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Introduction

Let S be a closed oriented surface of genus g ≥ 2, let Γ := π1(S) denote its fundamental
group, let G := Homeo+

(
S1
)

be the group of orientation preserving homeomorphisms of

the circle. An action of the surface group Γ on the circle S1 = R/Z is a representation

φ : Γ −→ Homeo+

(
S1
)
.

A classical problem in low dimensional geometry and topology is the study of the properties
of circle actions of surface groups and their spaces of parameters

Rep (Γ, G) := Hom
(
Γ,Homeo+

(
S1
))
.

Some motivations:

• Holonomies ρ : Γ→ PSL (2,R) = Isom+
(
H2
)

of hyperbolic structures over S give

rise to actions on the boundary Γ y ∂H2.
• Geometric representations: a particular interest has recently developed towards

representations into transitive Lie subgroups of Homeo+

(
S1
)
. By a result of Ghys,

such subgroups are exactly the following ones

S1, PSL(k) (2,R) .

Geometric representations are those which are faithful and have discrete image.
• Space of parameters. The Teichm̈uller space Teich (S) admits an embedding in

Hom (Γ,PSL (2,R)) /PSL (2,R)

where PSL (2,R) acts on Hom (Γ,PSL (2,R)) by conjugation.

The aim of this thesis is the proof of some recent rigidity results about the deformation
spaces of surface group actions on the circle, i.e the connected components of Rep (Γ, G).
The precise statement is the following:

Theorem (K. Mann, S. Matsumoto). The following holds:

• If φ : Γ −→ PSL(k) (2,R) is faithful and has discrete image then its connected
component in Rep (Γ, G) consists of a single semi-conjugacy class.
• For every k | 2g − 2 there are at least k2g + 1 connected components containing

representations with Euler number 2g−2
k .

The thesis is roughly divided into four parts.

iii



iv Introduction

In the first one we introduce and describe the bounded Euler class eZb (φ) ∈ H2
b (Γ,Z),

which is the main invariant associated to a group action φ on the circle, and the equiv-
alence relation of semi-conjugacy. The central results of this section are Ghys Theorem
that completely characterize the relation of semi-conjugacy in cohomological terms and
Matsumoto’s numerical description of the bounded Euler class via rotation numbers and
the canonical Euler cocycle.

The second part is devoted to actions of surface groups. We describe some geometric ob-
jects, which are flat circle bundles over S, naturally associated to a representation. After
having defined the Euler number e(φ) ∈ Z of a representation φ : Γ −→ Homeo+

(
S1
)

we
prove Milnor’s Formula which gives an explicit way for computing it as the translation
number of a product of lifted commutators.

The Euler number of a representation cannot attain every integral value but lies in a
bounded interval. This is the content of the Milnor-Wood inequality :

Theorem (Milnor-Wood inequality). Let S be a closed oriented surface of genus g ≥ 2.
Let φ : Γ −→ G be a representation. Then

|e(φ)| ≤ |χ(S)| = 2g − 2.

This is a sharp inequality. Moreover it is quite remarkable that equality is reached when
φ is the holonomy of a hyperbolic structure over S. A classical result by Goldman ensures
that maximality is the only obstruction for being geometric:

Theorem (Goldman). Let φ : Γ −→ PSL (2,R) be a representation. Then

φ is faithful and has discrete image⇐⇒ |e(φ)| = 2g − 2.

Further works led to the following:

Theorem (Matsumoto, Burger, Iozzi). Let φ : Γ −→ Homeo+

(
S1
)

be a maximal repre-
sentation, i.e. |e(φ)| = 2g − 2. Then φ is semi-conjugate to every geometric PSL (2,R)
representation.

In the third part we study the relation between maximality and rigidity. We end this section
with a complete description of the dynamics of a PSL(k) (2,R)−geometric representation
due to Matsumoto.
In the last part we address the proof of the main theorem. Also this part is motivated
by a work of Goldman in which are completely classified the connected components of the

representation variety Hom
(

Γ,PSL(k) (2,R)
)

:

Theorem (Goldman). The connected components of Hom
(

Γ,PSL(k) (2,R)
)

have the fol-

lowing description:

• if k - 2g − 2 then e−1(n) is a connected component for every |n| ≤
⌊

2g−2
k

⌋
;



v

• if k | 2g− 2 then there are 2k2g connected components on which the Euler number

attains the value ±2g−2
k . Furthermore they are distinguished by the 2g−tuple of

rotation numbers of a standard set of generators of Γ.

First we give coordinates to the representation space Rep (Γ, G) using Matsumoto’s nu-
merical invariants introduced in the first part. Then we work out a finer analysis of the
dynamics of the generators of a geometric PSL(k) (2,R)−representation finding a common
combinatorial structure (good fixed point sets and good representations). At this stage we
develop the technical tools for carrying out the analysis of the deformations of the combi-
natorial structures. The heart of this part lies in the Calegari-Walker algorithm. Finally
we are able to prove some stability phenomena of representations that are extremal within
a good family. From the stability results we will deduce the main theorem.





CHAPTER 1

Invariants of group actions on the circle

1. Overview

The first chapter covers some background on the theory of general group actions on the
circle, group cohomology and bounded cohomology, semi-conjugacy. The principal goal is
to introduce and define an invariant of group actions on the circle, the (bounded) Euler
class, and classify them up to a suitable natural equivalence relation, the semi-conjugacy
relation. There are a couple of central result of this section which we want to highlight:
the first is Ghys Theorem which classifies semi-conjugacy in cohomological terms

Theorem (Ghys). Let Γ be a group and ρ1, ρ2 : Γ → Homeo+

(
S1
)

be representations.
Then

ρ1, ρ2 are semi-conjugate ⇐⇒ eb (ρ1) = eb (ρ2) ∈ H2
b (Γ,Z)

The second is Matsumoto’s numerical description of the bounded Euler class

Theorem (Matsumoto). Let Γ be a group with generators {γj}j∈I , let ρ : Γ→ Homeo+

(
S1
)

be a representation. Then φ∗eZb is completely determined by the data{
rot (ρ(γj)) for every j ∈ I
ρ∗τ as an inhomogeneous 2−cocycle

The 2−cocycle τ : G×G −→ R is defined by

τ (f, g) := r̃ot f̃ g̃ − r̃ot f̃ − r̃ot g̃

where f̃ , g̃ ∈ G̃ are arbitrary lifts of f, g.

2. The group Homeo+

(
S1
)

In this section we briefly review some properties of the topological group Homeo+

(
S1
)

that
will be extensively used in the next sections. Our main reference is Ghys’ article [Ghy01].

2.1. Definitions and topology. We denote by G := Homeo+

(
S1
)

the group of ori-
entation preserving homeomorphisms of the circle. The group G is naturally endowed with
the compact-open topology which can be described by the metric of uniform convergence.
If d denotes the standard metric on S1, then for every f, g ∈ G the uniform distance is

d∞(f, g) := sup
t∈S1

{d(f(t), g(t))} .

1



2 Invariants of group actions on the circle

The universal covering of the topological group Homeo+

(
S1
)

can be described as follows

G̃ := ˜Homeo+

(
S1
)

=

{
f : Z −→ Z

∣∣∣∣ f increasing and continuous
fτ1 = τ1f

}
where τ1 is the unit translation of R. The topology on the group G̃ is described by uniform
convergence. The universal covering projection is given by

p : G̃ −→ G , p(f)[t] := [f(t)].

The group S1 = R/Z embeds in G as the subgroup of rotations [θ] ∈ S1 −→ ρθ ∈ G where
ρθ[x] := [x+ θ]. It turns out that S1 < Homeo+

(
S1
)

completely determines the topology

of Homeo+

(
S1
)
:

Theorem 1.1. The group Homeo+

(
S1
)

deformation retracts onto S1. In particular the

inclusion i : S1 −→ Homeo+

(
S1
)

is a homotopy equivalence.

2.2. Algebraic properties of Homeo+

(
S1
)
. The group Homeo+

(
S1
)

enjoys some
nice algebraic properties which we state without proof. For a more comprehensive treate-
ment we refer to Proposition 5.11 and Theorem 4.3 of Ghys’ article [Ghy01]. The only
property which we will need is uniform perfectness

Definition 1.2. A group Γ is uniformly perfect if there is a constant N > 0 such that
every element γ ∈ Γ can be written as a product of less than N commutators.

Theorem 1.3. The group Homeo+

(
S1
)

is uniformly perfect of constant N = 1.

Since the unit integral translation τ1 is a product of 2 commutators we also have:

Corollary 1.4. The group ˜Homeo+

(
S1
)

is perfect.

2.3. Lie subgroups of Homeo+

(
S1
)
. Lie subgroups L < Homeo+

(
S1
)

of dimension
dim L ≥ 1 are well understood. They are completely classified by the following theorem
which is proved in [Ghy01]:

Theorem 1.5. Let L < Homeo+

(
S1
)

be a connected Lie subgroup of dimension dim L ≥ 1.
Then L is conjugate to one of the following

S1, PSL(k) (2,R) , R, Aff+ (R) , S̃L (2,R) .

In particular if L acts transitively then it is conjugate to

S1 , PSL(k) (2,R) .

The Lie group PSL(k) (2,R) is the degree k covering of PSL (2,R). Let us denote by

πk : PSL(k) (2,R) −→ PSL (2,R) the covering projection. We briefly describe the action of

PSL(k) (2,R) on S1. Let us begin with PSL (2,R). There are many models to describe the
action. If we identify PSL (2,R) with Isom+

(
H2
)

then φ ∈ PSL (2,R) acts on ∂H2 = S1 as

the natural extension φ to the boundary. Instead if we think of PSL (2,R) as PGL+ (2,R)
then φ ∈ PSL (2,R) acts on RP1 as an orientation preserving projective transformation.
Another model is given by extensions to the boundary of biholomorphisms of the unit disk
∆ or of the upper half plane H ⊆ C.
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Consider now the degree k covering of S1, it is again homeomorphic to S1. If we think
of S1 ⊆ C then the covering projection pk : S1 −→ S1 is given by pk(z) = zk and
the automorphisms group is Z/kZ identified with the group of rotations ρ1/k. The finite

covering PSL(k) (2,R) of degree k of PSL (2,R) naturally acts on the finite covering of S1 of

degree k. For every element φ ∈ PSL(k) (2,R) consider the k lifts of φpk along the covering
pk. The set of all lifts has a natural structure of Lie group and projects onto PSL (2,R)

with kernel Z/kZ. Thus it is a realization of PSL(k) (2,R). Explicitly PSL(k) (2,R) acts
as piecewise PSL (2,R)−transformations with respect to a fixed subdivision of S1 into k
equal consecutive arcs.

2.4. Minimal exceptional. We describe now the macroscopic behaviour of actions
φ : Γ −→ Homeo+

(
S1
)

and classify them by looking at a natural invariant compact subset
associated to the action.

Lemma 1.6. Let φ : Γ −→ Homeo+

(
S1
)

be a representation without finite orbits. Then

there exists a unique minimal invariant compact subset Kφ ⊆ S1.

Definition 1.7. Let φ be a representation without finite orbits. The compact subset
Kφ ⊆ S1 of Lemma 1.6 is the minimal exceptional of φ. The representation φ is minimal
if Kφ = S1.

Remark 1.8. We observe that the closure of every orbit Γx ⊆ S1 is an invariant compact
subset. Thus, by minimality, the minimal exceptional Kφ of φ is contained in the intersec-

tion Kφ ⊆
⋂
x∈S1

Γx. Conversely, by invariance and compactness the closures of the orbits of

points x ∈ Kφ are contained in Kφ, i.e. Γx ⊆ Kφ for every x ∈ Kφ. By minimality of Kφ

among Γ−invariant compact subsets we must have Kφ = Γx for any x ∈ Kφ since Γx is
Γ−invariant. In particular minimal actions are those representations such that every orbit
is dense Γx = S1 for every x ∈ S1.

We can classify the dynamics of actions by looking at their minimal exceptionals.

Theorem 1.9. Let φ : Γ −→ Homeo+

(
S1
)

be a representation. We have the following
trichotomy:

(1) φ has a finite orbit.
(2) φ is minimal or Kφ = S1.
(3) φ has a minimal exceptional which is an invariant Cantor set K ( S1.

2.5. Rotation and translation numbers. The main invariant for the dynamics of a
single homeomorphism f ∈ Homeo+

(
S1
)

or to the action φf : Z −→ Homeo+

(
S1
)

defined
by φf (1) := f , is the rotation number rot(f). It measures the average distance f translates
points on S1.

Definition 1.10. Let f : R −→ R be a non decreasing map commuting with integral
translations (i.e. such that fτ1 = τf1). The translation number of f is given by

r̃ot(f) := lim
n→∞

fn(x)

n
x ∈ R is chosen arbitrary .
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In particular it is well defined for a homeomorphism f ∈ ˜Homeo+

(
S1
)
.

It is not difficult to see that the limit always exists and is independent of x ∈ R.
Let f ∈ Homeo+

(
S1
)

be a homeomorphism. The rotation number of f is given by

rot(f) :=
[
r̃ot(f̃)

]
∈ R/Z

where f̃ is any lift of f to ˜Homeo+

(
S1
)
.

It is easy to check that rot : Homeo+

(
S1
)
−→ R/Z is a continuous function.

3. Group cohomology

In this section we rapidly recall some basic definitions and facts about classical group co-
homology. Our framework will be the one of classical homogeneous and inhomogeneous
resolution. The topic of interest for us are the relation of group cohomology with cohomol-
ogy of spaces (as we want to relate them in the case of surfaces and surface groups) and
low degree cohomology, in particular degree 2 as the Euler class lives in H2 (G,Z).

3.1. Homogeneous and inhomogeneous resolutions. Let Γ be a group, let R
be either Z or R thought as a trivial Γ−module. The set of maps Map (Γn, R) has a
natural Γ−module structure given by γ · f(•) := fγ−1(•) where γ−1 · (γ1, . . . , γn) :=(
γ−1γ1, . . . , γ

−1γn
)
.

Definition 1.11. The homogeneous complex (C• (Γ, R) , δ) is defined as follows

Cn (Γ, R) := Map
(
Γn+1, R

)Γ
where the superscript Γ means that we are taking only Γ−invariants maps.
The boundary δ is described by

δφ (g0, . . . , gn+1) :=

n+1∑
j=0

(−1)jφ (g0, . . . , ĝj , . . . , gn+1).

It is readily seen that δ preserves the invariance of a cochain, thus invariant cochains form
a subcomplex of (Map (Γ, R) , δ).

Definition 1.12. The inhomogeneous complex
(
C
•

(Γ, R) , δ
)

is defined as follows

C
n

(Γ, R) := Map (Γn, R)

with boundary δ given by

δψ (g1, . . . , gn+1) := ψ (g2, . . . , gn+1) +

n∑
j=1

(−1)jψ (g1, . . . , gjgj+1, gj+2, . . . , gn+1)+

+(−1)n+1ψ (g1, . . . , gn) .
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There is a canonical isomorphism between the inhomogeneous and the homogeneous cochain
complexes given by the following cochain morphisms

C• (Γ, R)
α
--
C
•

(Γ, R)
β
mm

where α, β are defined by

α(φ) : (g1, . . . , gn) −→ φ(1, g1, g1g2, . . . , g1 · · · gn) φ ∈ Cn (Γ, R)

β(ψ) : (g0, . . . , gn) −→ ψ(g−1
0 g1, g

−1
1 g2, . . . , g

−1
n−1gn) ψ ∈ Cn (Γ, R) .

Definition 1.13. The n−th cohomology group of Γ with coefficients in R is thus

Hn (Γ, R) := Hn (C• (Γ, R)) = Hn
(
C
•

(Γ, R)
)
.

3.2. Group cohomology and singular cohomology. Let X be a CW-complex

with π1(X) = Γ, let p : X̃ → X be the universal covering of X. Choose a set of repre-

sentatives F ⊆ X̃ for the action of Γ on X̃ by deck transformations. For every x ∈ X̃
define gx ∈ Γ as the unique deck transformation such that x ∈ gxF . Consider the map

rF : C• (Γ, R) −→ C•sing

(
X̃, R

)
defined by

rF (φ)(s) := φ
(
gs(e0), . . . , gs(en)

)
.

for every n−singular simplex s : ∆n → X̃ with vertices s(e0), . . . , s(en). It is a rou-
tine computation to check that rF is a morphism of chain complexes of Γ−modules, i.e.
rF (γ · φ) = γ · rF (φ) and rF δ = δsingrF . In particular rF induces a morphism on coho-
mologies which we denote by

(rF )∗ : H• (Γ, R) −→ H•sing (X,R) .

A standard computation ensures that different choices of F, F ′ ⊆ X̃ produce chain homo-
topic morphisms rF , rF ′ , thus r := (rF )∗ = (rF ′)∗ does not depend on the choice of the
particular set of representatives.

Theorem 1.14. Let Γ be a group, let X = K (Γ, 1) be an aspherical CW-complex. Then
the map

r : H• (Γ, R) −→ H•sing (X,R)

is an isomorphism.

Under the canonical isomorphism between the inhomogeneous and homogeneous cochain
complexes the map rF transforms as follows:

rF (φ) : s −→ φ
(
g−1
s(e0)gs(e1), . . . , g

−1
s(en−1)gs(en)

)
.
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3.3. Low degree cohomology and central extensions. We give a brief descrip-
tion of group cohomology in low degrees n = 1, 2. Let Γ be any group, let R be either Z or R.

Degree n = 1. Using the inhomogeneous chain complex it is immediate to check that

1−cocycles φ ∈ C1
(Γ, R) are precisely the homomorphisms φ ∈ Hom (Γ, R). Furthermore

the boundary of any 0−cocycle is trivial so we have the following:

Lemma 1.15. Let Γ and R be as above. Then H1 (Γ, R) = Hom (Γ, R).

Degree n = 2. Before stating the main result let us give a definition.

Definition 1.16. A central extension of Γ by Z is a short exact sequence of groups

0 // Z
j
// E

p
// Γ // 0

such that j (Z) is contained in the center of E.
Two such extensions E,E′ are said to be isomorphic if there is a homomorphism φ : E −→
E′ that makes the following diagram commute

0 // Z
j
// E

p
//

φ
��

Γ // 0

0 // Z
j′
// E′

p′
// Γ // 0.

The main result about degree n = 2 cohomology is given by the following correspondence:

Theorem 1.17. There is a natural bijection between

H2 (Γ,Z)←→

{
central extensions

0 // Z
j
// E

p
// Γ // 0

}
/isomorphism.

The correspondence is functorial.

The bijection is explicitly described by the following procedures.
From central extensions to H2 (Γ,Z). Consider a central extension

0 // Z
j
// E

p
// Γ // 0.

Choose σ : Γ → E a set-theoretical section pσ = IdΓ and define the inhomogeneous
2−cochain cσ : Γ× Γ −→ Z as follows

cσ(g, h) := σ(g)σ(h)σ(gh)−1 ∈ j (Z) ' Z.
It is easy to check that cσ is a cocycle and if σ, σ′ are different sections then cσ = cσ′ + δf
where f : Γ −→ Z is defined by f(g) := σ′(g)σ(g)−1.
In particular it is well defined the cohomology class [cσ] ∈ H2 (Γ,Z).
From H2 (Γ,Z) to central extensions. Consider e ∈ H2 (Γ,Z). Choose an inhomogeneous
2−cocycle c : Γ×Γ −→ Z representing e such that c(1, 1) = 0 (it always exists) and define
the extension

0 // Z
j
// E := Z× Γ

p
// Γ // 0
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where j, p are the canonical maps and the group structure on E is given by the following
formula

(n, g) · (m,h) := (n+m+ c(g, h), gh) .

4. Euler class

For group actions on the circle there is essentially a single interesting cohomological in-
variant, the Euler class. It is defined as the pull-back of a certain cohomology class
e ∈ H2

(
Homeo+

(
S1
)
,Z
)

called the Euler class of Homeo+

(
S1
)
. We construct the Eu-

ler class in a purely algebraic setting as the cohomology class associated to a central
extension of Homeo+

(
S1
)
. In order to motivate the uniqueness assertion we compute

the cohomology H•
(
Homeo+

(
S1
)
,Z
)

and show that it is generated by the euler class

e ∈ H2
(
Homeo+

(
S1
)
,Z
)
.

Notations: throughout the next sections we fix the following shorthands

G := Homeo+

(
S1
)

and G̃ := ˜Homeo+

(
S1
)
.

4.1. Euler class of G = Homeo+

(
S1
)

and of a representation. First we define

the Euler class of G := Homeo+

(
S1
)
. Consider the universal covering central extension

0 // Z = π1

(
Homeo+

(
S1
)) j

// ˜Homeo+

(
S1
) p

// Homeo+

(
S1
)

// 0.

The fundamental group of Homeo+

(
S1
)

is isomorphic to Z since Homeo+

(
S1
)

deformation

retracts to the subgroup of rotations S1 < Homeo+

(
S1
)
.

Definition 1.18. The Euler class of Homeo+

(
S1
)

is the cohomology class e ∈ H2
(
Homeo+

(
S1
)
,Z
)

corresponding to the universal covering central extension.

Now consider a group Γ and a representation φ : Γ −→ Homeo+

(
S1
)
.

Definition 1.19. The Euler class of φ is the pull-back of the Euler class of Homeo+

(
S1
)

e(φ) := φ∗e ∈ H2 (Γ,Z) .

4.2. An obstruction class. The Euler class of a representation measures the ob-
struction to lift it to the universal covering as precisely stated in the following lemma:

Lemma 1.20. Let ρ : Γ −→ G be a representation. Consider the following diagram

Z
j
// G̃

p
// G

Γ

ρ

OO

ρ̃

__

then there exists a lift ρ̃ of ρ if and only if ρ∗e = 0 in H2 (Γ,Z).
Moreover the lifts are parametrized by H1 (Γ,Z).
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Proof. We prove the two implications separately.
Proof that ∃ρ̃ ⇒ ρ∗e = 0. By functoriality ρ∗e = ρ̃∗p∗e so it is enough to prove that

p∗e = 0. Let σ : G → G̃ be any section and cσ the associated cocycle representing the
Euler class. Then we have

p∗cσ(f, g) = cσ(p(f), p(g))
= σ(p(f))σ(p(g))σ(p(fg))−1

=
(
fτu(f)

) (
gτu(g)

) (
fgτu(fg)

)−1
where τu(h) = h−1σ(p(h))

= τu(f)+u(g)−u(fg)

= δu(f, g).

Therefore we get p∗e = [p∗cσ] = [δu] = 0 in H2
(
G̃,Z

)
.

Proof that ρ∗e = 0 ⇒ ∃ρ̃. Let σ : G → G̃ be any section and cσ the associated cocycle.
Since ρ∗e = 0 we have ρ∗cσ = δu for some u : Γ → Z. Define ρ̃(γ) := σ(ρ(γ))τ−u(γ). We
claim that ρ̃ is a homomorphism: in fact for every α, β ∈ Γ we have

0 = ρ∗cσ(α, β)− δu(α, β)

which implies

τ0 = σ(ρ(α))σ(ρ(β))σ(ρ(αβ))−1τu(α)τu(β)τ−u(αβ)

=
(
σ(ρ(α))τu(α)

) (
σ(ρ(β))τu(β)

) (
σ(ρ(αβ))τu(αβ)

)−1

= ρ̃(α)ρ̃(β)ρ̃(αβ)−1.

Different lifts ρ̃1, ρ̃2 are connected by φ : Γ → Z given by φ(γ) := ρ̃1(γ)ρ̃2(γ)−1. Using

the fact that Z is in the center of G̃ it is easy to prove that φ is a homomorphism and
so defines a class in H1 (Γ,Z). Conversely for every homomorphism φ ∈ H1 (Γ,Z) the
function ρ̃2(γ) := ρ̃1(γ)φ(γ) is a lift of ρ. �

4.3. The Euler class is the unique significant cohomological invariant. Using
a theorem due to Mather and Thurston it is possible to explicitly compute the cohomology
ring of Homeo+

(
S1
)
. In particular the computation shows that H•

(
Homeo+

(
S1
)
,Z
)

is
generated in degree 2 by the Euler class. In order to state the theorem let us introduce the
following notations: for a manifold M we denote by Homeo(+)(M) the group of (orienta-
tion preserving) homeomorphisms equipped with the compact-open topology, while we use
Homeo(+)(M)δ to describe the same group with the discrete topology.

Theorem 1.21 (Mather-Thurston [Thu74]). Let M be a manifold. Then the natural map
of topological groups Homeo(+)(M)δ −→ Homeo(+)(M) induces an isomorphism

H•
(
BHomeo(+)(M),Z

) ∼−→ H•
(
BHomeo(+)(M)δ,Z

)
on the cohomology rings of the classifying spaces.

Recall now that Homeo+

(
S1
)

deformation retracts onto the subgroup of rotations. There-

fore the inclusion i : S1 −→ Homeo+

(
S1
)

is a homotopy equivalence (see Theorem 1.1). In

particular, by functoriality, the induced map i∗ : BS1 −→ BHomeo+

(
S1
)

is a homotopy
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equivalence. Now it is well-known that BS1 = CP∞ = K (Z, 2). This fact together with
Mather-Thurston Theorem enables us to compute the cohomology ring of Homeo+

(
S1
)
.

Theorem 1.22. The cohomology ring of Homeo+

(
S1
)

is a polynomial ring generated by

the Euler class e ∈ H2
(
Homeo+

(
S1
)
,Z
)

H•
(

Homeo+

(
S1
)δ
,Z
)

= H•
(
Homeo+

(
S1
)
,Z
)

= Z [e] .

5. Bounded cohomology

In this section we cover the background material on bounded cohomology which we need.
As for group cohomology we will work with the homogeneous and inhomogeneous reso-
lutions and coefficients in R = R or Z. The tools we need are Gersten’s sequence and
the relations some facts about the comparison map in degree n = 2 and (homogeneous)
quasi-morphisms.

5.1. Basic definitions. Let Γ be any group. Let R be either R or Z with the trivial
Γ−module structure and the trivial norm.

Definition 1.23. The bounded homogeneous complex (C•b (Γ, R) , δ) is defined by

C•b (Γ, R) := {φ ∈ C• (Γ, R) |φ is bounded } .
The restriction of δ to C•b (Γ, R) gives the boundary map.

Analogously the bounded inhomogeneous complex
(
C
•
b (Γ, R) , δ

)
is given by

C
•
b (Γ, R) :=

{
φ ∈ C• (Γ, R) |φ is bounded

}
.

The restriction of δ to C
•
b (Γ, R) gives the boundary map.

Both the homogeneous and the inhomogeneous complexes are normed complexes when
equipped with the l∞ norm

|φ|∞ := sup
γ0,...,γn∈Γn+1

{|φ(γ0, . . . , γn)|R} if φ ∈ Cnb (Γ, R)

|ψ|∞ := sup
γ1,...,γn∈Γn

{|φ(γ1, . . . , γn)|R} if φ ∈ Cnb (Γ, R) .

With respect to these norms the boundary maps δ, δ are bounded. Moreover the morphisms
α, β defined respectively on ordinary homogeneous and inhomogeneous complexes restrict
to morphisms between the bounded complexes which are isometries when we look at the
norms.

Definition 1.24. The n−th bounded cohomology group of Γ with coefficients in R is

Hn
b (Γ, R) := Hn (C•b (Γ, R)) = Hn

(
C
•
b (Γ, R)

)
.

The infinity norms on the homogeneous and inhomogeneous complexes induce a canonical
seminorm on the bounded cohomology groups defined as follows:

||α||∞ := inf
φ∈α∈Cnb (Γ,R)

{|φ|∞} = inf
ψ∈α∈Cnb (Γ,R)

{|ψ|∞} .
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The inclusions C•b (Γ, R) −→ C• (Γ, R) and C
•
b (Γ, R) −→ C

•
(Γ, R) are morphisms of

complexes and thus induce a map on cohomology:

c : H•b (Γ, R) −→ H• (Γ, R) .

We call this map the comparison map.

5.2. Gersten’s sequence. The short exact sequence of normed trivial Γ−modules of
coefficients

0 // Z // R // R/Z // 0

gives rise to a long exact sequence in bounded cohomology called Gersten’s sequence:

. . .
δ // H i

b (Γ,Z)
j
// H i

b (Γ,R) // H i (Γ,R/Z)
δ // H i+1

b (Γ,Z) // . . .

It is easy to see that Gersten’s sequence is functorial.

5.3. Low-degree bounded cohomology and quasi-morphisms. We collect and
describe some basic facts on low-degree bounded cohomology groups Hn

b (Γ, R) as we will
make an extensive use of them later. More precisely we focus on n = 1, 2 and R = Z,R.

Degree n = 1. Since the only bounded subgroup of Z is the trivial subgroup, bounded
cohomology with R = Z,R coefficients always vanishes:

Lemma 1.25. Let Γ be any group, let R be either Z or R. Then H1
b (Γ, R) = 0.

Degree n = 2. Computing H2
b (Γ,Z) , H2

b (Γ,R) is a hard task, but we can say something
about the comparison map

c : H2
b (Γ, R) −→ H2 (Γ, R) .

Definition 1.26. A map u : Γ −→ R is a quasi-morphism if δu is bounded or, in other
words, there exists M > 0 such that

|u(α) + u(β)− u(αβ)| ≤M for every α, β ∈ Γ

(here we are making use of the inhomogeneous standard resolution of Γ). The best constant
M > 0 for which the above inequality holds is called the defect M = D(u) of the quasi-
morphism u.
We denote by Q (Γ, R) the R−module of quasi-morphisms with values in R.
A quasi-morphism u is homogeneous if

u (γn) = nu (γ) for every γ ∈ Γ.

We denote by HQ (Γ, R) the R−module of R−valued homogeneous quasi-morphisms.

Easy examples of quasi-morphisms are given by homomorphisms u ∈ Hom (Γ, R) and

bounded functions u ∈ C1
b (Γ, R).

Every quasi-morphism u ∈ Q (Γ, R) defines a class [δu] ∈ H2
b (Γ, R) in the kernel of the

comparison map c ([δu]) = 0.
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Lemma 1.27. Let Γ be any group, let R = Z,R. Then the map

Q (Γ, R)

Hom (Γ, R)⊕ C1
b (Γ, R)

−→ ker
(
c : H2

b (Γ, R) −→ H2 (Γ, R)
)

sending [u] −→ [δu] is an isomorphism.

In the case of real coefficients R = R we can refine a quasi-morphism to a homogeneous
one via a standard procedure:

Lemma 1.28. Let u ∈ Q (Γ,R) be a quasi-morphism. Then the following holds:

(1) there exists a unique homogeneous quasi-morphism u ∈ HQ (Γ,R) such that ||u− u||∞ <
∞. Explicitly u is defined by

u(γ) := lim
n→∞

u (γn)

n
.

(2) The natural map

HQ (Γ,R)

Hom (Γ,R)
−→ Q (Γ,R)

Hom (Γ,R)⊕ C1
b (Γ,R)

is an isomorphism.

6. Bounded Euler class

This section together to the next one forms the bulk of the first chapter. We define
the bounded Euler class of Homeo+

(
S1
)

and of a representation. We will see that for

Homeo+

(
S1
)

bounded cohomology injects in classical cohomology, thus the bounded Eu-

ler class of Homeo+

(
S1
)

is completely determined by the Euler class of Homeo+

(
S1
)
.

Then we prove a general criterion which allows us to recover an integral bounded coho-
mology class from the corresponding real bounded class and some other data. The main
result of this section, Matsumoto’s criterion, consists of the explicit computation of the
correspondence in the case of eZb ∈ H2

b

(
Homeo+

(
S1
)
,Z
)
. In the last part we describe

a geometric realization of the bounded Euler class and its relation with the orientation
cocycle.

6.1. Bounded Euler class of Homeo+

(
S1
)

and of a representation. Consider
the universal covering central extension

0 // Z
j
// ˜Homeo+

(
S1
) p

// Homeo+

(
S1
)

σ
nn

// 0.

