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Abstract 
	
	

  

Background and purpose 
 
For patients with glioblastomas the standard therapy is represented by maximal 

safe tumor resection followed by concurrent chemoradiotherapy with 

temozolomide (TMZ) and adjuvant TMZ. Determination of the response to 

therapy is entirely dependent on the interpretation of magnetic resonance (MR) 

imaging findings and clinical manifestations. 

The purpose of this study was to assess the utility of MR advanced techniques 

such as diffusion (DWI) and perfusion (PWI) imaging in predicting response or 

progression of gliomas to chemoradiotherapy. 

 

Materials and methods 

 

We retrospectively selected 32 patients with high grade glioma treated with 

surgical resection followed by radiation therapy and temozolomide who 

underwent conventional MR imaging and advanced MR techniques before 

surgery (T0), before (T1) and after RT (T2). By using the RANO criteria at T2, 

the patients were divided into two groups, “progression” and “response”. Pre 

and postcontrastographic T1-weighted images were coregistered with the 

Apparent Diffusion Coefficient (ADC) and PWI maps . Contrast Enhancement, 

permeability (PSR), minimum value of ADC and maximum value of relative 

Cerebral Blood Volume (rCBV) were calculated with a ROI method at T0, T1 

and T2 and used as variables. In conventional MRI we calculated the 

incremental ratio of the size of the pre and post operative tumor. 

Unpaired t-test was used to test difference between groups for the above-

mentioned variables for each time point. Significant data were utilized in the 
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univariate logistic regressions in order to determine odds ratios for assessing 

risk factors. A multivariate logistic regression was performed on univariate 

significative variables. 

 

Results 

 

At unpaired t-test ADC, PSR and rCBV at T1 presented statistical significant 

differences between the two groups. For the group “progression” the univariate 

logistic regressions with these variables, adjusted for gender and age, identified 

ADC and rCBV as predictors of progression while in the subsequent 

multivariate logistic regression only ADC showed statistical significance as 

predictor. For the group “response” the univariate logistic regressions with 

these variables, adjusted for gender and age , identified ADC, rCBV and PSR 

as predictors of response while in the subsequent multivariate logistic 

regression only PSR showed statistical significance. 

 

Conclusions 

 

MR advanced techniques, in particular diffusion with ADC and perfusion with 

PSR, have proved a valuable aid in predicting respectively progression and 

response of glioblastomas to chemoradiotherapy. 
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                                           Introduction 
 
 

 

Glioblastoma multiforme (GBM) is the most common primary malignant brain 

tumor in adults, accounting for approximately one percent of all tumors. 

Despite the evaluation of multiple treatment approaches, the prognosis for 

patients with GBM is still extremely poor, with an estimated median survival 

of 9-18 months [1,2]. Currently, maximal safe tumor resection followed by 

concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) and 

adjuvant TMZ is the standard therapy for patients with GBM [3]. 

Determination of the response to therapy is entirely dependent on the 

interpretation of magnetic resonance (MR) imaging findings and clinical 

manifestations [4]. 

In 1990, Macdonald introduced radiological and clinical response criteria for 

malignant brain tumours [5]. These criteria provide a standardized radiological 

assessment of the tumour response and are based on measuring the enhancing 

component of the tumour. The enhancing portion of GBM is a key factor for 

using these criteria to predict the prognosis of GBM patients. Furthermore, in 

2010, the Response Assessment in NeuroOncology (RANO) Working Group 

proposed new standardized criteria for accurately assessing the tumor response 

in high-grade glioma patients [6]. The RANO criteria emphasize not only the 

evaluation of the non-enhancing component but also precise examination of 

measurable enhancing tumor components. The measurable enhancing lesions 

are defined as bidimensionally contrast-enhancing lesions with clearly defined 

margins by computed tomography (CT) or MRI scans and two perpendicular 

diameters of at least 10 mm visible on two or more axial slices that are 

preferably, at most, 5 mm apart with 0-mm skip [6,7]. 

