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Preface

The state of matter called glass is characterized by the complete arrest of
the dynamics on the experimental time-scale. The sharp increase in the
structural relaxation time and in the viscosity of the glass-forming liquids is
evidence of this arrest. Despite the accompanying discontinuity in the second
order thermodynamic quantities, the glass transition cannot be considered a
proper phase transition, as the glassy state is out of equilibrium.

Since all materials potentially form glass under specific conditions, the
glass transition is a universal phenomenon, but it is more easily observed in
some materials, among which polymers constitute an important class.

Polymers are systems of chain-like molecules composed by repeating units.
The key feature of these systems is the connectivity arising from the presence
of many bonds. It makes polymers exhibit a complex solidification behaviour,
with an intrinsic difficulty to crystallize which favours glass formation.

In addiction to their suitability for fundamental studies of the glass tran-
sition, solid-state polymers play a significant role in technology. They are ap-
preciated mainly because of their mechanical properties, whose microscopic
origin is not yet exhaustively understood.

Molecular dynamics (MD) simulations prove an invaluable tool in this
research field, since they allow for the complete control over the system under
study, and for the analysis of many properties which would otherwise be
inaccessible through experiment.

The goal of this thesis is to characterize the mechanical response to
deformations of a coarse-grained polymer model in the glassy state. In par-
ticular, we want to relate the mechanical behaviour to connectivity. To
this aim MD simulations are performed with systematic variation of bond
length and chain stiffness, which are the interaction parameters determining
the connectivity of the model. Mechanical deformation is simulated via the
Athermal Quasi-Static (AQS) procedure at zero temperature. We show that
connectivity does not directly affect the elastic shear modulus. However,
since the latter depends on the morphology of the solid state, connectivity
still plays a role as it determines the solidification behaviour of the model.
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iv Preface

In the plastic regime, we show that the stress at yielding depends on the
connectivity-related parameters of the model. Moreover, we find a correla-
tion between the elastic shear modulus and the stress at yielding, compatible
with experimental data reported in the literature.

The thesis is structured in the following way:

Chapter 1

An introduction to the physics of glass transition is given, with partic-
ular attention to the processes of crystal nucleation and growth, and
to how these can be hindered by supercooling and eventually glass
transition. In the same chapter, we introduce the essential features of
polymers and we discuss the main concepts of the theory of mechanical
response.

Chapter 2

The numerical techniques adopted in this work are reported. After
a brief introduction to molecular dynamics simulations, we discuss in
detail the chosen polymer model, the simulation protocol followed to
obtain zero temperature solids and simulate deformation, and the pro-
gram for data analysis.

The original results of this work are presented in chapters 3 to 5.

Chapter 3

First the liquid phase of the model is characterized, by measuring the
spatial distribution and ordering of monomers at finite temperature.
Then a linear cooling down of the samples is simulated, and the same
measurements are carried out in the glassy state at zero temperature.

Chapter 4

The zero temperature solids are deformed via the AQS shear protocol.
The elastic shear modulus determining the linear response to small
strains is measured. Plastic yielding events are observed at larger
strains and the corresponding stress is measured. The existence of
a correlation between the elastic linear response and the highly non-
linear plastic behaviour is investigated. Finally we compare our results
with experimental data reported in the literature.

Chapter 5

A summary of the main original results of the thesis is reported.
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Chapter 1

Introduction

1.1 The glass transition

When a liquid is cooled down, the motion of its constituent atoms or molecules
slows down, due to decreasing thermal energy. As the temperature goes
through the freezing point TM a first order phase transition is usually ex-
pected to take place, which turns the liquid into a crystal. The process of
crystallization consists in two major events: nucleation and crystal growth.

Nucleation is the stage at which some atoms or molecules of the liquid be-
gin to gather in clusters characterized by an ordered structure, which are the
nuclei of the crystalline phase. This process is driven by spontaneous density
fluctuations and requires a certain amount of work to be done, since the free
energy gain due to the inner order of the new phase competes with the energy
loss required for the formation of an interface between the crystal and liquid
phases. The resulting energy barrier between the minima corresponding to
the two phases is sketched in the right panel of fig. 1.1.

The minimum reversible work needed for the formation of a crystal em-
bryo of n molecules in an incompressible liquid, under conditions of constant
temperature T and pressure P is

Wmin = σA+ n [µ′(T, P )− µ(T, P )] (1.1)

as derived in [1], where σ is the surface tension, A the inter-facial area be-
tween the embryo and the bulk phase, µ′ and µ the chemical potentials in
the embryo and bulk phase respectively. The first term is positive and sur-
face dependent, while the second is negative and depends on volume, so that
eq. (1.1) can be written

Wmin(r) = br2 − cr3 (1.2)
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4 Introduction

where b and c are positive constants, and r is the radius of the crystal embryo,
assumed to be spherical.

Figure 1.1: Left: typical temperature dependence of first order thermodynamic
quantities such as enthalpy, entropy, volume, etc. Right: schematic plot of the
free energy barrier between a liquid (shallower minimum) and a crystalline state
(deeper minimum). At T = TM a liquid can either crystallize (c) or keep in
the metastable state of a supercooled liquid (a). As cooling is carried on, the
supercooled liquid eventually falls out of equilibrium (b). This happens at the
glass transition temperature Tg. Adapted from [2].

Therefore, the work required for nucleation has the form of an energy
barrier (fig. 1.2) depending on the size of the nucleus, so that a critical size
r∗ which maximizes Wmin(r) can be identified as that at which nucleation has
become effective. Nucleation is thus a thermally activated process. When a
critical-sized nucleus has formed, it then begins to grow spontaneously.

The number of critical-sized embryos formed at a temperature T ≤ TM
is expected to have a Boltzmann distribution

ρn(T ) ∼ exp

(
Wmin(r∗, T )

kBT

)
(1.3)

where kB is the Boltzmann constant. However, nucleation cannot be de-
scribed only by equilibrium thermodynamics. When a nucleus has formed,
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Figure 1.2: Surface and volume contributions to the energy barrier representing
the work needed for the formation of a crystal embryo of radius r. Adapted from
[1].

additional atoms or molecules must be transported on it, in order for criti-
cal size to be reached. This process has a kinetic nature. Since the ability
of transporting matter from a point to another of a system is characterized
by its diffusion coefficient D, the rate J of formation of a critical nucleus is
expected to have the form

J(T ) ∼ ρn(T ) ·D(T ) (1.4)

i.e. to be proportional both to the probability of a nucleus to be formed, and
to the rate at which matter is transported on it.

At fixed temperature and rate J , a certain amount of time t(φ) is needed
for the growth of a fraction φ of crystal phase. For instance, if the critical
nucleus is assumed to be spherical and expanding with constant velocity u,
at any time this fraction can be estimated as

φ(t) =

∫ t

0

J
4

3
π

[∫ t′

0

udt′′

]3

dt′ =
π

3
Ju3t4 (1.5)
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so that the time needed for a crystal fraction φ to grow is

t(φ) =

(
3φ

πJu3

)1/4

(1.6)

If the system is cooled down beyond the freezing point (T ≤ TM), the cooling
rate required to obtain a fraction φ of crystal phase can be estimated as

|Ṫ | ∼ TM − T
t(φ)

(1.7)

The critical cooling rate under which complete crystallization is achieved is
obtained by imposing φ = 1 in eq. (1.7):

|Ṫ |critical = (TM − T )

(
πJu3

3

)1/4

(1.8)

If the cooling process is faster than crystal growth, i.e. for cooling rates
|Ṫ | > |Ṫcritical|, crystallization can be hindered, completely or in part. It
is important to notice that this can happen even if the crystal phase is the
energetically favoured one.

The state of a liquid which has not crystallized at T ≤ TM is called the
supercooled state (situation (a) in fig. 1.1). From a thermodynamic point
of view, despite not being in the lowest (absolute) energy minimum, super-
cooled liquids are classified as metastable, which means they are stable under
small perturbations. Due to its location in a free energy minimum, the con-
figuration of a supercooled liquid can persist over infinitely large time scales
and the principles of classical equilibrium thermodynamics can be generally
applied.

Upon cooling below the freezing point TM , the supercooled liquid is char-
acterized by a dramatic increase in the viscosity with decreasing tempera-
ture (see section 1.2). Such an increase in viscosity implies the concomitant
slowing down of the typical relaxation time of the associated spontaneous
fluctuations. The phenomenon related to such relaxation time is normally
called the α process, and the characteristic time is called τα.

For instance, consider the spontaneous density fluctuations due to molec-
ular rearrangement, which allow for the nucleation process. The dynamics
of these rearrangements are described by the diffusion constant D, which is
related to the viscosity η by the Stokes-Einstein relation

D =
kBT

6πηa
(1.9)
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where a is the effective radius of the molecules. The sharp increase in viscosity
implies a strong decrease in diffusivity. As a consequence, the characteristic
time for molecular rearrangement τα becomes increasingly large, in such a
way that it can exceed the experimental time scale (e.g. the inverse of cooling
rate).

When this happens, the supercooled liquid appears structurally arrested,
keeping in the same state around that of metastable equilibrium (situation
(b) in fig. 1.1). This out-of-equilibrium state is called a glass. A glass has the
mechanical properties of a solid, but it still exhibits the typical structural
features of a disordered liquid.

The state in which the system is arrested can be one in which nucleation
has started, so that a fraction of crystal phase φ can be observed in the
glass. The structure of partially crystalline samples is strongly affected by
the procedure of solidification, thus constituting a memory of the thermal
history, for instance of solidification temperature and cooling rate.

The transition from a liquid to a glass occurs in a relatively narrow range
around a reference glass transition temperature Tg. This temperature is iden-
tified as that at which a jump in the second order thermodynamic properties
of the supercooled liquid (e.g. the thermal expansion coefficient) is observed
(see left part of fig. 1.1). Despite the observed jump in the second order ther-
modynamic properties, the glass transition does not fulfil the requirements
of a phase transition in a strict sense. For instance it is well documented [3]
that it doesn’t satisfy the relation

Π =
∆k∆Cp

TV (∆α)2 = 1 (1.10)

which stands for second-order phase transitions, where ∆k, ∆Cp and ∆α
are the variations, at the transition point, of compressibility, heat capacity
at constant pressure and coefficient of thermal expansion respectively; Π is
known as the Prigogine-Defay ratio.

Rather, from a thermodynamic point of view, glasses belong to the cat-
egory of non-equilibrium systems (fig. 1.1(b)). If the glass transition tem-
perature Tg is defined as that at which liquid and vitreous behaviours of
the volume versus temperature intersect, we find out that it usually occurs
around 2

3
TM . In the narrow temperature range between TM and ≈ 2

3
TM , the

structural relaxation time τα increases in a very sharp fashion, reaching the
order of 100 seconds [4, 5] at Tg, from the order of picoseconds at TM (see
fig. 1.3). Similarly the viscosity η, which starts from values around 10−1P
(10P = 1Pa×s) at the freezing point, reaches order 1013P at Tg. Viscosity is
thus extraordinarily sensitive to temperature around Tg and assumes values
that make glass behave mechanically like a solid on the experimental scale.
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Figure 1.3: Comparison of the diffusivity and viscosity between a typical liquid
(such as the water at room temperature) and a typical glass. Note the huge
increase of the relaxation time from 10−12s to 102s. Reprinted from [4].

One of the most interesting peculiarity of the glass transition is its univer-
sality, in the sense that all kind of liquid potentially glass-forms, from atomic
(both non-metallic and metallic [6]) to polymeric [7], from the ones in which
dispersion forces dominate to those characterized by hydrogen and covalent
bonds. Clearly these properties play a role in the experimental difficulty (e.g.
large critical cooling rate) encountered in supercooling and then vitrifying a
liquid. In this sense we speak about good or bad glass formers. Organic and
ionic liquids, silicates, polymers and also some metallic liquids are good glass
formers [8].

1.2 The Angell plot

Close to Tg, the viscosity of liquids like silica (SiO2) exhibits Arrhenius tem-
perature dependence

η(T ) ∼ exp

[
∆E

kBT

]
(1.11)

where ∆E represents a temperature independent barrier of energy, to be
overcome by thermal fluctuations [9]. Other liquids, like many polymers, are
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Figure 1.4: Angell plot showing the viscosity as a function of the inverse temper-
ature normalized at the glass transition temperature Tg for different substances.
An Arrhenius behaviour results in a straight line in this plot. This is typical of
strong glass-formers. Non-Arrhenius increase of the viscosity corresponds to fragile
glass-formers. Reprinted from [9].

characterized by a more dramatic increase in the viscosity with decreasing
temperature.

The Angell plot [10], shown in fig. 1.4, displays the temperature depen-
dence of the viscosity of a wide variety of supercooled liquids at atmospheric
pressure. Defining Tg as the temperature at which viscosity reaches the value
of η(Tg) = 1013P , all the curves are normalized to the same value at Tg.

Two different types of behaviour are brought forth in this plot: strong and
fragile. The dynamics of strong liquids are characterized by a clear Arrhenius
behaviour, and the corresponding curves of log η(Tg

T
) in fig. 1.4 are straight.

The other family of curves, to which the vast majority of glass-forming poly-
mers belong, corresponds to fragile liquids, for which the viscosity increases
much more strongly upon cooling toward Tg. These non-Arrhenius data are
often fitted [9] by the Vogel-Fulcher-Tammann (VFT) expression:

η(T ) ∼ exp

[
A

T − T0

]
(1.12)

where A is a temperature independent constant. Equation (1.12) implies a
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Table 1.1: Fragility m and glass transition temperatures Tg of some common
polymers.

m Tg(K)

PVC 191 352
Toluene 107 126
PVAc 95 311
Se 87 308
OTP 81 240
Glycerol 53 190
B2O3 32 554
SiO2 20 1700
GeO2 20 818

divergence of the viscosity at the finite temperature T0, a prediction that
cannot be verified because the system is supposed to fall out of equilibrium
as T0 is approached. However, the physical origin of the non-Arrhenius be-
haviour of fragile liquids is still an actively investigated question, and many
other good fits of these curves exist (for instance see [11–13]).

