

Scuola di Ingegneria

Dipartimento di Ingegneria dell'energia, dei sistemi, del territorio e delle costruzioni

Corso di Laurea Magistrale in Ingegneria Energetica

Analisi delle prestazioni off design di cicli flash a fluido organico

Relatori

Dott. Ing. Antonelli Marco Prof. Ing. Umberto Desideri

> Candidato Andrea Garzella

Anno Accademico 2015/2016

Abstract

Lo sfruttamento del calore di scarto industriale o delle sorgenti termiche a bassa temperatura, ha portato a studiare delle evoluzioni degli impianti ORC in modo da avere miglior prestazioni. Uno dei problemi del ciclo Rankine è la fase di evaporazione, in cui si creano irreversibiltà a causa dello scambio termico a differenza finita di temperatura. Una soluzione proposta da Tony Ho[6] è il ciclo Flash, in cui la fase di evaporazione è rimpiazzata da una valvola di laminazione. Le irreversibilià dell'evaporazione vengono quindi sostituite dalle irreversibiltà della laminazione, ma a vantaggio del ciclo Flash. L'utilizzo di fluidi organici come fluidi operativi porta a denominare l'impianto OFC (organic flash cycle).

Questo lavoro prende in considerazione un modello di ciclo Flash con e senza rigenerazione a isopentano, tramite il software di simulazione Aspen HYSYS, e ne studia la miglior strategia di controllo alla variazione della sorgente termica. Il software tiene in considerazione la variazione delle prestazioni dei dispositivi utilizzati, variando il rendimento e la velocità di rotazione dell'espansore e modificando le temperature ottenute dalla risoluzione degli scambiatori di calore. Lo studio è stazionario, quindi è stato considerato un insieme discreto di valori di temperatura e portata della sorgente termica, ottenendo una serie di valori del rendimento e della potenza utile dell'impianto.

Indice

In	trod	uzione		1
1	Cic	li Ranl	kine e Flash a fluido organico	3
	1.1	Ciclo I	Rankine	. 3
	1.2	Cicli I	Rankine a fluido organico (ORC)	. 3
	1.3	Cicli p	per il recupero di calore a bassa temperatura	. 5
	1.4	Applic	cazioni	. 6
	1.5	Cicli I	Flash a fluido organico (OFC)	. 7
2	\mathbf{Svil}	uppo o	del modello	12
	2.1	Sorger	nte termica	. 12
	2.2	Analis	si preliminare	. 12
	2.3	Confre	onto cicli Flash e Rankine	. 16
	2.4	Costru	uzione del modello in HYSYS	. 19
		2.4.1	Dimensionamento espansore	. 19
		2.4.2	Ciclo OFC non rigenerato	. 23
		2.4.3	Ciclo OFC con rigenerazione	. 26
3	\mathbf{Sim}	ulazio	ni e risultati	29
	3.1	Sliding	g Pressure	. 30
	3.2	Sliding	g Velocity	. 33
	3.3	Sliding	g Pressure and Velocity	. 34
	3.4	Confre	onto strategie	. 36
	3.5	Mappe	e isorendimento	. 39
	3.6	Curve	e di potenza	. 50
4	Cor	nclusio	ni	54
$\mathbf{A}_{]}$	ppen	dice		55
Bi	bliog	grafia		59

Elenco delle figure

1.1	Schema ciclo Rankine	3
1.2	Diagramma T-s con le curve di saturazione di diversi fluidi	4
1.3	Eq. 1.1. Produzione di entropia in funzione della differenza di temperatura in un	
	processo irreversibile.	8
1.4	Andamento temperature in un ciclo Rankine con surriscaldamento.	8
1.5	Andamento temperature durante lìadduzione di calore in diversi casi: A) ciclo con	
	miscela zeotropica, B) ciclo transcritico, C) ciclo Flash.	9
1.6	Confronto ciclo Flash e Rankine per la stessa sorgente termica	10
1.7	Schema funzionamento ciclo Flash a fluido organico	10
1.8	Schema funzionamento ciclo Flash rigenerativo e diagramma T-s.	11
2.1	Diagramma T-s ciclo Flash	12
2.2	Potenza netta di diversi fluidi in funzione della temperatura di flash $\ldots \ldots \ldots \ldots$	14
2.3	Curva potenza in funzione della temperatura di flash per l'isopentano. $\ldots \ldots \ldots$	15
2.4	Pinch point ciclo Rankine.	16
2.5	Andamento del rendimento e della potenza al variare della temperatura della sorgente	
	termica per ciclo Rankine, Flash con e senza rigenerazione. $\ldots \ldots \ldots \ldots \ldots$	17
2.6	Produzione di irreversibilità	18
2.7	Irreversibilità nei cicli Flash con e senza rigenerazione e Rankine	18
2.8	Coefficiente di riempimento in funzione del numero di giri del motore. \ldots	19
2.9	Ciclo espansore	20
2.10	Curve di potenza.	23
2.11	Curve di efficienza.	23
2.12	Schema impianto OFC in HYSYS.	24
2.13	Layout scambiatore di calore.	25
2.14	Andamento delle temperature dei fluidi nello scambiatore di calore. \ldots	25
2.15	Layout condensatore.	25
2.16	Andamento delle temperature dei fluidi nel condensatore. \ldots \ldots \ldots \ldots \ldots \ldots	26
2.17	Schema impianto OFC rigenerativo in HYSYS.	27
2.18	Layout scambiatore di calore.	27
2.19	Andamento temperature scambiatore di calore.	27
2.20	Layout condensatore	28
2.21	Andamento temperature condensatore.	28
3.1	Variazione portata con T costante a 180°C. Caso senza rigenerazione. $\ldots\ldots\ldots\ldots$	31
3.2	Variazione portata con T costante a 180°C. Caso con rigenerazione. $\ldots\ldots\ldots\ldots$	31
3.3	Variazione temperatura con M costante a 180 kg/h. Caso senza rigenerazione. \ldots .	32
3.4	Variazione temperatura con M costante a 180 kg/h. Caso con rigenerazione. \ldots \ldots	33
3.5	Variazione portata con T costante a 180 °C e pressione di la minazione di 9,65 bar. $\ .\ .$.	34
3.6	Variazione temperatura con M costante a 540 kg/h e pressione di laminazione di $9{,}65$	
	bar	34
3.7	Variazione portata con T costante 180 °C.	35
3.8	Variazione temperatura con M costante a 540 kg/h. \ldots	35
3.9	Caso senza rigenerazione con M costante.	36

3.10	Caso con rigenerazione con M costante.	37
3.11	Caso senza rigenerazione con T costante.	37
3.12	Caso con rigenerazione con T costante.	38
3.13	Confronto con e senza rigenerazione con T costante a 180 °C per SP a 1500 rpm e SPV.	38
3.14	Confronto con e senza rigenerazione con M costante a 540 kg/h per SP a 1500 rpm e	
	SPV	39
3.15	Sliding pressure 1000 rpm. Caso senza rigenerazione.	40
3.16	Sliding pressure 1500 rpm. Caso senza rigenerazione.	40
3.17	Sliding pressure 2000 rpm. Caso senza rigenerazione.	41
3.18	Sliding pressure 1000 rpm. Caso con rigenerazione.	42
3.19	Sliding pressure 1500 rpm. Caso con rigenerazione.	42
3.20	Sliding pressure 2000 rpm. Caso con rigenerazione.	43
3.21	Sliding velocity. Caso senza rigenerazione.	43
3.22	Sliding velocity. Caso con rigenerazione.	44
3.23	Sliding pressure velocity. Caso senza rigenerazione	45
3.24	Sliding pressure velocity. Caso con rigenerazione.	45
3.25	Sliding pressure a 1500 rpm con inverter. Caso con rigenerazione.	46
3.26	Confronto con e senza rigenerazione con T costante a 180 °C per SP a 1500 rpm e SPV.	
	A) Portata costante. B) Portata variabile.	47
3.27	Confronto con e senza rigenerazione con M costante a 540 kg/h per SP a 1500 rpm e	
	SPV. A) Portata costante. B) Portata variabile.	47
3.28	Sliding pressure a 1500 rpm con portata variabile. Caso senza rigenerativo.	48
3.29	Sliding pressure a 1500 rpm con portata variabile. Caso con rigenerazione.	49
3.30	Sliding pressure velocity con portata variabile. Caso senza rigenerazione.	49
3.31	Sliding pressure velocity con portata variabile. Caso con rigenerazione.	50
3.32	Curva di potenza per sliding pressure a 1500 rpm e portata variabile. Caso senza	
	rigenerazione.	51
3.33	Curva di potenza per sliding pressure a 1500 rpm e portata variabile. Caso con rigene-	
	razione.	52
3.34	Curva di potenza per sliding pressure velocity e portata variabile. Caso senza rigenera-	
	zione	52
3.35	Curva di potenza per sliding pressure velocity e portata variabile. Caso con rigenera-	
	zione	53
3.36	Curva di potenza per sliding pressure a 1500 rpm e portata variabile con inverter. Caso	
	con rigenerazione.	53
1	TEMA sheet: scambiatore di calore per l'impianto senza rigenerazione.	55
2	TEMA sheet: condensatore per l'mpianto con rigenerazione.	56
3	TEMA sheet: scambiatore di calore per l'impianto con rigenerazione.	57
4	TEMA sheet: condensatore per l'impianto con rigenerazione.	58

Introduzione

L'interesse nelle sorgenti termiche a bassa temperatura è aumentato enormemente nell'ultima decade. Il grande consumo di combustibili fossili, il loro esaurimento e l'inquinamento atmosferico hanno raggiunto ormai livelli inaccettabili. La soluzione più promettente è ricorrere alle fonti rinnovabili in modo da diminuire la dipendenza dalle fonti fossili e ridurre le emissioni di inquinanti. Inoltre per soddisfare la domanda crescente di energia elettrica sarà necessario avere una grande affidabilità negli impianti che sfruttano sorgenti termiche rinnovabili. Uno dei problemi principali delle fonti rinnovabili, oltre alla loro aleatorità, è la bassa densità energetica, non è possibile quindi costruire impianti competitivi economicamente a elevata produzione elettrica senza occupare un vasto territorio. Oltre alla combustione delle biomasse, ritenuta ormai una fonte rinnovabile dato il pari bilancio di anidride carbonica prodotta e convertita durante il tempo di vita, l'eolico e altre risorse di minor utilizzo, la risorsa solare assume una notevole importanza in questo ambito. In particolar modo l'utilizzo dell'energia radiativa solare per la produzione elettrica mediante cicli termodinamici è uno dei campi più importanti in ambiente di ricerca, perché rappresenta una possibile risorsa affidabile nel tempo. Il problema della bassa densità energetica porta ad avere cicli termodinamici di bassa o media temperatura, sfruttabili grazie all'utilizzo dei fluidi organici.

