
Università degli Studi di Pisa

DIPARTIMENTO DI MATEMATICA

Tesi di laurea magistrale

Spatio-Temporal Model Checking:
Explicit and Abstraction-Based Methods

Candidato:

Gianluca Grilletti
Matricola 483633

Relatore:

Ugo Montanari

Correlatore:

Vincenzo Ciancia

Anno Accademico 2015–2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79622086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Model checking consists in specifying properties of a system with an appro-
priate logic and in verifying them using algorithms that are recursive over
the syntax of such logic. Currently this method is widely applied to develop
verification tools for both software and hardware debugging.

An interesting branch of this subject developed in the last years is that
of spatio-temporal model checking, namely model checking applied to study
properties of spatial systems or geometrical objects. For this purpose, spe-
cific logics are defined and studied, called spatio-temporal logics. An example
of these logics is STLCS (Spatio-Temporal Logic of Closure Spaces), a logic
whose semantics is based on a generalization of topological spaces. The au-
thor contributed in writing the algorithms for the model checking procedure
for this logic and an actual implementation of the model checker.

In this thesis, we present recent research on a model checking proce-
dure (currently implemented in an experimental tool) for STLCS. Further-
more, we study novel techniques and algorithms for its spatial sublogic SLCS
(Spatial Logic of Closure Spaces) to improve the efficiency of the existing
model checking procedures, by extending the approaches of symbolic model
checking and CEGAR (counter example guided abstraction-refinement) to the
spatial case.

Contents

1 Background 5
1.1 CTL Model Checking . 6
1.2 µ-Calculus Model Checking 11
1.3 Complexity results . 15

2 Heuristics 17
2.1 Symbolic Model Checking . 17
2.2 Abstraction-Refinement for CTL 25
2.3 Abstraction-Refinement for µ-Calculus 36

3 Spatio-Temporal Logics and Model Checking 41
3.1 Spatial Logic of Closure Spaces 42
3.2 Spatio-Temporal Logic of Closure Spaces 50

4 Symbolic Model Checking and Abstraction 59
4.1 Symbolic Model Checking for SLCS 60
4.2 Abstraction Methods . 63

4.2.1 The Semantics . 67
4.2.2 The Algorithm . 76
4.2.3 Choosing Which States to Expand 82
4.2.4 Conclusion . 89

5

Introduction

Model checking is a method for formally verifying finite-state concurrent
systems, conceived by Edmund M. Clarke and E. Allen Emerson to solve
the Concurrent Program Verification problem [1] and then further developed
by several authors in the past years. This method proved to be incredibly
efficient in finding flaws and logical errors in digital circuit designs, software,
and communication protocols, and the two authors, together with their col-
league Joseph Sifakis, were awarded the Turing Award (the so called Nobel of
computing) for this novel technique. Currently this method is widely applied
to develop verification tools for both software and hardware debugging.

The main idea behind this method is to describe a system by means of
an appropriate logic and to develop efficient algorithms in order to test the
truth of a formula (in case of truth-value semantics) or to find which entities
in the model entail a formula (in case of a set-satisfaction semantics). In
the literature, the most used logics are temporal ones such as CTL (Com-
putation Tree Logic) and µ-calculus. These logics allow to describe several
interesting properties of a model such as reachability and safety. Efficient
verification algorithms for temporal logics have been designed throughout
the last decades, and their optimization is still an active research topic.

As an example, the model checking procedure for CTL roughly proceeds
as follows: by traversing the syntax tree of a formula ϕ from the leaves to
the root, the procedure can recursively compute the semantics of each sub-
formula, thus obtaining the semantics of ϕ. This is the case for CTL formulas,
whose semantics is computable in linear-time over the structure of ϕ. For
some logics this traverse has to be repeated several times, as in the case of
µ-calculus. In this case the complexity of the procedure becomes exponential
in the number of nested fixed-point operators, although maintaining a linear
complexity in the size of the system.

Indeed, there are limitations on the size of models that can be considered
treatable using this method, but since model checking is implemented to test
hardware or to study configurations of a certain system, this procedure has
to deal with really large systems, even with more than 1020 states [2]. So in
some cases a linear-time complexity is not enough. Several techniques and
heuristics have been developed to achieve a consistent speed up when con-
sidering particular classes of models. Two important examples are symbolic

1

2 CONTENTS

model checking and abstraction techniques.
Symbolic model checking is a technique developed by McMillan [3] to

study large systems, and it does so by eliminating “redundant information”
in the description of subsets of the model using OBDDs (Ordered Binary
Decision Diagrams). This method proves to be really efficient, especially
when the model considered is obtained by a parallel product of systems, as
in the original problem studied by Clarke and Emerson.

On the other hand, abstraction techniques work by building an approxi-
mation of the model called abstraction and by analyzing it to obtain infor-
mation on how to perform the model checking procedure. This is the case
of CEGAR (Counter Example Guided Abstraction Refinement), a procedure
developed in 2003 and now the basis of a large number of abstraction tech-
niques [4]. The main idea of CEGAR is to build an abstraction that is also a
simulation of the original model, use it to compute the semantics of a for-
mula and then, if the semantics of the formula cannot be clearly determined,
adjust the abstraction obtaining a finer approximation of the original model.

Both those techniques are broadly applied and achieve a significant speed
up when compared with the classic procedures. This shows us that devel-
oping ad hoc algorithms to solve specific problems is a winning strategy in
model checking, and also that the priority when searching for an efficient
algorithm is to reduce the size of the model.

In this thesis, we focus on relatively recent models and logics that de-
scribe space. A spatial model is a formal description of a geometrical entity
(such as a topological space, a metric space, and so on) by means of a logic,
that we will refer to with the evocative name spatial logic. As the concept
of spatial model is so generic, several formalizations are considered in the
literature, and for each of them several logics are studied. The MCP (Model
Checking Problem) for these logics assumes a different flavor, as the algo-
rithms now have to take into account the spatial structure of the model in
order to be efficient.

An example of spatial logic currently under study, which will be ana-
lyzed in this document, is SLCS, the Spatial Logic of Closure Spaces. This
is a modal logic created to describe properties of a system using closure
spaces, a generalization of topological spaces [5]. The logic can express some
fundamental spatial properties of a system, such as reachability, safety and
proximity, while retaining decidability and linear-time complexity for the
model checking procedure.

A generalization of both the concepts of spatial and temporal logic is
that of spatio-temporal logic. The aim of a spatio-temporal logic is to for-
mally describe the properties of a spatio-temporal model (i.e., the formal
description of a spatial system that changes over time). These logics are
usually much more expressive than the previous ones, as they allow to in-
tertwine spatial and temporal properties. On the other hand, defining an
interesting spatio-temporal logic for which the MCP is decidable and has a

CONTENTS 3

low complexity is not easy.
In particular, in this work, we study algorithms and optimizations re-

lated both to SLCS and to its spatio-temporal generalization STLCS (Spatio-
Temporal Logics of Closure Spaces). Part of this thesis is devoted to detailing
the semantics and model-checking procedure for STLCS, presented in a paper
co-authored by the author of this document [6].

Since efficiency is of primary importance to solve the MCP, it is necessary
to find new algorithms to speed up the model checking procedure also in
the spatial case. In this document we will present two novel algorithms
to achieve this speed up for the logic SLCS, based on McMillan’s symbolic
model checking and on CEGAR respectively.

In particular, the new abstraction-refinement algorithm based on CEGAR

tries to preserve the spatial structure of the model while constructing a
succession of gradually finer abstractions. Since simulation relations don’t
usually preserve spatial properties (such as proximity and connectivity) we
can’t apply the same technique used in CEGAR to define and refine the ab-
straction. To solve this problem, a new concept of model is here introduced
and studied, namely the multi-focus model (or MFM in short). The aim of this
new mathematical object is to approximate the initial model by identifying
some spatial regions in single abstract states. By defining an appropriate
semantics for MFMs, a suitable transfer theorem can be achieved, that relates
entailment in the abstraction with entailment in the original model, and this
result can then be translated into an actual algorithm.

In Chapter 1 we introduce the basic theory of model checking and the
algorithms to solve the MCP for CTL and µ-calculus. In Chapter 2 we present
symbolic model checking and two abstraction methods, namely CEGAR and
modal CEGAR, applied to solve the MCP for the logics CTL and µ-calculus. In
Chapter 3 we briefly present spatial and spatio-temporal logics, and focus
on SLCS and STLCS, presenting the algorithms developed in [15] and [6]. In
Chapter 4 we adapt symbolic model checking to SLCS and present the new
abstraction-refinement algorithm inspired by the CEGAR approach.

Chapter 1

Background

In this chapter we will introduce the basic notions to understand the results
in the rest of the document. In particular we will focus on the model checking
problem (abbreviated as MCP) for the logics CTL and µ-calculus.

The model checking problem is quite simple to define. Fix a logic L and
a semantics J•K for this logic. The MCP consists in finding an algorithm that,
given a model M and a formula ϕ, compute the semantics of ϕ at M.

So for example, if we consider the theory of groups, given a group G and
a formula ϕ, the model checking problem asks to find the truth value of ϕ at
G. In this example, the semantics is a decisional semantics, meaning that
JϕK ∈ {>,⊥} (in more generality, that JϕK lies in a fixed set of truth values).

We obtain a slightly more complex example if we take a satisfaction-
set semantics, namely a semantics whose models consist of a domain with
some additional structure and JϕK is a subset of the domain. So taking
again groups, the model checking problem asks, given G a group and ψ(x)
a formula, to find all the elements of G that entail the formula.

These last examples show us that the model checking problem is not
always solvable, as several problems arise: is the formula ϕ decidable? Is the
satisfaction set of ψ(x) enumerable? How do we deal with high cardinality
models?

In this chapter we will study the MCP only for two specific cases, namely
the logic CTL and the logic µ-calculus. These are modal logics developed
to study properties of graphs, in particular of paths in graphs. Even if
they are expressive, these logics are somewhat tame, in the sense that their
associated model checking problem is solvable in linear time in the encoding
of the graph. They are widely studied and are the basis of several interesting
applications, such as software and hardware debugging and optimization, so
solving their associated MCP is of primary interest.

5

6 CHAPTER 1. BACKGROUND

1.1 CTL Model Checking

We fix here a set AP of atomic propositions (or simply propositions). For our
purposes we don’t need to make any hypothesis on the cardinality of AP.

We now introduce CTL, a modal logic widely used to describe properties
of systems by representing them with appropriate graph-like structures.

Definition 1.1.1 (CTL syntax). We define the syntax of CTL as

〈ϕ〉 |= ⊥ | p | 〈ϕ〉∧〈ϕ〉 | ¬〈ϕ〉 | E〈Φ〉 | A〈Φ〉
〈Φ〉 |= X〈ϕ〉 | F〈ϕ〉 | G〈ϕ〉 | 〈ϕ〉U〈ϕ〉

where p is a generic element of AP.

We will call formulas of the first sort state formulas and formulas of the
second sort path formulas.

The intuition is that this logic describes properties of nodes and paths.
As the names suggest, a state formula describe a property of nodes, so we
will define what it means that “a node entails a state formula”. In the same
way, a path formula has to describe a property of a path in the graph, and
so we will define what it means that “a path entails a path formula”.

Let’s begin by defining the objects we will use as models, the Kripke
frames.

Definition 1.1.2 (Kripke Frame). A Kripke frame (or KF) is a tuple M =
〈S,→, L〉 where

• (S,→) is a graph (so S is a set of states and [→] ⊆ S × S is a binary
relation) where [→] is a total relation (i.e., for every s ∈ S there exists
t ∈ S such that s→ t).

• L : AP× S → {>,⊥} is called the labeling of the KF.

With Lp we will indicate the function L(p, •), for p ∈ AP. Moreover,
we call a path of the KF an infinite sequence of s0, s1, · · · ∈ S such that
si → si+1.

Usually we will use the symbol π to indicate a path, and with πi we will
indicate its i-th state.

Moral 1.1.3. We can imagine a KF to be a graph with additional “local
information”. In particular, given an atomic proposition p ∈ AP we can ask
if a node s of the graph “satisfies that atomic proposition”. Formally, this
corresponds to check if Lp(s) = >.

Definition 1.1.4 (Semantics of CTL). Given a KF M we want to define
what it means that a state entails a state formula (in symbols M, s � ϕ)

1.1. CTL MODEL CHECKING 7

p

p

¬p

¬p

Figure 1.1: An example of KF. In each state we find the evaluation of the
proposition p.

and a path entails a path formula (in symbols M, π � Φ). So by induction
over the structure of the formula we define:

M, s 6�⊥
M, s � p ∈ AP ⇐⇒ Lp(s) = >
M, s � ϕ1 ∧ ϕ2 ⇐⇒M, s � ϕ1 and M, s � ϕ2

M, s � ¬ϕ ⇐⇒M, s 6� ϕ
M, s � EΦ ⇐⇒ exists a path π such that π0 = s and M, π � Φ

M, s � AΦ ⇐⇒ for all paths π such that π0 = s it holds M, π � Φ

M, π � Xϕ ⇐⇒M, π1 � ϕ

M, π � Fϕ ⇐⇒ there exists n ≥ 0 such that M, πn � ϕ

M, π � Gϕ ⇐⇒ for all n ≥ 0 it holds M, πn � ϕ

M, π � ϕ1Uϕ2 ⇐⇒ there exists n ≥ 0 such that M, πn � ϕ2

and for all k < nM, πk � ϕ1

With JϕKM (respectively JΦKM) we will indicate the set of states (paths)
that entail the formula.

Moral 1.1.5. The semantics above intertwines properties of states (local
properties) and properties of paths (global properties), and so it’s quite
expressive. To understand better the idea behind the various operators, we
will now give them a name and a rapid description:

• AΦ is the “universal path quantifier”. A simply tells us that the prop-
erty Φ holds for all the paths starting at the given state; conversely,
the “existential path quantifier” E tells that there exists at least one
of such paths.

• Xϕ is the “next operator”. It tells us that the first state we reach by
following the path given has the property ϕ. So for example EXϕ means
that there exists a direct successor of the state with the property ϕ.

8 CHAPTER 1. BACKGROUND

• Fϕ is the “eventually operator”. It tells us that we will eventually
reach a state with the property ϕ.

• Gϕ is the “globally operator”. It tells us that the property ϕ holds for
all the states reached by the path.

• ϕ1Uϕ2 is the “until operator”. It states that, along the path, the
property ϕ1 holds until the property ϕ2 doesn’t become true, and also
that a state with the property ϕ2 will be reached.

Of course, some of the formulas, no matter the model, have the same
semantics. For example, the formulas AG(p) (“all reachable states entail p”)
and ¬EF(¬p) (“there is no reachable state entailing ¬p”). In particular, the
so called dual operators are

• AF and EG (JEFpK = J¬AG¬pK)

• AG and EF (JEGpK = J¬AF¬pK)

• AX and EX (JEXpK = J¬AX¬pK)

In those cases we say that the formulas are semantically equivalent or
simply equivalent.

Definition 1.1.6 (Semantic equivalence). We say that two formulas of the
same sort (meaning two state formulas or two path formulas) ϕ and ψ are
semantically equivalent if

For every KFM: JϕKM = JψKM

We will indicate with ϕ≡ψ that the two formulas are equivalent.

The case of the U operator is a bit more complicated:

A(pUq)≡¬E(¬qU(¬p ∧ ¬q)) ∧ ¬EG¬q

Using the equivalences above and EFp ≡ E(>Up) is quite easy to show
the following:

Definition 1.1.7 (Existential normal form). A CTL formula is said to be in
existential normal form (or ENF) if it is produced by the following grammar.

〈ϕ〉 |= ⊥ | p ∈ AP | 〈ϕ〉∧〈ϕ〉 | ¬〈ϕ〉 | EX〈ϕ〉 | EG〈ϕ〉 | E〈ϕ〉U〈ϕ〉

Lemma 1.1.8. Every CTL formula is equivalent to a ENF formula. Moreover,
there is a linear-time algorithm to associate to a formula ϕ a formula ϕ∃ in
normal form.

1.1. CTL MODEL CHECKING 9

Remark 1.1.9. Note that we never stated that the normal form is unique.
For example:

EG(p)≡ p ∧ EX(EG(p))

The proof is quite trivial given the equivalences above, so we’ll omit it.
For a complete treatment of the topic see [8].

This result is quite useful, as now to solve the model checking problem for
CTL we only need to give an algorithm to compute JϕK for ϕ a ENF formula,
and this can be done by induction over the structure of the formula. More
precisely, if we give an algorithm to compute the semantics of the formulas

⊥ | p | p ∧ q | ¬p | EXp | E(pUq) | EGp (1.1)

then we obtain an algorithm for all formulas, as for example we can compute
JEXϕK by considering JϕK as the interpretation of a phony predicate symbol
pϕ and then applying the algorithm for the formula above.

Remark 1.1.10. Until now we never made hypothesis on the cardinality of
the model. All we stated above is valid both for finite and infinite models,
but now to find an algorithm to compute the semantics of an ENF formula
we need the models to be finite.

We present now the algorithms to compute the semantics in the case
of the formulas in (1.1). As the algorithm for the boolean operations is
trivial, we present only the algorithms for the formulas EXp, E(pUq) and EGp
(Algorithms 1, 2 and 3).

Notation 1.1.11. At the beginning of the algorithm pseudo-code, we indicate
the data needed (in the field input) and the data we want to compute and
return (in the field output).

With the notation var :=< expression >; we will indicate that we
assign the value obtained evaluating < expression > to the variable var.
< expression > could contain functions and operators already defined or
mathematical expressions (to improve readability).

In some of the algorithms, we will suppose to have some primitive func-
tions whose definition and implementation is clear from the context. As an
example, in the algorithms here we make use of the function PredStates

that, given a state s in input, gives back the set {t ∈ S|t→ s}.

Moral 1.1.12. The main ideas behind the algorithms are as follows:

• EXp: You take the predecessors of the states that entail p, nothing
more.

• EGp: A state s entails EGp if and only if there is no path starting at s
that reach a state for which ¬p holds. So we can overapproximate the
solution by taking JpK, and then remove the states for which there is
a “bad” path.

10 CHAPTER 1. BACKGROUND

Algorithm 1: Algorithm to compute EXp

input : M = 〈S,→, L〉 , EXp
output: JEXpKM

1 semP:= JpKM;
2 res:= ∅;
3 for s ∈semP do
4 predSet:= PredStates(s);
5 res:= Union(predSet, res);

return : res

Algorithm 2: Algorithm to compute EGp

input : M = 〈S,→, L〉 , EGp
output: JEGpKM

1 res:= JpKM;

2 semNotP:= S \ JpKM;
3 corrosionLayer:= Intersection(predSet(semNotP), res);
4 while corrosionLayer 6= ∅ do
5 res:= res \ corrosionLayer;
6 corrosionLayer:= Intersection(predSet(corrosionLayer), res);

return : res

Algorithm 3: Algorithm to compute E(pUq)

input : M = 〈S,→, L〉 , E(pUq)
output: JE(pUq)KM

1 couldBe:= JpK;
2 res:= JqKM;
3 toAdd:= Intersection(predSet(res), couldBe);
4 couldBe:= couldBe \ toAdd;
5 while toAdd 6= ∅ do
6 res:= Union(res, toAdd);
7 toAdd:= Intersection(predSet(toAdd), couldBe);
8 couldBe:= couldBe \ toAdd;

return : res

1.2. µ-CALCULUS MODEL CHECKING 11

• E(pUq): This is quite similar to the previous case, but instead of over-
approximating the solution, we underapproximate it by taking JqK and
then by adding states that can reach the approximated solution with
a “good” path.

Fact 1.1.13. For finite KFs, the algorithms above terminate, are correct and
their complexity is linear over the structure of the model and linear over the
encoding of the formula.

For countable KFs, the algorithms above are correct and in ω steps give
the solution.

To be more precise: “the algorithm gives the solution in ω steps” means
that, considering P(S) ∼= 2S with the usual product topology, the set res

converges to JϕK (for ϕ the formula given in input to the algorithm).
So this solves the MCP for the logic CTL. Indeed, a linear time algorithm

is the best that we can achieve as the semantics is a satisfaction-set one,
so we achieved the fastest solution. But can we hope to be faster in the
mean case? Is there any heuristic that let us solve the MCP faster, even for
a particular class of instances? This problem will be examined in the next
chapters.

1.2 µ-Calculus Model Checking

Another interesting logic to consider is the µ-calculus. If CTL describes the
properties of infinite paths using the modal operators EX, EU, . . . , µ-calculus
does the same using fixed-point operators. In the following section we will
describe the syntax and semantics of µ-calculus, we will study its links with
CTL and then we will present algorithms to solve its associated MCP.

Definition 1.2.1 (Syntax of µ-calculus). Fix an infinite number of vari-
ables Var. The syntax of the µ-calculus formulas is defined by the following
grammar

〈ϕ〉 |= ⊥ | p | X | ¬〈ϕ〉 | 〈ϕ〉∧〈ϕ〉 | �〈ϕ〉 | ♦〈ϕ〉 | µX.〈ϕ〉 | νX.〈ϕ〉

where p ∈ AP and X ∈ Var.
We will refer to µ and ν as quantifiers in the following.
Fixed a formula, we say the occurrence of a variable X is bound if it

occurs in a sub-formula of the type µX.ϕ or νX.ϕ, otherwise we call it free.
We say the variable X is bound if each of its occurrences is bound. We call
a formula closed if all the variables that occur in it are bound.

We say a formula is valid if each bound occurrence of a variable occurs
in the scope of an even number of negations. In the rest of the document
with “µ-calculus formula” we will indicate a valid formula if not indicated
differently.

12 CHAPTER 1. BACKGROUND

Example 1.2.2. The formula µX.¬(¬X ∧ Y) is valid as X occur under an
even number of negations and Y is free.