The use of these criteria allows to establish the presence of progression or 

response only after chemoradiotherapy. 
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The availability of predictors of progression or response before starting the 

therapy would be helpful to know patient prognosis [8], to avoid futile care and 

to reduce the risk of any side effects to the patient. 

In recent years several genetic markers able to predict the response of the 

patient to therapy have been identified [9-11]. 

Also MR imaging with advanced techniques has been tested, triyng to predict 

the prognosis for patients with high-grade glioma [12-18]. 

The purpose of this study was to assess the utility of DWI and DSC perfusion 

imaging in predicting response or progression of glioma to chemoradiotherapy.  

 
 
 
 
 
 

Materials and Methods 
 
 

 
Patient selection criteria and clinical data collection 
 

In this retrospective study the patient cohort consisted in 32 patients with High 

Grade Glioma (HGG) according to the following inclusion criteria: 1) 

histological diagnosis of glioblastoma or anaplastic astrocytoma obtained on 

surgical specimen performed in our center, 2) treatment with RT and 

temozolamide, 3) brain MRI imaging, including contrast T1-weighted imaging, 

DWI and/or DSC perfusion before surgery (T0), after surgery before RT (T1) 

and after RT (T2). 

The lack of one of the mentioned criteria constitutes cause of exclusion from 

the retrospective study. 
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The 32 patients were 22 women and 10 men with median age of  55.1 years 

(range 27-78 years).  All patients were affected by HGG, in particular by 

glioblastoma (n = 84.4%) and anaplastic astrocitoma (n =15.6%).  

At initial diagnosis, patients underwent gross total resection of the tumours 

(n=7) or partial resection of the tumour (n=16).  

Radiotherapy consisted of fractionated focal irradiation at a dose of 2 Gy per 

fraction given once daily five days per week over a period of six weeks, for a 

total dose of 60 Gy. Radiotherapy was delivered to the gross tumour volume 

with a 2-to-3-cm margin for the clinical target volume. Radiotherapy was 

planned with dedicated computed tomography (CT) and three-dimensional 

planning systems; conformal radiotherapy was delivered with linear 

accelerators with nominal energy of 6 MV or more, and quality assurance was 

performed by means of individual case reviews. All patients received 

concomitant temozolomide at standard dose. 

Patients were followed along the time to register clinical changes and to 

determine overall survival. 

The patients were divided into two main groups, “progression” and “response” 

groups, on the basis of RANO criteria applied at T2  and in subsequent follow-

up MR examinations. According to these criteria 17 patients were identified as 

belonging to group “progression” and 12 patients belonging to group 

“response”. 3 patients were classified in a separate group denominate 

“pseudoprogression”, on the basis of the behaviour of the enhancing lesion in 

the post- radiotherapy period. These patients had a worsening of the 

neuroradiological picture at T2  with a tumoural regression in the subsequent 

MR examination. 
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MRI examination protocol and Image evaluation 
 
Conventional MRI 
 
MRI examinations were performed on 1.5 T and 3 T MR system (Signa and 

Discovery 750, GE Healthcare, Milwaukee, Wisconsin) with a quadrature head 

coil. After triplanar scout view, the MRI examination protocol consists of pre-

contrast conventional MRI followed by DWI, MRS and PWI, and finally post-

contrast T1 weighted images. 

 Conventional MR examination consisted in axial fluid-attenuated inversion 

recovery images (FLAIR, TR 10000 msec, TE 100 msec, TI 2000 msec, FOV 

24 cm, Tk 5 mm, gap 1 mm, NEX 1, matrix 192 x 256, acquisition time 

4’35’’), axial spin-echo T1-weighted (TR 500  msec, TE 9.4 msec, FOV 22, Tk 

4 mm, gap 1 mm, NEX 2) and axial fast spin-echo T2-weighted (TR 4930 

msec, TE 104 msec, FOV 22, Tk 4 mm, gap 1 mm, NEX 2) images. After 

contrast media administration high resolution volumetric images with T1-

weighted SPGR sequence (TR 2160 msec, TE 3.9 msec, TI 1100 msec, FOV 

25.6, Tk 1.2 mm, gap 0 mm, NEX 1) and spin echo axial T1 weighted 

sequences were obtained. 

