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Abstract

Riccardo Calandrelli

The biological information of the organisms is stored in the DNA, which folds up into

elaborate physical structures inside the cell nucleus. The packing of the genetic material

is not only useful to allow spatial compactness, but it assumes also a functional rele-

vance. In such a way, the understanding that nuclear organization plays an important

role in the epigenetic regulation poses considerable challenges.

During the past fifteen years, several techniques have been developed to explore the ar-

chitecture of chromatin within the nucleus, such as Chromosome Conformation Capture

(3C) and derived 3C protocols (4C, 5C) or Fluorescence In-Situ Hybridization (FISH).

However, a genome-wide analysis was only possible after 2009, when the Hi-C protocol

was introduced, which first allowed for a comprehensive mapping of genome interactions.

In order to process Hi-C data, several software are needed to perform each step of the

analysis, from the preprocessing to the visualization of the data. Moreover, a normal-

ization procedure is required to remove biases, introduced by the experimental protocol

itself or related to genome features.

To address these needs we developed HiCtool, a standardized bioinformatic pipeline that

handles efficiently the Hi-C analysis, from the preprocessing and the normalization of

the data to the visualization of heatmaps. HiCtool contains the first pipeline for the

data preprocessing and also a section for the topological domains analysis, to allow fur-

ther investigation about genomes conformations. By using HiCtool, we successfully run

several Hi-C datasets of different cell lines and conditions of human and mouse, with the

aim of creating the biggest library of standardized processed data ever. We collected

all these datasets on GITAR (Genome Interaction Tools and Resources), a framework

we built to work on and manage genomic interaction data, which is available online at

genomegitar.org. GITAR contains either a standardized library to process Hi-C data

(HiCtool) and the collection of datasets we processed. In such a way, we provide users a

powerful and easy tool, both for analysis and epigenetic comparative studies on different

species or conditions.
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Chapter 1

Introduction

In 1953, Watson and Crick’s discovery of the DNA two entwined helices and paired

organic bases revealed the basic structure of DNA [1]. However, genomes are more than

linear sequences [2], with DNA folding up into elaborate physical structures that allow

for extreme spatial compactness of the genetic material. Analysis of the spatial orga-

nization of chromosomes reveals complex three-dimensional networks of chromosomal

interactions. These interactions affect gene expression at multiple levels, including long-

range control by distant enhancers and repressors, coordinated expression of genes and

modification of epigenetic states [3]. Therefore, the three-dimensional (3D) conforma-

tion of chromosomes assumes a central role in epigenetic regulation, being involved in

compartmentalizing the nucleus and bringing widely separated functional elements into

close spatial proximity [4].

To explore long-range chromatin interactions, several techniques have been utilized, such

as Chromosome Conformation Capture (3C) and 3C derived protocols (4C and 5C) or 3D

Fluorescence In-Situ Hybridization (3D FISH). However, only in 2009 it has been possi-

ble to initiate a 3D genome-wide analysis, when the Hi-C protocol was developed, which

first allowed for a comprehensive mapping of genome interactions. The representation

of this kind of data usually resorts to contact matrices (intra- or inter-chromosomal),

where each matrix entry represents the number of ligation products between the two

chromosome parts involved. These matrices are typically depicted as heatmaps, where

intensity indicates the contact frequency.

From 2009 on, investigation of the three-dimensional organization of genomes by per-

forming Hi-C experiments on human and mouse, led to the identification of large megabase-

sized chromatin interaction domains, called Topological Domains. They look as highly

self-interacting regions, seen as “triangles” in the heatmaps, occupying approximately

91% of the genome. This study gave a prominent contribute to map the three-dimensional
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conformation of the DNA at a kilo-base scale, and laid the groundwork for understand-

ing the link between chromatin structure and transcriptional control in mammalian

genomes.

During these years, several software applications have been developed for analyzing and

visualizing genomic interaction data, with different features and outputs, that we collect

on the 4DN software library1 . From this survey we realized that, albeit the presence

of a large amount of source data and several analysis and visualization applications, a

software to perform a standardized processing of Hi-C data was still missing. We have

addressed this need by developing HiCtool, a bioinformatics tool for Hi-C data analysis,

with the aim of creating a standardized and flexible framework to process and visu-

alize Hi-C datasets, and perform a comprehensive intra-chromosomal and topological

domains analysis. A complete Hi-C data analysis requires the integrated use of several

software tools to perform the data processing; moreover, data are affected by biases, so

a normalization procedure should be integrated as well. To deal with these problems,

HiCtool provides a complete and exhaustive pipeline, which includes all the software

needed for the overall analysis. For each step of the analysis the syntax of the code is

shown and clearly explained, with the key advantage that any other software documen-

tation is not required to perform it. This design lets users obtain the results easily and

quickly, through a simple, clear, and user-friendly procedure. Thus, HiCtool is a stan-

dardized and customizable pipeline to work on and visualize Hi-C data. In such a way,

the user, even beginner, is able to understand and manage the Hi-C data processing and

this is the big aim achieved. In addition, HiCtool provides the first pipeline to carry out

a topological domain study, which enables a comprehensive and deeper analysis about

the three-dimensional conformation of genomes.

Then we developed GITAR2 (Genome Interaction Tools and Resources), a comprehen-

sive solution to work on and manage genomic interaction data. GITAR provides users

with HiCtool, a standardized way to process and visualize Hi-C data, and an exhaustive

collection of processed datasets for different species, cell lines, and conditions. We pro-

duce four different outputs per dataset: intra-chromosomal contact matrices (observed,

expected and normalized), Directionality Index (a statistic used to identify systemati-

cally topological domains in the genome), HMM states for the Directionality Index and

topological domains coordinates. In such a way, GITAR allows for the first time to work

on and compare different data in a consistent way, providing the largest collection of

processed datasets ever. We strongly believe that this could be a major contribute for

epigenetic comparative studies, such as cell differentiation and cancer samples analysis.

Finally, in this thesis it will be discussed the role of Hi-C data in important disease-

associated studies. Due to the polymer nature of DNA, there is a strong relationship

between Hi-C contacts and genomic distance, and this property makes Hi-C a powerful
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method to detect large-scale genome aberrations, such as translocations, which are a

common feature of cancer genomics. Lastly, possible future works on inter-chromosomal

conformations will be outlined, starting from a preliminary analysis we have already

performed on Hi-C interchromosomal maps.

1http://data.genomegitar.org/4DN software.php
2http://genomegitar.org



Chapter 2

Chromatin structure and function

in three-dimensions

2.1 The three-dimensional chromatin structure

Chromosomes are some of the most complex molecular entities in the cell. The molecular

composition of the chromatin fibre is highly diverse along its length, and the fibre is in-

tricately folded in three dimensions [5]. The classic illustration of chromosomes (Figure

2.1) appears during mitosis in metaphase, when chromatin is highly condensed. During

interphase, chromatin is much less condensed, becoming accessible to the transcriptional

machinery, epigenetic factors and DNA repair enzymes. The three-dimensional folding

of the DNA is achieved thanks to many structural proteins as histones, that are the chief

protein components of chromatin. Histones package and order the DNA into structural

units called nucleosomes, acting as spools around which DNA winds.

2.1.1 Chromatin fibre

The DNA molecule consists of two helical chains each coiled around the same axis, and

each with a pitch of 3.4 nanometers and a radius of 1 nanometer [1]. The backbone of

the DNA strand is made by alternating phosphate and sugar residues [7]. The sugars

are joined together by phosphate groups that form phosphodiester bonds between the

third and fifth carbon atoms of adjacent sugar rings. The DNA double helix is stabi-

lized primarily by two forces: hydrogen bonds between nucleotides and base-stacking

interactions among aromatic nucleobases [8].

Chromatin is a complex of macromolecules found in cells, consisting of DNA, proteins

4
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Figure 2.1: DNA configuration in the cell nucleus [6]. The highlighted levels from
top to down are: chromosome, chromatin fibre, individual histones, the DNA double

helix molecule.

and RNA. In general terms, there are three levels of chromatin organization. First, DNA

wraps around histone proteins forming nucleosomes, the basic units of DNA packaging

in eukaryotes. A nucleosome consists of a segment of DNA coiled in sequence around

eight histone protein cores, covering 147 base pairs [9], with linker DNA of around 20-50

bp in length connecting nucleosomes. At a higher level, multiple histones wrap into a

30 nm fibre consisting of nucleosome arrays in their most compact form [10]. Although

the ”30 nm” chromatin solenoidal fibres have been observed and resolved in vitro, how

much of the DNA assumes these formations in vivo is still under debate [11], [12].

2.1.2 Topologically Associating Domains

At the level of hundreds of kilobases to few megabases, DNA folds up into higher level

structures named Topologically Associated Domains (TADs) [13], characterized by en-

riched chromosomal contacts within TADs than between TADs [14]. These highly self-

interacting regions have been observed in Drosophila Melanogaster [15], Mus musculus

and Homo sapiens, indicating that such spatial organization seems to be a general prop-

erty of genomes [16], which attests to its importance in nuclear biology. Moreover, TADs



Chromatin structure and function in three-dimensions 6

have been indicated to be in relation to gene regulation and other nuclear functions [17].

Figure 2.2: Cartoon model of a chromosomal fibre [17]. Illustration of a chromosomal
fibre segmentation into domains of distinct chromatin types, each consisting of a specific

combination of proteins and histone modifications (indicated by colors).

Several studies have indicated that specific regions of chromosomes are located in close

proximity to the nuclear lamina (NL) [2]. This has led to the idea that certain genomic

elements may be attached to the nuclear lamina, which may contribute to the spatial

organization of chromosomes inside the nucleus [18], providing anchoring for chromoso-

mal domains [17].

Several architectural proteins, such as CCCTC-binding factor (CTCF), Cohesin com-

plex and Mediator complex, are important for the establishment and maintenance of

a variety of cell type-specific and -invariant genome organizational features, including

enhancer-promoter contacts and long-range inter-TAD chromatin contacts, as well as

TAD boundaries [19]. The establishment and maintenance of both inter- and intra-TAD

chromatin interactions is thought to occur via recruitment of Cohesin, a protein complex

that is known for its role in sister chromatid cohesion during mitosis. Cohesin can be

recruited by the insulator protein CTCF, which governs cell type-invariant features of

genome organization and is required for proper Cohesin localization to CTCF-enriched

sites. In such a way, CTCF, Cohesin, and Mediator act as the ”architectural” proteins

of the nucleus (Figure 2.3). In mouse embryonic stem cells (ESCs) and neural pro-

genitor cells, CTCF, Cohesin, and Mediator are found at more than 80% of chromatin

interactions, further supporting the notion that the three proteins play a central role in

organizing chromatin [19].

Several recent studies interrogated changes in genome organization upon differentiation

of ESCs and during reprogramming of somatic cells to induced pluripotent stem cells

(iPSCs), mediated by the expression of the reprogramming factors Oct4, Sox2, Klf4 and

cMyc [20]. These reports revealed a large-scale re-organization of long-range, inter-TAD
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Figure 2.3: Architectural proteins act combinatorially to organize chromatin at differ-
ent length-scales [19]. TAD boundaries are enriched for CTCF and Cohesin, but these
proteins can also act in combination with other factors, such as Mediator to partition
these large Mb-scale TADs into smaller sub-TADs and facilitate enhancer-promoter

interactions.

chromatin contacts of pluripotency loci including the Nanog, Dppa2/4, Oct4 and Sox2

genes during differentiation, and demonstrated that the ESC-specific organization of

the genome is re-established upon reprogramming to iPSCs. This pluripotency-specific

organization of the mammalian genome suggests a role for pluripotency-associated gene

regulatory networks in the organization of long-range chromatin contacts in ESCs and

iPSCs. In support of this idea, genomic regions bounded by the master pluripotency

transcription factors Oct4, Sox2, and Nanog were found to interact with each other over

large distances in the ESC nucleus (Figure 2.4) [19]. Similarly, extended genomic regions

enriched for binding by the transcriptionally repressive Polycomb repressive complex 2

(PRC2), which mediates methylation of histone H3 at lysine 27, also co-localize in ESCs,

although separately from the pluripotency transcription factors (Figure 2.4) [21].

2.1.3 Chromosome territories

In eukaryotic cell nuclei there is evidence for a compartmentalized nuclear architecture

based on chromosome territories (CTs) [22]. A correlation between CT location and

human chromosomes size was described, in which smaller chromosomes are generally

situated towards the interior and larger chromosomes towards the periphery of the nu-

cleus [23]. However, the finding that CTs with similar DNA content, but with very

different gene densities, occupy distinct exterior and interior nuclear positions, indicates

that gene content is a key determinant of CT positioning. As example, although both

chromosomes 18 and chromosome 19 have a similar DNA content (85 and 67 Mb, re-

spectively), the gene-poor chromosome 18 territories were typically found at the nuclear
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Figure 2.4: Gene regulatory factors shape inter-TAD chromatin interactions within
the pluripotent nucleus [19]. Chromatin within the ESC nucleus is compartmentalized
based on the preferential co-localization of open, transcriptionally permissive ‘A’ com-
partment chromatin (white background away from the nuclear periphery) or closed, nu-
clear lamina-associated ‘B’ compartment chromatin (gray background, nuclear lamina-
associated). Within the ‘A’ compartment, genomic regions enriched for binding by
pluripotency transcription factors (purple) co-localize, as regions enriched for Polycomb
proteins and the H3K27me3 histone mark do (green). Loss of the pluripotency tran-
scription factors or the Polycomb repressive complex 2 (arrows) result in loss of inter-
TAD interactions, without disrupting the overall A versus B compartmental structure

of the nucleus.

periphery, whereas the gene-rich chromosome 19 territories were located in the nuclear

interior [22].

2.2 Three-dimensional transcriptional regulation

As stated by the ENCODE project [24], nuclear organization has emerged as an impor-

tant layer of the epigenetic transcriptional regulation. Specifically, long-range chromo-

somal associations between genomic regions are an important factor in the regulation

of gene expression, by forming loops that often link enhancers with promoters at con-

siderable distances, even located in different chromosomes [25]. DNA methylation and

histone modification are involved in epigenetic regulation of gene expression [24], as well

as chromatin composition and its distribution along chromosomes [26].
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2.2.1 RNA polymerase II core promoters are key components in the

regulation of gene expression

The identification and characterization of core promoters and transcription starting sites

(TSSs) are crucial to understand how RNA polymerase II transcription is controlled [27].

Most genes have multiple promoters, within which there are multiple TSSs, therefore

each promoter usage generates diversity and complexity in the transcriptome and pro-

teome. A set of common DNA sequence elements and patterns are associated with core

promoters, which characterize the expression of the downstream genes [27] (see Figure

2.5). The TATA box, located 28-34 bp upstream of the TSSs, is one of the most known

transcription factor binding sites. Its consensus sequence, TATAA, binds the TATA-box

binding protein (TBP), which is part of the pre-initiation complex (PIC) and this en-

forces the PIC to select a TSSs in the nearby space. The initiator (Inr) element, defined

by the consensus sequence YYANWYY1, where A is the +1 position, often co-occurs

with a TATA-box element, and they are the only known core promoter elements that,

alone, can recruit the PIC and initiate transcription. The downstream promoter ele-

ment (DPE), which lies 28-32 bp downstream of the TSSs, has a similar function of the

TATA-box in directing the PIC to a nearby TSSs. The B-recognition element (BRE),

lies upstream of the TATA-box and it can either increase or decrease transcription rates

in eukaryotes. CpG islands are genomic sequences in which CG dinucleotides are over-

represented, and 50% of human promoters are associated with CpG islands.

Figure 2.5: Core promoter elements [28]. Schematic representation of core promoter
elements that can participate in transcription by RNA polymerase II. Each of these
elements is found in only a subset of core promoters. The BRE is an upstream extension
of a subset of TATA boxes. The DPE requires an Inr and it is located 28-32 bp
downstream to the A+1 nucleotide in the Inr. The DPE consensus was determined
with Drosophila transcription factors and core promoters. The Inr consensus sequence

is shown for both Drosophila (Dm) and Humans (Hs).

1In nucleic acid notation for DNA, Y (pYrimidine) stands for C/T (cytosine or thymine, which are
both pyrimidines), N (Nucleobase) is any of the four bases, W (Weak) stands for A/T (adenine or
thymine, which both form only two hydrogen bonds).
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2.2.2 Promoter-enhancer interactions

In eukaryotes, gene expression is controlled by short regulatory DNA sequences called

enhancers. Classic promoter-enhancer loops are at the MYC gene [29], which has an

enhancer ∼400 kb away from the gene promoter, α-globin [29] and β-globin [30], where

a specific loop is formed between the β-globin locus control region (LCR) and active

globin genes. Understanding how an enhancer selects its promoter (or promoters) is

still a big challenge. He et al. introduced an integrated method for predicting enhancer

targets called IM-PET and, by applying it, they assigned targets for a set of enhancers

across 12 cell types in human [31]. They predicted 208,342 enhancers in total, averaging

17,362 enhancers per cell type, and 161,999 active promoters in these cell types. About

enhancer-promoter (EP) interactions, 441,879 unique EP pairs across the 12 cell type

were estimated, averaging 36,823 interactions per cell type.

2.2.3 Transcription factories

Transcription factories are discrete sites in the nucleus, enriched of multiple active RNA

polymerases, where transcription occurs and it is regulated, operating as activators or

repressors [32], [33].