Un'altra fonte per l'energia elettrica e termica è il calore di scarto nelle industrie. Mentre nel passato questa energia termica, chiamata waste heat, veniva rilasciata e persa nell'ambiente, negli ultimi anni si sta cercando di riutilizzarla e riesaminarla come potenziale fonte termica. Anche in questo caso però, le temperature disponibili sono basse, e raramente superano i 350°C. Uno svariato numero di studi è stato svolto per analizzare la possibile applicazione di cicli termodinamici a questa fonte, per industrie del cemento [1], per industrie metallurgiche, alimentari, per cartiere e quant'altro. Solitamente il ciclo termodinamico utilizzato è il ciclo Rankine [2], perché è di semplice progettazione, economico, e inoltre, ha ormai raggiunto una età tecnologicamente avanzata, che lo rende affidabile e competitivo. Questo perché il ciclo Rankine è il ciclo utilizzato per la produzione di energia elettrica dalla combustione dei combustibili fossili, utilizzando acqua come fluido operativo e quindi è molto conosciuto. Per sorgenti a bassa temperatura, minore di 250°C, il ciclo Rankine perde leggermente i suoi vantaggi a causa dell'utilizzo dell'acqua come fluido operativo: il vapore assume valori troppo alti di volume specifico e quindi una portata volumetrica eccessiva, bassa pressione al condensatore e bassa pressione in caldaia, necessaria per applicare il surriscaldamento richiesto per non avere condensa all'interno della turbina. Si ricorre quindi a fluidi organici, che mantengono valori di volume specifico più basso rispetto al vapore, e, dato il loro elevato numero, sono estremamente versatili in termini di pressione di condensazione e di caldaia; inoltre la maggior parte di essi hanno la linea di vapor saturo positiva o verticale, evitando problemi di condensa all'interno della turbina.

Per migliorare le prestazioni termodinamiche del ciclo Rankine per basse temperature di sorgente, sono state sviluppate diverse evoluzioni [3, 4, 5], una in particolare è il ciclo Flash, ovvero si sostituisce la fase di evaporazione con una valvola di laminazione e si espande il vapore separato [6]. Negli ultimi anni Tony Ho¹ è stato uno dei maggior studiosi di questo tipo di ciclo, analizzandone anche diversi sviluppi [7]. La nascita del ciclo Flash è data dalla perdita di irreversibilità che si ha nello scambio termico a differenza finita di temperatura, fattore determinante nella fase di evaporazione [8], la sostituzione di questa fase con una semplice laminazione introduce però un altro tipo di irreversibiltà;

¹Department of Mechanical Engineering, University of California-Berkeley, Etcheverry Hall, Berkeley, CA 94720, USA.

il confronto fra questi due valori è a favore della laminazione, ma solo per bassi salti di pressione [6]. Ovviamente vengono utilizzati i fluidi organici, per gli stessi vantaggi visti precedentemente, da cui il nome OFC (*organic Flash cycle*). La scelta del fluido organico rappresenta un passo chiave nella fase di progettazione dell'impianto: sono fattori determinanti la temperatura della sorgente e la temperatura di condensazione, da cui ne derivano le rispettive pressioni.

La tecnologia OFC è quindi recente e in questo lavoro si cerca di analizzare le strategie di controllo che massimizzano le prestazioni del ciclo nel funzionamento off design, mediante una ricerca dei parametri del ciclo che ottimizzano il rendimento in condizioni stazionarie, per una serie discreta di valori della sorgente.

1 Cicli Rankine e Flash a fluido organico

1.1 Ciclo Rankine

I cicli Rankine sono cicli termodinamici di potenza appartenenti alla categoria di sistemi energetici a combustione esterna, in cui il fluido di lavoro assorbe calore da un altro fluido caldo mediante uno scambiatore di calore senza contatto diretto tra i due. Il ciclo ideale è costituito da 4 trasformazioni: pompaggio adiabatico in fase liquida, riscaldamento isobaro con evaporazione e eventuale surriscaldamento, espansione adiabatica in turbina e infine la condensazione isobara.

Figura 1.1: Schema ciclo Rankine

La particolarità del Rankine è che la compressione avviene in fase liquida, mentre l'espansione in fase gassosa, in cui il fluido ha un volume specifico significativamente più elevato e quindi rendendo possibile estrarre un maggior elevato lavoro specifico. I cicli Rankine si possono suddividere in base alla pressione di evaporazione in cicli subcritici, transcritici o supercritici, ovvero in cui, rispettivamente, la pressione di evaporazione è inferiore a quella critica, è sopra quella critica ma la condensazione è sub-critica, è superiore alla pressione critica come la pressione di condensazione.

1.2 Cicli Rankine a fluido organico (ORC)

Molte applicazioni industriali e civili di recupero termico e non, richiedono di produrre energia elettrica da sorgenti a bassa temperatura (<300 °C). In questi casi non è possibile sfruttare i cicli Rankine a vapore per una serie di complicazioni. La bassa densità al condensatore comporta deareatori per prelevare l'aria eventualmente infiltrata, che graverebbe sul funzionamento dello scambiatore; l'elevato volume specifico del vapore porta a valori di portata volumetrica elevati, quindi a grosse turbine e maggiori costi d'impianto. Inoltre è richiesta una elevata pressione in caldaia, per poter attuare il surriscaldamento necessario al fine di evitare la condensa in turbina. Per questo si utilizzano i fluidi organici, perché hanno delle temperature di ebollizione più basse, volumi specifici del vapore minori e quindi sono più versatili.

Esistono una moltitudine di fluidi organici e il progresso ne scopre sempre di nuovi. L'architettura del ciclo, il dimensionamento dei singoli dispositivi, il costo complessivo sono fattori altamente influenzati dalla scelta del fluido, che si rivela essere la parte chiave della progettazione di un ciclo Rankine. Infatti da fluido a fluido cambiano le proprietà termofisiche, il costo e la pericolosità per l'ambiente e per l'uomo. Inoltre, mentre le proprietà dell'acqua sono note in qualsiasi range di temperatura e pressione, alcune caratteristiche di determinati fluidi organici sono ancora ignote, mentre altre sono calcolate da differenti database, che utilizzano equazioni di stato diverse, fornendo quindi dei valori diversi, rendendo difficile un paragone diretto tra di essi.

La maggior parte dei fluidi organici ha una temperatura di ebollizione (*NBP normal boiling point*) più bassa rispetto all'acqua. La Fig. 1.2 mostra diversi fluidi che possono essere utilizzati nei ORC e l'acqua. La pendenza della linea di saturazione del vapore può essere negativa, come quella dell'acqua e in questo caso si parla di *wet fluid*, può essere positiva, come per l'isobutano (*dry fluid*) oppure infinita, come il fluido R11 (*isoentropic fluid*). I fluidi con pendenza positiva o verticale forniscono enormi vantaggi per la progettazione dell'espansore: infatti espandendo il fluido a fine evaporazione, senza surriscaldamento, non c'è pericolo di creare condensa all'interno dell'espansore, evitando quindi tutti i problemi strutturali e di corrosione che derivano dalla formazione di gocciole di liquido in turbina, limitandone la vita e l'efficienza; inoltre si possono utilizzare evaporizzatori più economici evitando di inserire la parte dedicata al surriscaldamento. Nel caso dell'acqua è necessario fornire del calore in più a fine evaporazione per ottenere un titolo a fine espansione di almeno 0. 85. Altro problema dell'acqua è la bassa densità del vapore, ma, ancor più importante, è l'elevata differenza di densità tra il liquido e il vapore, di circa 3 ordini di grandezza², che comporta elevate dimensioni dell'espansore, difficoltà nella progettazione e quindi elevati costi.

D'altra parte si nota dalla figura l'enorme differenza di entropia tra le due linee di saturazione del liquido e del vapore dell'acqua, mentre nei fluidi organici le due linee sono relativamente vicine; di conseguenza l'acqua necessita di molta più energia per la fase di evaporazione, operando con una maggiore energia specifica nella portata, ovvero ho più energia per kg di acqua. Di conseguenza ha il vantaggio di avere una minor portata rispetto ai fluidi organici con la stessa sorgente termica. Inoltre con minor portata diminuiscono i costi per i consumi della pompa e per le tubazioni e diminuiscono le dimensioni medie dell'impianto.

