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Abstract

We investigate the off-equilibrium dynamics of spin systems with O(N) symmetry
arising by the presence of slowly varying time-dependent external fields. We show the
general theory and then focus on two different cases: a time-dependent magnetic field
h(t, ts) ≈ t/ts, ts is a time scale, at the critical temperature and the temperature
deviations T (t, ts)/Tc − 1 ≈ −t/ts in the absence of magnetic fields. We demonstrate
the off-equilibrium scaling behaviours and formally compute the correlation functions
in the limit of large N . We study the first deviations from the equilibrium in the
correlation functions and prove that the matching occurs exponentially fast. We also
consider analogous phenomena at the first-order transition which occurs in the ordered
phase T < Tc along the line of zero magnetic field.
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liquid

Figure 1: The liquid-vapor phase diagram of the water. This picture has been taken from
the book [1].

Figure 2: The phenomenon of the critical opalescence in a liquid-vapor phase transition:
the fluctuation of the density in the fluid becomes of the same order of the light wavelength.
The photons are therefore scattered and the sample appears opalescent.

Introduction.

Statistical systems are described in terms of macroscopic variables such as the mass density,
the energy density, the magnetization and many others. The value of these quantities is
generally fixed by the external fields. These ones characterize the reservoir with which the
system is in contact. Some example of external fields are the temperature, the magnetic
field or the pressure. However, there are some special values of the external fields such that
the observables are not uniquely determined and can take different values. Let us give a
concrete example: a sample of water at fixed pressure to the atmosferic value. We know
that it presents different phases for different values of the temperature. The macroscopic
phase (and therefore the macroscopic variables) of this system is the result of essentially
two competiting effects: the interactions among the water molecules which tend to bring
them closely and the temperature which increases the kinetic energy of the particles and
consequently tends to decrease the mass density. There is a particular value of the temper-
ature called critical temperature Tc where these two effects are of the same strenght. At the
critical temperature the mass density can assume a lower value (vapor) or an higher value
(liquid); thus, there is a coexistence of the two phases of the water. Transitions like this are
called continuous because the two phases can be continuously connected crossing the critical
temperature. The situation is illustrated in the phase diagram of fig.2.
We define the correlation length as the length-scale above which the correlations between
two particles are suppressed. Continuous phase transitions are characterized by a divergent
correlation length. This causes peculiar phenomena such as the critical opalescence in the
case of the liquid-vapor phase transition: the fluid has a cloudy appearance due to density
fluctuations at all orders of magnitude [see fig.2]. Since the correlations occur to all length
scales close to a continuous phase transition, the macroscopic behaviour of the system re-
flects its microscopic structure. This feature is commonly called scale invariance. The scale
invariance implies the existence of scaling relations for the statistical observables: they obey
to power-law relations in terms of the external fields with certain non-integer exponents
called critical exponents. These ones are universal and do not depend on the details of the
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Figure 3: An example of cold-atoms experiment: a sample of atoms of sodium with elonged
shape is driven to the BEC by opportune thermal variations. After crossing the transition,
BEC is locally achieved forming several isles each with own phase. Further cooling makes
the isles grow towards each other forming solitons. The number of solitons counted in the
system is in agreement with the theoretical precitions. The figure and the example have
been taken from the ref.[2].

microscopic interactions. The existence of such scaling relations was firstly supported by
strong phenomenological evidences. Then, it was deeply understood in the renormalization
group framework1.
Real statistical systems have a dynamical evolution which can be thought as a stochastic
process. The thermodynamic observables presents fluctuations over their equilibrium values.
Close to the critical point, the divergence of the correlation length causes a divergence in
the relaxation times of these fluctuations. If we consider the water example, there are a lot
of minor processes such as interactions with the recipient or with possible impurities which
give rise to a macroscopic noise. The value of the mass density presents random fluctuations
whose relaxation time become macroscopically measurable close to the transition. This phe-
nomenon is called critical slowing down.
Phase transitions generally occur in nature by varying the external fields across their criti-
cal values. When statistical systems are driven through a critical point by time-dependent
external fields, they show off-equilibrium behaviours. The emergences of these behaviours
are related to the phenomenon of critical slowing down i.e. to the presence of large-scale
modes which cannot adapt themselves to the changes of the external parameters, even in
the limit of slow passage ts →∞.
The study of phase transitions induced by slow variations of the external fields is generally
called Kibble-Zurek (KZ) problem. One of the most important prediction of this theory is
the Kibble-Zurek mechanism (KZM) which explains the formation and the density of topo-
logical defects in an off-equilibrium phase transition slowly driven by temperature [see the
appendix A]. The Kibble-Zurek approach well describes the off-equilibrium dynamics near
the transition and leads to a non-trivial scaling theory of the observables in terms of appro-
priate length and time scales, different from those at the equilibrium. The scaling relations
depend on the equilibrium critical exponents and also on some general features of the time-
dependence of the external fields. In the limit of quasi-adiabatic time-variations ts → ∞,
the results are universal.
Several experiments have investigated these off-equilibrium phenomena, in particular check-
ing the predictions for the abundance of topological defects arising from the off-equilibrium
conditions across the critical temperature, as predicted by the KZM. The first experiments

1The simple postulate of the existence of a fixed point for the renormalization flows is sufficient to explain
the emergence of the scaling relations.
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Figure 4: The evolution of the Universe in the Big Bang theory. It undergoes to a series
of phase transition with time-dependent temperature. In this scenario, the Kibble-Zurek
mechanism gives a possible explanation to the formation of the early structures in the
Universe as results of off-equilibrium phase transitions.

meanly involved superfluids and superconductors. Modern proves of these behaviours prin-
cipally come from cold-atoms experiments, ion crystals and from improved experiments still
based on superfluids or superconductors [see for example [2], [3] and [4]]. In particular,
Bose–Einstein condensates in trapped cold gases are extremely controllable systems and
therefore an ideal platform to check the KZ mechanisms. An example of such experiments
is shown in fig.3.
The study of the off-equilibrium behaviours at continuous phase transitions has also cosmo-
logical implications. Nowdays there are theoretical models and observations2 that support
the Universe expansion and its consequent cooling. In this expansion, the Universe may have
undergone a series of phase transitions very early in its history. The electroweak transition,
at about 100 GeV, where the W and Z particles acquire a mass through the Higgs mecha-
nism, occurred when the age of the Universe was around 10−10s. There was probably a later
transition, the quark-hadron transition at which the soup of quarks and gluons separated
into individual hadrons. More interesting from a cosmological point of view, however, are
the hypothetical transitions at even earlier times. If the idea of grand unification is correct,
there would have been a phase transition of some kind at an energy scale of around 1015

GeV, corresponding to a time about 10−36s after the Big Bang.
These phase transitions happened in the off-equilibrium regime because the temperature
changes in time as effects of the expansion3. Naturally, it is impossible to perform cosmo-
logical experiments in order to corroborate these speculations. However, one of the clearest
signatures of these transitions would be the formation of stable topological defects which
the Kibble-Zurek mechanism predicts and several condensed matter experiments have been
checked, as we have seen above.
There exist also phase transitions in which the macroscopic properties of the system abruptly
vary across the critical point and present discontinuity. These are called first-order phase
transitions. Off-equilibrium behaviours characterize also the first-order phase transitions.
In particular, one of the early off-equilibrium phenomena observed was the hysteresis. Hys-
teresis arises in ferromagnetic systems when there is an external magnetic field with a time-
dependence such as h(t, ts) ≈ t/ts at fixed temperature. The magnetic field changes its
direction crossing the transition at h = 0; it follows that also the magnetization has to
change direction according with h. However, it has been observed that the system reacts in
late to the external perturbation developing metastable states for a certain interval of time.

2For example, the measurement of the properties of the cosmic microwave background radiation or the
nucleosinthesis of the light atoms support the Big Bang theory.

3In the radiation domain i.e. before t ∼ 300000y the temperature varies as T (t) ∼ 1/
√
t.
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Min tion field (which is material and frequency dependent),
the loop saturates. This sequence of events is shown in
Fig. 4 for a Permalloy magnet.
The area of the hysteresis loop is a measure of the ener-

gy dissipated into the system per cycle and is

WH= fBdH = )HdM .

(b)

FIG. 3. (a) When Q=O, the magnetization jumps from its
equilibrium value of Meq(Hp) to Meq( Hp), (b) when 0=~,
the magnetization does not respond to the magnetic field and
remains at its initial value, M,„.

8'H is expressed in erg/cm per cycle when M and H are
in G and Oe, respectively. In Fig. 5 the hysteresis losses
are plotted against the maximum induction B for
several specimens. For low values of B, WH =B (see
Sec. IV). For values of B ranging from 500 to 15000 G
in iron, the area of the hysteresis loop is given quite accu-
rately by the Steinmetz law ' '

H~O+. In the limit Q~~, the spin system cannot
respond to the oscillating field, so we expect M(t)=M;„
[Fig. 3(b)] for all times. M;„is the initial value of the
magnetization of the spin system. The question we seek
to answer is the following: How does the discontinuity in
M at H =0 as Q~O evolve into M(t)=M;„asQ~ co

(Fig. 3)? As 0 increases slightly away from zero, the
discontinuous jump opens out into a loop enclosing a
nonzero area. Further, as 0 decreases slightly away from
infinity, the M(t)=M;„ line opens out into an ellipse.
Does the area of the loop scale as a function of Hp and 0
for small and large 0? We show that the answer to these
questions require a systematic study of the dependence of
the shape of the hysteresis loop on the frequency 0 and
the amplitude Hp of the magnetic field.
We therefore undertake such an investigation of hys-

teresis in a variety of model spin systems. This paper
contains a detailed analysis of hysteresis in the
component (4 ) model having O(N) symmetry in three
dimensions. We study this model in the N~00 limit.
The dynamics of the order parameter of this model are
given by a Langevin equation. We also study hysteresis
in a two-dimensional Ising ferromagnet with nearest-
neighbor interactions. We perform a Monte Carlo simu-
lation using the Metropolis algorithm for Gipping spins.
Consider next the experimental motivation: Most ex-

perimental studies of hysteresis in magnets concentrate
on the dependence of hysteresis loops on anisotropies, im-
purities, and magnetoelastic couplings, principally with a
view to technological applications. However, there have
been quite a few studies of the amplitude and frequency
dependence of hysteresis loops, ' some dating as far back
as the end of the past century. We summarize the
findings of these studies below.
There has been a lot of work on the dependence of the

hysteresis loop on the amplitude of the magnetic field.
For small fields, the loop does not saturate and appears as
an ellipse with sharp tips inclined at an angle to the H
axis. An increase in the amplitude of the field Hp makes
the loop larger and increases its angle of inclination.
With a further increase in the field amplitude, the curva-
ture at the tip changes sign showing the beginnings of
saturation. For fields greater than or equal to the satura-

represented by the dashed line in Fig. 5. It is seen that a
wide variety of soft magnets satisfy the Steinmetz law. In
some materials, the exponent of B increases to 1.7 and
then to 2 as the value of B increases.
In contrast to the work done on the amplitude depen-

dence of hysteresis loops, there has not been a systematic
study of the frequency dependence of hysteresis loops. In
fact, there exists no extensive experimental survey of the
nature of hysteresis leaps as a function of both the ampli-
tude and frequency of the applied field. However, careful
studies of the frequency dependence of hysteresis loops in
ferrites have been made. " In the early works of Ewing
and co-workers, ' there are discussions of the frequency
dependence of hysteresis loops in soft iron. These studies
suggest that the frequency of the magnetic field a6'ects

xlO~a
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FIG. 4. Family of hysteresis loops for various field strengths
in 4-79 Permalloy. The inner loops, which do not show signs of
saturation are called minor loops (after Bozorth, 1956, Ref. 3).

Figure 5: The characteristic curve of response of a system which presents hysteresis. The
picture shows a family of hysteresis loops for various value of the external field in Permalloy.
It has been taken from the ref.[5].

If we vary the external magnetic field from ti < 0 to tf > 0 across the first-order transition
and then back from tf to ti, these memory effects lead the system to dissipate a non-zero
value of energy. The magnetic work done by the system can be valuated as

∮
dh(t, ts)·Σ(t, ts)

where Σ is the magnetization. This integral is called hysteresis loop area. An example of
hysteresis loop area is reported in Fig.5. It is clear that the hysteresis is related to the
off-equilibrium: the equilibrium behaviour of the magnetization at a first-order transition is
a jump at h = 0 from its initial direction to the reversed one. If the magnetization presents
its equilibrium behaviour, the hysteresis curve is shrinked to a single line and the system
does not spend energy in the cycle.

Overview.

In this thesis we study the off-equilibrium behaviours of the O(N) vector-models coupled to
time-dependent external fields, arising near the critical point and below it. The analysis of
such phenomena is made in the limit of large N which allows analytical computations. The
dynamics given to the system reproduces the effects of an heat-bath and satisfies a purely
dissipative Langevin equation. The external parameters are slowly varied and in such a
way that they might drive the system across the critical point. In particular, two types of
passage are eximined:

-The case in which the system is at the critical temperature and is coupled to a time-
dependent magnetic field. The magnetic field is slowly quenched and then is turned on
again in the opposite direction.

-The case in which the system starts above the critical temperature and is slowly cooled
in the absence of magnetic fields.

For both these cases, scaling relations are derived and scaling functions for the correla-
tors formally computed. The value of these scaling functions depend on the value of the
effective mass of the system. The knowledge of this mass term at all times is sufficient to
describe the time evolution of the correlation functions in the enteire off-equilibrium regime.
However, an explicit expression cannot be easly achieved and is known only for the case of
thermal variations at zero magnetic field. Therefore, we investigate the first deviations from
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the equilibrium proposing an ansatz for the leading off-equilibrium corrections to the scaling
behaviour in terms of the effective mass. Under the assumption of exponential approach to
the equilibrium, we show that the correlation functions present deviations from their equi-
librium behaviour in agreement with the numerical evidences [see ref.[6]]. Two interesting
phenomena related to the off-equilibrium physics are briefly discussed for the underlying
model:

-The coarsening regime which occurs in the case of thermal variation without magnetic
fields after crossing the critical point. It describes the development and the growth of do-
mains characterized by different realizations of the ordered phase.

-The hysteresis phenomenon which occurs when the magnetic field is varied along a closed
path.

Similiar off-equilibrium phenomena are shown by the system below the critical tempera-
ture, where it undergoes a first-order phase transition along the line of zero magnetic field.
We also study the passage through this phase transition in the presence of a time-dependent
magnetic field. In this case, the equations predict a rigid rotation of the magnetization in
the off-equilibrium region.

The work is organized as follows. In the Sec.1 critical phenomena are presented and well
known features are derived using the machinery of the field theories. The Sec.2 is dedicated
to the dynamics. After a briefly introduction to the stochastic equations and their imple-
mentation in a field theory, we assume a relaxational dynamics for the model. In Sec.3 we
present the O(N) vector-model in the limit of large N . Saddle point equations and critical
exponents are derived. The Sec.4 is an introduction to the off-equilibrium behaviours. We
formalize the passage through the transition with time-dependent external field introducing
the protocols. The off-equilibrium scaling limit is defined, the finite-size effects are briefly
discussed and the thermodynamic infinite-volume limit justified. In this section we also
discuss the asymptotic behaviours i.e. what happens when the system approaches the off-
equilibrium regime. If the system reaches the equilibrium asymptotically, it is expected that
the first deviations from the equilibrium background are exponentially damped. A general
ansatz in terms of the effective mass of the fields is formulated and reproduces the exponen-
tial decay of the off-equilibrium physics in the correlation functions asympotically. Within
this ansatz, quantitative prediction on the leading corrections to the equilibrium behaviours
of the correlators can be performed. In particular, in the Sec.5 we study the emergence of
such phenomena in the O(N) vector model at large N . We first solve the Langevin equa-
tion with time-dependent external fields and compute the correlation functions. Then, we
consider two different protocols separately: the thermal protocol in the absence of magnetic
fields r(t, ts) − rc ≈ −t/ts where r is the thermal coupling and rc is its value at the crit-
ical temperature, and the magnetic field protocol which occur at the critical temperature
varying the magnetic field h(t, ts) ≈ t/ts. The Sec.6 and Sec.7 concern the study of the
first-order transition which occurs in the O(N) vector model below the critical temperature.
In Sec.6 we report the general scaling theory appropriate to describe the off-equilibrium and
we consider the effects of a relaxational dynamics below the critical temperature. In the
Sec.7 a magnetic field protocol at T < Tc is considered and the off-equilibrium behaviour in
O(N) vector models investigated. Finally, in Sec.8 we draw some conclusion.

The details of the analytical computations for Sec.3, 5 and 7 can be found in the appendices
B, D and F respectively.



8

Contents
1 Critical Phenomena. 11

1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Field Theories and renormalization approach. . . . . . . . . . . . . . . . . . . 14

1.2.1 Linearized renormalization group. . . . . . . . . . . . . . . . . . . . . 16
1.2.2 Gaussian fixed point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.3 Wilson-Fisher fixed point and the ε-expansion. . . . . . . . . . . . . . 18
1.2.4 Effective φ4 model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.5 Renormalization near four dimension. . . . . . . . . . . . . . . . . . . 20
1.2.6 Scaling behaviours at the critical point. . . . . . . . . . . . . . . . . . 21
1.2.7 Scaling behaviours above the critical point. . . . . . . . . . . . . . . . 22
1.2.8 Symmetry breaking and scaling behaviours below the critical point. . 24

1.3 Static equilibrium scaling behaviours. . . . . . . . . . . . . . . . . . . . . . . 26

2 Critical dynamics. 27
2.1 Stochastic field equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Langevin dynamics with gaussian noise. . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Gaussian model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 φ4 model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Relaxational dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 O(N) vector model in the large N limit. 33
3.1 O(N) vector model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Statics of O(N) vector model for large N . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Saddle Point Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Low Temperature Phase. . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 High Temperature Phase. . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.4 Critical Point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Equilibrium relaxational dynamics of O(N) vector model for large N . . . . . 39
3.4 Correlation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 One-point Correlator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Two-point Correlator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Introduction to the scaling behaviours
out of equilibrium. 42
4.1 Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Magnetic field protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Thermal protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3 Round-trip protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.4 Strong scaling behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Kibble-Zurek scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Kibble-Zurek scaling limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Finite-size effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Asymptotic behaviours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.1 Matching of the scaling behaviours. . . . . . . . . . . . . . . . . . . . 47
4.5.2 Leading correction to the asymptotic equilibrium scaling. . . . . . . . 49

5 Off-equilibrium scaling behaviours for O(N) vector model at large N . 50
5.1 Dynamics with time-dependent external fields. . . . . . . . . . . . . . . . . . 50
5.2 Correlation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 One-point Correlator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.2 Two-point Correlator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 The constraint-equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Thermal protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4.1 Correlation functions for thermal protocol. . . . . . . . . . . . . . . . 52
5.4.2 Off-equilibrium scaling behaviours. . . . . . . . . . . . . . . . . . . . . 53



9

5.4.3 A proof of the scaling relations. . . . . . . . . . . . . . . . . . . . . . . 55
5.4.4 Asymptotic behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.5 Analysis of the solution. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4.6 Coarsening physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Magnetic field protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.1 Correlation functions for magnetic field protocol. . . . . . . . . . . . 61
5.5.2 Off-equilibrium scaling behaviour. . . . . . . . . . . . . . . . . . . . . 62
5.5.3 A proof of the scaling relations. . . . . . . . . . . . . . . . . . . . . . . 64
5.5.4 Asymptotic behaviours. . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5.5 Hysteresis phenomena. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 First-order transition in the low-temperature phase. 73
6.1 Renormalization approach to first-order transitions. . . . . . . . . . . . . . . . 73
6.2 Scaling hypotesis for first-order transitions. . . . . . . . . . . . . . . . . . . . 74
6.3 Relaxational dynamics at T < Tc. . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Off-equilibrium scaling behaviour
at the first-order transition in O(N) vector models. 79
7.1 Asymptotic behaviours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1.1 Equilibrium asymptotic forms. . . . . . . . . . . . . . . . . . . . . . . 82
7.1.2 Phase dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.3 Leading correction to the asymptotic equilibrium scaling. . . . . . . . 86

7.2 Hysteresis phenomena. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Conclusions. 92

A Appendix: The Kibble-Zurek mechanism. 94
A.1 Liquid helium-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B Algebraic computations of Sec. 3 96
B.1 Solution of the dynamics equation. . . . . . . . . . . . . . . . . . . . . . . . . 96
B.2 Expectation value of two fields. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

C Appendix: Asymptotic behaviours of special functions. 98
C.1 Incomplete Gamma function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
C.2 Airy functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
C.3 Erf functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

D Algebraic computations of Sec. 5 100
D.1 About the equations (279) and (280) . . . . . . . . . . . . . . . . . . . . . . . 100
D.2 Solution of the dynamics equation with time-dependent parameters. . . . . . 100
D.3 Expectation value of two fields. . . . . . . . . . . . . . . . . . . . . . . . . . . 101
D.4 Thermal protocol: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

D.4.1 Equilibrium contribution of the susceptibility. . . . . . . . . . . . . . . 102
D.4.2 Leading off-equilibrium correction to the asymptotic equilibrium

behaviour of the susceptibility. . . . . . . . . . . . . . . . . . . . . . . 102
D.5 Magnetic field protocol: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

D.5.1 Equilibrium contribution of the magnetization. . . . . . . . . . . . . . 103
D.5.2 Leading off-equilibrium correction to the asymptotic equilibrium

behaviour of the magnetization. . . . . . . . . . . . . . . . . . . . . . . 104
D.5.3 About the eq.(356) and the power-law decay ansatz. . . . . . . . . . . 105

E Appendix: Cross-over behaviour in the momenta
below the critical temperature. 107



10

F Algebraic computations of Sec.7 109
F.1 Asymptotic equilibrium behaviours: . . . . . . . . . . . . . . . . . . . . . . . 109

F.1.1 Magnetization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
F.1.2 Transverse susceptibility. . . . . . . . . . . . . . . . . . . . . . . . . . 109

F.2 Phase dynamics: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
F.2.1 Equation for the phase dynamics. . . . . . . . . . . . . . . . . . . . . . 110
F.2.2 Solution for the phase dynamics. . . . . . . . . . . . . . . . . . . . . . 111
F.2.3 Variance of the phase distribution at early times. . . . . . . . . . . . . 111

F.3 Leading off-equilibrium corrections
to the asymptotic equilibrium behaviour: . . . . . . . . . . . . . . . . . . . . 112
F.3.1 Magnetization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
F.3.2 Transverse susceptibility. . . . . . . . . . . . . . . . . . . . . . . . . . 113



11

1 Critical Phenomena.

1.1 Introduction.
In the first section we discuss the continuous phase transitions. The general features of such
transitions are shown with the concrete example of a spin system. Let us introduce the Ising
model:

Z =
∑

{Si=±1}
exp

(
−HIsing/T

)
(1)

where
HIsing = J

∑

i,j are n.n.

Si · Sj (2)

It describes a lattice of spins with ferromagnetic (J < 0) interactions among the nearest
neighbour (n.n.) sites Si. At high temperatures the directions of such spins are randomly
distribuited and the system presents a macroscopic paramagnetic behaviour. When it is
cooled, the macroscopic behaviour of the material changes continuously; below a certain
value of the temperature that we call the critical temperature, the directions of the spins
are no longer casual and the system presents a tendency to create large domains of aligned
spins: it becomes a ferromagnet. The change in the behaviour of the system at the con-
tinuous phase transition can be related to a change in the symmetry of the model. In the
Ising model, above the critical temperature if we flip the spins, all the observables are not
modified and the system appears macroscopically the same. Below the critical temperature
this is not true: if we flip a domain of aligned spins, the value of the magnetization of the
system is flipped too. The system loses the Z2 symmetry crossing the transition.
More interesting magnetic systems with continuous symmetry can be obtained by a straight-
foward extension of the Ising model: let us consider a lattice where in each site there is an
N -component vector spin of unit length which interacts through a short-range ferromagnetic
hamiltonian, qualitatively equivalent to the Ising one:

Z =

∫ ∏

i

dSi · δ(S2
i − 1) · e−HN/T , (3)

where
HN = −

∑

i,j

Vi,j(Si · Sj) (4)

and Vi,j is a short range ferromagnetic O(N) symmetric two-body interaction. The direction
of such spins is again random above the critical temperature and this means that the vector
posses an O(N) symmetry. Below the critical temperature this symmetry has to change
because the direction of the spins is now fixed and no more arbitrary: the group O(N) is
reduced to O(N − 1) which is the group of the rotation around a fixed axis.
Since the phase transition occurs continuosly, the state of the system at the critical point is
characterized by the coexistence of the two phases. Thus, it must respect the symmetry of
both the phases at the critical point. It follows4 that the change in symmetry which occurs
at a continuous phase transition reduces a certain group of symmetry to one of its subgroups.
Generally, the phase of higher symmetry is related to higher temperatures and when the
system is cooled loses some generators undergoing a state with reduced symmetry5.
The change in the symmetry at a continuous phase transition can be related macroscopi-
cally to a change of the order in the material. One may consider a lattice where each site
is characterized by a probability to find the microscopic variable in a certain realization of
the symmetry. Above the critical temperature the probabilities for all the realization of the

4If we assume that the system has a certain symmetry at the critical point it can be shown that one of
the two phases has the same symmetry and the other a lower symmetry. This is the only way in which two
phases with different symmetries can be connected continuously.

5This can be shown more formally by using a group-theoretical approach. See ref.[8].
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Figure 6: The behaviour of the order parameter (magnetization) in a spin system. A
continuous phase transition occurs at T = Tc and H = 0. This picture has been taken from
the book [7].

symmetry are the same. Thus, the phase of the material is disordered. Below the critical
temperature these probabilities changes and the system presents a type of order. To describe
quantitatively the change of order of the system when it passes through a critical point, an
order parameter can be defined such that it takes non-zero values only if the system is in
the ordered phase. The physical meaning of the order parameter is very different in different
systems. In the magnetic language the order parameter can be identified with the sponta-
neous magnetization.
It is well-known that the thermodynamic observables can be obtained from a thermody-

namic potential which is a function of the external variables and of the order parameter6.
The continuous behaviour of the system near the transition can be mathematically trans-
lated in the analiticy of the thermodynamic potential close to the critical point. It follows
that this thermodynamic potential V (Φ) can be expressed as a power series in terms of the
order parameter Φ

V (Φ) = V0 + aΦ2 + bΦ4 + · · · (5)

in which the odd terms have been neglected assuming Z2 symmetry. The external variables
are fixed and determines the coefficients of the expansion. In contrast, the value of the order
parameter is determined by the minimum of the potential, so it depends on the external
variables. The expression (5) for the thermodynamic potential is a regular series and does
not consider the singular behaviour of the system at the critical point. The conditions of
applicability for such expansion are discussed in the ref.[8]7. Above the critical point the
shape of the thermodynamical potential is like a well whose global minimum is in zero [see
fig.7]. Thus, the equilibrium value of the order parameter is zero and macroscopically the
system presents a disordered phase. In the spin system example, even if a group of spins
align themselves because of their ferromagnetic tendency, this microscopic order is distructed
by the thermal fluctuations. When the system approaches to the transition, the shape of
the well becomes weaker, i.e. growing local domains of aligned spins born but then are
distructed by the thermal fluctuations. At the transition, thermal fluctuations and ordering
tendency have the same strenght: a new stable configuration with ordered spins is allowed.
The new phase is characterized by a non-zero value of the order parameter. Below the crit-
ical point, the thermodynamic potential presents a modified shape where only the ordered
phase is admitted as stable configuration. In other words, the thermal fluctuations are no
longer able to disorder the spins. We connect these concepts with the correlation length

6Crossing the transition, the macroscopic behaviour of the system changes. Thus, the order parameter
reflects the changing in the structure of the system at the transition and must be taken into account in the
expression of the thermodynamic potential.

7It is required that δT = |T − Tc| � Tc. However when δT → 0 there must be a value δT ′ such that
for δT < δT ′ the expansion (5) breaks down. The singularity in the specific heat can be reproduced by the
Landau theory only considering the difference of the values of the specific heat at δT ′ before and after the
transition.
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Figure 7: The shape of the thermodynamic potential V (Φ) as function of the order parameter
Φ when the temperature is descreased at zero magnetic field.

of the material. We know that statistical systems have macroscopic properties determined
by the weighted averages of all the possible local configurations. Local configuration means
a region in which there are correlations among the sites. We call the size of this region
correlation length. Away from the continuous phase transitions, the correlation length is of
the order of some lattice spacings. Thus, a local configuration consists in a collection of a
few spins. But when the system undergoes a continuous transition, the amount of the local
fluctuations of the order parameter i.e. the correlation length of the system diverges causing
a macroscopic variation in the properties of the material. Since the spins are correlated over
an infinite length-scale, the system presents a scale invariance.
Note that an infinite value of the correlation length is found only at the critical point. In the
neighbourhood of the critical point i.e. when the external variables are very close to their
critical values (we call this regime critical domain), it can be shown that the correlation
length has a power law behaviour as ∝ |T − Tc|−ν where ν is a certain positive exponent
determined by the specific critical point under consideration. From the divergence of the
correlation length, the divergences of some statistical observables follow. This means that
the divergences of the statistical observables lie behind the scale invariance and therefore
scaling relations in terms of the correlation length can be derived.
The continuous phase transitions are characterized by diverging correlation length and by
the following divergences in some statistical observables. For this reasons the behaviours of
systems near a continuous phase transitions are called critical phenomena.

The introduction above reports the Landau approach to the critical phenomena. Landau was
the first one proposing a general framework that provided a unified explanation of several
different phenomena (such as the Andrews critical opalescence or the Curie ferromagnetism)
in terms of changes in the symmetry of the system. His model corresponds to the mean-field
approximation and gives a good qualitative description of these phenomena. Even if it is not
quantitative correct, the Landau ideas resume in a direct and simple way all the features of
critical phenomena. Nowdays the modern theory of the critical phenomena is based on the
use of the renormalization group.
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1.2 Field Theories and renormalization approach.
A way to understand the critical phenomena is through a renormalization group analysis.
A connection between statistical systems with short-range interactions and regularized local
euclidean field theory can be established. Infact, these two branches of theoretical physics
are both essentially based on the symmetry group of the model and on the use of renormal-
ization8. Our purpose is to find all the empirical stuff about critical phenomena by using
the formalism of field theory. We follow the discussion of the ref.[9] and [10].

Let us consider an hamiltonian functional H which is a function of the fundamental degrees
of fredoom of the system. The correspondent field theory has to be chosen by respecting all
the symmetry of the microscopic hamiltonian. Then, one considers the continuous limit for
the space and for the degrees of freedom. The discrete lattice becomes an euclidean space
in which the variables are fields φ(x), x ∈ Rd. The resulting hamiltonian (local field theory)
H(φ) plays the role of an euclidean action. Suppose that we can expand this hamiltonian in
powers of the field,

H(φ) =
∑

n=0

1

n!

∫
ddx1 · · · ddxn · Hn(x1, · · · , xn); (6)

In general this expansion contains an infinite number of terms. To the hamiltonian corre-
sponds a set of (connected) correlation functions

< φ(x1) · · ·φ(xn) >conn.= W (n)(x1, · · · , xn) =

∫
Dφ · φ(x1) · · ·φ(xn) · e−H(φ)

∣∣∣
conn.

(7)

The correlation length ξ can be defined as the inverse of the smallest decay rate of the corre-
lation functions (the smallest physical mass of the system). From the two-point correlation
function one can define

ξ2 ∝W (2)(p)|p→0 (8)

where W (2) is the connected two-point correlation function in the Fourier representation.
We want to study the long distance properties of these correlations: let us introduce a
dilatation parameter λ, the behaviour of correlators at large distances is therefore given by
W (n)(λx1, · · · , λxn) when λ → ∞. This is the basic idea of the renormalization group: we
consider correlation functions as functions of the dilatation parameter λ acting on the space
variables x. In this way one constructs a set of a scale-dependent effective hamiltonians Hλ;
each of these has the same correlation functions at fixed space. Thus, we can interpretate
Hλ as a flow in terms of the dilatation parameter which connect the same model viewed at
different scales. Let us construct Hλ such that its correlation functions satisfy

W
(n)
λ (x1, · · · , xn)− Z−n/2(λ)W (n)(λx1, · · · , λxn) = R

(n)
λ (x1, · · · , xn) (9)

where R(n)
λ is a function that decrease faster of any powes of λ in the limit λ → ∞ and

therefore can be set to zero in the following lines. Z(λ) is the scale-factor of the fields which
has to be fixed consistently.
If we assume that the model has invariance under spatial translations, the previous relation
can be written in the Fourier space too and becomes

W
(n)
λ (p1, · · · , pn−1) = Z−n/2(λ)λ−(n−1)d ·W (n)(p1/λ, · · · , pn−1/λ). (10)

We define as RG-transformation the mappingH 7→ Hλ and we fixHλ=1 = H the microscopic
"bare" hamiltonian. The renormalization group can be constructed in several forms and
these differ only for the definition of R(n)

λ and Z(λ).
We are interested to the limit λ → ∞. We wonder if Hλ have a limit for large λ. Suppose
that the answer is yes. In other case this discussion becomes meaningless.
Let us assume that exist a configuration H∗ such that

lim
λ→∞

Hλ = H∗. (11)

8Which leads to different conclusions depending on the spatial dimension of the theory.
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We call this configuration fixed point. Even the correlation functions admit as limit their
value at fixed point

W (n)(λx1, · · · , λxn)
λ→∞∼ Zn/2(λ) ·W (n)

∗ (x1, · · · , xn). (12)

If we consider another scale of dilatation µ and compute the rescaled correlation functions
W (n)(µλxi), we obtain

W (n)(µλx1, · · · , µλxn) ∼ Zn/2(µλ) ·W (n)
∗ (x1, · · · , xn) (13)

but also
W

(n)
∗ (µx1, · · · , µxn) ∼ Zn/2∗ (µ) ·W (n)

∗ (x1, · · · , xn) (14)

which implies that the scale-factor of the fields at fixed point can be defined as

lim
λ→∞

Z(µλ)/Z(λ) = Z∗(µ) ∀µ. (15)

the previous relation states that Z∗ has a semi-group representation

Z∗(λ1) · Z∗(λ2) = Z∗(λ1λ2). (16)

it is satisfied if we assume that
Z∗(λ) = λ−2dφ (17)

which is resonable: it tells to us that each field φ is scaled by λ at a certain exponent which
we call the scaling dimension of the field and which is fixed by the specific properties of the
fixed point under consideration.
Note that (12) implies a power-law behaviour of the correlation functions

W (n)(λx1, · · · , λxn) ∼ λ−ndφW (n)
∗ (x1, · · · , xn). (18)

The long-distance behaviour of the system is characterized by the fixed point of the RG flow
in which the effective hamiltonian is driven to. The connection with critical phenomena lies
behind the identification of the RG fixed points with the critical points. The correlation
functions of different microscopic hamiltonians which flows into the same fixed point have
the same critical properties. Universality is recovered and relies upon the exsistence of
an infrared fixed points in the space of the hamiltonians. This space can be divided into
subspaces and each subspace can be defined by the hamiltonians which have the same fixed
point. The subspaces are the universality classes: the critical theory does not depend on
the specific bare model we choose into a certain universality class.
From the equation (18), by considering the two-point correlation function in the Fourier
space, we obtain

W (2)(p/λ) ∼ λ−2dφλd ·W (2)
∗ (p); (19)

thus, the correlation length is infinite whenever the fixed point is characterized by dφ < d/2
because,

ξ2 ∝W (2)(p = 0) ∼ λ−2dφ+d ·W (2)
∗ (0)→∞ (20)

The field theory at the fixed point (with dφ < d/2) is therefore critical because it is charac-
terized by an infinite correlation length.
Let us understand a little bit more the situation. We now consider the dilatation parameter
λ as a continuous variable in order to write equations which describes the flow of renormal-
ization. These ones can be written as follows:

λ
d

dλ
Hλ = T [Hλ], (21)

λ
d

dλ
logZ(λ) = 2− d− η[Hλ], (22)
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where T is a map from the space of the hamiltonians into itself and η is a real function
defined on the space of the hamiltonians. It is quite obvious to define a critical point H∗ as
a solution of (21) such that

T [H∗] = 0.

From the other relation (22), with (17) we obtain the scaling dimension of the field

dφ =
1

2
(d− 2 + η[H∗]). (23)

1.2.1 Linearized renormalization group.

We consider the hamiltonian Hλ very close to a fixed point, where we can write Hλ ≈
H∗ + ∆Hλ. The equation (21) becomes

λ
d

dλ
(∆Hλ) = L∗[∆Hλ] (24)

where L∗ is a linear operator independent on λ. This version of renormalization group which
works only in the neighbourhood of a fixed point is sometime called linearized RG. Since
L∗ is linear, it can be decomposed into some eigenoperators yi (we sometimes call them
scaling fields) with specific eigenvalues `i (we often refer to them as scaling dimensions of
the operators). ∆Hλ can be expanded in this base

∆Hλ =
∑

i

hi(λ) · yi (25)

and it follows that (24) becomes

λ
d

dλ
hi(λ) = `i · hi(λ) (26)

it admits as solution hi(λ) = λ`i ·hi(1). This means that an hamiltonian Hλ close to a fixed
point can be described through the decomposition into the scaling fields. These fields can
be classified as follows:

-if `i > 0 then the scaling fields are relevant and thus if Hλ contains these operators,
they grow with λ driving the system away from the critical point;

-if `i < 0 then the operator is irrelevant : its effects goes to zero when the dilatation param-
eter increases;

-if `i = 0 the scaling operator is marginal and remains finite in the RG flow.

The classification of fixed points is related to their local stability properties. A fixed point
is locally stable if all the relevant operator are fixed to their critical values. The number
of relevant parameters classifies a critical point and gives us the dimension of the critical
surface. The critical surface of a critical point is a surface in the space of hamiltonians
characterized by having all the relevant scaling fields fixed to their critical values. Thus, an
hamiltonian which lies on the critical surface, presents a critical behaviour (or in other word
it converges to H∗ if we perform a scale transformation with λ→∞). The dimension of the
critical surface is given by the co-dimension of the number of the relevant parameters.