While previous studies gave a view of transcription where protein factors are recruited

to and move along the chromatin template, a different model is that active RNA poly-

merase II is concentrated and anchored to a nuclear substructure and the gene loci move

to that [34]. To support the idea of factories as self-determining nuclear structures, it was

investigated what happens to them when transcription is stopped. It was seen that the

foci remain stable after the inhibition of both transcriptional initiation and elongation

with heat shock, so visible transcription factories are not simply accumulations of RNA

polymerase II on active genes, but they exist as independent nuclear subcompartments

[35].

2.3 Techniques to explore chromatin structure

Here, an overview of the experimental techniques used to explore chromatin structure

is presented. There are two major approaches to achieve this: the first is based on

microscopy and visualization combined with fluorescent labeling, the other is based on

the Chromosome Conformation Capture (3C) assay.
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Figure 2.6: Model of transcription with RNA polymerase immobilized in transcription
factories [34]. A transcription factory with a diameter of ∼70 nm that contains eight
RNA polymerases II (green crescents). Gene loci are wrapped to these polymerases (in
the direction of large arrows) and as they are transcribed, the nascent RNA (yellow)
comes out. Small arrows indicate the direction of transcription at the transcription

start site.

2.3.1 Microscopy-based assays

One of the most import microscopy-based techniques is Fluorescence In-Situ Hybridisa-

tion (FISH) (Figure 2.7). It detects nucleic acid sequences by using a fluorescent probe,

usually between 15 bp and 30 bp in length, that hybridizes specifically to its complemen-

tary target sequence within the intact cell [36]. This allows for a targeted visualization

of loci at a maximum optical resolution of about 200 nm.

Several variations of FISH have been adapted for various purposes. 3D FISH allows

three-dimensional visualization of specific DNA and RNA targets within the nucleus at

all stages of the cell cycle. It provides information about the arrangement of chromosome

territories and the organization of sub-chromosomal domains, about positions of individ-

ual genes and RNA transcripts read from them. Accumulation of such data is necessary

for understanding relationships between the spatial organization of the genome and its

functioning in the interphase nucleus [37].

Recently, new approaches have created unprecedented new possibilities to investigate

the structure and function of cells. Since the first studies of biological structures by

early pioneers of microscopy like Robert Hooke and Antoni van Leeuwenhoek in the

17th century, technical developments and improved manufacturing have led to greatly

improved image quality but were ultimately faced by a limit in optical resolution. Still,

even with perfect lenses, optimal alignment, and large numerical apertures, the optical
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Figure 2.7: Fluorescence In-Situ Hybridization (FISH): experimental protocol
overview. Laboratory technique for detecting and locating a specific DNA sequence
on a chromosome. The technique relies on exposing chromosomes to a small DNA se-
quence probe, that has a fluorescent molecule attached to it. The probe sequence binds
to its corresponding sequence on the chromosome. Source: National Human Genome

Research Institute (NHGRI)

resolution of light microscopy was limited to approximately half of the wavelength of

the light used. In practical terms, this meant that only cellular structures and objects

that were at least 200 to 350 nm apart could be resolved by light microscopy. Much

of the fundamental biology of the cell, however, occurs at the level of macromolecular

complexes in the size range of tens to few hundreds nm, that is beyond the reach of

conventional light microscopy. Super-resolution fluorescent microscopy [38] is able to

bypass the diffraction limit of traditional optical microscopes, bringing the resolution

potentially up to around 20 nm. This technique is based on stimulating a sample with

a series of sinusoidal striped patterns of high spatial frequency, typically generated by

laser light passing through a movable optical grating and projected via the objective onto

the sample [39]. Then, the response of the fluorophores to excitation is exploited and,

by applying the excitation patterns in different orientations and processing all acquired

results using computer algorithms, a high-resolution image of the underlying structure

can be generated [38]. The multicolor capability of this technique could potentially al-

low the imaging of the structure of chromatin at high resolution, by labeling short DNA

sequences with different colors and then matching the color sequence with the known

reference.

2.3.2 Chromosome Conformation Capture and 3C-based assays

Chromosome Conformation Capture (3C) is a high-throughput methodology, which can

be used to analyze the overall spatial organization of chromosomes and to investigate



Chromatin structure and function in three-dimensions 13

their physical properties at high resolution [40]. The main steps of the protocol are

shown on Figure 2.8.

Figure 2.8: Schematic representation of the Chromosome Conformation Capture (3C)
methodology [41].

Intact nuclei are isolated and subjected to formaldehyde fixation, which cross-links pro-

teins to other proteins and to DNA. The overall result is cross-linking of physically

touching segments throughout the genome via contacts between their DNA-bound pro-

teins. Now, cross-linked DNA is digested with a restriction enzyme and then subjected

to ligation at very low DNA concentration. Under such conditions, ligation of cross-

linked fragments, which is intramolecular, is strongly favored over ligation of random

fragments, which is intermolecular. At this point, chromatin parts that were physi-

cally in proximity are joined. Cross-linking is then reversed and individual ligation

products are detected and quantified by the Polymerase Chain Reaction (PCR) using

locus-specific primers. The result is a 3C library composed of stretches of DNA com-

bining two fragments from two distinct genomic locations, that were spatially closed in

the three-dimensional conformation.

While useful for specific loci of interest, 3C has very limited throughput. Circular-

ized Chromosome Conformation Capture (4C) [42] is a modification of 3C where the

3C library is cut with a secondary restriction enzyme, and the resulting fragments are

circularized with a ligase enzyme and then amplified using Inverse Polymerase Chain

Reaction. The main advantage is that the sequence of only one site of interest needs

to be known, so this PCR is able to capture all interactions of a single site (one-by-all

relationship). The 4C library is then sent to high-throughput sequencing or hybridised

with DNA microarrays to make further data analyses [43].

While 4C allows investigation of many unknown interacting sequences, it is still lim-

ited in terms of throughput, since only one input sequence can be used per experiment.
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Carbon Copy Chromosome Conformation Capture (5C) [44] expands on 3C by allowing

parallel analysis of the interaction between many selected loci (many-by-many relation-

ship). After generation of a 3C library, multiplex ligation mediated amplification (LMA)

is used to generate a 5C library, which can be then analyzed by microarray hybridiza-

tion or high-throughput sequencing. LMA is a variation of PCR that permits multiple

targets to be amplified with only a single primer pair [45]. Each probe consists of two

oligonucleotides, that hybridise to adjacent sites of the target sequence. Specificly, all

forward primers feature a common 5’-end tail containing the T7 sequence (TAATAC-

GACTCACTATAGCC), while all reverse primers contain a common 3’-end tail featuring

the complementary T3 sequence (ATAATTGGGAGTGATTTCCCT). In this way, all

ligated probes have identical end sequences, allowing simultaneous PCR amplification

using only one primer pair. In addition, these oligonucleotides can be ligated into a

complete probe only when they both are hybridised to their respective targets, with the

advantage that only the ligated oligonucleotides, but not the unbound probe oligonu-

cleotides, are amplified. Conversely, if the probes were not split in this way, the primer

tails would cause the probes to be amplified regardless of their hybridization to the

target DNA, and amplification of probes would not depend on the number of target

sequences in the sample.

Another method to explore chromatin interactions is Chromatin Interaction Analysis

using Paired-End Tag sequencing (ChIA-PET) [46]. Combining Chromatin Immunopre-

cipitation (ChIP), proximity ligation and Paired-End Tag (PET) strategy, ChIA-PET

provides a global and unbiased interrogation of higher-order chromatin structures as-

sociated with certain protein factors, to address the functional relationships between

specific subsets of interacting DNA loci. The outcome is functional chromatin struc-

ture converted into millions of short tag sequences, resulting in a ChIA-PET library for

sequencing analysis. Often the target is RNA Polymerase II, which allows to map the

DNA-DNA interactions of actively transcribed genes, but it is also possible to study spe-

cific transcriptional regulatory elements (TREs) marked by certain chromatin signatures.

Using ChIA-PET, Iouri Chepelev et al. [47] defined a global view of enhancer-promoter

interactions using H3K4me2 as active enhancer mark. The same approach can be ap-

plied to other histone modifications, such as acetilation [48], phosphorylation [49] and

ubiquitination [50] to study their individual and collective contribution to 3D chromatin

function.
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Figure 2.9: A comparison of methods used for chromosome conformation capture:
3C, 4C and 5C. While all the methods rely on cross-linking DNA, restriction enzyme
digestion and ligation under dilute conditions, 3C analyzes the interaction between two
individual loci by PCR, 4C analyzes all loci that interact with one locus by inverse
PCR followed by microarray or high-throughput sequencing, and 5C analyzes many
parallel interactions by generating a library by amplification with universal primer tags

and analysis by microarray or high-throughput sequencing.

2.4 Summary

In this chapter, I presented an overview of the three-dimensional chromatin structure

and its role in the epigenetic transcriptional regulation. Then, I introduced the experi-

mental assays to investigate the three-dimensional architecture of genomes, divided into

microscopy-based assays (FISH) and Chromosome Conformation Capture (3C) based

assays.

In the next chapter I will focus on Hi-C, the most recent and important 3C based as-

say, which first allowed for a comprehensive three-dimensional genome analysis. I will

describe either the experimental protocol and the data computational analysis. Such

analysis will then be implemented in Chapter 4, where I present HiCtool, a standard-

ized pipeline that we developed for Hi-C data processing and visualization.



Chapter 3

Hi-C: 3C genome-wide

As seen in the first chapter, long-range interactions between specific pairs of loci can

be evaluated with Chromosome Conformation Capture (3C) assay, using spatially con-

strained ligation followed by locus-specific Polymerase Chain Reaction (PCR). Adapta-

tions of 3C have extended the process with the use of inverse PCR (4C) or multiplexed

ligation-mediated amplification (5C). Still, these techniques require choosing a set of tar-

get loci and do not allow unbiased genome-wide analysis. To overcome these difficulties

in 2009 a genome-wide (all-to-all) version of 3C was developed, termed Hi-C, that probes

the three-dimensional architecture of whole genomes, by coupling proximity-based liga-

tion with parallel sequencing [4].

3.1 Hi-C protocol

The Hi-C protocol is identical to 3C up to the restriction enzyme digestion step. The

process involves cross-linking of cells using formaldehyde, followed by DNA digestion

with a restriction enzyme that leaves 5’ overhangs, which are filled in with biotinylated

residues. The resulting blunt-end fragments are ligated under dilute conditions to favor

ligation events between the cross-linked DNA fragments. The resulting DNA sample

contains ligation products consisting of fragments that were originally in close spatial

proximity in the nucleus, marked with biotin at the junction. The ligated DNA is

then sheared and the biotin-containing fragments are selected using streptavidin beads

to yield a library of fragments containing sequences from interacting loci. The library

is then analyzed by using massively parallel DNA sequencing, producing a catalog of

interacting fragments [4]. In contrast to ChIA-PET, Hi-C is site-neutral, reporting in-

teractions between any pair of close spatial proximity loci in the genome. The entire

16
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process is shown in Figure 3.1.

Figure 3.1: Overview of the Hi-C process [4]. Cells are cross-linked with formaldehyde,
digested with a restriction enzyme, the 5’ overhang is filled with a biotinylated residue,
blunt-end fragments are ligated under dilute conditions, DNA fragments are sheared and
selected with streptavidin beads. The library containing proximity-ligated fragments is

analyzed by paired-end high throughput sequencing.

3.2 Hi-C computational analysis

The first step in analyzing Hi-C sequencing data is mapping the paired-end sequence

reads on the genome. Then, several kinds of analysis can be carried out like contact

frequency analysis, correlation analysis applied to the contact matrices and Principal

Component analysis of genomic interactions. Finally, a three-dimensional polymer model

of the chromatin structure is derived.

3.2.1 Paired-reads alignment

The process of aligning sequence reads to the genome is becoming a relatively well-

established process and there are many programs available for this, like MAQ [51] or

Bowtie 2 [52]. In Lieberman-Aiden et al. (2009), each end of the paired reads was

aligned separately against the human hg18 reference sequence with MAQ, using a mis-

match threshold of 150 [4]. For Hi-C data, each of the paired reads should align to the

genome to include the sequence to the interaction library, since the goal is to analyze

the interaction between these two genomic regions.

The next step is quality control to ensure that the aligned reads are the result of prox-

imity ligation of digested fragments, so they are likely to reflect long range chromatin

interactions rather than just random collisions [53]. It should be confirmed that reads

align significantly closer to the restriction enzyme sites (HindIII in this case) as com-

pared to randomly generated reads. In Lieberman-Aiden et al. (2009) the maximum
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fragment size used for sequencing is 500 bp [4]. As shown in Figure 3.2 (A), both the

intrachromosomal reads and interchromosomal reads curves decrease rapidly as the dis-

tance from the HindIII site increases, until a plateau is reached at a distance of ∼500

bp. The sequence of reads should also be in the correct orientation with respect to

the restriction site. Hi-C sequences are expected to point (5’-3’) in the direction of the

ligation junction and therefore should align in the linear genome to the 3’ end of HindIII

restriction fragments. This tendency is reflected in ∼80% of reads from both intrachro-

mosomal and interchromosomal interactions, that align near HindIII restriction sites

with the correct orientation as shown in Figure 3.2 (B).

Quality control can be performed also for the percentage of reads that map to intra-

chromosomal and interchromosomal interactions. In a successful experiment, 55% of the

alignable read pairs represent interchromosomal interactions, 15% represent intrachro-

mosomal interactions between fragments less than 20 kb apart and 30% are intrachro-

mosomal read pairs that are more than 20 kb apart (Figure 3.2 C) [53].

3.2.2 Contact matrix and correlation analysis

A genome-wide contact matrix M can be constructed by dividing the genome into appro-

priately sized regions (”loci”) and defining each entry mij to be the number of ligation

products between locus i and locus j. This matrix can be visually represented as a

heatmap, with intensity indicating the number of contacts (Figure 3.3).

Figure 3.3 shows also the reproducibility of Hi-C results, repeating the experiment using

the same initial restriction enzyme (RE) HindIII and then using NcoI. It was observed

that the contact matrices generated were very similar to the original contact matrix

showing Pearson’s r = 0.990 (HindIII) and r = 0.814 (NcoI) [4].

It was also tested if Hi-C data were consistent with known features of genomic organi-

zation, specificly chromosome territories, so distant loci in the same chromosome that

are close in space, and patterns in subnuclear position, that is the tendency of cer-

tain chromosome pairs to be near one another. The average intrachromosomal contact

probability In(s) for pairs of loci at genomic distance s on each chromosome n was

calculated. In(s) decreases monotonically on every chromosome, suggesting that the

3D distance between loci increases with increasing of genomic distance [4]. Also, the

average interchromosomal contact probability was computed. In this case, the number

of interactions between loci on a pair of chromosomes was divided by the number of

possible interactions between the two chromosomes, that is the product of the number

of loci on each chromosome. The result shows that even at distances greater than 200
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Figure 3.2: Hi-C quality control process [4]. (A) Reads from fragments corresponding
to both intrachromosomal (blue) and interchromosomal (red) interactions align signif-
icantly closer to HindIII restriction sites as compared to randomly generated reads
(green). (B) Orientation of aligned reads with respect to the restriction site. ∼80% of
reads from both intrachromosomal (blue) and interchromosomal (red) align to the 3’
end of HindIII restriction fragments. (C) Percentage of reads that map to intrachro-

mosomal and interchromosomal interactions.

Mb, In(s) is always much greater than the average contact probability between different

chromosomes (Figure 3.4 A), implying the existence of chromosome territories.

Figure 3.4 (B) displays observed/expected interchromosomal number of contacts be-

tween each pair of chromosomes. The expected number of interchromosomal contacts

for each chromosome pair i,j was computed by multiplying the fraction of interchro-

mosomal reads containing i with the fraction of interchromosomal reads containing j

and multiplying by the total number of interchromosomal reads. The resulting heatmap

shows that small, gene-rich chromosomes (like chromosomes 16, 17, 19, 20, 21 and 22)

preferentially interact with each other, while chromosome 18, which is small but gene-

poor, does not interact frequently with the other chromosomes [4]. This agrees with

FISH studies in [54], [55] and [56].

As seen above, sequence proximity strongly influences contact probability, therefore a
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Figure 3.3: Hi-C genome-wide contact matrices [4]. The matrices shown here corre-
spond to intrachromosomal interactions on chromosome 14 (chromosome 14 is acrocen-
tric; the short arm is not shown). Each pixel represents all interactions between a 1-Mb
locus and another 1-Mb locus; intensity corresponds to the total number of reads (0
to 50). The original experiment is compared also with results from a biological repeat
using the same restriction enzyme (HindIII, range from 0 to 50 reads) and with results

using a different restriction enzyme (NcoI, range from 0 to 100 reads).

Figure 3.4: The presence and organization of chromosome territories [4]. (A) Prob-
ability of contact decreases as a function of genomic distance on chromosome 1, even-
tually reaching a plateau at ∼90 Mb (blue). The level of interchromosomal contact
(black dashes) differs for different pairs of chromosomes; loci on chromosome 1 are
most likely to interact with loci on chromosome 10 (green dashes) and least likely to
interact with loci on chromosome 21 (red dashes). Interchromosomal interactions are
depleted relative to intrachromosomal interactions. (B) Observed/expected number
of interchromosomal contacts between all pairs of chromosomes. Red indicates enrich-
ment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes
tend to interact more with one another, suggesting that they cluster together in the

nucleus.

normalized contact matrix M* was generated, in which each entry m*ij is the ratio

between the actual number of reads between loci i and j and the number of expected

reads at at the genomic distance s between i and j [4]. This observed (Figure 3.5 A)

over expected (Figure 3.5 B) matrix can be displayed as a heatmap, that shows many

large blocks of more (red) or less (blue) interactions than expected, generating a plaid

pattern (Figure 3.5 C). This plaid pattern suggests that the nucleus is segregated into

two compartments corresponding to open and closed chromatin.