We show that we can choose (not in a unique way) a section σ such that the cocycle
cσ representing the Euler class is bounded. The cocycle cσ will depend on the section
σ but it will be well-defined up to bounded coboundaries thus defining a bounded class
eb ∈ H2

b (G,Z) mapping to e ∈ H2 (G,Z) under the comparison map.
Let us fix x ∈ S1 and a lift x̃ ∈ R of x. The section σ is defined as follows: σ(f) is the
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unique lift of f such that σ(f)(x̃) ∈ [x̃, x̃+ 1). We call σ a bounded section.
It is immediate to check that

cσ(f, g) ∈ {0, 1} .
In fact

cσ(f, g) = σ(f)σ(g)σ(fg)−1y − y for any y ∈ R, since cσ(f, g) is a translation
= σ(f)σ(g)x̃− σ(fg)x̃ choosing y = σ(fg)x̃
⇒ cσ ∈ (−1, 2) since σ(f)σ(g)x̃ ∈ [x̃, x̃+ 2) and σ(fg)x̃ ∈ [x̃, x̃+ 1).

It follows that cσ ∈ {0, 1} since cσ is integral valued.
It is easy to see that different choices of x, y ∈ S1 and lifts x̃, ỹ ∈ R produce sections σx, σy
and cocycles cσx , cσy related by

cσx − cσy = δuxy

where uxy(f) = σx(f)σy(f)−1. The function uxy is bounded and satisfies |uxy| ≤ |x̃− ỹ|+1.

Definition 1.29. The bounded Euler class of Homeo+

(
S1
)

is the class eb ∈ H2
b (G,Z)

represented by cσ, where σ is any bounded section.

Let φ : Γ −→ G be any representation.

Definition 1.30. The bounded Euler class of φ is the pull-back of the bounded Euler class
of Homeo+

(
S1
)

eb(φ) := φ∗eb ∈ H2
b (Γ,Z) .

6.2. The Euler class completely determines the bounded Euler class. In order
to compare the bounded and the classical Euler classes of Homeo+

(
S1
)

we prove in this

section that the comparison map c : H2
b

(
Homeo+

(
S1
)
,Z
)
−→ H2

(
Homeo+

(
S1
)
,Z
)

is
injective. Thus there is only a bounded class mapping to the Euler class.

Lemma 1.31. Let Γ be a group, let R be either Z or R, let f ∈ HQ(Γ, R) be a homogeneous
quasi-morphism with defect D(f). Then

(1) f is conjugacy invariant: for every g, x ∈ Γ

f(gxg−1) = f(x).

(2) For every a, b ∈ Γ

|f ([a, b])| ≤ D(f).

Proof. We first prove (1). We have:∣∣f(gxg−1)− f(x)
∣∣

=
∣∣(f(gxg−1)− f(gx)− f(g−1)

)
+
(
f(gx) + f(g−1)− f(x)

)∣∣
=
∣∣(f(gxg−1)− f(gx)− f(g−1)

)
+ (f(gx)− f(g)− f(x))

∣∣
≤
∣∣f(gxg−1)− f(gx)− f(g−1)

∣∣+ |f(gx)− f(g)− f(x)|
≤ 2D(f).

In the second step we have only added and subtracted the same amount within the norm,
while in the third equality we used the fact that f(g−1) = −f(g) since f is homogeneous.
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Let us exploit again the homogeneity property together with the previous bound:∣∣f(gxg−1)− f(x)
∣∣

=
1

n

∣∣f(gxng−1)− f(xn)
∣∣ by homogeneity

≤ 2D(f)

n
by the above inequality.

Taking the limit for n→∞ we get the desired property f(gxg−1) = f(x).
The proof of (2) follows from a straightforward computation:

|f ([a, b])| =
∣∣f (aba−1b−1

)∣∣
≤
∣∣f(aba−1) + f(b−1)

∣∣+D(f)
≤
∣∣f(aba−1)− f(b)

∣∣+D(f)
= D(f).

In the last step we used the invariance property (1). �

Corollary 1.32. Let Γ be a uniformly perfect group, let R be either Z or R. Then
HQ(Γ, R) = 0 and the comparison map

cR : H2
b (Γ, R) −→ H2 (Γ, R)

is injective.

Proof. We recall that non-trivial homogeneous quasi-morphisms are unbounded, so it
is enough to show that the hypotesis of uniform perfectness of Γ implies that homogeneous
quasi-morphisms are bounded. Let N ≥ 0 be an integer such that every γ ∈ Γ is a
product of N commutators (eventually some of them are trivial). Let f ∈ HQ(Γ, R)
be a homogeneous quasi-morphism of defect D = D(f). For every γ ∈ Γ we have a

decomposition γ =
N∏
j=1

[aj , bj ] for some aj , bj ∈ Γ, so we get the estimate

|f(γ)| =

∣∣∣∣∣∣f
 N∏
j=1

[aj , bj ]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣f
N−1∏

j=1

 [aj , bj ]

∣∣∣∣∣∣+ |f ([aN , bN ])|+D(f) since f is a quasi-morphism

≤
N∑
j=1

|f ([aj , bj ])|+ (N − 1)D(f) inductively

≤ ND(f) + (N − 1)D(f) by Lemma 1.31.

In conclusion f is bounded.
In order to prove the injectivity of the comparison map in the case R = R it is enough to
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recall that there is an isomorphism (see Lemmas 1.27 and 1.28):

HQ(Γ,R)

Hom (Γ,R)

∼−→ ker
(
c : H2

b (Γ,R) −→ H2 (Γ,R)
)
.

Now we can prove injectivity of the comparison map for R = Z with a simple diagram
chasing.
Consider the following commutative diagram

H1 (Γ,R/Z) //

��

H2
b (Γ,Z)

jb //

cZ
��

H2
b (Γ,R)

cR
��

H1 (Γ,R/Z) // H2 (Γ,Z)
j
// H2 (Γ,R)

where cZ, cR are the comparison maps. We have

H1 (Γ,R/Z) = Hom (Γ,R/Z) = 0

since every homomorphism φ : Γ → R/Z factors throught the abelianization Γ
[Γ,Γ] = e

which is trivial as Γ is perfect. In particular the change of coefficients maps j, jb are both
injective. Since the comparison map cR is also injective we conclude that cZ is injective
too. �

The previous result applies to Homeo+

(
S1
)

since it is uniformly perfect with constant
N = 1 as stated in Theorem 1.3.
We sum up what we have just proved: the bounded Euler class eb is completely determined
by the Euler class. The same holds for representations ρ : Γ → Homeo+

(
S1
)

when Γ is

uniformly perfect or, more generally, when the comparison map H2
b (Γ,Z) → H2 (Γ,Z) is

injective.

6.3. Canonical Euler cocycle. We describe a canonical Euler cocycle representing
the bounded Euler class of Homeo+

(
S1
)

and of a representation φ : Γ −→ Homeo+

(
S1
)

for
an arbitrary group Γ. The next lemma makes possible to recover an integral bounded class
from the knowledge of the corresponding real bounded class and of numerical invariants
associated via the real bounded class to a set of generators for the group.

Lemma 1.33. Let Γ be a group with generators {γj}j∈I . Every class α ∈ H2
b (Γ,Z) is com-

pletely determined by j(α) ∈ H2
b (Γ,R) and

{
ξj(α) ∈ H2

b (Z,Z)
}
j∈I where j : H2

b (Γ,Z) −→
H2
b (Γ,R) is the change of coefficients map and ξ•j : H•b (Γ,Z) −→ H•b (Z,Z) is the map

induced by the homomorphism ij : Z −→ Γ sending 1 to γj.

Proof. Consider the following segment of Gersten’s sequence

H1
b (Γ,R) = 0 // H1 (Γ,R/Z) = Hom (Γ,R/Z) // H2

b (Γ,Z)
j
// H2

b (Γ,R) .

Since R/Z is abelian we have:

Hom (Γ,R/Z) = Hom

(
Γ

[Γ,Γ]
,R/Z

)
.
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The map ξ1
j : H1 (Γ,Z) = Hom (Γ,Z)→ H1 (Z,R/Z) = R/Z induced by the map ij sends a

homomorphism φ to φ(γj). Since the group Γ
[Γ,Γ] is abelian and is generated by the classes

of the γj ’s we have an embedding⊕
j∈I

ξ1
j : H1 (Γ,Z) −→

⊕
j∈I

R/Z.

Now the proof of the lemma reduces to a simple diagram chasing.
By functoriality of the Gersten’s sequence we have the following commutative diagram:

0 // H1 (Γ,R/Z)
δ //

⊕
j∈I ξ

1
j

��

H2
b (Γ,Z) //

⊕
j∈I ξ

2
j

��

H2
b (Γ,R)

⊕
j∈I

H1
b (Z,R) = 0 //

⊕
j∈I

R/Z ∼
δ

//
⊕
j∈I

H2
b (Z,Z) //

⊕
j∈I

H2
b (Z,R) = 0

where H1
b (Z,R) = H2

b (Z,R) = 0 since Z is amenable. The vertical maps are those de-
scribed above, the boundary map of the bottom row is an isomorphism by exactness.
Pick c ∈ H2

b (Γ,Z) such that j(α) = 0 and ξj(α) = 0 for every j ∈ I. We will prove that
α = 0. By exactness j(α) = 0 implies α = δφ for some φ ∈ H1 (Γ,R/Z). By commutativity

δ
(⊕

ξ1
j

)
φ =

(⊕
ξ2
j

)
δφ = 0. Finally, by injectivity of the leftmost vertical arrow and of

the middle bottom arrow we conclude that φ = 0. In conclusion α = δφ = 0. �

Let us consider the case where Γ = Homeo+

(
S1
)

=: G and α = eZb ∈ H2
b (G,Z).

We give a more explicit description of the classes eRb = j(eZb ) and ξ2
j

(
eZb
)

when we take as

a set of generators of G all possible homeomorphisms {fj}j∈I = Homeo+

(
S1
)
.

First let us discuss eRb . Let p : G̃ −→ G be the universal covering projection (where

G̃ := ˜Homeo+

(
S1
)
), and consider the following commutative diagram:

H2
b (G,R)

c //

p∗

��

H2 (G,R)

p∗

��

H2
b

(
G̃,R

)
c̃
// H2

(
G̃,R

)
where c, c̃ are respectively the comparison maps for G, G̃.

By construction the pull-back of the integral Euler class p∗e ∈ H2
(
G̃,Z

)
is trivial (by

Lemma 1.20, the homomorphism p clearly lifts to G̃ as the identity p̃ := Id
G̃

). Consequently,
by naturality of the change of coefficients, also the pull-back of the real Euler class p∗e ∈
H2
(
G̃,R

)
is trivial.

By commutativity of the diagram therefore c̃(eRb ) = 0. We recall that (Lemmas 1.27 and
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1.28)

ker(c̃) =
HQ(G̃,R)

Hom
(
G̃,R

) .
Moreover, since G̃ is perfect, we have Hom

(
G̃,R

)
= 0. In particular there exists a unique

homogeneous quasi-morphism u ∈ HQ
(
G̃,R

)
such that eRb = p∗eZb = [δu]. Let us compute

the function u : G̃→ R explicitly. Let σ : G −→ G̃ be the bounded section of p such that

σ(f)(0) ∈ [0, 1), let cσ ∈ C
2
b

(
G̃,Z

)
be the corresponding 2−cocycle representing eZb , we

have p∗eZb = [p∗cσ]. Consider the following straightforward computation where the function

u : G̃→ Z is defined by τu(h) = h−1σ(p(h)) ∈ Z

p∗cσ(f, g) = cσ(p(f), p(g))
= σ(p(f))σ(p(g))σ(p(fg))−1

=
(
fτu(f)

) (
gτu(g)

) (
fgτu(fg)

)−1

= τu(f)+u(g)−u(fg)

= δu(f, g).

We have that u is a quasi-morphism (it has bounded coboundary). Finally we find the
unique homogeneous quasi-morphism u which is at a bounded distance from u. We can
construct it as a limit (Lemma 1.28):

u(f) = lim
n→∞

u(fn)

n
.

Now we have

u(fn)

n
=
f−nσ(p(fn))(0)

n

=
f−n {fn(0)}

n
since σ(p(fn))(0) = {fn(0)}

=
f−n (fn(0)− bfn(0)c)

n
simply fn(0) = bfn(0)c+ {fn(0)}

=
f−nfn(0)− bfn(0)c

n
since f commutes with integral translations

= −bf
n(0)c
n

.

Since bfn(0)c is at a bounded distance from fn(0) we see that taking the limit as n goes
to ∞ we obtain

u(f) = − lim
n→∞

fn(0)

n
= −r̃ot(f).

In order to conclude the analysis of p∗eRb we need the following general result

Lemma 1.34. Let φ : Γ → Λ be a surjective homomorphism with amenable kernel. Then
the induced maps

φ∗ : Hn
b (Λ,R) −→ Hn

b (Γ,R)
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are isometric isomorphisms for every n ∈ N.

In particular Lemma 1.34 applies to the case of the universal covering projection p : G̃→ G

so p∗ : H2
b (G,R) → H2

b

(
G̃,R

)
is an isometric isomorphism with an inverse which we

denote by σ∗ := (p∗)−1. This gives a canonical representative for the real bounded Euler
class:

eRb = −σ∗
[
δr̃ot

]
.

Now we describe the classes ξj
(
eZb
)
.

First we observe that the boundary homomorphism δ : H1 (Z,R/Z)
∼−→ H2

b (Z,Z) is an
isomorphism, since H1

b (Z,R) = H2
b (Z,R) = 0. Consequently we have the following iden-

tifications:

H2
b (Z,Z) ' H1 (Z,R/Z) = Hom (Z,R/Z) ' R/Z.

Let us make explicit the correspondence.
Equality H1 (Z,R/Z) = Hom (Z,R/Z) simply follows from the fact that

ker
(
δ : C

1
(Z,R/Z)→ C

2
(Z,R/Z)

)
= Hom (Z,R/Z) and δC0 (Z,R/Z) = 0.

The identification Hom (Z,R/Z) ' R/Z is clear: it is the evaluation map φ→ φ(1).
Let us now analyze the boundary isomorphism δ : H1 (Z,R/Z) → H2

b (Z,Z): in order to
compute the boundary of a class α ∈ H1 (Z,R/Z) we should chase the following diagram

C
1
b (Z,R)

π //

δ
��

C
1

(Z,R/Z) // 0

0 // C
2
b (Z,Z)

i // C
2
b (Z,R)

We will proceed backwards starting from the image δα ∈ H2 (Z,Z). Let f ∈ G be a

homeomorphism, let f̃ ∈ G̃ be any lift of f , let σ : G → G̃ be the bounded section such
that σ(h)(0) ∈ [0, 1) for every h ∈ G. We have

φ∗fcσ(n,m) = cσ(fn, fm)

= σ(fn)σ(fm)σ(fn+m)−1

=
(
f̃nτu(n)

)(
f̃mτu(m)

)(
f̃n+mτu(n+m)

)−1
where τu(k) =

(
f̃
)−k

σ(fk)

= τu(n)+u(m)−u(n+m)

= δu(n,m).

Thus i(φ∗fcσ) = δu, the function u is an unbounded quasi-morphism. Let us denote by u ∈
HQ(Z,R) = Hom (Z,R) the unique homomorphism (every homogeneous quasi-morphism
on Z is a homomorphism by definition) at a bounded distance from u . We have

iφ∗fcσ = δu = δ (u− buc) + δ (buc − u) + δu

⇒ iφ∗fcσ − δ (u− buc) = δ (buc − u) + δu = −δ {u}
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where buc, {u} are respectively the integral and fractional parts of u. Observe that δu = 0
since u is a homomorphism, and that |u− buc| = |{u}| < 1 so that u − buc ∈ C1

b (Z,R).
Moreover |u− buc| ≤ |u− u| + |u− buc| < ∞ and u − buc is integral valued, therefore

u − buc ∈ C
1
b (Z,Z), and adding the boundary of buc − u does not change the bounded

cohomology class of φ∗fcσ. We are now ready to chase the diagram:

−{u} π //

δ
��

[−u(1)]

φ∗fcσ − δ (u− buc)i // −δ {u}

In conclusion
[
φ∗fcσ

]
= [u(1)] ∈ R/Z. The computation of u(1) is completely analogous to

the computation of p∗eRb we made before and leads to

φ∗fe
Z
b = [−u(1)] = −rot(f) ∈ R/Z.

Let us summarize what we have shown in a proposition:

Proposition 1.35. Let G = Homeo+

(
S1
)
. The following holds:

(1) the real bounded Euler class has a canonical representative induced by a unique

homogeneous quasi-morphism on G̃ = ˜Homeo+

(
S1
)

eRb = σ∗
[
τ := −δr̃ot

]
, τ(f, g) = r̃ot f̃ g̃ − r̃ot f̃ − r̃ot g̃.

(2) for every f the integral bounded Euler class of the representation φf : Z −→
Homeo+

(
S1
)

defined by φf (n) = fn corresponds to

eZb (φf ) = −rot(f) ∈ R/Z

under the identification R/Z δ→ H2
b (Z,Z).

Definition 1.36. The canonical Euler cocycle τ : G × G −→ is the inhomogeneous
2−cocycle defined by

τ(f, g) = r̃ot f̃ g̃ − r̃ot f̃ − r̃ot g̃.

6.4. Criteria: numerical invariants for the bounded Euler class. Exploiting
the previous results of this section we can easily prove the following criterion:

Theorem 1.37 (Matsumoto, [Mat86]). Let Γ be a group with generators {γj}j∈I , let

ρ : Γ→ Homeo+

(
S1
)

be a representation. Then φ∗eZb is completely determined by the data{
rot (ρ(γj)) for every j ∈ I
ρ∗τ as an inhomogeneous 2−cocycle

Proof. By Lemma 1.33 ρ∗eZb is completely determined from the data ρ∗eRb and ξj
(
ρ∗eZb

)
.

By Proposition 1.35 eRb =
[
τ = −δr̃ot

]
and ξj

(
ρ∗eZb

)
= φ∗ρ(γj)

eZb = −rot(ρ(γj)). �
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6.5. Homogeneous quasi-morphisms on G̃ = ˜Homeo+

(
S1
)
. The previous re-

sults are not so surprising because we have the following characterization of r̃ot:

Proposition 1.38. The space of homogeneous quasi-morphisms on G̃ is generated by r̃ot

HQ
(
G̃,R

)
= Rr̃ot.

Proof. Let u : G̃ −→ R be a non-trivial homogeneous quasi-morphism. Up to rescal-
ing we can assume u (τ1) = 1. Define v := u − r̃ot, by homogeneity v|Z⊆G̃ ≡ 0. We claim

that v induces a homogeneous quasi-morphism w on G. If this were the case then using the
fact that HQ(G,R) = 0 we would conclude that w is trivial and therefore 0 = v = u− r̃ot.

For a fixed f ∈ G we would like to define w(f) := v(f̃) for a lift f̃ ∈ G̃, so we need to
show that the definition is independent of the lift. This easily follows from the fact that
every homogeneous quasi-morphism defined on an amenable group is in fact a homomor-

phism: since Z < G̃ is central, the group 〈f̃ ,Z〉 is abelian and, in particular, amenable;

consequently v|〈f̃ ,Z〉 is a homomorphism and then v
(
f̃ τn

)
= v

(
f̃
)

+ v (τn) = v
(
f̃
)

.

Thus w is well-defined and a straightforward computation shows that w is a homogeneous
quasi-morphism. �

6.6. Geometric description of the bounded Euler class. Let us fix [0] ∈ S1 =
R/Z be a point. Let φ : Γ −→ G be any representation. Consider the orbit Γ [0]. Then
the bounded Euler class is equivalent to the complete knowledge of the cyclic ordering of
Γ [0]. Let us explain why. First we introduce a very natural 2−cocycle defined on G:

Definition 1.39. The (homogeneous) orientation cocycle Or[0] : G × G × G −→ Z is
defined as follows

Or0 (g0, g1, g2) = sgn (g0[0], g1[0], g2[0]) :=

 1 if positively oriented
−1 if negatively oriented
0 if degenerate.

.

Its inhomogeneous version Or0 : G×G −→ Z is given by

Or0 (f, g) = Or0 (1, f, fg) = sgn ([0], f [0], fg[0]) .

The G−invariance of the bounded 2−cochain Or0 is clear since every element g ∈ G pre-
serves the orientation on S1, i.e. sgn (gx, gy, gz) = sgn (x, y, z). It is also immediate to see
that Ort is an alternating cochain, i.e. if τ ∈ S3 is a transposition Or0

(
gτ(0), gτ(1), gτ(2)

)
=

−Or0 (g0, g1, g2). A straightforward computation shows that it is a cocycle. We denote by
Or :=

[
Ort
]
∈ H2

b (G,Z) the bounded cohomology class they represent.

Keeping fixed [0] ∈ S1 there is another natural bounded cochain b0 : G×G −→ Z defined
as follows

b0(f, g) :=

{
1 if f [0] 6= g[0]
0 otherwise

.

The inhomogeneous version is simply b0 : G −→ Z given by b0(f) = b0(1, f).
Now consider the representative cσ of the bounded Euler class corresponding to the bounded
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section σ : G −→ G̃ such that σ(f)(0) ∈ [0, 1). The following proposition gives the relation
between the bounded Euler class and the orientation cocycle:

Proposition 1.40. The cocycles Or0 and cσ satisfy the following relation

Or0 = −2cσ + δb0.

In particular 2eZb = −Or in H2
b (G,Z).

7. The relation of semi-conjugacy

Semi-conjugacy is a natural equivalence relation on the set of group actions on the circle
first introduced by Ghys in [Ghy01]. Unfortunately there is an issue with the original
definition concerning actions with a global fixed point. Thus many different definitions of
semi-conjugacy arose after the publication of Ghys’ paper. For a comprehensive treatment
of the subject as well as an attempt of making order among the many possible definitions of
semi-conjugacy and their relations we refer to [BFH14]. In this section we deal with two
peculiar avatars of semi-conjugacy and their properties. The main result is Ghys’ Theorem
that states the bounded Euler class is a complete invariant for the equivalence relation of
semi-conjugacy.

7.1. Definitions and properties. Let us identify S1 = R/Z and denote by π : R→
S1 the universal covering projection. We first introduce non-increasing maps of degree
1 which are needed in the definition of semi-conjugacy. The next lemma gives a list of
equivalent properties that are required in the definition of these maps:

Lemma 1.41. Let h : S1 −→ S1 be a map. The following are equivalent:

(1) there exists a map h̃ : R→ R such that

• h̃ is non-decreasing.

• h̃ commutes with integral translations τn.

• h̃ lifts h or πh̃ = hπ.
(2) for every n ≥ 3 and every cyclic ordered n−tuple x1 ≺ · · · ≺ xn on S1 the map h

preserves the cyclic order

h(x1) � · · · � h(xn).

(3) for every cyclic ordered 4−tuple x1 ≺ x2 ≺ x3 ≺ x4 on S1 the map h preserves
the cyclic order

h(x1) � h(x2) � h(x3) � h(x4).

Definition 1.42. A map h : S1 −→ S1 is said to be

• non-increasing of degree 1 or a semi-conjugacy if it satisfies the equivalent condi-
tions of Lemma 1.41.
• a monotone equivalence if it is a continuous semi-conjugacy of Brower-Hopf degree

deg(h) = 1.

Now we are ready to give the following definitions:

Definition 1.43. Representations φ, ψ : Γ −→ Homeo+

(
S1
)

are said to be
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• semi-conjugate if there are non-increasing degree 1 maps h1, h2 : S1 −→ S1 such
that for every γ ∈ Γ the following holds

h1φ(γ) = ψ(γ)h1 and φ(γ)h2 = h2ψ(γ).

It is clear that semi-conjugacy is an equivalence relation.
• φ is left-monotone equivalent to ψ if there is a monotone equivalence h : S1 −→ S1

such that for every γ ∈ Γ the following holds

φ(γ)h = hψ(γ).

Left-monotone equivalence is not an equivalence relation since it is not symmetric
(but it is reflexive and transitive). We call monotone equivalence the relation
generated by left-monotone equivalence.

The following theorem by Calegari gives a symmetric description of monotone equivalence.

Theorem 1.44 (Calegari, [Cal07]). Let φ, ψ : Γ→ Homeo+

(
S1
)

be representations. Then
φ, ψ are monotone equivalent if and only if there exists a representation ρ such that both
φ, ψ are left-monotone equivalent to ρ.

7.2. Relations between semi-conjugacy and monotone equivalence. Semi-
conjugacy and monotone equivalence give rise to the same equivalence relation.

Theorem 1.45 (Calegari [Cal07]). Let φ, ψ : Γ −→ Homeo+

(
S1
)

be representations.
Then

φ, ψ are semi-conjugate ⇐⇒ φ, ψ are monotone equivalent.

For a complete proof of this theorem we refer to the article by M. Bucher, R. Frigerio and
T. Hartnick [BFH14], we cover here the simplest cases. Sometimes it would be useful
to work with semi-conjugacies, instead in other cases, when we want to work with more
regularity, we will consider monotone equivalences. Thus, in order to freely move from one
setting to the other, it is convenient for us to describe better the relations between them.
The easiest relation between semi-conjugacies and monotone equivalences, which follows di-
rectly from the property of being non-increasing, is the fact that surjective semi-conjugacies
are automatically continuous.
For minimal actions semi-conjugacy is very well behaved:

Proposition 1.46. Let φ, ψ : Γ −→ Homeo+

(
S1
)

be minimal actions. Then

φ, ψ are semi-conjugate ⇐⇒ φ, ψ are topologically conjugate.

Proof. The non-trivial implication is (=⇒). Let h : S1 −→ S1 be a left semi-
conjugacy between φ and ψ, i.e. φh = hψ. Fix t ∈ S1, we have φ(Γ)h(t) = h (ψ(Γ)t).
Since the orbit φ(Γ)h(t) is dense and h is non-increasing, we must have h surjective and
thus h continuous. We now want to promote h to a homeomorphism, our claim is that we
already have one so we prove that h is injective. Proceed by contradiction and suppose
that h(x) = h(y) for some x 6= y. Since h is non-increasing, it has to be constant on the
arc I going from x to y, i.e. h(z) = h(x) = h(y) for every x < z < y. Consider now an
arbitrary point t ∈ S1. By minimality of ψ there is an element γ ∈ Γ such that ψ(γ)t ∈ I.
For every u ∈ ψ(γ)−1I, i.e. ψ(γ)u = v ∈ I, we have h(x) = h (v) = h (ψ(γ)u) = φ(γ)h(u).
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Hence h|ψ(γ)−1I ≡ φ(γ)−1h(x) which tells us that h is locally constant. This implies that

h is constant by connectedness of S1, but h is surjective, contradiction. �

Remark 1.47. Actually we proved more in the proposition since we have seen that every
left semi-conjugacy h between a minimal action φ and an arbitrary action ψ, i.e. φh = hψ,
is already a left monotone equivalence. It is also a topological conjugacy if we assume that
ψ is minimal too.

In some cases we can reduce an action to a minimal one via a left monotone equivalence:

Proposition 1.48. Let φ : Γ −→ Homeo+

(
S1
)

be an action. Suppose that every orbit of
φ is infinite. Then φ is right-monotone equivalent to a minimal action ψ, i.e.

ψh = hφ , h monotone equivalence.

Proof. Let Kφ be the minimal exceptional of φ. If Kφ = S1 then there is nothing
to add as φ is already minimal. Suppose Kφ ( S1, i.e. Kφ is a Cantor set by Lemma

1.6. The complement S1 \Kφ =
⋃
j∈N

Ij is a disjoint union of open intervals Ij and Γ acts

on them by permutations. If we collapse the closure Ij of Ij to a point then the quotient
space is again a circle. The action Γ y S1 induces through the quotient map an action on
the quotient space which has to be minimal by minimality of Kφ (otherwise there would
be a Γ−invariant compact set K ′φ strictly smaller than Kφ). After identifying the quotient

space with S1 we only need to observe that the quotient map is the monotone equivalence
we were looking for. �

The last regularity result we need for semi-conjugacies is the following approximation
lemma:

Lemma 1.49. Let φ, ψ : Γ −→ Homeo+

(
S1
)

be representations such that φ is left-monotone
equivalent to ψ, i.e. φh = hψ for some monotone equivalence h. Then there exists a
continuous family of homeomorphisms {ht}t∈[0,1) ⊆ G such that

htψ(γ)h−1
t −→ φ(γ)

uniformly for every γ ∈ Γ.

7.3. Ghys’ Theorem. Finally we state the fundamental result by Ghys that gives a
cohomological characterization of the relation of semi-conjugacy:

Theorem 1.50 (Ghys, [Ghy01]). Let Γ be a group and ρ1, ρ2 : Γ → Homeo+

(
S1
)

be
representations. Then

ρ1, ρ2 are semi-conjugate ⇐⇒ eb (ρ1) = eb (ρ2) ∈ H2
b (Γ,Z)

A proof of this result can be found in [BFH14].
As a corollary, using the computations of part (2) of Proposition 1.35, we recover the fact
that rotation number is a complete invariant for semi-conjugacy for homeomorphisms.

Corollary 1.51. Let f ∈ Homeo+

(
S1
)

be a homeomorphism. If rot(f) = θ then f is
semi-conjugate to ρθ.



CHAPTER 2

Representations of surface groups

1. Overview

In this chapter we focus on representations of surface groups Γ := π1(S). Our purpose is to
specialize the invariants defined in the first chapter to the surface group case and describe
some geometric objects naturally associated to a representation. Thus we first describe
the cohomology groups of surface groups and define the Euler number e(φ) ∈ Z of a rep-
resentation φ : Γ −→ Homeo+

(
S1
)
, which is a numerical invariant equivalent to the Euler

class. For every representation φ we can construct a circle bundle over the surface which
has a flat structure. Hence we will be able to attach new invariants to a representation by
looking at cohomological invariants of the associated circle bundle. The main invariant for
a circle bundle is again an Euler class. New and old invariants are related, we describe the
correspondence and incidentally give a picture of the connections between the algebraic
setting and the topological one.

The principal result of the chapter is Milnor’s Formula that explicitly computes the Euler
number of a representation as the translation number of a product of lifted commutators:

Theorem (Milnor’s Formula). Let S be a surface of genus g ≥ 2, let φ : π1 (S) →
Homeo+

(
S1
)

be a representation. Then

τe(φ) =
[
φ̃(a1), φ̃(b1)

]
. . .
[
φ̃(ag), φ̃(bg)

]
.

where φ̃(aj), φ̃(bj) are arbitrary lifts of φ(aj), φ(bj) to ˜Homeo+

(
S1
)
.

1.1. Preliminaries on surface groups. Let us recall that the fundamental group
of a closed oriented surface of genus g admits the following standard presentation:

π1(S) =

〈
a1, b1, . . . , ag, bg

∣∣∣∣∣∣
g∏
j=1

[aj , bj ] = 1

〉
We also recall that if S is a compact oriented surface of finite type with genus g and b
boundary components c1, . . . , cb, then π1(S) admits the following presentation

π1(Sg,b) =

〈
a1, b1, . . . , ag, bg, c1, . . . , cb

∣∣∣∣∣∣
g∏
j=1

[aj , bj ] · c1 . . . cb = 1

〉
.

23
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2. Surface group cohomology and Euler number

Let S be a closed surface different from the sphere S 6= S2. Since S̃ is contractible we see
that S is a K (π1(S), 1) space. In particular we get the following:

Theorem 2.1. Let S be as above, let R be either R or Z. Then the map

r : H• (π1(S),Z)
∼−→ H• (S,Z)

is an isomorphism.

Therefore

Hn (π1(S), R) ' Hn (S,R) =


R if n = 0
R2g if n = 1
R if n = 2
0 if n ≥ 3.

Definition 2.2. The Euler number of a representation φ : π1(S) −→ Homeo+

(
S1
)
, which

we also denote by e(φ) ∈ Z, is given by

e(ρ) := 〈r (φ∗e) , [S]〉

where r : H2 (π1(S),Z)
∼−→ H2 (S,Z) is the natural identification, [S] ∈ H2 (S,Z) is the

fundamental class of S and 〈•, •〉 is the duality pairing on H2 (S,R)×H2 (S,R).

In the following sections, in order to simplify the notations, we avoid writing the natural
map r when we identify H2 (π1(S),Z) with H2 (S,Z). Bounded cohomology of surface
groups is far more complicated. A description ofH2

b (π1(S),Z) is given in the article [BS84].
A result by Ghys (see [Ghy87], Theorem B) ensures that every class α ∈ H2

b (π1(S),Z)
that can be represented by a cocycle c : π1(S)× π1(S) −→ Z with values in {0, 1} can be
obtained as the bounded Euler class of some representation φ : π1(S) −→ Homeo+

(
S1
)
.

3. Circle bundles

In this section we are mainly concerned with circle bundles p : E −→ S over the surface S.
For us all circle bundles will be orientable, and their group structure will be Homeo+

(
S1
)
.