On the other hand the formula νY.µX.¬(¬X ∧ Y) is not valid as Y now
is bound and occurs under an odd number of negations.

Moral 1.2.3. The new ingredients we added are the following

• � and ♦. Those quantifier-like operators stand for “for all succes-
sors it holds. . . ” and “there exists a successor for which it holds. . . ”
respectively.

• µ and ν. Those are fixed-point operators and stand for “the smaller
set such that. . . ” and “the greatest set such that. . . ” respectively.

Definition 1.2.4 (Environment). Given M = 〈S,→, L〉 a KF, we call a
function

g : Var→ P(S)

an environment for M.

With g[X 7→ A] we indicate the environment that coincide with g except
at X, where it has value A. Formally:

g[X 7→ A](Y) =

{
g(Y) if Y 6= X
A if Y = X

Definition 1.2.5 (µ-Calculus Semantics). Given a KFM we want to define
the semantic interpretation of a µ-calculus formula ϕ as the set of states that
“entail” ϕ. As ϕ could contain free variables, we need to fix an environment
g to define such interpretation.

To improve readability, we will define the function

SemMϕ,X,g : P(S)→P(S)

A 7→ JϕKMg[X 7→A]

that assigns to the subset A ⊆ S the semantics of ϕ after changing the
environment from g to g[X 7→ A].

So, fixed M and g an environment for M, we define the semantics in-

1.2. µ-CALCULUS MODEL CHECKING 13

terpretation JϕKMg by the following inductive clauses:

J⊥KMg = ∅

JpKMg = L−1
p (>)

JXKMg = g(X)

J¬ϕKMg = S \ JϕKMg
Jϕ ∧ ψKMg = JϕKMg ∩ JϕKMg
J�ϕKMg = {s ∈ S|for all t such that s→ t: t ∈ JϕKMg }

J♦ϕKMg = {s ∈ S|there exists t such that s→ t and t ∈ JϕKMg }

JµX.ϕKMg = lfp
(
SemMϕ,X,g

)
JνX.ϕKMg = gfp

(
SemMϕ,X,g

)
where A is a generic subset of S and lfp and gfp stands for the least-

fixed-point and the greatest-fixed-point operator respectively (considering
the order relation ⊆ over P(S)).

Remark 1.2.6. Note that with the semantics above there is a certain redun-
dancy, as it’s easy to show that:

J♦ϕK = J¬�(¬ϕ)K
JνX.ϕK = J¬µX.(¬ϕ)K

with this remark in mind, we can treat the ♦ and ν operators as shorthands.

Remark 1.2.7. Of course, the inductive definition above presuppose that
there is a least and greatest fixed point for the function SemMϕ,X,g, so the
semantics could be not well-defined. To solve the problem the idea is to
show that SemMϕ,X,g is monotonic whenever the formula ϕ is valid.

Lemma 1.2.8. Fix a KF M and an environment g. Given a valid formula
ϕ, the function SemMϕ,X,g is increasing monotonic.

As a direct consequence of this lemma, by the Tarski-Knaster theorem
we have the following:

Corollary 1.2.9. The least-fixed-point and greatest-fixed-point of the func-

tion
(
A 7→ JϕKMg[X 7→A]

)
are both well-defined.

The key lemma to prove these results (and the Tarski-Knaster theorem
as well) is the following:

Lemma 1.2.10. The least-fixed point of an increasing monotonic function
f over P(S) can be computed as the limit of the trans-finite succession of
subsets below: 

f (0) = ∅
f (α+1) = f(f (α))

f (λ) =
⋃
α<λ f

(α) for λ a limit ordinal

14 CHAPTER 1. BACKGROUND

So now that we showed that the semantics is well-defined, we can try to
solve the MCP for the µ-calculus. As a matter of fact, given a finite model
M, computing the semantics of ϕ by induction over the structure of ϕ is
quite trivial. The trickiest case is computing the semantics of the formulas
of the type µX.ψ and νX.ψ, but the lemma (1.2.10) gives us an effective
procedure to do so in the finite case.

So using the results above, we have the following:

Lemma 1.2.11. The MCP for µ-calculus and for the class of finite KF has a
solution. Moreover, givenM a KF and ϕ a formula, we can find an algorithm
with complexity:

• linear over the size of M;

• exponential over the number of nested quantifiers in ϕ.

We omit here the pseudo-code (which is easy to obtain from the results
above) and refer to [8].

Now we want to study the bonds between the two logics CTL and µ-
calculus. As it’s quite easy to obtain, µ-calculus can “simulate” some of the
operators of CTL. Formally:

For all M and p ∈ AP: JEXpKCTLM = J♦pKµM
For all M and p ∈ AP: JAXpKCTLM = J� pKµM

where we indicated with J•KCTL and J•Kµ the semantics of CTL and µ-calculus
respectively. Notice that we omitted the environment, as the semantics of
closed formulas don’t depend on it.

What is quite surprising, is that every formula of CTL can be “simulated”
by a µ-calculus formula. Formally:

Lemma 1.2.12. Given ϕ a CTL formula, there exists a closed µ-calculus
formula ϕµ such that, for each model M it holds:

JϕKCTLM ≡ JϕµKµM

So we showed now that the µ-calculus is as expressive as CTL, but we
can show that it is actually more expressive than CTL.

Fact 1.2.13. The formula

νX. (p ∧ ♦♦X)

is not expressible in CTL (i.e., it doesn’t exist a CTL formula equivalent to
the above formula).

1.3. COMPLEXITY RESULTS 15

1.3 Complexity results

To end this chapter, we present some complexity results about the model
checking problem and the satisfiability problem for CTL and µ-calculus. First
of all, what is the satisfiability problem?

Definition 1.3.1 (Satisfiability problem). Given a logic L with a fixed
semantics, the satisfiability problem for the logic asks, given a formula ϕ, if
the formula is entailed by all the models of the logic. A formula with this
property is called a tautology.

Example 1.3.2. The satisfiability problem for µ-calculus asks, given a for-
mula ϕ, if it’s true for every state of every KF, for every possible environment.
In symbols, if:

For all M = 〈S,→, L〉, for all g : Var→ P(S): JϕKMg = S

A simple example of tautology is p ∨ ¬p. A trickier example is:

(µX. (p ∨ ♦X)) ∨ (νX. (¬p ∧�X))

Morally, this formula states “I can reach a state at which p holds or every
state I can reach entails ¬p”.

Fact 1.3.3. The following results hold:

• The model checking problem for CTL on finite models has linear time
complexity.

• The satisfiability problem for CTL has exponential time complexity.
Moreover, is EXP-complete ([9]).

• The model checking problem for µ-calculus is in NP∩co-NP, but has lin-
ear time complexity if we consider only formulas with bounded alternation-
depth complexity ([10]).

• The satisfiability problem for µ-calculus is in EXP ([11]).

These results give us the limit of how much we can improve our algo-
rithms and will help us study the expressive power of these logics.

Chapter 2

Heuristics

In this chapter we will focus on the main problem model checking faces:
efficiency. In practice the flaw of the standard model checking approaches
is that to represent a system a huge amount of states is needed, usually
exponential compared to the description of the system.

A simple example can make this point really clear: given n memory cells
in a computer memory, we can represent a program by a transition system
where the states are strings of length n of zeros and ones, and transitions
represent the effects on the memory of running the program. So, given n
and the program as input, we have to deal with a system with 2n states!
This phenomenon is called combinatorial explosion, and the reason is quite
clear from the example.

From a computation-time point of view, this is a disaster: even problems
with a small description are not manageable with linear algorithms like
the ones introduced in the previous chapter. To solve this problem several
techniques have been developed and we focus here on two of them: symbolic
model checking and abstraction-refinement.

2.1 Symbolic Model Checking

In 1992, McMillan introduced a new technique to solve the combinatorial
explosion problem. When used to solve a combinatorial problem or when
generating a description corresponding to several parallel systems, the num-
ber of states is exponential in the encoding of the problem. The idea of
McMillan was to solve the problem without generating the system, but deal-
ing only with an opportune encoding of it. This was the starting point of
several model checking techniques later developed.

We now sketch the main idea of McMillan and the tools used to solve
the problem in the CTL case.

Suppose the state-space is a set of the form {0, . . . , 2n−1} (we can always
imagine to add states to round the number to a power of 2 and encode them

17

18 CHAPTER 2. HEURISTICS

with “01” strings). Then:

• for each p ∈ AP we can represent the function Lp as a switching function
(i.e., a function Lp : {0, 1}n → {0, 1}).

• the adjacency relation can be represented as a switching function

∆ : {0, 1}2n → {0, 1}

〈s, t〉 7→
{

1 if s→ t
0 otherwise

where we indicate with 〈s, t〉 the binary string obtained by joining the
representation of s and t.

Switching functions are really useful to represent sets and set operations.
For example:

• We can use switching functions to represent characteristic functions of
sets.

• For the intersection of two sets represented by f and g respectively,
we can use the function

f ∧ g : {0, 1}n → {0, 1}
s 7→ f(s) ∧ g(s)

• To represent the forward neighborhood of a state s, i.e. the set

FN(s) = {t|s→ t}

we can use the switching function

x 7→ ∆(s, x)

• To represent the projection of a function h : {0, 1}2n → {0, 1} over the
second n coordinates, we can use the function:

∃x.h(x, x′) : {0, 1}n → {0, 1}

t 7→
{

1 if there exists s such that h(s, t) = 1
0 otherwise

We can even present the model checking procedure for CTL in terms of
switching functions. Here we use the notation g := 〈expression〉 to indi-
cate that we define a new switching function g, computed by expanding its
definition. The expressions ∧, ∨, ∃x′ are treated primitives, as they can
be implemented efficiently with adequate data structures. The symbolic
algorithms are 4, 5 and 6.

Note that to make this computation efficient we need, given f, g : 2n → 2
and h : 22n → 2, to compute efficiently the operations:

2.1. SYMBOLIC MODEL CHECKING 19

Algorithm 4: Algorithm to compute EXp

input : fp, the switching function corresponding to JpK
output: fEXp, the switching function corresponding to JEXpK

1 g:= ∃x′. (∆(x, x′) ∧ fp(x′));
2 return g;

Algorithm 5: Algorithm to compute EGp

input : fp, the switching function corresponding to JpK
output: fEGp, the switching function corresponding to JEGpK

1 f0 := fp;
2 j:= 0;
3 repeat
4 fj+1(x) := fj(x) ∧ ∃x′. (∆(x, x′) ∧ fj(x′));
5 j:= j +1;

6 until fj == fj−1;
7 return fj ;

Algorithm 6: Algorithm to compute E(pUq)

input : fp, the switching function corresponding to JpK
input : fq, the switching function corresponding to JqK
output: fE(pUq), the switching function corresponding to JE(pUq)K

1 f0 := fq;
2 j:= 0;
3 repeat
4 fj(x) := fj(x) ∨ (fp(x) ∧ ∃x′. (∆(x, x′) ∧ fj(x′)));
5 j:= j +1;

6 until fj == fj−1;
7 return fj ;

20 CHAPTER 2. HEURISTICS

• f ∧ g

• ¬f (as it is needed to compute the negation of a formula)

• f ∨ g

• ∃x.h(x, x′)

Why are we interested in this representation? The general idea is that:

• a switching function is easy to compress using ordered binary decision
diagrams (or OBDDs in short).

• computing boolean functions with OBDDs is really efficient.

• we can execute efficiently the CTL model checking algorithm using di-
rectly the OBDD representation of the functions.

Definition 2.1.1 (Ordered Binary Decision Diagram (OBDD)). Fix an or-
dered set of variables VarSet = {x0 ≺ x1 ≺ x2 ≺ . . . }. An OBDD is a
tuple

〈V = VI t VT , succ0, succ1, var, val, v0〉

where:

• V is a finite set of nodes divided in internal nodes (VI) and terminal
nodes (VT).

• var : VI → VarSet is a function that assign to each inner node a
variable.

• v0 ∈ V .

• succ0, succ1 : VI → V are functions such that

v0 /∈ succ0[VI] ∪ succ1[VI]

For all v ∈ V \ {v0}: v ∈ succ0[VI] ∪ succ1[VI]

succ0(x) ∈ VT or var(x) ≺ var(succ0(x))

succ1(x) ∈ VT or var(x) ≺ var(succ1(x))

• val : VT → {0, 1}.

Basically we are giving a DAG-like structure to the set V where v0 is the
root, nodes of VT are the leaves and the adjacency relation is given by the
relation succ0 ∪ succ1.

2.1. SYMBOLIC MODEL CHECKING 21

Example 2.1.2. In the figure an example of OBDD over the set of variables
{x0, x1, x2}.

x0

x1

x2

x2

0 1

0
1

0 1

0 1
0 1

Remark 2.1.3. Note that there are only two possible OBDDs where v0 ∈ VT ,
namely: 0 and 1 . We will call them trivial OBDDs.

We now present some interesting properties of OBDDs.

Lemma 2.1.4. Let B be an OBDD over the variables

VarSet = {x0 ≺ x1 ≺ . . . }

and w an internal node of B. Then define

Bw = 〈Vw, (succ0)w, (succ1)w, VarSetw, varw, w〉

where:

• Vw ⊆ V is the set of nodes reachable from w.

• (succ0)w, (succ1)w, varw, valw are the restriction of succ0, succ1,
var, val to Vw.

then Bw is an OBDD over the set of variables {x ∈ VarSet | var(w) � x}.

Thanks to this result, we can associate to an OBDD a switching function
in a really intuitive way:

Definition 2.1.5 (Semantics of OBDDs). Let B be an OBDD over the set of
variables {x1 ≺ · · · ≺ xn}, where we suppose var(v0) = x1. Then we can
associate to B the switching function:

fB =


0 if B = 0

1 if B = 1

(x1 ∧ fsucc0(v0)) ∨ (¬x1 ∧ fsucc1(v0)) otherwise

where fsucc0(v0) and fsucc1(v0) indicate the switching function associated to
the OBDDs Bsucc0(v0) and Bsucc1(v0) respectively.

22 CHAPTER 2. HEURISTICS

Remark 2.1.6. Note that the definition above is a recursive definition where
the base cases are trivial OBDDs. In particular, the switching function is
well-defined because the number of variables that appear in Bsucc0(v0) and
Bsucc1(v0) is strictly less than the number of variables that appear in B.

Lemma 2.1.7. Given B a non trivial OBDD, its switching function is deter-
mined by the tuple 〈

var(v0), fsucc0(v0), fsucc1(v0)

〉
Moreover, consider the OBDD B′ constructed by taking Bsucc0 and Bsucc1 as
the 0-successor and the 1-successor of a common root respectively (as in the
figure).

v0

Bsucc0 Bsucc1

0 1

Then fB = fB′.

Notation 2.1.8. We will call two OBDDs B and B′ equivalents if fB = fB′ .
Moreover, we will indicate an OBDD constructed as in the lemma above

with the notation B〈var(v0),B,B′〉.

It’s also quite trivial to show that given a switching function we can
define an OBDD that represents it.

Definition 2.1.9 (cofactors). Let f(x1, . . . , xn) be a switching function.
We call negative cofactor relative to the variable xi the function

f |xi=0(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

In the same way, we call positive cofactor relative to the variable xi the
function

f |xi=1(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

Lemma 2.1.10. Given a switching function f(x1, . . . , xn), consider the
OBDD Bf defined inductively as

Bf =


0 if f = 0
1 if f = 1
B〈x1,Bg ,Bh〉 otherwise

where g = f |x1=0 and h = f |x1=0.
Then fBf

= f .

2.1. SYMBOLIC MODEL CHECKING 23

So we have seen that every OBDD represents a switching function, and that
every switching function is represented by some OBDD. A question that arises
quite naturally is if there is a way to make this correspondence “unique”, or
in other terms, if we can find a canonical OBDD representation of a switching
function. For example, by applying the following reduction rules (if possible)
to an OBDD already defined, is quite easy to see that we obtain an equivalent
one.

• Elimination rule: If v ∈ VI and succ0(v) = succ1(v) = w, than
eliminate v and redirect all incoming edges u→ v to w.

u

v

w
0 1

u

w

• Isomorphism rule: Let v 6= w be nodes of B such that one of the
followings hold:

– v, w ∈ VT and val(v) = val(w).

– v, w ∈ VI and 〈Var(v), succ0(v), succ1(v)〉 = 〈Var(w), succ0(w), succ1(w)〉.

Then eliminate v and redirect all edges u→ v to w.

v w

0 10 1

w

0 1

Remark 2.1.11. Note that both operations eliminate a node and the rules
can’t be applied to trivial OBDDs. So as a result we obtain that each OBDD is
equivalent to one which we can’t reduce further.

In the following, we will show there exists a normal form for OBDDs, and
in particular it is computable efficiently. First of all, let’s define a special case
of OBDD, one for which the information about the correspondent switching
function cannot be further “compressed”.

Definition 2.1.12 (Reduced OBDD). We define a reduced OBDD (or ROBDD

in short) as an OBDD B such that for v, w ∈ V it holds:

v 6= w ⇒ fv 6= fw

where fv and fw are the switching functions corresponding to fBv and fBw

respectively.

24 CHAPTER 2. HEURISTICS

Lemma 2.1.13 (ROBDDs equivalence classes). Two ROBDDs are equivalent if
and only if are equal upon renaming of the nodes. Equivalently, equivalence
and isomorphism coincide for ROBDDs.

This is quite useful, as now to check if two ROBDDs are equivalent we
simply need to check if they are equal (upon renaming), and this can be
done in linear time.

A result quite trivial to show is that we can’t apply reduction rules to
ROBDDs. What is more interesting, is that also the converse holds! And so
we have the following important results:

Lemma 2.1.14. An OBDD is reduced if and only if it is not reducible using
the rules above.

Lemma 2.1.15 (OBDD normal form). Every OBDD is equivalent to exactly
one ROBDD (upon renaming of the nodes). Moreover, the equivalent ROBDD

can be obtained in linear time in the encoding of the initial OBDD.

Corollary 2.1.16. An OBDD B is reduced if and only if is of minimal size
in its equivalence class. Formally, if for every other equivalent C it holds

|VB| ≤ |VC|

Remark 2.1.17. This result shows that ROBDDs are the smaller OBDDs repre-
senting a certain switching function. However, note that we fixed a variable
ordering at the start of the chapter; to change the variable order means to
change the size of the corresponding ROBDD. More about this topic can be
found in [8].

Corollary 2.1.18. Deciding the equivalence of two OBDDs is a linear time
problem.

To summarize the results above, we found a data structure such that:

• It represents switching functions.

• Can compress data in a canonical way (reduction).

• Equivalence is computable in linear-time in the OBDDs size.

To conclude we need to show that the CTL model checking operations
can be carried using this structure. Formally, that given ROBDDs Bf and Bg

(representing f and g respectively), we can compute efficiently Bf∧g, Bf∨g,
B¬f and B∃x.f of bounded size, as they can be later reduced with the rules
introduced above.

All these algorithms are presented and thoroughly described in [8].

2.2. ABSTRACTION-REFINEMENT FOR CTL 25

2.2 Abstraction-Refinement for CTL

The main idea behind symbolic model checking is that we can carry out the
procedure with the information compressed by an opportune data structure.
But the limit of this approach is given by how much can we can compress
data without losing any information.

A different approach was adopted in [4] by compressing information too
much, i.e. by constructing an approximation of the model (an abstraction)
and by using it to retrieve information on the solution of the original prob-
lem. This method is called CEGAR and it’s an example of what in literature
are called abstraction-refinement methods.

This is one of the fastest methods to solve some instances of the model
checking problem, but the other face of the medal is that it solves only the
decisional model checking problem for ACTL, namely the fragment of CTL

defined by the following grammar:

〈ϕ〉 |= ⊥ | p ∈ AP | ¬p | 〈ϕ〉∧〈ϕ〉 | 〈ϕ〉∨〈ϕ〉 | A〈Φ〉
〈Φ〉 |= X〈ϕ〉 | F〈ϕ〉 | G〈ϕ〉 | 〈ϕ〉U〈ϕ〉

So these are CTL formulas using only the A quantifier with negation restricted
to propositional formulas.

We present in this section the theory and main ideas behind CEGAR.

Definition 2.2.1 (CEGAR abstraction). Let M = 〈S,→, L〉 be a KF and
consider a partition P of S respecting the labeling function, i.e. such that

[s]P = [t]P =⇒ ∀p ∈ AP. [s ∈ L(p) ⇐⇒ t ∈ L(p)]

We define the abstraction of M relative to P as the KFMP = 〈P,→P , LP〉
such that:

• T →P T ′ ⇐⇒ There exist t ∈ T and t′ ∈ T ′ such that t→ t′

• T ∈ LP(p) ⇐⇒ ∃t ∈ T.t ∈ L(p) ⇐⇒ ∀t ∈ T.t ∈ L(p)

Moral 2.2.2. The idea behind the abstraction presented above is that we
can identify groups of states which satisfy the same propositional formulas.
Note that in doing so we lose information on the global graph-structure of
the original model.

Notation 2.2.3. From now on we will refer to M as the concrete model and
to MP as the abstract model or abstraction.

There are several results that connect the two models. Here we introduce
the bases of Bisimulation and simulation theory to better understand these
connections.

26 CHAPTER 2. HEURISTICS

Figure 2.1: An example of abstraction for an undirected graph. The states
with the same shape (on the left) are represented by a single node in the
abstraction (on the right).