As we have seen, the hamiltonian can be parametrized through its couplings {h(λ)} close to
the fixed point. The rescaled correlation functions can be written as function of the rescaled
couplings

W
(n)
λ (x1, · · · , xn) = W (n)({h(λ)}, x1, · · · , xn); (27)



17

We differentiate the relation (9) with respect to λ

λ
d

dλ

(
Zn/2(λ)W (n)({h(λ)}, x1/λ, · · · , xn/λ)

)
= 0 (28)

and expliciting the action of the derivative we obtain
(
−
∑

l

xl
∂

∂xl
+
∑

i

β(hi)
∂

∂hi
+
∑

i

n

2
(2− d− η(hi))

)
W (n)({h(λ)}, x1, · · · , xn) = 0 (29)

where we have introduced the beta-function

β(hi) = λ
d

dλ
hi(λ) (30)

and η(hi) is given by

2− d− η(hi) = λ
d

dλ
logZ(λ). (31)

A fixed point, in this notation, is the configuration {h∗} such that β(h∗i ) = 0 ∀i.

1.2.2 Gaussian fixed point.

We have seen how universality and critical behaviour follows if we assume that an IR fixed
point exist and it is reached by the RG flow. In practise is not obvious how to find a fixed
point starting from a specific bare model. Let us start with a free theory which is quadratic
in fields. We want to construct a scale transformation such that a fixed point is allowed.
A generic quadratic hamiltonian is of the form

HG(φ) =
1

2

∫
ddx ·

∑

r=0

φ(x)�rφ(x) (32)

where the box operator �r is a two-fields coupling constant containing 2r derivatives; the
�0 = m2 is the mass term. We perform a scale transformation

φ 7→
√
Z(λ)φ,

x 7→ λx.

The effective hamiltonian becomes

HG,λ =
1

2

∫
λdddx · Z(λ)

∑

r=0

φ(x)�rλ−2rφ(x) (33)

therefore it can be viewed as a quadratic coupling which is transformed as

�r 7→ �r(λ) = Z(λ)λd−2r�r(1),

where �r(1) = �r. When the dilatation parameters becomes large λ→∞, the term which
contains the smallest number of derivative becomes the most important. A critical theory
requires that �∗r(λ) = �∗r = Z(λ)λd−2r�∗r : it is satisfied if,

• We choose Z(λ) = λ−d if m2 6= 0 and �r>0 = 0. This is commonly called trivial fixed
point,

H∗G =
1

2
m2

∫
ddx · φ2(x). (34)

The scaling dimension of the field φ is dφ = d/2: the theory is not critical because the cor-
relation length ξ tends to zero. The two-point correlation function becomes a δ-propagator.
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• We choose Z(λ) = λ−(d−2) if m2 = 0 and �1 6= 0 (all the other terms with higher deriva-
tives are no relevant even in d > 4). The scaling dimension of the field φ is dφ = (d− 2)/2
which is often called canonical scaling dimension of the fields. Infact, looking at (22), the η
function is defined as a correction to this canonical dimension and therefore is zero in this
case. The underlying case is the gaussian fixed point. The theory is critical and characterized
by an infinite value of the correlation length. The critical hamiltonian is given by

H∗G =
1

2

∫
ddx · φ(x)�1φ(x). (35)

Let us perform a linearization of the RG near the gaussian fixed point: the effective hamil-
tonian can be decomposed into scaling fields

∆Hλ = Hλ −H∗G =

∞∑

n=2

∑

r=0

∑

i

yn,ri (λ, φ) (36)

where
yn,ri (λ, φ) = Zn/2(λ)λd−ryn,ri (φ) (37)

Thus, we learn by the previous relation that scaling fields have scaling dimensions `n,r =
d − n

2 (d − 2) − r. The gaussian fixed point can be classified and its local stability can be
related to the spatial dimension d of the critical theory. In particular,

-the operator n = 2, r = 0 that is a mass term is always relevant and correspond to a
deviation from the critical temperature.

-the odd operator n = 1, r = 0 which breaks explicitly the invariance under O(N) symmetry,
is always relevant and has dimension l1,0 = (d+2)/2. It can be interpreted, in spin systems,
as an external magnetic field.

-if the spatial dimension d > 4 all the other operator are irrelevant and the gaussian fixed
point is stable.

-If d = 4 only n = 4, r = 0 becomes marginal and logarithmic corrections are expected.

-if d < 4 the gaussian fixed point is certainly unstable because many operators are no
longer irrelevant and move the system away from the gaussian critical point.

The gaussian fixed point has been obtaneid starting from free theories and it has no a
particular physical interest. We want to find another fixed point which allows interactions.
As we can see in the last few lines, this can be done only below four spatial dimensions. The
impossibility to construct a theory which flows to an interacting fixed point above dimension
four is called triviality problem.

1.2.3 Wilson-Fisher fixed point and the ε-expansion.

Below dimension four, the main difficult in RG approach is to construct an explicit scale
transformation which drives Hλ to a fixed point. The question of the existence of another
non-trivial fixed point is non-perturbative and cannot be easily answered. Some results
were obtained thanks to Wilson and Fisher. They assume that the spatial dimension and
the scaling dimensions of the operators are continuous functions and developed a theory in
the neighbourhood of four dimension, d = 4− ε. If ε is small, the critical hamiltonian gains
only the quartic coupling constant u and all the other operators still remain irrelevant. The
constant u is small and remains small under the dilation trasformation because its evolution
is very slow. Under these assumption one can perform a double perturbation expansion in
terms of the coupling constant u and of ε = 4 − d. The flow of u(λ) is determined only by
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u(λ) itself and it is well-described by the function beta

λ
d

dλ
u(λ) = β(u(λ)) = −εu(λ) + β2u

2(λ) +O(u3(λ)). (38)

β2 is a constant which depends on the spatial dimension 4 − ε but, at leading order, can
be computed in d = 4. The previous line tells to us that another non-trivial fixed point is
emerged

β(u∗) = 0⇒ u∗ = ε/β2 +O(u3); (39)

The sign of β2 plays a crucial role and gives a direction to the RG flow

-if β2 < 0 and d < 4 then u(λ) increases: the ε-expansion loses its meaning. In d > 4
the previous fixed point becomes repulsive. The destiny of the system depends on the bare
value of u: if u(1) = u < u∗ the system comes again to the gaussian fixed point; if u = u∗
it still remains at the critical point and finally in the case of u > u∗, the running coupling
constant u(λ) will increase with λ and any fixed point is reached.

-if β2 = 0 one needs the u3 term of the perturbation expansion to make conclusions.

-if β2 > 0 and d < 4 the Wilson-Fisher fixed point is stable thus if u < (>)u∗ then u(λ)
decreases (increase) and goes to the fixed point value; u(λ) remains equal to the critical
value if u = u∗. Above dimension four is already known that the gaussian fixed point is the
only stable fixed point which exists.

The explicit computation of the beta function can be performed only by fixing a specific
model.

1.2.4 Effective φ4 model.

Let us consider a φ4 model. In the next sections we focus our attention on spin systems
with O(N) symmetry: this symmetry does not allow terms with odd power of the fields.
Therefore the microscopic short-range statistical system can be reduced to a local regularized
φ4-field theory in 4− ε spatial dimension. The microscopic hamiltonian is

H(φ) =

∫
ddx ·

[1

2
c(∇φ)2 +

1

2
aφ2(x) +

b

4!
(φ2(x))2

]
, (40)

where a, b and c are regular functions of the temperature T close to the critical temperature
Tc. One can consider a more general hamiltonian, that can be expanded in powers of the
field φ and derivatives

H(φ) =

∫
ddx ·

[1

2
c(∇φ)2 +

∑

j

Hj(φ)
]
, (41)

where Hj(φ) is an O(N) symmetric monomial in φ of degree nj and containing rj derivative.
However, by the previous discussion we know that the effective hamiltonian near dimension
4 cointain almost the quartic term and all the others cannot survive in the flow. Thus, we
consider as bare field theory a local φ4-model. Let us perform the rescaling of the field φ(x)
in such a way that the coefficient of (∇φ)2 becomes the standard 1/2:

x 7→ Λx, (42)

φ(x) 7→ ζφ(x); (43)

After this rescaling all quantities have a dimension in units of Λ. Our choice of normalization
for the gradient term implies,

ζ = c−1/2 · Λ(2−d)/2, (44)
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which shows that φ now has in terms of Λ its canonical dimension dφ = (d − 2)/2. A term
Hj(φ) then is multiplied by

Hj(φ) 7→ Λd−nj(d−2)/2−rjHj(φ). (45)

For large Λ all operators except (φ2)2 should remain irrelevant. After the rescaling the
hamiltnian H(φ) then becomes

H(φ) =

∫
ddx ·

[1

2
(∇φ(x))2 +

1

2
rφ2(x) +

u

4!
· Λ4−d(φ2(x))2

]
(46)

with r = aΛ2/c , u = b/c2.

We choose (46) as the bare model of the critical theory. This hamiltonian generates a
perturbative expansion of field theory type which can be described in terms of Feynman
diagrams. These have to be calculated with a momentum cut-off of order Λ, reflection of
the initial microscopic structure. The corresponding theory is thus analogous to regularized
quantum field theory. However, in constrast with the conventional quantum field theory,
where the bare coupling constant are adjustable parameters and have not well-defined phys-
ical meaning, here the quartic coupling constant has a dependence in Λ given a priori. In
terms of the microscopic length scale Λ−1, the critical domain is given at large distances
� Λ−1 in which ξ−1 ∼ physical mass � Λ.

1.2.5 Renormalization near four dimension.

Let us find a non-trivial fixed point in perturbation theory: we perform a series expansion
in powers of the coupling constant u and of the distance ε from dimension four. We want
to study the large cut-off limit: we introduce a new scale of energy µ� Λ and define renor-
malized correlation functions. In order to give a meaning to the renormalization procedure,
one has to declare what are the values of the physical parameters in the renormalized field
theory. In the case of the hamiltonian (46) we impose for the proper vertices:

Γ(2)
ren.(p, uren., µ,Λ)|p2=0 = 0, (47)

which states that the theory is critical. For normalization of the fields

∂

∂p2
Γ(2)
ren.(p, uren., µ,Λ)|p2=µ = 1 (48)

and we declare what is the renormalized quartic coupling constant:

Γ(4)
ren.(p, uren., µ,Λ)|{pi=µθi,θi∈R} = µεuren. (49)

These renormalized correlation functions are related to the original ones (bare) by the rela-
tion

Γ(n)
ren.(p, uren., µ,Λ) = Zn/2(uren.,Λ/µ)Γ(n)(p, u,Λ) (50)

The scale-factor of the fields Z contain a gaussian normalization which is already performed.
From this relation one can write down the bare RG equation

[
Λ
∂

∂Λ
+ β(u,Λ/µ)

∂

∂u
− n

2
η(u,Λ/µ)

]
Γ(n)(p, u,Λ) = 0; (51)

where the function9

β(u,Λ/µ) = β(u) = Λ
d

dΛ

∣∣∣
uren,µ fix.

u (52)

9We have neglected the dependence on the ratio Λ/µ because these function can be obtained also by
solving the equation (51) in terms of correlation functions which do not know the new scale µ.
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η(u,Λ/µ) = η(u) = −Λ
d

dΛ

∣∣∣
uren.,µ fix.

logZ(g,Λ/µ) (53)

The equation (51) is satisfied in the limit of large Λ by the bare correlation functions of the
microscopic model. We want to describe the long distance properties of the theory when
the dilatation parameter µ/Λ = λ becomes very small. We are looking for u(λ), Z(λ) which
satisfy

λ
d

dλ

[
Z−n/2(λ)Γ(n)(p, u(λ), λΛ)

]
=
(
λ
∂

∂λ
+β(u(λ))

∂

∂u(λ)
− n

2
η(u(λ))

)
Γ(n)(p, u(λ), λΛ) = 0

(54)
with

β(u(λ)) = λ
d

dλ
u(λ) (55)

u(λ) is a running coupling constant which changes as the scale of the theory is dilatated
Λ 7→ λΛ. It follows that u(1) = u. Note that this relation has the same meaning of (21)
because the running coupling constant u(λ) full characterizes the hamiltonian Hλ in 4 − ε
dimensions. The scale-factor of the fields also becomes a running coupling with Z(1) = 1
and satisfies the flow equation

η(u(λ)) = λ
d

dλ
logZ(λ) (56)

which is equivalent to the relation (22) with a gaussian normalization of Z. The correlation
functions after the dilatation are related to the original ones by the equation

Γ(n)(p, u,Λ) = Z−n/2(λ)Γ(n)(p, u(λ), λΛ), (57)

which has the same meaning of (50) but considering running couplings. Formally the con-
struction (54) has solution ∫ u(λ)

u

dg

β(g)
= log λ (58)

∫ λ

1

ds

s
η(u(s)) = logZ(λ) (59)

These relations can be solved in perturbation theory. In particular, the beta-function follows
from the relation (49) which relates the bare coupling constant to the renormalized one and
then by its definition (52). If we perform the computation [see ref.[10]]

β(u, ε) = −εu+
N + 8

48π2
u2 +O(u3, u2ε). (60)

where N is the number of components of the field φ in the O(N) symmetric hamiltonian
(46). Looking to the beta-function, we note that β2 > 0 so the new fixed point is IR stable
below four dimension. We are interested to the behaviour near the fixed point u∗ where we
can linearize the beta-function β(u) = ω(u − u∗), ω = β′(u∗) = ε + O(ε2). By substituting
the linearized beta-function in (58) we obtain

|u(λ)− u∗| λ→0∼ O(λω) (61)

Thus, the effect of renormalization is to bring the quartic coupling constant more and more
close to the critical value.

1.2.6 Scaling behaviours at the critical point.

Let us assume that the function η and the correlation functions are finite at the critical point.
This is consistently with the results which one can obtain order by order in ε-expansion.
The equation (59) can be approximately solved near the fixed point (in the limit of small λ)

logZ(λ)
λ→0∼ η(u∗) log λ (62)
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and we call as critical exponent η the number η(u∗) = η. It is very important because
describes the scaling behaviour of the correlation function at the critical point

Γ(n)(p, u(λ), λΛ) ∼ λnη/2Γ(n)(p, u∗,Λ) (63)

but the gaussian normalization states that a rescaling performed over the momenta obey to
the scaling relation

Γ(n)(λp, u, λΛ) ∼ λd−n/2(d−2)Γ(n)(p, u,Λ) (64)

Thus, the scaling behaviour of correlation functions close to the Wilson-Fisher critical point
is

Γ(n)(λp, u(λ), λΛ) ∼ λd−n/2(d−2+η)Γ(n)(p, u∗,Λ) (65)

We conclude that dφ is now different from the canonical value (at the gaussian fixed point).
It has aquired anoumalus dimension η

dφ =
1

2
(d− 2 + η) (66)

Finally, we derive the weak-scaling statement : the two-point correlation function at the
critical point diverges with a specific power-law when the momenta go to zero. From the
general relation (65) we consider the case n = 2 and use the momentum λp = k as scale of
dilatation

Γ(2)(λp) = Γ(2)(k)
k→0∼
p fix.

k2−η (67)

W (2)(k)
k→0∼ 1/k2−η (68)

We have found a scaling-behaviour for the correlation functions looking at long distances
below four dimension by using the ε-expansion technique. This behaviour is universal in
the sense that it is governed only by the properties of the fixed point and, for small ε, it
does not depend on the value of the bare coupling constant. The critical phenomena are
universal depending only on the symmetry of the field theory and on the spatial dimension
(which characterize the fixed point).

1.2.7 Scaling behaviours above the critical point.

We are interested to the scaling properties of the system where the correlation length is large
with respect to the microscopic scale Λ−1 but finite. This region is called critical domain.
Let us define this region formally.
Consider a variation in the temperature T from the critical value Tc. It moves all the
relevant couplings away from the critical point. However, in 4 − ε spatial dimensions, the
most important contribution is given by the φ2 operator. Thus, we can consieder into (46)
the coupling r = r(T ) and close to the critical point

r(T ) ∼ T − Tc
Tc

+ rc = τ + rc, (69)

rc = r(Tc) a constant. By dimensional analysis, the bare correlation functions have a scale
relation

Γ(n)(p, τ, u,Λ) = Λd−
n
2 (d−2)Γ(n)(p/Λ, τ/Λ2, u, 1) (70)

We define the critical domain as the region in which the system presents small thermal
variations with respect to the critical temperature

|τ | � Λ2 (71)

Since in the critical domain τ 6= 0, to the renormalization conditions given before one has
to add the conditions at zero momentum

Γ(2)
ren.(p = 0, τren., uren.) = τren., (72)
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Γ(4)
ren.(p = 0, τren., uren.) = τ εrenuren. (73)

The renormalized correlation functions are related to the bare correlations by

Γ(n)
ren.(p, τren., uren.)

Λ→∞∼ Zn/2(τren./Λ, uren.)Γ
(n)(p, τ, u,Λ) (74)

Note that the renormalized quadratic coupling has dimension of a mass τren. = mren.. So, if
we perform a rescaling in the renormalized correlation functions through mren.

Γ(n)
ren.(p,mren., uren.) ∼ md−n2 (d−2)

ren. Γ(n)
ren.(p/mren., 1, uren.) (75)

This rescaling, applied to the case n = 2 tells to us that the two-point correlation function
decays with a power-law of a characteristic length-scale ξ = m−1

ren. which is the correla-
tion length. Let us perform a dilatation transformation of the correlation functions with a
parameter λ = mren./Λ: from (74) we obtain the flow equation

λ
d

dλ

[
Z−n/2(λ)Γ(2)(p, τ(λ), u(λ), λΛ)

]
= 0 (76)

We introduce the functions
− λ d

dλ
u(λ) = β(u(λ)) (77)

λ
d

dλ
logZ(λ) = η(u(λ)) (78)

λ
d

dλ
log τ(λ) = η2(u(λ)) (79)

which describe the flow of the running coupling constant. We set u(1) = u, Z(1) = 1,
τ(1) = τ . The RG equation becomes
[
λ
∂

∂λ
− β(u(λ))

∂

∂u(λ)
+
n

2
η(u(λ))− η2(u(λ))τ(λ)

∂

∂τ(λ)

]
Γ(n)(p, τ(λ), u(λ), λΛ) = 0; (80)

The critical region is defined by (71), so we can impose as upper limit that the running
coupling constant τ(λ) = λ2Λ2 after the rescaling. From (79) we obtain

τ(λ) = τ · exp
(
−
∫ λ

1

ds

s
· 1

ν(u(s))

)
(81)

where ν is a real function of u. For λ → 0 we can substitute ν(u(λ)) ∼ ν(u∗) = ν and the
upper limit becomes

log(τ/Λ2) ' 1

ν
log λ (82)

It follows that
τ ∝ λ1/ν ∝ m1/ν

ren. ⇒ ξ ∼ τ−ν (83)

ν is the critical exponent that drives the scaling behaviour of the correlation length into the
critical domain. The correlation functions are related in the way we know

Γ(n)(λp, λ2τ, λΛ) ∼ λd−n2 (d−2+η)Γ(n)(p, τ, u,Λ) (84)

but, from this discussion, a new property arises: since τ 6= 0 the correlation functions at
zero momenta are finite and present a scaling behaviour given by

Γ(n)(p = 0, λ2τ, u,Λ) ∝ τν(d−n2 (d−2+η)) (85)

this is commonly called strong scaling law. In particular the two-point correlation function
at zero momenta, often called susceptibility, has a behaviour

χ = W (2)(p = 0, τ, u,Λ) ∝ τ−ν(2−η) (86)

we define as critical exponent γ = ν(2 − η) which describes the power-law behaviour of
the susceptibility. Other thermodinamic critical exponents can be defined but they are all
reducible to a certain combination of ν and η. These last two exponents directly follow from
scaling properties of the critical system and therefore lead to the scaling relations in the
thermodinamic observables.
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1.2.8 Symmetry breaking and scaling behaviours below the critical point.

The system (46) is invariant under global O(N) transformations. The infinitesimal variation
of the field φ is

δφ(x)α = T iαβφβ(x) · vi (87)

where Tαβ are the generators of the group and vi are the space-independent parameters of
the specific transformation g = 1 + v ∈ O(N) close to the identity. In order to connect
continuosly the state of the system above and below the critical point, we need a spontaneus
symmetry breaking. A standard way to proceed is to couple the hamiltonian with an external
magnetic field which explicitly brokes O(N) symmetry into O(N − 1). Then, if the system
is not physically coupled to a magnetic field, one takes the limit in which this field goes to
zero. The hamiltonian (46) becomes

H(φ) =

∫
ddx ·

[1

2
(∇φ(x))2− 1

2
|τ |φ2(x) +

1

2
rcφ

2(x) +
u

4!
·Λ4−d(φ2(x))2 −hα ·φα(x)

]
(88)

= Hsym(φ)−
∫
ddx · hα · φα(x).

where the magnetic field has a fixed direction

hα = δ1,α · h. (89)

The field φ has a non-trivial expectation value σ that we call order parameter or, more
physically, the magnetization. We parametrize the field as a fluctuation over the background
φ(x) = σ+ϕ(x). To the hamiltonian (88) are associated correlation functions which are no
longer O(N)-symmetric. These satisfiy the Ward identities, that state

∫
ddx · T iαβ

[δΓ(ϕ(x) + σ)

δϕα(x)
+ hα

]
(ϕβ(x) + σβ) = 0; (90)

where Γ(φ) is the effective action, the functional generator of the proper vertices of the
theory. In particular, two important relations follow from the Ward identities. The first is
obtained by consider ϕ = 0

T iαβhασβ = 0 (91)

The magnetization has the same direction of the external magnetic field and are both left
invariant under O(N−1) rotations around the direction of σ. The second important relation
involves the two-point correlation function: if we differentiate once (90) with respect to ϕγ(y)
and then set ϕ = 0 we obtain

∫
ddx ·

[
σβT

i
αβ ·

δ2Γ(ϕ(x) + σ)

δϕα(x)δϕγ(y)

∣∣∣
ϕ=0

+ T iαβδβγδ
d(x− y)σα

]
=

∫
ddx ·

[
σβT

i
αβΓ(2)

αγ (x, y) + T iαγδ
d(x− y)σα

]
= 0;

In the Fourier space,
σβT

i
βαΓ(2)

αγ (p = 0) + T iγαhα = 0 (92)

If we consider the limit in which h → 0 this relation tells to us that the matrix Γ
(2)
αγ (0)

has N − 1 zero-modes: they are commonly called Nambu-Goldstone bosons and can be in-
terpreted as massless particles (because the eigenvalue of the operator Γ(2)(0) is a square
mass).
Since the magnetic field and the magnetization define a direction in the space we can dis-
tinguish the correlation functions as transverse and longitudinal to σ. The N − 1 transverse
two-point correlation functions at zero momenta are proportional to the magnetic field and
goes to zero (Nambu-Goldstone bosons formation) when it is removed

Γ
(2)
T (0) = χ−1 = h/σ (93)
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The longitudinal two-point function Γ
(2)
L (p) is dressed by the transverse propagators too

as one can easly see by computing the one-loop order contribution in perturbation theory.
Thus, when the magnetic field is turned-off, the W (2)

L (p = 0) operator has IR divergences.
These are due to the Goldstone-waves and not to the critical fluctuations. Therefore, be-
low the critical point and when the magnetic field goes to zero, it is expected a cross-over
behaviour in the momentum: there is a value of momentum p� ∼ ξ−1 which divedes the
critical behaviour from the Goldstone-waves behaviour at large distances. Below the critical
point (where the correlation length is finite) the long distance behaviour is dominated by
Goldstone waves. When τ → 0, τ < 0 or, in other words, when we are into the critical
domain below the critical point, the correlation length becomes large with respect to the
microscopic scale ξ−1 � Λ−1 but it is still finite. Thus, there is a regime of universal critical
behaviour at length scales of order ∼ ξ and at larger length scales a regime dominated by
Goldstone modes.

The correlation functions present a scaling behaviour also in the low temperature phase.
Here we can construct a thermodinamic potential density functional F as function of the
magnetization as follows

F(σ, τ, u,Λ) =
∑

n=0

σn

n!
· Γ(n)(p = 0, τ, u,Λ) (94)

and it follows that F generates the proper vertices at zero momenta. The magnetic field
can be obtained by diffentiate once F with respect to σ

h(σ, τ, u,Λ) =
δF(σ, τ, u,Λ)

δσ
=
∑

n=1

σn

n!
· Γ(n+1)(p = 0, τ, u,Λ) (95)

By dimensional analysis we observe

h(σ, τ, u,Λ) ∼ Λ(d+2)/2h(σ/Λ(d−2)/2, τ/Λ2, u, 1) (96)

Let us perform a dilatation transformation Λ 7→ λΛ on the magnetic field

h(σ, τ, u,Λ) = Z−1/2(λ)h(σ(λ), τ(λ), u(λ), λΛ) (97)

By this relation follows the RG equation

λ
d

dλ

[
Z−1/2(λ)h(σ(λ), τ(λ), u(λ), λΛ)

]
= 0 (98)

it can be written as
[
λ
∂

∂λ
−β(u(λ))

∂

∂u(λ)
+

1

2
η(u(λ))

(
1+σ(λ)

∂

∂σ(λ)

)
−η2(u(λ))τ(λ)

∂

∂τ(λ)

]
h(σ(λ), τ(λ), u(λ), λΛ) = 0

(99)
where we have introduced the function β, η and η2 as in (77), (78) and (79). The running
coupling constant σ(λ) satisfies the flow equation

λ
d

dλ
log σ(λ) = −1

2
η(u(λ)) (100)

with σ(1) = σ. Comparing (78) and (100) we read that

σ(λ) = σZ−1/2(λ); (101)

The choice of λ is arbitrary and its value is set to

σ(λ) = (λΛ)(d−2)/2 (102)

The equation (100) has solution

log(σ(λ)/σ) = −1

2

∫ λ

1

ds

s
· η(u(s)) (103)
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Using (102) one finds

log(σ/(Λ)(d−2)/2 =
1

2

∫ λ

1

ds

s
[d− 2 + η(u(s))] (104)

in the critical domain the magnetization has very small values

σ � Λ(d−2)/2 (105)

Thus, in (104) we can consider, for small values of λ, u(λ) close to u∗. In this limit the
magnetization presents a scaling law

σΛ(d−2)/2 ∼ λ(d−2+η)/2 (106)

We have already seen that in the critical domain τ(λ)/λ2 ∼ τλ−1/ν and Z(λ) ∼ λη. We can
replace in (97) the asymptotic forms for the running coupling constants in order to eliminate
the parameter λ

h(σ, τ, u, 1) ∼ σδf(τσ−1/β) (107)
and for h = 0, τ < 0

σ ∝ (−τ)β (108)
This is the scaling behaviour of the equation of state of the system. We have introduced the
critical exponent δ = (d+ 2− η)/(d− 2 + η) and β = ν/2(d− 2 + η). As we can see they are
a combination of the critical exponents ν and η related to renormalization. The function f
is an example of scaling function. A scaling function depends on a specific combination of
its variables and is universal.
Finally we note that the strong scaling statement is still valid below the critical point into
the critical domain p� Λ, |τ | � Λ2, σ � Λ(d−2)/2. The correlation functions stastisfy the
RG equation

[
Λ
∂

∂Λ
+ β(u)

∂

∂u
− 1

2

(
n+ σ

∂

∂σ

)
− η2(u)τ

∂

∂τ

]
Γ(n)(p, τ, σ, u,Λ) = 0 (109)

where we can note that here the correlation functions depends on σ too. Using the same
arguments of before (one looks to (99) and its solution (107)), we can find a solution to this
equation

Γ(n)(p, τ, σ, u,Λ) ∼ md−n(d−2+η)/2F (n)(p/m, τm−1/ν) (110)
where m = σν/β and f (n) is a scaling function. If we set the magnetic field h = 0, below the
critical point, the magnetization does not vanish and becomes a spontaneus magnetization.
The spontaneus magnetization can be expressed in terms of τ by (108). Thus, the previous
solution becomes

Γ(n)(p, τ, u,Λ) ∼ md−n(d−2+η)/2F
(n)
− (p/m) (111)

Γ(n)(p = 0, τ, u,Λ) ∝ md−n(d−2+η)/2 (112)
which is equivalent to (85) with the same critical exponents but with different amplitudes10.

1.3 Static equilibrium scaling behaviours.
The model does not know time: all the stuff are derived for time-independent fields and
parameters. The only variation of the coupling constants of the system is due to change of
the scale λ. The system, at a fixed scale, remains itself at all times. We refer to this situation
as static equilibrium and call the previous relations static equilibrium scaling forms. By the
previous discussion, we define the static equilibrum scaling behaviour for a generic operator
O with scaling dimension ∆ to be the limit in which the correlation length ξ goes to infinity
keeping x/ξ fixed such that

< O(x1, x2, · · · ) >= GO(x1, x2, · · · ) ∼ ξ−∆ · Geq.O (
x1

ξ
,
x2

ξ
, · · · ) (113)

where Geq.O is a scaling function. The expectation value of the operator O is a generic
observable. For instance, one can consider O as the product of several fields O(x1, · · · , xn) ∼
φ(x1) · · ·φ(xn) having scaling dimension ∆ = ndφ.

10Or if p 6= 0 with different scaling functions F+ 6= F−. The amplitude ratio is a universal quantity.
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2 Critical dynamics.

Up to now, we considered only the static equilibrium properties of critical systems. We
shall now study the time evolution of the fields. The dynamics of a statistical system is
the effect of several processes and complicated interactions which can be summarized in
a stochastic equation. Close to the critical point, the divergence of the correlation length
causes the emergence of modes with large relaxation times. This phenomenon is called crit-
ical slowing down and leads to universal scaling behaviour for time-dependent quantities.
The scaling behaviour of the system depends on the type of dynamics: we assume that
the time evolution of the fields satisfies a purely dissipative Langevin equation. In order to
use the machinery of field theory, we implement the stochastic equation in the field theory
itself. Then, we extract the dynamical exponent z from the Langevin equation and define
the dynamical equilibrium scaling behaviour.

2.1 Stochastic field equations.

We report a briefly discussion on the stochastic field equation following the ref. [11], [12]
and [13]. A stochastic partial differential field equation is

Dφ(x, t) = F [φ(x, t)] + ς(x, t) (114)

where ς is a random function of its argument which describes the macroscopic noise affecting
the system. We consider a field-independent type of noise. D is a differential operator which
does not involve fields explicitly and F [~φ] is a forcing term. Some standard example are:

D = ∂/∂t− w∇2 diffusion operator,

D = ∂2/∂t2 −∇2 wave operator,

D = ∂/∂t Langevin operator;

and for the forcing term,

F [φ]α = −Ω
2 δH(φ)/δφα purely dissipative equation,

F [φ] = c
2 (~∇ · ~φ)2 Kadar-Parisi equation, and so on.

We assume that the stochastic equation admits a unique solution φsol(x, t|ς). For any func-
tion of the field Q(φ) we can define the averages on noise distribution as

< Q(φ) >ς=

∫
Dς · P (ς) ·Q(φsol) (115)

where P (ς) is the noise distribution, normalized to 1. Even if the solution is not known, the
expectation values can be computed by using a trick. We start from the identity

φsol(x, t|ς) =

∫
Dφ·φ(x, t)·δ

(
φ(x, t)−φsol(x, t|ς)

)
=

∫
Dφ·δ

(
Dφ(x, t)−F [φ(x, t)]−ς(x, t)

)
·detM.

(116)
where detM = det

(
D − δF [φ]

δφ

)
is the jacobian associated to the transformation. Using the

relation above in (115), we obtain:

< Q(φ) >ς=

∫
Dς · Dφ · P (ς) ·Q(φ) · δ

(
Dφ(x, t)− F [φ(x, t)]− ς(x, t)

)
· detM. (117)
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At this point we define the generating functional of correlation functions as
Q(φ) = exp

( ∫
ddx ·

∫
dt · J(x, t) · φ(x, t)

)
. More precisely,

Z[J ] =< exp
(∫

ddx ·
∫
dt · J(x, t) · φ(x, t)

)
>ς= (118)

∫
Dς ·Dφ ·P (ς) ·δ

(
Dφ(x, t)−F [φ(x, t)]−ς(x, t)

)
·detM ·exp

(∫
ddx ·

∫
dt ·J(x, t) ·φ(x, t)

)
.

All the correlation functions are given by

< φ(1) · · ·φ(n) >ς=
1

Z ·
δnZ[J ]

δJ(1) · · · δJ(n)

∣∣∣
J=0

(119)

=
δn

δJ(1) · δJ(n)
·
∫
Dς · Dφ · P (ς) · exp

(
J · φ

)
· δ
(
φ− φsol

)

∫
Dς · Dφ · P (ς) · δ

(
φ− φsol

)
∣∣∣
J=0

where we have introduced a compact notation11. If the solution of the stochastic field
equation is known, the relation is simplified because we can integrate over the field φ

< φsol(1) · · ·φsol(n) >ς=
δn

δJ(1) · · · δJ(n)
·
∫
Dς · P (ς) · exp

(
J · φsol

)

∫
Dς · P (ς)

∣∣∣
J=0

=
δn

δJ(1) · · · δJ(n)

∫
Dς · P (ς) · exp

(
J · φsol

)∣∣∣
J=0

(120)

Gaussian noise distribution.

Let us assume that the noise distribution is gaussian. Without loss of generality we can
take the noise to have zero mean: if the mean is not zero, we can redefine the forcing term
F [φ] in such a way to have zero mean. This implies that the only non-zero cumulant is the
variance. Therefore, the distribution of the noise can be written as

P (ς) =
1√

det(2πΩ)
·
∫
Dς ·exp

(
− 1

2

∫
dt ·
∫
ddx ·

∫
ddy · ς(x, t) ·Ω(x, y)−1 · ς(y, t)

)
. (121)

If we look to (118), the integration over the noise becomes gaussian and can be performed.
The result is:

Z[J ] =

∫
Dφ·exp

(
−1

2

∫
dt·
∫
ddx·

∫
ddy·(Dφ(x, t)−F [φ(x, t)])·Ω(x, y)−1·(Dφ(y, t)−F [φ(y, t)])

+

∫
dt ·

∫
ddx · J(x, t) · φ(x, t)

)
· detM. (122)

The previous relation can be viewed as a dynamical action

Sdyn.
0 [φ] =

1

2

∫
dt ·

∫
ddx ·

∫
ddy ·

(
Dφ(x, t)− F [φ(x, t)]

)
Ω−1(x, y)

(
Dφ(y, t)− F [φ(y, t)]

)
.

(123)
Only for completeness, we conclude this discussion introducing the ghosts fields. These
are not related to physical quantities. They implement a constraint in the field theory, in
this case, the stochastic equation. We can write the determinant as a gaussian integral of
Grassmann anticommuting scalar particles

detM = det
(
D − δF [φ]

δφ

)

11For instance, φ(i) = φ(xi, t) and so on and so forth.
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=
1

det(2πI)
·
∫
Dc · Dc · exp

(
− 1

2

∫
dt ·

∫
ddx · c(x, t)(D − δF [φ]/δφ)−1c(x, t)

)
;

and the partition function becomes

Z =

∫
Dφ · Dc · Dc · exp

{
− 1

2

∫
dt ·

∫
ddx ·

∫
ddy·

(Dφ(x, t)− F [φ(x, t)])Ω−1(x, y)(Dφ(y, t) + F [φ(y, t)])

− 1

2

∫
dt ·

∫
ddx · c(x, t)(D − δF [φ]

δφ
)c(x, t) +

∫
dt ·

∫
ddx · J(x, t) · φ(x, t)

}
(124)

The dynamical action can be written as the previous term plus a term which is commonly
called Fadeev Popov action and it expresses the constraint in our theory

Sdyn.[φ] = Sdyn.
0 [φ] + Sfix[φ] =

1

2

∫
dt ·

∫
ddx ·

∫
ddy ·

(
Dφ(x, t)− F [φ(x, t)]

)
Ω−1(x, y)

(
Dφ(y, t)− F [φ(y, t)]

)

+
1

2

∫
dt ·

∫
ddx · c(x, t)(D − δF [φ]

δφ
)c(x, t) =

{1

2

∫
dt ·

∫
ddx ·

∫
dy ·Dφ(x, t)Ω−1(x, y)Dφ(y, t) +

1

2

∫
dt ·

∫
ddx · c(x, t)(D−1)c(x, t)

}
+

{∫
dt ·

∫
ddx ·

∫
dy · (−Dφ(x, t)Ω−1(x, y)F [φ(y, t)]) +

1

2
F [φ(x, t)]Ω−1(x, y)F [φ(y, t)]

−1

2

∫
dt ·

∫
ddx · c(x, t)(δF [φ]

δφ
)c(x, t)

}
= Sfree

dyn.[φ] + Sint
dyn.[φ].

From this action, one can derive the Feynman rules for propagators and vertices [see ref.[11]].

Note.
The dynamical action has a BRS symmetry. It is related to the invariance of the measure:

∏

α

[dφα] · δ(Eα[φ]) · det(E), (125)

under traslation that takes Eα[φ] 7→ Eα[φ] + ςα, where E is a general constraint applied to
fields. The infinitesimal transformation of fields is

δφα(x, t) = [E[φ(x, t)]]−1
αβ · ςβ(x, t). (126)

Introducing auxiliary fields and ghosts fields, it’s simple to demonstrate that this symmetry
of the action is BRS12.

2.2 Langevin dynamics with gaussian noise.
We assume that dynamical evolution of the system is driven by a purely dissipative Langevin
equation

∂φα(x, t)

∂t
= −1

2

∫
ddx ·

∫
ddy · δS[φ]

δφα(y, t)
· Ω(x, y) + ςα(x, t). (127)

We also assume gaussian noise distribution with cumulants

< ςα(x, t) >ς= 0; (128)

< ςα(x, t) · ςβ(x′, t′) >ς= Ω(x, x′) · δαβ · δ(t− t′); (129)
12The BRS transformation and the proof of the statement above can be found in [9].
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The previous equation of motion, written in Fourier space, becomes

∂φα(k, t)

∂t
= −Ω(k)

2

δS[φ(k, t)]

δφα(k, t)
+ ςα(k, t) (130)

We are interested to the long-distances properties of the system i.e. to the small-k behaviour
of Ω(k). One may note that, since Ω(x, y) is a short-range function, Ω(k) is an analytic
function. At this point there are two possibilities: the underlying dynamics may converve
or not the order parameter of the transition. We follows the discussion of the ref.[14].