First we describe the class of flat circle bundles and classify them via the holonomy rep-
resentation which is a homomorphism π1(S) −→ Homeo+

(
S1
)
. Then we construct the

Euler class or Euler number of a circle bundle, which is the main cohomological invariant
of the bundle, and state a classification theorem.

3.1. Flat circle bundles. We consider a special class of circle bundles. Before giving
the definition we state the following equivalence:

Lemma 2.3. Let p : E −→ S be a circle bundle. The following are equivalent

(1) there exists a foliation F of the total space E which is transverse to the fibers.
(2) there exists a trivializing atlas A with locally constant transition functions.

Definition 2.4. An S1−bundle p : E −→ S is flat if it satisfies the equivalent properties
stated in Lemma 2.3.
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Like all bundles, flat bundles have the lifting property for paths and homotopies. Exploiting
the flat structure we can construct lifts which lie on a single leaf of the foliation. This gives
the following:

Proposition 2.5. Let p : E −→ S be a flat circle bundle. Fix x0 ∈ S and e0 ∈ Ex0 =
p−1(x0) as base points. Let Fe0 be the leaf passing through e0 ∈ E. The following holds

(1) for every path γ : I −→ S such that γ(0) = x0 there exists a unique lift γ̃ : I −→ E
such that γ̃(0) = e0 and γ̃(I) ⊆ Fe0.

(2) for every homotopy H : I2 −→ S such that H(0, 0) = x0 there exists a unique lift

H̃ : I2 −→ E such that H̃(0, 0) = e0 and H̃
(
I2
)
⊆ Fe0.

In particular for every leaf Fe the restriction of the projection p|Fe : Fe −→ S is a covering.

Fix x0 ∈ S a base point and identify Ex0 with S1 by trivializing the bundle near x0.
For every [γ] ∈ π1(S, x0) we can define the following map

η[γ] : Ex0 −→ Ex0 , η[γ](e) := γ̃−1
e (1)

where γ̃e is the unique lift to Fe0 ⊆ E with base point e ∈ Ex0 of the representative
γ ∈ [γ]. Uniqueness of the lifts of paths and homotopies guarantees that η[γ] is well-defined
on classes of paths with respect to homotopies with fixed endpoints. Moreover it is not
difficult to prove the following

Proposition 2.6. Let x0 ∈ S and Ex0 ' S1 as above. Then

(1) for every α, β ∈ π1(S, x0) we have ηαηβ = ηαβ.
(2) for every α ∈ π1(S, x0) we have ηα ∈ Homeo+

(
Ex0 = S1

)
.

In particular there is a well defined homomorphism

η : π1(S, x0) −→ Homeo+

(
S1
)
.

Definition 2.7. The homomorphism η : π1(S, x0) −→ Homeo+

(
S1
)

described above is
the holonomy representation of the flat circle bundle p : E −→ S.

Now we describe a general procedure to construct flat circle bundles p : Eφ −→ S with a
prescribed holonomy φ : π1(S) −→ Homeo+

(
S1
)
.

Let S be an oriented surface. Let π : S̃ −→ S be the universal covering. The fundamental

group π1(S) acts on S̃ as deck transformations and on S1 as prescribed by φ. Hence π1(S)

acts diagonally on S̃ × S1 and the action is free and properly discontinuous since it is free
and properly discontinuous on the first factor. The total space of the bundle is given by

Eφ :=
S̃ × S1

π1 (S)
where γ · (x̃, t) := (γx̃, φ(γ)t) .

The space Eφ has a natural projection p : Eφ −→ S such that p [x̃, t] := π(x̃).
The fibers are circles:

p−1(x) =
π−1(x)× S1

π1(S)
' {x̃} × S1
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choosing x̃ ∈ π−1(x). Furthermore Eφ admits a natural foliation transverse to the fibers:

F :=

{
S̃ × {t}

Stabπ1(S) (t)

}
t∈S1

.

Thus Eφ is a flat bundle by Lemma 2.3.
Finally, it is not difficult to compute the holonomy. Fix γ ∈ π1(S, x0). Let e = [x̃, t] ∈ Eφ,x0
be any point in the fiber, the leaf passing through e is Fe =

[
S̃ × {t}

]
. The unique lift

of γ−1 to E lying on Fe is precisely
[
γ̃−1
x̃ , t

]
where γ̃x̃ is the unique lift of γ to S̃ starting

from x̃. The final point γ̃x̃−1(1) = γ−1x̃, thus the final point of the lift of γ to Fe is [γx̃, t].
To understand the holonomy we have to trivialize Eφ,x0 , as before this is done by choosing
x̃0 ∈ π−1(x0). Under the identification Eφ,x0 ' {x̃0} × S1 we have

t ∈ S1 −→ [x̃0, t] ∈ Eφ,x0 −→
[
γ−1x̃0, t

]
= [x̃0, φ(γ)t] ∈ Eφ,x0 −→ φ(γ)t.

Thus ηγ = φ(γ).

Theorem 2.8. Let p : E −→ S be a flat circle bundle, let φ : π1(S) −→ Homeo+

(
S1
)

be
the holonomy representation. Then we have an isomorphism

E ' Eφ
as flat circle bundles (the isomorphism preserves fibers and leaves).

If we think of S̃ as the set of homotopy classes of paths based at a fixed basepoint x0 ∈ S
(homotopies have fixed endpoints) and trivialize the bundle E near x0 (thus we identify
Ex0 ' S1 in the trivialization), then the isomorphism Eφ ' E is induced by the map

F : S̃ × S1 −→ E , F ([γ] , t) := γ̃t(1)

where γ̃t is the unique lift of γ on the leaf Ft starting from γ̃t(0) = t ∈ Ex0 .

3.2. An obstruction class for circle bundles. The main invariant associated to an
oriented circle bundle p : E −→ S is the Euler class or Euler number e(E) ∈ H2 (S,Z) '
Z which measures the obstruction of finding a section of the bundle. We describe the
procedure to contruct the Euler class in the framework of cellular cohomology.
Let p : E −→ S be an oriented circle bundle. Suppose that S is endowed with a CW-
complex structure. First we observe that it is always possible to contruct a section over
the 1−skeleton σ : S(1) −→ E. Let e2

α be a 2−cell with attaching map ψα. The pull-back
bundle pα : ψ∗αE −→ D2

α trivializes as the base is contractible. We assign to the 2−cell e2
α

the following number

cσ
(
e2
α

)
:= deg

(
σ|∂D2

α

σα // ψ∗αE = D2
α × S1 π2 // S1

)
where σα is the section of the pull-back bundle induced on the boundary ∂D2

α by the fixed
section σ. It is an easy computation to prove that cσ : CCW2 (S,Z) −→ Z is a well-defined
2−cocycle independent of the chosen orientation preserving trivializations ψ∗αE = D2

α×S1.
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Moreover different choices of σ, σ′ : S(1) −→ E produce cocycles cσ, cσ′ that differ by a
coboundary.

Definition 2.9. The Euler class of a circle bundle p : E −→ S is the cohomology class
represented by the 2−cocycle cσ just described:

e(E) := [cσ] ∈ H2 (S,Z) .

The Euler number of E, also denoted by e(E), is the integer corresponding to the Euler
class unde the identification H2 (S,Z) ' Z.

As we stated above the Euler class classifies topologically oriented circle bundles.

Theorem 2.10. There is a natural bijection between

H2 (S,Z) ' Z←→
{

Oriented S1−bundles
p : E −→ S

}
/isomorphism.

The correspondence is given by the Euler number.

3.3. Relative Euler class. Every compact surface with non-empty boundary defor-
mation retracts to a one dimensional CW-complex, i.e. a finite graph. Since every circle
bundle over a one dimensional CW-complex trivializes (it always admit a section) we have
the following

Lemma 2.11. Every circle bundle p : E −→ S over a compact surface with non-empty
boundary ∂S 6= ∅ is trivial E ' S × S1.

Suppose that S is endowed with a CW-complex structure such that ∂S is a subcomplex.
It is possible to define a relative version for the bounded Euler class of a circle bundle
p : E −→ S over a surface with boundary (S, ∂S). In order to avoid trivialities we should
at least fix some boundary data, so let us fix a trivialization of E over the boundary given
by a section σ : ∂S −→ E. As before we first extend σ to a section over the 1−skeleton
σ : S(1) −→ E, then we define for every 2−cell eα the number cσ

(
e2
α

)
exactly like the

absolute case. It turns out that cσ is a relative 2−cocycle in C2 (S, ∂S;Z) and up to
coboundaries it is independent of the extension of σ. Thus

Definition 2.12. The relative Euler class of a circle bundle p : E −→ S is the cohomology
class represented by the 2−cocycle cσ just described:

e(E;σ) := [cσ] ∈ H2 (S, ∂S;Z) .

The relative Euler number of E, also denoted by e(E;σ), is the integer corresponding to
the Euler class under the identification H2 (S, ∂S;Z) ' Z.

There is a nice additivity property of the Euler number which we now describe. Let S be a
closed oriented surface, suppose that we decompose S as the gluing of a family of compact
subsurfaces

S =

n⋃
j=1

Sj
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along boundary components. Suppose we have chosen coherently trivializations of E along
the boundaries

⋃n
j=1 ∂Sj through sections σj . Then we have

e(E) =
n∑
j=1

e
(
E|Sj ;σj

)
.

4. Milnor’s Theorem

This section is the core of the second chapter. We prove Milnor’s Formula first in the
topological setting and then in the algebraic one.

4.1. Milnor’s Theorem: flat circle bundles. For representations of surface groups
Milnor gave an explicit and useful way to compute the Euler number. In this section we
state and prove this theorem.

Theorem 2.13 (Milnor’s Formula, [Mil58]). Let S be a surface of genus g ≥ 2, let ρ :
π1 (S)→ Homeo+

(
S1
)

be a representation. Then

τe(ρ) = [ρ̃(a1), ρ̃(b1)] . . . [ρ̃(ag), ρ̃(bg)] .

where ρ̃(aj), ρ̃(bj) are arbitrary lifts of ρ(aj), ρ(bj) to ˜Homeo+

(
S1
)
.

Proof. Let π : Eρ → S be the flat bundle associated to ρ. The total space is defined

as the quotient Eρ := S̃×S1

π1(S) with respect to the diagonal action of π1(S), while the map

π : Eρ → S is induced by the universal covering projection p : S̃ → S. By construction we

have a natural identification p∗Eρ = S̃ × S1 given by the quotient map q : S̃ × S1 → Eρ.

Let us describe S as a quotient of a fundamental 4g−agon P ⊆ S̃ with respect to the stan-
dard identifications on the edges aj , bj , a

−1
j , b−1

j which represent the standard generators

of π1(S). We endow Sg with a CW-complex structure with a single 2−cell P attached to
the 2g 1−cells {aj , bj}gj=1 with attaching map described by the word [a1, b1] . . . [ag, bg] as

in Figure 1.
A fundamental class [S] ∈ H2 (S,Z) of S is representad by the 2−cycle P in cellular
homology.
We lift the only 0−cell x0 to the point e0 = [x̃0, [0]] ∈ Eρ,x0 where x̃0 is the left vertex of
ã1 ⊆ P .
Now we describe trivializations of Eρ over the 1−singular simplices corresponding to the
1−cells. For simplicity let us describe the procedure for a1. A trivialization a∗1Eρ over the
1−singular simplex a1 : [0, 1]→ S, corresponding to the attaching map of the 1−cell a1, is
given by

(t, x)→ [ã1(t), x]

where ã1(t) is the lift of the attaching map a1 = pã1 to the universal cover S̃ with starting
point x̃0. With respect to this trivialization the points in the fibers p∗Eρ,0, p

∗Eρ,1 cor-
responding to e0 ∈ Eρ,x0 are respectively (0, [0]) , (1, ρ(a1)[0]), so we need to construct a
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Figure 1.

section over [0, 1] that connects these points. We choose the path given by

A1 : t→ (t, [tρ̃(a1)0]) .

where ρ̃(a1) is any lift of ρ(a1).
Consider now b1. As a trivialization of the bundle over the attaching map b1 : [0, 1] → S
we choose the map [0, 1]× S1 → Eρ described by

(t, x)→
[
a1b̃1(t), x

]
where, as before, b̃1 is the lift of b1 to the universal cover with starting point x̃0, while a1◦ b̃1
is the lift starting from ã1(1) = a1x̃0. We choose this lift in order to match the one defined
for a1. With respect to this trivialization e0 corresponds over 0, 1 ∈ [0, 1] respectively to
(0, φ(a1)[0]) , (1, φ(b1)φ(a1)[0]). Finally we construct the section

B1 : t→ (t, [(1− t)ρ̃(a1)0 + tρ̃(a1)ρ̃(b1)0]) .

Define analogously the sections Aj , Bj , αj , βj over the other 1−cells aj , bj , a
−1
j , b−1

j so that
they satisfy the matching property

Aj(t) := (t, [(1− t)ρ̃(a1) . . . ρ̃(bj−1)0 + tρ̃(a1) . . . ρ̃(bj−1)ρ̃(aj)0])
Bj(t) := (t, [(1− t)ρ̃(a1) . . . ρ̃(aj)0 + tρ̃(a1) . . . ρ̃(aj)ρ̃(bj)0])

αj(t) :=
(
t,
[
(1− t)ρ̃(a1) . . . ρ̃(bj)0 + tρ̃(a1) . . . ρ̃(bj)ρ̃(a−1

j )0
])

βj(t) :=
(
t,
[
(1− t)ρ̃(a1) . . . ρ̃(b−1

j )0 + tρ̃(a1) . . . ρ̃(a−1
j )ρ̃(b−1

j )0
])
.
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Consider now the attaching map of the 2−cell p : P → S. A trivialization of the bundle
p∗Eρ is induced by the quotient map

q : P × S1 → Eρ.

With respect to this trivialization the sections constructed above patch together and give

rise to the map s : ∂P → P̃ ×S1 → S1. The boundary is naturally parametrized by [0, 4g]

patching together the lifts ã1, a1b̃1, . . . ,

g∏
j=1

[aj , bj ] bg b̃
−1
g , and the section s is piecewise linear

with respect to this parametrization.
Finally we can easily compute the degree of the section s over the boundary:

deg(s) =

 g∏
j=1

[ρ̃(aj), ρ̃(bj)]

 (0) = τe(ρ)(0) = e(ρ).

�

4.2. Milnor’s Theorem: relative case. The same construction may be refined to
include boundary data. Let S = Sg,b be a compact surface with genus g and b ≥ 1
boundary components ∂S = c1 ∪ · · · ∪ cb. Denote by c1, . . . , cb ∈ π1(S) a collection of loops

representing the boundary curves in a standard presentation of π1(S). Let σ : G −→ G̃ be
an arbitrary section.

Definition 2.14. The relative Euler number of a representation φ : Γ = π1(S) −→
Homeo+

(
S1
)

with respect to the section σ : G −→ G̃ is the integer e (φ, σ) given by
the following formula

τe(ρ,σ) =
[
φ̃(a1), φ̃(b1)

]
. . .
[
φ̃(ag), φ̃(bg)

]
σ(ρ(c1)) . . . σ(ρ(cb))

where φ̃(aj), φ̃(bj) are arbitrary lifts of φ(aj), φ(bj).

We state without proof for representations of the addition formula

Theorem 2.15 (Addition Formula). Let S =
n⋃
j=1

Sj be as above a decomposition of S into

compact subsurfaces with boundary. The graph of the gluing gives identifications π1(Sj) ⊆
π1(Sg). Let ρ : π1(S) −→ Homeo+

(
S1
)

be a representation such that every boundary curve

is mapped to a homeomorphism with a fixed point. If σ : G −→ G̃ is a special section (i.e.

0 ≤ r̃ot σ(f) < 1 for every f ∈ G), then

e (ρ) =

n∑
j=1

e
(
ρ|π1(Sj), σ

)
.
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Figure 2.

4.3. Milnor’s Theorem: cohomological approach. We describe how to compute
the Euler number of a representation within a cohomological framework.
Consider a central extension

0 // Z // E // Γ // 1.

Let σ : Γ −→ E be any section, denote by cσ the inhomogeneous 2−cocycle associated to
the central extension.

Theorem 2.16 (Milnor). Let [cσ] ∈ H2 (π1(S),Z) be as above. Then under the identifica-
tions

H2 (π1(S),Z) ' H2 (S,Z) ' Z

we have

[cσ] =

g∏
j=1

[σ(aj), σ(bj)] ∈ Z.

Proof. Let us describe S as a quotient of a 4g−gon P ⊆ S̃ = R2 with respect to
standard identifications on the edges. We endow S with a ∆−complex structure as in
Figure 2 with triangles ∆1, . . . ,∆4g.

As set of representatives for the action of π1(S) on S̃ we choose

F := int(P ) ∪

 g⋃
j=1

int(aj) ∪ int(bj)

 ∪ {x0}
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where x0 is the first end of a1. Actually we will only need x0 and the interior point y0 ∈ P
(inner vertex of the ∆j ’s). A fundamental class for S in Hsing

2 (S,Z) is given by

[S] =

 4g∑
j=1

sj

 ∈ H2 (S,Z)

where sj is the attaching map of the simplex ∆j .
We want to compute

〈[cσ] , [S]〉 =

4g∑
j=1

rF (cσ) (sj).

By definition of rF (inhomogeneous case) we have

rF (cσ) (s1) = cσ

(
g−1
s1(e0)gs1(e1), g

−1
s1(e1)gs1(e2)

)
.

Looking at Figure 2 we see that for triangles ∆4j−3,∆4j−2,∆4j−1,∆4j with perimetral

edges aj , bj , a
−1
j , b−1

j we have

gs(e0) gs(e1) gs(e2)

∆4j−3 1 wj wjaj
∆4j−2 1 wjaj wjajbj
∆4j−1 1 wjajbj wjajbja

−1
j

∆4j 1 wjajbja
−1
j wj+1

where wj ∈ π1(S) is the word wj :=
∏
i≤j−1

[ai, bi] with the convention w1 := 1 (in the table

we dropped the index from s(e0), s(e1), s(e2) to simplify the notations).
Thus

rF (cσ) (∆4j−3 + ∆4j−2 + ∆4j−1 + ∆4j)

= cσ (wj , aj) + cσ (wjaj , bj) + cσ

(
wjajbj , a

−1
j

)
+ cσ

(
wjajbja

−1
j , b−1

j

)
=
(
σ(wj)σ(aj)σ(wjaj)

−1
)
·
(
σ(wjaj)σ(bj)σ(wjajbj)

−1
)
·
(
σ(wjajbj)σ(a−1

j )σ(wjajbja
−1
j )−1

)
·
(
σ(wjajbja

−1
j )σ(b−1

j )σ(wj+1)−1
)

= σ(wj)σ(aj)σ(bj)σ(a−1
j )σ(b−1

j )σ(wj+1)−1.

Thus evaluating 〈rF (cσ) , [S]〉 we get something like a telescopic sum

〈rF (cσ) , [S]〉 =

g∑
j=1

rF (cσ) (∆4j−3 + ∆4j−2 + ∆4j−1 + ∆4j)

=

g∏
j=1

σ(wj)σ(aj)σ(bj)σ(a−1
j )σ(b−1

j )σ(wj+1)−1

=

g∏
j=1

σ(aj)σ(bj)σ(a−1
j )σ(b−1

j ).
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5. Correspondence between Euler classes of extensions and bundles

In this section we describe the correspondence between circle bundles, central extensions
and Euler numbers. Every circle bundle

S1 i // E
p
// S

gives rise to a fibration sequence (after fixing base points x0 ∈ S and e0 ∈ Ex0)

0 = π2(S, x0) // π1(S1, e0) = Z // π1(E, e0) // π1(S, x0) // 0.

where π2(S, x0) = 0 since the universal covering S̃ is contractible.
This exact sequence of groups is also central.

Lemma 2.17. Let S1 i // E
p
// S be as above. Then the extension of π1(S)

0 // π1(S1, e0) // π1(E, e0) // π1(S, x0) // 0

is central.

Proof. Let σ : π1(S) −→ π1(E) be any section.
We need to show that the action of π1(S) on π1(S1) is trivial. First let us recall the
definition of the action of π1(S) on i

(
π1(S1)

)
: for every γ ∈ π1(S) and α ∈ π1(S1) set

i (γ · α) := σ(γ)i(α)σ(γ)−1.

Fix γ ∈ π1(S) and represent it as a loop γ :
(
S1, t0

)
−→ (S, x0). Represent a section σ(γ) as

a lifted loop σ(γ) :
(
S1, t0

)
−→ (E, e0); also represent α as a loop α :

(
S1, t0

)
−→ (Ex0 , e0),

so that α projects to the identity of π1(S, x0).

We observe that the loops σ(γ), α correspond to sections σ(γ), α of the pull-back

(γ∗E, e0)
g
//

π
��

(E, e0)

p

��(
S1, t0

)
γ
// (S, x0)

moreover, if we call g the bundle map covering γ, we see that

σ(γ), α ∈ π1 (γ∗E, e0)
g∗
// σ(γ), α ∈ π1 (E, e0) .

The total space of γ∗E bundle is topologically a torus, in particular it has abelian funda-
mental group π1 (γ∗E, e0) = Z2, hence we conclude

σ(γ)ασ(γ)−1 = g∗

(
σ(γ)ασ(γ)

−1
)

= g∗ (α) = α.

�
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Lemma 2.18. The Euler number of the central extension π1(E, e0) coincides with the Euler
number of the circle bundle E.

Proof. To see this fact let us endow S with a standard CW-structure with a single
0−cell x0 ∈ S, 2g 1−cells a1, b1, . . . , ag, bg and a single 2−cell e with boundary attaching
map given by [a1, b1] . . . [ag, bg]. Let σ : π1(S) −→ π1(E) be any section, denote by cσ the
associated 2−cocycle.
Let us compute the Euler number of E. By definition we first have to choose a lift of x0

to E, so let us fix e0 ∈ Ex0 as a base point. Then we should fix sections over the 1−cells,
but this is exactly the same as choosing sections of the generators aj , bj ∈ π1(S, x0) to
π1(E, e0) with respect to the projection p∗ : π1(E, e0) −→ π1(S, x0). Thus we can choose
σ(aj), σ(bj). Finally the Euler number is given by the degree of the composition of the

attaching map of e ∂D2 −→ S(1) with the section over the 1−skeleton, which we also
denote by σ : S(1) −→ E, and the projection to the fiber. This is precisely the number

g∏
j=1

[σ(aj), σ(bj)] ∈ π1(S, e0).

Now the result follows from the computation given by Milnor’s Theorem 2.16. �

Thus we have the following commutative diagram of equivalences

H2 (Γ,Z)

r
��

oo // Central extensions

H2 (S,Z) oo // Oriented S1−bundles.

OO

6. Some constructions of surface groups actions on S1

In this final section we present some natural ways for producing surface group actions on
S1 from topology and geometry. We also give some explicit examples.

6.1. Hyperbolic structures. The most important example for us comes from hyper-
bolic geometry. Let S be a closed oriented surface of genus g ≥ 2. Every hyperbolic metric
on S gives rise to a

(
H2, Isom+

(
H2
))

complete structure over S (in the sense of Thurston’s

(G,X)−structures). In particular we get a developing map δ : S̃ −→ H2 and the corre-
sponding holonomy representation φ : π1(S) −→ Isom+

(
H2
)

= PSL (2,R) < Diff+

(
∂H2

)
.

6.2. Foliated circle bundles. Another way to produce representations of surface
groups into Homeo+

(
S1
)

from topology is provided by circle bundle as we explained before.
In general it is not so easy to produce a transverse foliation on a circle bundle and moreover
there is no reason for the foliation to be unique (up to a suitable notion of equivalence of flat
foliated circle bundles). However the following result by Wood [Woo71] which generalizes
a theorem by Milnor [Mil58] gives a necessary and sufficient condition for a circle bundle
to admit a flat structure:
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Theorem 2.19 (Wood, [Woo71]). Let S be a closed oriented surface of genus g ≥ 2. Let
p : E −→ S be an oriented circle bundle with group structure Homeo+

(
S1
)
. The following

are equivalent:

(1) The Euler number satisfies |e(E)| ≤ −χ(S) = 2g − 2.
(2) The circle bundle admits a flat structure.

We will prove later the implication “flat =⇒ |e(E)| ≤ χ(S)”. For a detailed proof of the
converse statement we refer to Wood’s article [Woo71], later we present a proof based
upon a theorem by Eisenbud-Hirsch-Neumann (see Theorem 2.22). Constructing a circle
bundle with a given Euler number is rather easy:

Example 2.20. Let S be a closed oriented surface. Let ∆ ⊆ S be an embedded disk,
denote by Σ := S \ int (∆) the complement of ∆. Consider the trivial bundles Σ× S1 and
∆ × S1. We want to glue them along the boundary tori in a non-trivial way with a map
φ : ∂Σ×S1 −→ ∂∆×S1 which is an isomorphism of bundles over ∂Σ = ∂∆. Since we glued
the bundles along an isomorphism of bundles the resulting object E = Σ × S1 ∪φ ∆ × S1

has again a natural circle bundle structure over the gluing of the bases S = Σ ∪∆.
The map φ has necessarily the following form φ (x, θ) = (x, f(x, θ)). Fix θ ∈ S1 = R/Z.
The canonical section σ : Σ −→ Σ × S1 defined by σ(x) = (x, θ) gives a section of the
bundle ∆×S1|∂∆ via the identification φ. This section is defined by φ−1σ. Thus the Euler
number of E is computed by

e (E) = e (E|S , σ) + e (E|∆, σ) = e (E|∆, σ)

= deg

(
∂∆

σ // ∆× S1 φ−1

// ∂Σ× S1 // S1

)
= deg

(
f (•, θ) : ∂∆ −→ S1

)
.

It is clear that we can realize every integral value n ∈ Z with this procedure. It is enough
to consider the family of maps fn (x, θ) = [nx+ θ] ∈ S1 = R/Z.

Remark 2.21. Every circle bundle p : E −→ S can be constructed with the procedure of
Example 2.20: in fact E = E1 ∪ E2 = E|∆ ∪φ E|Σ=S\int(∆) for an embedded disk ∆ ⊆ S
where E1, E2 are glued along a bundle isomorphism of φ : ∂E1 −→ ∂E2 (we see ∂Ei as
a bundle over ∂∆). The bundles E1, E2 are trivial as ∆ is contractilble and Σ deforms
to a one dimensional complex. Thus the argument used in the previous example can be
adapted to give a proof of the classification Theorem 2.10.

6.3. A Theorem by Eisenbud-Hirsch-Neumann. The next theorem by Eisenbud-
Hirsch-Neumann [EHN81] provides another abstract way to produce surface group repre-
sentations into Homeo+

(
S1
)
:

Theorem 2.22 (Eisenbud-Hirsch-Neumann [EHN81]). Let f ∈ G̃ be a homeomorphism.
The following are equivalent:

(1) f can be written as a product of N commutators.
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(2) the following holds

m(f) := inf
x∈R
{f(x)− x} < 2N − 1 and m(f) := sup

x∈R
{f(x)− x} > 1− 2N.

Remark 2.23. Observe that Theorem 2.22 is stronger than uniform perfectness of Homeo+

(
S1
)

(Theorem 1.32). In fact for every f ∈ Homeo+

(
S1
)

there exists a lift f̃ ∈ ˜Homeo+

(
S1
)

such that f̃(0) ∈ [0, 1). In particular m
(
f̃
)
≤ f̃(0) − 0 < 1 and m

(
f̃
)
≥ f̃(0) − 0 > −1.

Hence, by Theorem 2.22, we get f̃ =
[
ã, b̃
]

for some ã, b̃ ∈ ˜Homeo+

(
S1
)
. In conclusion

f = [a, b] where a, b are respectively the projections of ã, b̃ to Homeo+

(
S1
)
.

An easy computation shows the following:

Lemma 2.24. Let f ∈ G̃ be a homeomorphism. Then there exists a point t ∈ R such that
f(t) = t+ r̃ot(f). In particular

m(f) ≤ r̃ot(f) and m(f) ≥ r̃ot(f).

We use the theorem to make some examples:

Example 2.25. For every integer e ∈ Z such that |e| ≤ 2g−2 there exists a representation
φ : π1(S) −→ Homeo+

(
S1
)

with Euler number e(φ) = e. In fact the integral translation τe
satisfies m (τe) = m (τe) = e, and hence, by Theorem 2.22, it can be written as a product

of g commutators τe =
[
ã1, b̃1

]
. . .
[
ãg, b̃g

]
where ãj , b̃j ∈ ˜Homeo+

(
S1
)
.

Remark 2.26. The previous example together with Theorem 2.10 gives a proof of The-
orem 2.19. Suppose we are given an oriented circle bundle p : E −→ S of Euoler num-
ber |e := e(E)| ≤ 2g − 2. By Example 2.25 we can find a representation φ : π1(S) −→
Homeo+

(
S1
)

with Euler number e(φ) = e. By Milnor’s Formula 2.13 also the associated
flat bundle q : Eφ −→ S has Euler number equal to e (Eφ) = e. Thus by Theorem 2.10 we
can find an isomorphism of oriented circle bundles Eφ ' E. This transport the foliation F
transverse to the fibers of Eφ to a foliation with the same property for E.

Example 2.27. Consider 2g − 2 homeomorphisms a1, b1, . . . , ag−1, bg−1 ∈ ˜Homeo+

(
S1
)
.

Form the product f := [a1, b1] . . . [ag−1, bg−1] ∈ ˜Homeo+

(
S1
)

and compute r̃ot(f) = e−1+

α where e− 1 := br̃ot(f)c ∈ Z and α :=
{

r̃ot(f)
}
∈ [0, 1) are respectively the integral and

fractional part of r̃ot(f). Suppose that α > 0 and consider the homeomorphism τef
−1. We

have r̃ot
(
τef
−1
)

= r̃ot (τe)− r̃ot(f) = 1− α ∈ (0, 1), in particular m(τef
−1) ≥ 1− α > −1

and m(τef
−1) ≤ 1−α < 1. Therefore by Theorem 2.22 we can write τef

−1 = [ag, bg]. This
gives a representation φ : π1(S) −→ Homeo+

(
S1
)

where the rotation numbers rot(aj) and
rot(bj) are prescribed for every j ≤ g− 1. Actually we observe that the same result can be
obtained using only the uniform perfectness property of Homeo+

(
S1
)
.

Example 2.28. The same procedure used in Example 2.27 can be used to produce a

representation φ : π1(S) −→ Homeo+

(
S1
)

where the quantities r̃ot
[
φ̃(aj), φ̃(bj)

]
attain

presecribed values for every j ≤ g − 1. It is enough to observe that for every α ∈ [−1, 1]
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there is a pair a, b ∈ ˜Homeo+

(
S1
)

that realizes r̃ot [a, b] = α. This follows again from
Theorem 2.22 and Lemma 2.24.





CHAPTER 3

Milnor-Wood and maximality

1. Overview

This chapter is entirely devoted to the relations between maximality and rigidity.
A fundamental theorem by Milnor and Wood gives bounds on the possible values of the
Euler number of a representation

Theorem (Milnor-Wood inequality). Let S be a closed oriented surface of genus g ≥ 2.
Let ρ : π1(S)→ Homeo+

(
S1
)

be a representation. Then

|e (ρ)| ≤ 2g − 2.

The inequality is sharp and the upper bound is realized by the holonomies of hyperbolic
structures over S. A representation φ : Γ := π1(S) −→ Homeo+

(
S1
)

is called maximal
if its Euler number attains the maximal value allowed by the Milnor-Wood inequality. A
classical theorem by Goldman states that maximal representations φ : Γ −→ PSL (2,R)
are faithful and have discrete image. This is a far reaching result and has given impulse
to the field of Higher Teichmüller Theory. Goldman’s Theorem has many proofs involving
very different tecniques, we will describe an elementary one due to Matsumoto.
Maximality forces some rigidity phenomena on the dynamics of the action, in particular
on some lifts of commutators and on rotation numbers of generators. It turns out that the
knowledge of maximality of a representation is sufficient to determine its bounded Euler
class, thus we will prove the following rigidity theorem:

Theorem (Matsumoto). All maximal PSL (2,R)−representations are semi-conjugate.

We also describe an important trick exploiting the fact that maximality is preserved when
passing to finite index subgroups: using a theorem by Scott we will be able to reduce the
proof of an assertion on every element γ ∈ Γ to the particular case where γ = a1 is a
standard generator.