Definition 2.2.4 (Bisimulation and bisimilarity). Given two KFs

M = 〈S,→, L〉 and M′ = 〈S′,→′, L′〉 we say that a relation R ⊆ S × S′ is
a bisimulation if:

1. ∀s ∈ S.∃s′ ∈ S′.sRs′

2. ∀s′ ∈ S′.∃s ∈ S.sRs′

3. sRs′ =⇒ ∀p ∈ AP. [s ∈ L(p) ⇐⇒ s′ ∈ L′(p)]

4. s→ t and sRs′ =⇒ there exists t′ ∈ S′ such that s′ →′ t′ and tRt′

5. s′ →′ t′ and sRs′ =⇒ there exists t ∈ S such that s→ t and tRt′

If there exists a bisimulation R such that sRs′, we say that s and s′ are
bisimilar and we indicate it with s∼ s′.

Moral 2.2.5. The idea behind the previous definition is that two states are
bisimilar if we can’t distinguish them in an operative way. The following
technical lemma formalizes better this concept.

Lemma 2.2.6 (Paths and Bisimulations). Let M and M′ be as in the
definition above, let R be a bisimulation between M and M′. Then given a
path of S

π = (s0, s1, . . .)

there exists a path of S′

π′ =
(
s′0, s

′
1, . . .

)
such that siRs

′
i for all i ∈ N.

2.2. ABSTRACTION-REFINEMENT FOR CTL 27

Remark 2.2.7. Note that, by symmetry also the converse holds. Namely,
given a path π′ we can find a path π with the property above.

Lemma 2.2.8. Consider the case M′ = M. Then ∼ is an equivalence
relation over S.

Theorem 2.2.9. Fix M and M′ two finite branching KFs such that there
exists at least a bisimulation R ⊆ S×S′. Consider the relation [≡CTL] ⊆ S × S′
defined as

s≡CTL s′ ⇐⇒ ∀ϕ ∈ CTL.
[
M, s � ϕ ⇐⇒ M′, s′ � ϕ

]
then it holds [≡CTL] = [∼].

Proof. To prove this result, we prove separately that [∼] ⊆ [≡CTL] and
[≡CTL] ⊆ [∼].

• We want to prove that for each formula ϕ it holds
s∼ s′ =⇒ [s � ϕ ⇐⇒ s′ � ϕ], and we can do so by induction over
the structure of ϕ. Moreover, we can simplify the proof by using the
existential normal form (so we don’t have to deal with the operator
A).

– For ϕ ≡ p ∈ AP the result follows directly from the definition of
bisimulation.

– For ϕ obtained by applying a boolean operator, the result is triv-
ial.

– For ϕ ≡ EQψ for Q a path quantifier (or ϕ ≡ E(ψ1Uψ2)) consider
a path π of S such that M, π � Qψ (respectively M, π � ψ1Uψ2).
Then by Lemma 2.2.6 we have that there exists a path π′ of S′

such that

∀i ∈ N .
[
πi∼π′i

]
=⇒ ∀i ∈ N .

[
πi � ψ ⇐⇒ π′i � ψ

]
∀i ∈ N .

[
πi∼π′i

]
=⇒ ∀i ∈ N .∀j ∈ {1, 2}.

[
πi � ψj ⇐⇒ π′i � ψj

]
Using this is trivial to prove that also M′, π′ � Qψ (respectively
M′, π′ � ψ1Uψ2).

Using Remark 2.2.7 we have that also the converse holds, and so
the result.

• We want to prove that if s≡CTL s
′ then it also holds s∼ s′. To

do so we claim that ≡CTL is a bisimulation. In fact:

1. Consider R ⊆ S × S′ a bisimulation (it exists by hypothesis).
Then by the first part of this proof we have[

∀s ∈ S.∃s′ ∈ S′.sRs′
]

=⇒
[
∀s ∈ S.∃s′ ∈ S′.s≡CTL s

′]

28 CHAPTER 2. HEURISTICS

2. Same as the point above.

3. It follows from the fact that s≡CTL s
′ =⇒ [s � p ⇐⇒ s′ � p].

4. Fix a state s ∈ S and consider its successors t1, . . . , tk (finite by
hypothesis). We then can consider the partition
tli=1Ti = {t1, . . . , tk} where Ti are the ≡CTL equivalence classes.
We state here a technical lemma whose proof is omitted:

Lemma 2.2.10. Let T1, . . . Tl as above. There exist formulas
ϕ1, . . . , ϕl such that

ti ∈ Tj ⇐⇒ ti � ϕj

Moreover ϕ1, . . . , ϕl depend only on the equivalence classes of
T1, . . . , Tl.

Given this, it’s quite easy to show that

s � EX(ϕi)

s � AX

(
l∨

i=1

ϕi

)
s � AX(ϕi → ψ) ⇐⇒ ∀t ∈ Ti. t � ψ

Now fix ti and consider a generic s′ ∈ S′ such that s≡CTL s
′. We

want to find a state t′ such that s′ → t′ and ti≡CTL t
′.

By the first and second properties above the successors of s′ cover
the same equivalence classes as the successors of s, and so we can
fix t′ a successor of s′ such that t′ � ϕi. By the third property
above, we have

ti � ψ ⇐⇒ s � AX(ϕi → ψ)

⇐⇒ s′ � AX(ϕi → ψ)

⇐⇒ t′ � ψ

where the last implication follows from the fact that ϕ1, . . . , ϕl
depends only on the equivalence classes of the Ti (again Lemma
2.2.10). Thus we have that ti≡CTL t

′ as wanted.

5. As the point above.

Corollary 2.2.11. Given a finite KFM, then [≡CTL] = [∼].

This last result give us a way to obtain a smaller KF preserving the same
properties as the original one. Namely:

2.2. ABSTRACTION-REFINEMENT FOR CTL 29

Definition 2.2.12 (Bisimulation Quotient). Given a finite KFM, define its
bisimulation quotient as the KFM′ = 〈S′,→′, L′〉 where:

• S′ are the [∼]-equivalence classes of S. In formulas:

S′ = S /∼

• x′ →′ y′ if and only if for all s ∈ x′ there exists t ∈ y′ such that x→ y.

• x′ ∈ L′(p) if and only if ∀s ∈ x′, s ∈ L(p).

Then, given π : S → S′ the quotient map, for every CTL formula ϕ it holds:

s � ϕ ⇐⇒ π(s) � ϕ

So what we obtained here is a “compacted model”, but what we really
wanted was an “approximation” of the original model. We present here
another formal tool akin to bisimilarity, which we will use to prove the main
properties of the CEGAR abstraction presented before.

Definition 2.2.13 (Simulation). Given two KFsM = 〈S,→, L〉 and
M′ = 〈S′,→′, L′〉 we say that a relation R ⊆ S × S′ is a simulation if:

1. ∀s′ ∈ S′.∃s ∈ S.sRs′

2. sRs′ =⇒ ∀p ∈ AP. [s ∈ L(p) ⇐⇒ s′ ∈ L′(p)]

3. s→ t and sRs′ =⇒ there exists t′ ∈ S′ such that s′ →′ t′ and tRt′

If there exists a simulation R such that sRs′, we say that s simulates s′ and
we indicate it with s� s′.

Remark 2.2.14. Note that the properties above are the properties 1, 3 and
4 of Definition 2.2.4. Taking only these three breaks the symmetry of the
previous definitions, and so s� s′ can be intended as “s can perform every
action that s′ could do”.

Now we list here the main theorems about simulation, corresponding to
the ones presented before for bisimulation.

Lemma 2.2.15 (Paths and Simulations). Let M and M′ be as in the def-
inition above, let R be a simulation between M and M′. Then given a path
of S′

π′ =
(
s′0, s

′
1, . . .

)
there exists a path of S

π = (s0, s1, . . .)

such that siRs
′
i for all i ∈ N.

30 CHAPTER 2. HEURISTICS

Remark 2.2.16. In this case, the converse doesn’t hold.

Lemma 2.2.17. Consider the case M′ =M. Then [�] ∩ [�] is an equiva-
lence relation over S.

Theorem 2.2.18. Fix M and M′ two finite branching KFs such that there
exists at least a simulation R ⊆ S × S′. Then it holds:

s� s′ ⇐⇒ for all ϕ ∈ ACTL it holds
[
s � ϕ =⇒ s′ � ϕ

]
Proof idea. This theorem corresponds to Theorem 2.2.9. The idea to prove
it is exactly the same: consider a new relation

s ≥ACTL s
′ ⇐⇒ ∀ϕ ∈ ACTL.

[
s � ϕ =⇒ s′ � ϕ

]
and prove the two inclusions [�] ⊆ [≥ACTL] and [≥ACTL] ⊆ [�].

Theorem 2.2.19. Given a finite KFM and an abstraction M′ as in Defi-
nition 2.2.1, consider the projection map π : S → S′. Then it holds:

• π−1 is a simulation.

• For all ϕ ∈ ACTL, π(s) � ϕ implies s � ϕ.

Moral 2.2.20. The theorem above tells us how we can interpret an abstrac-
tion as an approximation. Note that it follows for T ∈M′ and ϕ ∈ ACTL

T � ϕ =⇒ ∀t ∈ T. t � ϕ

but is not necessarily true neither of the followings

T 6� ϕ =⇒ ∀t ∈ T. t 6� ϕ
[∀t ∈ T. t � ϕ] =⇒ T � ϕ

This last result can be used to create an efficient method to check if a
single state of a model satisfies an ACTL formula.

Definition 2.2.21 (Expansion of abstract nodes). Let M and P as in
Definition 2.2.1. Fix T1, . . . , Tk ∈ P. We define the partition obtained from
P by expanding T1, . . . , Tk as:

Q = {T ∈ P|T 6= T1, . . . , Tk} ∪ {{t}|t ∈ T1 ∪ · · · ∪ Tk}

Example 2.2.22. Taking the abstraction of Figure 2.2, we can expand the
“star” state obtaining:

2.2. ABSTRACTION-REFINEMENT FOR CTL 31

Method 2.2.23. Let M = 〈S,→, L〉 be a finite KF and fix a state s ∈ S
and an ACTL formula ϕ. The method consists of the following steps:

1. Choose a partition P and construct the associated abstraction
N = 〈P,→′, L′〉. Let π be the quotient map.

2. Solve the MCP for N , π(s) and ϕ using the algorithm presented in
Section 1.

3. If π(s) � ϕ, then by Theorem 2.2.19 we have also s � ϕ and so we
have finished.

4. Otherwise, if P is the trivial partition (i.e., P = {{s}|s ∈ S}) then
s 6� ϕ (as M = N , modulo identification of the states s ∈ S and
{s} ∈ P).

5. If none of the previous apply, choose some non trivial abstract states
T1, . . . , Tk ∈ P (i.e., |Ti| > 1) and expand them obtaining a new parti-
tion Q. Repeat the procedure with Q.

Termination and correctness.

Termination If P is the trivial partition, then the algorithm terminates
either giving back s � ϕ (step 3) or s 6� ϕ (step 4).

If P is not the trivial partition and the algorithm doesn’t terminate at
steps 3 and 4, then we have to choose a refinement P ′≺P and repeat
the algorithm (step 5). AsM is finite, we can’t have an infinite number
of iterations as we would be constructing an infinite chain

P �P1�P2� . . .

Correctness The correctness follows from Theorem 2.2.19 (as indicated in
step 3).

32 CHAPTER 2. HEURISTICS

While this method terminates correctly, it has a major flaw: we can’t
estimate the time it takes to terminate.

There aren’t theoretical results on the complexity of this algorithm, but
by experimental results we can evince that:

• if it holds s � ϕ the time it takes is really small, it’s actually faster
then the linear algorithm in most of the cases. The reason is that if we
choose well the abstract states T1, . . . , Tk, the algorithm terminates in
just a few iterations, thus maintaining a small size for the models.

• if it holds s 6� ϕ then the algorithm takes a huge amount of time to
terminate. The reason is simple: to decide s 6� ϕ it needs to obtain the
trivial partition, thus it needs to solve several model checking problems
relative to models of size comparable with the concrete one.

So this algorithm is slow! Moreover there are several missing points:

How do we choose the initial abstraction? The initial abstraction de-
pends strongly on the problem at hand. For example, when we consider
models obtained from parallel operators a “good” abstraction should
preserve the parallel structure of the model.

How do we solve the speed problem? We need something more to speed-
up the algorithm in case s 6� ϕ.

How do we choose the states T1, . . . , Tk? As stated above, the algorithm
is fast if we choose well the states T1, . . . , Tk. But how do we choose
them? What does “well” means in this context?

As the first problem depends strongly on the initial model, we won’t deal
with it in this document, but we will tackle the other two problems. First
of all, some new theory.

Definition 2.2.24 (ACTL counterexamples).

• Let M = 〈S,→, L〉 be a KF and suppose that

s 6� AΨ

for some state s ∈ S, for some ACTL formula AΨ. We define an im-
mediate counterexample σ〈s,Ψ〉 for s and AΨ as a path π starting at s
such that

π 6� Ψ

• LetM, s as above, and consider a generic ACTL formula ϕ. We define a
counterexample tree τ〈s,ϕ〉 for s and ϕ by induction over the structure
of ϕ as:

2.2. ABSTRACTION-REFINEMENT FOR CTL 33

– If ϕ ≡ ⊥, p,¬p then τ〈s,ϕ〉 is the state s itself.

– If ϕ ≡ ψ1 ∧ ψ2 then τ〈s,ϕ〉 is a pair 〈i, τs,ψi
〉 for i equal to 1 or 2.

– If ϕ ≡ ψ1 ∨ ψ2 then τ〈s,ϕ〉 is a pair
〈
τ〈s,ψ1〉, τ〈s,ψ2〉

〉
.

– If ϕ ≡ AX(ψ) then τ〈s,ϕ〉 is a pair 〈〈π, τπ1,ψ〉〉 where π is an imme-
diate counterexample for s and AX(ψ).

– If ϕ ≡ AF(ψ) then τ〈s,ϕ〉 is a pair
〈
π, (τ〈πi,ψ〉)i∈N

〉
where π is an

immediate counterexample for s and AF(ψ), and (τ〈πi,ψ〉)i∈N is a
sequence of counterexample trees, one for each node of π.

– If ϕ ≡ AG(ψ) then τ〈s,ϕ〉 is a pair
〈
π, τ〈πi,ψ〉

〉
for some i ∈ N, where

π is an immediate counterexample for s and AG(ψ).

– If ϕ ≡ A(ψ1Uψ2) then τ〈s,ϕ〉 is a tuple
〈
π, (τ〈πi,ψ1〉)i<l, τ〈πl,ψ2〉

〉
where π is an immediate counterexample for s.

We will call the path π in the clauses AX, AF, AG and AU the immediate
counterexample associated to τ〈s,ϕ〉.

With a simple induction it’s easy to prove the following:

Lemma 2.2.25. Given M, s and ϕ as above, the followings are equivalent:

• s 6� ϕ

• There exists an immediate counterexample for s and ϕ.

• There exists a counterexample tree for s and ϕ.

Moral 2.2.26. The idea behind this result is really simple. An ACTL formula
ϕ tells us that all paths starting at a point have some property. An im-
mediate counterexample is a path that doesn’t have that property. Instead
a counterexample tree gives us more information, namely why that path
doesn’t entail the formula, and it does so by giving us counterexample trees
for some states of the path.

We don’t present in this document an algorithm to find a counterexample
tree, but a simple modification of the algorithms presented in 1 can achieve
this result while performing the model checking procedure.

Now, consider the case introduced before where we are dealing with a
model M and one of its abstractions N , and we are trying to solve the MCP

for s and ϕ. If we indicate with [s] the class of s in N , and we have that
[s] 6� ϕ, then we can find an immediate counterexample for [s] and ϕ. But
does this correspond to an immediate counterexample for s? Formally:

Definition 2.2.27. Given a path π in N we call a lifting of π toM a path
π′ of M such that

[π′i] = πi

If there exists such a path π′ then we say that π lifts to M. Moreover, if
π′0 = s we say that π lifts with base point s.

34 CHAPTER 2. HEURISTICS

So we are asking, does π lifts to M with base point s? There are three
cases:

• If π′ is a lifting of π and is a counterexample for s and ϕ, then it
follows from Lemma 2.2.25 that s 6� ϕ.

• If π doesn’t lift toM, then we can’t decide if s � ϕ or not (there could
be other counterexamples!), but we know why π doesn’t lift. Namely,
there is a set of states T ⊆ SN such that

– The finite path 〈π0, . . . , πl〉 lifts toM, but 〈π0, . . . , πl+1〉 doesn’t.

– The last states of the possible lifted paths of 〈π0, . . . , πl〉 are in⋃
T .

– T is the minimal set with these properties.

In this case we will call T the critical set and say that π is a spurious
counterexample of the first type.

• If s � ϕ then there are no immediate counterexamples for s and ϕ,
but there could be a lifting π′ of π. Of course, in this case π′ is not a
counterexample and so we will say that π is a spurious counterexample
of the second type.

Now we are ready to present the CEGAR method as presented in [4].

Method 2.2.28. Let M = 〈S,→, L〉 be a finite KF. Fix a state s ∈ S and
an ACTL formula ϕ. The method consists of the following steps:

1. Choose a partition P and construct the associated abstraction
N = 〈P,→′, L′〉. Let π be the quotient map.

2. Solve the MCP for N , π(s) and ϕ using the algorithm presented in
Section 1. Moreover, if s 6� ϕ find an immediate counterexample σ.

3. If π(s) � ϕ, then by Theorem 2.2.19 we have also s � ϕ and so we are
done.

4. Otherwise check if σ lifts toM. If it doesn’t lift (i.e., σ is a counterex-
ample of the first type), then find the critical set T , expand the nodes
in T and repeat the procedure.

5. If it does lift to a path σ′, check if σ′ is a counterexample.

(a) If σ′ is a counterexample then we finished as s 6� σ by Theorem
2.2.19.

(b) If σ′ is not a counterexample. . .

2.2. ABSTRACTION-REFINEMENT FOR CTL 35

This complete the method except for the step 5b. In this case we need
a more convoluted definition of critical set, in particular a definition for
counterexamples of the second type.

Definition 2.2.29 (Critical set). Given τ = τ〈s,ϕ〉 a counterexample tree
for the state s and the formula ϕ, we define its critical set T (τ) by induction
over the structure of ϕ:

• If ϕ ≡ ⊥, p,¬p then T (τ) = {s}.

• If ϕ ≡ ψ1 ∧ ψ2 then T (τ) = T (τ〈s,ψi〉) where τ =
〈
i, τ〈s,ψi〉

〉
.

• If ϕ ≡ ψ1 ∨ ψ2 then T (τ〈s,ψ2〉) ∪ T (τ〈s,ψ2〉).

• If ϕ ≡ AX(ψ), let τ =
〈
π, τ〈π1,ψ〉

〉
. There are two cases:

– if π doesn’t lift, then T (τ) = {π0}
– else T (τ) = T (τ〈π1,ψ〉).

• If ϕ ≡ AF(ψ), let τ =
〈
π, (τ〈πi,ψ〉)i∈N

〉
. There are two cases:

– if π doesn’t lift, then T (τ) = {πk} where πk is the only state such
that 〈π0, . . . , πk〉 lifts but 〈π0, . . . , πk+1〉 doesn’t lift.

– else T (τ) =
⋃
i∈N T (τ〈πi,ψ〉)

• If ϕ ≡ AG(ψ), let τ =
〈
π, τ〈πh,ψ〉

〉
. Then

– if 〈π0, . . . , πh〉 doesn’t lift, then T (τ) = {πk} where πk is the only
state such that 〈π0, . . . , πk〉 lifts but 〈π0, . . . , πk+1〉 doesn’t lift.

– else T (τ) = T (τ〈πh,ψ〉)

• If ϕ ≡ A(ψ1Uψ2), let τ =
〈
π, (τ〈πi,ψ1〉)i<l, τ〈πl,ψ2〉

〉
. Then:

– if 〈π0, . . . , πl〉 doesn’t lift, then T (τ) = {πk} where πk is the only
state such that 〈π0, . . . , πk〉 lifts but 〈π0, . . . , πk+1〉 doesn’t lift.

– else T (τ) =
⋃
i≤(l−1) T (τ〈πi,ψ1〉) ∪ T (τ〈πl,ψ2〉).

Moral 2.2.30. As the critical set introduced for an immediate counterexam-
ple π tells us why π doesn’t lift (and so it’s a spurious counterexample), the
critical set introduced here tells us why the entire tree doesn’t lift. So for
each branch we have a critical point, and the critical set of the tree collects
those critical points.

We present now the revisited version of CEGAR:

Method 2.2.31. Let M = 〈S,→, L〉 be a finite KF. Fix a state s ∈ S and
an ACTL formula ϕ. The method consists of the following steps:

36 CHAPTER 2. HEURISTICS

1. Choose a partition P and and construct the associated abstraction
N = 〈P,→′, L′〉. Let π be the quotient map.

2. Solve the MCP for N , π(s) and ϕ using the algorithm presented in
Section 1. Moreover, if s 6� ϕ find a counterexample tree τ and let σ
be its associated immediate counterexample.

3. If π(s) � ϕ, then by Theorem 2.2.19 we have also s � ϕ and so we
finished.

4. Otherwise check if σ lifts to M. If it doesn’t lift (i.e., σ is a coun-
terexample of the first type), then find the critical set T of σ, expand
the nodes in T and repeat the procedure.

5. If σ does lift, check if τ lifts.

(a) If τ lifts then we finished as s 6� σ by Theorem 2.2.19.

(b) If τ doesn’t lift (i.e., σ is a counterexample of the second type),
then find the critical set T of τ , expand the nodes in T and repeat
the procedure.

Moral 2.2.32. The idea behind this method is that, if we find a counterex-
ample tree τ in the abstract model, we want to check if it corresponds to
an actual counterexample in the concrete model. If it does, then we have
a counterexample and so we finished. Otherwise, by expanding the critical
set we eliminate τ from the abstract model.

2.3 Abstraction-Refinement for µ-Calculus

We quickly describe here a generalization of the CEGAR approach presented in
[12] to the full µ-calculus. To do so we need to introduce a new mathematical
object.

