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Introduction

Single-cell recordings from various areas of the brain cortex in living ani-
mals have revealed a remarkably close relationship among sensory stimuli,
neural activity, and perceptual states. One of the prominent phenomena
that has been reported in many behavioral experiments on monkeys since
the seventies [1, 2, 3, 4] is the phenomena of selective delayed activity: upon
the presentation to the animal of some particular visual stimuli, the activity
of some neurons increases and after the stimulus is removed the activity
remains elevated for a long period, until the animal perform the specific
behavioral task he has been trained for (fig 1 left). It is believed that the
persistent activity in absence of stimulation reflects the ability of the brain
to form and retain an internal representation of an item of information even
when this information is not available to the senses, i.e. the neural correlate
of working memory [5, 6, 7, 8].

Together with neuroscientists, during the past decades physicists have been
actively involved in elaborating a theoretical framework to understand the
origin of the observed neural activity [9]. A commonly accepted hypothesis
is that persistent activity can be self-sustained by a feedback mechanism
within sub-networks of neurons (selective for a particular stimulus) which
have stronger mutual interactions [6, 8], consistently with the theory on
activity dependent synaptic plasticity and cell-assembly formation proposed
by Donald Hebb [10] to explain how memory traces are encoded and stored
in the brain [11, 12].

According to this idea, a neural network system with a proper interaction
structure should be able, in principle, to support the existence of a stable
state of homogeneous activity - corresponding to the ongoing background
activity in absence of stimulation, and several ”memory” stable states, in
which a subset of neurons (corresponding to a specific memory object) is ac-
tive at a higher rate than the background state while other neuron’s activity
is barely unchanged. The class of models that are capable of displaying such
multistability between memory states is termed Attractor Neural Networks
and has been the object of intense studies since the seventies [13, 14, 15, 16].
Despite the successful realization of a theoretical paradigm for the delayed
activity phenomena, the construction of models that realize this multista-
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bility has proved problematic in reproducing realistically the characteristics
of persistent activity that are observed, in particular the activity rates in
both the background and the memory states are quite low (below ∼ 50 Hz)
compared to the maximum firing rate of a neuron (∼ 500Hz) and their dif-
ference is small too, with typical background rate ranging from 1 to 10 Hz
and memory state roughly between 10 and 40 Hz.
Achieving two regimes of activity at realistic low rates has proven to require
a significant amount of fine-tuning [17, 18, 19, 20, 21] which is a manifes-
tation of a general problem connected to the non-linear shape of the single
neuron response to a noisy input: sketchily, the equilibrium rates ν are ob-
tained requiring self-consistency between the average input and the average
output activity of a neural population, which translates into equations of the
form ν = ϕ(ν) where ϕ is the input/output relation of a neuron receiving a,
and since in general ϕ is a sigmoid-shaped function it’s easy to get a stable
low-rate solution representing the background activity, while the elevated
rate state corresponding to memory occurs in a region where the activity is
near saturation (see fig.1 right).

Figure 1: Left: single neuron spiking rate in a selective delayed activity experiment,
adapted from [22]. Right: typical configuration of the equilibrium solution in a
bistable network, adapted from [23]

In this thesis we have explored the possibility of obtaining multistabil-
ity at low rates by introducing an additional nonlinearity in the system
through an activity-dependent adaptation mechanism of the input received
by neurons. This choice is motivated by the well established fact that the
magnitude of the signals transmitted by a neuron is far from being static,
instead, it is modulated on relatively short time scales as a function of the
activity of the neuron itself, a phenomenon which goes under the name of
short-time synaptic plasticity [24]. In particular, we examined wether short-
term depression - a gradual reduction of the transmitted signal amplitude
whenever a neuron stays active - could represent a physiologically plausible
mechanism capable of lowering the exceedingly high rate of the memory so-
lution in an attractor networks model.

The starting point will be the standard balanced network model of binary
neurons [25, 19] which has the appealing property of reproducing robustly,
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under mild conditions, the characteristic irregularity of neural activity as an
entirely self-generated network effect (i.e. without including external source
of noise). In the same spirit, the study of the attractor network model
with short-term depression here presented has been conducted in the infinite
size limit; the rationale of this approach is that since local cortical circuits
are composed by several thousands of neurons each receiving between 103

and 104 connections, taking the limit of infinite number of neurons and
connections is a strategy to obtain exact results which can be taken as
reasonable approximation to the finite-size solutions, but above all, it’s a
way to clean the system from finite size effects and highlight its intrinsic
properties.

Thesis outline

The first chapter is about background notions. After giving some essential
facts of neural physiology, we review the classical theory of unstructured
balanced networks exposed in [25] to set the formalism and the theoretical
context in which the thesis study is set.

In chapter 2 we give an overview about the issue of exceedingly high-rate
memory solution in current models of attractor neural network to put into
frame the kind of the solution proposed here.

In chapter 3 we introduce a model that mimics short-term depression of
chemical synaptic transmission and we derive an original mean-field the-
ory for an unstructured balanced network of binary neurons equipped with
this dynamical synaptic interaction. The prediction of the theory are tested
through comparison with simulations.

In the fourth and final chapter is dedicated to examination of the central
hypotheses of the thesis: by adding a structured coupling to the model pre-
sented in chapter 3 we obtain an attractor memory network model with
dynamical synapses and extend the MF description to this case accordingly.
It will be shown with both theory and simulations that, within certain con-
ditions, the model is able to display bistability between a background state
and a memory state with physiologically plausible low average activity.

The significance of the results and their implications are discussed in the
conclusion.
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Chapter 1

Modeling neural networks

“The brain is the most complex object in the
universe and it’s just behind the nose”

Stephane
The Science of Sleep, 2007

In this chapter we give the experimental and theoretical background of
thesis. After recalling some basic notion of neurophysiology [26], we intro-
duce the standard binary-neuron neural network model on which the thesis
work is build upon. The derivation of the mean field equations for the macro-
scopic order parameters of the system is illustrated and it will be discussed
how different scalings of the synaptic strengths yields different dynamical
properties of the network in the limit of infinite number of neurons; in par-
ticular it will be shown that under certain conditions the network can have
a regime of activity -the balanced regime- in which neurons activity exhibit
a high degree of variability, consistently with observations, as an entirely
dynamical effect, i.e. without any external noise source.

1.1 Neurons, synapses and local cortical circuitry
Neurons exchange electro-chemical signals with one another through spe-
cialized connections sites called synapses. Input signals are collected at
dendrites, branched anatomical structures which receive synaptic connec-
tions from other neurons, which are then termed pre-synaptic neurons. The
”output” part of the neural cell is a ramified wire-like structure called axon
which makes synaptic contacts on the dendrites of other neurons, thus called
post-synaptic neurons (see figure 1.1).
Like any other cell, a quiescent neuron maintains a difference in ions con-
centration (by means of ionic pumps) between its interior and the exterior,
which results in an electric potential difference of about −70mV termed rest-
ing potential Vr. This potential can be varied by transient currents that are
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generated when synapses are triggered by an input signal from a presynap-
tic cell. When the cell potential is depolarized beyond a certain threshold
Vθ ≃ −50mV, a series of fast bioelectrical processes provoke an explosive
rise of the membrane potential (depolarization) peaking to around +50mV
followed by a drop below threshold in about 2msec; this sort of electrical
shock-wave is termed action potential or ”spike” and propagates rapidly
along the axon. The arrival of the action potential at synaptic terminals of
the axon trigger the release of particular molecules called neurotransmitters
which bind to specialized receptors located on the membrane of the postsy-
naptic neuron, inducing the flow of electric current through the postsynaptic
neuron membrane.
In general, synapses can be divided in two classes: excitatory or inhibitory,
whether they provoke an increase or a decrease of the membrane poten-
tial. These transient variations, termed excitatory(inhibitory) postsynaptic
potential (EPSP/IPSP), have peak amplitude of order 0.1mV and rise/decay
times of order 10msec but the exact values can be quite variable.

It is a well established neurophysiological fact (Dale’s law) that a neu-
ron performs the same action (excitatory or inhibitory) at all of its output
synaptic connections to other cells, regardless of the identity of the target
cell, thus excitatory and inhibitory neurons can be distinguished accordingly.

Figure 1.1: Left and Center: Mouse cortical neuron (hippocampus) marked with
fluorescent dye [Courtesy of Dr. C. Hoogenraad - Erasmus MC, Rotterdam]. Left:
Details of two axons with their presynaptic terminals (purple), making connection
with the postsynaptic sites protruding from a dendritic branch (green). Center : the
dendrites emerging from the cellular body of a pyramidal neuron (green) receiving
synaptic contact from the axons of other neurons (purple) outside the field of view.
Right: Drawings of a vertical cross-section of a human brain cortex where a random
subset of neurons are stained with Golgi’s method [Ramón y Cajal].
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Figure 1.2: Mouse brain, coronal view (Luis de la Torre-Ubieta, Geschwind Labo-
ratory, UCLA - Wellcome Library Ref.b23981763)

It is estimated that there are between 1011 and 1012 neurons in the hu-
man brain. On a global scale, it appears that this huge number of cells
are organized and connected through communications pathways in a highly
structured and complex architecture [27, 28, 29], on the other hand, since
the first neuroanatomical observations of the cerebral cortex (the 3-4 mm
thick outermost sheet of neural tissue of the mammalian brain) it was ap-
parent that the structural organization of the networks on a smaller scale is
remarkably similar across various cortical areas [30].

Neuroanatomy revealed that cortical neurons receive 103 − 104 synaptic
contacts, more than half of which comes from neurons within a 100 − 200
µm radius, dropping to 10% from cells at distance of about 1 mm [31]. The
majority of excitatory neurons in the cortex is composed by pyramidal neu-
rons, a kind of cell which can have long axons making contacts both onto
neighboring and distant neurons; inhibitory neurons, instead, project their
axonal connection only to the cells that are within short distance, hence the
name local circuit interneurons. A typical cortical neuron, then, receives
excitatory inputs from both nearby cells as well as from long-range axons
originating from distant cortical or subcortical regions, while inhibitory in-
puts are always coming from neighboring cells.

Anatomical and physiological studies [32, 33] suggested that agglomera-
tion of about 104−105 excitatory and inhibitory neurons receiving excitatory
connections from a common set of distant cells, can be considered as a rela-
tively homogeneous functional unit. The cell bodies and the connections of
these assemblies of neurons are tightly packed within about 1mm3 of cortical
tissue and are organized in layered arrays perpendicularly to the direction
of the cortical surface (fig.1.1, right), hence the name cortical columns [32].
On this ground, it has been proposed [34, 35, 36] that cortical columns con-
stitutes the fundamental processing module of the cortex, which can thus be
regarded as a mosaic of many such local circuits with similar internal design
and functioning.
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Neural activity: temporal and spatial irregularity

Since the first single-neuron recording in living animals a great wealth of
experiments [37, 38, 39, 40, 41, 42, 43, 44] have shown that, independently
of the behavioral state and the cortical area examined, a strikingly common
characteristic of neural activity is temporal irregularity.

Many studies [45, 46] have analyzed the statistics of the inter-spike inter-
vals, and reported that the temporally irregular structure of neuron spiking
is very similar to the output of Poisson point process (figure 1.6 right); more-
over, across repeated trials of identical behavioral experiments, the temporal
structure of spikes sequence is never the same (figure 1.6 left). Also, intra-
cellular single-neuron recordings show that the membrane potential of the
cell is strongly fluctuating (figure 1.4).

Figure 1.3: Recordings from a neuron of the middle temporal visual area of an alert
monkey, adapted from [46]. Left (top): raster plot of spiking sequence representing
the occurrence of action potentials depicting response during 50 presentations of
an identical random dot motion stimulus. Left (Bottom) the average spike rate,
computed in 5 msec bins from the above spiking patterns. Right: histogram depicting
the distribution of inter-spike intervals in Left(top) . The solid line is the best fitting
exponential - the expected distribution of inter-events times for a Poisson process.

Figure 1.4: Intracellular recording of the membrane potential of a pyramidal neuron
in the visual cortex of the cat. Adapted form [41]
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In addition to single-cell temporal variability of the spiking patterns, the
simultaneous registration of multiple neurons within local assemblies show a
high degree of variability among the spiking frequency of the various neurons.
Recordings in several cortical areas [37, 47, 48, 49] have reported that the
typical distribution of average spiking rates in a population of neurons spans
a wide interval (from zero up to several tens of hertz), is significantly long
tailed, and markedly peaked at very low frequencies, meaning that most
of the neurons are almost silent [50] (figure 1.5 left). In particular, the
distribution seems to be well fitted by a log-normal distribution [48, 51]
(figure 1.5 right).

Figure 1.5: Left: Distribution according to average frequency of discharge of 456
neurons from the parietal cortex of a monkey, recorded simultaneously during spon-
taneous activity, adapted from [47]. Right: fit with a log-normal distribution (gray
line) of the distribution of spontaneous firing rates (dots) recroded from 145 neurons
of the rat auditory cortex, adapted from [48].

Why neurons spiking is highly irregular?

A long-standing problem in cortical dynamics is finding a convincing expla-
nation to the manifest irregularity of neuron spiking seen in many experi-
ments.

It can be hypothesized that the spiking irregularity might be due to the
thermal noise at the molecular level affecting the ion channels and thus the
spike ignition reactions [52, 53], but in vitro experiments show that cortical
neurons fire in a highly repeatable manner in response to repeated injections
of the same current, revealing that the spike generation mechanism is fairly
accurate (fig. 1.6 left).
Thus, the irregularity of the in vivo neuronal activity seems to arise from
the fluctuations of the membrane potential which are determined by the
barrage of the signals coming from the presynaptic neurons [54, 55, 43].
However, if we consider that a typical cortical neuron receives about 103

to 104 contacts, and that a single excitatory input provoke a membrane
depolarization of roughly 3-10% of the gap between resting and threshold
potential which decays in about 10-20 msec [56, 57], it means that the arrival
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Figure 1.6: Comparison of primary visual cortex cells from adult cats in slice and in
vivo: sample traces from 2 pyramidal cells, 1 from a slice (left) and 1 from an intact
animal that was stimulated by current injection (middle) and by a visual stimulation
(right). The lack of a large difference between spiking variability in response to
current or visual stimulation in vivo is intriguing. Adapted from [43]

of a few tens of excitatory inputs within a time interval of 10-20 msec would
be sufficient to bring the membrane potential above threshold, leading the
neuron to spike constantly at it maximal frequency of about 500 Hz, which
is by far above any mean spiking frequency recorded in living animals brain.
It is a wonder, then, that the neuron can produce any variable output at all
despite the large number of inputs it actually receives.

From a statistical point of view the problem can be stated as follow:

Suppose that a set of different events results in various num-
bers of input being delivered to a neuron over a short period
of time. The incoming action potentials appear on C separate
presynaptic afferents. We would expect the number of incoming
action potentials averaged across events to be proportional to
C. Being an average over all events, this order-C input contains
no information about the identity of any individual event, such
identity is contained in the event-to-event variance of each input
about its average value (note that this event-related variance is
not noise; it is what make possible to discriminate among the
different events).
Assuming that the inputs react independently to the different
events (spiking activities of neurons appears to be weakly corre-
lated [58, 59, 60]), for central limit theorem argument the vari-
ances of the single input can be summed, producing a total event-
related variance that is, like the average, proportional to C, thus
the amplitude of the fluctuations that can provide information
about the event identity is proportional to

√
C.

It follows that the ratio between the component of the input
that is useful for discriminating between different events and the
average input is of order

√
C/C = 1/

√
C: for C ∼ 105 this ratio

is only 1%.
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In other words, when integrating a large number of incoming synaptic inputs,
the fluctuations will fall always far above threshold because of the large
average, making impossible for a neuron to detect the informative event-to-
event variations of the afferent signals.
This scenario, not only is in open contrast with the experimentally reported
levels of irregular spiking and strongly fluctuating membrane potentials, but
in this light the high connectivity typical of the cortex would seem to be
a liability rather than an advantage. How can this paradox be solved? A
number of features of neuronal circuitry that have been studied by both
experimental and theoretical neuroscientists over the past 30 years can be
seen as responses to this basic problem [61].
Proposed solutions can be divided into three broad classes:

• One way is to reduce the effective value of C, assuming that at any
given time the inputs are effectively coming from a small fraction of the
presynaptic neurons, thus making the number of the active synapses
quite small. This hypotheses, which goes under the name of Sparse
coding [62, 63] is a way of reducing C by keeping the number of neurons
responding to any given event or feature small, thus making larger the
ratio between fluctuation and mean of the input signal. Sparse cod-
ing has been proposed as an important principle of neuronal sensory
processing for reasons independent of the ones given here[48, 64].

• Another possible solution is to assume that the inputs received by a
neuron can be substantially correlated [65, 66] or synchronized [45, 67]
and therefore their fluctuations are not averaged out: if for example
is considered the extreme case in which all the inputs carry the same
information, the event-related variance is of order C2 (rather than C)
and the ratio of informative to noninformative signal would be of order
1 rather than 1/

√
C.

Solutions of this form are seen at early stages of sensory processing,
most dramatically in olfaction, where receptors with similar response
characteristics project to common targets. Away from the periphery,
the idea can still be applied by using correlation or synchrony to boost
the efficacy of informative sets of inputs [68]. Indeed, the spike trains
of pairs of neurons in cortex and in thalamus are often correlated in a
time window of the order of 10 msec[69, 70]. However, the observed
size of these correlations indicates that in general, only a small fraction
of the incoming input is tightly correlated [71].

• Another possible solution is that (negative) inhibitory inputs to a neu-
ron can cancel out the mean (positive) excitatory input in such a way
that the mean input and the fluctuations are of the same order of
magnitude, so that if the input fluctuates somewhat below threshold,
highly irregular intervals between subsequent spikes can be obtained
[72, 73].
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This interesting hypothesis have been examined theoretically in a sem-
inal study [25] by van Vreeswijk and Sompolinsky where it has been
shown that, under fairly mild conditions, a balance between excitatory
and inhibitory inputs occurs automatically, achieving the cancelation
of the noninformative part of the input to a neuron and producing tem-
porally irregular firing as an intrinsic effect of the network dynamic,
i.e. without the need of adding any external noise source. Moreover,
as a result of the variability in the number of connections received by
neurons, the model accounts also for another typical feature of neural
activity activity seen in most experiments: the diversity of mean firing
rates among different neurons in a population.

Despite a conclusive explanation of the irregularity of neural spiking is still
lacking, the balancing between excitation and inhibition seems to be one
of the most convincing mechanism, not only for its simplicity and effective-
ness in capturing a good deal of observations but also because increasing
experimental evidences [74, 75, 76, 77] are supporting the idea that the role
of a dynamical balance of excitation and inhibition is fundamental in the
regulation of local cortical circuits activity [78, 42, 72, 25, 46, 79].

The network model analyzed by van Vreeswijk and Sompolinsky in their
landmark study [25] is capable of reproducing the spatio-temporal irreg-
ularity of neural activity with relatively simple assumptions and has the
advantage to allow an analytic description. The next sections will be dedi-
cated to review this model and its properties.
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1.2 Binary model of a local cortical network
Since cortical columns are thought to be the basic module of the cerebral
cortex, it is reasonable to consider these functional entities as the object of
reference for neural circuitry modeling.
We will refer to the well established tradition of spin-like elements neural
networks models [80, 81, 82, 16]. Despite being very schematic, this type
of models can successfully reproduce many qualitative feature of biological
networks with a minimal degree of complexity.

Neuron model

In a spin-like neuron model, the state of the neuron is represented by a
binary variable

S(t) = 0, 1

which we will take as a representation of the activation state of the cell and
is determined by the input received through some input/output relation.
All the bioelectrical processes occurring in real neurons are inherently stochas-
tic; fundamentally, this is due to the fact that the movements of ions across
the cell membrane are inevitably subject to thermal noise [52, 53]. In partic-
ular, this means that spike generation is affected, to some extent, by these
fluctuations [83, 84].
We can account for this intrinsic noise at the single cell level by saying that
if the net synaptic input is h, the neuron will be active with a probability

F(h) = 1
1 + e−2(h−θ)/T (1.1)

where the parameter T expresses the magnitude of the microscopic noise,
we call F(h) the activation function (see figure 1.7).
In the noiseless limit T → 0, we get the Heaviside step function Θ(h − θ)
and the neuron state depends deterministically on the input: the neuron is
active if h > θ, silent otherwise.

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

F(h)

h - θ

T=0.2
T=0.5
T=1  
T=2  

Figure 1.7: Activation function for different values of the intrinsic neuronal noise.
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Network model

We consider a model network composed of NE excitatory and NI inhibitory
neurons. In the following, every quantity relative to the ith neuron of pop-
ulation A = E, I will be indexed by a subscript i and a superscript A.
The architecture of the synaptic connections among the neurons of the net-
work is specified by the connectivity matrix: cABij is 1 if neuron j of popula-
tion B projects a connection to neuron i of population A, is 0 if there is no
synapse between the cells.

We consider a model in which neurons are randomly connected so that every
neuron has a probability cE of receiving a connection from a cell in the
excitatory population and a probability cI of receiving a connection from a
cell in the inhibitory population. In this case the elements of the connectivity
matrix are binary i.i.d random variables

cABij =
{

1 with probability cB
0 with probability 1 − cB

(1.2)

the (quenched) structure of the network connectivity is completely specified
once a particular realization of the matrix cABij is given.
In this model, the number of connections received by a generic neuron from
population A is a binomial random variable k with average CA = cANA

B(k,NA, cA) =
(
NA

k

)
(cA)k(1 − cA)NA−k (1.3)

In general, the input received by a neuron is a function of the state of all
the other neurons in the network that synapse into it. Consistently with
experimental observations [85, 86] the standard assumption is that neurons
operate a linear combination of the presynaptic inputs, therefore the total
input current to the ith neuron of population A can be expressed as

hAi ({S}) =
NE∑
j=1

cAEij JAEij SEj −
NI∑
j=1

cAIij J
AI
ij S

I
j + hAexi (1.4)

where {S} indicates the state of all other neurons in the network.
The first and second term in (1.4) represent respectively the total excita-
tory and inhibitory signals coming from the other neurons of the network;
JABij is the synaptic strength matrix which determine the amplitude of the
postsynaptic current pulse received by neuron i in population A when the
presynaptic neuron j of population B is active.
The last term accounts for all the excitatory inputs coming from neurons
which are outside the network.
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Figure 1.8: Schematic representation of the the model network considered.

We make the simplifying assumption that synaptic strengths are constants
and depend only on the type of population of the pre and postsynaptic
neurons (see figure 1.8), namely

JABij = JAB

It is also assumed that the external excitatory input is constant: each neu-
ron in population A receives exactly C synapses from outside of strength
JAex and the strength of the external input is indicated with the constant
m0.

Under our hypotheses, the instantaneous input to the neuron labeled i of
population A has the following form

hAi (t) = JAE
N∑
j=1

cAEij SEj (t) − JAI
N∑
j=1

cAIij S
I
j (t) + CJAexm0 (1.5)
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1.3 Network dynamics
Our network model is a system of NE + NI binary units that thus can
assume 2NE+NI possible configuration, called microstates, each of which can
be represented as a string whose elements are the states of each neurons:

X = (SE1 , ..., SENE
, SI1 , ..., S

I
NI

) where SAi = 0, 1
A time evolution of the system would correspond to a journey through sub-
sequent microstates within the configuration space Γ = {X}. To make this
possible, a rule of transition among microstate must be specified.

If the transition rule is deterministic, given any initial microstate X0,
the path of the system in the space Γ is unique and is completely described
by a certain sequence of consecutive microstates.
With a stochastic dynamical rule, instead, transitions among states are prob-
abilistic, thus multiple realization of the time-evolution starting from the
same microstate X0 can yield different paths in Γ; for this reason the evolu-
tion of the system has to be described by a (discrete) probability distribution
function P (X, t) expressing the likelihood that at a certain time t the system
configuration corresponds to X.

A random sequential dynamic rule in discrete time (Glauber dynamics) is
considered for the network update:

At every time step the population is selected at random: the
excitatory with probability pE , the inhibitory with probabil-
ity pI = 1 − pE ; within the chosen population, a neuron is
selected at random and its state at the following time-step
is updated according to

SAi (t+ 1) =
{

1 with probability F [ hAi (t) ]
0 with probability 1 − F [ hAi (t) ]

(1.6)

Given that at time-step t the configuration of the network is the microstate
X = (SA1 , ..., SANA

, SB1 , ..., S
B
NB

), we want to calculate the probability that at
the following time-step t+1 the network make a transition to the microstate
XA
i = (SA1 , .., 1 − SAi , .., S

A
NA
, SB1 , ..., S

B
NB

) in which neuron SAi has flipped
state. This is given by the probability that population A is updated (pA)
times the probability that neuron i is updated (1/NA) times the probability
that the neuron flips its state

W(X → XA
i ) = pA

NA

∣∣∣ SAi − F
[
hAi (X)

] ∣∣∣
= pA
NA

{
SAi + (1 − 2SAi ) F

[
hAi (X)

] } (1.7)
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Passing from a discrete to a continuous time description we should intro-
duce a time scale to define the transition rates: for any neuron in population
A the average number of time-step between two updating is nA = NA/pA,
if we set τA as the continuous-time equivalent 1 of nA we can derive that a
single time step correspond to a time interval of

∆ = τA
nA

= τA
pA
NA

thus we can write the transition rate as

w(X → XA
i ) = W(X → XA

i )
∆

= 1
τA

{
SAi + (1 − 2SAi ) F

[
hAi (X)

]}
(1.8)

Since the probability of moving to next state depends only on the present
state through the input, the time evolution of the network in its configuration
space is a Markov process with non-vanishing transition probabilities only
between microstates which differ by the state of a single neuron, and the
time evolution for the probability distribution P (X, t) can be described by
the master equation

dP (X, t)
dt

=
E,I∑
A

[
N∑
i=1

P (XA
i , t) w(XA

i → X) −
N∑
i=1

P (X, t) w(X → XA
i )
]

(1.9)
with the transition rates given in (1.8).

Macrostates and Ergodicity

For any observable defined over the points of the phase space Q(X) we can
define a time average along a path X(t), assuming discrete time:

Q = lim
T→∞

1
T

T∑
n=0

Q(X(tn))

For any given initial condition, the system can follow different paths depend-
ing on the random sequence of updates. Therefore, we define the ensemble
average of the observable

⟨Q⟩(t) =
∑
X∈Γ

P (X, t)Q(X)

When the system reaches the equilibrium we have that ∂tP (X, t) = 0, thus
the ensemble average of any observable is constant as well and serves as a

1Actually, the exact value of the two time constant is immaterial, the relevant quantity
is their ratio, expressing the relative frequency of updating of one population with respect
to the other:

τI

τE
= pE

pI

NI

NE
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macroscopic parameter. A stationary state of the system associated to a set
of macroscopic parameters is called macrostate.
We can say that a discrete dynamical system is ergodic if its time evolution
is such that every point of the phase space is eventually visited. In terms of
probability distribution, it means that regardless of the initial distribution

lim
n→∞

P (X, tn) ̸= 0 ∀X ∈ Γ

If a system is ergodic, the time average of a quantity is equal to the ensemble
averages Q = ⟨Q⟩.
In particular, it can be demonstrated that irreducible Markov chains with
finite state spaces are ergodic systems. When considering systems in the
thermodynamic limit N → ∞ ergodicity breaking can occur: the phase
space is partitioned into mutually disconnected regions and, at equilibrium,
the system dynamics is confined in one of those regions; in such case the time
average is equivalent to the ensemble average of the distribution restricted
to the subspace where the system evolves.