2. Milnor-Wood inequality

Using the results on the translation numbers of commutators given in part (2) of Lemma
1.31 we can give a simple proof of the following fundamental inequality:

Theorem 3.1 (Milnor-Wood inequality). Let S be a closed oriented surface of genus g ≥ 2.
Let ρ : π1(S)→ Homeo+

(
S1
)

be a representation. Then

|e (ρ)| ≤ 2g − 2.

39



40 Milnor-Wood and maximality

Proof. We have the following chain of inequalities

|e (ρ)| =

∣∣∣∣∣∣r̃ot

 g∏
j=1

[ρ̃(aj), ρ̃(bj)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣r̃ot

g−1∏
j=1

[ρ̃(aj), ρ̃(bj)]

+ r̃ot [ρ̃(ag), ρ̃(bg)]

∣∣∣∣∣∣ in fact

g−1∏
j=1

[ρ̃(aj), ρ̃(bj)], [ρ̃(ag), ρ̃(bg)] commute

≤
g∑
j=1

∣∣∣r̃ot [ρ̃(aj), ρ̃(bj)]
∣∣∣+ g − 2 r̃ot quasi-morphism, defect D

(
r̃ot
)

= 1

≤ 2g − 2 by Lemma 1.31
∣∣∣r̃ot [ρ̃(aj), ρ̃(bj)]

∣∣∣ ≤ 1.

We observe that χ(S) = 2− 2g. �

Motivated by this result we give the following definition:

Definition 3.2. A representation ρ : π1(S)→ Homeo+

(
S1
)

is maximal if e (ρ) = |χ(S)|.
We state a relative version of the Milnor-Wood inequality:

Theorem 3.3 (Relative Milnor-Wood inequality). Let S be a compact oriented surface of
genus g ≥ 0 with b ≥ 1 boundary components c1, . . . , cb. Let ρ : π1(S) → Homeo+

(
S1
)

be
a representation such that ρ(ci) has a fixed point for every i ≤ b. If σ is a special section

(i.e. 0 ≤ r̃ot σ(f) < 1 for every f ∈ Homeo+

(
S1
)
) then

|e (ρ, σ)| ≤ 2g + b− 2.

Proof. The computation is completely analogous to the previous one

|e (ρ) , σ| =

∣∣∣∣∣∣r̃ot

 g∏
j=1

[ρ̃(aj), ρ̃(bj)]σ(ρ(c1)) . . . σ(ρ(cb))

∣∣∣∣∣∣
=

∣∣∣∣∣∣r̃ot

 g∏
j=1

[ρ̃(aj), ρ̃(bj)] ·
b−1∏
i=1

σ(ρ(ci))

+ r̃ot σ(ρ(cb))

∣∣∣∣∣∣
≤

g∑
j=1

∣∣∣r̃ot [ρ̃(aj), ρ̃(bj)]
∣∣∣+

b∑
i=1

r̃ot σ(ρ(ci)) + g + b− 2

≤ 2g + b− 2.

In the last step we used that σ(ρ(ci)) has a fixed point for every i ≤ b as σ is a special
section. We observe that χ(S) = 2− 2g − b. �

2.1. Holonomies of hyperbolic structures are maximal. The prominent exam-
ple of a maximal action comes from hyperbolic geometry. Let S be a hyperbolic surface.
We can identify S with the surface S = H2/Γ through the isometry induced by a developing

map δ : S̃ −→ H2. The subgroup Γ < PSL (2,R) is discrete and acts freely on H2. We can
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identify Γ with φ (π1(S)) where φ : π1(S) −→ PSL (2,R) = Isom+

(
H2
)

is the holonomy
representation corresponding to the developing map δ.

Proposition 3.4. Let S be a closed oriented surface of genus g ≥ 2. Let φ : π1(S) −→
PSL (2,R) be the holonomy of a hyperbolic structure. Then

e (φ) = χ(S) = 2− 2g.

Proof. We compute the Euler number of the associated flat bundle p : Eφ −→ S. Let

us identify S̃ with H2 and S1 with ∂H2. Thus

Eφ = H2 × ∂H2/π1(S)

where γ ∈ π1(S) acts on H2 as the isometry φ(γ) and on ∂H2 as the extension of φ(γ) to
the boundary. Consider the unit tangent bundle T1H2. We have a natural action of π1(S)
on T1H2 induced by taking the differential of the action π1(S) y H2, i.e. the element γ
acts as γ ·v := dφ(γ)π(v)v where π : T1H2 −→ H2 is the tangent bundle projection. Observe

that we have a natural identification dp : T1H2/π1(S) −→ T1S induced by the universal
covering projection p : H2 −→ S. If we think of ∂H2 as the set of classes of arc-lenght
parametrized geodesic rays up to asymptotic equivalence, then we have a natural map

F : T1H2 −→ H2 × ∂H2

defined by F (v) :=
(
π(v),

[
expπ(v)(tv)

])
. It is easy to check that F is indeed a well-

defined isomorphism of bundles. Moreover F is π1(S)− equivariant since an easy compu-
tation shows that π

(
dφ(γ)π(v)v

)
= φ(γ)π(v) and using the fact that φ(γ) is an isometry

expφ(γ)π(v)

(
dφ(γ)π(v)(tv)

)
= φ(γ) expπ(v)(tv) (as we described it, the element γ acts on ∂H2

by γ · [a(t)] := [φ(γ)a(t)]). By equivariance F induces an isomorphism of circle bundles

T1S = T1H2/π1(S)
∼−→ Eφ.

Now the result follows from the standard computation of e (T1S) carried out via Poincaré-
Hopf Theorem. �

A classical theorem by Goldman ensures that maximality is the only obstruction for being
the holonomy of some hyperbolic structure on S.

Theorem (Goldman,[GUoC80]). Let φ : Γ −→ PSL (2,R) be a representation. Then

φ is faithful with discrete image ⇐⇒ |e(φ)| = 2g − 2.

We will prove this theorem later.

3. Maximality and coverings

We study now some operations that preserve maximality.
The first one regards finite coverings:

Lemma 3.5. Let ρ : π1(S) → Homeo+

(
S1
)

be a maximal representation with e (ρ) =
|χ(S)|. Let p : S′ → S be a finite covering. Then the composition ρ′ = ρp∗ : π1(S′) →
Homeo+

(
S1
)

is maximal, i.e. e (ρ′) = |χ(S′)|, where p∗ : π1(S′) → π1(S) is the inclusion
of the subgroup π1(S′) corresponding to the covering.
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Proof. The proof is a straightforward formal computation. We have

e (ρ′) = 〈(p∗)∗ ρ∗e, [S′]〉
= 〈ρ∗e, p∗[S′]〉
= 〈ρ∗e, d[S]〉 = −dχ(S)
= −χ(S′)

so ρ′ is maximal. �

More generally maximality passes to subgroups with some care about boundary conditions.
Let F < π1(S) be a finitely generated subgroup. Let p : X → S be the covering
corresponding to the conjugacy class of F in π1(S). By a Scott’s Theorem [] we can
find a finite covering S → S and a compact π1−injective surface Σ ⊆ S such that
π1(Σ) = F ⊆ π1(S). The natural embedding j : Σ→ X lifts along the covering p : X → S
since j∗π1(Σ) = p∗π1(X) = F ⊆ π1(S)

X

p
��

Σ
j
//

f
??

S.

The map f : Σ→ X is an embedding which induces an isomorphism f∗ : π1(Σ)→ π1(X),
in particular f(Σ) ⊆ X is a homotopy equivalence and X deformation retracts to f(Σ).
Consider a maximal representation ρ : π1(S) → Homeo+

(
S1
)

and assume that ρ(c) has
a fixed point for every c ∈ π1(S). Later we will see that this assumption is redundant
as every maximal representation enjoys this property. Since maximality passes to finite
coverings, also the induced representation ρ := ρ|π1(S) : π1(S)→ Homeo+

(
S1
)

is maximal.

Cutting S along the boundary of Σ ⊆ S gives a decomposition

S = Σ ∪
n⋃
j=1

Sj , χ(S) = χ(Σ) +
n∑
j=1

χ(Sj).

Let σ be a special section. By the Addition Formula 2.15 we get

e (ρ) = e
(
ρ|π1(Σ), σ

)
+

n∑
j=1

e
(
ρ|π1(Sj), σ

)
.

Since ρ is maximal also ρ|π1(Sj) and ρ|π1(Σ) are maximal or, in other words,∣∣∣e(ρ|π1(Sj), σ
)∣∣∣ = |χ(Sj)|

∣∣e (ρ|π1(Σ), σ
)∣∣ = |χ(Σ)| = |χ(X)| .

Lemma 3.6. Let ρ : π1(S) −→ Homeo+

(
S1
)

be a maximal representation such that ρ(c)
has a fixed point for every c ∈ π1(S). Let F < π1(S) be a finitely generated subgroup
corresponding to a covering p : X −→ S. Then ρ|F is maximal or

|e (ρ, σ)| = |χ(X)|

where σ : G −→ G̃ is a special section.
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4. Dynamics of maximal representations

Proposition 3.7. Let S be a surface of genus g. The following hold:

(1) if ρ is maximal, i.e. e (ρ) = 2g − 2, then

r̃ot [ρ̃(aj), ρ̃(bj)] = 1.

(2) suppose that k | 2g − 2, let ρ be a representation which k−covers a maximal

representation, then e (ρ) = 2g−2
k and

r̃ot [ρ̃(aj), ρ̃(bj)] =
1

k
.

Proof. We first prove (1). Let ρ be a maximal representation. We have

2g − 2 = r̃ot

 g∏
j=1

[ρ̃(aj), ρ̃(bj)]


= r̃ot

g−1∏
j=1

[ρ̃(aj), ρ̃(bj)]

+ r̃ot [ρ̃(ag), ρ̃(bg)] as

g−1∏
j=1

[aj , bj ], [ag, bg] commute in π1(S)

≤
g∑
j=1

r̃ot [ρ̃(aj), ρ̃(bj)] + g − 2 r̃ot is a quasi-morphism with defect D
(

r̃ot
)

= 1

⇒
g∑
j=1

r̃ot [ρ̃(aj), ρ̃(bj)] ≥ g.

Since
∣∣∣r̃ot [ρ̃(aj), ρ̃(bj)]

∣∣∣ ≤ 1 for every j ≤ g by Lemma 1.31, we conclude that r̃ot [ρ̃(aj), ρ̃(bj)] =

1. Now we prove (2). Let ρ be a representation which k−covers a maximal representation.

The equalities follow formally from the previous case. Denote by G(k) := Homeo
(k)
+ (S1) the

degree k cover of G := Homeo+

(
S1
)

which we identify with the group of homeomorphisms

of S1 which commute with the rotation rk of angle 1
k

π1(S)
ψ

##

ρ

%%

φ

��

G(k) j
//

pk
��

G

G

By assumption ρ factors throughG(k), i.e. ρ = jψ, and φ = pkψ is a maximal representation
where pk is the covering and j : G(k) → G is the natural inclusion.
We first prove that e (ρ) = 2g−2

k . Since

eu (ρ) = ρ∗e = ψ∗j∗e , e (φ) = φ∗e = ψ∗p∗ke
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it is enough to show that kj∗e = p∗ke. Observe that the lifts of pk(f) ∈ G to the uni-

versal cover G̃ are precisely of the form ck(f̃) where ck is the conjugation induced by the

multiplication by k ∈ N, and f̃ is some lift of f to G̃, explicitly

ck

(
f̃
)

(x) = kf̃
(x
k

)
.

We prove this assertion. Denote by πk : R/Z → R/Z the covering projection of degree k
such that πk[x] = [kx]. By definition, the induced map pk(f) evaluated at [x] ∈ R/Z is
defined as πkf [y] where πk[y] = x. Choosing y = x

k we recover pk(f)[x] =
[
kf
[
x
k

]]
∈ R/Z.

It is now straightforward to prove that the lifts of pk(f) to the universal cover π : R→ R/Z
are precisely those of the form ck

(
f̃
)

where f̃ is a lift of f .

Fix a section σ : G→ G̃, we get

σ(pk(f)) = ck(σ(f))τn(f) , n : G(k) → Z.

The section σ defines a cocycle e = [cσ]. Finally we get

p∗kcσ (f, g)
= σ(pk(f))σ(pk(gf))−1σ(pk(g))
= ck

(
σ(f)σ(gf)−1σ(g)

)
τn(f)+n(g)−n(gf)

= kσ(f)σ(gf)−1σ(g)τδn(f,g)

= kj∗cσ (f, g) + δn(f, g)
⇒ kj∗e = p∗ke.

This concludes the computation of e (ρ).

We remark that if we had chosen the section σ : G −→ G̃ such that σ(f)(0) ∈ [0, 1) then
the same argument above would have proved that kj∗eZb = p∗ke

Z
b . This follows from the

fact that the function n : G(k) → Z is bounded with the special choice of σ. In particular
we get the more general result

keZb (ρ) = eZb (φ) .

We prove that r̃ot [ρ̃(aj), ρ̃(bj)] = 1
k . We have that φ̃(aj) = ck (ρ̃(aj)) and φ̃(bj) = ck (ρ̃(bj))

for some ρ̃(aj), ρ̃(bj) so we get

1 = r̃ot
[
φ̃(aj), φ̃(bj)

]
by maximality of φ

= r̃ot [ck (ρ̃(aj)) , ck (ρ̃(bj))] by the above argument

= r̃ot ck ([ρ̃(aj), ρ̃(bj)]) since ck is a homomorphism

= k r̃ot [ρ̃(aj), ρ̃(bj)] by a straightforward computation.

�

Corollary 3.8. Let S be a surface of genus g, and ρ : π1(S) → Homeo+

(
S1
)

be a
representation. Then the following hold

(1) if ρ is maximal, then rot(c) = 0 for every c ∈ π1(S).
(2) if ρ k−covers a maximal representation, then rot(c) = mc

k for every c ∈ π1(S).
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Proof. We prove (1). Let ρ be maximal. By Proposition 3.7 we have r̃ot
[
ãj , b̃j

]
= 1.

Suppose by contradiction that rot(aj) 6= 0 and choose a lift ãj such that 0 < r̃ot ãj < 1.

Choose arbitrary the lift b̃j . By the conjugacy invariance and homogeneity properties of

r̃ot we have r̃ot b̃j ã
−1
j b̃−1

j = r̃ot ã−1
j = −r̃ot ãj < 0. In particular b̃j ã

−1
j b̃−1

j x < x for every
x ∈ R. Hence we get [

ãj , b̃j

]
x = ãj b̃j ã

−1
j b̃−1

j x < ãjx.

The last inequality implies r̃ot
[
ãj , b̃j

]
< r̃ot ãj < 1, a contradiction.

So if c ∈ {a1, b1, . . . , ag, bg} is a standard generator then we are done. In general we observe
that for every loop c ∈ π1(S) there is a finite cover p : S′ → S along which c lifts to a loop
which is represented by a non separating simple curve c′ by Scott’s Theorem 3.9 (see below).
The covering p : S′ → Sg corresponds to a finite index subgroup p∗ : π1(S′) → π1(S), say
d := [π1(S) : p∗π1(S′)], and p∗[c

′] = [c]. Call ρ′ = ρp∗ the induced representation of π1(S′).
By Lemma 3.5 ρ′ is maximal.
Since every non separating simple closed curve can be completed to a standard generating
set for π1(S′) we can use the same argument of the previous point and conclude by the
above computations that rot(c) = 0.
The proof of (2) is now straightforward. Assume that ρ k−covers a maximal representation.
Then by (1) every homeomorphism pkρ(c) has vanishing rotation number and therefore
has a fixed point. Any homeomorphism that k−covers a homeomorphism with fixed points
has a periodic orbit of period k. �

Scott’s Theorem can be stated in the following form

Theorem 3.9 (Scott, [Sco78]). Let S be a surface. Let F < π1(S) be a finitely generated
subgroup. Let γ ∈ π1(S) \ F be an element outside F . Then there exists a finite covering
p : S′ −→ S such that

(i) F < p∗π1 (S′) and γ 6∈ p∗π1 (S′);
(ii) the lift of F to π1 (S′) is the fundamental group of an incompressible surface X ⊆ S′,

i.e. (p∗)
−1 (F )π1 (S′) = π1 (X).

Remark 3.10. We observe that the scheme of the proof of Corollary 3.8 can be gen-
eralized to this fact: if maximality implies a certain property for every ρ(c) where c ∈
{a1, b1, . . . , ag, bg} is a standard generator then maximality implies the same property for
every loop c ∈ π1(S). This follows from Scott’s Theorem 3.9 and from the fact that max-
imality is preserved when passing to finite coverings. Every loop c ∈ π1(S) lifts to a loop
which is represented by some simple closed non separating curve in some finite degree
covering p : S′ → S and the induced representation ρp∗ is again maximal.

Remark 3.11. Corollary 3.8 is already enough to prove that all maximal PSL (2,R) rep-
resentations are semi-conjugate. We will prove this fact later in Theorem 4.18.

4.1. Maximal representations avoid tame elements. As in the remark another
interesting property is being tame:
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Definition 3.12. A homeomorphism f ∈ ˜Homeo+

(
S1
)

is tame if there is an integer n ∈ Z
such that

n ≤ f(x)− x ≤ n+ 1

Remark 3.13. Every non-tame element f ∈ ˜Homeo+

(
S1
)

has at least an unstable fixed
point and a stable fixed point. The elements of PSL (2,R) with this property are precisely
the hyperbolic ones.

The following proposition witnesses that maximal representations into Homeo+

(
S1
)

are
similar to hyperbolic representations:

Proposition 3.14. Let ρ be a maximal representation. Then for every non-trivial c ∈
π1(S) \ {1} the homeomorphism ρ(c) is not tame.

Proof. As before (see Remark 3.10) it is enough to prove the corollary for all genera-
tors in {a1, b1, . . . , ag, bg}; for notation sake let us call a := ρ̃(a1), b := ρ̃(b1) (these are the
preferred lifts of ρ(a1), ρ(b1)) and c = ba−1b−1.
Suppose by contradiction that a is tame. By our choice of the lifts the following hold

0 ≤ a(x)− x ≤ 1 − 1 ≤ a−1(x)− x ≤ 0;

then conjugating by b we get from the second inequality −1 ≤ c(x) − x ≤ 0. Consider
ac = [a, b]. We have the inequalities

ac(x)− x ≤ a(x)− x ≤ 1 since a is increasing and c(x) ≤ x
ac(x)− x ≥ a(x− 1)− x ≥ −1 since a is increasing and c(x) ≥ x− 1.

The inequalities −1 ≤ ac(x) − x ≤ 1 are strict: let us consider ac(x) − x ≤ 1, looking at
the intermediate steps above we observe that, in order to achieve equality, we should have
ba−1b−1(x) = c(x) = x and a(x) = x+ 1 or, equivalently, ab−1(x) = b−1(x), a(x) = x+ 1.
This cannot occur since otherwise we can find y = b−1(x) + k ∈ R (with k ∈ Z) such that
x < y < x+ 1 and a(y) = y which gives x+ 1 = a(x) < a(y) = y < x+ 1. Analogously we
exclude the equality case ac(x)− x = −1.

In conclusion −1 < [a, b] (x) − x < 1 which implies
∣∣∣r̃ot [a, b]

∣∣∣ < 1, and this contradicts

maximality by Proposition 3.7. �

4.2. Goldman’s Theorem. The previous discussion allows to recover Goldman’s
Theorem (the proof is due to Matsumoto in [Mat87]):

Theorem 3.15 (Goldman). Let φ : Γ −→ PSL (2,R) be a representation. If e(φ) = 2g− 2
then φ is faithful and has discrete image.

Before giving the proof let us state the following fact about subgroups of PSL (2,R) con-
taining only hyperbolic isometries:

Proposition 3.16. Let Λ < PSL (2,R) be a subgroup. Suppose that Λ does not fix any
point on ∂H2 and contains only hyperbolic isometries. Then Λ is discrete.

For a proof of the proposition see [Rat13]. Now we prove the theorem:
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Proof. Proposition 3.14 implies that φ is injective since Id ∈ PSL (2,R) is tame. It
also implies by Remark 3.13 that for every non-trivial γ ∈ Γ \ {1} the homeomorphism
φ(γ) ∈ PSL (2,R) is a hyperbolic motion. We observe that since e(φ) = 2g − 2 6= 0 the
subgroup φ (Γ) < PSL (2,R) does not fix any point on ∂H2. Thus by Proposition 3.16 the
subgroup φ (Γ) < PSL (2,R) is discrete. �

5. Bounded Euler class of a maximal representation

We compute the canonical Euler cocycle ρ∗τ described in Proposition 1.35 representing
the real bounded Euler class for a maximal PSL (2,R) representation ρ of Γ := π1(S). In
particular we show that it is possible to define ρ∗τ in terms of the topology of S.
Let us recall the definition of τ : G×G −→ R:

f, g ∈ Homeo+

(
S1
)

τ (f, g) = r̃ot f̃ g̃ − r̃ot f̃ − r̃ot g̃

where f̃ , g̃ ∈ ˜Homeo+

(
S1
)

are arbitrary lifts of f, g. We have σ∗
[
τ = −δr̃ot

]
= eRb ∈

H2
b (G,R) where σ∗ = (p∗)−1 and p : G̃ −→ G is the universal covering projection.

We remark that τ is a well defined continuous conjugacy invariant function on G × G.

Moreover it is symmetric since for every f, g ∈ G̃ we have

r̃ot fg = r̃ot g(fg)g−1 = r̃ot gf.

5.1. Subgroups of π1(S). Let S be a surface of genus g ≥ 2 and let γ ∈ Γ :=
π1(S) \ {e} be a non-trivial loop. Let us fix a complete hyperbolic metric on S which
corresponds to a (conjugacy class of) discrete subgroup Γ ⊆ PSL(2,R) which acts freely
on H2. Under this identification the loop γ ∈ Γ corresponds to a hyperbolic isometry
γ ∈ PSL(2,R) = Isom+

(
H2
)

which has an axis that ends on ∂H2 = S1 with two fixed
points.

Definition 3.17. Let a, b ∈ π1(S) be two loops. Consider the axes of the corresponding
hyperbolic isometries a, b ∈ PSL (2,R). We say that

• a, b have intersecting axes if the axes of the hyperbolic motions intersect.
• a, b have disjoint axes if the axes of the hyperbolic motions are disjoint.

Remark 3.18. We observe that this definition can be equivalently stated in terms of the
possible cyclic orderings of the four fixed points of a, b on the boundary ∂H2. Since semi-
conjugacies (weakly) preserve the cyclic ordering on the boundary we see that the notion
is well defined up to semi-conjugacy.

This definition does not depend on the particular geometry we put on S. As we will
see having disjoint or intersecting axes may be characterized in purely topological terms
looking at the covering p : X −→ S corresponding to the conjugacy class of the subgroup
〈a, b〉 < π1(S).
A classical theorem about hyperbolic surfaces ensures that there are only a few possibilities
for the topological type of X.

Theorem 3.19. Let S be surface with finitely generated fundamental group π1(S). Then
S is a surface of finite type.
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One can prove this theorem by means of Morse Theory.

Corollary 3.20. Let Γ = 〈α, β〉 < PSL (2,R) be a non-trivial torsion free discrete sub-
group. Let X = H2/Γ be the quotient surface. Then X is either a cylinder, a punctured
torus or a pair of pants.

Proof. Since π1(X) = Γ is finitely generated, by Theorem 3.19 we have X = Sg,p
where g denotes the genus and p denotes the number of punctures. Consider H1 (X,Z) =

Γ
[Γ,Γ] . Necessarily p > 1 otherwise we would have a closed oriented surface Sg with 2g =

rank H1 (Sg,Z) = rank H1 (X,Z) ≤ 2. This is possible only if g = 1, hence X is a torus, but
no torus supports a hyperbolic structure by Gauss-Bonnet Theorem. Thus Γ = π1 (Sg,p)
is a free group and X is not closed. If Γ is infinite cyclic, i.e. Γ = Zγ, generated by a
hyperbolic or parabolic isometry γ then X is either a hyperbolic cylinder or a hyperbolic
cusp (in both cases X = S0,2). If Γ is a free group of rank Γ = 2 then we have χ (X) = −1,
hence X = S0,3 is a pair of pants or X = S1,1 is a punctured torus. �

Now we give a description of the possible cases in terms of the generators of Γ.

Proposition 3.21. Let S be a hyperbolic surface. Let α, β ∈ π1(S)\{e}, let F = 〈α, β〉 be
the subgroup they generate, and let p : X → Sg the covering corresponding to the conjugacy
class of F < π1(S), so that Γ = π1(X). We have the following cases

(1) if α, β have the same axes then Γ = Z and X is a cylinder.
(2) if α, β have disjoint axes then Γ = F2 and X is a pair of pants.
(3) if α, β have intersecting axes then Γ = F2 and X is a punctured torus.

Proof. By Corollary 3.20 the space X can be a cylinder, a punctured torus or a pair of
pants. Suppose that X is a cylinder. Then Γ = π1(X) = Z is an abelian discrete subgroup
of hyperbolic isometries of PSL (2,R). It is well known that two commuting hyperbolic
isometries in a discrete subgroup have the same axes.
Suppose that X is a punctured torus. Since 〈α, β〉 = Γ = π1(X) we have that [α], [β]
generate H1 (X,Z) = Z2. Since the cup product is non trivial on the first group of coho-
mology with compact support H1

c (X,Z) we see that the intersection product [α] · [β] 6= 0
is non trivial. Hence every pair of curves in the free homotopy classes of α, β intersect. In
particular the geodesic representatives of α and β intersect, but this means exactly that
the axes of α and β intersect.
Suppose that X is a pair of pants. Assume by contradiction that the closed geodesics rep-
resenting the free homotopy classes of α, β intersect. Lift them to transversely intersecting
geodesic lα, lβ of H2. For the next constructions we refer to Figure 1. Call p = lα ∩ lβ
the intersection point. Let A1, A2 ∈ lα be points which are symmetric with respect to P
and such that α(A1) = A2. Choose B1, B2 ∈ lβ with the analogous property β(B1) = B2.
Consider the unique lines r1, r2 ⊆ H2 which are orthogonal to lα in A1, A2 respectively.
Define the lines t1, t2 ⊆ H2 in an analogous way for lβ.
We claim that the lines r1 and t1 do not intersect. Assume the contrary, let Q1 = r1 ∩ t1
be the intersection point. By the symmetry of the configuration with respect to the lines
lα, lβ we have
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• the lines t1, r2 intersect in the point β(Q1) = t1 ∩ r2.
• the lines t2, r1 intersect in the point α(Q1) = t1 ∩ r2.
• the lines t2, r2 intersect in a point Q2 = t1 ∩ r2.

Again by symmetry we have Q2 = αβ(Q1) = βα(Q1). Hence [α, β]Q1 = Q1, and the
isometry [α, β] ∈ Γ is elliptic. Since Γ = π1(X) does not contain elliptics we should have
[α, β] = e, but this contraddicts the fact that Γ is free nonabelian. Therefore the four
lines r1, r2, t1, t2 are pairwise disjoint. Denote by R the region delimited by those lines
containing the point P = lα ∩ lβ. It is not difficult to prove that R is a fundamental
domain for Γ and R/Γ is a punctured torus. The last assertion produces the contradiction
since we assumed that X is a pair of pants. �

Remark 3.22. We can distinguish the pair of pants case from the punctured torus case by
non-trivialities of cup products in compactly supported cohomology. Unfortunately trivi-
ality of the algebraic intersection is not enough to prove that the geodesic representatives
of α, β do not intersect in the case of a pair of pants.

Corollary 3.23. Let S be a surface. Let α, β ∈ π1(S)\{e} be non-trivial loops. Then the
property of having intersecting or disjoint axes for α, β does not depend on the particular
hyperbolic structure used.
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Since we have characterized the property of having intersecting or disjoint axes for α, β in
terms of the cyclic ordering of the four points on ∂H2 corresponding to the fixed points
of the hyperbolic motions, Corollary 3.23 gives the first evidence that the holonomies of
hyperbolic structures are all semi-conjugate to each other.

Using the characterization given by Proposition 3.21 we will be able to describe the dy-
namics of maximal actions in purely topological terms. Let us fix a hyperbolic structure
on S corresponding to the holonomy representation ρ : π1(S) −→ PSL (2,R). We study in
detail the three possible cases of Proposition 3.21. In what follows we have to deal with
surfaces with punctures Sg,p. Since Sg,p deformation retracts onto a compact surface Sg,b
with b = p boundary components we will call a loop γ ∈ π1 (Sg,p) boundary curve if its free
homotopy class is represented by a boundary curve in Sg,b.

5.2. Hyperbolic cylinder. Suppose that α, β ∈ π1(S) generate an infinite cyclic
group F = 〈α, β〉 = Z that corresponds to a covering p : X −→ S where X is a cylinder.
Then ρ|∗F eRb = 0 because F is amenable. In particular ρ|∗F τ = 0. Thus we have

Lemma 3.24. If α, β ∈ π1(S) \ {e} have the same axes or equivalently generate an infinite
cyclic subgroup 〈α, β〉 = Z that corresponds to a cover p : X −→ S where X is a cylinder,
then

ρ∗τ(α, β) = 0.

Remark 3.25. Lemma 3.24 holds for every maximal representation ρ whether it has image
contained in PSL (2,R) or not.

5.3. Hyperbolic punctured torus. Suppose that α, β ∈ π1(S) generate a free group
F = 〈α, β〉 = F2 that corresponds to a cover X → S where X is a punctured torus. Then
α, β have intersecting axes and the fixed points of the hyperbolic motions ρ(α), ρ(β) divide
∂H2 into four arcs. Consider the arc I ⊆ H2 delimited by the attractive fixed points of
α, β. If we lift I to I ′ ⊆ R and ρ(α), ρ(β) to ρ̃(α), ρ̃(β) in such a way that both lifts have
fixed points (and in particular they fix the extrema of I ′), then we have ρ̃(α)I ′ ⊆ I ′ and
ρ̃(β)I ′ ⊆ I ′ (the extrema of I ′ are attractive). In particular ρ̃(α)ρ̃(β)I ′ ⊆ I ′ which implies
that ρ̃(α)ρ̃(β) has a fixed point in I ′. Hence we have

Lemma 3.26. If α, β ∈ π1(S) \ {e} have intersecting axes or equivalently generate a free
subgroup 〈α, β〉 = F2 that corresponds to a cover p : X −→ S where X is a punctured torus,
then

ρ∗τ(α, β) = 0.

Suppose now that the lifts of the loops α, β ∈ π1(S) to X are such that the free homotopy
class of [α, β] ∈ π1(X) is represented by the boundary curve of X. Since ρ is maximal and
ρ(c) has a fixed point for every c ∈ π1(S) also ρ|F is maximal, i.e. e (ρ|F , σ) = −χ(X),
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where σ : G −→ G̃ is a special section such that 0 ≤ r̃ot σ(f) < 1. Hence

−1 = e (ρ, σ)

= r̃ot [σ(ρ(α)), σ(ρ(β))]σ ([ρ(β), ρ(α)])

= r̃ot [σ(ρ(α)), σ(ρ(β))] + r̃ot σ ([ρ(β), ρ(α)]) since [σ(ρ(α)), σ(ρ(β))]σ ([ρ(β), ρ(α)]) = τ−1

= r̃ot [σ(ρ(α)), σ(ρ(β))] by assumption r̃ot σ ([ρ(β), ρ(α)]) = 0.

5.4. Hyperbolic pair of pants. Suppose that α, β ∈ π1(S) generate a free group
F = 〈α, β〉 = F2 that corresponds to a cover X → S where X is a pair of pants. Let
us consider for a moment the case where the geodesics in the free homotopy classes of
a, b ∈ π1(X) represent boundary curves with the orientation matching the orientation of
X. Let γ ∈ π1(X) be a loop representing the third boundary curve. From the relative
Milnor’s Formula ?? for the Euler number we get

e (ρ, σ) = r̃ot ρ̃(α)ρ̃(β)ρ̃(γ)

where ρ̃(α), ρ̃(β), ρ̃(γ) are lifts of ρ(α), ρ(β), ρ(γ) such that r̃ot ρ̃(α) = r̃ot ρ̃(β) = r̃ot ρ̃(γ) =
0. In particular, by Lemma 3.6 and maximality of ρ, we have

−1 = e (ρ, σ)

= r̃ot ρ̃(α)ρ̃(β)ρ̃(γ)

= r̃ot ρ̃(α)ρ̃(β) + r̃ot ρ̃(γ) since ρ̃(α)ρ̃(β)ρ̃(γ) = τ−1

= r̃ot ρ̃(α)ρ̃(β) by assumption r̃ot ρ̃(γ) = 0
= τ (ρ(α), ρ(β)) .