 

Post contrast T1-weighted images and T2-weighted images were used to apply 

RANO criteria in order to group patients in “progresssion” and “response”. In 

particular patients who met any one of following criteria were classified as 

having progressive disease: (a) >25% increase in the sum of the products of the 

perpendicular diameters of enhancing lesions with the smallest tumor 

measurement; (b) any new lesion; (c) clear clinical deterioration not 

attributable to other causes apart from the tumor; (d) failure to return for 

evaluation as a result of death or deteriorating condition; and (e) clear 

progression of non-measurable disease.  
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Axial precontrast and post contrast T1-weighted images were subsequently 

coregistered and the section containing the maximum diameter of the 

enhancing lesion was selected for subsequent ROI analysis. We drew a small 

circular ROI in the enhancing lesion to obtain the highest signal value (S) and 

we duplicate the circular ROI in the same region of pre-contrast image (S0). 

These values were then used to calculate the Contrast Enhancement  (CE) = S-

S0/S0 as incremental ratio.  

 

 By using conventional MRI we also calculated the incremental ratio of the size 

of the pre and post operative tumour. In axial postcontrast T1-weighted image 

at T0 we obtained tumoral size considering only misurable lesions according to 

RANO criteria (enhancing lesions with diameter >1cm) multiplying the largest 

diameter to the diameter perpendicular to it (Figure 1). We used a similar 

procedure to misure tumoral size in the postcontrast T1 weighted image at T1 

after surgery.  Then using the formula ((sizeT0 - sizeT1)/sizeT0) we obtained 

incremental ratio of tumoral size. 

 

 
 
Figure 1. Application of RANO criteria for measurable lesions. Tumoural size is obtained 

multiplying the largest diameter to the diameter perpendicular to it. 
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DWI 

 

DWIs were acquired before contrast media administration using echoplanar 

imaging (EPI) sequences (TR 4300, TE 97, FOV 24, thickness 4 mm, spacing 

1,2 mm, NEX 3, matrix 128 x 128, acquisition time 1’15’’) implemented by 

diffusion gradients (b = 0, 1000 s/mm2) in three or six orthogonal directions. 

The DWI data were transferred together with the anatomic data to a 

workstation (Advantage Workstation, GE Healthcare) and were analysed by 

using commercial software (FuncTool, GE Healthcare). ADC maps were 

calculated and coregistrated with the axial precontrast and post contrast T1-

weighted images and with Cerebral Blood Volume (CBV) maps. The contrast 

images were inspected and the section containing the maximum diameter of the 

enhancing lesion was selected for subsequent ROI analysis. We drew a small 

circular ROI (approximately 20 mm2) within the enhancing lesion that was 

adjusted onto the ADC map as necessary to target areas with visually low ADC 

values; the value obtained was recorded as ADC ROI. The ADC ratio was 

calculated by dividing the ADC ROI by the ADC value obtained from measuring 

a similar small circular ROI  in the contralateral normal brain of contralateral 

hemisphere (Figure 2). 

 

DSC Perfusion  

 

PWI images were obtained with an axial T2* weighted gradient EPI sequence 

(TR 2000 msec, TE 90 msec, FA 30, FOV 34 cm, tk 5mm, spacing 1 mm, 

matrix 128 x 128, 40 phases for slice, 12 slices and acquisition time 1.14 min). 

Contrast media (gadolinium chelate) bolus injection started after the 

completion of the tenth acquisition at a flow rate of 5 ml/sec for a total of 14 
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ml using a 18 Gauges venous access connected to an automatic injector 

Spectris Medrad. Before the PWI acquisition a prebolus of 2 ml of gadolinium 

chelate was administrated to compensate the alteration of the blood-brain 

barrier that is present in some tumours. 

