(]. + viq (stttzi+1)+ )q 2tttz —r) Qp,s,t = UVl Qps t+1

-1 2 t i—1)+1y—1 _
ym(]- +y;, q (stttzi—1)+ ) Qr41,s,t = Um Qrs,t—1

conducing to the following expression

s I8 t s+t
v j i —r)? s+t—r)z; s —2(u+z;
Urst = (7’“) (M) (&) R H(1+yiq1 2ut20)) g0 00
YrYi U5 Uk vl u=1

Now, defining £: CY¥ — CV the isomorphism

€ VN — cN
— 2
=
we observe that the following relations hold
(@ opyo(Et @8 =px
Etehopro(E®I)=px

The point is that £ is the linear isomorphism that change a standard triangular
representation in another standard triangular representation simply by rotate
the indexing. More precisely, if X7, Xo, X3 are generators of T%[, corresponding
to edges A1, A2, A3, ordered clockwise, and if 7 is a representation of 77 defined
by

n(Xi) = u; B;

for every i € {1,2,3}, then {1 on(-) o £ verifies
£ on(X;) 0 & = u; Biy

where the indices are in Z3 = {[1],[2], [3]}. So we obtain that the composition
(€@ opo(E ®F)

verifies the property defining L{?,. The relation can be found by develop
the composition, where we have chosen ap 90 = NV N. O

Remark 4.2.6. In the notations used in Proposition we define

Y
Wo = —
Uj

Yk

wq = —
Vg
w2 = —Y;
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Moreover, we assume that the following hold

. —]}
wO - vj - vl

Y __ Ym
wy = Vi Um

_ _ —-1_—2
W2 = —Yi =~V ¢

— —1

Wowi1w2 = —¢q

It is not difficult to see that these conditions are coherent with the relations
verified by the y, and vs by virtue of the expression of ®},,. In this situation,
the formula m for the numbers (Lf\’:\,)gzi (with py and py defined by the

indexing in Figure [4.2] and the N-roots y, and v,) becomes the following

N a
NC—(m+1)32_b+(m+1)c+bc—(m+l)5(2s+2t_2c+ 1) (Z Ca(b—s)w(a). H (1 _ w2<3(m+1)—u)>

a=1 u=1

where 6(k) is equal to 1 if k = 0(V) and is equal to 0 otherwise and N = 2m+1.

4.3 The elementary properties

In this Section we will focus on the properties verified by the objects (£ f,/ , wﬁ’;\l,)
that we have just defined in the previous Section. In particular, we will investi-
gate on the relations that will conduce to the Fusion and Composition properties
in the general case. The first part is dedicated to the "baby" version of the Fu-
sion property. The second Subsection will request some efforts and will conduce
us to the proof of a technical lemma that will be useful in the last Subsection,
where we will explicit the elementary version of the Composition property.

4.3.1 Elementary Fusion property

If S is obtained by fusion from R along some boundary components, there is a
natural map of projection 7: R — S. Given u € A(R) an ideal triangulation
and A € A(S) the induced ideal triangulation on S, the map 7 induced an
identification of I'r , with a subgraph of I's x. Moreover, thinking to I'r ,, as
a deformation retract of R, the map m.: Hy(R;Zy) — H1(S;ZnN) is injective,
because the map obtained from the inclusion of I'g , in I's x on Hy(-;Zy) is.

Lemma 4.3.1. Let R be a surface as above and S be obtained by fusion from R.
Fizn = {n.: T] — End(Wu)}ueA(R), n = A{n,: Tl — End(Wé)}ueA(R) two
isomorphic local representations of T and p = {px: T — End(Vi)} ca(s)»
P =1{p\: T = End(V{)} ca(s) two isomorphic local representations of T¢,
with p and p’ obtained by fusion from n and 7', respectively. Then, for every
w, 1 € A(R) that differ by diagonal exchange or a re-indexing, if A, N € A(S)
are the corresponding ideal triangulations on S, there exists a natural inclusion
E ,,2”;7/:7,/ — fff,/ such that, for every L € Xlg,/, the following holds

jle- L) = m(c) - §(L)

for every ¢ € Hy(R;Zy).
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Proof. We will prove only the case in which A and )\ differ by a diagonal ex-
change, the other situation is analogous. Moreover, we will use the sets 7%,
instead of Z{¥,, in order to describe the relations with the action in a more
explicit way. On the Z-level, the map j will be just the inclusion as subsets of
Hom(Vy,, Vi).

Fix p, 1/ € A(R) and A\, N € A(S) as in the statement, with A = A;(\) and
uw = A;(p). Tt is clear that the surfaces Sy and Ry, obtained by splitting S
and R along A and p respectively, can be identified and analogously for S, and
R{, obtained by splitting S and R along A" and p'. If 7, represents py, then
Fry(p) € Fs,(pr), by definition. From this fact we deduce an inclusion ¢ of
AZZ/, in Af\’i/,. The map j will be the application induced by 4 from ;2{/:7:,, to
o )f’,l. We need to prove the good definition of j and the injectivity.

Let (¢, ¢') € ﬁRo(nﬂ) X FR, (1) be an element in A", and denote bly
[¢,{']s its image in @/}, . Take (¢, (') another representative of [¢,('|r € #7,))
the equivalence class of (¢,({’) in AZZ/,. Then there exist transition constants

a; and B;, one for each internal edge of y, such that ¢ = ¢ and ¢’ B ¢’, with
aj = f; for every j # i. Note that the representations ¢ and ¢ need to coincide
on the variables corresponding to the boundary edges of R. In particular this
means that the elements ¢ and (, as representations in Zs, (py), have transition
constants equal to 1 for every A; that is the result of the identification of a
couple of boundary components in R, and equal to «; € C* otherwise. The
same must hold for ¢’ and (', so in particular [(,(']s = [(,(’]s, which proves
the good definition of j.

Now take (¢,¢'),((,() € AZZI, and assume that [¢,(']s = [(,(']s. This
means that there exist transitions constants o; and ;, one for each internal
edge of A, such that ¢ 2% ¢ and ¢’ By ¢’, with a; = B; if j # i. On the other
hand, the representations ¢ and ¢ belong to g, (my), so they must coincide
on the variables corresponding to the boundary edges of R. This implies that
aj =1 for every j such that A} ¢ ', (we are identifying I'g , with its image
in I'g » under 7). In the same way we can see that 3; = 1 for every j such that
(XNj)* ¢ Try, and these observations lead to the equality [¢,¢'|r = [, (]r.
Hence we have concluded the proof of the injectivity.

Finally observe that, for every ¢ € Hy(R;Zy), we have

j(c- 16, ¢'Ir) = j([¢ - ('Rr)
=[¢,m(c) - (s
=m(c) - [(,{']s
=m(c) - §([¢,¢r)

4.3.2 A technical Lemma

In the previous Section we have given a presentation of the elements in <7}, in
terms of equivalence classes of representations on the surfaces Sy or Sj). In this
Subsection we are going to prove a Lemma that will give an alternative con-
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struction of the sets <7}’ /\p,, in terms of equivalence classes of local representations
in a intermediate common level R’ between S and the surfaces Sy, Sj.

In other words, we want to represent local representations on S with local
representations on another surface R’, which can be obtained by fusion from
both Sy and S, and which is a splitting of S along certain edges of an ideal
triangulation of S. In addition, we will require that R’ is a disjoint union of
ideal polygons. The first important example of this situation is the surface R
that we have introduced in the Subsection 2.3

In the setting that this technical Lemma will allow us to introduce, the proofs
of the Elementary Composition property in the next Section will be simpler and
more expressive.

Diagonal exchange

Let A, X € A(S) be two ideal triangulations that differ by a diagonal exchange
along A\;. We have denoted by Sy and S|, the surfaces, obtained by splitting S
along A and A respectively, endowed with the triangulations Ao and Aj. More-
over, we have defined R as the surface obtained by splitting S along all the
edges except for \;, on which we have the ideal triangulations p = pg U po and
#' = pig U po induced by A and N

The triangulations A\g and A are the result of the

splitting of u and g/ along u; and ), diagonals of the xS Ay
square  in R. Now we take an intermediate surface 0 0o
R’ between R and S, that is a surface obtained by \ /
splitting S along certain A;, with j # ¢, with induced v R W

ideal triangulations v and v'. Furthermore, we as-
sume that R’ is the disjoint union of ideal polygons.
We represent the situation of surfaces and triangula-
tions related by fusion in the diagram on the right,
where an arrow from A to B means that B is ob-
tained by fusion from A, and on the sides there are
the relative triangulations.

Fixed p = {pr: T{ — End(Va)}reacs): 0 = {P): T — End(Vi)}reacs)
two local representations of 7, we define the following sets

F —

\
t\

w —

Fr(px) = {C € Reprjoo(T,7, Vi) | ¢ represents pa}
Fr(p\) :={¢, € Repryo (T2, Vi) | ¢ represents p'\, }

Now we introduce a set Bfi/, that will perform the role of A’;@:, in the new
setting:

B, = {(Gn ) € Fr(pa) x Fr(phy) | Gy o Y, is isomorphic to ¢/}

Fix two elements ((y, (/). (Cy, () of B’;’j\/,. For any choice of representatives
M 1N Fs,(C)y Mg In Fg,(Cy), both 7y, and 77, represents py on S. This

means that there exist transition constants «; such that n, it Mxo», With
that corresponds to the edge A7 in the dual graph I's y. In the same way, fixed

77;6 in Zg;(¢,/) and ﬁl)\é in Fg, (¢!, there exist transition constants 3;, indexed

by the edges of I'g x+, such that nf\é 64 ﬁl)\é' The transition constants «; and



4.3 The elementary properties 111

B; can be naturally compared for every j # i. We will say that ({,,¢],) and
(Cv, () are ~ps-equivalent if a; = j; for every j such that A} does not belong
to the subgraph I'r:, C I's x, for any choice of the representatives 1y,, 7x,,
773\6 and 77’%. This definition does not depend on the choices of representatives,
because we are not comparing the transition constants on the edges of I'rs .,
and I'rs .7, which are the only ones that can be modified by a different choice of

representatives. We will denote by ,@g ", the quotient of Bﬁil/ by the equivalence
relation ~g/.
Analogously to what previously done, we define a map

p: B, — Hom(V},, V)
carrying an element (¢,, (/) in the isomorphism M €l that verifies
(¢ 0@l )(X') = M% S ol (X) o (M)t

Note that there is a natural map f: %ﬂp/ — 93%\/,, which sends a couple
[Q\O,Cg\()] e @{{, in the couple [(,,(]/] € 93»\,, where (, is represented by (),
and ¢/, is represented by CA{)' It is very easy to check that this map is well

defined.
Now we are able to give the statement of the announced technical lemma:

Lemma 4.3.2. In the above notations, the following hold:
e the map f: sz)f’f, — %/\A, is a bijection;

e the following diagram is commutative

ﬂpp _7 @pp

AN AN
HOm V)\/, VA

In particular .,S,”)\p)’\),/ =Imp = Imp.