Further statistical analysis of the data can lead also to the computation of a correlation
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matrix. If two loci are nearby in space, it is reasonable that they share neighbors and

have correlated interaction profiles. Therefore, a correlation matrix C can be computed,

in which each entry cij is the Pearson correlation between the ith row and the j th column

of M* [4]. This process sharpened the plaid pattern and enhanced the presence of two

compartments within the chromosome (Figure 3.5 D).

Figure 3.5: Heatmaps of chromosome 14 at a resolution of 1 Mb [4]. (A) Heatmap
based on observed interactions exhibits substructure in the form of an intense diagonal
and a constellation of large blocks (range from 0 to 200 reads). Tick marks appear
every 10 Mb. (B) Heatmap of the expected interaction frequencies based on genomic
distance, corresponding to what would be observed if there were no long-range struc-
tures. (C) The observed/expected matrix shows loci with either more (red) or less
(blue) interactions than would be expected, given their genomic distance (range from
0.2 to 5). (D) Pearson correlation matrix illustrates the correlation [range from -1
(blue) to +1 (red)] between the intrachromosomal interaction profiles of every pair of

1-Mb loci along chromosome 14.

3.2.3 Principal Component Analysis

Principal Component Analysis (PCA) was used to partition a chromosome into two sets

of loci, in which contacts are enriched within each set and depleted between sets [4].

For all but two chromosomes, the first principal component clearly corresponds to the

plaid pattern, positive values defining one set (A) and negative values the other (B). For



Hi-C: 3C genome-wide 22

chromosomes 4 and 5, the first PC corresponds to the two chromosome arms, the second

PC to the plaid pattern. The entries of the PC vector reflect the sharp transitions from

A to B observed within the plaid heatmaps.

In figure 3.6 four loci on chromosome 14 (L1, L2, L3, L4), that alternate between the

two compartments (L1 and L3 in compartment A, L2 and L4 in compartment B), are

taken. It is shown that L1 tends to be closer to L3 than L2, despite the fact that L2 is

between L1 and L3 in the linear genome sequence (Figure 3.6 A). For the other couple of

loci, L2 and L4, the same can be asserted: L4 tends to be closer to L2 than L3 (Figure

3.6 B). To probe these results, a 3D FISH analysis has been used as well (Figure 3.6,

bottom).

Figure 3.6: Principal Component Analysis on chromosome 14 [4]. (A) Compartment
A analysis: L1 tends to be closer to L3 than L2. (B) Compartment B analysis: L4
tends to be closer to L2 than L3. (Bottom) 3D FISH experiment results are displayed.

Upon further examination it was found that, at a given genomic distance, pairs of

loci belonging to compartment B showed a higher interaction frequency than loci in

compartment A, suggesting that compartment B is more densely packed [4], in accord

with J. Dekker (2008) [57], who asserted that chromatin fibre exhibits a local variation

in compaction. To prove this, it was seen that compartment A correlates strongly with

the presence of genes and higher expression, suggesting that it is closely associated

with open, accessible and actively transcribed chromatin. These results demonstrate

that open and closed chromatin domains occupy different spatial compartments in the

nucleus [4].
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3.2.4 Three-dimensional chromatin structure modeling

Chromosomal regions can be simulated by three-dimensional polymer models, where the

polymer chain of each chromosome is arranged as a highly knotted configuration forming

an ”equilibrium globule” [58] (Figure 3.7 A, middle).

An alternative model was also proposed, describing the three-dimensional configuration

of the chromatin as a ”fractal globule” [59] (Figure 3.7 A, bottom). This state is formed

by a polymer that folds into a series of small globules, and then again several times

creating superior order structures, until a single ”globule of globules” remains. The re-

sulting structure resembles a Peano curve [60], a continuous fractal trajectory that fills

the 3D space without crossing itself. A fractal globule results as an attractive structure

for chromatin segments because it lacks knots and this facilitates the unfolding and re-

folding, for example during cell cycle, gene activation or gene repression [4].

Figure 3.7: Three-dimensional chromatin models [4]. (A) 3D polymer models. (Top)
An unfolded polymer chain, 4000 monomers (4.8 Mb) long; coloration corresponds to
distance from one endpoint, ranging from blue to cyan, green, yellow, orange and red.
(Middle) An equilibrium globule: loci that are nearby along the contour need to not
be nearby in 3D. (Bottom) A fractal globule: nearby loci along the contour tend to be
nearby in 3D, leading to monochromatic blocks both on the surface and in the cross
section. This structure lacks knots. (B) Genome architecture at three scales. (Top)
Nuclear scale: chromosomes (blue, cyan and green) occupy different territories. (Mid-
dle) Chromosome scale: each chromosome folds back and forth between the open and
closed chromatin compartments. (Bottom) Megabase scale: the chromosome consists

of fractal globules.

Polymer model structures influence the average behavior of intrachromosomal contact

probability as a function of genomic distance. Lieberman-Aiden et al. [4] observed that,

plotted on log-log axes, I (s) exhibited a power law scaling between ∼500 kb and ∼7
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Mb, where contact probability scaled as s−1.08 (Figure 3.8 A). This was in agreement

with simulations, that showed a slope of -0.993 for the contact probability of a fractal

globule, while an equilibrium globule model predicted that the contact probability scaled

as s−1.508, which was not observed in the data (Figure 3.8 B).

Figure 3.8: Contact probability as a function of genomic distance averaged across the
genome [4]. (A) Observed contact probability shows a power law scaling with a slope
of -1.08 between 500 kb and 7 Mb. (B) Simulation results for equilibrium (red) and

fractal (blue) globules, with a slope respectively of around -3/2 and -1.

3.3 Topological Domains in mammalian genomes

Investigation of the three-dimensional organization of human and mouse genomes by

performing Hi-C experiment, led to the identification of large megabase-sized chromatin

interaction domains, which were called Topological Domains [16]. This study was per-

formed in mouse embryonic stem (ES) cells, human ES cells and human IMR90 fibrob-

last, and over 1.7-billion read pairs of Hi-C data were analyzed.

In particular, an analysis of two-dimensional interaction matrices at a bin size less than

100 kb, revealed the presence of these highly self-interacting regions, seen as ”triangles”

on the heatmaps (Figure 3.9 a). These regions are bounded by segments where the

interactions end suddenly, which were called topological boundary regions or unorga-

nized chromatin, depending on their size (the first smaller than the second). To identify

systematically all topological domains in the genome, the Directionality Index (DI) was

devised [16]. Regions at the periphery of topological domains are highly biased in their

interaction frequencies: the most upstream portion of a topological domain is highly

biased towards interacting downstream, while the downstream portion is highly biased

towards interacting upstream (Figure 3.9 a). Therefore, DI was used to quantify the

degree of upstream or downstream interaction bias for each genomic region, using this

formula:
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DI =

(
B −A
|B −A|

)(
(A− E)2

E
+

(B − E)2

E

)
(3.1)

where, A is the the number of reads that map from a given 40 kb bin to the upstream 2

Mb, B is the the number of reads that map from a given 40 kb bin to the downstream

2 Mb and E is the expected number of contacts for each bin and it equals A+B
2 . Also

a Hidden Markov Model (HMM) based on directionality index can be used to identify

biased ”states”, so to determine the ”true” hidden directionality bias (Figure 3.9 a).

Furthermore, a subset of boundaries appear to mark the transition between A and B

compartment in Lieberman-Aiden et al. (2009) [4] (Figure 3.9 e). Generally the A and

B compartments are larger than the topological domains, with a median value for the

size respectively of 3 Mb and ∼880 kb [16].

Figure 3.9: Topological domains in the mouse ES cells genome [16]. (a) Normalized
Hi-C interaction frequencies for chromosome 6 displayed as a two-dimensional heatmap,
domains, Directionality Index (DI) and HMM bias states. (b) Schematic illustration
of two topological domains and resulting directionality index. (c) Distribution of the
directionality index (absolute value, in blue) compared to random (red). 52% of the
genome exhibits a directionality index that was not expected by random chance. (d)
Mean interaction frequencies at all genomic distances between 40 kb and 2 Mb. Above
40 kb, the intra- versus inter-domain interaction frequencies are significantly different.
(e) Comparison of A and B compartments with topological domains using a heatmap

of the Eigen Vector values used to determine A and B sets at a boundary region.



Hi-C: 3C genome-wide 26

3.3.1 Topological Domains and transcriptional control process

The relationship between topological domains and the transcriptional control process

was also investigated. A strong enrichment of CTCF at the boundaries of topological

domains was seen, and it was hypothesized that topological boundaries might exhibit in-

sulator or barrier elements behavior [16], since many insulators are bound by CTCF [61].

Although most topological boundaries are enriched for CTCF, only the 15% of CTCF

sites are located in boundary regions. This means that CTCF alone is insufficient to

identify domain boundaries [16]. Another analysis was related to the distribution of the

heterochromatin mark H3K9me3, that is a well known boundary element [62], and it

was observed a clear segregation of H3K9me3 around the boundary regions. Further ex-

aminations showed that factors associated with active promoters and gene bodies, TSSs

and GRO-seq signal were enriched at the boundaries in both mouse and human, while

non-promoter-associated marks H3K4me1 (associated with enhancers) and H3K9me3

were respectively not enriched or depleted at boundary regions (Figure 3.10 a). Ad-

ditionally, tRNA genes, which can function as boundary elements, are enriched at the

boundaries, suggesting that a high level of transcription activity may contribute to the

boundary formation [16]. Thus, the above observations suggest a potential correlation

between topological boundary regions and insulators or barrier elements, revealing a link

between topological domains and transcriptional control process.

3.3.2 Boundaries are shared across cell types and conserved in evolu-

tion

A comparison between replicates of mouse ES cells and cortex or between human ES

cells and IMR90 cells showed that most of the boundary regions are shared between cell

types (Figure 3.11 a), suggesting that the global domain structure is largely unchanged

[16]. This stability of the domains between cell types led to investigate if the domain

structure was invariant across evolution as well. Also in this case, a comparison between

domain boundaries of mouse and human ES cells showed that most of the boundaries

are shared across evolution (Figure 3.11 c), in particular 53.8% of human boundaries

are boundaries in mouse and 75.9% of mouse boundaries are boundaries in human,

compared to 21.0% and 29.0% at random [16]. Figure 3.11 (d) shows a high degree of

similarity between the domain structure over a syntenic region in the mouse and human

ES cells, indicating that there is also a conservation of the higher order structure of DNA.
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Figure 3.10: Factors that may contribute to the formation of topological boundary
regions [16]. (a) Elements surrounding boundary regions in mouse ES cells or IMR90
cells. (b) Boundaries associated with a CTCF binding site, housekeeping gene and
tRNA gene (purple) compared to the expected at random (grey). (c) Pie chart show-
ing the percentage of boundaries associated with a given mark within 20 kb of the

boundaries.

3.4 In situ Hi-C reveals principles of chromatin looping

In 2014, an updated Hi-C protocol called ”in situ Hi-C” was developed, to comprehen-

sively map chromatin contacts genome-wide, generating Hi-C maps at unprecedented

high resolution. The densest map, in human lymphoblastoid cells, contained 4.9 billion

contacts, at 1 kb resolution. Using these maps, it was shown that genomes are parti-

tioned into previously undetected small contact domains, with a median length of 185

kb, that are associated with distinct patterns of histone marks and segregated into six

subcompartments. About 10,000 loops were also identified, as pairs of loci that show

significantly closer proximity with one another than with the loci lying between them.

These loops often link promoters and enhancers, correlate with gene activation and show

conservation across cell types and species [29].
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Figure 3.11: Boundary regions are shared across cell types and conserved in evolution
[16]. (a) Overlap of boundaries between cell types for both humans and mouse. (b)
An invariant boundary region between human ES cell and IMR90. (c) Overlap of
boundaries between syntenic mouse and human sequences. (d) Domain structure over

a syntenic region in the mouse and human ES cells.

3.4.1 In situ Hi-C protocol

In situ Hi-C protocol combines the original Hi-C protocol (called from now ”dilution

Hi-C”) [4] with nuclear ligation assay [63]. The methodology involves DNA-DNA prox-

imity ligation in intact nuclei, digestion using a 4-cutter restriction enzyme (like MboI),

filling the 5’ overhangs including a biotinylated residue, ligating the resulting blunt-end

fragments, shearing the DNA, capturing the biotinylated ligation junctions with strep-

tavidin beads and analyzing the resulting fragments with paired-end sequencing (Figure

3.12 A). The updated protocol showed three principal advantages over dilution Hi-C.

First, using in situ ligation, the frequency of spurious contacts due to random ligation

in dilute solution is reduced. Second, the protocol is faster, requiring 3 days instead of

7. Third, the use of a 4-cutter instead of a 6-cutter enables a more efficient cutting of

chromatinized DNA and higher resolution.

3.4.2 Small contact domains with a median length of 185 kb were

detected

In Lieberman-Aiden et al. (2009) [4] heatmaps at a resolution of 1 Mb were computed,

showing the presence of large squares (5-20 Mb) of higher contact frequency along the

diagonal, which were called ”megadomains”. In addition, each locus of 1 Mb could be

assigned to one of two compartments (previously called A and B), with loci showing a

higher interaction frequency if they belonged to the same compartment than if they did
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Figure 3.12: In situ Hi-C protocol [29]. (A) In situ Hi-C protocol combines the
original Hi-C protocol with nuclear ligation assay. During in situ Hi-C, DNA-DNA
proximity ligation is performed in intact nuclei. (B) Comparison of map of chromosome
7 in GM12878 (last column) to earlier Hi-C maps: Lieberman-Aiden et al. (2009) [4],
Kalhor et al. (2012) [64] and Jin et al. (2013) [65]. These heatmaps show that the

protocol facilitates the generation of much denser Hi-C maps.

not. By using the new higher resolution maps, many small squares of enriched contacts

along the diagonal were discovered, whose length was from 40 kb to 3 Mb, with a median

size of 185 kb (Figure 3.13 A). Loci within a contact domain showed correlated histone

modifications for eight different factors (H3K36me3, H3K27me3, H3K4me1, H3K4me2,

H3K4me3, H3K9me3, H3K79me2 and H4K20me1) [29] (Figure 3.13 B). Conversely, loci

at similar distance but belonging to different domains showed much less correlation in
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chromatin state.

Next, loci were partitioned into categories based on long-range patterns alone, using

a manual annotation approach and three different unsupervised clustering algorithms

(HMM, K-means and Hierarchical). At a resolution of 25 kb, at least five subcom-

partments were detected, both within and between chromosomes (Figure 3.13 C) [29].

Two of the five subcompartments are correlated with loci in compartment A, so they

were labeled A1 and A2. Both these are gene dense, have highly expressed genes, hold

activating chromatin marks such as H3K36me3, H3K79me2, H3K27ac, H3K4me1 and

are depleted at the nuclear lamina and at nucleolus-associated domains (NADs). The

other three patterns were labeled B1, B2 and B3, since they are correlated with loci

in compartment B, and they show different properties. Subcompartment B1 correlates

positively with H3K27me3 and negatively with H3K36me3, indicative of facultative het-

erochromatin. Subcompartments B2 and B3 tend to lack all the marks listed above.

Specificly, B2 is enriched at the nuclear lamina (1.8-fold) and at NADs (4.6-fold); sub-

compartment B3 is enriched at the nuclear lamina (1.6-fold), but strongly depleted at

NADs (76-fold). Further visual examinations suggested the presence of a sixth subcom-

partment correlated with the compartment B, so labeled B4, that spans only 11 Mb, or

0.3% of the entire genome (Figure 3.13 D). Subcompartment B4 comprises few regions,

each containing many KRAB-ZNF superfamily genes (130 of the 278 KRAB-ZNF genes

in the genome, a 65-fold enrichment). These regions exhibit a strong enrichment for acti-

vating chromatin marks (H3K36me3) and heterochromatin-associated marks (H3K9me3

and H4K20me3).

3.4.3 Approximately 10,000 genome-wide loops were identified

The next step was to identify the position of chromatin loops, as pairs of loci that are

close together in 3D but separated by a larger genomic distance. This was achieved

by searching for ”peaks” relative to the local background in Hi-C contact maps, that

reflect the presence of chromatin loops, with peak loci being the anchor point for the

loop (Figure 3.14 A). Most of the peaks (98%) reflected loops between loci that are at a

distance less than 2 Mb. These results were reproducible across all high-resolution Hi-C

maps and also conserved across cell types [29].

Next, peaks across species were compared. In particular, 2,927 high-confidence con-

tact domains and 3,331 peaks were identified in CH12-LX mouse B-Lymphoblasts. By

examining orthologus regions in GM12878 (Homo Sapiens B-lymphoblastoids), 50% of
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Figure 3.13: Genome is partitioned into small contact domains, with loci belonging to
six subcompartments correlated to different patterns of histone modifications [29]. (A)
(Left) Black highlighted contact domains on chromosome 20. (Right) Arrowhead matrix
derived using a transformation that replaces domains with an arrowhead-shaped motif,
pointing toward the domain’s upper-left corner (example in yellow). These arrowheads
were identified using dynamic programming. (B) Pearson correlation matrices of the
histone mark signal between pairs of loci inside and within 100 kb of a domain. (Left)
H3K36me3. (Right) H3K27me3. (C) Fold-enrichment map of the epigenetic profile
of each of the six long-range subcompartments. (D) A large continuous region on

chromosome 19 which contains intervals in subcompartments A1, B1, B2 and B4.

peaks and 45% of domains in mouse were also detected in humans, suggesting a conserva-

tion of the genome three-dimensional structure across the mammals [29] (Figure 3.14 B).