Definition 2.3.1 (Kripke Modal Transition System). A Kripke modal tran-
sition system (or KMTS) is a tuple M = 〈S, 99K,→, L〉 where:

• S is a set of states.

• 99K,→ ⊆ S × S are accessibility relations (called may transitions and
must transitions respectively) such that [→] ⊆ [99K].

• L : S × AP→ {⊥, ?,>} is a 3-valued evaluation function (meaning we
will consider ⊥, ? and > as truth values).

In particular, we can identify KFs as KMTSs such that → = 99K and L
assumes only values > and ⊥.

2.3. ABSTRACTION-REFINEMENT FOR µ-CALCULUS 37

Moral 2.3.2. A KMTS represents a KF that is not completely determined.
In particular, we have some information that is certain (a must transition
represent a “transition that must be there”; if L(p, s) = > then “p has to
be true at s”) and some that is not certain (a may transition represent a
“transition that may or may not be there”; if L(p, s) = ? we “don’t know
the value of p at s”).

With KMTSs we can define a more convoluted abstraction, namely:

Definition 2.3.3 (Modal Abstraction). Let M = 〈S,→, L〉 be a KF and
P be a partition of S. Then we define the modal abstraction of M with
respects of P (or simply abstraction) as the KMTS N = 〈P, 99K,→, L′〉 such
that:

• 99K and → are defined as

T 99KT ′ ⇐⇒ there exists t ∈ T and t′ ∈ T ′ such that t→ t′

T →T ′ ⇐⇒ for all t ∈ T there exists t′ ∈ T ′ such that t→ t′

Note that → ⊆ 99K.

• L′ is defined as

L′(p, T) = > ⇐⇒ for all t ∈ T it holds L(p, t) = >
L′(p, T) = ⊥ ⇐⇒ for all t ∈ T it holds L(p, t) = ⊥

otherwise L′(p, t) = ?.

Now we proceed as in the previous section, by showing that we have a
transfer property that binds the semantics of a formula evaluated over the
abstraction and in the concrete model.

Definition 2.3.4 (3-Valued Environment). Given M = 〈S, 99K,→, L〉 a
KMTS, we call a function

g : Var× S → {>, ?,⊥}

a 3-valued environment forM. With g[X 7→ f] we indicate the environment
such that

g[X 7→ f](Y, s) =

{
g(Y, s) if Y 6= X
f(s) if Y = X

Definition 2.3.5 (KMTS semantics for µ-calculus). Let M = 〈S, 99K,→, L〉
be a KMTS, g : Var × S → {>, ?,⊥} a 3-valued environment and ϕ, a µ-
calculus formula. We want to define what it means that ϕ has value θ (with
θ ∈ {⊥, ?,>}) at a state s under the environment g, in symbols M, s �gθ ϕ.

To simplify the next definition we introduce the notation JϕKgθ for the
set of states s such that M, s �gθ ϕ and Sem (ϕ)g : S → {⊥, ?,>} for the
function that associates to each s ∈ S the only θ such that s �gθ ϕ.

38 CHAPTER 2. HEURISTICS

By induction over the formula ϕ we define:

J⊥Kgθ =

{
∅ if θ = >, ?
S if θ = ⊥

JpKgθ = {s ∈ S|L(p, s) = θ}
JXKgθ = {s ∈ S|g(X, s) = θ}
J¬ψKgθ = JψKg¬θ
Jψ1 ∧ ψ2K

g
θ =

⋃
θ1∧θ2=θ

Jψ1K
g
θ1
∩ Jψ2K

g
θ2

J�ψKg> =
{
s ∈ S|∀t.

[
s 99K t =⇒ t �g> ψ

]}
J�ψKg⊥ =

{
s ∈ S|∃t.

[
s→ t ∧ t �g⊥ ψ

]}
J�ψKg? = S \

(
J�ψKg> ∪ J�ψKg⊥

)
J♦ψKg> =

{
s ∈ S|∃t.

[
s 99K t ∧ t �g> ψ

]}
J♦ψKg⊥ =

{
s ∈ S|∃t.

[
s→ t =⇒ t �g⊥ ψ

]}
J♦ψKg? = S \

(
J♦ψKg> ∪ J♦ψKg⊥

)
Sem (µX.ψ)g =

∧{
f
∣∣∣Sem (ϕ)g[X 7→f] ≤ f

}
Sem (νX.ψ)g =

∨{
f
∣∣∣Sem (ϕ)g[X 7→f] ≥ f

}
Moral 2.3.6. The definition above is quite complicated, but the idea behind
it is simple: a state s thinks that a formula ϕ is true if and only if is true for
every possible instantiation of the model. Meaning that if we choose which
may transitions are real transitions and which are not, and if we choose
which nodes entail which propositions, then we obtain a KF such that s �g ϕ
independently from the choices made.

Lemma 2.3.7. Using the notation of the definition above:

• The semantics presented is well-defined and given a state s there exists
one and only one θ ∈ {⊥, ?,>} such that s �gθ ϕ.

• The semantics above extends the semantics already introduced for µ-
calculus. Meaning that given a KF, the two semantics coincide.

With techniques similar to the one used for CEGAR we have:

Theorem 2.3.8. Given M a KF and N the abstraction obtained from a
partition P, then it holds for ϕ a closed µ-calculus formula:

N , T �> ϕ =⇒ ∀t ∈ T.M, t � ϕ

N , T �⊥ ϕ =⇒ ∀t ∈ T.M, t 6� ϕ

Moreover we can define a simulation relation between KMTSs similar to
the KF one.

2.3. ABSTRACTION-REFINEMENT FOR µ-CALCULUS 39

Definition 2.3.9 (Modal simulation). Let M = 〈S, 99K,→, L〉 and
mboxM′ = 〈S′, 99K′,→′, L′〉 be two KMTSs. We say that a relation R ⊆ S×S′
is a simulation between M and M′ if the followings hold:

• For each s′ ∈ S′ there exists s ∈ S such that sRs′.

• If L(p, s) = > and sRs′ then L′(p, s′) = >.

• If L(p, s) = ⊥ and sRs′ then L′(p, s′) = ⊥.

• If s→ t, sRs′ and tRt′ then s′→′ t′.

• If s′ 99K′ t′, sRs′ and tRt′ then s 99K t.

We say thatM simulates M′ (and we indicate it withM�M′) if there
exists a simulation betweenM andM′. Given two states s ∈ S and s′ ∈ S′,
we say that s simulates s′ (and we indicate it with s� s′) if there exists a
simulation between M and M′ such that sRs′.

Moral 2.3.10. The idea is that “potentially” M could do everything that
M′ can, It depends on how the may transitions and the propositions are
instantiated.

Theorem 2.3.11. LetM andM′ as in the definition above. Let s ∈ S and
s′ ∈ S′ such that s� s′. Then it holds for ϕ closed:

M, s �> ϕ =⇒ M′, s′ �> ϕ
M, s �⊥ ϕ =⇒ M′, s′ �⊥ ϕ

Corollary 2.3.12. Let M be a KF and consider two partitions of its states
P �Q. Then, given the abstractions MP and MQ obtained from P and Q
respectively, it holds:

MP �MQ
In particular we have

M�MQ

This results gives us a way to adapt the CEGAR approach to the full
µ-calculus. Namely:

Method 2.3.13. LetM = 〈S,→, L〉 be a finite KF and fix a state s ∈ S and
a closed µ-calculus formula ϕ. The method consists of the following steps:

1. Choose a partition P and construct the associated abstraction
N = 〈P, 99K,→, L′〉. Let π be the quotient map.

2. Solve the MCP for N , π(s) and ϕ.

3. If π(s) �> ϕ or π(s) �⊥ ϕ, then by Theorem 2.3.11 and Corollary
2.3.12 we have s � ϕ or s 6� ϕ respectively and so we finished.

40 CHAPTER 2. HEURISTICS

4. Otherwise choose some non trivial abstract states T1, . . . , Tk ∈ P and
expand them obtaining a new partition Q. Repeat the procedure with
Q.

Several question arise from this method:

• How do we choose the initial abstraction?

• How do we solve the model checking problem for a KMTS?

• How do we choose the states to expand?

• Is this method efficient?

For a thorough answer to these questions, we refer to [12]. What we
want to point here are the advantages of expanding the semantics to consider
uncertainty (i.e., by considering the truth value ? and the may transitions).
What we gain is that we can work with approximations and the full µ-
calculus logic without changing the overall structure of the method.

In the following chapters, we will try to apply a similar approach to a
more specific problem, the SLCS model checking problem, by abstracting
the state space and considering a 3-valued semantics as the one presented
above.

Chapter 3

Spatio-Temporal Logics and
Model Checking

An interesting research field currently under development is that of spatio-
temporal logics.

A temporal logic is any system of rules for representing, and reasoning
about, propositions qualified in terms of time. Examples of these logics were
introduced in the previous chapters: CTL and µ-calculus can be interpreted
as temporal logics if we consider the models as discrete descriptions of some
event. And in several cases is quite trivial to do so, for example when
we consider the system representing a program, the accessibility relation
connect two states whenever one can be obtained from the other after the
execution of the program.

In a similar way, a spatial logic is “any formal language interpreted over
a class of structures featuring geometrical entities and relations, broadly
construed” ([13]). There are several examples of spatial logics (Euclidean
geometry, mereotopologies, spatial modal logics, . . .) and several applica-
tions of these (for example, in the field of artificial intelligence qualitative
spatial reasoning logics such as RCC-8 are broadly studied [14]).

Spatio-temporal logics are logics that represent both the temporal and
spatial structure of a system, and more importantly the connections be-
tween those two heterogeneous structures. The main problem in this case is
finding the right balance between expressivity and decidability, as there are
several examples of these logics which are not recursively axiomatizable (as
an example take Dynamic Topological Logic [13]).

In this section we will present and study the spatial logic SLCS (presented
in [5] and [15]) and its generalization to a spatio-temporal logic STLCS (pre-
sented in [15] and [6]). Both logics represent the spatial structure of a system
as a closure space (a generalization of topological spaces), introducing thus
an asymmetric concept of “proximity”. The logic STLCS then combines this
representation with the temporal logic CTL to describe convoluted spatial

41

42 CHAPTER 3. SPATIO-TEMPORAL LOGICS AND MC

and temporal properties of the system, such as eventual reachability and
definitive safety properties.

In particular we will focus on solving the model checking problem for
these two logics. An actual implementation of all the algorithms presented
in this chapter can be found in [16].

3.1 Spatial Logic of Closure Spaces

Definition 3.1.1 (Syntax of SLCS). The syntax of SLCS formulas is defined
by the following grammar:

〈ϕ〉 |= ⊥ | p ∈ AP | 〈ϕ〉∧〈ϕ〉 | ¬〈ϕ〉 | S(〈ϕ〉,〈ϕ〉) | N (〈ϕ〉)

As models for this logic we will consider closure spaces, mathematical
objects that generalize topological spaces.

Definition 3.1.2 (Closure Space). A closure space is a pair 〈X, C〉 where
X is a set and C : P(X)→ P(X) has the following properties:

(∅) C(∅) = ∅
(union) C(A ∪B) = C(A) ∪ C(B)

(expansion) A ⊆ C(A)

We will call C a closure operator for X.

Remark 3.1.3. Note the resemblance with the Kuratowski closure operator
for a topology. In fact, taking a closure space with the following property

(idempotence) C(C(A)) = C(A)

we obtain a Kuratowski closure operator, and so by taking the complemen-
tary of the subsets in C[P(X)] as the open sets we define a topology.

Of course not all closure spaces are topological spaces, as shown in the
example below.

Example 3.1.4. Take X = R2 and consider as the closure operator:

C(A) = {x ∈ X|d(A, x) ≤ 1}

where d is the usual euclidean distance. It’s easy to check that this is a
closure space, but the operator C is not idempotent (see figure 3.1.4).

The remark above suggests the following definitions:

Definition 3.1.5. Consider 〈X, C〉 two closure spaces.

• We define a closed set as an element of C[P(X)]

3.1. SPATIAL LOGIC OF CLOSURE SPACES 43

Figure 3.1:
〈
R2, C

〉
as a closure space. In the figure we have a subset A

(horizontal lines) and its iterated closures C(A) and C(C(A)) (vertical and
oblique lines respectively).

• We define the interior operator as

I(A) = C(A)

• We define an open set as an element of I[P(X)]

Closure spaces retain some of the properties of topological spaces. Here
we give some examples:

Lemma 3.1.6. For 〈X, C〉 a closure space:

• The interior operator satisfies:

(X) I(X) = X
(intersection) I(A ∩B) = I(A) ∩ I(B)
(contraction) I(A) ⊆ A

• monotonicity: If A ⊆ B then C(A) ⊆ C(B) and I(A) ⊆ I(B).

• A set A is closed if and only if its complement A is open.

• Finite union and arbitrary intersection of closed sets is closed. Finite
intersection and arbitrary union of open sets is open.

The following definitions will prove to be useful to describe the semantics
of SLCS

Definition 3.1.7. Given 〈X, C〉 a closure space and A ⊆ X we define:

B+(A) = C(A) \A
B-(A) = A \ I(A)

Definition 3.1.8 (SLCS model).

• Given 〈X, C〉 a closure space, a valuation over X is a function g : AP→
P(X).

44 CHAPTER 3. SPATIO-TEMPORAL LOGICS AND MC

• We define a closure space with valuation (or simply a model) for SLCS
to be a tuple X = 〈X, C, g〉 where 〈X, C〉 is a closure space and g is a
valuation over X.

Now we proceed to give the semantics for the logic.

Definition 3.1.9 (Closure space semantics for SLCS). Given a model
X = 〈X, C, g〉, we want to define what it means that a state s ∈ X entails a
formula ϕ (in symbols X , s � ϕ). To simplify the next definition we introduce
the notation JϕKX for the set of states that entails ϕ. By induction over the
formula ϕ we define:

X , s 6�⊥
X , s � p ∈ AP ⇐⇒ s ∈ g(p)

X , s � ϕ1 ∧ ϕ2 ⇐⇒ X , s � ϕ1 and X , s � ϕ2

X , s � ¬ϕ ⇐⇒ X , s 6� ϕ
X , s � S(ϕ1, ϕ2) ⇐⇒ there exists A ⊆ X such that s ∈ A

and

{
A ⊆ Jϕ1KX

B+(A) ⊆ Jϕ2KX

X , s � N (ϕ) ⇐⇒ s ∈ C
(
JϕKX

)

Moral 3.1.10. The new ingredients that this logic introduces are the opera-
tors S and N . How do we interpret them?

• S: This operator describes a safety condition. S(p, q) states that the
state is in a zone where p holds and which is boarded by a zone where q
holds. With an appropriate definition of “path”, it can be interpreted
as “we can’t reach a point where p doesn’t hold until we reach a point
where q holds”.

• N : This operator represents the closure operator of the space.

Example 3.1.11. Take the closure space
〈
R2, C

〉
as in the Example 3.1.4 and

consider the following examples of semantics.

Figure 3.2: On the left the semantics of p (horizontal lines). On the right
the semantics of N (p) (vertical lines).

3.1. SPATIAL LOGIC OF CLOSURE SPACES 45

Figure 3.3: On the left the semantics of p and q (vertical and horizontal
lines respectively). On the right the semantics of S(p, q) (oblique lines).

Figure 3.4: On the left the semantics of p and q (vertical and horizontal
lines respectively). On the right the semantics of S(p, q) (nothing changed
as JS(p, q)K = ∅). This happens because there is no p zone completely
surrounded by a q zone.

Remark 3.1.12. The interpretation of the S operator is quite tricky. In
general we have that each state in JS(p, q)K is in a “safe zone” (meaning a
zone where p holds and whose border entails q), but such zone may not be
JS(p, q)K itself, as the following example shows.

Example 3.1.13. Consider the tuple 〈ω + 1, C, g〉 where:

• ω + 1 = ω ∪ {ω} = {0, . . . , n, . . . ;ω} is the second transfinite Von
Neumann ordinal.

• C(A) = A ∪ {n+ 1 ∈ ω|n ∈ A} ∪
{
{ω} if A is unbounded in N
∅ otherwise

• g(p) = ω

It’s easy to verify this is a closure space:

(∅): Using the definition is immediate to show C(∅) = ∅.

(expansion): by definition of C.

(union): notice that A ∪B is unbounded in N if and only if either A or B
is unbounded in N, and that

{n+ 1|n ∈ A ∪B} = {n+ 1|n ∈ A} ∪ {n+ 1|n ∈ B}

46 CHAPTER 3. SPATIO-TEMPORAL LOGICS AND MC

So it follows that C(A ∪B) = C(A) ∪ C(B).

In particular it holds:

• JS(p, p)K = ω as for every n ∈ ω we have C({n}) = {n, n + 1} ⊆ JpK,
while ω /∈ JpK.

• {ω} = B+ (JS(p, p)K), and so JS(p, p)K is not a “safe zone”.

Figure 3.5: A visual interpretation of ω + 1 (the last point being ω). In
white the points for which p holds.

Do we know a condition which implies that JS(p, q)K itself is a safe zone?
As a matter of fact, yes!

Definition 3.1.14 (Quasi-discrete closure spaces). Given a closure space
〈X, C〉 we say it is quasi-discrete if it holds:

C(A) =
⋃
s∈A
C({s})

Remark 3.1.15. Note that the space in the Example 3.1.13 is not quasi-
discrete, so not all closure spaces are quasi-discrete.

First of all, let’s check that in a quasi-discrete space JS(p, q)K is a safe
zone (in the sense mentioned above).

Lemma 3.1.16. Let X = 〈X, C, g〉 be a quasi-discrete space. Then it holds:

JS(p, q)K ⊆ JpK
B+(JS(p, q)K) ⊆ JqK

Proof. The first part is trivial. For the second we have:

C(JS(p, q)K) =
⋃

s∈JS(p,q)K

C({s})

⇓

B+(JS(p, q)K) =
⋃

s∈JS(p,q)K

(C({s}) \ JS(p, q)K)

⊆
⋃

s∈JS(p,q)K

(C({s}) \ {s})

=
⋃

s∈JS(p,q)K

B+({s}) ⊆ JqK

3.1. SPATIAL LOGIC OF CLOSURE SPACES 47

Note that quasi-discrete spaces have also some other interesting proper-
ties:

Lemma 3.1.17.

1. In a quasi-discrete space the closure operator is completely determined
by its value on singletons. Formally, given a set X and a function
f : X → P(X) such that for all s ∈ X it holds s ∈ f(s), there exists
one and only one closure operator C over X such that

C({s}) = f(s)

and 〈X, C〉 is a quasi-discrete space.

2. Every finite closure space is quasi-discrete.

What we want to show now is that quasi-discrete spaces and KFs are
essentially the same thing when we deal with the semantics of SLCS.

Notation 3.1.18.

• We define KF	 as the class of KFs such that every state has a self loop.
Formally, M = 〈S,→, L〉 is in KF	 if

∀s ∈ S. s→ s

• We define qDiscrete as the class of quasi-discrete closure spaces with
environment.

Theorem 3.1.19. Given M = 〈S,→, L〉 a KF	 we can define a quasi-
discrete closure operator C such that:

t ∈ C({s}) ⇐⇒ s→ t

Moreover, if we define the class function F : KF	 → qDiscrete such
that F (M) = 〈S, C, L〉 then F is a 1:1 correspondence between KF	 and
qDiscrete.

Corollary 3.1.20. The restriction of F to finite KF	 is an invertible class
function with image the finite quasi-discrete spaces.

Now that we established this, we can define a semantics for SLCS whose
models are KFs with self loops by transferring the previous semantics. What
we obtain is the following:

Definition 3.1.21 (KF semantics for SLCS). Given a KF	 X = 〈X,→, L〉,
given s ∈ X, given an SLCS formula ϕ, we want to define the entailment

48 CHAPTER 3. SPATIO-TEMPORAL LOGICS AND MC

relation X , s � ϕ. As in definition (3.1.9) we will denote with JϕK the set of
elements t ∈ X for which X , t � ϕ holds.

X , s 6� ⊥
X , s � p ∈ AP ⇐⇒ s ∈ L(p)

X , s � ϕ1 ∧ ϕ2 ⇐⇒ X , s � ϕ1 and X , s � ϕ2

X , s � ¬ϕ ⇐⇒ X , s 6� ϕ
X , s � S(ϕ1, ϕ2) ⇐⇒ there exists A ⊆ X such that s ∈ A

and

{
A ⊆ Jϕ1K

FN(A) \A ⊆ Jϕ2K

X , s � N (ϕ) ⇐⇒ there exists t ∈ JϕK such that t→ s

where FN(A) =
⋃
a∈A FN(a).

Example 3.1.22. Consider the KF	 represented in figure, where the self loops
are omitted and the atomic propositions are p (dotted nodes), q (white
nodes) and r (nodes with vertical lines). On the left, the semantics of the
formula N (p). On the right the semantics of the formula S(q, r).

We don’t present here the algorithms to solve the SLCS model checking
problem, as in the next section we will solve it for STLCS, a generalization
of the logic SLCS. The original algorithms can be found in [15] and [5].

However, the correctness of the algorithms is based on a Lemma that we
state and prove here and we will generalize in the next sections.

Definition 3.1.23 ((ϕ,ψ)+-path). We define the finite path π to be a
(ϕ,ψ)+-path if the followings hold:

• l = length(π) ≥ 1.

• For all k such that 0 < k < l it holds πk � ϕ.

3.1. SPATIAL LOGIC OF CLOSURE SPACES 49

• πl � ψ.

We indicate the set of (ϕ,ψ)+-paths starting at s with Π+
s (ϕ,ψ).