Before dealing with the proof, we want to remark the consequences of this
fact. Thanks to this statement, we can see that it is not important to represent

’
an element of &y, as an equivalence class of irreducible representations on the
algebras

.®7'7‘Zm 7‘}{@...@7"2

but it is sufficient to choose a certain surface R’, which is a disjoint union
of polygons, and take couples of local representations on R’, with a proper
equivalence relation that generalizes the one defined in original construction
of o’ )‘\7,/. In other words, in order to obtain all the intertwining operators in
XA’))’\’: via the action of Hy(S;Zy), it is not important to split S in all the ideal
triangles that compose it but is sufficient to split the surface in simple connected
pieces.
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Sy B &

Ir,u TRy Ts

Figure 4.4: An example of R —+ R’ — S and their dual graphs

Proof of Lemma[{.3.2 Firstly we will prove the surjectivity of f. Fixed [¢,, (/]
in #AY%,, we want to find an element (7)y,, 773\6) € AR, such that the local rep-
resentations 7, and 7, represented by 7, and 773\,0, on 7,4 and 7.} respectively,

verify n,,n,] = [(,, (] € %fil,. Take a representative (), of the local represen-
tation ¢, and analogously Ci\() of ¢/,,. We denote by ¢, and ¢ L, the corresponding
representations on 7,7 and ’7;’,. Take 1y, = () € Fs,(pr). We want to change
the element (3\6 with an 77;\6 € Fs;((,,) in such a way that the corresponding
1, is isomorphic to 7, 0 ®} , = (, 0@} , (observe that (, o @} , is well defined
because (), is a representative of py, and pyo®$,, makes sense). In other words,
we need to find transition constants a;, one for every edge (})* in the graph
I'gs v, such that, if 773\6 verifies the following relation

as elements of Fg((,/), then the local representation nL,, represented by 773\6
on 7, has the same invariants of the ones of , o ®} ,. Exhibiting such a 77’%,

we will find a couple (77>\o>773\6) that belongs to A’;f;//, because by construction
1, is isomorphic to n, o ®! ,,

Remember that ¢, o ®? , and (,+ are isomorphic, so the invariants of all the
edges of (R’,1') and the central loads of every component of R’ must coincide.
In particular, for every j such that the edge u;- in R goes in R’ through the
fusion, the invariant ¢/, ((X})N) is the same of ¢, o @7 . Hence we have to find
the a, in order to make coincide the central loads of the connected components
of R and the invariants of 17;, associated with the edges of i/ that are fused in

V.

and such that n, = ¢, 7, = (.

We will focus at the moment on the component R] of R’ containing the
edge v;, along which we make a diagonal exchange. The same procedure that
we are going to describe can be applied to each component and will lead to the
conclusion. Take the graph I'r/ ,» and denote by I'g the component of I'r/
that corresponds to Rj. Ty is a tree because is a deformation retract of Rf,
which is simply connected by hypothesis. We are going to describe a recursive
procedure, with
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INPUT: a sub-tree I, of T'g, containing (v})*, and a transition constant
aj for every (v})* that is in Fgl) \FS) verifying: if (G\S)(k) denotes the
representation in Fg, ((/,) defined by

;B 1 \(k)
O, — (Cyy)

where 3; = a; when (v})* € F(()l), ; = 1 otherwise, then (CL/)(’“), the local
representation of 77?, represented by (C/No)(k)’ has the same invariants of
Cuo (I)Zu’ on all the couples of edges corresponding to F(()l) \F,(Cl) and the

same central loads on all the triangles corresponding to vertices in 1"80) \F,(CO);

OUTPUT: asub-tree I'y4; of 'y, obtained by removing a certain edge (},)*,
n # i and a vertex corresponding to a triangle 7%, and a new transition
constant «,, such that the conditions in the input are verified by ['yiq
instead of Tk 1.

The algorithm ends when the last T’y is composed of the only edge (v))*
and its ends. Before describing the procedure, we want to convince ourselves
that the final transition constants (), provide the desired representation. By
construction, the resulting 773\6 = (Cf\g)(k) leads to a representation 7, that has
the proper central loads and edge invariants on every triangle. The last thing
we need to check is that the invariants on the square @) are correct too.

Recall that the central load of a fusion is the product of the central loads of
the glued terms. We already know that the central load on R} of ¢, o ®Y , is
equal to the one of ¢/, and we have constructed a representation ¢, that has the
same loads of Cuoq)z L on all the triangles not contained in @, so it is immediate
to check that the same holds on the square @), by the Fusion property. With
analogous observations we can check that also the invariants on the boundary
of @ have to be the ones of ¢, o ®,,,. In order to conclude the proof of the
surjectivity, it is sufficient to repeat the procedure on the other components
of I'p/ v, removing from the conditions on the input the restrictions on (v])*.
In these cases the procedure ends with transition constants that conduce to
a representation with the proper invariants on all the triangles composing the
fixed component.

Now we can describe the algorithm. I'y is a tree, so we can select a leaf of it,
i. e. a vertex with valence equal to 1. Assume that the vertex corresponds to
the triangle 77 of the triangulation of R}. By hypothesis this vertex is on the
side of a unique cell (v)* € F,(gl), dual of the edge v),. If n = ¢ and there are
not any other leaves, then the tree I'y is the graph of the only square @, and so
the algorithm ends. Otherwise, replace the first leaf considered with this one.

Because (T7)* is a leaf, the (¢;);, selected in the previous steps, lead to a
representation (Cﬁ\é)(k) that has the correct invariants on two of the three sides

of T/, the ones different from ;. Now we want to select a transition constant
o, in order to make correct also the central load of T, and the invariant of the
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edge of T! corresponding to v,. Suppose that the sides of T in u' are labelled
as pj, pr, and pl,, and that the invariants prescribed by ¢, o <I>Z A€ Y1, Y, Yn
and h. Moreover, denote by 7, ¥m, Jn, h the invariants of the tensor term of
(C\g)(k) related to T7. By hypothesis, we already know that the following hold

Il
<

Ui
Ym

Il
<

m

If a,, is the transition constant associated with v/}, it is immediate to check that

the suitable multiplication by «,, of the tensor term of (Cg\é)(k) associated with
T! modifies the invariants g, h as follows

Y — U
gm—>gm

n,s)—

gn — anNs( Yn

h — a5™)h

e(n,s)
Now fix a certain N-th root 3 of (g—") and define o, = ¢%'B, with t € Zy

to be determined. By construction

y e(n,s)
Tn — (¢ B)N) g, = ¢ <") In
Yn
=Yn

Now we want to choose ¢ € Zy in order to send h in h. Recall that A" = vy yn
—-N =N
and h° = §;¥m¥n, so with every choice of ¢t we have h¥ = h . On the other
hand
h q2ts(n,s)ﬁﬁ

and this implies that we can realize, by changing ¢, all the possible N-th roots
of GiGmTn = Yiymyn = R, and then there exists a £ such that h — h.

Denote by I'41 the tree obtained by removing (v,)* and (77)* from I'y,. Let
us verify that I'y 1 has all the properties in order to repeat the algorithm on
it: by construction the representation (C;\a)(kﬂ) has the same central loads of

(T9)"

(V)"

Figure 4.5: The first step of the algorithm
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Cuo <I>ZH, on all the triangles corresponding to vertices in F(()O) \ Fgﬁl. Indeed,
we do not have modified (¢ 3\6)(’“) on the triangles associated with the vertices in

1"(()0) \I‘,(CO) and we have chosen «,, in order to have the same central load also on
T!. The only thing that we need to check is that the invariants on the couples
of edges corresponding to the elements of Fél) \F,(;JZI are correct. The edge v,
is the result of the fusion in p’ of the edge u!, of T. and of another edge p!, of a
certain triangle 7. The last thing we need to check is that the invariant y, of
(C;/u)(kﬂ) on the edge !, is also correct. But this easily follows from the fact
that, labelled as %, %, the invariants of ¢, o (I);]m’ on p, and u,, the products
YnYu and 7,7, are equal because p), is isomorphic to py o ®9,, and, thanks to
the choice made for «,,, we also have y,, = ¥,. With this last observation we
conclude the proof of the surjectivity of f.

Now we have to deal with the injectivity. Fix [(),, Cf\é], [Cxo E/)\(g] two ele-

ments of %ff,, and suppose that their images [, ¢},], [(,, ()] in %ﬁf\i coincide.
As usual we are denoting by (,, ¢, the local representations on 77 represented
by (g, Cx, and analogously for ¢/, ¢!,. Because [(,,¢) ] = [(v, (], we have

with a; = j3; for every j such that A} € I'sx \ I'r/,,». We have to show that
aj = f; for every j # i. Similarly to what done before, we take I'g the sub-tree
of I'rs .+ related to a connected component of R’, and we prove that on all the
edges (v})* of I'g, except for (A})* = (v{)* possibly, we have a; = ;. Select a
leaf of Ty, with vertex T and edge (v),)* as before. If n = i then we look for
another leaf: if it exists we replace v/, with it in the following procedure; if it
does not, then this component is dual of the only square ), hence we can skip

it and focus on a different connected component. Assume that n # i. Because

q
B

analogously QTL, is isomorphic to ¢ uw© @ZH,. In particular, because T, is not
contained in @) and thanks to the Fusion property of <I>Z“,, the invariants of
the edges and the central load on T of G\B are the same of those of (,,, and

[Cros Cf\{)] belongs to ﬁ%f/{’,/, the representation ¢/, is isomorphic to ¢, o @7 , and

analogously the invariants of the edges and the central load on 77 of El)« are the
0

same of those of {y,. Denoting by v/, v/, v/, the edges of T/, we already know
that o = () and oy, = B, because (T7)* is a leaf. Now we see that, if a,, # B,
then it can not happen in the same moment that ¢, o @ZM, is isomorphic to C;/t’
and ¢, o (I)Zu’ is isomorphic to CL,, by inspection of the invariants. Indeed, if
ol o BN then the invariants on the edge v/, can not be equal in both cases. If

a = BN but a,, # ., then the invariants on the edges coincide in both case,

n
but not the central loads of T7. This concludes the proof of the main part of
the Lemma.
To see that po f = p, it is sufficient to observe that, if L is an isomorphism
between (,0®,, and CL,, then L is an isomorphism between the fusions ¢, 0®? ,

and (], too. O

If ¢, (, are two elements of .Fr/(py), then we can define a notion of transi-
tion constants like in the case of R’ = Sy. Indeed, taken two representatives (y,
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and Cxo of ¢, and (,, then for every ); in A there exists a constant «; such that

Cro 9, Cx,- The constants a; depend in general on the chosen representatives,
but only those ; such that A} is an edge of I'r/,, C I'g . Therefore we can

define the transition constants from ¢, and ¢, as the collection of the o that
correspond to edges in I's y \T'r’ ,,, fixed a certain couple of representatives. We
will briefly write this as

o -
CV ?J) CV

Moreover, given (, a representative of ¢, and such a collection of transitions

constants, we can extend it arbitrarily to a set with one a; for each A; and define

a new representation (y, of T\ by taking (y, NG xo- It is immediate to see

that the local representation ¢, on 7,4 represented by (, does not depend on the
way we extended the set (c;);. In conclusion, given {, € Fr/(py) and a set of
a; € C*, one for each edge of I'g » \ I'r/,,,, there is a unique local representation

¢, € ﬁzR/(pA) such that ¢, %) Cy.