Then, the association between these loops and gene regulation was pointed out by three

important findings [29]. First, peaks often present a known promoter at one peak locus

and a known enhancer at the other (Figure 3.15 A), like classic enhancer-promoter loops

such as at the MYC gene (chr8: 128.35-128.75 Mb, in HMEC) and α-globin (chr16: 0.15-

0.22 Mb, in K562). Second, genes whose promoters are associated with a loop are much

highly expressed (6-fold) than genes whose promoters are not (Figure 3.15 B). Third,

cell type-specific peaks are associated with changes in expression. For example, a loop is

anchored at the promoter of the gene encoding L-selectin (SELL), which is expressed in

GM12878, where the peak is present, but not in IMR90, where the peak is absent (Figure

3.15 C). In total, 557 loops in GM12878 that were absent in IMR90 were observed; the

corresponding peak loci overlapped the promoters of genes that are significantly upreg-

ulated (>50-fold) in GM12878, but of only one gene that was markedly upregulated in
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Figure 3.14: Thousands of genome-wide loops were detected [29]. (A) Peaks were
identified by detecting high intensity pixels with respect to the neighborhoods. These
”peaks” indicate the presence of a loop and are marked with blue circles (radius = 20
kb) on the heatmaps (10 kb resolution). The number of contacts for each peak is also
indicated. (B) Loops are also preserved from Human to Mouse. Here, conservation of
the 3D structure on synteny regions is displayed. The contact matrix above is shown

at 25 kb of resolution, below at 10 kb resolution.

IMR90. On the other side, 510 loops in IMR90 that were absent in GM12878 were found;

the corresponding peak loci overlapped the promoters of 94 genes that were upregulated

in IMR90, but of only three genes that conversely were upregulated in GM12878 [29].

It was also seen that a large number of peaks (38%) are located at the corner of a contact

domain, so at domain boundaries. Vice versa, a large part of the domains (39%) have

peaks in their corners, so it was used the term ”loop domains” to identify them (Figure

3.15 D).

The next step was to see whether these peaks were associated with specific proteins. It

was found that a large part of peak loci are bound by the insulator protein CTCF (86%)

and the cohesin subunits RAD21 (86%) and SMC3 (87%). Because most of the loops

demarcate domains, this finding was consistent with studies suggesting that CTCF de-

marcate topological domains [16]. Since the consensus DNA sequence for CTCF-binding

sites is usually written as 5’-CCACNAGGTGGCAG-3’ and it is not palindromic, a pair

of CTCF sites in the same chromosome can have one of the following possible orien-

tations: (1) same direction on one strand, (2) same direction on the other strand, (3)

convergent on opposite strands and (4) divergent on opposite strands. By analyzing the

4,322 peaks in GM12878 where the two corresponding peak loci each contained a single

CTCF-binding motif, it was found that most of the pairs (92%) were convergent and

moreover this kind of orientation was overwhelmingly more frequent than the divergent

orientation [29] (Figure 3.15 E). Taken together, these considerations suggest that a pair
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of CTCF sites in convergent orientation is required to form a loop.

Figure 3.15: A strong association between loops and gene regulation was discovered
[29]. (A) Histograms showing the number of promoters associated with loops (left)
and with loops where the distal peak locus contains an enhancer (right). (B) Bar plot
showing the higher number of upregulated genes whose promoters participate in a loop
on GM12878 with respect to a 2nd cell type and vice versa. (C) Loop anchored at
the SELL promoter in GM12878 where the gene is on (left). The loop is absent in
IMR90 where the gene is off (right). (D) Histogram of the ”corner score” for peak
pixels versus random pixels. This correlates with the higher percentage of peaks that
locate at a domain corner. (E) Most of the pairs of CTCF sites that anchor a loop

were found in convergent orientation.
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3.5 Summary

In this third chapter the Hi-C protocol has been presented, underlining its major con-

tribute to the mapping of whole genomes. The data analysis has been shown as well. A

further analysis based on Hi-C data, regarding topological domains has been also pro-

vided. Then, the latest 2014 protocol named ”in situ Hi-C” has been introduced, which

allows to create Hi-C maps at very high resolution, enabling much deeper genome-wide

studies about the three-dimensional architecture of genomes.

In the next chapter, I present the pipeline that we developed for a standardized Hi-C

data processing and visualization, and topological domains analysis, named HiCtool.



Chapter 4

HiCtool: a standardized pipeline

to analyze Hi-C data

We developed HiCtool, a bioinformatics tool for Hi-C data analysis, with the aim of

creating a standardized and flexible framework to process and visualize Hi-C datasets.

Albeit the presence of a large amount of source data and several analysis and visual-

ization software, there is still not a standardized way for processing them, which would

allow the public to compare different outputs in a consistent way. HiCtool addresses this

need providing a complete and exhaustive pipeline that leads the user, even beginner,

easily and quickly to the results. For each step of the analysis, the code that is used,

the inputs and the outputs are specified. In addition, each section of the documentation

contains an explanation that briefly summarizes what it is about, to make all the process

clear and user-friendly. Therefore, the key advantage is that users do not needed to read

any other software documentation but only follow the steps listed in the related section,

providing specific input data to get the output.

The tool is based on Python libraries and packages. Three steps of analysis and four

main features were developed to present a clear and concise procedure to analyze and

visualize Hi-C data.

4.1 Tool principle and main features

The tool principle is to integrate several software to carry out a comprehensive and

standardized Hi-C data analysis, from the source data downloading to the visualization

of the heatmaps [4] and the identification of topological domains [16].

The first feature consists of providing functions to save and retrieve the information for

each section. This is the way to handle output data on HiCtool or using it for further

35
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analyses.

The second feature is the pre-processing pipeline, which gives a comprehensive guide

about how to obtain the input data for the following analysis, which includes contact

matrices normalization, heatmaps visualization and topological domains identification.

The third feature is the possibility of a full analysis customization. Since all the source

codes are provided, it is possible to update parameters not only related to the output

results but also to the data normalization process.

The fourth feature is that two ways of visualizing the data are provided, to improve

the feedback for the user. The first way is a normalized intrachromosomal heatmap,

where each point shows the interaction frequency between a couple of pre-divided bins

along a chromosome with different intensity color. The second way is an enrichment

heatmap, where each point represents the log2 of the observed over expected data based

on genomic distance. For each plot there is also the possibility of adding a custom

colorbar (specific for the two kinds of heatmaps) and a histogram.

4.2 HiCtool pipeline

HiCtool is composed of a pipeline divided into three sections: preprocessing of the data,

data analysis and visualization, topological domains analysis.

4.2.1 Preprocessing of the data

In this section, HiCtool provides an exhaustive pipeline from the downloading of the

source data to the final .bam files that are used for the following analysis. To implement

the preprocessing of the data, HiCtool integrates several software included SRA Toolkit,

Bowtie 2, SAMTools and Bedtools. The input data is expected to be one or more .sra

files downloaded from GEO. It is needed also a .fa (or .fasta) file of the reference se-

quence (hg38 in our case) to compute the alignment of the paired reads over the genome.

After downloading the data, the next step of preprocessing is the conversion of the input

data from sra to fastq format using SRA Toolkit. The key feature of this step is that the

.fastq files are splitted per reads, this allows to obtain .fastq files each related to one of

the mate in the Hi-C data library. The not paired reads are not useful for our analysis.

The SRA Toolkit command that implements this function is the following:

fastq -dump HiCfile.sra --split -3

Now the paired reads are aligned over the reference genome sequence, according to the

last step of the Hi-C protocol [4]. To implement this, Bowtie 2 has been used. This
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software requires first to build an index for the reference sequence, and then a paired

reads alignment can be computed:

bowtie2 -build hg38.fa index

bowtie2 -x index -1 HiCfile_1.fastq -2 HiCfile_2.fastq -S HiCfile.sam

The output .sam file is then converted into bam format and sorted by chromosomal

coordinates using SRA Toolkit:

samtools view -bS HiCfile.sam > HiCfile.bam

samtools sort -m 5000000000 HiCfile.bam HiCfile.sort

Potential PCR duplicates are now removed from the resulting aligned .bam file using

SAMTools. To do this, first it is needed to sort the .bam file by reads name (sort -n)

and fill in the mate coordinates, size and mate-related flags into the .bam file (fixmate).

Lastly, after sorting again by chromosomal coordinates (sort), we can remove duplicates

from the .bam file (rmdup):

samtools sort -m 5000000000 -n HiCfile.sort.bam HiCfile.namesort

samtools fixmate HiCfile.namesort.bam HiCfile.fixmate_namesort.bam

samtools sort -m 5000000000 HiCfile.fixmate_namesort.bam HiCfile.fixmate_sort

samtools rmdup HiCfile.fixmate_sort.bam HiCfile_noDup.sort.bam

The following last two steps are needed for the normalization of the data. First, the

.bam file is splitted into two .bam files, each related to one read of the pairs. Again

SAMTools is used and the commands are the following:

samtools view -h -f 0x40 HiCfile_noDup.sort.bam > HiCfile_pair1.bam

samtools view -h -f 0x80 HiCfile_noDup.sort.bam > HiCfile_pair2.bam

Now a fragment-end (fend) related .bed file is created, mapping the restriction enzyme

(RE) sites over the reference genome. This is needed in the normalization procedure and

it contains restriction sites coordinates and additional information related to fragment

properties (i.e. GC content). In order to align all the restriction sites for a certain cut-

ting enzyme (HindIII in our case), a .fastq file related to the RE sites has to be provided.

In general, for the quality score of the RE sequence a default average score ”I” can be

added. To locate all the coordinates of the RE site, the multiple alignment command

in Bowtie 2 is implemented (bowtie2 -k) and finally the alignment file is converted to

bed format via SAMTools and Bedtools:
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echo -e "@HindIII\nAAGCTT\n+\ nIIIIII" > HindIII.fq

bowtie2 -k 3000000 -x index -U HindIII.fastq -S restrictionsites.sam

samtools view -bS restrictionsites.sam > restrictionsites.bam

bedtools bamtobed -i restrictionsites.bam > restrictionsites.bed

4.2.2 Data analysis and visualization

The complex experimental protocol of Hi-C unavoidably produces numerous biases and

experimental artifacts. In this section we address these biases and we provide the pipeline

to normalize the data and then plot the heatmaps.

According to Yaffe and Tanay [66], the most significant biases are related to spurious

ligation products between fragments, transcription start sites (TSSs) and CTCF-bound

sites within topological domains, length and GC content of the fragments. Spurious liga-

tion products are sequence pairs which represent ligation products between non-specific

cleavage sites rather than restriction fragment ends. Specificly, they are those paired-

reads whose sum of the two distances to the nearest restriction sites is larger than 500

bp. The majority of reads maps within 500 bp to the nearest restriction sites, while 12%

and 4% of the reads, respectively for HindIII and NcoI restriction enzymes, represent

spurious mapped reads (Figure 4.1 a,b). About TSSs, analysis of the distribution of cis

contacts involving fragment ends located 0-5 kb upstream of an active TSS (promoter

side) showed a strong enrichment from 20 kb to ∼400 kb upstream and, in a weaker

fashion, from 20 kb to ∼400 kb downstream, increasing the probability that long-range

contacts may be associated with the active transcriptional state (Figure 4.1 c). A spec-

ular phenomenon is observed for fragment ends located 0-5 kb downstream of an active

TSSs on the gene side (Figure 4.1 d). In addition, fragments located 0-5 kb on one side

of a CTCF-binding site displayed cis contact enrichment and asymmetry over a range

up to ∼400 kb, while contacts that are directing crossing the binding sites are depleted

(Figure 4.1 e,f). This could be explained by the correlation between CTCF-binding sites

and topological domain boundaries, which show depletion of contacts and whose nearby

regions present an asymmetry of contact frequencies. About fragments length, long and

short fragments may have a variable ligation efficiency. The probability of contact can

be also influenced by the GC content near the ligated fragment ends, up to 200 bp next

to the restriction sites [66].

To normalize the data several approaches have been proposed, which are divided into

two categories, probabilistic and matrix balancing [67]. The probabilistic approach is

implemented in the R software HiCPipe [66] and HiCNorm [68]. HiCPipe uses restric-

tion fend features, partitioning their ranges into bins, and iteratively learns correction
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Figure 4.1: Hi-C sources of bias [66]. (a,b) Spurious ligation products bias. The
cartoon shows how to evaluate the distance of a read to the nearest restriction site. The
histograms represent the distribution of distances to restriction sites. Two populations
of reads are observed for each restriction enzyme: one for normally ligated products
(HindIII 88%, NcoI 96%) and one for reads mapped farther away from restriction sites.
(c,d) NcoI log2 enrichment values (y axis) of cis contacts involving fragment ends up
to 5 kb upstream (c) and downstream (d) of a TSS over controls. The data represent
the enrichment values for active (red) and inactive (blue) TSSs. (e,f) Normalized cis-
contact profiles for fragment ends located on the 5’ side (e) and the 3’ site (f) of CTCF

sites.

values for each combination of bins based on a binomial distribution of observed versus

unobserved fend interactions. HiCNorm uses a Poisson regression model using binned

counts instead of binary output. The matrix balancing approach is used by HiCLib [69],

included in the R package HiTC [70]. Given a symmetric matrix A ∈ Rn×n, A ≥ 0,

which is a heatmap in our case, this method is based on finding the diagonal matrices

D1 and D2 so that the sum of all the rows and columns of P = D1AD2 is one.

In HiCtool, we normalized the data according to the probabilistic model of Yaffe and
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Tanay [66], performed by using the Binning algorithm of the Python package HiFive

[67]. We chose this normalization method because it derives from a comprehensive bio-

logical background about Hi-C potential sources of biases and, therefore, it is one of the

most popular approaches. We did not use HiCPipe because HiFive’s Binning algorithm

has a more consistent performance across all binning resolutions and also, at bin sizes

lower than 50 kb, HiCPipe performs even worse [67]. This is a critical point for our

pipeline since, according to Dixon et al. [16], we process the data at a resolution of 40

kb to enable also a topological domains analysis (Dixon et al. used Yaffe and Tanay’s

method as well). In addition, HiFive’s capability of handling high-resolution data makes

it able to process the last generation of Hi-C datasets, derived from the ”in situ Hi-C”

protocol. Lastly, about the running time, HiFive’s Binning algorithm performs faster

not only than HiCPipe, but also than the other software mentioned above (Figure 4.2).

After data normalization, for plotting the heatmaps we used the Python Imaging Li-

brary (PIL), resulting in a better visualization and understanding than the plots that

HiFive produced.

Figure 4.2: Running time for Hi-C data analysis software [67]. For each software or
method, the runtime in minutes is displayed, partitioned for each stage of the process-
ing. All times are determined for chromosome 1 of mouse (restriction enzyme HindIII)

producing a heatmap at a resolution of 10 kb, and using a single processor.

To normalize the data using HiFive, a Fragment-end (FEND) object (hdf5 format) is re-

quired, containing the information about the fragments created by digestion of a genome

using a specific restriction enzyme (HindIII in our case). This feature allows a full cus-

tomization of the process, related to the restriction enzyme used in the experiment, the

reference genome, or even adding other possible sources of biases to be taken into ac-

count. To create a Fend object, information RE fragments are supplied in the form of

a bed -formatted file. In our case, it contains the information about the location of the

RE sites for the target genome for each chromosome and the GC content of the 200 bp

upstream and downstream of each RE site (Figure 4.3). To create a Fend object, the

HiFive function hifive.fend is used:

import hifive
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fend = hifive.Fend(’fend_object.hdf5’, mode=’w’)

fend.load_fends(RE_data_filename , re_name=’HindIII ’, format=’bed’)

fend.save()

Figure 4.3: Fragment-end related bed file. First four lines of the fend bed file. The
chromosome, start and end coordinate of the RE site, strand and GC content of the
fragment are displayed. The fields ”name” and ”score” have been added automatically

by Bedtools and they are not used in the analysis.

The second step is to create a HiC dataset (HiCData object) from both the Fend file and

mapped data in bam format (two separated .bam files, related to the first and the sec-

ond mates of the paired reads). This is done using the function hifive.HiCData. This

function allows also to insert a cutoff (maxinsert) for filtering paired-end reads whose

total distance to their respective restriction sites exceeds that value, so we choose 500 bp

according to [66]. In such a way, we remove the bias related to spurious ligation products.

import hifive

data = hifive.HiCData(’HiC_data_object.hdf5’, mode=’w’)

data.load_data_from_bam(’fend_object.hdf5’,

[BAM_file_1 , BAM_file_2],

maxinsert =500)

data.save()

Now a HiC project object is created. It contains links to HiCData object and Fend

object, information about which fends to include in the analysis, model parameters and

learned model values. This is the standard way of working with Hi-C data in HiFive

and this object will be used for learning the correction model and downstream analysis.

import hifive

hic = hifive.HiC(’HiC_project_object.hdf5’, ’w’)

hic.load_data(’HiC_data_object.hdf5’)

hic.save()

According to Yaffe and Tanay [66], to do not take into account of biased regions up

to ∼400 kb upstream or downstream of an active transcription start site (TSS) or

CTCF-binding site, we filter out fragments that interact within a distance of 500 kb
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(mindistance) before learning the correction parameters related to fend biases (length

and GC content). We choose 500 kb to be more confident of not considering biased

regions, however the number of fends removed inserting a cutoff of 400 kb is not signifi-

cantly different (1,802,066 than 1,808,135 respectively for a cutoff of 400 kb and 500 kb).

import hifive

hic = hifive.HiC(’HiC_project_object.hdf5’)

hic.filter_fends(mininteractions =1, mindistance =500000 , maxdistance =0)

hic.save()

With the filtering using a cutoff of 500 kb, 1,808,135 over 3,441,412 fends are removed

(Human ES cells H1, GSM862723).