Lemma 3.1.24.

s � S(p, q) ⇐⇒ s � p and Π+
s (¬q,¬p ∧ ¬q) = ∅

Proof.

left-to-right implication: Suppose s � S(p, q), then clearly s � p. To
prove the other conjunct consider S a set of states such that

S ⊆ JpK
B+(S) ⊆ JqK

and a finite path π starting at s. Then we have two cases:

• Every state of π is in S, and so

∀i ∈ N .πi ∈ JpK =⇒ π /∈ Π+
s (¬q,¬p ∧ ¬q)

• There exists a least l ∈ N such that πl /∈ S, and so l ≥ 1 and
πl ∈ B+(S) ⊆ JqK. But this entails that π /∈ Π+

s (¬q,¬q ∧ ¬p) as
each state of a (¬q,¬q ∧ ¬p)+-path (except the first one) has to
entail ¬q.

right-to-left implication: consider the set S defined as

S =

{
t

∣∣∣∣ t is reachable from s with a path π = (s = π0, . . . , πl)
such that π1, . . . , πl ∈ J¬qK

}

From the property Π+
s (¬q,¬q ∧ ¬p) = ∅ it follows that each t ∈ S

entails p. The claim is that S is a “good set” to prove the thesis,
meaning that S ⊆ JpK and B+(S) ⊆ JqK.

By contradiction, suppose there exists u ∈ B+(S) such that u � ¬q.
Then we have:

u ∈ B+(S) =⇒ there exists t ∈ S such that t→ u

=⇒ there exists a path from s to u in J¬qK
=⇒ u ∈ S

but this is absurd as u ∈ B+(S). Now it’s easy to prove that
S′ = S ∪ {s} has exactly the properties required to prove s � S(p, q).

50 CHAPTER 3. SPATIO-TEMPORAL LOGICS AND MC

3.2 Spatio-Temporal Logic of Closure Spaces

Definition 3.2.1 (Syntax of STLCS). The syntax of STLCS formulas is de-
fined by the following grammar:

〈ϕ〉 |= ⊥ | p | 〈ϕ〉∧〈ϕ〉 | ¬〈ϕ〉 | E〈Φ〉 | A〈Φ〉 | S(〈ϕ〉,〈ϕ〉) | N (〈ϕ〉)
〈Φ〉 |= X〈ϕ〉 | F〈ϕ〉 | G〈ϕ〉 | 〈ϕ〉U〈ϕ〉

where p ∈ AP.
We will call formulas of the first sort state formulas and formulas of the

second sort time-path formulas (or simply path formulas).

Moral 3.2.2. It’s easy to notice that this syntax resembles both the syntax
of CTL (Definition 1.1.1) and the syntax of SLCS (Definition 3.1.1). In fact,
as the name suggests, the idea behind this logic is to describe the spatio-
temporal structure of a system by interleaving spatial properties (i.e., prop-
erties definable by SLCS operators) and temporal properties (i.e., properties
definable by CTL operators).

Definition 3.2.3 (STLCS model).

• Given X = 〈X, C〉 a closure space and S = 〈S,→〉 a transition system,
an environment over 〈X ,S〉 is a function g : AP→ P(X × S).

• We define a spatio-temporal model (or simply a model) for STLCS to
be a tupleM = 〈X ,S, g〉 where X is a closure space, S is a transition
system and g is an environment over 〈X ,S〉.

Example 3.2.4. By considering an image as a lattice graph, we can define a
spatio-temporal model by giving a Kripke frame and a sequence of images.
As an example consider the Kripke frame in Figure 3.2.4 and the sequence
of images in Figure 3.2.4.

0 1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Notation 3.2.5. FixM a spatio-temporal model. Referring to the notations
above:

• We will call an element of X × S a state.

3.2. SPATIO-TEMPORAL LOGIC OF CLOSURE SPACES 51

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 3.6: We consider two atomic properties (black and grey), whose in-
terpretation in the model are encoded by the images.

• We will call an element of X a space state and an element of S a time
state.

• We will call a path in X a space path and a path of S a time path.

• Fix A ⊆ X × S, x ∈ X and s ∈ S. Then we define the sections

Ax = {s ∈ S| 〈x, s〉 ∈ A}
As = {x ∈ X| 〈x, s〉 ∈ A}

Now we proceed to give the semantics for the logic.

Definition 3.2.6 (Spatio-temporal model semantics for STLCS). Given
X = 〈X, C〉 a closure space, S = 〈S,→〉 a transition system and
M = 〈X ,S, g〉 a spatio temporal model, we want to define what it means
that a state 〈x, s〉 ∈ X × S entails a state formula ϕ and that a pair 〈x, π〉
(with x a state space and π a time-path) entails a path formula Φ (in symbols
M, x, s � ϕ and M, π � Φ respectively). To simplify the next definition we
introduce the following notations:

• JϕK ⊆ X × S is the set of states which entails ϕ (so the pairs 〈x, s〉
such that M, x, s � ϕ).

• JϕKx ⊆ S is the set of time states s such that M, x, s � ϕ (in accord
to the definition of section).

• JϕKs ⊆ X is the set of space states x such that M, x, s � ϕ (in accord
to the definition of section).

52 CHAPTER 3. SPATIO-TEMPORAL LOGICS AND MC

By induction over the formula ϕ we define:

M, x, s 6�⊥
M, x, s � p ∈ AP ⇐⇒ 〈x, s〉 ∈ g(p)

M, x, s � ϕ1 ∧ ϕ2 ⇐⇒M, x, s � ϕ1 and M, x, s � ϕ2

M, x, s � ¬ϕ ⇐⇒M, x, s 6� ϕ
M, x, s � EΦ ⇐⇒ exists a time-path π with π0 = s

such that M, x, π � Φ

M, x, s � AΦ ⇐⇒ for all time-paths π such that

π0 = s it holds M, x, π � Φ

M, x, π � Xϕ ⇐⇒M, x, π1 � ϕ

M, x, π � Fϕ ⇐⇒ there exists n ≥ 0 such that M, x, πn � ϕ

M, x, π � Gϕ ⇐⇒ for all n ≥ 0 it holds M, x, πn � ϕ

M, x, π � ϕ1Uϕ2 ⇐⇒ there exists n ≥ 0 such that M, x, πn � ϕ2

and for all k ≤ nM, x, πk � ϕ1

M, x, s � S(ϕ1, ϕ2) ⇐⇒ there exists A ⊆ X such that x ∈ A

and

{
A ⊆ Jϕ1Ks

B+(A) ⊆ Jϕ2Ks
M, x, s � N (ϕ) ⇐⇒ x ∈ C (JϕKs)

Moral 3.2.7. The idea behind this inductive definition is that a spatial oper-
ator describes only properties of the spatial component of the model, while
time operators describe only properties of the time component. This state-
ment can be formalized with the next results.

Definition 3.2.8. Let ϕ be a STLCS formula and ψ1, . . . , ψk be it’s direct
sub-formulas. We say that ϕ is:

• a local formula if for every state 〈x, s〉 of every model, the truth value
of ϕ at 〈x, s〉 depends only on the truth value of ψ1, . . . , ψk at 〈x, s〉.

• a spatial formula if for every time state s of every model 〈X ,S, g〉, the
value of JϕKs depends only on X and the function g(•)s.

• a temporal formula if for every space state x of every model 〈X ,S, g〉,
the value of JϕKx depends only on S and the function g(•)x.

Lemma 3.2.9. Fix M a spatio-temporal model (we will use the notations
above). Then:

• If ϕ and ψ are local formulas, then so are ϕ ∧ ψ and ¬ϕ.

3.2. SPATIO-TEMPORAL LOGIC OF CLOSURE SPACES 53

• If ϕ and ψ are temporal formulas, then so are EX(ϕ), EF(ϕ), EG(ϕ),
E(ϕUψ), AX(ϕ), AF(ϕ), AG(ϕ) and A(ϕUψ).

• If ϕ and ψ are spatial formulas, then so are N (ϕ) and S(ϕ,ψ).

Corollary 3.2.10.

• Consider ϕ a CTL formula as a STLCS formula in the natural way.
Then ϕ is a temporal formula.

• Consider ϕ a SLCS formula as a STLCS formula in the natural way.
Then ϕ is a spatial formula.

A finer result is the following:

Lemma 3.2.11. Fix a model M = 〈X ,S, g〉. Then:

• Given ϕ a CTL formula and x ∈ X, it holds:

JϕKx = JϕKCTL〈S,g(•)x〉

where JϕKCTL〈S,g(•)x〉 indicates the CTL semantics of ϕ considering 〈S, g(•)x〉
as a KF.

• Given ϕ a SLCS formula and s ∈ S, it holds:

JϕKs = JϕKSLCS〈X ,g(•)s〉

where JϕKSLCS〈X ,g(•)s〉 indicates the SLCS semantics of ϕ considering 〈X , g(•)s〉
as a closure space.

These results show us that this logic has both the expressive power of
CTL and SLCS, but maintains the two interpretations well separated. To
further strengthen this assertion, we present the following result.

Lemma 3.2.12. Consider ϕ an STLCS formula that is both spatial and tem-
poral. Then ϕ is local.

Proof. Recalling the definitions above, we have that:

• ϕ is a spatial formula means that, fixed a closure space X and a func-
tion f : AP → P(X), then for every spatio-temporal model 〈X ,S, g〉,
for every time state s such that g(•)s = f , the value JϕKs is the same.

• ϕ is a temporal formula means that, fixed a transition system S and
a function L : AP → P(S), then for every spatio-temporal model
〈X ,S, g〉, for every space state x such that g(•)x = L, the value JϕKx

is the same.

54 CHAPTER 3. SPATIO-TEMPORAL LOGICS AND MC

Now we consider an arbitrary spatio-temporal modelM = 〈X ,S, g〉 and
we want to find the truth value of ϕ at a state 〈x, s〉.

If we define

• S∗ = , the transition system with a single state ∗ and a single
self-loop.

• g′ : AP→ P(X × {∗}) such that g′ = g(•)s × {∗}.

then by the first point above, defining M′ = 〈X ,S∗, g′〉 we have that

M′, x, ∗ � ϕ ⇐⇒ M, x, s � ϕ

Using the same trick we can define

• X ∗ = (modulo the identification of finite closure spaces and
graphs introduced before).

• g′′ : AP→ P({∗} × {∗}) such that g′′ = g′(•)x. So in particular

g′′(p) =

{
{∗} × {∗} if 〈x, s〉 ∈ g(p)
∅ otherwise

And now by the second point above, we have that definingM′′ = 〈X ∗,S∗, g′′〉
it holds:

M′′, ∗, ∗ � ϕ ⇐⇒ M′, x, ∗ � ϕ ⇐⇒ M, x, s � ϕ

But now we have that the model M′′ depends only on the set
{p ∈ AP| 〈x, s〉 ∈ g(p)}, and so ϕ is local.

Finally we present here the algorithms to compute the semantics of the
formulas. We premise a technical lemma:

Lemma 3.2.13 (Temporal E Normal Form). Let ϕ be a STLCS formula.
Then there exists a formula ϕE produced by the grammar

〈ϕ〉 |= ⊥ | p ∈ AP | 〈ϕ〉∧〈ϕ〉 | ¬〈ϕ〉 |

EX〈ϕ〉 | EG〈ϕ〉 | E〈ϕ〉U〈ϕ〉 |

N 〈ϕ〉 | S(〈ϕ〉;〈ϕ〉)

such that for every spatio-temporal model it holds:

JϕK =
q
ϕE

y

The proof follows the exactly same argument as Lemma 1.1.8.
Thanks to this lemma we only need to give algorithms to compute the

semantics for the formulas EX(p), EG(p), E(pUq), N (p) and S(p, q), as we can
compute the semantics of a formula ϕ by induction over the structure of ϕE.
The Algorithms are 7, 8, 9, 10 and 11 below.

3.2. SPATIO-TEMPORAL LOGIC OF CLOSURE SPACES 55

Algorithm 7: Algorithm to compute EXp

input : M = 〈X ,S, g〉 , EXp
output: JEXpK

1 semP:= JpK;
2 sectionsDictionary:= {(x, semPx)|x ∈ X};
3 res:= ∅;
4 for x ∈ X do
5 for s ∈ sectionsDictionary[x] do
6 predSet:= PredTimeStates(s);
7 res:= Union({x}× predSet, res);

return : res

Algorithm 8: Algorithm to compute EGp

input : M = 〈X ,S, g〉 , EGp
output: JEGpK

1 SemP:= JpK;
2 SectionsDictionary:= {(x, resx)|x ∈ X};
3 for x ∈ X do
4 semNotPAtX:= S \ SectionsDictionary[x];
5 corrosionLayer:= Intersection(predSet(semNotPAtX),

SectionsDictionary[x]);
6 while corrosionLayer ! = ∅ do
7 SectionsDictionary[x] := SectionsDictionary[x] \ corrosionLayer;
8 corrosionLayer:=

Intersection(PredTimeStates(corrosionLayer),
SectionsDictionary[x]);

9 res:=
⋃
x∈X ({x} × SectionsDictionary[x]);

return : res

56 CHAPTER 3. SPATIO-TEMPORAL LOGICS AND MC

Algorithm 9: Algorithm to compute E(pUq)

input : M = 〈X ,S, g〉 , E(pUq)
output: JE(pUq)K

1 couldBe:= JpK;
2 SemQ:= JqK;
3 SectionsCouldBe:= {(x, couldBex)|x inX};
4 SectionsRes:= {(x, resx)|x ∈ X};
5 for x ∈ X do
6 toAdd:= Intersection(predSet(SectionsRes[x]),

SectionsCouldBe[x]);
7 SectionsCouldBe[x] := SectionsCouldBe[x] \ toAdd;
8 while toAdd ! = ∅ do
9 SectionsCouldBe[x] := Union(SectionsRes[x], toAdd);

10 toAdd:= Intersection(predSet(toAdd), SectionsCouldBe[x]);
11 SectionsCouldBe[x] := SectionsCouldBe[x]\ toAdd;

12 res:=
⋃
x∈X ({x} × SectionsRes[x]);

return : res

Algorithm 10: Algorithm to compute N p

input : M = 〈X ,S, g〉 , N p
output: JN pK

1 semP:= JpK;
2 sectionsDictionary:= {(semPs, s)|s ∈ S};
3 res:= ∅;
4 for s ∈ S do
5 for x ∈ sectionsDictionary[s] do
6 SuccSet:= SuccSpaceStates(s);
7 res:= (SuccSet× {s}) ∪ res;

return : res

3.2. SPATIO-TEMPORAL LOGIC OF CLOSURE SPACES 57

Lemma 3.2.14. The algorithms presented terminate correctly in time linear
in the encoding of the model.

Proof idea. The proof of this result is a direct consequence of Lemma 3.2.9.
In fact the algorithms first compute a division in sections of the sets

involved (for example, in the algorithm to compute EXp the division is stored
in the array sectionsDictionary in line 2) and then apply a suitable algorithm
to compute the semantics of the formula at each section.

The algorithms used to compute the semantics of the sections are 1, 2,
3 (in the temporal case) and the algorithms presented in [15] and [5].

As the computation of the sections and each algorithm involved have
linear-time complexity, so is the whole model-checking procedure.

58 CHAPTER 3. SPATIO-TEMPORAL LOGICS AND MC

Algorithm 11: Algorithm to compute S(p, q)

input : M = 〈X ,S, g〉 , S(p, q)
output: JS(p, q)K

1 SemP:= JpK;
2 SemQ:= JqK;
3 SectionsSemSPQ:= {(SemPs, s)|s ∈ S};
4 SectionsSemQ:= {(SemQs, s)|s ∈ S};
5 for s ∈ S do
6 BadPoints:= S \ (SectionsSemSPQ[s] ∪ SectionsSemQ[s]);
7 for bp ∈ BadPoints do
8 BadPoints:= BadPoints \ bp;
9 ToRemove:=

PredSpaceStates({ bp }) ∩ SectionsSemSPQ[s];
10 SectionsSemSPQ[s] := SectionsSemSPQ[s] \ ToRemove;
11 BadPoints := BadPoints ∪ (ToRemove \ SectionsSemQ[s]);

12 res:=
⋃
s∈S (SectionsSemSPQ× {s});

return : res

Chapter 4

Symbolic Model Checking
and Abstraction

In this chapter we present for the first time two methods developed by
the author to solve more efficiently the model checking problem for the
logic SLCS. In particular, they are an adaptation of the methods introduced
in Chapter 2, namely symbolic model checking and abstraction-refinement.
The aim of these methods is to speed up the model checking procedure
when the model has a strong structure not directly encoded by the KF, so
for example when it’s obtained from the analysis of a series of images. These
methods have not yet been implemented and so a thorough analysis will be
presented in future works.

For the symbolic model checking procedure, the algorithm is a simple
adaptation of the one presented in Chapter 2, but the benefit of adapting it
is considerable. In fact the symbolic model checking algorithm proves to be
really fast when dealing with models representing parallel systems, and so
the natural claim is that when dealing with product spaces a similar speed
up is achieved.

On the other hand, for the abstraction-refinement method the algorithm
can’t be trivially adapted to the spatial case. The main reason is that, in
the case of a spatial model representing a real-life system there usually is
a hierarchical structure (for example the plant of a building is subdivided
in floors, the floors in zones, . . .) that is usually lost when considering a
quotient as the bisimulation one presented in Chapter 2. Preserving and
using the implicit hierarchical structure could give a huge improvement in
the speed of the procedure.

A new abstraction-refinement method is presented here, which preserve
a fixed hierarchical structure provided together with the model. The main
conceptual differences with the procedures introduced in Chapter 2 are two,
namely the introduction of nested abstractions (allowing for a gradual re-
finement of the model) and the method to choose the states to expand.

59

60 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

Of course, this algorithm is thought for models which represent systems
with a hierarchical structure, so in the general case a substantial speed-up
is not guaranteed. However in the strongly structured case an improvement
in the computation time is expected.

4.1 Symbolic Model Checking for SLCS

In this chapter we will show that the symbolic model checking algorithm
can be adapted to solve the MCP for the logic SLCS. To do so, we only need
to write the model checking algorithm presented above in a symbolic way,
and then to check which operations must be computed efficiently, exactly as
in the CTL case.

We begin by writing the symbolic algorithms and by proving they are
correct. We use here the same notation introduced in Algorithms 4, 5 and
6.

Algorithm 12: Symbolic algorithm to compute N (p)

input : fp, the switching function corresponding to JpK
output: fN (p), the switching function corresponding to JN (p)K

1 g(x) := ∃x′. (∆(x′, x) ∧ fp(x′)) ;
2 return g;

Algorithm 13: Symbolic algorithm to compute S(p, q)

input : fp, the switching function corresponding to JpK
input : fq, the switching function corresponding to JqK
output: fS(p,q), the switching function corresponding to JS(p, q)K

1 f0 := fp;
2 j:= 0;
3 repeat
4 g(x, x′) := ∆(x, x′)→ (fj(x

′) ∨ fq(x′));
5 fj+1(x) := fj(x) ∧ ∀x′.g(x, x′);
6 j:= j +1;

7 until fj == fj−1;
8 return fj ;

Theorem 4.1.1. Algorithms 12 and 13 are correct and terminate in a finite
number of steps.

Proof. In the following proof we fix a model M = 〈S,→, L〉. Moreover
we suppose to have already encoded the model for the symbolic algorithm,
namely that

• S = {0, . . . , 2n − 1}

• → is represented by the switching function ∆ : {0, 1}2n → {0, 1}

4.1. SYMBOLIC MODEL CHECKING FOR SLCS 61

• Each Lp is represented by the switching function fp : {0, 1}n → {0, 1}

Case N : The algorithm terminates since it doesn’t contain loops. Now we
have to check that the function returned by the algorithm (fN (p)) has
the property we want, namely:

fN (p)(x) = 1⇔ x ∈ JN pK

but now it follows directly from the code that

fN (p)(x) = 1⇔ there exists x′ such that ∆(x′, x) = 1 and fp(x
′) = 1

⇔ there exists x′ such that x′ → x and x′ ∈ JpK
⇔ x ∈ JN (p)K

as wanted.

Case S: First of all, we show that the succession of functions (fj)j∈N gener-
ated by the algorithm is (point-wise) decreasing and so, as the model
is finite, it reaches a fixed point. This proves that the algorithm ter-
minates, as the only loop terminates if fj = fj−1.

In line 5 we have

fj+1(x) = 1 ⇐⇒ fj(x) = 1 and other conditions⇒ fj(x) = 1

and so the chain of functions is decreasing as wanted. Note that this
proves also that this chain stabilizes in almost 2n = |S| steps, so
fS(p,q) = f2n−1.

Now we have to check that the algorithm is correct, namely that for
the output function fS(p,q) it holds:

f2n−1(x) = fS(p,q)(x) = 1 ⇐⇒ x ∈ JS(p, q)K

To prove this, we give a characterization of the functions fj :

Claim 4.1.2. fj(x) = 0 if and only if fp(x) = 0 or there exists a path
π ∈ Π+

x (¬q,¬p ∧ ¬q) of length at most j.

The moral behind this result, is that fj check if there is a counterex-
ample to the truth of S(p, q) of bounded length.

Given this result, the thesis follows from Lemma 3.1.24.

62 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

Proof of claim 4.1.2. We prove the result by induction on j ∈ N.

If j = 0 the result is trivially true. So let’s suppose j > 0. By definition
of fj we have:

fj(x) = 0 ⇐⇒ fj−1(x) ∧ ∀x′.
(
∆(x, x′)→ (fj−1(x′) ∨ fq(x′))

)
= 0

⇐⇒ fj−1(x) = 0 or

exists x′ ∈ FN(x) such that fj−1(x′) ∨ fq(x′) = 0

Suppose now that fj(x) = 0 and consider the two clauses of the last dis-
junction. We have that:

• if fj−1(x) = 0. Then by inductive hypothesis fp(x) = 0 or there exists
a path π ∈ Π+

x (¬q,¬p ∧ ¬q) of length at most j − 1, as wanted.