The other cases

It is not difficult to deduce a Lemma for the case in which A = «(\'), with
a € G, analogous to Lemma[£.3.2] For the sake of simplicity, we will deal with
the case A = X, but the same holds in the case of a generic reindexing. Fix a
surface R, obtained by splitting S along certain edges, which is disjoint union
of polygons and endowed with an induced triangulation v € A(R').

Now define Bﬁ’))\/ as the set of couples ((,,(}) in the product Zr:(px) X
Fr(py) such that ¢, and (], are isomorphic. The equivalence relation on B{}

leading to %ﬁﬁl is defined as follows: ({,, (/) is ~-equivalent to ((,, (") if
o
CV [ R]—>CV
Bj _
¢ [ Rl—cC,

with a; = j; for every j such that A7 € I'sy \ I'r/,. As in the previous case,

we have natural maps f: df/{’/ — %’ﬁ‘;\/ and p: ,@’;f\/ — Hom(V}, V), defined
in the same way. With the same procedure as in the proof of Lemma the
following fact can be shown:

Lemma 4.3.3. In the above notations, the following hold:
o the map f: %ff %KA is a bijection;

e the following diagram is commutative

Qfﬂp s @pp

\/

Hom V)\ s V>\
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In particular .L”ff,/ =Imp=Imp.
Let A, N € A(S) be two ideal triangulations, which differ by a diagonal
exchange or a reindexing. Then we can describe an action of Hy(S;Zy) on the

set %’iil, just introduced. Given ¢ € Hy(S;Zy) and [(,, (/] € t%’fﬁ/,, we take a
representative ¢ 3\6 of ¢/, and we define

c: [CV)CI//] = [CD,C . Cl///]

where we are denoting by ¢ - ¢/, the local representation on (R’,v’) induced
by c - 43\6' It is not difficult to see that ¢ - ¢/, does not depend on the chosen

representative C/Ag of ¢/, and that the action is well defined (as in the proof of

Lemma here is crucial the simply-connectedness of R'). Moreover, it is
clear that this action corresponds via f to the usual action of H;(S;Zy) on

o )‘\’,/, hence, thanks to Lemmas and the properties of the action
that we observed on @/}, , like transitivity and freeness, hold also on %Y, .

4.3.3 Elementary Composition property

Let A be an ideal triangulation of a surface S and assume that there exist in .S
three triangles that compose a pentagon with diagonals A\; and \;, possibly not
embedded in S. We enumerate the sequence of triangulations appearing in the
Pentagon relation as follows

AO =)
AW = AN

AW = (A 0 Ajo Aj o A)(N)
/\(5) = Oéij(/\)
2@ =)

Designate as R the surface obtained from S by splitting it along all the edges
except for A; and A;. Then R is the disjoint union of an ideal pentagon P and
m — 3 triangles Ty, . .., T,,. The ideal triangulations A*) lift to a sequence (%)
of triangulations on R, which are related by diagonal exchanges along p; and u;,
the diagonals of P. Each ideal triangulation p(*) can be naturally presented as
the disjoint union of a triangulation ugc) of the pentagon and the only possible
triangulation i on Ty Ll --- U T,,.

By definition of the sets ZY%, | 141, it makes sense to compose the inter-
twining operators as follows

5
[Ti—o £\ yoey —  End(Va)
(LO,...,L5) — L()O---OL5

Lemma 4.3.4. Let p = {px: T{ = End(VA)}\cp(s) be a local representation

of T¢ and XF) g sequence of triangulations as described above. Then the com-
position
5
[Ti=o ffﬁcmkm — LR
(LOa"'aL5) — LOO"'OLES
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is well defined and it verifies

(co - Lo)o (c5- Ls) = (ch) (Loo---oLs)

Proof. By virtue of Lemma each £7h N0 (41 18 In bijection with the set

17
B\ () \r+1)» defined as

{(¢™,¢* ) € Zrpaw) x Frlpaesn) | ¢ 0@ 1y, isom to C(Hl)}/N

~

where R is the surface described above, which is a disjoint union of an ideal
pentagon and triangles, in particular a disjoint union of polygons. The first
step of the proof will be the following: we want to translate the composition
map on the £7% N a4y 0 an application defined on the product of the sets
ﬁifk))\(k+1)’ in order to have a better control of the behaviour of the actions of
H,(S;Zy). All the efforts spent to prove Lemma allow us to manage local
representations ((*) defined on Chekhov-Fock algebras of the same surface R

associated with the ideal triangulations ().
We will denote an element of HZ:O By \er1) DY ([CO ,Cl ])k 0, where C

is a local representation of 7:’(k) that represents py) on S and Cl is a local
representation of 7?(%1) that represents pyx+1 on S. Suppose that the 6-tuple
corresponding to (] ék), {k)]),c _oin Hk 092” o sterny 18 (Lo -+« 5 Ls). We would
like to understand if there exists an element in {5 corresponding to Lgo---0Ls
and how can be described. The elements [(; (k) (k)] belong to '@ifmwﬂw SO
for every k € {0,...,5} and ¢ € {0,1} the local representation Ql-(k) represents
Patktiy, 1. €. it is an element of Fgr(pyx+« ). Then, for every k =1,...,5 there
exist transition constants agk) such that

( )
CUR) 2y (k)

O R
where agk) is associated with an edge A; € I'g x) \FRMUQ). Observe that there
is a natural bijection

FS7/\(1C) \FR7H(k) — FS,)\(’“+1) \FR,;A(’C+1)

for every k = 0,...,5. Indeed, A\*) and A(*+1) differ by a diagonal exchange,
so we have a canonical correspondence between all the edges of them except
for the ones on which we do diagonal exchange; in particular on all the edges
)\Z(-k) and )\gk) that compose I‘R k)

We can change representative of | él),

different from

] by taking ( (O), gl)), where

(1)
1) @ 0
6" o ¢l

W =)

1) @«
G " G
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Analogously we can construct a representative (C\", %) of [¢{?,¢(?)] defined
by

In the same way, for every k = 3,4, 5 we choose the representative (¢ ik Y

of [Cok), {k)} obtained as follows

)

(k—1) (1)
k) ay (k—1) @, a,  =(k=1)
G o ¢ T
R R R
ol O PN
(k) C(k) " ) 1;; Cgk)

In this way we obtain a 6-tuple of representatives of (] ék), fk)]) _o that looks
like

(1689, ¢, 1@, ¢, e, e, e, e, e, e, e, e

Despite their terrible appearance, these representatives have the good property
that the elements appearing that belong to F#r(py\x)) are both equal to EY%I
for k = 2,3,4, or to (1(0) when k£ = 1. We claim that the local representations
COO) and Ef’), both elements of .Zr(py), are isomorphic via Lg o --- o Ly, so
[C(O), CgS)} is an element of #{% whose image is Lo o --- o Ls.

Because we have chosen representatives of the classes [Céi)7 Cfi)] correspond-
ing to the linear isomorphisms L;, we have that

(COO) o @1 1O (1))(X( ) = OC (X(l)) © Lch VXM e TH Jes)
(207, ) (X)) =L 0 (X))o L7 VX@ e T,

=(k— 1) ~(k) _
(1 0@ e )(XED) = Lo (X))o Lt vX D e T,

for k =2,...,5. Hence we deduce that, for every X € T

0 0
67 (X) = (667 0 @25y ) (X)
0
= (Cé "o (I’Zm)”(l) e (I’Z(sm(s))(x)
0 .
LOO( | )O¢’u(1)l (2) © O(I)It(mﬂ(a))(X)OLOl

= (Loo-o0Ls)oly (X)o(Lyo--o0Ls)™"
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where we have used the Pentagon relation of %y )\ - This proves the claim.
Denote by ® the operatlon from Hk 0P (k))\(k+1> to L% corresponding to

the composition of £ (i s(e1y Just described. Then we have proved the following
equality

$2,¢910 @, Mo o0, e = (™, @13)

Observe that we do not have to verify any dependence on the chosen represen-
tatives, because the composition map is obviously well defined and we have just
rewrite it on the sets f@)\(ku(kﬂ)

Now the conclusion is just a verification. Define

k
Sk = ZCi € Hl(S; ZN)
i=0
for every k = 0,...,5. If p: B — 2 is the bijection described in Lemma
[4:373] we observe that
P '((co-Lo)o---o(cs- Ls)) =
(1 —~(4) =5
= (eo- 16", ¢"D @ (2 - (6. T )D ( TeRNeR)
1 5
=1, e0- Mo e -G o6 e 0
(0) =(5)
= ¢, 50 - ¢ @ [¢f (51— 50) @ O[T, (35— 4) - C1)
[ ,50- ¢V @ [s0- ¢V, 51 - Cgl)] ®[84'€T§4)785'€T§5)]
:[ S5 Cl ]
=S5 (gO)v 1 ]

s
=55 (1K, 0@ Mo 0e?, )
=S85-D (L00~--OL5)

=p (ss-(Lpo---oLs))

where we are using the relation and the equality [¢,('] = [¢- (,e- (] €

B \r1)- Finally, by applying p to the first and the last members we obtain

5

(co-Lo)o-+-o(cs-Ls)=s85-(Lopo---0Ls)= <ch> -(Lpo---oLs)

k=0

as desired. |

In the same way, we can prove analogous results with respect to the other
relations that hold between the elementary operations on the ideal triangula-
tions. We limit ourselves to the enunciations of these properties, their proof
can be obtained with procedures analogous to the Pentagon relation case, by
considering the surface R, result of the splitting of S along all the edges except
for the ones along we do diagonal exchange, if there is any.