Figura 1.2: Diagramma T-s con le curve di saturazione di diversi fluidi

 $^{^{2}960,59}$ contro i 0,57824 kg/m³

La scelta del fluido organico è una fase importante della progettazione dell'impianto, e dipende sostanzialmente dalla densità del fluido organico, dalla differenza di pressione all'espansore, dalla pressione di condensazione e dall'impatto ambientale. Sono diversi i lavori che hanno analizzato questo tipo di problema, Bahaa Saleh [9] ha analizzato il comportamento di uno screening di 31 fluidi puri come fluidi operativi di un Rankine usando le equazioni di stato *BACKONE*, per diverse temperature e pressioni di ciclo, talvolta supercritico, concludendo che il surriscaldamento per alcuni fluidi non è conveniente se non messo in parallelo con uno scambiatore recuperativo interno, mentre altri fluidi l'efficienza diminuisce surriscaldando. Altro lavoro interessante è l'articolo di Vivian [10], in cui spiega come la differenza tra la temperatura della sorgente calda e la temperatura critica del fluido di lavoro sia un parametro chiave nella scelta del fluido operativo, da cui dipendono i valori ottimali e come variano questi parametri in funzione della configurazione del sistema; sono proposte anche alcune linee guida per la scelta del fluido, da cui si può ottenere il miglior design per ottimizzare la potenza in uscita.

La densità è un parametro chiave per la scelta del fluido perché diversi componenti dipendono dal flusso volumetrico, quindi più è alta la densità, minore è la portata volumetrica e di conseguenza minori sono le dimensioni dei componenti. Nella maggior parte dei fluidi organici la densità del vapore è di circa 1 ordine di grandezza inferiore, è quindi più semplice la progettazione dell'espansore, del condensatore e, inoltre, diminuiscono le dimensioni delle tubazioni, diminuendo complessivamente il costo dell'impianto

Le differenze di pressione, di entalpia e di densità alle flange dell'espansore sono i parametri principali per la progettazione dell'espansore: nei cicli a vapore l'alta differenza di pressione comporta un espansore a diversi stadi di espansione, per ridurre le perdite exergetiche e produrre più lavoro; nei ORC la stessa differenza di pressione è bassa e uno o al massimo due stadi di espansione sono più che sufficienti per diversi fluidi organico.

Altra caratteristica importante è la pressione di condensazione, infatti solitamente è maggiore della pressione atmosferica per evitare infiltrazione d'aria, quindi la temperatura di condensazione deve risultare adeguata alla sorgente fredda che si ha a disposizione. Per avere un idea basti pensare che a 20 °C l'acqua ha una pressione di saturazione di 0. 023 bar, mentre alla stessa temperatura l'R11 condensa a 1,05 bar, l'isobutano a 3,49 bar e l'R245fa a 2,71 bar.

Infine da non sottovalutare è la pericolosità del fluido, sia a livello di impatto ambientale, sia in funzione dell'uomo: mentre l'acqua è un fluido perfetto da questo punto di vista, diversi fluidi organici hanno un impatto negativo sull'effetto serra e sulla formazione dell'ozono, allo stesso tempo alcuni sono infiammabili e tossici³.

1.3 Cicli per il recupero di calore a bassa temperatura

L'energia termica recuperata da una sorgente a bassa temperatura non può essere convertita in potenza elettrica mediante cicli a vapore Rankine. In termini di efficienza i cicli a vapore restano superiori se la temperatura non è bassa, ma a costi eccessivi ai fini del recupero termico. Sono stati studiati altri cicli oltre a quello ormai affermato Rankine a fluido organico,che possono garantire discrete efficienze a costi relativamente ridotti.

 $^{^3}$ Infatti dal 1° Gennaio 2015 sono stati vietati dal regolamento CE 1005/2009 i fluidi contenenti R22, perché altamente influenti della riduzione dell'ozono.

Il ciclo Kalina è stato sviluppato per la conversione di energia a bassa temperatura in potenza elettrica negli anni '80 da Alexander Kalina. Il fluido operativo consiste in una miscela bicomponente, tipicamente ammoniaca e acqua in modo da ridurre le irreversibiltà termodinamiche e aumentare l'efficienza del ciclo. Infatti usando un fluido binario l'evaporazione non è isoterma, quindi la temperatura cresce fornendo calore e, di conseguenza, c'è una minor differenza di temperatura tra i due fluidi, diminuendo le irreversibilità termiche. Studi recenti [3] però mostrano come l'ORC sia attualmente più vantaggiosio rispetto al KC (*Kaline Cycle*).

Il ciclo Goswami è un recente ciclo termodinamico sviluppato per produrre sia energia elettrica sia per avere refrigerazione. È stato studiato dal Yogi Goswami [4] nel 1998 e usa come fluido di lavoro una miscela bicomponente, solitamente ammoniaca e acqua. È una combinazione tra un ciclo ad assorbimento e un ciclo Rankine: il fluido viene pompato ad alta pressione e quindi preriscaldata e portato alla caldaia, dove in parte evapora; il vapore viene poi fatto espandere in turbina e fatto successivamente condensare mediante assorbimento, può essere portato a temperature inferiori a quella ambiente, fornendo inoltre un energia refrigerante; la parte rimanente dalla caldaia viene usata per preriscaldare il fluido di lavoro e poi inviata all'assorbitore mediante valvola di laminazione. Avendo due uscite di energia utile aumenta l'efficienza di conversione, che si rivela alta considerando le basse temperature di sorgente.

Infine un altro ciclo che è in via di sviluppo è il ciclo flash trilaterale, dove il fluido di lavoro viene fatto espandere in turbina direttamente all'uscita dell'economizzatore, quindi l'espansione inizia dalla linea di saturazione liquida. Il principale beneficio è l'ottima differenza di temperatura tra sorgente e ciclo, che diminuisce le perdite di irreversibilià grazie alla assenza della fase di ebollizione. L'inconveniente che blocca lo sviluppo di questo ciclo è la progettazione dell'espansore bifase.

1.4 Applicazioni

I cicli Rankine a fluido organico sono quindi ottimali per tutte quelle applicazioni in cui l'energia termica da convertire deriva da una sorgente a bassa temperatura, fino a circa 300 °C.

Inizialmente uno dei campi di applicazione più analizzato è il geotermico, infatti è una fonte di energia rinnovabile presente in un numero elevato di paesi, ma la maggior parte delle sorgente è a bassa temperatura.

Altra applicazione importante sono le biomasse, che dopo la crisi del petrolio stanno riprendendo velocemente mercato. Infatti sono economiche e, dal punto di vista ambientale, sono innocue; possono usate sia per produrre energia elettrica sia per energia termica, in caso di impianti CHP, oppure trasformate mediante solo ORC in energia elettrica, anche se con minor efficienza termica [11].

Uno dei campi più utilizzato è il solare termico di potenza. I dischi parabolici, la torre solare o gli specchi parabolici lineari sono alcune delle tecnologie più usate per l'estrazione di energia termica dalla radiazione solare. La torre solare, quella più complessa dal punto di vista strutturale, può operare con temperature che raggiungono i 400 °C; anche se per lungo tempo si è usato un ciclo Rankine a vapore, che però non era molto efficiente data la sorgente aleatoria e le temperature non ottimali, il ciclo Rankine a fluido organico sembra essere una tecnologia promettente, con efficienze buone dal punto di vista economico: può lavorare a temperature più basse, quindi evita problemi in caso di temporanei cali di temperatura da parte della sorgente, ha componenti di impianto ridotti e costa di meno. Le altre tecnologie per il solare invece raggiungono a malapena i 250°C, quindi sorgente ottimali per i cicli Rankine a fluido organico.

Infine il campo per eccellenza attribuito ai cicli Rankine a fluido organico è il recupero del calore di scarto. Nella maggior parte dei processi industriali si ha del calore di scarto, come uno scarico caldo uscente da una turbina a gas o del calore rimasto da processi industriali che richiedono un calore di processo, che in passato veniva rilasciato direttamente in ambiente, mentre ora viene visto come potenziale fonte di alimentazione mediante un ORC per produrre energia elettrica e aumentare l'efficienza globale dell'impianto. Infatti in questi casi un ciclo a vapore è economicamente non accettabile, sia per i relativamente bassi rendimenti, sia per gli alti costi di impianto.

1.5 Cicli Flash a fluido organico (OFC)

Un'evoluzione dei cicli per il recupero termico da sorgenti a bassa temperatura è il ciclo Flash a fluido organico. Una delle maggiori fonti di irreversibilità per i cicli a vapore deriva dal processo di aggiunta del calore, scrive Tony Ho [6]. La risorsa termica e il fluido di lavoro devono essere separati da una differenza di temperatura per avere lo scambio termico; tuttavia lo scambio termico dato una una differenza finita di temperatura causa irreversibilità, quindi è importante mantenere un buon accoppiamento tra le temperature dei due flussi per minimizzare questo tipo di irreversibilità [12]: la produzione di entropia in un processo di scambio termico sotto una differenza di temperatura finita è esprimibile secondo la formula⁴

$$\Delta S = \mid Q \mid (\frac{1}{T_l} - \frac{1}{T_h})$$

Per un sistema aperto, il calcolo è stato approssimato ponendo la media integrata delle temperature:

$$\Delta \dot{S} = \mid \dot{Q} \mid (\frac{1}{\overline{T}_l} - \frac{1}{\overline{T}_h})$$

rappresentando $\overline{T}_h=\overline{T}_l+\varDelta T$, si può scrivere:

$$\Delta \dot{S} = \mid \dot{Q} \mid \frac{\Delta T}{\overline{T}_l(\overline{T}_l - \Delta T)}$$
$$\dot{I} = T_0 \Delta \dot{S}$$
(1.1)

Dalla 1.1 si vede come la produzione di irreversibiltà I aumenta all'aumentare della differenza di temperatura (Fig. 1.3⁵)

⁴Gouy-Stodola per un sistema chiuso.

 $^{^5 \}mathrm{Sono}$ stati utilizzati i seguenti valori: Q = 80 kW $T_l = 330 K$

Figura 1.3: Eq. 1.1. Produzione di entropia in funzione della differenza di temperatura in un processo irreversibile.

Per un ciclo di vapore in cui il fluido di lavoro è un fluido monocomponente, l'andamento della temperatura è inizialmente crescente, poi costante durante la fase di evaporazione e successivamente ancora crescente, in caso di surriscaldamento; allo stesso tempo la temperatura della sorgente termica è spesso lineare (Fig. 1.4).