An established result is the correlation between the different behaviour
of viscosity and a different evolution of short range order: strong liquids
typically have a local tetrahedral structure, which persists across the glass
transition, whereas any remnants of the structure in which a fragile liquid is
trapped under Tg rapidly disappear upon heating above Tg. The structural
(in)stability is reflected in the (large) small changes in heat capacity and
thermal expansion coefficient across the glass transition [14].

While crystal solids are easily classified by their structure, in liquids and
glasses this is not possible, as their structure is amorphous and strongly
depends upon the cooling history. The Angell plot offers a way to classify
liquids through their fragility, which is defined as

m =
∂ log η

∂
(
Tg
T

)
∣∣∣∣∣∣
T=Tg

(1.13)

The van der Waals molecular liquids, such as o-terfenile OTP and toluene
C7H8 are the classical fragile (m = 70 ÷ 150) systems. The strong glass-
formers (m = 17 ÷ 35) are instead characterized by strong covalent direc-
tional bonds, forming space-filling networks (like silica SiO2 and germanium
dioxide GeO2). Hydrogen bonded materials (like glycerol or propylene gly-
cols) present an intermediate level of fragility (m = 40÷ 70). Some specific
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values of m and Tg are reported in table 1.1.

1.3 Polymers

Figure 1.5: Some of the many different types of polymer. Differences can be found
both in chain architecture (left panel) and in chain constitution (right panel).

According to the definition given in [15], a polymer is a substance com-
posed of molecules characterized by the repetition of one or more species of
atoms, called constitutional repeating units (or monomers), linked to each
other in amounts sufficient to provide a set of properties which do not change
markedly with the addiction of one or a few more constitutional repeating
units.

Polymer chains can be classified by their conformation and configuration.
The conformation of a polymer chain is its spatial organization. Many differ-
ent conformations exist: linear, star, comb etc. Some of them are reported
in the left part of fig. 1.5. On the other hand, the configuration is the suc-
cession of chemical elements along the chain. We distinguish homopolymers,
consisting in chains of a single repeated unit, from copolymers, i.e. chains of
monomers of different species, arranged in an alternating, random, block or
other ways (right part of fig. 1.5).

Polymers are essential and ubiquitous in everyday life. For instance, pro-
teins and nucleic acids, which play a basic role in the control of life processes,
are polymers; other natural polymers are rubbers and cellulose, which is the
basic constituent of wood and paper, while the list of synthetic polymeric
systems include window glass, optical fibres and most engineering and com-
modity plastics.
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The feature which makes polymers peculiar objects for physical investi-
gations is chain connectivity. In the molten phase, while monomers pack
densely in an amorphous structure characterized by short range order and
low compressibility, a behaviour equivalent to that of simple non-polymeric
liquids [16], on the chain scale additional features are brought forth by the
strong interpenetration of the chains. For instance, the screening of the in-
tramolecular excluded volume interaction, which makes the chains behave
approximately as random coils on long length scales. Chain interpenetration
also gives rise to temporary networks of entanglement which slow down relax-
ation processes and make the melt viscoelastic already at high temperatures
[17].

The competition between chain-scale and monomer-scale spatial disposi-
tion gives rise to the phenomenon of geometrical frustration: at low temper-
ature, the tendency of monomers to assume positions corresponding to an
ordered configuration is opposed by the constraints imposed by the confor-
mation of the chains. For polymers with regular enough chain structure, this
usually results in two phase structures, in which crystalline and amorphous
regions alternate [18]. For those polymers which have a strongly irregular
chain structure, such as atactic and random copolymers, crystallization is
completely inhibited, and in general even for those which own an ordered
ground state the ordering is kinetically hard to achieve. For this reason
polymers, except for a few cases [19], are usually good glass formers.

Besides being efficient systems for the fundamental investigation of the
glass transition, another appreciable feature of glassy polymers lays in their
mechanical properties: subjection to large strains can lead a polymer to
harden and response toughly, instead of failing abruptly like in the case of
crystalline solids [17].

The target systems of this work are simple linear homopolymers. The
variables used for the description of the chain conformation in linear ho-
mopolymers are, with reference to fig. 1.6:

• the N bond vectors bi = ri−ri−1 linking the ith and (i−1)th monomers
of a chain, with i = 1, . . . , N ;

• the N − 1 bond angles cos(θi) = bi·bi+1

|bi||bi+1| with i = 1, . . . , N − 1

• the end-to-end vector joining the first and the last monomers of the
chain

R2
ee = |rN − r0| =

N∑
i=1

N∑
j=1

bi · bj. (1.14)
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Figure 1.6: Notation for the description of the conformation of polymer chains.

The most simple model describing linear homopolymers is the freely jointed
model [20], in which the chain-composing segments have fixed length b and
point in any direction independently of each other. Within this model the
average magnitude of the end-to-end vector Ree in a chain of N monomers
is given by

< R2
ee >= Nb2 (1.15)

equal to the mean square displacement of a random walk of N steps of
length b. The flexibility of any polymer is characterized by the length scale of
segments in which the chain must be decomposed in order for these segments
to be freely jointed. This length scale is known as the Kuhn length lk and is
defined as the ratio

lk =
< R2

ee >

L
(1.16)

where L = Nb is the contour length of the chain.
For fully flexible chains with average bond length lb the end-to-end vector

is just < R2
ee >= Nl2b which yields a Kuhn length

lk|fully flexible =
Nl2b
Nlb

= lb (1.17)

which means that the real bonds are practically freely jointed.
In the converse case of rigid rod-like polymers, chains are fully stretched,

so that the length of the end-to-end vector equals L , i.e. < R2
ee >= (Nlb)

2,
yielding

lk|rod−like =
(Nlb)

2

Nlb
= L (1.18)
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The fully flexible and the rod-like models are the extremal versions of the
linear homopolymer, and intermediate cases can be found in nature. It is
interesting to understand whether and how chain flexibility can affect the
morphology of the solids formed by polymer liquids upon cooling, and also
their mechanical properties.

The complex structure of polymers brings about the presence of multiple
relaxation phenomena, each characterized by some typical time scale. An ex-
ample is the structural (α) relaxation, that is the escape process of monomers
from the cage of nearest neighbours inside which they are confined to vibrate
for an average time τα.

Another important relaxation process is that of chains losing memory of
their initial conformation. This process is characterized by the autocorrela-
tion function Cee(t) of the end-to-end vector Ree

Cee(t) =
1

Nc

Nc∑
p=1

Rp
ee(t) ·Rp

ee(0)

R2
ee(0)

(1.19)

where the p index runs over all the chains of the system, and Nc is the total
number of chains. This correlation function decreases exponentially in time,
with a characteristic time-scale τee given by

Cee(τee) = e−1 (1.20)

It is assumed [20] that in a polymer melt without permanent chain entangle-
ments, τee is the maximum relaxation time, as the chain-scale rearrangement
represents the slowest motion in absence of collective modes.

1.4 Mechanical response

Here we give a brief introduction to the theory of the mechanical response
in rigid bodies, in the way it is presented in [21].

Upon application of external forces, solid bodies are deformed, i.e. they
change in shape and volume. When a body is deformed, in general every
point in it is displaced. A displacement field vector u(X) = x−X is defined
in any of these points, where X is the position before deformation and the
new position is a function of the previous one x = x(X). The change in the
distance dX of any two infinitesimally near points can be written in terms
of a tensor in the following way:

|dx|2 − |dX|2 = 2uikdXidXk (1.21)
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where dXi is the ith Cartesian component of the original infinitesimal dis-
tance dX and the symmetrical tensor

uik =
1

2

(
∂ui
∂Xk

+
∂uk
∂Xi

+
∂ul
∂Xi

∂ul
∂Xk

)
= uki (1.22)

is called the strain tensor.
When a body is deformed, the arrangement of molecules in it is changed

from that of mechanical equilibrium. The internal forces which therefore
arise, in order to return the body to equilibrium, are called internal stresses.
Any portion of the body is subjected to a force of this kind, which is the sum
of the forces exerted on it by all the surrounding portions. This force can
be considered to act only on the surface of that portion of the body, and for
this reason its per unit volume form f can be expressed as the divergence of
a tensor of rank two

fi =
∂σik
∂Xk

(1.23)

where σik is called the stress tensor and can be shown to be symmetrical.
The component σik of the stress tensor is the ith component of the force on
the unit area perpendicular to the k axis.

For small deformations the displacement field u and its derivatives are
also small, so that we can keep just the first two terms in eq. (1.22), yielding

uik =
1

2

(
∂ui
∂Xk

+
∂uk
∂Xi

)
(1.24)

The work per unit volume done by internal stresses upon a small change
δu in the displacement field can be shown to be

δW = −σikδuik (1.25)

If the process of deformation is also so slow that the deformed body is in
thermodynamic equilibrium at every instant, then it is a reversible process
and the corresponding variation of free energy is

dF = −SdT + σikduik (1.26)

where S and T are the entropy and temperature of the body. We thus have

σik =

(
∂F

∂uik

)
T

(1.27)

Assuming the deformed body to be isotropic, since deformations are small
the variation of free energy (i.e. elastic energy) can be expanded in powers
of uik as far as second order

∆F =
1

2
λu2

ii + µu2
ik (1.28)
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where λ and µ are the so called Lamé coefficients. Only the two independent
scalars of second order of the strain tensor appear, as absence of thermal
expansion is assumed so that σik(uik = 0) = 0 due to eq. (1.27).

The strain tensor can be decomposed in the sum of a simple shear usik
(no variation of volume, Tr(usik) = 0) and a hydrostatic compression uhik (no
variation of shape, uhik = constant× δik) in the following way:

uik =

(
uik −

1

3
δikull

)
+

1

3
δikull (1.29)

Replacing this expression in eq. (1.28) and deriving the elastic energy ∆F
with respect to uik gives a linear relation between the strain and stress ten-
sors:

σik = Kullδik + 2µ

(
uik −

1

3
δikull

)
(1.30)

which is called the Hooke’s law. The quantities µ and K = 2
3
µ + λ are

always positive and they are respectively called the shear and bulk modulus,
as they singularly appear in eq. (1.30) if the strain is either a simple shear
or a hydrostatic compression.

Hooke’s law can be generalized as to describe the linear elastic response
of non isotropic bodies. In this case eq. (1.30) has the form

σik = Cikjlujl (1.31)

where Cikjl is the modulus tensor [22]. For each of the six mutually in-
dependent deformations, namely hydrostatic compression, plane strain and
triaxial shear deformations, simple xy, xz and yz shear deformations, the
corresponding linear stress-strain relations can be derived for small strains.
For instance, the stress-strain relations for simple shear deformations are

σxy = Cxyxyuxy = 2G3uxy (1.32)

σxz = Cxzxzuxz = 2G4uxz (1.33)

σyz = Cyzyzuyz = 2G5uyz (1.34)

The G coefficients are the generalized shear moduli for simple shear defor-
mations.

The strain range of validity of Hooke’s law in a material is usually included
in its elastic limit. In this limit the deformed body returns to its undeformed
state once the external forces causing the deformation cease to act.

Larger deformations, which cause a residual deformation to remain after
removal of these external forces, are said to be plastic.
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Figure 1.7: Left panel: a typical stress-strain curve obtained in our simulations.
In the inset, the linear Hooke-like response for very small deformations is shown (fit
curve in red). For larger strains, stress round off and eventually drops at yielding.
Elastic and plastic events alternatively occur for the whole deformation process.
Right panel: experimental stress-strain curve of a Pd75Si15Ag3Cu7 bulk metallic
glass sample under uniaxial compression at different strain rates, reprinted from
[23].

The mechanical response of any material is characterized by its stress-
strain curve, which is unique for each material and also depends strongly on
the deformation procedure. In fig. 1.7 we show both a typical stress response
obtained via simulation of a polymer material loaded at zero strain rate,
through the athermal quasi-static deformation protocol (see section 4.1), and
the experimental stress-strain curve of a metallic glass subjected to uniaxial
compression at different strain rates [23]. Despite the large differences be-
tween studied systems and procedures of measurement, some common char-
acteristics can be observed. For instance, notice that the range of strains
in which the response of the material is linear, i.e. the Hooke’s regime, is
usually one or more orders of magnitude smaller than that of plastic yielding.

As strain increases beyond the elastic limit, plasticity sets in and, itera-
tively, stress smoothly rounds off until material yielding, corresponding to a
discontinuous stress drop, and then increases again.

One goal of the existing theories of plasticity is to provide constitutive
equations which account for this non linear macroscopic behaviour. To this
end a hypothesis is usually made that it is possible to provide a local and
instantaneous representation of the material state. This is done through the
introduction of an array of (scalar and rank two-tensorial) variables {ξ} in
addiction to stress (or strain) and temperature, called internal variables. The
corresponding additional constitutive equations are provided by assuming
that the rate of evolution of the internal variables is also determined by the
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Figure 1.8: Schematization of the potential energy landscape in a one dimensional
configuration space. In particular, examples of ideal glass and crystal-like minima
are indicated, together with ”basins” and local minima corresponding to transition
states.

internal state in some way:

ξ̇α = gα(σik, T, ξ) (1.35)

These are rate equations, which reflect the assumed rate sensitivity of the
inelastic behaviour.

A number of models attempting to provide this kind of dynamical equa-
tions (e.g. activation theories, dynamics of the local stress field, dynamics
of the stress distribution) has been recently reviewed in [24]. Many of these
models rely on the notion of the so called potential energy landscape (PEL)
[25], i.e. a multidimensional topographic map of the total potential energy
in the configuration space of the N particle system U (r1 . . . rN). A simplified
illustration of this map is shown in fig. 1.8.

The potential energy landscape is characterized by its distribution of
energy maxima, minima and saddle points, it defines the system dynamics
and determines the system properties. Shear deformations induce changes
in the PEL, and the phenomenon of yielding can be related to mechanical
instabilities [26, 27].



Chapter 2

Numerical simulations of
polymers

2.1 Molecular dynamics

Computer simulations are an invaluable tool for the investigation of many-
body systems. They allow numerical ”gedanken experiments” to be carried
out, using models that approximate real physical systems. Providing essen-
tially exact results for problems which would be otherwise soluble only by
approximate methods, simulations represent an efficient test to theories. In
addiction, the comparison of results obtained from simulations with those of
real experiments, provide a test of the models used. On the other hand if
the model proves good, it can then be used to support experiments and the
interpretation of experimental results.