2.2.1 Gaussian model.

We consider first the simplest case: the free theory, described by the euclidean action

S[φ] =

∫
ddx ·

[1

2
(∂µφ(x, t))2 +

1

2
m2φ2(x, t)

]
. (131)

The equation (130) becomes

∂φα(k, t)

∂t
= −Ω(k)

2
(k2 +m2)φα(k, t) + ςα(k, t) (132)

We consider expectation value of the field:

∂ < φα(k, t) >ς
∂t

= −Ω(k)

2
(k2 +m2)· < φα(k, t) >ς (133)

• If the order parameter is conserved, ∂
∂t < φα(0, t) >ς= 0, this implies Ω(k = 0) = 0. The

expansion for k → 0 of Ω(k) starts as Ω(k) ∼ k2 · Ω, where Ω is a constant. It corresponds
to fields which can have only self-interactions. This type of dynamcs is called model B. The
equation (133), in the limit of small momenta Ω(k)

k→0∼ k2Ω, becomes

∂ < φα(k, t) >ς
∂t

k∼0∼ −k
2Ω

2
(k2 + ξ−2) < φα(k, t) >ς (134)

Each mode has a relaxation time given by τk ∼ Ω−1k−2(k2 + ξ−2)−1. When k → 0, the
relaxation times diverge like ξz. This phenomenon is called critical slowing down. From the
previous relation we fix the dynamical exponent z = 4 for the gaussian model.

• If the order parameter is not conserved, fields can have interactions also with external
fields. In this case the expansion of Ω(k) starts with a constant Ω(k = 0) = Ω. This
type of dynamics sometimes is called relaxational because reproduces the effects of an heat-
bath which absorbs the fluctuations. The underlying situation is known as model A. As
Ω(k)

k→0∼ Ω, the equation (133) becomes

∂ < φα(k, t) >ς
∂t

k∼0∼ −Ω

2
(k2 + ξ−2) < φα(k, t) >ς (135)

The relaxation time is τk ∼ Ω(k2 +ξ−2)−1. Thus, we read a value of the dynamical exponent
z = 2 for the gaussian model.

2.2.2 φ4 model.

We want to extract the value of the dynamical critical exponent z in the case of an interacting
theory. In particular we consider an interacting O(N) symmetric model, which can be
reduced near dimension four to the (φ2)2 theory without loss of generality. Thus, we consider
the action:

S[φ] =

∫
ddx ·

[1

2
(∂µφ(x))2 +

1

2
r2φ2(x) +

u

4!
(φ2(x))2

]
. (136)
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The equation (130) describes the dynamics of the system:

∂φα(k, t)

∂t
= −Ω(k)

2
L[φ(k, t)] + ςα(k, t) (137)

where δS[φ]/δφ = L[φ] = (k2 + r + u/6(φ2(k, t)))φα(k, t). To the dynamical model ((136)
plus (137)) is associated a set of dynamical correlation functions W (n)(xi, t).
In particular, the connected two-point correlation function, at the critical point and in the
limit of small momenta has a scaling behaviour

W (2)(k, t)
k→0∼ k−2+η+zΨ(tkz) (138)

where we have taken into account the scaling also for the time variable through the dynamic
critical exponent z and Ψ is a scaling function. But if we compute the connected two-point
correlation function from (137), we expect that:

W (2)(k, t)
k→0∼ Ω (139)

for the model A and
W (2)(k, t)

k→0∼ Ω · k2 (140)

for the model B. Comparing the relations above, we conclude that the critical exponent
z = 2− η for the model A and z = 4− η for the model B.

2.3 Relaxational dynamics.
We assume that the dynamics of the fields occurs through a relaxational dynamics which
means to consider a purely dissapative Langevin equation with a white gaussian noise dis-
trubution:
∫
Dς ·P (ς) =

1√
det(2πΩ)

·
∫

exp
(
− 1

2

∫
ddx ·

∫
ddy ·ς(x) ·Ω−1δd(x−y) ·ς(y)

)
= 1. (141)

The cumulants of the noise distribution are fixed to

< ςα(x, t) >ς= 0; (142)

< ςα(x, t) · ςβ(x′, t′ >ς= Ω · δαβδd(x− x′)δ(t− t′); (143)

The dynamical action (123) becomes

Sdyn.
0 [φ] =

1

2
Ω−1

∫
dt ·

∫
ddx ·

[(
∂t +

Ω

2
`[φ(x, t)]

)
φ(x, t)

]2
(144)

such that
δSdyn.

0 [φ]

δφα(x, t)
= 0 =

(
∂t +

Ω

2
`[φ(x, t)]

)
φα(x, t). (145)

where δS[φ]/δφ = L[φ] = `[φ] · φ.
Since we consider a white gaussian type of noise, Ω(k) = Ω thus we have a model A type
of dynamics. Model A is the dynamical universality class is characterized by the dynamic
scaling exponent z = 2− η.
The equilibrium scaling behaviour (113) now takes into account also the time-variable. We
define therefore the dynamical equilibrium scaling behaviour to be the limit in which ξ →∞
keeping x/ξ and t/ξz fixed such that an operator O with scaling dimension ∆ sastisfies

< O(x1, x2, · · · , t) >= GO(x1, x2, · · · , t) ∼ ξ−∆ · Geq.O (
x1

ξ
,
x2

ξ
, · · · , t

ξz
). (146)

This statement completely defines the framework in which the off-equilibrium scaling theory
will be developed.
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Finally, there is one thing that must be point out. Why a relaxational dynamics might be
a good dynamical model for our system? Let us consider the probability distribution of the
system

P (φ, t) =< δ
(
φ(x, t)− φ(x)

)
>ς (147)

It satisfies the Fokker-Planck equation [see, for example, ref. [9] and [12]]

�
P (φ, t) = −ΩHFPP (φ, t); (148)

where HFP is called Fokker-Planck Hamiltonian

HFP

(
φ,

δ

δφ

)
= −1

2

∫
ddx · δ

δφ(x)

[ δ

δφ(x)
+ L[φ(x)]

]
. (149)

We write the Fokker-Planck equation as an equation of continuity for the distribution of
probabibility

∂P (φ, t)

∂t
=

Ω

2

∫
ddx · δ

δφ(x)
· J(x),

where the current is defined as

J(x) =
δP (φ, t)

δφ(x)
+ L[φ(x)]P (φ, t); (150)

The first term of the current reproduces the diffusion process and the second one the dissi-
pations. After long times we expect that the system does not depend on time and all the
dynamical effects are relaxed through the damping mechanisms: in other words we want
that the probability distribution tends to a steady state

∂P (φ, t)

∂t
= 0 =

Ω

2

∫
ddx · δ

δφ(x)
· J(x);

and this implies
δP (φ, t)

δφ(x)
+
δS[φ]

δφ(x)
P (φ, t) = 0;

The last equation is satisfied if the distribution of probability is like

P (φ, t) ∝ e−S[φ] (151)

that is the Boltzmann distribution of probability in our notations. Real statistical systems,
even in the presence of off-equilibrium phenomena at the transition, approaches the equi-
librium after long times. This physical requirement justifies the assumption of relaxational
dynamics.
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3 O(N) vector model in the large N limit.

In this section we present the O(N) vector model in the limit of large N . The limit N →∞
may be rather unphysical but it turns out to be exactly solvable.

3.1 O(N) vector model.
The N -vector model is a lattice model described in terms of N -vector spin variables Si of
unit length on each lattice site i, interacting through a short range ferromagnetic O(N)
symmetric two-body interaction Vi,j . The partition function of such a model can be written
as

Z =

∫ ∏

i

dSi · δ(S2
i − 1) · e−ε(S)/T , (152)

in which the configuration energy ε is

ε(S) = −
∑

i,j

Vi,j(Si · Sj) (153)

This model has a second order phase transition between a disordered phase at high tem-
perature, and a low temperature ordered phase where the O(N) symmetry is spontaneously
broken, and the order parameter Si has a non-vanishing expectation value. One can add to
ε(S) a linear coupling

ε(S) = −
∑

i,j

Vi,j(Si · Sj) +
∑

i

h · Si (154)

which can be interpreted as a uniform external magnetic field. The presence of a non-zero
magnetic field leads to a first-order transition in the low-temperature phase along the line
of h = 0. At the continuous transition the correlation length diverges and therefore a non-
trivial long distance physics emerges. As we have already seen in the first section, the long
distance physics of (154) can be described through an effective φ4 model

S[φ] =

∫
[
1

2
(∂µφ(x))2 +

1

2
rφ2(x) +

u

4!
(φ2(x))2 − hαφα(x)] · ddx. (155)

In the following sections we consider this model when the number of components N of the
vector become very large.

3.2 Statics of O(N) vector model for large N .
We present the static model and derive its critical properties [see ref. [9], [10] and [15] ].
The system is described by the partition function

Z =

∫
Dφ · exp

(
− S[φ]

)
(156)

where the action functional is

S[φ] =

∫
ddx ·

[1

2
(∂µφ(x))2 +N · U(φ2(x)/N)− hαφα(x)

]
. (157)

where the magnetic field has a fixed direction hα = δ1,α · h. The potential U is a general
polynomial. However, if we look to the long-distance properties, we know that a general spin
system with O(N) symmetry can be reduced to a φ4 model below dimension four. Thus, we
fix the shape of the potential to:

U(φ2(x)/N) =
1

2N
rφ2(x) +

u

4!N
(φ2(x))2 (158)



34

where u ∼ O(1/N) is a coupling constant with dimensions Λε. The large N limit makes the
system exactly solvable. The main simplification lies behind the following idea. One may
observe that, by the central limit theorem, the square field φ2(x) =

∑N
α=1 φ

2
α(x) should have

a normal distribution as N →∞. Thus, it is expected that the averages of several fields can
be reduced to

< φ2(x) · φ2(y) >
N→∞∼ < φ2(x) > · < φ2(y) > (159)

This idea suggest us to introduce a new density field Nρ(x) = φ2(x) which satisfies the
condition

1 = N

∫
Dρ · δ(Nρ(x)− φ2(x)); (160)

This constraint can be implemented in our model by introducing another field λ(x)

1 = N

∫
Dρ · δ(Nρ(x)− φ2(x)) =

N

4iπ

∫
Dρ · Dλ · exp

(
− λ

2
(φ2(x)−Nρ(x))

)
(161)

λ field integration runs over imaginary axis in the complex plane because the field λ is not
related to any physical quantity; it tells us which is the relation between φ2 and ρ, nothing
more. By inserting the identity (161), the partition function can be written as

Z =

∫
Dφ · Dρ · Dλ · exp

(
− S[φ, ρ, λ]

)
(162)

with

S[φ, ρ, λ] =

∫
ddx ·

[1

2
(∂µφ(x))2 +

1

2
N · rρ+

uN2

4!
· ρ2 +

1

2
λ(x) · (φ2(x)−Nρ(x))−h ·φ1(x)

]
.

(163)
We note that the new action is quadratic in φ integration, thus we are able to perform the
integral (162). The field has N components, φ = (φ1 = σ , φα>1 = ~π). We perform the
integration over the N − 1 transverse components

Z =

∫
Dσ · Dρ · Dλ · exp

(
− SN [σ, ρ, λ]

)
(164)

The action is

SN [σ, ρ, λ] =

∫
ddx·

[1

2
(∂µσ(x))2+

1

2
N ·rρ+

uN2

4!
ρ2+

1

2
λ(x)·(σ2(x)−Nρ(x))−h·σ(x)

]
(165)

+
1

2
(N − 1)Tr log(−∂µ∂µ + λ(·))

It may be useful to rescale all the quantities with N ,

φ(x) 7→
√
Nφ(x), (166)

u 7→ u/N, (167)

hα 7→
√
Nhα. (168)

After such rescaling, the action above becomes explicitly of order N :

SN [φ] =

∫
[
1

2
(∂µ
√
Nφ(x))2 +

1

2
rNφ2(x) +

u

4!N
((
√
Nφ(x))2)2 −

√
Nhα

√
Nφα(x)] · ddx 7→

(169)

N ·
∫

[
1

2
(∂µφ(x))2 +

1

2
rφ2(x) +

u

4!
((φ(x))2)2 − hαφα(x)] · ddx = N · S[φ].

and therefore the expression (165) becomes:

SN [σ, ρ, λ] = N ·
∫
ddx·

[1

2
(∂µσ(x))2+

1

2
rρ+

u

4!
ρ2+

1

2
λ(x)·(σ2(x)−Nρ(x))−h·σ(x)

]
(170)
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+
1

2
Tr log(−∂µ∂µ + λ(·)) = N · S[σ, ρ, λ].

If we consider the limit of the large N , the partition function (164) can be computed by the
steepest descend method. We perform a saddle point expansion of the action S in terms
of 1/N and we keep only the zero order13. Further developments are made by using the N
scaled action S ∼ O(1) valuated at the leading order in 1/N .

3.2.1 Saddle Point Equations.

Defining the action density E as

S[σ, ρ, λ] =

∫
ddx · E [σ, ρ, λ], (175)

we look for an uniform space-independent saddle point X = {σ(x), ρ(x), λ(x)} = {σ, ρ,m2}
in which E has a minima:

δE
δσ(x)

∣∣∣
σ(x)=σ

= 0 =
δE
δρ(x)

∣∣∣
ρ(x)=ρ

=
δE

δλ(x)

∣∣∣
λ(x)=m2

.

At saddle point the action density is

E =
1

2
rρ+

u

4!
ρ2 +

1

2
m2
(
σ2 − ρ

)
− h · σ +

1

2

∫ Λ ddk

(2π)d
log(k2 +m2). (176)

From the last relations, we extract the saddle point equations:

m2σ − h = 0 (177)

this equation implies that the magnetic field breaks O(N) symmetry explicitly and gives to
the system an induced magnetization, that is

σ = h/m2 (178)

The second saddle point equation tells to us

U ′(ρ)− 1

2
m2 = 0;

By fixing the potential as (158) we have

m2 − r − u

6
ρ = 0 (179)

this leads to the results

ρ =
6(m2 − r)

u
(180)

13Let us parametrize the deviation from the saddle point value of the field as

φ(x) = X +
∼
φ(x)/

√
N (171)

the action can be written as

S[φ] = S[X] +
1

2!

∼
φ(x)

δ2S[φ]

δφ(x)δφ(y)

∣∣∣
φ=X

∼
φ(y) +RN (

∼
φ); (172)

where

RN (
∼
φ) =

∞∑
k=3

(1/N)k/2 − 1

k!
·

δkS[φ]

δφ(x1) · · · δφ(xk)

∣∣∣
φ=X

·
∼
φ(x1) · · ·

∼
φ(xk). (173)

The corrections to the system valuated at its saddle point generate an 1/N expansion and they are negligible
because

lim
N→∞

RN (
∼
φ) = 0. (174)
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The third saddle point equation is

σ2 − ρ− Ω(m) = 0

which can be written, using (180), as

r +
u

6
(σ2 + Ω(m)) = m2 (181)

where Ω is defined as

Ω(m) =

∫ Λ ddp

(2π)d
· 1

p2 +m2
. (182)

If we turn off the magnetic field h = 0 the saddle point equations becomes:

m2 · σ = 0; (183)

r +
u

6
ρ = m2; (184)

σ2 − ρ− Ω(m) = 0. (185)

Note.
The choice of the quartic potential (158) makes the system quadratic in the ρ field. After
its integration the action (170) becomes:

S[σ, λ] =

∫
ddx·

[1

2
(∂µσ)2+

1

2
λ(x)σ2(x)− 3

2u
λ2(x)+

3

u
rλ(x)−h·σ(x)

]
+

1

2
Tr log(−∂µ∂µ+λ(·))

(186)
The result of the integration is equivalent to the substitution in (170) of the ρ field with the
solution of the classical equation

λ(x) = r +
u

6
ρ(x). (187)

It can be shown that the square field can be replaced by its expectation value φ2(x) ∼ ρ
at the leading order in 1/N14. It follows that λ(x) ∼ r + u/6ρ = m2. The action above
becomes:

S[σ, λ] =

∫
ddx ·

[1

2
(∂µσ)2 +

1

2
m2σ2(x)−h ·σ(x)+const.

]
+

1

2
Tr log(−∂µ∂µ+λ(·))+O(1/N).

(188)
The theory seems to be gaussian at order O(1). The connected two-point correlation function
is given by:

W (2)(p) =
1

p2 +m2
(189)

Let us derive the critical properties of the system. We investigate the two phases and
compute the specific values of some critical exponents.

3.2.2 Low Temperature Phase.

In the absence of magnetic fields, the low-temperature phase presents the spontaneus sym-
metry breaking O(N) 7→ O(N−1). The expectation value of the field σ is not zero, thus the
saddle point equation (183) states that m2 = 0: the ~π components of φ become Goldstone
bosons. The full symmetry loses N − 1 generators. From the second saddle point equation
(184) we obtain

ρ =
6(m2 − r)

u
=
−6r

u
; (190)

14At leading order, it is reasonable to consider subleading the variation of the square field φ2(x) with
respect to those of φ(x). Thus, one can replace φ2(x) ∼< φ2(x) >= ρ. A formal proof of this statement can
be found in [15]. This property still remain true in critical dynamics where the Langevin equation can be
linearized by the substution φ2(x, t) ∼< φ2(x, t) >ς .
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it follows that
σ2 = ρ− ρc =

6

u
(rc − r), (191)

with the definitions ρc = Ω(0) and rc = −(u/6)ρc < 0. We can study the departure from
critical temperature by defining:

τ =
6

u
(r − rc) (192)

that implies

σ2 =
6

u
(rc − r) = −τ (193)

Using the last expression we are able to extract the critical exponent β for the behaviour of
order parameter close to the critical point

σ ∼
√
−τ = (−τ)β ⇒ β = 1/2 (194)

We find for O(N) vector model in the large N limit a gaussian exponent β, in all spatial
dimensions.

3.2.3 High Temperature Phase.

We consider again the case h = 0. The expectation value σ = 0 because of the full O(N)
symmetry. The saddle point equation (183) now leads to m2 6= 0: the system has a typical
mass and therefore a finite length scale of correlation. The value of the physical mass can
be also read in the poles of the two-point correlation function (189). From the saddle point
equation (185) with σ = 0 we can write ρ = Ω(m) that implies

∂ρ

∂m
=

(−2m)

(2π)d

∫ Λ ddp

(p2 +m2)2
< 0 (195)

The thermal coupling r is an increasing function of m2 and it has minimum in rc where
m2 = 0. From (184) using definitions ρc = Ω(0), rc = −u/6ρc, τ = 6/u(r − rc), we obtain

m2 =
u

6
(ρ− ρc + τ). (196)

Let us introduce the notation
ρ− ρc = −m2Dd(m) (197)

where

Dd(m) =
1

m2
[Ω(m)− Ω(0)] =

1

(2π)d

∫ Λ ddp

p2(p2 +m2)
. (198)

The value of this integral depends on the spatial dimension of the system.
We develop our results in d = 4 − ε where, moving to the critical point we can expand the
function Dd(m) for m << Λ as

Dd(m) ' C(d) ·md−4 − a(d) · Λd−4 +O(m2 · Λd−6) (199)

where C(d) = (1/(4π)d/2)Γ(1− d/2) and a(d) is a constant that depends on regularization
method choosen15 At the leading order of this expansion we find

ν = 1/(2− ε) = 1/(d− 2) (200)

Below dimension four the theory presents a critical exponent ν different from those at the
gaussian fixed point. This reflects the presence of a non-trivial interaction behind the defi-
nition of m2.

15 For instance, using dimensional regularization:

Dd(m) =
m−2

(2π)d

(∫ ddp

(p2 +m2)
−
∫

ddp

p2

)
= md−4 1

(2π)d

∫
ddp

(p2 + 1)
= md−4 1

(4π)d/2
Γ(1− d/2).
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3.2.4 Critical Point.

We have two relevant variables that characterize the critical point now: the thermal coupling
and the magnetic field. The general critical surface for a ferromagnetic system is described by

◦ τ = 0 : The temperature is at its critical value so the thermal coupling is fixed to

r = rc = −(u/6)Ω(0).

◦ hα = 0 : The continuous transition occurs at null magnetic field.

We can extract the critical exponent η recalling the weak scaling statement (68): since
the theory is massless we read from (189) that

W (2)(p) ∼ 1/p2 ⇒ η = 0 (201)

This is a very remarkable result: for all spatial dimensions the anomalous dimensions of the
fields are zero in the large N limit. It follows that the scaling dimension of the fields is set
to the canonical value

dφ =
1

2
(d− 2 + η) = (d− 2)/2 (202)

For an external source which linearly couples the field (as will be magnetic field), the scaling
dimension is

dh = d− dφ =
1

2
(d+ 2− η) = (d+ 2)/2 (203)

It is possible to verify that the scaling exponents found before satisfy the relation β = νdφ.
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3.3 Equilibrium relaxational dynamics of O(N) vector model for
large N .

We consider the action (169) when the fields becomes time-dependent:

S[φ] =

∫
ddx ·

[1

2
(∂µφ(x, t))2 +

1

2
rφ2(x, t) +

u

4!
(φ2(x, t))2 − hαφα(x, t)

]
. (204)

where the magnetic field has a fixed direction hα = δ1,α · h. We assume that the dynamical
evolution of the system is driven by a purely dissipative Langevin equation:

∂φα(x, t)

∂t
= −Ω

2

δS[φ]

δφα(x, t)
+ ςα(x, t) (205)

The parameters of the noise distribution are fixed to:

< ςα(x, t) >ς= 0; (206)

< ςα(x, t) · ςβ(x′, t′ >ς= Ω · δαβδd(x− x′)δ(t− t′); (207)

We write explicitly the stochastic field equation

�
φα(x, t) = −Ω

2

(
− ∂µ∂µ + r +

u

6
(φ2(x, t))

)
φα(x, t) +

Ω

2
hα + ςα(x, t); (208)

In the large N limit the Langevin equation can be linearized replacing the square field with
its expectation value

φ2(x, t)
N→∞∼ < φ2(x, t) >ς (209)

It follows that the mass term, defined by the saddle point equation (179) is a constant

r +
u

6
φ2(x, t) ∼ r +

u

6
< φ2(x, t) >ς= m2 (210)

Since we consider the leading order of the saddle point expansion, this approximation is
consistent. The Langevin equation becomes:

�
φα(x, t) = −Ω

2
(−∂µ∂µ +m2)φα(x, t) +

Ω

2
hα + ςα(x, t); (211)

In the Fourier space this equation becomes:

�
φα(k, t) = −Ω

2
(k2 +m2)φα(k, t) +

Ω

2
· (2π)dδd(k) · hα + ςα(k, t); (212)

The cumulants of noise distribution, written in Fourier space, are:

< ςα(k, t) >ς= 0 (213)

< ςα(k, t)ςβ(k′, t′) >ς= Ω · δαβ(2π)dδd(k + k′)δ(t− t′) (214)

The solution of the equation (212) is [see app.B.1]:

φα(k, t) = φ0
α(k, t) + (2π)dδd(k)

(
1− exp

(
− Ω

2
(k2 +m2)(t− t0)

)) hα
k2 +m2

+

∫ t

t0

dt′ · exp
(
− Ω

2
(k2 +m2)(t− t′)

)
· ςα(k, t′). (215)

with φ0
α(k, t) = δ1,α(2π)dδd(k) · σ exp

(
− Ω

2 (k2 +m2) · (t− t0)
)
.
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3.4 Correlation functions.

We conclude this section by computing the dynamical correlation functions. We remember
that, in the large N limit, the O(N) vector-model is exactly solvable in terms of one and two-
point correlation functions. All higher-order correlators can be computed by using Wick’s
theorem. The solution (215) permits us to make easly averages on noise distribution by
using relation (120).

3.4.1 One-point Correlator.

From solution (215), exploiting the noise characteristics (213), we obtain the one-point
correlation function:

< φα(k, t) >ς= φα,0(k, t) + (2π)dδd(k)
(

1− exp
(
− Ω

2
(k2 +m2)(t− t0)

)) hα
k2 +m2

.

We define the magnetization Σ to be

(2π)dδd(k)Σα(t) =< φα(k, t) >ς (216)

By integrating over the momenta in the previous relation we obtain

Σα(t) = δ1,ασ exp
(
− Ω

2
m2 · (t− t0)

)
+
(

1− exp
(
− Ω

2
m2(t− t0)

))δ1,α · h
m2

= δ1,ασ.

Thus, we learn that the transverse magnetization ΣT = Σα>1 is equal to zero and the
longitudinal component ΣL = Σ1 is

ΣL(t) = σ. (217)

The longitudinal magnetization is fixed to its equilibrium value given by (177). Since the
transverse components are zero, we call the longitudinal magnetization ΣL(t) = Σ(t).

3.4.2 Two-point Correlator.

At zero magnetic field the two-point correlation function Gφφ is defined to be:

< φ(k, t)αφ(k′, t)β >ς= δαβ(2π)dδd(k + k′) ·Gφφ(k, t) (218)

where the δαβ makes equivalents all the spatial directions. In the presence of a symmetry
breaking the space is no longer isotropic. Therefore we define a transverse two point function

< φ(k, t)αφ(k′, t)β >ς= δαβ(2π)dδd(k + k′) ·GT (k, t) (219)

with α, β > 1 and a longitudinal two point function

< φ(k, t)1φ(k′, t)1 >ς= (2π)dδd(k + k′) ·GL(k, t) (220)

Thus, we consider the expectation value of two fields over the noise distribution [see app.
B.2 ]

< φ(k, t)αφ(k′, t)β >ς=

(2π)dδd(k+k′)δα,β
{

(2π)dδd(k)σ2 +
Ω

2
· 1

k2 +m2

(
1−exp

(
−Ω(k2 +m2) · (t− t0)

))}
(221)

It follows that the two-point correlation functions are:

GL(k, t) =
Ω

2
· 1

k2 +m2

(
1− exp

(
− Ω(k2 +m2) · (t− t0)

))
+ (2π)dδd(k)σ2 (222)

and
GT (k, t) =

Ω

2
· 1

k2 +m2

(
1− exp

(
− Ω(k2 +m2) · (t− t0)

))
(223)
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after long times t� t0

GL(k, t) =
Ω

2
· 1

k2 +m2
+ (2π)dδd(k)σ2 (224)

and
GT (k, t) =

Ω

2
· 1

k2 +m2
= W

(2)
T (k) (225)

We recover the static two-point correlation functions if we set Ω = 2.
Finally we note that the equilibrium dynamical correlation functions satisfy the constraint
relation (181) which becomes:

r +
u

6

(
Σ2(t) +

∫ Λ ddk

(2π)d
·GT (k, t)

)
= m2. (226)
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4 Introduction to the scaling behaviours
out of equilibrium.

This section provides an introduction to the off-equilibrium scenario. The results of the
previous sections apply in the equilibrium framework. Now we want to investigate the
off-equilibrium behaviours emerging when the system approaches the transition with time-
dependent parameters.
Thus, we start with a system at equilibrium and we change the parameters in such a way
that the system is driven to the transition at t = 0. At the critical point, the fluctuations of
the system have diverging relaxation times, therefore it is expected that there is a time in
which the system goes out of equilibrium. This remains true even in the limit of slow time
variations ts → ∞: even if the parameters slowly change in time, the system cannot adapt
itself to the external variations.
Very close to the transition, the dynamics is described in terms of new length and time
scales. These ones can be defined through the equilibrium correlation length and time and
are called Kibble-Zurek scales. The observables present a non-trivial rescaling in terms of
these scales.

4.1 Protocols.

We define the protocols δ(t, ts) as paths in the parameters space of the system that cross the
critical point at t = 0 [see ref.[16]]. Protocols are essentially characterized by their symmetry
and by the leading order behaviour a near the transition. For t ' 0 the protocol can be
written as

δ(t, ts)
t∼0∼ δ0 · (t/ts)a (227)

where δ0 is a constant and ts is the scale of time-variations. Since the protocol takes the
system across the critical point, the leading order behaviour around the transition is an
odd number. The most general protocol for a ferromagnetic critical point involve both
temperature and magnetic field and can be expressed as

~δ(t, ts) = (~h(t, ts), r(t, ts)− rc) (228)

If we consider a protocol in which both the parameters have a proper time-evolution, the
system undergoes a multicritical phase-transition and therefore the previous results should
be reviewed. We restrict our attention to the following two protocols:

4.1.1 Magnetic field protocol.

~δ(t, ts) = (hα(t, ts), 0). (229)

It is a protocol along the magnetic field at the critical temperature (the thermal coupling is
fixed to its critical value r = rc). The magnetic field has a fixed direction

hα(t, ts) = δ1,α · h(t, ts). (230)

This is a symmetry-breaking protocol because there is an explicit symmetry-breaking term
in the system due to external magnetic field. The dependence of the magnetic field on time
is δ(t, ts) = h(t, ts) = tanh(t/ts) and we will investigate the area near the transition in the
limit of slow-variations ts → ∞ where we write δ(t, ts) = h(t, ts) ≈ t/ts as linear ramp
protocol.
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4.1.2 Thermal protocol.

~δ(t, ts) = (0, r(t, ts)− rc) (231)
It is a protocol at zero magnetic field hα = 0 moving along the thermal direction with a law
δ(t, ts) = r(t, ts) − rc. Even if we do not specify the time-dependence of the thermal cou-
pling at all times, we assume that near the transition the protocol can be written as in (227).
Thus, we assume that near the transition δ(t, ts) ≈ −t/ts. This protocol is non-symmetry
breaking because the most relevant operator along this path respect all the symmetries of
the model.

4.1.3 Round-trip protocols.

We define the round-trip protocol associated to δ(t, ts) to be the protocol such that it has
the same time-dependence of the external fields of δ but occurs along a closed path: it starts
at a time ti = −∞, goes to tf = +∞ crossing the transition at t = 0 and then comes back
from tf to ti. It follows that the initial and the final values of the external fields are the
same along a round-trip protocol.

4.1.4 Strong scaling behaviour.

We define ξ(t, ts) and ξt(t, ts) to be the instantaneous correlation length and time if the
system is at the equilibrium at δ(t, ts). We also define for all kind of protocols the critical
exponent νg as follows:

νg = 1/(d−∆) (232)
where ∆ is the scaling dimension of the most relevant operator along the path near δ = 0.
For small value of the protocol the correlation length diverges as

ξ(t, ts) ∼ |δ(t, ts)|−νg . (233)

The quantity νg plays the role of a generalized critical exponent ν16 Let us consider in par-
ticular the two protocols (229) and (231):

-Magnetic field protocol.

The magnetic field has scaling dimension dh = d + 2/2 and couples the field φ having
scaling dimension dφ = d− 2/2 = ∆ . It follows that

νg = νh =
1

d− (d−2)
2

=
2

d+ 2
=

1

dh
; (234)

-Thermal protocol.

In Sec.3 we have already derived the exponent ν related to the thermal coupling constant
(200). Thus,

ν =
1

d− 2
; (235)

in 2 < d < 4. This result can be viewed (looking at relation (196)) as a coupling

r − rc = m2 − u

6
(ρ− ρc) = m2 +

u

6
(m2Dd(m)) = m2 +

u

6
(C(d)m2−ε) ∼ m2−ε, (236)

at leading order. This term couples an operator having scaling dimension ∆ = d− 2 + ε =
d− 2 + (4− d) = 2. It follows that

νg = ν =
1

d−∆
=

1

d− 2
=

1

2dφ
. (237)

16As we have seen in Sec.1, the critical exponent ν is used to describe the power-law with which the
correlation length diverges along the thermal protocol. Here we extend this idea by defining the an exponent
νg for generic type of protocols [see ref.[16].
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Figure 8: The Kibble-Zurek time for the thermal (left) and the magnetic field (right) protocol
at fixed ts = 20 in three spatial dimensions.

4.2 Kibble-Zurek scales.
There are two competiting effects which characterize the system while it approaches the
critical point: the divergence of the correlation length and the phenomenon of the critical
slowing down. One considers an instantaneous value of the protocol δ(t, ts): if the system
is at the equilibrium, the correlation length diverges as

ξ(t, ts) ∼ |δ(t, ts)|−νg ∼ |δ0 · (t/ts)a|−νg . (238)

We define the quench-time as the time which the system needs to adapt itself to the variations
of the external fields:

τquench(t, ts) = ξ(t, ts)/
�
ξ(t, ts). (239)

Since the instantaneous relaxation time of the system ξt(t, ts) < τquench(t, ts) the system
remains at the equilibrium.
But the relaxation time diverges at the transition as

ξt(t, ts) ∼ ξz(t, ts) ∼ |δ(t, ts)|−νgz ∼ |δ0 · (t/ts)a|−νgz (240)

Thus, there must be a time in which ξt(t, ts) > τquench(t, ts) and therefore the system goes
out of the equilibrium. We consider the instant of time tQ such that

ξt(tQ, ts) = τquench(tQ, ts); (241)

For times |t| < tQ the correlation length and time differ from their equilibrium value and
are no longer able to describe the scaling behaviour of the system. By the previous relations
follow that

tQ = (ts/|δ0|1/a)(aνgz)/(aνgz+1) (242)

We call this quantity Kibble-Zurek time. One may note that tQ depends on the protocol
through the leading order behaviour a and the exponent νg, which is related to the most rele-
vant scaling field along the path. We define also a length-scale describing the off-equilibrium
dynamics as

lQ = t
1/z
Q = (ts/|δ0|1/a)(aνg)/(aνgz+1) (243)

that is generally called Kibble-Zurek length. We compute the specific values of the Kibble-
Zurek length and time along the protocols (229) and (231):

-Magnetic field protocol.

For a linear ramp protocol a = 1, δ0 = 1 with νg = νh = 1/dh, the KZ time is:

tQ = (ts)
4/(6+d) (244)
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Figure 9: The figure show how the KZ time increase with ts. It has been made in d = 3 and
for the magnetic field protocol. The thermal protocol shows the same feature.

and the KZ length
lQ = t

1/z
Q = (ts)

2/(6+d) (245)
where we have used a value z = 2 of the dynamic critical exponent.
For instance, in three spatial dimension d = 3 we have: dh = 5/2, dφ = 1/2, ν = 2/5 and
tQ = (ts)

4/9, lQ = (ts)
2/9.

-Thermal protocol.

the Kibble-Zurek time for a linear thermal protocol νg = ν = 1/(d − 2) with |δ0| = 1
is

tQ = (ts)
2/d (246)

The Kibble-Zurek length for z = 2 is

lQ = t
1/z
Q = (ts)

1/d (247)

In d = 3 we have: dh = 5/2, dφ = 1/2, ν = 1 and tQ = (ts)
2/3, lQ = (ts)

1/3.

The off-equilibrium physics is observed for an interval of size tQ ∼ (ts)
e around the tran-

sition, with e = (aνgz)/(aνgz + 1). When we take the limit of very slow time-variations
ts →∞, this interval become very large:

tQ ∼ (ts/|δ0|1/a)e
ts→∞→ ∞ (248)

Since e < 1, the focus on the off-equilibrium scenario is related to a very small values of the
external fields: near the transition a generic protocol can be written as δ(t, ts) ≈ δ0 · (t/ts)a,
so if we express the protocol in terms of the KZ time:

δ(t, ts) ∼ ±(t/tQ)a · (ts/|δ0|1/a)a(e−1) ts→∞→ 0 (249)

where the two signs are related to the sign of the constant δ0. In the limit of very slow
passage the system is arbitrarily close to the critical point.

4.3 Kibble-Zurek scaling limit.
We assume the existence of a non-trivial scaling behaviour for δ(t, ts) ' 0 in terms of the
variables:

t = t/tQ.



46

x = x/lQ.

The protocol δ(t, ts) can be expressed in terms of the new scaling variables near the transi-
tion:

δ(t, ts) ∼ δ0 · (t/ts)a ∼ ±ta · l−1/νg
Q (250)

We formally define the off-equilibrium scaling limit (also called Kibble-Zurek scaling limit)
to be the limit ts →∞ when time and length scales are measured in units of the diverging
KZ scales, tQ and lQ.
Let us consider an operator O with scaling dimension ∆: the KZ scaling for its correlation
functions is the limit ts →∞ holding t and x fixed, such that:

< O(x, t, ts, δ) >ς= GO(t, ts, δ) ∼
1

l∆Q
· GO(t); (251)

for one-point correlator, and

< O(x, t, ts, δ)O(0, t, ts, δ) >ς= GOO(x, t, ts, δ) ∼
1

l2∆
Q

· GOO(x, t), (252)

for two-point correlation functions and so on and so forth.

The dynamics across the transition present a universal scaling behaviour in the limit of
slow passage. Infact, it does not depends on the choice of the initial and final values of the
external fields because the off-equilibrium scaling occurs in a range of values of the proto-
col that shrinks near zero when ts → ∞. Very slow-dynamics provides to universalty; the
off-equilibrium scaling behaviours depend only on a few things: the static and the dynamic
class of universality17 plus the leading order behaviour a of the protocol near the transition.

4.4 Finite-size effects.
We study the off-equilibrium scaling relations arising by the presence of time-dependent
parameters coupled to a system of finite-size L which approaches the critical point [see ref.
[6]]18. Thus, we consider a protocol δ(t, ts) associated to the system and we investigate the
limit of very slow passage ts →∞. Assuming the existence of a non-trivial scaling behaviour
for δ(t, ts) ' 0, we expect that the off-equilibrium behaviour to be controlled by the scaling
variables:

t = t/tQ,

x = x/lQ,

` = lQ/L;

We also assume that the dynamics across the transition present a universal scaling behaviour
when ts and L becomes large keeping the variables t, x and ` fixed. The protocol can be
written in terms of the scaling variables close to the critical point:

δ(t, ts) · L1/νg ∼ δ0 · (t/ts)a · L1/νg ∼ ±ta · `−1/νg . (253)

Let us derive more quantitative predicitions, considering first the equilibrium scaling be-
haviour of statistical observables. The two-point correlation function of an operator O with
scaling dimension ∆, obey to the relation19:

< O(x, t, L, δ)O(0, t, L, δ) >ς= GOO(x, t, L, δ) ∼ L−2∆ · Geq.OO(
x

L
,
t

Lz
, δ · L1/νg ); (254)

17 Which means the symmetry of the model and the spatial dimensions plus the type of equilibrium-
dynamics

18Up to now we have considered the scaling relation for an infinite-volume system. However, it is not
obvious to understand why the infinite-volume off-equilibrium behaviour is well-defined. Thus, let us consider
the effects of a finite-size L. Then, we consider again the infinite-volume limit of the system.