Local average activity dynamics

If we take SAi as an observable, its average over the probability distribution
corresponds to the probability that neuron i of population A is in the active
state at time t, we define it local average activity:

mA
i (t) ≡ ⟨SAi ⟩(t)

taking the time derivative of the expression and using the definition of en-
semble average we have

d

dt
mA
i (t) =

∑
X∈Γ

SAi (X)dP (X, t)
dt

(1.10)

where
∑
X represents the sum over all possible configurations.

If we substitute the master equation (1.9) in (1.10) we get:

dmA
i

dt
=
∑
X

NA∑
j=1

SAi P (XA
j , t) w(XA

j → X) −
∑
X

NA∑
j=1

SAi P (X, t) w(X → XA
j )

+
∑
X

NB∑
j=1

SAi P (XB
j , t) w(XB

j → X) −
∑
X

NB∑
j=1

SAi P (X, t) w(X → XB
j )

Since the above summations are taken over all possible configurations, for
each configuration X in which SAj (X) = 1 there is a complementary config-
uration X in which SAj (X) = 0 and vice versa, therefore we can make the
substitution

P (XC
j , t) w(XC

j → X) = P (X, t) w(X → XC
j )
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which holds for any j if C = B and for all j ̸= i if C = A. For the terms
with j = i in the sum relative to population A we can take

SAi P (XA
i , t) w(XA

i → X) = (1 − SAi )P (X, t) w(X → XA
i )

It follows that the last two terms cancel and the r.h.s. reads

∑
X

P (X, t)

(1 − SAi ) w(X → XA
i ) +

N∑
j ̸=i

SAi w(X → XA
j ) −

N∑
j=1

SAi w(X → XA
j )


The terms in the first summation cancel the corresponding terms in the
second summation and we are left with

d

dt
mA
i (t) =

∑
X

P (X, t)(1 − 2SAi ) w(X → XA
i )

= ⟨(1 − 2SAi ) w(X → XA
i )⟩

(1.11)

substituting the expression for the transition rate (1.8) and using the fact
that S2

i = Si we get a differential equation for the time evolution of the local
average activity of neuron i in population A:

τA
d

dt
mA
i (t) = −mA

i (t) +
⟨
F [ hAi ]

⟩
(t) (1.12)

Population average activity dynamic

For a description of the network in term of a macroscopic quantity it is
natural to consider the mean over the entire population A of the local average
activities, population average activity

mA = 1
NA

NA∑
i=1

SAi (1.13)

The dynamical equation for the statistical average ⟨m⟩(t) =
∑

Γm(X)P (X, t)
is obtained simply by taking the over the populations of (1.12), which gives:

τA
d

dt
⟨mA⟩(t) = −⟨mA⟩(t) + 1

NA

NA∑
i=1

⟨
F [ hAi ]

⟩
(t) (1.14)

The calculation of the average in the last term is not trivial, nevertheless, in
the limit of N → ∞ and C → ∞, the term can be calculated exactly yield-
ing a mean field equation for ⟨m⟩(t) which in the limit can be taken as an
equation for the non averaged quantity m(t) itself, since in the infinite size
limit its fluctuations are vanishingly small and its value converge to ⟨m⟩(t).

To simplify notation from now on we take NE = NI = N and CE = CI = C.
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1.4 Mean Field theory

As is commonly done in the study of large systems of many interacting ele-
ments we can adopt a mean field approach to obtain a reduced description
of the system in terms of the macroscopic order parameters, which in our
case are the population average activities mE and mI .
The idea is to substitute the different input to each neuron with a self con-
sistent average input field, in order to carry out the average in the last term
of (1.14). This approximation become exact in the thermodynamical limit,
namely when the number of neurons and connections goes to infinity, and
when taking this limit it’s necessary to assume a scaling relationship be-
tween the number of neurons in the network and the number of connections
each neurons receive.

In conventional fully connected network models, for instance, the symmetry
of interactions allows to analyze the properties of the system with the tools
of equilibrium statistical mechanics in the N → ∞ limit [87]. Although it’s
impossible to use the same approach if interactions are not symmetric, as
in a randomly connected network, in [88] it has been shown that an exact
analytic solution can be found also in this case, provided that the number of
connections per neurons is much smaller than the neurons in the network:
C ≪ N , a situation which is referred to as sparse connectivity.

Analogously, the mean field theory (MFT) for the model here presented
has been derived under the assumption of sparse connectivity limit [25] and
eventually it was considered the high connectivity limit, namely when the
average number of connections received by a neuron is very large (consis-
tently with the biological reality where C ∼ 103 − 104). The resulting mean
field theory applies then to a network such that connectivity is high but
still sparse, i.e. the mean number of connection per unit is large, but much
smaller than the number of cells in the network:

1 ≪ C ≪ N

Technically, this is done by taking the limit N → ∞ while keeping fixed
the number of connections per neurons C and then subsequently taking the
limit C → ∞.
The detailed derivation of the mean field equations as done in [25] is retraced
in what follows.

(From now on, we drop all population index and consider as if
the network is made of a single population to avoid cumbersome
notation)
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Sparse connectivity limit: uncorrelated neurons activities

Let’s write explicitly the statistical average in the last term of (1.14).

1
N

N∑
i=1

⟨F [ hi ]⟩ (t) = 1
N

N∑
i=1

∑
X∈Γ

P (X, t)F [ hi(X) ]

 ≡ F(t) (1.15)

Let’s consider that neuron i receives a number Ki of connections from presy-
naptic neurons labeled j1, ..., jKi , the net input at time t reads

hi(t) = J
Ki∑
r=1

Sjr (t)

There are Ki + 1 possible input values, each associated with a set of the
possible configuration of the Ki presynaptic neurons. Thus, the probability
of having a certain input depends on the probability of having the corre-
sponding presynaptic neuron configuration.
In principle, the activity of any two presynaptic neurons Sja(t) and Sjb(t)
can be correlated because they might have common afferents input, but if
N ≫ C, then any two couple of neurons have negligible probability to share
an input coming from the same neuron, even indirectly, therefore their ac-
tivity are uncorrelated to a very good approximation2. It can be proved that
this hold rigorously when C ≪ logN [90, 91]:

At time-step t a neuron will typically receive inputs which have
arrived from Ct neurons (ancestors) in the initial configuration
at t = 0. The states of two neurons at time t will be uncorrelated
if the two trees of ancestor neurons connecting them to the ini-
tial state have no neurons in common. Two sets of Q randomly
chosen neurons, out of the N available ones, will not have neu-
rons in common 3 is Q ≪

√
N . The condition that neurons will

remain uncorrelated after a time t is therefore Ct ≪
√
N . This,

in turn, implies that C must be smaller than any power of N ,
namely

C ≪ logN (1.16)
2This situation is consistent both with anatomical studies showing that cortical neu-

rons in the same cortical column receive quite distinct sets of inputs [89], and functional
experiments that measures weak correlations among pairs of neurons in the same column
[58, 59, 71]

3The probability for none of the neurons in the second set of Q randomly chosen
neurons not to belong to the first set is

Pr =
(

1 − Q

N

)Q

≃ exp
(

−Q2

N

)
where the approximation hold for Q ≫ 1. If Q = aNb then Pr ≃ exp(−a2N2b−1)
Consequently, when taking the limit N → ∞, if b < 1/2 we have that Pr → 1, i.e. the
two sets will certainly have no neurons in common.
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The absence of correlations between the afferent signals permits to factor-
ize the joint probability distribution of the system into the product of the
probability distribution for the activity of the individual neurons

P (X, t) = P (S1, ..., SN , t) =
N∏
i=1

p (Si, t) (1.17)

where, according to the definition of local average activity, the single neuron
probability distribution can be written as

p (Si, t) = Si(2mi(t) − 1) + 1 −mi(t) =
{
mi Si = 1
1 −mi Si = 0

Putting the factorized probability distribution (1.17) in the expression (1.15)
we can marginalize all the factors relative to n − Ki neurons that are not
included in the presynaptic tree of neuron i so that we are left with a sum
over the 2Ki possible configurations of the Ki presynaptic neurons of i

F(t) = 1
N

N∑
i=1

∑
{Sr}

Ki∏
r=1

[ Sjr (2mjr (t) − 1) + 1 −mjr (t) ] F

 J Ki∑
r

Sr


At this point is convenient to take the average over the possible realization
of the network architecture which can be considered equivalent to an average
over all the possible shapes of pre-synaptic trees of a generic neuron.
We proceed in two steps:

• first, with K fixed, we take the average over all possible sets of K
presynaptic neurons. Since Sr are dummy variables, the only part that
depends on the connectivity structure is the marginalized probability
distribution, which depends on the set of the local average activity of
the presynaptic neurons (mj1 , ...,mjK ), we then have

K∏
r=1

1
N

N∑
jr=1

[ Sjr (2mjr (t) − 1) + 1 −mjr (t) ]

= [ Sjr (2m(t) − 1) + 1 −m(t) ]K
(1.18)

upon averaging over the randomness in the connectivity, the averaged
activity of all the presynaptic neurons is equal to the population activ-
ity m(t), therefore the number of active presynaptic neurons becomes
the sum of independent identically distributed (binary) random vari-
ables, thus a binomial random variable, which allow us to write

∑
{Sr}

[ Sr(2m(t) − 1) + 1 −m(t) ]KF
[
J

K∑
r

Sr

]
=

=
K∑
n=0

(
K

n

)
(m(t))n(1 −m(t))K−n F [ Jn ]
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• If we rewrite the full expression we have

F(t) = 1
N

N∑
i=1


Ki∑
n=0

(
Ki

n

)
(m(t))n(1 −m(t))Ki−n F [ Jn ]

 (1.19)

and the last step consists in taking the average over the population,
thus over the possible number of connection Ki that a neuron can
receive, which has a binomial distribution (1.3) but in the sparse con-
nectivity limit N ≫ C can be approximated by a Poisson distribution
with average C, therefore we have:

F(t) =
∞∑
K=0

CK

K!
e−C

{
K∑
n=0

(
K

n

)
(m(t))n(1 −m(t))K−n F [ Jn ]

}

=
∞∑
n=0

[ ∞∑
K=n

CK

K!
e−C

(
K

n

)
(m(t))n(1 −m(t))K−n

]
F [ Jn ]

=
∞∑
n=0

(mC)n

n!
e−mC F [ Jn ] (1.20)

which tells us that the number of active inputs n is a random variable
with Poisson statistics with mean and variance equal to Cm.

High connectivity limit: Gaussian distributed input

From the central limit theorem we have that if the neurons receives a large
number of inputs the Poisson distribution in (1.20) can be approximated by
a Gaussian distribution with mean Cm and variance Cm, therefore in the
high connectivity limit we can replace n with a continuous random variable
x and write

F(t) = 1√
Cm2π

∫
e− (x−Cm)2

2Cm F [ J x ] dx (1.21)

= 1√
2π

∫
e− x2

2 F
[
JCm+ x

√
J2Cm

]
dx (1.22)

where in the argument of the activation function F we can read the ex-
pression for the ”mean field” in the sparse and high connectivity limit: a
Gaussian distributed random variable with mean equal to JCm and vari-
ance equal to J2Cm corresponding to the average input.
For the complete network model the mean and the average of the input are

hA(t) = C
[

JAEmE(t) − JAImI(t) + JAexm0
]

(1.23a)

σ2
A(t) = C

[
J2
AEmE(t) + J 2

AImI(t)
]

(1.23b)
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Network with fixed number of connection per neuron

It is useful to derive the MF equations for network architecture in which all
the neurons receive exactly C input. In this case, the population average in
1.19 is straightforward because Ki = C for all i and we get

FC(t) =
C∑
n=0

(
C

n

)
(m(t))n(1 −m(t))C−n F [ Jn ] (1.24)

in the high connectivity limit C ≪ 1 (for central limit theorem argument)
the binomial distribution is approximated by a Gaussian with mean µ = Cm
and variance σ2 = C(m−m2) thus the input are also Gaussian distributed
random variables with mean and variance given by

hA(t) = C
[

JAEmE(t) − JAImI(t) + JAexm0
]

(1.25a)

σ2
A(t) = C

[
J 2
AEmE(t)(1 −mE(t)) + J 2

AImI(t)(1 −mI(t))
]

(1.25b)

We highlight that the variance of the input, compared to the case of ran-
domly connected network, is lessened by a factor m2 because in this case
there is no variability associated to the difference in the number of input
received by neurons in the population, the only source of variability in the
input is the temporal fluctuations in the activity of the presynaptic neurons.

Mean Field Equations

To summarize, the statistical independence of the neurons activities in the
sparse connectivity limit N ≫ C, allows the statistics of the input to con-
verge to a Gaussian statistics in the C ≫ 1 limit. Under these hypotheses
the resulting MF dynamic equations for the two order parameters of the
network are 

τE
dmE(t)
dt

= −mE(t) + F
(
hE(t), σE(t)

)
τI
dmI(t)
dt

= −mI(t) + F
(
hI(t), σI(t)

) (1.26)

F(h, σ ) =
∫

F [h+ xσ ] e
− x2

2
√

2π
dx

where the arguments of F are given by (1.23) (or (1.25)).
The description of the network dynamics has been reduced to a closed sys-
tem for the population average activities mE(t) and mI(t) as if the two
populations where a pair of mutually coupled (and self-coupled) neurons
receiving a stochastic input whose statistics is Gaussian and is completely
determined by the coupling strength and the average activities.

We stress that in the N → ∞ and C → ∞ limits, with C/N → 0 , this
description of the population activities dynamics is exact.
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1.5 Interaction scaling and Balanced state
To find the network activities at equilibrium we look for steady state solu-
tions of the mean field equations (1.26):

mE =
∫

F [hE(mE , mI) + xσE(mE ,mI) ] e
− x2

2
√

2π
dx

mI =
∫

F [hI(mE , mI) + xσI(mE ,mI) ] e
− x2

2
√

2π
dx

(1.27)

hA(mE , mI) = C
[

JAEmE − JAImI + JAexm0
]

(1.28a)

σ2
A(mE , mI) = C

[
J 2
AEmE + J 2

AImI

]
(1.28b)

As pointed out in section 1.1, the crucial aspect of neural activity is that
neuron’s output is irregular and far below saturation despite each cell re-
ceives a large number of inputs C ∼ 103 − 104 whose amplitude, relative to
the resting-threshold potential gap, is such that a neuron’s output saturates
whenever a few tens of excitatory presynaptic inputs are active during an
integration time interval. The central idea of [25] to solve the issue is that
the observed neural activity is the result of a situation in which the magni-
tude of the input fluctuations are comparable with the distance of the input
from threshold.

It is then useful to analyze the network in the C → ∞ limit, not only be-
cause the equations (1.27) becomes an exact analytical description of the
system and their solution are a good approximation of the finite C ≫ 1
solution, but above all because considering the C → ∞ is a way to clean
the system from finite size effects and the qualitative features of the specific
model network can be highlighted.
When considering the C → ∞ limit, one is forced to normalize the connec-
tion strengths by (some power of) the number of connections per cell C,
in order to keep the total afferent input within the (presynaptic) dynamic
range of the neuron (whose order of magnitude is given by the distance be-
tween reset and threshold). As we show below, different scaling schemes of
J with C lead to different relative magnitudes of the mean and fluctuations
of the afferent current into the cells in the extensive limit, and this in turn
determines the type of steady-state solutions for the network. For instance
if we assume the generic scaling

JAB = JAB
Ca

JAex = JAex
Ca

a > 0 (1.29)

where JAB are constant, the mean and the variance of the input will be

hA(t) = C1−a{JAEmE − JAImI + JAexm0} (1.30)
σ2
A(t) = C1−2a{J2

AEmE + J2
AImI} (1.31)
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and when taking the C → ∞ we have different possible scenarios:

• a > 1. Both the mean and the variance go to zero.

• a = 1. The mean input stays finite but the variance goes to zero

• 1 > a > 1/2. The mean input diverges and the variance goes to zero.

• a = 1/2. Mean input diverges but variance stays finite.

• a < 1/2. Both mean and variance diverge

We examine the two significative cases in which either the mean or the
variance are finite and independent on network size

J ∼ 1/C

This scaling is the common to most MF theories of large, highly connected
neural networks, yielding:

hA(t) = JAEmE − JAImI + JAexm0 (1.32)

σ2
A(t) = 1

C

[
J2
AEmE + J2

AImI

]
(1.33)

This implies that when taking the C → ∞ limit, the variance vanishes, thus
the equations depend only on the average input:{

mE = F
(
hE(mE , mI)

)
mI = F

(
hI(mE , mI)

) (1.34)

Such networks converge either to either static states or globally coherent
limit cycles [92, 93, 94].
In particular, if we consider noiseless neurons taking the limit T → 0 in
(1.1), we would obtain that F(h) → Θ(h− θ) and only trivial solutions are
possible with mA = 0 or mA = 1 if, respectively, the self-consistent equilib-
rium input is below threshold (hA < θA) or above it (hA > θA).

J ∼ 1/
√

C

If a = 1/2 the variance is of order 1 and the mean input of order
√
C :

hA(t) =
√
C
[
JAEmE − JAImI + JAexm0

]
σ2
A(t) = J2

AEmE + J2
AImI

(1.35a)

(1.35b)

Clearly, one might think that for large C values the distance of the input
from the threshold would be much greater than the amplitude fluctuations
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and, depending on the sign of the net average input, the network activity
would be either saturated of zero, analogously to the previous case.
However, if the population rates are such that the inhibitory input cancels
the net excitatory input to leading order, the total input (1.35a) can stay
finite in the infinite C limit as well and we can have the so called

balanced state: a C → ∞ solution of the MF equations (1.61)
in which the distance of the input from the threshold is of the
same order of magnitude of the input fluctuations.

If we write mA as a power series in 1/
√
C

mA = m
(0)
A + m

(1)
A√
C

+ m
(2)
A

C
+ ... m

(n)
A ∈ R (1.36)

and then substitute it into (1.35a) to obtain an expansion in power of 1/
√
C

for the average input:

hA =
√
C

(
JAE

[
m

(0)
E + m

(1)
E√
C

+ ...

]
− JAI

[
m

(0)
I + m

(1)
I√
C

+ ...

]
+ JAexm0

)

=
√
C
(
JAEm

(0)
E − JAIm

(0)
I +Am0

)
+ (JAEm(1)

E − JAIm
(1)
I ) + ...

it can be seen that the coefficient of n-th order in the input series depends
on the (n+ 1)-th order coefficient of the activity series (1.36), namely:

hA = h
(−1)
A

√
C + h

(0)
A + h

(1)
A√
C

+ h
(2)
A

C
+ ... (1.37)

h
(−1)
A = JAEm

(0)
E − JAIm

(0)
I + JAexm0

h
(n)
A = JAEm

(n+1)
E − JAIm

(n+1)
I for n = 0, 1, 2...

To have a balanced state we require that the total input does not
diverge when C goes to infinity. This can occur only if the coefficient of
the leading term in (1.37) vanishes for both population; thus, in the C → ∞
limit, the balancing condition ish

(−1)
E = 0

h
(−1)
I = 0

⇒

JEEm
(0)
E − JEIm

(0)
I + JEexm0 = 0

JIEm
(0)
E − JIIm

(0)
I + JIexm0 = 0

(1.38)

Solving this linear system we obtain the leading term in the expansion of
m, which in the C → ∞ limit corresponds to the actual population activity
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m∞
E ≡ lim

C→∞
mE = m

(0)
E = JEexJII − JIexJEI

JEIJIE − JEEJII
m0 ≡ ΩE m0

m∞
I ≡ lim

C→∞
mI = m

(0)
I = JEexJIE − JIexJEE

JEIJIE − JEEJII
m0 ≡ ΩI m0

(1.39a)

(1.39b)

For this solution to be meaningful we require that rates should be positive,
therefore that network parameters have to respect one of the following chain
of inequalities:

JEex
JIex

<
JEI
JII

<
JEE
JIE

JEex
JIex

>
JEI
JII

>
JEE
JIE

(1.40)

The notable result of (1.39) is that in the C → ∞ limit the average activi-
ties become linear functions of the external input m0, with a coefficient of
proportionality ΩA depends solely on the synaptic strength.

We point out that the synaptic strength scaling J ∼ 1/
√
C is just for con-

venience in thinking about the problem, it’s a way to consider ”strong”
synaptic interactions (compared to the J ∼ 1/C case); the physiologically
relevant assumptions are only that excitatory and inhibitory inputs are sep-
arately much larger than their difference and that the latter is of the same
order as their fluctuations.

Mean input in the balanced state

The balancing condition (1.38) requires that the O(
√
C) term of the average

input must vanish, so that in the C → ∞ limit only the the O(1) term is
left, thus for the average input we have

h∞
E ≡ lim

C→∞
hE = h

(0)
E = JEEm

(1)
E − JEIm

(1)
I

h∞
I ≡ lim

C→∞
hI = h

(0)
I = JIEm

(1)
E − JIIm

(1)
I

(1.41)

But we only know m∞
A = m

(0)
A , not m(1)

A . Nevertheless, the balanced solution
allows us to calculate the input variance σ∞

A = m0 (J2
AEΩE + J2

AIΩI), so we
can consider the MF equation as implicit equations for the average input:

m∞
A ≡ ΩAm0 =

∫ {
1 + exp

[−2(h∞
A − θA + xσ∞

A )
T

]}−1 e− x2
2

√
2π

dx (1.42)

More properly, the equation (1.42) determines implicitly the distance of the
mean input from threshold

u∞
A ≡ h∞

A − θA (1.43)
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in fact, in the C → ∞ limit the value of the threshold is immaterial and the
network will organize its activity in order to have that the distance between
the mean input and the threshold is of order 1.

Unbalanced and partially balanced states

If the leading term in the neuron input expansion (1.37) does not vanish, in
the C → ∞ the input can diverge to +∞ or −∞, depending on the sign of
the coefficient h(−1)

A , which means that the corresponding populations will be
always active (mA = 1) or silent (mA = 0). We call unbalanced states the
self-consistent solutions in which one or both populations are either active
at maximum rate or inactive. Here, we examine all possible solutions of this
type and determine the corresponding condition of existence:

• (mI = mE = 0)
This solution is trivially excluded because it would require that both
inputs are negative when the entire network is off, and this can never
happen because the external input is always positive.

• (mE = 1; mI = 0)
This solution cannot exist because it would require that hI < 0 with
a purely excitatory (positive) input.

• (mE = 0; mI = 1)
The inputs are consistent with the rates if:

{
hE < 0
hI > 0

⇒
{

−JEI + JEexm0 < 0
−JII + JIexm0 > 0

⇒


m0 <

JEI
JEex

m0 >
JII
JIex

The interval in the external input m0 for which this solution is possible
is not empty if

JEex
JIex

<
JEI
JII

(1.44)

• (mI = mE = 1)
here we require that both inputs are positive{

hE > 0
hI > 0

⇒
{
JEE − JEI + JEexm0 > 0
JIE − JII + JIexm0 > 0

(1.45)

m0 > max
{
JEI − JEE

JEex
; JII − JIE

JIex

}
since m0 has to be positive, this solution exists for any m0 > 0 if

(JEI < JEE) and (JII < JIE) (1.46)
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There are also solutions in which one population is “unbalanced”, i.e.
off or saturated, while the other is ‘balanced” in the sense that the average
activity is between 0 and 1. We refer to this class of solutions as partially
balanced states. Let’s consider, for instance, a solution of the form

mE = 0 ; 0 < mI < 1

the inputs are self-consistent if{
−JEImI + JEexm0 < 0
−JIImI + JIexm0 = 0

solving the balancing condition for mI and substituting in the unbalancing
condition we get that this type of solution can exist only if

JEex
JIex

<
JEI
JII

which turns out to be the same condition of existence for the unbalanced
solution (mE = 0; mI = 1).

Balancing conditions

If we want meaningful (positive) balanced rates solutions, and exclude any
unbalanced solution4, we require that the network parameter satisfy the
inequalities (1.40) and, simultaneously, brake the conditions (1.44, 1.46).
This implies that we must have the following constraints

JEex
JIex

>
JEI
JII

>
JEE
JIE

and JEI > JEE (1.47)

Linear perturbation analysis (appendix A.2) shows that the stability with
respect to perturbation of order δm ∼ 1/

√
C depends essentially on the ratio

between the time constants τE/τI . Depending on this ratio the balanced
state can be a fixed point attractor or a stable limit cycle. Stability to
larger perturbation is also guaranteed for appropriate values of the ratio
τE/τI (see [25] for details).

4at least in some interval of the external input
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1.6 Spatial and Temporal variability

The population average activitymA does not distinguish between spatial and
temporal fluctuations of the activity level. For instance, a certain popula-
tion average rate m might be the outcome of a state where all the individual
cell average activity is m or, on the other extreme, it can results from a state
in which a fraction m of the cells in the network is always active while all
others are always silent.
To characterize the statistics of both temporal and spatial fluctuations in
the activities in the balanced state we observe that the variability of a neu-
ron output is determined by the variability of the input which in turn is
influenced by two factors:

• Fast noise: the temporal fluctuation of the presynaptic inputs coming
from the stochastic flipping of the presynaptic neurons

• Quenched noise: the variability in the number and identity of the
afferent connection to each neuron

We have seen that in the sparse and high connectivity limit the statistics of
the inputs becomes Gaussian. We can then decompose the total input fluc-
tuation as the sum of two fluctuating part: a quenched spatially fluctuating
part and a temporally fluctuating part, both having gaussian statistics5 for
central limit theorem arguments.
The input to a generic neuron at equilibrium in the balanced state can thus
be written as

hAi (t) = hA + σA xAi =

= hA + sA ξ
A
i +

√
σ2
A − s2

A η
A
i (t) (1.49)

with both ξi and ηi(t) gaussian variable with zero mean and unit variance.

The fluctuation of the time-averaged rates across the population sA are
called quenched fluctuations. They can be calculated taking the variance of
the temporally averaged input at equilibrium

s2
A = 1

N

N∑
i=1

[
hA − ⟨hAi ⟩

]2
5If X and Y are independent random variables that are normally distribute their sum

is also normally distributed with mean and average given by the sum of the mean and
average of the two

X ∼ G(µX , σ
2
X)

Y ∼ G(µY , σ
2
Y )

X + Y ∼ G(µX + µY , σ
2
X + σ2

Y ) (1.48)
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Following the same step of the calculation of (A.6) it is easily seen that

s2
A = J2

AEqE + J2
AIqI (1.50)

where the order parameter q is defined as

qA = 1
N

N∑
i=1

m2
i (1.51)

since m ∈ [0 : 1] the quantity q is bounded m2
A 6 qA 6 mA and its relation

to the average population activity gives information about the degree of
freezing in a network, i.e. wether a part of the neurons have non-fluctuating
activity, being permanently active or silent. For instance in the extreme case
in which all neurons are frozen we would have that q = m since mi = m2

i = 0
or 1, on the other hand for non-frozen neuron m ∈ (0; 1); thus the more q
is closer to its upper bound, the more is likely to have a certain degree of
neuron freezing.