In this work the numerical method of classical molecular dynamics (MD)
will be used. It consists in the explicit solution of the equations of motion
which govern the time evolution of a model system. The model is entirely
specified by the interactions between the constituent particles. Once fixed
the interaction potential U ({qi}) as a function of the generalized coordinates
of the system, the time evolution is described by the Hamilton equations:

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

(2.1)

where {pi} are the conjugate momenta of the coordinates, andH (X = {qi,pi})
is the Hamiltonian. Solving these equations means computing a trajectory
in the region of phase space defined by H (X) = E, where E is the conserved
energy of the system. Under the assumption of ergodicity, the phase space
vectors belonging to this trajectory correspond to configurations extracted
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from a microcanonical ensemble with energy E. Molecular dynamics gen-
erate a set of these configurations, via an integrator algorithm which solves
equations 2.1 at discrete times which are multiples of a chosen timestep ∆t.
Starting from an initial configuration x0, the integrator is iteratively used to
generate the M successive xn∆t, with n = 1, . . . ,M , through which ensemble
averages A of any quantity a (x) are computed:

A =
1

M

M∑
n=1

a (xn∆t) (2.2)

The great advantage of using MD simulations is thus that they provide equi-
librium averages and dynamical information simultaneously, the only down-
side being that results will be just as good as the model used.

Simulation code

The simulation code used in this work is LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) [28]. It is a classical molecular dynamics code
which can be used as a parallel particle simulator at the atomic, meso, or con-
tinuum scale, including potentials for solid state, soft matter, coarse grained
and mesoscopic systems. LAMMPS is distributed as an open source code.
All the documentation about the algorithms implemented in the code can be
found at http://lammps.sandia.gov/doc/Manual.html.

2.2 The NPT ensemble

Despite the Hamiltonian nature of equations 2.1, and their direct physical in-
terpretation, the microcanonical ensemble is not always the most convenient
one to be used in simulations. Since experiments are usually performed under
conditions of constant number of particles N , temperature T and volume V
or pressure P , the possibility of performing simulations in the corresponding
ensembles is appealing.

The conditions of constant N , T and V are those of the canonical en-
semble. While Hamilton equations eq. (2.1) generate the microcanonical
ensemble as a consequence of total energy conservation, in the canonical
ensemble energy can fluctuate. Energy fluctuations imply the Boltzmann
distribution exp [H(p, q)/kBT ] of configurations, due to coupling of the sys-
tem to an external thermal reservoir. In MD simulations this coupling can
be included and reproduced via the Nosé-Hoover extended phase space tech-
nique [29, 30]. It consists in the introduction of an additional dynamical

http://lammps.sandia.gov/doc/Manual.html
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variable s, with conjugate momentum ps, which mimics a thermostat forcing
the instantaneous temperature estimator

T =
1

3NkB

N∑
i=1

|pi|
2

mi

(2.3)

to assume the value of the external temperature T , through a friction force
which rescales the velocities of particles. The Nosé Hamiltonian for a system
with physical coordinates {r1, . . . , rN} and momenta {p1, . . . ,pN} is

HN =
N∑
i=1

|pi|
2

mis2
+ U (r1 . . . rN) +

p2
s

2Q
+ (3N + 1)kBT ln s (2.4)

where Q is the parameter that determines the time scale on which the ther-
mostat acts. The equations of motion obtained from this Hamiltonian are
then transformed via the Hoover non-canonical change of variable in the
following set of equations

ṙi =
p′i
mi

(2.5)

ṗ′i = Fi −
pη
Q

pi (2.6)

η̇ =
pη
Q

(2.7)

ṗη = 3NkB (T − T ) (2.8)

where

p′i =
pi
s
, dt′ =

dt

s
,

1

s

ds

dt′
=
dη

dt′
, ps = pη (2.9)

Notice that the second term of eq. (2.6) has the form of a friction force,
whose time evolution is driven by the difference T − T in eq. (2.8).

This method can be expanded to the situation in which, together with
number of particles and temperature, it is pressure to be constant instead
of volume. These conditions are the standard of many condensed phase
experiments, and constitute the isobaric-isothermal NPT ensemble. The
system must here be coupled to an external isotropic piston (barostat) that
compresses or expands the system in response to fluctuations of the instan-
taneous internal pressure, in order to keep the latter equal in average to the
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externally applied pressure. The instantaneous internal pressure is given by
the estimator

P =
1

3V

N∑
i=1

[
p2
i

mi

+ ri · Fi

]
(2.10)

as the result of the total force exerted by particles on the walls of the con-
tainer. In order to reproduce the volume fluctuations induced by the piston
(compressions and expansions), volume is introduced in the expanded phase
space as an independent dynamical variable, together with its conjugate mo-
mentum [31]. The equations of motion used in LAMMPS are build up via the
combination of the method of Nosé-Hoover chains for thermostatting [32] and
the Martyna-Tobias-Klein (MTK) [33] method for barostatting. The physics
involved is the same as in the Nosé-Hoover equations of motion, and we refer
to [34] for more technical details.

It is worth reporting the chosen rate of temperature relaxation Tdamp for
the thermostat (Q in eq. (2.5)) and pressure relaxation Pdamp for the piston,
since too small values cause high fluctuations, whereas too large values cor-
respond to very long relaxation (and so waiting) times. The most convenient
values are found to be

Tdamp = 100 ·∆t (2.11)

Pdamp = 10000 ·∆t (2.12)

where ∆t is the timestep of the simulation.

2.3 Equations of motion

Once the equations of motion are fixed, which describe the time evolution
of the system, an integrator must be used to provide their solution at each
timestep ∆t. The integrator used in this work is the time reversible velocity
Verlet algorithm [35]. Consider a set of coordinates {ri}. If ∆t is chosen to
be reasonably small, a Taylor expansion can be used up to the second order
to obtain

ri (t+ ∆t) ≈ ri (t) + ∆tvi (t) +
∆t2

2mi

Fi(t) (2.13)

where vi = ṙi and Fi = mir̈i. The same expansion can be made starting
from ri(t+ ∆t) and considering the evolution backwards in time

ri (t) ≈ ri (t+ ∆t)−∆tvi (t+ ∆t) +
∆t2

2mi

Fi(t+ ∆t) (2.14)
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Then, substituting eq. (2.14) into eq. (2.13) yields

vi (t+ ∆t) ≈ vi (t) +
∆t

2mi

[Fi(t) + Fi(t+ ∆t)] (2.15)

Thus, given the initial conditions {ri(0),vi(0)}, the algorithm computes Fi(0)
from the interaction potentials, and makes use of eq. (2.13) to obtain ri (∆t).
The new positions give Fi (∆t), which is substituted in eq. (2.15) in order to
obtain vi (∆t). The algorithm is then iterated starting from {ri(∆t),vi(∆t)}.

This scheme allows to evolve positions and velocities simultaneously. The
velocity Verlet algorithm gives an error on positions and velocity of order ∆t2,
but its simplicity and property of time reversibility make it one of the most
attractive integrators up to date.

2.4 Periodic boundary conditions

Simulations of bulk systems require that surface effects are negligible. In
any system, if N is the total number of particles, the corresponding number
of particles located at the surface scales as N2/3. In typical atomic liquid
samples N is of order 1021 so that the fraction of atoms at the surface is
negligible, whereas in molecular dynamics, a limited number of particles can
be simulated. For instance the simulations carried out in this work involve
N = 4000 particles, so that surface effects may be taken into account.

The problem can be overcome by implementing periodic boundary condi-
tions. This is done by enclosing all the particles in a simulation box, which is
then virtually replicated throughout space in an infinite lattice. A schematic
2D representation of this situation is shown in fig. 2.1. The replicas of the
box are called image boxes, containing image particles. As a particle moves
in the central box, its periodic images move in exactly the same way in each
of the image boxes. This means that if the particle leaves the central box,
one of its images will enter through the opposite face, so that number density
in the central box is conserved. In this way particles are insensitive to the
boundaries of the simulation box and surfaces effects are removed.

For our study of the mechanical response to simple shear deformation,
the most suitable shape of the simulation box is a triclinic parallelepiped.
Therefore we define the simulation box through the matrix

h =


Lx xy xz

0 Ly yz

0 0 Lz

 (2.16)
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Figure 2.1: Schematic two dimensional representation of the infinite lattice build
up from the repetition in space of the simulation box (shaded). Periodic boundary
conditions allow a particle leaving the box to be replaced by one of its images
entering from the opposite side.

where Lx, Ly and Lz are the box sides and xy, xz and yz are called the tilt
factors. A shear deformation of a cubic box along the xy direction is simply
obtained by imposing Lx = Ly = Lz = L, xz = yz = 0 and xy 6= 0.

Periodic boundary conditions are implemented in the following way. In
any procedure which requires the computation of reciprocal distances (eval-
uation of forces, spatial distributions of particles, computation of order pa-
rameters etc.) every distance rij between the i-th and j-th particles first
undergoes the sequence of transformations [36]

sij = h−1 · rij (2.17)

|s′ij| = |sij| −RINT (|sij|) (2.18)

r′ij = h · s′ij (2.19)

where RINT (x) is the function that gives the nearest integer to x. In the
evaluation of inter-particle forces, this criterium corresponds to the minimum
image convention, according to which each particle interacts only with those
lying in a region of the same size and shape of the simulation box, centred
on that particle. This criterium is applicable only to systems with enough
short-ranged interaction potentials.
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2.5 Polymer model

The model system studied in this work is the so called soft bead-spring model.
It consists of Nc chains of M beads. Each bead (monomer) is the coarse-
grained representation of the repeated unit of the polymer, which is assumed
to be electrically neutral.
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Figure 2.2: Plot of the bond interaction potential in Lennard-Jones units. The
bond rigidity is fixed at kb = 300ε, while different equilibrium bond lengths are
studied.

The interaction between two bonded monomers along a chain, placed at
a distance l from each other, is approximated via a harmonic potential of the
form:

Ubond (l) = kb (l − lb)2 (2.20)

where lb is the equilibrium bond length and kb is the bond rigidity (fig. 2.2).
Breaking of bonds and formation of new ones are not allowed in this model.

All the other, non-bonded monomers interact in pairs via a truncated and
shifted Lennard-Jones potential (fig. 2.3):

ULJ (r) =


4ε
[(

σ
r

)12 −
(
σ
r

)6
]
− C for r ≤ rc

0 for r > rc

(2.21)

where r is the reciprocal distance, σ is the zero crossing point of the potential
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Figure 2.3: Plot of the Lennard-Jones potential determining the interaction
between pairs of non-bonded monomers. The units of length σ corresponds to the
zero crossing point. The potential has a minimum in r0 = 21/6σ and is truncated
and shifted to zero at rc = 27/6σ.

and

C = 4ε

[(
σ

rc

)12

−
(
σ

rc

)6
]

(2.22)

is the energy constant term used to shift to zero the potential at the cut-off
radius rc.

A negative well is found at r0 = 21/6σ, so that r0 will be often addressed
as the bead diameter or monomer diameter. The well has depth ε − C and
it is responsible of cohesion in the condensed phase. The Lennard-Jones
potential gives account for the Pauli repulsion between electron clouds at
short distances (r < r0), and for the attractive (van der Waals- or London-
like) contribution at long ranges (r > r0). The potential is truncated and
shifted to zero at rc = 27/6σ, a cut-off distance at which the non-shifted
potential would be about 3% of the absolute value of its minimum ε. This
allows saving computational time within the minimum image convention (see
section 2.4), while affecting weakly enough the thermodynamic properties.

In order to cover the range of both fully- and semi-flexible polymers, the
model includes also a bending angle interaction between pairs of chemical
bonds, through a potential of the form:

Ubending = kθ (1 + cos θb) (2.23)
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where kθ is the bending (or chain) stiffness and θb is the angle enclosed by
two subsequent bonds along the polymer chain (fig. 2.4). This potential has
a minimum in θb = 180°. This means that the two bonds tend to align, with
a strength proportional to bending stiffness.

2.6 Reduced units

For systems consisting of only one type of particle, it is convenient to use the
mass m of the particle as a fundamental unit, by setting m = 1. If particles
interact by simple pair potentials such as the Lennard-Jones (eq. (2.21)), this
approach can be extended further. The parameters of the potential, namely
ε and σ, can be used as fundamental units of energy and length, respectively.
From these definitions, units of other quantities such as pressure, time, mo-
mentum etc. follow directly. Some of the advantages of using reduced units
are:

• the possibility to work with numerical values of order unity, instead of
the very small values usually associated with the atomic or molecular
scale;

• the simplification of equations of motion, as the parameters defining
the model are absorbed into the units;
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Table 2.1: System of units used in MD simulations of Lennard-Jones particles.
The corresponding values of ε, σ and m of liquid argon [37] are also reported.

Physical quantity Unit Value for Ar

length σ 3.4 · 10−10m

energy ε 1.65 · 10−21 J

mass m 6.69 · 10−26Kg

time (σ2m/ε)
1/2

2.17 · 10−12 s

velocity (ε/m) 1.57 · 102m/s

force ε/σ 4.85 · 10−12N

pressure ε/σ3 4.20 · 107N/m2

temperature ε/kB 120K

• the scalable nature of the results, which can be fitted to a whole class
of systems described by the same model.

It is always possible to remap Lennard-Jones (LJ) units into real units.
A list of the fundamental physical quantities, along with the corresponding
LJ units are reported in table 2.1. The corresponding values for liquid Argon
[37] are also reported.

In the rest of this work, all physical quantities are reported in reduced
LJ units.

2.7 Simulation protocol

The simulation protocol used in this work is highly modular. Each part of
the protocol is here described separately.

2.7.1 Preparation

In molecular dynamics, it is necessary to design a starting configuration for
each sample of the system under study. The most suitable way to initialize
the sample is made up of the following steps:
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• The initial density ρi = N
V

is fixed and the simulation box is generated

with a cubic shape of volume V and side L = V
1
3 ;

• The first monomer of each chain is placed at randomly generated co-
ordinates inside the box;

• For each of the first monomers, the successive bonded monomer in
the chain is generated, at a random point included in a sphere of fixed
radius, with the constraint of a minimum distance between non-bonded
monomers is also imposed. The procedure is iterated for the successive
monomers of each chain until all the monomers are placed in the box.