Lemma 4.3.5. Let p = {px: T} — End(Vi)}yeacs) be a local representation
of T¢ and let X € A(S) be an ideal triangulation.
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COMPOSITION RELATION: given «, 8 € &, consider the following path of ideal
triangulations

A=\ AW =a), AP = (Boa))
Then the composition

pp pp pp
Liloaw X L@ > Lo

(Lo, L1) — Lgoly
is well defined and it verifies
(co-Lo)o(c1-Li)=(co+c1) - (Lopo L)
for every ¢; € Hi(S;ZN);

REFLEXIVITY RELATION: given \; a diagonal of a certain square in X\, consider
the following path of ideal triangulations

MO =X AW = A;(n), AP =)

Then the composition

pp pp
"%)\(0))\(1 g)\(l))\@) f/\A
(LQ, L ) — Lo o L1

is well defined and it verifies
(co Lo)o(e1-Lr) = (co+c1)-(LooLr)
for every ¢; € H1(S;Zn);

RE-INDEXING RELATION: given \; a diagonal of a certain square in A and o €
S, consider the following path of ideal triangulations

A© = )
A= a(N)
AP = Aj(a(V) = (A (V)
A®) = AL (\)
AW =
Then the composition

3
[[—0 L aiin — 2L
(Lo, Li,Lg,L3) +— LooLyoLjyolLs

is well defined and it verifies

(CQ . Lo) o (Cl . Ll) o (02 . Lg) 03 L3 (Z Ck> LO o Ll o Lg o Lg)

for every ¢; € H\(S;Zn). The same holds for the inverse sequence X(i),

with X(i) =D fori=0,...,4;
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DISTANT COMMUTATIVITY RELATION: given A\; and A; diagonals in A that do
not belong to a common triangle, consider the following path of ideal tri-

angulations
A0 = )
AL = AN
AB = (A0 A)(N) = (Aio A;)(N)
AG) = AN
A& = )

Then the composition

3
Lo Loy — 28
(Lo, L1, Lo, L3) +— LogoLjolLyols
is well defined and it verifies

3

(CO Lo) o (Cl . Ll) o (CQ . Lg) o (63 . Lg) = <ch> . (LO OLl OLQ OLg)

k=0
for every ¢; € Hi(S;ZN);

PENTAGON RELATION: given A\; and A; diagonals of a common pentagon in A,
consider the following path of ideal triangulations

A= )
AL = A (N

A@ .= (Aj oAj;o Aj 0 Ai)(A)
)\(5) = a”()\)
A(G) = )\

Then the composition

5 PP PP
Hk:o Z)&fc),\(ﬂl) ’ XA,\
(L07"'7L5) —> Lgo---olLj

is well defined and it verifies

5

(co-Lo)o---o(cs-Ls) = (ch> -(Lpo---oLs)

k=0
for every ¢; € Hi(S;Zn).

The relations between the actions exposed in Lemma and the transi-
tivity of the actions proved in Theorem imply that the compositions maps
are surjective in every case exposed in Lemma [£.3.5]
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Lemma 4.3.6. Let

p= {p)\: 7&‘1 — End(V)\)}AeA(S)
pr=1{p\: T — End(vxl)},\eA(S)
p" ={p\: T{ = End(VY) hheacs)
be three isomorphic local representations of T3, and let X\, N be two ideal tri-

angulations of S that differ by a diagonal exchange or a re-indexing. Then the
compositions

o:r LU LLL — L)
(L, M) — LoM
o LU xL — 2
(L, M) — LoM

are well defined and they verify
(c-Lyo(d-M)=(c+d)-(LoM)
for every ¢,d € Hy(S;Zy).

Proof. Assume that the triangulations differ by diagonal exchange along the
edge \;. Now take R the surface obtained by splitting S along all the edges
except for A;. Then we can represent, as in the proof of Lemma the
compositions on the sets %ﬁf\; X %’ﬁ:‘;\l,/ — %’ﬁil,/ and 93‘;?\/ X %f\):\p/” — %ﬁﬁl,’
respectively, where the set % are defined as quotients of sets of local represen-
tations on R. Now the proof can be achieved with the same ideas of Lemma
4.5.2) [

Lemma 4.3.7. Given A\, X € A(S) that differ by an elementary move, i. e. a
diagonal exchange or a re-indexing of the edges, the map

Ot L — 0
L — L7t

verifies
(c- L)™' =(-¢)- L~

where c is an element of H1(S;Zy), the action in the first member is on Z{%,
and the action in the second member is on L.

Proof. Thanks to Lemma the proof is immediate:

((—¢) L™ o(c-L)y=(—c+c)- (L' oL)=id

4.4 The complete definition

In the previous paragraphs we have studied the elementary properties of the
sets Z{{, endowed with certain actions 15, of H1(S;Zy), but we have defined
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these objects only in the case in which A and )\ differ by an elementary move.
Now we have achieved all the elements to deal with the general construction.

Let A, ) € A(S) be two ideal triangulations of S. Thanks to Theorem
there exists a sequence of elementary moves that leads from A to \’. Label the
ideal triangulations we pass through as follows

A= MO ND A AR =y
Then we define .2 f// as the image of the composition map

h op op’ ’
[Ti—o L5600 iy X LN +  Hom(Vy,, Vi)
(Lo, ..., Ln,Lny1) > Lgo---0Lpyy

Moreover, denoting by 7: Hy(S;Zx)"t? — H1(S;Zy) the map

h+1

(Coy- vy Chg1) i= Z ¢
i=0

we can fix a section s: Hy(S;Zn)"T2 — H,(S;Zy) of 7, in other words a map
that verifies 7 o s = id, not necessarily a homomorphism, and we define the
action of ¢ € Hy(S;Zy) on an element L = Lo o -+ o L4y in ZY%, as follows

c-L:=1(co-Lg)o---0o(cht1Lpt1)

where s(¢) = (co,...,cn+1) and we have chosen an element (Lo, ..., Lp+1) in
the fibre of = under the composition map.

In this definition of (f)f’f,/ , wﬁil,) we have done some arbitrary choices:
e the path of triangulations between A and \';

e the section s of 7;

e the decomposition of L € £ f,/ as image under the composition map of a
certain (h + 2)-tuple (Lo, ..., Lpt1).

We need to prove that the object (£}’ )’\’: , iil,) does not depend on the choices
made. We start from the last one: take (L;); and (L}); such that

! !
Loo---oLpy1=Lyo---oLy,y

We want to show that, for every (co,...,cnr1) € Hi(S;Zn)"N, the following
holds

(co-Lo) oo (cht1 - Lhy1) = (co-Ly) oo (cht1- Lyyr)

Firstly observe that, because of the transitivity of the action of H;(S;Zy), for
every i = 0,...,h + 1 there exists a d; € H1(S;Zy) such that d; - L; = L}. By
hypothesis, we have

(Loo-+-oLpt1)o(Lyo---o L;L+1)71 =1id € End(V})
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On the other hand

(Loo---o Lpy1)o(Lyo oLy )™ =
=Loo---0Lpp10(dpt1 - Lnga) " o---o(do- Lo) ™"
=Loo---0Lpp10((—dns1) - Lyyy) oo ((—do) - Ly") Lemma37
=Loo---0Lyo((=dps1) -id) o ((—dp) - Ly ') oo ((—do) - Lg")
Lemma [£.3.5]
=Loo---oLpo((=dpy1 —dp)- Ly )o---o((—do)- Ly"') Lemma [L3.6

. h+1
- (Zdz) -id
1=0

We observed that the action of Hy(S;Zy) on Z{¥ is free, so 27:4—01 d; must be
equal to 0. It is simple to see that the steps of the relation above prove also
that the following relation holds

((co-Lo) oo (cht1 - Lns1)) o ((ch Lo) o0 (chyy  Ln4r)) ™' =

_ (’il(c —d)) » (4.14)

i=0
In particular, we have

(co-Lo)o -0 (cht1 - Lnt1) o ((co- Lo) oo (chsr- L))" =
= (co - Lo) oo (cns1 - Lnyr) o (((co+do) - Lo) o+ 0 ((cht1 + dnt1) - Lnt1)) ™"

h+1 h+1

=0

=1id

and this concludes the proof of the independence of (¢ L)oo (¢pr1 - Lpt1)
from the (h + 2)-tuple (L;);.
Fixed s, s’ two sections of 7 and ¢ an element of H;(S;Zy), we have

h+1 h+1

E ci:E c;
i=0 i=0

where s(c) = (c1,...,cpq1) and s'(c) = (cj,...,¢), ;). Hence relation
proves the independence of ¢ - L from the fixed section too. In addition, by
selecting an homomorphism as section, which clearly exists, we conclude that
(¢,L) — c- L is indeed an action. The last step in order to obtain the good
definition of (&} j\’,/ , K’)’\/,) is the independence from the choice of the path of
ideal triangulations between A and \'.

Consider two sequences of ideal triangulations from A to \'. By Theorem
[0:4) we know that these sequences are connected by a chain of certain moves. It
is sufficient to prove that, starting from a sequence

A=A O R AR AL —
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and by applying any move described in Theorem the sets (&Y f\),, /\)\,)
defined through the different sequences are the same. In what follows, we will
show that this fact is a simple consequence of Lemma Take a sequence
obtained by modifying the original one, which will look like

A= AO DAk~ )\(0) )\(1) ,X("H) — ARHD () N (R

) ) (n)

where \*¥) = X(O ,5\(1 ,...,A  is one of the sequences appearing in the asser-
tion of Lemma Then we need to compare the images of the following
composition maps, labelled as ¢ and @y respectively:

U
pp. L1 /
| I ,\( yali+n X I | ZL5 FO G+ X | I <l),\u+1> x L0 — Hom(Vy,, Vy)
j I=k+1

/2 /
H LE e X LER 2 Hom(V,, V)

Because of Lemma the composition of an (n+1)-tuple in []}_, £ oy

G+1)
provide an element in g)\(k))\(kﬂ), so the inclusion Im¢; C Imys is ObV)\lOUS
Moreover, the composition is surjective, so also the inverse inclusion holds and
therefore Im 1 = Im ¢s. Hence the sets f (v are well defined, it remains to
prove the good definition of the action ¢>\ -

Fixed L € fff/l, we can write it as an element in the image of ¢ and oo,
respectively, as follows

L:Loo~~oLk_1ofooouoEnoLk_Ho~~oLhoLh+1

4.15
=L60~-~0L;€_10L;60L;€+1o~--oL’hoL;H_1 ( )