Distribution of average local activities

Separating the total input fluctuation into the temporal and the quenched
part as in (1.49) we have that the time averaged local activity at equilibrium
can be rewritten as

mA
i = ⟨SAi (t)⟩ =

⟨
F
[
hA + sA ξi +

√
σ2
A − s2

A ηi(t)
]⟩

(1.52)

=
∫

F
[
hA + sA ξi +

√
σ2
A − s2

A η

]
e−η2/2
√

2π
dη

Therefore the spatial inhomogeneity of the input induces a spatial inhomo-
geneity in the local activities, which can be regarded as a random variable
resulting from the transformation of the spatial fluctuation of the input ξ :

m(ξ) =
∫

F
[
hA + sA ξ +

√
σ2
A − s2

A η

]
e−η2/2
√

2π
dη (1.53)

The distribution of m is readily determined recalling that given an invertible
function f and a random variable ξ whose distribution is G(ξ), the random
variable m = f(ξ) has probability distribution ρ(m) given by

ρ(m) = G
(
ξ(m)

) 1∣∣∣ dfdξ ∣∣∣ ξ(m)

(1.54)

where ξ(m) = f−1(m).
In general, to calculate the average of any function of the local rates g(m)
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it is not necessary to know the analytic form of ρ(m), in fact we can use the
function (1.53) to change variable in the integrand and obtain an average
over the explicit (gaussian) distribution of the quenched disorder:

ḡ =
∫ 1

0
g(m)ρ(m)dm =

∫ +∞

−∞
g(m(ξ)) e

−ξ2/2
√

2π
dξ (1.55)

It is straightforward to see that the order parameter of the system mA and
qA corresponds to the first two moments of the probability distribution of
the activity

mA = 1
N

N∑
i=1

mA
i →

∫ 1

0
mρA(m) dm (1.56a)

qA = 1
N

N∑
i=1

(mA
i )2 →

∫ 1

0
m2 ρA(m) dm (1.56b)

Calculating (1.56a) using (1.55) we recover (1.27) as expected:

mA =
∫ [ ∫

F
[
hA + sA ξ +

√
σ2
A − s2

A η

]
e−η2/2
√

2π
dη
]
e−ξ2/2
√

2π
dξ (1.57)

=
∫

F [ hA + σAx ] e
−x2/2
√

2π
dx (1.58)

the last identity is an obvious consequence of the fact that the distribution
of the sum of two random variables is the convolution of their distribution.

Equation (1.56b) gives us the system of equations for the order parameters
qA at equilibrium:


qE =

∫ { ∫
F
[
hE + sE ξ +

√
σ2
E − s2

E η

]
e−η2/2
√

2π
dη
}2
e−ξ2/2
√

2π
dξ

qI =
∫ { ∫

F
[
hI + sI ξ +

√
σ2
I − s2

I η

]
e−η2/2
√

2π
dη
}2
e−ξ2/2
√

2π
dξ

(1.59)

s2
A = J2

AEqE + J2
AIqI

which is a closed system for (qE , qI) after the stationary rates mA have been
determined resolving (1.27) (or (1.39) for C → ∞) and used to calculate σA
and hA with (1.35) (or (1.42) for C → ∞)
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1.7 Noiseless neurons

As we have seen, in the previous sections, the solutions for the populations
activities are found through the balance condition which does not involve
the single neuron response function (1.1). The specific form of the single
neuron response function comes into play for the determination of the resid-
ual inputs (1.42) and of the order paramenter q. Therefore, if we consider
the noiseless T → 0 limit in (1.1) (so that F(h) becomes a step function) we
keep the qualitative picture while making calculations more simple.

For noiseless neurons, we have that (1.27) simplifies to

F(h, σ ) =
∫ +∞

−∞
Θ [h − θ + xσ] e

− x2
2

√
2π

dx

=
∫ ∞

θ

e− (x−h)2
2σ

σ
√

2π
dx =

∫ ∞

θ−h
σ

e− x2
2

√
2π

dx

Defining H(z) the complementary cumulative distribution function of a Nor-
mal Distribution with zero mean and unit variance

H(z) ≡
∫ ∞

z

e−x2/2
√

2π
dx = 1

2

[
1 − erf

(
z√
2

)]
= 1

2
erfc

(
z√
2

)
(1.60)
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Figure 1.9: Function H(z)
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MF equations for the order parameters

We write explicitly the systems for the stationary values of the population
average activity (1.27) in the noiseless neurons limit

mE = H

(
θE − hE(mE ,mI)
σE(mE ,mI)

)
mI = H

(
θI − hI(mE ,mI)
σI(mE ,mI)

) (1.61)

hA(t) =
√
C
[
JAEmE − JAImI + JAexm0

]
(1.62a)

σ2
A(t) = J2

AEmE + J2
AImI (1.62b)

The temporal average in (1.53) can be expressed explicitly as

mA(ξ) = H

θA − hA + sA ξ√
σ2
A − s2

A

 (1.63)

and the system (1.64) read:

qE =
∫ H

θE − hE + sE ξ√
σ2
E − s2

E

2
e−ξ2/2
√

2π
dξ

qI =
∫ H

θI − hI + sI ξ√
σ2
I − s2

I

2
e−ξ2/2
√

2π
dξ

(1.64)

s2
A = J2

AEqE + J2
AIqI (1.65)

Distribution of local activities

In the case of a noiseless neuron the calculation of the distribution of local
activities (1.54) can be done explicitly by means of (1.63) and gives:

ρA(m) = 1
βA

exp
[

−ξ2 + (αA + βAξ)2

2

]∣∣∣∣∣
ξ=ξ(m)

(1.66)

αA = θA − hA√
σA − sA

βA = sA√
σA − sA

It can be demonstrated (appendix A.5) that in the low input limit m0 ≪ 1
the second moment of the distribution ρ(m) can be approximated to leading
order as

qA = m2
A +O(m3

A| logmA|) (1.67)
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therefore, at very low input, for the variance of the population distribution
of activity ρ(m) is q2 −m2 ≃ O(m3| logm|) and the distribution is narrowly
peaked around the mean value (see figure 1.10, left panelmE = 0.02) namely,
at very low level of activity there is a low spatial variability in the local rates.
In fact from the ratio of the temporal fluctuation to the total fluctuation

σ2 − s2

σ2 ∼ 1 −m+O(m2
A| logmA|)

it appears that for m ≪ 1 the input fluctuations comes mainly from the
temporal fluctuations while quenched fluctuations become becomes much
less prominent: the network behavior is close to that of a network where all
the neurons receive the same number of contacts.

Increasing the external input the average activity grows, the distribution be-
comes more skewed showing longer tail, meaning that there is an increased
degree of spatial variability in the local activities across the network (see
figure 1.10 to compare the shape of the distribution for different levels of
average activity).

Increasing the level of activity in the network further more, a state in which
temporal and quenched fluctuations are equal s2

A = σ2
A/2 is eventually

reached; let us call m∗
0 the value of the external input for which this occurs.

It can be demonstrated (see A.3) that for m0 > m∗
0 the population distribu-

tion of activity diverges in m = 0 and m = 1 (see right panel in figure 1.10).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.05  0.1  0.15  0.2

m

 mE = 0.025 
 mE = 0.05 
 mE = 0.10  

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1

m

 mE = 0.1  
 mE = 0.25 
 mE = 0.5 

Figure 1.10: Qualitative differences between the distributions of local excitatory
activities ρE(m)for different mean value mE . Calculated from (1.66) in the C → ∞
limit with parameters 1.70

In traditional disordered spin system the source of the fast (temporal)
fluctuations is an external heath bath: the high temperature state is domi-
nated by temporal fluctuations while at low temperature partial freezing of
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the spins occurs. Attempting to make an analogy we can say that states of
low activity of the balanced network, dominated by temporal fluctuations,
would correspond to a ”high temperature phase” while the high activity
(partially frozen state), instead, would be analogous to a ”low temperature
phase”. What makes balanced networks model peculiar with respect to tra-
ditional spin systems, is that temporal stochasticity in neuron flipping is
self-generated by the network dynamic itself and not by an external source.

It can be argued that the irregular activity of the model is due to the stochas-
ticity of the update times of the model neurons, but it can be demonstrated
[25] that a model with a complete deterministic update rule lead to exactly
the same mean fields equations of the model with stochastic updating rule.

1.8 Time-delayed Autocorrelations
We have already seen that the temporal fluctuations of the input, ηi(t) in
(1.49), obey gaussian statistics with variance given by

√
σ2 − s2, to fully

characterize the input statistics we needs to determine the input autocorre-
lation:

RA(τ) = 1
N

N∑
i=1

⟨[
hAi (t) − hA

] [
hAi (t+ τ) − hA

]⟩
It can be shown that:

RA(τ) = J2
AE Q(τ) + J2

AI Q(τ) (1.68)

Where Q(τ) is the time-delayed autocorrelation of local activities

QA(τ) = 1
N

N∑
i=1

⟨SAi (t)SAi (t+ τ)⟩ (1.69)

Note that QA(0) = mA whereas QA(τ → ∞) = qA and, consistently,
RA(0) = σ2

A and RA(τ → ∞) = s2
A.

With arguments analogous to those that were used to derive the MF equa-
tions it can be shown [25] that the following self-consistent equation for
QA(τ) (with τ > 0) is obtained:

τA
dQA(τ)
dτ

= −QA(τ) +
∫ ∞

0

dt
τA

e
− t

τA

∫ [
H

(
θA − hA + x

√
RA(t+ τ)√

σ2
A −RA(t+ τ)

)]2
e−x2/2
√

2π
dx

where the integral over t results from averaging over the distribution of
update time intervals. The solution of this integral equation yields a function
QA(τ) which decays to its equilibrium value qA with a time constant of the
order of the mean update time τE .
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Figure 1.11: (Taken from [25]) Solid line: Population-averaged autocorrelation for
the excitatory population in the large C limit. Dashed line: autocorrelation for a
population of cells with the same rate distribution but Poisson updating.

A solution of the equation for QA(τ) is shown for example in figure 1.11,
where for comparison it is shown the autocorrelation for a population with
the same rate distribution but with Poisson updating (at each time step
neuron i is set to the active state with probability mi). This enhancement
of short-time correlation is the manifestation of the refractoriness of the ac-
tivities of the input cells, i.e. the input to a neuron between two subsequent
time-step can change at most by the value of a single presynaptic neuron
contribution.
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1.9 Balanced Network numerical simulations

Simulations of a model network have been realized with two populations of
N = 30′000 randomly connected noiseless binary neurons with mean number
of connections per neurons C = 1000 and this set of parameters:

JEE = 1 JEI = 2 JEex = 2.5 θE = 1 τE = 1
JIE = 1 JII = 1.8 JIex = 2.15 θI = 1 τI = 0.5 (1.70)

Figure 1.12 (bottom) shows the input received by a generic neuron during a
simulation; the excitatory (red) and inhibitory (blue) part of the total input
(black) makes visible the balancing mechanism: the positive and negative
part of the input are individually very large compared to the distance be-
tween resting and threshold but their algebraic sum yields a net input whose
average is slightly subthreshold and whose fluctuations are of the same order
of magnitude of the threshold.
It should be recalled that a change of state can take place only when the
neuron happens to be selected in the random updating sequence and not
whenever the net input crosses the threshold.
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Figure 1.12: Example of a neuron activity (top) and input (bottom) in a simulation.
Total excitatory inhibitory input are respectively the red and blue trace, net input
is the black trace. The horizontal line is the threshold

Convergence to the balanced stationary state is quite rapid: roughly a pair
of network update cycles are sufficient to settle into equilibrium (fig. 1.14).
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Figure 1.13 show the stationary values of the order parameters of the
network m and q as a function of the external input m0. The dashed lines
represent the solutions for finite C = 103, 104 while the continuous lines are
the asymptotic solution in the C → ∞ limit: at low input m0 . 0.2 the
solutions for C = 104 are quite well approximated by the C → ∞ limit.
Recalling that the central hypothesis at the base of the MF equations deriva-
tion is that 1 ≪ C ≪ N , simulations shows that a network with C = 103

and N = 3 · 104 appears to be already well within this condition as can
be seen from the remarkably good agreement between simulations (crosses)
and MF solutions.
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Figure 1.13: Equilibrium values of the network order parameters m, q as a function
of the input m0 for C = 103, C = 104 and in the C → ∞ limit obtained from the
solution of (1.61) and (1.64) with parameters (1.70). Crosses: simulation of a network
with N = 104.
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Figure 1.14: Time course of the population averaged activity mA(t) =
∑N

i
SA

i (t)
during a simulation initialized with mE(0) = 0.03 and mI(0) = 0.25

Theoretical predictions concerning spatial variability of the local average
activity are also very well matched by the simulations: fig. 1.15 shows
the distribution of the excitatory population activities ρ(m) measured from
a simulation (histogram) at low input6, superimposed to the theoretical
distribution calculated from (1.66). The plot on log scale in the inset is
given for comparison with the experimentally measured distribution in fig.
1.5 right.
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Figure 1.15: Example of distribution of local average activity in the excitatory
population. Histogram: simulation with parameters (1.70) and m0 = 0.05. Black
curve: theoretical distribution. Inset graph: same plot with log scale on the x axis.

6The shape here displayed is not general but typical for low input, at higher input the
distribution accounts for the existence of silent neurons. See section 1.7 for details
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Chapter 2

Memory function and
multi-stable neural networks

Ogni ramo della scienza sembra ci voglia
dimostrare che il mondo si regge su entità
sottilissime: come i messaggi del DNA, gli
impulsi dei neuroni, i quarks, i neutrini
vaganti nello spazio dall’inizio dei tempi...

Italo Calvino
Lezioni Americane, 1985

In this chapter we review the experimental evidences from which the the-
ories on the neural mechanism underlying memory have been formulated.
We then illustrate the characteristics of attractor neural networks, a success-
ful and widely accepted paradigm to explain the observed phenomenology,
and show that, when trying to apply the same principles in the context of
the balanced networks, the model produces a behavior which is inconsistent
with experimental observation. Last section introduce and motivate the so-
lution proposed in the present thesis to resolve the inconsistencies of these
class of models.

2.1 Persistent activity and memory

Many experiments [95, 41, 96] have shown that when a certain sensory stimu-
lus (image, sound, odor...) is presented to an animal, some neurons maintain
their firing activity practically unaltered (figure 2.1A). Other neurons, in-
stead, respond with a marked enhancement of the activity: soon after the
stimulus onset, the spiking rate rises up to some tens of spikes/sec (figure
2.1B,C see vertical gray band) however remaining far below the theoreti-
cal maximum firing frequency sustainable by a neuron of ∼ 500 spikes/sec.
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Figure 2.1: Different type of response to visual stimulation in neurons of the monkey
prefrontal cortex (adapted from [3]). The upper part of each panel shows the spike
rasters of repeated trials of the same stimulation protocol, in the lower part the trial-
averaged spiking frequency. The vertical gray band indicates the period in which
the visual stimulus is presented to the monkey. Panel A: spontaneous, pre-stimulus
activity remains practically unchanged during and after the stimulation. Panel B:
spiking activity is enhanced during stimulus presentation only. Panel C : spiking rate
is increased during stimulus presentation and remains high after stimulus removal
until the execution of the behavioral task associated with the stimulus.

When the stimulus is turned off, either the activity drops back to the pre-
stimulus spontaneous regime (figure 2.1B) or, for certain specific stimuli, the
enhanced spiking activity is maintained (figure 2.1C), a phenomenon called
selective persistent activity [1, 2, 3, 97], meaning that the enhanced activity
is maintained for certain stimuli and not for others.

When multiple trials are conducted with the same stimulus, a certain
neuron responds in the same qualitative manner displaying selectivity or
not. Nevertheless, the spiking patterns during stimulation and persistent
activity show a high degree of temporal variability with Poisson-like dis-
tributed inter-spike intervals [98, 99] and considerable trial-to-trial variabil-
ity in the spiking pattern is observed1 (see spike rasters in fig. 2.1 and
fig.2.2). This supports the idea that accurate timing of spike patterns is
not essential to the brain for the representation of information, rather, it
seems that stimulus-related information can be reliably represented in the
short-time average spiking rate.

Wether the representation of information corresponds to the activity of
single, individually meaningful cells (grandmother cells), or it is the global
activity pattern across a whole cell population, has been largely debated.
Experimental evidences point to a compromise between these extreme; in
fact, the typical stimulus-evoked response within a local patch of cortex
appears to be sparse: a small, stimulus-specific, subset of neurons becomes
highly active while the vast majority of the neurons remains spontaneously
active at very low rates [48, 101, 64].

The experimental results accumulated since the seventies suggest that
selective persistent activity of sparse populations of neurons can be inter-

1It is observed that the variance of spike count can be between 1 and 2 times the mean
count [100, 40].



2.1 Persistent activity and memory 45

Figure 2.2: Temporal irregularity in working memory task: fixation epoch (last 500
ms before cue onset), delay period after preferred cues, delay period after presen-
tation of non-preferred cue. Top: sample spike trains and inter-spike interval (ISI)
histograms (arrowheads on x-axis indicate mean value). Bottom: measure of ISI vari-
ability in the neuron’s population during the different experiment phases. Database
of 229 neurons recorded from monkey’s prefrontal cortex. Adapted from [98]

preted as the neural correlate of working memory [5, 6, 7, 8], i.e. the ability
of the brain to form and retain an internal representation of an item of
information even when this information is not available to the senses.

Modeling memory function: Attractor Neural Networks

A lot of theoretical work has been carried out in the last years in trying
to understand how the ability to actively hold in mind previously learned
information, i.e. memory, is implemented in neuronal networks [9, 23].
Since the elevated neural activity can be triggered by a brief input but out-
lasts it for many seconds, persistent activity cannot be explained by a feed-
forward mechanism, instead, it has been hypothesized that persistent activ-
ity can be self-sustained by a feedback mechanism within a local network
with strengthened mutual connections [6, 8], a widely assumed mechanism
by which memory traces are encoded and stored in the brain [11, 12] dating
back to Donald Hebb’s theory on activity dependent synaptic plasticity and
cell-assembly formation [10]:

Let us assume then that the persistence or repetition of a re-
verberatory activity (or ”trace”) tends to induce lasting cellular
changes that add to its stability. [...] When an axon of cell A
is near enough to excite a cell B and, repeatedly or persistently
takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased.



46 Memory function and multi-stable neural networks

These concepts have been formalized into precise mathematical models in-
spired by spin-glass physics in some seminal papers written between the
seventies and the eighties by Little [14], Hopfield [82], Amit et al. [16],
laying the foundation of one of the currently standard paradigm to explain
working memory: Attractor Neural Networks [87, 102, 103].
In these models, the interactions between neurons are symmetric and the
properties of the system can be studied in terms of free-energy; each stored
memory is represented by a specific configuration of the neural network and
a fictitious ”temperature” parameter is assumed to represent synthetically
every source of stochastic disturbance and fluctuation. The dynamics is a
relaxation towards minima of the free-energy, the retrieval of a stored mem-
ory occurs when the system falls in the corresponding basin of attraction;
statistical-mechanics inspired calculation makes possible the estimation of
global quantities such as memory storage capacity and stability in function
of the noise level [87].

Although spin-glass neural networks model can be an advantage for fram-
ing the main principles in an analytically manageable form, their simplicity
is the price to pay for a series of aspects that makes these kind of models
quite unrealistic: full connectivity between neurons, symmetric interactions,
high rates activity, the nonexistence of a stable background activity state,
no distinction between excitatory and inhibitory cells; in fact soon after the
first studies a lot of work have been dedicated to include in these models
features that could bring them closer to the biological reality [88, 104, 105].

Successively, attractor networks composed of more realistic single neuron
spiking models have been analyzed with both theoretical and numerical
tools [106, 17, 18, 107, 108], extending to a more biologically plausible set-
ting the attractor paradigm.
These models are able to reproduce qualitatively the experimental obser-
vations with a multi-stability mechanism between a non-selective attractor
state (low background activity) and selective attractor states in which sub-
groups of neurons are active at rates which are higher (but not much higher)
than background rates. Bistability between a background and a memory
state is made possible by the nonlinearity of the response function of the
single neuron; in fact, the general form of the mean field equations for the
activity of the selective subpopulation ν is

ν = ϕ(h+ βν) (2.1)

where ϕ(x) is the neuron response function to a noisy input, βν represents
the part of the recurrent input coming from strengthened synapses and h
the rest of the input. Since ϕ(x) has a stereotypical sigmoidal shape[109],
a graphical solution of MF equation (2.1) shows that, for suitable choice of
the parameter β, there can be two stable solutions (fig. 2.3).
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Figure 2.3: Left: with the variable change x = h+ βν in (2.1), the solutions of the
equation are found graphically as intersection of the sigmoidal input/output single
neuron function ϕ(x) and the line ν(x) = (x − h)/β. Right: bifurcation diagram,
bistability appears above a certain value of the synaptic reinforcement β. Adapted
from [109]

A complete mean field description of attractor network can been derived
for finite size network [17, 109, 18] but it turns out that the solutions can
present, to various extent, two problematic aspects[110]:

• memory solution occurs at rates which are too high [17, 109, 18] com-
pared to the low (and not much higher than background) rates seen
in vivo [2, 111, 99].

• temporal irregular activity is obtained in the background state but
persistent activity states typically exhibit much more regular firing
[109], in contrast with the experiments which suggest that the degree
of irregularity in persistent activity states is equal or greater than in
the spontaneous activity state [112, 99].

Since irregular firing of cortical neurons is naturally explained if one assumes
that networks operate in the balanced regime (net input and fluctuations
of the same order of magnitude), some studies [19, 20, 21] considered to
extend the balanced network approach (making the scaling explicit and tak-
ing the C → ∞ limit) to the attractor framework. Nevertheless, as we will
illustrate in the next section, it turns out that to realize bistability between
two balanced states the problem of unrealistically high rate for the memory
solution is unavoidable.
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2.2 Multistability in the balanced regime
The balanced regime in an unstructured network model reviewed in chapter
1 provides a convincing explanation to the observed irregularity in the spon-
taneous activity, but it is incompatible with multistability since the single
neuron nonlinearity becomes irrelevant in the C → ∞ limit and rates de-
pend linearly on the external inputs (1.39), i.e. there is a single solution for
a fixed external input.
In the following we review the extension of the balanced model to the at-
tractor framework given by [19] and illustrate the problem connected with
the bistability in the context of balanced regime.

A simple memory model for synaptic connections

Persistent activity is supported if synaptic connections between sub-populations
of neurons are reinforced in a Hebbian-like way. The population of selective
neurons for a certain stimulus is called foreground neurons, the others back-
ground neurons. The coding level is the fraction of foreground neurons in a
certain stimulus. A standard way to build a set of P independent, memory
patterns with average coding level f in a network of N neurons, is to asso-
ciate to each memory µ = 1...P a binary vector ξµ whose elements are equal
to 1 for foreground neurons and 0 for background neurons:

∀i = 1, ..., N
∀µ = 1, ..., P ξµi =

{
1 with probability f
0 with probability 1 − f

There are several ways to store in the excitatory-to-excitatory connections
this set of memory patterns, an extremely simple version of Hebb’s rule was
proposed by Willshaw[113, 114] in one of the earliest neural network model
of associative memory:

a synapse between two excitatory neurons is present if the two
neuron are simultaneously active in at least one of the patterns,
otherwise is zero, yielding the (symmetric) connectivity matrix

JEEij = Θ

 P∑
µ=1

ξµi ξ
ν
j


As in [19], we consider a simple modification of the Willshaw model in which
the synaptic architecture has the following expression

JEEij = cEEij

1 + (a− 1)Θ

 P∑
µ=1

ξµi ξ
ν
j

 JEE√
C

a > 1 (2.2)

with this rule, if two connected neurons i and j participate both to at least
one pattern (

∑
µ ξ

µ
i ξ

µ
j > 0), the synapse is strengthen Jij = aJEE , while if

(
∑
µ ξ

µ
i ξ

µ
j = 0) the synaptic efficacy is unmodified JEE .
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Mean field equations

For each pattern ν it’s straightforward to define the population average
activity in the foreground and background population

mν
+(t) ≡

N∑
i=1

ξνim
E
i (t)

N∑
i=1

ξνi

mν
−(t) ≡

N∑
i=1

(1 − ξνi )mE
i (t)

N∑
i=1

(1 − ξνi )

For each pattern, the memory system is described macroscopically by three
order parameters mν

+, mν
− and mI . Under the hypotheses of large network

with high but diluted connectivity 1 ≪ C ≪ N the net input received by
neurons has Gaussian statistics to a very good approximation, and we can
write a system of self consistent MF equations once the mean and the vari-
ance of the input to each of the three population has been found.

The input received by the generic excitatory neuron is:

hEi (t) = JEE√
C

N∑
j=1

cEEij

1 + (a− 1)Θ

 P∑
µ=1

ξµi ξ
ν
j

SEj (t)

− JEI√
C

N∑
j=1

cEIij S
I
j (t) + m0E

√
C (2.3)

and we define the average input to foreground and background neurons in
pattern ν, respectively, as

hν+(t) ≡

N∑
i=1

ξνi h
E
i (t)

N∑
i=1

ξνi

hν−(t) ≡

N∑
i=1

(1 − ξνi )hEi (t)

N∑
i=1

(1 − ξνi )

The average of the structured part of the connections in (2.3) can be
calculated heuristically with statistical considerations: for a certain pattern
ν, a neuron in the background population receives on average fC contacts
from foreground neurons and (1 − f)C contacts from background neurons;
some of these connections can be stronger if are received from neurons which
belongs, together with the considered neurons, to other patterns µ ̸= ν, oth-
erwise have baseline strength JEE . Since patterns are random and indepen-
dent, the probability that two generic cells are not in a particular pattern
is 1 − f2, thus the probability that the two cells are not both in any of the
P − 1 patterns µ ̸= ν is (1 − f2)P−1. The complementary probability

Π = 1 − (1 − f2)P−1
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is then the probability that a background neurons receive a strong synapse
aJEE from any other neuron in the network. With analogous consideration
the average input to foreground, background and inhibitory neurons can be
calculated2 and we get:

h− =
√
C{JEE(aΠ + 1 − Π)[fm+ + (1 − f)m−] − JEImI + Em0} (2.4a)

h+ =
√
C{JEE [afm+ + (aΠ + 1 − Π)(1 − f)m−] − JEImI + Em0} (2.4b)

hI =
√
C{JIE [fm+ + (1 − f)m−] − JIImI + Im0} (2.4c)

The computation of the input variance gives:

σ2
− = J2

EE ( a2Π + 1 − Π )
[
fm+ + (1 − f)m−

]
+ J2

EImI (2.5a)
σ2

+ = J2
EE

[
a2fm+ + (a2Π + 1 − Π)(1 − f)m−

]
+ J2

EImI (2.5b)
σ2
I = J2

IE

[
fm+ + (1 − f)m−

]
+ J2

IImI (2.5c)

The variances are all independent from C and thus of order 1, while average
input are proportional to

√
C. To have a solution in which all three popu-

lations are balanced (average input of order 1 like the fluctuations) in the
C → ∞ limit, all the three terms between curly brackets in 2.4 should van-
ish. But if we take the difference between the average input in foreground
(2.4b) and background (2.4a) we have that

h+ − h− =
√
C JEE(a− 1)(1 − Π)fm+ (2.6)

is a quantity of order
√
C, which means that foreground and background

populations cannot be both in a balanced state because if one of the two
excitatory subpopulation is in the balanced state its input will be O(1) and
automatically the input to the other population will be O(

√
C) thus unbal-

anced, bringing the neuron in the population to saturation or quiescence,
depending on the sign.
Simultaneous balance of both foreground and background neurons can be
achieved if (2.6) remains of order 1 in the C → ∞ limit, which means that
the term JEE(a− 1)(1 − Π)fm+ has to be O(1/

√
C). In particular, we can

consider the case in which one among synaptic potentiation (a− 1), memo-
ries non-overlap probability (1 − Π) or coding level f scale like 1/

√
C, while

the other quantities are O(1). Again, as for the choice of scaling synaptic
strength J ∼ 1/

√
C, the rationale of assuming a certain scaling with C for

a parameter of the system is a way to make a certain assumption about a
physiological characteristic of the system and then derive its consequences
straightforwardly when taking the C → ∞ limit.
To have that the difference between the mean input to foreground and back-
ground neurons dose not become too large in a highly connected network,
one of the following conditions must hold:

2Since all patterns are equivalent, from now on we drop the superscript ν
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• Weak potentiation. (a − 1) ∼ 1√
C

means that the hebbian-like struc-
turing of the excitatory-excitatory connections produce an increase in
synaptic strength which is small with respect to the baseline: J+

EE =
JEE + JEE(a− 1)/

√
C.