Not every choice of generators for π1(X) produces a pair of geodesics representing boundary
components. Consider the axes lα, lβ of ρ(α), ρ(β) ∈ PSL (2,R), they are disjoint by
Proposition 3.21. Their extrema, the fixed points of ρ(α), ρ(β), divide the boundary ∂H2

into four arcs (see Figure 2, where every A denotes an attractive fixed point, while every
R indicates a repelling one).



52 Milnor-Wood and maximality

Figure 3.

If the attractive fixed points are adiacent then we can adopt the same argument used for
hyperbolic cylinders to show that

ρ∗τ(α, β) = r̃ot ρ̃(α)ρ̃(β) = 0.

Otherwise we can assume, up to replacing α, β with α−1, β−1 which changes the sign to the
canonical Euler cocycle τ(α, β) = −τ(α−1, β−1), that we have the configuration described
by Figure 2 in the center. For notation sake α := ρ(α) and β := ρ(β). Let s ⊆ H2 be
the unique line orthogonal to both lα, lβ. Denote the intersection points of s with lα, lβ
respectively by Pα := s ∩ lα and Pβ := s ∩ lβ. As in Proposition 3.21 choose A1, A2 ∈ lα
and B1, B2 ∈ lβ in a symmetric position with respect to Pα, Pβ and such that α(A1) = A2

and β(B1) = B2. Let r1, r2 and t1, t2 be the lines orthogonal to lα, lβ respectively in
A1, A2 and B1, B2. Discreteness of F ensures that the four lines r1, r2, t1, t2 are disjoint
just like in Proposition 3.21 (argue by contradiction and find an elliptic element in F using
symmetries). Thus we have two possible configurations as in Figure 3.
Suppose we have the configuration on the left. Then the region R bounded by the four lines
r1, r2, t1, t2 is the fundamental domain for the action F y H2. The quotient R/F is a pair
of pants and the geodesics representing α, β are simple closed curves representing boundary
components that match the orientation of X. These geodesics are freely homotopic to a, b.
Thus we are in the first special case we depicted and

r̃ot ρ̃(a)ρ̃(b) = e (ρ|F , σ) = −1.

Suppose now we have the configuration on the right. Let us take a closer look at the
dynamics of ρ̃(a) and ρ̃(b). Consider the points x1, x2, y1, y2, z1, z2, w1, w2 as in Figure 4
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on the right and lift them to R in such a way that

x̃1 < w̃1 < z̃1 < ỹ1 < ỹ2 < z̃2 < w̃2 < x̃2 < x̃1 + 1.

Then we have

x̃1
ρ̃(a)
// ỹ1

ρ̃(b)
// ρ̃(b)ỹ1 ≥ w̃1 ≥ x̃1.

x̃2
ρ̃(a)
// ỹ2

ρ̃(b)
// ρ̃(b)ỹ2 ≤ w̃2 ≤ x̃2.

Thus on one hand ρ̃(a)ρ̃(b)x1 ≥ x1 tells us r̃ot ρ̃(a)ρ̃(b) ≥ 0. On the other hand ρ̃(a)ρ̃(b)x2 ≤
x2 implies that r̃ot ρ̃(a)ρ̃(b) ≤ 0. Therefore

ρ∗τ(a, b) = r̃ot ρ̃(a)ρ̃(b) = 0.

Lemma 3.27. If α, β ∈ π1(S)\{e} have disjoint axes or equivalently generate a free subgroup
〈α, β〉 = F2 that corresponds to a cover p : X −→ S where X is a punctured torus, then we
have the following three cases:

(1) If α, β are freely homotopic to boundary curves and their orientation matches the
orientation of the boundary (α, β positively oriented), then ρ∗τ(α, β) = 1.

(2) If α, β are freely homotopic to boundary curves and their orientation matches the
opposite orientation of the boundary (α, β negatively oriented), then ρ∗τ(α, β) =
−1.

(3) Otherwise ρ∗τ(α, β) = 0.
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5.5. Canonical maximal integral Euler cocycle. Consider α, β ∈ π1(S) and the
subgroup F = 〈α, β〉 they generate. Let p : X → S be the covering corresponding to F .
We define

θ(α, β) =

 +1 if X is a pair of pants and α, β are positively oriented
−1 if X is a pair of pants and α, β are negatively oriented
0 otherwise

Lemmas 3.24, 3.26 and 3.27 together allow us to prove the following.

Proposition 3.28. Let ρ : π1(S)→ PSL (2,R) be a maximal representation. Then

ρ∗τ = θ.

Proof. If ρ is maximal then by Lemma 3.8 ρ(γ) has a fixed point for every element
γ ∈ π1(S). Choose special lifts ρ̃(γ) of ρ(γ) that have fixed points. With such choices the
canonical Euler cocycle is computed by

ρ∗τ (α, β) = r̃ot ρ̃(α)ρ̃(β)− r̃ot ρ̃(α)− r̃ot ρ̃(β) = r̃ot ρ̃(α)ρ̃(β) ∈ {0,±1}
By Proposition 3.21 the subgroup F = 〈α, β〉 ⊆ π1(S) is trivial {e}, cyclic Z or free
F2. In this last case let us denote by X → S the covering corresponding to F . By the
computations of the previous sections we deduce the following

• case F = {e}. It is clear that r̃ot ρ̃(α)ρ̃(β) = 0.

• case F = Z. By Lemma 3.24 we have ρ∗τ(α, β) = r̃ot ρ̃(α)ρ̃(β) = 0.
• case F = F2 and X is a punctured torus. By Lemma 3.26 we have ρ∗τ(α, β) =

r̃ot ρ̃(α)ρ̃(β) = 0.
• case F = F2 and X is a pair of pants. By Lemma 3.27 if α, β do not lift to loops

freely homotopic to boundary curves which match the orientation of X or the
opposite one then we have ρ∗ (α, β) = r̃ot ρ̃(α)ρ̃(β) = 0. In the remaining cases

ρ∗τ (α, β) = r̃ot ρ̃(α)ρ̃(β) = ±1 where the sign depends on the orientation.

�



CHAPTER 4

Space of representations

1. Overview

In this chapter we introduce the space of representations Rep (Γ) and the character space
Rep (G). The topology of this space is not well understood, it is not even known if its con-
nected components are finitely many or infinitely many or if the space is locally connected.
We use Matsumoto’s description of the bounded Euler class in terms of the rotation num-
bers of generators and the canonical Euler cocycle to give coordinates for the character
space or at least a finite dimensional approximation of it. We also introduce other useful
natural functionals on the space of representations like the Euler number and translation
numbers of lifted commutators. In the last part we come back to rigidity, we define the
class of locally stable representations, give criteria for local stability and prove that the
class is non-empty.

Henceforth Γ := π1(S) where S is a closed oriented surface of genus g ≥ 2.

2. The Lie group case PSL(k) (2,R)

In this section we present known results about the Lie group case, i.e. representations
into PSL(k) (2,R). This section should provide some motivations and insight also in the
topological case of our interest. Let us mention that the vast subject of Higher Teichmüller
Theory, whose description goes far beyond our purposes, prompted from the results we
are going to describe and is greatly indebted to the work of Goldman (see [GUoC80],
[Gol88], [Gol84],[Gol09]).

2.1. Representation variety. Let us consider the set of representations

Hom (Γ,PSL (2,R)) .

We can give this set, the representation variety, many different structures.
First we can identify it with the algebraic subset

Hom (Γ,PSL (2,R)) =

(A1, B1, . . . , Ag, Bg) ∈ PSL (2,R)2g

∣∣∣∣∣∣
g∏
j=1

[Aj , Bj ] = I

 ⊆ G2g.

In particular it has the structure of a manifold near every point that is regular for the com-
mutator function. In general there will be many singular points, for example (I, I, . . . , I, I) ∈
G2g. We can also put on Hom (Γ,PSL (2,R)) the structure of a quasi-projective algebraic
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variety over R (the space is precisely the set of the real points of this variety).
Thinking of geometric structures it is natural to identify representations that are conjugate.
Thus it is also interesting to consider the character variety

Hom (Γ,PSL (2,R)) /PSL (2,R)

where PSL (2,R) acts on the representation variety by conjugation. Also this quotient can
be identified with the set of real points of a quasi-projective real algebraic variety.

2.2. Trace coordinates. It is natural to ask for a parametrization of the character
variety. There are some easy conjugacy invariant functionals defined on the representation
variety: they are trace functions trγ(φ) := tr (φ(γ)).
If we consider representations Z −→ SL (2,R) then trace functions are already sufficient
to determine the conjugacy class of non-trivial elements. It is a highly non-trivial result
that trace functions generates the ring of polynomial invariant functions on the character
variety (see [Gol09]).

2.3. Connected components. An important functional defined on the representa-
tion variety is given by the Euler number. It is continuous with respect to the strong
topology and thus it is constant on the connected components. It turns out that the Euler
number almost distinguishes the connected components of the representation variety. In
fact we have the following theorem by Goldman :

Theorem 4.1 (Goldman [Gol88]). The connected components of Hom
(

Γ,PSL(k) (2,R)
)

have the following description:

• if k - 2g − 2 then e−1(n) is a connected component for every |n| ≤
⌊

2g−2
k

⌋
;

• if k | 2g− 2 then there are 2k2g connected components on which the Euler number

attains the value ±2g−2
k . Furthermore they are distinguished by the 2g−tuple of

rotation numbers of a standard set of generators of Γ.

3. The topological case Homeo+

(
S1
)

Now we work in the topological setting.

3.1. Definition and topology. Let us begin with a definition:

Definition 4.2. The space of representations of Γ into G := Homeo+

(
S1
)

is the set

Rep (Γ) := Hom
(
Γ,Homeo+

(
S1
))
.

We give to Rep (Γ) a topology as follows: for any choice of a representation φ ∈ Rep (Γ),
a positive ε > 0 and a finite set of elements F = {γ1, . . . , γn} ⊆ Γ define

U (φ, ε, F ) :=

{
ψ ∈ Rep (Γ)

∣∣∣∣ d∞ (ψ(γ), φ(γ)) < ε
for every γ ∈ F

}
.

The collection

{U (φ, ε, F )}ε>0,F⊆Γ finite
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forms a fundamental system of neighborhoods of φ for a topology on the representation
space Rep (Γ). Given representations {φn}n∈N and φ we have the following characterization
of the convergence with respect to the topology of Rep (Γ):

φn
Rep−→ φ⇐⇒ φn(γ)

d∞−→ φ(γ) in G for every γ ∈ Γ.

If we fix a set of generators {γi}i∈I for Γ it is easy to prove that

φn(γ)
d∞−→ φ(γ) in G for every γ ∈ Γ⇐⇒ φn(γi)

d∞−→ φ(γi) in G for every i ∈ I
using the continuity of d∞ and of the product operation on G.
The definition of Rep (Γ) given above has the advantage of being intrinsic. For compu-
tational purposes it will be more convenient to introduce the following description which
relies on the choice of a set of generators for Γ. We have the following embedding result.

Lemma 4.3. Let {γ1, . . . , γn} ⊆ Γ be a finite set of generators. Then the map

J : Rep (Γ) −→ Gn , J(φ) := (φ(γ1), . . . , φ(γn))

is an embedding. If we choose standard generators a1, b1, . . . , ag, bg for Γ then the image of
J coincides with the subspace(A1, B1, . . . , Ag, Bg) ∈ G2g

∣∣∣∣∣∣
g∏
j=1

[Aj , Bj ] = Id

 .

3.2. Character space. The group G acts on Rep (Γ) by conjugation. If we were
interested in topological conjugacy classes we should have studied the quotient Rep (Γ) /G.
Instead we will consider the quotient Rep (G) of Rep (Γ) with respect to the relation of
semi-conjugacy which is a space less fine with respect to Rep (Γ) /G, but is much more well
behaved.

Definition 4.4. The character space of semi-conjugacy classes is defined by

Rep (G) := Rep (Γ)

/
φ ∼ ψ

⇐⇒ φ semi-conjugate to ψ
.

4. Coordinates

Let us discuss some interesting natural functionals defined on Rep (Γ).

4.1. Rotation numbers and bounded cocycles. The most important functionals
for our purposes are rotation numbers and bounded cocycles. They have the role of natural
coordinates on the character space.

Definition 4.5. For every γ ∈ Γ define the function

rotγ : Rep (Γ) −→ R/Z , rotγ(φ) := rot (φ(γ)) .

Fix an auxiliary section σ : G −→ G̃. For every α, β ∈ Γ define the function

τα,β : Rep (Γ) −→ R , τα,β(φ) := r̃ot σ(φ(α))σ(φ(β))− r̃ot σ(φ(α))− r̃ot σ(φ(β)).
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We have already observed that τα,β is independent of the section σ.
The first important property of these functionals is continuity:

Lemma 4.6. The functionals rotγ and τα,β are continuous for every α, β, γ ∈ Γ.

Proof. It is an easy check that rotγ is continuous since it is the composition of contin-
uous maps: rotγ = rot ◦ vγ where vγ : Rep (Γ) −→ G is the evaluation map vγ(φ) := φ(γ),
and rot : G −→ R/Z is the rotation number.
Let us prove that τα,β is continuous. Fix φ ∈ Rep (Γ). Let vα, vβ be the evaluation maps
of α, β. Let Uα, Uβ ⊆ G be simply connected neighborhoods of vα(φ), vβ(φ) such that

we can define a continuous section σ : Uα ∪ Uβ −→ G̃. By continuity of evaluations
we can find a neighborhood W of φ such that vα(W ) ⊆ Uα and vβ(W ) ⊆ Uβ. Then

τα,β = r̃ot σ(vα(•))σ(vβ(•)) − r̃ot σ(vα(•)) − r̃ot σ(vβ(•)) is clearly well-defined and con-
tinuous on W . �

Theorems 1.50 and 1.37 guarantee that the functionals rotγ and τα,β pass to the quotient
space being constant on the equivalence classes. Moreover it says that the map

S : Rep (G) −→ (R/Z)2g × RΓ×Γ

defined by sending a class Xφ to its invariants(
rota1(φ), rotb1(φ), . . . rotag(φ), rotbg(φ)

)
∈ (R/Z)2g , {τα,β(φ)}α,β∈Γ ∈ RΓ×Γ

is continuous and injective (we put on RΓ×Γ the weak topology which makes continuous
the finite dimensional projections).

4.2. Euler number. Another important functional on Rep (Γ) is given by the Euler
number map which we now define.

Definition 4.7. The Euler number function

e : Rep (Γ) −→ Z

is the map assigning to φ its Euler number e(φ) := 〈φ∗e, [S]〉.
Again it is easy to prove continuity using Milnor’s formula:

Lemma 4.8. The functional e is continuous.

Proof. Let σ : G −→ G̃ be an auxiliary section. For every a, b ∈ Γ the element
[σ(a), σ(b)] does not depend on the particular choice of σ. As before we can choose locally
on φ continuous determinations of σ(va(•)), σ(vb(•)). Thus it is clear that the function
[σ(va(•)), σ(vb(•))] is continuous.
By Milnor’s Theorem 2.13 we have

e(φ) = r̃ot

 g∏
j=1

[σ(φ(aj), σ(bj)]

 .

From this formula we see that e is the composition of continuous functions. �
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Since e : Rep (Γ) −→ R is continuous but attains values only in a discrete set, it has to be
constant on the connected components of the representation space.

4.3. Translation numbers of lifted commutators. The following functionals will
play a prominent role in the next sections. Recall that there is a well-defined continuous
lifted commutator function

L : G×G −→ G̃

sending L (f, g) :=
[
f̃ , g̃
]

where f̃ , g̃ are arbitrary lifts of f, g.

If S is a closed surface of genus g ≥ 2 and φ : Γ := π1(S) −→ G is any representation, then
we recall that by Milnor’s Formula 2.13 the Euler number is computed by

e(φ) = r̃ot

 g∏
j=1

[
φ̃(aj), φ̃(bj)

]
where {a1, b1, . . . , ag, bg} is a standard set of generators for π1(S). For every j ≤ g define

cj(φ) :=
[
φ̃(aj), φ̃(bj)

]
. We have

e(φ) = r̃ot (c1(φ) . . . cg(φ))

= r̃ot cg(φ) (c1(φ) . . . cg(φ)) c−1
g (φ) = r̃ot (cg(φ)c1(φ) . . . cg−1(φ))

= . . .

= r̃ot cj (cj+1(φ) . . . cj(φ)) c−1
j = r̃ot (cj(φ)cj+1(φ) . . . cj−1(φ))

= r̃ot cj(φ) + r̃ot (cj+1(φ) . . . cj−1(φ)) .

We give a name to the summands:

Definition 4.9. The j−commutator traslation number function is defined by

rj : Rep (Γ) −→ R , rj(φ) := r̃ot cj(φ).

Definition 4.10. The j−complement translation number function is defined by

Rj : Rep (Γ) −→ R , Rj(φ) := r̃ot (cj+1(φ) . . . cj−1(φ)) .

With these notations e = Rj + rj for every j.
These functionals are continuous as they are compositions of continuous functions.

5. Topology of semi-conjugacy classes

Let φ ∈ Rep (Γ) be a representation. We denote by

Xφ :=

{
ψ ∈ Rep (Γ)

∣∣∣∣ ψ semi-conjugate to φ
ψh1 = h1φ , h2ψ = φh2

}
⊆ Rep (Γ)

the semi-conjugacy class of φ.

We describe some general properties of these subspaces.

Lemma 4.11. The subspace Xφ is path-connected.
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Proof. Let ψ ∈ Xφ be a representation. By Calegari’s Theorem 1.44 and Theorem
1.45 there exists ρ ∈ Rep (Γ) which is left-monotone-equivalent to both φ, ψ through non-
increasing continuous maps of Brouwer-Hopf degree 1 h0, h1 respectively. Consider a path

of homeomorphisms ft : [0, 1) → Homeo+

(
S1
)

such that f0 = Id and ft
t→1−→ h0 uniformly

(see Lemma 1.49) and set ρt := ftρf
−1
t . By construction ρ0 = ρ and ρt ∈ Xφ for every

t ∈ [0, 1).
The path of representations ρt : [0, 1) −→ Xφ extends in t = 1 and connects ρ to ψ. We
need to prove that for every γ ∈ π1(Sg) the homeomorphisms φt(γ) uniformly converge to
ψ(γ):

||ψ(γ)− ρt(γ)||∞ =
∣∣∣∣ψ(γ)− f−1

t φ(γ)f−1
t

∣∣∣∣
∞

=
∣∣∣∣(ψ(γ)ft − ftρ(γ))f−1

t

∣∣∣∣
∞ = ||ψ(γ)ft − ftρ(γ)||∞ since f−1

t is surjective

||ψ(γ)ft − ftρ(γ)||∞
t→1−→ ||ψ(γ)h0 − h0ρ(γ)||∞ = 0 since ||ft − h0||∞ → 0.

Analogously we can connect ρ to φ in Xφ. �

Lemma 4.12. The subspace Xφ is closed.

Using the technology we developed so far we can give a short proof in coordinates:

Proof. We can identify Xφ with the following space:

Xφ =

 ⋂
α,β∈Γ

{τα,β = τα,β(φ)}

 ∩
⋂
γ∈Γ

{rotγ = rotγ(φ)}

 .

This follows from Theorem 1.37. The sets

{τα,β = τα,β(φ)} , {rotγ = rotγ(φ)}

are the fibers of continuous maps (see Lemma 4.6) hence they are closed. �

6. Local stability

In this section we introduce locally stable representations. We give some criteria for local
stability and provide an examples of a locally stable representation.

Definition 4.13. A representation φ ∈ Rep (Γ) is locally stable if there exists a neighbor-
hood U of φ such that every ψ ∈ U is semi-conjugate to φ.

6.1. Properties of local stability. Local stability is generically preserved under
semi-conjugacy as stated in the next proposition:

Proposition 4.14. Let φ ∈ Rep (Γ) be a locally stable representation. Then there is an
open subset U ⊆ Rep (Γ) such that U is a dense subset of Xφ and U is made of locally
stable representations.

Proof. Let U be a neighborhood of φ made entirely of representations which are semi-
conjugate to φ. We prove the result by small steps.
First we show that every ψ ∈ Rep (Γ) topologically conjugate to φ is locally stable: suppose
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that ψ = hφh−1, then hUh−1 is a neighborhood of ψ such that every ρ ∈ hUh−1 is semi-
conjugate to ρ.
Now we prove that every representation ψ ∈ Rep (Γ) such that φ is left-monotone equivalent
to ψ is locally stable. Suppose that hψ = φh for some monotone equivalence h. Then by
Lemma 1.49 there are representations conjugate to ψ which are arbitrarily close to φ, in
particular we can find one of these representations ρ in the neighborhood U . Hence ψ is
topologically conjugate to a locally stable representation ρ ∈ U .
We are now ready to treat the general case. Let ψ be semi-conjugate to φ. By Calegari’s
Theorem 1.44 there exists a third representation ρ such that ψ, φ are both left-monotone
equivalent to ρ i.e. ψh1 = h1ρ and φh2 = h2ρ for some monotone equivalences h1, h2. Using
the previous discussion we see that ρ is locally stable since φ is left-monotone equivalent to
ρ. By Lemma 1.49 we can find arbitrarily near to ψ representations which are conjugate
to ρ (so they are locally stable). Define

Xs
φ := {ψ ∈ Xφ |ψ locally stable } .

The previous argument shows that Xs
φ is dense in Xφ, on the other hand being locally

stable is an open property so Xs
φ is an open subset. �

If we had Xφ = Xs
φ then we could prove that Xφ is a connected component which is also

path-connected: in fact Xφ, which is a path-connected set, would be simultaneously open
and closed. The above condition is surely satisfied if φ is minimal as stated in the following:

Proposition 4.15. Let φ ∈ Rep (Γ) be a locally stable minimal representation. Then
Xφ ⊆ Rep (Γ) is a connected component.

Proof. Since having a finite orbit is preserved by semi-conjugacy every representation
ψ ∈ Xφ does not have any finite orbit. Thus every ψ ∈ Xφ is right-monotone equivalent to

a minimal action ψ, or hψ = ψh. Looking at the proof of Proposition 4.14 we see that if ψ
is locally stable then ψ is locally stable. Local stability for ψ follows from the fact that ψ is
semi-conjugate to ψ and semi-conjugacy equals topological conjugacy for minimal actions
(Lemma 1.46). �

6.2. Criteria for local stability. By Theorem 1.37 locally stable representations
φ ∈ Rep (Γ) are precisely those representations such that the functionals rotγ and τα,β are
constant in a neighborhood U of φ.

Lemma 4.16. Let C ⊆ Rep (Γ) be a connected component. If for every γ ∈ Γ the function

rotγ : C −→ R/Z

is constant, then C is a single semi-conjugacy class. In particular C is path-connected.

Proof. By Lemma 4.11 semi-conjugate representations lie in the same connected com-
ponent of Rep (Γ), so we are left to prove that every pair φ, ψ of representations in C are
semi-conjugate. By Theorem 1.37 it is enough to show that rotγ(φ) = rotγ(ψ) as γ varies
in a set of generators of Γ and τα,β(φ) = τα,β(ψ) for every α, β ∈ Γ where τ is the canonical

real 2−cocycle representing eRb .
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By assumption rotγ is constant on C for every γ ∈ Γ so the first condition clearly holds.
Proof that φ∗τ = ψ∗τ : we recall that

τ(f, g) = r̃ot f̃ g̃ − r̃ot f̃ − r̃ot g̃

Fix α, β ∈ Γ and consider the composition of the function dα,β : C × C → R given by

dα,β(φ, ψ) = φ∗τ(α, β)− ψ∗τ(α, β)

with the projection π : R→ R/Z. We have

πdα,β(φ, ψ)

= π
(

r̃ot φ̃(α)φ̃(β)− r̃ot φ̃(α)− r̃ot φ̃(β)−
(

r̃ot ψ̃(α)ψ̃(β)− r̃ot ψ̃(α)− r̃ot ψ̃(β)
))

= rot φ(α)φ(β)− rot φ(α)− rot φ(β)− (rot ψ(α)ψ(β)− rot ψ(α)− rot ψ(β))
= [rotαβ(φ)− rotαβ(ψ)] + [rotα(φ)− rotα(ψ)] + [rotβ(φ)− rotβ(ψ)]
= 0

in particular dα,β : C×C → R has image in Z. By the connectedness of C×C we conclude
that d is constant and that the value it assumes is precisely dα,β(φ, φ) = 0.
Since α, β ∈ Γ are arbitrary, we conclude that φ∗τ = ψ∗τ for every φ, ψ ∈ C. �

The viceversa is clear: if a connected component consists of a single semi-conjugacy class
then the functionals rotγ are constant on it since they are semi-conjugacy invariant.

6.3. Local stability for maximal representations. The first example of locally
stable representations is given by maximal representations:

Theorem 4.17. Let φ ∈ Rep (Γ) be a maximal representation. Then φ is locally stable. In
particular the connected components of the subset of maximal representations e−1(2g−2) ⊆
Rep (Γ) are semi-conjugacy classes.

Proof. Since the function e is continuous, the fiber e−1(2g − 2) is open and closed
at the same time so it is a union of connected components of Rep (Γ). By Corollary 3.8
rotγ ≡ 0 on e−1(2g − 2) for every γ ∈ Γ hence we can apply Lemma 4.16. �

Using a finer argument it is possible to show that there is more connectedness:

Theorem 4.18 (Matsumoto [Mat87], Burger [Bur11], Iozzi [Ioz02]). The subset of max-
imal representations e−1(2g − 2) is path-connected and consists of a single semi-conjugacy
class.



CHAPTER 5

Stability phenomena for geometric representations

1. Overview

The main goal of this chapter is the proof of some stability phenomena for representa-
tions that look like PSL(k) (2,R)−maximal representations. First we introduce the class of

geometric representations and relate it to the class of PSL(k) (2,R)−maximal ones. Then

we give a finer analysis of the dynamics of a PSL(k) (2,R)−geometric representation and
locate some common dynamical properties shared by all geometric representations. This
description suggests to consider the set of all representations that exhibit these properties
(representations with good fixed point sets and good representations) and try to study its
deformation space . The technical tool to carry out the analysis is the Calegari-Walker
Algorithm which produces an upper bound for the rotation number of a product of home-
omorphisms of the circle given as input the combinatorial data of the dynamics of periodic
orbits of each homeomorphism. It provides the following fundamental results:

Theorem. For every a, b ∈ ˜Homeo+

(
S1
)

we have the following

(1) If r̃ot(a) 6∈ Q or rot(b) 6∈ Q then r̃ot [a, b] = 0.

(2) If r̃ot(a) = p
q or rot(b) = p

q then
∣∣∣r̃ot [a, b]

∣∣∣ ≤ 1
q . Furthermore, if a, b ∈ ˜Homeo+

(
S1
)

realize the maximal translation number for [a, b], then they have periodic orbits
with prescribed combinatorial structure.

Theorem. Let c1, . . . , cn ∈ ˜Homeo+

(
S1
)

be homeomorphisms such that

(i) r̃ot cj = 1
k , and every cj has an orbit Xj =

{
xij

}
i∈Z

periodic modulo Z such that

cj(x
i
j) = xi+1

j and xi+kj = xij + 1;

(ii) the set X =
⋃n
j=1Xj can be ordered as

· · · ≤ xi1 ≤ xi2 ≤ · · · ≤ xin ≤ xi+1
1 ≤ . . .

Then the following holds

(1) r̃ot (c1 . . . cn) ≤ 2n−1
k .

(2) If gcd(k, 2n − 1) = 1 and equality holds in (ii) between two consecutive points in

X then r̃ot (c1 . . . cn) < 2n−1
k . In particular if we have equality X has a prescribed

combinatorial structure.

We will apply these results to the class of good representations.
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2. Geometric representations

In this section we describe geometric representations and their dynamics on the circle.

Definition 5.1. A representation φ ∈ Rep (Γ) is geometric if it is faithful and has discrete
image φ(Γ) contained in a transitive Lie subgroup of G.

By Theorem 1.5, up to conjugacy, the only transitive Lie subgroups of G := Homeo+

(
S1
)

are:

S1, PSL(k) (2,R) .

Let us briefly describe representations into these subgroups.

2.1. Representations in S1. No representation Γ −→ S1 can be faithful since S1 is
abelian. The study of these representations is not very interesting as

Hom
(
Γ, S1

)
= Hom

(
Γ

[Γ,Γ] , S1

)
= Hom

(
Z2g, S1

)
=
(
S1
)2g

.

Representations Γ −→ S1 are essentially classified up to semi-conjugacy by the rotation
numbers of the generators a1, b1, . . . , ag, bg ∈ Γ. This follows from Lemma 1.33 and the
fact that the real bounded Euler class of φ : Z2g −→ G always vanishes as H2

b

(
Z2g,R

)
= 0

by amenability of Z2g.

2.2. Representations in PSL(k) (2,R). Far more interesting is the case of PSL (2,R).
Every hyperbolic structure on S gives rise to a holonomy representation φ : Γ −→ PSL (2,R) =
Isom+

(
H2
)

which is faithful and has discrete image. The lifts of these representations to

the finite sheeted covering πk : PSL(k) (2,R) −→ PSL (2,R) when k | 2g − 2 give examples

of geometric representations into PSL(k) (2,R).

Lemma 5.2. Let φ : Γ −→ PSL(k) (2,R) be a representation. Let πk : PSL(k) (2,R) −→
PSL (2,R) be the degree k covering of PSL (2,R). Then

πkφ is geometric ⇐⇒ φ is geometric.

Proof. Let us prove the double implication for injectivity. Assume that φ is injective
and suppose that πk(φ(γ)) = 1 for some γ ∈ Γ. Then φ(γ) ∈ ker πk = Z/kZ and therefore
φ(γk) = φ(γ)k = 1. By injectivity of φ we get γk = 1 in Γ. We conclude that γ = 1 by
observing that Γ has no torsion elements. The converse statement is clear: if a composition
of two maps is injective then the inner one is injective.
Now we prove the double implication for dicreteness. Assume that φ (Γ) is discrete. In
order to prove that πkφ (Γ) is discrete we only need to show that 1 ∈ πkφ (Γ) is an isolated
point. Proceed by contradiction and let {πkφ(γn)}n∈N be a sequence (containing infinite
distinct terms) converging to πkφ(γn) −→ 1. Since ker πk = Z/kZ is finite, up to passing
to a subsequence we may assume that φ(γn) −→ δ ∈ ker πk (preserving the fact that
{πkφ(γn)}n∈N contains infinite distinct terms). By discreteness of φ (Γ) the limit point δ
lies in φ(Γ) (the image is closed). Again by discreteness this implies that φ(γn) definitely
stabilize. This contradicts the fact that the sequence {πkφ(γn)}n∈N contains infinitely
many distinct elements.



Geometric representations 65

The converse implication is again easier. The map πk : PSL(k) (2,R) −→ PSL (2,R) is a
covering, so if S ⊆ PSL (2,R) is a discrete subset then π−1

k S is again discrete. Thus πkφ (Γ),

being a subset of the discrete set π−1
k (πkφ (Γ)), has the discrete topology. In particular

1 ∈ φ (Γ) is an isolated point which implies that φ (Γ) is discrete (it is closed). �

We recall that by Goldman’s Theorem a representation φ : Γ −→ PSL (2,R) is geometric
if and only if it is maximal |e(φ)| = 2g − 2. Hence by Lemma 5.2 we obtain

Corollary 5.3. Let φ : Γ −→ PSL(k) (2,R) be a representation. Suppose that k | 2g − 2,
then

φ is geometric ⇐⇒ |e(φ)| = 2g − 2

k
.

The following is a quite formal consequence of Proposition 3.28.

Proposition 5.4. Let ρ : π1(S)→ PSL(k) (2,R) be a maximal representation. Then

ρ∗τ =
1

k
θ.

Suppose that k | 2g − 2. By Proposition 5.4 the canonical Euler cocycle of a maximal

PSL(k) (2,R) representation φ is

φ∗τ =
1

k
θ

where θ is the canonical Euler cocycle of maximal PSL (2,R) representations. Thus, by

Theorem 1.37, the semi-conjugacy class of a maximal PSL(k) (2,R) representation φ is
completely detected by the 2g−tuple(

rota1(φ), rotb1(φ), . . . , rotag(φ), rotbg(φ)
)
.