The DSC data were transferred together with the anatomic data to a 

workstation (Advantage Workstation, GE Healthcare) and were analysed by 

using commercial software (FuncTool, GE Healthcare). T2*-weighted signal 

intensity-time curves were derived on a voxel-by-voxel basis. Post hoc 

correction for leakage was performed by using γ-variate curve fitting to 

approximate the curve without recirculation and leakage. Cerebral blood 

volume maps were calculated and coregistered with the axial precontrast and 

post contrast T1-weighted images and with ADC maps. ROI analysis for CBV 

was performed with the same method described for ADC. 

We drew a small circular ROI (approximately 20 mm2) within the enhancing 

lesion that was adjusted onto as necessary to target areas with visually highest 

CBV; the value obtained was recorded as CBV ROI. The relative CBV (rCBV) 

was calculated by dividing the CBV ROI by the CBV value obtained from 

measuring a similar small circular ROI  in the contralateral normal brain of 

contralateral hemisphere (Figure 2). 
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Figure 2. Coregistration of ADC maps, axial precontrast and post contrast T1-weighted images and 

CBV maps. ROIs were positioned in the section containing the maximum diameter of the enhancing 

lesion. 

 

The signal intensity-time curve of the CBV ROI was also used to calculate the 

permeability by determining S0 = precontrast baseline signal intensity, S min = 

minimum signal intensity at the peak of contrast bolus and S1 = end signal 

intensity at 50 seconds (Figure 3). These values were then used to calculate the 

Percentage Signal Recovery (PSR) as follow: PSR = (S1-Smin)/(S0-Smin).  
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Figure 3. CBV ROI positioned in the CBV map (left) with the correspondent signal intensity-time 

curve, on which PSR was calculated (right). 

 

 

Statistical Analysis 

 

Statistical analysis was conducted with R (www.R-project.org/). The results 

with p values of < 0.05 were considered statistically significative. 

Unpaired t-test was used to test difference between progression and responding 

groups for variable : ADC ratio, CE, PSR, rCBV at time T0, T1 and T2. We also 

tested age, incremental ratio of tumor dimensions ((sizeT0 - sizeT1)/sizeT0) 

and duration of radiotherapy.  Fisher’s exact test was performed on categorical 

variable such a gender. 

Significative data were utilized in the univariate logistic regressions adjusted 

for gender and age in order to determine odds ratios (with 95% confidence 

interval) for assessing risk factors. Finally, a multivariate logistic regression 

was performed on univariate significative variables. 
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Results 
 

 
 

The variables ADC ratio, rCBV, CE and PSR were calculated at T0 (before 

surgery), T1 (before RT) and T2 (after RT).   

Unpaired t-test was used to test difference between groups for above 

mentioned variables for each time point, in addition to age, to the incremental 

ratio of the size of the pre and post operative tumor and to the duration of RT. 

The t-test presented statistical significant differences between the groups 

“progression” and “response” at T1 for the variables ADC ratio, PSR and rCBV 

(p value respectively of 0.03, 0.007 and 0.01) (Figure 4). The other variables at 

T1 and the variables calculated at T0 and T2 did not present statistical significant 

differences between the groups.  

The group “pseudoprogression” was not statistically tested because of the small 

number of patients. 
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Figure 4. Box-plots represent significant differences between the groups “progression” and “response” 

respectively for ADC ratio, rCBV and PSR. 

 

The significant data were utilized in the univariate logistic regression in order 

to determine odds ratios (OR) for assessing risk factors.  
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For the group “progression” the univariate analysis with these variables, 

adjusted for gender and age, identified ADC ratio and rCBV as predictors of 

progression. 

In particular, ADC ratio (p = 0.03) presented an OR at 0.080 with a confidence 

interval (C.I.) of 0.008-0.054, while rCBV (p = 0.05) presented an OR at 1.48 

with a C.I. of 0.999-2.198.  

The two predictors mentioned above were used in multivariate analysis, in 

which ADC ratio remained the strongest predictor of progression (p = 0.05) 

with an OR at 0.057 with a C.I. of 0.003-1.009 (Figure 5). 