• High storage. (1 − Π) = (1 − f2)P−1 ∼ 1√
C

given a constant coding
level f < 1, this mean that the number of stored memories P should
be large. This condition depends essentially from the Williwaw model,
where only two synaptic strength are possible, it’s essentially a way
to make h+ and h− similar because for large P a large fraction of the
input to a neurons in both sub-populations will be potentiated.

• Sparse coding. f ∼ 1√
C

which mean that each the sub-populations of
neurons which are selective for a certain stimulus are made up of a
small number of units compared to the network size.

The solution adopted by [21] is weak potentiation and finite coding level,
while in [19] potentiated synapses are of the same order of magnitude of the
baseline ones and sparse coding is assumed.
In what follows, to illustrate the general principle of bistability in the bal-
anced regime we will make reference to the latter study and consider sparse
coding. In fact, several experimental evidences [115, 62, 48, 101, 64] show
that typical stimulus-evoked response within a local patch of cortex trigger
elevated activity in small number of neurons while the vast majority of the
other cells in the assembly remains spontaneously active at very low rates.
Although we are far from making conclusive statement about the repre-
sentation of information in cortical networks, sparse coding is considered a
reasonable physiological hypotheses and has been included in several models
of attractor neural networks [114, 108, 19, 109].

Bistability and balanced regime in the sparse coding limit

Assuming sparse coding, we define

f = F√
C

with F a constant parameter. If this is the case, if a finite number of pat-
terns P is stored, the probability Π becomes vanishingly small for C → ∞,
therefore we consider the classical scaling of the number of stored patterns
P = αC where α is termed load parameter so that limC→∞ Π = 1 − e−αF 2 .

With these definition, for the average inputs (2.4) we obtain:

h− =
√
C{J⋆EEm− − JEImI + Em0} + J⋆EEF (m+ −m−) (2.7a)

hI =
√
C{JIEm− − JIImI + Im0} + JIEF (m+ −m−) (2.7b)

h+ = h− + (a− 1)(1 − Π)JEEFm+ (2.7c)
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where J⋆EE = JEE [aΠ + 1 − Π] is the average excitatory-excitatory synaptic
strength. Thus, if the input coming from the background and the inhibitory
neurons are balanced, in the mean input of all three population will be of
order 1 as the variances, which in the sparse coding limit becomes:

σ2
− = σ2

+ ≡ σ2
E = J2

EE (a2Π + 1 − Π) m− + J2
EImI (2.8a)

σ2
I = J2

IE m− + J2
IImI (2.8b)

We notice that the input variance is equal in both excitatory subpopulations.
The balance condition is completely analogous to the case of he unstructured
network (section 1.5): provided that

E

I
>
JEI
JII

>
J⋆EE
JIE

and JEI > J⋆EE

the average rates m− and mI are given by the balancing condition:
J⋆EEm− − JEImI + Em0 = 0

JIEm− − JIImI + Im0 = 0
=⇒

m− = EJII−IJEI
JEIJIE−J⋆

EEJII
m0

mI = EJIE−IJ⋆
EE

JEIJIE−J⋆
EEJII

m0

The intuitive picture is the following: if the relative size f of the selective
populations is taken to be small compared to the rest of the network, the
global activity of the network is set by the balance condition between the
inhibitory population and the large background population, the activity in
the small selective excitatory sub-population becomes essentially uncoupled
from the rest of the network. Since the corrections to the leading order of
the input are different between the selective and non-selective populations,
the activity foreground neurons m+ is a solution of the mean field equation

m+ = H

(
θ − h− − βm+

σE

)
(2.9)

where β = JEE(a−1)Fe−αF 2 . The solution of m− and mI derived from the
global balance condition allow to calculate straightforwardly σE (2.8a) and
h− by inverting the mean field equation for the background population

m− = H

(
θ − h−
σE

)
⇒ h− = θ − σEH

−1(m−)

Equation (2.9) can be solved graphically after defining the (invertible) func-
tion x(m+) = β

σE
m+ ⇒ m+(x) = xσE

β so that the solution for m+ corre-
sponds to the ordinate of the intersection between the straight line and the
sigmoidal neuron transfer function:

x
σE
β

= H

(
H−1(m−) − x

)
(2.10)
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Figure 2.4: Graphical solutions of (2.10): depending on the parameters the curves
can have from one (triangles) to three intersection, of which two are stable states
(squares) and one unstable (circle). Connectivity parameters are take from (1.70)
and m0 = 0.06, α = 0.003, F = 1.5, the lines, from left to right corresponds to
a = 1.65, 2.05, 2.28. The small cross is the inflexion point of the sigmoid curve. We
remark that the position of the sigmoid curve is not fixed, in this case the value of
H−1(m−) has very small variation for the three values of a chosen.

From figure 2.4 we can see that if the synaptic reinforcement in the selective
subpopulation is not strong enough to generate enough feedback to keep el-
evated activity, the selective subpopulation is active at low rate at about the
same rate of the nonselective population; on the other hand, if excitatory
feedback is too strong within the selective population the foreground neuron
will be spontaneously active near saturation. For suitable choice of parame-
ters, we can have three point of intersections between the curves, where the
extreme ones represents dynamically stable solutions (black squares) and
the central one (black circle) an unstable solution. The problem is that
the higher rate solution occur at an extremely unrealistic, nearly saturated
activity (see also simulation in fig.2.5).

2.3 Why attractor models have problems in repro-
ducing realistic activity of memory states?

The problem of unrealistically high-rate solution is not restricted to the
particular model we have considered but it’s quite general. In fact, high
rates memory states are found also with more realistic spiking neuron model
both in finite size solutions [109] and in the balanced regime [20, 21].
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Figure 2.5: Simulation of a memory network model with NE = NI = 104 and
C = 1000 storing P = 3 patterns with coding level f = 0.05. Connection parameters
are from (1.70), m0 = 0.01 and synaptic reinforcement a = 2.4. A stimulus is
delivered between t = 80 and 100 to the selective neurons of pattern 1 in the form
of higher external input. After the end of the stimulation, the selective population
keeps the activity elevated, although at a very high rate.

The reason of such an unsettling outcome of these models depends essentially
on the interaction between two essential features:

• the input to a neuron is a linear function of the presynaptic activity

• regardless of the particular neuron model adopted, the single neuron
input/output function has a stereotypical sigmoidal shape which derive
from the response to a fluctuating input.

In fact, as the graphical analysis has shown, since the stable working mem-
ory solution corresponds to the intersection between a line and the concave
part of the sigmoidal function, this results in a geometrical constrain which
lead to an absolute lower bound on the solution: no-matter the parameter
choice, the upper intersection occur always above the inflexion point of the
neuron response curve; thus m > 0.5 for the binary neuron response func-
tion H(x), for spiking neuron models this bound can be somewhat lower but
still enough to yield memory activity rates consistently above spontaneous
activity [109, 20, 21], contrary to experimental evidences, and in any case,
to keep neurons from firing near saturation, the parameters must be chosen
in a narrow range thus implying significant fine tuning and poor robustness.
For instance, in the model studied in [21], weak potentiation (memory part
of the connection scaling as J ∼ 1/C) was considered in the balanced regime,
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to get the lowest possible activity of the memory solution a fine tuning of
coding level f is necessary, in particular it implied that f should be large.
Another unpleasant feature of this model is that it produces a highly bi-
modal distribution of firing rates with the background neurons firing at a so
much lower rate than the foreground that they form a distinct, and easily
recognizable, population.

A direct consequence of the extremely high rate solution is that the activity
in the memory state is not as temporally irregular as the spontaneous ac-
tivity state[109, 21], contrary to the data which shows similar if not higher
degree of irregularity.
The reason for this is that from spontaneous to memory solution the mean
input to the foreground neurons increase, but the fluctuations σE remain
unchanged (because is set by the activity of the background and inhibitory
neurons); thus while the activity in the spontaneous state has subthreshold
input and is fluctuation driven, in the memory state the mean input is fairly
above threshold and relatively larger than fluctuations thus the activity is
mean driven and much less temporally irregular. In fact, while balance is a
necessary condition for irregular firing, it is not sufficient. That’s because
balance ensures only that the mean and fluctuations are independent of C,
but does not rule out the possibility that the mean is much larger than the
fluctuations, which would result in regular firing.
A model in which between spontaneous and memory states the mean does
not change, but the variance does, was considered in [20] where both states
are fluctuation driven, producing high variable activity.
Nevertheless, the memory solution occurs at unrealistically high rate also
in this model and, even more problematically, multistability vanishes in the
large C limit because the difference in the fluctuations between spontaneous
and persistent activity vanishes, thus the range of multistability in the net-
work with balanced persistent state is extremely small for realistic numbers
of inputs per cell.

Short-term synaptic plasticity as a solution to unrealistically
high-rate memory solution

The realization of a neural network model where multistability occur ro-
bustly between several states in which, as the experiments shows, neurons
activity is low and displays spatial and temporal irregularity has proven dif-
ficult [110]. Low-rate activity and temporal irregularity are connected: if a
model could generate a balanced memory solutions at low activity (slightly
higher than spontaneous), the mean input would lie in the subthreshold part
of the neuron transfer function yielding temporal irregularity automatically
since the balanced regime ensures that input fluctuations and distance to
threshold are of the same order and the activity is fluctuation driven.
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In the first place, the object of study for this thesis has been an investi-
gation of the possibility to achieve bistability not between a pair of balanced
states, but between a low activity background state in the balanced regime
and a slightly higher activity memory which is instead partially balanced,
i.e. the foreground population is balanced at very low rate and the back-
ground population has a negatively unbalanced input. In this way both
states would produce subthreshold inputs in both populations, yielding ex-
tremely low activity as some studies suggest [50]. This scenario turned out
to be unfeasible because the condition for stability of the memory state auto-
matically implied instability of the background state. The complete details
of this investigations are given in appendix B.
Successively, we moved on to investigate whether we could obtain stable
solution in the lower -convex- branch of the neuron transfer function by in-
troducing a nonlinear dependence of the input on the presynaptic activity.

We assumed that such nonlinearity originates form synaptic short-term
plasticity, i.e. activity-dependent modifications of the synaptic couplings[116,
117], drawing on numerous theoretical studies [118, 119, 120, 121, 122, 123,
124] which showed the considerable effect of synaptic short-term plasticity
on the collective activity of the network. In particular, we considered a
phenomenological model of synaptic short-time depression (STD) [125], a
mechanism by which a synapse gradually decrease its strength when active,
and recover to baseline value when inactive .

The originality of the present work consist in that STD effects have been
examined within the balanced network framework for the first time. The ad-
vantage of balanced network is that fluctuation are generated autonomously
by the network dynamics and can be calculated self-consistently; moreover,
the high temporal variability of the activity seen in-vivo in both spontaneous
and memory state would arise automatically as an effect of the balanced
regime.

The result of the study is presented in two steps, corresponding to the sub-
sequent two chapters: first, in chapter 3, the STD model is introduced and
its effects analyzed in an unstructured random network through the deriva-
tion of a novel mean field theory and comparison with simulations, then
STD dynamics is applied to the modified Willshaw model (presented at
the beginning of the current chapter) and its effect on the bistability are
examined.



Chapter 3

Balanced networks with
depressing synaptic dynamics

Scientists are always assuming or hoping that
things are simple,
and then discovering that they are not.

Gregory Bateson
Steps to an ecology of mind, 1972

In this chapter we introduce a model for synaptic dynamics in which
the synaptic strength depends on the pre-synaptic neuron activity. Subse-
quently, we consider a model network where the synapses between excitatory
neurons are endowed with this dynamics, thus rendering the input to any
neuron a nonlinear function of the network activity. The corresponding
mean field(MF) equations are derived and it will be shown that a closed
form solution for this MF equations can be obtained under a simplifying
assumption whose validity will be checked a-posteriori.

3.1 A model for synaptic dynamics

Synaptic transmission is a dynamic process: postsynaptic responses changes
continuously according to the the presynaptic activity [24]. This prominent
characteristic of chemical synaptic transmission is a crucial determinant of
the response properties of synapses and, in turn, of the patterns of activity
generated by neural networks.
In particular, short-time depression (STD) is an activity-dependent reduc-
tion in the efficacy of neuronal synapses. This phenomenon occurs because
the synaptic transmission is mediated by chemical molecules, neurotransmit-
ters, which are released when the synapses is activated by an action potential
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from the presynaptic neuron, and are then re-absorbed and regenerated on
a time scale of the corresponding metabolic process. Since a synapse has a
finite amount of neurotransmitter available and the strength of the synaptic
current that is generated depends on the amount of molecules released, if
presynaptic stimulation occurs at a higher rate with respect to the recov-
ery, the quantity of available neurotransmitters gradually decrease and the
synaptic efficacy is reduced accordingly [126].

Inspired by the phenomenological model proposed in [125] for the dynamics
of synapses in the context of spiking neuron models, we propose the following
model for depressing synapse in a binary neuron model:

The synaptic strength between two neurons is modulated by a
continuous dynamical variable x ∈ [0, 1] which evolves in func-
tion of the activity state of the presynaptic neuron S(t) according
to

dx(t)
dt

= 1 − x(t)
τr

− U x(t)S(t) (3.1)

The equation (3.1) can be written explicitly in the form

dx(t)
dt

=


f0(x) = 1 − x(t)

τr
when S = 0

f1(x) = xl − x(t)
τd

when S = 1
(3.2)

where we have defined the quantities

xl = 1
1 + Uτr

τd = τr
1 + Uτr

= τr xl (3.3)

Depending on the value of S(t), the dynamics of the x variable is driven
either by f0(x) or by f1(x), and the general solution for x(t) in the two
cases is, respectively

x0(t) = a0 e
−t/τr + 1 (3.4a)

x1(t) = a1 e
−t/τd + xl (3.4b)

where the two constant a0 and a1 are determined by the initial conditions.

The qualitative picture that emerges from this model is the the following:
assuming that J is the baseline strength of a synapse, when the presynaptic
neuron is active (S = 1) the synaptic resources undergo a process of deple-
tion and the efficacy decays exponentially toward Jxl with a characteristic
time τd; if the presynaptic neuron neuron is not active (S = 0), the synap-
tic resources are recovered and the efficacy grows exponentially toward the
maximum J with a timescale τr.
If the time course of S(t) is given, equation (3.1) is deterministic and the
time-course of x(t) is uniquely determined by the initial condition x(0).
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3.2 MF theory for a Balanced Network with STD
Mathematical descriptions of networks with dynamic synapses have been
given in [119] by means of simplified rate-models in the style of [127].

Here we will derive an extension of the mean field theory for a randomly
connected balanced network of binary neurons [25] to include depressing dy-
namics 3.1 on the synapses among excitatory neurons; this, as a preliminary
step to the study of a balanced memory network with synaptic dynamics.

The input to a generic neuron of the excitatory or inhibitory population
are, respectively

hEi (t) = JEE√
C

NE∑
j=1

cEEij xj(t)SEj (t) − JEI√
C

NI∑
j=1

cEIij S
I
j (t) +m0E

√
C

hIi (t) = JIE√
C

NE∑
j=1

cIEij S
E
j (t) − JII√

C

NI∑
j=1

cIIij S
I
j (t) +m0I

√
C

(3.5)

where the amplitude of the excitatory synapses xj follow the dynamics:

dxj(t)
dt

= 1 − xj(t)
τr

− U xj(t)Sj(t)

For this model, a network configuration is specified by the state of the 2N
binary spin variables SAi and the state of the N excitatory synaptic ampli-
tudes xi. It is therefore necessary to derive an evolution equation for the
joint probability distribution

P (SE1 , ..., SEN , SI1 , ..., SIN , x1, ..., xN , t)

In the limit of highly diluted network N ≫ C the neurons activities
become uncorrelated [88, 25] and we can write

P (SE1 , ..., SEN , SI1 , ..., SIN , x1, ..., xN , t) =
N∏
i=1

P (SEi , xi, t)
N∏
i=1

P (SIi , t)

In the high connection limit, the net input to a neuron has a gaussian statis-
tics which is fully specified by its mean and variance.

Mean input

Taking the population average of the fields in the two populations as usual
we found the expression for the time dependent mean fields

hE(t) =
√
C{JEE r(t) − JEI mI(t) +m0E} (3.6a)

hI(t) =
√
C{JIEmE(t) − JII mI(t) +m0 I} (3.6b)
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In this case, besides the usual population activities, synaptic plasticity de-
fines a new macroscopic order parameter which can be interpreted as the
fraction of available resources averaged over the active neurons:

r(t) = 1
N

N∑
i=1

xi(t)SEi (t) (3.7)

.

Input variance

In the limit N ≪ C ≪ 1 the fluctuation of the input to a neuron around its
average hA can be written as the sum of two gaussian random variable: a
white noise η(t) representing the temporal fluctuations, and xi representing
the spatial fluctuations due to the variability in the number of connections
received by various neurons

hAi (t) = hA +
√
σ2
A − s2

A η(t) + sA xi

The calculation of the total fluctuation for the input (3.5) gives

σ2
E(t) = J2

EE v(t) + J2
EI mI(t) (3.8a)

σ2
I (t) = J2

IEmE(t) + J2
II mI(t) (3.8b)

where we have defined

v(t) = 1
N

N∑
i=1

x2
i (t)SEi (t) (3.9)

For the quenched fluctuations we have

s2
E = J2

EEp+ J2
EIqI (3.10a)

s2
I = J2

IEqE + J2
IIqI (3.10b)

where we have defined the order parameter

p(t) = 1
N

N∑
i=1

⟨
xi(t)SEi (t)

⟩2
(3.11)

The calculation of the order parameters r, v and p is not straightforward
since it involves the determination of the probability distribution of the
compound process (x, S) which depends on the history of S, thus a self-
consistent calculation of the autocorrelation of the activities must be taken
into account, which is quite complex. A more direct way to calculate the
averages is by neglecting the self-correlations and approximating the flipping
of S(t) as a Markov Process.
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Markov approximation for single neuron activity

The updating of a neuron in the excitatory population is a Poisson process
with average rate 1/τE and when an updating occurs, the state of the neuron
is set to 1 or 0 depending on wether the input is above or below the threshold
θE ; the average activity ⟨S(t)⟩ = m(t) correspond to the probability that
the neuron is in the active state at time t.
When the network is at equilibrium m correspond to the temporal average,
i.e. the fraction of time that the neuron spend in the active state, but this is
not sufficient to characterize the temporal structure of S(t). In fact, nonzero
self-correlation in the activity is present because after an update, the sooner
comes the next switching time, the lesser the input field is likely to have
changed, and so the neuron output: the smaller the interval between two
updates the smaller the probability that the neuron flips its states at the
second update.

If self correlations were absent, at every update the neuron can switch
to (or remain in) the active state S = 1 with probability m (and switch
to the silent state S = 0 with probability 1 − m) regardless of the state at
the previous update. A stochastic process with this characteristics is named
Dichotomous Markov Noise (DMN): a two valued stochastic process with
constant transition rates between the two states, K10 and K01 thus expo-
nentially distributed waiting times in the two states [128]. A DMN model
for S(t) would be completely determined by the transition rates between the
active and the silent state:

K10 = 1 −m

τE
K01 = m

τE
(3.12)

Figure 3.1 shows an example of the time course of x with S(t) given by the
realization of a DMN. Assuming that the activities of neurons can be de-
scribed by a DNM, we are effectively discarding the effect of self-correlation
and we can solve the MF in closed form because the statistic of the x will
be determined solely by the transition rates (3.12). At least from a qualita-
tive point of view, we don’t expect this approximation to yields predictions
that are dramatically different form the proper MF theory in which auto-
correlation are calculated self consistently. This will be checked A-posteriori,
comparing the approximated MF theory with simulation (section 3.4).

Evolution equation for the p.d.f. of x

Under the hypotheses that S(t) is a DMN, we can write and solve the evo-
lution equation for the probability distribution function of the stochastic
variable x which (3.1). The compound stochastic process [x(t),s(t)] can be
described by the joint distributions

P0(x, t) ≡ P (x, s = 0, t) P1(x, t) ≡ P (x, s = 1, t)
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Figure 3.1: Time evolution of synaptic amplitude (lower panel) driven by a neuron
with average activity m = 0.15 (upper panel) blue tics indicates the time of the
neuron update. Time constants in unit of τE are: τr = 10 and U = 0.3, yielding
τd ≃ 2.3 and xl ≃ 0.23

and it can be shown that (see [129]), the temporal evolution of the joint
distributions is governed by the master equation

∂tP0(x, t) = −∂x[f0(x)P0(x, t)] −
(
K01P0(x, t) −K10P1(x, t)

)
∂tP1(x, t) = −∂x[f1(x)P1(x, t)] +

(
K01P0(x, t) −K10P1(x, t)

) (3.13)

The marginal probability density of the stochastic variable x(t) is given by

P (x, t) = P0(x, t) + P1(x, t)

Stationary distributions

The asymptotic steady-state distributions P0(x) and P1(x) are the solution
of the system obtained by setting to zero the l.h.s. of the master equation
(3.13), namely

∂x[f0(x)P0(x)] = −
(
K01P0(x) −K10P1(x)

)
∂x[f1(x)P1(x)] = +

(
K01P0(x) −K10P1(x)

) (3.14)

Summing the two equations above we get

∂x
[
f0(x)P0(x, t) + f1(x)P1(x, t)

]
= 0

which means that in the asymptotic steady state the total probability flux
is a (spatial) constant

f0(x)P0(x) + f1(x)P1(x) = J
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The support of P (x) is the compact interval [xl; 1] therefore in the steady
state the local probability flux must vanish at the edge of the interval, but
since it is a constant we have that J = 0 everywhere in [xl; 1] which yield

P1(x) = −f0(x)
f1(x)

P0(x) (3.15)

we can substitute this relation in (3.14) to derive an ordinary differential
equation for P0(x) alone

dP0(x)
dx

+ P0(x)
[
d

dx
log |f0(x)| + K10

f1(x)
+ K01
f0(x)

]
= 0

solving the equation with the definitions given in (3.12, 3.3, 3.1), we obtain
the general solution

P0(x) = N
[
1 − x

]m τr
τE

−1 [
x− xl

](1−m) τd
τE (3.16)

and with the relation (3.15) we immediately find

P1(x) = N
[
1 − x

]m τr
τE
[
x− xl

](1−m) τd
τE

−1
(3.17)

The constant N is set by the normalization condition

∫ 1

xl
P (x)dx =

∫ 1

xl
P0(x) + P1(x)dx = 1

explicitly:

N =
{∫ 1

xl

[ 1
1 − x

+ 1
x− xl

] [
1 − x

]m τr
τE
[
x− xl

](1−m) τd
τE dx

}−1

(3.18)

Figure 3.2 shows a comparison between the joint distributions P0(x) and
P1(x) obtained from a simulation of the process and the theoretical station-
ary distribution given above.
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Figure 3.2: Bars: joint distributions P0(x) and P1(x) calculated from a simulation
of the process with parameters m = 0.15, τr = 10, U = 0.3 (τd ≃ 2.3, xl ≃ 0.23),
(x, s) values were sampled every τE for a period of 106τE . Black lines: theoretical
distributions P0(x) and P1(x) given in (3.16, 3.17) calculated for the same parameters.

We stress that P0(x) and P1(x) are joint distributions, taking the integral
over x means marginalizing out the x variable so that we are left with the
probability of having S = 0 and S = 1, then:∫ 1

xl
P0(x)dx = 1 −m

∫ 1

xl
P1(x)dx = m (3.19)

Stationary moments of the distributions

We define the nth moment of the joint distribution Pa(x) as

x̄(n)
a ≡

∫ 1

xl

xnPa(x)dx a = 0, 1

If we multiply the master equation (3.13) for xn and integrate over x we get

dx̄
(n)
0
dt

= xnf0(x)P0(x, t)
∣∣∣1
xl

+ n

τr

[
x̄

(n−1)
0 − x̄

(n)
0

]
−
(
K01x̄

(n)
0 −K10x̄

(n)
1

)
dx̄

(n)
1
dt

= xnf1(x)P1(x, t)
∣∣∣1
xl

+ n

τr

[
x̄

(n−1)
1 − x̄

(n)
1
xl

]
+
(
K01x̄

(n)
0 −K10x̄

(n)
1

)
(3.20)

We are interested in the value of the moment of the stationary distributions
Pa(x) with a = 0, 1 namely the constant solution of (3.20).
We can calculate the first term on the r.h.s. of (3.20) using the explicit
expression for the stationary distributions (3.16, 3.17) and we have that for
any values of the parameters

xnfa(x)Pa(x)
∣∣∣1
xl

= N xn
[
1 − x

]m τr
τE
[
x− xl

](1−m) τd
τE = 0
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Dropping this boundary term and setting to zero the l.h.s. we get the
following linear system(

n
τr

+K01 −K10

−K01
n
τrxl

+K10

)x̄(n)
0

x̄
(n)
1

 = n

τr

x̄(n−1)
0

x̄
(n−1)
1

 (3.21)

whose solutions give the stationary values of the nth moments

x̄
(n)
0 =

[
n+ Uτr + (1 −m) τr

τE

]
x̄

(n−1)
0 + (1 −m) τr

τE
x̄

(n−1)
1

n+ τr
τE

+ Uτr
(
1 +m τr

τE

) (3.22a)

x̄
(n)
1 =

[
n+m τr

τE

]
x̄

(n−1)
1 +m τr

τE
x̄

(n−1)
0

n+ τr
τE

+ Uτr
(
1 +m τr

τE

) (3.22b)

Since the moment of order n depends on the moment of order (n − 1), the
moment of arbitrary order must be calculated recursively starting from the
0th moments, which are the integral of the two distributions given in (3.19).

The calculation of the first moments of the stationary distributions gives

x̄0 =
(1 −m)

(
1 + Uτr + τr

τE

)
1 + τr

τE
+ Uτr

(
1 +m τr

τE

) (3.23a)

x̄1 =
m (1 + τr

τE
)

1 + τr
τE

+ Uτr
(
1 +m τr

τE

) (3.23b)

while for the second moment we have

x̄
(2)
0 =

[
2 + τr

τd
+ (1 −m) τr

τE

] [
1 + τr

τd
+ τr

τE

]
(1 −m) + (1 −m) τr

τE
m
[
1 + τr

τE

]
[
2 + τr

τd
+ τr

τE
(1 +m τr

τd
)
] [

1 + τr
τd

+ τr
τE

(1 +m τr
τd

)
]

(3.24a)

x̄
(2)
1 =

[
2 +m τr

τE

]
m
[
1 + τr

τE

]
+m τr

τE
(1 −m)

[
1 + τr

τd
+ τr

τE

]
[
2 + τr

τd
+ τr

τE
(1 +m τr

τd
)
] [

1 + τr
τd

+ τr
τE

(1 +m τr
τd

)
] (3.24b)

To simplify notation, from now on we set τE = 1 so that all time constants
are measured in units of τE .
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Steady state MF equations in the DMN approximation

Under the DMN assumption all the moment of the distribution of x can be
express in term of the average presynaptic activity m. In particular, the
time average at equilibrium over a single synapse yields

⟨xi(t)SEi (t)⟩ ≡
∫ 1

xl

xiP1(x)dx = x̄1(mi) (3.25)

⟨x2
i (t)SEi (t)⟩ ≡

∫ 1

xl

x2
iP1(x)dx = x̄

(2)
1 (mi) (3.26)

where x̄1(mi) and x̄
(2)
1 are given in (3.23b) and (3.24b).