19It is an extension of the equilibrium scaling behaviour (146) with finite-size effects. See for instance
ref.[19]
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close to the critical point. In the infinite-volume limit20, for |δ| → 0 at x/ξ, t/ξz fixed:

< O(x, t, δ)O(0, t, δ) >ς∼ ξ−2∆ · Geq.OO(
x

ξ
,
t

ξz
) = |δ|2νg∆ · Geq.OO(x|δ|νg , t|δ|zνg ); (255)

Geq.OO is the equilibrium scaling function and the exponent νg is defined by (234). The protocol
δ resume in a compact notation all the informations about the relevant external fields21. We
require that the equilibrium finite size-scaling matches the infinite-volume scaling behaviour:

Geq.OO(
x

L
,
t

Lz
, δ · L1/νg )

L=∞∼ |δ · L1/νg |2νg∆ · Geq.OO(x|δ|νg , t|δ|zνg ). (256)

when δ · L1/νg → ∞. Let us give a concrete example: the equilibrium scaling behaviour of
the magnetization at the critical point for small values of the magnetic field is

Σ(t, L, h, Tc) ∼ L−dφ ·Θeq.(
t

Lz
, h · Ldh); (257)

where Θeq. is the equilibrium scaling function of the magnetization. In the infinite-volume
limit

Σ(t, L =∞, h, Tc) ∼ ±a|h|dφ/dh ; (258)

since |h| → 022. Thus, the scaling function obey to the relation

Θeq.(
t

Lz
, h · Ldh)

L=∞∼ ±a|h · Ldh |dφ/dh (259)

when h · Ldh →∞.
In order to describe the off-equilibrium regime around the transition where δ(t, ts) ≈ δ0 ·
(t/ts)

a, we generalize the relation (254):

GOO(x, t, ts, L, δ) ∼ L−2∆ · GOO(x, t, `) (260)

GOO is a general function of the off-equilibrium scaling variables. The off-equilibrium scaling
limit in the infinite-volume limit has been already discussed in the previous subsection [see
Eq. (251) and ref.[16]]. We report the result:

GOO(x, t, ts, δ) ∼ l−2∆
Q · GOO(x, t). (261)

The infinite-volume limit can be formally obtained by performing the limit `→ 0 keeping t,
x fixed

GOO(x, t, `)
`→0∼ `−2∆ · GOO(x, t) = (lQ/L)−2∆ · GOO(x, t) (262)

4.5 Asymptotic behaviours.

We investigate the first deviations from the equilibrium behaviour in the correlation func-
tions occuring at a time |t| ∼ tQ before the transition. In terms of the rescaled time, the
equilibrium has to be recovered in the asymptotic limit t→ −∞.

4.5.1 Matching of the scaling behaviours.

By costruction, it is possible to connect the off-equilibrium scaling with the equilibrium one,
in the appropriate limit t → −∞. Within the notation of the previous subsection, in the
infinite-volume limit

l−∆
Q · GO(t) ∼ |δ|νg∆ · Geq.O (t · |δ|zaνg ) (263)

20The volume tends to infinity at fixed density of the spins variables.
21At the equilibrium the protocol δ does not depends on time: it is a fixed configuration.
22The constant a > 0; the two signs reflects the fact that Σ aligns itself with the direction of the magnetic

field and therefore changes sign if h 7→ −h.
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Figure 10: A qualitatively picture shows the region around the transition before and after
the KZ scaling limit. In this figure, we assumed that the system approaches the equilibrium
also after the transition.

Using the relation (250) one finds 23

GO(t) ∼ |t|aνg∆ · Geq.O (t · |t|zaνg ). (264)

For the two-point correlation function:

GOO(x, t) ∼ |t|2aνg∆ · GeqOO(x · |t|νga, t · |t|zaνg ); (265)

We consider the particular case of a spin system which crosses the ferromagnetic critical
point. One can find for the one-point correlation function:

GO(t) ∝ |t|aνg∆ (266)

because spin systems present a constant magnetization at the equilibrium. The equilibrium
two-point correlation function decays exponentially:

GOO(x, t) ∼ |t|2aνg∆ · e−|x|·|t|νga ; (267)

In the Fourier space the last relation becomes:

Geq.
OO(k, t, δ) ∼ ξ2∆ · Geq.OO(k · ξ, t/ξz) (268)

Thus,

GOO(k, t) ∼ |t|−2aνg∆ · Geq.OO(k · |t|−aνg , t · |t|zaνg ) ∼ |t|−2aνg∆ |t|−aνg
k

2 · |t|−2aνg + 1
. (269)

Let us consider also the finite-size effects. In a finite geometry, a necessary condition to
obtain equilibrium results is that ts � τ i.e. ts · τ → ∞, where τ is the slowest time-scale
of the system at the equilibrium given by τ ∼ Lz. Since ts →∞ at fixed ` we have:

ts · L−z = `z/e · Lz(1−e)/z (270)

This condition is satisfied only if L→∞.
The previous relations implies that the matching occur at a time in which ξ(t, ts) < L. Thus,

23It can be viewed also as a comparation of the two length scales:

x/lQ

x/ξ(t, ts)
=
ξ(t, ts)

lQ
∼ |δ(t, ts)|−νg · l−1

Q ∼ |δ0 · (t/ts)a|−νg · l−1
Q ∼ |t/tQ|−aνg .
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the limit t→∞ at fixed ` is expected to lead to the infinite-volume equilibrium behaviour.
Using the relation (253), we find the link between the two scalings regimes:

GOO(x, t, `) ∼ |ta · `−1/νg |2νg∆ · Geq.OO(x · |t|aνg , t · |t|zaνg ) (271)

The asymptotic behaviour of a finite-size system matches the infinite-volume equilibrium
scaling relations because occurs in a region with a finite correlation length. Further devel-
opments are made in the infinite-volume limit.

4.5.2 Leading correction to the asymptotic equilibrium scaling.

We discuss the leading off-equilibrium corrections to the equilibrium scaling behaviour in
the correlation functions. Let us consider, for instance, the two-point correlator. At the
equilibrium it presents an exponential decay

Geq.OO(x/ξ, t/ξz) ∼ e−|t|/ξz(t,ts) (272)

From the equation (267), we can write the last relation in terms of the KZ scales

Geq.OO(x, t) ∼ |t|2aνg∆ · e−|t|·|t|aνgz (273)

Approaching the equilibrium, the scaling function GOO presents small fluctuations whose
lifetime τo is of the order of the ratio between the two competing time-scales

τo ∼ ξt(t, ts)/tQ ∼ |δ(t, ts)|−aνgz · t−1
Q ∼ |t|−aνgz; (274)

We assume that these fluctuations are exponentially damped
{
GOO(x, t)− Geq.OO(x · |t|aνg , t · |t|aνgz)

}
t→−∞∼ Geq.OO(x · |t|aνg , t · |t|aνgz) ·K(t) · e−c|t|/τo

GOO(x, t)

Geq.OO(x · |t|aνg , t · |t|aνgz) − 1 ∼ K(t) · e−c|t|1+azνg (275)

where K is a regular function and c is a positive constant. This ansatz can be generalized
to the other observables and has been numerically checked in the ref.[6] for the O(N) vector
models.
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5 Off-equilibrium scaling behaviours for O(N) vector model
at large N .

We study the off-equilibrium physics arising in the O(N) vector model at large N . The
dynamics of the system now depends also on the external fields: therefore we consider again
the Langevin equation with variable parameters and we solve it. We find that the correla-
tion functions depends on the external fields and on the effective mass term m2(t, ts) of the
O(N) model. A constraint-equation defines the mass term at all times.
Since the correlation functions and the constraint-equation are different for different proto-
cols, we divide the discussion for the thermal protocol and for the magnetic field protocol.
For both the protocols, the scaling relations are derived and the analysis of the asymptotic
behaviours of the system computed.

5.1 Dynamics with time-dependent external fields.
Let us insert a time-dependence of the parameters in the action (204)

S[φ] =

∫
ddx ·

[1

2
(∂µφ(x, t))2 +

1

2
r(t, ts)φ

2(x, t) +
u

4!
(φ2(x, t))2 − hα(t, ts)φα(x, t)

]
. (276)

The dynamical evolution of the system at large N is driven by the linearized Langevin
equation (211):

�
φα(x, t) = −Ω

2

(
− ∂µ∂µφα(x, t) +m2(t, ts)φα(x, t)

)
+

Ω

2
hα(t, ts) + ςα(x, t); (277)

Writing the Fourier transform of the equation (277), we obtain

�
φα(k, t) = −Ω

2
(k2 +m2(t, ts))φα(k, t) +

Ω

2
· (2π)dδd(k) · hα(t, ts) + ςα(k, t); (278)

The cumulants of noise distribution in the Fourier space are (213) and (214).

The set of equation which defines the dynamics are [see ref. [20] and [21]]

�
Σ(t, ts) = −Ω

2
m2(t, ts) · Σ(t, ts) +

Ω

2
h(t, ts) (279)

�
GT (k, t, ts) = −Ω(k2 +m2(t, ts)) ·GT (k, t, ts) + Ω; (280)

and finally the relation which defines the mass term [see ref.[16]]:

m2(t, ts) = r(t, ts) +
u

6

(
Σ2(t, ts) +

∫ Λ ddk

(2π)d
·GT (k, t, ts)

)
. (281)

The first two equations directly follow from the equation of motion by considering expec-
tation values over the noise distribution [see app. D.1 ]. The equation (281) is the saddle
point equation (181) expressed in terms of the dynamical fields and parameters.
The dynamical evolution of the field φ is written in the solution of (278). The detail of the
computation are reported in the appendix D.2. The final result is:

φα(k, t) = φ0
α(k, t)+

∫ t

t0

dt′·exp
(
−Ω

2

∫ t

t′
dt′′·(k2+m2(t′′, ts))

)
·
{Ω

2
·(2π)dδd(k)hα(t′, ts)+ςα(k, t′)

}

(282)
where we have defined the term proportional to the original condition as

φ0
α(k, t) = exp

(
− Ω

2

∫ t

t0

dt′ · (k2 +m2(t′, ts))
)

(2π)dδd(k)δ1,α · σ. (283)
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5.2 Correlation functions.
From the general solution above, using relation (120), we are able to compute the dynamical
correlation functions when the system is coupled to time-dependent external fields.

5.2.1 One-point Correlator.

From solution (282), exploiting the noise characteristics (213), we get the one-point corre-
lation function:

< φα(k, t) >ς=

φ0
α(k, t)+

∫ t

t0

dt′·exp
(
−Ω

2

∫ t

t′
dt′′·(k2+m2(t′′, ts))

)
·
{Ω

2
·(2π)dδd(k)hα(t′, ts)+ < ςα(k, t′) >ς

}
=

(2π)dδd(k)δ1,α·Σ0(t, ts)+
Ω

2

∫ t

t0

dt′·exp
(
−Ω

2

∫ t

t′
dt′′·(k2+m2(t′′, ts))

)
·(2π)dδd(k)δ1,αh(t′, ts)

Integrating over the delta function in momenta we obtain the magnetization

Σ(t, ts) = ΣL(t, ts) = Σ0(t, ts) +
Ω

2

∫ t

t0

dt′ · exp
(
− Ω

2

∫ t

t′
dt′′ · (m2(t′′, ts))

)
· h(t′, ts) (284)

where we’ve defined the term proportional to the original condition as

Σ0(t) = σ · exp
(
− Ω

2

∫ t

t0

dt′ ·m2(t′, ts)
)
. (285)

Note that the N − 1 transverse components of the magnetization Σα>1 = ΣT = 0 24

5.2.2 Two-point Correlator.

The expectation value of two fields can be computed starting from the expression of the
dynamical fields (282), using the cumulants of the noise distribution (213) and (214). The
result is [see app. D.3 ]

< φα(k, t)φβ(k′, t) >ς= δαβ(2π)dδd(k + k′) ·
[
δ1,α(2π)2dδd(k)

{
(Σ0(t, ts))

2

+2Σ0(t, ts) ·
Ω

2

∫ t

t0

dt′ · exp
(
− Ω

2

∫ t

t′
dt′′ · (k2 +m2(t′′, ts))

)
h(t′, ts) + Σ2(t, ts)

}

+ Ω

∫ t

t0

dt′ · exp
(
− Ω

∫ t

t′
dt′′ · (k2 +m2(t′′, ts))

)]
. (286)

It follows that the transverse two-point correlation function α, β > 1 is

GT (k, t, ts) = Ω

∫ t

t0

dt′ · exp
(
− Ω

∫ t

t′
dt′′ · (k2 +m2(t′′, ts))

)
= W

(2)
T (k, t, ts). (287)

Note that the transverse two-point correlation function is connected because ΣT = 0. The
longitudinal two-point correlation function is:

GL(k, t, ts) = G0(k, t, ts)+Ω

∫ t

t0

dt′ ·exp
(
−Ω

∫ t

t′
dt′′ ·(k2 +m2(t′′, ts))

)
+(2π)dδd(k)Σ2(t, ts)

(288)
where we have defined the term proportional to the initial condition as

G0(k, t, ts) = (2π)2dδd(k)
[
(Σ0(t, ts))

2 (289)

24Protocols with high frequency δ(t, ts) = h(t, ts) = sin(t/ts) admit the existence of a transverse mag-
netization as was found by [21]. We investigate only protocols with quasi-adiabatic variations where the
transverse magnetization is zero.
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+2Σ0(t, ts) ·
Ω

2

∫ t

t0

dt′ · exp
(
− Ω

2

∫ t

t′
dt′′ · (k2 +m2(t′′, ts))

)
h(t′, ts)

]
.

These relations for the dynamic correlation functions are valid for generic protocols. Natu-
rally, if we consider a non symmetry-breaking protocol like the thermal protocol (231), the
distinction between transverse and longitudinal directions becomes meaningless and we have
GL = GT = Gφφ.

Note.
If we consider the long-time limit t→ ±∞ in which the action (and its parameters) comes
back to be time-independent, the standard form of the two-point correlation function has
to be recovered. Thus, from the results of Sec.2,3.4.2 we set Ω = 2.

5.3 The constraint-equation.

The correlators (284), (345) found in the last subsection are function of the external fields and
of the mass term m2(t, ts). Since the external fields are specified by the protocol δ(t, ts), the
knowledge of the mass term determines the explicit expression of the correlation functions
at all times. As we have seen, it is defined by the equation (281):

r(t, ts) +
u

6

(
Σ2(t, ts) +

∫ Λ ddk

(2π)d
·GT (k, t, ts)

)
= m2(t, ts) (290)

The equation above is the best self-consistency relation of our model. In the next discussions
we refer to this relation as constraint-equation.
We obtain the KZ scaling relation of the mass term using dimensional argument: for ts →∞
at fixed t

m2(t, ts) ∼ l−2
Q · M2(t); (291)

whereM2 is a scaling function. In the following, we discuss the thermal protocol (229) and
magnetic field protocol (229) separately.

5.4 Thermal protocol.

Let us consider first the off-equilibrium dynamics arising by a time variations of the tem-
perature in the absence of magnetic fields:

δ(t, ts) = r(t, ts)− rc ≈ −t/ts (292)

For this protocol, the exponent νg = ν = 1/2dφ.

5.4.1 Correlation functions for thermal protocol.

Let us derive the specific form of the correlation functions for this protocol. The value of
the magnetization is:

Σα(t, ts) = 0; (293)

because the value of the spontaneous magnetization at t0 is zero, since the protocol start
above the critical temperature. Since the system posses the full-symmetry before the tran-
sition, we do not have to distinguish between transverse and longitudinal directions. Thus,
the two-point correlation function is:

Gφφ(k, t, ts) = 2

∫ t

t0

dt′ · exp
(
− 2

∫ t

t′
dt′′ · (k2 +m2(t′′, ts))

)
. (294)
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5.4.2 Off-equilibrium scaling behaviours.

Let us write the constraint-equation (290) in this specific case:

m2(t; ts) = r(t, ts) +
u

6

∫ Λ ddk

(2π)d
·Gφφ(k, t, ts,m

2). (295)

In order to have the protocol explicitly, we write r(t, ts) = δ(t, ts) + rc. The critical value of
the thermal coupling rc can be written as25

rc = −u
6

∫ Λ ddk

(2π)d
·Gφφ(k, t, ts,m

2 = 0). (296)

Thus, the constraint-equation becomes

m2(t; ts) = δ(t, ts) +
u

6

∫ Λ ddk

(2π)d
·
(
Gφφ(k, t, ts,m

2)−Gφφ(k, t; ts, 0)
)
. (297)

By dimensional analysis we can check the consistence of the constraint-equation before tak-
ing scaling limit. Remember that the dimension of terms are [m2] = 2, [Gφφ] = −2 and
[u] = 4− d, so, we have: 2 = 4− d+ d− 2.
We consider the off-equilibrium scaling limit ts →∞ keeping t = t/tQ, k = k · lQ fixed. The
scaling hypotesis are:

◦ m2(t; ts) ∼M2(t) · l−2
Q , for dimensional arguments.

◦ Gφφ(k, t, ts) ∼ Gφφ(k, t) · l2Q.

◦ δ(t, ts) ≈ −(t/ts) = −t · (tQ/ts) = −t · (ts)
2
d−1 = −t/l1/νQ = −t/ld−2

Q ;

δ(t, ts) ∼ −t · l−2dφ
Q as we read in the relation (250) with νg = ν = 1/(d− 2).

whereM2 and G are scaling functions. It might be useful to define the quantity:

A(k, t, t′) =

∫ t

t′
dt′′ · (k2 +m2(t′′; ts)); (298)

In the KZ scaling limit:

A(k, t, t′) =

∫ t

t′
(k2 +m2(t′′; ts)) · dt′′

(t′′ 7→t′′/tQ)
= (299)

∫ t

t
′
(k

2 · l−2
Q +M2(t

′′
) · l−2

Q ) · dt′′ · tQ =

∫ t

t
′
(k

2
+M2(t

′′
)) · dt′′ = A(k, t, t

′
).

(tQ = l2Q)

We verify the scaling ansatz for the two-point correlation function starting from (294)

Gφφ(k, t, ts) = 2

∫ t

t0

dt′ · exp
(
− 2

∫ t

t′
dt′′ · (k2 +m2(t′′, ts))

)
(300)

Taking the scaling limit and using the relation (299)

Gφφ(k, t, ts) ∼ 2

∫ t

−∞
dt
′ · tQ · e−2A(k,t,t

′
) = l2Q · Gφφ(k, t). (301)

The scaling function is:

Gφφ(k, t, ts) ∼ l2Q · Gφφ(k; t) = l2Q · 2
∫ t

−∞
dt
′ · exp

(
− 2

∫ t

t
′
dt
′′
(k

2
+M2(t

′′
))
)
. (302)

25see Sec.3, 3.2.2
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At this point we can consider the KZ scaling limit in the constraint equation (295):

M2(t) · l−2
Q ∼ 0 = −t · l−1/ν

Q +
u

6

∫ +∞ ddk

(2π)d
· l−dQ · l2Q ·

(
Gφφ(k, t,M2)− Gφφ(k, t, 0)

)

t =
u

6

∫ +∞ ddk

(2π)d
·
(
Gφφ(k, t,M2)− Gφφ(k, t, 0)

)
; (303)

in which we have neglected the subleading terms M2 ∼ 0. We will refer to the equation
above as the scaling constraint-equation for the thermal protocol.
We have explicitly computed the off-equilibrium scaling function for the system: these quan-
tities depends on the scaling function of the mass term M2. The scaling function of the
mass term is formally defined at all times as the solution of the scaling-constraint equation:

u

3

∫ +∞ ddk

(2π)d
·
∫ t

−∞
dt
′ · e−2

∫ t
t′ dt

′′·k2
[

exp
(
− 2

∫ t

t
′
dt
′′ · M2(t

′′
)
)
− 1
]

= t; (304)

In this relation the integral over momenta is gaussian and it can be easly performed

2

∫ t

−∞
dt
′ · (2π)d/2

(2π)d(2|t− t′|)d/2
·
[

exp
(
− 2

∫ t

t
′
dt
′′ · M2(t

′′
)
)
− 1
]

= t;

The scaling-constraint equation can be rewritten in terms of the function f , defined as

f(t) = exp
(

2

∫ t

0

M2(t
′
)dt
′)⇔M2(t) =

�

f(t)

2f(t)
(305)

instead ofM2. With a little bit of algebra

Gφφ(k, t,M2) =

∫ t

−∞
dt′ ·exp

(
−2

∫ t

0

(k
2

+M2(t
′′
))dt

′′) ·exp
(

+2

∫ t
′

0

(k
2

+M2(t
′′
))dt

′′)
=

∫ t

−∞

(e−2k
2
t

f(t)
· e2k

2
t
′ · f(t

′
)
)
· dt′ =

e−2k
2
t

f(t)

∫ t

−∞
e2k

2
t
′ · f(t

′
) · dt′

Thus, the scaling constraint-equation is:26

∫ t

−∞
dt
′ · f(t)− f(t

′
)

|t− t′|d/2
= t · f(t). (306)

The theory is completely solved in this case because the scaling constraint-equation has a
solution in term of the function f [see ref. [16]]. The solution in three spatial dimensions is:

f(t)
d=3
= −31/3Γ(1/3) · e2t

3
/3 · (t ·Ai(t2) + Ai′(t2)). (307)

where Ai is the convergent Airy function27 and Γ is the Euler’s Gamma function.

A comment.
In the constraint-equation (297), the cutoff Λ appears as the upper limit on the momentum
integral. In the scaling limit, the upper limit ∼ Λ·lQ →∞ so the scaling constraint-equation
(303) is cutoff independent. This statement is true for general protocols.

26The value of the quartic coupling constant u is set to 1/3(4π)d/2 in order to have a simplified result.
27A brief description of the Airy function is reported into the appendix C
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5.4.3 A proof of the scaling relations.

We investigate the limit ts → ∞ keeping t = t/(ts)
e and k = k(ts)

e/z fixed. We show that
there is only a value of e and of z which lead to a non-trivial rescaling of all the quantities
and these are in agreement with the previous definitions.
In order to be general, we consider the thermal protocol (231) with a generic leading order
behaviour δ(t, ts) ≈ −(t/ts)

a near t ' 0; then we fix a = 1 as before. The general rescaling
of the two-point correlation function is:

Gφφ(k, t, ts) = 2

∫ t

−∞
dt
′ · (ts)e · exp

(
− 2

∫ t

t
′
dt
′′ · (k2

+M2(t
′′
))
)

= (ts)
e · Gφφ(k, t) (308)

where we have rescaled the mass term as m2(t, ts) ∼ M2(t) · (ts)
−2e/z by dimensional

analysis. There is only a choice of z which make the exponential a scaling quantity:

−2e/z + e = 0⇒ z = 2

which is the dynamical exponent of the O(N) model in the large N limit under a model A
dynamics. Taking the KZ scaling limit into the constraint-equation (281):

t · (ts)a(e−1) =
u

6

( ddk

(2π)d
· (ts)−de/z · (ts)e

[
Gφφ(k, t,M2)− Gφφ(k, t, 0)

])
(309)

The only value of e which satisfies the scaling constraint-equation is:

a(e− 1) = −de
z

+ e⇒ e =
a

a+ d
z − 1

.

If we consider a = 1, d = 3 and z = 2 we obtain e = 2/3. This result is in agreement with
the definition of the Kibble-Zurek time

tQ = (ts)
aνgz/(aνgz+1) ?

= (ts)
e = (ts)

a/(a+d/z−1) (310)

only if

νg = ν =
2

2(d− 2)
=

1

2dφ
(311)

The definition of the Kibble-Zurek scales has a physical meaning: thus, we first have in-
troduced these scales and then performed the rescaling of the correlation function with tQ
and lQ. We have found a non-trivial off-equilibrium scaling behaviour. One might think
that off-equilibrium scaling relations can be obtained also with the definition of other scales
instead of the KZ ones. The previous lines demonstrate that the KZ scaling is the only one
that the system admits.

5.4.4 Asymptotic behaviours

In Sec.4.5.2, we discussed the leading off-equilibrium corrections in the correlators. These
correlation functions are uniquely determined at all times by the value of the scaling function
of the mass termM2.
We propose a general ansatz in terms of this function that is sufficient to reproduce asymp-
totically the exponential damping of the off-equilibrium fluctuations in the observables. In
the limit t→ −∞ we can write the scaling function:

M2(t) =M2
e(t) +M2

o(t), (312)

as an equilibrium term plus a very small off-equilibrium deviationM2
o ' 0. At the equilib-

rium, we can relate the effective mass of the system with the inverse of the instantaneous
correlation length:

m2(t, ts) ∼ ξ−2(t, ts) ∼ |δ(t, ts)|2νg ; (313)
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In the KZ scaling limit
M2

e(t) ∼ |t|2νg . (314)

Under the assumption of asymptotic exponential approach to the equilibrium, we writeM2
o

as:
M2

o(t) ∼ |t|2νg
(
b(t) · e−c|t|1+zνg

)
. (315)

Thus, the scaling function of the mass term can be written close to the equilibrium t→ −∞
as

M2(t) ∼ |t|2νg ·
(

1 + b(t) · e−c|t|1+zνg
)

(316)

where b is a regular function and c is a constant. The ansatz (316) applies, close to the
equilibrium, for general protocols. In the case of thermal protocol: νg = ν = 1/2dφ.

Equilibrium asymptotic forms.

In first approximation, we consider the mass term equal to the equilibrium value i.e. we
set the term M2

o = 0. This means that we look at the earliest rescaled times, when the
off-equilibrium physics does not appear yet. Thus, we assume that

M2(t) ' |t|1/dφ (317)

With this relation the scaling functions of the Sec.5.4.2 can be computed explicitly. In
particular, we consider the susceptibility χ(t, ts) of the system, defined to be the two-point
correlation function at zero momenta:

χ(t, ts) = Gφφ(k = 0, t, ts) = 2

∫ t

t0

dt′ · exp
(
− 2

∫ t

t′
dt′′ ·m2(t′′, ts)

)
(318)

It has a scaling relation:

χ(t, ts) ∼ l2Q · G(t) = l2Q · 2
∫ t

−∞
dt
′ · exp

(
− 2

∫ t

t
′
dt
′′ · M2(t

′′
)
)

; (319)

where G denotes the scaling function of the susceptibility. Using (312) in the scaling function
above [see the appendix D.4.1]

G(t) = 2

∫ t

−∞
dt
′·exp

(
−2

∫ t

t
′
M2(t

′′
)·dt′′

)
t→−∞∼
M2'M2

e

2

∫ t

−∞
dt
′·exp

(
−2

∫ t

t
′
|t′′|2ν ·dt′′

)
∼ |t|−2ν ;

(320)
We find that theM2

e reproduces the equilibrium value of the susceptibility:

Gφφ(t) ∼ |t|−2ν = |t|−1/dφ (321)

The critical exponent γ which describes the power-law behaviour of the susceptibility at the
equilibrium is recovered:

γ = ν(2− η) = 2ν (322)

because η is zero in the large N limit. This relation is also in agreement with (269) valuated
at zero momentum setting a = 1, ν = 1 and ∆ = dφ in three spatial dimensions d = 3.

Leading correction to the asymptotic equilibrium scaling.

We consider the leading off-equilibrium corrections to the equilibrium scaling behaviour
given by (316):

M2(t)
t→−∞∼ |t|2ν

(
1 + b(|t|) · e−c|t|1+zν

)
(323)
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Under this assumption, we investigate the first deviations of the susceptibility from the
equilibrium behaviour

G(t) = 2

∫ t

−∞
dt
′·exp

(
−2

∫ t

t
′
M2(t

′′
)·dt′′

)
= 2

∫ t

−∞
dt
′·exp

(
−2

∫ t

t
′
(M2

e(t
′′
)+M2

o(t
′′
))·dt′′

)
t→−∞∼

2

∫ t

−∞
dt
′ · exp

(
− 2

∫ t

t
′
M2

e(t
′′
) · dt′′

)
·
(

1− 2

∫ t

t
′
M2

o(t
′′) · dt′′

)
'

|t|2−κ − 4e2|t|κ/κ
∫ t

−∞
dt
′ · e−2|t′|κ/κ ·

(∫ t

t
′
dt
′′ · |t′′|2ν · b(t′′) · exp(−c|t′′|1+zν)

)
;

where κ = 1 + zν = 1 + 1/dφ. We assume that the function b(|t|) is in the form of a
power-law:

b(t) ∼ b · |t|a (324)

Thus, we have three free parameters a, b and c (constants) into (316). The previous expres-
sion becomes

G(t) ∼ |t|2−κ−4e2|t|κ/κ
∫ t

−∞
dt
′ ·e−2|t′|κ/κ ·

(∫ t

t
′
dt
′′ · |t′′|2ν ·b · |t′′|a ·exp(−c|t′′|1+zν)

)
; (325)

After the computation [see app. D.5.2], the result for the transverse susceptibility is

G(t) ∼ |t|−2ν
(

1 +K ′|t|a · e−c|t|1+zν
)
. (326)

whereK ′ = −2b/(2+cκ). This relation is in agreement with (275): the ansatz of exponential
approach for the scaling function of the mass term M2 is sufficient to reproduce the same
approach in the susceptibility.
We note that the mass term and the two-point correlation function are related by the relation
(280) at all times28. In the KZ scaling limit, this relation becomes:

∂

∂t
G(k, t) = −2(k

2
+M2(t)) · G(k, t) + 2; (327)

at zero momenta:

M2(t) = −1

2

dG(t)/dt

G(t)
+

1

G(t)
; (328)

The last equation gives us a constraint between the scaling functions which has to be satisfied
at all times. In particular, we check the consistence of the result (380) taking the limit
t→ −∞ in the this equation:

|t|κ−1 + b|t|κ−1+a · e−c|t|κ ∼ 1

2
(1− κ)|t|−1 − 1

2
K ′(1− κ)|t|−1+a · e−c|t|κ

−1

2
cκK ′|t|κ−1+a · e−c|t|κ + |t|κ−1 −K ′|t|κ−1+a · e−c|t|κ +O(e−2c|t|κ);

The equilibrium terms satisfy the equation.

28The equation (280) is written for the transverse two-point correlator because it has been introduced
for general protocols. In the absence of magnetic fields, we can remove the restriction to the transverse
components.
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The off-equilibrium leading terms are:

b|t|κ−1+a · e−c|t|κ ∼ −1

2
cκK ′|t|κ−1+a · e−c|t|κ −K ′|t|κ−1+a · e−c|t|κ ;

These terms satisfy the equation only if K ′ = −2b/(2 + cκ), which is in agreement with our
result.29

29The details of the computation are reported in the following table. The asymptotic contribution of the
three terms into (328) in the limit t→ −∞ is:

• M2(t) ∼ |t|κ−1 + b|t|κ−1+a · e−c|t|κ ;

◦ G(t) ∼ |t|−2ν
(

1 +K′|t|a · e−c|t|1+zν
)

= |t|1−κ +K′|t|1−κ+a · e−c|t|κ ;

• G(t)−1 ∼ |t|κ−1 −K′|t|κ−1+a · e−c|t|κ ;

◦
�
G(t) ∼ −(1− κ)|t|−κ −K′(1− κ+ a)|t|−κ+a · e−c|t|κ −K′|t|1−κ+a(−cκ)|t|κ−1 · e−c|t|κ ;

•
�
G(t) · GT (t)−1 ∼ −(1− κ)|t|−1 +K′(1− κ)|t|−1+a · e−c|t|κ −K′(1− κ)|t|−1+a · e−c|t|κ

+cκK′|t|κ−1+a · e−c|t|κ +O(e−2c|t|κ );

The time-derivatives have been computed using the relation:

d

dt
F (|t|) =

|t|
t
·
d

d|t|
F (|t|) t→−∞∼ −

d

d|t|
F (|t|)

with F a generic function.
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Figure 11: The asymptotic behaviour of the scaling functionM2(t). In the limit t→ −∞,
the solution (329) approaches the equilibrium behaviour (317).

5.4.5 Analysis of the solution.

We discuss the asymptotic limits of the system starting from the solution of the scaling
constraint-equation (303):

f(t)
d=3
= −31/3Γ(1/3) · e2t

3
/3 · (t ·Ai(t2) + Ai′(t2));

From this result, using (305), we compute the scaling function of the mass term:

M2(t) =

�
f(t)

2f(t)
= t

2
+

[
Ai(t2) + 2t

3 ·Ai(t2) + 2t
2 ·Ai′(t2)

]

[
t ·Ai(t2) + Ai′(t2)

] (329)

We first investigate the limit t→ −∞ using the asymptotic expansions of the Airy functions
[see the appendix C]30:

M2(t)
t→−∞∼ 2t

2 (330)

which is in agreement with (317) in three spatial dimensions. The exact solution for M2

matches the equilibrium in the appropriate limit [see fig.11].
Since we know a solution at all times, we are able to compute also the tail t→ +∞:

M2(t) ∼ − 5

4t
(331)

The asymptotic behaviour after the transition differs from the equilibrium prediction. The
two-point correlation function at t → +∞ with effective mass (331) is known in literature
[see ref.[16] and [22]]:

Gφφ(k, t)
t→+∞∼ t

5/2 · e−2k
2
t (332)

In the following, we argue that the asymptotic regime after the transition is the coarsening.

5.4.6 Coarsening physics.

When a system is quenched to the ordered phase with multiple vacua, it generally under-
goes coarsening [see ref. [13], [16] and [22]]. Coarsen physics means that a system, with
no explicit symmetry-breaking terms before transition, realizes different orientation of lo-
cal broken symmetry. Infact, it has no reasons to prefer one vacuum to another. Each

30The relations (504) and (505) work in both the limit t → ±∞ because z = t
2 ∈ R+

{0} ↔ |z| = t
2 and

|Arg(z)| = 0.
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Figure 12: The asymptotic behaviour of the scaling functionM2(t). In the limit t→ +∞,
the system approaches the coarsening regime.

local symmetry-breaking region also grows in time with a typical length scale called coars-
ening length lco(t) >> ξ and appears self-similiar over this scale. The system approaches
the equilibrium into each single domain, over a scale ξ that is, the equilibrium correlation
length but, among the domains, the equilibrium regime is exponentially suppressed. For
late times lco >> ξ the domains grow but the correlation length does not reach to take the
system to the equilibrium in whole: there are no competitor with the scale due to coarsening.

Coarsening scaling limit.

The coarsening scaling limit can be defined as the limit t, t′ → ∞ in which the two-point
correlation function of an operator O, with scaling dimension ∆, has a behaviour31

< O(x, t, δ)O(0, t′, δ) >ς∼ ξ−2∆ · GcoOO(
x

lco(t)
,

x

lco(t′)
) (333)

We define the coarsening length as
lco(t) = |t|θ (334)

where the exponent
θ = −aνg + (aνgz + 1)/zd (335)

and zd is the specific coarsening dynamical exponent. For the O(N) vector-model at large
N with relaxational dynamics we have zd = z = 2 [see ref. [22]].
The scaling function of the two-point correlator in the coarsening regime has a behaviour
[see ref.[22]]

GcoOO(klco(t)) ∼ td/2 exp
(
− 2(k · lco(t))2

)
. (336)

We match the Kibble-Zurek scaling behaviour with the coarsening one [see Ref. [16]]. Com-
paring the two length scales:

lco(t)

lQ
∼ |t|

θ

t
1/z
Q

∼ |t|θ · tθ−(1/z)
Q ; (337)

31GcoOO is the scaling function in the coarsen regime.
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Since zd = z follows that θ−1/z = 0. Taking the limit t→ +∞ at fixed x/lco(t), the scaling
relation for the two-point correlation functions is

GOO(x, t) ∼ |t|2aνg∆ · GcoOO(
x

|t|θ ); (338)

If we consider the thermal protocol (a = 1, νg = ν = 1 in d = 3), the coarsening length is

lco(t) = |t|θ ∼
√
|t|. (339)

We compare the relation (332) with (336) using (338) in d = 3:

Gφφ(k, t) ∼ t5/2 · exp
(
− 2k

2
t
)
∼ t · {t3/2 · exp

(
− 2(k

√
t)2
)
} ∼ t · Gcoφφ(k · |t|θ). (340)

The expression (332) for the two-point correlator agrees with the coarsening prediction.

5.5 Magnetic field protocol.
We also investigate the slow passage across the critical point of the system driven by a
time-dependent magnetic field at the critical temperature

δ(t, ts) = δ1,α · h(t, ts) ≈ t/ts (341)

For this protocol, the thermal coupling is fixed to the critical value r = rc and the exponent
νg = νh = 1/dh.

5.5.1 Correlation functions for magnetic field protocol.

Let us write explicitly the correlation functions along the magnetic field protocol. The value
of the longitudinal magnetization is:

Σ(t, ts) = ΣL(t, ts) = Σ0(t) +

∫ t

t0

dt′ · exp
(
−
∫ t

t′
dt′′ · (m2(t′′, ts))

)
· h(t′, ts); (342)

and the transverse components
ΣT (t, ts) = 0; (343)

The longitudinal two-point correlation function is given by

GL(k, t, ts) = G0(k, t, ts)+2

∫ t

t0

dt′ ·exp
(
−2

∫ t

t′
dt′′ · (k2 +m2(t′′, ts))

)
+(2π)dδd(k)Σ2(t, ts)

(344)
while the transverse components

GT (k, t, ts) = 2

∫ t

t0

dt′ · exp
(
− 2

∫ t

t′
dt′′ · (k2 +m2(t′′, ts))

)
. (345)

There is an important thing to point out: the role of the initial conditions in the KZ
scaling limit. Since the scaling behaviours turn out to be universal in the limit of slow
variations, it is expected that the initial state of the system at t0 does not influence the
critical theory. However, the correlation above depend on φ0 through Σ0 and G0. If we
consider the expression of φ0:

φ0
α(k, t) = (2π)dδd(k) · δ1,ασ · exp

(
−
∫ t

t0

dt′ · (k2 +m2(t, ts)
)

;

When we consider the off-equilibrium scaling limit ts →∞

φ0
α(k, t) ∼ ldQ · (2π)dδd(k) · δ1,ασ · exp

(
−
∫ t

−∞
(k

2
+M2(t

′′
)) · dt′′

)
→ 0
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The focus on the off-equilibrium scenario enlarge the small area t ' 0 near the critical point
[see fig.10]. In the KZ scaling limit, the starting time becomes very far in time t0 ∼ −∞
and the term φ0 is therefore driven exponentially to zero32. The sensibility of the system to
the initial conditions disappears in the scaling limit. This confirms that the details of the
protocol are not important and the dynamics in the off-equilibrium region depends only on
the leading order behaviour near the critical point.

5.5.2 Off-equilibrium scaling behaviour.

The thermal coupling is fixed to the critical value and can be written using the relation
(296). The constraint-equation (290) for the magnetic protocol is:

m2(t, ts) =
u

6

(∫ Λ ddk

(2π)d
·
{
GT (k, t, ts,m

2)−GT (k, t, ts, 0)
}

+ Σ2(t; ts)
)

; (346)

By dymensional analysis 2 = 4− d+ d− 2 = 4− d+ 2(d− 2/2).
Let us consider the KZ scaling limit ts →∞ keeping t and k fixed. We make the following
scaling hypotesis:

◦ m2(t; ts) ∼M2(t) · l−2
Q using dimensional arguments, as before.