By virtue of the transitivity of the action on the terms .i”/\( )G+ for every
i # k, there exist ¢; € H1(S;Zy) such that ¢; - L, = L;. Moreover, we can find
an element ¢, € Hy(S;Zy) such that ¢y - Lj = Lgo--- o L, thanks to Lemma
4.3.50 Denoting by H?:o M; the composition My o --- o M,, from relation m

we can deduce

h+1 k—1
id = H L o H L o H Ll o H Lh+1 l (L;c)71 o H(L;_l_i)71
I=k+1 i=0
h4+1 h—k k—1
= H Ck Lk) H 0 H Lh+1 z (L;e)il © H(L;c—l—i)71
I=k+1 1=0 i=0
h+1
= <Z ci) -id Relation {14
i=0

Because the action of Hy(S;Zy) on Z{% is free, we must have E?jol cn, = 0.
We have shown that the actions are independent from the choices of the sections,
so given

T - Hl(S;ZN)h+n+2 — Hl(S ZN)
htntl g
(dl)l — Z +n+

ot Hi(S;Zn)"2 — H(S;Zny)
(di)i — S
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the maps through which the actions are defined, we can choose

Sl(d)i = (d, 0,..., 0) c Hl(S; ZN)h+n+2
s2(d); = (d,0,...,0) € H1(S;ZN)h+2

as sections. Then the actions of d, defined through these two sections, give
respectively

(d-L);=(d-Lo)o--+oLj_10Lyo-+0Ly,0Lpy10---0LyoLyi
(d-L)g=(d-Ly)o---oLj_joLyoLy 0---0oLjoLy

where (c- L); denotes the action of d on L defined with the first sequence and
the section s1, and (c- L); denotes the action of d on L defined with the second

sequence and the section ss.
Now, by virtue of the presentations of (d - L); and (d - L) just given and

of the relation [4.14) we can rewrite the isomorphism (d - L); o (d- L);* as the
following composition:

h—

=

k—2

— n h+1
=(d-Lo)o H H H (Lhg-1) P o (Li) " Ho [[(Bhori)to
i=1 3=0 =k 1=0 i=0
o(d~L6)71
k—1 h+1 h—k
=((d+co)-Lo)o [[(ei- L) o(en-Li)o ] (er-Li)o [ (Lhgaot) ™ o (i) to
i=1 I=k+1 1=0
k—2
o [[(Lhci—i)to(d-Lo) ™
=0

h+1
= <d+zc,- —d> id
=0

=1id

and this finally proves the independence of the action from the chosen path of

ideal triangulations. Hence the objects (£}, f: ) are well defined.
In order to prove the transitivity of the action, fix a certain path of ideal
triangulation and two elements L = Loo---0 Lyy1 and L' = Ljo---oLj

in Z{ f,/ . Because the actions are transitive in the elementary cases, for every
i=0,...,h+1 there exists a ¢; € H1(S;Zy) such that ¢;- L, = L}. So, choosing
a section s such that s(>, ¢;) = (co,...,cn) (because s is not required to be a
homomorphism, we can always do so), we observe that

¢-(Lyo---oLpy1)=Lio---0oLj 4

hence the action is transitive. Now suppose that ¢- L = L, then the following
relation must hold

((CQ . Lo) O-+++0 (Ch+1 . Lh+1)) o (LO O+++0 Lh_;'_l)il = Zd

Now, applying the relation we obtain

h+1
(Z cz-> id = id
1=0
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By freeness of the action of Hq(S;Zy) on £, we deduce Y, ¢; = 0 and then
¢ = 0, which proves the freeness of the action in the generic case.

Now we have defined all the elements needed to deal with the proof of the
Existence Theorem:

Theorem 4.4.1 (Existence Theorem). For every surface S (see C’hapter@ for

details) there exists a collection {(fff\),', f\f\,,)}, indezed by couples of isomorphic
local representations p,p’ of the quantum Teichmiiller space T3 and by couples
of ideal triangulations A\, € A(S) such that

INTERTWINING: for every couple of isomorphic local representations
p=1{px: T = End(VA)}/\eA(S) pr={p\: T — End(V,\/)},\eA(S)

and for every A, N € A(S), .iﬂff,l is a set of linear isomorphisms Lffj\l, from
Vi, to Vi such that

(px 0 @\ )(X) = LRS, 0 ph (X") o (L35) !
for every X' € T};

ACTION: every set fo\’,/ is endowed with a transitive and free action 1/1&";\/, of
H1 (S, ZN),'

FUSION PROPERTY: let R be a surface and S obtained by fusion from R. Fiz
n=A{n.: T — End(Wu)}ueA(R) n = {77;3 T — End(W;lL)}ueA(R)
two isomorphic local representations of TS and
p=A{px: T{ = End(V/\)},\eA(s) pr=1{p\: T — End(V/\/)},\eA(S)

two isomorphic local representations of Td, with p and p' obtained by
fusion from n and 7', respectively. Then for every p, 1’ € A(R), if A, N €
A(S) are the corresponding ideal triangulations on S, there exists a natural
inclusion j: £l — LN, (the inclusion as subsets of Hom(Vy,, V1)) such

that, for every L € 3;7;7’/’ the following holds
(J ot )(e, L) = ¥ (mi(e), §(L))
for every ¢ € Hi(R;Zy), where m: R — S is the projection map;

COMPOSITION PROPERTY: for every p,p’, p" isomorphic local representations of
Td and for every A\, X', X' € A(S) the composition map

’ /1 11
L x L88, — LK
(L, M) — LoM

is well defined and it verifies

(c-L)yo(d-M)=(c+d)-(LoM)

Proof. We need to verify that Fusion and Composition properties hold.
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FUSION PROPERTY: Let R and S be surfaces like in the asser-

viv' R pp
tion, each one endowed with a couple of ideal triangulations,
w, i € A(R) and A\, N € A(S) respectively, where the fusions J
of the firsts are the seconds, and with a couple of isomor- AN S oo

phic local representations, 1,7’ of T2 and p,p" of T¢, where
the fusions of the firsts are the seconds. Firstly observe that
W, = Vx and W/, = VJ, because p is fusion of n and p' is fusion of 7', so the
sets f)f’f,/ and ,Z;’;’,/ are both subsets of Hom(Vy,, Vy).
Now we choose a sequence of ideal triangulations in R from p to u’

o=, D) D =

which induces a corresponding sequence in S from A\ to A’ by fusion
A= A0 2O AR \EFD —

The set .Zﬁ;’: can be realized as the image under the composition map of the
set )
mm nm mn
fﬂ#m X e X .Z#(k)ﬂ, X L

Lemma [4.3.] tells us that this product is contained, through a natural map that

we still denote by j, in

/
op oP PP
Ly X X Lo X LN

The image of this last set, under the composition map, is equal to £’ f,/ . This
clearly shows £, C Z{ and the map is just the inclusion as subsets of
Hom(Vy,, Vi), so it does not depend on the chosen sequence of ideal triangu-

lations. Now we have to prove the relation between the actions: we fix ¢ €
Hy(R;Zy) and an element L € f:ﬁ, , we take a presentation L = Lgo---0Lgi
as compositions of a (k 4 2)-tuple in

’
nm nm nn
Ly X X Ly X L

Then, recalling Lemma [£.3.1] and what just seen, we have

jle-(Loo--oLgy1)) =j((co- Lo)o---o(crsr - Lry1))
=jlco- Lo)o--oj(crsr - Lis1)
= (mu(co) - j(Lo)) © -+ o (mulck1) - §(Lis1))
=m(c) - (§(Lo) o+ 0 j(Lr+1))
= () j(Loo-+ -0 Lit1)
where m: R — S is the quotient map. So the Fusion property holds.

COMPOSITION PROPERTY: Given A, N\’ € A(S), we choose paths of elementary
moves on ideal triangulations

A=A AR NG AG2) () (D) — \7

Then the sets £ f,/ and f/@lf,,,/ can be constructed as images of the composition
maps as follows

’ /
pp’ _ pp pp pp /
L =Im( L) % x LY < LY — Hom(Vy,, Vi)

/N N ’ ! r1
p'p o' p o' p p'p "oyl
L3 =Im( LY Ly X oo X LY X LS — Hom(Vy,, Vy)))

2\
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On the other hand, the set Z{{, can be presented as

1! 1!
L =Im(ZLL ) % - x ZLL6 o x L0\ — Hom(Vii,, Vi)

Firstly we need to show that this set is equal to

Im (H Mo X LLh H AbAGH X Lfb = Hom(VS1, VA))
1=k+1
(4.16)
and then to explain how the actions are related. The first fact is an easy
consequence of Lemma Indeed, by virtue of that result, the following
holds

m(ﬁﬂ&,xg”/\(wg) — Hom(V;(HQ),V,\/)) =

= Im(Z7",

A\ (k+2) x L5 A(k+2) \(k+2) ? Hom(VMHQ), V,\/))

where the maps are the obvious compositions. This implies that the set in
is equal to the image of the composition on the set

k+1

/ rr
pp o'p
[[-2 0 < 250 [N | I N X LR
= i=k+2

Now, iterating this process we conclude that the set in[£.16]is equal to the image
of the composition on

h
’ ’1
Hff([j),\wm X LN} LGB

=0

and by applying one last time Lemma on f)f’,’,);\,, X £ p,l,’:\,,/, we obtain the
equality we are looking for. Now it remains to prove the relation between the
actions. Given L € Z{{, and M € £{{,, we write L as composition of a
certain ,

(Lo,...,L]H,l)Ef)\(l) X - Xf/\(k))\, nglp)\/

and analogously M as composition of

(Mk+2,...,Mh+1) Gg,)\(k+2) X - Xg(,g/\,, Xff,/;,,
The element Lj.1 o My, o belongs to £77,

Va2, Which is equal to the image of
compositions of isomorphisms in

PP

/
op
at+2) X L hr2) \(k42)

by virtue of Lemma Then there exists a couple (L}, Mj42) in the set

L ey X g)\(k+2))\(k+2) such that Lyi1 0 Myyo = Lj ;0 My yo. In this way

we have written L o M as composition of an element in

k+1
7

/
pp o' p
I I L6+ X 256 Ne+2) \(ht2) X | I (>,\<7:+1) X Lyhn
1= i=k+2
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Iterating this process, we rewrite L o M as follows