Under the assumption k | 2g−2, every 2g−tuple
(
rota1(φ), rotb1(φ), . . . , rotag(φ), rotbg(φ)

)
∈

(R/Z)2g with rotaj (φ), rotbj (φ) ∈
{

0, 1
k , . . . ,

k−1
k

}
is realized by some maximal representa-

tion as follows from the next lemma:

Lemma 5.5. Let φ ∈ Hom (Γ,PSL (2,R)) be a maximal representation and suppose k | 2g−
2. Let φ(aj), φ(bj) be arbitrary lifts of φ(aj), φ(bj) to PSL(k) (2,R). Then the assignation

ψ(aj) := φ(aj) extends to a maximal representation ψ : Γ −→ PSL(k) (2,R).

Proof. Fix lifts σ(φ(aj)), σ(φ(bj)) of φ(aj), φ(bj) to G̃ and denote by ck : G̃ −→ G̃
the homomorphism given by conjugation ck(f) := µ 1

k
fµk where µα : R −→ R is the

multiplication by α defined by µα(x) := αx. We can choose as lifts of φ(aj), φ(bj) the

homeomorphisms σ
(
φ(aj)

)
:= ckσ(φ(aj)) and σ

(
φ(bj)

)
:= ckσ(φ(aj)) (as we have already

seen in Lemma 3.7). Thus

g∏
j=1

[
σ
(
φ(aj)

)
, σ
(
φ(bj)

)]
= ck

 g∏
j=1

[σ (φ(aj)) , σ (φ(bj))]

 = ck
(
τe(φ)

)
= τ e(φ)

k

.
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Since k | e(φ) = 2g − 2 the last translation is an integral translation. In particular

g∏
j=1

[
φ(aj), φ(bj)

]
= p

 g∏
j=1

[
σ
(
φ(aj)

)
, σ
(
φ(bj)

)] = p
(
τ 2g−2

k

)
= Id

where p : G̃ −→ G denotes the universal covering projection. The last equality tells us
that ψ gives rise to a representation into PSL(k) (2,R). Maximality of ψ is clear from the
computations above. �

Throughout the rest of the chapter we will work under the assumption k | 2g − 2.
The last property of geometric representations on which we want to put a stress is the
following:

Proposition 5.6. Let φ : Γ −→ PSL(k) (2,R) be a geometric representation. Then φ is
minimal.

2.3. Geometric representations: dynamics of generators. By Lemma 5.2 we
know that PSL(k) (2,R)−geometric representations are precisely the lifts to PSL(k) (2,R)
of geometric PSL (2,R)−representations, i.e. holonomies of hyperbolic structures over
S. Moreover every choice of rotation numbers for generators in the set

{
0, 1

k , . . . ,
k−1
k

}
is

realized by some geometric representation into PSL(k) (2,R). Let ψ : Γ −→ PSL(k) (2,R) be
a geometric representation that lift φ : Γ −→ PSL (2,R). Fix a standard set of generators
{a1, b1, . . . , ag, bg} for π1(S).
The element ψ(aj) is a lift of a hyperbolic motion φ(aj). Suppose that rot (ψ(aj)) = 0.
Since every hyperbolic isometry has a pair of fixed points on S1 = ∂H2 the homeomorphism
ψ(aj) has 2k fixed points which are precisely the lifts of the fixed points of φ(aj) to the
degree k cover of S1. Since the fixed points of φ(aj) are a source and a sink, their 2k
lifts are naturally divided into k sinks and k sources for ψ(aj) and they are disposed in
an alternating way. See the picture in the center in Figure 1, where every Aj and Rj
denotes an attractive or repulsive fixed point for ψ(a1). The picture on the right shows the
dynamics for the lift of φ(a1) satisfying rot (ψ(a1)) = 1

3).
Since we are looking for properties that make a representation similar to a maximal
PSL(k) (2,R)−maximal one we gather the previous descriptions in a precise definition:

Definition 5.7. Let φ ∈ Rep (Γ) be a representation. We say that φ has a j−good fixed
set if φ(aj) has a fixed point set X1(φ) ⊆ Fix (φ(aj)) such that

(1) The fixed point set X1(φ) has 2k points. Denote by
{
xi1(φ)

}
i∈Z ⊆ R the lift of

X1(φ) to R.

(2) If we consider X2(φ) := φ(bj)X1(φ) ⊆ Fix
(
φ(bja

−1
j b−1

j )
)

and call
{
xi2(φ)

}
i∈Z ⊆ R

the lift of X2(φ) to R then the set X1(φ) ∪X2(φ) can be ordered as follows:

· · · < x0
1(φ) < x1

1(φ) < x0
2(φ) < x1

2(φ) < x2
1(φ) < x3

1(φ) < . . .

(3) With respect to the previous ordering the lift φ̃(bj) acts as follows:

φ̃(bj)
(
x2i

1

)
= x2i+2n−1

2 , φ̃(bj)
(
x2i+1

1

)
= x2i+2n

2 .
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Figure 1.

Denote by Nj the closure in Rep (Γ) of the set of representations with j−good fixed sets

Nj := {φ ∈ Rep (Γ) |φ has j−good fixed set }.

Requirements (2) and (3) will be clear from the discussion about maximal rotation numbers
of commutators given in the following sections, in particular from the proof of Lemma 5.17.

Now we represent S as a quotient of a fundamental 4g−regular hyperbolic polygon (see
Figure 2, where for simplicity geodesics are pictured as straight lines and segments, this is
actually the real picture of the configuration in Klein model of H2).
Consider the commutator [φ(aj), φ(bj)], it is a hyperbolic motion with two fixed point on
∂H2. Its axis corresponds to the geodesic line passing through the extrema of the broken
segment ajbja

−1
j b−1

j (this geodesic bounds a hyperbolic pentagon together with the seg-

ments aj , bj , a
−1
j , b−1

j , see Figure 2). The fixed points A1, R1, . . . , Ag, Rg of the commutators

[φ(a1), φ(b1)] , . . . , [φ(ag), φ(bg)] can be arranged on the circle in two alternating sets of g
attractive fixed points A1 < A2 < · · · < Ag and g repelling fixed points R1 < R2 < · · · < Rg
(see Figure 2).

Every fixed point Aj lifts to a periodic orbit Aj :=
{
Aij

}k
i=1

for [ψ(aj), ψ(bj)] when we lift

φ(aj) to ψ(aj) ∈ PSL(k) (2,R). We note that rot [ψ(aj), ψ(bj)] = 1
k since r̃ot

[
ψ̃(aj), ψ̃(bj)

]
=

1
k by Proposition 3.7. Thus if we choose the lifts ψ(aj) of φ(aj) in a way such that

rot (ψ(aj)) = 0 for every j ≤ g, then [ψ(aj), ψ(bj)] will act onAj as [ψ(aj), ψ(bj)]A
i
j = Ai+1

j

(where indices are thought modulo k). Moreover it is immediate to check (see Figure 2)
that the sets A1, . . . ,Ag can be ordered as follows:

· · · < Aj−1
g < Aj1 < Aj2 < · · · < Ajg < Aj+1

1 < . . .
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Figure 2.

Again we summarize these properties in a definition for representations that look like
PSL(k) (2,R)−maximal ones:

Definition 5.8. Let φ ∈ Rep (Γ) be a representation. We say that φ is good if

(1) r̃ot[aj ,bj ](φ) = r̃ot
[
φ̃(aj), φ̃(bj)

]
= 1

k for every j ≤ g − 1.

(2) There are periodic orbits (modulo Z) Xj(φ) of cj(φ) :=
[
φ̃(aj), φ̃(bj)

]
that can be

ordered as

· · · < xj−1
g−1(φ) < xj1(φ) < xj2(φ) < · · · < xjg−1(φ) < xj+1

1 (φ) < . . .

Denote by N0 the closure in Rep (Γ) of the set of good representations

N0 := {φ ∈ Rep (Γ) |φ is good }.

Define N := N0 ∩
g⋂
j=1

Nj .

3. The Calegari-Walker algorithm

In this section we present the Calegari-Walker Algorithm which is a simple technical tool
that works as follows:

• Input: a positive word w ∈ F+
2 and the combinatorial data of periodic orbits

X,Y of homeomorphisms f, g ∈ Homeo+

(
S1
)
.

• Output: the best possible upper bound for r̃ot w (f, g).
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Moreover sometimes it gives strong combinatorial constraints on the periodic orbit struc-
tures on homeomorphisms realizing the maximal value. The Algorithm generalizes in a
straightforward way to inputs that are not periodic orbits but finite sets on the given
homeomorphism acts. Incidentally we state as abstract and general applications of the
algorithm two nice results even if we won’t need after: the Rationality Theorem and the
ab−Theorem.

3.1. Positive words. Let F2 be the free group on generators {a, b}.
We introduce the following notation: given a word w ∈ F2, a group Λ and two elements
f, g ∈ Λ we denote by w(f, g) ∈ Λ the element w(f, g) := ρ(w) obtained evaluating at w
the homomorphism ρ : F2 → Λ defined by the assignation ρ(a) := f, ρ(b) := g.

Definition 5.9. A word w ∈ F2 is positive if it does not contain a−1, b−1. We denote the
semigroup of positive words by F+

2 .

Words w ∈ F2 that are positive enjoy the following simple property: consider maps
A,B, a, b : R → R that are non-decreasing and commute with integral translations τn. If
A ≥ a and B ≥ b then w(A,B) ≥ w(a, b) as maps R −→ R, and r̃ot w(A,B) ≥ r̃ot w(a, b).
Exploiting this easy property Calegari and Walker in [CW11] constructed a discrete dy-

namical system which computes the maximal value of r̃ot w(ρ̃(a), ρ̃(b)) that can be attained
by a representation ρ : F2 −→ Homeo+

(
S1
)

with given constraints rot ρ(a) = r, rot ρ(b) =
s with r, s ∈ R (we will treat only the case where r, s ∈ Q). Here we denote by ρ̃(a), ρ̃(b)

the unique lifts of ρ(a), ρ(b) such that r̃ot ρ̃(a) ∈ [0, 1) and r̃ot ρ̃(b) ∈ [0, 1).

3.2. Associated dynamical system. Consider a representation ρ : F2 → Homeo+

(
S1
)
,

suppose that ρ(a), ρ(b) have periodic orbits

X = {[x0], . . . , [xq−1]} Y =
{

[y0], . . . , [yq′−1]
}

(cyclically ordered), on which they act as follows

a[xi] = [xi+p] b[yj ] = [yj+p′ ]

(indices are thought resp. modulo q, q′).
We construct an associated dynamical sistem on R as follows. First we lift the orbits X,Y
respectively to

X : · · · < xq−1 − 1 = x−1 < x0 < x1 < · · · < xq−1 < xq = x0 + 1 < . . .
Y : · · · < yq′−1 − 1 = y−1 < y0 < y1 < · · · < yq′−1 < yq′ = y0 + 1 < . . .

Then we lift the homeomorphisms ρ(a), ρ(b) to ã, b̃ ∈ ˜Homeo+

(
S1
)

as above, i.e. r̃ot ã, r̃ot b̃ ∈
[0, 1). With these coices the action of ã, b̃ on X,Y is given by

ãxi = xi+p , b̃yj = yj+p′ where 0 ≤ p < q and 0 ≤ p′ < q′.

We define non-decreasing, Z−equivariant (discontinuous) maps A,B as follows:

A (x ∈ (xi−1, xi]) := ã(xi) = xi+p B (y ∈ (yj−1, yj ]) := b̃(yj) = yj+p′ .

By construction A,B have the following properties:
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(1) A ≥ ã, B ≥ b̃, in particular r̃ot w (A,B) ≥ r̃ot w
(
ã, b̃
)

for every positive word w;

(2) A,B act on X,Y exactly like ã, b̃; in particular r̃ot(A) = r̃ot(ã), r̃ot(B) = r̃ot(̃b);
(3) A(R) ⊆ X and B(R) ⊆ Y .

Finally we denote by Z ⊆ R the union of the orbits Z = X ∪Y and define an action of the
semigroup of positive words F+

2 on Z setting

w · z := w(A,B)z.

We call this dynamical system with orbit space Z ⊆ R the associated dynamical system to
the representation ρ. In a similar way we also define a dynamical system with orbit space
Z = X ∪ Y ⊆ S1 simply by passing the action of F+

2 to the quotient S1 = R/Z.

3.3. Computation of r̃ot w(A,B). Let us fix a representation ρ and a positive word
w ∈ F+

2 as above, in particular ρ(a), ρ(b) have periodic orbits.

Consider the associated dynamical systems. Since A ≥ ã and B ≥ b̃ we have

r̃ot w (A,B) ≥ r̃ot w
(
ã, b̃
)
.

Observe that since the orbit space Z = X ∪ Y is finite the induced dynamical system on
S1 has a periodic orbit: in fact for every [z] ∈ Z we have wm[z] = wn[z] for some m > n
and therefore wk[t] = [t] where [t] := wm−n[z] and k = m−n. The orbit of the lifted point
t ∈ Z is periodic modulo Z i.e. wk · t = t+ u with u ∈ Z. We call k the period and u the
lenght of the orbit. By the definition of r̃ot we get

r̃ot w (A,B) =
u

k
.

Observe that r̃ot w(A,B) depends only on the dynamical system of Z = X ∪ Y , therefore
we may define

r̃ot (w,X ∪ Y ) := r̃ot w(A,B).

3.4. Realization by homeomorphisms. Viceversa suppose we are given two actions
of Z on some finite subsets X,Y ⊆ S1 which cyclically permute the points of X,Y . Lift
Z y X and Z y Y to actions on the lifts of the orbits X,Y ⊆ R in a way such that
x ≤ 1 · x < x + 1 for any x ∈ X and y ≤ 1 · y < y + 1 for any y ∈ Y . Observe that such
actions have well-defined rotation numbers

r̃ot(w := 1 ∈ Z, X) = lim
n→∞

n · x
n

r̃ot(w := 1 ∈ Z, Y ) = lim
n→∞

n · y
n

(where x ∈ X, y ∈ Y are arbitrary points and n · x, n · y denote the actions of Z on X,Y ).
These rotation numbers are given, as above, by u

k where u, k are respectively the length

and the period of periodic orbits. The Z−actions together give rise to an action of F+
2 on

the union of the lifted orbits Z = X ∪ Y ⊆ R just like the one described in Section 2.1.
For every word w ∈ F+

2 we can compute

r̃ot (w,Z = X ∪ Y ) = lim
n→∞

wn · z
n

.
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We show that for every word w ∈ F+
2 the translation number r̃ot (w,X ∪ Y ) is realizable

as
r̃ot w (ρ̃(a), ρ̃(b)) = r̃ot (w,X ∪ Y )

for some representation ρ̃ : F2 → ˜Homeo+

(
S1
)

such that ρ̃(a), ρ̃(b) admit as “periodic”

(modulo Z) orbits the sets X,Y (respectively) on which they act as prescribed by the
dynamical systems Z y X and Z y Y . In particular

r̃ot ρ̃(a) = r̃ot(w := 1 ∈ Z, X) r̃ot ρ̃(b) = r̃ot(w := 1 ∈ Z, Y ).

Proposition 5.10. Let w ∈ F+
2 be a positive word. Let X,Y ⊆ S1 be finite subsets and

denote by X,Y ⊆ R their lifts to R. Let Z y X and Z y Y be actions. Consider the
associated dynamical system F2 y X∪Y described by maps A,B corresponding to the single

actions of Z on X,Y respectively. Then there are homeomorphisms f, g ∈ ˜Homeo+

(
S1
)

such that
r̃ot (w(A,B)) = r̃ot (w(f, g)) .

Proof. Fix ε > 0. We can find f ∈ ˜Homeo+

(
S1
)

such that

(1) f ≤ A and f ≡ A on the orbit X, f(xi) = A(xi) = ã(xi).
(2) f ≥ A− ε on every interval (xi−1 + ε, xi].

For example we can choose f piecewise linear with respect to a suitable refinement of

the subdivision X. Analogously find g ∈ ˜Homeo+

(
S1
)

with the corresponding properties

with respect to B. By construction r̃ot(f) = r̃ot(A) and r̃ot(g) = r̃ot(B). We claim that

r̃ot w(f, g) = r̃ot w(A,B) if ε > 0 is sufficiently small.
Choose ε < 1

2 min
{
d(z1, z2) | z1 < z2 ∈ Z

}
and set

Iz := (z − ε, z] , U :=
⋃
z∈Z

Iz.

We define A · Iz := IAz and B · Iz := IBz. Observe that by our choice of ε we have
f(Iz) ⊆ A · Iz and g(Iz) ⊆ B · Iz. In fact, if t ∈ U then there exist xi ∈ X, yj ∈ Y s.t.

xi−1 + ε < z − ε < t ≤ z ≤ xi , yj−1 + ε < z − ε < t ≤ z ≤ yj .
By the properties of f, g we get

Axi − ε = Az − ε < f(t) ≤ Axi = Az , Byj − ε = Bz − ε < g(t) ≤ Byj = Bz.

In conclusion w(f, g)Iz ⊆ w(A,B) · Iz for every positive word w; for a fixed t ∈ U this
implies that for any n ∈ N we have

|wn(f, g)t− wn(A,B)t| < ε

which gives r̃ot w(f, g) = r̃ot w(A,B). �

Remark 5.11. Consider an action by cyclic permutations of Z on a finite subset X ⊂ S1.
We prove that the set R(X) ⊆ Homeo+

(
S1
)

consisting of homeomorphisms that acts on

X ⊆ S1 in the way prescribed by 1 ∈ Z is connected. Consider two homeomorphisms

f1, f2 ∈ R(X) and lift them in a way such that both f̃1, f̃2 ∈ ˜Homeo+

(
S1
)

act the same
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way on a lift X ⊆ R of the finite subset X. Define ft := tf1 + (1 − t)f2, observe that

for every t ∈ [0, 1] we have ft ∈ ˜Homeo+

(
S1
)

and ft acts on X exactly like f̃1 and f̃2.

Denote by p : ˜Homeo+

(
S1
)
→ Homeo+

(
S1
)

the universal covering projection. The path
{pft}t∈[0,1] joins f1 to f2 in R(X). Carefully looking at the construction in the proof of

Proposition 5.10 we conclude that every representation ρ : F2 → ˜Homeo+

(
S1
)

as above

can be continuously deformed by {ρt}t∈[0,1] to a representaion that realizes r̃ot (w,X ∪ Y )

though representations ρt that exhibit the same finite orbits for ρt(a), ρt(b) as ρ(a), ρ(b).

3.5. Maximal rotation number given constraints r̃ot(ã) = p1
q1
, r̃ot(̃b) = p2

q2
. Fix

w ∈ F+
2 a positive word. We want to compute

R

(
w,
p1

q1
,
p2

q2

)
= sup

{
r̃ot w

(
ã, b̃
) ∣∣∣∣∣ ã, b̃ ∈ ˜Homeo+

(
S1
)

r̃ot(ã) = p1
q1
, r̃ot(̃b) = p2

q2

}
.

Every homeomorphism f ∈ Homeo+

(
S1
)

with rational translation number r̃ot f = p
q (with

gcd(p, q) = 1) has a periodic orbit

X = {[x0] . . . , [xq−1]} ⊆ S1

(cyclically ordered) on which it acts by f [xi] = [xi+p]. In particular, by our assumptions on

ã, b̃ ∈ ˜Homeo+

(
S1
)
, we always find periodic orbits X,Y ⊆ S1 with the following prescribed

actions
r̃ot(ã) = p1

q1
r̃ot(̃b) = p2

q2

X = {[x0] . . . , [xq1−1]} Y = {[y0] . . . , [yq2−1]}
ã[xi] = [xi+p1 ] b̃[yj ] = [yj+p2 ]

which induce an action of F+
2 on the lifted orbits Z = X ∪ Y as above (see Section 2.1).

Observe that the resulting dynamical system only depends on the cyclic orders of X,Y
and Z = X ∪ Y . Since the possible cyclic orders are finite we have only a finite number

of possible dynamical systems arising for a couple ã, b̃ with the prescribed translation
numbers. Furthermore, by the realization procedure discussed in Proposition 5.10, every

such configuration occurs as the associated dynamical system for some ã, b̃.
In conclusion we have

Proposition 5.12. Let w ∈ F+
2 be a positive word. Then

R

(
w,
p1

q1
,
p2

q2

)
= max

{
r̃ot
(
w,X ∪ Y

) ∣∣∣∣ X,Y ⊂ S1

r̃ot(1 ∈ Z, X) = p1
q1
, r̃ot(1 ∈ Z, Y ) = p2

q2

}
.

3.6. Rationality theorem. The following rationality theorem easily follows from the
previous discussion.

Theorem 5.13 (Rationality theorem, [CW11]). Let w ∈ F2 be a positive word, r = p1
q1
, s =

p2
q2
∈ Q. Then
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(1) R(w, r, s) = u
v for some u

v ∈ Q.
(2) if w 6= an, bm then v ≤ min {q1, q2}.

Proof. Let us prove (1). By Proposition 5.12 R(w, r, s) is the maximum of a finite set

of rational numbers. Now we prove (2). By construction r̃ot
(
w,X ∪ Y

)
is computed by a

periodic orbit of X ∪ Y , and the denominator of r̃ot (w,X ∪ Y ) is the period of the orbit.
Since w 6= an, bm then w is conjugate in F2 to both w1 = ac1, w2 = bc2 with c1, c2 ∈ F2

positive. The period of a periodic orbit of w is equal to the period of a periodic orbit of
w1 or w2. By construction w1X ⊆ X and w2Y ⊆ Y , in particular the period of a periodic
orbit of w1, w2 is smaller than or equal to |X| = q1, |Y | = q2 respectively.

�

3.7. ab−Theorem. A remarkable case is given by the positive word w = ab. A
computation carried out using the Calegari-Walker algorithm (Proposition 5.12) allows to
explicitly describe the value R (ab, r, s):

Theorem 5.14 (ab−theorem, [CW11]). The following holds:

R(ab, r, s) = sup
p1
q
≤r , p2

q
≤s

{
p1 + p2 + 1

q

}
.

The supremum is taken over all rational
pj
q such that gcd(pj , q) = 1 for j = 1, 2.

A proof of the ab−Theorem can be found in [CW11].

3.8. Fixed point sets input. It is not difficult to check that the Calegari-Walker
algorithm works equally well if we replace the input of finite orbits of f and g with finite
sets X and Y over which the homeomorphism f and g acts. In other words: Suppose that

f̃ and g̃ act on the periodic sets X and Y respectively. For example X could be the lift of
the union of a finite number of periodic orbits of f . Then the action of the positive word
w ∈ F+

2 on X ∪ Y is well defined and has an associated rotation number r̃ot
(
w,X ∪ Y

)
.

The discussion on the Calegari-Walker Algorithm leads to the estimate:

r̃ot w
(
f̃ , g̃
)
≤ r̃ot

(
w,X ∪ Y

)
.

In particular we will be interested in the case where X and Y are the lifts of fixed point
sets of f ∈ G and g ∈ G.

3.9. Algorithm for higher rank free groups. There are straightforward general-
izations of the Calegari-Walker algorithm to positive words w ∈ F+

n in the larger alphabet
freely generated by {a1, . . . , an}. If we have homeomorphisms f1, . . . , fn ∈ G with lifted
periodic orbits X1, . . . , Xn then, with the same constructions, we get the sharp bound

r̃ot w
(
f̃1, . . . , f̃n

)
≤ r̃ot

(
w,X1 ∪ · · · ∪Xn

)
.

In particular Proposition 5.12 generalizes to:
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Proposition 5.15. Let w ∈ F+
n be a positive word. Then

R

(
w,
p1

q1
, . . . ,

pn
qn

)
= max

{
r̃ot
(
w,X1 ∪ · · · ∪Xn

) ∣∣∣∣∣ X1, . . . , Xn ⊆ S1

r̃ot(1 ∈ Z, Xj) =
pj
qj

}
.

4. Rotation number of a commutator

In this section we deal with a particular case of independent interest: the rotation number
of a commutator. A commutator [a, b] is clearly a non-positive words, but we will think of
it as the product of the words a and ba−1b−1. This example allows us to apply different
tecniques in the spirit of Calegari-Walker Algorithm and also exploit the relations between
monotone equivalence and semi-conjugacy. It also exhibits a “maximality implies rigidity”
phenomenon.

In general knowing that an element f ∈ G := Homeo+

(
S1
)

is a commutator, i.e. f = [a, b],
does not give any information since by Theorem 1.32 we know that G is uniformly perfect
of constant N = 1. However if we have constraints on rot(a), rot(b) then we can estimate

r̃ot
[
ã, b̃
]
: this is the content of Lemma 5.16 and Lemma 5.17.

4.1. Vanishing of r̃ot
[
ã, b̃
]
. Let a, b ∈ Homeo+

(
S1
)

be homeomorphisms. If either

a or b does not have rational rotation number then the rotation number of their commutator
always vanishes:

Lemma 5.16. Let a, b ∈ Homeo+

(
S1
)

be homeomorphisms. If rot(a) 6∈ Q/Z or rot(b) 6∈
Q/Z, then

r̃ot
[
ã, b̃
]

= 0

where ã, b̃ ∈ ˜Homeo+

(
S1
)

are arbitrary lifts of a, b.

Before going on with the proof of the lemma let us remark that the function

G×G −→ R , (a, b) −→ r̃ot
[
ã, b̃
]

is well-defined (independent of the lifts) and continuous.

Proof. We divide the proof in three cases.

Case a = ρθ. We can choose as lift of a the translation ã = τθ. We have
[
τθ, b̃

]
= τθ b̃τ−θ b̃

−1.

Since r̃ot
(
b̃τ−θ b̃

−1
)

= −θ there exists x ∈ R such that b̃τ−θ b̃
−1x = x − θ (by elementary

properties of r̃ot). Thus we get
[
τθ, b̃

]
x = τθ(x− θ) = x.

Case a conjugate to ρθ. We can reduce to the case where a = ρθ. Since r̃ot is a conjugacy

invariant we have r̃ot
[
ã, b̃
]

= r̃ot g
[
ã, b̃
]
g−1 = r̃ot

[
gãg−1, gb̃g−1

]
. Choosing g ∈ G̃ such

that gãg−1 = τθ (since a is conjugate to a rotation, ã is conjugate to a translation) we get
the desired reduction.
Case a left-monotone-equivalent to ρθ. Again we reduce to the case where a is conjugate to
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ρθ. Let h : S1 → S1 be a monotone equivalence such that ah = hρθ. Choose {hn}n∈N ⊆ G
a sequence of homeomorphisms that uniformly approximate h (see Lemma 1.49). Define
an = hnρθh

−1
n . We claim that an → a uniformly:

||a− an||∞ =
∣∣∣∣a− hnρθh−1

n

∣∣∣∣
∞

=
∣∣∣∣(ahn − hnρθ)h−1

n

∣∣∣∣
∞ = ||ahn − hnρθ||∞ since h−1

n is surjective

||ahn − hnρθ||∞
n→∞−→ ||ah− hρθ||∞ = 0 since ||hn − h||∞ → 0.

Finally we get

0 = r̃ot
[
ãn, b̃

]
since an is conjugate to ρθ

r̃ot
[
ãn, b̃

]
n→∞−→ rot

[
ã, b̃
]

= 0 by continuity of r̃ot [•, b], together with an → a.

Thus r̃ot
[
ã, b̃
]

= 0. �

4.2. Upper bound for r̃ot
[
ã, b̃
]
. We develop now the case where a ∈ G or b ∈ G

has rational rotation number, and thus a periodic orbit:

Lemma 5.17. Let a, b ∈ Homeo+

(
S1
)

be homeomorphisms. Let ã, b̃ ∈ ˜Homeo+

(
S1
)

be

arbitrary lifts of a, b. If r̃ot ã = p
q ∈ Q or r̃ot b̃ = p

q ∈ Q with gcd(p, q) = 1 then∣∣∣r̃ot
[
ã, b̃
]∣∣∣ ≤ 1

q
.

Proof. As we will work only on R, we redefine for notation sake a := ã and b := b̃. Up
to exchanging a and b we may assume r̃ot a ∈ Q with a periodic (modulo Z) orbit X ⊆ R
with prescribed dynamics. In the proof we will establish the following facts: first we will

describe two possible patterns for the action of b ∈ ˜Homeo+

(
S1
)

on the orbit X which
are of independent interest for our purpose. Then, using this description we will prove the
inequality |rot [a, b]| ≤ 1

q .

Assume r̃ot a = p
q . Thus the map a : R → R has an orbit X = {xi} ⊆ R of lenght p and

period q

· · · < xq−1 − 1 = x−1 < x0 < x1 < · · · < xq−1 < xq = x0 + 1 < . . .

on which acts by sending a(xj) = xj+p (with the rule xj+uq = xj + u, a(xj) = xj+p).

Let us study the action of b on the orbit X: we will show that one of the two following
configurations holds:

(1) b preserves the distances for a between every pair
(
a−1xi, xi

)
= (xi−p, xi) in the

following sense: if b(xi) ∈ (xj , xj+1] then

b(a−1xi) = b(xi−p) ∈ a(xj , xj+1] = (xj−p, xj−p+1]

Furthermore if b(xu) ∈ (xj , xj+1] then bxi ∈ (xj+i−u, xj+i−u+1] for every i ∈ Z.
(2) there exists a pair (xj−p, xj) for which b increases the distance with respect to a:

if b(xi) ∈ (xj , xj+1] then b(xi−p) ∈ (xk, xk+1] for some k ∈ Z with k < j − p.
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Before proving that the above dichotomy holds let us establish the estimate
∣∣∣r̃ot [a, b]

∣∣∣ ≤ 1
q

of the lemma in the two specific cases (1) and (2).

• Case (1). We have r̃ot[a, b] ≤ 1
q : fix xi ∈ X and suppose that b(xi) ∈ (xj , xj+1].

By the second property of (1) we have b(xu) ∈ (xj+u−i, xj+u−i+1] for every u ∈ Z.

In order to estimate r̃ot [a, b] we prove the following inequality that holds for
arbitrary xi ∈ X:

[a, b] b(xi) = aba−1b−1(bxi)
= aba−1xi
= abxi−p
≤ axj−p+1 = xj+1 since b(xi−p) ∈ (xj−p, xj−p+1]
≤ b(xi+1) since b(xi+1) ∈ (xj+1, xj+2].

In particular

[a, b]q b(xi) ≤ b(xi+q) by the above inequality
= b(xi) + 1 since xi+q = xi + 1.

That implies rot [a, b] ≤ 1
q .

Observe now that since b preserves the distances between the pairs (xi−p, xi), the
same argument used to prove that [a, b] b(xi) ≤ b(xi+1) shows that

[
a−1, b

]
b(xi) ≤

b(xi+1):

[
a−1, b

]
b(xi) = a−1bab−1(bxi)

= a−1baxi
= abxi+p
< axj−p+1 = xj+1 since b(xi+p) ∈ (xj+p, xj+p+1]
≤ b(xi+1) since b(xi+1) ∈ (xj+1, xj+2].

In particular r̃ot
[
a−1, b

]
≤ 1

q .

Finally, putting together the previous inequalities and using the simple algebraic
identity [b, a] = a

[
a−1, b

]
a−1 we are able to prove that r̃ot [a, b] ≥ −1

q :

−r̃ot [a, b]

= r̃ot [b, a] since [b, a] = [a, b]−1

= r̃ot a
[
a−1, b

]
a−1 since [b, a] = a

[
a−1, b

]
a−1

= r̃ot
[
a−1, b

]
since r̃ot is conjugacy invariant

≤ 1
q by the inequalities proved above.
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• Case (2). We have r̃ot[a, b] ≤ 0. Let (xi, xi−p) be an increasing couple, b(xi) ∈
(xj , xj+1] and b(xi−p) ∈ (xk, xk+1] with k ≤ j − p− 1. Then

[a, b] b(xi) = aba−1b−1b(xi)
= aba−1xi
= abxi−p
≤ axk+1 = xk+p+1 since b(xi−p) ∈ (xk, xk+1]
≤ xj since k ≤ j − p− 1
≤ b(xi) since b(xi) ∈ (xj , xj+1].

That implies r̃ot [a, b] ≤ 0.
Analogously to the case (1) we observe that since b doesn’t preserve the distances
for a, it doesn’t preserve the distances for a−1 too, in particular we get from the
dichotomy an increasing couple for a−1 which gives the inequality

r̃ot
[
a−1, b

]
≤ 0.