◦ Gφφ(k, t, ts) ∼ Gφφ(k, t) · l2Q.

◦ Σ(t, ts) ∼ Θ(t) · l−dφQ .

◦ δ(t, ts) ≈ t/ts ∼ t · l−dhQ as we read in (250) with νg = νh = 1/dh.

Θ is the scaling function of the magnetization. We verify the scaling hypotesis for the
correlation functions starting from their definitions33. Firstly, we consider the longitudinal
two-point correlation function:

GL(k, t, ts) ∼ 2

∫ t

−∞
dt′·e−2

∫ t
t′ dt

′′·(k2+m2(t′′,ts))+(2π)dδd(k)
(∫ t

−∞
dt′·e−

∫ t
t′ dt

′′·(m2(t′′,ts))·h(t′)
)2

(347)
In the scaling limit, using the relation (299)

GL(k, t, ts) ∼ 2

∫ t

−∞
dt
′ · tQ · e−2A(k,t,t

′
) + (2π)dδd(k) · ldQ ·

(∫ t

−∞
dt
′ · tQ · e−A(k,t,t

′
) · t′ · l−dhQ

)2

= l2Q ·
(

2

∫ t

−∞
dt
′ ·e−2A(k,t,t

′
)
)

+l
(d+4−2dh)
Q ·(2π)dδd(k)

(∫ t

−∞
dt
′ ·e−A(k,t,t

′
) ·t′
)2

= l2Q ·GL(k, t).

The result for the longitudinal two-point correlation function is

GL(k, t, ts) ∼ l2Q · GL(k; t) = l2Q

(
Gconn.L (k, t) + (2π)dδ(k)Θ(t)

)
. (348)

where the first term is the scaling function of the connected part of the longitudinal two-point
function

W
(2)
L (k, t, ts) = l2Q · Gconn.L (k, t) = l2Q · 2

∫ t

−∞
dt
′ · exp

(
− 2

∫ t

t
′
dt
′′ · (k2

+M2(t
′′
))
)
. (349)

32The momenta are set to zero by the delta function and the scaling function of the mass term at −∞ is
equal to |t|2νg . Thus, φ0 → 0.

33We do not consider in the following the terms proportional to the initial state of the system because, as
we have seen before, they do not influence the dynamics in the off-equilibrium region.
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We already read, in the scaling limit of the disconnected part of the longitudinal two-point
correlator, the scaling function of the magnetization. However, it can be obtained starting
from (284):

Σ(t, ts) =

∫ t

−∞
dt′ · e−

∫ t
t′ dt

′′·m2(t′′,ts) · h(t′) =

∫ t

−∞
dt
′ · tQ · e−A(0,t,t

′
) · t′ · l−dhQ = l

−dφ
Q ·Θ(t).

(350)
Thus,

Θ(t) =

∫ t

−∞
dt
′ · t′ · exp

(
−
∫ t

t
′
dt
′′ · M2(t

′′
)
)
. (351)

The transverse two-point correlation function is equal to the connected part of the longitu-
dinal two-point correlation function34. Thus, its scaling function is:

GT (k, t, ts) = l2Q · GT (k, t) = l2Q · 2
∫ t

−∞
dt
′ · exp

(
− 2

∫ t

t
′
dt
′′ · (k2

+M2(t
′′
))
)
. (352)

Let us derive the scaling constraint-equation for the magnetic field protocol:

M2(t) · l−2
Q =

u

6

(∫ +∞ ddk

(2π)d
l−dQ l2Q ·

[
GT (k, t,M2)− GT (k, t, 0)

]
+ Θ2(t) · l−2dφ

Q

)
; (353)

M2(t) · l−2
Q ∼ 0 = l

−(d−2)
Q · u

6

(∫ +∞ ddk

(2π)d

[
GT (k, t,M2)− GT (k, t, 0)

]
+ Θ2(t)

)
;

We have set m2 to zero because it is a subleading term in the scaling limit. The problem is
formally solved in this case too: the scaling functions for the correlators are computed and
the functionM2 is defined by

∫ +∞ ddk

(2π)d
· 2
∫ t

−∞
dt
′ · e−2

∫ t
t′ dt

′′·k2
[

exp
(
− 2

∫ t

t
′
dt
′′ · M2(t

′′
)
)
− 1
]

=

−
(∫ t

−∞
dt
′ · exp

(
−
∫ t

t
′
dt
′′ · M2(t

′′
)
))2

(354)

This equation can be expressed in terms of the function f : the left hand side has already
been computed. The magnetization, in terms of f , is:

Θ2(t,M2) =
(∫ t

−∞
e−

∫ t
t′ (M

2(t
′′

)dt
′′

) · t′ · dt′
)2

=
(∫ t

−∞

[
e−

∫ t
0

(M2(t
′′

)dt
′′

) · e+
∫ t′
0

(M2(t
′′

)dt
′′

)
]
· t′dt′

)2

=
(∫ t

−∞

√
f(t
′
)

√
f(t)

· t′ · dt′
)2

;

Thus, the scaling constraint equation becomes

2

(4π)d/2

(∫ t

−∞
dt
′ · f(t)− f(t

′
)

|t− t′|d/2
)

=
(∫ t

−∞

√
f(t
′
) · t′ · dt′

)2

(355)

It might be a useful because the relation (354), in terms of f , becomes more compact.
However, in this form, the scaling constraint-equation loses its physical meaning. Therefore
we prefer to work with the relation

∫ +∞ ddk

(2π)d

(
GT (k, t,M2)− GT (k, t, 0)

)
= −Θ2(t,M2). (356)

Unfortunately, the scaling constraint-equation for the magnetic field protocol does not have
known solution.

34See (345) and (288).
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5.5.3 A proof of the scaling relations.

We investigate the limit ts → ∞ keeping t = t/(ts)
e and k = k(ts)

e/z fixed with e, z free
numbers. As in the thermal protocol, we demonstrate that a scaling behviour is allowed in
the off-equilibrium regime only if e and z are fixed respectively to the KZ value and to the
dynamical critical exponent of the system at the equilibrium.
We consider a generic leading order behaviour for the magnetic field h(t, ts) ≈ (t/ts)

a near
t ' 0. The rescaling of magnetization is35

Σ(t, ts) =

∫ t

−∞
dt
′ · (ts)e · exp

(
−
∫ t

t
′
dt
′′ · (ts)e · M2(t

′′
) · (ts)−2e/z

)
· t′a · (ts)a(e−1) (357)

The rescaling of the mass term m2(t, ts) ∼ M2(t) · (ts)−2e/z fixes the value of z as in the
previous case:

−2e/z + e = 0⇒ z = 2

It follows that
Σ(t, ts) ∼ (ts)

(a+1)e−a ·Θ(t) (358)

The transverse two-point correlation function rescales as

GT (k, t, ts) = 2

∫ t

−∞
dt
′ · (ts)e · exp

(
− 2

∫ t

t
′
dt
′′ · (k2

+M2(t
′′
))
)

= (ts)
e · GT (k, t) (359)

Performing the KZ scaling limit in the constraint-equation

(ts)
−e·M2(t) =

u

6

(
(ts)

2(a+1)e−2a·Θ2(t)+

∫ +∞ ddk

(2π)d
·(ts)−de/z·(ts)e·

[
GT (k, t,M2)−GT (k, t, 0)

])

(360)
The mass term is subleading. The scaling constraint-equation is satisfied only if

−d
z
e+ e = 2(a+ 1)e− 2a

Thus,

e =
−2az

(−d+ z − 2z(a+ 1))
(361)

if we set a = 1, d = 3 and we insert the previous result z = 2 we obtain e = 4/9. This result
is in agreement with the definition:

tQ = (ts)
aνgz/(aνgz+1) ?

= (ts)
e = (ts)

−2az/(−d+z−2z(a+1)) (362)

setting

νg = νh =
1

dh
(363)

5.5.4 Asymptotic behaviours.

For symmetry-breaking protocols like the magnetic field one, there are no reasons to think
about coarsening phenomena asymptotically.
We assume that the system approaches the equilibrium also after the transition and therefore
the ansatz (316):

M2(t)
t→±∞∼ |t|2/dh ·

(
1 + b(t) · e−c|t|1+z/dh

)

applies in both the asymptotic limit t → ±∞, maybe with different values of b, c. The
exponent 1 + z/dh is expected to be the same.
However, memory effects make us unable to investigate the limit t→ +∞ because it needs to

35We do not consider the term proportional to initial condition into the relations: for all values of e and
z it is exponentially damped.
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know a complete solution of the scaling constraint-equation (356): the analytical expressions
for the correlators involve integrals which start from t0 up to the current time t. When we
try to compute the limit t → +∞, we also consider instant of time t′ around zero where
the asymptotic ansatz for the scaling functionM2 breaks down. We focus therefore on the
asymptote t→ −∞ only.

Equilibrium asymptotic forms.

Firstly, we look to the equilibrium term of (316) setting M2
o = 0. For the magnetic field

protocol the equilibrium contribution to the mass term is given by

M2(t) ' |t|2/dh (364)

The expression above give us the possibility to write explicitly the scaling functions of the
correlators. In particular, using (364) in the scaling relation of the magnetization (351) [see
app.D.5.1]

Θ(t) ∼
∫ t

−∞
dt
′·t′·exp

(
−
∫ t

t
′
dt
′′·M2(t

′′
)
)

t→−∞∼
M2'M2

e

∫ t

−∞
dt
′·t′·exp

(
−
∫ t

t
′
dt
′′·|t′′|2/dh

)
∼ −|t|dφ/dh

(365)
We learn that the equilibrium asymptotic contribution of magnetization for t→ −∞ is:

Θ(t) ∼ −|t|dφ/dh (366)

the equilibrium scaling behaviour has been recovered. The result is in agreement with the
well-known relations among the equilibrium critical exponents:

β = νg · dφ = νh · dφ = dφ/dh. (367)

The matching with the equilibrium scaling behaviour is consistent with the general predic-
tions given by (266), where ∆ = dφ, νg = νh = 1/dh and a = 1.
If we consider the system at the equilibrium at all times, we can consider the limit t→ +∞
in the scaling function (351) using (364). After the computation, we obtain [see app. D.5.1]

Θ(t) ∼
∫ t

−∞
dt
′·t′·exp

(
−
∫ t

t
′
dt
′′·M2(t

′′
)
)

t→+∞∼
M2=M2

e

∫ t

−∞
dt
′·t′·exp

(
−
∫ t

t
′
dt
′′·|t′′|2/dh

)
∼ tdφ/dh

(368)

In agreement with the equilibrium predictions as above. The scaling function of magnetiza-
tion can be expressed in terms of the magnetic field:

Σ(t, ts) ∼ l−dφQ ·Θ(t) = Θ(t) · (l−dhQ )dφ/dh = ±(Θ(t) · |t|−dφ/dh) · |h|dφ/dh =
∼
Θ(t) · |h|dφ/dh .

(369)
The relation between the two scaling function is:

Θ(t) = ±
∼
Θ(t) · |t|dφ/dh (370)

The new scaling function can be computed in the asymptotic limit t→ −∞ [see app. D.5.1]

∼
Θ(t) = −|t|−dφ/dh

∫ t

−∞
dt
′ · t′ · exp

(
−
∫ t

t
′
M2(t

′′
) · dt′′

)
t→±∞∼
M2'M2

e

−1. (371)

and if we assume that the system is at the equilibrium at all times,
∼
Θ(t) ∼ +1 in the limit

t→ +∞. Thus,
Σ(t, ts) ∼ ±|h|dφ/dh (372)

where we read the critical exponent36

δ = dh/dφ (373)
36We never use this notation again because the symbol δ indicates the protocols.
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Figure 13: The equilibrium scaling function of the magnetization Θ(t) ∼ ±|t|dφ/dh as func-
tion of rescaled time t in three spatial dimensions d = 3.

which is the well-known scaling relation at the equilibrium. Let us consider also the trans-
verse susceptibility:

χT (t, ts) = GT (k = 0, t, ts) ∼ lQ · GT (t). (374)

The equilibrium result is already known: one may note that the transverse two-point cor-
relation function (345) in the magnetic field protocol has the same analytical expression of
the two-point correlation function of the thermal case (294). Thus, using another definition
of the exponent νg, we conclude from (321) that

GT (t) ∼ |t|−2νh = |t|−2/dh (375)

which is in agreement with the general predictions (269) and with the definition of the equi-
librium critical exponents, as we have discussed in the thermal case.

Leading corrections to the asymptotic equilibrium scaling.

We consider the leading off-equilibrium corrections to the equilibrium scaling behaviour
given by (316) plus (324):

M2(t)
t→−∞∼ |t|2νh

(
1 + b · |t|a · e−c|t|1+zνh

)
(376)

Within this ansatz, we investigate the first deviations of the correlation functions from their
equilibrium behaviour. Let us start with the magnetization

Θ(t) =

∫ t

−∞
dt
′ · t′ · exp

(
−
∫ t

t
′
M2(t

′′
) · dt′′

)
t→−∞∼

∫ t

−∞
dt
′ · t′ · exp

(
−
∫ t

t
′
M2

e(t
′′
) · dt′′

)
·
(

1−
∫ t

t
′
dt
′′ · M2

o(t
′′
)
)

=

−|t|dφ/dh − e|t|κ/κ
∫ t

−∞
dt
′ · e−|t′|κ/κ · t′ ·

(∫ t

t
′
dt
′′ · |t′′|2νh · b · |t′′|a · exp(−c|t′′|1+zνh)

)
; (377)

where κ = 1+z ·νh = 1+2/dh. The details of the computation are reported in the appendix
D.5.2. The final result for the magnetization is

Θ(t) ∼ −|t|dφ/dh
(

1 +K · |t|a · e−c|t|1+z/dh
)
. (378)
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Figure 14: The leading off-equilibrium correction for the scaling function of the magnetiza-
tion given by (378) with respect to the equilibrium behaviour. This plot shows qualitatively
the deviations from the equilibrium: it has been made by fixing the parameters to d = 3,
c = κ−1 = 5/9, a = 0, b = 1.

with K = −b/(cκ + 1). The relation above is a remarkable result: if we assume that the
scaling function of the mass term has an exponential approach to the equilibrium, the same
type of approach is reproduced in the scaling function of the magnetization.
The mass term and the magnetization are linked at all times by the equation (279). If we
take the KZ scaling limit of this relation:

M2(t) = −dΘ(t)/dt

Θ(t)
+

t

Θ(t)
(379)

We have derived a constraint between the scaling function of the mass term and the scaling
function of the magnetization. In particular, in the asymptotic limit, the expression (316)
and (378) must satisfies the equation above. Thus, the equation (379), in the limit t→ −∞,
becomes 37:

|t|κ−1 + b|t|κ−1+a · e−c|t|κ ∼ |t|κ−1 −K|t|κ−1+a · e−c|t|κ

+(2−κ)|t|−1−K(2−κ)|t|a−1·e−c|t|κ+K(2−κ+a)|t|a−1·e−c|t|κ−cκK|t|κ−1+a·e−c|t|κ+O(e−2c|t|κ);

The equilibrium terms satisfy the relation. The off-equilibrium leading terms are:

b|t|κ−1+a · e−c|t|κ ∼ −K|t|κ−1+a · e−c|t|κ − cκK|t|κ−1+a · e−c|t|κ ;

37The details of the computation are:

• M2(t) ∼ |t|2/dh ·
(

1 + b · |t|a · e−c|t|1+z/dh
)

= |t|κ−1 + b|t|κ−1+a · e−c|t|κ ;

◦ Θ(t) ∼ −|t|dφ/dh ·
(

1 +K|t|a · e−c|t|1+z/dh
)

= −|t|2−κ −K|t|2−κ+a · e−c|t|κ ;

◦ Θ−1(t) ∼ −|t|κ−2 +K|t|κ−2+a · e−c|t|κ ;

• t/Θ(t) ∼ −|t|/Θ(t) = |t|κ−1 −K|t|κ−1+a · e−c|t|κ ;

◦
�
Θ(t) ∼ (2− κ)|t|1−κ +K(2− κ+ a)|t|1−κ+a · e−c|t|κ +K|t|2−κ+a · (−cκ|t|κ−1)e−c|t|

κ
;

•
�
Θ(t) ·Θ−1(t) ∼ −(2− κ)|t|−1 +K(2− κ)|t|a−1 · e−c|t|κ −K(2− κ+ a)|t|a−1 · e−c|t|κ

+cκK|t|−c|t|κ +O(e−2c|t|κ );
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The equation is satisfied if K = −b/(cκ+ 1), in agreement with the results.

We consider also the leading off-equilibrium correction of the asymptotic equilibrium be-
haviour in the transverse susceptibility. In this case we can read the final result in the
relation (326) using νg = νh = 1/dh

GT (t) ∼ |t|−2/dh
(

1 +K ′|t|a · e−c|t|1+z/dh
)
. (380)

where K ′ = −2b/(2 + cκ) and κ = 1 + zνh = 1 + z/dh. The exponential approach is found
also in the transverse susceptibility. The mass term and the transverse two-point correlation
function are linked by the relation (280) at all times. In the KZ scaling limit:

M2(t) = −1

2

dGT (t)/dt

GT (t)
+

1

GT (t)
; (381)

The consistence of (380) in the asymptotic limit follows from the result of Sec.5.4.4 using
νg = νh = 1/dh, instead of ν.

A comment.

The previous results for the magnetization and for the transverse susceptibility cannot be
used as a demonstration of the ansatz (316) because (379) and (381) are equivalent to the
definition of the correlators (351) and (352). Thus, they give only a check of consistence.
The ansatz has to be validated in the scaling constraint-equation. We recall the scaling
constraint-equation (356) for the magnetic field protocol

∫ +∞ ddk

(2π)d

(
GT (k, t,M2)− GT (k, t, 0)

)
= −Θ2(t,M2).

The integration over the momenta makes the relation above not writable in terms of special
functions38. Thus, we are not able to proceed further. However, a different ansatz forM2

does not lead to consistence among the relations. Let us consider, for instance

M2(t)
t→±∞∼ |t|2νh

(
1 + b/|t|α

)
(382)

with α > 0 big enough. The asymptotic scaling function of the magnetization, in the limit
t→ −∞, using (382), is [see app.D.5.3]

Θ(t) ∼ |t|dφ/dh ; (383)

The off-equilibrium leading corrections cancels themselves. The equation (379) becomes:

|t|κ−1 + b|t|κ−1−α ∼ (2− κ)|t|−1 + |t|κ−1;

The equilibrium term is satisfied but the off-equilibrium leading terms do not satisfy the
relation above.

The assumption of the exponential approach to the equilibrium for the mass term ensures
consistence. In addition, the ansatz (316) has the remarkable property to reproduces itself
in the correlation functions.
The approach to the equilibrium for the scaling function of the correlators, has been numeri-
cally studied by [6] in the O(3) vector-model of finite size L. The numerical simulation shows
that the behaviour of the correlators, and in particular of the magnetization, tends to the
equilibrium exponentially. It is expected that qualitatively similiar behaviours are shown by
O(N) vector-models at finite N = 3. Thus, a scaling relation for the magnetization can be

38For more details, see the appendix D.5.3



69

8

L2. If instead, L1 = L2 = L and L3 ∝ L2, fluctuations
are finite, but occur on significantly longer time and space
scales τ ∼ L4 and z ∼ L2. Note that, for τ large, the
correlation function decreases exponentially, as e−τ̃ .

At this point we can compute the autocorrelation func-
tion of the magnetization. Assuming that the size fluc-
tuations are not relevant, we can write

⟨M(s) · M(t)⟩ =
a2

V 2

∫
dxdy⟨ei[θ(x,s)−θ(y,t)]⟩. (49)

In a cubic geometry, θ(x, s) = Θ(s) + O(1/
√

L) so that

⟨M(s) · M(t)⟩ ≈ a2⟨ei[Θ(s)−Θ(t)]⟩ = (50)

a2e− 1
2 ⟨[Θ(s)−Θ(t)]2⟩ = a2 exp

(
− Ω

2a2V
|t − s|

)
.

The autocorrelation function has therefore a typical ex-
ponential shape with an autocorrelation time that scales
as V = L3. In the asymmetric case we should take into
account the fluctuations along the longitudinal direction.
Assuming a decoupling of the modes we obtain

⟨M(s) · M(t)⟩ ≈ a2 exp

(
− Ω

2a2V
|t − s|

)
×

1

L3

∫ L3/2

−L3/2

dz exp[−G(t, s, z)/2]. (51)

In this case the behavior is more complex: in particular,
we expect the amplitude of the time decay to be smaller
than in the cubic case. However, the typical time depen-
dence is still of order V , i.e., of order L4.

IV. NUMERICAL RESULTS

We now present numerical results obtained by MC
simulations of the Heisenberg model, to check the off-
equilibrium scaling ansatzes put forward in Sec. II C. We
implement the protocol described in Sec. II B. We start
from equilibrium configurations at an initial value hi < 0
at ti < 0. Then, the system evolves at fixed temperature
by means of a heat-bath updating scheme [21]. The time
unit is a sweep of the whole lattice, that is a heat-bath
update at all sites. The magnetic field is changed accord-
ing to Eq. (5) every sweep, incrementing t by one. The
off-equilibrium relaxational dynamics ends at t = tf > 0,
corresponding to a finite hf = 1/32. This procedure is
repeated several times, averaging the observables at fixed
time t. We will first consider the behavior at Tc, then at
T < Tc.

A. Off-equilibrium scaling at Tc

We first verify the off-equilibrium scaling relation (12)
for the magnetization at the critical point Tc. The rele-
vant exponents for the Heisenberg N = 3 model are

ym = 0.5189(2), κ = 0.2222(5), κt = 0.449(1), (52)
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FIG. 3: (Color online) The rescaled magnetization
Lymm(t, ts, L) during the off-equilibrium dynamics for cubic
lattices at the critical point Tc ≈ 1.443. We report data for
u = 0.735 and u = 1, versus w, as defined in Eqs. (7) and
(8). We use κ = 0.2222 and κt = 0.449, see Eq. (52). The
inset shows Lymm(t = 0) vs L−ω with ω = 0.78, which is the
expected behavior of the scaling corrections at Tc.

obtained using the estimates η = 0.0378(3) and z =
2.02(1). In Fig. 3 we show the product Lymm at fixed
u = tκs/L versus w = t/tκt

s , for two values of u, i.e.,
u ≈ 0.735 and u = 1. The results clearly approach u-
dependent scaling curves with increasing L, nicely sup-
porting the off-equilibrium scaling relation (12). Scaling
corrections are expected to be controlled by the leading
irrelevant operator, thus they should decay as L−ω with
ω = 0.78. The data shown in the inset of Fig. 3 are
consistent with this prediction.

The numerical results are also consistent with the
asymptotic behaviors reported in Eqs. (14) and (15). To
verify this explicitly we first determine the constant a,
that appears in Eq. (13), by considering the large-|w| be-
havior. For both values of u we have investigated, and
both for w → +∞ and w → −∞, we obtain the same
value a ≈ 0.745, with a relative error that should be less
than 1%. Then, we consider the quantity

Q(u, w) = 1 − L−ymm(t, ts, L)

f∞,±(|w|u−yh)
. (53)

Its logarithm is plotted in Fig. 4 versus |w|zm/yh . Data
fall quite precisely on a straight line for |w|zm/yh ! 2,
confirming the exponential decay for |w| → ∞ and
Eqs. (14) and (15). Note that the constant c(u) differs
in the two cases w > 0 and w < 0.

B. Off-equilibrium scaling for T < Tc

We now provide numerical evidence of the off-
equilibrium scaling relation (17) along the first-order
transition line T < Tc. The results for the equilibrium
static and dynamic FSS of Sec. III lead to the following

l 

l 
l 

l 

t /t Q

Θ(t /t  )Q

Figure 15: The off-equilibrium dynamics of the scaling function of the magnetization Θ(t)
driven by the magnetic field protocol (229) for different values of ` = L/lQ. The numerical
simulations have been made for an Heisenberg ferromagnet N = 3 in three spatial dimen-
sions. The system has a cubic finite-size V = L3. This picture has been taken from the ref.
[6].

estimated starting from (351) and using the exponents of the Heinsenberg universality class
39

Σ(N=3)(t, ts, L) ∼ l−dφQ ·Θ(N=3)(t, `) ' (ts)
−0.11 ·Θ(N=3)(t, `) (384)

The behaviour of the scaling funtion Θ(N=3)(t, `) is shown in Fig.15. One may note that the
asymptotic behaviour of the scaling function does not depend on the size of the system and
matches the infinite-volume equilibrium scaling, as it has been discussed in Sec.4.5.

39For an Heisenberg ferromagnet dφ = (1 + η)/2, dh = (5− η)/2, in three spatial dimensions. The value
of the critical exponent is η ' 0.03(7) from the ref. [18],[19].
It follows that dφ ' 0.52, dh ' 2.3, and z ' 2.02 [see ref. [6]]. Thus the exponent e = (z/dh)/((z/dh)+1) '
0.45: the Kibble-Zurek scales are tQ ' (ts)0.45 and lQ ' (ts)0.22.
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5.5.5 Hysteresis phenomena.

We define the hysteresis loop area A as the area beetween the two cuves described by
the magnetization Σ(t, ts) going from ti = −∞ to tf = +∞ and coming back (round-
trip protocol γ) when the dynamics of the system is driven by the magnetic field protocol
δ(t, ts) = h(t, ts) ≈ t/ts [see ref. [6]]

A =

∮

γ

dt · Σ(t, ts) (385)

We note that the magnetization (342) has a symmetry with respect to a reflection of the
magnetific field: if we reverse the direction of the magnetic field h 7→ −h, it follows

Σinv.(t, ts) = −Σ(−t, ts); (386)

The vaue of the magnetization with reversed time is:

Σ(−t, ts) =

∫ −t

+∞
dt′·exp

(
−
∫ −t

t′
dt′′·m2(t′′, ts)

)
·t′/ts =

∫ t

−∞
dt′·exp

(
+

∫ t

t′
dt′′·m2(t′′; ts)

)
·t′/ts.

(387)
Thus, the hysteresis loop area can be also written as

A =

∮

γ

dt · Σ(t, ts) =

∫ tf=+∞

ti=−∞
dt ·

(
Σ(t, ts) + Σ(−t, ts)

)
(388)

because the integral of the magnetization over γ is equivalent to an integral over a unique
trip from ti = −∞ to tf = +∞ considering the magnetization, given by (342), plus the
magnetization with reversed time.
The hysteresis loop area can be easly connected with the magnetic workW which the system
performs over γ

W =

∮

γ

dh(t, ts) · Σ(t, ts) = t−1
s · A. (389)

Therefore the hysteresis loop area has a direct physical meaning. Let us explicitly compute
its expression:

A =

∫ +∞

−∞
dt ·
∫ t

−∞
dt′ · (t′/ts) ·

[
exp

(
−
∫ t

t′
m2(t′′; ts) ·dt′′

)
+ exp

(
+

∫ t

t′
m2(t′′; ts) ·dt′′

)]
=

=

∫ +∞

−∞
dt ·

∫ t

−∞
dt′ · (t′/ts) · 2 cosh

(∫ t

t′
m2(t′′, ts) · dt′′

)
.

In the KZ scaling limit

A =

∫ +∞

−∞
dt · tQ ·

∫ t

−∞
dt
′ · tQ · t′ · l−dhQ · 2 cosh

(∫ t

t
′
M2(t

′′
) · l−2

Q · dt
′′ · tQ

)
(390)

Thus, the scaling relation of the hysteresis loop area is

A ∼ l4−dhQ · Ξ = l
2−dφ
Q · Ξ. (391)

The amplitude Ξ of hysteresis loop area is a constant which depends on the scaling function
M2:

Ξ = 2

∫ +∞

−∞
dt ·

∫ t

−∞
dt
′ · t′ · cosh

(∫ t

t
′
M2(t

′′
) · dt′′

)
; (392)

It follows that the magnetic work has a scaling relation:

W ∼ (ts)
−2/3 · Ξ (393)

in three spatial dimensions. This means that the energy spent by the system in a cycle
decrease if the time-scale of the variation of the magnetic field occur very-slow. In the limit
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Figure 16: Qualitatively picture of the hysteresis loop area which the spin system presents
at T = Tc as effects of an external perturbation h(t, ts) ≈ t/ts.

of quasi-adiabatic protocol ts → ∞, the magnetic work becomes zero. We note that the
hysteresis is an off-equilibrium phenomenon: since the system is at the equilibrium40:

A =

∮
dt · Σeq.(t, ts) ∼ l2−dφQ

∫ +∞

−∞
dt ·

(
|t|dφ/dh − |t|dφ/dh

)
= 0; (394)

The central area is shrinked to a single line as fig.13 shows. The system does not spend
energy over the cycle.
The hysteresis loop area differs from zero when the time-evolution of the system is char-
acterized also by off-equilibrium regimes: when the system is coupled to a time-dependent
magnetic field, it needs a finite time to readjust itself and adapt to the external perturbation.
Therefore the magnetization crosses the zero at a certain time tc 6= 0 that we call coercitive
time and it corresponds to a value of h called coercitive magnetic field. A qualitatively
picture of the hysteresis loop area is shown in fig.16.
Since we do not know the behaviour of M2 at all times, we are not able to compute the
coercitive times and the integral of the hysteresis. However, one may note that the asymp-
totic exponential approach to the equilibrium of the scaling function of the magnetization
(378) makes the amplitude Ξ finite. Since the tails of the magnetization are exponentially
damped and since the Z2 symmetry of the magnetization makes the hysteresis loop area a
closed curve, we can conclude from the ansatz (316) that

Ξ =

∫ +∞

−∞
dt ·

(
Θ(t) + Θ(−t)

)
<∞ (395)

Physically speaking, the variations of the external magnetic field tend to modify the value
of the magnetization of the system. Because of the memory effects, the value of the mag-
netization is not instantaneously modified and the system develops a metastable state for
a time tc before that it agrees with the reservoir. When the external pertubation becomes
large, the system presents a saturation and does not respond to the magnetic field anymore.
Hysteresis phenomena have been numerically studied in O(3) vector-model with a finite

size L by [6]. Using the Heisenberg universality class critical exponents in d = 3, we find a
scaling relation:

A ∼ lz−dφQ · Ξ(N=3) ∼ (ts)
0.33 · Ξ(N=3) (396)

40We use the expression for the scaling function of the magnetization at the equilibrium (366)

Θeq.(t) = ±|t|dφ/dh
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FIG. 10: (Color online) Hysteresis loops of the magnetization
for cubic systems at T = 1 versus the time parameter t, for
several values of L and ts. We consider a round-trip protocol:
first t increases from ti < 0 to tf > 0 (correspondingly, we
have hi = −1/16 and hf = 1/16), then it decreases back to
ti < 0.
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FIG. 11: (Color online) Hysteresis loop of the renormalized
magnetization mr defined in Eq. (16) for cubic L3 systems at
T = 1. We report data at fixed u ≈ 0.6299 versus w. We
consider a round-trip protocol: first t increases from ti < 0 to
tf > 0 (correspondingly, we have hi = −1/16 and hf = 1/16),
then it decreases back to ti < 0.

the magnetization shows a hysteresis loop, whose area

Ah = −
∮

dt m(t) (58)

provides a quantitative indication of how far the system
is out of equilibrium.

In Fig. 10 we show some examples of hysteresis loops
for the magnetization for cubic systems at T = 1. Here
we start at ti < 0 (hi = −1/16), increase t until
h = hf = 1/16, then decrease t back to ti. The ar-
guments presented in the previous sections imply that
also the hysteresis loops have a scaling behavior. Scal-
ing plots are shown in Fig. 11 for T = 1 and in Fig. 12
at the critical point. It should be noted that, while the
magnetization shows a clear hysteresis cycle, there is no
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FIG. 12: (Color online) Plot of Lymm(t) for cubic L3 systems
at the critical point Tc. We report data at fixed u ≈ 0.735
versus w. We consider a round-trip protocol: first t increases
from ti < 0 to tf > 0 (correspondingly, we have hi = −1/16
and hf = 1/16), then it decreases back to ti < 0.
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FIG. 13: (Color online) Time dependence of the energy den-
sity along the same round-trip protocols considered in Fig. 10:
first t increases from ti < 0 to tf > 0 (correspondingly, we
have hi = −1/16 and hf = 1/16), then it decreases back to
ti < 0. There is no evidence of hysteresis. The dashed line
corresponds to the equilibrium value for h = 0.

evidence of such a phenomenon for the energy. In Fig. 13
we show the time dependence of the energy density ob-
tained using the same round-trip protocols considered in
Fig. 10. Within the precision of our data, there is no
evidence of hysteresis.

In practice, since time is discretized in our MC simula-
tions we measure m(t) at discrete values tj of t, the area
enclosed by the hysteresis loop of the magnetization can
be computed using the area estimator

Bh ≡ ∆
∑

j

[
m(tj , ts, L)hf →hi − m(tj , ts, L)hi→hf

]
,(59)

where ∆ ≡ tj+1 − tj is the time interval between two
measurements.

Using the scaling relations (12) and (17) for the mag-

t/ tQ

l l 

Figure 17: The hysteresis loop area for an Heisenberg ferromagnet N = 3 of finite-size
system with cubic shape in three spatial dimension. The numerical simulations has been
done with ` = L/lQ fixed. The round-trip protocol moves from ti < 0 to tf > 0 at the
critical temperature along the magnetic field δ(t, ts) = h(t, ts) = t/ts. Then, it comes back
from tf to ti. This picture has been taken from the ref.[6].

The rescaled hysteresis loop area Ξ(N=3) is reported in fig.17. It is expected that the
hysteresis loop area at large N is qualitatively similiar to the case N = 3 and that the
finite-size does not modify the asymptotic tails because the matching with the equilibrium
occur always with the infinite-volume behaviour.
The discussion above predicts that the magnetic work done by the system in a round-trip
protocol for an O(3) Heisenberg ferromagnet in d = 3 scales as

W ∼ (ts)
−0.66 · Ξ(N=3). (397)
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6 First-order transition in the low-temperature phase.

In the last sections we want to show how off-equilibrium behaviours emerge crossing the first-
order transitions. We investigate the low-temperature phase at fixed temperature T < Tc in
which a transition is driven by magnetic field around h = 0. Firstly, we construct a scaling
theory for the first-order transition using the renormalization group. Then, we investigate
the effects of a relaxational dynamics in a finite-size spin system below the critical temper-
ature and extract the dynamical exponents.

6.1 Renormalization approach to first-order transitions.

In the RG approach to statistical physics, the singularities of thermodynamic functions asso-
ciated with phase transitions are located on critical surfaces determined by the fixed points
of the renormalization transformation. The properties of the fixed points which give rise to
continuous phase transitions and critical phenomena have been already discussed in Sec.1.
The corresponding properties associated with first-order phase transitions, i.e. discontinu-
ous change in an order parameter are shown in the following [see ref. [23], [24], [25] and [26]].

Let us consider the hamiltionian functional H(φ) of O(N) symmetric spin-sytems. It de-
pends on a set of external fields {hα} = {h,Kα} and h is the field conjugate to the order
parameter σ. A first-order phase transition for temperatures T below the critical tempera-
ture Tc, can be described by a discontinuity in σ as a function of h which can be taken to
occur at h = 0.
We assume that exsists an RG transformation for H such that the fields {h,Kα} are mapped
into new fields h′(h,K) and K ′α(h,K) which are analytic functions of the original fields
{h,Kα}. Note that this transformation has to preserve the origin and the sign near the origin
of the field h41. Thus, the new fields must satisfy h′(h = 0,K) = 0 while ∂h′(0,K)/∂h 6= 0.
As we have seen in Sec.1 the RG approach to the critical behavior of spin-systems is de-
termined by a fixed point {h,Kα} = {0,K∗α}, with relevant eigenvalues associated to the
ordering field h, `h = ∂h′(0,K∗)/∂h and to the other fields42 which can be obtained by
diagonalizing the matix Tαβ = ∂K ′α(0,K∗)/∂Kβ . From these eigenvalues of the RG flow
near the fixed point all the stuff about the critical behaviour (critical exponents, scaling
behaviour) can be determined.

We want to state some conditions which are sufficient for the occurence of a discontinu-
ity in the order parameter across the first-order transition:

• There exists another fixed point for the spin-system at h = 0 and Kα = K∗∗α such that the
configurations {0,Kα} of the system which belong to a domain D (corresponding to T < Tc)
bounded on one the side of the critical surface, are mapped by many iterations of the RG
transformation into this fixed point. We refer to this fixed point as discontinuous fixed point.

• At this fixed point, the eigenvalue `h = ∂h′(0,K∗∗)/∂h associated with the ordering
field h is given by Ld where Ld is the change in the scale of volume under the renormaliza-
tion transformations43.

• The discontinuity of the order parameter ∆σ(K)44 does not vanish when we consider
the limit K 7→ K∗∗ i.e. ∆σ∗∗ = ∆σ(K∗∗) 6= 0.

41It determines the discontinuous fixed point.
42For the underlying model the relevant operator are magnetic field and temperature only.
43In the first-order transitions the size of the system is very important. We will recover the infinite-volume

limit but we begin with a finite-size spin-system.
44It can be defined by considering the equilibrium value in the low temperature phase given by (177).

Since the magnetic field reverse the direction of the order parameter, ∆σ(T ) = σ(+)(T )−σ(−)(T ) = 2σ(T ).