LoM =1Lgo---oLgoLgiioMgiyioMgpzo---0Mpig
, _
=Loo-roLyolLy,joMpia0Mpygo--oMpiy

/ ! AT
=Lgo--oLgolLy,q0Mgs0Myyzo---0oMpy

_ ’ / ’ ’
=Lgo--oLgoLy,oMy,o0Mg,g0--0M;
where

"
’ / / op PP op
(L07"'7Lk’Lk+17Mk+27"'7Mh+1)Eg)\)\(l) X'.'Xg/\(h))\// Xg)\//)\//

so we have found a decomposition of L o M as element of .Z¥ f,,,/ , described by
the path A = A\ .. X"+ —= X’ The image of L under the action of an
element ¢ € H{(5;Zy) will have the form

c-L=(coLo)o- o (ckt1Lit1)

with ). ¢; = ¢, and analogously the image of M under the action of d €
H,(S;Zy) will appear like

d-M = (dry2 - Miy2) oo (dpy1 - Mpy)
Recalling the relation between the actions in Lemma we see that
(cks1 - Lpy1) o (drg2 © Myyo) = (chg1 + diga) - (Lpg1 © Myyo)
= (ers1 + diya) - (Ljy1 © Myyo)
= (Crs1 Lig) © (g2 0 Miy2)
This implies the following relation
(c-L)o(d-M) = (co-Lo)o-o(ck+1 Lit1)o (g2 Mys2) o0 Mpiq
= (co- Lo) o0 (rr1 - Lijyq) o (diya - Myy2)o--- 0 (dny1 o Mpuyr)
By iterating this process as before we obtain that

(c:L)o(d-M) = (co-Lo)o-+-0(ch1Liyy) o (drra My ys)o- -0 (dngr-Mpyy)

Now observe that the second member is equal to (¢ +d) - (Lo M) € f/\pf:: by
definition of (Z{%., 1/J§§l/,) and because

k+1 h41
Zci—&— Z dj=C+d€H1(S;ZN)
i=0 j=k+2
This concludes the proof. O

Theorem 4.4.2 (Uniqueness Theorem). Suppose that {///ff:} s a collection
indexed by couples of isomorphic local representations p, p' of the quantum Te-
ichmiiller space T and by couples of ideal triangulations X\, N € A(S) such
that



132 4 Intertwining operators

INTERTWINING: for every couple of isomorphic local representations
p=A{pr: T{ = End(VA)}AeA(s) pl=1{p\: T — End(V;)}/\eA(S)

and for every \, N € A(S), A, is a non-empty set of linear isomor-
phisms MSX, from V3, to Vy such that

(px 0 @) (X)) = MR, 0 i (X7) o (ME5) ™!
for every X' € T};

WEAK FUSION PROPERTY: let R be a surface and S obtained by fusion from
R. Fix

n={nu: Tl = End(W/L)}ueA(R) n = {77“ Tl — End(W/)}MeA(R)
two isomorphic local representations of T4 and
p={px: T} = End(W\)}iensy £ =1{ph: T = End(V)}eacs)

two isomorphic local representations of T4, with p and p' obtained by
fusion from n and ', respectively. Then for every u, ' € A(R), if \, N €
A(S) are the corresponding ideal triangulations on S, the inclusion as
subset of Hom(Vy,, V) j: M), — ALY, is well defined;

WEAK COMPOSITION PROPERTY: for every p,p’, p” isomorphic local represen-
tations of T and for every X\, \', N € A(S) the composition map

/ /N /!
M < ML, — A
(M,N) s MoN

is well defined.

Then, for every p and p’ isomorphic local representations and for every A, N €
A(S) we have

oo’ pp’
L © AN
where { £} /\’0: } is the family previously constructed.

Proof. Thanks to the Weak Comp081t10n property and to the surjectivity of
the composmlon maps for the (£ f, , wM,) it is sufficient to show the inclusion

2 f, C (% in the elementary cases, in which the triangulations differ by a
diagonal exchange or a re-indexing. Let S be a surface and take A = X € A(S),
the other situation is analogous. Denote by Sy the surface obtained by splitting
S along all the edges of A and by \¢ the ideal triangulation induced on Sjy.
Moreover, we fix p and p’ two isomorphic local representations of 7§ and we
choose two isomorphic representatives (y, and (} of px and p) respectively.
The representations ¢y, and (j\o can be thought as local representations  and
¢’ of the whole quantum Teichmiiller space of 7'5?0, because Sy admits the only
triangulation Ay, being a disjoint union of ideal triangles. The element Q\O
belongs by construction to the set Fs, (p), ), so we can consider c-(}  for every c €
Hy(S;Zn). In this way, for every ¢ € H(S; Zy) we obtain a local representation
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c-¢' of T¢ isomorphic to ¢" and that still leads by fusion to p). Because ¢ and
¢ - ¢’ are isomorphic irreducible representations of T/\qo, there exists a linear

isomorphism Lgf\}cl : Vy, = Vi, unique up to multiplicative scalar, verifying
L3N o Go(X) 0 (155°) ™ = ()

for every X € 7')\'107 by virtue of Prop,osition Then, because //// )ig\o must
be non-empty, the isomorphism Lis)ﬁ) necessarily belongs to .# foc)\g . The weak
Fusion property tells us that .#. foc;\g, is contained in .# /\pf/, so the isomorphism
ng/\g must belon% to ///ffl f(l)r every ¢ € Hl(S;Z{V). By definition Lf\gl)\o is
an element of .ZY{ , and Lgs/\i coincide with ¢ - Lf;i/\[)7 where ¢ € H1(S;Zy) is
acting on .ZY{ . This means that, by transitivity of the action ¢4 , the whole

’ /
set £ is contained in .Z{{ , which is what we were looking for. O

Lemma 4.4.3. Let A\, X € A(S) be two ideal triangulations and
p=A{px: Ty = End(VA)},\eA(s) pr=1{p\: T — End(v/\/)},\eA(S)

two isomorphic local representations of the quantum Teichmiiller space Tg of S.
Then for every ¢ € H1(S;Zn) there exists an automorphism B(c) of VY, with
det B(c) = 1, uniquely determined up to scalar multiplication by an N-th root
of unity, such that

c-L=LoB(c)™*

for every L € £{%,.

Proof. Firstly we observe that we can assume A = \. Indeed, every L € .f/\pf,,
can be written as Ly o Ly, with

(Lo, Ln) € £L5, x {5,

and the element c¢- L is equal to Ly o (¢- L1). So, by showing that the condition
holds for Z{,,, we will conclude the general case.

An element L € f)\p&/, corresponds to a certain class [¢, ('] € Mf/p)\//, where (
and ¢’ are representatives of py, and p),, respectively, and the following holds

Lo¢'(X)o L™ =((X)

for every X € T’Ig, where \j is the triangulation on the surface Sj;, obtained

by splitting S along the triangulation A’. On the other hand, for every ¢ €
H,(S;Zy) the element ¢ - L corresponds to the class [¢, ¢ - ('], where ¢ (' is
the action of ¢ on (" € Fg (p),). In Remark we observed that ¢’ and
¢ ¢’ are isomorphic and that there exists a linear isomorphism D(c), described
explicitly, such that

D(c)o¢'(X)oD(e)™" = (- () (X)
for every X € /\q[,). These two relations imply immediately that

(LoD(e)™")o(c-¢)(X)o(LoD(e)™)™" = ((X)
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for every X € 7}, and this proves that ¢- L = Lo D(c)~". By asking that
det D(c) = 1, we obtain a linear isomorphism B(c), uniquely determined up to
scalar multiplication by an N-th root of unity, verifying the requests.

More precisely, in Remark we have found D(c) as conjugated to linear
isomorphisms that are tensor products in GL(®),(CV);) of isomorphisms of CV
obtained as compositions of the applications B; for i = 1,2, 3 and their inverses.
It is immediate to see that every B; verifies det(B;) = (—1)V*!, where we are
using the fact that ¢V = (—1)N¥*!. Furthermore, the following relation holds

det(Ly ® -+ @ L) = det(L)N" "+ det(L)N™ (4.17)

for every Lq,..., L € GL,,(C), where m is the number of triangles in an ideal
triangulation of S. So, if D(c¢) is equal to A; ® -+ ® A,,, with A; composi-
tion of the B;, then det(A4;) is a certain power of (—1)¥*! and consequently
det(A;)N" " is a power of (—1)N" T NV If ;> 1, then N™L(N +1) is even,
and consequently det(A;)"N """ =1, which proves that det(D(c)) = 1 thanks to
the relation So actually we do not need to rescale D(c) in order to obtain
the additional property det = 1 if m > 1. O

4.5 Invariants of pseudo-Anosov
diffeomorphisms

We firstly need to define actions of the mapping class group MCG(S) of S on

the sets &(S) and Repr,,.(7J), which will be very useful in what follows.
Let [r,{&x}cr] be a conjugation class of a peripherally generic enhanced

homomorphism and let ¢: S — S be a diffeomorphism. We define

[T’ {gw}ﬂ—en] 4

as the conjugation class of a peripherally generic enhanced homomorphism
(8,{Nx} rer) defined as follows:

e 5 is equal to the composition 7 o @,, where ,: m(S) — m(5) is the
isomorphism induced by ¢ for an arbitrary choice of a path joining the
base point of S to its image under ¢;

o for every m € II 1, is equal to &, (x)-

The conjugation class [s, {7}, cp] does not depend on the choices of the repre-
sentative (r, {{x } <) and the path joining the base point of S to its image under
©, so this construction defines a right action of MCG(S) on the set &5 (S)

EA(S) x MCG(S) —  EH(S)
(Ir &t b)) — &t e

This concludes the definition of the action on &.52°(.S).

If ¢ is a diffeomorphism of S, then for every A € A(S) we denote by ¢()\) €
A(S) the ideal triangulation defined by ¢(X); := @(\;) for every i = 1,...,n.
If Sp and S|, are the surfaces obtained from S by splitting it along the triangu-
lations A and ¢(\) respectively, then ¢ induces also a diffeomorphism from Sy
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to S§. Sp and S)) can be endowed with unique ideal triangulations Ag and Aj,
which clearly verify p(A\g) = Aj. Consequently there is a natural algebra isomor-
phism @5 : 7! — qu) that sends, for every 4, the variable in 7} corresponding
to (Ao); in the variable in 7yl corresponding to (\g);. This implies that ev-
ery local representation pyy): 7;1( N~ End (W) induces a local representation
P T — End(W) defined as follows: fixed a representation (o € Fg1(pp(n)),
we take the local representation p) represented by

Coo@y: Tl — End(W)

The local representation p) just constructed does not depend on the choice of
the representative (o and we will label it as py(y) - -

Moreover, the diffeomorphism ¢ induces also, for every A € A(S), an alge-
bra isomorphism ¢%: T}/ — T;( A Which sends, for every i, the variable in T
corresponding to A; in the variable in T;( N corresponding to ¢()\;). It is clear
that these isomorphisms have a good behaviour with respect to the coordinate
changes ®%,,. More precisely, they induce isomorphisms also on the fraction
rings 4% : 7A'Aq — 7A'g( N in the obvious way and the following relation holds

P40 4y = 0L 0P (4.18)

for every A\, X € A(S).
Given p = {px: T} — End(V,\)}/\eA(S) a local representation of the quantum
Teichmiiller space 7§, we define a collection of local representations

pro=1{(po)rt T{ = End(Von)}eacs)

by setting (p- ©)x 1= py(a) - ¢ for every A € A(S), where p,(») - ¢ is constructed
with the procedure described above. It is simple to see that the relation
implies that the collection p - ¢ is indeed a local representation of the quantum
Teichmiiller space T¢. Hence we have described also a right action

Reprloc(,Yg'I) X MCQ(S) — Reprloc(,rsl'l)
(o, []) — %
In addition, observe that the isomorphisms ¢ send the central element H) of
V in the central element H,(y) of 7;:1(/\). Therefore, the central load of the
representation p - ¢ is the same of the one of p.
Recall that in Theorem we have shown the existence of a surjective
map
O: (TS — EH(S)
(0] — [ {2}l
that sends each isomorphism class [p] in the conjugation class of its hyperbolic
shadow [r, {2} ]and that has the fibre on [r, {2}, ] composed of the N isomor-
phisms classes of representations, one for each possibile central loads, which are
the N-th roots of x1 -« - x,,.