For the group “response” the univariate analysis with the same variables, 

adjusted for gender and age, identified ADC ratio, rCBV and PSR as predictors 

of response. In particular, ADC ratio (p = 0.04) presented an OR at 11.06 with 

a C.I. of 1.041-117.616, rCBV (p = 0.03) presented an OR at 0.56 with a C.I. 

of 0.335-0.962 and PSR (p = 0.04) presented an OR at 1.00 with a C.I. of 

1.000-1.017. In the subsequent multivariate analysis with these three 

predictors, PSR remained the strongest predictor of response (p = 0.04) with an 

OR at 1.01 with a C.I. of 1.000-1.024 (Figure 6). 

 

 
 

Figure 5. Age- and gender-adjusted and multivariate-adjusted odds ratio and 95% confidence intervals of 

variables for the group “progression”. 
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Figure 6. Age- and gender-adjusted and multivariate-adjusted odds ratio and 95% confidence intervals of 

variables for the group “response”. 

 
 
 
 
 

Discussion 
 
 

The RANO criteria were proposed in 2010 by the RANO Working Group with 

the purpose of overcoming the limitations of previous Macdonalds criteria [6]. 

The main innovations consist in the introducion of nonenhancing lesions (only 

observable in T2-weighted images) in the evaluation of MR images and in 

adding a better definition of how to take measurements of enhancing lesions..	

Currently this type of evaluation, in association with the clinical condition of 

the patient, determines whether there has been a progression of the disease, a 

partial response, a complete response or stability of the disease. 

The RANO criteria also introduce the assessment of the effects of 

chemoradiotherapic treatment, in particular the phenomena of 

pseudoprogression and pseudoresponse [6]. 

Pseudoprogression is a subacute treatment-ralated change characterized by a 

transient increase of contrast enhancement, after irradiation and chemotherapy 

with temozolomide, in the absence of tumor. It usually develops <6 months 
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after RT with self-limited enhancing lesions that spontaneously stabilize and 

resolve within 2-6 months without any new treatment [19]. This phenomenon 

is most likely induced by a pronounced local tissue reaction with an 

inflammatory component, oedema and abnormal vessel permeability causing 

new or increased contrast enhancement on MR imaging examinations [20]. 

Transient increases in contrast enhancement just after completion of 

chemoradiotherapy play an important role in clinical management of patients 

with cancer because they complicate the ability of physician to determine 

whether to continue with standard adjuvant chemotherapy or to switch to a 

second-line therapy for recurrence. Thus, the detection of pseudoprogression 

versus true progression is a critical important issue in oncology practice [20]. 

In our cohort of patients we have identified 3 patients with pseudoprogression, 

in which we observed the appearance of an enhancing lesion at MR imaging at 

T2 after 1 month of the end of RT with net reduction or complete disappearance 

in the subsequent MR controls (Figure 7). 

Because of the small number of these patients, it was not possible to perform 

statistical tests to determine the role of the advanced MR techniques in the 

differential diagnosis between pseudoprogression and progression neither to 

test if advance MR parameters might constitute a predictor for future 

development of pseudoprogression. 

However, several studies have revealed that advanced MR techniques allow to 

differentiate pseudoprogression and true progression. Mangla et al. [21] and 

Tsien et al. [22] demonstrated a reduction in rCBV in patients with 

pseudoprogression and an increse in rCBV in tumor progression. Prager et al. 

[19] found higher diffusion and lower perfusion values in treatment-related 

changes, and in particular in pseudoprogression, than in recurrent tumour, in 

patients with HGGs and these results reflect the lower cellularity and 

vascularity of treatment-related changes, respectively, and suggest that DWI 
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and DSC perfusion are useful tools in discriminating treatment-related changes 

from recurrent tumour.  

The above-mentioned characteristics were identified also in 3 patients of our 

cohort (Figure 7). 

 

               
 
Figure 7. A case of pseudogrogression. Appearance of an enhancing lesion at MR imaging after 

about 1 month after the end of RT with complete disappearance in the subsequent MR control. 