The HiC project object is used now to estimate the distance-dependence relationship

from the data prior to normalization, in order to avoid biases that may result due to

restriction site distribution characteristics or the influence of distance/signal relation-

ship. Restriction sites throughout the genome are unequally distributed, resulting in

greatly varying sets of distances between fragments and their neighbors. Interaction

signal is strongly related to inter-fragment distance, so this unequal distribution means

that fragments with lots of shorter adjacent fragments have a nearby neighborhood of

higher interaction values than fragments surrounded by longer fragments, simply due

to cutsite variation. To find the HiC distance function, find distance parameters is

used. This function requires three input parameters: numbins is the number of bins

the range of interaction distances is broken into to compute the analysis; minsize is

used to specify the maximum size of all the interaction distances which are covered by

the first numbins bin; maxsize sets the maximum size of interaction distances taken

into account. Setting maxsize to zero, as in the following function call, means that the

maximum size is equal to the longest interaction distance.

import hifive

hic = hifive.HiC(’HiC_project_object.hdf5’)

hic.find_distance_parameters(numbins =90, minsize =200, maxsize =0)

hic.save(’HiC_distance_function.hdf5’)

To learn the correction parameters related to fragment length and GC content biases,

Yaffe and Tanay’s method is used [66]. They defined a multiplicative probabilistic model

that computes the prior probability of a contact between two fragment ends given their

properties (we consider the fragment length and GC content in our analysis). For each

source of bias, a seed correction matrix is computed which contains the coverage enrich-

ment, defined as the ratio between the observed number of cis contacts and the total
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number of assayed fragment pairs (Figure 4.4). To build each matrix, the lengths and

GC contents range is divided into 20 bins, such that each bin contains the same number

of fragments. Then, each entry of the seed matrix for the fragments length (the same

for GC content) is computed as:

Slen[i, j] = (1/Pprior) ·
Olen[i, j]

Tlen[i, j]
(4.1)

where, Pprior is the prior probability to observe a pair and it is equal to the total number

of observed cis pairs divided by the total number of possible cis pairs. Olen[i, j] is the

number of observed cis pairs such that one fragment end is in bin i and the other is in

bin j. Tlen[i, j] is the total number of possible unique cis pairs such that one fragment

end is in bin i and the other is in bin j.

Figure 4.4: Seed matrices for fragments length and GC content [66]. (a) Length biases
for cis contacts. Enrichment ratios for fragment ends divided into 20 bins according to
the fragment length. (b) GC biases for cis contacts. Similar to (a) but here fragment

ends are grouped according to their local GC content.

Now, given two fragment ends a,b, the probability P (Xa,b) to observe them in a paired-

end read is defined as:

P (Xa,b) = Pprior · Flen(alen, blen) · Fgc(agc, bgc) (4.2)

where alen, blen, agc, bgc are the fragment length bins and GC content bins of the two

ends, while Flen(alen, blen), Fgc(agc, bgc) are the two seed matrices adjusted using a max-

imum likelihood optimization procedure. The likelihood function is:

L(Flen, Fgc) =
∏
{a,b}∈I

P (Xa,b) ·
∏
{a,b}/∈I

(1− P (Xa,b))

=
∏

c=(alen,agc,blen,bgc)

P (Xa,b)
nc · [1− P (Xa,b)]

mc

(4.3)
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where I is the set of observed fragment end pairs, nc is the number of observed pairs

that match the bin criteria of c, and mc is the number of pairs that match the criteria

but were not observed. The likelihood function is then maximized by alternating be-

tween the optimization of the two matrices, until the improvement in the log-likelihood

is smaller than a threshold:

Fn+1
len = arg max

Flen

L(Flen, F
n
gc), Fn+1

gc = Fn
gc

Fn+1
gc = arg max

Fgc

L(Fn
len, Fgc), Fn+1

len = Fn
len

(4.4)

The resulting correction matrices are similar but not identical to the seed matrices, be-

cause of the adjustment derived by the likelihood optimization procedure which is due

to the cross-correlation of fragment length and GC content.

To learn the correction values for fragment length and GC content according to this

algorithm, the function find binning fend corrections is used:

import hifive

hic = hifive.HiC(’HiC_distance_function.hdf5’)

hic.find_binning_fend_corrections(max_iterations =1000,

mindistance =500000 ,

maxdistance =0,

num_bins =[20,20] ,

model=[’len’,’gc’],

parameters =[’even’,’even’],

usereads=’cis’,

learning_threshold =1.0)

hic.save(’HiC_norm_binning.hdf5’)

This function performs the optimization of correction values using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) non-linear algorithm of the Python package Scipy. According

to this function, the algorithm can terminate because of learning threshold (chosen

as 1 according to Yaffe and Tanay) or max iterations, which is the maximum num-

ber of iterations before terminating. mindistance and maxdistance set respectively

the minimum and the maximum inter-fragments distance to be included in modeling

(setting maxdistance to zero means that the maximum size is equal to the longest in-

teraction distance). num bins is the number of equally sized bins the range of interaction

distances is broken into (the value 20 is chosen according to Yaffe and Tanay). model

is a list which specifies the parameters taken into account for the normalization (length

and GC content). parameters is a list of types, one for each element in model. The

value ’even’ means that each parameter bin (i.e. each bin of the correction matrices)
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should contain approximately even numbers of fragments. usereads specifies which set

of interactions is used to learn the correction parameters (’cis’ means that we are

considering intrachromosomal interactions).

After learning the correction parameters, for any arbitrary division of the genome, we

calculate two matrices: an observed contact matrix and a fend expected contact ma-

trix. The observed intrachromosomal contact matrix O[i,j] contains the observed reads

count. The fend expected intrachromosomal contact matrix E[i,j] contains the sum of

corrections for all the paired-reads in each bin, according to the previous model. Then,

the normalized reads count is calculated as:

N [i, j] =
O[i, j]

E[i, j]
(4.5)

Figure 4.5: Normalized heatmaps of Chr 6: 50-54 Mb at a bin size of 40 kb. (A)
Normalized read counts (range from 0 to 19 reads). The heatmap represents the 98th

percentile of the non-zero data. (B) log2(enrichment) (range from -2.421 to 3.047).
The gray pixels represent non-valid log2(enrichment) values, i.e. where the correspond-
ing expected value is 0. The heatmap represents the 99th percentile of the positive and

negative log2 values. (GEO accession number: GSM862723)

In addition, we calculate also an enrichment expected contact matrix, which contains the

expected read counts considering the distance between fends and the learned correction

parameters. The data enrichment is then calculated as the ratio between the observed

and the enrichment expected data, as above.
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Figure 4.6: Normalized heatmaps of Chr 6: 0-171 Mb at a bin size of 1 Mb. (A)
Normalized read counts (range from 0 to 233 reads). The heatmap represents the 98th

percentile of the non-zero data. (B) log2(enrichment) (range from -3.147 to 1.554).
The gray pixels represent non-valid log2(enrichment) values, i.e. pixels where the
corresponding expected value is 0. The heatmap represents the 99th percentile of the

positive and negative log2 values. (GEO accession number: GSM862723)

After the normalization, heatmaps are plotted (see the code in Appendix A, section

A.2). For the normalized data, we plot the 98th percentile of the non-zero data to be

confident of not considering potential outliers and have a better visualization (i.e. set-

ting a proper heatmap color range). A histogram of the data was added to the heatmaps

for a complete understanding. Figures 4.5, 4.6 show heatmaps and histograms derived

from the normalized data with the pipeline displayed above. Figure 4.7 shows the effect

of normalization on the observed data, displaying either the contact matrices before and

after normalization, for a region of chromosome 6 of Human ES cells H1. From the

output data, it is clear that the normalization does not alter significantly the chromatin

conformation. This means that the effect of the corrected read counts is just to shift a

little the topological domain coordinates.
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Figure 4.7: Comparison between observed and normalized heatmaps of Chr 6: 50-
54 Mb at a bin size of 40 kb. (A) Observed data (range from 0 to 25 reads). (B)
Normalized data (range from 0 to 19 reads). Both the heatmap represent the 98th

percentile of the non-zero data. (GEO accession number: GSM862723)

4.2.3 Topological Domains analysis

The Topological Domains analysis section provides the code to calculate the DI and

visualize it (Appendix A, section A.3). It allows to calculate both the observed DI (3.1)

and the ”true DI” using a Hidden Markov Model implemented with MATLAB. The re-

sulting plot shows both the observed DI and the true DI states, therefore it is possible to

infer about the presence of topological domains and boundaries over the genome, whose

coordinates are calculated as well.

First, the contact data are loaded and the observed DI values are calculated and saved

(subsection A.3.1). Then, the observed DI data are used to calculate the ”true DI”

states with a HMM, which allow to identify the locations of the topological domains in

the genome (MATLAB code in Appendix A, subsection A.3.2). Specifically, a domain is

initiated at the beginning of a single downstream biased HMM state (red color in Figure

4.8) and it is continuous throughout any consecutive downstream biased states. The

domain will then end when the last in a series of upstream biased states (green color in

Figure 4.8) are reached, with the domain ending at the end of the last HMM upstream
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biased state [16].

Chromosome Start coordinate End coordinate

Chr 6 50.12 Mb 50.60 Mb

Chr 6 50.68 Mb 52.08 Mb

Chr 6 52.20 Mb 52.84 Mb

Chr 6 52.88 Mb 53.08 Mb

Chr 6 53.12 Mb 53.72 Mb

Chr 6 53.76 Mb 53.96 Mb

Table 4.1: Topological domains coordinates for Chr 6: 50-54 Mb at a bin size of 40
kb. (GEO accession number: GSM862723)

Figure 4.8: Topological Domains on Chr 6: 50-54 Mb. The heatmap shows topological
domains (blue highlighted) on chromosome 6, with coordinates from 50 Mb to 54 Mb at
a bin size of 40 kb (GSM862723). Observed DI (bar plot) and ”true DI” states (below)
for chromosome 6, with coordinates from 50 Mb to 54 Mb at a bin size of 40 kb . The
plot shows 6 topological domains and 7 topological domain boundaries according to the

HMM states shifts (the coordinates are listed on Table 4.1).

To calculate the topological domains coordinates (Table 4.1), first we extract all the po-

tential start and end coordinates according to the definition stated above, and then we



HiCtool: a standardized pipeline to analyze Hi-C data 49

evaluate a list of conditions to take into account the possible presence of gaps between

a series of positive or negative state values (Figure 4.9). In the first step, the condition

to extract the start coordinate of the first topological domain is checked. In particular,

it is checked if there are some negative states before the first positive state: if ”yes”,

we shift to the next negative state and we check again, until we find a negative state

that is after the first positive state value, i.e. we have found the first topological domain

coordinate. Since we assume to not take account of gaps between positive or negative

states, a check if there are any gaps between positive states is now performed: if ”yes”,

the gaps are removed and then the same check is performed for negative states as well.

After having removed all the gaps, the domain coordinates are recorded and the next

couple of positive and negative states is analyzed, starting again from the second step

of the process.

Figure 4.9: Topological Domains coordinates flowchart.
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4.2.4 Data results

We validated HiCtool comparing our results to Lieberman-Aiden et al. data, which

are available on Hi-C Data Browser1. We observed a high degree of correlation be-

tween the observed contact matrices generated with our pipeline and those generated by

Lieberman-Aiden et al., with an average Pearson’s r = 0.8164 (see Table 4.2). This re-

sult demonstrates the quality of HiCtool to process and reproduce accurately Hi-C data.

Figure 4.10: Comparison between HiCtool and Lieberman-Aiden et al. data.
Heatmaps and scatter plot for chromosome 6 at a bin size of 1 Mb (Human EBV-
transformed lymphoblastoid GM06690). (A) HiCtool heatmap. (B) Lieberman-Aiden
et al. heatmap. (C) Scatter plot showing the high degree of correlation between HiC-

tool and Lieberman-Aiden et al. data (Pearson’s r = 0.8565).

Next, we compared our topological domains to Dixon et al. domains [16] (see Table

4.3). Specificly, we found a greater number of domains than Dixon et al. for each

chromosome and the additional domains are validated by the Directionality Index shifts

over the genome (Figure 4.8). About the domains listed on Table 4.1, only two of that

(50.12-50.60 Mb, 50.68-52.08 Mb) have corresponding domains in Dixon et al. data

(respectively 50.16-50.68 Mb, 50.76-52.04 Mb); the following four domains we found (in

the range from 52.20 Mb to 53.96 Mb) are included in a region covered by only one

domain in Dixon et al. data (52.24-53.48 Mb).

The pipeline was tested on different cell lines and datasets of Homo Sapiens (hg38) and

Mus Musculus (mm10), taken from the library that we compiled on 4D Nucleome Web

Portal2 (see Table 4.4 for details). The 4DN library is a collection of genome interaction

papers related to the Chromosome Conformation Capture (3C) based assays (4C, 5C

and Hi-C). Intrachromosomal contact matrices, observed DI and HMM states values are

given in txt format. We provide the Python functions to save and load these files, in

order to allow the usage for further analyses. The topological domains coordinates are

saved in a .txt file as well but already formatted, to make the user able to read it directly

to compare the data to the plot.

1http://hic.umassmed.edu/welcome/welcome.php
2http://www.4dnucl.org/
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Chromosome Pearson’s r

Chr 1 0.8117

Chr 2 0.8587

Chr 3 0.8576

Chr 4 0.8575

Chr 5 0.8673

Chr 6 0.8565

Chr 7 0.8381

Chr 8 0.8335

Chr 9 0.7515

Chr 10 0.8099

Chr 11 0.8511

Chr 12 0.8288

Chr 13 0.8912

Chr 14 0.8413

Chr 15 0.7734

Chr 16 0.7690

Chr 17 0.7334

Chr 18 0.8473

Chr 19 0.6286

Chr 20 0.8462

Chr 21 0.7355

Chr 22 0.8231

Chr X 0.8656

Table 4.2: Comparison between HiCtool and Lieberman-Aiden et al. data. Pearson’s
r coefficients calculated for intra-chromosomal contact matrices for each chromosome

of Human EBV-transformed lymphoblastoid GM06690.
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Chromosome HiCtool number
of domains

Dixon number of
domains

Chr 1 322 208

Chr 2 298 183

Chr 3 259 169

Chr 4 254 139

Chr 5 223 136

Chr 6 204 129

Chr 7 191 133

Chr 8 172 106

Chr 9 157 134

Chr 10 169 99

Chr 11 184 113

Chr 12 163 100

Chr 13 117 71

Chr 14 113 58

Chr 15 108 67

Chr 16 84 76

Chr 17 99 67

Chr 18 80 55

Chr 19 71 70

Chr 20 74 51

Chr 21 55 27

Chr 22 52 22

Chr X 176 89

Table 4.3: Topological domains number. For each chromosome it is shown the number
of domains we found using HiCtool and the number of domains found by Dixon et al.

[16]. (GEO accession number: GSM862723)
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GEO Accession
Number

RE Species Cell Line Reference

GSM455133 HindIII Homo Sapiens EBV-transformed
lymphoblastoid
GM06990

[4]

GSM862723 HindIII Homo Sapiens Human Embryonic
Stem Cells H1

[16]

GSM862724 HindIII Homo Sapiens Fetal lung fibroblast
IMR90

[16]

GSM862720 HindIII Mus Musculus Mouse Embryonic
Stem Cells J1

[16]

GSM1551550 MboI Homo Sapiens B-lymphoblastoids
GM12878

[29]

GSM1551599 MboI Homo Sapiens Lung Fibroblasts
IMR90 (CCL-186)

[29]

GSM1551633 MboI Mus Musculus B-lymphoblasts
CH12-LX

[29]

GSM1055800 HindIII Homo Sapiens Fetal lung fibroblast
IMR90

[65]

GSM1055805 HindIII Homo Sapiens Embryonic stem cells
H1

[65]

GSM927075 HindIII Homo Sapiens ERG prostate ep-
ithelial cell line
RWPE1

[71]

GSM1267196 HindIII Homo Sapiens Embryonic stem cells
H1

[72]

GSM1267200 HindIII Homo Sapiens H1 Mesenchymal
stem cells

[72]

GSM1294038 HindIII Homo Sapiens Breast cancer cell
line T47D-MTVL,
unstimulated

[73]

GSM1294039 HindIII Homo Sapiens Breast cancer cell
line T47D-MTVL,
progestin R5020-
stimulated

[73]

GSM1608505 HindIII Homo Sapiens Lymphoblastoid
GM12878

[74]

GSM1718021 HindIII Homo Sapiens Human Embryonic
Stem Cells H9

[75]

GSM1906332 HindIII Homo Sapiens B-cell Follicular
Lymphoma RL

[76]

GSM1906333 HindIII Homo Sapiens Primary TumorB-
cell acute lym-
phocytic leukemia
B-ALL

[76]

GSM1906334 HindIII Homo Sapiens MHH-CALL- 4
B-cell acute lym-
phocytic leukemia
CALL4 H1

[76]

GSM1909121 MboI Homo Sapiens Haploid fibroblast-
like Hap1

[77]

Table 4.4: Datasets run by using HiCtool.