Finally, using the same trick as before, we have

−r̃ot [a, b] = r̃ot [b, a] = r̃ot a
[
a−1, b

]
a−1 = r̃ot

[
a−1, b

]
≤ 0.

In conclusion r̃ot [a, b] = 0.

Proof of the dichotomy. We should exclude that b only decreases the distances (and strictly
decreases the distance for some pair), in other words this means that for every xi ∈ X
we have xj < b(xi) ≤ xj+1 and xk < b(xi−p) ≤ xk+1 with k ≥ j − p. We proceed

by contradiction: choose xi, xi−p ∈ X a strictly decreasing couple, for which b(xi) ∈
(xj0 , xj0+1] and b(xi−p) ∈ (xj1 , xj1+1] with j1 > j0 − p. Then

b(xi−2p) ∈ (xj2 , xj2+1] with j2 ≥ j1 − p ≥ j0 − 2p since b doesn’t decrease distances
b(xi−3p) ∈ (xj3 , xj3+1] with j3 ≥ j2 − p analogously
⇒ . . .
⇒ b(xi−qp) ∈ (xjq , xjq+1] with jq ≥ jq−1 − p

but xi−pq = xi − p so we get

b(xi−pq) = b(xi)− p ∈ (xj0 − p, xj0+1 − p] = (xj0−pq, xj0+1−pq].

In particular jq = j0 − pq, so

j0 − pq = jq ≥ jq−1 − p ≥ · · · ≥ j1 − p(q − 1) > j0 − p+ p(q − 1) = j0 + pq,

a contradiction.
Proof of the second part of point (1) of the dichotomy. In order to simplify the notation we
shift the indices so that u = 0. Suppose that bx0 ∈ (xj , xj+1]. Fix i ∈ Z since gcd(p, q) = 1
then we can find u, v ∈ Z s.t. i = up + vq, using the fact that b−1 preserves distances we
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get b−1xup ∈ (xj+up, xj+1+up] and finally

b−1xi = b−1xup+vq = b−1(xup + v) = b−1xup + v
⇒ b−1xup + v ∈ (xj+up + v, xj+1+up + v] since b−1xup ∈ (xj+up, xj+1+up]
⇒ b−1(xi = xup + v) ∈ (xj+up+vq, xj+1+up+vq] since xk + e = xk+eq

⇒ b−1xi ∈ (xj+i, xj+1+i].

We conclude that b−1xi ∈ (xj+i, xj+i+1] for every i ∈ Z. �

The upper bound given in Lemma 5.17 is sharp. In fact we see that for every 0 ≤ p, p′ < q we
can construct, using Lemma 5.2, a geometric PSL(q) (2,R)−representation φ : π1(S) −→
PSL(q) (2,R) with rot (φ(a1)) = p

q and rot (φ(b1)) = p′

q . Since φ is geometric it realizes

r̃ot
[
φ̃(aj), φ̃(bj)

]
= 1

q . Hence:

Theorem 5.18. For every a, b ∈ ˜Homeo+

(
S1
)

we have the following

(1) if r̃ot(a) 6∈ Q or rot(b) 6∈ Q then r̃ot [a, b] = 0.

(2) if r̃ot(a) = p
q or rot(b) = p

q then
∣∣∣r̃ot [a, b]

∣∣∣ ≤ 1
q .

(3) R
(

[a, b] , pq ,
p′

q

)
= 1

q . Furthermore, if a, b ∈ ˜Homeo+

(
S1
)

realize the maximal

translation number for [a, b] then they have periodic orbits with prescribed combi-
natorial structure.

5. Applications to geometric representations

Finally, in this last part, we give as input to the Calegari-Walker Algorithm the combi-
natorial data of representations with j−good fixed point sets and of good representations.
From the analysis of the extremal cases we will be able to prove some stability results of
orbit configurations.

5.1. Good fixed point sets. Having a j−good fixed set gives some constraints on
the lifted translation numbers:

Lemma 5.19. Let φ ∈ Nj be a representation with a j−good fixed set. Then

r̃ot[aj ,bj ](φ) ≤ 1

k
.

In particular every representation φ ∈ Nj satisfies the same bound by continuity.

Proof. The proof is an application of Calegari-Walker Algorithm 5.12. Let φ be a

representation with a j−good fixed set, define u := φ̃(aj) and v := φ̃(bj)φ̃(aj)
−1φ̃(bj)

−1

where r̃ot u = r̃ot v = 0. The fixed point sets of u, v are X1(φ) =
{
xi1(φ)

}
i∈Z and

X2(φ) =
{
xi2(φ)

}
i∈Z and can be ordered as follows

· · · < x0
1(φ) < x1

1(φ) < x0
2(φ) < x1

2(φ) < x2
1(φ) < x3

1(φ) < . . .
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Moreover, by property (3) the action of φ̃(bj) on X1(φ) is given by

φ̃(bj)
(
x2j

1

)
= x2i+2n−1

2 , φ̃(bj)
(
x2i+1

1

)
= x2i+2n

2 .

The dynamics of the associated dynamical system is described by
u · xi1(φ) = xi1(φ)

u · x2i
2 (φ) = x2i+2

1 (φ)

u · x2i+1
2 (φ) = x2i+2

1 (φ)

and


v · xi2(φ) = xi2(φ)
v · x2i

1 (φ) = x2i
2 (φ)

v · x2i+1
1 (φ) = x2i

2 (φ).

Consider the positive word w := uv =
[
φ̃(aj), φ̃(bj)

]
. Observe that

w · xi1(φ) = uv · xi1(φ) = u · xi2(φ) = xi+2
1 (φ).

The orbit of x0
1(φ) under the action of w is given by

x0
1(φ)

w // x2
1(φ)

w // . . .
w // x2k−2

1 (φ)
w // x2k

1 (φ) = x0
1(φ) + 1.

Hence wk · x0
1(φ) = x0

1(φ) + 1 and r̃ot w ≤ 1
k . �

From Lemma 5.17 we know that, under the constraints on the rotation numbers rot(a)
and rot(b), when maximality is attained we have a particular rigid configuration on the
periodic sets of a, b. The next lemma is completely analogous:

Lemma 5.20. Let φ ∈ Rep (Γ) be a representation satisfying property (2) with weak inequal-
ities and property (3). In other words φ(aj) has a fixed point set with 2k non necessarily dis-

tinct points that can be lifted to X1(φ) =
{
xi1(φ)

}
i∈Z ⊆ Fix

(
φ̃(aj)

)
for a suitable lift φ̃(aj)

of φ(aj), and if we call X2(φ) := φ̃(bj)X1(φ) =
{
xi2(φ)

}
i∈Z then the set X := X1(φ)∪x2(φ)

can be ordered as follows:

· · · ≤ x0
1(φ) ≤ x1

1(φ) ≤ x0
2(φ) ≤ x1

2(φ) ≤ x2
1(φ) ≤ x3

1(φ) ≤ . . .

Moreover the action of φ̃(bj) on X1(φ) is given by

φ̃(bj)x
2i
1 (φ) = x2i+2n−1

2 (φ), φ̃(bj)x
2i+1
1 (φ) = x2i+2n

2 (φ).

Suppose that equality holds at some point. Then

r̃ot
[
φ̃(aj), φ̃(bj)

]
= 0.

Proof. If xu1(φ) = xt2(φ) then

φ̃(aj)φ̃(bj)φ̃(aj)
−1φ̃(bj)

−1xt2 = φ̃(aj)x
t
2 = φ̃(aj)x

u
1 = xu1 = xt2.

Thus r̃ot
[
φ̃(aj), φ̃(bj)

]
= 0, a contradiction. In particular xu1(φ) 6= xt2(φ) for every u, t.

If x2i
1 (φ) = x2i+1

1 (φ) then x2i+2n−1
2 = φ̃(bj)x

i
1(φ) = φ̃(bj)x

i+1
1 (φ) = x2i+2n

2 . From

x2i+2n−1
2 ≤ x2i+2n

1 ≤ x2i+2n+1
1 ≤ x2i+2n

2 = x2i+2n−1
2

we get x2i+2n
1 = x2i+2n−1

2 that contradicts the previous case.

Lastly the case x2i
2 = x2i+1

2 reduces to the previous one once we apply φ̃(bj). �
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Corollary 5.21. Let φ ∈ Nj be a representation such that

r̃ot
[
φ̃(aj), φ̃(bj)

]
=

1

k
.

Then φ has a j−good fixed point set.

Proof. Let {φn}n∈N ⊆ Nj be a sequence of good representations converging to φ.

Denote by X1(φn) =
{
xi1(φn)

}
i∈Z their j−good fixed point sets which satisfy properties

(2) and (3). Up to passing to a subsequence we may assume that xi1(φn) −→ xi1 for
every i ∈ Z. The points xi1(φ) := xi1 in the set X1(φ) =

{
xi1
}
i∈Z are fixed by φ(aj)

since φn(aj) uniformly converges to φ(aj). Moreover, since φn(bj) −→ φ(bj) uniformly,
we have xu2(φn) = φn(bj)x

v
1(φn) −→ φ(bj)x

v
1(φ). Define X2(φ) :=

{
xi2(φ)

}
i∈Z. The set

X := X1(φ) ∪X2(φ) can be ordered as follows:

· · · ≤ xj−1
1 (φ) ≤ xj1(φ) ≤ xj2(φ) ≤ · · · ≤ xjg−1(φ) ≤ xj+1

1 (φ) ≤ . . .

as every Xj(φn) satisfies the strong form of the same inequality.

Finally, using again the uniform convergence of φ̃n(bj) to φ̃(bj), we see that

φ̃(bj)x
2i
1 (φ) = x2i+2n−1

2 (φ), φ̃(bj)x
2i+1
1 (φ) = x2i+2n

2 (φ).

Now r̃ot
[
φ̃(aj), φ̃(bj)

]
= 1

k , therefore, by Lemma 5.20 the inequalities are strict and thus

the representation φ has a j−good fixed point set. �

The next proposition (whose proof, being rather technical, is delayed to the Appendix)
guarantees that having a j−good fixed is stable under perturbations in a neighborhood of
a representation with maximal translation number of the lifted commutator.

Proposition 5.22. Let φ ∈ Nj be a representation such that

r̃ot[aj ,bj ](φ) =
1

k
.

Then there exists an open neighborhood U of φ in Rep (Γ) such that U ⊆ Nj.

5.2. Good representations. As for the j−good fixed set, being good gives quanti-
tative constraints on the representation. In particular we have a bound on the translation
number of the product of lifted commutators and on the Euler number:

Lemma 5.23. Let φ ∈ Rep (Γ) be a good representation. Then

r̃ot

g−1∏
j=1

[
φ̃(aj), φ̃(bj)

] ≤ 2g − 3

k
.

The same estimate holds for every φ ∈ N0 by continuity.

Proof. The proof is again an application of Calegari-Walker Algorithm in the case of

higher rank. Let φ be a good representation, define cj(φ) :=
[
φ̃(aj), φ̃(bj)

]
. Every cj(φ)
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has a periodic orbit Xj(φ) =
{
xij(φ)

}
i∈Z

(modulo Z) of lenght 1 and period k. By property

(2) the set X :=

g−1⋃
j=1

Xj(φ) can be ordered as follows

. . . xj−1
g−1(φ) < xj1(φ) < xj2(φ) < · · · < xjg−1(φ) < xj+1

1 (φ) < . . .

The dynamics of the associated dynamical system is described by

cj · xij′(φ) =

{
xi+1
j′ (φ) if j ≥ j′

xi+2
j′ (φ) if j < j′.

Consider the positive word w := c1 . . . cg−1. We have

w · x0
1(φ) = c1 . . . cg−1 · x0

1(φ)
= c1 . . . cg−2 · x1

g−1(φ)
= c1 . . . cg−3 · x3

g−2(φ)
= . . .

= c1 · x2g−5
2 (φ) = x2g−3

1 (φ).

Hence the orbit of x0
1(φ) under the action of w is given by

x0
1(φ)

w // x2g−3
1 (φ)

w // . . .
w // x

(k−1)(2g−3)
1 (φ)

w // x
k(2g−3)
1 (φ) = x0

1 + 2g − 3.

Therefore w · x0
1(φ) = x0

1(φ) + 2g − 3 which implies r̃ot w ≤ 2g−3
k . �

The next result indicates that also in this case, as in Lemma 5.17, maximality implies
rigidity on the dynamics of the lifted commutators:

Lemma 5.24. Suppose that gcd (k, 2g − 3) = 1. Let φ ∈ Rep (Γ) be a representation sat-
isfying property (1) and property (2) with weak inequalities, i.e. there are periodic orbits

(modulo Z) Xj(φ) of cj(φ) :=
[
φ̃(aj), φ̃(bj)

]
that can be ordered as

· · · ≤ xj−1
g−1(φ) ≤ xj1(φ) ≤ xj2(φ) ≤ · · · ≤ xjg−1(φ) ≤ xj+1

1 (φ) ≤ . . .

If x0
1(φ) = x0

2(φ) then

r̃ot

g−1∏
j=1

[
φ̃(aj), φ̃(bj)

] <
2g − 3

k
.

Proof. For notation sake let us drop φ from the notation xji (φ), thus we set xji :=

xji (φ). The equality x0
1(φ) = x0

2(φ) changes the dynamics of the associad dynamical system

in Calegari-Walker Algorithm. Suppose that xji = xji+1 then

ci · xji+1 = xj+1
i .
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Thus w · xj1 = x
j+2g−3−u(j)
1 for some u(j) > 0 if there is some occurrence of xti = xti+1 in

the sequence

xj1
// cg−1 · xj1 // . . . // c1 . . . cg−2 · xj1 // c1 . . . cg−1 · xj1.

We prove now that wk · xj1 = x
j+n(j)
1 for some n(j) < k(2g − 3). Assume by contradiction

that wk · xj1 = x
j+k(2g−3)
1 . Then, by the computation above, we should have an orbit like

the following one

xj1
w // x

j+(2g−3)
1

w // . . .
w // x

j+(k−1)(2g−3)
1

w // x
j+k(2g−3)
1 = wk · xj1.

In other words u(j + d(2g − 3)) = 0 for every d ≤ k. Since gcd(k, 2g − 3) = 1, for some

0 ≤ d < k we have k | j + d(2g − 3). Then x
j+d(2g−3)
1 = xks1 for some s ≥ 0 which implies

that u(j + d(2g − 3)) ≥ 1 because xks1 = x0
1 + s = x0

2 + s = xks2 by assumption.
Define recursively the sequence α0 = 0 and αj = αj−1 +n (αj−1). Necessarily we find j ≥ i
such that αj ≡ αi (mod k), i.e. αj = αi+kv for some v ≥ 0. By construction wk(j−i)xαi1 =

x
αj
1 = xαi+kv1 = xαi1 + v. In particular by Calegari-Walker Algorithm r̃ot w ≤ v

k(j−i) , thus,

in order to get the desired strict inequality it is sufficient to prove that
v

k(j − i)
<

2g − 3

k
or

equivalently v < (j−i)(2g−3). The last inequality holds by a straightforward computation:

v =
αj − αi

k
=

1

k

j∑
t=i+1

n(αt) <
1

k

j∑
t=i+1

k(2g − 3) = (j − i)(2g − 3).

where we used n(t) < k(2g − 3) for every t ∈ Z. �

Remark 5.25. It is clear that the same result holds if we replace x0
1 = x0

2 with an equality
at some point in the chain of weak inequalities.

Since every representation in N satisfies the weak form of properties (1) and (2) we get:

Corollary 5.26. Suppose that gcd (k, 2g − 3) = 1. Let φ ∈ N0 be a representation such
that

r̃ot

g−1∏
j=1

[
φ̃(aj), φ̃(bj)

] =
2g − 3

k
.

Then φ is good.

Proof. Let {φn}n∈N ⊆ N0 be a sequence of good representations converging to φ.

Denote by Xj(φn) =
{
xij(φn)

}
i∈Z

their periodic sets (modulo Z) which satisfy property

(2). Up to passing to a subsequence we may assume that xij(φn) −→ xij for every j ≤ g−1

and i ∈ Z. The set Xj(φ) =
{
xij(φ) := xij

}
i∈Z

is a periodic orbit of cj(φ) that satisfies

weak property (2) as every Xj(φn) satisfies the strong form of the same property, i.e.

· · · ≤ xj−1
g−1(φ) ≤ xj1(φ) ≤ xj2(φ) ≤ · · · ≤ xjg−1(φ) ≤ xj+1

1 (φ) ≤ . . .
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Moreover r̃ot cj(φ) = limn→∞ r̃ot cj(φn) = 1
k by continuity of r̃ot. Suppose that in the

chain of weak inequalities above we have an equality at some point. The representation

φ satisfies the hypothesis of Lemma 5.24 therefore r̃ot

g−1∏
j=1

[
φ̃(aj), φ̃(bj)

] <
2g − 3

k
, a

contradiction. �

The following are high dimensional versions of cases (1) and (2) of Lemma 5.17, they will
allow us to prove a stability result for representations in N with maximal Euler number.

Proposition 5.27. Suppose that gcd (k, 2g − 3) = 1. Let φ ∈ N be a good representation.

Denote by cj :=
[
φ̃(aj), φ̃(bj)

]
for j ≤ g − 1 the lifted commutators and with Xj(φ) ={

xij := xij(φ)
}
i∈Z

the periodic set of cj. These sets can be ordered as

· · · < xj−1
g−1 < xj1 < xj2 < · · · < xjg−1 < xj+1

1 < . . .

Suppose that

2g − 3

k
= r̃ot

g−1∏
j=1

[
φ̃(aj), φ̃(bj)

] = r̃ot

g−1∏
j=1

cj

 .

Then we have

cg−1(xi1) > xi+1
g−2.

Proof. Proceed by contradiction and assume that cg−1(xi1) ≤ xi+1
g−2 for some i ∈ Z.

For simplicity i = 0 and w := c1 . . . cg−1. Thinking of w as a homeomorphism we have

c1 . . . cg−1(x0
1) ≤ c1 . . . cg−2(x1

g−2)
= c1 . . . cg−3(x2

g−2) < c1 . . . cg−3(x3
g−3)

= c1 . . . cg−4(x4
g−3) < c1 . . . cg−4(x5

g−4)
≤ . . .
≤ c1(x2g−6

2 ) < c1(x2g−5
1 ) = x2g−4

1 .

Thus w(x0
1) ≤ x2g−4

1 . On the other hand if we think of w as a positive word we have

w · xi1 = (c1 . . . cg−1) · xi1
= (c1 . . . cg−2) · xi+1

g−1

= (c1 . . . cg−3) · xi+3
g−2

= . . .

= c1 · xi+2g−5
2 = xi+2g−3

1

for every i ∈ Z. Hence w · xi1 = xi+2g−3
1 .

Now consider wk. As homeomorphism it is controlled from above by the associated dy-
namical system, i.e. wk(xij) ≤ wk · xij . Since gcd(k, 2g − 3) = 1 we can find u, v ≥ 1 such



84 Stability phenomena for geometric representations

that v(2g − 3)− uk = 1, therefore

wv(x0
1) = wv−1(w(x0

1))

≤ wv−1(x2g−4
1 )

≤ wv−1 · x2g−4
1

= x
2g−4+(v−1)(2g−3)
1 = xuk1 = x0

1 + u.

The previous computation implies that r̃ot w ≤ u
v = 2g−3

k − 1
vk , but we already know that

r̃ot w = 2g−3
k , a contradiction. �

Remark 5.28. We stated the result of Proposition 5.27 only for cg−1 and xi1. Since r̃ot is
conjugacy invariant we have

r̃ot c1 . . . cg−1

= r̃ot cg−1 (c1 . . . cg−1) c−1
g−1 = r̃ot cg−1 . . . c1

= r̃ot cg−2 (cg−1 . . . cg−2) c−1
g−2 = r̃ot cg−2cg−1 . . . cg−3

= . . .

= r̃ot cg−1 . . . c1.

Thus it is clear that we can obtain the same result for every choice of cj and xij+1 where
indices are thought modulo g − 1. Therefore the general case is

c1(xi2) > xi+1
g−1

cj(x
i
j+1) > xi+2

j−1

cg−1(xi1) > xi+1
g−2.

Remark 5.29. Suppose that gcd (k, 2g − 3) = 1. Let φ be a representation as in Proposi-
tion 5.27. We observe that

ck1(x0
2) > ck−1

1 (x1
2) as x1

2 < x1
n < c1(x0

2)

> ck−2
1 (x2

2) analogously
> . . .

> c1(xk−1
2 ) > xk2 = x0

2 + 1.

In particular r̃ot cj ≥ 1
k . The only property involved in the argument is c1(xj2) > xjn for

every j ∈ Z. We observe that this property (as those of Remark 5.28) is open with respect
to the topology of the representations space. Thus it is satisfied for every ψ sufficiently
close to the good representation φ. In conclusion there is an open neighborhood V of φ
such that r̃ot cj(ψ) ≥ 1

k for every ψ ∈ V .

If a representation φ ∈ N is good with respect to some choice of fixed set Xj(φ) then it is
not clear (and in general not true) that it is good for any choices of Xj(φ). This stronger
property holds for good representations with maximal Euler number:
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Corollary 5.30. Let φ ∈ N0 be a good representation such that

r̃ot

g−1∏
j=1

[
φ̃(aj), φ̃(bj)

] =
2g − 3

k
.

Suppose that Yj(φ) =
{
yij := yij(φ)

}
is a periodic orbit of cj(φ). Then the set Y :=

g−1⋃
j=1

Yj(φ)

can be ordered in order to satisfy property (2)

· · · < yj−1
g−1(φ) < yj1(φ) < yj2(φ) < · · · < yjg−1(φ) < yj+1

1 (φ) < . . .

Proof. It is enough to prove the case where Yj(φ) is arbitrary and Yu(φ) = Xu(φ) for
every u 6= j. Moreover, since the order of Y is invariant up to conjugacy it is enough to
prove the result for a fixed j. Thus fix 1 < j < g.
First let us prove that for every y ∈ Yj(φ) we have y ∈ (xij−1, x

i
j+1) for some i ∈ Z.

Proceed by contradiction and suppose that for every i ∈ Z we have y 6∈ (xij−1, x
i
j+1). Thus

y ∈ [xij+1, x
i+1
j−1] for some i ∈ Z. Hence we get

ckj (y) ≥ ckj (xij+1)

> ck−1
j (xi+2

j−1) > ck−1
j (xi+1

j+1)

> ck−2
j (xi+3

j−1) > ck−2
j (xi+2

j+1)

> . . .

> cj(x
i+k
j−1) > xi+k+1

j+1

= xi+1
j−1 + 1 ≥ y + 1

where every line is a consecutive application of Remark 5.28 and xuj−1 > xu−1
j+1 .

On the other hand we have y ≤ xi+1
j−1, therefore

ckj (y) ≤ ckj (xi+1
j−1) < ckj ·xi+1

j−1 = xi+1+k
j < xi+1

j + 1 < xi+1
j+1 + 1 ≤ xi+kj+1 + 1 = xij+1 + 2 ≤ y+ 2.

Since y is a periodic point for cj modulo Z of period k we have ckj (y)− y ∈ Z, but we have

just shown that y + 1 < ckj (y) < y + 2, a contradiction.

Now we prove that the set Yj(φ) can be ordered in such a way that yij ∈ (xij−1, x
i
j+1)

for every i ∈ Z. We will show that if y ∈ Y (φ) satisfies y ∈ (xij−1, x
i
j+1) then cj(y) ∈

(xi+1
j−1, x

i+1
j+1). We already know that cj(y) ∈ (xuj−1, x

u
j+1) by the previous argument for

some u ∈ Z. We observe that there are only two of possible values for u: from

cj(y) < cj(x
i
j+1) ≤ cj · xij+1 = xi+2

j

we get u ≤ i+ 2. On the other side Remark 5.28 gives

cj(y) > cj(x
i
j−1) > cj(x

i−1
j+1) > xi+1

j−1.

Thus u ≥ i + 1. We show how to exclude the case u = i + 2, the method is completely
analogous to the one used in the first part of the proof. Let us divide two cases: if y ≤ xij
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then cj(y) < xi+1
j < xi+2

j−1 which implies in turn u = i+ 1 so there is nothing to add. Now

suppose that u = i + 2 and xij < y and consider ckj (y). Using repeatedly Remark 5.28 we
find

ckj (y) ≥ ck−1
j (xi+2

j−1)

> ck−1
j (xi+1

j+1) > ck−2
j (xi+3

j−1)

> . . .

> cj(x
i+k−2
j+1 ) > xi+kj−1

= xij−1 + 1 > y + 1.

On the other hand

ckj (y) ≤ ckj (xij+1) < ckj · xij+1 = xi+1+k
j ≤ xi+2k

j = xij + 2 < y + 2.

Hence 1 < ckj (y)− y < 2, but cj(y)− y ∈ Z, a contradiction. �

The stability results for r̃ot[aj ,bj ](φ) and for r̃ot
(∏g−1

j=1

[
φ̃(aj), φ̃(bj)

])
together allow to

prove the following fundamental stability property for good representations that are close
to a maximal one:

Proposition 5.31. Let φ ∈ N be a representation such that

r̃ot

g−1∏
j=1

[
φ̃(aj), φ̃(bj)

] =
2g − 3

k
.

Then there exists an open neighborhood U of φ in Rep (Γ) such that U ⊆ N .

Proof. First we observe that by Corollary 5.26 the representation φ is good.

Since φ ∈ N0 we have r̃ot
[
φ̃(aj), φ̃(bj)

]
=

1

k
for every j ≤ g. By Proposition 5.22, we

can find open sets Uj in Rep (Γ) such that Uj ⊆ Nj for every j ≤ g. Define U :=

g⋂
j=1

Uj .

Thus it is enough to find an open subset U0 ⊆ Rep (Γ) such that U0 ⊆ N0. Suppose by
contradiction that φ is a boundary point of N0. Then we can find a sequence {φn}n∈N ⊆
Rep (Γ) \ N0 approaching φ i.e. φn −→ φ. Up to passing to a subsequence we may

assume that φn ∈ U \N0 for every n ∈ N, in particular r̃ot
[
φ̃n(aj), φ̃n(bj)

]
≤ 1

k for every

j ≤ g. Since φ is good and attains the maximal value for the translation number of the
product of lifted commutators allowed for good representations we have by Remark 5.29

that wrot
[
ψ̃(aj), ψ̃(bj)

]
≥ 1

k for every ψ in a neighborhood V of φ and every j ≤ g − 1.

Up to passing to a further subsequence we may assume that φn ∈ V ∩ U for every n ∈ N,

hence r̃ot
[
φ̃n(aj), φ̃n(bj)

]
= 1

k for every n ∈ N.

Every cj(φn) has a k−periodic orbit Yj(φn). By compactness of k−tuples of points on S1,
up to passing to a subsequence, we may assume that Yj(φn) converges to some set Yj . It
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is clear that Yj is a periodic orbit of φ. By Corollary 5.30 the set Y (φ) :=

g−1⋃
j=1

Yj can be

ordered as follows

· · · < yj−1
g−1(φ) < yj1(φ) < yj2(φ) < · · · < yjg−1(φ) < yj+1

1 (φ) < . . .

with the same properties as in the definition of a good representation. Finally if Yj(φn)

are sufficiently close to Yj(φ), then the set Y (φn) :=

g−1⋃
j=1

Yj(φn) can be ordered exactly like

Y (φ). In particular φn is a good representation for n sufficiently large, but this contradicts
the assumption φn 6∈ N0. �

Remark 5.32. If φ ∈ N is a representation as in Proposition 5.31 we can choose the open
neighborhood U such that the equality

r̃ot

g−1∏
j=1

[
φ̃(aj), φ̃(bj)

] =
2g − 3

k

holds in the whole neighborhood U . In fact it suffices to shrink U to U ∩ e−1
(

2g−2
k

)
. Let

us prove this assertion. First we notice that e(φ) = 2g−2
k . Then we observe that if ψ ∈ N

and e(ψ) =
(

2g−2
k

)
then we have

r̃ot

g−1∏
j=1

[
ψ̃(aj), ψ̃(bj)

] =
2g − 3

k
and r̃ot

[
ψ̃(aj), ψ̃(bj)

]
=

1

k
.

This follows from

r̃ot
[
ψ̃(aj), ψ̃(bj)

]
+ r̃ot

g−1∏
j=1

[
ψ̃(aj), ψ̃(bj)

] = e (ψ)

and the fact that, on N , the first summand is smaller than 2g−3
k while the second is lesser

than 1
k . In particular Proposition 5.31 tells us that N ∩ e−1

(
2g−2
k

)
is open in Rep (Γ).





CHAPTER 6

A Theorem by Mann, Matsumoto

In this final chapter we prove the main rigidity result for PSL(k) (2,R)−geometric repre-
sentations due to K. Mann and S. Matsumoto. The precise statement is the following

Theorem (Mann, Matsumoto). Let S be a closed oriented surface of genus g ≥ 2. Let
φ : Γ := π1(S) −→ Homeo+

(
S1
)

be a geometric representation. Then the connected
component of φ in Rep (Γ) is a single semi-conjugacy class.

First we describe some easy facts about the constancy of rotation numbers and of the
standard cocycles near a geometric representation. Then we describe a procedure, an Eu-
clidean Algorithm also due to K. Mann, to reduce the proof of local stability for geometric
representations to the case where rot (φ(aj)) = 0 for every j ≤ g. Finally in the last part
we exploit the work done in the previous chapters to give a proof of the main theorem.

1. Local stability and geometric representations

In this section we give some evidences that geometric representations are good candidates
for being locally stable. Unfortunately the results we are going to prove do not hold
uniformly for every element γ ∈ Γ.

1.1. Rotation numbers are locally constant near a geometric representation.
The next lemma is an easy consequence of Lemmas 5.16 and 5.17:

Lemma 6.1. Let a ∈ G be an element for which there exists b ∈ G such that r̃ot
[
ã, b̃
]
6= 0

where ã, b̃ ∈ G̃ are arbitrary lifts of a, b. Then there exists an open neighborhood U ⊆ G of
a ∈ G such that rot|U is constant.

Proof. Proceed by contradiction. Suppose that for every neighborhood U of a there
exists an element aU ∈ U such that rot(aU ) 6= rot(a). Let us fix a sequence of neighborhoods

{Un}n∈N of a such that
⋂
n∈N

Un = {a}. Let a1 ∈ U1 be an element such that rot(a1) 6= rot(a).

Consider U2, then V2 = U2 ∩ rot−1
(
S1 \ {rot(a1)}

)
is again an open neighborhood of

a thus we can find a2 ∈ V2 such that rot(a2) 6∈ {rot(a), rot(a1)}. Analogously we find
a3 ∈ V3 = U3 ∩ rot−1

(
S1 \ {rot(a1), rot(a2)}

)
such that rot(a3) 6∈ {rot(a), rot(a1), rot(a2)}

and so on. We end up with a sequence {an}n∈N that satisfies the following properties: firstly
we have the convergence an −→ a, secondly for every n 6= m we have rot(an) 6= rot(am)
and also rot(an) 6= rot(a). Since rot(an) −→ rot(a) the sequence {rot(an)}n∈N contains
either a subsequence of irrational numbers or a subsequence of rational numbers whose

89
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denominator diverges to ∞. In both cases Lemmas 5.16 and 5.17 imply r̃ot
[
ãn, b̃

]
−→ 0,

but by continuity r̃ot
[
ãn, b̃

]
−→ r̃ot

[
ã, b̃
]
6= 0, contradiction. �

Using Lemma 6.1 and Scott’s trick we are able to prove the following:

Theorem 6.2. Let φ : Γ −→ PSL(k) (2,R) be a geometric representation. For every γ ∈ Γ
there is an open neighborhood Uγ ⊆ Rep (Γ) of φ such that rotγ |Uγ is constant.