Figura 1.4: Andamento temperature in un ciclo Rankine con surriscaldamento.

Il trend delle temperature causa quindi una distruzione di potenziale lavoro o exergia, e riduce l'efficienza dello scambiatore. Per minimizzare questo problema sono state proposte diverse soluzioni.

Utilizzare come fluido di lavoro una miscela zeotropica è la soluzione più studiata e proposta da diversi ricercatori. Le miscele zeotropiche hanno una particolare caratteristica per cui la fase di evaporazione a pressione costante avviene con una variazione di temperatura. Quindi, si nota dalla Fig. 1.5A, l'accoppiamento di temperature risulta migliore, evitando il cambiamento di fase isotermo. Questa riduzione di irreversibilità aumenta la potenza in uscita e il rendimento globale [13], a scapito di un impianto più complesso.

Un altro metodo suggerito per evitare la fase di evaporazione a temperatura costante, è utilizzare pressioni maggiori della pressione critica del fluido. Come si vede in Fig. 1.5B diminuisce l'andamento della differenza di temperatura tra i due fluidi. Un ciclo a vapore che opera in parte in condizioni supercritiche viene chiamato transcritico; i fluidi che si adattano meglio a questo tipo di ciclo sono l'anidride carbonica e l'elio[14]. Sebbene in teoria le prestazioni di un ciclo transcritico sono buone, sia in termini di efficienza sia in termini di scambio di calore, la progettazione di una turbina adatta è ancora in fase di sviluppo, infatti un fluido in condizioni supercritiche può avere entrambi i comportamenti da gas e da liquido.

Il ciclo flash trilaterale, come già visto sopra (1.3), evita completamente la fase di evaporazione entrando direttamente nell'espansore raggiunta la linea di saturazione del liquido. Lo scambio termico tra i due fluidi è ottimale dal punto di vista delle irreversibilità, come si vede in Fig. 1.5C. Tuttavia nei cicli trilateriali resta il problema dell'espansore bifase efficiente e affidabile. Uno studio recente ha fatto progressi riguardo espansori screw o scroll [5], ma lo studio di fattibilità è ancora in corso. Per evitare la fase di evaporazione è possibile laminare il liquido per poi separare la miscela in due flussi, uno liquido e uno gassoso che viene fatto espandere in una trubina convenzionale da ORC, quindi turbina affidabile e già in commercio. Quest'ultima soluzione è quindi un ciclo Flash simile ai cicli utilizzati per sfruttare sorgenti geotermiche di fluido caldo allo stato liquido e prende il nome di ciclo Flash a fluido organico (OFC).

Figura 1.5: Andamento temperature durante l'adduzione di calore in diversi casi: A) ciclo con miscela zeotropica, B) ciclo transcritico, C) ciclo Flash.

In questo modo si evita l'evaporazione a pressione costante e l'espansione bifase. Inoltre, al contrario del caso geotermico, utilizzando un fluido organico a fine espansione si ottiene vapore secco, evitando i problemi di formazione di condensa e quindi aumentando la durabilità e l'efficienza dell'espansore, di conseguenza anche il costo rimane più basso.

La laminazione nel ciclo Flash introduce comunque delle irreversibilità, ma la riduzione di perdita di exergia durante la fase di adduzione di calore fornisce un leggero guadagno dell'efficienza exergetica del ciclo Flash a fluido organico[6]. Nel solito articolo Tony Ho paragona le prestazione del ciclo Flash con altri cicli, dal ciclo Rankine alle sue evoluzioni. Utilizzando idrocarburi l'efficienza exergetica nello scambio termico aumenta di circa il 20% rispetto al ciclo Rankine, mentre per i silossani solo 3 punti percentuali differenziano i due cicli. Il ciclo Rankine con miscela zeotropica base di ammoniaca e acqua, presenta un efficienza exergetica allo scambio termico leggermente superiore al ciclo Rankine, ma con un coefficiente di utilizzazione inferiore, a causa della temperatura elevata all'uscita dell'espansore. Considerando un ciclo Rankine transcritico ad anidride carbonica, l'efficienza allo scambio termico raggiunge circa l'80%, ma sempre inferiore rispetto al 90% presentato dal ciclo Flash. Conclude affermando che il ciclo Flash presenta un coefficiente di utilizzazione maggiore (62%) rispetto al ciclo a miscela zeotropica e al ciclo transcritico, ma paragonabile rispetto al ciclo Rankine ottimizzato (63%). Sono stati usati come fluidi operatori anche i silossani, che hanno la particolarità di avere la linea di saturazione del vapore poco positiva e quindi a fine espansione si ottiene un vapore surriscaldato. Così facendo, però, si avrebbe vapore saturo secco in ingresso al condensatore, problema la cui soluzione è quella di suddividere l'espansione in due turbine e miscelare il vapore uscente dalla turbina ad alta pressione con il liquido uscente dalla prima laminazione.

Un importante vantaggio che acquista il ciclo Flash è la possibilità di sfruttare sorgenti con temperature minori di 200°C con rendimento maggiore: nel ciclo Rankine essendoci la fase di evaporazione è richiesta una temperatura di sorgente maggiore, osservando la Fig. 1.6 si nota come per una solita sorgente termica il ciclo flash raggiunge temperature massime di ciclo maggiori, a causa dell'assenza della fase di evaporazione. A parità di fluido e del valore di portata, questo comporta una maggior pressione del fluido operativo e, considerando costanti le condizioni di condensazione, un miglior rendimento del ciclo sulla base del principio di Carnot.

Figura 1.6: Confronto ciclo Flash e Rankine per la stessa sorgente termica.

Il funzionamento del ciclo è molto semplice. Nella Fig. 1.7 si nota lo schema impiantistico e il diagramma T-s di un ciclo in cui il fluido è un fluido "secco"⁶. Il fluido in pressione all'uscita della pompa viene riscaldato da 1 a 2 dalla risorsa termica mediante uno scambiatore di calore, successivamente viene laminato ad una pressione più bassa, 3. Viene separato nelle sue due componenti, la parte liquida, viene laminata fino alla pressione di scarico della turbina, che è la pressione di condensazione, da 6 a 7, mentre la parte gassosa viene fatta espandere da 4 a 5 fino alla solita pressione di condensazione. Infine le due correnti vengono riunite e fatte condensare, da 8 a 9 e infine riportate alla pressione di 1 mediante la pompa.

Figura 1.7: Schema funzionamento ciclo Flash a fluido organico

 $^{^{6}}$ Infatti la pendenza della linea di saturazione del vapore è positiva.

In un altro articolo[7], sempre di Tony Ho, sono stati analizzati alcuni possibili sviluppi del ciclo Flash a fluido organico per incrementare il rendimento complessivo.

In prima battuta un possibile sviluppo è il doppio Flash, una soluzione impiantistica già in uso negli impianti geotermici. Una volta laminato il fluido, il vapore viene fatto espandere fino ad una pressione intermedia, stessa pressione a cui viene laminata la componente liquida; quindi tutto il vapore viene fatto espandere fino a pressione di condensazione. Ho maggior potenza in uscita perché ho maggior fluido in espansione. In questo modo è possibile riuscire a sfruttare fino al 15% in più di potenza netta per il caso geotermico[15].

Infine un'ultima soluzione ricade sul sostituire la prima valvola di laminazione con un espansore bifase, che attualmente è ancora in fase di progetto.

In questo lavoro è stata presa in considerazione un'altra soluzione impiantistica, già in uso nella maggior parte dei cicli di potenza, ed è la rigenerazione (Fig. 1.8): il fluido liquido separato dal vapore, 6, invece di essere laminato viene miscelato dal liquido uscente dalla prima compressione postcondensatore, 8, alla stessa pressione della pressione di flash, 9. In questo modo si evita la lieve perdita exergetica derivante dalla seconda laminazione e si ottiene un fluido più caldo in entrata allo scambiatore. Ciò porta ad uno scambio termico exergeticamente migliore, avendo una minor differenza di temperatura tra i due fluidi, ad un dimensionamento degli scambiatori più semplice e più economico e ad un rendimento di ciclo maggiore.

Figura 1.8: Schema funzionamento ciclo Flash rigenerativo e diagramma T-s.

2 Sviluppo del modello

2.1 Sorgente termica

Come sorgente termica èstata presa in considerazione un flusso di acqua calda a 180°C con portata di 540 kg/h (0,15 kg/s) e pressione di 23 bar⁷. Un flusso di queste caratteristiche può rappresentare una sorgente geotermica a bassa temperatura e ad acqua dominante, può essere un fluido di raffreddamento per processi industriali o un fluido uscente da un piccolo impianto solare. La variazione della sorgente considerata è del 22% rispetto alla temperatura, varia quindi da 140°C a 220°C e del 11% rispetto alla portata, varia quindi da 480 kg/h a 600 kg/h.

2.2 Analisi preliminare

Le prime analisi numeriche sono state fatte sul foglio di calcolo EXCEL e hanno mostrato quale fluido e quale pressione di evaporazione conviene utilizzare: i fluidi inizialmente scelti sono già stati studiati come fluidi operativi di un ciclo Flash [6]. Per il calcolo delle proprietà dei fluidi è stato usato lo strumento di *coolprop*, componente aggiuntivo di EXCEL che fa riferimento ad un database in cui le proprietà dei fluidi sono calcolate da equazioni analizzate in letteratura⁸; la formulazione usata nel foglio di calcolo è =Props('X','Q1',100,'Q2',200,'FLUID'), note le grandezze Q1 di valore 100 e Q2 di valore 200, mostra il valore della grandezza X.