Therefore, the order parameters of the network, at equilibrium, can be
calculated as population averages of the above functions, which for large N
can be expressed as integrals over the distribution of the local activities:

r ≡ ⟨r(t)⟩ = lim
N→∞

1
N

N∑
i=1

x̄1(mi) =
∫ 1

0
x̄1(m)ρE(m)dm (3.27a)

v ≡ ⟨v(t)⟩ = lim
N→∞

1
N

N∑
i=1

x̄
(2)
1 (mi) =

∫ 1

0
x̄

(2)
1 (m)ρE(m)dm (3.27b)

p = lim
N→∞

1
N

N∑
i=1

[x̄1(mi)]2 =
∫ 1

0
[x̄1(m)]2ρE(m)dm (3.27c)

In the random network with static synapses (see section 1.7) the MF
equations for the stationary average rates formed a closed system for mE,
mI because both hA and σA depended exclusively on the population average
rates, the quenched fluctuations could be determined separately as a closed
system for qE and qI once the average rates were known.
In presence of synaptic dynamics, instead, the input mean h and the total
variance σ depend on the new order parameters r and v that cannot be
determined without knowing the local distribution of activity, thus the the
quenched fluctuations q which depend also on the order parameter p

hE =
√
C(JEE r − JEI mI + Em0)

hI =
√
C(JIEmE − JII mI + I m0)

σ2
E = J2

EE v + J2
EImI s2

E = J2
EE p+ J2

EIqI

σ2
I = J2

IEmE + J2
IImI s2

I = J2
IEqE + J2

IIqI

(3.28)

therefore to find the stationary solution, a coupled system for the 7 order
parameters of the system must be solved:
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

mE = H

(
θE − hE
σE

)
mI = H

(
θI − hI
σI

)

qE =
∫ +∞

−∞

H
θE − hE + xsE√

σ2
E − s2

E

2
e−x2/2
√

2π
dx

qI =
∫ +∞

−∞

H
θI − hI + xsI√

σ2
I − s2

I

2
e−x2/2
√

2π
dx

r =
∫ +∞

−∞
x̄1

H
θE − hE + xsE√

σ2
E − s2

E

 e−x2/2
√

2π
dx

v =
∫ +∞

−∞
x̄

(2)
1

H
θE − hE + xsE√

σ2
E − s2

E

 e−x2/2
√

2π
dx

p =
∫ +∞

−∞

x̄1

H
θE − hE + xsE√

σ2
E − s2

E

2
e−x2/2
√

2π
dx

(3.29)

MF equations for a network with C connections per neuron

If we consider a simplified network architecture in which every neuron re-
ceives exactly C connections from each population, quenched fluctuations
will be absent because and time averaged local rates are homogeneous across
the network, i.e. the population distribution of activity of population A is

ρA(m) = δ(m−mA)

with mA the average activity in that population.
With this simplification we have that qA = m2

A and the order parameter
of the network with STD (3.27) reduces to simple functions of the average
excitatory population rate:

r =
∫ 1

0
x̄1(m)δ(m−mE) dm → x̄1(mE) (3.30a)

v =
∫ 1

0
x̄

(2)
1 (m)δ(m−mE) dm → x̄

(2)
1 (mE) (3.30b)

p =
∫ 1

0
[x̄1(m)]2δ(m−mE) dm → [x̄1(mE)]2 = r2 (3.30c)

with x̄1(m) and x̄
(2)
1 (m) given in (3.23b) and (3.24b).
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And writing down the input mean and variance

hE =
√
C (JEE x̄1(mE) − JEI mI +m0E)

hI =
√
C (JIEmE − JII mI +m0 I)

(3.31)

σ2
E = J2

EE

(
x̄

(2)
1 (mE) − [x̄1(mE)]2

)
+ J2

EI

(
mI −m2

I

)
σ2
I = J2

IE

(
mE −m2

E

)
+ J2

II

(
mI −m2

I

) (3.32)

we see that the input statistic, for this simplified network architecture, is
completely determined by the population average rates, which are then the
only independent parameters of the system and can be determined from the
solution of the mean field system

mE = H

(
θE − hE
σE

)
mI = H

(
θI − hI
σI

) (3.33)

but in contrast with the network with static synapses, here we have that
hE and σE becomes nonlinear functions of mE because of the synaptic
dynamics. The effect of this nonlinearity on the balanced state are analyzed
in the next section.

3.3 Balanced state with dynamical synapses
To get a qualitative insight of the balanced state in presence of depressing
synaptic dynamics, as a first step it is convenient to consider the simpler
MF equations (3.33) with (3.31,3.32) of the simplified architecture where all
neurons receive C inputs for each population. After, we will get back to the
complete model with variability in the connections, described by 3.29).

Balanced solution with no quenched fluctuations

The equilibrium rates in the C → ∞ limit are found by the requirement that
the average fields (3.31) must vanishes at leading order in

√
C. Whereas

such ”balancing” condition gave a linear system in the network with static
synapses (1.38), in presence of STD we get a nonlinear system for the pop-
ulation average activities:{

JEE x̄1(mE) − JEI mI +m0E = 0
JIEmE − JII mI +m0 I = 0

(3.34)

If we use the second equation to eliminate mI in the first equation and
substitute the explicit expression of x̄1(mE) we obtain

mE(1 + τr)
1 + τr + Uτr(1 +mEτr)

= JEIJIE
JEEJII

mE + JEI
JEE

(
I

JII
− E

JEI

)
m0 (3.35)
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Figure 3.3: Graphic solution of equation (3.35) for excitatory rates. Red line: l.h.s.
of equation (3.35) with τr = 10, τd = 3. Blue line: r.h.s. of equation (3.35) with
a choice of parameter for which the intersection with the red curve are single (left
panel) or double (right panel).

A graphical solution might be helpful to get the general picture: the equi-
librium mE is the abscissa of the intersection point(s) between the graph of
the nonlinear function x̄1(mE) on the l.h.s. which includes all the effects of
STD, and the straight line corresponding to the linear function on the r.h.s.;
depending on the parameters a single or a double intersection can occur:

• The straight line crosses the negative part of y axis if

E

I
>
JEI
JII

(3.36)

In this case a single intersection between the two curves in the interval
[0, 1] is possible (fig. 3.3 left, dashed line) .

• Otherwise, if

E

I
<
JEI
JII

(3.37)

the straight line crosses the positive part of the y axis, and there can
be a single (fig. 3.3 left, continuous line) or a double intersection (fig.
3.3 right, continuous line).

The solutions (3.34) can be found algebraically: rearranging the term in
(3.35) we get the a quadratic equation for mE

m2
E + bmE + c = 0 (3.38)
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b = 1
Uτr

[
1 + 1

τr
+ U

]
JEIJIE − JdEEJII

JEIJIE
+ IJEI −EJII

JEIJIE
m0

c = 1
Uτr

[
1 + 1

τr
+ U

]
IJEI − EJII
JEIJIE

m0

(3.39)

where we have defined

JdEE = JEE
1

1 + Uτr
1 + τr

(3.40)

To have meaningful values for mE we require that the roots of (3.38) are
real, positive, and less than 1.

When c < 0 there are always two real roots (b2 − 4 c > 0), one of which
is positive and the other negative. In fact we have c < 0 if (3.36) holds and
the single equilibrium solution is given by

mE = −b+
√
b2 − 4c

2
(3.41a)

mI = JIEmE +m0I

JII
(3.41b)

While the network without static synapses displayed network activities that
depended linearly on the external input (1.39), here we see that the nonlinear
input summation determined by STD determines a nonlinear dependence of
the population average activities on the external input.
If we take the limit m0 → 0 in (3.38, 3.39) we have

lim
m0→0+

mE =


0 if JEI

JII
>
JdEE
JIE

1
Uτr

[
1 + 1

τr
+ U

]
JdEEJII − JEIJIE

JEIJIE
if JEI

JII
<
JdEE
JIE

Therefore, the system has a single solution mE which goes to zero when the
external input vanish if the following inequalities hold

E

I
>
JEI
JII

>
JEE
JIE

1
1 + U τr

1+τr

(3.42)

If we consider the approximation of (3.41a) at leading order in m0

mE = m0
∂

∂m0

[
−b+

√
b2 − 4c

2

]∣∣∣∣∣
m0=0

+O(m2
0)

we have that the linear approximation of the population activities for very
low external input m0 gives

mE ≃ EJII − IJEI

JEIJIE − JIIJdEE
m0 mI ≃ EJIE − IJdEE

JEIJIE − JIIJdEE
m0 (3.43)
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where the conditions (3.45) ensure that rates are positive. These expressions
for the equilibrium rates are identical to those of the network without STD
(1.39), with JdEE instead of JEE . The effect of synaptic dynamics enters
only through the coefficient (3.40) that reduces the absolute excitatory-to-
excitatory strength.

Bistability ?

One striking difference introduced by dynamical synapses, it the possibil-
ity to have multiple balanced solutions. In fact equation (3.38) admit two
solutions which are real, positive and smaller than 1, if the conditions1

b2 − 4c > 0
b < 0

0 < c < 1
⇒

{
b < −2

√
c

0 < c < 1
(3.44)

are verified by the network parameters. But c > 0 corresponds to the
condition (3.37) which is sufficient to allow the existence of the unbalanced
solution in which the excitatory network is silent and the inhibitory network
balance the external excitatory input (hE < 0 , hI ≃ 0).
Thus, if (3.44) are fulfilled, the network has three equilibrium states: two
balanced and a partially unbalanced one:

m
(1)
E = −b+

√
b2 − 4c

2

m
(1)
I = JIEmE +m0I

JII

m
(2)
E = −b−

√
b2 − 4c

2

m
(2)
I = JIEmE +m0I

JII

m
(3)
E = 0

m
(3)
I = m0

I

JII

While the partially unbalanced solution m(3) is certainly stable, the two
balanced solutions appears at a saddle-node bifurcation therefore m(2) is
unstable and we conclude that the system have two stable equilibria.
In the limit m0 → 0, we see that the excitatory activity

m
(1)
E (m0 = 0) = 1

Uτr

[
1 + 1

τr
+ U

]
JdEEJII − JEIJIE

JEIJIE

would be positive provided that

E

I
<
JEI
JII

<
JEE
JIE

1
1 + U τr

1+τr

(3.45)

Figure 3.4 shows an example of the bifurcation diagram when the system
parameters allow bistabilty. We observe that the point in which the stable
(straight line) and unstable (dotted line) solutions annihilate is where b2 −
4c = 0; increasing m0 we have that b2 − 4c < 0 and the equation (3.38) has
no real solution, thus the only stable solution is the unbalanced one.

1if x1 and x2 are the roots of x2 + bx+ c, we have that b = −(x1 + x2) and c = x1x2
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Figure 3.4: Excitatory (left panel) and inhibitory (right panel) average rates at
equilibrium for a set of parameters that allows bistability. Continuous lines are the
stable solutions, dashed lines the unstable ones. Parameters are JEE = 2, JEI = 2,
E = 1, JIE = 1, JII = 1.8, I = 1, τr = 80, τd = 20.

Looking back to the graphical solution of (3.35) we can observe that the
case in which (3.37) holds and there is a single intersection (figure 3.3 left,
straight line) it corresponds necessarily to the unstable solution, because the
stable solution would be above mE = 1.

We point out that the occurrence of bistability in an unstructured network
as a consequence of synaptic adaptation has been examined in [130] for a
balanced network of spiking neurons with synaptic short-time facilitation.

Balanced solution with quenched fluctuations

After understanding the qualitative picture with the simplified model net-
work without quenched fluctuations, we can go back to the original model
where the neurons receive variable number of connections, C on average.
The balancing condition for the average input in the C → ∞ limit{

JEE r − JEI mI +m0E = 0
JIEmE − JII mI +m0 I = 0

(3.46)

yields the same nonlinear equation for the excitatory population activity

r = JEIJIE
JEEJII

mE + JEI
JEE

(
I

JII
− E

JEI

)
m0 (3.47)

the only difference is that while in the simplified case where the homogeneity
in local average rates allowed to express r as an algebraic function of the
average excitatory rates r = x̄1(mE), this time the variability in the number
of connections per neuron determines a variability in local average activities,
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thus we can determine r as a function mE by solving the complete statistics,
i.e. taking mE as a parameter of the system of equations:

mI = JIEmE +m0I

JII

qE =
∫ +∞

−∞

H
σEH−1(mE) + xsE√

σ2
E − s2

E

2
e−x2/2
√

2π
dx

qI =
∫ +∞

−∞

H
σIH−1(mI) + xsI√

σ2
I − s2

I

2
e−x2/2
√

2π
dx

r =
∫ +∞

−∞
x̄1

H
σEH−1(mE) + xsE√

σ2
E − s2

E

 e−x2/2
√

2π
dx

v =
∫ +∞

−∞
x̄

(2)
1

H
σEH−1(mE) + xsE√

σ2
E − s2

E

 e−x2/2
√

2π
dx

p =
∫ +∞

−∞

x̄1

H
σEH−1(mE) + xsE√

σ2
E − s2

E

2
e−x2/2
√

2π
dx

(3.48)

where the definitions for the input variances given in (3.28), and the residual
inputs are found by inverting the transfer function H(x) for mE .
In figure 3.5 we can see that the graphical solution of (3.47) is completely
analogous to the simplified case, and the effect of the inhomogeneities in the
local rates does not change the qualitative picture.
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Figure 3.5: Graphic solution of equation (3.47) for excitatory rates: single (left
panel) and double (right panel) intersections between the graph of r(ME), red con-
tinuous curve - obtained from a numerical solution of (3.48), and the r.h.s. of equation
(3.47), blue line. Red dashed line: graph of x̄1(mE). (τr = 80, τd = 20).
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The effect of quenched fluctuation is just to lower the population aver-
aged synaptic efficacy of the active neurons, without altering dramatically
the shape of the function; in particular, it can be demonstrated (using the
argument outlined in appendix A.5) that when the external input is low m0,
at first order in m0 we have r(mE) ≃ x̄1(mE). Essentially, this is conse-
quence of the fact that when activity levels are low, quenched fluctuations
becomes negligible with respect to the temporal ones.
Depending on the parameters of the system, we can have, again, a single
or a double intersection between the curves; similarly, one of the necessary
condition for having a double intersection (the straight line must cross the
positive part of the y axis) is sufficient to allow the existence of unbalanced
solution (3.37). We can thus conclude that also the network with variable
number of connection there can be bi-stability between the partially unbal-
anced solution and a balanced solution.

In the first chapter we have seen that for a network with static synapses, the
balanced state yield a linear response in the C → ∞ limit (1.39). Other-
wise, when synapses are endowed with STD, the average input (3.6) involve
a nonlinear dependence on the network activity through the order parame-
ter r with the effect that the average activities in the balanced state have
a nonlinear dependence on the external input m0. Figure 3.6 shows the
population average rates for three different values of the synaptic recovery
time τr.
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Figure 3.6: Average rates in the balanced state at C → ∞ for a network with
static synapses (continuous line) and for the same network with STD (dashed lines)
with three different timescales for the synaptic recovery time (parameters (1.70),
U = 0.05).
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Figure 3.7: Time of convergence to equilibrium in presence of synaptic depression:
comparison between the instantaneous average activities for three different values of
τr with U = 0.05. Other parameters are (1.70), m0 = 0.1

3.4 Comparing MF theory with simulations

To test the accuracy of the MF theory we calculated the solution of the MF
equations (3.29) with C = 103 and compared it with the steady states or-
der parameter measured from simulations of a network with NE = NI = 104.

First, we observe that while the network with static synapses converge to
stationary state in a few network update cycle (see figure 1.14), in presence
of synaptic depression, the stationary state is reached in a time-scale of
the same order of magnitude of the synaptic recovery time-scale τr (figure
3.7). Despite the MF theory neglects the effect of autocorrelations, the
predictions are generally in a very good agreement with the values of the
order parameters measured from the simulation (fig 3.9), as it’s confirmed
by the distribution of the time averaged local rates (fig. 3.8).
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Figure 3.8: Distribution of excitatory neuron average activities with τr = 10,
U = 0.05, m0 = 0.08 other parameters as usual. Comparison between theory and
simulations.
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Figure 3.10: Excitatory activity as a function of the synaptic adaptation parame-
ters, m0 = 0.1

The values of the excitatory rates recorded from simulations are slightly
smaller than the theoretical ones (fig. 3.9) and simulations for various values
of the synaptic adaptation parameters τr and U shown in fig. 3.10 shows
that the agreement are generally very good but the discrepancy are more
pronounced for smaller values of τr. This is because the MF theory has been
derived under the hypotheses of negligible self-correlations of neurons activ-
ities, and comparing the theoretical and simulated distributions of synaptic
efficacy P1(x) (fig. 3.11) we see that when the timescale of the synaptic dy-
namics τr is much longer than the timescale of self-correlation decay, which
is of the order of magnitude of the excitatory network update mean time τE
(see section 1.8), the distribution of x driven by the activity S(t) is better
approximated by the distribution of the x driven by a dichotomous Markov
noise with the same activity m.
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Figure 3.11: Verification of the Markov approximation, distribution of synaptic
efficacies for a neuron in a network (orange) and distribution derived from a dichoto-
mous Markov noise with the same activity level(black) for short τr (right) and long
τr (right). U = 0.05



78 Balanced networks with depressing synaptic dynamics



Chapter 4

A balanced memory network
with depressing synapses

Nevertheless, the one and only thing of
paramount interest to us in ourselves is, that
we feel and think and perceive.

Erwin Schrödinger
What is Life?, 1944

In this chapter we extend the MF theory for a balanced network with
short-term synaptic depression to the modified Willshaw memory model
presented in section 2.2 to study how synaptic dynamics can modify the
bistability in the sparse coding limit, and in particular if the current model
can support the existence of low rate memory states.

4.1 MF theory for a memory model with STD

The modified Willshaw Model [19] gives a simple prescription to structure
the connectivity between excitatory cells in order to reinforce the connection
between neurons which are selective for a finite number P of independent
memories patterns {ξµi } with coding level f

∀i = 1, ..., N
∀µ = 1, ..., P ξµi =

{
1 with probability f
0 with probability 1 − f

The excitatory-to-excitatory connections are built in the following way: if
two neuron are simultaneously active in at least one of the patterns, the
synapse between them is multiplied by a factor a, otherwise the synaptic
strength is left at the baseline value JEE/

√
C.
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The symmetric synaptic structure is then diluted as usual yielding the fol-
lowing form for the synaptic matrix for the excitatory population:

JEEij = cEEij
JEE√
C

1 + (a− 1)Θ

 P∑
µ=1

ξµi ξ
ν
j

 (4.1)

The inputs to a generic excitatory and inhibitory neuron read

hEi (t) =
NE∑
j=1

JEEij xj(t)SEj (t) + JEI√
C

NI∑
j=1

cEIij S
I
j (t) +m0E

√
C (4.2a)

hIi (t) = JIE√
C

NE∑
j=1

cIEij S
E
j (t) + JII√

C

NI∑
j=1

cIIij S
I
j (t) +m0I

√
C (4.2b)

where the recurrent excitatory synaptic matrix JEEij is given in (4.1) and
the xj modulate the synaptic strength following a temporal dynamics de-
termined by the state of Sj as specified by the model (3.1).

Input statistics

For each pattern ξν the excitatory network is partitioned in two sub-populations:
the selective (or foreground) neurons for which ξνi = 1, and the nonselective
(or background) neurons for which ξνi = 0.
For a macroscopic characterization of the state of the system the patterns
are all equivalent, therefore in the following we will drop the superscript ν
and assume we are considering pattern ξ1.

The population averaged inputs to the two excitatory sub-populations are

h+(t) ≡

N∑
i=1

ξ1
i h

E
i (t)∑N

i=1 ξ
1
i

h−(t) ≡

N∑
i=1

(1 − ξ1
i )hEi (t)∑N

i=1(1 − ξ1
i )

Calculation of the time averaged input for all the three sub-populations in
the network proceeds in the same way as for the model with static synapses
[19] presented in chapter 2 and gives

h+ =
√
C{ JEE [afr+ + (aΠ + 1 − Π)(1 − f)r−] − JEImI + Em0} (4.3a)

h− =
√
C{ JEE(aΠ + 1 − Π)[fr+ + (1 − f)r−] − JEImI + Em0} (4.3b)

hI =
√
C{ JIE [fm+ + (1 − f)m−] − JIImI + Im0} (4.3c)

where Π = 1 − (1 − f2)P−1 is the probability that a strong synapse exists
between excitatory neurons in the background, or between a foreground and
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a background cell. The difference is that with synaptic dynamics, besides
the average activity in each population

m+ ≡

N∑
i=1

ξ1
im

E
i∑N

i=1 ξ
1
i

m− ≡

N∑
i=1

(1 − ξ1
i )mE

i∑N
i=1(1 − ξ1

i )

we have for each excitatory subpopulation the additional order parameters
r representing the average synaptic efficacy for the active neurons

r+ =

N∑
i=1

ξ1
i ⟨xi(t)SEi (t)⟩∑N

i=1 ξ
1
i

r− =

N∑
i=1

(1 − ξ1
i ) ⟨xi(t)SEi (t)⟩∑N

i=1(1 − ξ1
i )

As we have shown in section 1.6, in a sparsely connected network C ≪ N in
the limit N → ∞ and C → ∞ the fluctuations of the input around the mean
are Gaussian and can be separated into temporal and quenched(spatial)
fluctuations:

hAi (t) = hA + ηAi (t) + δAi

The total variance of the input is given by

σ2
+ = J2

EE [a2fv+ + (a2Π + 1 − Π)(1 − f)v−] + J2
EImI (4.4a)

σ2
− = J2

EE(a2Π + 1 − Π)[fv+ + (1 − f)v−] + J2
EImI (4.4b)

σ2
I = J2

IE [fm+ + (1 − f)m−] + J2
IImI (4.4c)

with the definitions

v+ =

N∑
i=1

ξ1
i ⟨x2

i (t)SEi (t)⟩∑N
i=1 ξ

1
i

v− =

N∑
i=1

(1 − ξ1
i ) ⟨x2

i (t)SEi (t)⟩∑N
i=1(1 − ξ1

i )

The variance of the time-independent fluctuating part of the input δAi is:

s2
+ = J2

EE [a2fp+ + (a2Π + 1 − Π)(1 − f)p−] + J2
EIqI (4.5a)

s2
− = J2

EE(a2Π + 1 − Π)[fp+ + (1 − f)p−] + J2
EIqI (4.5b)

s2
I = J2

IE [fq+ + (1 − f)q−] + J2
IIqI (4.5c)

with the definitions

v+ =

N∑
i=1

ξ1
i ⟨xi(t)SEi (t)⟩2

∑N
i=1 ξ

1
i

v− =

N∑
i=1

(1 − ξ1
i ) ⟨xi(t)SEi (t)⟩2

∑N
i=1(1 − ξ1

i )

q+(t) ≡

N∑
i=1

ξ1
i [mE

i (t)]2∑N
i=1 ξ

1
i

q−(t) ≡

N∑
i=1

(1 − ξ1
i )[mE

i (t)]2∑N
i=1(1 − ξ1

i )
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MF equations

A complete description of the network state is therefore given by 12 or-
der parameters: 5 for each excitatory population and 2 for the inhibitory
population. If self-correlations in the neurons’ state are neglected (dichoto-
mous Markov noise approximation), the stationary state value of the order
parameters are a solutions of the fully coupled MF system

m+ = H

(
θ+ − h+
σ+

)
m− = H

(
θ− − h−
σ−

)
mI = H

(
θI − hI
σI

)

q+ =
∫ +∞

−∞

H
θE − h+ + xs+√

σ2
+ − s2

+

2
e−x2/2
√

2π
dx

q− =
∫ +∞

−∞

H
θE − h− + xs−√

σ2
− − s2

−

2
e−x2/2
√

2π
dx

qI =
∫ +∞

−∞

H
θI − hI + xsI√

σ2
I − s2

I

2
e−x2/2
√

2π
dx

r+ =
∫ +∞

−∞
x̄1

H
θE − h+ + xsE√

σ2
+ − s2

+

 e−x2/2
√

2π
dx

r− =
∫ +∞

−∞
x̄1

H
θE − h− + xs−√

σ2
− − s2

−

 e−x2/2
√

2π
dx

v+ =
∫ +∞

−∞
x̄

(2)
1

H
θE − h+ + xs+√

σ2
+ − s2

+

 e−x2/2
√

2π
dx

v− =
∫ +∞

−∞
x̄

(2)
1

H
θE − h− + xs−√

σ2
− − s2

−

 e−x2/2
√

2π
dx

p+ =
∫ +∞

−∞

x̄1

H
θE − h+ + xs+√

σ2
+ − s2

+

2
e−x2/2
√

2π
dx

p− =
∫ +∞

−∞

x̄1

H
θE − h− + xs−√

σ2
− − s2

−

2
e−x2/2
√

2π
dx

(4.6)

Where x̄1(m) and x̄1
(2)(m) are given in (3.23b) and (3.24b) and are the first

two moments of the distribution of synaptic efficacy driven by a memoryless
neuron with average activity m.
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MF for a memory network with C connections per neuron

A much more simple description can be obtained for a memory network in
which there is no variability in the number of connections received by neu-
rons.

As shown in section 3.2 for the network with unstructured connectivity, in
a network where all neurons receive exactly C connections from the exci-
tatory population (and exactly C from the inhibitory population) there is
no cell-to-cell variability in the average activity, the distribution of the local
average activity reduces to ρ(m) = δ(m−mE) allowing to reduce the order
parameters r and v to explicit functions of the average population activity:

r± → x̄(m±) = m±(1 + τr)
1 + τr + Uτr(1 +m±τr)

(4.7)

v± →≡ x̄(2)(m±) =
m±

[
2 + τr

τE
m±

] [
1 + τr

τE

]
+ τr

τE
m± (1 −m±)

[
1 + Uτr + τr

τE

]
[
2 + Uτr + τr

τE
(1 + Uτrm±)

] [
1 + Uτr + τr

τE
(1 + Uτrm±)

]
The average input for each population are:

h+ =
√
C{ JEE [afx̄+ + (aΠ + 1 − Π)(1 − f)x̄−] − JEImI + Em0}

h− =
√
C{ JEE(aΠ + 1 − Π)[fx̄+ + (1 − f)x̄−] − JEImI + Em0}

hI =
√
C{ JIE [fm+ + (1 − f)m−] − JIImI + Im0}

(4.8)

Quenched fluctuation absent, the input fluctuation is due exclusively to the
temporal stochasticity in the presynaptic activity, and for the input variance
we have

σ2
+ = J2

EE [a2f(x̄(2)
+ − [x̄+]2) + (a2Π + 1 − Π)(1 − f)(x̄(2)

− − [x̄−]2)] + J2
EI(mI −m2

I)

σ2
− = J2

EE(a2Π + 1 − Π)[f(x̄(2)
+ − [x̄+]2) + (1 − f)(x̄(2)

− − [x̄−]2)] + J2
EI(mI −m2

I)
σ2
I = J2

IE [f(m+ −m2
+) + (1 − f)(m− −m2

−)] + J2
II(mI −m2

I)

In this simpler model, the number of order parameters necessary to charac-
terize completely the network state is reduced from 12 to the 3 population
average activities, and their stationary value is found solving the system

m+ = H

(
θE − h+
σ+

)
m− = H

(
θE − h−
σ−

)
mI = H

(
θI − hI
σI

) (4.9)



84 A balanced memory network with depressing synapses

4.2 Balanced regime with synaptic depression
To get a qualitative insight in the balanced regime we consider the model in
which every neuron receives exactly C inputs from each population. Ran-
domness in the number of connection will determine just a quantitative
correction to the solutions found in the simplified architecture.

Balanced regime in the sparse coding limit f → 0

As was shown in chapter 2, to have that in the C → ∞ limit all three popu-
lations are in the balanced state (the mean input of all three subpopulation
is of order 1 as the input variance) one possibility is to assume that the
coding level of the memories scales with the connectivity as

f = F√
C

and the number of stored patterns P = αC, with the loading parameter α.