The configuration obtained through these steps can still be unphysical, prin-
cipally due to overlapping of bonds. In order to overcome this problem, a
minimization of the total potential energy

U (r1 . . . rN) =
∑
i,j

ULJ(rij) +
∑
i,j

Ubond(rij) +
∑
i,j,k

Ubending(ri, rj, rk) (2.24)

is performed via the conjugate gradient method. The minimization, which
changes the coordinates of monomers forcing the system in the nearest local
minimum of the total potential energy, is performed first with a smaller bond
rigidity kb in eq. (2.20). The resultant increased looseness of bonds allows for
the disentanglement of possibly overlapped bonds. The minimization is then
repeated with the appropriate bond rigidity. The configuration obtained at
this point has the adequate physical features.

2.7.2 Equilibration

In order to remove the dependence of physical quantities on the choice of
the initial configuration, an equilibration is performed. The equilibration
of a system consists in making it evolve in time until it comes to a new
equilibrium state point, where all memory of the initial configuration is lost.

To this end, first each monomer is assigned an initial velocity, the Carte-
sian components of which are randomly extracted from a Gaussian distribu-
tion

f(vi) =

√
m

2πkBTI
exp

(
− mv2

i

2kBTI

)
(2.25)

where i = x, y, z, and TI is the chosen initial temperature. Then a molecular
dynamics simulation is run in the NPT ensemble, i.e. fixing also pressure.

The complete loss of memory of the initial configuration is assured only
if the longest relaxation time of the system is exceeded. This is the time τee
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(eq. (1.20)) of decorrelation of the end-to-end vector Ree(t), so that the cor-
responding autocorrelation function Cee(t) is monitored during equilibration.
An example of this monitoring is reported in appendix A, together with the
monitored thermodynamic quantities (volume, temperature and pressure).

2.7.3 Cooling

Starting from the configurations obtained via the equilibration procedure,
the samples are cooled down. Temperature is lowered from its initial value
TI used for the equilibration, at the finite quench rate |Ṫ | = 2 × 10−6 until
it reaches the final value TF = 10−3 (which is about 0.1K for Argon, see
table 2.1). Examples of the monitored temperature during cooling is reported
in appendix A.

As explained in section 1.1, the ability of a system to either nucleate
or keep amorphous depends on the cooling rate. The slower a system is
cooled down, the more variegated is the set of morphologies formed. The
chosen |Ṫ | is just a good compromise between the required computational
time for quenching and the achievable diversity in the response to cooling
(section 3.4). On the other hand, the choice of final temperature TF ' 0 is
made in order to remove the effects of thermal vibrations in the study of the
mechanical response of the solids (chapter 4).

2.7.4 Deformation

Simple shear deformation is applied to the solids at exactly T = 0, along
each of the three shear direction (xy, xz, yz) independently, via the athermal
quasi-static (AQS) protocol [24]. Starting with a cubic simulation box, i.e.
with sides set at Lx = Ly = Lz = L and tilt factors set at xy = xz = yz = 0
in eq. (2.16), in the AQS protocol the following two steps are iterated:

• The tilt factor corresponding to the chosen shear direction is incre-
mented of 0.001% · L. The coordinates of all the monomers are then
remapped in the new box. This corresponds to affine deformation, i.e.
the displacement of monomers matches the macroscopic deformation
of the box.

• Since the new positions of the monomers after remapping do not belong
to an equilibrium configuration, a minimization of the total potential
energy is performed, this time via the steepest descent algorithm. Con-
ceptually, this minimization corresponds to allowing the system to relax
to the nearest local minimum of the total potential energy, where the
resultant of the forces on each monomer is zero. This relaxation of
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monomers towards new positions corresponds to the non-affine contri-
bution to deformation.

The two steps of the AQS protocol are iterated until the chosen tilt factor
reaches the value of 15% · L.

In general, the mechanical behaviour of a system is determined by the
coupled effects of thermal vibrations around a local minimum of the energy
landscape, which is modified upon deformation, and of hopping between these
local minima, to which plastic events are associated. As the contribution
of thermal vibrations is trivial, it is convenient to remove it by taking the
zero temperature limit. Under Tg the structural relaxation time diverges, so
that simulating the time evolution of the system towards the nearest local
energy minimum would imply either un-physically fast dynamics or too much
long computational time. The minimization procedure allows to avoid this
problem by directly forcing the system to the configuration corresponding to
the nearest minimum of the energy landscape.

2.8 Data analysis

Analyses are carried out on the LAMMPS output files containing all the
information about the system configurations (positions and velocities of all
the monomers) at some chosen multiple of the simulation timestep. The
analysis program, which is written in C, takes in input these files together
with two additional text files: one containing the timestep ∆t, the multiple
of ∆t at which system configurations are stored, the number of types of
monomers, the number of chains Nc and the number of monomers per chain
M ; the other one containing information about which analysis function is
to be used and the corresponding parameters (e.g. number of configuration
files to be analysed, number of bins for histograms, etc.). For each physical
quantity of interest the corresponding analysis function can be activated.

A description of the relevant functions used in this work is reported in
section 3.2. The analysis program has been created and is constantly updated
by the research group lead by the Supervisor of this work.
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Chapter 3

Static properties in the liquid
and solid phases

3.1 Introduction

The polymer model adopted in this work is comparable to the Kremer-Grest
bead-spring model [38], which describes the polymer as a chain of M beads
connected byM+1 bonds, made semiflexible through the inclusion of bending
(chain) stiffness (eq. (2.23)). The presence, in this model, of a competition
between the two inherent length scales of intra-molecular (bond length lb) and
inter-molecular (monomer diameter r0) interactions (see section 2.5) has been
already pointed out in the literature [39]. This competition, which is due to
connectivity, profoundly affects the ability of a system to become solid upon
cooling, and of either keep completely amorphous or to partially crystallize in
the solid phase. Similar effects have been observed in simulations of cooled
down samples with fixed bond length but different bending stiffness [40],
another fundamental parameter determining the connectivity of the polymer.
The effects of both bond length and chain stiffness are the object of the
systematic study presented in this part of the work.

The effects of connectivity are investigated first in the liquid phase of the
model (section 3.3). Then, we cool down the liquids at a finite quench rate
in order to obtained solids at low temperature, namely T = 10−3. The same
characterization carried out for the liquids is repeated for the corresponding
solids (section 3.4). This allows for a better understanding of the structural
features of the solids, which is preliminary to the study of their mechanical
response to deformations.

33
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3.2 Quantities of interest

In this section the quantities of interest are defined, which describe the static
properties of polymer liquids and solids. To each of these quantities cor-
responds a function in the data analysis program used in this work (see
section 2.8). A brief description of how these functions are computed is also
given.

3.2.1 Radial pair distribution function g(r)

In a system of non interacting particles, the number of particles included
in a spherical shell of thickness dr, at a distance r from a reference one
is 4πρr2dr, where the number density of the system ρ is uniform. When
particles interact, in general the number density depends on the distance r,
so that it can be written in the following way:

ρ(r) = ρg(r) (3.1)

where ρ is the average density and

g(r) =
1

N(N − 1)

N∑
i

N−1∑
j 6=i

δ(|rij| − r) (3.2)

is the radial pair distribution function for a system of N particles. The
factor N(N − 1) is the total number of pairs and |rij| = |ri − rj| is the
distance between the i-th and j-th particles. If a reference particle is placed
in the origin O, then 4πρg(r)r2dr is the probability density of finding another
particle at a distance between r and r + dr from the reference one (see
fig. 3.1). The g(r) function is thus a basic quantity in the description of
system structure.

The algorithm used to compute g(r) calculates, for a number of different
configurations of the system, with equal temperature and pressure, the dis-
tances between all the particle pairs and bins them into a histogram I [g(r)]
of Nb bins of width ∆r; g(r) is then extrapolated from

I [g(r)] = 4πρg(r)r2∆r (3.3)

Since a cubic simulation box of side L, with periodic boundary conditions
is used in the study of static properties, g(r) is computed to a maximum
distance Nb∆r = L

2
, to avoid double counting. This leads to the final form

g(r) = I [g(r)]
2N3

b

πN

(
∆r

r

)2

(3.4)
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Figure 3.1: Bidimensional representation of a spherical shell of inner radius r and
thickness dr, taken from the position of a reference particle (the central in brown).
The particles (in blue) in this shell of neighbours are counted for computation of
the radial pair distribution function g(r).

This quantity is eventually averaged on the configurations sampled during
the time evolution of the system, in order to reproduce a time average.

Since relative maxima of this function correspond to larger numbers of
particles, the positions at which they begin and end are identified as the
boundaries of coordination shells. At large distances these spatial correla-
tions are lost and any liquid appears isotropic with uniform density ρ, so that
g(r →∞) −→ 1.

3.2.2 Angular distribution function ADF (∆r, cosφ)

The angular equivalent of the radial pair distribution function g(r) is the
angular distribution function ADF (∆r, cosφ). This function gives the prob-
ability density of finding a triplet of monomers, denoted by indexes i, j and l,
to enclose an angle included in [cosφ, cosφ+ ∆(cosφ)], with the constraint
that the distances of the j-th and l-th monomers from the i-th one are in-
cluded in a radial shell ∆r = [rmin, rmax], namely

(cosφ)ilj =
rli · rji
|rli| |rji|

|rli| , |rji| ∈ ∆r (3.5)

where rli = rl − ri (fig. 3.2).
The distribution is obtained by binning the values of cosφ for all the ilj

triplets of given configuration, in a histogram I [∆r, cosφ] of Nb bins of width
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Figure 3.2: Schematic illustration of the angle involved in the computation of
the anglular distribution function. First the central i-th monomer (in red) and the
boundaries ∆r = [rmin, rmax] (dashed lines) of the target shell are fixed. For
every pair of monomers belonging to this shell (for instance the l-th and j-th in
green), the angle φ formed by this pair and the central monomer is then computed.

∆(cosφ) and normalizing by the total number of triplets found. Average on
all the analysed configurations is carried out.

The interval ∆r can be conveniently chosen as that corresponding to the
first rI or second rII coordination shell. These can be extrapolated from
the g(r) function, taking the intervals of r in which respectively the first
and the second maximum lies. In this way a detailed description of the local
disposition of first and second neighbours is obtained. We stop at the analysis
of the shell of second neighbours because for coordination shells of higher
order, spatial correlations rapidly disappear, surviving only at increasingly
small angles due to overlapping of terminal monomers of the triplets.

3.2.3 Bond angle distribution function P (cos θb)

The geometry of chains is also an important feature of the model, and it is
directly affected by the control parameters lb and kθ. In order to characterize
it, the distribution of angles θb enclosed by two bonds, i.e. by triplets of
bonded monomers subsequent along the chain, is computed.

The distribution is build up by an algorithm which, for every triplet of
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bonded monomers, denoted by indexes i − 1, i and i + 1, calculates the
quantity

(cos θb)i = − bi · bi+1

|bi| |bi+1|
(3.6)

where bi is the bond vector bi = ri − ri−1. For each of the analysed
configurations, the obtained values are binned in a histogram I [cos θb] of
Nb bins of width ∆(cos θb). The probability density of finding a triplet of
bonded monomers to form an angle of cosine included between cos θb and
(cos θb + ∆(cos θb)) is then obtained via normalization of I [cos θb] by the to-
tal number of bonded triplets

P (cos θb) =
I [cos θb]

Nc (M − 2)
(3.7)

where M and Nc are respectively the number of monomers in a polymer
chain, and the total number of chains. Average on the configurations is then
carried out.

3.2.4 Orientational order parameters

A useful description of local and global order in amorphous systems is pro-
vided by the orientational order parameters defined in [41] in the following
way. Consider the vector rij joining the i-th monomer to the j-th one chosen
among its nearest neighbours. To this vector, a polar and an azimuthal an-
gle, namely θ(rij) and φ(rij), are associated. The set of spherical harmonics
Ylm [θ(rij), φ(rij)] is then assigned to rij, and it can be conveniently aver-
aged either over the set of nearest neighbour distances from the fixed i-th
monomer, in order to obtain the local quantity

Q
local

lm (i) =
1

nb(i)

nb(i)∑
j=1

Ylm [θ(rij), φ(rij)] (3.8)

where nb(i) is the number of nearest neighbours of the i-th monomer. Or
it can be averaged also on all the i-th central monomers giving the global
quantity

Q
global

lm (i) =
1

Nb

Nb∑
i=1

Q
local

lm (i) (3.9)

where Nb is the total number of vectors like rij in the system. Starting from
these two objects, one can build up the rotationally invariant combinations

Qx
l =

[
4π

2l + 1

l∑
m=−l

∣∣Qx

lm(i)
∣∣2] (3.10)
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where x stands for either ’local’ or ’global’.

Table 3.1: Orientational order parameters for random, fcc, hcp and icosahedral
neighbour configurations, as computed in [42].

Configuration Qglobal
4 Qglobal

6 Qlocal
4 Qlocal

6

Random 0.010 0.010 0.22 0.22
Fcc 0.191 0.574 0.191 0.574
Hcp 0.097 0.485 0.097 0.485
Icos 0.00 0.663 0.00 0.663

These invariants are also direction-independent for even values of l, as even-l
spherical harmonics are invariant under inversion. The orientational order
parameters for random configurations of nearest neighbours in polymer sys-
tems have been recently calculated in [42], together with those corresponding
to ideal fcc, hcp and icosahedral atomic clusters. The results are reported in
table 3.1.

3.3 The liquid phase

The analysis of static properties of the model in its liquid phase is carried
out on systems prepared and equilibrated in the way depicted in section 2.7.
The separate effects of bond length and chain stiffness on these properties
are studied. First kθ is set to zero in eq. (2.23) and simulations with sys-
tematically changed values of lb in eq. (2.20) are performed. Analyses are
carried out and, in light of the results, the most convenient value of lb is fixed
for simulations with systematic variation of kθ > 0.