Lemma 4.5.1. The following relation holds

O(lp] - ) = ©([p) - ¥

where ¢ is acting on Rioc(T) in the first member and on &7 (S) in the second.
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Proof. Let ¢: S — S a certain lift of @ on the universal covering. Recalling
Proposition and Theorem if p is equal to a collection {py: T —
End(Vi)}yea(sy and [r, {&x} ] is its hyperbolic shadow, then for every A € A(S)
we can find a pleated surface with bending locus A associated with py that looks
like ( fv,\,(). Then, by inspection of the shear-bend coordinates, the pleated
surface (fy(x) © @,7 0 p«) is a pleated surface with bending locus A associated
with the representation p,(y) - . Following the definitions, this fact implies the

assertion. O

Let ¢: S — S be a diffeomorphism of the surface S. Denote by M, the
mapping torus of ¢, which is the 3-manifold obtained as quotient of S x R by
the group of diffeomorphisms generated by

To: SxR — SxR
(1) — (pp),t+1)

We define also the inclusion

i: § — M,
p — [p,0]

Observe that the homomorphism i, : m;(S) — 71 (M) induced by ¢ is injective.
Indeed, assume that v: S* — S is a closed path such that i o+~ it homotopically
trivial in M,. Then there exists a map f: D? - M, such that f|g1 = io07.
Because D? is simply connected, we can lift f to an application f: D? — S x R
such that

e mof=f wherem: S xR — M., is the projection map;
o f(SY) c S x {0}.

By construction we have f|gi =~ x {0}: ST = S x {0}. If p: S xR — S x {0}
is the obvious projection on the first component, then po f is a continuous map
from D? to S x {0} whose restriction to S* is equal to v x {0}. This proves that
~v was homotopically trivial also in S, hence that i, is injective. Moreover, by
construction of the mapping torus, the maps ¢ and 7 o ¢ are homotopic, hence
Ty = Ty O Q.

By virtue of the Thurston’s Hyperbolization Theorem, the mapping torus
M, admits a complete finite-volume hyperbolic structure if and only if the dif-
feomorphism ¢ is isotopic to a pseudo-Anosov diffeomorphism (see [Thu83| and
[Ota96]). Assume that ¢ is pseudo-Anosov and let 7: m1(M,) — P SLy(C) be
the holonomy of the complete structure on M,,, which is unique up to conjuga-
tion in P SLy (C) because of the Mostow Rigidity Theorem. From r we obtain the
homomorphism ry,: m1(S) — P SLy(C), defined as the composition roi,. Thanks
to the injectivity of i., we have that r, is also injective. Moreover, because r is
the holonomy of a complete finite-volume structure, r, leads every peripheral
subgroup 7 of 71(S) in a parabolic subgroup of PSLy(C). This means that
r, admits a unique enhancement {{;} ;. Observe also that (1, {{x},cp) 18
peripherally generic, because of Lemma[3.3.6] Therefore a pseudo-Anosov diffeo-
morphism ¢ produces a unique conjugation class of enhanced homomorphisms
from 71 (S) to PSLy(C) peripherally generic [ry,, {{} el € £(S). By virtue
of Proposition there exists a unique non-quantum representation pclp of
Tg related to [ry, {&r ), cnl-
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Lemma 4.5.2. The non-quantum representation p}a verifies

(Pp)A(H) = (pp)a(P;) = ide
for every A € A(S) and for everyi=1,...,p.
Proof. See |BLO7, Lemma 39| O

As consequence of this lemma, the isomorphism classes of local representa-
tions in © ! ([ry,, {&x }ren]) are classified by their central loads, which are all the
possible N-th roots of unity. So, for every k € Zy, we have found a unique iso-

. . k . .
morphism class of local representations [pj;] having [ry, {x},cpr] as hyperbolic
shadow and q% as central load. Because i, o ¢, = i, and because r, admits a
unique enhancement, we have

[Ttpv {fﬂ—}ﬂ'en] P = [TW {gﬂ}ﬂel‘[}

In other words, the element [ry, {&x}, o] in £72(S) is fixed by the right ac-
tion of ¢. Hence we deduce, recalling Lemma that the action of ¢ on
Rioc(S) preserves the set O~ ([ry, {&x},cpr])- Furthermore, we have seen that
the isomorphisms ¢ preserve the central element H, so the action of ¢ on
O ([ry, {€x}ren]) is necessarily the trivial one. We have proved

Theorem 4.5.3. Let S be a closed surface with punctures. Fiz q a N-th prim-
itive root of (—=1)N*t1 k€ Zy and p: S — S a pseudo-Anosov diffeomorphism.
Then there exists a conjugation class of peripherally generic enhanced homomor-
phism [ry, {&x} rerr], uniquely determined by ¢, which is fived by the action of ¢
on EH(S). Moreover, the set O ([ry,{&x} eri]) s composed of exactly such
isomorphisms classes [p’fa} of local representations of Tg having 1y, {&x}rcrr] as

hyperbolic shadow and ¢** as central load, and each [pf,] s fized by the action
of p on Rioe(S).

Henceforth, the numbers ¢ € C* and k € Zy will be fixed. Choosing a
representative p of the class [p’;], Theorem implies that the representations
p and p - ¢ are isomorphic as local representations of 7. Therefore, we can
consider the family {(.Z77,¢¥£y/”)} of intertwining operators between p - ¢
and p.

In particular, fixing A € A(S), we can consider the element

PP PP
(L0 ¥R e(n)
Observe that both the representations (p - ¢)x and py,(x) go in End(V,(y)), so
the set ff;f(i) is contained in GL(Vj(y))-

The element (.2} 'f(f\’), z/)‘;':j(’;)) depends on the chosen representative p of the
isomorphism class [pf;] and on the ideal triangulation \. We want to produce a
more intrinsic object.

Definition 4.5.4. Let p = {px: T — End(Vi)},ca(s) be a local represen-

tation of 7§. Fix p € A(S) an ideal triangulation and a tensor-split linear
isomorphism

M=M1®"'®Mm1®Vu,jzvu—>wz®wj
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Then we denote by M e, p the local representation defined as follows

px: Tyl — End(Vy) ifA# p
(M oL P))\ = 1. . o
Mop,(-)oM™:T?—End(W) ifA=p
Observe that M o p,(-) o M~': T2 — End(W) is a local representation
because M is tensor splitting.

Lemma 4.5.5. Let p = {px: T{ = End(Vi)},cn(s) be a local representation
of the quantum Teichmiiller space Tg. The following hold:

1. let p € A(S) be an ideal triangulation and M:V, — W a tensor-split
isomorphism. Then M belongs to g[ﬁ{.up .

2. let p: S — S be a diffeomorphism, A € A(S) be an ideal triangulation and
M: Vyn) — W a tensor-split isomorphism. Then

Mex(p-¢)=(Meynp) v

Proof. We will focus on one point at time.

1. Asusual, we denote by Sy the surface obtained by splitting .S along u and by
o the ideal triangulation on Sy induced by . Fixed an element ¢, € Fgs,(pu),
a representative of (M e, p), is given by ¢/, = M o (,(-) o M~" (it is a well
defined representation of 7,1 because M is tensor-split). Clearly M sends ¢, in
¢,,- Hence we have that the couple (¢}, () belongs to Fs, ((Me,.p),.) X Fs,(pu),

so we have found an element [(],, (,] € Jzﬁf\ﬁ"‘p ? that corresponds to M, which

clearly implies M € ﬂ%'“ﬁ P

2. Denote by S} and S the surfaces obtained by splitting S along the ideal
triangulations A and ¢(X) respectively, endowed with the ideal triangulations
Ao and ¢(Ao). Recall that the diffeomorphism ¢ induces an isomorphism &
from 7;?0 to 7;‘71( M)’ .Fixed (e Z sy (Pe(r)), a representative of the representation
(M ey (p- ) is given by

Mo(C-g)()oM™ =Mo(Cod§ )()oM™
= Mo (¢(#5,(-) o M~}
=(Mo¢()oM™)-p

Now observe that M o ((-) o M~" is a representative of (M e,(y) p)y(n) and
consequently (M o ((-) o M~1) - ¢ is a representative of

(M ®,(N) p)ga(A) = ((M ®,(N) ,0) : QO)A

Hence we have proved

(Mex(p-©))x=((Meyx)p)- @)

It is simple to see that on all the other triangulations these representations are
obviously equal, because they coincide with p - ¢ on them, so the proof of the
second assertion is done. O
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Recall that we are interested in the construction of an intrinsic object start-
ing from
PP PP
(L2500 Y etn)
In order to do so, we choose a tensor-split isomorphism M from V() to a
fixed vector space W = @), W;. For example, a natural choice of W is

m

W= ®(CN)i

i=1

Now we modify the representations p - ¢ and p by taking M ey (p - ¢) and
M e,y p. Considering now the object
. Mex(p-p) Me Mex(p-¢) Me
Z((,O; )\,p,M) — (g)\ @(;)P 4 w(A)P’wALP(/\)\)P@ v(A)P)
we obtain a set of isomorphisms in GL(W) and so automorphisms of a vector

space that is independent from the choices done. The following study will be
focused on the investigation of the dependence of i(p; A, p, M) on

e the representative p of the isomorphism class [p’;];
e the tensor split isomorphism M: V,(y) — W;
e the ideal triangulation A € A(S).