In questa analisi sono state fatte delle ipotesi per semplificare il calcolo. Le perdite di carico nelle tubazioni e negli scambiatori sono state trascurate, è stato considerato semplicemente un bilancio entalpico; la condensazione è stata considerata quindi come un isobara. La valvola di laminazione è stata considerata come un dispositivo isoentalpico, mentre il separatore è stato assunto come isobaro e adiabatico.

Come input iniziali è stata ipotizzato un pinch point di 10°C per lo scambiatore di calore. La temperatura di condensazione è stata fissata a 30°C, valore standard in qualsiasi tipo di ciclo, per poter utilizzare l'acqua a temperatura ambiente come sorgente fredda.

Figura 2.1: Diagramma T-s ciclo Flash

La portata del fluido operativo è stata calcolata mediante il bilancio termico allo scambiatore; considerando la Fig. 2.1 quindi otteniamo l'equazione 2.1.

⁷La pressione viene fatta variare in funzione della temperatura nell'ambiente di simulazione, in modo tale da avere sempre acqua allo stato liquido.

⁸http://www. coolprop. org

$$m_{ciclo} = \frac{m_h(h_{in} - h_{out})}{h_2 - h_1}$$
(2.1)

in cui m_{ciclo} è la portata del fluido operatore, mentra m_h , h_{in} e h_{out} sono rispettivamente la portata della sorgente termica e le entalpie di ingresso e di uscito dallo scambiatore.

Definito quindi il punto 2 del ciclo, nota la temperatura e la rispettiva pressione di saturazione, si ricava il punto 3 considerando la laminazione 1-2 isoentalpica e conoscendo la pressione di flash:

$$h_3 = h_2$$
$$p_3 = p_{flash}$$

Variando il titolo e conoscendo appunto la pressione di saturazione riesco a ricavare leproprietà termodinamiche dei punti 4 e 6.

Il punto 7 viene definito dalla laminazione, anch'essa isoentalpica, 6-7 e dalla pressione di condensazione, definita dalla rispettiva temperatura:

$$h_7 = h_6$$
$$p_7 = p_9$$

Il punto 5 viene definito mediante il rendimento iso
entropico della turbina, $\eta_{is},$ dato come input:

$$\begin{array}{l} h_5 = h_4 + \eta_{is}(h_4 - h_{5'}) \\ \left\{ \begin{array}{l} s_{5'} = s_4 \\ p_{5'} = p_9 \end{array} \right. \Rightarrow h_{5'} \end{array}$$

La miscelazione delle due portate, 5 e 7, avviene ipotizzando scambiatore adiabatico, da cui definisco il punto 8

$$h_8 = h_7(1 - x_3) + h_5 x_3$$
$$p_8 = P_{flash}$$

Determinate le grandezze del ciclo è stato possibile ricavare i parametri per la valutazione dei fluidi operativi. Il numero di giri dell'espansore è stato calcolato mediante la 2.2, considerando un espansore volumetrico Wankel per limitare i costi: sono stati considerati 800 cm³ di cilindrata, V_c , 0,2 di grado di ammissione, e, e un rendimento isoentropico di 0,7, η_{is} .

$$n = \frac{60m_{ciclo}v_4x_3}{V_c e\rho_4} \tag{2.2}$$

La potenza netta è intesa come potenza elettrica dal generatore sottratta dal consumo della pompa, considerata con rendimento isentropico di 0,8 ($\eta_{pompa,is}$):

$$P_{netta} = P_{turbina} - P_{pompa}$$
$$P_{turbina} = (h_4 - h_5)x_3m_{ciclo}$$
$$P_{pompa} = (h_1 - h_9)m_{ciclo}$$

Un parametro di merito [16] indica la quantità di calore trasferito per unità di costo di condensatore, maggiore è il suo valore minore risulta la dimensione del condensatore:

$$g_v = \Delta h_{cal.latente} \rho_{vapore}$$

Ed infine il rendimento globale dell'impianto, calcolato come il rapporto tra la potenza netta e l'energia disponibile:

$$\eta_g = \frac{P_{netta}}{m_h(h_{in} - h_0)}$$

in cui h_0 è l'entalpia della sorgente in condizioni ambiente⁹.

Per la scelta del fluido operativo e della pressione di flash è stata fatta una tabella dati,sempre in ambiente EXCEL, in cui si faceva variare la temperatura di flash e il fluido per ottenere il valore di potenza netta.

Figura 2.2: Potenza netta di diversi fluidi in funzione della temperatura di flash

Il risultato è il grafico 2.2, da cui si nota come l'isopentano si comporta meglia rispetto agli altri. Si nota inoltre che la massima potenza si ha all'incirca all'intorno dei 110 °C. L'analisi successiva è stata fissare la temperatura di Flash a quest'ultimo valore e calcolare i parametri precedentemente elencati, ottenendo la tabella 1.

Si nota subito che la categoria dei silossani (MD4M, MD3M, D5, D6) è da scartare a causa della bassa densità del vapore, che comporta una grande portata volumetrica e quindi una elevata velocità del motore, che eccede i 10000 rpm. Considerato il motore wankel, è stato deciso di non eccedere i 3000 rpm di velocità massima del motore, quindi sono stati scartati i fluidi quali *Toluene*, *EthylBenzene*, *o-Xylene*, *m-Xylene*, *p-Xylene*,*n-Nonane*, *n-Octane*, *n-Heptane*. Il fluido *R245fa*, un fluido molto usato per cicli a bassa temperatura, è stato scartato a causa della temperatura critica eccessivamente bassa, che comporta un ciclo transcritico portando a inconvenienti sovraelencati, quali la difficoltà nella progettazione dello scambiatore e della turbina. Dei restanti 4 fluidi è stato scelto l'isopentano perché quello con potenza e g_v più alti.

 $^{^9\}mathrm{Temperatura}$ di 20°C e 1 bar di pressione.

	Temperatura critica [°C]	$g_v [\mathrm{kJ/m^3}]$	η_g	$n \; [rpm]$	Potenza netta [kW]
Toluene	319	45,46	7,70	9509	7,20
EthylBenzene	344	18,45	7,06	18035	7,30
o-Xylene	357	13,08	7,16	22297	7,26
m-Xylene	344	15,88	7,12	19468	7,27
p-Xylene	343	16,73	7,13	19075	7,27
MD4M	380	0,06	$7,\!13$	857559	7,83
MD3M	355	0,37	7,68	287739	7,78
D5	346	1,05	7,63	154205	7,81
D6	373	0,20	7,66	456510	7,75
n-Nonane	321	12,96	7,60	26363	7,59
n-Octane	296	36,20	7,45	12646	7,60
n-Heptane	267	102,69	7,45	7046	7,62
Cyclopentane	239	419,69	7,47	2447	7,26
Isopentane	187	1164,44	7,12	1639	7,85
n-Pentane	197	866,18	7,70	1855	7,69
R365mfc	187	857,94	7,54	1706	7,86
R245fa	154	Х	Х	Х	Х

Tabella 1: Fluidi e i rispettivi parametri per la valutazione del fluido. Con $T_3=110$ °C.

Infine per la messa in pratica del ciclo è stata ottimizzata la temperatura di Flash mediante lo strumento **RISOLUTORE**, altro componente aggiuntivo di EXCEL. Come si vede anche dal grafico in Fig. 2.3 si ottiene una temperatura di flash che ottimizza la potenza di 114 °C, che corrisponde ad una pressione di 9,65 bar.

Figura 2.3: Curva potenza in funzione della temperatura di flash per l'isopentano.

2.3 Confronto cicli Flash e Rankine

Parallelamente a questa piccola analisi è stato studiato il comportamento del ciclo Rankine e dei cicli Flash con e senza rigenerazione, sempre mediante il foglio di calcolo EXCEL. Le approssimazioni del ciclo Flash sono le medesime, la miscelazione è stata considerata come adiabatica e quindi è stata risolta con un semplice bilancio termico, mentre per il ciclo Rankine è stato sostituito il bilancio allo scambiatore con un'altra equazione: nei cicli Flash veniva usato il bilancio allo scambiatore per ricavare la portata del ciclo, mentre per il ciclo Rankine è stato introdotto il pinch point di 10 °C all'inizio della fase di evaporazione, Fig. 2.4.

Figura 2.4: Pinch point ciclo Rankine.

In pratica è stata eguagliata l'entalpia necessaria all'evaporazione con l'entalpia ceduta dalla sorgente, imponendo che, alla fine di questo scambio termico, il fluido della sorgente supera di 10 °C la temperatura di evaporazione.

$$\begin{aligned} m_{ciclo}h_{eva} &= m_h(h_{in} - h_f) \\ \left\{ \begin{array}{c} T_f &= T_2 + 10 \\ p_f &= p_{in} \end{array} \right. & \Longrightarrow h_f \end{aligned}$$

in cui T_f è la temperatura del fluido della sorgente alla fine della fase di evaporazione, ottenendo:

$$m_{ciclo} = \frac{m_h(h_{in} - h_f)}{h_{eva}}$$

in questo modo si ottiene la portata del ciclo.

I parametri operativi sono stati ottimizzati per il funzionamento in condizioni nominali, quindi per temperatura della sorgente basse perde leggermente di validità.

Dai grafici in Fig. 2.5 si osserva come in condizioni nominali il ciclo Flash senza rigenerazione sembra dare miglior prestazioni. A seguire il ciclo Flash con rigenerazione.

Figura 2.5: Andamento del rendimento e della potenza al variare della temperatura della sorgente termica per ciclo Rankine, Flash con e senza rigenerazione.