In fact, with this scaling we get expressions for average inputs which are
almost identical to (2.7) with the crucial difference that with dynamical
synapses the average input becomes a nonlinear function of the recurrent
excitatory activity through x̄

hI =
√
C{ JIEm− − JIImI + Im0} + FJIE (m+ −m−)

h− =
√
C{ J∗

EE x̄(m−) − JEImI + Em0} + FJ∗
EE(x̄(m+) − x̄(m−))

h+ = h− + (a− 1)(1 − Π)JEEF x̄(m+) (4.10a)

where J∗
EE = JEE [aΠ + 1 − Π]. And analogously for the input variance.

Background an inhibitory population activities

When taking the limit C → ∞ the variance are finite and for the two
excitatory sub-populations becomes coincident

σE ≡ σ2
+ = σ2

− = J2
EE(a2Π + 1 − Π)(x̄(2)

− − [x̄−]2) + J2
EI(mI −m2

I)
σ2
I = J2

IE(m− −m2
−) + J2

II(mI −m2
I)

and since the difference between the input of the foreground and the back-
ground is finite, all three populations are automatically balanced as long as
the large excitatory background and inhibitory population rates fulfil the
balance condition {

J∗
EE x̄(m−) − JEImI + Em0 = 0

JIEm− − JIImI + Im0 = 0
(4.11)
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This condition is identical to that for an unstructured network with STD on
excitatory synapses studied in chapter, the memory structure enters through
the modified recurrent excitatory coupling J∗

EE = aΠ + 1 − Π, and as was
shown in chapter 3, provided that the parameters of the system satisfy the
conditions

aΠ + 1 − Π
1 + Uτr

1+τr

JEE
JIE

<
JEI
JII

<
E

I

there is a single stable equilibrium with average population activities given
by

m− = −b+
√
b2 − 4c

2
mI = JIEmE +m0I

JII
(4.12)

where

b = 1
Uτr

[
1 + 1

τr
+ U

]
JEIJIE − (aΠ + 1 − Π)JdEEJII

JEIJIE
+ IJEI − EJII

JEIJIE
m0

c = 1
Uτr

[
1 + 1

τr
+ U

]
IJEI − EJII
JEIJIE

m0

with JdEE = JEE/(1 + Uτr/(1 + τr))

Foreground population activity

At this point the equilibrium rate of the foreground population can be de-
termined from the equation

m+ = H

(
θE − h+
σE

)
With the background an inhibitory average activities (4.12) determined by
the balance condition, we can calculate the input variance σE and the net
average residual input θE−h− = σEH

−1(m−), and with the input difference
between foreground and background given by (4.10a) we get a nonlinear
equation depending on m+ alone

m+ = H

(
H−1(m−) − JEE(a− 1)Fe−αF 2

σE
x̄(m+)

)

Since x̄(m+) is a monotonically growing function in the interval [0; 1], thus
invertible, we can express m+ as a function of x̄ to get an equation for the
variable x̄ :

1 + τr + Uτr
1 + τr − Uτ2

r x
x = H

(
H−1(m−) − JEE(a− 1)Fe−αF 2

σE
x

)
(4.13)

This is analogous to (2.9), the equation for a memory network with statical
synapse (which is recovered setting U = 0), the essential difference is that



86 A balanced memory network with depressing synapses

the l.h.s. of (4.13) is a nonlinear function of m+ because of short-term
depression of synapses, opening the possibility to make multiple intersections
with the sigmoid function below the inflection point, thus allowing the low
rate bistability sought for. We examine this possibility in the next section
with a graphical analysis of the solutions of (4.13).

4.3 The effect of synaptic depression on bistability
The space of parameter of the system has 12 dimensions1, but to study the
graphical solution of (4.13) we can consider the problem in the general form

R−Q

1 −Qx
x︸ ︷︷ ︸

ϕ(x)

= H(C −Dx)︸ ︷︷ ︸
ψ(x)

(4.14)

of the occurrence of intersection between the functions ϕ(x) and ψ(x) which
depends on only 4 parameters, related to the parameters of the original
problem by:

R = 1 + Uτr = 1
xl

C = H−1(m−)

Q = Uτr
1

1 + 1
τr

D = JEE(a− 1)
σE

Fe−αF 2
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Figure 4.1: Geometrical significance of the parameters in ϕ(x) (red) and ψ(x)
(blue).

16 parameters for coupling strength JAB , 3 for memory structure a, F , α, 2 for synaptic
depression U , taur and 1 for external input m0
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Figure 4.2: Equation (4.14) can have one (left) or three (right) solutions.

Figure (4.1) gives a summary of the relations between the four coefficients
{R, Q, C, D} and the geometrical properties of the curves, further details
can be found in appendix C.
Of course the 4 parameters are not independent: while R and Q are related
to U and τr only with an invertible variable transformaton, the coefficients
C and D that determine the shape of function ψ(x) depends on all the (12)
parameters of the system because m− and σE , appearing respectively in C
and D, comes from the solution of the MF system (4.19).

It is easily understood that there are only two possible cases:

1. the two curves meets in a single point (fig. 4.2 left): the parameters
allow a unique (stable) equilibrium solution m+

2. the two curves meets in three points (fig. 4.2 right): the middle in-
tersection corresponds to an un unstable solution while the upper and
lower intersection correspond to stable solutions. Therefore the net-
work is bistable: the lower activity solution mlow

+ corresponds to back-
ground, unstructured, state of activity, the higher rate mhi

+ solution
correspond to memory retrieval state.

In particular, we are interested to see if for certain values of the parameters
there are two stable solutions for the foreground population fulfilling

mlow
+ ≃ m− mhi

+ ≪ 1

as, for example in fig.4.3.
A preliminary exploration of the solutions of equation (4.14) as a function
of the 4 parameters (see appendix C) showed that it is possible to have
double intersection with the upper one occurring much lower than 1. This
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Figure 4.3: Example of two stable solution at low rate.

give a necessary condition for the existence of low rates solutions but it’s not
sufficient because the parameters C and D depends on R and Q. Indeed,
scanning the full parameter space of (4.13) and calculating the solutions,
showed that those region are accessible, proving our initial hypotheses:

for binary memory network model (modified Willshaw)
with short-time depressing synapses, there is a finite re-
gion in the parameter space for which the selective pop-
ulation display bistability between two balanced states,
both with average activities largely below saturation.

As an example, a set of double solutions (mhi
+ ,m

low
+ ) parameterized by U and

τr is shown in figure 4.5, where we notice that the activity of the memory
states mhi

+ lies all below 0.2.
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Figure 4.4: Bifurcation diagram. Solutions of (4.13) as a function of U , other
parameters are fixed at τr = 80, a = 2, 2, F = 32, α = 6 ∗ 10−4, m0 = 0.005
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Figure 4.5: Bistability at low rate: example of a set of solutions for the foreground
average activity as a function of the synaptic adaptation parameters U (top) and τr

(bottom). Other parameters are fixed at a = 2, 2, F = 34, α = 6 ∗ 10−4, m0 = 0.005
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Model with quenched fluctuations

Now we consider the random architecture in which each neuron receives a
random number of connections, C on average , which give rise to quenched
fluctuations.

h+ =
√
C{ J∗

EE r− − JEImI + Em0} + F [aJEEr+ − J∗
EEr−]

h− =
√
C{ J∗

EE r− − JEImI + Em0} + FJ∗
EE [r+ − r−]

hI =
√
C{ JIEm− − JIImI + Im0} + FJIE [r+ − r−]

(4.15)

where we defined J∗
EE ≡ JEE [1 + (a− 1)Π∞].

The total fluctuations becomes:

σ2
+ = σ2

− = J2
EE(a2Π∞ + 1 − Π∞)v− + J2

EImI

σ2
I = J2

IEm− + J2
IImI

(4.16)

while for the quenched fluctuations we get

s2
+ = s2

− = J2
EE(a2Π∞ + 1 − Π∞)p− + J2

EIqI

s2
I = J2

IEq− + J2
IIqI

(4.17)

and we have the notable fact that, in this limit, the fluctuation in the input
to the foreground and the background population are equal. From now on
we will indicate those quantities with the notation

σE ≡ σ+ = σ− sE ≡ s+ = s−

In the balanced state, the term of order
√
C in the average input must

vanish for all populations (see section 2.2 ), but since the leading contribu-
tion in the excitatory part of the input comes solely form the background
neurons (in the sparse limit the foreground are a vanishingly small fraction
of the excitatory netowork), we only need to balance the background and
the inhibitory population as in the case of the network without memory
considered in previous chapter:

m− = J∗
EEJII
JEIJIE

[
r− + I

J∗
EE

(
E

I
− JEI
JII

)
m0

]

mI = J∗
EE

JEI

[
r− + E

J∗
EE

m0

] (4.18)



4.3 The effect of synaptic depression on bistability 91
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q− =
∫ +∞

−∞

H
σEH−1(m−) + xsE√

σ2
E − s2

E

2
e−x2/2
√

2π
dx

qI =
∫ +∞

−∞

H
σIH−1(mI) + xsI√

σ2
I − s2

I

2
e−x2/2
√

2π
dx

r− =
∫ +∞

−∞
x̄1

H
σEH−1(m−) + xsE√

σ2
E − s2

E

 e−x2/2
√

2π
dx

v− =
∫ +∞

−∞
x̄

(2)
1

H
σEH−1(m−) + xsE√

σ2
E − s2

E

 e−x2/2
√

2π
dx

p− =
∫ +∞

−∞

x̄1

H
σEH−1(m−) + xsE√

σ2
E − s2

E

2
e−x2/2
√

2π
dx

(4.19)

As in the previous case, the foreground population average rates can
then be determined as a solution of the following nonlinear equation for m+

m+ = H

(
H−1(m−) − JEE(a− 1)Fe−αF 2

σ+
r+

)
(4.20)

where we have r+ which, instead of being an algebraic function of m+,
results from the average over the local variablity of the input:

r+ =
∫ +∞

−∞
x̄1

H
σEH−1(m+) + xsE√

σ2
E − s2

E

 e−x2/2
√

2π
dx (4.21)

which is a function of m+ alone since σE and sE have been set by the
balancing condition of the background and inhibitory population.
Since we are interested in regime of low activity, it is useful to observe that
the low rate approximation m0 ≪ 1 (see section A.5) of (4.21) gives the
expression obtained for a network with fixed number of connection

r+ −→ x̄1(m+) = (1 + τr)m+
1 + τr + τrU(1 + τrm+)

(4.22)

which turn out to be the same function that we get for a network of a
fixed number of connections per neurons considered at the beginning of the
chapter, in fact at low rates the variability in the number of connections is
less prominent because every neuron will have a small fraction of its afferent
input which are active.
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Figure 4.6: The red curves represent the frunction (4.21) calculated for different
values of m0 after solving the system (4.19) with parameters given in table (1.70) and
τr = 7, U = 0.6 for different values of the external input m0. The curves, from the
bottom, corresponds orderly to m0 = 0.4; 0.3; 0.2; 0.1; 0.05. The blue curve is the
approximated function (4.22). The inset show a magnification of the area indicated
with a box in the main graph.

The graph in figure 4.6 gives a feel of the accuracy of the approximation.
This allow us to state that the resulting picture will be essentially the same
of the simplified case up to some quantitative correction, thus it’s possible
to achieve bistability at low rate, although it’s likely that region in the
parameter space where this occur might be different.
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4.4 Numerical Simulations

We solved the MF equations at finite C (4.6) and find the parameters for
which bistability at low rate occurred, but simulated networks failed to
display bistability for such values. The discrepancies between theory and
simulations, most likely, result from significant finite-size effects of the sim-
ulated network. In fact, we simulated networks of order N ∼ 104 neurons
and C ∼ 103, and to consider the sparse coding limit (f ≪ 1) we choose
f ∼ 0.01−0.1, obtaining selective populations with Nf ∼ 103 −104 neurons
on average, each one receiving fC ∼ 10 − 100 connections on average from
other selective neurons. A proper comparison with the theoretical results
would require the simulation of networks which are compatible with the
assumptions of the mean field theory, namely fN ≫ C ≫ 1 and f ≪ 1.

Although it wasn’t possible to match quantitatively the theoretical pre-
dictions, we could find specific parameters for which the expected qualitative
phenomenology is reproduced, i.e. with STD, the activity of the foreground
neurons in the memory state is far below saturation (fig. 4.8) unlikely the
case with static synapses (fig. 4.7).
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Figure 4.7: Example of a transition to a memory state upon stimulation in absence
of synaptic adaptation.
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Figure 4.8: Example of transition to a memory state with synaptic depression.
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The comparison of the distribution of local activities during the persistent
activity states shows how the foreground neurons are all below saturation.
Analogously to [21] the distribution is bimodal, and the selective population
stands out from a background of much less active neurons.
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Figure 4.9: Comparison between the distribution of the local activities during
memory state for a networ with static synapses (right) and a network with short
time depression dynamics (left).

Moreover, we noted that for certain values of the parameters, the activity
of the selective neurons displayed collective oscillations (fig. 4.10) with a
period of the order of τr, suggesting that the stationary states can be not
only fixed point attractors but can have a richer dynamics because of the
additional timescales introduced by the synaptic adaptation.
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Figure 4.10: Global oscillations in the activity of the selective population of neurons
τr = 5τE .



Conclusions

The nonlinearity of the single neuron response function allows standard
attractor network models to exhibit bistability, provided that the excita-
tory recurrent feedback is sufficiently strong. This mechanism, as discussed,
generically produces an unrealistic high level of activity (close to saturation)
for the high rate -memory- state.

We have shown that for a memory network model operating in the balance
state (where the distance of the input from threshold is of the same order of
the input fluctuation), adding a dynamics to the synaptic couplings between
the excitatory neurons indeed allow to have bistability with more plausible
activity rates, far below saturation.
To do so, we have formulated a mean field theory for a network of binary neu-
rons operating in the balanced regime with short-time depressing synapses
under the assumption that neurons’ self correlations were negligible. The
analysis of the equilibrium solutions in the C → ∞ limit showed that there
are regions in the space of parameters where bistability at between two state
at low activity is possible.
Simulations confirmed the qualitative picture, displaying memory state in
which activity is low, temporally fluctuating and spatially inhomogeneous.

To achieve memory states at low activity rate, however, the parameters
had to be fine tuned, highlighting that synaptic adaptation is an effective
solution to achieve more realistic activity levels in the network, but it’s a
poorly robust one.
This suggest that despite the improvements to the current attractor frame-
work like the one presented here, however successful in explaining the quali-
tative aspects of self-sustained persistent activity, this framework have some
limitations that makes it hard to reconcile it with experimental observa-
tions, calling for a re-examination of the mechanism concerning the neural
substrates of memory function.
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Appendix A
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complementary material

A.1 Input statistics calculation
The expression for the mean and the variance of the input to a cell can also
be calculated directly, in the thermodynamic limit.

Mean Input

The population average input is, by definition

hA(t) = lim
N→∞

1
N

N∑
i=1

hAi (t) (A.1)

for population averaged quantities, the neuron index is dropped and the
population index lowered.
Taking the expression of the input (1.5) we have

hA(t) = JAE
N∑
j=1

[[
cABij

]]
SEj (t) − JAI

N∑
j=1

[[
cABij

]]
SIj (t) + CJAexm0 (A.2)

where we use the double square bracket to indicate the population average

[[...]] ≡ 1
N

N∑
i=1

...

thus we have to take the average over the postsynaptic (output) connectivity
for each neuron j. In general, this quantity might depend on the cell j, and
this would imply that the activity Sj of some neuron in the sums appearing
in A.3 are summed with different weights, corresponding to the fact that
neuron i receives contact from the other neurons with different probabilities.
In our case the network structuring is random (1.2) and in the large N limit:[[

cABij

]]
= C

N
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then we can take this terms out of the summation over j and we get

hA(t) = C

JAE

 1
N

N∑
j=1

SEj (t)

− JAI

 1
N

N∑
j=1

SIj (t)

+ JAexm0

 (A.3)

where the term in square brackets are the population average activities

mB(t) ≡ 1
N

N∑
j=1

SBj (t) (A.4)

and the average input in population A is

hA(t) = C
{

JAEmE(t) − JAImI(t) + JAexm0
}

(A.5)

Input Variance

The variance of the input is defined as

σ2
A(t) ≡ Var[hAi (t)] = lim

N→∞

1
N

N∑
i=1

[
δhAi (t)

]2
(A.6)

where we have that the input variation is

δhAi (t) = hAi (t) − hA(t)

= JAE
N∑
j=1

(
cAEij − C

N

)
SEj (t) − JAI

N∑
j=1

(
cAIij − C

N

)
SIj (t)

(A.7)

In general, if we have N uncorrelated random variables Xj , the
variance of their sum is equal to the sum of their variance

Var

 N∑
j=1

Xj

 =
N∑
j=1

Var [ Xj ] (A.8)

In our case we can regard the recurrent part of the input to a cell at a certain
time t as a sum of random variables. The external input is deterministic.

hAi (t) =
E,I∑
B

N∑
j=1

XAB
ij + JAexm0 (A.9)

where XAB
ij = (−1)δBI JAB cABij SBj (t)

the variables Xij are certainly uncorrelated because for any neuron j, post-
synaptic connections are independent random variables (1.2) and we can
carry out the calculation of (A.6) using (A.8). We have that

Var
[
XAB
ij

]
=
[[(

XAB
ij

)2
]]

−
( [[

XAB
ij

]] )2
(A.10)
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The calculation of the mean of XAB
ij in the large N limit gives

[[
XAB
ij

]]
= 1
N

N∑
i=1

XAB
ij = C

N
(−1)δBI JABSBj (t) (A.11)

For the mean of the square we observe that both cij and Sj are binary
random variables, therefore they remain unchanged when squared and we
get [[(

XAB
ij

)2
]]

= 1
N

N∑
i=1

(
XAB
ij

)2
= C

N
J 2
ABS

B
j (t) (A.12)

Taking (A.12) and subtracting the square of (A.11) we find that the variance
of the jth term of the summation

Var
[
XAB
ij

]
= C

N

(
1 − C

N

)
J 2
ABS

B
j (t) ≃ C

N
J 2
ABS

B
j (t)

where the approximation holds in the limit of sparse connectivity C ≪ N .
For the full expression of the input variance we have

σ2
A(t) =

E,I∑
B

N∑
j=1

Var
[
XAB
ij

]
=

E,I∑
B

CJ 2
AB

 1
N

N∑
j=1

SBj (t)

 (A.13)

where we recognize the average activities in the last term in square brackets.
Therefore, the total variance for the input to population A reads

σ2
A(t) = C{J 2

AEmE(t) + J 2
AImI(t)} (A.14)

A.2 Local stability of the Balanced State
The stability of the balanced state is studied. Local stability requires that
a sufficiently small perturbation in the population will decay to zero. If
(mE ,mI) is the balanced solution of (1.26) we can write the perturbed so-
lution as

mA(t) = mA + δmA(t)

the perturbation in the rates affect the equilibrium field and the variance

hA(t) =h+ δh(t)
αA(t) =αA + δα(t)

where
δhA(t) =

√
C [JAEδmE(t) + JAIδmI(t)]

δαA(t) = J2
AEδmE(t) + J2

AIδmI(t)

The dynamical equations (1.26) can be linearized if the perturbation in the
field is much smaller than the equilibrium field:

H

(
θA − hA − δhA√

αA + δαA

)
≃ H

(
θA − hA√

αA

)
+ δmE

∂HA

∂mE
+ δmI

∂HA

∂mI
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Since in the balanced state the equilibrium field is O(1), the linear approx-
imation holds if

δhA(t) ≪ 1 ⇒ δmA(t) ≪ 1√
C

Therefore, if we consider perturbations in the rates that are much smaller
than 1/

√
C the linearized equation for the perturbed rates has the form

d

dt

(
δmE(t)
δmI(t)

)
=
( 1
τE

∂HE
∂mE

− 1
τE

1
τE

∂HE
∂mI

1
τI

∂HI
∂mE

1
τI

∂HI
∂mI

− 1
τI

)(
δmE(t)
δmI(t)

)
(A.15)

whose solutions are of the form:

δmA(t) = c1e
λ1t + c2e

λ2t

where λ1, λ2 are the eigenvalues of the matrix appearing on the r.h.s of A.15.
The equilibrium solution are of locally stable if the perturbations drops to
zero, therefore if the eigenvalues have a negative real part. Calculating the
derivatives of the HA function we get

∂HA

∂mB
= 1√

2π
exp

[
−(θA − hA)2

2 αA

](
√
C
JAB√
αA

− J2
ABhA

2 α3/2
A

)

In the large connectivity limit C ≫ 1 the first term in round brackets is
much larger and the second term can be neglected.

∂HA

∂mB
≃
C≫1

√
C

1√
2παA

exp
[
−(θA − hA)2

2 αA

]
JAB (A.16)

If we find the roots of the characteristic polynomial and require that their
real part be negative yields a condition on the timescales of the form

τI
τE

< τ∗(mE ,mI , J)

In the C → ∞ the timescale τ∗ depends only on the external input m0 and
the coupling parameters J . Since the eigenvalues are both of order C, small
perturbations will decay with an extremely short time constant, of order
1/

√
C.
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A.3 Partially frozen state
We are interested in understanding under which conditions and regimes of
activity some of the neurons of the network remains "silent", i.e. the (fluc-
tuating) input they receives always remain under threshold thus preventing
the transition of the neuron to the active state. In other words: what should
happen in order to have a finite subpopulation of quiescent neurons in the
N → ∞ limit?
The question can be answered if we look at the analytic form of the distri-
bution of activity across a population (1.66), this function provides us with
the following information: the fraction of neurons (in population A) whose
time-averaged activity lies between 0 and m is given by∫ m

0
ρA(µ)dµ

The shape of the probability density function near 0 has to be studied.
We recall that the population distribution of activity is a probability density
function defined in the interval (0 : 1)

ρA(m) = 1
B
e(−x2+(CA+BAx)2)/2

∣∣∣∣
x=x(m)

x(m) is the inverse function of m(x) = H(C + Bx) where H(z) is given
by (1.60), C and B are defined in (1.67). To calculate ρA(0), the value of
x(m = 0) has to be determined first: it is the x that fulfil

m(x) = H(C + xB) =
∫ ∞

C+xB

ex
2/2

√
2π

= 0

The gaussian integral H(C + Bx) is an always positive and monotonous
function of x for every C, if B > 0 (always true by definition) is decreasing
and the following limits holds:

lim
x→−∞

H(C +Bx) = 1 lim
x→+∞

H(C +Bx) = lim
x→+∞

m(x) = 0

therefore we can figure out the value of the density distribution function at
the lower and upper extremes of its domain:

ρA(0) = lim
x→+∞

ρA(m(x)) = lim
x→+∞

1
BA

e[x2(B2
A−1)+x2BACA+C2

A]/2

ρA(1) = lim
x→−∞

ρA(m(x)) = lim
x→−∞

1
BA

e[x2(B2
A−1)+x2BACA+C2

A]/2

If BA ̸= 1 the exponent is a quadratic polynomial in x, therefore the two
limits coincide and thus the values of ρ(m) at the extremes of the interval
are always equal. There are only two possibilities:

B2
A > 1 ⇒ ρA(0) = ρA(1) = lim

x→∞
1
BA

e[x2(B2
A−1)+x2BACA+C2

A]/2 = +∞

B2
A < 1 ⇒ ρA(0) = ρA(1) = lim

x→∞
1
BA

e[x2(B2
A−1)+x2BACA+C2

A]/2 = 0
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When B = 1 the exponent becomes linear and distribution reduces to:

ρ(x) = 1
BA

e[x2BACA+C2
A]/2

and the values at the extremes of the interval are no longer coincident, they
can be:

ρ(0) = +∞ ρ(1) = 0 if A > 0
ρ(0) = 0 ρ(1) = +∞ if A < 0

Thus, excluding the case B = 1 it has been demonstrated that depending
on the value of B, the probability density function can either drop to zero
at the extremum of its domain, or diverge1.
To determine the conditions of occurrence of this transition the following
quantity is defined

VA = (B2 − 1) = 2βA − αA
αA − βA

= qEJ
2
AE + qIJ

2
AI

(mE − qE)J2
AE + (mI − qI)J2

AI

− 1

(A.17)
When VA < 0 the distribution goes to zero at the extremes, otherwise when
VA > 0 the divergences appear. The shape of the distribution, as well as
VA, depend only on m and q which are solutions of the MF equations for a
given value of the external input m0, therefore either the distribution and VA
depend -implicitly- on m0 only (provided that all the structural parameters
of the network are fixed).

Since α−β is always positive because of the constrain on qA, we observe
that the condition to have a bimodal distribution VA > 0 can be stated as

βA > αA − βA (A.18)

which means that the transition occurs when the amplitude of the quenched
fluctuations of the input becomes greater than the amplitude of the temporal
fluctuations.

Observation 1. For any value of the parameters defining the network, the
following limit holds:

lim
m0→0+

VA = −1

Proof. Recalling the approximation of q for small m0 given in (1.67) we can
write VA as a function of mA only. Assuming that mA goes to zero linearly
with m0, the fraction in the definition (A.17) vanishes.

Figure A.1 shows how VA depends on m0 in both population, notice the
"universal" limit VA(0) = −1 and the point where VA vanish which signal
the transition to a "phase" in which the population distribution diverges at
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Figure A.1: From the definition (A.17) V depend explicitly on m and q which in
turn are functions of m0 (upper panels), therefore V is implicitly a function of m0
(lower panels). Network parameters are those given in section ??.

the extremes and macroscopic subpopulation of neurons at extremely low
frequencies can be seen.

The existence of stationary regimes in which some of the neurons in the
network remains silent (mi = 0) and some others saturates (mi = 1) has an
interesting consequence on the dynamics of the system (see appendix ??).
Since those neurons does not change states along the dynamical evolution,
they will be called frozen neurons.

Observation 2. Above the m0 for which the phase transition occurs, the
system is non-ergodic.

Proof. Let’s assume that in the stationary state neuron i = 1 is silent, this
mean that during the evolution the network will be confined in that subspace
of the phase-space which correspond to the set of all the microstates for
which m1A = 0, i.e. any transition to a states of the complementary subset
with m1A = 1 is forbidden.

1The fact that the integral of the function over the whole integral is always 1 ensure
that the divergences are integrable and any improper integral with 0 or 1 as endpoint will
converge to a finite value.
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Therefore, the presence of silent (and saturated) neurons constrain the
system to move in a subset of all the available states in the phase space;
the higher the external input, the more frozen neurons appears, and the
smaller the allowed phase-space gets. The set of non-forbidden microstates
degenerate to a single state-point when the input becomes so high that all
neurons are saturated.

In this situation, the dynamical scenario is the following: regardless the
initial microstate, the system will evolve towards the region of the phase
space which is compatible with the presence of frozen neuron and will be
confined there; restricted to this subspace the system is ergodic, and the
statistical distribution will vanish everywhere outside this region. Ergodic-
ity breaking produces a shrinking of the set of available states 2.

A network with NE = NI = 10000 and C = 1000 and the usual param-
eters was simulated and local temporally averaged activities miA have been
calculated and represented on a 2-dimensional plot to give an explicit rep-
resentation of a partially frozen phase. The duration of the simulation was
set to 1000τE as usual.
Two simulations were run with two different m0, one below (m0 = 0.1) the
transition point and one below (m0 = 0.4); the former corresponds to figures
A.2 , the latter is represented in figures A.3.
We observe that the presence of a few silent (dark) neurons in the low-input
simulation can be an effect of the simulation time length that imposes a
cutoff on the lowest frequencies. Instead, for the high-input simulation, the
appearance of clusters of frozen neurons is an intrinsic feature of the dy-
namics.