74

We prove that the second condition is necessary for a discontinuity ∆σ at h = 0 Kα ∈ D
Let us consider the thermodynamic potential F(σ, h,K)45: it is well known that it scales
with the volume of the system [see for instance [14]]:

F(σ, h,K) ∼ gL(σ, h,K) +
1

Ld
· F(σ, h′,K ′). (398)

The order parameter can be obtained by

σ(K) =
∂F(σ, h,K)

∂h
(399)

and
σ(±)(K) = lim

h→0±

∂F(σ, h,K)

∂h
(400)

Thus,
∆σ(K) = R(K) ·∆σ(K ′) (401)

where R(K) = L−1∂h′(h,K)/∂h
∣∣∣
h=0

. Since the second condition is satisfied, R(K∗∗) = 1

and therefore ∆σ∗∗ 6= 0 after many iterations. The second condition also implies that the
non-scaling part of the thermodynamic potential gL has a behaviour ∂gL(0,K∗∗)/∂h = 0
and this makes σ(±) not logharitmically divergent at the discontinuous fixed point.
We consider the effects of many iterations of the RG transformation. From the last equation
(401) we obtain:

∆σ(K) =

∞∏

n=0

R(K(n)) ·∆σ∗∗ (402)

where K(n)
α is the mapping of the field Kα after n iterations of the RG transformations and

K
(0)
α = Kα. A sufficient condition to have a finite product of the R(K(n)) is:

ρ = lim
n→∞

R(K(n+1))− 1

R(K(n))− 1
< 1;

Since the critical value of the fields K∗∗α are finite46, ρ is equal to the largest eigenvalue `′
associated to the external fields close to the discontinuous fixed point. If the system ∈ D,
we expect that successive RG mappings drive the system closer to the discontinuous fixed
point i.e. it is a stable fixed point. Thus, we have necessary `′ < 1. If the system 6∈ D i.e.
T > Tc, it is mapped toward a different fixed point. In general, it is expected that R < 1
there so there is no discontinuity in the order parameter.

6.2 Scaling hypotesis for first-order transitions.
From the previous discussion about RG approach to first-order transitions, a scaling be-
haviour of the observables follows. Our purpose is to extract the scaling dimensions of the
fields and the power-law exponents47 related to the discontinuous fixed point. In the follow-
ing we proceed making a scaling hypotesis on the behaviour of the order parameter. Then,
we check the consistence with the RG formalism above.
Let us consider a first-order transition in which the system switches from one non-critical
phase, with finite correlation length, to another non-critical phase. This is the case of a
spin-system below the critical temperature [see fig. 18].

We postulate that the phenomenological power-law used for the critical phase transitions is
still valid for the discontinuous fixed point [see ref.[25]]:

σ ∼ ±a|h|1/δ (403)
45see Sec. 1.2.8.
46A similiar proof for K∗∗α infinite can be found in the work [24].
47They are the equivalent of the critical exponent for a first-order phase transition,
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Figure 1: The phase diagram of a magnetic system (left) and of a simple fluid (right).

Table 1: Relation between fluid and magnetic quantities. Here F and A are respectively the Gibbs and the
Helmholtz free energy, CP and CV the isobaric and isochoric specific heats, CM and CH the specific heats at
fixed magnetization and magnetic field, κT the isothermic compressibility, and χ the magnetic susceptibility.
ρc and µc are the values of the density and of the chemical potential at the critical point.

FLUID MAGNET

density: ρ− ρc magnetization M
chemical potential: µ − µc magnetic field H

CP = −T

(
∂2F
∂T 2

)

P

CH = −T

(
∂2F
∂T 2

)

H

CV = −T

(
∂2A
∂T 2

)

V

CM = −T

(
∂2A
∂T 2

)

M

κT =
1

ρ

(
∂ρ

∂P

)

T

= − 1

V

(
∂2F
∂P 2

)

T

χ =

(
∂M

∂H

)

T

= −
(
∂2F
∂H2

)

T

number of the lattice. Thus, for µ = −4qJ , there is an equivalent transition separating the gas phase for
T > Tc from a liquid phase for T < Tc.

The lattice gas is a crude approximation of a real fluid. Nonetheless, the universality of the behavior
around a continuous phase-transition point implies that certain quantities, e.g., critical exponents, some
amplitude ratios, scaling functions, and so on, are identical in a real fluid and in a lattice gas, and hence in
the Ising model. Thus, the study of the Ising model provides exact predictions for the critical behavior of
real fluids, and in general for all transitions belonging to the Ising universality class, whose essential features
are a scalar order parameter and effective short-range interactions.

In the following, we will use a magnetic “language.” In Table 1 we write down the correspondences between
fluid and magnetic quantities. The quantity that corresponds to the magnetic field is the chemical potential.
However, such a quantity is not easily accessible experimentally, and thus one uses the pressure as second
thermodynamic variable. The phase diagram of a real fluid is shown in Fig. 1 (right). The low-temperature
line (in boldface) appearing in the magnetic phase diagram corresponds to the liquid-gas transition line
between the triple and the critical point. Of course, this description is only valid in a neighborhood of the
critical point. In magnetic systems there is a symmetry M → −M , H → −H that is absent in fluids. As a
consequence, although the leading critical behavior is identical, fluids show subleading corrections that are
not present in magnets.

7

Figure 18: The phase diagram of a ferromagnetic spin-system. This picture has been taken
from the ref. [19].

A first-order transition is described by δ → ∞ 48 which leads to a discontinuity in the
behaviour of σ at the fixed point. It follows that a = |σ|.
Let us connect the scaling hypotesis with the RG formalism: a generic RG transformation
maps the ordering field 49:

h 7→ h′ = `h · h = λdh · h; (404)

and for the scaling part of the thermodynamic potential:

F(h) 7→ F(h′) = λ−d · F(h) (405)

where we have neglected the dependece of F on other relevant operators Kα because we
are considering a spin-system at fixed temperature T < Tc

50. We fix the scale of the RG
transformation as

λ = |h|−1/dh (406)

and therefore the thermodynamic potential scales as

F(h′) = F± · |h|d/dh (407)

where F± = F(±1). Since the magnetization is given by (399), we obtain from the scaling
hypotesis (403) the relation:

d/dh = 1− (1/δ); (408)

but since a first-order transition is characterized by δ →∞, we conclude that the scaling di-
mension of the magntic field is dh = d. This result is in agreement with the assumption made
before to construct the discontinuous fixed point. From the general result δ = dh/dφ = ∞
we can conclude, since dh = d, that dφ = 0 [see ref.[25]].

Let us consider the equilibrium correlation length ξ for the system below the critical tem-
perature. Since the temperature is fixed, ξ is finite and the theory is not critical. When we
make an RG transformation in the neighbourhood of a discontinuous fixed point we expect
that

ξ 7→ ξ′ = λ−1 · ξ(h′) (409)

Using the relation (406) we obtain

ξ′ = A± · |h|−1/d (410)

with A± = ξ(±1). Thus, when the system undergoes a first-order transition h → 0, the
correlation length diverges like

ξ ∼ |h|−νh ⇒ νh =
1

dh
=

1

d
; (411)

48δ = dφ/dh is the critical exponent extended to the first-order transition. Then, we consider the protocols.
49Note that λdh = `h. Thus, we already know from the previous subsection that dh = d. We check this

result in order to check the scaling hypotesis too.
50In addition to the ordering field, only the temperature is relevant but we keep it fixed
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However, the relation above must be interpreted. We know that the ordered phases con-
nected through the first-order transition are both non-critical, so what does the last result
mean?
Physically speaking, the system below the critical temperature is in the ordered phase where
the spins are aligned with the external field. When h→ 0, we consider the phase transition
between two different ordered phases which coexists at the discontinuous fixed point. Let
us consider the longitudinal two-point correlation function: it is composed by a connected
part W (2)(p) plus the square of the magnetization σ2 (non-connected). The connected part
defines the correlation length of the system and remains finite. Infact, when we consider
< φ(0)1φ(x)1 > with |x| → ∞, the two-point correlation function approaches the value of
the square of the spontaneous magnetization. Thus, W (2) → 0 which means that spins are
connected over a finite length.
But, when the system undergoes the first-order transition, a long-range order arises because
the system does not distinguish the ordered phases anymore. Even if the correlation length
is still finite, ξ can be interpreted as coherence or persistence length for the coexisting phases.
This interpretation is also quite consistent with the standard hyperscaling relations [see for
instance ref.[1]] 2 − η = d(δ − 1)/(δ + 1) = 2/νh − d which, when δ → ∞ yield the decay
exponent dφ = d− 2 + η = 0 corresponding to no decay, i.e. to long-range order.

6.3 Relaxational dynamics at T < Tc.
We derive the dynamical exponents of the O(N) vector model below the critical temperature
by following the discussion of the ref. [6]. We assume that the dynamics of the fields occurs
through a purely dissipative Langevin equation. It is useful to consider a system of finite-size
L with a cubic shape V = Ld51 in order to extract the dynamical critical exponent z. For
simplicity, we investigate the case N = 2. However, as will be more clear later52, the results
hold for any N ≥ 2. The equation of motion, in the absence of external magnetic fields, is:

∂φ(x, t)

∂t
= −(−∇2 + r +

u

6
|φ|2) · φ(x, t) + ς(x, t); (412)

where φ(x, t) is a two-real-components field and ς(x, t) is a random variable with white
gaussian distribution. In the low-temperature phase, the spontaneous magnetization is given
by [see eq. (190) of Sec.3.2.2.]:

σ =

√
−6r

u
> 0;

Thus, the field can be represented as a one-component complex field:

φ(x, t) = σ · (1 + %(x, t)) · eiθ(x,t), (413)

where % is a real field which takes into account the possibility of radial fluctuation of |φ|.
Let us insert the parametrization into the equation of motion:

i
∂

∂t
θ(x, t) +

∂

∂t
%(x, t) = (414)

(
e−iθ∇2{eiθ(x,t)(1 + %(x, t))} − |r|%(x, t)(1 + %(x, t)) · (2 + %(x, t))

)
+ e−iθ(x,t)ς(x, t)/σ;

Separating real and imaginary parts we obtain:

∂

∂t
θ(x, t)(1 + %(x, t)) =

(
∇2θ(x, t)(1 + %(x, t)) + 2∇θ(x, t) · ∇%(x, t)

)
+ ςθ(x, t); (415)

51The shape of the system determines the dynamic scaling of the system at first-order transitions, See
Ref.[6]. We consider a cubic shape in order to take, then, the infinite-volume limit.

52The mainly dynamics occurs into a plane for every N ≥ 2. Thus, the O(N) vector-model, even in the
limit of large N , can be reduced to a planar model. See 462.
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and

∂

∂t
%(x, t) = −

(
(∇θ(x, t))2(1+%(x, t))−∇2%(x, t)+|r|%(x, t)(1+%(x, t))·(2+%(x, t))

)
+ς%(x, t);

(416)

We have ridefined the distribution of the noise for the phase degree of fredoom ςθ according
to

P (ςθ) ∝
∫
Dςθ · exp

(
− σ2

2Ω

∫
dt

∫
ddx · |ςθ(x, t)|2

)
. (417)

The variance of the new noise distribution is rescaled: Ω = 2 7→ 2/σ2, the mean value is
zero. The radial fluctuations are affected by the noise ς% which has the same distribution of
ςθ. We focus on the phase degree of fredoom θ under the following approximations:

-The radial fluctuations are very small and therefore we neglect them: (1 + %) ≈ 1.

-% and θ spatial variations are uncorrelated i.e. < ∇θ · ∇% >ς= 0.

These approximations decouple the radial fluctuations of the modulus from its angular
precession. Thus, the previous equation results simplified:

∂

∂t
θ(x, t) = ∇2θ(x, t) + ςθ(x, t); (418)

in the Fourier space it becomes:

∂

∂t
θ(k, t) = −k2θ(k, t) + ςθ(k, t); (419)

Note that in a finite-size system the Fourier transform of the field is given by:

θ(k, t) =

∫

Ld
ddx · eik·x · θ(x, t) (420)

and the inverse
θ(x, t) =

1

Ld

∑

k

e−ik·x · θ(k, t). (421)

The distribution of the noise in the Fourier space is

P (ςθ) ∝
∫
Dςθ · exp

(
− σ2

2V Ω

∫
dt ·

∑

k

|ςθ(k, t)|2
)
. (422)

The solution of the equation of motion (419) is:

θ(k, t) = e−k
2t

∫ t

0

dt′ · ek2t′ · ςθ(k, t′). (423)

where we have assumed t0 = 053, θ(k, t0) = 0 without loss of generality. Let us consider the
spatial average angle of the system:

∼
θ(t) =

1

Ld

∫
ddx · θ(x, t); (424)

It follows that <
∼
θ(t) >ςθ= 0 and the two-point correlation function is [see ref.[6]]:

<
∼
θ(t)

∼
θ(s) >ςθ=

1

σ2Ld
(t+ s− |t− s|); (425)

53Since the system is at the equilibrium, the initial time can be chosen arbitrarily.



78

The average angle changes over a time-scale of the order of the volume ∼ Ld.
Let us now consider the two-point correlation function of single fields not spatially averaged:

< θ(k, t)θ(k, s) >ςθ=
Ld

σ2k2

(
e−k

2|t−s| − e−k2(t+s)
)

(426)

We consider a "wall quantity" in three spatial dimensions x = (x1, x2, x3) defined as

δθT (x3, t) =
1

L2

∫

L2

dx1 · dx2 ·
[
θ(x, t)−

∼
θ(t)

]
(427)

The two-point function of the previous quantity is:

< δθT (x3, t)δθT (x′3, s) >ς= (428)

1

σ2Ld

∑

k3 6=0

e−k
2
3|t−s|

k2
3

· eik3(x3−x′3) =
1

4π2σ2L2

∑

n 6=0

e−4π2|t−s|/L2

n2
· ei2πn(x3−x′3)/L

where in the last computation the two-point correlation function for the wall quantity has
been written in the limit t, s →∞ helding |t− s| fixed, where the system is at the equilib-
rium. This fluctuations are small and have a typical time scale of the order of L2.

We compute the autocorrelation function for the magnetization:

1

L2d

∫
ddx · ddx′· < φ(x, t)φ(x′, s) >ς=

σ2

L2d

∫
ddx · ddx′· < ei(θ(x,t)−θ(x

′,s)) >ς ; (429)

the angle θ(x, t) ∼
∼
θ(t) +O(1/

√
L), thus we approximate the last relation:

≈ σ2· < exp
(
i
∼
θ(t)− i

∼
θ(s))

)
>ς= σ2e−

1
2<(

∼
θ(t)−

∼
θ(s))2>ς (430)

= σ2 · exp
(
− 1

Ldσ2
|t− s|

)
;

The time-scale of the autocorrelation is τ ∼ Ld. We have considered a spin system without
magnetic fields: in this case the magnetization has fixed modulus but there are no con-
straint on its direction. The random orientation of the vector magnetization into the space
is expected to be the slowest dynamics of the system and has a dynamical exponent z = d
because requires a variation in the enteire volume of the system. Note that there is also a
motion in the transverse planes due to the spin-waves with a time-scale z = 2. However, it
is faster and thermalizes over larger time-scales ∼ Ld.
In the presence of a magnetic field, the magnetization has a fixed direction. The only
degrees of freedom of the system are the spin-waves propagating along the transverse direc-
tions. Since the system is non-critical, the spin-waves is expected to be non-interacting, so
the dynamic exponent of the system is gaussian z = 2.
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7 Off-equilibrium scaling behaviour
at the first-order transition in O(N) vector models.

In this section we focus on the off-equilibrium dynamics arising in the O(N) vector-model at
large N , when this system is at fixed temperature T < Tc and is coupled to a time-dependent
magnetic field. Thus, we consider a magnetic field protocol

δ(t, ts) = δ1,α · h(t, ts) ≈ δ1,α · t/ts (431)

with T < Tc fixed which means that the thermal coupling r is a constant. Note that the
general constraint-equation (290) is still valid below the critical temperature because related
to the largeN limit and not to the specific protocol. Since we assume a relaxational dynamics
of the fields, we can use the relations (279), (280) and the results for the correlation functions
with time-dependent parameters (342)-(345). These are function of the mass term which is
defined at all times by (290). In particular, the constraint-equation (290) for the protocol
(431) is

r +
u

6

(
Σ2(t, ts) +

∫ Λ ddk

(2π)d
·GT (k, t, ts)

)
= m2(t, ts). (432)

Let us consider the off-equilibrium scaling limit in the constraint-equation above: we take
the limit ts → ∞ keeping t = t/(ts)

e and k = k(ts)
e/z fixed. Since the thermal coupling r

is a constant, it scales as r ∼ r · (ts)0. Thus, from the rescaling of the magnetization (358):

2(a+ 1)e− 2a = 0⇒ e =
a

(a+ 1)
, ∀d.

The exponent e in the low-temperature phase does not depend on the spatial dimension of
the system. If we consider a linear ramp protocol a = 1, it follows that e = 1/2. Thus, we
can define the off-equilibrium time-scale tQ as

tQ = (ts)
e =
√
ts. (433)

The off-equilibrium scaling limit of the constraint-equation requires that the magnetization
scales has (ts)

0 i.e. its scaling dimension is dφ = 0 and therefore the scaling dimension of
the magnetic field is dh = d− dφ = d, in agreement with the general results shown before.
Since e < 1, the off-equilibrium dynamics arises for very small values of the magnetic field:

h(t, ts) ≈ t/ts = (t/
√
ts) · (ts)−1/2 ts→∞→ 0. (434)

Therefore the slowest dynamics of the system in the off-equilibrium region is expected to be
a change in direction of the vector-magnetization whose time-scale is given by a dynamical
exponent z = d. Other types of dynamics occur with faster time-scales and can be neglected.
It follows that the off-equilibrium length scale can be defined as:

lQ = t
1/z
Q = t

1/d
Q = (ts)

1/2d. (435)

For the transverse two-point correlation function, we read into (359) that

∫ Λ ddk

(2π)d
·GT (k, t, ts) ∼ ((ts)

e)−(d−z)/z ·
∫

ddk

(2π)d
· GT (k, t); (436)

−(d− z)/z = 0⇒ z = d

The transverse two-point correlation function is not subleading in the off-equilibrium scaling
limit only if we consider the slowest dynamics of the system.
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Let us show that the definition of the off-equilibrium length and time scales are also in
agreement with the definition of the Kibble-Zurek scales

tQ = (ts)
aνhz/(aνhz+1) ?

= (ts)
e = (ts)

a/(a+1) (437)

the definitions are equivalent only if

νh = 1/dh = 1/d. (438)

The name "Kibble-Zurek" is generally related to continuous phase transitions. We will call
tQ KZ time in order to emphasize the analogies between this case and the continuous phase
transistion treated in the first part.
The mass term satisfies the equation (279) also below the critical temperature:

m2(t, ts) = − 1

Σ(t, ts)

( �
Σ(t, ts)− h(t, ts)

)
(439)

When we take the off-equilibrium scaling limit

M2(t) · (lQ)X=? = −
�
Θ(t)

Θ(t)
· t−1
Q +

t

Θ(t)
· l−dhQ = −

�
Θ(t)

Θ(t)
· t−1
Q +

t

Θ(t)
· t−d/zQ

Therefore the scaling relation of the mass term is given by

m2(t, ts) ∼M2(t) · l−dQ . (440)

Note that the transverse two-point correlation function generally has a critical behaviour in
the limit of zero momenta. In this case the transverse correalation function remains finite
at all times because the mass term is:

m2(t, ts) ∼ 0 · l−2
Q +M2(t) · l−dQ (441)

the presence of a small magnetic field makes the transverse susceptibility not IR-divergent.
Let us discuss the rescaling of the momenta. Below the critical temperature the degrees of
freedom of the system are essentially given by the spin-waves. The short-wavelength modes
can be considered at the equilibrium for all times and therefore the off-equilibrium behaviour
depends only on the long-wavelength modes. In the KZ scaling limit, it can be shown that
only the zero-momentum modes are relevant. A more detailed discussion is remanded to the
appendix E.
We define the quantity:

S(t, ts) =

∫ Λ ddk

(2π)d
·GT (k → 0, t, ts) ∼ l0Q · S(t) (442)

The scaling constraint-equation below the critical temperature is:

r · l0Q +
u

6

(
Θ2(t) · l0Q + S(t) · l0Q

)
= 0; (443)

The mass term is subleading also below the critical temperature. Thus, the result is simpli-
fied:

r +
u

6

(
Θ2(t) + S(t)

)
= 0; (444)

The previous result can be written also as

Θ2(t) + S(t) = σ2. (445)

where σ =
√
−6r/u. The scaling constraint-equation (445) states that the vector mag-

netization performs a rigid rotation with fixed length equal to σ. Infact, the equilibrium
behaviour of the longitudinal magnetization has to be recovered in the appropriate limits:
it makes a jump from −σ to +σ, crossing the transition. We expect therefore that the
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longitudinal component of the magnetization, in the off-equilibrium region, first decreases
dissipating into the transverse modes and then increases going to +σ at +∞. Note that the
transverse magnetization is zero because of the O(N − 1) symmetry54 but the correlations
among the transverse components (resumed in the function S) rotate the vector in one of
the N − 1 planes transverse to the longitudinal direction.

It is useful to write the longitudinal magnetization Σ1 = Σ as

Σ(t, ts) = σ · cos(ϑ(t, ts)) (446)

where the angle ϑ ∈ [0, π] is the azimut with respect to the longitudinal direction into the
N -dimensional sphere. It follows from (342) that

cos(ϑ(t, ts)) =
1

σ

∫ t

t0

dt′ · h(t′, ts) · exp
(
−
∫ t

t′
dt′′ ·m2(t′′, ts)

)
. (447)

In the KZ scaling limit

cos(ϑ(t, ts)) ∼ l0Q ·cos(ϑ(t)) =
1

σ

∫ t

−∞
dt
′ ·tQ ·t′ ·t−1

Q ·exp
(
−
∫ t

t
′
dt
′′ ·tQ ·M2(t

′′
)·t−1

Q

)
. (448)

where ϑ(t) is the scaling function of ϑ(t, ts)
55. In the following, we want to demonstrate the

conjecture about the off-equilibrium dynamics: we first check the asymptotic equilibrium
behaviour and then demonstrate that the longitudinal projection decreases.

Finite-size effects.

It has been considered the system in the infinite-volume limit. The infinite-volume limit is
well defined also below the critical temperature and can be obtained starting from a system
with a finite size L taking the limit ` = lQ/L→ 0 at fixed k, t in the correlation functions.
In addition, the matching with the equilibrium behaviour in the limit t → ±∞ requires
that ts · L−z → ∞ i.e. L → ∞. Since we are able to investigate only the firstly deviations
from the asymptotic equilibrium, the presence of a finite size does not modify the discussion.

7.1 Asymptotic behaviours.
At the equilibrium, the mass term of the system can be related to the inverse of the coherence
length of the system. In particular, since the scaling relation of the mass term is (441), it
follows that:

m2(t, ts) ∼ ξ−d(t, ts) (449)

and in the KZ scaling limit
M2

e(t) ∼ |t| (450)

in the asymptotic limits t→ ±∞. Since the scaling functions of the correlators (342)-(345)
depend on the value of the scaling function of the mass term M2, this relation permits to
recover their equilibrium behaviour.

We investigate the first deviations from the equilibrium assuming that the exponential ansatz
(316), with appropriate exponents, applies in the case of first-order phase transition too [see
ref.[6]]:

M2(t)
t→±∞∼ |t| ·

(
1 + b|t|a · e−c|t|1+zνh

)
(451)

where a, b, c are free parameters and νh = 1/d, z = d. In the following, we show that this
assumption leads to an exponential approach to the equilibrium in the correlation functions.

54It is an average quantity: all the transverse directions are equivalent and their average value is zero.
55Since dφ = 0, the rescaling is only a change of variables.



82

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0
cosθ(t /t  )

t /t 

Q

Q

Figure 19: The equilibrium behaviour of the magnetization below the critical temperature.

We expect that the ansatz (451) is correct for both the asymptotic limits, maybe with
different values of the free parameters. However, since we do not know the general expression
forM2, 56 we are not able to investigate the limit t→ +∞ because of memory effects. Thus,
we will investigate the off-equilibrium leading correction for t→ −∞ only.

7.1.1 Equilibrium asymptotic forms.

We want to recover the equilibrium behaviour of the correlators in the asymptotic limits t→
±∞. At the equilibrium the magnetization has fixed direction and lies in the longitudinal
direction. Thus, we can assume that

Σ(t, ts)
t→±∞∼ ±σ. (452)

From the equation (279), using the last relation, follows that

m2(t, ts) = ±h(t, ts)

σ
(453)

that is the equation (177) valid at the equilibrium. In the KZ scaling limit, it becomes

m2(t, ts) ∼ ±
t

σ
· l−dQ (454)

In other words, the equilibrium contribution to the scaling functionM2 is

M2(t)
t→±∞∼ ± t

σ
=
|t|
σ

=M2
e(t). (455)

which is in agreement with (450). Note that this relation makes us able to compute the
equilibrium contribution of the correlation function (342) and (345).
We start from the magnetization: the general expression for the correlator has to reduce to
the relation (452) when t→ −∞. We check the consistence in terms of the azimut angle ϑ
[see app.F.1.1]

cos(ϑ(t)) =
1

σ

∫ t

−∞
dt
′ · t′ · exp

(
−
∫ t

t
′
dt
′′ · M2(t

′′
)
)

t→−∞∼
M2'M2

e

−1. (456)

That is in agreement with θ(t0) = π such that Σ(t0) = σ cos(θ(t0)) = −σ. If we consider the
system at the equilibrium for all times, similiar computations leads to cos(ϑ(t→ +∞)) ∼ +1.

56Formally, it is the solution of the scaling constrain-equation (445) by expressing the correlators as
functions ofM2.
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The behaviour of the magnetization at the equilibrium is shown in fig.19.
We compute the equilibrium contribution for the transverse susceptibility using the relation
(455) in (345) at zero momenta [see app.F.1.2]

GT (t) = 2

∫ t

−∞
dt
′ · exp

(
− 2

∫ t

t
′
dt
′′ · M2(t

′′
)
)

t→−∞∼
M2'M2

e

σ/|t| = (M2
e(t))

−1. (457)

In other words,

χ−1
T (t, ts) ∼ −

h(t, ts)

σ
(458)

in agreement with the general prediction for the transverse susceptibility below the critical
temperature at the equilibrium [see Sec.1.2.8].
We note that the scaling constraint-equation is satisfied at the equilibrium: since we assume
that the vector magnetization has a fixed direction i.e. Σ ∼ −σ, the transverse correlation
function is negligible57. Thus, from (432):

σ2 = σ2
(

cos(ϑ(t))
)2

∼ σ2 (459)

7.1.2 Phase dynamics.

We want to understand the effects of the transverse correlations on the value of the vector
magnetization at early times. From the scaling constraint-equation (432) we learn that the
longitudinal component of the vector magnetization rotates into one of the N −1 transverse
planes. Thus, the O(N) vector-model can be reduced to a planar X-Y model by considering
the longitudinal direction plus one of the N −1 transverse ones58.The N -dimensional vector
φ obey to the equation of motion:

�
φα(x, t) = −(∇2 +m2(t, ts))φα(x, t) + δ1,α · h(t, ts) + ςα(x, t) (460)

for α = 1, · · · , N . Let us consider a polar coordinates for the components of φ:

φ1(x, t) = σ(1 + %(x, t)) cos(θ1(x, t));

φ2(x, t) = σ(1 + %(x, t)) cos(θ2(x, t)) · sin(θ1(x, t));

· · ·

φN−1(x, t) = σ(1 + %(x, t)) cos(θN−1(x, t)) · · · sin(θ1(x, t));

φN (x, t) = σ(1 + %(x, t)) sin(θN−1(x, t)) · sin(θ1(x, t));

We have parametrized the vector on a N -dimensional sphere59. Since the O(N) vector-
model can be reduced to a planar one [see ref.[28] and [29]], we integrate N − 2 transverse
degrees of freedom and we consider the 2-dimensional vector φ in the complex plane:

φ(x, t) = σ(1 + %(x, t)) · eiθ1(x,t) (461)

In the following we refer to the phase θ1 = θ ∈ [0, 2π]60. We can obtain an equation for the
phase dynamics using the parametrization (461) in (460) and then separating the real and

57If the magnetization has a fixed direction, the dynamics of the spin-waves turns out to be gaussian z = 2.
58This justifies the computation of the subsection 6.3, where we have considered the N = 2 case.
59We have inserted also a radial fluctuation % to be general. Then, we neglect the radial fluctuations.
60Since we are on a N -dimensional sphere, θ is the azimut and thus 0 ≤ θ ≤ π. When we consider a planar

model the phase takes values in the enteire unitary circle.
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the imaginay part. The detail of the computation are reported in the appendix F.2.1. The
final result is:

�
θ(x, t)(1 + %(x, t)) = ∇2θ(x, t)(1 + %(x, t)) + 2∇θ(x, t) · ∇%(x, t)

− h(t, ts)

σ
sin
(
θ(x, t)

)
− ς1(x, t)

σ
sin(θ(x, t)) +

ς2(x, t)

σ
cos(θ(x, t)) (462)

for the phase dynamics, and

�
%(x, t) = (∇θ(x, t))2(1 + %(x, t))−m2(t, ts)(1 + %) +

h(t, ts)

σ
cos
(
θ(x, t)

)
(463)

+
ς1(x, t)

σ
cos(θ(x, t)) +

ς2(x, t)

σ
sin(θ(x, t)).

for the dynamics of the radial fluctuations. This system of equations full describes the time-
evolution of the field but it is very hard to solve analitically. Thus, we solve the equation
for the phase dynamics under some approximations:

-The radial fluctuations of the field are very small so (1 + %(x, t)) ≈ 1. The off-equilibrium
physics is related to very small values of the magnetic field which do not lead to significative
length-variations of the vector magnetization.

-The spatial variations of angular and radial fluctuations are uncorrelated: < ∇θ(x, t) ·
∇%(x, t) >ς= 0.

We want to study the time-evolution of the phase by solving the equation of motion (462).
Since we are interested to the off-equilibrium behaviour we have seen that the momenta are
subleading terms [see app.E and ref. [28]].
Thus, we write the equation of motion (462) in the Fourier space

�
θ(k, t) = −k2θ(k, t)− hα(t, ts)/σ · sin(θ(k; t)) + ςθ(k, t)

and we consider the zero-momentum case 61:
�
θ(t) = −hα(t, ts)/σ · sin(θ(t)) + ςθ(t) (464)

where we have called ςθ = −ς1 sin(θ) + ς2 cos(θ). We have started with a white gaussian
noise distribution proportional to

P (ς) ∝
∫
Dς·exp

(
− 1

2Ω

∫
dt·
∫
ddx·|ς(x, t)|2

)
=

∫
Dς·exp

(
− 1

2Ω

∫
dt·
∫
ddx·

{
ς21 (x, t)+ς22 (x, t)

})

(465)
with zero mean and variance (207). The new noise variable ςθ has distribution

P (ςθ) ∝
∫
Dςθ · exp

(
− σ2

2Ω

∫
dt ·

∫
ddx · |ςθ(x, t)|2

)
(466)

The variance of the new noise distribution is rescaled: Ω = 2 7→ 2/σ2, the mean value is
zero. The solution at zero-momenta for the phase θ(t) is [see app.F.2.2]

θ(t) = 2 arctan
{

tan(θ0/2)·exp
(
−
∫ t

t0

dt′·h(t′, ts)/σ
)

+

∫ t

t0

dt′·exp
(
−
∫ t

t′
dt′′·h(t′′, ts)/σ

)
·ς ′θ(t′)

}

(467)
where we have ridefined the distribution of the noise ς ′θ = ςθ/2 cos2(θ/2) having the same
cumulants of ςθ. We investigate the dynamics for small angles:

θ(t) = π − θ′(t) (468)
61We denote θ(k = 0, t) = θ(t).
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Figure 20: The effects of the transverse correlation functions on the value of the phase θ at
early times.

with θ′(t) very small. It follows that

sin(θ(t)) = sin(π − θ′(t)) = − sin(θ′(t)) ' −θ′(t).

The initial condition for θ′ is θ′0 = 0. In this approximation we can linearize the equation of
motion (464):

�

θ′(t) = h(t, ts)/σ · θ′(t) + ς ′θ′(t) (469)

and the solution (467) becomes62:

θ′(t) =

∫ t

t0

dt′ · exp
(∫ t

t′
dt′′ · h(t′′, ts)/σ

)
· ς ′θ′(t′) (470)

Let us now compute the expectation values of the phase. We remember that the cumulants
of the noise distribution ς ′θ′ are:

< ς ′θ′(t) >ς′θ′= 0; (471)

and

< ς ′θ′(t) · ς ′θ′(t′) >ς′θ′=
2

σ2
δ(t− t′); (472)

Thus, the average value of the phase
∧
θ at small angles follows from (470)

∧
θ(t, ts) =< θ′(t)) >ς′

θ′
= 0 (473)

The variance of the phase distribution γ2(t, ts) is [see app.F.2.3]

γ2(t, ts) =<
(
θ′(t)−

∧
θ(t, ts)

)2

>ς′
θ′

=< (θ′(t))2 >ς′
θ′
∼ 2

σ2
et

2/tsσ·
{√π

2
·
√
σts·Erfc

(
|t|/
√
σts

)}

(474)
In the KZ scaling limit and looking at early times t → −∞, where the approximation for
small angles hold, we obtain:

γ2(t, ts) ∼ tQ · γ′2(t)
t→−∞∼ 1

σ|t| ∼
Geq.T (t)

σ2
. (475)

62The term proportional to the initial state

θ′0(t) = θ′0 · exp
(∫ t

t0

dt′ · h(t′, ts)/σ
)

= 0,

because θ′0 = 0.
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The Fokker-Planck equation for the phase distribution (near θ0) P (θ′, t) can be obtained
directly from (469)63[see ref.[28]]:

∂

∂t
P (θ′, t) = −2HFP · P (θ′, t);

The Fokker-Planck hamiltonian is:

HFP = −1

2

∫
ddx · δ

δθ′(x)

( δ

δθ′(x)
+ L[θ′(x)]

)
= −1

2

( δ2

δθ′2
+ (−θ′ · h(t, ts)

σ
)
)
.

It follows that the Fokker-Planck equation is

∂

∂t
P (θ′, t) = − δ

δθ′

(
θ′
h(t, ts)

σ
· P (θ′, t)

)
+

δ2

δθ2
P (θ′, t); (476)

with P (θ′, t0) = δ(θ′). This equation admits a gaussian solution in the form:

P (θ′, t) =
e−θ

′2/2γ2(t,ts)

√
2πγ(t, ts)

; (477)

We learn that the effect of the spin-waves fluctuations along the transverse direction give
rise to a variance in the distribution of the phase close to the equilibrium. However, the
vector magnetization still remains fixed along the longitudinal direction at early times.

7.1.3 Leading correction to the asymptotic equilibrium scaling.

Our purpose is to understand how the magnetization starts its departure from the initial
position. We consider the leading order correction to the asymptotic equilibrium behaviour
in the scaling function of the mass term:

M2(t)
t→−∞∼ |t|

σ

(
1 + b|t|a · e−c|t|1+zν

)
=
|t|
σ

(
1 + b|t|a · e−c|t|2

)
(478)

where a, b > 0, c > 0 free parameters. Let us insert this ansatz in the equation (279):

M2(t) = −Θ(t)

Θ(t)
+
t

Θ
= −

�

ϑ(t) · tan
(
ϑ(t)

)
+

t

σ cos(ϑ(t))

t→−∞∼ |t|
σ

(
1 + b|t|a · e−c|t|2

)
. (479)

The equilibrium behaviour of the mass term consists in the zero-order of the Taylor expansion
of ϑ around π. If we consider the first-order expansion:

M2(t) ' −
�

ϑ(t) · ϑ(t) +
|t|
σ
∼ |t|

σ

(
1 + b|t|a · e−c|t|2

)
; (480)

We can find an approximate solution for the time-evolution of ϑ by solving the previous
equation: ∫ ϑ(t)

π

ϑ · dϑ = −
∫ t

−∞

b

σ
|t′|1+a · e−c|t′|2 · dt′;

Thus,
1

2
ϑ2(t) =

π2

2
+
(
− b

2σ
c−a/2−1 · Γ[(2 + a)/2, c|t′|2]

∣∣∣
t

−∞

)

Using the asymptotic expansion (502) we obtain

ϑ(t) ' π
(

1− b

2π2cσ
|t|a · e−c|t|2

)
. (481)

63A more detailed computation has to start with the equation of motion (464) and then has to consider
the Kramers-Moyal expansion. However, in the approximation scheme (468), it is sufficient to keep the
Fokker-Planck truncation.
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Figure 21: The leading off-equilibrium correction for the scaling function of the magnetiza-
tion Σ(t)/σ = cos(ϑ(t)) given by (482) with respect to the equilibrium behaviour. This plot
has been made with d = 3, c = σ−1 = 1, a = 0.

This solution tells to us that the average azimut angle decreases under the ansatz (478).
The computation above neglects the quadratic terms O(ϑ2). Thus, it cannot be used to
estimate correctly the leading off-equilibrium correction into the longitudinal magnetization
(448)64.
The correct result can be obtained using the ansatz (478) directly in (448) [see app. F.3.1]

cos
(
ϑ(t)

)
∼ −1

(
1 +K|t|a · e−c|t|2

)
(482)

with K = (−b/(1 + 2cσ)). The exponential approach to the equilibrium has been found
also for the longitudinal magnetization. Note that the relation (482) tells to us that the
projection of the vector magnetization ~Σ along the longitudinal direction decreases.
We can check the consistence of this result using the relation (279) in the scaling limit.
It has to be satisfied at all times also below the critical temperature; in particular, in the
asymptotic limit t→ −∞, we obtain65:

|t|
σ

+
b

σ
|t|1+a ·e−c|t|2 ∼ −aK|t|a−1 ·e−c|t|2−2cK|t|a+1 ·e−c|t|2 |t|

σ
−K
σ
|t|1+a ·e−c|t|2 +O(e−2c|t|2);

64At the same order of the approximation cos(ϑ) = −1 and it gives the equilibrium results.
65The detail of the computation are reported in the following table:

• M2(t) ∼ |t|/σ ·
(

1 + b · |t|a · e−c|t|2
)

= |t|/σ + b
σ
|t|1+a · e−c|t|2 ;

◦ cos(ϑ(t)) ∼ −1
(

1 +K|t|a · e−c|t|2
)

;

◦ (cos(ϑ(t)))−1 ∼ −1
(

1−K|t|a · e−c|t|2
)

;

• t/ cos(ϑ(t)) ∼ −|t|/ cos
(
ϑ(t)

)
= |t|/σ − K

σ
|t|1+a · e−c|t|2 ;

◦ d
dt

cos(ϑ(t)) ∼ − d
d|t| cos(ϑ(t)) ∼ −aK|t|a−1 · e−c|t|2 − 2cK|t|a+1 · e−c|t|2 ;

• d
dt

cos(ϑ(t)) · (cos(ϑ(t)))−1 ∼ aK|t|a−1 · e−c|t|2 + 2cK|t|a+1 · e−c|t|2 +O(e−2c|t|2 );
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FIG. 7: (Color online) Scaling of the renormalized magne-
tization for cubic systems, as a function of w ≡ t/tκt

s with
κt = 1/2. We report data for T = 1 and two values of the
scaling variable u = tκ

s /L with κ = 1/6.
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FIG. 8: (Color online) Scaling of the renormalized magneti-
zation at T = 0.5 and T = 1 at the same value of U = 0.6299
(correspondingly u = 0.4454 for T = 1 and u = 0.6299 for
T = 0.5) as a function of W (w = W for t = 0.5 and w = 0.9W
for T = 1).