 
With regard to the phenomenon of pseudoresponse, antiangiogenic agents, 

especially those targeting vascular endothelial growth factor (VEGF), such as 

bevacizumab, and the VEGF receptor, such as cediranib, can produce marked 

decrease in contrast enhancement as early as 1 to 2 days after initiation of 

therapy and commonly result in high radiologic response rates of 25% to 60% 

[23-26]. These apparent responses to antiangiogenic therapy may be partly a 

result of normalization of abnormally permeable tumor vessels and not always 

necessarily indicative of a true antiglioma effect. As a result, radiologic 

responses in studies with antiangiogenic agents should be interpreted with 

caution. For this reason, the RANO criteria suggest that radiologic responses 

should persist for at least 4 weeks before they are considered as true responses 

[6]. 
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In our cohort, one patient receiving bevacizumab presented pseudorensponse. 

In this patient, the decrease of contrast enhancement and of rCBV after the 

initiation of the therapy could be interpreted as a response, but at T2-weighted 

images we observed an extensive neoplastic diffusion with bilateral 

nonenhancing and not measurable lesions, confirmed by MR Spectroscopy 

Imaging (Figure 8). 

 

  
 
Figure 8. A case of pseudoresponse. Reduction of contrast enhancement and of rCBV after therapy; 

in T2-weighted images, extensive neoplastic diffusion with bilateral nonenhancing and not 

measurable lesions, confirmed by MR Spectroscopy Imaging extends beyond the corpus callosum 

indicating tumour progression despite the disappearance of contrast enhancement. 

 
 
 
The RANO criteria allows to establish the presence of progression or response 

only after chemoradiotherapy.  

In recent years various prognostic genetic markers have been identified in 

GBM, including methylation status of the gene promoter for O6-

methylguanine-DNA methyltransferase (MGMT), isocitrate dehydrogenase 

enzyme 1/2 (IDH1/2) mutation, epidermal growth factor receptor (EGFR) 

overexpression and amplification, glioma-CpG island methylator phenotype 

(G-CIMP), tumor protein (TP53) mutation and genetic losses of chromosomes 
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[27]. For example, it has been amply demonstrated that methylation of MGMT 

causes silencing of the gene and interference with DNA repair and increases 

TMZ sensitivity while an unmethylated promoter for MGMT, results in active 

gene expression and high levels of the repair enzyme that results in 

chemotherapy resistance [28,29]. It is also known that IDH1 mutated high 

grade gliomas arise by transformation from lower-grade gliomas and have 

distinguishing radiographic, histologic and transcriptional features (frontal 

location and lesser extent of contrast enhancement and necrosis) that are 

consistent with a less aggressive clinical course. IDH1 mutated high grade 

gliomas have a more favourable prognosis than the ones without IDH1 

mutation [27,30]. 

The results of the present study suggest that MR advanced techniques allow us 

to identify some predictors of response or progression to chemoradiotherapy in 

patients with High Grade Gliomas, in particular DWI and DSC perfusion at T1 

or rather in the MR examination after surgery and before the start of the 

therapy. 

Diffusion and perfusion MR imaging provides physiologic information that is 

not available with conventional MR imaging [19]. DWI measures the motility 

of water molecules and alterations in the balance of intracellular and 

extracellular water restricted by cell membranes and other structures. Areas of 

diffusion restriction in tumours are correlated with increased tumour cellularity 

[31]. The greater is the cellularity of the tumour and the lowest is the ADC 

value, because the diffusivity of water is reduced in consequence of the relative 

decrease of the extracellular space for the movement of protons. Studies carried 

out by Bulakbasi et al [32], Fan et al [33] and Arvinda et al [34] have shown 

that there is inverse correlation between the degree of gliomas and ADC: 

higher is the tumour cellularity and grade of glioma, lower is the ADC value. 