Observe that the set .27 f,/ does depend only on the local representations py
and p),. In particular, in the case of i(¢; A, p, M), the only local representations
involved are M o pya)(-) o M~ and M o (py(x) © ©5)(-) o M~'. Therefore,
fixed A € A(S), i(¢; A, p, M) depends only on M and p,(xy. By virtue of the
first point of Lemma @ the representation M e p is isomorphic to p, in
particular it belongs to [p’;], and it has the property that (M e,() p)y(r) has
values in End(W). Moreover, if p’ is a representation of 7§ isomorphic to p such
that p:o()\) has values in End(W), then p;(A) is equal to p,(x) ®,(n) M’ for some

M': Vo) — W (it is sufficient to take M’ € f;gi)ip(/\)). The second point

of Lemma tells us that the representation M ey (p - ) is just the image
under the action of o of M e,y p. Putting together these observations, we have
proved that every i(p; A, p, M) is equal to i(p; A, M e, (5 p,id). Moreover, for
every p’ and p” representations in [pf] such that p;( » and p;( ») are equal and
have values in End(W), we have

(g A, s id) = i(p; A, p”id)
Henceforth, fixed A € A(S) and W, the study of the objects i(y; A, p, M) can be
reduced to the investigations of the elements
i@ A p) = i(gs A, pid) = (LY 55, U8 25)
where p is a local representation of 7§ having Py(x) With values in End(WW).

Lemma 4.5.6. Let A\, N € A(S) be two ideal triangulations of S and p, p’ two
local representations of T4. Then for every L € f&i,) o(n) the application
fo: Lrer — g)\p,'f(;i

Ap(N) )
A — LoAoL™!
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is well defined and bijective. Moreover, it respects the actions, i.e. fr(c-A) =

¢ frL(A) for every A € .i”kpf(» and c € Hi(S;Zy).

Proof. Because L is an element of fggi,) o(N)? the composition A o L1 belongs
to £y f(f\’j). If L belongs also .,f)f’,/f #'%then the assertion is an obvious corollary

of the Composition property of the family {(.Z¥ f, Y )\,)}. It is sufficient to show

that L € ff,/f 7% when A, X’ differ by an elementary move. We will investigate
the diagonal exchange case X' = A;()), the other possibilities are simpler to
study.

Firstly we need to introduce the notations: we denote by Sy the surface
obtained by splitting S along all the edges of A except for A; and we label
its ideal triangulations as A\g and Ay, the first corresponding to A € A(S) and
the second to N € A(S). Moreover, ¢(Sy) will be the surface obtained by
splitting S along all the edges of () except for ¢(A;) and ¢(Ao), p(A]) its
ideal triangulations induced by ¢(A) and ¢(\') respectively.

. . p/p .
Because L is in f@o\,) o(0)? there exists a couple

(€, Q) € Zo(so) (Ploinry) X Poo(so) (Po(n)

such that
1
Lol(X)oL ' = (¢ o<I>¢(X)@(>\O))(X)
for every X € 7:;1( Xo)* Because ¢ represents the local representation p,(y), by

composing it with the natural algebra isomorphism @io : 7')?0 — T4 o(rg) Ve obtain

a representative of the local representation (p - ¢)x. The same argument shows
that ¢’ o @?\6 is a representative of (p’ - ¢)x. This means that the couple (¢’ o

P4/, Copy,) belongs to
0

Fso((p - 0)a) X Fs,((p-9)a)

Moreover, the following holds

Lo(Co@i )(Y)oL ™' =Lo((@5,(Y) oL
(C O(I)@(x) (AO))(@[I,\O(Y))
= (< o (’0)‘6 o q’g\())\o)(y)

So the equivalence class [’ o @‘){6, Co @3 ] belongs to &7, ”"¥ and corresponds

in .ZL;¢ 7' exactly to the isomorphism L. This shows that L € 2% % and
so the assertion. O

For every A € A(S) and for every local representation p such that p,(y) has

values in End(W), the couples (.iﬂfff), (e f;(ﬁ ) verifies

o the set .2} ‘p)‘p) in contained in GL(W);

e H(S;Zy) acts on £ :f( /\p) by right multiplication via certain tensor-split
isomorphisms of W, uniquely determined up to multiplication by an N-th
root of unity.
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We will say that two such couples are conjugate if there exists an element L
in GL(W) such that

e the conjugation map fr: GL(W) — GL(W) that sends A in LAL™! is a
bijection between the sets;

e fr commutes with the actions.

Two couples are tensor-split conjugate if there exists an automorphism L
like above that is tensor-split.

Theorem 4.5.7. The conjugacy class of a set i(¢; X, p, M) does not depend on
the tensor-split isomorphism M: V) — W, on the representation p € [pffo]
and on A € A(S).

Proof. We have seen that it is sufficient to study the sets j(@; A, p) with py(y)
with values in End(W). Fixing A\ and varying p in the sets of local represen-
tations in [p%] with values in End(W), Lemma with A = X shows that
the tensor-split conjugacy class does not change (when A = )\ the isomorphism
L e fgf(/i)ip()\) is tensor-split). So the tensor-split conjugacy class of j(¢; A, p)
depends only on A.

Now choose two different ideal triangulations and two representations p, p’
such that p,(yy and p;o\,) have values in End(W). Because i(p; A, p) does not
depend on p,(yy, We can assume that also p,(yy has values in End(W), by
replacing p with M e,y p for a certain M. Analogously we can assume that

P, (n) has values in End(W). Now we have that each element L of fgéf\’/)@@)
belongs to GL(W). Hence, by applying Lemma |4.5.6/on a fixed L in pre

e(N) p(A)
we have that j(p; A, p) and j(p; N, p') are conjugated (not necessarily tensor-
split conjugated) and this finally proves the announced result. O

We will denote by I(q,k,p) this conjugacy class, depending only on the
primitive N-th root of unity ¢, the number k£ € Zy and the pseudo-Anosov
diffeomorphism ¢.

Explicitly, in order to obtain the invariant of the diffeomorphism ¢ with ¢
and k fixed, we can proceed as follows

1. we fix an ideal triangulation A € A(S) and a local representation p € [pk];

2. we possibly replace p with a representation p’ such that p,(y) has values
in End(W). We can also assume that p,() is in a standard situation.
More precisely, we can choose p such that every representative of p,(»)
is the tensor product of triangle representations that are in the standard
form described in the proof of Proposition Observe that, if py(y) is
in standard position, the same holds for the representation (p - ¢)x;

3. we fix a sequence of ideal triangulations A = A(®) ... \(F) = ©(N) leading

from A to p(A) and we find through it an element L of .,Sf/\p;f(i). The

other elements of .2} ;ﬁﬁ) can be produced as L o B(c)~! for varying ¢ €
H,(S;Zy), where B(c) is an element of GL(WW) as described in Lemma
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4. we take the conjugacy class of this set, which will have the following form
{Co(H(S;Zn)-L)yoC™' | C € GL(W)}
where

Co(H\(S;Zn)-L)yoC ' ={CoLoB(c) ' oC™'|ce H(S;Zn)}

This is the resulting invariant for the pseudo-Anosov diffeomorphism, having
chosen ¢ a primitive N-th root of unity and k a certain element of Zy.



APPENDIX A

Algebraic notions

In what follows, we will always assume a ring is has an identity and it is not
necessarily commutative.

Definition A.1. Let R be a ring. R is an integral domain if R\ {0} is multi-
plicatively closed.

An element s of R is said to be a unit if there exists a s’ € R such that
ss' = s's = 1. We denote with R* the set of all units of R.

A regular element in R is any non-zero divisor, i.e. any element a € R such
that, for every b € B\ {0}, both ab and ba are non-zero.

Theorem A.2 (|[GWJ04, Theorem 1.9]). Let R[X] be a polynomial ring in one
indeterminate. If the coefficient ring R is right (left) Noetherian, the so is R[X].

Corollary A.3. For every field K and for every n € N, the ring K[ X1, ..., X,]
18 a bilateral Noetherian ring.

Definition A.4. Let R be a ring and X a subset of R. We will say that X is
a multiplicative set of R if X is multiplicative closed and 1 € X.

Furthermore, X satisfies the right Ore condition if, for each x € X and
r € R, there exist y € X and s € R such that ry = xs. A multiplicative set X
satisfying the right Ore condition is called a right Ore set.

Definition A.5. Let R be a ring and X C R a multiplicative set. A right ring
of fractions for R with respect to X is any overring S O R such that:

e every element of X is a unit in S;
e every element of S can be written as az !, for some a € R and z € X.

Remark A.6. Let X be aright Ore set of regular elements in a ring R. We define
arelation on R X X as follows: we say that two couples (a, ), (b,y) € Rx X are
~-equivalent if there exist ¢,d € R such that ac = bd and xc = yd € X. Then
~ is an equivalence relation. We denote with S the set of equivalence classes of
R x X with respect to ~.

Given [a, x], [b, y] elements of S, choose ¢,d € R such that xc = yd and set

[a,z] 4 [b,y] := [ac + bd, zc]

Given [a, z], [b,y] elements of S, choose ¢ € R and z € X such that bz = zc and
set

[a, 2] - [b, y] == [ac, y7]
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The above operations are well defined and they give S a ring structure. The
map R > r+— [r,1] € S is an injective ring homomorphism. Also, if we identify
R with i(R) in S, then S becomes a right ring of fractions for R with respect
to X.

Theorem A.7 (|GWJ04, Theorem 6.2]). Let R be a ring and X C R a multi-
plicative set of regular elements. Then there exists a right ring of fractions for
R with respect to X if and only if X is a right Ore set.

Proposition A.8 (|JGWJ04, Proposition 6.3]). Let R be a ring, X C R a right
Ore set of regular elements and S a right ring of fractions for R with respect
to X. Suppose that ¢: R — T is a ring homomorphism such that $(X) C T*,

then there exists a unique extension of ¢ to a ring homomorphism ¢: S — T.

Corollary A.9 (|JGWJ04, Corollary 6.4]). Let R be a ring, X C R a right Ore
set of reqular elements and S, S’ right rings of fractions for R with respect to

X. Then the identity map on R extends uniquely to an isomorphism of S onto
S’

Definition A.10. If R is a ring and X C R a right Ore set of regular elements,
we shall write RX ! to denote any right ring of fractions for R with respect to
X. Similarly, we shall write Y ™' R for a left ring of fractions.

Proposition A.11 (|GWJ04, Theorem 1.9]). Let R be a ring and X C R a
right and left Ore set of reqular elements. Then RX ' = X~ 'R, that is, any
right ring of fractions for R with respect to X is also a left ring of fractions for
R with respect to X and vice versa.

Definition A.12. A classical right quotient ring for a ring R is a right ring of
fractions for R with respect to the set of all regular elements in R.

Definition A.13. A right Ore integral domain is any domain R in which the
non-zero elements form a Ore set, i. e. for each z,y € R\{0} there exist r,s € R
such that xr = ys # 0.

Proposition A.14 (|Coh95, Proposition 1.3.6]). Let R be a integral domain,
then either R is a right Ore integral domain or it contains a right ideal which
is free of infinite rank as R-module.
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