A basse temperature sembra miglior il ciclo Rankine, a causa della laminazione che assume un peso importante nella perdita di irreversibilità (Fig. 2.6). Avendo determinato ogni punto termodinamico di ogni ciclo, ne è stata fatta l'analisi exergetica. Il confronto più interessante è l'irreversibilità prodotta dallo scambio termico nella fase di evaporazione e dalla laminazione nei rispettivi cicli Rankine e Flash. Per lo scambio termico è stata utilizzata la formula 1.1, mentre per la laminazione è stata utilizzata la seguente formula:

$$\dot{I} = T_0 \dot{m}_{ciclo}(s_3 - s_2)$$

In primo luogo si osserva come l'irreversibilità dello scambio termico siano elevate in condizioni nominali, mentre diminuiscono più velocemente delle irreversibilità da laminazione al diminuire della temperatura. Si nota inoltre che la seconda laminazione crea delle irreversibilità che rimangono costanti al diminuire della temperatura della sorgente; si suppone quindi che il ciclo rigenerativo, in cui la seconda laminazione è assente, ha delle miglior prestazioni a basse temperature.

Figura 2.6: Produzione di irreversibilità.

Infine è stata fatta l'analisi exergetica di ogni dispositivo mediante il bilancio exergetico:

$$E_{in} + E_q = E_{out} + W_x + I$$

ottenendo i diagrammi 2.7. Si osserva come l'irreversibilità del fluido della sorgente freddo sia bassa nei cicli Flash senza rigenerazione, mentre nel Rankine e nei Flash con Rigenerazione è più elevato. Con la rigenerazione è ovvio che la temperatura dei fluidi scartati è più elevata, dato l'ingresso del fluido operatore nello scambiatore più alta, mentre per il ciclo Rankine è dovuto al fatto che il vincolo di avere il pinch point di 10 °C all'inizio della fase di evaporazione (Fig. 2.4) porta ad una portata più bassa del fluido operatore, e quindi una temperatura più alta del fluido sorgente a fine scambio termico. Nel ciclo Flash senza rigenerazione si ha una perdita di exergia di circa il 20% a causa delle due laminazioni, compensata nel Rankine dallo scambio termico e nel Flash con rigenerazione dallo scarto e dalla miscelazione. L'espansione e il condensatore si comportano in modo simile nei tre cicli, infatti non ci sono particolari differenze del flusso agli estremi di questi dispositivi.

Figura 2.7: Irreversibilità nei cicli Flash con e senza rigenerazione e Rankine.

2.4 Costruzione del modello in HYSYS

Una volta determinati i parametri che caratterizzano il ciclo, sono stati riportati in ASPEN HYSYS. ASPEN HYSYS è un programma di ASPEN TECHNOLOGY¹⁰. HYSYS è un software di simulazione e modellazione dei processi industriali, utilizzato dai principali produttori mondiali di petrolio, gas e da raffinerie o società di ingegneria per la simulazione, progettazione e ottimizzazione dei processi industriali.

Per la simulazione è stato scelto come *fluid package*, REFPROP[18], un insieme di equazioni che fa riferimento al database NIST.

Il dimensionamento dei singoli componenti è stato trattato nella sottosezione appropriata: dal ciclo Flash con rigenerazione al ciclo senza rigenerazione cambiano entrambi gli scambiatori di calore, ma l'espansore resta lo stesso. Il dimensionamento di quest'ultimo merita un capitolo a sè.

2.4.1 Dimensionamento espansore

Il programma richede, per il dimensionamento del dispositivo virtuale, le curve di potenza e di efficienza, sottoforma di tabelle in cui si esplicita portata, potenza e rendimento isoentropico per diverse velocità di rotazione. Si è scelto di utilizzare un espansore Wankel, un espansore volumetrico rotativo economico e particolarmente adatto a impieghi di bassa potenza come in questo caso. L'espansore volumetrico è stato dimensionato costruendo il ciclo limite, considerando le seguenti caratteristiche:

- $V_c = 800 cm^3$ cilindrata;
- $r = -5 \cdot 10^{-5} n^2 + 8 \cdot 10^{-18} n + 0.9133$ coefficiente di riempimento in funzione del numero di giri;

Figura 2.8: Coefficiente di riempimento in funzione del numero di giri del motore.

- $V_1 = 75, 71 cm^3$ volume morto;
- $p_4 = 1,09bar$ pressione di scarico;
- p_1 pressione di ammissione;
- T_1 temperatura di ammissione;

Il lavoro esercitato da un ciclo è stato calcolato come la somma delle diversi fasi del ciclo, ammissione, espansione e scarico. Non è stata considerata la ricompressione.

 $^{^{10}}$ www.aspentech.com

$$L_{ciclo} = L_{amm} + L_{esp} + L_{sc}$$

L'ammissione è stata considerata come una trasformazione isoentalpica, al fine di approssimare le perdite di strozzamento delle valvole di ammissione, mentre il lavoro è stato calcolato mediante l'integrale $\int pdv$ lungo l'isoentalpica (1-2 in Fig. 2.9).

Figura 2.9: Ciclo espansore

La massa operante per ogni ciclo è stata calcolata come:

$$m_{amm} = V_c er \rho_1$$

Mentre il punto 2 è stato termodinamicamente identificato conoscendo h_2 e ρ_2 :

$$\begin{cases} h_2 = h_1 \\ \rho_2 = \frac{m_{amm}}{(V_2 - V_1)} \end{cases} \Rightarrow p_2$$

In cui:

$$V_2 = V_1 + eV_c$$

Il calcolo del lavoro è stato fatto mediante l'integrale $\int p dv$, in cui ogni punto intermedio è stato calcolato conoscendo la pressione e l'entalpia:

$$\left\{ \begin{array}{ll} p_1 > p_i > p_2 \\ h_1 = h_i = h_2 \end{array} \right. \Rightarrow \rho_i$$

Nota la densità di ogni punto intermedio è stato possibile calcolare l'integrale mediante il metodo dei trapezi:

$$L_{amm} = \int p dv = \sum dl_i$$
$$dl_i = (v_{i+1} - v_i) \frac{(p_{i+1} + p_i)}{2}$$

Il lavoro di espansione è stato calcolato in modo simile. In primo luogo è stato definito il punto 3, considerando l'espansione isoentropica e la densità nota:

$$\begin{array}{l} \rho_3 = \frac{m_{amm}}{V_c} \\ s_3 = s_2 \end{array} \Rightarrow p_3$$

Facendo variare la pressione isoentropicamente, sono stati definiti i punti intermedi, trovando quindi la densità è stato calcolato l'integrale $\int p dv^{11}$:

$$\begin{cases} \rho_2 > \rho_i > \rho_3 \\ s_2 = s_i = s_3 \end{cases} \Rightarrow p_i \Rightarrow \int p dv = L_{esp} \end{cases}$$

Infine lo scarico è stato considerato come un'isobara, quindi il lavoro è stato calcolato come:

$$L_{sc} = (V_5 - V_4)p_4$$

Costruito il ciclo è stato calcolato il grado di ammissione ottimale per la pressione di ingresso di 9,65 bar, che corrisponde alle condizioni di progetto del ciclo. Con il risultato di ottenere 0,15 come grado di ammissione ottimale.

Facendo variare la pressione di ingresso, con annessa temperatura, e il numero di giri del motore sono state ottenute le tabelle da importare in HYSYS. Più precisamente per ogni coppia di pressione di ingresso e numero di giri sono stati calcolati la potenza:

$$P = 2L_{ciclo}\frac{n}{60}$$

in cui n è il numero di giri del motore. La portata massica dell'espansore è stata calcolata come:

$$\dot{m} = 2m_{amm}\frac{n}{60}$$

Infine il rendimento isoentropico è stato calcolato come:

$$\eta_{is} = \frac{L_{ciclo}}{m_{amm}(h_1 - h_{sc,is})}$$

dove $h_{sc,is}$ è l'entalpia allo scarico calcolata conoscendo la pressione, quella di scarico, e l'entropia, uguale al valore di entropia all'ammissione. In questo modo, variando il numero di giri da 500 a 2500 rpm e la pressione di ingresso da 5,8 a 12,8 bar¹², sono state costruite le tabelle.

Portata $[kg/h]$	Potenza [kW]	Rend. is. $[\%]$
105,52	1,17	$65,\!99$
142,59	2,15	74,95
177,25	3,06	76,90
201,19	$3,\!68$	76,84
242,83	4,74	75,94

Tabella 2: Curve a 500 rpm.

¹¹Sempre con il metodo dei trapezi

 $^{^{12}\}mathrm{I}$ valori di pressione presi in considerazione sono stati: 5,8-7,8-9,6-10,8-12,8 bar.

Portata [kg/h]	Potenza [kW]	Rend. is. $[\%]$
202,26	2,13	62,68
273,30	4,02	73,12
339,74	5,77	$75,\!60$
385,63	6,98	76,04
465,44	9,02	75,33

Portata [kg/h]	Potenza [kW]	Rend. is. [%]
281,42	2,69	56,83
380,28	5,34	69,90
472,72	7,81	$73,\!59$
536,56	9,48	74,27
647,62	12,40	74,41

Tabella 3: Curve a 1000 rpm.

Tabella 4:	Curve a	1500	rpm.
------------	---------	------	------

Portata [kg/h]	Potenza [kW]	Rend. is. [%]
334,23	2,62	46,67
451,63	5,79	63,75
561,42	8,75	69,46
637,25	10,80	71,23
769,14	14,33	72,41

Tabella 5: Curve a 2000 rpm.

Portata [kg/h]	Potenza [kW]	Rend. is. $[\%]$
475,5	5,08	$53,\!16$
591,10	8,25	62,15
670,93	10,48	$65,\!67$
809,79	14,29	$68,\!56$

Tabella 6: Curve a 2500 rpm.

È stato possibile direttamente in HYSYS costruire le curve interpolate dai dati, Fig. 2.10 e 2.11.

Figura 2.10: Curve di potenza.

Figura 2.11: Curve di efficienza.

Per la pompa è stato scelto di definire l'efficienza adiabatica che rimane costante anche in condizioni non nominali della sorgente.