HiCtool: a standardized pipeline to analyze Hi-C data 54

Chromosome Length Bin size Number of bins

Chr 1 249 Mb 40 kb 6225

Chr 2 243 Mb 40 kb 6075

Chr 3 198 Mb 40 kb 4950

Chr 4 191 Mb 40 kb 4775

Chr 5 180 Mb 40 kb 4500

Chr 6 171 Mb 40 kb 4275

Chr 7 159 Mb 40 kb 3975

Chr 8 146 Mb 40 kb 3650

Chr 9 141 Mb 40 kb 3525

Chr 10 135 Mb 40 kb 3375

Chr 11 135 Mb 40 kb 3375

Chr 12 133 Mb 40 kb 3325

Chr 13 115 Mb 40 kb 2875

Chr 14 107 Mb 40 kb 2675

Chr 15 102 Mb 40 kb 2550

Chr 16 89 Mb 40 kb 2225

Chr 17 81 Mb 40 kb 2025

Chr 18 77 Mb 40 kb 1925

Chr 19 59 Mb 40 kb 1475

Chr 20 61 Mb 40 kb 1525

Chr 21 48 Mb 40 kb 1200

Chr 22 51 Mb 40 kb 1275

Chr X 155 Mb 40 kb 3875

Chr Y 57 Mb 40 kb 1425

Table 4.5: Chromosomes and matrices dimensions used in HiCtool. Chromosomes
lengths in terms of Mega-base pairs, bin sizes (kilo-base pairs) and contact matrices
dimensions in terms of number of bins for each chromosome used to run the datasets

on Table 4.4.
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Chromosome Length Bin size 98th per-
centile

Chr 1 249 Mb 1 Mb 135

Chr 2 243 Mb 1 Mb 189

Chr 3 198 Mb 1 Mb 213

Chr 4 191 Mb 1 Mb 227

Chr 5 180 Mb 1 Mb 241

Chr 6 171 Mb 1 Mb 234

Chr 7 159 Mb 1 Mb 281

Chr 8 146 Mb 1 Mb 312

Chr 9 141 Mb 1 Mb 470

Chr 10 135 Mb 1 Mb 307

Chr 11 135 Mb 1 Mb 285

Chr 12 133 Mb 1 Mb 316

Chr 13 115 Mb 1 Mb 458

Chr 14 107 Mb 1 Mb 447

Chr 15 102 Mb 1 Mb 444

Chr 16 89 Mb 1 Mb 429

Chr 17 81 Mb 1 Mb 601

Chr 18 77 Mb 1 Mb 802

Chr 19 59 Mb 1 Mb 337

Chr 20 61 Mb 1 Mb 674

Chr 21 48 Mb 1 Mb 592

Chr 22 51 Mb 1 Mb 302

Chr X 155 Mb 1 Mb 152

Chr Y 57 Mb 1 Mb 266

Table 4.6: Human Embryonic Stem Cell genome data features. Chromosomes lengths
in terms of Mega-base pairs, bin sizes (Mega-base pairs) and 98th percentile of the non-
zero data of normalized intrachromosomal contact matrices. (GEO accession number:

GSM862723)
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Figure 4.11: Human Embryonic Stem cells genome. Normalized intrachromosomal
contact maps (1 Mb resolution), obtained using HiCtool, are shown for each chromo-
some. The dimensions of the maps are not proportional to the chromosomes length,
but they were adjusted to have the same dimension of chromosome 1. All the maps
display the 98th percentile of the non-zero data (see Table 4.6 for more details). (GEO

accession number: GSM862723)
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4.3 GITAR: Genome Interaction Tools and Resources

We developed GITAR3 (Genome Interaction Tools and Resources), a tool to provide the

public a comprehensive solution to manage genomic interaction data from processing to

storage and visualization. GITAR is based on three modules: HiCtool, processed data

and GIVe (Genomic Interaction Visualizer).

The first module is HiCtool, a standardized Python library for processing and visual-

izing Hi-C data, which was entirely presented above and that we developed. HiCtool

establishes a standardized, flexible and easy way to work on genomic interaction data.

The second module is a collection of datasets processed using HiCtool (see Table 4.4).

The results include intrachromosomal contact matrices (observed, expected and nor-

malized), Directionality Index (DI), HMM states for the DI and topological domains

coordinates, which are stored into zip files available for downloading. In such a way,

GITAR provides the largest collection of processed Hi-C data ever. This allows the

users to make comparative analyses or manipulation. The actual collection of datasets

will be updated as soon as more data are available.

The third module includes GIVe, a powerful web-based visualization engine for genomic

interaction data, which clearly displays topological domains over the genome (developed

by Dr. Xiaoyi Cao).

3http://www.genomegitar.org



Chapter 5

Discussion

Since nuclear organization has emerged as an important layer of epigenetic transcrip-

tional regulation, during the last ten years a big effort has been produced to explore the

three-dimensional architecture of chromatin and understand the mechanisms that regu-

late the DNA folding process. To investigate genomes conformation, several techniques

have been used such as FISH and chromosome conformation capture (3C) or 3C derived

assays (4C, 5C), until in 2009 the development of Hi-C first allowed for a comprehensive

mapping of genome interactions. In such a way, Hi-C gave a significant contribute to the

understanding of the principles of high order chromatin organization and its functional

role in genome regulation.

In the following section, I present ongoing disease-associated studies, pointing out the

big contribute that Hi-C can give in this field of research. Finally, I also introduce po-

tential studies related to interchromosomal conformations based on Hi-C data, which

could be significant for future research.

5.1 Disease-associated studies based on three-dimensional

genome structure

The extent to which high-order chromatin aberrations are involved in cancer genomics

is an important question. Chromosomal rearrangements, including translocations, are

common pathogenetic events in cancers, such as leukemias, lymphomas and sarcomas.

These events disrupt the integrity of the genome and require formation and joining of

DNA double strand breaks (DSBs) [78]. The modeling of three-dimensional structure of

chromatin as a fractal globule implies a strong relationship between contact probability

and genomic distance, where interaction frequency scales as s−1.08 between ∼500 kb and

∼7 Mb, although a similar behavior is evident for the entire length of a chromosome (s is

58
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the genomic distance between two loci) [4]. In order of this, since insertions, deletions or

translocations alter the distances between regions involved in such events, an unusually

contact frequency appears compared to the reference sequence. Specifically for translo-

cations, the new parts in contact would show a stronger intra- or inter-chromosomal

interaction, which can be detected from the Hi-C maps.

Several studies investigated the hypothesis that three-dimensional spatial organization

influences the set of somatic copy-number alterations (SCNAs) in cancer [79]. SCNAs

are among the most common genomic alterations observed in human cancers, and the

identification of regions that show frequent SCNAs is a robust way to find out key genes

involved in oncogenesis [80]. Albeit the big amount of data on structural variation in

cancer genomes, at first these studies were limited by the characterization of 3D chro-

matin architecture. Later, with the development of the Hi-C protocol, it was possible

to compare SCNA maps and genome-wide maps, to prove the existence of a spatial

relationship between the three-dimensional genome conformation and the chromosomal

alterations in cancer. To quantitatively determined the relationship between 3D ge-

nomic structure and SCNA, Fundenberg et al. [79] performed a study converting both

the datasets in the same form. For each chromosome, they built a Hi-C contact matrix,

where each pixel stands for the number of spatial contacts between loci i and j, and a

SCNA matrix across 3,131 tumors, where each pixel represents the number of amplifi-

cations or deletions that start at genomic location i and end at location j. From these

maps it was seen that regions enriched for 3D interactions were more likely to undergo

frequent SCNAs (see Figure 5.1). The achieved results also argued that the probability

of a 3D contact between two loci based on the fractal globule model explains the length

distribution of SCNAs better than other mechanistic models.

Figure 5.1: SCNA and contact maps for chromosome 17 at 1 Mb resolution [79]. (a)
SCNA heatmap. Each pixel (i,j ) is the number of SCNAs starting at genomic location
i (vertical axis) and ending at location j (horizontal axis) on the same chromosome.
(b) Hi-C contact heatmap. Each pixel (i,j ) is the number of interactions between the

loci i and j on the same chromosome.
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During the last ten years, many GWAS (Genome-wide association studies) have been

conducted to investigate genomic features of disease-associated SNPs (Single Nucleotide

Polymorphisms) [81]. Specifically, Maurano et al. [82] showed that these variants are

concentrated in regulatory DNA, marked by deoxyribonuclease I (DNase I) hypersen-

sitive sites (DHSs). Since the results suggest an involvement of these variants in tran-

scriptional regulatory mechanisms, including modulation of promoters and enhancers,

associating them to their targets is crucial to understand how they affect gene function.

In order to detect DHSs partners, Hi-C genome-wide protocol represents a powerful way

to perform such analysis.

5.2 Future perspectives of Hi-C studies

During the last years, studies on functional implications of three-dimensional chromatin

structure have been focused mostly on the intra-chromosomal contacts. As seen above,

several analyses have been performed to understand the relationship between chromo-

somal interactions and transcriptional control processes. Dixon et al. [16] demonstrated

the existence of topological domains throughout the genome and showed how topological

domain boundaries are correlated with factors associated with active promoters and gene

bodies (section 3.3). Lately, Rao et al. [29] carried out an analysis at higher resolution,

exploiting in situ Hi-C protocol (section 3.4). They identified many chromatin loops, as

spots of higher interactions in the heatmaps, which often link known enhancers and pro-

moters and demarcate topological domains. This showed the strong association between

loops and gene regulation, and the consistency with previous studies about topological

domains and transcriptional control.

Besides intrachromosomal contacts, other studies showed that also inter-chromosomal

interactions assume an important role in transcriptional regulation, allowing for example

an enhancer to modulate the expression of a gene located in a different chromosome. In

this case, can an enhancer activate either a cis- or a trans-promoter? If it can, how does

an enhancer choose a target promoter when presented both in cis and trans? Bateman

et al. [83] tried to answer these questions performing a study based on a transgenic

approach on Drosophila Melanogaster using the enhancer GMR. They demonstrated

that the enhancer can activate promoters in the same or different chromosomes and

that promoters compete for the activity of an enhancer. Specificly, the enhancer was

biased toward a promoter in cis than in trans, demonstrated by the strong reduction in

trans-activation when a cis-promoter was present.

Since enhancers have been largely categorized in various cell types [24], promising studies

could be performed using Hi-C data to understand how interchromosomal conformations
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are involved in transcriptional regulation. The power of Hi-C to explore interchromo-

somal contacts at a high resolution would enable a comprehensive detection of trans-

enhancers target regions.

A macroscopic study related to interchromosomal conformations could be conducted to

discover if stable three-dimensional structures exist in the nucleus. To do this, inter-

chromosomal Hi-C maps could be explored with the first goal of finding out potential

patterns of high contacts. A high-contact pattern is intended as a defined region which

shows enriched interaction frequencies with respect to the nearby loci. Then, a compar-

ative analysis could be performed between different cell lines or conditions of a specie

or even different species. From a preliminary analysis of the human interchromosomal

maps that we computed (see Appendix B, section B.1), we derived the presence of at

least two types of high-contact patterns, that we named ”stripes pattern” and ”spot

pattern” (see Figure 5.2). We saw a correlation between the position of the patterns in

an interchromosomal heatmap and the spatial organization of the cis maps of the two

chromosomes involved. In particular, these patterns appear between loci which show

high self-contacts in the intrachromosomal maps, meaning that they are generated by

interactions between these ”mega-domains” along each chromosome. If confirmed, the

presence of stable interchromosomal interaction patterns may be the first step for study-

ing the functional roles of trans contacts, which may pave the way to comprehensive and

quantitative three-dimensional models of genome regulation.

Figure 5.2: Interchromosomal patterns. (A) Interchromosomal heatmap of Chr 1:
0-250 Mb, Chr 2: 0:244 Mb at a bin size of 1 Mb. Range from 0 to 19 reads (GEO
accession number: GSM1551550). Highlighted is what we called ”stripes pattern”. (B)
Interchromosomal heatmap of Chr 9: 0-142 Mb, Chr 16: 0:90 Mb at a bin size of 1 Mb.
Range from 0 to 8 reads (GEO accession number: GSM862723). Highlighted are those
we called ”spot patterns”. Both the heatmaps show the 98th percentile of the non-zero

data.
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5.3 Final summary

In this thesis we made a comprehensive study about the three-dimensional architecture

of chromatin, from the physical structure to its role in transcriptional regulation and the

techniques to explore it. We particularly focused on Hi-C, a novel method which first

allowed for a genome-wide mapping of long-range interactions, showing both the Hi-C

computational analysis and the main following studies performed by using this protocol.

In Chapter 4 we introduced HiCtool, the pipeline we developed for a standardized pro-

cessing and visualization of Hi-C data and topological domains analysis. We showed its

ability to handle Hi-C data in each step of the processing and how it is easy to get the

results, even for a beginner user. We also clearly explained every step of the analysis,

either the code and the reasoning behind the choice of each specific parameter of the

processing. This makes HiCtool a really powerful and complete software for analyzing

and visualizing intrachromosomal Hi-C data.

Then, we built GITAR (Genome Interaction Tools and Resources), that is our solution

to work on and manage Hi-C interaction data. With GITAR, we provide to the public

either a standardized pipeline to process Hi-C data (HiCtool) and the first exhaustive

collection of processed datasets ever, which allows for the first time users to work on

and compare different datasets in a consistent way. Actually, eighteen datasets of Homo

Sapiens (hg38) and two datasets of mouse (mm10) are ready for downloading, and our

goal is to process even more datasets in the near future.

Finally, we have highlighted the contribute of Hi-C in studies related to common patho-

genetic conditions, like cancers. This could potentially have a role in understanding

what goes wrong in cancer cells and which therapies could have the best probability of

success.
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HiCtool sources

A.1 Preprocessing of the data

This section requires the software: SRA Toolkit, Bowtie 2, SAMTools and Bedtools.

Before preprocessing the data with the following .bash file, the index for the reference

genome has to be already built:

bowtie2 -build ref.fa index

ref.fa is the .fasta file of the reference sequence (we used hg38). This step has to be

performed only once, for each reference genome.

To automatically preprocess the data, the following .bash file can be used:

# 2. Converting from sra format to fastq format

for i in $(ls *.sra); do

fastq -dump $i --split -3

done

rm *.sra

# 3. Mapping paired -end reads to a reference sequence

num1=0

for i in $(ls *_1.fastq); do

num1=$(( $num1 + 1))

string1 +=$i ,

done

63
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length1=${# string1}-1

mate1s=${string1 :0: $length1}

num2=0

for i in $(ls *_2.fastq); do

num2=$(( $num2 + 1))

string2 +=$i ,

done

length2=${# string2}-1

mate2s=${string2 :0: $length2}

bowtie2 -p 8 -x index -1 $mate1s -2 $mate2s -S HiCfile.sam

rm *.fastq

samtools view -bS HiCfile.sam > HiCfile.bam

rm *.sam

samtools sort -m 5000000000 HiCfile.bam HiCfile.sort

rm HiCfile.bam

# 4. Removing PCR duplicates from the bam file

samtools sort -m 5000000000 -n HiCfile.sort.bam HiCfile.namesort

rm HiCfile.sort.bam

samtools fixmate HiCfile.namesort.bam HiCfile.fixmate_namesort.bam

rm HiCfile.namesort.bam

samtools sort -m 5000000000 HiCfile.fixmate_namesort.bam HiCfile.fixmate_sort

rm HiCfile.fixmate_namesort.bam

samtools rmdup HiCfile.fixmate_sort.bam HiCfile_noDup.sort.bam

rm HiCfile.fixmate_sort.bam

# 5. Splitting the bam file to separate the two reads in a pair

samtools view -h -f 0x40 HiCfile_noDup.sort.bam > HiCfile_pair1.bam

samtools view -h -f 0x80 HiCfile_noDup.sort.bam > HiCfile_pair2.bam

The code to create the fragment-end .bed file was not included in the .bash file because

this part has to be run only once for each restriction enzyme (HindIII in this case) and

a specific reference genome:

echo -e "@HindIII\nAAGCTT\n+\ nIIIIII" > HindIII.fastq

bowtie2 -p 8 -k 3000000 -x index -U HindIII.fastq -S restrictionsites.sam

samtools view -bS restrictionsites.sam > restrictionsites.bam

bedtools bamtobed -i restrictionsites.bam > restrictionsites.bed
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A.2 Data analysis and visualization

This section requires python libraries: math, numpy, matplotlib, matplotlib.pyplot, PIL.

This section requires python package: HiFive [67].