Production simulations are performed in the NPT ensemble at zero pres-
sure (details in chapter 2), while the ranges of temperature and density inves-
tigated, namely 1.2 ≤ T ≤ 1.6 and 0.90 ≤ ρ ≤ 1.00, are chosen in such a way
to assure the state of liquid during equilibration. In order to understand the
structure of these liquids, information extracted from the functions described
in section 3.2 are combined.

3.3.1 Bond length

In order to investigate the influence of bond length lb on the static properties
of the liquids, analyses are carried out in a systematic manner by simulating
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8 systems, each with a different value of lb: 0.91, 0.94, 0.97, 1.00, 1.03, 1.06,
1.09, 1.12, the last being the equilibrium separation of non bonded monomers
r0 = 1.12 (see (2.21)). These systems are equal in all the other features, as
they all consist of Nc = 160 chains of M = 25 monomers, with an initial
density ρi = 1.00 and temperature T = 1.2.
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Figure 3.3: Radial distribution function of monomer pairs g(r) at temperature
T = 1.2. Systems with different bond lengths lb are initialised with the same
density ρi = 1.00 which for each sample turns to a different value ρ during equili-
bration. The peaks of this distribution correspond to coordination shells. In the
inset only the first shell is displayed: notice the two distinct peaks resolved for
small values of lb, corresponding to contributions at lb and r0. The g(r) tends to 1
for large r, where we find an ideal gas-like distribution with homogeneous density
ρ.

In order to characterize the structure of our systems in the liquid phase,
the average spatial disposition of first and second neighbours is studied.

As it can be seen from the g(r), shown in fig. 3.3, for all systems the
first coordination shell lies in rI = [0.7, 1.6]. To this shell belong the two
monomers bonded to the central one and other non-bonded monomers. In
the inset these two contributions are clearly distinguishable for systems with
small lb, in the form of two distinct subsequent peaks of g(r) centred respec-
tively at lb and r0. As the value of lb comes closer to r0, the resolution of
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these two peaks weakens until they appear joint in a single one. Among the
non bonded first neighbours are found also monomers belonging to the same
chain of the central one, and in particular those which are two bonds distant
from it along the chain. This can be understood from the distribution func-
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Figure 3.4: Distribution function of angles formed by triplets of subsequent
bonded monomers. Most triplets are folded in such a way to keep terminal
monomers at the LJ equilibrium distance (θ1

b = 59 ÷ 75°). Other (less) favoured
configurations are: stretched triplet (θ2

b ≈ 180°); terminal monomer being the cen-
tral monomer of the next θ1

b triplet (θ3
b ≈ π − θ1

b ). Notice that as the gap |lb − r0|
increases, P (cos θb) broadens and flattens out, due to increasing disorder.

tion of bond angles P (cos θb), shown in fig. 3.4. Its absolute maxima occur at
bond angles θ1

b such that the separation between two terminal monomers of
a triplet is around r0, a distance included in the first coordination shell (for
instance when lb = 0.91 one has θ1

b = 75.52°, so that, by Carnot theorem, the
separation is lb ·

√
2 · (1− cos θ1

b ) ' 1.115). Values of θ1
b range from ≈ 59° for

lb = 1.12, to ≈ 75° for lb = 0.91. The other maxima of P (cos θb) are found
at θ2

b ≈ 180° (two parallel subsequent bonds) and at θ3
b ≈ π − θ1

b , which
corresponds to the situation in which a terminal monomer of a triplet is the
central one of a next triplet forming in turn the favoured angle θ1

b .
For all systems there is a cut-off in the bond angle distribution for small

angles, due to the fact that terminal monomers of a triplet cannot interpen-
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etrate. This holds also for the other angular distributions discussed in the
following.
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Figure 3.5: Distribution function of angles formed by triplets of first neighbour
monomers. The rI = [0.7, 1.6] range of the first coordination shell is extrapolated
from g(r). The most frequent angles are found in the range φ = 46 ÷ 53°, then
φ = 96÷ 127° and φ ≈ 180° for systems with large lb. As in P (cos θb), which is a
subset of this distribution, also here the greater lb−r0 is, the flatter are the curves.

In order to complete the description of the first coordination shell, the
angular distribution of first neighbour triplets ADF (rI , cosφ) is considered.
Maxima of this function are found, as shown in fig. 3.5, in the ranges φ =
46÷53° (strong peaks), φ = 96÷127° (slighter peaks) and at φ ≈ 180°. There
is no intuitive reason for the positions of these maxima, as they originate from
rather collective aspects missing strong constraints such as that of the bond.

The second coordination shell lies in the range rII = [1.6, 2.5]. The
related peak of g(r) is much broader than the first shell one, as positions of
monomers in the second shell are much less correlated. Notice that for the
same reason, the angular distribution of these monomers ADF (rII , cosφ),
as shown in fig. 3.6, flattens out rather quickly for values of φ just greater
than 90°, whereas correlations between terminal monomers in triplets forming
smaller angles are still present, resulting in two peaks centred at φ ≈ 60° and
φ ≈ 30°.
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Figure 3.6: Angular distribution function of second neighbours. The second
coordination shell is extrapolated from g(r) to be rII = [1.6, 2.5]. Spatial correla-
tions survive only for triplets with terminal atoms close enough. As a consequence,
ADF (rII , cosφ) is flat in the whole φ range, except for small angles. The favoured
angles are around 30° and secondly around 60°. The disordering (flattening) ef-
fect of incommensurability between the principal scale lengths lb and r0 is again
confirmed.

After that corresponding to the second coordination shell, the pair distri-
bution function shows no other significant peak, and stabilizes on g(r) = 1,
which means that at these distances, pairs are distributed as in an ideal gas,
with a homogeneous density equal to the overall density of the liquid ρ. This
absence of long range order is typical of polymeric liquids.

It is to remark that even in the liquid phase, the competition between
the two length scales lb and r0 plays a role in the degree of structural order:
in all the distribution functions discussed here, as the gap |lb− r0| increases,
widths of maxima increase with a consequent flattening, which is evidence of
a decreasing order.
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3.3.2 Chain stiffness

The effect of chain stiffness on the static properties is studied by simulating 8
systems each with a different value of kθ: 1.0, 2.5, 4.0, 5.5, 7.0, 8.5, 10.0, and
12.5. Bond length is fixed at the value lb = r0 = 1.12. This choice is made
in order to isolate the effect of chain stiffness from that of the competition
between length scales.

As explained in the next section, systems with kθ > 0 undergo a variety
of different solidification processes at different temperatures. In order to
avoid solidification during the equilibration phase, initial temperatures and
densities are selected in the following way:

T = 1.2, ρi = 1.00 for kθ < 7;

T = 1.4, ρi = 0.90 for 7 ≤ kθ < 10;

T = 1.6, ρi = 0.80 for kθ ≥ 10;
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Figure 3.7: Radial pair distribution function g(r) of liquids with bond length
lb = r0 = 1.12 and different chain stiffness. All the sample are initialised with a
certain density ρi, but stabilize on different values ρ during equilibration, reported
in the legend. The peaks of g(r), corresponding to second (see inset) and third
coordination shells, are shifted to greater distances r for increasing values of kθ.
No effect on the global structure is observed.
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As in the case of bond length, chain stiffness does not affect the global
structure of the liquids, which appears disordered. This can be seen from
fig. 3.7, in which the g(r) function is shown. After a distance of about r = 4,
the distribution flattens out on that of a uniform system of equal density ρ,
and significant degree of order is present only at a very local scale, i.e. until
the second coordination shell (range r = 1.6÷2.5). On this scale the effects of
stiffness are small but still present: for increasing kθ the peaks corresponding
to second and third neighbours are shifted to greater r. This can be ascribed
to the fact that if the stiffer chains are stretched, it is more ”difficult” for
monomers to pack densely.
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Figure 3.8: Semi-logarithmic plot of the distribution of bond angles. A
Boltzmann-like behaviour is evident for stiffer systems (linear curves), as expected
being the stiffness potential linear in cos θb. While for nearly fully flexible chains
the distribution is flatter with peaks on the typical angles θ1

b ≈ 59°, θ2
b ≈ 180°,

θ3
b ≈ π − θ1

b , stiff chains consist basically of aligned pairs of bonds.

The stretching behaviour of stiffer chains, demonstrated by increasing
Kuhn lengths, reported later in fig. 3.21, is confirmed by analysis of the
distribution of angles between adjacent bonds (i.e. angles formed by triplets
of subsequent bonded monomers), which is shown in fig. 3.8. With increasing
kθ the folded configurations described in section 3.3.1 progressively disappear
and P (cos θb) becomes exponential, with maximum in θb = 180°, which means
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that the two subsequent bonds align. This exponential behaviour of the stiffer
chains corresponds to a Boltzmann probability distribution, as the stiffness
potential is linear in cos θb (see 2.23).

-1 -0,75 -0,5 -0,25 0 0,25 0,5 0,75 1

cosφ

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

A
D

F
(r

I ,
 c

o
sφ

)

0.0    1.2    0.678
1.0    1.2    0.671
2.5    1.2    0.668
4.0    1.2    0.668
5.5    1.2    0.670
7.0    1.4    0.600
8.5    1.4    0.604
10.0  1.6    0.528
12.5  1.6    0.532

k
θ T ρ

l
b
 = 1.12

Figure 3.9: Angular distribution function of first neighbour triplets. Systems
of stiffer chains display flatter distributions for little and intermediate angles, in
favour of a more pronounced peak at φ = 180°. The favoured values of φ are
50÷ 54° and ≈ 110°.

In general the distribution of angles enclosed by triplets of first neigh-
bours, as reported in fig. 3.9, shows that the favoured angles are little influ-
enced by chain stiffness: the first peak is found in the range 50 ÷ 54° while
the second is around 110° for all systems. The peak at φ = 180° is more
pronounced for stiffer chains, resulting in a flattening of the distribution for
intermediate angles.

Effects of stiffness eventually disappear in the angular distribution of sec-
ond neighbours, as one can see in fig. 3.10. For all the values of stiffness,
the favoured angles are approximately 30° (strongest peak) and 60° (weak-
est peak). The different distribution widths are ascribed to different equili-
bration temperatures: typically to higher temperatures correspond broader
distributions, due to the disordering effect of thermal motion.
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Figure 3.10: Angular distribution function of second neighbours. No effect of
chain stiffness is observed, and the favoured angles continue to be φ ≈ 30° and φ ≈
60° as in the fully flexible case. Distributions are broader for higher equilibration
temperatures, as can be expected from the disordering due to thermal motion.

3.4 The solid phase

In order to obtain solids from the liquids studied in the last section, all
the systems previously described are progressively cooled down from the
corresponding initial temperatures, at the constant quench rate |Ṫ | = 2 ×
10−6, until they reach a temperature very close to zero (elastic properties are
studied at exactly T = 0), namely T = 10−3. The reason of this choice of
|Ṫ | is that it is slow enough to provide a significant variety of morphologies
formed upon solidification, at an acceptable computational cost.

During the cooling process, described in section 2.7, the response in static
properties is monitored through the analysis of the temperature dependence
of density ρ(T ) and of the global orientational order parameter Qglobal

6 (T )
described in section 3.2.4.

Once the final temperature is reached, the other order parameters and all
the distribution functions already studied in the liquid phase (see section 3.3
for comparison) are measured.
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3.4.1 Bond length
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Figure 3.11: Density (upper panel) and global order parameter (lower panel) of
systems with different bond lengths lb, as a function of temperature T . During
the cooling process, T is brought to zero from an initial value of 1.2, with quench
rate |Ṫ | = 2 × 10−6. At high temperatures all systems densify with almost the
same thermal expansion coefficient, and no change in global order is observed.
The response to cooling splits the curves into two families: systems with lb ≤ 1.03
vitrify at a certain value of T = Tg, around which density begins to increase more
slowly with decreasing temperature, while global order keeps unchanged. Systems
with lb ≥ 1.06 exhibit a sharp jump in density at T = Tc similar to that of a first
order transition to the solid phase, and a jump is simultaneously observed in the
global order parameter.

As in the liquid phase, the effect of bond length is studied by setting kθ
to zero and varying systematically lb in the bond potential eq. (2.20), from
0.91 to r0 = 1.12. The plots reported display curves obtained from average
on 16 simulation runs for each value of lb.

In fig. 3.11 density and the global order parameter Qglobal
6 (T ) monitored

during the cooling process are reported. At high temperatures, all systems
show a linear increase of density as T decreases, which means that they
densify at constant thermal expansion coefficient. At lower temperatures two
different solidification behaviours are observed. For systems with equilibrium
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bond length lb ≤ 1.03 a change of slope (thermal expansion coefficient) occurs
at temperature T = Tg, as the liquids undergo glass transition.

For systems with lb ≥ 1.06, the different increases in density at high and
low temperatures are separated by a sharp jump in density, occurring at
temperature T = Tc. This jump is analogous to that of a first order phase
transition, and it is therefore identified as the onset of crystallization. In the
upper panel of fig. 3.11 the density jump appears less sharp because of the
averaging process, but it is clearly visible in the behaviour of single runs,
shown for a few cases in fig. 3.12.
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Figure 3.12: Density around Tc in some simulation runs of systems forming
polymer crystals. Notice the sharp first order transition-like jumps before and
after which density increase linearly with temperature.

In order to better characterize the two different solidification processes,
the global orientational order parameter Qglobal

6 (T ) is measured as function
of temperature (lower panel of fig. 3.11). Notice that glass forming samples,
for which the change in density upon cooling is smooth and concave-down,
show no significant change in the order parameter. This is given account for
by the fact that systems going through glass transition tend to preserve their
disordered liquid phase structure.