DSC MR perfusion is an advanced technique that provides independent 
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information on neoangiogenesis, vascular attenuation, and microvascular 

leakiness [20,21]. These features are indicative of the aggressiveness of tumors 

and, as demonstrate by several studies, high-grade gliomas have a greater 

degree of perfusion and rCBV compared to those low-grade, due to a major 

neoangiogenesis [34-40]. 

In recent years, some authors have tried to determine if MR advanced 

techniques can be used to predict the patient response to concurrent 

chemoradiotherapy with temozolomide, evaluating contrast-enhancing lesions 

detected on immediate post-operative MR imaging. Lee et al [41] showed that 

the normalized CBV (nCBV) on immediate post-operative MR imaging was 

significantly higher in the progression group than in the non-progression group 

(p = 0.033) and so it may be feasible for predicting glioblastoma response to 

chemoradiotherapy with temozolomide. In the mentioned-above study 

normalized ADC and other parameters evaluated showed no significant 

differences between the two groups and the could not be used to predict the 

treatment response. Kim et al [42] showed that nCBV value can be used for the 

prognosis prediction of a measurable enhancing lesion after the completion of 

standard treatment for GMB, wherein a high 99th percentile nCBV value 

(>4.5) suggests a better PFS for GBM patients. Conversely, a low 99th 

percentile nCBV values seem to indirectly reflect hypoxic conditions, which 

could make cancer cells more aggressive and resistant to treatment. Also in this 

study ADC was not significantly different between the two groups. 

In our study, for the group “progression” the univariate analysis, adjusted for 

gender and age, identified ADC ratio and rCBV as predictors of progression 

with OD respectively of 0.080 and 1.48 and C.I. respectively of 0.008-0.054 

and 0.999-2.198. In the subsequent multivariate analysis only ADC ratio 

remained the strongest predictor of progression (p = 0.05) with an OR at 0.057 

with a C.I. of 0.003-1.009. 
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According to the results of our study, a low ADC ratio at T1 before the 

initiation of therapy implicate a higher probability of a progression of the 

disease after chemoradiotherapy. 

For the group “response” the univariate analysis, adjusted for gender and age, 

identified ADC ratio, rCBV and PSR as predictors of response with OD 

respectively of 11.06, 0.56 and 1.00 and C.I. respectively of 1.041-117.616, 

0.335-0.962 and 1.000-1.017. In the subsequent multivariate analysis only PSR 

remained the strongest predictor of response (p = 0.04) with an OR at 1.01 with 

a C.I. of 1.000-1.024. 

PSR is a measure of permeability influenced by leakage of contrast and the size 

of the extravascular space, with lower PSR reflecting higher permeability [19]. 

Capillary permeability is another feature of angiogenesis in high-grade 

gliomas. PSR, obtained from a DSC perfusion MR technique, gives similar 

information to  Ktrans obtained with DCE perfusion, which is an estimation of 

the capillary permeability based on measuring the contrast leakage rate 

between the intravascular and extravascular spaces. Several studies showed 

that it generally correlates with histological grading and length of survival in 

gliomas [43-47]. 

According to the results of our study a high value of PSR at T1 before the 

initiation of therapy implicate a higher probability of a response of the patients 

after chemoradiotherapy. 

Apart from the intrinsic limits of any retrospective study, a number of other 

limitations of the present study should be mentioned. First, this study included 

a small number of patients and this might have resulted in selection bias. The 

small number of the patients is due to the rigidity of the inclusion criteria; 

furthermore, often follow-up examinations are not performed in the same 

centre and, if performed in periferic centres, perfusional study is not present. 
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Therefore, large population studies are required to validate our results. Second, 

we used multiple MRI scanners with different field strnght (1.5 and 3.0 T 

scanners) and the scan parameters are slightly different for each machine. 

Although we normalized the CBV and ADC values to minimize the effects of 

the different magnetic field strengths, there could be a slight bias in the image 

analysis of the ADC and CBV maps. 

 

 
 

Conclusions 
 

MR advanced techniques, in particular diffusion with ADC and perfusion with 

PSR, have proved a valuable aid in predicting respectively progression and 

response of glioblastomas to chemoradiotherapy. 
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