The scaling with respect to w = t/tκt
s at fixed values

of u is supported by the results reported in Figs. 7 and
8, where we show results for T = 1 and T = 0.5, respec-
tively. In all cases the data at fixed values of u approach
an asymptotic function of the scaling variable w, as pre-
dicted by the off-equilibrium scaling theory.

We expect that the scaling behavior (17) is universal
with respect to changes of the temperature T as long as
T < Tc. The scaling curves should be the same apart
from trivial normalizations of the scaling variables u and
w. To make universality more evident, we define new
variables U = cu(T )u and W = cw(T )w so that

mr(t, ts, L, T ) = F̂m(U, V ), (57)

where F̂m(U, V ) is universal and T independent. All tem-
perature dependence is encoded in the two nonuniversal
functions cu(T ) and cw(T ) that are uniquely fixed only
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FIG. 9: (Color online) Estimates of the renormalized magne-
tization for anisotropic lattices of size L2 × L∥ with L∥ = L2.
We report data for T = 1 and u = tκ

s /L = 0.7071, 0.5
(with κ = 1/8), versus the scaling variable w ≡ t/tκt

s (with
κt = 1/2). The inset shows mr(t = 0) vs 1/L, which is the
expected behavior of the scaling corrections.

if two normalization conditions are specified. In the fol-
lowing we require cu(T ) = cw(T ) = 1 for T = 0.5. To
perform a universality check using data at T = 0.5 and
T = 1, we should determine cu(T ) and cw(T ) for T = 1.
To determine the former quantity, we considered data at
t = 0 (correspondingly w = 0) and noted that the re-
sults for T = 1 at u = 0.4454 and data at T = 0.5 at
u = 0.6299 both give mr(t = 0) ≈ −0.86 for L → ∞.
This implies cu = 0.6299/0.4454 = 1.414. To determine
cw we consider the results for the same value of U (we
take U = 0.6299) and require the data to collapse once
plotted as a function of W . We obtain cw(T ) = 1.1 at
T = 1. The results for T = 1 and T = 0.5 at the same
value of U are shown in Fig. 8 as a function of W : all
data fall onto the same scaling curve, nicely confirming
universality.

Analogous results are obtained in the case of cylinder-
like systems, when using the corresponding scaling ex-
ponents given in Eq. (55). In Fig. 9 we show the renor-
malized magnetization for a system of size L × L × L2.
Results at fixed u = tκs/L with κ = 1/8 are plotted versus
w = t/tκt

s with κt = 1/2. The data appear to collapse
toward scaling curves, confirming the correctness of the
scaling Ansatz (17) with the exponents (55).

V. HYSTERESIS PHENOMENA

As we have discussed in the previous sections, the sys-
tem is unable to reach equilibrium when it goes through
the transition point at h = 0. To quantify the departure
from equilibrium we can consider protocols in which the
magnetic field is slowly increased from hi < 0 to hf > 0
and then it is decreased back again to hi < 0. In this case

l l 

l 

l 

t / t  

Θ(t / t  )/σ 

Q

Q

Figure 22: The behaviour of the scaling function of the relative magnetization Θ/σ as
function of the rescaled time along protocol (431), below the critical temperature. The
numerical simulations are made for an Heisenberg ferromagnet N = 3 in three spatial
dimensions. The system has a cubic finite-size V = L3. This picture has been taken from
the ref.[6].

.

The equilibrium terms satisfy the relation. The leading off-equilibrium terms are:

b

σ
|t|1+a · e−c|t|2 ∼ −2cK|t|a+1 · e−c|t|2 − K

σ
|t|1+a · e−c|t|2 ;

The last equation is satisfied if K = (−b/(1 + 2cσ)), in agreement with the result.
We investigate the first correction to the asymptotic equilibrium behaviour also in the trans-
verse susceptibility. Under the assumption (478), the result is an exponential deviation [see
app.F.3.2]:

GT (t) ∼ σ

|t|
(

1 +K ′|t|a · e−c|t|2
)

(483)

with K ′ = (−b/(1 + cσ)). We can check the consistence of this result using the relation
(381) in the limit t→ −∞66:

|t|
σ

+
b

σ
|t|1+a·e−c|t|2 ∼ −1

2

[
|t|−1−K ′|t|a−1·e−c|t|2−(a−1)K ′|t|a−1·e−c|t|2 +2cK ′|t|a+1·e−c|t|2

]

+
|t|
σ
− K ′

σ
|t|1+a · e−c|t|2 +O(e−2c|t|2);

The equilibrium terms satisfy the relation. The off-equilibrium leading terms are:

b

σ
|t|1+a · e−c|t|2 ∼ −cK ′|t|a+1 · e−c|t|2 − K ′

σ
|t|1+a · e−c|t|2 ;

66The detail of the computation are given in the following table:

• M2(t) ∼ |t|/σ ·
(

1 + b · |t|a · e−c|t|2
)

= |t|/σ + b
σ
|t|1+a · e−c|t|2 ;

◦ GT (t) ∼ σ/|t|
(

1 +K′|t|a · e−c|t|2
)

;

• GT (t)−1 ∼ |t|/σ
(

1−K′|t|a · e−c|t|2
)

;

◦ d
dt
GT (t) ∼ − d

d|t|GT (t) ∼ σ|t|−2 − σ(a− 1)K′|t|a−2 · e−c|t|2 − σK′|t|a · (−2c|t|) · e−c|t|2 ;

•
�
GT (t) · GT (t)−1 ∼ |t|−1 −K′|t|a−1 · e−c|t|2 − (a− 1)K′|t|a−1 · e−c|t|2 + 2cK′|t|a+1 · e−c|t|2 +O(e−2c|t|2 );
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The expression is satisfied only if K ′ = (−b/(1+cσ)), in agreement with the previous result.

We have found that the ansatz (478) for the leading off-equilibrium correction of the scaling
function M2 is sufficient to have an asymptotic exponential approach to the equilibrium
in the correlation functions. In particular, the longitudinal component of the magnetiza-
tion slowly decreases as exponential according to the rigid rotation conjecture. In order to
demonstrate the ansatz (478) one should insert the asymptotic expression of the correlators
in the scaling constraint-equation (445). The results above are only check of consistence.
We are not able to compute analytically the function S(t, ts) because of the integration over
the momenta. Even in the asymptotic limit t → −∞ and keeping k → 0 is not obvious
how to make approximation to arise a qualitatively correct result. However, as in the case
T = Tc, it can be demonstrated that different ansatzs do not lead to consistence.
The approach to the equilibrium in finite-size O(3) vector-models at the first-order transi-
tion has been numerically studied by [6] in three spatial dimensions.
We have shown that the off-equilibrium dynamics occur into one of the N − 1 transverse
planes, so we expect that our results are valid for each N ≥ 2. Thus,

σ−1 · Σ(N=3)(t, ts, L) ∼ (ts)
0 · cos(N=3)(t, `). (484)

The presence of a finite size does not modify the asymptotic matching which always occur
with the infinite-volume equilibrium scaling behaviour. The numerical result for cos(N=3)(t, `)
is shown in the fig.22.
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Figure 23: A qualitatively picture of the hysteresis loop area below the critical temperature.

7.2 Hysteresis phenomena.
When we consider a round-trip protocol i.e. when the magnetic field h(t, ts) ≈ t/ts is varied
along a closed path, the system shows hysteresis also below the critical temperature. The
hysteresis loop area can be defined in the same way of the case T = Tc [see eq. (385)]:

A =

∫ +∞

−∞
dt ·

(
Σ(t, ts) + Σ(−t, ts)

)
= σ

∫ +∞

−∞
dt ·

(
cos(ϑ(t))− cos(ϑ(−t))

)
. (485)

The scaling relation of the hysteresis loop area is:

A ∼ σ
∫ +∞

−∞
dt · tQ ·

(
cos(ϑ(t)) + cos(ϑ(−t))

)
∼ tQ · Ξ. (486)

where

Ξ = 2

∫ +∞

−∞
dt ·

∫ t

−∞
dt
′ · t′ · cosh

(∫ t

t
′
dt
′′ · M2(t

′′
)
)
. (487)

The energy spent by the system in a cycle is:

W =

∮
dh(t, ts) · Σ(t, ts) = ts · A ∼ (ts)

−1/2 · Ξ. (488)

Hysteresis phenomena are related to the off-equilibrium: since the system is at the equilib-
rium, the magnetic work is zero as fig.19 shown. In contrast, when the system is coupled
to a time-dependent magnetic field, it develops metastable because it cannot reach to adapt
instantaneously to the external variations. A qualitatively picture of the hysteresis loop area
below the critical temperature is shown in fig.23.
Since we do not have an explicit solution for M2, we cannot compute the amplitude Ξ.
Neverthless, the ansatz (478) ensures the finitess of this amplitude Ξ.
A roughly approximation of the value of the hysteresis loop area can be obtained assuming
that the system is at the equilibrium up to the coercitive time. Then, the magnetization
jumps from −1 to +1 and the same for the return. Thus, the coercitive time tc can be
estimated as the time in which the contribute of the transverse correlations are of the same
order of the magnetization. These can be valueted through the function:

S(t, ts) ≈ width · peak

The peak of the distribution S(t, ts) is given by the zero momenta contribution [see Sec.462]:

γ2(t, ts) ∼
2

σ2
et

2/tsσ ·
{√π

2
·
√
σts ·

(
1 + Erf(|t|/

√
σts)

)}
(489)
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FIG. 10: (Color online) Hysteresis loops of the magnetization
for cubic systems at T = 1 versus the time parameter t, for
several values of L and ts. We consider a round-trip protocol:
first t increases from ti < 0 to tf > 0 (correspondingly, we
have hi = −1/16 and hf = 1/16), then it decreases back to
ti < 0.
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FIG. 11: (Color online) Hysteresis loop of the renormalized
magnetization mr defined in Eq. (16) for cubic L3 systems at
T = 1. We report data at fixed u ≈ 0.6299 versus w. We
consider a round-trip protocol: first t increases from ti < 0 to
tf > 0 (correspondingly, we have hi = −1/16 and hf = 1/16),
then it decreases back to ti < 0.

the magnetization shows a hysteresis loop, whose area

Ah = −
∮

dt m(t) (58)

provides a quantitative indication of how far the system
is out of equilibrium.

In Fig. 10 we show some examples of hysteresis loops
for the magnetization for cubic systems at T = 1. Here
we start at ti < 0 (hi = −1/16), increase t until
h = hf = 1/16, then decrease t back to ti. The ar-
guments presented in the previous sections imply that
also the hysteresis loops have a scaling behavior. Scal-
ing plots are shown in Fig. 11 for T = 1 and in Fig. 12
at the critical point. It should be noted that, while the
magnetization shows a clear hysteresis cycle, there is no
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FIG. 12: (Color online) Plot of Lymm(t) for cubic L3 systems
at the critical point Tc. We report data at fixed u ≈ 0.735
versus w. We consider a round-trip protocol: first t increases
from ti < 0 to tf > 0 (correspondingly, we have hi = −1/16
and hf = 1/16), then it decreases back to ti < 0.
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FIG. 13: (Color online) Time dependence of the energy den-
sity along the same round-trip protocols considered in Fig. 10:
first t increases from ti < 0 to tf > 0 (correspondingly, we
have hi = −1/16 and hf = 1/16), then it decreases back to
ti < 0. There is no evidence of hysteresis. The dashed line
corresponds to the equilibrium value for h = 0.

evidence of such a phenomenon for the energy. In Fig. 13
we show the time dependence of the energy density ob-
tained using the same round-trip protocols considered in
Fig. 10. Within the precision of our data, there is no
evidence of hysteresis.

In practice, since time is discretized in our MC simula-
tions we measure m(t) at discrete values tj of t, the area
enclosed by the hysteresis loop of the magnetization can
be computed using the area estimator

Bh ≡ ∆
∑

j

[
m(tj , ts, L)hf →hi − m(tj , ts, L)hi→hf

]
,(59)

where ∆ ≡ tj+1 − tj is the time interval between two
measurements.

Using the scaling relations (12) and (17) for the mag-

l 

t / t Q

Figure 24: The hysteresis loop area for an Heisenberg ferromagnet N = 3 of finite-size
system with cubic shape in three spatial dimension. The numerical simulations has been
done with ` = L/lQ fixed. The round-trip protocol moves from ti < 0 to tf > 0 below the
critical temperature along the magnetic field h(t, ts) = t/ts. Then, it comes back from tf to
ti. This picture has been taken from the ref.[6].

the width of the distribution S(t, ts) can be approximated with the value k� = (1/tsσ)1/4

such that k < k� are relevant [see the appendix E]. Thus,

S(tc, ts) ≈
√
ts ·
√
π

σ3/2
et

2
c/tsσ ·

(
1 + Erf(|t|/

√
σts)

)
· (1/tsσ)d/4 ∼ O(1) (490)

It follows that

tc ≈
√
ts ·
√
σ ·
√

log
(
σ(6+d)/4 · (ts)(d−2)/4

)
+A; (491)

where A is a constant. In the squarish approximation, the hysteresis loop area is given by

A ≈ tc · σ ≈
√
ts · σ3/2 ·

√
log
(
σ(6+d)/4 · (ts)(d−2)/4

)
+A; (492)

and the magnetic work

W ≈ (ts)
−1/2 · σ3/2 ·

√
log
(
σ(6+d)/4 · (ts)(d−2)/4

)
+A; (493)

this results are in agreement with [21] and [28].
Hysteresis phenomena at the first-order transition have been numerically studied in finite-
size O(3) vector-models by [6]. It has been shown that the off-equilibrium dynamics occurs
in one of the N − 1 transverse planes: we therefore expect that the hysteresis loop area
is almost similiar for any N ≥ 2. In the fig.24 is shown the numerical result for the case
N = 3.
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8 Conclusions.

We study the slow passage through the critical point of a statistical system in the presence of
time-dependent external fields, focusing on a spin system with O(N) symmetry. This model
shows a continuous phase transition occuring at the critical temperature T = Tc and at zero
magnetic field h = 0. Two different protocols δ(t, ts) are investigated for such transition: a
magnetic field with linear time dependence at T = Tc, δ(t, ts) ∼ h(t, ts) ≈ t/ts, where ts is
a time scale, and the time-variations of the temperature δ(t, ts) ∼ T (t, ts)/Tc− 1 ≈ −t/ts in
the absence of magnetic fields [see Sec.4.1]. Very close to the critical point δ(t, ts) ' 0, the
system goes out of the equilibrium because it develops large scale modes which cannot adapt
themselves to the variations of the external parameters, even in the limit of slow passage
ts →∞.
The dynamics of the system shows universal scaling behaviours, which are controlled by
the time t and the time scale ts. In this regime the time dependence of the correlations
can be expressed in terms of universal scaling functions that depend on the scaling vari-
ables t/(ts)e = t/tQ and x/(ts)e/z = x/lQ, where z is the dynamical critical exponent and
0 < e < 1 is a universal exponent depending on the static universality class of the model,
on the type of dynamics and on the behaviour of the specific protocol near the transition
[see Sec. 4.2].
The magnetic field protocol was numerically studied [see ref.[6]]. We provide to analytical
computations in the limit of large N for the magnetic field protocol and we extend the ana-
lytical results in the thermal case. For both the protocols we demonstrate the existence of a
non-trivial rescaling very close to the critical point δ(t, ts) ≈ 0 and check that the relations
for the O(N) vector model at large N are satisfied only if the rescaling is made with lQ and
tQ [see Sec. 5.4.2, 5.4.3 for the thermal protocol and Sec. 5.5.2, 5.5.3 for the magnetic field
protocol].
The prediction for the scaling relations at large N are in agreement with the numerical
result for the case N = 3 [see ref.[6]]. The large N limit does not modify the qualitatively
off-equilibrium behaviour of the system and the scaling relations apply for finite N with
appropriate exponents.
We also perform the study of the first deviations from the equilibrium scaling behaviour [see
Sec.4.5] occuring at a time ∼ tQ before the transition. We expect that the fluctuations over
the equilibrium background in the correlation functions, decay exponentially with a lifetime
of the order of the ratio between the equilibrium relaxation time and the off-equilibrium time
scale. The same behaviour is shown by the system also after the transition if it approaches
again the equilibrium.
In particular, we demonstrate that is sufficient to formulate an ansatz [see eq.(316)] in terms
of the scaling function of the effective mass termM2 of the O(N) vector model at large N
to have an exponential decay in the correlation functions. We verify the consistence of this
ansatz in the both the cases [see Sec. 5.4.4 and Sec.5.5.4].
We also investigate the off-equilibrium behaviour arising when the system is coupled to a
magnetic field which varies in time from ti < 0 to tf > 0 and then back from tf to ti.
The system presents hysteresis phenomena related to the off-equilibrium. The area of the
hysteresis obeys to a scaling relation and can be easly connected to the magnetic work done
by the system over a round-trip protocol [see Sec. 5.5.5]. We obtained a scaling relation for
the magnetic work in three spatial dimensions:

W ∼ (ts)
−2/3 · Ξ,

where Ξ is an amplitude constant which is finite under the assumption of exponential decay
abovementioned. Extending this result to the case N = 3 using the critical exponents of the
Heisenberg universality class, we found that the magnetic work scales as

W(N=3) ∼ (ts)
−0.66 · Ξ(N=3)
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which is in agreement with the numerical results [6].
The general features of the off-equilibrium and the ansatz for the asymptotic behaviours
are not specific of the continuous phase transition. Thus, the same scaling theory, with
appropriate exponents, is applied also below the critical temperature, where the O(N) vector
model undergoes a first-order phase transition at h = 0. For a magnetic field protocol
h(t, ts) ≈ t/ts at T < Tc, we derive the scaling relations and the leading corrections to the
equilibrium scaling, pointing out the analogies with the case T = Tc [see Sec. 7]. In this case,
a constraint equation of the O(N) vector model at large N predicts that the magnetization
of the system behaves as a rigid spin under the effects of a time-dependent magnetic fields
and makes a slowly rotation in the off-equilibrium region. Hysteresis phenomena are shown
by the system also in the ordered phase when we consider a round-trip protocol. The scaling
relation of the magnetic work is:

W ∼ (ts)
−1/2 · Ξ.

where Ξ is a finite constant under the assumption of exponential damping forM2. We also
compute the explicit value of the hysteresis loop area in the squarish approximation: if we
assume that the system is at the equilibrium up to the coercitive time and then jump to the
other realization of the ordered phase, the amount of the magnetic work over a round trip
protocol can be estimated as:

W ≈ (ts)
−1/2 · σ3/2 ·

√
log
(
σ(6+d)/4 · (ts)(d−2)/4

)
+A

where A is a constant and σ is the equilibrium value of the magnetization.
The study of the off-equilibrium phase transitions is very interesting because permits to
investigate peculiar phenomena such as the hysteresis or the defects formation and it is also
object of several experiments in condensed matter physics [e.g. [2],[4],[3]]. Furthermore,
they might be important in the study of the early Universe.

Some further developments of this thesis are shown in the following.

• It is possible to investigate a quantum version of our model. Let us consider a quantum
system characterized by a transition rate ε and by the energy gap ∆ between the ground state
and the first excited level. The transition rate is the quantum analogue of a temperature and
~/∆ plays the role of a relaxation time. Thus, if we consider ε(t, ts) ≈ −t/ts near the critical
point, it follows that ∆(t, ts) ∼ |ε|zν ∼ |t/ts|zν . Comparing the instantaneous transition rate
| �ε|/|ε| ∼ 1/|t| with ∆(t, ts) we can extract the Kibble-Zurek time tQ ∼ (ts)

zν/(zν+1). The
validity of the Kibble-Zurek approach to the off-equilibrium dynamics across quantum phase
transitions has been verified in different models [e.g. [30], [31]].

• A particular interest has the study of the spatially inhomogeneities arising as a result
of an external trapping potential [see ref.[32]]. In other words, the protocol now becomes
space-dependent δ = δ(x, t, ts). Since the external fields have a specific spatial profile, the
system crosses the transition at a given position xF at a time tF satisfying δ(xF , tF , ts) = 0.
In the ref.[32], spatially inhomogeneous thermal protocol in BEC are studied. They found
a prediction on the density of the defects in the condensate dependent on the interplay be-
tween causality and geometry of the trap: vortices are formed only when the causality limits
the formation to a small fraction of the cloud. We want to investigate the case of inhomo-
geneous time-dependent magnetic field coupled to the spin system looking, in particular, to
the hysteresis phenomena.

• A straightfoward extension of our discussion can be done considering the interplay be-
tween time-dependent magnetic field and temperature in a spin system. This means to
consider a protocol ~δ(t, ts) = (~h(t, ts), T (t, ts)/Tc − 1). Multicritical Kibble-Zurek mecha-
nism has been studied in quantum spin system [see ref.[33]]. We want to examine similiar
behaviours in the context of a classical O(N) vector model in the limit of large N .
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A Appendix: The Kibble-Zurek mechanism.

When a system is cooled through a critical point, the order parameter acquires a non-zero
expectation value. This value is randomly chosen and therefore widely separeted regions
of the system can present different realization of the broken-symmetry phase. We known
that in a continuous phase transition the equilibrium correlation length varies rapidly and
diverges at the critical point. However, this is not the real world: since a system approaches
the critical point at a finite-rate, the velocity with which the information about the orienta-
tion of each domain of local broken-symmetry cannot grow faster than the speed of light, or
in condensed matter, than the speed of sound. Thus, there is a time in which the correlation
length of the system ceases to be equal to the equilibrium one and the system comes out of
the equilibrium. If we estimate the velocity with which the information about the ordered
phase is transmitted into the system [see ref. [17], [34]]

velocity ∼ space
time

The equilibrium correlation length diverges like ξ(T ) ∼ |T − Tc|−ν for the strong scaling
statement, and the relaxational time τ(T ) ∼ ξz(t) ∼ |T − Tc|−νz for the critical slowing
down phenomena. It follows that

c(T ) =
ξ(T )

τ(T )
∼ |T − Tc|ν(z−1); (494)

The informations about the order parameter cannot propagate faster than this velocity.
Thus, at the transition, the largest distance over which informations can propagate is given
by the sonic horizon:

h(t) =

∫ t

0

dt′ · c(T (t′)) ∝ |T (t)− Tc|1+ν(z−1); (495)

Widely separated regions means that their distance is more than the upper limit in which
informations can be propagated into the system. The sonic horizon becomes equal to the
equilibrium correlation length at a time which we call Kibble-Zurek time tQ

ξ(T (tQ)) = h(T (tQ)) (496)

If we assume that the variations in the temperature are linear in time |T (t)/Tc − 1| = |t|/ts
where ts is the time-scale of the thermal variations or "quench-rate" of the transition, it
follows that the KZ time is:

tQ ∼ tνz/(1+zν)
s (497)

A Kibble-Zurek length can be defined as ξ(T (tQ)) ∼ lQ ∼ tν/(1+νz)
s .

Thus, systems driven to a phase transition with a finite rate are well-described by the equi-
librium correlation length up to the Kibble-Zurek time. It marks the boundary of a region
around the transition in which these systems are no longer at the equilibrium.
By these arguments, the Kibble-Zurek mechanism predicts the density per volume of topo-
logical defects67:

density of defects ∼ (1/lQ)2 (498)

where we have considered a system in three spatial dimension and topological defects as
strings68.
Several experiments have been tested the validity of the Kibble-Zurek mechanism. In the
following we consider one of the early experiments made with superfluid helium.

67The topological defects formation is a common feature of symmetry-breaking phase transitions. For
instance, one may think about the broken U(1) group and the formation of abelian vortices in a superfluid.
Non symmetry-breaking phase transition i.e. system which undergoes to the transition with explicit terms
of symmetry-breaking does not realize topological defects.

68The topological defects separations scale as (1/lQ)d−p where d are the spatial dimensions of the under-
lying system and p is the dimensions of these defects in the coarsening regime. See ref.[16].
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Figure 20. Evolution of the second sound amplitude S with time following two expansions of
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was expected that the initial vortex density would be '" 4 X 10
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2, which

plainly it was not.

To provide a more sensitive test of the ideas underlying the Kibble/Zurek

mechanism, plans are being made to repeat the experiment under conditions

where the predicted initial vortex density L i is larger. Zurek [106] estimated

that

(46)

The quench time TQ, characterising how long it takes to traverse the transition,

is given by

(47)

and

Figure 25: On the left: The expansion cell of the 4He improved experiment. On the right:
Time-evolution of the second sound amplitude S. S0 is the signal amplitude in the absence
of vortices. The curves refer to calculated signal evolutions for different initial vortex line
densities, from the bottom, of 1012, 1011, 1010 ·m−2 . The density expected is 4 · 1012 ·m−2.
These pictures have been taken from the ref. [34].

A.1 Liquid helium-4.
A sample of He I is contained in a small chamber that could be rapidly expanded to lower
the pressure, driving the system through the lambda transition into the superfluid phase.
The number of vortices produced can be found by measuring the attenuation of a second
sound signal.
The first results were approximatively in agreement with the theoretical predictions. How-
ever, vorticity might have been produced by hydrodinamical effects at the walls. Another
problem was that it was not possible to measure the second-sound attenuation during the
first 50 ms after the transition, so that later readings had to be extrapolated back to the
relevant time. Further improved experiments minimize the hydrodinamical production of
vortices in the sample but leads to a trivial result: no vorticity was detected in the improved
apparatus.
Why the Kibble-Zurek mechanism predictions work in several systems such as helium-3,
liquid crystals or Josephson junction and not in helium-4 is still unknown69.
This experiment borns as a gedankment experiment [see ref. [35]], later it becomes a real
experiment. Even if the real experiment does not have a particular interest, it has been
reported for its historical relevance.

69There are some explanations of this phenomenon such as the possibility that vortices decay to fast to
be observed or that the thermal fluctuations tends to unwind the order parameter close to the transition.
The situation is unclear.
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B Algebraic computations of Sec. 3

B.1 Solution of the dynamics equation.

The dynamics of the fields satisfies the equation:

�
φα(k, t) = −Ω

2
(k2 +m2)φα(k, t) +

Ω

2
· (2π)dδd(k) · hα + ςα(k, t);

The cumulants of noise distribution, written in Fourier space, are:

< ςα(k, t) >ς= 0

< ςα(k, t)ςβ(k′, t′) >ς= Ω · δαβ(2π)dδd(k + k′)δ(t− t′)

Let us solve the equation starting from the homogeneous case. Its solution is

φα(k, t) = φ0
α(k) exp

(
− Ω

2
(k2 +m2) · (t− t0)

)
.

with φα(k, t0) = φ0
α(k) is the value of the field at the time t0 where the system is at the

equilibrium. From the equilibrium value of the magnetization (183), (177) follows:

φα(k, t0) = φ0
α(k) = δ1,α(2π)dδd(k) · σ

If h = 0, the previous term is zero above the critical temperature. A particular solution can
be found in the form φα(x, t) = φ0

α exp(−A(t− t0)) · w(t) with A = (k2 +m2). If we insert
this guess into the complete equation:

�
φα(x, t) = −Ae−A(t−t0)φ0

α(k) · w(t) +
�
w(t) · φ0

α(k)e−A(t−t0) =

−Aφ0
α(k)e−A(t−t0) · w(t) +

Ω

2
(2π)dδd(k)hα + ςα(k, t);

It follows that

w(t) =
1

φ0
α(k)

∫ t

t0

dt′ · e−A(t−t′) ·
{Ω

2
(2π)dδd(k)hα + ςα(k, t′)

}
+ w0;

Therefore the solution is:

φα(k, t) = φ0
α(k) exp

(
− Ω

2
(k2 +m2) · (t− t0)

)

+

∫ t

t0

dt′ · exp
(
− Ω

2
(k2 +m2)(t− t′)

)
·
{Ω

2
(2π)dδd(k)hα + ςα(k, t′)

}

The previous solution can be written as

φα(k, t) = φ0
α(k, t) + (2π)dδd(k)

(
1− exp

(
− Ω

2
(k2 +m2)(t− t0)

)) hα
k2 +m2

+

∫ t

t0

dt′ · exp
(
− Ω

2
(k2 +m2)(t− t′)

)
· ςα(k, t′).

with φ0
α(k, t) = δ1,α(2π)dδd(k) · σ exp

(
− Ω

2 (k2 +m2) · (t− t0)
)
.
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B.2 Expectation value of two fields.
We consider the expectation value of two fields over the noise distribution:

< φ(k, t)αφ(k′, t)β >ς= φα,0(k, t) · φβ,0(k′, t)

+(2π)2dδd(k)δd(k′)hαhβ
(

1− exp
(
− Ω

2
(k2 +m2)(t− t0)

))2

(k2 +m2)−2

+δαβ(2π)dδd(k + k′)Ω
∫ t

t0

dt′ · exp
(
− Ω(k2 +m2) · (t− t′)

)
;

Since the magnetic field has a fixed direction we write:

< φ(k, t)αφ(k′, t)β >ς= δα,1δβ,1(2π)2dδd(k)δd(k′)σ2

+δαβ(2π)dδd(k + k′)
Ω

2
· 1

k2 +m2

(
1− exp

(
− Ω(k2 +m2) · (t− t0)

))

The term (2π)2dδd(k)δd(k′) tell to us that, after integration, both the momenta must be
zero. This condition can

be written also as (2π)2dδd(k + k′)δd(k). Thus,

< φ(k, t)αφ(k′, t)β >ς= (2π)dδd(k+k′)δα,β
{

(2π)dδd(k)σ2+
Ω

2
· 1

k2 +m2

(
1−exp

(
−Ω(k2+m2)·(t−t0)

))}



98

C Appendix: Asymptotic behaviours of special functions.

The definitions and the relations for the functions are taken from functions.wolfram.com.

C.1 Incomplete Gamma function.
The Incomplete Gamma function is defined as

Γ[w, z] =

∫ ∞

z

dt · tw−1 · e−t (499)

where w, z ∈ C. The Incomplete Gamma function’s value at infinities is zero

Γ[w, z =∞] = 0; (500)

and if Re(w) > 0
Γ[w, z = 0] = Γ(w) (501)

where Γ(w) is the Euler’s Gamma function. It admits a known asymptotic expansion:

Γ[w, z] ∼ e−z · zw−1
(

1− 1− w
z

+
(2− w)(1− w)

z2
+O(z−3)

)
; |z| → ∞. (502)

C.2 Airy functions.
The Airy function Ai or Airy function of the first type is defined by

Ai(x) =
1

π

∫ ∞

0

cos
(y3

3
+ xy

)
dy (503)

where x ∈ R. It is a well-known convergent solution of differential equation y′′(x)−x ·y(x) =
0.
The asymptotic behaviour of Airy functions can be written in the complex plane as

Ai(z) ∼ e−
2
3 z

3/2

2
√
πz1/4

(
1− 5

48z3/2
+

385

4608z3
+O(

1

z9/2
)
)

; z ∈ C, |z| → ∞, |Arg(z)| < π. (504)

The derivative of Airy function Ai′ (called sometimes also as Airy Prime function) has a
known asymptotic behaviour too

Ai′(z) ∼ −e
− 2

3 z
3/2

2
√
π
· z1/4 ·

(
1 +

7

48z3/2
− 455

4608z3
+O(

1

z9/2
)
)
, z ∈ C, |z| → ∞, |Arg(z)| < π.

(505)

C.3 Erf functions.
The Error function Erf is defined to be

Erf(z) =
2√
π

∫ z

0

dw · e−w2

; (506)

For small values of the argument, the Erf function admit a Taylor expansion

Erf(z) ∼ 2√
π

(
z − z3

3
+
z5

10
−O(z7)

)
(507)



99

The asymptotic expansion of the Erf function is

Erf(z) ∼
√
z2

z
− e−z

2

z
√
π

+O
( 1

z2

)
; z ∈ C, |z| → ∞ (508)

The complementary error function Erfc is defined as

Erfc(z) =
2√
π

∫ ∞

z

dw · e−w2

= 1− Erf(z). (509)

Its values at infinities are
Erfc(z =∞) = 0; (510)

and from the expansion of the Erf function we read

Erfc(z) ∼ 1− 2√
π

(
z − z3

3
+
z5

10
−O(z7)

)
(511)

for small values of its argument. The asymptotic expansion is:

Erfc(z) ∼ 1−
(√z2

z
− e−z

2

z
√
π

)
−O

( 1

z2

)
; z ∈ C, |z| → ∞ (512)

and since the argument is real

Erfc(x) ∼ e−x
2

x
√
π
−O

( 1

x2

)
; x ∈ R, x→∞ (513)
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D Algebraic computations of Sec. 5

D.1 About the equations (279) and (280) .
The equations (279) and (280) follow from the equation of motion (278). For (279) we
consider the expectation value of one field:

d

dt
< φα(k, t) >ς= −

Ω

2
(k2 +m2(t, ts)) < φα(k, t) >ς +

Ω

2
· (2π)dδd(k) · hα(t, ts);

Thus,

(2π)dδ1,αδ
d(k)

�
Σ(t, ts) = −Ω

2
(k2+m2(t, ts))(2π)dδ1,αδ

d(k)Σ(t, ts)+
Ω

2
·(2π)dδd(k)·δ1,αh(t, ts).

For the relation (280) we consider the expectation value of two transverse components α,
β > 1 in (278):

d

dt
< φα(k, t)φβ(k′, t) >ς=<

�
φα(k, t)φβ(k′, t) >ς + < φα(k, t)

�
φβ(k′, t) >ς=

−Ω

2
(k2 +m2(t, ts)) < φα(k, t)φβ(k′, t) >ς −

Ω

2
(k′2 +m2(t, ts)) < φα(k, t)φβ(k′, t) >ς

+ < ςα(k, t)ςβ(k′, t) >ς .

Thus,

(2π)δd(k + k′)δαβ
�
GT (k, t, ts) =

−Ω(k2 +m2(t, ts))(2π)δd(k + k′)δαβGT (k, t, s) + Ω(2π)dδd(k + k′)δαβ .

D.2 Solution of the dynamics equation with time-dependent pa-
rameters.

The equation of the dynamics is:

�
φα(k, t) = −Ω

2
(k2 +m2(t, ts))φα(k, t) +

Ω

2
· (2π)dδd(k) · hα(t, ts) + ςα(k, t);

It is a linear inhomogeneus differential equation with non-constant coefficients like y′(t) =
−a(t) · y + f(t). Firstly, we consider the homogeneous case y′(t) + a(t)y = 0. Its solution is

∫ y

y0

dy′

y′
= −

∫ t

t0

a(t′)dt′ = −A(t)⇒ y(t) = y0 · e−A(t).

Now we try to find a particular solution for the complete equation by making an ansatz
y(t) = w(t) · e−A(t);
If we substitute our ansatz inside the equation, we find

w′(t)e−A(t) − a(t)w(t)e−A(t) + a(t)w(t)e−A(t) = f(t);

w′(t) = f(t) · eA(t) ⇒ w(t) =

∫ t

t0

f(t′)eA(t′)dt′ + w0.

Therefore we can conclude that the general solution of our equation is

y(t) = (y0 + w0) · e−A(t) + e−A(t)

∫ t

t0

f(t′) · eA(t′) · dt′.

Now we come back to our system: if we translate the above soltution as
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y(t) = φα(k, t);

a(t) = Ω
2 (k2 +m2(t, ts));

f(t) = Ω
2 · (2π)dδd(k)hα(t, ts) + ςα(k, t);

The boundary conditions on the equation (278) are fixed by the initial conditions of the
system. At t0 the system is assumed to be at the equilibrium. Thus,

y0 = φα(k, t0) = φ0
α(k) = (2π)dδd(k) · δ1,α · σ

We choose a particular solution with the costant w0 = 0, or equivently ridefining the term
y0 +w0 as original magnetization. It follows that the general solution of the equation above
is:

φα(k, t) = φ0
α(k, t)+

∫ t

t0

dt′·exp
(
−Ω

2

∫ t

t′
dt′′·(k2+m2(t′′, ts))

)
·
{Ω

2
·(2π)dδd(k)hα(t′, ts)+ςα(k, t′)

}

where we have defined the term proportional to the original condition as

φ0
α(k, t) = exp

(
− Ω

2

∫ t

t0

dt′ · (k2 +m2(t′, ts))
)

(2π)dδd(k)δ1,α · σ.

D.3 Expectation value of two fields.

The expectation value of two fields can be computed starting from the solution (282) for
dynamical fields and using the cumulants of the noise distribution (213), (214):

< φα(k, t)φβ(k′, t) >ς=

[
<
(
φ0
α(k, t) +

∫ t

t0

dt′ · e−Ω
2

∫ t
t′ dt

′′·(k2+m2(t′′,ts))
{Ω

2
· (2π)dδd(k) · hα(t′, ts) + ςα(k, t′)

})
·

(
φ0
β(k′, t) +

∫ t

t0

dτ ′ · e−Ω
2

∫ t
τ′ dt

′′·(k′2+m2(t′′,ts))
{Ω

2
· (2π)dδd(k′) · hβ(τ ′, ts) + ςα(k′, τ ′)

})
>ς

]

= φ0
α(k, t)

∫ t

t0

dτ ′ · e−Ω
2

∫ t
τ′ dt

′′·(k′2+m2(t′′,ts))
{Ω

2
· (2π)dδd(k′) · hβ(τ ′, ts)+ < ςβ(k′, τ ′) >ς

}

+φ0
β(k′, t)

∫ t

t0

dt′ · e−Ω
2

∫ t
t′ dt

′′·(k2+m2(t′′,ts))
{Ω

2
· (2π)dδd(k) · hα(t′, ts)+ < ςα(k, t′) >ς

}

+

∫ t

t0

dt′ ·
∫ t

t0

dτ ′ · e−Ω
2

∫ t
t′ dt

′′·(k2+m2(t′′,ts)) · e−Ω
2

∫ t
τ′ dt

′′·(k2+m2(t′′,ts))·

{Ω2

4
· (2π)2dδd(k)δd(k′) · hα(t′, ts) · hβ(τ ′, ts)+ < ςα(k, t′)ςβ(k′, τ ′) >ς

}
+ φ0

α(k, t)φ0
β(k′, t)

Since the magnetic field has a fixed direction

= δ1,αδ1,β(2π)2dδd(k)δd(k′)(Σ0(t, ts))
2+

2δ1,αδ1,β(2π)dδd(k′)Σ0(t, ts)
Ω

2

∫ t

t0

dt′ · e−Ω
2

∫ t
t′ dt

′′·(k2+m2(t′′,ts))(2π)dδd(k)h(t′, ts)

+Ωδαβ(2π)dδd(k + k′)
∫ t

t0

dt′ · e−Ω
∫ t
t′ dt

′′·(k2+m2(t′′,ts))

+(2π)2dδd(k)δd(k′)δ1,αδ1,β
(∫ t

t0

dt′ · e−Ω
2

∫ t
t′ dt

′′·(k2+m2(t′′,ts)) · Ω

2
· h(t′, ts)

)2

.
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The term (2π)2dδd(k)δd(k′) tell to us that, after integration, both the momenta must be
zero. This condition can be written also as (2π)2dδd(k + k′)δd(k). Thus,

= δαβ(2π)dδd(k + k′) ·
[
δ1,α(2π)2dδd(k)

{
(Σ0(t, ts))

2

+2Σ0(t, ts) ·
Ω

2

∫ t

t0

dt′ · exp
(
− Ω

2

∫ t

t′
dt′′ · (k2 +m2(t′′, ts))

)
h(t′, ts) + Σ2(t, ts)

}

+Ω

∫ t

t0

dt′ · exp
(
− Ω

∫ t

t′
dt′′ · (k2 +m2(t′′, ts))

)]
.

where Σ0 is given by (285).