2.4.2 Ciclo OFC non rigenerato

Dopo aver selezionato i fluidi dal database, è stato costruito il ciclo in ambiente di simulazione con i paramentri di progetto Fig. 2.12.

Figura 2.12: Schema impianto OFC in HYSYS.

Il dispositivo RCY è un componente di HYSYS richiesto per assicurare la convergenza. Infatti, durante la chiusura del ciclo, potrebbero esserci dei valori di alcuni parametri che si sovrappongono, bloccando il programma.

Il dimensionamento di entrambi gli scambiatori è stato fatto mediante il programma ASPEN EX-CHANGER DESIGN AND RATING V8. 4, sempre di ASPEN TECHNOLOGY. Come sistema di soluzione è stato usato il metodo avanzato, che definisce un set di locazioni fisiche all'interno dello scambiatore e calcola, per ogni punto, lo stato termodinamico di entrambi i fluidi. Mentre negli *endspaces*¹³ il calcolo viene trattato esplicitamente, al contrario del metodo standard in cui vengono approssimati. Inoltre tiene in considerazione il coefficiente di Fouling. I due metodi sono simili, ma in caso di scambiatore con i diaframmi, orizzontali o verticale, l'avanzato garantisce migliori risultati.

L'analisi delle vibrazioni, per eventuali problemi di risonanza, è stata risolta da un analisi HTFS, software interno di EDR.

Lo scambiatori di calore e il condensatore sono stati dimensionati considerando dei valori del coefficiente di Fouling di 0,0002 m²K/W per il circuito ad acqua e di 0,0004 m²K/W per il lato isopentano. Lo scambiatore ottimale è risultato essere un BFM, con la geometria descritta nella scheda (Fig. 1¹⁴). La configurazione BFM consiste in un classico scambiatore shell and tube a doppio passaggio. Il fluido operativo circola nei tubi, a seguito dell'ottimizzazione, mentre nel mantello circola l'acqua della sorgente termica. Lo scambiatore è composto da 100 tubi di 13 mm di diametro e di 7900 mm di lunghezza, mentre il mantello ha un diametro esterno di 219 mm, per un costo complessivo di circa 23100\$ (Vedi Fig. 2.13, 2.14).

Il condensatore invece presenta una configurazione BEM, quindi a singolo passaggio. Il fluido caldo transinta nei 183 tubi, di 13 mm di diametro e di 2550 mm di lunghezza, mentra il mantello ha il diametro di 273 mm per un costo di 13900\$ (Fig. 2.15, 2.16). Per la scheda completa fare riferimento alla sche da in appendice, Fig. 2.

 $^{^{13}}$ Spazi in cui la portata differisce dalla portata iniziale, tipo in presenza di diaframmi per la generazione di turbolenza (*baffle*).

¹⁴Ottenuto da EDR sotto la voce TEMA SHEET.

Figura 2.13: Layout scambiatore di calore.

Figura 2.14: Andamento delle temperature dei fluidi nello scambiatore di calore.

Figura 2.15: Layout condensatore.

Figura 2.16: Andamento delle temperature dei fluidi nel condensatore.

Allo stesso modo è stato dimensionato il condensatore, ottenendo le seguenti caratteristiche geometriche:

In ambiente di simulazione per il condensatore è stato considerato il modello RIGOROUS SHELL AND TUBE, un modello che sfrutta il programma ASPEN EXCHANGER DESIGN AND RATING V8. 4 per la creazione e l'importazione dell'apparecchio, migliorando la precisione del calcolo e garantendo il controllo degli errori, soprattutto per fluido bifase.

Per lo scambiatore di calore è stato eseguito un percorso diverso. Mediante il modello RIGOROUS SHELL AND TUBE è stata importata la geometria dell'apparecchio in HYSYS per poi essere convertita in modello SIMPLE END POINT, un modello più semplice basato sulle equazioni di bilancio del calore, definite in termini di coefficiente di scambio termico globale, di area effettiva e di differenza di temperatura logaritmica. La particolarità di quest'ultimo modello è che il coefficiente di scambio globale viene assunto costante¹⁵. In questo modo si semplifica il calcolo computazionale, ma in casi come questo di scambiatori monofase l'errore è trascurabile.

2.4.3 Ciclo OFC con rigenerazione

Lo schema in Fig. 2.17 rappresenta lo schema impiantistico utilizzato in HYSYS. L'espansore e le pompe usate hanno le stesse caratteristiche del caso precedente, solo gli scambiatori sono stati sostituiti.

Lo scambiatore di calore, come risultato dell'ottimizzazione in ASPEN EXCHANGER DESIGN & RATING, è un classico Shell and Tube a doppio passaggio, quindi in configurazione BFM. Il numero dei tubi è di 168 per un diametro di 13 mm, mentre la lunghezza è di 6096 mm. Il mantello ha invece un diametro di 273 mm, per un costo leggermente più basso rispetto allo scambiatore senza rigenerazione: 19500\$ (Fig. 2.18, 2.19). Per maggiori informazioni fare riferimento alla scheda in appendice 3.

Anche il condensatore è stato progettato secondo la configurazione BFM, sempre a doppio passaggio. Il fluido caldo circola per i tubi e l'acqua fredda per il mantello. I 247 tubi hanno un diametro di 13 mm, per una lunghezza di 1800 mm, mentre il mantello assume un diametro di 323 mm per un costo di circa 13000\$ (Fig. 2.20, 2.21. Scheda 4).

¹⁵calcolato da Aspen Exchanger Design and Rating V8. 4

Figura 2.17: Schema impianto OFC rigenerativo in HYSYS.

Figura 2.18: Layout scambiatore di calore.

Figura 2.19: Andamento temperature scambiatore di calore.

Figura 2.20: Layout condensatore

Figura 2.21: Andamento temperature condensatore.

3 Simulazioni e risultati

Le strategie di controllo utilizzate sono le tipiche usate nei cicli Rankine[20, 19]. In primo luogo bisogna sottolineare che le diverse strategie di controllo sono state provate in condizioni stazionarie, quindi sono stati trovati i valori delle grandezze del ciclo variabili che ottimizzano il funzionamento del ciclo. In particolare la grandezza ottimizzata è il rendimento globale:

$$\eta_g = \frac{\eta_e P_{netta}}{m_h (h_{in} - h_0)} \tag{3.1}$$

dove h_0 è l'entalpia del fluido della sorgente termica in condizioni ambientali, quindi a 20 °C e a 1 bar e η_e è il rendimento di conversione elettrica. Questa grandezza rappresenta un coefficiente di utilizzazione della risorsa iniziale, ed è appropriato se si assume che all'uscita dello scambiatore il fluido non viene più usato termicamente e quindi viene rilasciato in ambiente. Questo spesso è il caso del *waste heat* o dei sottocicli. Sebbene teoricamente sarebbe possibile un altro ciclo, in pratica non è fattibile principalmente dal punto di vista economico. Per le applicazione come il solare, inoltre, è utile considerare la temperatura del fluido di ritorno al campo solare più vicina possibile alla temperatura ambiente; in modo da diminuire le perdite termiche lungo le tubazioni.

Le strategie di controllo utilizzate sia per i cicli Rankine sia per i cicli Flash possono essere classificate in due categorie, chiamate *sliding pressure operation* e *constant pressure operation*. Nella prima si utilizza la pressione di evaporazione o di flash per controllare le variazioni della sorgente termica, tenendo quindi la velocità di rotazione della turbina costante. In questo modo si evita l'inverter, dispositivo che porta a costi più elevati e rendimenti globali minori. Nella classe *constant pressure operation*, invece, si tiene costante tale pressione e si fa variare la velocità di rotazione della turbina per compensare le variazioni della sorgente termica. Quest'ultimo caso viene chiamato anche come *sliding velocity*. In questo lavoro si studia inoltre un altro tipo di strategia di controllo, che verrà chiamata *sliding pressure and velocity*, in cui si varia sia la pressione di laminazione sia la velocità dell'espansore per massimizzare il rendimento globale.

Il rendimento di conversione elettrica η_e è composto da due rendimenti: rendimento elettromeccanico, valore fissato a 0,95, e, in caso di inverter, da un ulteriore rendimento di inverter, con valore fissato a 0,95.

In entrambi i casi la portata al condensatore è tenuta costante per semplicità computazionale: è stato provato in alcuni casi di fissare la temperatura all'uscita del condensatore a circa 27 °C, ma la variazione sul rendimento globale è di qualche centesimo di grado percentuale; ed è stata quindi trascurata.

La configurazione utilizzata per l'ottimizzatore è stata ORIGINAL; è la configurazione più semplice, in cui il programma manipola la variabile primaria in un determinato intervallo di valori in modo da minimizzare o massimizzare la funzione obiettivo, costruita da uno svariato numero di variabili di processo; il tutto senza utilizzare strumenti derivativi. Tutte le variabile vengono normalizzate dal programma nell'intervallo scelto, mentre i vincoli sono opzionali e non sono compatibili con qualsiasi schema di ottimizzazione.

Come unici vincoli per l'ottimizzazione dei problemi è stato scelto di fissare al 10% il titolo massimo all'uscita dallo scambiatore di calore, perché in caso di sorgenti termiche a elevata entalpia¹⁶ il vapore all'uscita del generatore raggiungeva titoli del 50%. Un ultieriore vincolo è stato di impostare il titolo

 $^{^{16}}$ Fluido a 220°C e portate maggiori di 480 kg/h.

all'uscita del condensatore sotto lo 0,01% in modo da non avere vapore nella pompa. Quest'ultimo vincolo è stato necessario in quanto la portata del condensatore non è regolata per garantire una completa condensazione in caso di sorgenti ad alta entalpia.

Le simulazioni sono state eseguite in condizioni stazionarie, quindi la sorgente ha assunto discreti valori di portata e di temperatura. La portata è stata fatta variare del 11%, da 480 kg/h a 600 kg/h con una differenza di 15 kg/h tra un valore e l'altro; allo stesso modo la temperatura è stata fatta variare dell 22%, da 140°C a 220°C con una differenza di 10 °C. In totale 81 simulazioni per ogni tipo di controllo.