2instead of partitioning the phase-space into disconnected region corresponding to dif-
ferent stationary distribution as it happen, for instance, with the two available magneti-
zation of a ferromagnetic Ising model.
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Excitatory network local activity for m0=0.1
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Figure A.2: 2D plot of the local activity of an excitatory neurons network with
NE = 10000 and external input m0 = 0.1. There are 83 silent neurons (black pixels)
and no saturated neurons (white pixels). Confront with the distribution in figure ??.

Excitatory network local activity for m0=0.4
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Figure A.3: 2D plot of the local activity of an excitatory neurons network with
NE = 10000 and external input m0 = 0.4. There are 1547 silent neurons (black
pixels) and 2957 saturated neurons (white pixels). Confront with the distribution in
figure ??.
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A.4 Invariance transformations for the equilibrium
solution

We define the following transformation for the synaptic couplings

JEA → γEJEA + λEJIA JIA → γIJIA + λIJEA

JEex → γEJEex + λEJIex JIex → γIJIex + λIJEex
(A.19)

with γA, λA > 0. It is easy to see that if coupling constants are transformed
according to (A.19), and the inequalities (1.47) are still respected, the pop-
ulation average rates in the balanced state (1.39) are unchanged.
Moreover, it can be proved that the qA solution of (??) in the C → ∞ are
invariant under the transformation (A.19) with λE = λI = 0. In particular,
this implies that in the C → ∞ the population distribution of activity is
invariant under all the transformation with λE = λI = 0.

Observation 3. In the C → ∞ limit, the solution of the mean field equation
qA are invariant under the scaling transformation (A.19) for λE = λI = 0
and γE,I > 0 .

Proof. It’s very easy to see that the average activities mA are invariant under
the transformation: the solutions (??, ??) do not change if all the coupling
coefficients are multiplied for a positive number γ.
To demonstrate that q∞

A is invariant as well we should demonstrate that if
equation (??) is transformed under scaling, its solution coincide with the
unscaled one: q̃∞

A = q∞
A . First, we must figure out the transformation

that the scaling induces on the quantities appearing in (??): for the input
variance we get

α∞
A −→ α̃∞

A = γ2α∞
A (A.20)

To derive how the input h∞
A is transformed, we look for a solution of the

transformed MF equation (1.42): recalling that m∞
A is unchanged under

scaling we have

m0ΩA = H

(
θA − h̃∞

A√
α̃∞
A

)
= H

(
θA − h̃∞

A

γ
√
α∞
A

)
= H

θA − [θA + h̃∞
A −θA

γ ]√
α∞
A


the above identity is fulfilled if the unscaled value of the input is equal to
the term in square bracket that can be inverted to find the sought transfor-
mation:

h∞
A −→ h̃∞

A = θA + γ(h∞
A − θ) (A.21)

Last, the transformation induced on β is

β∞
A −→ γ2 ( J2

AE q̃
∞
E + J2

AI q̃I
∞) ≡ γ2β̃∞

A (A.22)
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Using (A.20, A.21, A.22) we can write the transformed argument of the H
function that appears the integrand of the equations of the system (??)

θE − h∞
E + x

√
β∞
E√

α∞
E − β∞

E

−→
γ(h∞

A − θA) + xγ
√
β̃∞
A

γ
√
α∞
A − β̃∞

A

(A.23)

simplifying the γ we see that the argument of H remains unchanged as a
function of the transformed variables, therefore the whole system of equa-
tions for the transformed variables q̃∞

A keeps its form therefore, since it has
a unique solution, for every γ > 0 we have q̃∞

A = q∞
A

Observation 4. Invariance of the solutions of the MF equations under
transformation (A.19) does not hold for finite C.
Proof. It suffice to se that invariance changes the form of equations (1.61).
In fact, the scaling induces the following transformation at the r.h.s. of the
mean field equations:

θA − hA√
αA

→ θA − γ hA
γ

√
αA

thus shifting the lower extreme of the gaussian integral and yielding a dif-
ferent r.h.s. term. Therefore, fixing m0 and C finite, for each γ there is a
solutions mE and mI

Figure A.4 gives an example of how this invariance is lost for finite C: the
curve mA(m0) have been determined numerically for some values of the
scaling factor γE . The degeneracy of the single solution for the C → ∞
limit into a continuous spectrum at finite C is associated to the scaling
symmetry breaking.
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Figure A.4: Mean activity of the excitatory population as a function of the input
m0 for different values of the scaling parameter γ defined in (A.19). The unscaled
couplings (γ = 1) are those given in (1.70) and C = 1000. Black line: C → ∞ limit.
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A.5 Low rate approximations
When m0 ≪ 1 the population average rates will also be very low m ≪ 1
since the mean input is largely below threshold (θ − h)/σ ≫ 1. Recalling
the definition (1.60) and considering the asymptotic expansion for x ≫ 1

erfc(x) = e−x2

√
xπ

[
1 +

∞∑
n=1

(−1)n (2n− 1)!!
(2x2)n

]

we can take the following approximation

m = H

(
θ − h

σ

)
≃ σ

(θ − h)
√

2π
e− (θ−h)2

2σ2

from which we can find an approximation for residual input:

log(m) = − log
(
θ − h

σ

√
2π
)

− (θ − h)2

2σ2 ≃ (θ − h)2

2σ2 ⇒

θ − h ≃ σ
√

2| log(m)| (A.24)

Quenched noise reduction at low m0

When the external input m0 is very low, the MF equations for the network
with random connectivity are well approximated by the MF equations of
the network in which the number of connections per neuron are fixed.
If m0 ≪ 1 the average rates in both populations will also be very low
mE,I ≪ 1 and the quenched fluctuations will be much smaller than the
temporal fluctuations

sE√
σ2
E − s2

E

≪ 1 σE√
σ2
E − s2

E

≃ 1

and we can we can make the approximation

H

σEH−1(mE) + xsE√
σ2
E − s2

E

 ≈ mE + xO

(
sE
σE

)

The validity of this approximation reflect the fact that at very low rate, the
population distribution of activity is very narrow and it’s peaked around the
average value. When m0 increases, the population distribution of activity
becomes narrower and increasingly skewed, making the approximation too
crude.



Appendix B

Bistability between balanced
and partially unbalanced
states in a memory network

In the attempt to see if an attractor memory network model could support
multistability between a background and memory state at realistically low
level of activity, we studied whether a binary network model with mem-
ory structure, instead of having multiple balanced stable states, could have
bistability between a spontaneous balanced state and a memory partially
balanced state. It turned out that this scenario cannot be realized because
the condition for stability of the partially unbalanced state excluded the
stability of the balanced one.

B.1 The Model

The network is made up of two population of neurons: excitatory (E) and
inhibitory (I) composed respectively by NE and NI units 1.
The pattern of connections among neurons is random and is realzed

Each neuron (independently on the population to which it belongs) re-
ceives an input from the generic neuron of population B with probability
C/NB and if a synapse jB → iA exists, its strength will be proportional to
the populations coupling strength JAB.
Formally, the elements of the connection matrix JiAjB are independent ran-
dom variable identically distributed according to the density:

P (JiAjB ) = C

NA
δ(JiAjB − JAB√

C
) + (1 − C

NA
)δ(JiAjB )

For the excitatory network only, a finite number P of independent mem-
1In the following, every quantity Q relative to the ith neuron of population A will be

indicated OA
i
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ory patterns {ξµi } with coding level f are considered

∀i = 1, ..., N
∀µ = 1, ..., P ξµi =

{
1 with probability f
0 with probability 1 − f

The input to a generic excitatory and inhibitory neuron are respectively

hEi (t) =
NE∑
j=1

cEEij WijS
E
j (t) + JEI√

C

NI∑
j=1

cEIij S
I
j (t) +m0

√
CJEex (B.1a)

hIi (t) = JIE√
C

NE∑
j=1

cIEij S
E
j (t) + JII√

C

NI∑
j=1

cIIij S
I
j (t) +m0

√
CJIex (B.1b)

Where the recurrent excitatory synaptic matrix Mij contains the informa-
tion about the memories and is given by

Wij =

JEE√
C

+ β√
Cf(1 − f)

P∑
µ=1

ξµi (ξµj − f)


The strength of a single synapse in the excitatory subnetwork varies within

1√
C

(
JEE − P

β

1 − f

)
< JEEij <

1√
C

(
JEE + P

β

f

)
to make sure that recurrent excitatory synapse are positive we require that:

Pβ < JEE(1 − f) (B.2)

B.2 Mean field
We consider only the excitatory recurrent part of the instantaneous input
to the ith excitatory neuron:

hEEi (t) =
N∑
j=1

cEEij

JEE√
C

+ β√
Cf(1 − f)

P∑
µ=1

ξµi (ξµj − f)

SEj (t) (B.3)

where the first term in the square brackets is the contribution of the un-
structured part while the second term represent the synaptic structuring
due to the memories.
Defining the time-averaged local activity as mj ≡ ⟨Si(t)⟩, the linearity of
the time averaging operation enable us to find immediately the time average
of the local input hi = ⟨hi(t)⟩ just replacing Sj(t) with mj .

We introduce the following quantities which will serve as order parame-
ters:
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Definition 1 (Overlap with pattern ν).

mν(t) ≡ 1
f(1 − f)N

N∑
i=1

(ξνi − f)Si(t)

Definition 2 (Average Excitatory activity).

mE(t) ≡ 1
N

N∑
i=1

Si(t)

Selective and nonselective populations

For each pattern ξν the excitatory network can be partitioned in two popu-
lations:

• Selective (or foreground) neurons: cells for which ξνi = 1

• Nonselective (or background) neurons: cells for which ξνi = 0

It is naturally to define the following quantities:

Definition 3 (Average activity of the pattern ν selective/nonselective pop-
ulation).

mν
+(t) ≡ 1

fN

N∑
i=1

ξνi Si(t) mν
−(t) ≡ 1

(1 − f)N

N∑
i=1

(1 − ξνi )Si(t)

Those quantities are connected to the overlaps and to mE by the follow-
ing relations

mE = fmν
+ + (1 − f)mν

− ∀ ν = 1...P (B.4)

mν =
mν

+ −mE

1 − f
= mν

+ −mν
− ∀ ν = 1...P (B.5)

Therefore for a macroscopic characterization of the state of the system, the
set of the P overlaps and mE is equivalent to a description in terms of all m+
and one of the m−. For our purpose it will turn out to be more convenient
to use this last set of order parameters.

The order parameters have been defined in a time-dependent manner,
the corresponding time-averaged ones are readily found simply substituting
Si(t) with its time averaged value mi.

Average inputs

If f is finite, in the N → ∞ the selective and nonselective population are
macroscopic population of neurons that can be studied with the mean field
formalism. We define and calculate the following quantities:
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Definition 4 (Average input to pattern ν selective/nonselective population).

hν+(t) ≡ 1
fN

N∑
i=1

ξνi hi(t) hν−(t) ≡ 1
(1 − f)N

N∑
i=1

(1 − ξνi )hi(t)

If we consider only the structured part of the local field hi (eq. B.3) and
substitute it in the definition of hν+ given above we get:

h̃ν+(t) = 1
fN

N∑
i=1

ξνi

N∑
j=1

cij
β√

Cf(1 − f)

P∑
µ=1

ξµi (ξµj − f)Sj(t)

Collecting together all the terms that depend on the index i we have:

h̃ν+ = β√
Cf2(1 − f)

P∑
µ=1

N∑
j=1

(ξµj − f)Sj(t)
[

1
N

N∑
i=1

ξνi ξ
µ
i cij

]
(B.6)

The term in square brackets is nothing but the definition of spatial average
(over site i) of the random quantity Aµνij ≡ ξνi ξ

µ
i cij for a given realization of

the network.

In general, if the Ai(x) are N outcome of the same random vari-
able A(x) labeled by index i (and x indicates all the other param-
eters the random variable may depends on), the N → ∞ limit
of the spatial average over a particular realization corresponds
to the expectation value of the random variable.

lim
N→∞

1
N

N∑
i=1

Ai(x) = E[A(x)]

In our case Aµνij is the product of three random variables, each of which are
identically distributed for every i and j, therefore we can conclude that Aµνij
for i, j = 1...N are the outcome of the random variable Aµν ≡ ξµξνc where
the probability density of ξµ (µ = 1...P ) and c are respectively

P (ξ) = fδ(1 − ξ) + (1 − f)δ(ξ)

P (c) = C

N
δ(1 − c) + (1 − C

N
)δ(c)

In our model there is clearly no correlation between the memory patterns
ξ and the architecture of connections c, therefore recalling that if X and Y
are uncorrelated random variables E[XY ] = E[X]E[Y ] we have

E[ξνξµc] = E[ξνξµ]E[c] = E[ξνξµ]C
N
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If µ ̸= ν we have that ξµ and ξν are independent and E[ξνξµ] = E[ξ]2 = f2

if otherwise µ = ν we get E[ξ2] = E[ξ] = f .
Putting together all the pieces we have

E[ξνξµc] = f [f(1 − δµν) + δµν ]
C

N

that can be substituted in the expression (B.6) yielding:

h̃ν+(t) = β
√
C

f(1 − f)N

P∑
µ=1

[f(1 − δµν) + δµν ]
N∑
j=1

(ξµj − f)Sj(t)

recognizing the expression that define the overlaps we can write

h̃ν+(t) = β
√
C

P∑
µ=1

[f(1 − δµν) + δµν ]mµ(t) (B.7)

eventually, the expression we get after summing over the P patterns is

h̃ν+(t) = β
√
C

mν(t) + f
P∑
µ̸=ν

mµ(t)

 (B.8)

The calculation of the structured part of hν− is carried out identically:

h̃ν−(t) = β
√
C

f P∑
µ ̸=ν

mµ(t)

 = h̃ν+(t) − β
√
Cmν(t) (B.9)

Using (B.5) we can write the full inputs in term of the foreground/back-
ground average activities mν

+ and mν
−. For all pattern ξν the average field

on the selective and nonselective population read

hν+ =
√
C
[

(fJEE + β)mν
+ + (JEE(1 − f) − β)mν

−

+ fβ
P∑
µ ̸=ν

(mµ
+ −mµ

−) − JEImI + Em0
]

(B.10a)

hν− = hν+ −
√
C β(mν

+ −mν
−) (B.10b)

and the average input to inhibitory neurons is

hI =
√
C
[
JIE(fmµ

+ + (1 − f)mµ
−) − JIImI + Im0

]
(B.11)
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In general, the state of the excitatory network can be specified
assigning the foreground and background activity for a particular
pattern, let’s say ξ1, the average activities of the selective/non-
selective populations for all others patterns cannot be arbitrary
because of the overlaps and they must be consistent with the
description of activity in term of pattern ξ1. If the network state
is specified by m1

+ and m1
− we can determine mµ

+ and mµ
− for

µ ̸= 1 as follow:

• the selective population of any pattern ξµ is composed by
fN neurons: Nf2 of them are shared with the selective pop-
ulation of pattern ξ1 and the remaining Nf(1 − f) belong
to the nonselective population of pattern ξ1; this enable us
to write the weighted average:

mµ
+ =

m1
+N(f2) +m1

−Nf(1 − f)
fN

= fm1
++(1−f)m1

− = mE

• the nonselective population of a pattern ξµ is composed by
N(1 − f) neurons: N(f − f2) are shared with the selective
population of pattern ξ1 and the remaining N(1 − f)2 be-
longs to the nonselective population of pattern ξ1, and we
get:

mµ
− =

m1
+Nf(1 − f) +m1

−N(1 − f)2

N(1 − f)
= fm1

++(1−f)m1
− = mE

The symmetry of the system allow us to describe completely the system just
in term of the selective and nonselective population for a generic pattern and
the inhibitory population, we can drop the pattern index nu and write the
significative inputs as:

h+ =
√
C
[

(fJEE +β)m+ +(JEE(1−f)−β)m− −JEImI +Em0
]

(B.12a)

h− =
√
C
[
JEE(fm+ + (1 − f)m−) − JEImI + Em0

]
(B.12b)

hI =
√
C
[
JIE(fm+ + (1 − f)m−) − JIImI + Im0

]
(B.12c)
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B.3 MF solutions in the C → ∞ limit
Average inputs (B.10, B.11) are O(

√
C), therefore in the C → ∞ limit they

will be divergent unless excitation and inhibition are balanced so that the
leading term vanish and both the inputs remain finite.
If on the other hand the average excitatory and inhibitory inputs to a pop-
ulation will be unbalanced if the leading term dose not vanish, therefore in
the in the C → ∞ limit the neurons will be always active or always silent,
depending on the sign of the leading term.

We examine the possibility of achieving bistability in the network, inves-
tigating de condition under which the MF system can admit these two type
of solutions:

• a solution corresponding to the spontaneous, unselective activity state
in which the average activity of the excitatory network is uniform and
the average inputs of all populations are balanced

• a solution corresponding to the retrieval of a memory in which the
selective neuron of a specific pattern are active and balanced with the
inhibitory neurons while the nonselective neurons are silent because
they are feeded with an inhibition-dominated unbalanced input

We observe that the second type of solution is meaningful because the non-
selective neurons will be strictly silent only in the C → ∞, for finite C ≫ 1,
instead, the activity will be extremely low but nonzero because the distance
of the average input from threshold (h − θ) will be large and negative but
still finite, thus large fluctuation can still set a neuron in the active state.

Spontaneous activity: full balancing

When a network is not engaged in the recall of a particular memory we say
that it is in a state of spontaneous activity and the behavior is analogously
to that of the unstructured network: excitatory and inhibitory populations
are in a balanced state and the average fields vanish at first order in

√
C.

We are then looking for a solution of the system
hν+ =0
hν− =0
hI =0

for ν = 1...P

The obvious ansatz is the following:

mµ
+ = mµ

− = mE ∈ (0; 1) µ = 1...P
mI ∈ (0; 1)

(B.13)

Since in this type of solution the activity of the selective/nonselective neu-
rons is equal for all patterns we call it symmetric state.
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Substituting (B.13) in the expressions of the average excitatory inputs (B.10)
all the terms which are proportional to β disappear and hµ+ = hµ− ≡ hE for
all µ, so that the system of 2P + 1 equations collapse to a system of 2
equations which is identical to that of the memoryless network{

hE =0
hI =0

⇒
{
JEEmE − JEImI + Em0 = 0
JIEmE − JIImI + Im0 = 0

whose solutions are

mE =
[

EJII − IJEI
JEIJIE − JEEJII

]
m0 mI =

[
EJIE − IJEE

JEIJIE − JEEJII

]
m0 (B.14)

Again, the constraints to exclude unbalanced stationary solutions are (1.47).

Memory retrieval: partial balancing

The retrieval of a memory object is signaled by the enhancement of the
activity in the sub-population of excitatory neurons which are selective for
the pattern corresponding to that object. Our working hypotheses is that
the activity of all other excitatory neurons (nonselective) drops to zero2.
If we assume that pattern ξ1 is the retrieved one, we look for a solution
in which foreground neurons are active and nonsaturated while background
neurons remains silent:

m1
+ ∈ (0; 1) m1

− = 0 (B.15)

To obtain this state, the inhibitory population must balance the foreground
yielding the cancelation of h1

+ field at order
√
C and, simultaneously, the

field on nonselective cells should be h1
− ∼ −

√
C, i.e. the network must settle

in a state of partial balancing.
From the above consideration we can determine that the state of activity

(B.15) yield the following ansatz for the form of the solution sought

m1
+ ∈ (0; 1) m1

− = 0
mµ

+ = mµ
− = fm1

+ µ = 2...P
mI ∈ (0; 1)

(B.16)

we call it the asymmetric state.
Self-consistency requires that ξ1 selective and inhibitory populations are bal-
anced while ξ1 nonselective input is unbalanced and negative. Populations
that are either selective or nonselective for patterns µ ̸= 1 includes a finite
fraction of silent neurons, thus the average inputs hµ+ and hµ− will be dom-
inated by the unbalanced inputs of order −

√
c so we require that also the

2this can be strictly true only in the limit C → ∞, for finite C, no matter how below
threshold the input is, there is always a small but finite probability of firing.



B.3 MF solutions in the C → ∞ limit 117

fields hµ+ and hµ− are unbalanced and negative. Therefore the retrieval state
is the solution of the system



h1
+ =0
hI =0
h1

− <0

hµ ̸=1
+ = hµ̸=1

− <0

⇒



[
(fJEE + β)m1

+ − JEImI + EX0
]

= 0[
fJIEm

1
+ − JIImI + IX0

]
= 0

h1
+ −

√
Cβm1

+ < 0

h1
+ −

√
Cβ(1 − f)m1

+ < 0

If h1
+ = 0 the inequalities for the nonselective population inputs are auto-

matically satisfied and we only need to solve the 2×2 system that represent
the balancing between the foreground and inhibitory population:{

(fJEE + β)m1
+ − JEImI + Em0 = 0

fJIEm
1
+ − JIImI + Im0 = 0

whose solutions are

mE = fm1
+ =

[
EJII − IJEI

JEIJIE − (JEE + β/f)JII

]
m0 ≡ ΩE(β/f) m0 (B.17a)

mI =
[

EJIE − I(JEE + β/f)
JEIJIE − (JEE + β/f)JII

]
m0 ≡ ΩI(β/f) m0 (B.17b)

When β = 0 we recover the gain parameters of the unstructured network
which yield the activity of the network in the symmetric solution.
Rates are positive and unbalanced solutions are excluded provided that

E

I
>
JEI
JII

>
JEE + β/f

JIE
(B.18)

keeping in mind that we must always have β < JEE(1 − f)/P to preserve
the positiveness of the excitatory synapses. It can be demonstrated that a
fully unbalanced solution with m1

+ = mI = 1 is excluded for any m0 if

f <
EJII − IJEI
EJIE − IJEE

≡ f∗ (B.19)

In figure B.1 we plot the gain ΩA appearing in (B.17) as a function of β/f
for the following set of network parameters:

JEE = 1 JEI = 2 E = 3
JIE = 1 JII = 1 I = 1 (B.20)

The graph tells that the average network activity in the retrieval state is
always higher with respect to the spontaneous activity.
The divergence of the gains occurs when β/f becomes too large, breaking

down the constraint (B.18). We highlight that figure B.1 shows the gain of
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Figure B.1: Gain function for the excitatory and inhibitory population in the
retrieval solution (B.1) as a function of β/f .

the excitatory population as a whole, but since the nonselective population
is inactive, the gain for the selective population would be Ω+ ≡ Ω/f . Since
f shuold stay below f∗ (B.19), the activity of the selective neuron in the
retrieval state cannot get lower than m0Ω/f∗. On the other hand, there is
no lower limit for the coding level f , and Ω+ can be made arbitrarily large.
In general, for any P and f , we can take β arbitrarily low to fulfil β <
JEE(1 − f)/P and still have a retrieval solution. But its existence does not
guarantee stability, therefore we must examine in what ranges of parameters
this solution is stable.

B.4 Input variance

To determine the stability of the solution we need to know the variance of
the inputs. Here we show how to calculate the variance of the field across
the selective population. If we consider the recurrent excitatory part only,
therefore we have to calculate the quantity :

(σν+)2 ≡ 1
Nf

N∑
i=1

ξνi [h̃i(t) − h̃ν+(t)]2 = 1
Nf

N∑
i=1

ξνi h̃
2
i (t) − [h̃ν+(t)]2

We stress that this quantity will be the total input variance, i.e. the sum of
the variance due to temporal and quenched fluctuations.
First we calculate the average of the squared input to the neurons selective
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for pattern ν, writing explicitly the full expression we get:

1
fN

N∑
i=1

ξνi [h̃i(t)]2 = 1
fN

N∑
i=1

ξνi


N∑
j=1

cij√
C

JEE + β

f(1 − f)

P∑
µ=1

ξµi (ξµj − f)Sj(t)


2

=

calculating the square of the input and collecting the terms that depends on
i we get three terms

= J2
EE

Cf

N∑
j,l=1

[
1
N

N∑
i=1

cijcilξ
ν
i

]
+

2JEEβ
Cf2(1 − f)

N∑
j,l=1

P∑
α=1

[
1
N

N∑
i=1

cijcilξ
ν
i ξ
α
i

]
(ξαj − f)Sj(t)+

β2

Cf3(1 − f)2

N∑
j,l=1

P∑
α,β=1

[
1
N

N∑
i=1

cijcilξ
ν
i ξ
α
i ξ

β
i

]
(ξαj − f)(ξβl − f)Sj(t)Sl(t)

(B.21)
In the limit N → ∞ the term in square bracket is the expectation value

of the product of the random variables c and ξ, since the connectivity is
independent from the patterns we can take the product of the expectation
values

E[cjcl ξ] = E[cjcl]E[ξ] =
[
δjl
C

N

(
1 − C

N

)
+ C2

N2

]
E[ξ]

Putting back this expression in (B.21) and observing that S2
i = Si we get

=J2
EE

(
1 − C

N

)
+ CJ2

EE+

β2

f3(1 − f)2

P∑
α,β=1

E[ξνξαξβ]

(1 − C

N

) 1
N

N∑
j=1

(ξαj − f)(ξβj − f)Sj(t)


+ C

β2

f

P∑
α,β=1

E[ξνξαξβ]mαmβ

(B.22)
Recalling definitions (3, 2), the term in square brackets can be express in
term of the order parameters, and if we take the the N → ∞ limit for finite
C we get(

1 − C

N

) 1
N

N∑
j=1

(
ξαj ξ

β
j −f(ξαj +ξβj )+f2

)
Sj(t) = f2

(
mαβ

+ −mα
+ −mβ

+ +mE

)
The first term on the right hand side is a quantity that cannot be expressed
in term of the order parameters we have defined so far, therefore it represent
a new order parameter
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Definition 5 (Average activity in the population which is selective for both
pattern α and β). For any α, β = 1...P

mαβ
+ (t) ≡ 1

f2N

N∑
i=1

ξαi ξ
β
i Si(t)

In particular, if the indexes are equal:

mαα
+ (t) = 1

f
mα

+(t)

The average of the squared field (B.22) can be rewritten as

β2

f(1 − f)2

P∑
α,β=1

E[ξνξαξβ]
(
mαβ

+ −mα
+ −mβ

+ +mE

)
︸ ︷︷ ︸

(I)

+C
β2

f

P∑
α,β=1

E[ξνξαξβ]mαmβ

︸ ︷︷ ︸
(II)

Let’s calculate the value of E[ξνξαξβ]

E[ξνξαξβ] =


if α = β E[ξνξα] =

if α ̸= β E[ξνξαξβ] =

{
{
f if (α = ν)
f2 if (α ̸= ν)
f2 if (α = ν) or (β = ν)
f3 if (α ̸= ν) and (β ̸= ν)

Those results can be expressed formally in the following way:

E[ξνξαξβ] = δαβ
[
fδαν + f2(1 − δαν)

]
+ (1 − δαβ)

[
f2(δαν + δβν) + f3(1 − δαν)(1 − δβν)

]
= f

{
(1 − f)(1 − 2f)δανδβν + f(1 − f)

[
δαβ + δαν + δβν

]
+ f2

}
PROBLEM: input variance is O(C)

If we go back to the definition of input variance we can write

(σν+)2; = 1
Nf

N∑
i=1

ξνi h̃
2
i (t) − [h̃ν+(t)]2 = (I) + (II) − [h̃ν+(t)]2

The last two terms are proportional to C and they should cancel if we want
the variance to be O(1). Let’s compare (II) with the square of the average
field (B.7)

[h̃ν+(t)]2 =Cβ2
P∑

α,β=1
mαmβ

{
(1 − f)2δανδβν + f(1 − f)(δαν + δβν) + f2

}

(II) =Cβ2
P∑

α,β=1
mαmβ

{
(1 − f)(1 − 2f)δανδβν + f(1 − f)

[
δαβ + δαν + δβν

]
+ f2

}
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we see that they are not equal! Therefore taking the difference and carrying
out the calculations we are left with a disturbing term of order C

(σν+)2 = (I) + C β2f(1 − f)
P∑
µ ̸=ν

(mµ)2

We can try to see what happen to this last term on the two standard solu-
tions:

• Symmetric solution. The term of O(C) vanishes for every ν because
mµ = 0 for all µ = 1...P )and we get (σν+)2 = (I) which is O(1).