A.2.1 HiFive functions

To learn the correction parameters with HiFive, the following code is used:

import hifive

# Creating a Fend object

fend = hifive.Fend(’fend_object.hdf5’, mode=’w’)

fend.load_fends(’HindIII_hg38_gc.bed’, re_name=’HindIII’, format=’bed’)

fend.save()

# Creating a HiCData object

data = hifive.HiCData(’HiC_data_object.hdf5’, mode=’w’)

data.load_data_from_bam(’fend_object.hdf5’,

[’HiCfile_pair1.bam’,’HiCfile_pair2.bam’],

maxinsert=500)

data.save()

# Creating a HiC Project object

hic = hifive.HiC(’HiC_project_object.hdf5’, ’w’)

hic.load_data(’HiC_data_object.hdf5’)

hic.save()

# Filtering HiC fends

hic = hifive.HiC(’HiC_project_object.hdf5’)

hic.filter_fends(mininteractions=1, mindistance=500000, maxdistance=0)

hic.save()

# Finding HiC distance function

hic = hifive.HiC(’HiC_project_object.hdf5’)

hic.find_distance_parameters(numbins=90, minsize=200, maxsize=0)

hic.save(’HiC_distance_function.hdf5’)
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# Learning the correction model

hic = hifive.HiC(’HiC_distance_function.hdf5’)

hic.find_binning_fend_corrections(max_iterations=1000,

mindistance=500000,

maxdistance=0,

num_bins=[20,20],

model=[’len’,’gc’],

parameters=[’even’,’even’],

usereads=’cis’,

learning_threshold=1.0)

hic.save(’HiC_norm_binning.hdf5’)

A.2.2 Normalizing the data

To normalize the data, we need the observed data and the correction parameters to

remove the biases to obtain the corrected read counts. In order to perform this, we

calculate the observed contact matrix and the fend expected contact matrix. In addi-

tion, we calculate also the enrichment expected contact matrix to compute the observed

over expected enrichment values, considering also the distance between fends. For each

chromosome, the following five matrices are computed at a bin size of 40 kb. Every

contact matrix is saved in txt format using the function save matrix.

• The observed data contain the observed reads count for each bin.

• The fend expected data contain the learned correction value to remove biases

related to fends for each bin.

• The enrichment expected data contain the expected reads count for each bin,

considering the distance between fends and the learned correction parameters.

• The normalized fend data contain the corrected reads count for each bin.

• The normalized enrichment data contain the enrichment value (O/E) for each

bin.

Before calculating the contact matrices, the function to save the data and importing

numpy are needed:

import numpy as np
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def save_matrix(n, matrix, out_file):

"""

Function to save a square matrix in a .txt file.

The matrix is reshaped by rows and saved in a vector.

Inputs:

n: number of rows (or columns) of the matrix.

matrix: input matrix to be saved.

out_file: output file name in .txt format

Output:

.txt file containing the saved list

"""

vect = []

for row in xrange(n):

for col in xrange(n):

vect.append(matrix[row,col])

with open (out_file,’w’) as fout:

for i in xrange(n**2):

fout.write(’%s\n’ %vect[i])

To calculate and save the observed data and expected enrichment data the following

code is used:

import hifive

# hg38

chromosomes = {’1’:249250621,

’2’:243199373,

’3’:198022430,

’4’:191154276,

’5’:180915260,

’6’:171115067,

’7’:159138663,

’8’:146364022,

’9’:141213431,

’10’:135534747,

’11’:135006516,

’12’:133851895,

’13’:115169878,
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’14’:107349540,

’15’:102531392,

’16’:89354753,

’17’:81195210,

’18’:77077248,

’19’:59128983,

’20’:61025520,

’21’:48129895,

’22’:51304566,

’X’:155270560,

’Y’:57373566}

ch = ’6’

chromosome = ’chr’ + ch

bin_size = 40000

start_pos = 0

end_pos = (chromosomes[ch]/1000000)*1000000

start_part = str(float(start_pos)/float(1000000))

end_part = str(float(end_pos)/float(1000000))

binsize_str = str(float(bin_size)/float(1000000))

# Enrichment data

hic = hifive.HiC(’HiC_norm_binning.hdf5’)

heatmap_enrich = hic.cis_heatmap(chrom=chromosome,

start=start_pos,

stop=end_pos,

binsize=bin_size,

arraytype=’full’,

datatype=’enrichment’)

# Observed data

observed = heatmap_enrich[:,:,0] # observed contact data

n = len(observed)

save_matrix(n, observed, ’HiCtool_observed_contact_matrix_’ + chromosome +

’_’ + binsize_str + ’mb_’ + start_part + ’mb_’ + end_part + ’mb.txt’)

# Expected enrichment data (fend corrections and distance property)

expected_enrich = heatmap_enrich[:,:,1] # expected enrichment contact data
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n = len(expected_enrich)

save_matrix(n, expected_enrich, ’HiCtool_expected_enrich_contact_matrix_’ +

chromosome + ’_’ + binsize_str + ’mb_’ + start_part + ’mb_’ +

end_part + ’mb.txt’)

Before calculating the fend expected data, we need to calculate the raw expected data,

which contain the number of possible fend interactions. We need this to scale the fend

expected data by the mean fend pairs in each bin. To calculate the scaling factor, the

following code is used:

import hifive

# Raw data

hic = hifive.HiC(’HiC_norm_binning.hdf5’)

heatmap_raw = hic.cis_heatmap(chrom=chromosome,

start=start_pos,

stop=end_pos,

binsize=bin_size,

arraytype=’full’,

datatype=’raw’)

# Expected raw (number of possible fend interactions)

expected_raw = heatmap_raw[:,:,1]

n = len(expected_raw)

scaling_factor = (np.sum(expected_raw)/2)/(n*(n-1)/2)

# mean fend pairs in each bin

To calculate and save the expected fend data (i.e. the correction values for fend biases)

the code is the following:

import hifive

# Fend data

hic = hifive.HiC(’HiC_norm_binning.hdf5’)

heatmap_fend = hic.cis_heatmap(chrom=chromosome,

start=start_pos,

stop=end_pos,

binsize=bin_size,

arraytype=’full’,
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datatype=’fend’)

# Expected fend (fend corrections)

expected_fend = heatmap_fend[:,:,1]/scaling_factor # fend correction values

n = len(expected_fend)

save_matrix(n, expected_fend, ’HiCtool_expected_fend_contact_matrix_’ +

chromosome + ’_’ + binsize_str + ’mb_’ + start_part + ’mb_’ +

end_part + ’mb.txt’)

In the above calls, all valid possible interactions are queried from chromosome ‘chrom’

between ‘start’ and ‘stop’ parameters. The ‘arraytype’ parameter determines what shape

of array data are returned in: ‘full’ returns a square, symmetric array of size NxNx2.

The ‘datatype’ parameter specifies which kind of data to extract. The observed counts

are in the first index of the last dimension of the returned array (the same for every

‘datatype’), while the expected counts are in the second index of the last dimension.

To normalize and save the data, the code is the following:

# Normalized fend contact matrix

normalized_fend = np.zeros((n,n))

for i in xrange(n):

for j in xrange(n):

if expected_fend[i][j] == 0:

normalized_fend[i][j] = 0

else:

normalized_fend[i][j] = float(observed[i][j])/

float(expected_fend[i][j])

save_matrix(n, normalized_fend, ’HiCtool_normalized_fend_contact_matrix_’ +

chromosome + ’_’ + binsize_str + ’mb_’ + start_part + ’mb_’ +

end_part + ’mb.txt’)

# Normalized enrichment contact matrix

normalized_enrich = np.zeros((n,n))

for i in xrange(n):

for j in xrange(n):

if expected_enrich[i][j] == 0:

normalized_enrich[i][j] = 0

else:

normalized_enrich[i][j] = float(observed[i][j])/
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float(expected_enrich[i][j])

save_matrix(n, normalized_enrich, ’HiCtool_normalized_enrich_contact_matrix_’ +

chromosome + ’_’ + binsize_str + ’mb_’ + start_part + ’mb_’ +

end_part + ’mb.txt’)

A.2.3 Visualizing the normalized data

The following code is to plot heatmaps and histograms of the data.

Before plotting, we need the functions to load the data and generate the colorbar, and

importing the modules we are using:

import matplotlib

matplotlib.use(’Agg’)

import matplotlib.pyplot as plt

import numpy as np

import math

from PIL import Image

def load_matrix(input_file):

"""

Function to load a list by a .txt file

Input:

input_file: input file name in .txt format

Output:

output_matrix: array containing all the reshaped values stored

in the input .txt file

"""

import numpy as np

with open (input_file,’r’) as infile:

lines = infile.readlines()

matrix_vect = []

for i in lines:

j = i[:-1]

matrix_vect.append(float(j))

matrix_vect_size = len(matrix_vect)
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matrix_size = int(np.sqrt(matrix_vect_size))

output_matrix = np.reshape(matrix_vect,(matrix_size,matrix_size))

return output_matrix

def make_cmap(colors):

’’’

make_cmap takes a list of tuples which contain RGB values and returns a

cmap with equally spaced colors.

Arrange your tuples so that the first color is the lowest value for the

colorbar and the last is the highest.

’’’

import matplotlib as mpl

import numpy as np

bit_rgb = np.linspace(0,1,256)

position = np.linspace(0,1,len(colors))

for i in range(len(colors)):

colors[i] = (bit_rgb[colors[i][0]],

bit_rgb[colors[i][1]],

bit_rgb[colors[i][2]])

cdict = {’red’:[], ’green’:[], ’blue’:[]}

for pos, color in zip(position, colors):

cdict[’red’].append((pos, color[0], color[0]))

cdict[’green’].append((pos, color[1], color[1]))

cdict[’blue’].append((pos, color[2], color[2]))

cmap = mpl.colors.LinearSegmentedColormap(’my_colormap’,cdict,256)

return cmap

In the following code, only a part of chromosome 6, from 50 to 54 Mb at a bin size of 40

kb is plotted. To plot the entire chromosome, commenting the lines of the code below

“selecting a part” is needed.

First, the heatmap, histogram and colorbar for the fend normalized data are plotted.

To have a better visualization (i.e. setting a proper heatmap color range), only the

98th percentile of the non-zero data is plotted. Then, in order to obtain a heatmap

whose colors span from white (RGB[255,255,255]) to red (RGB[255,0,0]), the data are

normalized between 0 and 255 before plotting. To plot and save the heatmap in png

format, the code is the following:
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# hg38

chromosomes = {’1’:249250621,

’2’:243199373,

’3’:198022430,

’4’:191154276,

’5’:180915260,

’6’:171115067,

’7’:159138663,

’8’:146364022,

’9’:141213431,

’10’:135534747,

’11’:135006516,

’12’:133851895,

’13’:115169878,

’14’:107349540,

’15’:102531392,

’16’:89354753,

’17’:81195210,

’18’:77077248,

’19’:59128983,

’20’:61025520,

’21’:48129895,

’22’:51304566,

’X’:155270560,

’Y’:57373566}

ch = ’6’

chromosome = ’chr’ + ch

bin_size = 40000

start_pos = 0

end_pos = (chromosomes[ch]/1000000)*1000000

start_part = str(float(start_pos)/float(1000000))

end_part = str(float(end_pos)/float(1000000))

binsize_str = str(float(bin_size)/float(1000000))

# Plotting of the fend normalized data

matrix_data_full = load_matrix(’HiCtool_normalized_fend_contact_matrix_’ +

chromosome + ’_’ + binsize_str + ’mb_’ + start_part + ’mb_’ +
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end_part + ’mb.txt’)

# Selecting a part

start_coord = 50000000

end_coord = 54000000

start_bin = start_coord/bin_size

end_bin = end_coord/bin_size

start_part = str(float(start_coord)/float(1000000))

end_part = str(float(end_coord)/float(1000000))

matrix_data_full = matrix_data_full[start_bin:end_bin+1,start_bin:end_bin+1]

##################

n = len(matrix_data_full)

output_vect = np.reshape(matrix_data_full,n*n,1)

non_zero = np.nonzero(output_vect)

perc = np.percentile(output_vect[non_zero[0]],98)

for i in xrange(len(matrix_data_full)):

for j in xrange(len(matrix_data_full)):

if matrix_data_full[i][j] > perc:

matrix_data_full[i][j] = perc

# Heatmap

max_value = np.max(matrix_data_full)

min_value = np.min(matrix_data_full)

norm_matrix_data_full = 255-((matrix_data_full-min_value)/

(max_value-min_value))*255

img = Image.new(’RGB’,(n,n))

newData = []

for i in xrange(n):

for j in xrange(n):

value = int(norm_matrix_data_full[i][j])

newData.append((255,value,value))

img.putdata(newData)

img.save(’HiCtool_normalized_fend_contact_matrix_’ + chromosome + ’_’ +

binsize_str + ’mb_’ + start_part + ’mb_’ + end_part + ’mb.png’,’PNG’)
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To plot and save the histogram, the following code is used:

histogram = []

k = 1

for i in xrange(n):

row = matrix_data_full[i][k:]

for j in row:

histogram.append(j)

k += 1

plt.close("all")

histogram_bins = int(pow(len(histogram),0.3))

plt.hist(histogram, bins=histogram_bins)

plt.title(’Contact frequency histogram’)

plt.xlabel(’Number of contacts’)

plt.ylabel(’Frequency’)

plt.savefig(’HiCtool_normalized_fend_histogram_’ + chromosome + ’_’ +

binsize_str + ’mb_’ + start_part + ’mb_’ + end_part + ’mb.png’)

To plot and save the colorbar, the following code is used:

bar_min = min(histogram)

bar_max = max(histogram)

colors = []

for i in xrange(256):

color = (255,255-i,255-i)

colors.append(color)

plt.close("all")

fig = plt.figure(figsize=(1.5, 7))

ax = fig.add_axes([0.3, 0.08, 0.4, 0.9])

cmap = make_cmap(colors)

norm = matplotlib.colors.Normalize(vmin=bar_min, vmax=bar_max)

cb = matplotlib.colorbar.ColorbarBase(ax, cmap=cmap,

norm=norm,

orientation=’vertical’)

plt.savefig(’HiCtool_normalized_fend_colorbar_’ + chromosome + ’_’ +

binsize_str + ’mb_’ + start_part + ’mb_’ + end_part + ’mb.png’)
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Now, the heatmap, histogram and colorbar for the enrichment normalized data are

plotted. The log2 of the data is plotted, to quantify the positive enrichment (red) and

the negative enrichment (blue). The zero values before performing the log2 are shown

in gray. The 99th percentile of the data, computed either on positive logs and negative

logs is plotted. To plot and save the heatmap in png format, the following code is used:

# hg38

chromosomes = {’1’:249250621,

’2’:243199373,

’3’:198022430,

’4’:191154276,

’5’:180915260,

’6’:171115067,

’7’:159138663,

’8’:146364022,

’9’:141213431,

’10’:135534747,

’11’:135006516,

’12’:133851895,

’13’:115169878,

’14’:107349540,

’15’:102531392,

’16’:89354753,

’17’:81195210,

’18’:77077248,

’19’:59128983,

’20’:61025520,

’21’:48129895,

’22’:51304566,

’X’:155270560,

’Y’:57373566}

ch = ’6’

chromosome = ’chr’ + ch

bin_size = 40000

start_pos = 0

end_pos = (chromosomes[ch]/1000000)*1000000

start_part = str(float(start_pos)/float(1000000))
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end_part = str(float(end_pos)/float(1000000))

binsize_str = str(float(bin_size)/float(1000000))

matrix_data_full = load_matrix(’HiCtool_normalized_enrich_contact_matrix_’ +

chromosome + ’_’ + binsize_str + ’mb_’ + start_part + ’mb_’ +

end_part + ’mb.txt’)

# Selecting a part

start_coord = 50000000

end_coord = 54000000

start_bin = start_coord/bin_size

end_bin = end_coord/bin_size

start_part = str(float(start_coord)/float(1000000))

end_part = str(float(end_coord)/float(1000000))

matrix_data_full = matrix_data_full[start_bin:end_bin+1,start_bin:end_bin+1]

##################

n = len(matrix_data_full)

output_vect = np.reshape(matrix_data_full,n*n,1)

non_zero = np.nonzero(output_vect)

non_zero_values = output_vect[non_zero[0]]

positive_logs = []

negative_logs = []

negative_logs_abs = []

zero_logs = []

for i in non_zero_values:

log_value = math.log(i,2)

if log_value == 0:

zero_logs.append(log_value)

if log_value > 0:

positive_logs.append(log_value)

if log_value < 0:

negative_logs.append(log_value)

negative_logs_abs.append(abs(log_value))

max_value = np.percentile(positive_logs,99)

min_value = np.percentile(negative_logs_abs,99)

min_value = -min_value
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# Heatmap

img = Image.new(’RGB’,(n,n))

newData = []

for i in xrange(n):

for j in xrange(n):

value = matrix_data_full[i][j]

if value==0:

newData.append((100,100,100))

continue

log_value = math.log(value,2)

if log_value < 0:

if log_value < min_value: log_value = min_value

color_value = int(((log_value-min_value)/(abs(min_value)))*255)

newData.append((color_value,color_value,255))

if log_value >= 0:

if log_value > max_value: log_value = max_value

color_value = int((log_value/max_value)*255)

newData.append((255,255-color_value,255-color_value))

img.putdata(newData)

img.save(’HiCtool_normalized_enrich_contact_matrix_’ + chromosome + ’_’ +

binsize_str + ’mb_’ + start_part + ’mb_’ + end_part + ’mb.png’,’PNG’)

To plot and save the histogram, the following code is used:

for i in xrange(len(positive_logs)):

if positive_logs[i] > max_value:

positive_logs[i] = max_value

for i in xrange(len(negative_logs)):

if negative_logs[i] < min_value:

negative_logs[i] = min_value

logs_values = positive_logs + negative_logs + zero_logs

s = set([x for x in logs_values if logs_values.count(x) > 1])

for i in s:

c = logs_values.count(i)

for j in xrange(c/2):

logs_values.remove(i)
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plt.close("all")

histogram_bins = int(pow(len(logs_values),0.3))

plt.hist(logs_values, bins=histogram_bins)

plt.title(’Enrichment histogram’)

plt.xlabel(’log2(O/E)’)

plt.ylabel(’Frequency’)

plt.savefig(’HiCtool_normalized_enrich_histogram_’ + chromosome + ’_’ +

binsize_str + ’mb_’ + start_part + ’mb_’ + end_part + ’mb.png’)

To plot and save the colorbars (red for positive logs and blue for negative logs), the

following code is used:

# Positive logs

bar_min = 0

bar_max = max_value

colors = []

for i in xrange(256):

color = (255,255-i,255-i)

colors.append(color)

plt.close("all")

fig = plt.figure(figsize=(1.5, 3.5))

ax = fig.add_axes([0.3, 0.08, 0.4, 0.8])

cmap = make_cmap(colors)

norm = matplotlib.colors.Normalize(vmin=bar_min, vmax=bar_max)

cb = matplotlib.colorbar.ColorbarBase(ax, cmap=cmap,

norm=norm,

orientation=’vertical’)

plt.savefig(’HiCtool_normalized_enrich_colorbar_red_’ + chromosome + ’_’ +

binsize_str + ’mb_’ + start_part + ’mb_’ + end_part + ’mb.png’)

# Negative logs

bar_min = min_value

bar_max = 0

colors = []

for i in xrange(256):

color = (i,i,255)

colors.append(color)



HiCtool codes 80

plt.close("all")

fig = plt.figure(figsize=(1.5, 3.5))

ax = fig.add_axes([0.3, 0.08, 0.4, 0.8])

cmap = make_cmap(colors)

norm = matplotlib.colors.Normalize(vmin=bar_min, vmax=bar_max)

cb = matplotlib.colorbar.ColorbarBase(ax, cmap=cmap,

norm=norm,

orientation=’vertical’)

plt.savefig(’HiCtool_normalized_enrich_colorbar_blue_’ + chromosome + ’_’ +

binsize_str + ’mb_’ + start_part + ’mb_’ + end_part + ’mb.png’)

A.3 Topological Domains analysis

This section requires python package: HiFive [67].