• if there exists x′ ∈ FN(x) such that fj−1(x′) = 0 and fq(x
′) = 0. Then

again, by inductive hypothesis, the condition fj−1(x′) = 0 means one
of the following cases applies:

– fp(x
′) = 0: it follows that x′ ∈ J¬p ∧ ¬qK. If we consider the path

(x→ x′) we have the thesis as this path is in Π+
x (¬q,¬p ∧ ¬q).

– there exists a path π ∈ Π+
x′ (¬q,¬p ∧ ¬q) of length l ≤ j− 1:

in this case we can consider the path

π′ = x_π = (x→ π0 → π1 → · · · → πl−1)

and this is a path in Π+
x (¬q,¬p ∧ ¬q), as:

∗ 0 < length(π′) = length(π) + 1 ≤ j
∗ For all 0 < i < length(π′) it holds π′i ∈ J¬qK, as for i > 1 it

follows from the properties of π and for i = 1 it follows from
π′1 = π0 = x′.

∗ π′l = πl−1 ∈ J¬p ∧ ¬qK

In both cases we found a (¬q,¬p ∧ ¬q)+-path, and so this proves
Π+
x (¬q,¬p ∧ ¬q) 6= ∅, as wanted.

This proves the first implication, namely that fj(x) = 0 implies the existence
of a path in Π+

x (¬q,¬p ∧ ¬q) or that fp(x) = 0.

For the other implication, suppose at first that fp(x) = 0. Then by
monotonicity of the succession fj and the fact that f0 = fp, we have that
fj(x) = 0. So we only have to consider the case fp(x) 6= 0, that is
Π+
x (¬q,¬p ∧ ¬q) 6= ∅.

Let π ∈ Π+
x (¬q,¬p ∧ ¬q) and let l > 0 be its length. Since l > 0, we can

define x′ := π1 and it’s easy to show that fl−1(x′) = 0 and fq(x
′) = 0:

• fq(x′) = 0 follows directly from the properties of π.

4.2. ABSTRACTION METHODS 63

• To prove that fl−1(x′) = 0 we proceed by induction on length(π):

– If length(π) = 1 then x′ ∈ J¬p ∧ ¬qK ⊆ J¬qK.
– If length(π) > 1 then π′ = (π1 → · · · → πl) (obtained by remov-

ing the head to the succession π) is a path in Π+
x′

(¬q,¬p ∧ ¬q) of

length l − 1. So by inductive hypothesis fl−2(π2) = 0, but know
it’s easy to show that fl−1(π1) = 0, as wanted (lines 4-5).

From this we conclude that also the other implication holds.

Now that we proved the correctness of the model checking algorithm, we
need to give an efficient method to compute the basic operations inside the
code. But note that:

• We already studied an efficient data structure to compute operators
∧,∨,∃ using switching function, namely OBDDs.

• Given f and g switching functions, it holds [f =⇒ g] ≡ [¬f ∨ g]

• Given h(x, x′) a switching function, it holds ∀x′.h(x, x′) ≡ ¬∃x′.¬h(x, x′).

and so we can use OBDDs to represent and compute efficiently the switch-
ing functions in the algorithm above.

4.2 Abstraction Methods

When we study models with a strong hierarchical structure, we would want
to exploit it to enhance the speed of the algorithms. To do so, we need to
develop methods which preserve this structure.

But first of all, we need to formalize the notion of hierarchical structure.
The example to keep in mind is that of a geographical map, divided in
regions, provinces, cities and so on. This suggests the following definitions:

Definition 4.2.1 (Chain of partitions). Consider a KF X = 〈X,→, L〉. We
define a chain of partitions over X to be a finite sequence P = (P0,P1, . . . ,Pk)
of partitions of X such that:

• P0 is the trivial partition {{x}|x ∈ X}.

• Pi≺Pi+1 for each i ∈ {0, . . . , k − 1}

• for each partition Pi, for each S ∈ Pi the KF X|S = 〈S,→ |S×S , L|AP×S〉
is totally connected. Stated differently, for each pair s, t ∈ S there
exists an oriented path in S connecting s to t.

Remark 4.2.2. Note that given S ∈ Pj , for i < j the set {T ∈ Pi|T ⊆ S} is
a partition of S.

64 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

Definition 4.2.3. Consider a KF X and a chain of partitions P. Given Q
a partition of X we say it is compatible with the chain if for all S ∈ Q there
exists P ∈ P such that S ∈ P.

Moral 4.2.4. How can we interpret the objects introduced?

• A partition represents a subdivision of a spatial model in regions.

• A chain of partitions represents a hierarchical subdivision of the space
model with several levels of focus. So a coarser partition corresponds
to a subdivision in less but bigger regions, while a finer one corresponds
to several small regions.

Note that the compatibility request gives the hierarchical structure,
as we can consider a region (S ∈ P i+1) subdivided in smaller regions
(the elements of Pi contained in S).

• A partition compatible with the chain is a mean to “compress” infor-
mation: if we want to represent a set of states a way to do so is by
using a subset of an appropriate compatible partition.

Example 4.2.5. Consider the KF represented in Figure 4.2.5, where with
a dotted rectangles and continuous rectangles we indicated two partitions
Pdots≺Plines.

If we want to “compress” the set of black nodes, we can do so by taking
the compatible partition represented in Figure 4.2.5 and by taking an op-
portune subset of the partition (namely those subsets containing only black
nodes).

In the rest of the chapter we will study how to “preserve” the hierarchical
structure above while solving the model checking problem. The point is that
knowing a priori a subdivision of the space gives us information on how to
check a property. For example, if we want to go from Pisa to Rome by car
we will first look for an highway from Tuscany to Lazio, then for a main road

4.2. ABSTRACTION METHODS 65

near Pisa that connects it to the highway, and so on. Again, if we want to go
from Pisa to Enna (in Sicily) by car we know we can’t even before looking at
the streets: it’s common knowledge that there is no street connecting Sicily
to the main land!

But how do we do this? We will try an approach similar to the abstraction-
refinement heuristic presented in Chapter 2, so solving a model checking
problem for an approximated model, thus obtaining information on how to
expand the model to obtain a better approximation. So let’s start by defin-
ing the approximation!

Definition 4.2.6 (Multi focus model). A multi focus model is a tuple
X = 〈X = C tA,→, L〉 where:

• X is a set of states divided in concrete and abstract states (states of
C and A respectively).

• → is a reflexive adjacency relation.

• L : X → {>, ?,⊥} is a 3-valued labeling function such that
L[C] ⊆ {>,⊥} (while there is no restriction on the image of abstract
states).

Moral 4.2.7. The idea behind MFMs is that, given a spatial model, we can
hide some information about it, for example by packing groups of nodes
together in a single abstract node. This makes us lose information on the
structure of the sub-graph induced by the packed nodes, but at the same
time allows to work with a smaller model.

Remark 4.2.8. The FN of a node (and of a set of nodes) is defined as in the
KF case, with no distinction between concrete and abstract states. We can
define as in the KF case the C and B+ operators.

Definition 4.2.9 (MFM subordinate to a partition). Given a KF X = 〈X,→, L〉
and a partition Q of X we define the MFM subordinate to Q as
XQ = 〈Q = C tA,→Q, LQ〉 where

66 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

• S ∈ C if and only if |S| = 1.

• S →Q T if and only if there exist states s ∈ S and t ∈ T such that
s→ t.

• LQ(p, S) =


> if for all s ∈ S it holds L(p, s) = >
⊥ if for all s ∈ S it holds L(p, s) = ⊥
? otherwise

Remark 4.2.10. In agreement with the intuitive interpretation given above,
we consider KFs as a special case of MFMs where all the states are concrete.
Note that when we take the trivial partition we obtain again a KF.

In the rest of the document, we will consider only MFM subordinate to
compatible partitions. What is the advantage? Doing so we have a mean to
expand locally the model. More precisely:

Definition 4.2.11 (Local expansion). Let X be a KF, P = (P0, . . .) a chain
of partitions and Q a partition compatible with the chain.

• Given S ∈ Q we define the level of S to be

lev(S) = min{i|S ∈ Pi}

• Given S ∈ Q we define the expansion of Q at S to be the partition
Q′ obtained replacing S with its subsets belonging to level lev(S)− 1.
Formally:

Q′ =
{
Q if lev(S) = 0
(Q \ {S}) ∪ {T ∈ Plev(S)−1|T ⊆ S} otherwise

Note that Q′ is again a partition compatible with the chain.

So using a chain of partitions we have a standard way to choose the
approximations and to expand them gradually. Moreover, note that this
choice is made so that the sub-graphs “hidden” by abstract nodes are totally
connected, hence the following lemma:

Lemma 4.2.12 (Transfer). Let X and XQ as above. Consider a path
π = (π0, . . . , πl) of XQ. Then for every pair s ∈ π0, t ∈ πl there exists a path

σ = (s = σ
(0)
0 , . . . , σ

(0)
k0

;σ
(1)
0 , . . . , σ

(1)
k1

; . . . ;σ
(l)
0 , . . . , σ

(l)
kl

= t)

of X such that σ
(i)
j ∈ πi for every coherent choice of i and j.

Now, following the abstraction-refinement method, we need:

• An MFM semantics for SLCS extending the one already introduced.

• An algorithm to compute the semantics.

• A way to retrieve information on which states to expand.

4.2. ABSTRACTION METHODS 67

4.2.1 The Semantics

In this subsection we want to define the MFM semantics for SLCS. More specif-
ically, for each MFM M = 〈S = C tA,→, L〉 we want to define a relation
[�] ⊆ S × {>, ?,⊥} × FSLCS (where FSLCS is the set of the SLCS formulas)
such that

s �θ ϕ for s ∈ S, θ ∈ {>, ?,⊥}, ϕ ∈ FSLCS

means informally that the state s thinks that the formula ϕ has value θ.

We introduce here some notations to improve the readability of the next
definitions.

Notation 4.2.13.

• We define a state condition as a pair 〈ϕ, θ〉 where ϕ is a SLCS formula
and Θ ⊆ {>, ?,⊥}. We say a state s respects the condition above
if s �θ ϕ for some θ ∈ Θ. Of course, this notation depends on the
semantics [�] not yet introduced.

Usually for Θ we will use a simplified notation (i.e., we will write 〈ϕ, θ〉
for the condition 〈ϕ, {θ}〉 and 〈ϕ,≥ θ〉 for the condition 〈ϕ, {θ′|θ′ ≥ θ}〉).

• Given two conditions Φ and Ψ, we define a path π of an MFM to be a
(Φ,Ψ)-path if the followings hold:

1. l = length(π) > 0.

2. For all k < l, πk respects Φ.

3. πl respects Ψ.

• We indicate with Πs (Φ,Ψ) the set of (Φ,Ψ)-paths starting at s.

• We call a path π a (Φ,Ψ)+-path if the properties above hold, but
restricting property 2 to the values 0 < k < l. We indicate with
Π+
s (Φ,Ψ) the set of (Φ,Ψ)+-paths starting at s.

Note that this this definition strongly resembles Definition 3.1.23.

Definition 4.2.14 (MFM semantics for SLCS). Given an MFM

X = 〈X = C tA,→, L〉, given a state s ∈ X, given a formula ϕ, we want
to define the entailment relation X , s �θ ϕ (meaning ϕ has value θ at state
s), so that a formula at a state assume only one value. In the following we
will denote

• with JϕKXθ the set of states at whom the formula has value θ.

• with JϕKX≤θ the set
⋃
θ′≤θ JϕKXθ′ (and a similar definition for JϕKX≥θ).

• with Jϕ, sK the value of ϕ at s.

68 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

We define the entailment by induction over the structure of the formula
ϕ. We divide the inductive definition in two parts, boolean connectives (and
cases) and spatial operators.

Boolean Connectives

X , s 6�> ⊥
X , s 6�? ⊥
X , s �⊥ ⊥
X , s �> p ∈ AP ⇐⇒ L(p, s) = >
X , s �? p ∈ AP ⇐⇒ L(p, s) = ?
X , s �⊥ p ∈ AP ⇐⇒ L(p, s) = ⊥
X , s �> ψ1 ∧ ψ2 ⇐⇒ Jψ1, sK ∧ Jψ2, sK = >
X , s �? ψ1 ∧ ψ2 ⇐⇒ Jψ1, sK ∧ Jψ2, sK = ?
X , s �⊥ ψ1 ∧ ψ2 ⇐⇒ Jψ1, sK ∧ Jψ2, sK = ⊥
X , s �> ¬ψ ⇐⇒ X , s �⊥ ψ
X , s �? ¬ψ ⇐⇒ X , s �? ψ
X , s �⊥ ¬ψ ⇐⇒ X , s �> ψ

Spatial Operators We will separate the cases when s = c ∈ C and
s = a ∈ A for the N operator.

X , c �> N (ψ) ⇐⇒ c ∈ FN (JψK>)
X , c �? N (ψ) ⇐⇒ c ∈ FN (JψK?) \ FN (JψK>)

X , c �⊥ N (ψ) ⇐⇒ c /∈ FN
(
JψK≥?

)
X , a �> N (ψ) ⇐⇒ a ∈ JψK>
X , a �? N (ψ) ⇐⇒ a ∈ FN

(
JψK≥?

)
\ JψK>

X , a �⊥ N (ψ) ⇐⇒ a /∈ FN
(
JψK≥?

)
X , c �> S(ψ1, ψ2) ⇐⇒ there exists S ⊆ X such that c ∈ S and{

S ⊆ Jψ1K>
B+(S) ⊆ Jψ2K>

X , c �⊥ S(ψ1, ψ2) ⇐⇒ c �⊥ ψ1 or Π+
c (〈ψ2,⊥〉 , 〈ψ1 ∨ ψ2,⊥〉) 6= ∅

X , c �? S(ψ1, ψ2) ⇐⇒ otherwise

X , a �> S(ψ1, ψ2) ⇐⇒ there exists S ⊆ X such that a ∈ S and{
S ⊆ Jψ1K>

B+(S) ⊆ Jψ2K>
X , a �⊥ S(ψ1, ψ2) ⇐⇒ a �⊥ ψ1 or Πa (〈ψ2,⊥〉 , 〈ψ1 ∨ ψ2,⊥〉) 6= ∅
X , a �? S(ψ1, ψ2) ⇐⇒ otherwise

Remark 4.2.15. Some cases in the definition above are not well-defined be-
cause they rely on the definition of entailment for the same formula (for
example s �? S(ψ1, ψ2) depends on the definition of s �> S(ψ1, ψ2) and

4.2. ABSTRACTION METHODS 69

s �⊥ S(ψ1, ψ2)). To solve the problem, the induction has to be performed
over the set {〈ϕ, θ〉 |ϕ ∈ SLCS, θ ∈ {>, ?,⊥}} using a slightly different well-
founded relation �, namely

〈ϕ, θ〉 �
〈
ψ, θ′

〉
⇐⇒ ϕ is less complex than ψ or

[ϕ ≡ ψ] ∧
{
θ ≥′ θ′ if ϕ ≡ S(ϕ1, ϕ2)
θ ≥ θ′ otherwise

where ⊥ ≤ ? ≤ > and ? ≤′ ⊥ ≤′ >.

Moral 4.2.16. The idea behind this semantics is that an MFM represents
a KF where some strongly connected sub-graphs have been identified in a
single node (abstract states), while other nodes of the KF are left untouched
(concrete states). So, givenN an MFM, if we want to prove a transfer property
similar to 2.3.11, the semantics can give value > or ⊥ to a state s of N if
and only if for each KFM that can be represented by N , the property holds
for all the states represented by s.

With this reasoning in mind we can explain the semantics given to spatial
operators:

• Case s �> N (ψ): proving that s entails the formula N (ψ) means that
each state represented by s entails the formula. So proving c �> N (ψ)
for a concrete state c simply means to show it is in C(JψK>).

For an abstract state a the situation is quite different, since proving
a ∈ C(JψK>) simply means that one of the states represented by a
entails N (ψ). In this case, the only way to be sure that all the states
represented entail N (ψ), is to prove that a itself proves ψ, since a node
is always contained in its own closure.

Figure 4.1: On the left, a portion of an MFM. The colors of the nodes indicate
the value of the formula ψ at each node (black means >, gray means ? and
white means ⊥). On the right, a possible KF it represents. Note that the
abstract state can’t entail N (ψ) as in the instantiation there is a node which
doesn’t entail the formula.

• Case s �⊥ N (ψ): this case is quite simple, since to prove that each
state represented by s doesn’t entail N (ψ) we simply have to make
sure s /∈ JψK≥?.

70 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

• Case s �> S(ψ1, ψ2): to prove that each node represented by s is in a
safe zone (meaning in a set S as in Definition 3.1.9) we can prove that
s itself is in a safe zone S′. The only thing to verify is that the border
of a safe zone S′ in the MFM contains the border of the corresponding
safe zone S in the KF it represents.

• Case s �⊥ S(ψ1, ψ2): this is the trickiest case and the main reason
we ask the sub-graphs represented by abstract nodes to be strongly
connected. In a KF we already proved that the condition t 6� S(p, q)
corresponds to the existence of a path with certain properties (see
Lemma 3.1.24).

Now, if we find a path π in the MFM, by the strongly connectivity this
corresponds to a path π′ in the KF represented, and so the conditions
in the semantics above are made to ensure π′ has the properties needed
to disprove S(ψ1, ψ2).

Now, let us prove that the semantics is well defined.

Lemma 4.2.17. The semantics above is well-defined, i.e. for every formula
ϕ and every state s it holds one and only one of the following:

s �> ϕ

s �? ϕ

s �⊥ ϕ

Proof. We prove the result by induction on the structure of the formula.
Note that the boolean cases are trivial, so we prove the result only for the
spatial operators:

• Case ϕ ≡ N (ψ): Is trivial to show that JN (ψ)K> and JN (ψ)K? are
disjoint. The result follows then by the following inclusions.

JψK> ⊆ FN (JψK>) ⊆ FN
(
JψK≥?

)
• Case ϕ ≡ S(ψ1, ψ2): First of all, note that Πs (Φ,Ψ) ⊆ Π+

s (Φ,Ψ), so
we have to show that the conditions

1. There exists S such that s ∈ S and

{
S ⊆ Jψ1K>

B+(S) ⊆ Jψ2K>
2. s �⊥ ψ1 or Π+

s (〈ψ2,⊥〉 , 〈ψ1 ∨ ψ2,⊥〉) 6= ∅

are incompatible. But with the same proof of Lemma 3.1.24 we have
that condition 1 is equivalent to

s �> ψ1 and Π+
s (〈ψ2,≤ ?〉 , 〈ψ1 ∨ ψ2,≤ ?〉) = ∅

and now is immediate to verify that conditions 1 and 2 are incompat-
ible.

4.2. ABSTRACTION METHODS 71

Now, let’s prove that this semantics extends the KF one.

Lemma 4.2.18. Consider an MFM with no abstract states M = 〈X,→, L〉
and an SLCS formula ϕ. Then

JϕKKF = JϕKMFM>
JϕKKF = JϕKMFM⊥

where with J•KKF we indicate the usual KF semantics and with J•KMFM we
indicate the semantics introduced here.

Proof. By induction over the formula ϕ:

• Case ϕ ≡ p ∈ AP: the result follows trivially as

JϕKMFM> = L−1
p (>) = JϕKKF

JϕKMFM⊥ = L−1
p (⊥) = JϕKKF

Note that here we used the property of MFMs L[C] ⊆ {>,⊥}.

• Cases ϕ ≡ ⊥, ψ1 ∧ ψ2,¬ψ: trivial.

• Case ϕ ≡ N (ψ): by inductive hypothesis we have:

JψKMFM> = JψKKF

JψKMFM⊥ = JψKKF

JψKMFM? = ∅

And so it follows:

JN (ψ)KMFM> = FN(JψKMFM>) = FN(JψKKF) = JN (ψ)KKF

JN (ψ)KMFM? = FN(JψK?) \ FN(JψK>) ⊆ FN(∅) = ∅

JN (ψ)KMFM⊥ = JN (ψ)KMFM> ∪ JN (ψ)KMFM? = JN (ψ)KKF

• Case ϕ ≡ S(ψ1, ψ2): by inductive hypothesis:

JψiKMFM> = JψiKKF

JψiKMFM⊥ = JψiKKF

JψiKMFM? = ∅

72 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

for i ∈ {1, 2}. Then for s a state, by Lemma 3.1.24 it follows:

s �MFM> S(ψ1, ψ2) ⇐⇒ there exists S ⊆ X such that s ∈ S and{
S ⊆ Jψ1KMFM> = Jψ1KKF

B+(S) ⊆ Jψ2KMFM> = Jψ2KKF

⇐⇒ s �KF S(ψ1, ψ2)

s �MFM⊥ S(ψ1, ψ2) ⇐⇒ s �MFM⊥ ψ1 or Π+
s (〈ψ2,⊥〉 . 〈ψ1 ∨ ψ2,⊥〉) 6= ∅

⇐⇒ s �KF ¬ψ1 or Π+
s (¬ψ2,¬ψ1 ∧ ¬ψ2) 6= ∅

⇐⇒ s 6�KF S(ψ1, ψ2)

where of course s �MFMθ χ means s ∈ JχKMFMθ and s �KF χ means s ∈ JχKKF.

Now that we showed the semantics introduced is a proper extension of
the KF semantics, we have to show why we introduced it. In particular we
want to prove a transfer property similar to the one introduced for CTL.