On the other hand, systems with lb ≥ 1.06 show, in most simulation runs,
a sharp increase of Qglobal

6 (T ) at the very temperatures at which the jump in
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density occurs, confirming the onset of a transition to a more ordered phase
with respect to the liquid phase, i.e. nucleation. The nucleation process
appears to be interrupted by glass transition, as the final values of Qglobal

6 (T )
are lower than the typical values obtained for ideal crystalline structures
(table 3.1), and also span a rather wide range (in fig. 3.11 only the averages
on the runs are reported). For this reason we expect the formed solids to
be partial or semi-crystals, and they will be referred to in the following as
polymer crystals or simply crystals. The differences in structure between

(a) glass (b) semi-crystal

Figure 3.13: Visualizations of the simulation box for a completely amorphous
glass (a) and a partially crystallized glass (b). Monomers are represented in green,
bonds in blue. In the partial crystal, notice the ordered alignment of monomers in
some regions of space.

completely amorphous glasses and polymer crystals are easily understood
through visualisations, reported in fig. 3.13, where the green spheres represent
monomers and the blue links the bonds. While the bonds are randomly
oriented in both the structures, in partially crystallized samples there are
some regions of space where monomers tend to assume an ordered spatial
disposition, which does not occur in pure glasses.

Solidification temperatures were extrapolated for every simulation run in
two different ways for glass transition and polymeric crystallization. In the
former case, Tg was determined as the temperature of intersection of linear
fits to the high-T and low-T regimes of ρ(T ), whereas in the latter Tc was
identified as the temperature of occurrence of the sharp density jumps.

The resulting solidification temperatures Ts are plotted in fig. 3.14. Both
glass transition and crystallization temperatures increase monotonically with
bond length, with the effective slope of Tc being more than twice that of Tg.
When the gap between the two scale lengths |lb − r0| of the system is small,
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Figure 3.14: The dependence of solidification temperatures on bond length lb
is shown, at fixed quench rate |Ṫ | = 2 × 10−6. Black dots correspond to glass
transition temperatures, whereas red dots indicate polymeric crystallization tem-
peratures.

crystallization takes place at higher temperatures, because the decrease of
geometrical frustration results in deeper crystal-like minima of the potential
energy landscape (see fig. 1.8), so that higher thermal energies are already
enough for the system to be confined in one of these minima. With increasing
gap, frustration increases and the available crystal-like minima are shallower,
allowing only less thermally energetic monomers to stabilize in. Under some
threshold value of bond length, included in 1.03 ≤ lb ≤ 1.06, frustration
is so strong and thus crystal-like minima are so shallow, that the system
under cooling continues sampling the energy landscape (PEL) without being
confined, and thus entering the supercooled regime. When thermal energy
is so low that the kinetics are arrested, the system finds itself in a certain
point around a local minimum of the PEL, and the glassy state is reached.
The temperature Tg at which this occurs increases monotonically with bond
length under the crystallization threshold.

The different structures formed upon cooling are described in a more
detailed way through the analysis of the monomer distribution functions at
T = 0, namely g(r), P (cos θb), ADF (rI , cosφ) and ADF (rII , cosφ), and of
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all the local and global order parameters. First, in fig. 3.15 the radial pair
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Figure 3.15: Radial pair distribution function g(r) of solids with different bond
lengths lb. Two families of curves are clearly distinguishable: glass formers have
flatter distributions which smoothen rapidly, whereas in polymer crystals strong
peaks are present and modulation goes on for large values of r, exhibiting long
range order. In the inset the first neighbour peak is shown for both the families.
The densities ρ in the legend are those reached at the end of the cooling process.

distribution function g(r) is shown. In this plot two families of curves are
clearly identified. The ones which are flatter in the long range correspond
to glasses (0.91 ≤ lb ≤ 1.03). A strong increase can be noticed in the short
range order of these structures, with respect to the liquids (see fig. 3.3).
Consider for instance the peaks corresponding to the first coordination shells
rI = [0.8, 1.4], highlighted in the inset. All the distributions are narrower
with respect to their liquid equivalent. Those corresponding to glasses, except
the lb = 1.03 one, all go to zero in the range between lb and r0, while they
kept non-null in the liquids. In the lb = 1.03 case, the short range ordering
effect is that of resolving the two lb and r0 peaks, which appeared joint in
the g(r) of the liquids.

Another signal of local ordering in glasses is encountered in the second
coordination shell peak (rII = [1.4, 2.3]), which is now resolved into the three
different smaller peaks typical of polymer systems. An increase in the long
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range order, in comparison to the liquid phase, is also present even if much
weaker, as some slight peaks begin to pop up for values of r ≥ 2, after which
g(r) at finite T no more shows modulation. Long range order is affected
by lb in the sense that from the second coordination shell on, g(r) exhibits
broader peaks the smaller is lb. The disordering effect of the competition
between bond length and LJ equilibrium separation thus continues to exist
even among glasses.

The structure of polymeric crystals (lb ≥ 1.06) is quite different. Peaks in
solid phase g(r) are much more frequent and narrow, consistently with values
reached by the Qglobal

6 order parameter, and they survive for large distances
(r ≈ 4). Except for the peak relative to the first coordination shell, which in
the lb = 1.09 case is very narrow because the lb and r0 contributions are not
resolved, all the peaks are as narrower as closer lb is to r0.
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Figure 3.16: Distribution of angles formed by triplets of subsequent bonded
monomers. The family of sharper curves (lb ≥ 1.06) correspond to polymeric
crystals. The favoured angles of 90° and 145° appear in addiction to those already
present in the liquids. These angles are associated with the more ordered monomer
configuration settling upon crystallization. Flatter curves (lb ≤ 1.03) belong to
glasses. Favoured angles are the same as in the liquid phase, but peaks are narrower
due to removal of thermal vibrations.

A narrowing of the peaks is observed also in the angular distribution
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functions. The distribution P (cos θb) of angles between pairs of subsequent
bonds is shown in fig. 3.16. As far as glasses are concerned, it can be seen
that the favoured angles are the same as in the finite T regime. On the other
hand, in the case of polymer crystals two more peaks appear at θb ≈ 90° and
at θb ≈ 145°. It can be guessed that these two angles are functional to the
establishment of a more ordered structure. This is confirmed by analysis of
the angular distributions of first neighbours .

ADF (rI , cosφ), shown in fig. 3.17, for polymeric crystals is almost equiv-
alent to P (cos θb). This means that the necessity of monomers to rearrange in
an ordered structure is dominant so that triplets tend to form specific angles
irrespective of their bonded or non bonded nature. This behaviour is not
encountered in glasses, where the angular distribution of bonded monomers
is quite different from that of the other first neighbours: while there is no
change with respect to the liquids for large angles, a remarkable effect takes
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Figure 3.17: Angular distribution function of first neighbour triplets (rI =
[0.8, 1.4] as extrapolated from g(r)). For crystals (lb ≥ 1.06) the favoured an-
gles are the same as in the bond angle distribution, since both bonded and non
bonded near monomers occupy the reciprocal positions which are required by crys-
talline structure. Glasses (lb ≤ 1.03) exhibit almost the same distribution as in the
liquids, except that the peak for large angles is shifted (φ = 36 ÷ 72°) and splits
in three with resolution proportional to lb − r0 difference.
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place at small angles. A peak in the range φ = 36 ÷ 72° is found for all
lb ≤ 1.03, which is resolved into three different contributions for lb = 0.91.
This resolution decreases with increasing lb until it is no more visible for
lb = 1.03.
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Figure 3.18: Angular distribution of the second coordination shell for glasses (up-
per panel) and polymeric crystals (lower panel), at rII = [1.4, 2.3]. Glasses exhibit
a (weak) increase in the long-range order, as ADF (rII , cosφ) shows modulation
beyond φ = 90°. In polymeric crystals this modulation is remarkably strong, since
long range order is still significant, despite being weaker than in ideal crystals.

The angular distribution of second neighbours ADF (rII , cosφ), where
rII = [1.4, 2.3], is shown in fig. 3.18. In glasses (upper panel) a slight
increase in long-range order appears with respect to the liquids: modulation
of ADF (rII , cosφ) holds on for the whole range of angles φ, with peaks of
decreasing width for increasing |lb−r0| gap. The increase in long-range order
is much stronger in crystals (lower panel), where ADF (rII , cosφ) is strongly
modulated.
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Figure 3.19: Correlations between the local and global expressions of the ori-
entational order parameters Q4 and Q6, for systems of different bond length lb.
The red dashed lines correspond to the random configuration values Qglobal6,random =

Qglobal4,random ' 0.01 and Qlocal6,random = Qlocal4,random ' 0.22. The black dashed line in-

dicates the ideal structure
Qglobal

l
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= 1 limit. In the insets, dots corresponding to

glassy samples are reported to show the insensitivity of Qlocal4 to bond length, in

contrast with the increase of Qlocal6 with lb, and the correlation between Qglobal6

and Qlocal6 .
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Additional information about local and global order of the structures
formed upon cooling is provided by the orientational order parameters and
their correlations (fig. 3.19). Glasses exhibit values of both Qglobal

6 and Qlocal
6

near to those corresponding to random configuration, with a smooth increase
as bond length lb gets closer to r0. The two order parameters appear thus to
be correlated. In polymeric crystals the two parameters span wider ranges,
with Qlocal

6 closer to that of random configuration than of any ideal structure.
Correlation between the two parameters is found also in crystals, with a ten-

dency to the ideal structure ratio
Qglobal

6

Qlocal
6

= 1 which increases with decreasing

|lb−r0|. Since Qlocal
6 of crystals is spread over a not so wide range around the

glass-like value, while their Qglobal
6 is usually much bigger, one can argue that

for l = 6, the global order achieved in polymeric crystals just comes from
the repetition, through all the sample of the same, however disordered, local
structure. The Q4 parameters are insensitive to bond length in glasses, with
Qlocal

4 assuming a value distant form that of random configuration, which
confirms the observation that some sort of local order is present. As far as

crystals are concerned, the same general trend
Qglobal

4

Qlocal
4

→ 1 with decreasing

scale length discrepancy is found. Notice that Qlocal
4 in crystals is far from

the random configuration value.

3.4.2 Chain stiffness

In this section the effect of chain stiffness on the static properties of polymers
in the solid phase. Bond length is fixed at lb = r0 = 1.12 while kθ is varied
systematically from 0.0 to 12.5. Upon solidification, different morphologies
arise in polymers with diverse stiffness. Before the analysis of the significant
static quantities, a first guess at what happens upon cooling comes from
the monitoring of response in density ρ(T ) and global orientational order
parameter Qglobal

6 (T ). The quench rate is the same for all systems, namely
|Ṫ | = 2 × 10−6, while initial values of density and temperature can vary as
specified in section 3.3.2.

The density and the global order parameter are shown in fig. 3.20 as
function of decreasing temperature. At high temperature all systems densify
at a constant thermal expansion coefficient. As temperature is decreased,
it can be seen that chain stiffness begins to play a significant role in the
solidification process. The fully flexible system goes through crystallization
in most of the simulation runs, with the sharp density jumps described in
section 3.4.1. For kθ = 1.0 the competition between glass transition and
crystallization is clearly visible: around Tc of the fully flexible polymer, the
density shows a slight concave up change in slope; nonetheless this is almost
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Figure 3.20: Response of samples with different chain stiffness to cooling. In
the upper panel the increase of density with decreasing temperature is shown, and
for each curve the corresponding behaviour of the order parameter Qglobal6 (T ) is
shown in the lower panel. Three different solidification behaviours are visible: stiff
polymers (kθ ≥ 7.0) undergo a nematic ordering transition at high temperatures,
resulting in a sharp jump in density and a slight increase in global order; polymers
with intermediate stiffness (1.0 ≤ kθ ≤ 5.5) undergo glass transition (change in
density slope and no change in global order); fully flexible samples (kθ = 0.0)
partially crystallize (sharp jump both in density and in the order parameter).

immediately hindered by the onset of glass transition, which turns the den-
sity curve concave down until it recovers the linear increase with decreasing
temperature, now with the slope of a glass. This phenomenon gives rise to an
intermediate structure described further below. For values of chain stiffness
2.5 ≤ kθ ≤ 5.5, the ordering process is hindered before nucleation can start,
and glass transition takes place, with a concave down change in the density
slope. For stiffer systems sharp jumps in densities are found again. Since it
can be said from the previous results, that chain stiffness prevents crystal-
lization, and from the fact that these jumps occur at high temperatures, it
can be guessed that for systems with kθ ≥ 7.0 the observed transition is of
another different kind.

This can be understood also from the monitoring of the global orien-
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Figure 3.21: Correlations between Kuhn length and chain stiffness are shown
for temperatures above solidification Ts (black dots), and for the zero temperature
regime (red dots). Kuhn length increases with kθ, as monomers belonging to stiffer
chains tend to align.

tational order parameter Qglobal
6 (T ) during cooling. Proper polymeric crys-

tallization occurs only for the fully flexible system, and rarely also for the
kθ = 1.0 and kθ = 8.5 samples, when Qglobal

6 (T ) exhibits a sharp jump at a
certain temperature, reaching a value greater than 0.1. In systems of stiffness
kθ = 1.0 and kθ = 12.5 jumps also occur, but with much smaller final values.
In all the other cases, including glasses with 2.5 ≤ kθ ≤ 5.5 and systems with
7.0 ≤ kθ ≤ 10.0 , this order parameter shows no significant changes from
its liquid phase value. That observed in high stiffness samples is identified
as a transition to a nematic glass state, i.e. a state in which the chains are
stretched and tend to align along the same direction.

Proof for this interpretation is provided by analysis of the Kuhn lengths lk
(fig. 3.21). The different structures of polymer crystals, normal glasses and
nematic glasses are reproduced in the visualizations reported in fig. 3.22.
The spatial disposition of monomers and chains are represented respectively
in the first and in the second row of the figure. The structure of a partial
crystal can be recognized by the alignment of the monomers (a) in a certain
region of the simulation box, while disorder is present at the chain scale (d),
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(a) crystal (b) glass (c) nematic glass

(d) crystal (e) glass (f) nematic glass

Figure 3.22: Visualizations of the simulation box for a polymer crystal (a, d),
a normal glass (b, e) and a nematic glass (c, f). In the first row, monomers are
shown in red and bonds in yellow, while in the second row the disposition of chains
is illustrated.

except for the recurrence of the ≈ 60° bond angle. In the typical amorphous
glass (b-e), disorder is present both at the monomer and at the chain scale.
The situation is again different for nematic glasses, in which the chains are
highly stretched (f) and tend to align, while the disposition of monomers (c)
is as disordered as in the amorphous glasses.