This section requires the software MATLAB.

A.3.1 Calculating the observed DI

Before calculating the DI values, the functions to load the contact data and save the

output are needed:

def save_vector(n, vect, out_file):

"""

Function to save a list in a .txt file

Inputs:

n: number of elements of the list to save

vect: name of the list to save

out_file: output file name in .txt format

Output:

.txt file containing the saved list

"""

with open (out_file,’w’) as fout:

for i in xrange(n):

fout.write(’%s\n’ %vect[i])

def load_matrix(input_file):
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"""

Function to load a list by a .txt file

Input:

input_file: input file name in .txt format

Output:

output_matrix: array containing all the reshaped values stored

in the input .txt file

"""

import numpy as np

with open (input_file,’r’) as infile:

lines = infile.readlines()

matrix_vect = []

for i in lines:

j = i[:-1]

matrix_vect.append(float(j))

matrix_vect_size = len(matrix_vect)

matrix_size = int(np.sqrt(matrix_vect_size))

output_matrix = np.reshape(matrix_vect,(matrix_size,matrix_size))

return output_matrix

First, the contact data for the selected chromosome are loaded:

# hg38

chromosomes = {’1’:249250621,

’2’:243199373,

’3’:198022430,

’4’:191154276,

’5’:180915260,

’6’:171115067,

’7’:159138663,

’8’:146364022,

’9’:141213431,

’10’:135534747,

’11’:135006516,

’12’:133851895,

’13’:115169878,
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’14’:107349540,

’15’:102531392,

’16’:90354753,

’17’:81195210,

’18’:78077248,

’19’:59128983,

’20’:63025520,

’21’:48129895,

’22’:51304566,

’X’:155270560,

’Y’:59373566}

ch = ’6’

chromosome = ’chr’ + ch

bin_size = 40000

start_pos = 0

end_pos = (chromosomes[ch]/1000000)*1000000

start_part = str(float(start_pos)/float(1000000))

end_part = str(float(end_pos)/float(1000000))

binsize_str = str(float(bin_size)/float(1000000))

contact_matrix = load_matrix(’HiCtool_normalized_fend_contact_matrix_’ +

chromosome + ’_’ + binsize_str + ’mb_’ + start_part + ’mb_’ +

end_part + ’mb.txt’)

n = contact_matrix.shape[0]

Now the observed DI values are calculated according to the formula 3.1, and then saved

into a .txt file using the function save vector:

DI = []

len_var = 2000000/40000

for locus in xrange(n):

if locus < len_var:

A = sum(contact_matrix[locus][:locus])

B = sum(contact_matrix[locus][locus+1:locus+len_var+1])

elif locus >= n-len_var:

A = sum(contact_matrix[locus][locus-len_var:locus])
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B = sum(contact_matrix[locus][locus+1:])

else:

A = sum(contact_matrix[locus][locus-len_var:locus])

B = sum(contact_matrix[locus][locus+1:locus+len_var+1])

E = (A+B)/2

try:

di = ((B-A)/(abs(B-A)))*((((A-E)**2)/E)+(((B-E)**2)/E))

except ZeroDivisionError:

di = 0

DI.append(di)

save_vector(n,DI,’HiCtool_’ + str(chromosome) + ’_DI.txt’)

Now we have all the DI values of every bin saved into chrN DI.txt.

A.3.2 Calculating the true DI states using a HMM

After selecting an input file (chrN DI.txt) containing the DI values of a chromosome,

the code allows to insert the start base position, the end base position and the bin size

for the following analysis and to plot the DI distributions. The calculation of the true

DI is implemented using the HMM functions included into the Statistics and Machine

Learning Toolbox of MATLAB1. For true DI calculation, we consider the Emission

Sequence as the observed DI values and the Transition Matrix, Emission Matrix and

initial State Sequence as unknown. We have three states 1, 2, 3 corresponding to a

positive (1), negative (2) or zero (3) value of the true DI. In our analysis, we associate

to the state ’3’ all the absolute DI values under a threshold (default 0.4). So, first we

estimate both the Transition and the Emission matrices, and then the most probable

sequence of states.

To load the data and select the region of interest, the MATLAB code is the following:

chromosome = ’6’;

input_string = strcat(’HiCtool_chr ’,chromosome ,’_DI.txt’);

f = fopen(input_string);

formatSpec = ’%f’;

A = fscanf(f,formatSpec);

1http://it.mathworks.com/help/stats/hidden-markov-models-hmm.html
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bin_size = int_binsize_value;

start_pos = int_base_start;

end_pos = int_base_end;

start_index = round(start_pos/bin_size);

end_index = round(end_pos/bin_size);

x = (start_pos:bin_size:end_pos);

DI_part = A(start_index:end_index);

DI part contains the observed DI values of the selected part to be plotted.

Since the initial sequence of states is unknown, we can guess the initial Transition and

Emission matrices and estimate them using the function hmmtrain of the HMM package.

First, each DI value is associated to the corresponding state:

seq = zeros(1,length(A));

zero_threshold = 0.4;

for i = (1: length(seq))

if A(i) >= zero_threshold

seq(i) = 1;

elseif A(i) <= -zero_threshold

seq(i) = 2;

else

seq(i) = 3;

end

end

seq contains the sequence of states associated to each DI value.

Now the Transition and Emission matrices are estimated using the function hmmtrain.

This function calculates maximum likelihood estimates of transition and emission proba-

bilities from a sequence of emissions. It uses an iterative algorithm that alters TRANS GUESS

and EMIS GUESS so that at each step the adjusted matrices are more likely to generate

the observed sequence seq. The algorithm halts when the matrices in two successive

iterations are within ”tolerance” of each other.

The code that was used to perform the estimation is the following:

% Initial guessed Transition Matrix

A_pp = 0.4;

A_pn = 0.3;

A_pz = 0.3;

A_np = 0.3;

A_nn = 0.4;

A_nz = 0.3;
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A_zp = 0.3;

A_zn = 0.3;

A_zz = 0.4;

TRANS_GUESS = [A_pp , A_pn , A_pz; A_np , A_nn , A_nz; A_zp , A_zn , A_zz];

% Initial guessed Emission Matrix

B_pp = 0.4;

B_pn = 0.3;

B_pz = 0.3;

B_np = 0.3;

B_nn = 0.4;

B_nz = 0.3;

B_zp = 0.3;

B_zn = 0.3;

B_zz = 0.4;

EMIS_GUESS = [B_pp , B_pn , B_pz; B_np , B_nn , B_nz; B_zp , B_zn , B_zz];

% ’hmmtrain ’ function

[TRANS_EST , EMIS_EST] = hmmtrain(seq , TRANS_GUESS , EMIS_GUESS , ’tolerance ’, ’

0.00001 ’);

Given the estimated Transition and Emission matrices, we use the Viterbi algorithm to

compute the most likely sequence of states the model would go through to generate a

given sequence of emissions. The function hmmviterbi performs this estimation, giving

as output likelystates that is the most likely produced sequence of states. Then,

the output vector of the HMM states is saved and two custom values are assigned to

the positive and negative states to give a good visual feedback in the plot to identify

topological domains.

likelystates = hmmviterbi(seq , TRANS_EST , EMIS_EST);

HMM_string = strcat(’HMM_states_chr ’,chromosome ,’.txt’);

output_file = fopen(HMM_string ,’w’);

fprintf(output_file ,’%d\n’,likelystates ’);

fclose(output_file);

DI_true = zeros(1,length(seq));

for i = (1: length(seq))

if likelystates(i) == 1

DI_true(i) = min(DI_part) -12;

elseif likelystates(i) == 2

DI_true(i) = min(DI_part) -15;

else

DI_true(i) = 0;

end

end
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DI_true_part = DI_real(start_index:end_index);

The following is the code used for the identification of the topological domains coordi-

nates (see Figure 4.9). The result is saved in topological domains chrN.txt.

% Start coordinates of the domains

k1 = 1;

for i = (2: length(seq))

if (likelystates(i) == 1 && likelystates(i-1) == 2) || (likelystates(i) == 1

&& likelystates(i-1) == 3)

p(k1) = i * bin_size;

k1 = k1 + 1;

end

end

% End coordinates of the domains

k2 = 1;

for i = (2: length(seq))

if (likelystates(i) == 2 && likelystates(i+1) == 1) || (likelystates(i) == 2

&& likelystates(i+1) == 3)

n(k2) = i * bin_size;

k2 = k2 + 1;

end

end

k = 1;

p1 = 1;

n1 = 1;

p2 = 2;

n2 = 2;

% Step 1: checking if the first negative values are greater than the first

positive value.

while n(n1) < p(p1)

n1 = n1 + 1;

n2 = n2 + 1;

end

% Now we have removed all the first negative values before the first positive one

.

while p1 < length(p) && n1 < length(n)

% Step 2: checking if there are two consecutive positive values.

while n(n1) > p(p2) && p2 < length(p)

p2 = p2 + 1;

end

% Now we have removed the possible gaps between consecutive positive states.

% Step 3: checking if there are two consecutive negative values.

while n(n2) < p(p2) && n2 < length(n)

n1 = n1 + 1;

n2 = n2 + 1;
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end

% Now we have removed the possible gaps between consecutive negative states.

% Step 4: identification of the Topological Domain.

topological_domains(k,1) = p(p1);

topological_domains(k,2) = n(n1);

k = k + 1;

p1 = p2;

n1 = n2;

p2 = p1 + 1;

n2 = n1 + 1;

end

% Saving of the output on a .txt file. This result can be loaded again using ’

import data ’ option.

topological_domains_string = strcat(’topological_domains_chr ’,chromosome ,’.txt’);

output_file1 = fopen(topological_domains_string ,’w’);

fprintf(output_file1 ,’%16s\t%14s\n’,’Start coordinate ’,’End coordinate ’);

fprintf(output_file1 ,’%9i\t\t\t%9i\n’,topological_domains ’);

fclose(output_file1);

Finally, this is the code to plot both the observed DI and the ”true DI”:

pidx = find(DI_part >0);

nidx = find(DI_part <0);

pidx_true = find(DI_true_part ==min(DI_part) -12);

nidx_true = find(DI_true_part ==min(DI_part) -15);

figure ,

suptitle(strcat(’Directionality Index Chr’,chromosome)),

bar(x(pidx),DI_part(pidx),’r’),hold on

bar(x(nidx),DI_part(nidx),’FaceColor ’ ,[0.0 0.5 0.0]),hold on

plot(x(pidx_true),DI_true_part(pidx_true),’>’,’Color’,’r’,’LineWidth ’ ,3),hold on

plot(x(nidx_true),DI_true_part(nidx_true),’<’,’Color’ ,[0.0 0.5 0.0],’LineWidth ’

,3),grid on

xlabel(’Base coordinates ’),legend(’Positive DI (downstream biases)’,’Negative DI

(upstream biases)’,’Positive HMM state ’,’Negative HMM state ’)
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Other sources

B.1 Interchromosomal maps

This is the code to generate, save and plot observed interchromosomal Hi-C maps derived

from a standardized data processing.

In order to generate interchromosomal heatmaps for a specific datasets, the same steps

listed in the section A.2 has to be followed until the object HiC distance funtion.hdf5

is obtained. Then, to learn the correction parameters the code is the following:

import hifive

hic = hifive.HiC(’HiC_distance_function.hdf5’)

hic.find_binning_fend_corrections(max_iterations=1000,

mindistance=500000,

maxdistance=0,

num_bins=[20,20],

model=[’len’,’gc’],

parameters=[’even’,’even’],

usereads=’trans’,

learning_threshold=1.0)

hic.save(’HiC_norm_binning_trans.hdf5’)

The function find binning fend corrections allows to learn the correction parame-

ters for trans contacts, setting the parameter usereads=’trans’.

Before creating the heatmap, the function to save the data is needed:

88
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def save_rectangular_matrix(n, m, matrix, out_file):

"""

Function to save a rectangular matrix in a .txt file.

The matrix is reshaped by rows and saved in a vector.

Inputs:

n: number of rows

m: number of columns

matrix: input matrix to be saved

out_file: output file name in .txt format

Output:

.txt file containing the saved list

"""

vect = []

for row in xrange(n):

for col in xrange(m):

vect.append(matrix[row,col])

with open (out_file,’w’) as fout:

for i in xrange(n*m):

fout.write(’%s\n’ %vect[i])

Then, an interchromosomal heatmap is generated and plotted (chr1-chr2 in the code):

import hifive

import numpy as np

from PIL import Image

# hg38

chromosomes = {’1’:249250621,

’2’:243199373,

’3’:198022430,

’4’:191154276,

’5’:180915260,

’6’:171115067,

’7’:159138663,

’8’:146364022,

’9’:141213431,

’10’:135534747,

’11’:135006516,
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’12’:133851895,

’13’:115169878,

’14’:107349540,

’15’:102531392,

’16’:89354753,

’17’:81195210,

’18’:77077248,

’19’:59128983,

’20’:61025520,

’21’:48129895,

’22’:51304566,

’X’:155270560,

’Y’:57373566}

ch1 = ’1’

ch2 = ’2’

bin_size = 1000000

binsize_str = str(float(bin_size)/float(1000000))

hic = hifive.HiC(’HiC_norm_binning_trans.hdf5’)

heatmap = hic.trans_heatmap(’chr’ + ch1, ’chr’ + ch2,

start1=0, stop1=chromosomes[ch1],

startfend1=None, stopfend1=None,

binbounds1=None,

start2=0, stop2=chromosomes[ch2],

startfend2=None, stopfend2=None,

binbounds2=None,

binsize=bin_size,

datatype=’enrichment’)

matrix_data_full = heatmap[:,:,0]

row = matrix_data_full.shape[0]

col = matrix_data_full.shape[1]

row_str = str(row)

col_str = str(col)

filename = ’chr’ + ch1 +’_chr’ + ch2 + ’_’ + binsize_str + ’mb_’ + row_str +

’x’ + col_str + ’_observed’
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save_rectangular_matrix(row, col, matrix_data_full, filename + ’.txt’)

output_vect = np.reshape(matrix_data_full,row*col,1)

non_zero = np.nonzero(output_vect)

perc = np.percentile(output_vect[non_zero[0]],98)

for i in xrange(row):

for j in xrange(col):

if matrix_data_full[i][j] > perc:

matrix_data_full[i][j] = perc

max_value = np.max(matrix_data_full)

min_value = np.min(matrix_data_full)

norm_matrix_data_full = 255-((matrix_data_full-min_value)/

(max_value-min_value))*255

row = norm_matrix_data_full.shape[0]

col = norm_matrix_data_full.shape[1]

img = Image.new(’RGB’,(col,row))

newData = []

for i in xrange(row):

for j in xrange(col):

value = int(norm_matrix_data_full[i][j])

newData.append((255,value,value))

img.putdata(newData)

img.save(filename + ’.png’,’PNG’)

The function trans heatmap allows to generate an interchromosomal heatmap object,

selecting the two chromosomes involved, the start and end coordinates and the bin size.

Like for the intrachromosomal heatmaps, here we plot the 98th percentile of the non-zero

data.
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Chen, Edith Heard, Job Dekker, and Emmanuel Barillot. “HiTC: exploration of

high-throughput ‘C’experiments”. In: Bioinformatics 28.21 (2012), pp. 2843–2844.

[71] David S Rickman, T David Soong, Benjamin Moss, Juan Miguel Mosquera, Jan
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