Theorem 4.2.19 (Transfer property). Let M = 〈X,→, L〉 be a KF and
Q≺Q′ two partitions of X such that for each S ∈ Q ∪ Q′ then 〈S,→|S×S〉
is strongly connected. Let MQ = 〈Q = C tA,→Q, LQ〉 and
MQ′ = 〈Q′ = C ′ tA′,→Q′ , LQ′〉 the MFMs corresponding to Q and Q′ re-
spectively. Let h :MQ →MQ′ such that

h ([s]Q) = [s]Q′

Then for S′ ∈ Q′, for ϕ ∈ SLCS it holds:

S′ �> ϕ =⇒ for all S ∈ h−1(S′): S �> ϕ

S′ �⊥ ϕ =⇒ for all S ∈ h−1(S′): S �⊥ ϕ

In particular, if Q is the trivial partition, we obtain:

S′ �> ϕ =⇒ for all s ∈ S′: s �> ϕ
S′ �⊥ ϕ =⇒ for all s ∈ S′: s �⊥ ϕ

Remark 4.2.20. Note that h is well defined because Q≺Q′.
The proof of this Theorem relies on some technical results that it’s useful

to state separately.

Lemma 4.2.21. Let M, Q, Q′, MQ, MQ′ and h as above. Then:

4.2. ABSTRACTION METHODS 73

1. for S ∈ Q and T ⊆ Q

S /∈ FN (T) ⇐⇒ for all s ∈ S, s /∈ FN
(⋃

T
)

and so

S ∈ FN (T) ⇐⇒ there exists s ∈ S such that s ∈ FN
(⋃

T
)

2. for T ⊆ Q′
FN
(
h−1(T)

)
⊆ h−1 (FN(T))

3. Given a path π′ of MQ′ and a state S of MQ such that h(S) = π′0,
there exists a path π of MQ starting at S such that:

π′ = (π′0, . . . , π
′
l)

π =
(
S = π0

0, . . . , π
0
k0

;π1
0, . . . , π

1
k1

; . . . ;πl0, . . . , π
l
kl

)
for each i ∈ {0, . . . , l}, for each j ∈ {0, . . . , ki} it holds h(πij) = π′i

Moreover, if π′j ∈ C ′, then we can choose π so that kj = 0 (meaning
the jth portion of the path π contains only one node).

Notation 4.2.22. For π and π′ as in the point 3, we say that π′ can be lifted
to π.

Proof.

1. It follows directly from the definition of abstraction:

S /∈ FN(T) ⇐⇒ for all T ∈ T, T 6→Q S
⇐⇒ for all T ∈ T, for all s ∈ S, for all t ∈ T , t 6→ s

⇐⇒ for all s ∈ S, for all t ∈
⋃

T, t 6→ s

⇐⇒ for all s ∈ S, s /∈ FN
(⋃

T
)

2. This follows trivially from the definition of MFM subordinate to a par-
tition:

S ∈ FN(h−1(T)) ⇐⇒ there exists T ∈ h−1(T) such that T →Q S

⇐⇒ there exists t ∈
⋃
h−1(T), s ∈ S such that t→ s

⇐⇒ there exists t ∈
⋃

T, s ∈ S such that t→ s

=⇒ there exists t ∈
⋃

T, s ∈ h(S) such that t→ s

⇐⇒ h(S) ∈ FN(T)

⇐⇒ s ∈ h−1 (FN(T))

74 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

3. Direct consequence of the strong connection of the elements in the
partitions Q and Q′. The last assertion follows by a simple cutting-
and-gluing argument.

Proof of Lemma 4.2.19. Fix S′ and S ∈ h−1(S′). We prove the result by
induction over the structure of the formula. Of course, the cases for boolean
operators are trivial, so for brevity we prove the result only for spatial op-
erators.

• Case ϕ ≡ N (ψ) and S′ �> ϕ: by definition of the semantics we have
two cases to consider, if S′ ∈ C or if S′ ∈ A.

– If S′ ∈ C, then by the definition of MQ′ we have that

S′ ∈ C ′ ⇐⇒
∣∣S′∣∣ = 1 =⇒ |S| = 1 ⇐⇒ S ∈ C

and so in this case both states are concrete ones. Let S′ and S
be the singleton {s}. By inductive hypothesis and Lemma 4.2.21
it follows:

S′ �> N (ψ) ⇐⇒ S′ ∈ FN
(
JψKMQ′
>

)
⇐⇒ there exists T ′ ∈ JψKMQ′

> such that T ′ →Q′ S′

⇐⇒ there exists t ∈
⋃

JψKMQ′
> such that t→ s

=⇒ there exists t ∈
⋃

JψKMQ
> such that t→ s

⇐⇒ there exists T ∈ JψKMQ
> such that T →Q S

⇐⇒ S ∈ FN
(
JψKMQ
>

)
⇐⇒ S �> N (ψ)

– If S′ ∈ A then by inductive hypothesis

S′ �> N (ψ) ⇐⇒ S′ ∈ JψKMQ′
>

=⇒ S ∈ JψKMQ
>

=⇒ S �> N (ψ)

• Case ϕ ≡ N (ψ) and S′ �⊥ ϕ: By Lemma 4.2.21 and inductive
hypothesis we have:

S′ �⊥ N (ψ) ⇐⇒ S′ /∈ FN
(
JψKMQ′
≥?

)
= FN

(
JψKMQ′
⊥

)
⇐⇒ for all s ∈ S′, s /∈ FN

(⋃
JψKMQ′
⊥

)
=⇒ for all s ∈ S, s /∈ FN

(⋃
JψKMQ
⊥

)
⇐⇒ S /∈ FN

(
JψKMQ
⊥

)
= FN

(
JψKMQ
≥?

)
⇐⇒ S �⊥ N (ψ)

4.2. ABSTRACTION METHODS 75

• Case ϕ ≡ S(ψ1, ψ2) and S′ �> ϕ: By Lemma 4.2.21 and inductive
hypothesis we have:

S′ �> S(ψ1, ψ2) ⇐⇒ there exists T′ ⊆ Q′ such that S′ ∈ T′ and{
T′ ⊆ Jψ1K

MQ′
>

B+(T′) ⊆ Jψ2K
MQ′
>

=⇒ there exists T′ ⊆ Q′ such that S ∈ h−1(T′)

and

{
h−1(T′) ⊆ Jψ1K

MQ
>

h−1 (B+(T′)) ⊆ Jψ2K
MQ
>

=⇒ there exists T ⊆ Q such that S ∈ T and{
T ⊆ Jψ1K

MQ
>

B+(T) ⊆ Jψ2K
MQ
>

⇐⇒ S �> S(ψ1, ψ2)

• Case ϕ ≡ S(ψ1, ψ2) and S′ �⊥ ϕ: by definition of the semantics we
have two cases to consider, if S′ ∈ C ′ or if S′ ∈ A′.

– If S′ ∈ C ′, then by definition we have

S′ �⊥ S(ψ1, ψ2) ⇐⇒ S′ �⊥ ψ2 or Π+
S′ (〈ψ2,⊥〉 , 〈ψ1 ∨ ψ2,⊥〉) 6= ∅

If the first disjunct holds, then by inductive hypothesis it holds
also for S.

Otherwise, let π′ ∈ Π+
S′ (〈ψ2,⊥〉 , 〈ψ1 ∨ ψ2,⊥〉). By Lemma 4.2.21

we can find a path π of MQ starting at S which lifts to π′, and
it is not restrictive to suppose h(πl) 6= h(πl−1) for l = length(π).
Note also that as S′ ∈ C ′ then (again by Lemma 4.2.21) we can
choose π so that h(π1) = π′1.

By inductive hypothesis it follows trivially that
π ∈ Π+

S (〈ψ2,⊥〉 , 〈ψ1 ∨ ψ2,⊥〉) and so the thesis.

– If S′ ∈ A′, then the reasoning above applies with little modifica-
tions. In particular, given π′ ∈ ΠS′ (〈ψ2,⊥〉 , 〈ψ1 ∨ ψ2,⊥〉) then
there exists

π ∈ ΠS (〈ψ2,⊥〉 , 〈ψ1 ∨ ψ2,⊥〉) ⊆ Π+
S (〈ψ2,⊥〉 , 〈ψ1 ∨ ψ2,⊥〉)

and so the thesis follows both in the case S ∈ C and S ∈ A.

Remark 4.2.23. This result is really important to develop an abstraction-
refinement approach. In fact now we know that by solving the MFM model
checking problem for MQ we are gathering information on the solution of
the KF model checking problem for M.

Moreover, now we can refine the model MQ step-by-step by choosing a
subset of Q and by expanding locally the model (as in Definition 4.2.11).
The theorem above tells us that we are not losing information by doing so.

76 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

4.2.2 The Algorithm

In this Subsection we fix an MFMM = 〈X = C tA,→, L〉.
We now present an algorithm to compute the semantics for SLCS fixed

the MFM model. As usual, we give only explicit algorithms to compute the
semantics of formulas N (p) and S(p, q) for p, q ∈ AP, since a complete algo-
rithm follows trivially.

Algorithm 14: Algorithm to compute N (p)

input : M, N (p)
output: JN (p)K> , JN (p)K? , JN (p)K⊥

1 nearTrue := (C ∩ FN (JpK>)) ∪ (A ∩ JpK>) ;

2 nearMaybe := FN
(
JpK≥?

)
\ nearTrue ;

3 nearFalse := X \ FN
(
JpK≥?

)
;

4 return nearTrue, nearMaybe, nearFalse

Algorithm 15: Algorithm to compute S(p, q)

input : M, S(p, q)
output: JS(p, q)K> , JS(p, q)K? , JS(p, q)K⊥

1 surrTrue := JpK> ;
2 surrMaybe := JpK? ;
3 surrFalse := JpK⊥ ;

4 badBorder := JpK≤? ∩ JqK≤? ;

5 repeat
6 corrosion := surrTrue ∩ BN (badBorder) ;
7 surrTrue := surrTrue \ corrosion ;
8 surrMaybe := surrMaybe ∪ corrosion ;
9 badBorder := JqK≤? ∩ corrosion ;

10 until badBorder == ∅;
11 badBorder := JpK⊥ ∩ JqK⊥ ;
12 badCandidates := C ∪ (A ∩ JqK⊥) ∩ surrMaybe ;
13 repeat
14 corrosion := badCandidates ∩ BN (badBorder) ;
15 badCandidates := badCandidates \ corrosion ;
16 surrMaybe := surrMaybe \ corrosion ;
17 surrFalse := surrFalse ∪ corrosion ;
18 badBorder := corrosion ∩ JqK⊥ ;

19 until badBorder == ∅;
20 return surrTrue, surrMaybe, surrFalse

Theorem 4.2.24. The Algorithms 14 and 15 terminate correctly and have
linear-time complexity on the encoding of M.

4.2. ABSTRACTION METHODS 77

Proof. Let us examine one algorithm at a time:

Case N (p): Let us prove termination, correctness and computational time
separately.

Termination: The algorithm terminates as there is no recursion.

Correctness: This follows trivially from the definition of the seman-
tics. If c ∈ C and a ∈ A:

c ∈ nearTrue ⇐⇒ c ∈ FN (JpK>)

c ∈ nearMaybe ⇐⇒ c ∈ FN
(
JpK≥?

)
\ FN (JpK>)

c ∈ nearFalse ⇐⇒ c /∈ FN
(
JpK≥?

)
a ∈ nearTrue ⇐⇒ a ∈ JpK>

a ∈ nearMaybe ⇐⇒ a ∈ FN
(
JpK≥?

)
\ JpK>

a ∈ nearFalse ⇐⇒ a /∈ FN
(
JpK≥?

)
in accord with the semantics of N .

Complexity: the algorithm has linear complexity because all opera-
tions used in the pseudo-code (union, intersection, set difference,
forward neighborhood) have linear-time complexity.

Case S(p, q): Let us prove termination, correctness and computational time
separately.

Termination: There are two recursions in the algorithm, so we have
to prove that both terminate.

For the first recursion, we have the followings facts:

• During a cycle, if corrosion = ∅ (line 6) then badBorder = ∅
(line 9) and so the recursion terminates.

• Otherwise, if corrosion 6= ∅ then surrTrue decreases in size
(line 7).

These two facts gives us the termination of the recursion, since
surrTrue cannot decrease indefinitely (as the model is finite) and
so there will be a cycle in which corrosion = ∅.
For the second recursion, we use a similar argument:

• During a cycle, if corrosion = ∅ (line 14) then badBorder = ∅
(line 17) and so the recursion terminates.

• Otherwise, if corrosion 6= ∅ then surrMaybe decreases in size
(line 15).

With the same argument as before we have that at some point
corrosion = ∅, and so the termination.

78 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

Correctness: To prove the correctness, we state a Lemma whose
proof is postponed:

Lemma 4.2.25. The followings hold for s ∈ X, c ∈ C and a ∈ A:

s �> S(p, q) ⇐⇒ s �> p and Π+
s (〈q,≤ ?〉 , 〈p ∨ q,≤ ?〉) = ∅

c �⊥ S(p, q) ⇐⇒ c �⊥ p or Π+
c (〈q,⊥〉 , 〈p ∨ q,⊥〉) 6= ∅

a �⊥ S(p, q) ⇐⇒ a �⊥ p or Πa (〈q,⊥〉 , 〈p ∨ q,⊥〉) 6= ∅

First of all, note that in the algorithm we set

surrTrue = JpK> (line 1)

surrMaybe = JpK? (line 2)

surrFalse = JpK⊥ (line 3)

so the three sets surrTrue, surrMaybe and surrFalse at first form a
partition of the state space X. This property is preserved during
all the algorithm, as we can check one assignment at a time:

• In lines 6-8, we take corrosion as a subset of surrTrue (line 6)
and then we “move” its elements from surrTrue to surrMaybe
(lines 7-8), thus maintaining the property.

• In lines 14-16, we take corrosion as a subset of surrMaybe
(line 14) and then we “move” its elements from surrMaybe to
surrFalse (lines 15-16), thus maintaining the property.

So we only need to show that surrTrue = JS(p, q)K> and
surrFalse = JS(p, q)K⊥ to prove the correctness.

Case surrTrue = JS(p, q)K>: we claim that during the first re-
cursion (lines 5-10) we extracted from surrTrue exactly the
states s such that Π+

s (〈q,≤ ?〉 , 〈p ∨ q,≤ ?〉) 6= ∅. Using
Lemma 4.2.25 the result follows trivially.
We prove the claim by induction on the number of cycles of
the recursion. In particular we want to show that at cycle
i the set corrosion (which is extracted from surrTrue at line
7) contains exactly the points of JpK> for which there is a
(〈q,≤ ?〉 , 〈p ∨ q,≤ ?〉)+-path of length exactly i. Of course,
as corrosion ⊆ surrTrue ⊆ JpK> is true at each iteration we
only have to check the path condition.

Notation 4.2.26. To improve readability we introduce the no-
tation corrosioni to indicate the set represented by the vari-
able corrosion at iteration i (in particular at line 6).

In the first iteration, we have (expanding the definitions)

corrosion1 = BN(JpK≤? ∩ JpK≤?) ∩ JpK>
= BN(Jp ∨ qK≤?) ∩ JpK>

4.2. ABSTRACTION METHODS 79

so exactly the points of JpK> for which there exists a
(〈q,≤ ?〉 , 〈p ∨ q,≤ ?〉)+-path of length 1.
Now, suppose at iteration i we have

corrosioni =

s ∈ JpK>

∣∣∣∣∣∣∣∣
there exists a

(〈q,≤ ?〉 , 〈p ∨ q,≤ ?〉)+-path
of length exactly i,
but not shorter


By definition of badBorderi (line 9) we have also that

badBorderi =

s ∈ JpK>

∣∣∣∣∣∣∣∣
there exists a
(〈q,≤ ?〉 , 〈p ∨ q,≤ ?〉)-path
of length exactly i,
but not shorter


From this, at iteration i+ 1 we have

corrosioni+1 =

s ∈ JpK>

∣∣∣∣∣∣∣∣∣∣
there exists a

(〈q,≤ ?〉 , 〈p ∨ q,≤ ?〉)+-path
π of length exactly i+ 1
such that π0 ∈ surrTruei,
but not shorter


=

s ∈ JpK>

∣∣∣∣∣∣∣∣
there exists a

(〈q,≤ ?〉 , 〈p ∨ q,≤ ?〉)+-path
of length exactly i+ 1,
but not shorter


where the last equality is easily provable.

Case surrFalse = JS(p, q)K⊥:

Notation 4.2.27. To simplify the notation we define the set
BC = C ∪ (A ∩ JqK⊥). Note that this set is the same set as
badCandidates in the algorithm.
As we already proved that surrTrue = JS(p, q)K>, we now
have only to show the second recursion “adjusts” the sets
surrMaybe and surrFalse. In particular, we want to show that
at each iteration corrosioni is exactly the subset of BC∩JpK≥?

such that there exists a (〈q,⊥〉 , 〈p ∨ q,⊥〉)+-path of length
exactly i. It’s easy to verify using Lemma 4.2.25 that this
implies the thesis (we are adding all these states to surrFalse
at line 16).
In the first iteration, we have

corrosion1 = BN(JpK⊥ ∩ JqK⊥) ∩ BC ∩ JpK≥?

= BN(Jp ∨ qK⊥) ∩ BC ∩ JpK≥?

80 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

so exactly the set of states of BC∩JpK≥? for which there exists

a (〈q,⊥〉 , 〈p ∨ q,⊥〉)+-path of length 1.
For the inductive step, we have

corrosioni =

s ∈ BC ∩ JpK≥?

∣∣∣∣∣∣∣∣
there exists a

(〈q,⊥〉 , 〈p ∨ q,⊥〉)+-path
of length exactly i,
but not shorter


and so by definition of badBorderi (line 18)

badBorderi =

s ∈ BC ∩ JpK≥?

∣∣∣∣∣∣∣∣
there exists a
(〈q,⊥〉 , 〈p ∨ q,⊥〉)-path
of length exactly i,
but not shorter


=

s ∈ JqK⊥ ∩ JpK≥?

∣∣∣∣∣∣∣∣
there exists a
(〈q,⊥〉 , 〈p ∨ q,⊥〉)-path
of length exactly i,
but not shorter


This means that at cycle i+ 1 we set corrosioni+1 as

corrosioni+1 =


s ∈ BC ∩ JpK≥?

∣∣∣∣∣∣∣∣∣∣∣∣

there exists a

(〈q,⊥〉 , 〈p ∨ q,⊥〉)+-path
π of length exactly i+ 1
such that
π0 ∈ badCandidatesi,
but not shorter


=

s ∈ BC ∩ JpK≥?

∣∣∣∣∣∣∣∣
there exists a

(〈q,⊥〉 , 〈p ∨ q,⊥〉)+-path
of length exactly i+ 1,
but not shorter


where the last equality is easily provable.

This concludes the proof of correctness.

Complexity: Of course, the complexity of this algorithm depends
strongly on the actual implementation. Here we make use of the
following facts:

Fact 4.2.28. There is a data structure for sets such that:

• The operations ∪, ∩ and \ are linear in the size of the second
operand.

• The operation BN is linear in the number of back-edges of
the argument.

4.2. ABSTRACTION METHODS 81

This gives us a way to estimate the complexity of each operation.

Algorithm 16: Complexity analysis. On the right an overestimate of
the complexity of the single operations, up to multiplicative constants.

input : M, S(p, q)
output: JS(p, q)K> , JS(p, q)K? , JS(p, q)K⊥

1 surrTrue := JpK> ; // |X|
2 surrMaybe := JpK? ; // |X|
3 surrFalse := JpK⊥ ; // |X|
4 badBorder := JpK≤? ∩ JqK≤? ; // |X|
5 repeat
6 corrosion := surrTrue ∩ BN (badBorder) ; // |BS(badBorder)|
7 surrTrue := surrTrue \ corrosion ; // |BS(badBorder)|
8 surrMaybe := surrMaybe ∪ corrosion ; // |BS(badBorder)|
9 badBorder := JqK≤? ∩ corrosion ; // |BS(badBorder)|

10 until badBorder == ∅;
11 badBorder := JpK⊥ ∩ JqK⊥ ; // |X|
12 badCandidates := C ∪ (A ∩ JqK⊥) ∩ surrMaybe ; // |X|
13 repeat
14 corrosion := badCandidates ∩ BN (badBorder) ; // |BS(badBorder)|
15 badCandidates := badCandidates \ corrosion ; // |BS(badBorder)|
16 surrMaybe := surrMaybe \ corrosion ; // |BS(badBorder)|
17 surrFalse := surrFalse ∪ corrosion ; // |BS(badBorder)|
18 badBorder := corrosion ∩ JqK⊥ ; // |BS(badBorder)|
19 until badBorder == ∅;
20 return surrTrue, surrMaybe, surrFalse

Now the thesis is easily proved by noticing that a state can enter
the set badBorder at most once per recursion, and so the com-
plexity of each recursion is bounded by |→| ≥ |X|.

Proof of Lemma 4.2.25: The only case to consider is when s �> S(p, q) as
the others follow from definition of the semantics.

To prove this case, we can carry the same proof as Lemma 3.1.24. In
fact in the proof we only used that

J¬pK = JpK

J¬qK = JqK

J¬p ∧ ¬qK = Jp ∨ qK

82 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

so here we obtain the result from the equalities

JpK≤? = JpK>
JqK≤? = JqK>

Jq ∨ pK≤? = Jp ∨ qK>

As it will be useful later, we present here an alternative version of the
algorithms (Algorithms 17 and 18) using a multi-agent approach. The idea
behind this is that each state can be thought as an agent which has to decide
if it entails the formula based on a local communication with the other agents
in the system which are near it (meaning, adjacent states).

The main advantage of this approach is that the algorithm is easily
implemented in a parallelized framework, for example using a map-reduction
approach.

Moral 4.2.29. Algorithm 17 is a small modification of Algorithm 14. The
main difference is the order in which the truth values are assigned.