Solidification temperatures are reported in fig. 3.23 as function of chain
stiffness. Restricting attention to glasses, the transition temperature Tg is
observed to increase linearly with kθ. Notice that differently from the case
of varying bond length, in which a geometrical factor in the potential is
changed with frustration effects, here it is the interaction constant (kθ) to
change, so that the single monomer potential well deepens with increasing
chain stiffness. As a result, even if the local disposition of monomers is
more disordered for stiffer chains (as discussed in the following), so that
total potential energy minima are shallower, nonetheless single monomers are
increasingly more confined to their positions. This means that the mobility
of single monomers is reduced so that glass transition takes place more easily,



60 Static properties in the liquid and solid phases

-2 0 2 4 6 8 10 12 14
Chain stiffness k

θ

0,4

0,6

0,8

1

1,2

1,4

1,6

T
s

Polymer crystal

Glasses

Nematic glasses

l
b
 = 1.12

Figure 3.23: Solidification temperatures as function of chain stiffness. The black
dot corresponds to the polymer crystallization temperature of the fully flexible
sample, whereas red and blue dots represent pure and nematic glass transition
respectively.

i.e. at higher temperatures.
The family of nematic glass transition temperatures is sharply separated

from the others, but it has to be reminded that in systems with 7.0 ≤ kθ ≤ 8.5
and kθ ≥ 10.0, cooling starts from different initial temperatures, specified
at the beginning of section 3.3.2. However it is evident that for nematic
glasses, the transition temperature has a more complex dependence upon
chain stiffness, even though they still are in an increasing relation, within
error. These results are in agreement with the observations reported in [40].

The static properties are now considered.
First, g(r) is reported in fig. 3.24. For all systems of non-zero stiffness,

the radial distribution function is that of a glass (upper panel), with no
remarkable differences. A longer range of more pronounced modulation with
respect to the liquids, and the splitting of the second coordination shell peak
into three contributions are again found, as in the study of the effects of bond
length.

The ranges of the first and second coordination shells extrapolated from
g(r) are respectively rI = [0.8, 1.4] and rII = [1.4, 2.3] . In these ranges,
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Figure 3.24: Radial pair distribution function of glasses (upper panel), and of the
fully flexible polymeric crystal (lower panel). A similar configuration is found for
all the non-crystalline systems, suggesting that glass transition eventually sets in
also for nematic samples (kθ ≥ 7.0). Flatter distribution are observed for systems
with increasing chain stiffness, due to the disordering effect of chain stiffness.

analysis of the angular distributions of first and second neighbours is carried
out.

As shown in fig. 3.25, the distribution of bond angles is modulated for the
crystallized fully flexible system. This modulation is weak but still present
in the kθ = 1.0 system, with much slighter peaks occurring at the same
values of θb. This suggests that in this sample, monomers were rearranging
in the ordered polymer crystal structure during cooling, when the dynamics
became too slow, and glass transition took place. This effect is compatible
with the two subsequent changes of slope observed in the density response
ρ(T ) around solidification temperature (see fig. 3.20).

With increasing kθ, P (cos θb) becomes increasingly Boltzmann-like, i.e.
exponential in cos θb, and for kθ = 2.5 the probability density P (cos θb) is
already under 0.1 for angles smaller than around 100°.
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Figure 3.25: The distribution of bond angles θb is modulated for the crystallized
samples, as an effect of established order. This modulation is found in a weaker
fashion in the partially crystallized kθ = 1.0 sample. For increasing chain stiffness,
P (cos θb) becomes increasingly exponential (plot scale is semi-logarithmic). Acute
angles are rarely formed (P (cos θb) < 0.1) by triplets of bonded monomers with
chain stiffness kθ ≥ 2.5.

Consider now the angular distribution of all the first neighboursADF (rI , cosφ),
shown in fig. 3.26. It can be seen that the sample with kθ = 1.0 again shows
the effect of a nucleation interrupted by glass transition, as the corresponding
distribution presents slight peaks at those values of φ which are the favoured
angles in the fully flexible crystallized case (60°, 90°, 120° and 180°). The
same trend in a weaker fashion is found for the kθ = 8.5 and kθ = 12.5 sam-
ples, whereas the one with kθ = 10.0 behaves in the same way as glasses. The
latter show flatter distributions, index of greater disorder, and larger favoured
angles with respect to the liquids, still close to 60° and 120°. These are the
most frequent angles for a configuration in which the chains are aligned to
each other.

The angular distribution of second neighbours do not change much upon
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Figure 3.26: Angular distribution of monomers in the first coordination shell
(rI = [0.8, 1.4], as extrapolated from g(r)). The kθ = 1.0, 8.5 and 12.5 samples
exhibit again their intermediate structure, halfway between glassy and crystalline.
The two different structures share favoured angles φ = 60°, 120° and 180°. Addi-
tional angles formed in crystalline structures are φ = 90° and 145°, irrespective of
chain stiffness. The flattening (disordering) effect of kθ is confirmed.

vitrification, as can be seen from the upper panel of fig. 3.27. The favoured
angles in glasses with chain stiffness are the same as in their liquid phase.
The only remarkable change is found in modulation, which is slightly in-
creased, since the degree of order increases weakly through glass transition.
This order degree is smaller for stronger chain stiffness, as stiffer systems ex-
hibits flatter distributions. This is an additional hint about the non globally
ordered nature of the structures formed by the stiffest polymers upon solid-
ification, even if the observed density jump is similar to that encountered in
the crystallization of fully flexible polymers.

Additional information about local and global order is provided by the
study of orientational order parameters (fig. 3.28). Glasses with chain stiff-
ness exhibit different order parameters with respect to fully flexibles. At the
local scale, the discriminating parameter is here Qlocal

4 . The latter smoothly
increases with increasing chain stiffness, towards the random configuration
value Qlocal

4,random ' 0.22 while Qlocal
6 stabilizes on a value around 0.28. Thus,
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Figure 3.27: Angular distribution of second neighbours. Glasses (upper panel)
exhibit no significant change from their liquid phase, except for a slightly increased
range of modulation, due to gain of some global order which tend to vanish with
chain stiffness.

the disordering effect of chain stiffness is confirmed. On the other hand, at
the global scale both Qglobal

4 and Qglobal
6 are around the corresponding random

configuration values, except for the single crystallized runs.
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panel, the focus is on glasses. The discriminant parameter in the local structure
for stiff polymers is Qlocal4 , increasing with chain stiffness.
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3.5 Conclusions

In this section, we carried out a preliminary characterization of the polymer
model of which we want to study the mechanical properties. For a better
understanding of the model, we studied its static properties both in the
phase of liquid and in the glassy state (with possible partial crystallization)
at nearly zero temperature. The average spatial disposition of monomers
has been measured in both cases, while density and global order have been
monitored during cooling, allowing for investigation of solidification processes
and extrapolation of glass transition and crystallization temperatures.

The latter have shown significant dependence from the connectivity-related
parameters of the model, namely bond length lb and chain stiffness kθ. The
glass transition temperature Tg increases monotonically with both lb and
kθ. The crystallization temperature Tc also increases monotonically with lb,
while the temperature of transition to the nematic phase increases in a more
complex way with kθ.

The bulk morphologies of solid phase, obtained via linear cooling, are
related to chain shape, which is controlled by systematic variation of the
connectivity-related parameters. The microscopic details of the bond poten-
tial are found to have a strong effect on the microscopic local arrangement
of monomers upon cooling. The gap |lb − r0| between the two characteris-
tic length scales of the model (r0 is the bead diameter) causes geometrical
frustration, which results in looser dispositions of neighbouring monomers,
proved by the broadening of spatial distributions increasing smoothly with
the size of the gap. The disordering effect also affects the propensity of a
polymer to either crystallize or form a glass. Chain stiffness is observed
to have an analogue disordering, distribution broadening effect. This hap-
pens because monomers are subjected to the additional constraint of keeping
aligned to the successive along the chains.

Fixing the quench rate, for fully-flexible polymers an upper limit of bond
length lb,glass = 1.03 within which samples form glass, and a lower limit
lb,crys = 1.06 beyond which they form polymer crystals, are found. Similarly,
threshold values of chain stiffness for semi-flexible polymers are found, sepa-
rating semi-crystals (kθ = 0.0) from completely amorphous glass (kθ ≥ 1.0),
and the latter from nematic glasses (7.0 ≤ kθ).

This first part of the work is also functional to the next, in which the
mechanical response of the solids obtained here is studied.



Chapter 4

Elastic and yielding properties
at zero temperature

4.1 Introduction

In crystalline materials, the phenomenon of plastic flow is well understood
in terms of the motion of topological defects such as dislocations [43]. In
amorphous solids like polymeric crystals and glasses, it is not yet clear what
the carriers of plasticity are and whether the onset of plasticity can be related
to the microscopic properties of the material. Despite existing attempts
to relate mechanical properties of amorphous systems to the details of the
interaction potential [44], a link is still missing that would allow for a better
control of mechanical properties directly from the design of the microscopic
structure.

In addiction, there are a number of works, based on the idea of shear-
inducted changes in the potential energy landscape (mentioned in section 1.4),
both experimental [45] and computational [46], which suggest that a relation
can be established between the linear elastic response of a material subjected
to small strains, and its plastic behaviour at larger strains. Finding a corre-
lation between the linear behaviour at vanishing small perturbations (strains
of order 10−4), and the strongly non linear and irreversible response (yield-
ing) to considerable external driving (order 10−1 deformation), is obviously
an ambitious and challenging goal.

In the following part of this work the role of microscopic properties, such
as bond length and chain stiffness, in the mechanical response of polymer
glasses is studied, focusing both on their linear elastic response and on their
plastic yielding. The existence of a correlation between these two deeply
different behaviours is also investigated.
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In order to study the mechanical response under shear deformation of
the systems characterized in chapter 3, the athermal quasi-static (AQS) sim-
ulation protocol is used. This protocol, described in details in section 2.7,
consists in the deformation at zero temperature of the solids, obtained af-
ter quenching in 3.4, and is performed iterating two steps, starting from an
equilibrium configuration for each sample: (i) the system is deformed ho-
mogeneously by a very small increment; (ii) energy is minimized. For each
choice of the shear direction xy, xz, or yz, homogeneous deformation is ob-
tained tilting the simulation box and remapping all the monomers in the new
box. Conceptually, this remapping corresponds to forcing all monomers to
undergo the same global displacement, i.e. undergo an affine deformation.
Since the non-affine contribution (relaxation of the monomers to energeti-
cally more convenient positions after deformation) has been recently shown
to be significant in the elastic response of glassy systems [22], a minimization
is performed after each strain increment, which reproduces the non-affine
displacements of monomers, by relaxing them towards their equilibrium po-
sitions.

In every deformation process along a chosen direction, the initially cubic
(xy = xz = yz = 0 in eq. (2.16)) simulation box is deformed by increasing
the corresponding tilt factor from zero to 15% of the box side, in 15000
increments of 0.001%. The global stress is computed by average on all the
monomers, while the strain considered is that of the simulation box.

For instance in a simple and homogeneous shear deformation along the
xy direction, like that shown in fig. 4.1, the coordinates X of all the points
in the box are mapped into the new ones x in the following way1:

x = X +
xy

L
Y (4.1)

y = Y (4.2)

z = Z (4.3)

The displacement field u(X) is just

ux =
xy

L
Y (4.4)

uy = 0 (4.5)

uz = 0 (4.6)

1Notice that this transformation is applied also to the coordinates of the monomers
only in the first step. By performing minimization, monomers take new coordinates and
in this configuration the stresses are computed.
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Figure 4.1: Two dimensional view of the xy-sheared simulation box of side L.
The red dashed line corresponds to the profile of the original box, whereas the
blue full line is the profile of the box when sheared with tilt factor xy. The global
strain in this case is xy

L .

and the corresponding macroscopic shear strain (which in the engineering
notation is twice that in eq. (1.24)) is then

2 · uxy =

(
∂ux
∂Y

+
∂uy
∂X

)
=
xy

L
(4.7)

After each strain increment and minimization, the global stress is computed.
The resultant total stress is plotted against the macroscopic strain, in order
to obtained stress-strain curves like the one shown in fig. 4.2.

It is here reminded that the systems studied consist in Nc = 160 chains of
M = 25 monomers, either fully flexible (kθ = 0.0) with diverse bond lengths
lb, or with fixed bond length lb = r0 = 1.12 and diverse chain stiffness kθ,
where r0 is the bead diameter.
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Figure 4.2: Example of a typical stress-strain curve. In the inset, the fitted data
in the linear regime are shown.

4.2 Shear modulus

For small deformations, the mechanical response is expected to be linear, and
described by eq. (1.31). When the applied deformation is a simple shear, all
the diagonal components of both the strain and stress tensor are zero, while
the non diagonal components are related by eqs. (1.32), (1.33) and (1.34)

σxy = 2G3uxy

σxz = 2G4uxz

σyz = 2G5uyz

In our study of shear elastic response, the engineering definition of strain
γik = 2uik is adopted, and the characteristic simple shear modulus G of a
sample is estimated as

G =
1

3
(G3 +G4 +G5) (4.8)

Each of the components G3,4,5 of a sample can then be measured by fitting the
corresponding stress-strain curve in its linear regime. This regime of small
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strain is not well-defined and must be chosen as a compromise between a
small enough upper threshold of strain and a reasonable number of points to
fit under that threshold. The reason for the former condition comes directly
from the definition of shear modulus, whereas the latter condition is required
in order for the fit to be reliable.

We chose to fit all the stress-strain curves with a strain threshold γtik =
4 · 10−2, which in our measurements allowed for 21 points to fit. An example
is reported in fig. 4.2.
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Figure 4.3: Shear modulus plotted against bond length. The two families of
points correspond to glasses (red dots) and polymer crystals (black dots). For
each sample G is obtained via average on the moduli measured in 16 different
simulation runs. The associated error is the standard deviation of these measures.

In order to understand the role of chain connectivity on the elastic re-
sponse of the zero temperature solids obtained via cooling, the shear modulus
G, as averaged on the measures for 16 simulation runs, is plotted both against
bond length lb (in fig. 4.3) and against chain stiffness kθ (in fig. 4.4).