• Asymmetric solution. In the single item retrieval solution of, say,
pattern ξ1 we have (m1

+ = m1 < 1, m1
− = 0) while mµ = 0 for any

µ ̸= 1. In this case only the variance of the field for ν = 1 are of O(1)
while all the others will be of O(C), therefore in the large C limit
(σµ+)2 ≃ Cβ2f(1 − f)m1.
This might seems pathologic, but if calculate the ratio of the fluctu-
ation to the mean input for for non-retrived patterns (µ ̸= 1) in the
large C limit we find

σµ+
|hµ+|

=
√

(I) + Cβ2f(1 − f)m1

|h1
+ −

√
Cβ(1 − f)m1|

≃
√

f

1 − f
−−−−→
f≪1

√
f

The field on the selective(and nonselective) neurons for the non-retrived
pattern is largely below threshold because it is O(−

√
C), but if coding

is low, its fluctuations will never bring it above threshold because they
will be a factor

√
f smaller, ensuring that background neurons stay

silent, despite the fluctuations are O(
√
C).

The only thing left is the calculation of the expression (I):

(I) = β2

1 − f

P∑
α,β=1

[
(1 − 2f)δανδβν + f

(
δαβ + δαν + δβν

)
+ f2

1 − f

] (
mαβ

+ −mα
+−mβ

++mE

)

If we can characterize the state of the network in terms of selective/non-
selective excitatory activity and inhibitory activity we can derive that the
variances of the input to the three populations read

σ+ =
[
JEE + β

f

]2
fm+ +

[
JEE − β

1 − f

]2
(1 − f)m− + β2

f
(P − 1)mE + J2

EImI

σ− =
[
J2
EE + β2

f
(P − 1)

]
mE + J2

EImI

σI = J2
IEmE + J2

IImI

we recall that mE = fm+ + (1 − f)m−
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B.5 Local stability of the solutions
Here we study the stability of the MF solutions with respect to small per-
turbations in the average activity of the neurons that are selective for a
pattern.

The activity of populations that are selective and nonselective for the
various patterns are not independent, we then consider a perturbation in the
activity of a specific pattern ν and derive the perturbation that is induced
on other patterns. Assuming

mν
+(t) = mE + δmν

+(t) mν
−(t) = mE + δmν

−(t)

the activity of all other patterns turns out to be

mµ
+(t) = mµ

−(t) = mE + [fδmν
+(t) + (1 − f)δmν

−(t)]︸ ︷︷ ︸
δmµ

+(t)=δmµ
−(t)

(B.23)

thus the perturbation induced on other patterns activities result equal for
both the selective and the nonselective population. This fact implies that the
solution for the activity of any pattern µ ̸= ν is automatically determined
once we discover the evolution of the perturbations on pattern ν alone,
therefore it suffice studying the linearized dynamics for mµ

+ and mµ
− alone3.

Dropping the ν index for the perturbed pattern we have that the variation
of the fields read

δh+ =
√
C
[
(fJEE + β)δm+(t) + (JEE(1 − f) − β)δm−(t) − δmIJEI

]
δh− =

√
C
[
fJEE δm+(t) + JEE(1 − f) δm−(t) − δmIJEI

]
δhI =

√
C
[
(f δm+(t) + (1 − f) δm−(t))JIE − δmIJII

]
we can linearize the dynamics provided that δm ≪ 1/

√
C for all perturba-

tions and we get a 3×3 linear system of differential equations

τE
d

dt


δm+(t)
δm−(t)
δmI(t)

 =


∂H+
∂m+

− 1 ∂H+
∂m−

∂H+
∂mI

∂H−
∂m+

∂H−
∂m−

− 1 ∂H−
∂mI

τe
τI

∂HI
∂m+

τE
τI

∂HI
∂m−

τE
τI

∂HI
∂mI

− τE
τI



δm+(t)
δm−(t)
δmI(t)


(B.24)

Stability is ensured if the real part of all three eigenvalues is negative. The
characteristic polynomial of a generic 3×3 matrix M reads4:

P(λ) = −λ3 + λ2tr(M) + λ
1
2

[tr(M2) − tr2(M)] + det(M)

3The same conclusion can be derived assuming independent perturbations on the fore-
ground and background populations for all patterns and exploit the symmetries of the
problem to reduce the 2P + 1 equations to just 2 + 1.

4 1
2

[
tr(M2)− tr2(M)

]
= M12M21 −M11M22 +M32M23 −M22M33 +M31M13 −M11M33
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The roots of a cubic polynomial x3 + ax2 + bx+ c can be all real or we can
have a single real root and two complex conjugate. We can determine the
nature of the roots by looking at the sign of the discriminant

∆ = a2b2 − 4(b3 + ca3) + 9( 2abc− 3c2) (B.25)

If ∆ ≥ 0 the roots are all real (if ∆ = 0 one of the roots has multiplicity 2)
while if ∆ < 0 we have a single real root and two complex conjugate roots.
It is easy to see that the coefficients of the polynomial can be expressed as
a function of the roots, if we have three real roots

tr(M) = λ1 + λ2 + λ3
1
2

[
tr(M2) − tr2(M)

]
= − λ1λ2 − λ2λ3 − λ1λ3

det(M) = λ1λ2λ3

if there is a single real root λ1 and two complex conjiugate λ2 = λ̄3 = aeiα

the relations are:

tr(M) = λ1 + 2Re[λ2]
1
2

[
tr(M2) − tr2(M)

]
= − 2λ1Re[λ2] − a2

det(M) = λ1a
2

Therefore the stability of an equilibrium solution is guarantee in both cases
if the following system of inequalities holds

tr(M) < 0
1
2

[
tr(M2) − tr2(M)

]
< 0

det(M) < 0

(B.26)

We can write the linearized system (B.24) in a compact notation as

τE
d

dt
δmi = Mij δmj

When evaluating the derivative of the functions H on the equilibrium so-
lution, in the limit C ≫ 1 we keep only the terms proportional to

√
C as

shown in (A.16). With this approximation we can write explicitly the matrix
appearing in (B.24) as

Mij =
√
CXijYij − δij + δiI

(
1 − τE

τI

)
(B.27)

where i, j = +,−, I and δij is the usual Kronecker symbol. Matrix X
depends on the input statistics at equilibrium, defining the average residual
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field5 as uA = θA − hA we have

X = 1√
2π



1
σ+
e

−
u2

+
2σ2

+ 0 0

0 1
σ−
e

−
u2

−
2σ2

− 0

0 0 τE
τI

1
σI
e

−
u2

I
2σ2

I


(B.28)

Matrix Y depends on the network parameters read

Y =


fJEE + β JEE(1 − f) − β −JEI
fJEE JEE(1 − f) −JEI
fJIE JIE(1 − f) −JII

 (B.29)

We investigated the stability of the symmetric and asymmetric state for
a network with the parameters listed in table (B.20) at different loading
P and for different ratios of the neuron time constants τE/τI . Essentially,
we determined numerically the set of parameters (m0, β, f) for which the
system (B.26) is fulfilled.

Stability of the asymmetric solution

In the retrieval asymmetric solution we have that m− = 0 and mE = fm+
. The variances of the field are

σ2
+ =

[
fJ2

EE + 2JEEβ + β2
( 1
f

+ P − 1
)]

m+ + J2
EImI

σ2
− =

[
fJ2

EE + β(P − 1)
]
m+ + J2

EImI

σ2
I = J2

IEfm+ + J2
IImI

(B.30)

where the equilibrium rates are given in B.17. In this solution the nonselec-
tive neurons are off because the input is O(−

√
C) yielding X− ∼ e−C . This

imply that in the large C limit the approximation Mij ≃
√
CXijYij holds

only for i = +, I, while for i = − we have Mij ≃ −δij . The matrix M for
the asymmetric solution in the very large C reads:

Ma =
√
C


X+[fJEE + β] X+[JEE(1 − f) − β] −X+JEI

0 −1/
√
C 0

XIfJIE XIJIE(1 − f) −XIJII

 (B.31)

Calculating the quantities appearing in the stability system of inequalities
(B.26) we get

tr(Ma) =
√
C
[
X+(fJEE + β) −XIJII

]
− 1 (B.32a)

5they are determined by inverting the fixed point equation (1.42) once the equilibrium
rates are given.
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1
2

[
tr(M2

a ) − tr2(Ma)
]

= − CX+X−βJEE

− CX+XI [JEIJIE − JII(JEE + β/f)] f
(B.32b)

det(Ma) = −CX+XI

[
JEIJIE − JII(JEE + β/f)

]
f (B.32c)

This time the constraints (B.18) ensures that (B.32b) and (B.32c) are always
negative, therefore the asymmetric solution is stable if the trace is negative:

√
C
[
X+(fJEE + β) −XIJII

]
− 1 < 0

Dividing by
√
C and taking the C → ∞ limit we find that the asymmetric

state is stable when

fJEE + β

JII
<

XI

X+
= τE

τI

σ+
σI

exp
[
− u2

I

2σ2
I

+
u2

+
2σ2

+

]
(B.33)

Stability of the symmetric solution

In the symmetric solution we have mµ
+ = mµ

− = mE for all µ = 1...P . The
variance of the inputs to the populations are given by

σ2
+ =

[
J2
EE + β2

(
f + (P − 1)
f(1 − f)

)]
mE + J2

EImI

σ2
− =

[
J2
EE + β2

(
P − 1
f

)]
mE + J2

EImI

σ2
I = J2

IEmE + J2
IImI

(B.34)

with mE and mI given by B.13. The diagonal element of matrix X are
always positive and, no matter how small they are, we can take C sufficiently
large so that the approximation

Mij ≃
C≫1

√
CXijYij

holds. Therefore, for large C, we can approximate the system (B.26) by

√
C tr(XY ) < 0

C
1
2

[
tr(X2Y 2) − tr2(XY )

]
< 0

C
3
2 det(XY ) < 0

and dividing each inequality by the corresponding powers of C we get that
the condition for for stability in the C → ∞ limit are

tr(XY ) < 0
1
2

[
tr(X2Y 2) − tr2(XY )

]
< 0

det(XY ) < 0

(B.35)
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If we calculate explicitly these quantities we get6

tr(XY ) = JEE [fX+ + (1 − f)X−] +X+β −XIJII (B.36a)

1
2

[
tr(X2Y 2) − tr2(XY )

]
= −X+X−βJEE

−X−XI [JEIJIE − JIIJEE ] (1 − f)
−X+XI [JEIJIE − JII(JEE + β/f)] f

(B.36b)

det(XY ) = X+X−XI [JEIJIE − JEEJII ] β (B.36c)

If network parameters are subjects to the constraints (B.18) to exclude un-
balanced solutions, it follows that (B.36c) will always be positive, therefore
we conclude that with our hypotheses

The symmetric solution in the C → ∞ limit is always
unstable.

6The make notation simpler we write Xii as Xi



Appendix C

Region of bi-stability in the
parameter space of a
balanced memory network
with STD

Study of ϕ(x)

Function (??) depends only on the parameters that regulates the synaptic
dynamics (τr, U) thus resulting independent from the statistical properties
of the two neural population at equilibrium. Its graph is monotonously
growing and passes through zero for any set of parameters, while ϕ(xl) = 1
where xl was given in (3.3). It is useful to define the new parameters

R ≡ 1
xl

= 1 + Uτr; Q ≡ Uτ2
r

τr + 1
(C.1)

so that we can write
ϕ(x) = (R−Q) x

1 −Qx
(C.2)

This form allows a direct interpretation of the new parameters with respect
to the geometrical characteristics of the graph of ϕ(x) :

• The value of R sets the width of the interval in which the function
grows from 0 to 1. Since the abscissa for which the function takes the
value 1 is 1/R, a large R means that the the function reach 1 in a
short distance. This can be seen in the left panel of figure C.1 where
the function (C.2) have been plot for some values of R keeping Q fixed
at 0.5 .

• The derivative of function (C.2) in the origin is R−Q. Therefore Q set
the steepness of the graph in 0. If Q . R the graph will be almost flat
in the origin then will rise very steeply as it approaches x = 1/R. On
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the other extreme, if Q ≪ R the curve will rise almost in a straight
line with steepness R. We can see an example of this in the right
panel of figure C.1, where we plot some graphs of the function (C.2)
for different Q while R is kept fixed at 5 .
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Figure C.1: see text

The above considerations are valid for arbitraryQ,R but from the definitions
(C.1) and the fact that U and τr ar positive, it follows that we must respect
the constraints:

R > 1 0 < Q < (R− 1) (C.3)
Once R and Q have been set to get the desired shape for the graph1, the
corresponding values of τr and U can be determined through the inverse
relations:

τr = τE

Q

R− 1 −Q
U = (R− 1) R− 1 −Q

τE Q
= R− 1

τr
(C.4)

Study of ψ(x)

Now we study the function (??). Defining

C = H−1(m−) D = JEE(a− 1)
σE

Fe−αF 2 (C.5)

we can write
ψ(x) ≡ H(C −Dx) (C.6)

This function results simply form a linear transformation of the argument
of the sigmoidal function H(x) seen in (1.60), therefore its properties are
determined exclusively by the value of the two parameters C and D:

1With the constraints (C.3) the derivative of the function in the origin ϕ′(0) = R−Q
is bounded in the interval (1;R), thus the graph can never start with a slope lower than 1
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• C determine the shift of the function on the abscissae axis, i.e. ϕ(0) =
H(C), therefore if C > 0, the function is shifted toward left, otherwise
toward right. Some example of graph with different values of C can
bee seen in the left panel of figure C.2. We notice that with definition
(C.2) we have H(C) = m−.

• H is a monotonically decreasing function of its argument, but since
D > 0 (because a > 1) and there is a − sign, ψ will be a monotoni-
cally increasing function. The magnitude of D is connected with the
“stretching” of the function along the horizontal direction. This re-
sults clear if we calculate the derivative in the center of the function
at x = C/D (where ψ(C/D) = 0.5, we get ψ′(C/D) = D/

√
2π. If

0 < D ≪ 1 the function ψ(x) will be very slowly increasing; conversely,
if D ≫ 1 the function will rise abruptly from 0 to 1 when crossing the
central point x = C/D. See the right panel of figure C.2 for some
examples.
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Parameter space

If C < 0 the center of function ψ(x) has a negative abscissa and there can
be only a single intersection, therefore we look for the regions of bi-stability
in the domain

Γ = {R > 1 ; 0 < Q < (R− 1) ; C > 0 ; D > 0 } (C.7)

We can think at the solution of equation (??) as a multi-branched function
Λ(R,Q,C,D) defined in Γ, and the corresponding value of the foreground
activity are found calculating either ϕ or ψ:

m+(R,Q,C,D) = ϕ(R,Q,Λ(R,Q,C,D))
= ψ(C,D,Λ(R,Q,C,D))

(C.8)

It is easy to verify that the equation is invariant for the parameter transfor-
mation (R,Q,D) → (αR,αQ,αD) thus also its solutions:

m+(R,Q,C,D) = m+(αR,αQ,C, αD) (C.9)

In the 3-dimensional subspace

γ = {R > 1; 0 < Q < (R− 1) ; D > 0} ⊂ Γ

the solutions are constant on the ’rays’, thus the solutions can be parame-
terized on a 2-dimensional space.

It can be demonstrated that, in the space γ, there is a family of coordinate
transformation (R,Q,D) → (α, R̃, D̃) defined for any k > 1 by

α = R−Q

k

R̃ = kR

R−Q

D̃ = kD

R−Q


R = αR̃

Q = α(R̃− k)
D = αD̃

(C.10)

so that the new coordinate R̃ is constant over the rays of the space.
Writing the generic point (R,Q,C,D) ∈ Γ in the new coordinates (C.10)
and then applying the property (C.9) we have that

m+(R,Q,C,D) = m+
(
αR̃, α(R̃− k), C, αD̃

)
= m+

(
R̃, (R̃− k), C, D̃

)
This means that the solutions depends on 3 independent parameters

rather than 4, and we can explore all the possible values that the foreground
activity can take by calculating m+ on the 3-dimensional domain

{ R̃ > k ; C > 0 ; D̃ > 0 }
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Numerical methods

Here we present the technique employed to solve numerically the nonlinear
system of equations obtained via MF theory and give details about the
simulations of the networks. All the codes have been written in C.

D.1 Resolution of MF equations

The mean field system of equations at finite C are solved by interpreting
the solutions as the stable fixed points of the fictitious dynamical system.
For the standard balanced network, for example, it would be



τE
dmE

dt
= −mE +H

(
θE − uE√

αE

)

τI
dmI

dt
= −mI +H

(
θI − uI√

αI

)

τE
dqE
dt

= −qE +
∫ +∞

−∞

[
H

(
θE − uE + x

√
βE√

αE − βE

)]2
e−x2/2
√

2π
dx

τI
dqI
dt

= −qI +
∫ +∞

−∞

[
H

(
θI − uI + x

√
βI√

αI − βI

)]2
e−x2/2
√

2π
dx

(D.1)

The idea is then to follow the time evolution of these quantities until they
reach a stationary value.
In practice, the equations (D.1) are integrated using the Euler algorithm,
at every time-step the absolute value of the increment of the quantities
was checked - the stationary points were considered reached when all the
increments became smaller than ϵ = 10−8.
Figure D.1 shows an example of trajectories of the macroscopic variables.
The precise values of the time constants τ will determine the shape of the
trajectories, of course, but do not affect the stationary points, therefore their
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Figure D.1: Typical path of convergence to equilibrium values of the macroscopic
variables . Parameters are C = 1000, m0 = 0.3, table (D.7) and (??).

precise values are not important1. In the code they have been set to the
following values: τE = 2, τI = 1. The evaluation of the transduction function
H(z) is done through an asymptotic expansion for the complementary error
function (see Numerical Recipes - the art of scientific computing) which
yields the correct value with a precision of 10−7. Integrals are calculated
with Simpson algorithm.

Population distribution of activity

Once that mA and qA are determined for population A, the distribution of
activity is fully specified as seen in (1.66), one only need to find x(m), in-
verting the transduction function m(x) = H(A+Bx) with respect to x: this
has been done finding the root of f(x) = H(A + Bx) − m with a bisection
algorithm.

The Cumulative distribution function was also calculated. In some pa-
rameters ranges the distribution of activity diverges in m = 0 or m = 1 (or
both) making the direct numerical integration of (1.66) quite problematic.
The easiest way to overcome this problem is to exploit the identity

Cρ(m) ≡
∫ m

0
ρ(µ)dµ =

∫ +∞

x(m)

ex
2/2

√
2π
dx

where x(m) is the inverse function of m(x) as defined before.

1It has been seen that when τE = τI trajectories could become highly irregular and do
not converge to stationary points.
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D.2 Network Simulations
Architecture generation

Network architectures are generated according to the probability distribu-
tion described in the previous section. Figure D.2 shows how the connections
among populations are distributed in a random network generated with the
simulation code.
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Figure D.2: The statistics of connectivity among populations in a network with
NE = 10000 and NI = 5000 generated with the code employed for the simulations.

Network state initialization

The network is initialized assigning the state Si of each neuron in population
A the value 1 with probability mA(0) and calculating accordingly the initial
field on each postsynaptic neuron.

Time evolution

The system has a single timescale determined by the ratio τE/τI , at every
time-step a single neuron is updated and it is selected in the following man-
ner: a random number x in [0; 1] is extracted, if x < NE/(NE + NIτE/τI)
an excitatory neuron picked at random is updated, otherwise an inhibitory
neuron.

The information on the net architecture was stored in the following way:
each neuron is associated to a list where the index and the population of all
the postsynaptic neurons is specified; in this way, whenever the state of the
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neuron iA is updated, the information on the new state is "feeded" directly
to all (and only) its postsynaptic neurons just by browsing the list.

Observable quantities

During simulations the following time-dependent quantities are calculated
at each timestep:

Population averaged instantaneous activity
it is calculated for both populations (A = E, I) as

mA(t) = 1
NA

NA∑
iA=1

σiA(t)

Recording these quantities at every time-step is unnecessary and quite
memory consuming (especially if the network is large and the simu-
lations is long). It seems more reasonable to calculate ad record it
every given fraction of τ . In the simulations presented here the global
activity was sampled every τ/10.

Local time-averaged activity
This quantity represent the temporal average of the activity of th ith

neuron in population A from a certain time-step t̂ to the end of the
simulation t = T , formally:

miA ≡ ⟨σiA(t)⟩ = 1
T − t̂

T∑
t=t̂

σiA(t)

In the simulation, at every time-step starting from t̂, the “instanta-
neous time average” is calculated iteratively :

miA(t) = (t− 1 − t̂)miA(t− 1) + σiA(t)
t− t̂

it is obvious that miA(T ) corresponds to the miA defined above.

Final output

At the end of simulation, the following quantities are computed:

• mA. The population average of the local time-averaged activities,
simply:

mA = 1
NA

NA∑
iA=1

miA (D.2)
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• qA. The population average of the squared local time-averaged activ-
ities:

qA = 1
NA

NA∑
iA=1

(miA)2 (D.3)

• Distribution of local time-averaged activity
The derivation of a population distribution was done in the following
way: the domain of the possible values of miA - the interval [0;1] - was
partitioned in nB equal “bins” of width ∆ = 1/nB, then the number of
local activities falling in each bin was assigned to the interval covered
the bin thus yielding a step-function; each number of occurrence is
then divided by (NE∆) so that the integral of the distribution results
normalized to 1. Formally it can be written:

ρA(m) = 1
NE∆

NA∑
i=1

Θ
[
miA − n∆

]
Θ
[
∆(n+ 1) −miA

]
for m ∈ [ n∆; (n+ 1)∆ ]

(D.4)

where Θ is the step function and n runs from 0 to nB − 1.

The cumulative distribution was also calculated:

CρA(m) ≡
∫ m

0
ρ(x)dx = 1

NE∆

NA∑
i=1

Θ
[
∆(n+ 1) −miA

]
for m ∈ [ n∆; (n+ 1)∆ ]

(D.5)

Network size and fluctuations

It is interesting to compare the results of the mean field theory with the
simulation of a detailed network. For the purpose the MF equations have
been integrated numerically () and three networks with sizes:

N1 = 10000 N2 = 20000 N3 = 30000 (D.6)

have been simulated each with the following protocol:

• External input. simulations were performed at four different values
of the (constant) external input m0: 0.1, 0.2, 0.3, 0.4

• Initialization. The initial network state have was set putting in the
active state 0.2N excitatory and 0.3N inhibitory neurons picked at
random; all the other where set in the inactive state.

• Duration. Overall simulation duration have been set to 1000τE ; the
averages of the observable quantities have been computed starting after
30τE .
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The time constant of the two neuron was set to

τE = 2τI

, the value of all the other network parameters is listed in the following table:

JEE = 1 JEI = 2 E = 2.5 θE = 1
JIE = 1 JII = 1.8 I = 2.15 θI = 0.7 (D.7)

Average quantities: m and q

A total of 12 simulations have been performed, the quantities m and q (see
(D.2) and (D.3) in D.2) have been calculated and reported in tables (D.8,
D.9, D.10, D.11); the theoretical values derived with the MF theory for the
correspondent values of m0 are shown in the last column of each table.

mE



m0 N1 N2 N3 MF theory
0.1 0.10952 0.11113 0.11088 0.11338
0.2 0.25741 0.25895 0.25826 0.26028
0.3 0.41821 0.41705 0.41754 0.42072
0.4 0.61220 0.61455 0.61032 0.61462

(D.8)

mI



m0 N1 N2 N3 MF theory
0.1 0.18103 0.18235 0.18206 0.18347
0.2 0.37595 0.37722 0.37712 0.37785
0.3 0.57396 0.57355 0.57389 0.57476
0.4 0.78286 0.78298 0.78139 0.78258

(D.9)

qE



m0 N1 N2 N3 MF theory
0.1 0.02579 0.02638 0.02644 0.02665
0.2 0.14585 0.14845 0.14624 0.14736
0.3 0.32687 0.32322 0.32471 0.32808
0.4 0.56417 0.56341 0.55891 0.56326

(D.10)

qI



m0 N1 N2 N3 MF theory
0.1 0.05591 0.05653 0.05613 0.05765
0.2 0.24049 0.24449 0.24250 0.24370
0.3 0.47980 0.47600 0.47990 0.48144
0.4 0.74450 0.74425 0.74212 0.74283

(D.11)

Data are also represented in the graphics of figure D.3 together with the full
curves found with the MF theory.
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Figure D.3: Continuous lines: macroscopic variables found with mean field theory.
Crosses: results of the simulations with the three networks (D.6)

It worth showing the time course of the population activities during a
typical simulation to appreciate the amplitude of the temporal fluctuations
for the three networks (figure D.4).
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Figure D.4: Time course of the population averaged activity (see D.2) for both
populations in the three networks considered with m0 = 0.2. Horizontal continuous
lines: time averages found with MF theory; dashed lines: time averages of the activ-
ities recorded in the simulations - numerical values of those averages can be read on
the second line of tables (D.8) and (D.9)
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D.3 Random Numbers generation
In stochastic processes simulation, a “good” random numbers generation al-
gorithm is of fundamental importance. Obviously, the output numbers will
never be truly random because they are the outcome of a set of computa-
tional operations.

A pseudorandom number generator (PRNG) is an algorithm for gener-
ating a sequence of numbers that approximates the properties of random
numbers. The sequence is not truly random in that it is completely deter-
mined by a relatively small set of initial values, called the PRNG’s state. A
PRNG can be started from an arbitrary starting state using a seed state.
It will always produce the same sequence thereafter when initialized with
that state. The maximum length of the sequence before it begins to repeat
is the period and it is determined by the size of the state, measured in bits.
Although PRNGs will repeat their results after they reach the end of their
period, a repeated result does not imply that the end of the period has been
reached, since its internal state may be larger than its output.

Mersenne Twister PRNG Mersenne Twister (MT) is a widely-used
fast pseudorandom number generator developed by Makoto Matsumoto and
Takuji Nishimura in 1997 based on 32-bit operations. It has the period of
219937 − 1 iterations (> 43 × 106,000), is proven to be equidistributed in (up
to) 623 dimensions (for 32-bit values), and runs faster than other statisti-
cally reasonable generators. It is now increasingly becoming the random
number generator of choice for statistical simulations and generative mod-
eling. Recently, a 128-bit based PRNG has been presented, it is analogous
to MT but making full use of Single Instruction Multiple Data (SIMD) op-
erations of modern CPU (i.e., 128-bit) [131]. SIMD-oriented Fast Mersenne
Twister (SFMT) is faster than earlier MT even if it’s not compiled with
SIMD support.

Uniformly distributed Random Numbers

A PRNG that produces uniformly distributed numbers in the interval (0, 1)
is a basic tool for several application, in particular for the generation of ran-
dom numbers with distribution other than flat (es. Gaussian, Poissonian).

The choice for the simulations presented in this work has been the most
recent version of the SFMT algorithm: dSFMT 2, it directly generates dou-
ble precision floating point pseudorandom numbers which distributes uni-
formly in the range (0, 1). The algorithm support 10 different periods from
2521 − 1 to 2216091 − 1; in the simulations the parameters are set in order to
get a period of 219937 − 1 for faster performance.

2version 2.1 was released on 4/18/2009 and is freely downloadable online at
http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/SFMT/index.html
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