Algorithm 18 is exactly the same as Algorithm 15, but with a different
notation. In particular, in the pseudo-code states and sets are treated like
objects and so they have properties and methods (accessing a property or
method is indicated with the usual dot notation). The method flag contains
the semantics of formulas evaluated at the given state (i.e., s.flag[ϕ] := >
means state s thinks that the formula ϕ has value >).

In both recursions of Algorithm 18, at every iteration some states are
processed (elements in toProcess) by sending a message along the edges of
their backward star (edges in messages), which are then processed by the
receiver (e.source in the algorithm). The stopping condition is that there
are no more nodes to process, or equivalently that no messages have been
sent.

4.2.3 Choosing Which States to Expand

Now we need only the last ingredient: which nodes do we expand at each
iteration? As in the CEGAR case, the idea is to use the information we
obtained from the model checking procedure for the abstract model.

So the idea is to inductively search the “reasons” why a sub-formula is
not determined at a state. We now introduce a terminology we will use in
the rest of the section (this is not meant to be a formal definition).

Notation 4.2.30.

Fix a state s and a formula ϕ such that s �? ϕ. We say that a pair state-
formula 〈t, ψ〉 is a reason why s �? ϕ (or simply a reason) if by knowing
t �> ψ or t �⊥ ψ we gain more information to tell if s �> ϕ or s �⊥ ϕ.

4.2. ABSTRACTION METHODS 83

Algorithm 17: Alternative algorithm to compute N (p)

input : M, N (p)

1 for s ∈ X do
2 s.flag[N (p)] := > ;

3 for e ∈ FN(JpK≥?) do

4 e.target.flag[N (p)] := ? ;

5 for s ∈ JpK> do
6 if s ∈ A then
7 s.flag[N (p)] := > ;

8 else
9 for e ∈ FN({s}) do

10 e.target.flag[N (p)] := > ;

This suggests the following modifications of the model checking algo-
rithms (Algorithms 19, 20 and 21):

Moral 4.2.31. The lines with an asterisk were added to the algorithms to
compute the reasons. Note that the lines added don’t affect the correctness
(only properties reasons and clues are affected) and the complexity (every
additional operation has constant time complexity).

Note also that in the S algorithm we included a property named clues to
nodes. The reason is that in this case for each node there could be a huge
number of reasons (comparable to |X| for each node), and so we need to
store implicitly this information to maintain a linear-time complexity when
we choose which nodes to expand.

We state here a property of the algorithm that will be useful in what
follows.

Lemma 4.2.32. Fix a formula ϕ. Consider the relation

sRt ⇐⇒ t ∈ s.clues[ϕ]

Then this relation is acyclic.

Proof. The result is trivial except when ϕ ≡ S(ψ1, ψ2), so we’ll examine
only this case.

Consider the first recursion. In this proof we use the notation toProcessi
to indicate the set toProcess at the ith iteration of the recursion.

As proved before, a state s can enter the set toProcess at most one time
during the entire recursion, so we assign to s the only value i such that
s ∈ toProcessi. We will say that s enters at stage i and indicate it with
stage(s) = i.

84 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

Algorithm 18: Alternative algorithm to compute S(p, q)

input : M, S(p, q)

1 for s ∈ JpK> do
2 s.flag[S(p, q)] := > ;

3 for s ∈ JpK? do
4 s.flag[S(p, q)] := ? ;

5 for s ∈ JpK⊥ do
6 s.flag[S(p, q)] := ⊥ ;

7 toProcess := {s ∈ X|(s.flag[p] ≤ ?)&&(s.flag[q] ≤ ?)} ;
8 repeat
9 messages := {e ∈ BS (toProcess) |e.source.flag[S(p, q)] == >} ;

10 toProcess := ∅ ;
11 for e ∈ messages do
12 e.source.flag[S(p, q)] := ? ;
13 if e.source.flag[q] ≤ ? then
14 toProcess.add(e.source) ;

15 until toProcess == ∅;
16 toProcess := {s ∈ X|(s.flag[p] == ⊥)&&(s.flag[q] == ⊥)} ;
17 for s ∈ X do
18 if

(s.flag[S(p, q)] == ?)&&((s.state == concrete)||(s.flag[q] == ⊥))
then

19 s.badCandidate := > ;

20 else
21 s.badCandidate := ⊥ ;

22 repeat
23 messages := {e ∈ BS (toProcess) |e.source.badCandidate == >} ;
24 toProcess := ∅ ;
25 for e ∈ messages do
26 e.source.badCandidate := ⊥ ;
27 e.source.flag[S(p, q)] := ⊥ ;
28 if e.source.flag[q] == ⊥ then
29 toProcess.add(e.source) ;

30 until toProcess == ∅;

4.2. ABSTRACTION METHODS 85

Algorithm 19: Algorithm for boolean operators with reasons.

input : M, p
1 for s ∈ X do
2 if L(p, s) == > then
3 s.flag[p] := > ;

4 else if L(p, s) == ? then
5 s.flag[p] := ? ;
6 s.reasons[p].add(〈s,NULL〉) ; // (*)

7 else
8 s.flag[p] := ⊥ ;

9 return;

input : M, ¬p
10 for s ∈ X do
11 s.flag[¬p] := ¬s.flag[p] ;
12 if s.flag[¬p] == ? then // (*)

13 s.reasons[¬p].add(〈s, p〉) ; // (*)

14 return;

input : M, p ∧ q
15 for s ∈ X do
16 s.flag[p ∧ q] := s.flag[p] ∧ s.flag[q] ;
17 if s.flag[p ∧ q] == ? then // (*)

18 if s.flag[p] == ? then // (*)

19 s.reasons[p ∧ q].add(〈s, p〉) ; // (*)

20 if s.flag[q] == ? then // (*)

21 s.reasons[p ∧ q].add(〈s, q〉) ; // (*)

22 return;

86 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

Now note the only line of code that modify the set clues is line 14 where
we add e.target to e.source.clues. So we have:

sRt ⇐⇒ at a certain cycle, there exists e ∈ messages

such that s = e.source and t = e.target

⇐⇒ at a certain cycle, t ∈ toProcess and

s→ t and s.flag[S(p, q)] = >

In particular, the last condition implies that s will enter the set toProcess
in the next cycle, and so

sRt =⇒ stage(s) > stage(t)

from which follows the acyclicity.

Remark 4.2.33. Note that by examining the proof above we can show some-
thing more, namely that every state that entered the set toProcess (and
so every state s such that s �? S(ψ1, ψ2)) can reach a state t such that
stage(t) = 0 with an R-path.

Now that we added code to “take track of the reasons”, we need an actual
algorithm to choose which nodes to expand. We will define an algorithm
recursive on the structure of the formula, namely Algorithm 22.

Lemma 4.2.34. Algorithm 22 terminates and has linear-time complexity
(over the encoding of the model).

Proof.

Termination: In the algorithm there are two recursions: the recursive call
of the function RecursiveReasons and a repeat-until recursion (lines 28−
36). We have to prove that both have a bounded number of cycles.

About the recursive call of RecursiveReasons, note that the second
argument given to the function (the formula) is always a sub-formula
of ϕ (lines 4, 12 − 13, 18, 37 − 38). So the result is easily proved by
induction over ϕ given the base case terminates, but this is trivial to
prove.

About the repeat-until recursion, note that t ∈ cluesAccumulatori+1 if
and only if there exists s ∈ cluesAccumulatori such that
t ∈ s.clues[S(ψ1, ψ2)]. But by Lemma 4.2.32 we already know this rela-
tion is acyclic, and so it follows that a node could enter cluesAccumulator
at most once during the recursion. This implies that at a certain point
cluesAccumulator = ∅ and so the termination of the recursion.

4.2. ABSTRACTION METHODS 87

Complexity: It’s easy to verify that the number of recursive calls of the
function depends only on the formula ϕ, so what we have to show is
that each case has linear time complexity in the encoding of the model.

• Case ϕ ≡ p,¬ψ: the proof is trivial.

• Case ϕ ≡ ψ1 ∧ ψ2: we only need to show the accumulation
process at lines 8-11 has linear-time complexity. But this is true
as the reasons for ψ1 ∧ ψ2 are of the form 〈t, ψ1〉 or 〈t, ψ2〉, and
so the number of reasons computed is at most twice the size of
the model.

• Case ϕ ≡ N (ψ): we have to prove the accumulation process at
line 17 has linear-time complexity. But this is easily done as the
elements of s.reasons[N (ψ)] have the form 〈t, ψ〉 for t ∈ BN(s),
and so the number of reasons processed is bounded by the total
number of edges of the model.

• Case ϕ ≡ S(ψ1, ψ2): first of all, note that every time the set
s.clues[S(ψ1, ψ2)] is accessed (lines 27 and 36) it is immediately
set to ∅ (lines 28 and 37). This means a clue t can be processed
at most |FN(t)| times.

At lines 23-27 we accumulate reasons and clues stored in the
set maybeSet. This operation has linear-time complexity as the
number of reasons is bounded by two times the number of nodes
(they are of the form 〈t, ψ1〉 and 〈t, ψ2〉) and the number of clues
is bounded by the number of edges (a clue for s is of the form t
for t ∈ BN(s)).

The cycle at lines 28-36 has linear-time complexity, since

– a clue t is processed at most |FN(t)| times, and so the oper-
ations at lines 32-37 are executed at most a linear number of
times in the encoding of the model.

– s.reasons[S(ψ1, ψ2)] has at most two elements, as they are of
the form 〈s, ψ1〉 or 〈s, ψ2〉 (check Algorithm 21).

– the total time used on the operations at lines 30-31 and 36-
37 is at most linear in the encoding of the model, since the
time is bounded by a certain constant times the number of
clue-processings.

This implies the whole case has linear-time complexity.

Although we didn’t focus so much on this aspect, a priori Algorithm
22 could not work as intended. The main problem is that the set given in
output could be

• empty when there are states that don’t decide the value of the formula.

88 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

• not empty when all states decide the value of the formula.

To show this doesn’t happen we have the following:

Lemma 4.2.35. Fix a formula ϕ and an MFMM.

1. If s �? ϕ then s.reasons[ϕ] 6= ∅ or s.clues[ϕ] 6= ∅ (meaning the sets
computed in Algorithms 19, 20 and 21).

2. Algorithm 22 returns ∅ if and only if JϕK? = ∅.

Proof.

1. The proof is trivial, except for Algorithm 21. In this case the result
is easily proved using the value stage introduced in Lemma 4.2.32. In
fact:

• Each state s such that s �? S(p, q) enters the set toProcess and
so the value stage(s) is defined.

• s �? S(p, q) and stage(s) = 0 means s �? p, and so s.reasons 6= ∅
(lines 3− 5).

• stage(s) 6= 0 means s.clues 6= ∅ (line 14).

2. Is trivial to show that if JϕK? = ∅ then the output is ∅, as the algorithm
keeps calling the function RecursiveReasons with maybeSet = ∅. So now
we only need to show that if JϕK? 6= ∅ then the algorithm returns a
non empty set.

We can prove this result by induction over the structure of the for-
mula ϕ given in input. Again, the only non trivial case is when
ϕ ≡ S(ψ1, ψ2). Moreover, by induction hypothesis and examining
lines 37 − 39, we only need to prove that if maybeSet 6= ∅, then
accumulatorPsiOne ∪ accumulatorPsiTwo 6= ∅.
As we have stated in Remark 4.2.33 that

• stage is defined on each state s such that s �? S(ψ1, ψ2).

• For each state s such that stage is defined, there exists a path
π = (π0 = s, . . . , πl) such that πi+1 ∈ πi.clues[S(ψ1, ψ2)] and
stage(πl) = ∅.

Now fix s and π as above and suppose by contradiction that for each
i ≤ l it holds πi.reasons[S(ψ1, ψ2)] = ∅. By analyzing lines 3 − 5 and
9− 18 it means that:

• For 0 < i ≤ l, πi �⊥ ψ2 (lines 17− 18).

• πl �⊥ ψ1 (line 5).

4.2. ABSTRACTION METHODS 89

And so we have that π is a (〈ψ2,⊥〉 , 〈ψ1 ∨ ψ2,⊥〉)+, implying that
s �⊥ S(ψ1, ψ2). But this is absurd, as we already have that
s �? S(ψ1, ψ2).

Now it’s trivial to prove that if s ∈ maybeSet, then Algorithm 22
will process each state of π and so will add the reasons of each πi to
accumulatorPsiOne or accumulatorPsiTwo, thus proving the thesis.

4.2.4 Conclusion

To conclude the chapter, we summarize the algorithm of abstraction-refinement
in the spatial case.

So, given a M, a chain of partitions P = (P0, . . . ,Pl) and a formula
ϕ ∈ SLCS, the algorithm is the following:

1. Compute the model N =MPl
.

2. Solve the model checking problem for 〈N , ϕ〉 using Algorithms 19, 20
and 21.

3. If JϕKN? = ∅ then the algorithm is finished; otherwise choose the set of
states to expand E using Algorithm 22.

4. Compute the model N ′ by expanding the states in E and repeat from
point 2 using N ′ instead of N .

The termination of each step of the algorithm was thoroughly analyzed,
while the termination of the entire procedure is a direct consequence of the
finiteness of the model and Lemma 4.2.35.

The correctness follows from Theorem 4.2.19 and the correctness of Al-
gorithms 17 and 18.

The main point of this procedure is to solve the model checking problem
faster, but we don’t have yet significative experimental results to state the
procedure actually works as intended. More results will be presented in the
near future, with an actual implementation of the model checking algorithm
above.

90 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

Algorithm 20: Algorithm to compute N (p) with reasons.

input : M, N (p)

1 for s ∈ X do
2 s.flag[N (p)] := > ;

3 for e ∈ FN(JpK≥?) do

4 e.target.flag[N (p)] := ? ;
5 e.target.reasons[N (p)].add(〈e.source, p〉) ; // (*)

6 for s ∈ JpK> do
7 if s ∈ A then
8 s.flag[N (p)] := > ;

9 else
10 for e ∈ FN({s}) do
11 e.target.flag[N (p)] := > ;

4.2. ABSTRACTION METHODS 91

Algorithm 21: Algorithm to compute S(p, q) with reasons.

input : M, S(p, q)

1 for s ∈ JpK> do
2 s.flag[S(p, q)] := > ;

3 for s ∈ JpK? do
4 s.flag[S(p, q)] := ? ;
5 s.reasons[S(p, q)].add(〈s, p〉) ; // (*)

6 for s ∈ JpK⊥ do
7 s.flag[S(p, q)] := ⊥ ;

8 toProcess := {s ∈ X|(s.flag[p] ≤ ?)&&(s.flag[q] ≤ ?)} ;
9 repeat

10 messages := {e ∈ BS (toProcess) |e.source.flag[S(p, q)] == >} ;
11 toProcess := ∅ ;
12 for e ∈ messages do
13 e.source.flag[S(p, q)] := ? ;
14 e.source.clues[S(p, q)].add(e.target) ; // (*)

15 if e.source.flag[q] ≤ ? then
16 toProcess.add(e.source) ;
17 if e.source.flag[q] == ? then // (*)

18 e.source.reasons[S(p, q)].add(〈e.source, q〉) ; // (*)

19 until toProcess == ∅;
20 toProcess := {s ∈ X|(s.flag[p] == ⊥)&&(s.flag[q] == ⊥)} ;
21 for s ∈ X do
22 if

(s.flag[S(p, q)] == ?)&&((s.state == concrete)||(s.flag[q] == ⊥))
then

23 s.badCandidate := > ;

24 else
25 s.badCandidate := ⊥ ;

26 repeat
27 messages := {e ∈ BS (toProcess) |e.source.badCandidate == >} ;
28 toProcess := ∅ ;
29 for e ∈ messages do
30 e.source.badCandidate := ⊥ ;
31 e.source.flag[S(p, q)] := ⊥ ;
32 e.source.reasons[S(p, q)] := ∅ ; // (*)

33 if e.source.flag[q] == ⊥ then
34 toProcess.add(e.source) ;

35 until toProcess == ∅;

92 CHAPTER 4. SYMBOLIC MC AND ABSTRACTION

Algorithm 22: Algorithm to choose the nodes to expand.

input : M, ϕ
output: Nodes to expand.

1 maybeSet := {s ∈ X|s.flag[ϕ] == ?} ;
2 return RecursiveReasons(M, ϕ,maybeSet)

1 Function RecursiveReasons(M, ϕ,maybeSet)
2 switch ϕ do
3 case ϕ == p ∈ AP do return maybeSet;

4 case ϕ == ¬ψ do return RecursiveReasons(M, ψ,maybeSet);

5 case ϕ == ψ1 ∧ ψ2 do
6 accumulatorPsiOne := ∅ ;
7 accumulatorPsiTwo := ∅ ;
8 for s ∈ maybeSet do
9 for 〈t, χ〉 ∈ s.reasons[ϕ] do

10 if χ == ψ1 then accumulatorPsiOne.add(t);
11 else accumulatorPsiTwo.add(t);

12 reasonsSetOne:=
RecursiveReasons(M, ψ1, accumulatorPsiOne);

13 reasonsSetTwo:=
RecursiveReasons(M, ψ2, accumulatorPsiTwo);

14 return reasonsSetOne ∪ reasonsSetTwo ;

15 case ϕ == N (ψ) do
16 accumulator := ∅ ;
17 for s ∈ accumulator do

accumulator := accumulator ∪ s.reasons[N (ψ)];
18 return RecursiveReasons(M, ψ, accumulator);

19 case ϕ == S(ψ1, ψ2) do
20 accumulatorPsiOne := ∅ ;
21 accumulatorPsiTwo := ∅ ;
22 cluesAccumulator := ∅ ;
23 for s ∈ maybeSet do
24 for 〈t, χ〉 ∈ s.reasons[S(ψ1, ψ2)] do
25 if χ == ψ1 then accumulatorPsiOne.add(t);
26 else accumulatorPsiTwo.add(t);

27 cluesAccumulator := cluesAccumulator ∪ s.clues[S(ψ1, ψ2)] ;
28 s.clues[S(ψ1, ψ2)] := ∅;
29 repeat
30 cluesToProcess := cluesAccumulator ;
31 cluesAccumulator := ∅ ;
32 for s ∈ cluesToProcess do
33 for 〈t, χ〉 ∈ s.reasons[S(ψ1, ψ2)] do
34 if χ == ψ1 then accumulatorPsiOne.add(t);
35 else accumulatorPsiTwo.add(t);

36 cluesAccumulator := cluesAccumulator∪s.clues[S(ψ1, ψ2)];
37 s.clues[S(ψ1, ψ2)] := ∅;

38 until cluesAccumulator == ∅;
39 reasonsSetOne:=

RecursiveReasons(M, ψ1, accumulatorPsiOne);
40 reasonsSetTwo:=

RecursiveReasons(M, ψ2, accumulatorPsiTwo);
41 return reasonsSetOne ∪ reasonsSetTwo ;

Bibliography

[1] Edmund M. Clarke. The Birth of Model Checking, pages 1–26. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[2] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and
Computation, 98(2):142 – 170, 1992.

[3] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, Norwell, MA, USA, 1993.

[4] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement, 2000.

[5] Vincenzo Ciancia, Diego Latella, Michele Loreti, and Mieke Massink.
Specifying and verifying properties of space - extended version. CoRR,
abs/1406.6393, 2014.

[6] Vincenzo Ciancia, Gianluca Grilletti, Diego Latella, Michele Loreti,
and Mieke Massink. An Experimental Spatio-Temporal Model Checker,
pages 297–311. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[7] V. Ciancia, D. Latella, M. Massink, and R. Pakauskas. Exploring
spatio-temporal properties of bike-sharing systems. In Self-Adaptive
and Self-Organizing Systems Workshops (SASOW), 2015 IEEE Inter-
national Conference on, pages 74–79, Sept 2015.

[8] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008.

[9] Arne Meier, Martin Mundhenk, Michael Thomas, and Heribert
Vollmer. The complexity of satisfiability for fragments of {CTL} and
ctl*. Electronic Notes in Theoretical Computer Science, 223:201 – 213,
2008. Proceedings of the Second Workshop on Reachability Problems
in Computational Models (RP 2008).

[10] E. Allen Emerson. Model checking and the mu-calculus. In DIMACS
Series in Discrete Mathematics, pages 185–214. American Mathemati-
cal Society, 1997.

93

94 BIBLIOGRAPHY

[11] Thomas Wilke. Alternating tree automata, parity games, and modal
µ-calculus. Bull. Belg. Math. Soc. Simon Stevin, 8(2):359–391, 2001.

[12] Orna Grumberg, Martin Lange, Martin Leucker, and Sharon Shoham.
When not losing is better than winning: Abstraction and refinement
for the full µ-calculus. Information and Computation, 205(8):1130 –
1148, 2007.

[13] Marco Aiello, Ian E. Pratt-Hartmann, and Johan F.A.K. van Benthem.
Handbook of Spatial Logics. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2007.

[14] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic
based on regions and connection. In PROCEEDINGS 3RD INTERNA-
TIONAL CONFERENCE ON KNOWLEDGE REPRESENTATION
AND REASONING, 1992.

[15] Vincenzo Ciancia, Diego Latella, Michele Loreti, and Mieke Massink.
Spatial Logic and Spatial Model Checking for Closure Spaces, pages 156–
201. Springer International Publishing, 2016.

[16] Github - cherosene/ctl logic: Model checker per la logica ctl.

	Background
	CTL Model Checking
	TEXT-Calculus Model Checking
	Complexity results

	Heuristics
	Symbolic Model Checking
	Abstraction-Refinement for CTL
	Abstraction-Refinement for TEXT-Calculus

	Spatio-Temporal Logics and Model Checking
	Spatial Logic of Closure Spaces
	Spatio-Temporal Logic of Closure Spaces

	Symbolic Model Checking and Abstraction
	Symbolic Model Checking for SLCS
	Abstraction Methods
	The Semantics
	The Algorithm
	Choosing Which States to Expand
	Conclusion