The reported error is estimated as the standard deviation of the values
obtained on each run. The fact that these errors are very large must not
be ascribed to the precision of measurement. The reason for large errors is
that in any simulation run the same system is stuck by glass transition in a
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Figure 4.4: Shear modulus plotted against chain stiffness. The three families of
points correspond to polymer crystals (black dots), glasses (red dots) and nematic
glasses (blue dots) . For each sample G is obtained via average on the moduli
measured in 16 different simulation runs. The associated error is the standard
deviation of these measures.

different local minimum of potential energy, to which a certain configuration
corresponds. To this configurations can correspond strongly different elastic
properties.

Keeping in mind the qualitative nature of these results, the only effect
that can be ascribed to chain connectivity is that of a decreasing trend of
G(lb) observed in glasses, at least for small values of lb. This trend seems to
invert near the threshold bond length lb = 1.03 over which partial crystalliza-
tion occurs. Except for this slight trend, within the same family of systems
(polymer crystals, pure and nematic glasses), neither bond length nor chain
stiffness is observed to have effect on the elastic response.

One more evident effect in shear moduli is observed between the two
families of polymer crystals and pure glasses. Polymer crystals generally show
a stronger elastic response with respect to completely amorphous systems.
As the case of nematic glasses stands alone, with shear moduli that span a
range of values including those of both polymer crystals and glasses, it can be
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concluded that the only structural feature that affects the elastic response is
the global order (see fig. 3.19 and fig. 3.28 for differences in local and global
ordering among the different solid structures).

4.3 Yielding properties

A yielding event is identified as an abrupt drop in stress, occurring at some
point on the stress-strain curve of a sample, after which stress starts to rise
again with strain. A yielding event is thus a significant relaxation process
for a material subjected to deformation.

The physical quantities used to characterize the yielding behaviour of a
sample are the scalar strain

uy =
1

3

(
uxyy + uxzy + uyzy

)
(4.9)

and scalar stress

τy =
1

3

(
σxyy
2

+
σxzy
2

+
σyzy
2

)
(4.10)

at which the first considerable yielding event occurs. Since many stress drops
∆σ of different size are observed in a single stress-strain curve (ranging from
order 10−3 to 10−1), the determination of whether an event is considerable or
not is quite arbitrary. A reasonable choice must then be done of a threshold
value of stress drop ∆σt, over which the drop is associated to a proper yielding
event. The value

∆σt = 0.1

has been found to be a good choice, since a stress drop of that size is usually
the starting point of a series of other similar drops and rises, which char-
acterizes a different mechanical response of the sample with respect to the
precedent.

The values of strain uy and stress τy at yield for the systems with dif-
ferent bond length lb and chain stiffness kθ, each resulting from average on
16 simulation runs, are reported respectively in fig. 4.5 and fig. 4.6. The
corresponding errors are the standard deviation of the values obtained in the
runs. These errors give an estimate of the mean range of values obtained for
the same system arrested by glass transition in different configurations.

The range of strain at which a sample yields is very similar among systems
with different chain stiffness and bond length, namely 4.5 ≤ uy(lb) ≤ 6.3 and
4.3 ≤ uy(kθ) ≤ 8.6. Thus, the strain required for a system to yield depends
neither on the structure nor on connectivity.
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Figure 4.5: Strain (upper panel) and stress (lower panel) measured at yield for
fully flexible systems of different bond length. Dots are the values resulting from
average on the simulation runs, and error bars are their standard deviations. While
yield strain is the same for all systems inside error, stress is quite different from
totally amorphous (red dots) to partially ordered solids (black dots). Yield stress
also slightly decreases with bond length.

The situation is different for the yield stress. At equal strain reached, the
gathered stress at yielding is different from system to system. The largest
difference is found between polymer crystals and glasses: the yield stress of
polymer crystals is 0.8 ≤ uy ≤ 1.2, whereas it is included in 0.6 ≤ τy ≤ 0.8
for glasses of fully flexible polymers and in 0.35 ≤ τy ≤ 0.7 for glasses of semi-
flexible and stiff polymers. Thus, completely amorphous and more ordered
structures yield under the same amount of strain, but the latter gather more
stress before yielding.

Yield stress also appears to be weakly related to chain connectivity in
amorphous glasses. Even if inside the error τy(lb) and τy(kθ) can be said to be
constant, a general decreasing trend can be observed in both. The situation
for fully flexible glasses is particularly interesting as this trend seems to follow
that of shear modulus, suggesting a possible correlation between τy and G.

This possibility has been investigated by plotting the couple of measured
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Figure 4.6: Strain (upper panel) and stress (lower panel) measured at yield for
semi-flexible systems of different chain stiffness. Dots are the values resulting
from average on the simulation runs, and error bars are their standard deviations.
All systems share the same range of strain values at yield. Again, the greatest
difference in yield stress is found passing from the partially ordered (black dot)
to the totally amorphous (red dots) and nematic (blue dots) solids. Way slighter
decreasing dependence on chain stiffness is observed.

(τy, G) for every single run of the fully flexible systems (characterized by
different bond lengths). The results are shown in fig. 4.7 (upper panel). In
this plot, the errors on stress are vanishing small, since LAMMPS computes
stresses with a precision of 10−6, whereas the error on the shear modulus of
a single run results from fitting the stress-strain curve in its linear regime,
and is then propagated with respect to eq. (4.8).

The measures are fitted linearly with zero intercept:

τy = uc ·G (4.11)

with a resulting slope of

uc = 0.0234± 0.0028 (4.12)
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Figure 4.7: Correlation between yield stress uy and shear modulus G. The upper
panel shows measurements carried out in this work on the simulated fully flexible
bead-spring model, first cooled down to zero temperature and then shear-deformed
via the AQS protocol. Data are fitted with a linear formula of zero intercept. In
the lower panel, the same measurement as carried out experimentally in [45] on
metallic glasses at room temperature. Notice that in spite of the large differences
between the two measurements (one obtained by MD simulations of macromolec-
ular systems, the other by experiments performed on atomic systems), the fitting
curve can be reasonably considered the same. This suggests an universality in the
nature of this correlation.
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Figure 4.8: Deviation of systems of semi-flexible polymers from the linear corre-
lation between the stress at yielding τy and the simple shear modulus G, observed
in the fully-flexible case. The deviation is more significant the stiffer are polymer
chains (i.e. the larger is chain stiffness kθ).

This fit clearly has not to be intended as a best fit procedure. Rather, the
aim is to show that the cluster of ≈ 130 couples of (τy, G) tend to distribute
along a line, which is compatible with that obtained experimentally in [45]
for metallic glasses (lower panel of fig. 4.7), namely uexpc = 0.027 ± 0.002.
The great differences between the latter study and this work are remarkable:
first, the results in [45] are experimental, while here they come from MD
simulations; second, the model glasses studied here are polymeric, i.e. made
up of chain macromolecules of connected monomers, while metallic glasses
are atomic systems.

The fact that despite these strong differences, the results are compatible,
is quite interesting as it suggests some kind of universality in the correlation
between two deeply different behaviours of glasses, i.e. the elastic response to
small perturbations (deformations) and the highly non-linear phenomenon of
yielding. In effect, the model presented in [45] in order to explain the τy(G)
correlation, which is one of those that rely on the existence of a physical law
like eq. (1.35), has no particular restrictions to metallic glasses.

In order to test the domain of this universality, the existence of the cor-
relation τy = uc ·G is investigated also for glasses of semi-flexible polymers.
The results are shown in fig. 4.8. It is evident that in general eq. (4.11) is
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not satisfied. But it can also be observed that the deviation is significant
only for the highly stiff polymer glasses. The difference between the latter
and metallic glasses is larger than in the case of fully flexible polymers, since
connectivity in very stiff polymers has much greater importance than in fully-
flexible ones, for which the only additional interaction with respect to the
atomic systems is that of the bond between monomers subsequent along the
chain.

Also the structure appears to have a role in the τy(G) correlation, since the
systems which deviate more from eq. (4.11) are the partial crystals (lb ≥ 1.06
in fig. 4.7) and the nematic glasses (kθ ≥ 5.5 in fig. 4.8). This is still consistent
with the results of [45] as they refer to completely amorphous systems.

4.4 Conclusions

The mechanical response under simple shear deformation, of the semi- and
fully-flexible bead-spring polymer models has been characterized in this chap-
ter. In particular, the role played by the parameters determining the con-
nectivity (bond length lb and chain stiffness kθ) has been investigated.

The mechanical response has been characterized through the measure-
ment of the simple shear modulus G and of the stress τy and strain uy at
yielding. In addition the existence of a correlation between G and τy has
been investigated and the results have been compared with the experimental
observations reported in [45].

Within the family of glasses of fully flexible polymers, a very weak de-
pendence of G(lb) is observed, with a monotonically decreasing trend which
inverts at that value of bond length which sets the threshold for partial crys-
tallization (at our fixed quench rate). But the strong difference in simple
shear modulus is found to stand between glasses and partial crystals. The
degree of ordering of the solid structure is thus what determines the elastic
strength of the system.

The behaviour of G(kθ) is more confused. The difference in strength
between partial crystals and glasses is confirmed for low values of chain stiff-
ness kθ, but from the value kθ = 5.5 on, the observed shear moduli span the
range of both crystals and glasses. The ranges of G for nematic glasses are
particularly broad.

As far as the phenomenon of yielding is concerned, we observed that the
strain at yielding is, in spite of its broad range, practically the same for all the
systems, from the partial crystals of fully flexible polymers to the glasses of
stiff polymers, irrespective of both structure and connectivity. On the other
hand, the stress at yielding is sensitive to structure and to chain stiffness.
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It is highest in crystals, and it monotonically decreases with kθ in glasses of
semi-flexible polymers including the nematic glasses, which are the ones with
the lowest average stress at yielding.

A correlation is found between the stress at yielding τy and the simple
shear modulus G of fully flexible polymer glasses. This correlation is com-
patible with that experimentally verified in [45] on metallic glasses, which
have a strongly different feature with respect to our model, that of being
atomic systems, i.e. without connectivity. In analogy with these results, the
observed τy(G) is fitted with the linear relation eq. (4.11)

τy = uc ·G

where
uc = 0.0234± 0.0028

to be compared with the experimental measure reported in [45]

uexpc = 0.027± 0.002

In the systems of semi-flexible polymers a significant deviation from this
linear relation is observed. This deviation tends to increase with chain stiff-
ness kθ.

However, considering the great difference between the systems studied
(glasses of polymer chains of 25 monomers and atomic metallic glasses)
and between the methods of investigation used (MD simulations and exper-
iments), the compatibility between the two results is reasonable, suggesting
the existence of an universality of the correlation τy(G) for a class of systems.
This class includes partially or totally amorphous systems, both atomic and
polymeric (connected), at least as long as the stiffness of connections can be
neglected.
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Chapter 5

Summary of results

The original results obtained in this work, and presented in the last two
chapters, are here summarized.

• The static properties of our polymer model in the liquid phase have
been characterized, through analysis of the pair distribution function
g(r), the bond angle distribution P (cos θb), and of the angular distribu-
tions of first and second neighboursADF (rI , cosφ) andADF (rII , cosφ);

• The gap between the two characteristic lengths r0 and lb has a disorder-
ing effect resulting in the progressive flattening of all the distributions.
Chain stiffness kθ has an analogous but weaker effect;

• The solidification behaviour of the model undergoing linear cooling, is
affected by the parameters related to connectivity, lb and kθ:

* Systems with large |lb − r0| gap tend to vitrify, while as the gap
vanishes crystallization is favoured;

* Intermediate values of stiffness hinder crystallization, whereas high
values give rise to chain-scale order, which results in a solid state
characterized by a nematic glassy phase;

• Both the glass transition temperature Tg and the crystallization tem-
perature Tc increase as |lb−r0| tends to vanish, in fully flexible polymers;

• In stiff polymers, the glass transition temperature Tg increases smoothly
with intermediate values of kθ. On the other hand, the increase in the
solidification temperature Ts of transition to the nematic glass phase is
discontinuous;
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• The static properties of the low temperature solids obtained via cool-
ing have been observed and compared to their liquid phase equivalent.
The global and local order of the solid structures have been character-
ized, confirming the disordering effects of the gap |lb− r0| and of chain
stiffness kθ;

• The elastic response at zero temperature of the solids, subjected to
small simple shear deformation, has been characterized. Connectivity
does not directly affects the elastic properties. However, since the lat-
ter depend on the ordering of monomers, connectivity plays a role by
determining the solidification behaviour of the system.

• The yielding behaviour under large deformations has been character-
ized. The yield strain is independent of connectivity, while yield stress
in amorphous glasses shows a decreasing trend with increasing kθ (in-
creasing chain-scale order);

• There is a correlation between the linear elastic response and the yield-
ing behaviour of the zero temperature solids, at least in systems with
low chain stiffness;

• The data related to this correlation are reasonably compatible with
experimental data reported in the literature. Data are compatible
when metallic glasses (experiment) and highly flexible connected sys-
tems (simulation) are compared, suggesting the existence of a universal
nature of this correlation, irrespective of connectivity. However, there
are important deviations from this correlation law, when chain stiffness
is sufficiently large.



Appendix A

Monitoring of thermodynamic
quantities
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Figure A.1: Typical time evolutions of the end-to-end vector correlation function
Cee(t), volume V and temperature T , during the equilibration period. Apart from
fluctuations, temperature is kept constant on average by the external thermostat,
and volume also fluctuates around its equilibrium value. Notice the blue line in the
upper panel, corresponding to the value 1

eCee(0). The time at which Cee reaches
this value is the maximum relaxation time of the system τee.

Some examples of the thermodynamic quantities monitored during the
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Figure A.2: Linear decrease of temperature during the cooling procedure at
finite quench rate 2 · 10−6 (upper panel) and the corresponding time evolution of
pressure, which is kept at zero on average by the external barostat. The initial
temperatures are different for systems with different stiffness.

equilibration and cooling procedures are reported for completeness, respec-
tively in fig. A.1 and fig. A.2.
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