D.4 Thermal protocol:
D.4.1 Equilibrium contribution of the susceptibility.

We insert the equilibrium part of the functon M2, (312) in the general expression of the
scaling function of the susceptibility (319):

G(t) = 2

∫ t

−∞
dt
′ · exp

(
− 2

∫ t

t
′
M2(t

′′
) · dt′′

)
t→−∞∼
M2'M2

e

2

∫ t

−∞
dt
′ · exp

(
− 2

∫ t

t
′
|t′′|2ν · dt′′

)

Since all the variables of integration have a defined sign in the asymptotic limit t → −∞,
we can remove the absolute values into the expression above:7071

G(t) ' 2

∫ t

−∞
dt
′ · exp

(
+ 2

∫ t

t
′
|t′′|2ν · d|t′′|

)
= −2e2|t|κ/κ

∫ t

−∞
d|t′| · e−2|t′|κ/κ

= −2e|t|
κ/κ
(
− 2−1/κ · (κ)1/κ−1 · Γ[1/κ, 2|t′|κ/κ]

∣∣∣
t

−∞

)

where κ = 1 + 2ν. The function Γ[w, z] is called Incomplete Gamma and its features are
reported into appendixC. Because of (500), the previous results becomes

G(t) ' 2e|t|
κ/κ
(
− 2−1/κ · (κ)1/κ−1 · Γ[1/κ, 2|t|κ/κ]

)

By taking the leading part of the asymptotic expansion (502)

G(t) ∼ −2e|t|
κ/κ · 2−1/κ · (κ)1/κ−1 · e−2|t|κ/κ · (2|t|κ/κ)1/κ−1 = |t|1−κ = |t|−2ν ;

D.4.2 Leading off-equilibrium correction to the asymptotic equilibrium
behaviour of the susceptibility.

We start from the expression (325) and compute the leaging off-equilibrium correction to
the asymptotic equilibrium behaviour under the assumption (316):

G(t) ∼ 2

∫ t

−∞
dt
′ · exp

(
− 2

∫ t

t
′
dt
′′ · |t|2ν(1 + b|t|a · e−c|t|1+zν

)

70The variables of time integration are all ≤ 0 in the limit t→ −∞ because t′′ ∈ [t
′
, t] and t′ ∈ (−∞, t]

71We have used the following relation into the integral:∫
F (|x|) · dx =

∫
F (|x|) ·

dx

d|x|
· d|x| =

∫
F (|x|) ·

x

|x|
· d|x| =

∫
sgn(x) · F (|x|) · d|x|

where F (|x|) is a generic function.
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= 2e2|t|κ/κ
∫ t

−∞
dt
′ · e−2|t′|κ/κ ·

{
1 + 2

∫ t

t
′
d|t′′| · b|t|κ−1+a · e−c|t|κ

}

= |t|1−κ + 4e2|t|κ/κ
∫ t

−∞
dt
′ · e−2|t′|κ/κ

(
− b · κ−1c−(a+κ)/κ−1 · Γ[(a+ κ)/κ, c|t′′|κ]

∣∣∣
t

t
′

)

We take the leading order of the expansion (502)

|t|1−κ + 4e2|t|κ/κ
∫ t

−∞
dt
′ · e−2|t′|κ/κ

(
− b · κ−1c−(a+κ)/κ−1 · (c|t′′|κ)(a+κ)/κ−1 · e−c|t′′|κ

∣∣∣
t

t
′

)

= |t|1−κ +
{
− 4

b · e2|t|κ/κ

cκ
· e−c|t|κ · |t|a

∫ t

−∞
(−d|t′|) · e−2|t′|κ

}

−
{
− 4

b · e2|t|κ/κ

cκ

∫ t

−∞
(−d|t′|) · e−2|t′|κ/κ · |t|a · e−c|t′|κ

}

= |t|1−κ + 4
b · e2|t|κ/κ

cκ
· e−c|t|κ · |t|a

(
− 2−1/κ · κ1/κ−1 · Γ[1/κ, 2|t′|κ/κ]

∣∣∣
t

−∞

)

−4
b · e2|t|κ/κ

cκ

(
− (2 + cκ)−(1+a)/κ · κ(1+a)/κ−1 · Γ[(1 + a)/κ, (2 + cκ)|t′|κ/κ]

∣∣∣
t

−∞

)

We consider only the asymptotic leading term of the off-equilibrium:

G(t) ∼ |t|1−κ + 4
b · e2|t|κ/κ

cκ
· e−c|t|κ · |t|a

(
− 2−1/κ · κ1/κ−1 · (2|t|κ/κ)1/κ−1 · e−2|t|κ/κ

)

−4
b · e2|t|κ/κ

cκ

(
− (2 + cκ)−(1+a)/κ · κ(1+a)/κ−1 · ((2 + cκ)|t|κ/κ)(1+a)/κ−1 · e−c|t|κ · e−2|t|κ/κ

)

Thus,

G(t) ∼ |t|1−κ − 2
b · e−c|t|κ

cκ
|t|a · |t|1−κ + 4

b · e−c|t|κ

cκ(cκ+ 2)
· |t|1−κ+a

= |t|1−κ
(

1 + b ·
( −2

(2 + cκ)

)
|t|a · e−c|t|κ

)
.

D.5 Magnetic field protocol:
D.5.1 Equilibrium contribution of the magnetization.

We insert the equilibrium term ofM2 given by (364) in the scaling function of the magne-
tization (351):

Θ(t) ∼
∫ t

−∞
dt
′ · t′ · exp

(
−
∫ t

t
′
dt
′′ · M2(t

′′
)
)

t→−∞∼
M2'M2

e

∫ t

−∞
dt
′ · t′ · exp

(
−
∫ t

t
′
dt
′′ · |t′′|2ν

)
=

∫ t

−∞
dt
′ · t′ · exp

(
+

∫ t

t
′
|t′′|2ν · d|t′′|

)

= e|t|
κ/κ

∫ t

−∞
d|t′| · |t′| · e−|t′|κ/κ = e|t|

κ/κ
(
− (κ)2/κ−1 · Γ[2/κ, |t′|κ/κ]

∣∣∣
t

−∞

)

= e|t|
κ/κ
(
− (κ)2/κ−1 · Γ[2/κ, |t|κ/κ]

)
;

where κ = 2νh + 1 = 2/dh + 1. By taking the leading part of the asymptotic expansion
(502),

Θ(t) ∼ e|t|κ/κ
(
− (κ)2/κ−1 · (|t|κ/κ)(2/κ)−1 · e−|t|κ/κ

)
= −|t|2−κ = −|t|dφ/dh .
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If we assume that the system is at the equilibrium for all times:

Θ(t) ∼
∫ t

−∞
dt
′ · t′ · exp

(
−
∫ t

t
′
dt
′′ · M2(t

′′
)
)

t→+∞∼
M2=M2

e

∫ t

−∞
dt
′ · t′ · exp

(
−
∫ t

t
′
dt
′′ · |t′′|2ν

)

We divide the integral into two terms in order to have a defined sign of integral variables:

Θ(t) ∼
∫ 0

−∞
d|t′| · |t′| · exp

(
+

∫ t

t
′
d|t′′| · |t′′|2ν

)
+

∫ t

0

dt
′ · t′ · exp

(
−
∫ t

t
′
dt
′′ · t′′2ν

)

=

∫ 0

−∞
d|t′| · |t′| · e−|t′|κ/κ + e−t

κ
/κ

∫ t

0

dt
′ · t′ · et′κ/κ

=
(
− (κ)(2/κ)−1 · Γ[2/κ, |t′|κ/κ]

∣∣∣
0

−∞

)
+ e−t

κ
/κ
(
− (κ)(2/κ)−1 · Γ[2/κ,−t′κ/κ]

∣∣∣
t

0

)

Using the relation (500) and (501)

Θ(t) ∼ −(κ)(2/κ)−1 ·Γ(2/κ)− e−tκ/κ · (κ)(2/κ)−1 ·Γ[2/κ,−tκ/κ] + e−t
κ
/κ · (κ)(2/κ)−1 ·Γ(2/κ)

Thus, by keeping the leading part of the asymptotic expansion (502):

Θ(t) ∼ (κ)(2/κ)−1 · Γ(2/κ)
(

1− e−tκ/κ
)

+ t
2−κ ∼ +t

2−κ
= t

dφ/dh .

In terms of the scaling function
∼
Θ, the asymptotic equilibrium contribution at t→ −∞ can

be computed using heuristic arguments:

∼
Θ(t) = ±|t|−dφ/dh

∫ t

−∞
dt
′ · t′ · exp

(
−
∫ t

t
′
M2(t

′′
) · dt′′

)
t→±∞∼
M2'M2

e

∼ ±
∫ t

−∞
dt
′ · (|t|/|t′|)−dφ/dh |t′|1−dφ/dh · exp

(
−
∫ t

t
′
|t′′|2/dh · dt′′

)

The ratio |t′|/|t| tends to zero for every finite value of t′. Thus, this integral has a non-trivial
contribution only on the tails where we can write |t′|/|t| ' 1. It follows that

∼
Θ(t)

t→−∞∼ −
∫ t

−∞
dt
′ · |t′|1−dφ/dh · exp

(
+ |t|κ/κ− |t′|κ/κ

)

= −e+|t|κ/κ
∫ t

−∞
d|t′| · |t′|κ−1 · e−|t′|κ/κ = −1.

If we assume that the system is at the equilibrium for all times, the contribution on the tail
t→ +∞ can be computed in the same way and gives

∼
Θ(t) ∝ +1.

D.5.2 Leading off-equilibrium correction to the asymptotic equilibrium
behaviour of the magnetization.

We start from the expression (377) and compute the leaging off-equilibrium correction to
the asymptotic equilibrium behaviour under the assumption (316):

Θ(t) ∼ −|t|2−κ − e|t|κ/κ
∫ t

−∞
dt
′ · e−|t′|κ/κ · t′ ·

(∫ t

t
′
dt
′′ · |t′′|2νh · b · |t′′|a · exp(−c|t′′|1+zνh)

)

= −|t|2−κ + e|t|
κ/κ

∫ t

−∞
dt
′ · e−|t′|κ/κ · t′ ·

(
− b · κ−1c−(a+κ)/κ · Γ[

a+ κ

κ
, c|t′′|κ]

)∣∣∣
t

t
′
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Using the asympotic expansion (502) and keeping only the leading term we obtain

= −|t|2−κ + e|t|
κ/κ

∫ t

−∞
dt
′ · e−|t′|κ/κ · t′ ·

(
− b · κ−1c−(a+κ)/κ · e−c|t′′|κ · (c|t′′|κ)

a+κ
κ −1

∣∣∣
t

t
′

)

= −|t|2−κ +
{
− b · e|t|κ/κ · e

−c|t|κ

cκ
· |t|a

∫ t

−∞
d|t′| · e−|t′|κ/κ · |t′|

}
+

{b · e|t|κ/κ
cκ

∫ t

−∞
d|t′| · e−|t′|κ/κ · e−c|t′|κ · |t′|a+1

}
;

The integrals in the last expression can be solved in terms of Incomplete Gamma functions
too:

Θ(t) ∼ −|t|2−κ − b · e|t|κ/κ · e
−c|t|κ

cκ
· |t|a

(
(−κ)2/κ−1 · Γ[2/κ, |t′|κ/κ]

∣∣∣
t

−∞

)

+
b · e|t|κ/κ

cκ

(
− κ−1 · (cκ+ 1

κ
)−(2+a)/κ · Γ[(2 + a)/κ,

cκ+ 1

κ
|t′|κ]

∣∣∣
t

−∞

)
;

We keep only the leading asymptotic contribution to the off-equilibrium:

Θ(t) ∼ −|t|2−κ − b · e|t|κ/κ · e
−c|t|κ

cκ
· |t|a

(
− (κ)2/κ−1 · (|t|2−κ/κ) · e−|t|κ/κ

)

+
b · e−|t|κ/κ

cκ

(
(1 + cκ)−(2+a)/κ · κ(2+a)/κ−1 · ( (1 + cκ)

κ
|t|κ)(2+a)/κ−1 · e−|t|κ/κ · e−c|t|κ

)

Thus,

Θ(t) ∼ −|t|2−κ +
b · e−c|t|κ

cκ
· |t|a · |t|2−κ − b · e−c|t|κ

cκ(cκ+ 1)
· |t|2+a−κ

= −|t|2−κ
(

1 + b ·
( −1

(cκ+ 1)

)
· |t|a · e−c|t|κ

)
.

D.5.3 About the eq.(356) and the power-law decay ansatz.

Let us consider the scaling constraint-equation (356). The left hand side of the equation
involves an integral over the momenta of the transverse two-point function. It is gaussian
and can be performed [See Eq.(354)]:

∫ +∞ ddk

(2π)d

[
GT (k, t,M2)− GT (k, t, 0)

]

=
2

(4π)d/2

∫ t

−∞
dt
′ ·
{

exp
(
− 2

∫ t

t
′
dt
′′ · M2(t

′′
)
)
− 1
}
· |t− t′|−d/2

In the asymptotic limit, under the assumption (316):

2

(4π)d/2

∫ t

−∞
dt
′ ·
{

exp
(
− 2

∫ t

t
′
dt
′′ · (M2

e(t
′′
) +M2

o(t
′′
))
)
− 1
}
· |t− t′|−d/2 t→−∞∼

2

(4π)d/2

∫ t

−∞
dt
′ ·
{
e−2

∫ t
t′ dt

′′·M2
e(t
′′

) ·
(

1− 2

∫ t

t
′
dt
′′ · M2

o(t
′′
)
)
− 1
}
· |t− t′|−d/2

If we insert the asymptotic ansatz for the scaling functionM2:

= − 2

(4π)d/2

∫ t

−∞
d|t′| · |t− t′|−d/2

[{
e2|t|κ/κ · e−|2t′|κ/κ − 1

}
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+2
{
e2|t|κ/κ · e−2|t′|κ/κ

(∫ t

t
′
d|t′′| · b · |t′′|2ν+a · e−c|t′′|κ

)
− 1
}]

= − 2

(4π)d/2

∫ t

−∞
d|t′| · |t− t′|−d/2

[{
e2|t|κ/κ · e−2|t′|κ/κ − 1

}

+2
{
e2|t|κ/κ · e−2|t′|κ/κ

(
− b · κ−1c−(a+κ)/κ · Γ[(a+ κ(/κ, c|t′′|κ]

∣∣∣
t

t
′

)
− 1
}]
.

If we consider the leading order of the asymptotic expansion (502):

= − 2

(4π)d/2

∫ t

−∞
d|t′| · |t− t′|−d/2

[{
e2|t|κ/κ · e−2|t′|κ/κ − 1

}

−2
{
e2|t|κ/κ · e−2|t′|κ/κ

(b · e−c|t|κ

cκ
· |t|a − b · e−c|t′|κ

cκ
· |t′|a

)
− 1
}]

;

The term due to the integral over the momenta makes the relation above not writable in
terms of special functions.
However, a different ansatz like (382) leads to inconsistences. If we perform the leading
off-equilibrium corrections in the magnetization under the assumption (382):

Θ(t) = −|t|2−κ + e|t|
κ/κ

∫ t

−∞
dt
′ · t′ · e−|t′|κ/κ ·

(
−
∫ t

t
′
dt
′′ · |t′′|2νh · b|t|−α

)

= −|t|2−κ + e|t|
κ/κ

∫ t

−∞
d|t′| · |t′| · e−|t′|κ/κ

(b|t′′|κ−α
(κ− α)

∣∣∣
t

t
′

)

= −|t|2−κ+
{
e|t|

κ/κ· b|t|
κ−α

(κ− α)

∫ t

−∞
d|t′|·|t′|·e−|t′|κ/κ

}
−
{b · e|t|κ/κ

(κ− α)
·
∫ t

−∞
d|t′|·|t′|·e−|t′|κ/κ·|t′|κ−α

}

= −|t|2−κ + e|t|
κ/κ · b|t|

κ−α

(κ− α)
·
(
− κ2/κ−1 · Γ[2/κ, |t′|κ/κ]

∣∣∣
t

−∞

)
−

b · e|t|κ/κ
(κ− α)

·
(
− κ(2−α)/κ · Γ[(2− α+ κ)/κ, |t′|κ/κ]

∣∣∣
t

−∞

)

We keep only the leading part of the asymptotic expansion (502):

Θ(t) ∼ −|t|2−κ + e|t|
κ/κ · b|t|

κ−α

(κ− α)
·
(
− κ2/κ−1 · (|t|κ/κ)2/κ−1 · e−|t|κ/κ

)

−b · e
|t|κ/κ

(κ− α)
·
(
− κ(2−α)/κ · (|t|κ/κ)(2−α+κ)/κ−1 · e−|t|κ/κ

)

= −|t|2−κ − b|t|κ−α
(κ− α)

· |t|2−κ +
b|t|2−α
(κ− α)

= −|t|2−κ.

The off-equilibrium terms cancel themselves and therefore the relation (379) cannot be sat-
isfied asymptotically.
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E Appendix: Cross-over behaviour in the momenta
below the critical temperature.

We consider the transverse two-point correlation function GT (k, t, ts) below the critical
temperature. Its general expression is given by the relation (345):

GT (k, t, ts) = 2

∫ t

t0

dt′ · exp
(
− 2

∫ t

t′
dt′′ · k2 +m2(t′′, ts)

)
.

Since we consider the asymptotic behaviour of the system, we can roughly approximate the
mass term as:

m2(t, ts) ≈
h(t, ts)

Σ(t, ts)
≈ |t|
tsσ

.

We already know that this approximation breaks down when t ' 0 where the magnetization
cannot be considered a constant. However, this relation permits to compute explicitly the
correlation functions. In particular we study the transverse two-point correlation function:

GT (k, t, ts) ∼ 2

∫ t

t0

dt′·exp
(

2

∫ t

t′
|dt′′|·

(
k2+
|t′′|
tsσ

))
= 2

∫ t

t0

dt′·e2k2(|t|−|t′|)·exp
( 1

tsσ
(|t|2−|t′|2)

)

= 2e2k2|t|+(|t|2/tsσ) ·
∫ t

t0

dt′ · exp
(
− 2k2|t′| − |t

′|2
tsσ

)

= 2e2k2|t|+(|t|2/tsσ) ·
{√π

2

√
σts exp

(√
σtsk

4
)
· Erfc

(σtsk2 + |t′|√
σts

∣∣∣
t

t0

)}
.

If we set s = (k2tsσ + |t|)/√tsσ, the result is:72

GT (k, t, ts) ∼ es
2 ·
√
πσts ·

{
Erfc(s)− Erfc(s0)

}
. (514)

If we take the leading part of the asymptotic expansion (513) for s large73 , we obtain:

GT (s, ts) ∼ es
2 ·
√
πσts ·

e−s
2

√
πs

=

√
σts
s

=
1

k2 + |h(t, ts)|/σ
∼ 1

k2 +m2(t, ts)
.

We recover the equilibrium value of the transverse two-point correlation function.
Note that the asymptotic limit which leads to the last expression is s → ∞ that does not
necessary imply |t| → ∞. Since we consider large-momenta, the system appear at instant
thermal equilibrium at all the times [see ref.[21] and [28]].
Below the critical temperature the fluctuations over the reference ground state are essen-
tially given by the Goldstone-waves ϕ(k, t). We perform a spin-wave approximation for large
momenta: we distinguish the short and the long-wavelength fluctuations:

ϕ(k, t) = ϕ(k < k�, t) + ϕ(k > k�, t) = θ(k, t) + δθ(k, t). (515)

In the Fourier space we have differentiated the modes in terms of the momenta: θ(k, t) has
only modes k < k� and δθ(k, t) is a short-wave k > k� fluctuation.
The short-distance fluctuations are roughly at instantaneus thermal equillibrium at all times.
Thus, they are quite well-described by the non-interacting spin-wave approximation. The
long-wavelength fluctuations are affected by the non-linearities present in the system and

72The constant s0 = k2tsσ + t0)/
√
tsσ

73We have neglected the value of the Erfc at s0 because since |t0| is very large |t0| � |t|, the value of the
Erfc tends to zero.
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therefore cannot be treated in the same way. In order to investigate the off-equilibrium
behaviour of the system and the following hysteresis phenomena, we are interested only to
the long-wavelength modes θ.
The value of momentum k� defines a cross-over behaviour and separetes the local-fluctuation
regime from the spin-waves as we have qualitatively seen in Sec.1,1.2.8. Its value can be
computed self-consistently: if we assume that the modes δθ(k, t) are at the instantaneous
equilibrium for all times, the previous approximation for the mass term remains valid even
when t→ 0. Thus, we can identify k� as the value in which s ∼ O(1) at t = 0 [see ref.[21]].
It follows that

k� = (1/tsσ)1/4 (516)

When we perform the KZ scaling limit, we enlarge the interval of the small momenta:
k · (ts)1/2d remains fixed when ts →∞. In particular, the rescaled value of k� is:

k� · (ts)1/2d ∼ (1/tsσ)1/4 · (ts)1/2d ∝ (ts)
−(d−2)/4d → 0 (517)

because 2 < d < 4. Since we consider very-low frequency protocols ts → ∞, the cross-over
value of the momenta k� tends to zero and this is equivalent to consider the momenta as
subleading terms in the Kibble-Zurek scaling limit.
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F Algebraic computations of Sec.7

F.1 Asymptotic equilibrium behaviours:
F.1.1 Magnetization.

We check the consistence of the relation (448) in the asymptotic equilibrium limit i.e. as-
suming that the scaling function of the mass term is given by (455):

cos(ϑ(t)) =
1

σ

∫ t

−∞
dt
′ · t′ · exp

(
−
∫ t

t
′
dt
′′ · M2(t

′′
)
)

t→−∞∼
M2'M2

e

1

σ

∫ t

−∞
dt
′ · t′ · exp

( 1

σ

∫ t

t
′
dt
′′ · t′′

)
=

1

σ

∫ t

−∞
d|t′| · |t′| · exp

( 1

σ

∫ t

t
′
d|t′′| · |t′′|

)

=
1

σ

∫ t

−∞
d|t′| · |t′| · exp

{ 1

2σ

(
|t|2 − |t′|2

)}
=

1

σ
e|t|

2/2σ

∫ t

−∞
d|t′| · |t′| · e−|t′|2/2σ = −1.

The limit t→ +∞ cannot be performed because of memory effects. However, if we consider
the system at the equilibrium for all times, the relation (455) permits to compute also the
asymptotic limit after the transition:

cos(ϑ(t)) =
1

σ

∫ t

−∞
dt
′ · t′ · exp

(
−
∫ t

t
′
dt
′′ · M2(t

′′
)
)

t→+∞∼
M2=M2

e

1

σ

{∫ 0

−∞
dt
′ · t′ · exp

(
− 1

σ

∫ 0

t
′
dt
′′ · |t′′|

)
+

∫ t

0

dt
′ · t′ · exp

(
− 1

σ

∫ t

t
′
dt
′′ · t′′

)}

=
1

σ

{∫ 0

−∞
d|t′| · |t′| · exp

(
− 1

2σ
|t′|2

)
+

∫ t

0

dt
′ · t′ · exp

(
− 1

2σ
(t

2 − t′2)
)}

=
1

σ

{∫ 0

−∞
d|t′| · |t′| · e−|t′|2/2σ + e−t

2
/2σ

∫ t

0

dt
′ · t′ · e+t

′2
/2σ
}

The first term represent the value of the magnetization before the transition:

1

σ

∫ 0

−∞
d|t′| · |t′| · e−|t′|2/2σ = −1.

The second term represent the value of the magnetization after the transition:

1

σ
e−t

2
/2σ

∫ t

0

dt
′ · t′ · e+t

′2
/2σ =

1

σ
e−t

2
/2σ
(
− 1 + e+t

2
/2σ
)
t→+∞∼ +1.

which is in agreement with our expectations. The computation does not lead to the correct
result because the magnetization present a non-analicity in zero. The correct interpretation
is to divide the two contributes or equivently assume that the value in zero is zero for both
the sides.

F.1.2 Transverse susceptibility.

We consider the transverse two-point correlation function (345) at zero momenta and we
investigate the asymptotic equilibrium behaviour using (455):

GT (t) = 2

∫ t

−∞
dt
′ · exp

(
− 2

∫ t

t
′
dt
′′ · M2(t

′′
)
)

t→−∞∼
M2'M2

e

2

∫ t

−∞
dt
′ · exp

(
− 2

∫ t

t
′
dt
′′ · |t

′′|
σ

)
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= 2

∫ t

−∞
dt
′ · exp

( 1

σ
(|t|2 − |t′|2

)
= 2e|t|

2/σ

∫ t

−∞
dt
′ · e−|t′|2/σ =

2e|t|
2/σ ·

{√π
2
· √σ · Erfc

(
|t′|/√σ

)∣∣∣
t

−∞

}
.

The function Erfc is called complementary Error function and its general features are re-
ported into the appendix C. Using the relations (510) and taking the leading term of the
asymptotic expansion (513), we find:

GT (t) ∼ 2e|t|
2/σ ·

{√π
2
· √σ · e−|t|

2/σ

(
√
π · |t|/√σ)

}
= σ/|t|.

F.2 Phase dynamics:
F.2.1 Equation for the phase dynamics.

The equation of motion for the planar vector follows from (460):

�
φ(x, t) = σi

�
θ(x, t)eiθ(x,t)(1 + %(x, t)) + σeiθ(x,t)

�
%(x, t) =

σ∇2
(
eiθ(x,t)(1 + %(x, t))

)
− σ ·m2(t, ts)(1 + %(x; t))eiθ(x,t) + h(t, ts) + ς(x, t)

where the magnetic field is composed only by a real component and acts on the dynamics
of the real part of φ which is σ(1 + %) cos(θ). The noise ς is a complex vector ς(x, t) =
ς1(x, t) + iς2(x, t) with cumulants given by (206) and (207). Thus,

= σ∇
(
i∇θ(x, t)eiθ(x,t)(1 + %(x, t)) + eiθ(x,t) · ∇%(x, t)

)

−σ ·m2(t, ts)(1 + %(x; t))eiθ(x,t) + h(t, ts) + ς(x, t)

= σ
(
i∇2θ(x, t)eiθ(x,t)(1+%(x, t))+(∇θ(x, t))2eiθ(x,t)(1+%(x; t))+2i∇θ(x, t)·∇%(x, t)eiθ(x,t)

)

−σ ·m2(t, ts)(1 + %(x; t))eiθ(x,t) + h(t, ts) + ς(x, t)

It follows that
i
�
θ(x, t)(1 + %(x, t)) +

�
%(x, t) =

i∇2θ(x, t)(1 + %(x, t)) + (∇θ(x, t))2(1 + %(x, t)) + 2i∇θ(x, t) · ∇%(x, t)

−m2(t, ts)(1 + %(x; t)) +
h(t, ts)

σ
e−iθ(x,t) +

ς(x, t)

σ
e−iθ(x,t);

We can obtain an equation for the phase dynamics by keeping the immaginary part of the
previous equation:

�
θ(x, t)(1 + %(x, t)) = ∇2θ(x, t)(1 + %(x, t)) + 2∇θ(x, t) · ∇%(x, t)

−h(t, ts)

σ
sin
(
θ(x, t)

)
− ς1(x, t)

σ
sin(θ(x, t)) +

ς2(x, t)

σ
cos(θ(x, t))

and from the real part

�
%(x, t) = (∇θ(x, t))2(1 + %(x, t))−m2(t, ts)(1 + %)

+
h(t, ts)

σ
cos
(
θ(x, t)

)
+
ς1(x, t)

σ
cos(θ(x, t)) +

ς2(x, t)

σ
sin(θ(x, t)).
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F.2.2 Solution for the phase dynamics.

Let us find a solution to the equation (464). Firstly, we solve the homogeneous one:

∫ θ(t)

θ0

dθ

sin θ
= log(tan(θ/2))

∣∣∣
θ(t)

θ0
= −

∫ t

t0

dt′ · h(t′, ts)
σ

= −
∫ t

t0

dt′ · (t′/ts)
σ

;

It follows that the homogenous solution is:

θ(t) = 2 arctan
(

tan(θ0/2) · e−(t2−t20)/2tsσ
)
.

Now we try to find a particular solution in the following form:

tan(θ(t)/2) = tan(θ0/2) · e−A(t) · w(t);

where A(t) = −(t2 − t20)/2tsσ. Let us consider again the equation (464) in terms of
tan(θ(t)/2)

d

dt
tan(θ(t)/2) =

1

cos2(θ(t)/2)
·
( �
θ(t)

2

)
(464)
=

1

2 cos2(θ(t)/2)
·
[
− σ−1(t/ts) sin(θ(t)) + ςθ(t)

]
;

We set q = θ(t)/2 and we substitute the guess above in the equation:

d

dt
tan(q) = tan(θ0/2) · e−A(t) ·

[
− σ−1(t/ts)w(t) +

�
w(t)

]

(464)
=

1

2 cos2(q)
·
[
− σ−1(t/ts)2 sin(q) cos(q) + ς2q(t)

]
=
[
− σ−1(t/ts) tan(q) +

ς2q(t)

2 cos2(q)

]
;

Thus,

tan(θ0/2)·e−A(t)·
[
−σ−1(t/ts)w(t)+

�
w(t)

]
=
[
−σ−1(t/ts) tan(θ0/2)·e−A(t)·w(t)+

ς2q(t)

2 cos2(q)

]
;

�
w(t) =

e+A(t)

tan(θ0/2)

( ςθ(t)

2 cos2(θ(t)/2)

)
= e+A(t) · ς ′θ(t).

w(t) =
1

tan(θ0/2)

∫ t

t0

dt′ · e+Aα(t′) · ς ′θ,α(t′) + w0;

where we have redefined again the noise distribution according to,

P (ς ′θ) ∝
∫
Dς ′ · exp

(
− σ2

2Ω

∫
dt ·

∫
ddx · |ς ′θ(x, t)|2

)
.

which has the same cumulants of the distribution (466). It follows that the solution at
zero-momenta for the phase θ(t) is:

θ(t) = 2 arctan
{

tan(θ0/2)·exp
(
−
∫ t

t0

dt′·h(t′, ts)/σ
)

+

∫ t

t0

dt′·exp
(
−
∫ t

t′
dt′′·h(t′′, ts)/σ

)
·ς ′θ(t′)

}

F.2.3 Variance of the phase distribution at early times.

Using the solution (470) and the cumulants of the noise distribution (471), (472) we obtain:

γ2(t, ts) =

∫ t

t0

dt′·exp
(∫ t

t′
dt′′·h(t′′, ts)/σ

)
·
∫ τ

t0

dτ ·exp
(∫ t

τ

dt′′·h(t′′, ts)/σ
)
· < ς ′θ(t

′)·ς ′θ(τ) >ς′θ
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=
2

σ2

∫ t

t0

dt′ · exp
(

2

∫ t

t′
dt′′ · h(t′′, ts)/σ

)
.

We perform the integral

γ2(t, ts) =
2

σ2
et

2/tsσ

∫ t

t0

dt′ · e−t′2/tsσ =
2

σ2
et

2/tsσ ·
{√π

2
·
√
σts · Erfc

(
|t′|/
√
σts

)∣∣∣
t

t0

}
.

If we consider the KZ scaling limit: ts →∞ keeping t fixed, we obtain:

γ2(t, ts) = tQ ·
1

σ2
et

2
/σ · √πσ · Erfc

(
|t|/√σ

)
= tQ · γ′2(t).

The approximation (468) is consistent with the asymptotic limit t → −∞. Thus, the Erfc
can be expanded through (513). The variance of the phase distribution in the limit t→ −∞
is:

γ′2(t)
t→−∞∼ 1

σ|t| .

F.3 Leading off-equilibrium corrections
to the asymptotic equilibrium behaviour:

F.3.1 Magnetization.

We compute the leading asymptotic deviations of the longitudinal magnetization using the
ansatz (478) in (448):

cos
(
ϑ(t)

)
∼ 1

σ

∫ t

−∞
dt
′ · t′ · exp

(
−
∫ t

t
′
dt
′′ · |t

′′|
σ

(1 + b|t′′|a · e−c|t′′|2)
)
'

1

σ

∫ t

−∞
dt
′ · t′ · e(|t|2−|t′|2)/2σ

(
1 +

∫ t

t
′
d|t′′| · b

σ
|t′′|a+1 · e−c|t′′|2

)

= −1 +
1

σ
e|t|

2/2σ

∫ t

−∞
dt
′ · t′ · e−|t|2/2σ ·

(
− b

2σ
c−a/2−1 · Γ[(2 + a)/2, c|t′′|]

∣∣∣
t

t
′

)
;

Keeping the leading term of the asymptotic expansion (502):

cos
(
ϑ(t)

)
∼ −1+

1

σ
e|t|

2/2σ

∫ t

−∞
dt
′ ·t′ ·e−|t|2/2σ ·

(
− b

2σ
c−a/2−1 ·(c|t′′|2)(2+a)/2−1 ·e−c|t′′|2

∣∣∣
t

t
′

)

= −1 +
{
− b

2cσ2
e|t|

2/2σ · |t|a · e−c|t|2
∫ t

−∞
d|t′| · |t′| · e−|t′|2/2σ

}

+
{ b

2cσ2
e|t|

2/2σ

∫ t

−∞
d|t′| · |t′|1+a · e−|t′|2/2σ · e−c|t′|2

}

= −1− b

2cσ2
e|t|

2/2σ · |t|a · e−c|t|2
(
− e|t′|2/2σ · σ

∣∣∣
t

−∞

)

+
b

2cσ2
e|t|

2/2σ
(
− 2a/2 ·

(1 + 2cσ

σ

)a/2−1

· Γ[(2 + a)/2, (1 + 2cσ)|t′|2/2σ]
∣∣∣
t

−∞

)
;

Using the relation (502):

cos
(
ϑ(t)

)
∼ −1 +

b

2cσ
|t|a · e−c|t|2

+
b

2cσ2
e|t|

2/2σ
(
− 2a/2 ·

(1 + 2cσ

σ

)a/2−1

·
(1 + 2cσ

2σ
|t′|2

)(2+a)/2−1

· e−|t|2/2σ · e−c|t|2
)

;

Thus,

cos
(
ϑ(t)

)
∼ −1+

b

2cσ
|t|a·e−c|t|2− b

2cσ2
·
( σ

1 + 2cσ

)
·|t|a·e−c|t|2 = −1

(
1+
(
− b

1 + 2cσ

)
|t|a·e−c|t|2

)
.
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F.3.2 Transverse susceptibility.

We investigate the first corrections to equilibrium behaviour also in the transverse suscepti-
bility using the ansatz (478) in the definition (345) at zero momenta:

GT (t) ∼ 2

∫ t

−∞
dt
′ · exp

(
− 2

∫ t

t
′
dt
′′ · |t

′′|
σ

(1 + b|t|a · e−c|t|2
)
'

2

∫ t

−∞
dt
′ · e(|t|2−|t′|2)/σ ·

(
1 + 2

∫ t

t
′
d|t′′| · b

σ
· |t|1+a · e−c|t|2

)

=
σ

|t| + 4e|t|
2/σ

∫ t

−∞
dt
′ · e−|t′|2/σ ·

(
− b

2σ
ca/2−1 · Γ[(2 + a)/2, c|t′′|]

∣∣∣
t

t
′

)
;

Taking the leading part of the asymptotic expansion (502), we obtain:

GT (t) ∼ σ

|t| + 4e|t|
2/σ

∫ t

−∞
dt
′ · e−|t′|2/σ ·

(
− b

2σ
ca/2−1 · (c|t′′|2)(2+a)/2−1 · e−c|t′′|2

∣∣∣
t

t
′

)

=
σ

|t|+
{
−2b · e|t|2/σ

σc
·|t|a·e−c|t|2

∫ t

−∞
dt
′·e−|t′|2/2σ

}
+
{2b · e|t|2/σ

σc

∫ t

−∞
dt
′·e−|t′|2/σ·|t′|a·e−c|t′|2

}

=
σ

|t| −
2b · e|t|2/σ

σc
· |t|a · e−c|t|2

(√π
2
· √σ · Erfc

( |t′|
σ

)∣∣∣
t

−∞

)

−2b · e|t|2/σ
σc

·
(
− 1

2

(1 + cσ

σ

)−(1+a)/2

· Γ[(1 + a)/2, (1 + cσ)|t′|2/σ]
∣∣∣
t

−∞

)
;

Using (502) in the last expression:

GT (t) ∼ σ

|t| −
2b · e|t|2/σ

σc
· |t|a · e−c|t|2

(√π
2
· √σ · e

−|t|2/σ
√
π|t|/σ

)
+

b · e|t|2/σ
σc

·
((1 + cσ

σ

)−(1+a)/2

·
(1 + cσ

σ
|t|2
)(1+a)/2−1

· e−|t|2/σ · e−c|t|2
)

;

Thus,

GT (t) ∼ σ

|t| −
b

c
· 1

|t| ·|t|
a ·e−c|t|2 +

b

σc

( σ

1 + cσ

)
|t|a−1 ·e−c|t|2 =

σ

|t|
(

1+
(
− b

1 + cσ

)
|t|a ·e−c|t|2

)
;
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