Proof. Let us prove the theorem for a generator γ := a1. Let j : Z −→ Γ be the homo-
morphism defined by j(1) := a1. Denote by J : Hom (Γ, G) −→ Hom (Z, G) = G the map

induced by composition J(ψ) := ψ(a1). Since φ is geometric we have r̃ot
[
φ̃(a1), φ̃(b1)

]
= 1

k

thus, by Lemma 6.1, there is an open neighborhood V ⊆ G of j(1) = φ(a1) such that rot|V
is constant. Define U := J−1(V ). For every ψ ∈ U we have J(ψ) = φ(a1) ∈ V therefore
rota1(ψ) = rota1(φ). The general result follows from Scott’s trick. Let c ∈ Γ \ {1} be any
non-element loop, by Scott’s Theorem 3.9 there exists a finite covering p : S′ −→ S such
that c lifts to a non separating simple closed curve c′. In particular we can include c′ in a
standard set of generators of π1(S′) as c′ = a′1. Denote by p∗ : π1(S′) −→ Γ the inclusion
homomorphism and by P : Hom (Γ, G) −→ Hom (π1(S′), G) the map induced by composi-

tion P (ψ) := ψp∗. Since φ is geometric also ρ := φp∗ : π1(S′) −→ PSL(k) (2,R) is geometric.

In particular r̃ot [ρ̃(a′1), ρ̃(b′1)] = 1
k . By the previous case we can find an open neighborhood

V ⊆ Hom (π1(S′), G) of ρ such that rota′1 |V is constant. Define U := P−1(V ). For every

ψ ∈ U we have P (ψ)(a′1) = φ(c) ∈ V therefore rotc(ψ) = rota′1(P (ψ)) = rota′1(P (φ)) =

rotc(φ). �

Theorem 6.2 has the following consequence:

Theorem 6.3. Let φ : Γ −→ PSL(k) (2,R) be a geometric representation. For every α, β ∈
Γ there is an open neighborhood Vα,β ⊆ Rep (Γ) of φ such that τα,β|Vα,β is constant.

Proof. Since φ is a geometric PSL(k) (2,R)−representation, by Corollary 3.8 for every
γ ∈ Γ we have rotγ(φ) =

pγ
k for some pk ∈ N. The function τα,β restricted to Uα ∩ Uβ

(where Uα, Uβ are given by Theorem 6.2) is continuous and has image contained in
1

k
Z :={m

k
: m ∈ Z

}
which is a discrete set. Thus it is locally constant. �

As we have already pointed out Theorems 6.2 and 6.3 are not enough to prove local stability
since the neighborhoods Uγ and Vα,β depend on the elements α, β, γ ∈ Γ.

2. Euclidean algorithm

An Euclidean Algorithm Theorem permits us to reduce the proof of the Main Theorem
to the case where of geometric representations φ : Γ −→ PSL(k) (2,R) with the further
property rot (φ(aj)) = 0 for every j ≤ g. In order to prove the Euclidean Algorithm
Theorem we first introduce crossed pairs and use them to do some explicit computations
of rotation numbers.
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Figure 1.

2.1. Crossed pairs. Let us introduce the following terminology:

Definition 6.4. A pair (a, b) ∈ PSL(k) (2,R) × PSL(k) (2,R) is a crossed pair if a, b are
the lifts of hyperbolic motions in PSL (2,R) with negatively intersecting axes.

There are simple operations on pairs that preserve the property of being crossed.

Lemma 6.5. Let (a, b) ∈ PSL(k) (2,R) × PSL(k) (2,R) be a crossed pair. Both (ab, b) and
(a, ba) are crossed pairs.

Proof. Let a, b be the projections of a, b to PSL (2,R). We think of a, b as hyperbolic
isometries of the Poincaré disk model of H2 ⊆ R2 = C. Up to conjugacy (which does not
change the property of being a crossed pair) we can assume that a has a repelling fixed
point in −1 and an attractive fixed point in +1, furthermore we can also assume that g
has as repelling fixed point −i and as attractive fixed point some t ∈ S1 in the upper half
circle delimited by the axes of a. Consider the short arcs I := [1, t] and J := [−1,−i]
(see Figure 1). By construction aI, bI ⊆ I and a−1J, b

−1
J ⊆ J . In particular abI ⊆ I

and
(
ab
)−1

J ⊆ J . The last property implies that ab has an attractive fixed point in I
and a repelling fixed point in J , therefore it is a hyperbolic motion whose axes negatively
intersects the axes of b. Thus (ab, b) is a crossed pair. The same argument shows that
(a, ba) is a crossed pair. �

The advantage of considering crossed pairs comes from the fact that they allow simple
explicit computations of rotation numbers:
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Lemma 6.6. Let (a, b) ∈ PSL(k) (2,R)× PSL(k) (2,R) be a crossed pair. Then

(1) If ã, b̃ are the lifts of a, b to G̃, then

r̃ot
[
ã, b̃
]
≥ 0.

(2) If rot(a) = rot(b) = 0 then for every positive word w ∈ F2

rot (w(a, b)) = 0.

(3) Let w := xα1yβ1 . . . xαtyβt be a positive word. If rot(a) = p
k and rot(b) = q

k then

rot (w(a, b)) =
p(α1 + · · ·+ αt) + q(β1 + · · ·+ βt)

k
= lx(w)rot(a) + ly(w)rot(b).

where lx(w) and ly(w) are respectively the numbers of x’s and y’s in w.

Proof. Let us prove (1). Let σ : G −→ G̃ be an auxiliary section, we have

r̃ot [σ (a) , σ (b)] =
1

k
r̃ot
[
σ (a) , σ

(
b
)]
.

Thus it is sufficient to show (1) when k = 1 or a, b ∈ PSL (2,R). Since [σ(a), σ(b)]
is independent of the section we can assume that σ(a), σ(b) have both fixed points, say
xr, xa ∈ [0, 1] and yr, ya ∈ [0, 1] where the first is the repelling one and the second is the
attractive one. Moreover, since (a, b) is a crossed pair, the four fixed ponts are ordered as
xr < yr < xa < ya. Observe that on the interval (ya, xa) the homeomorphism σ(b) moves
the points to the right (the same is true for σ(a)), hence there exists a point t ∈ (ya, xa)
such that σ(b)−1t = xa. Finally

σ(a)σ(b)σ(a)−1σ(b)−1t = σ(a)σ(b)σ(a)−1xa = σ(a)σ(b)xa = σ(a)t ≥ t

which implies r̃ot [σ(a), σ(b)] ≥ 0.
Now we prove (2). Let I ⊆ S1 be an interval such that aI, bI ⊆ I as in Lemma 6.5. Since
rot(a) = 0 and rot(b) = 0 we can lift I to an interval I ′ ⊆ S1 on the k−fold cover of S1

such that aI ′, bI ′ ⊆ I ′. Thus for any positive word w ∈ F2 we have w(a, b)I ′ ⊆ I ′ which
implies that w(a, b) has a fixed point in I ′ and rot (w(a, b)) = 0.
Point (3) can be reduced to point (2) by a trick. Let r := ρ 1

k
denote the rotation of 1

k .

Both a, b commute with r. Since a, b are k−lifts of homeomorphisms (hyperbolic motions)
that have fixed points we have rot(a) = p

k and rot(b) = q
k for some 0 ≤ p, q ≤ k− 1. Define

c := ar−p and d := br−q. The projections of c, d on PSL (2,R) coincide with those of a, b
so (c, d) is again a crossed pair. Since r commutes with a and b we have

rot(c) = rot(a) + rot(r−p) = 0, rot(d) = rot(b) + rot(r−q) = 0.

Hence by point (2) we get rot (w(c, d)) = 0, but

w(c, d) = w(a, b)r−p(α1+···+αt)−q(β1+···+βt)
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therefore

0 = rot (w(c, d)) = rot (w(a, b)) + rot
(
r−p(α1+···+αt)−q(β1+···+βt)

)
= rot (w(a, b))− p(α1 + · · ·+ αt) + q(β1 + · · ·+ βt)

k
.

�

2.2. The Euclidean Algorithm. Now we are ready to prove the following theorem:

Theorem 6.7 (Euclidean Algorithm, Mann [Man14]). Let (a, b) ∈ PSL(k) (2,R) be a
crossed pair. Then there exist positive words u, v ∈ F2 that satisfy the following conditions:

(1) [a, b] = [u(a, b), v(a, b)].
(2) rot(u(a, b)) = 0.
(3) (u(a, b), v(a, b)) is a crossed pair.

Proof. Consider the rotation numbers rot(a) = p
k and rot(b) = q

k .
By the standard Euclidean algorithm for gcd(p, q) we can recursively find mj , rj such that

m0 := p , r0 := q
m0 = m1r0 + r1

m1 = m2r1 + r2

r1 = m3r2 + r3

. . .
rn−1 = mn+1rn

where rn = gcd(p, q). Define the elements

a0 := a b0 := b

a1 := a0b
m1
0 b1 := b0a

m2
1

a2 := a1b
m3
1 b2 := b1a

m4
2

. . .

where mj is a positive integer such that mj ≡ −mj (mod k).
It is immediate to check that every aj , bj is a positive word of a, b.
By point (3) of Lemma 6.6 we have

rot(a0) = p
k rot(b0) = q

k

rot(a1) = p+m1q
k ≡ r1

k (mod Z) rot(b1) = q+m2r1
k ≡ r2

k (mod Z)
rot(a2) = r1+m3r2

k ≡ r3
k (mod Z) rot(b2) = r2+m4r3

k ≡ r4
k (mod Z)

. . .

the last term appearing in the sequence has rotation number rot ≡ 0 (mod Z).
An easy induction using Lemma 6.5 proves that every pair in the following sequence is a
crossed pair

(a0, b0) , (a1, b0) , (a1, b1) , (a2, b1) (a2, b2) , . . . , (aj , bj−1) , (aj , bj) , . . .
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Finally using the identity [a, b] = [abn, b] = [a, bam] we have

[a0, b0] =
[
a0b

m1
0 , b0

]
= [a1, b0]

[a1, b0] =
[
a1, b0a

m2
1

]
= [a1, b1]

. . .

This proves that given (a, b) we can find positive words u, v ∈ F2 such that properties (1)
and (3) hold for u, v while property (2) holds for u or for v. Suppose that rot(v(a, b)) = 0
let us prove that without losing properties (1) and (3) we can impose property (2) for
the word u. We claim that the pair

(
uvuk−1, vuk−1

)
satisfies all the conditions: property

(1) follows from the chain of identities [a, b] = [u, v] =
[
u, vuk−1

]
=
[
u
(
vuk−1

)
, vuk−1

]
.

Property (3) follows from Lemma 6.5 since the new pair is obtained from the old with the

following sequence of operations (u, v) //
(
u, vuk−1

)
//
(
u
(
vuk−1

)
, vuk−1

)
. Finally

property (2) follows from point (3) of Lemma 6.6 since rot
(
uvuk−1

)
= krot(u)+rot(v) ≡ 0

(mod Z). �

2.3. Reduction to the case where rotaj (φ) ≡ 0. We use the Euclidean algorithm
to reduce the proof of the main theorem to a particular case:

Lemma 6.8. If every maximal PSL(k) (2,R) representation φ with rotaj (φ) = 0 for every j

is locally stable then all maximal PSL(k) (2,R) representations are locally stable.

Proof. Assume that every PSL(k) (2,R) maximal representation with rotaj (φ) = 0

for every generator aj ∈ Γ is locally stable. Let ψ be another maximal PSL(k) (2,R)
representation. By Theorem 6.7 we can find uj , vj ∈ F2 relative to the crossed pairs
(ψ(aj), ψ(bj)) with the properties

(1) [ρ(aj), ρ(bj)] = [uj(ρ(aj), ρ(bj)), vj(ρ(aj), ρ(bj))] for every ρ.
(2) rot(uj(ψ(aj), ψ(bj))) = 0.
(3) (uj(ψ(aj), ψ(bj)), vj(ψ(aj), ψ(bj))) is a crossed pair.

Define the map

F : Rep (Γ) −→ Rep (Γ) where F (ρ) extends

{
F (ρ)(aj) := uj (ρ(aj), ρ(bj))
F (ρ)(bj) := vj (ρ(aj), ρ(bj)) .

Property (1) ensures that F (ρ) is well defined
g∏
j=1

[F (ρ)(aj), F (ρ)(bj)] =

g∏
j=1

[uj(φ(aj), φ(bj)), vj(φ(aj), φ(bj))] =

g∏
j=1

[φ(aj), φ(bj)] = 1.

Moreover the function F is continuous.
We prove that F (ψ) is a locally stable maximal PSL(k) (2,R) representation. By Milnor’s
Formula 2.13 the Euler number is computed by

e (F (ψ)) = r̃ot

 g∏
j=1

[
F̃ (ψ)(aj), F̃ (ψ)(bj)

] .
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Thus, since ψ is maximal, in order to prove that F (ψ) is maximal it would be enough to

show that
[
F̃ (ψ)(aj), F̃ (ψ)(bj)

]
=
[
ψ̃(aj), ψ̃(bj)

]
. By construction we have [F (ψ)(aj), F (ψ)(bj)] =

[ψ(aj), ψ(bj)], therefore [
F̃ (ψ)(aj), F̃ (ψ)(bj)

]
=
[
ψ̃(aj), ψ̃(bj)

]
τn

for some n ∈ Z. Computing translation numbers from both sides of the equality we get

r̃ot
[
F̃ (ψ)(aj), F̃ (ψ)(bj)

]
= r̃ot

[
ψ̃(aj), ψ̃(bj)

]
+ n =

1

k
+ n.

Since (F (ψ)(aj), F (ψ)(bj)) is a crossed pair (property (3)) we have r̃ot
[
F̃ (ψ)(aj), F̃ (ψ)(bj)

]
≥

0, on the other hand we always have the general estimate
∣∣∣r̃ot

[
F̃ (ψ)(aj), F̃ (ψ)(bj)

]∣∣∣ ≤ 1.

Hence the only possibility for n ∈ Z is n = 0. This proves maximality of F (ψ). Finally, by
construction rotajF (ψ) = 0 for every j (property (2)) thus F (ψ) is locally stable by our
assumption.
Now we prove that ψ itself is locally stable. Again by construction we have

rot[aj ,bj ] ◦ F = rot[uj(aj ,bj),vj(aj ,bj)] = rot[aj ,bj ]

(property (1)). By continuity of F the connected component of ψ is mapped to the con-
nected component of F (ψ) which is the semi-conjugacy class XF (ψ) since F (ψ) is locally
stable. Thus the function rot[aj ,bj ] = rot[aj ,bj ] ◦ F is constant on the connected component

of ψ, its constant value is rot[aj ,bj ] ≡ rot[aj ,bj ](ψ) = 1
k .

We are now ready to prove constancy of rotaj . Suppose by contradiction that there exists
a representation ρ in the connected component of ψ such that rotaj (ρ) 6= rotaj (ψ). Then
the image under rotaj of the connected component containing ψ is some interval of the
real line. In particular we find a representation ρ′ in the connected component such that
rotaj (ρ

′) 6∈ Q. By Lemma 5.16 irrational rotation number rotaj (ρ
′) implies the vanishing

of rot[aj ,bj ](ρ
′), and this contradicts the fact that rot[aj ,bj ] ≡

1
k . �

Remark 6.9. The same reduction holds (with the same proof) if we replace local stability
with the following property: rotγ is constant on the connected component of φ for every
γ ∈ Γ. In other words: if rotγ is constant for every γ ∈ Γ on the connected component of

every geometric representation φ : Γ −→ PSL(k) (2,R) with rotaj (φ) = 0 for every j ≤ g,

then the same property holds for every geometric PSL(k) (2,R)−representation.

3. Main Theorem

The connected component of a geometric PSL(k) (2,R)−representation lies in the intersec-
tion of good representations and representations with good fixed sets as stated in the next
proposition:

Proposition 6.10. Let φ ∈ N be a PSL(k) (2,R)−geometric representation. Let N(φ) the
connected component of φ in N . Then N(φ) is a connected component of Rep (Γ).
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Proof. By Lemma 5.23 and continuity of the Euler number for every ψ ∈ N(φ) ⊆ N
we have

r̃ot

g−1∏
j=1

[
ψ̃(aj), ψ̃(bj)

] ≤ 2g − 3

k
and e (ψ) =

2g − 2

k
.

Thus for every ψ ∈ N(φ) we get

r̃ot[ag ,bg ](ψ) = e (ψ)− r̃ot

g−1∏
j=1

[
ψ̃(aj), ψ̃(bj)

] ≥ e (ψ)− 2g − 3

k
=

1

k
.

On the other hand, since ψ ∈ Ng, we know that r̃ot[ag ,bg ](ψ) ≤ 1

k
. Therefore

r̃ot[ag ,bg ](ψ) =
1

k
and r̃ot

g−1∏
j=1

[
ψ̃(aj), ψ̃(bj)

] =
2g − 3

k
.

By Proposition 5.31 every ψ ∈ N(φ) has an open neighborhood Uψ in Rep (Γ) entirely
contained in Uψ ⊆ N . In particular there is an open subset U of Rep (Γ) such that
N(φ) ⊆ U ⊆ N . The result now follows from some general topology. The subspace

N := N0 ∩
g⋂
j=1

Ng is closed as it is the intersection of closed subsets. Also the set N(φ) is

closed: being a connected component of N , it is closed in N and thus, since N is closed, it
is closed in Rep (Γ). Let us denote by C(φ) the connected component of φ in Rep (Γ). We
have

C(φ) = (N ∩ C(φ)) ∪ (C(φ) \N(φ)) .

The set C(φ) \ N is open in C(φ) since N is closed. By Proposition 5.31 also C(φ) ∩ N
is open in C(φ). In fact for every ψ ∈ N ∩ C(φ) we have e (ψ) = 2g−2

k thus the following
eqaulity holds

r̃ot

g−1∏
j=1

[
ψ̃(aj), ψ̃(bj)

] =
2g − 3

k
.

By Proposition 5.31 there is an open neighborhood U of ψ such that U ⊆ N thus U∩C(φ) ⊆
N ∩C(φ). By connectedness of C(φ) we must have C(φ)∩N = C(φ) or C(φ) \N = C(φ),
since φ ∈ C(φ) ∩N it is the first relation the one that holds. This proves that C(φ) ⊆ N
and therefore C(φ) = N(φ). �

Corollary 6.11. Let φ ∈ N be a PSL(k) (2,R)−geometric representation. Let N(φ) be
the connected component of φ in Rep (Γ). Then rotag is constant on N(φ).

Proof. Argue by contradiction and assume that rotag is not constant on N(φ). By
continuity of rotag and connectedness of N(φ) the image rotag (N(φ)) is the whole R/Z or
is an interval I ⊆ R/Z. In either case we can find a representation ψ ∈ N(φ) such that
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rotag(ψ) 6∈ Q/Z. By Lemma 5.16 then r̃ot[ag ,bg ] (ψ) = 0, but ψ ∈ Ng by Proposition 6.10

thus r̃ot[ag ,bg ] (ψ) =
1

k
, a contradiction. �

Corollary 6.12. Let φ ∈ N be a PSL(k) (2,R)−geometric representation. Let N(φ) be the
connected component of φ in Rep (Γ). Then rotc is constant on N(φ) for every c ∈ π1(S).

Proof. The result follows from Corollary 6.11 using a trick by Scott. For every loop
c ∈ π1(S) there exists a finite covering p : S′ −→ S such that c lifts to a loop represented
by a simple closed curve on S′. In particular we can choose a standard set of generators
a1, b1, . . . , ag′ , bg′ of π1(S′) such that p∗(ag′) = c. The inclusion map p∗ : π1(S′) −→ π1(S)
induces by pre-composition a continuous function

P : Hom (π1(S), G) −→ Hom
(
π1(S′), G

)
, P (ψ) := ψp∗.

For the representation P (φ) : π1(S′) −→ PSL(k) (2,R) we have

e (φp∗) = 〈(p∗)∗ φ∗e, [S′]〉 = 〈φ∗e, p∗[S′]〉 = 〈φ∗e,deg(p)[S]〉 = deg(p)e (φ) .

Since the Euler characteristic obeys the same rule χ(S′) = deg(p)χ(S) we see that

e (φp∗)

χ(S′)
=
e(φ)

χ(S)
.

Finally we observe that the representation P (φ) is again a geometric and P (N(φ)) ⊆
N(P (φ)) by continuity of P . By Corollary 6.11 we have that rotag′ is constant on N(P (φ))

thus rotc|N(φ) = rotag′ |N(P (φ)) ◦ P |N(φ) is constant on N(φ). �

Finally we get the following results that generalize Theorem 4.17

Theorem 6.13 (Mann [Man14], Matsumoto [Mat14]). Let φ ∈ Rep (Γ) be a geometric
representation. Then the connected component of φ is a single semi-conjugacy class.

Proof. We can assume that φ ∈ Hom
(

Γ,PSL(k) (2,R)
)

. By Lemma 6.8 it is enough

to reduce to the case where rotaj (φ) = 0 for every j ≤ g. The theorem now follows from
Corollary 6.12 and Lemma 4.16. �

With more work it is possible to prove that the open set U given by Proposition 5.31 can
be chosen to lie in the connected component of N(φ). This implies that the connected
component N(φ) is also open in Rep (Γ). Therefore

Theorem 6.14. Let φ ∈ Rep (Γ) be a geometric representation. Then φ is locally stable.

Using Lemma 5.5 we get the following immediate consequence:

Theorem 6.15. For every positive divisor k | 2g − 2 there are at least k2g connected

components of Rep (Γ) with Euler number e = 2g−2
k .

Assuming more regularity an analogous result for Hom
(
Γ,Diff+

(
S1
))

has been proved by
J. Bowden in [Bow13] (Theorem C of the article). We cite the result:
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Theorem 6.16 (Bowden [Bow13]). Let φ ∈ Hom
(
Γ,Diff+

(
S1
))

be a representation. If φ

lies in the same C0−path component of an Anosov representation then it is itself an Anosov
representation. In particular it is conjugate to a geometric PSL(k) (2,R)−representation
for some k ≥ 1.



APPENDIX A

Proof of the stability property

The appendix is devoted to the proof of Proposition 5.22:

Proposition. Let φ ∈ Nj be a representation such that

r̃ot[aj ,bj ](φ) =
1

k
.

Then there exists an open neighborhood U of φ in Rep (Γ) such that U ⊆ Nj.

We already know by Corollary 5.21 that φ has a j−good fixed set. We want to prove that
nearby representations enjoy the same property. This can be done by studying exploiting

further the consequences of r̃ot
[
φ̃(aj), φ̃(bj)

]
on the dynamics of φ̃(aj) and φ̃(bj). The next

lemmas will give a description of Figures 1 and 2 that shows the dynamics of φ̃(aj).

Lemma A.1. Let φ ∈ Nj be a representation with a j−good fixed set. Suppose that

r̃ot
[
φ̃(aj), φ̃(bj)

]
=

1

k
.

Then the following holds:

(1) the homeomorphism g := φ̃(bj)φ̃(aj)
−1φ̃(bj)

−1 restricted to the interval
[
x2i

1 , x
2i+1
1

]
satisfies

g(x) > x for every x ∈
[
x2i

1 , x
2i+1
1

]
.

(2) the homeomorphism f := φ̃(aj) restricted to the interval
[
x2i

2 , x
2i+1
2

]
satisfies

f(x) > x for every x ∈
[
x2i

2 , x
2i+1
2

]
.

Figure 1.
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Proof. Let us prove (2), the proof of (1) is completely analogous. There are two
cases: either f has a fixed point f(x) = x for some x ∈

[
x2i

2 , x
2i+1
2

]
or f satisfies one

of the following strict inequalities f(y) < y for every y ∈
[
x2i

2 , x
2i+1
2

]
or f(y) > y for

every y ∈
[
x2i

2 , x
2i+1
2

]
(the graph of f |[x2i2 ,x2i+1

2 ] can cross the bisector line or stays always

above or always under that line). Let us consider the case where f(y) < y. We have

fg
(
x2i+1

2

)
= f

(
x2i+1

2

)
< x2i+1

2 , therefore r̃ot fg ≤ 0 contradicting the fact that r̃ot fg = 1
k .

Consider now the fixed point case f(y) = y for some y ∈
[
x2i

2 , x
2i+1
2

]
. If y is one of the

extrema of the interval then fg(y) = f(y) = y, thus r̃ot fg = 0, again a contradiction.
Suppose then x2i

2 < y < x2i+1
2 . Consider the sets X1(φ)′ := X1(φ) ∪ ({y}+ Z) and

X2(φ) := φ̃(bj) (X1(φ)). The set X := X1( phi)′ ∪X2(φ) can be ordered as follows:

· · · < x2i+1
1 < x2i

2 < y < x2i+1
2 < x2i+2

1 < · · · < x2i+1+2k
1 < x2i+2k

2 <

< y + 1 < x2i+1+2k
2 < x2i+2+2k

1 < . . .

The associated dynamical system for f, g with respect to these fixed point sets exhibits the
following behaviour (we use the positive word w := fg):

y // fg · y = x2i+2
1

// (fg)2 · y = x2i+4
1

// . . .

. . . // (fg)k · y = x2i+2k
1

// (fg)k+1 · y = y + 1.

Thus from the Calegari-Walker algorithm we get r̃ot fg ≤ 1
k+1 , a contradiction since by

assumption we have r̃ot fg = 1
k . �

Remark A.2. From Lemma A.1 the homeomorphisms f := φ̃(aj) and g := φ̃(bj)φ̃(aj)
−1φ̃(bj)

−1

satisfy the following properties for every t ∈ Z:

f(x) > x for every x ∈
[
x2t

2 , x
2t+1
2

]
, g(x) > x for every x ∈

[
x2t

1 , x
2t+1
1

]
.

The second one, i.e. φ̃(bj)φ̃(aj)
−1φ̃(bj)

−1(x) > x for every x ∈
[
x2t

1 , x
2t+1
1

]
, is equivalent to

φ̃(aj)
−1φ̃(bj)

−1(x) > φ̃(bj)
−1(x) for every x ∈

[
x2t

1 , x
2t+1
1

]
, i.e. f−1(x) > x (or equivalently

f(x) < x) for every x ∈ φ̃(bj)
−1
[
x2t

1 , x
2t+1
1

]
.

Properties (1) and (2) of Lemma A.1 are open with respect to the topology of Rep (Γ), i.e.
they hold in every sufficiently small neighborhood of φ.

Lemma A.3. Let φ ∈ Nj be a representation with a j−good fixed sets X1(φ) =
{
xt1
}
t∈Z

and X2(φ) =
{
xt2
}
t∈Z. Define

y2i := max
{

Fix
(
φ̃(aj)

)
∩
[
x2i−1

2 , φ̃(bj)
−1x2i+2n

1

]}
, y2i+1 := min

{
Fix
(
φ̃(aj)

)
∩
[
φ̃(bj)

−1x2i+2n+1
1 , x2i

2

]}
and

z2i := min
{

Fix
(
φ̃(aj)

)
∩
[
x2i−1

2 , φ̃(bj)
−1x2i+2n

1

]}
, z2i+1 := max

{
Fix
(
φ̃(aj)

)
∩
[
φ̃(bj)

−1x2i+2n+1
1 , x2i

2

]}
.

Then the following holds:
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Figure 2.

(1) We have φ̃(bj)y
2i < z2i+2n.

(2) We have φ̃(bj)y
2i+1 > z2i+2n+1.

Proof. We prove only point (1) as point (2) is completely analogous.
First we prove that y2i, z2i are well defined. Fix t = 2i+ 2n. We have

φ̃(bj)x
2t
1 = x2t+2n−1

2 < x2t+2n
1 < x2t+2n+1

1 < x2t+2n
2 = φ̃(bj)x

2t+1
1 .

Therefore φ̃(bj)
−1
[
x2t+2n

1 , x2t+2n+1
1

]
⊂ φ̃(bj)

−1
(
x2t+2n−1

2 , x2t+2n
2

)
=
(
x2t

1 , x
2t+1
1

)
for every

t ∈ Z. In particular the interval
[
x2i

2 , φ̃(bj)
−1x2i+2n

1

]
contains a fixed point of f , i.e.

x2i−1
2 < x2i

1 < φ̃(bj)
−1x2i+2n

1 .

Proceed now by contradiction and assume φ̃(bj)y
2i ≥ z2i. If we have equality then φ̃(bj)y

2i

is simultaneously a fixed point of f := φ̃(aj) since it is equal to z2i+2n, and a fixed point

of g := φ̃(bj)φ̃(aj)
−1φ̃(bj)

−1 as it is the image under φ̃(bj) of the fixed point y2i of φ̃(aj)
−1.

In particular r̃ot fg = 0, but we know by assumption that r̃ot fg = 1
k , a contradiction.

Suppose now that φ̃(bj)y
2i > z2i+2n. We have

x2i+2n
2 < z2i+2n < φ̃(bj)y

2i < x2i+2n
1

Define the setX2(φ)′ := X2(φ)∪
({
φ̃(bj)y

2i
}

+ Z
)

and alsoX1(φ)′ := X1(φ)∪
({
z2i+2n

}
+ Z

)
.

The set X := X1(φ)′ ∪X2(φ)′ can be ordered as follows

· · · < x2i+2n
2 < z2i+2n < φ̃(bj)y

2i < x2i+2n
1 < · · · < x2i+2n+2k

2 <

< z2i+2n + 1 < φ̃(bj)y
2i + 1 < x2i+2n+2k

1 < . . .

A computation (using the Calegari-Walker algorithm) similar to the one carried out in

Lemma A.1 shows that r̃ot
[
φ̃(aj), φ̃(bj)

]
≤ 1

k+1 , again a contradiction. �

Again properties (1) and (2) of Lemma A.3 are open with respect to the topology of the
representation space, i.e. they still hold (for fixed yt and zt) in every sufficiently small
neighborhood of φ in Rep (Γ). We are now ready to prove Proposition 5.22:
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Proof. Using Lemmas A.1 and A.3 we can find a sufficiently small ε > 0 and a
neighborhood U of φ in Rep (Γ) such that the folloing four inequalities hold for every

ψ ∈ U (and for suitable lifts ψ̃(aj) and ψ̃(bj)):

(1) ψ̃(aj)x < x for every x ∈
[
y2i + ε, y2i−1 − ε

]
.

(2) ψ̃(aj)x > x for every x ∈
[
z2i−1 + ε, z2i − ε

]
.

(3) ψ̃(bj)
(
y2i+1 − ε

)
> z2i+2n+1 + ε.

(4) ψ̃(bj)
(
y2i + ε

)
> z2i+2n − ε.

Using (1) and (2) we see that ψ̃(aj) has a fixed point x2i−1
1 (ψ) in

(
y2i−1 − ε, z2i−1 + ε

)
and

also a fixed point x2i−1
1 (ψ) in

(
z2i − ε, y2i + ε

)
. We choose the fixed points

{
xi1(ψ)

}
i∈Z in

the following way: first we choose 2k fixed points x2i−1
1 (ψ), x2i

1 (ψ) in consecutive intervals

for i = 1, . . . , k. Then we choose the others exploiting the fact that ψ̃(aj) commutes with

integral translations, i.e. X1(ψ) :=
⋃k
i=1

({
x2i−1

1 (ψ)
}

+ Z
)
∪
({
x2i

1 (ψ)
}

+ Z
)
.

Define X2(ψ) := ψ̃(bj)X1(ψ). We order X2(ψ) by requiring that property (3) of the

definition of j−good fixed sets hold with the same n as the one of φ, i.e. x2i+2n−1
2 (ψ) :=

ψ̃(bj)x
2i
1 (ψ) and x2i+2n

2 (ψ) := ψ̃(bj)x
2i+1
1 (ψ). In order to conclude that X1(φ) is a j−good

fixed set for ψ we need to prove that the set X := X1(ψ) ∪X2(ψ) can be ordered as

· · · < x0
1(ψ) < x1

1(ψ) < x0
2(ψ) < x1

2(ψ) < x2
1(ψ) < x3

1(ψ) < . . .

This follows from properties (3) and (4). Let us explain why:

x2i+2n
2 (ψ) = ψ̃(bj)x

2i+1
1 (ψ)

> ψ̃(bj)
(
y2i+1 − ε

)
> z2i+2n+1 + ε by property (3)

> x2i+2n+1
1 (ψ).

Analogously using property (4) we get:

x2i+2n−1
2 (ψ) = ψ̃(bj)x

2i
1 (ψ)

< ψ̃(bj)
(
y2i + ε

)
< z2i+2n − ε by property (4)

< x2i+2n
1 (ψ).

In both the chains of inequalities we used x2t−1
1 (ψ) ∈

(
y2t−1 − ε, z2t−1 + ε

)
and x2t

1 (ψ) ∈(
z2t + ε, y2t + ε

)
for every t ∈ Z. Thus the points of X are ordered as follows

· · · < x2t+1
1 (ψ) < x2t

2 (ψ) < x2t+1
2 (ψ) < x2t+2

1 (ψ) < . . .

�
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