Ogni strategia di controllo è stata studiata sia per il caso senza rigenerazione, sia per il caso con rigenerazione. Infine per i casi migliori è stato analizzato il funzionamento a portata del ciclo variabile, mediante il controllo della pompa.

3.1 Sliding Pressure

In primo luogo è stato provato un controllo di tipo SPO (sliding pressure operation). In questo caso è stata fatta variare la pressione di flash per ottenere un preciso numero di giri dell'espansore. Utilizzando la funzione OPTIMIZER di HYSYS è stato possibile ricercare l'ottimo del rendimento3.1 facendo variare la pressione, inserendo come vincolo la velocità dell'espansore. Per entrambi i casi, rigenerativo e non, sono stati utilizzati gli stessi parametri dello strumento ottimizzatore: è stato utilizzato un schema MIXED. Questo schema riassume le caratteristiche di due schemi diversi, Box e SQP. Il primo è una tecnica di ricerca sequenziale, adatto a risolvere problemi con funzioni obiettivo non lineari. É un metodo molto robusto, ma non è molto efficiente in termini di numero di iterazioni per convergere alla soluzione. Il programma genera una serie di punti nell'intorno della variabile di partenza, e in base al avlore della funzione obiettivo si sposta nei punti che risolvono l'ottimizzazione. Lo schema SQP (Sequential Quadratic Programming) è considerato uno dei migliori schemi di minimizzazione di problemi con vincoli lineari e non lineari e con un numero ridotto di variabili primarie. Il programma segue l'algoritmo di Powell. Viene utilizzata una procedura lineare di ricerca sfruttando la tecnica "watchdog" per forzare la convergenza. Il metodo MIXED inizia l'ottimizzazione utilizzando il metodo Box con una tolleranza alla convergenza molta larga, dopodiché utilizza il metodo SQP per ottenerela tolleranza desiderata. I vincoli utilizzati devono essere vincoli di disuguagliaza, perché i vincoli di uguaglianza non sono compatibili con lo schema Box.

Per l'ottimizzazione sono stati scelti una tolleranza di 10^{-6} e con un numero massimo di iterazioni di 1000, limite mai raggiunto nelle simulazioni. Sono state fatte le prove per diverse velocità di rotazione dell'espansore, 1000 1500 e 2000 rpm.

In in Fig. 3.1 osserviamo l'andamento del rendimento in funzione della portata della sorgente termica nel caso senza rigenerazione, mentre in Fig. 3.2 con rigenerazione. In entrambi i casi osserviamo come la soluzione a 1500 rpm risulta essere la migliore rispetto alle altre. Questo perché la turbina ha prestazioni migliori per velocità di rotazione di 1500 rpm. Non ci sono invece sostanziali differenze tra i casi con e senza rigenerazione.

Figura 3.1: Variazione portata con T costante a 180°C. Caso senza rigenerazione.

Figura 3.2: Variazione portata con T costante a 180°C. Caso con rigenerazione.

Vediamo ora gli andamenti del rendimento in funzione della temperatura di ingresso in Fig. 3.3 caso senza rigenerazione e in Fig. 3.4 il caso con rigenerazione. La temperatura delle ascisse in entrambi i casi non supera i 180 °C perché per una temperatura di almeno 190 °C si hanno problemi nella condensazione: si raggiunge il limite di vapore in uscita dal condensatore. Si osserva nei due grafici che

anche in questo caso per velocità dell'espansore di 2000 rpm non si hanno valori competitivi. La velocità di 1000 rpm risulta invece vantaggiosa per basse temperature, perché la pressione di laminazione è leggermente più alta e quindi si ha una miglior differenza di pressione alle flange dell'espansore.

Figura 3.3: Variazione temperatura con M costante a 180 kg/h. Caso senza rigenerazione.

Figura 3.4: Variazione temperatura con M costante a 180 kg/h. Caso con rigenerazione.

3.2 Sliding Velocity

In questo tipo di strategia è stata tenuta costante la pressione di laminazione, mentre è stata fatta variare la velocità dell'espansore per massimizzare il rendimento globale (Eq. 3.1); la pressione di laminazione è tenuta costante a 9,65 bar che corrisponde alla pressione di progetto. In ambiente di simulazione l'unico vincolo imposto alla velocità di rotazione è il limite di 3000 rpm. Infatti una velocità maggiore potrebbe portare a gravi problemi di funzionamento dell'espansore.

Differentemente dal caso precedente per questo tipo di simulazione è stato usato uno schema Box, con lo stesso valore di tolleranza di 10^{-6} e lo stesso limite di iterazioni. Si nota che i valori del rendimento sono inferiori al caso precedente di quasi un punto percentuale; si ricorda infatti che in questo caso il rendimento del sistema di conversione elettrico è leggermente più basso, a causa della presenza dell'inverter.

In Fig. 3.5 sono rappresentati i grafici del rendimento per variazione di portata. Il rendimento ha un andamento decrescente dopo il valore di 540 kg/h perché il numero di giri dell'espansore sale notevolmente, portando ad un abbassamento del rendimento isoentropico a causa del peggior coefficiente di riempimento (Fig. 2.8).

Nel caso senza rigenerazione si nota che non si raggiungono portate di 600 kg/h, perché per quelle portate si raggiunge il limite di velocità dell'espansore, mentre nel caso rigenerativo questo non succede, considerato che lo scambiatore essendo più piccolo non surriscalda troppo il liquido in evaporazione.

Nel caso di variazione della temperatura (Fig. 3.6) si nota, invece, che l'impianto con rigenerazione presenta rendimenti leggermente superiori, ma con andamenti molto simili tra di loro.

Figura 3.5: Variazione portata con T costante a 180 °C e pressione di laminazione di 9,65 bar.

Figura 3.6: Variazione temperatura con M costante a 540 kg/h e pressione di laminazione di 9,65 bar.

3.3 Sliding Pressure and Velocity

Come ultima possibile strategia di controllo è stato analizzato lo *sliding pressure and velocity*. In questo caso non si hanno vincoli, se non i soliti vincoli strutturali quali il vapore all'uscita del condensatore e

all'uscita dello scambiatore di calore e il limite di velocità dell'espansore. Quindi è stato massimizzato il rendimento facendo variare sia la pressione di flash sia la velocità dell'espansore. É stato usato lo schema di ottimizzazione Box, con la tolleranza fissata a 10^{-6} . Come nel caso precedente, è previsto l'inverter a causa della velocità variabile dell'espansore.

Figura 3.7: Variazione portata con T costante 180 °C.

Figura 3.8: Variazione temperatura con M costante a 540 kg/h.

Possiamo osservare in qualsiasi tipo di controllo che il rendimento è molto più sensibile alla variazione di temperatura rispetto alla variazione della portata. Infatti l'aumento di temperatura comporta una maggior temperatura massima del ciclo e di conseguenza un miglior rendimento. Questo incremento non è raggiunto per il caso con portata variabile, perché nonostante il miglior scambio termico si hanno bassi valori di incrementi di temperatura per il fluido operativo. Per portata costante non sono state riportate temperature maggiori di 180 °C: nella totalità dei casi sussisteva il problema del vapore all'uscita del condensatore.

Si può notare che l'impianto con rigenerazione comporta un miglior rendimento soprattutto per bassi valori di entalpia della sorgente. La rigenerazione infatti aumenta la temperatura all'ingresso dello scambiatore, e con essa, la temperatura massima del ciclo.

3.4 Confronto strategie

Per una visione di insieme di tutti i tipi di strategie di controllo analizzate si riportano i grafici sommatori. Come è possibile osservare in Fig. 3.11, 3.12, il tipo SV garantisce le peggiori prestazioni. Il rendimento decresce troppo rapidamente per alti valori della portata a temperatura nominale, quindi è stata esclusa in prima approssimazione come possibile strategia di controllo. Il tipo SP a 2000 rpm assume rendimenti inferiori rispetto agli altri soprattutto a temperatura variabile (Fig. 3.9, 3.10). Infine in Fig. 3.13 e 3.14 si confrontano gli andamenti nei casi con e senza rigenerazione per il tipo di controllo SP a 1500 rpm e SPV, in cui spiccano le migliori prestazioni per il controllo SP a 1500 rpm, sia a causa dell'assenza dell'inverter sia a causa del miglior funzionamento dell'espansore. Il controllo SPV risulta essere migliore solo per basse temperature della sorgente, infatti, in quelle condizioni, il funzionamento a 1000 rpm garantisce migliori risultati.

Figura 3.9: Caso senza rigenerazione con M costante.

Figura 3.10: Caso con rigenerazione con M costante.

Figura 3.11: Caso senza rigenerazione con T costante.

Figura 3.12: Caso con rigenerazione con T costante.

Figura 3.13: Confronto con e senza rigenerazione con T costante a 180 °C per SP a 1500 rpm e SPV.

Figura 3.14: Confronto con e senza rigenerazione con M costante a 540 kg/h per SP a 1500 rpm e SPV.

3.5 Mappe isorendimento

Facendo variare contemporaneamente portata e temperatura è stato possibile creare delle mappe isorendimento per ogni tipo di controllo. In primo luogo osserviamo il controllo di tipo SP (*sliding pressure*) con le diverse velocità dell'espansore per il caso senza rigenerazione. Si osserva dalle mappe (Fig. 3.15, 3.16, 3.17) che il funzionamento dell'impianto non è garantito in un ampio range ti temperature; il problema principale risulta essere il condensatore, in cui non riesce a condensarsi completamente il fluido operativo. Si nota inoltre come l'andamento del rendimento è simile per le tre mappe, mentre il valore numerico no: è maggiore per una velocità dell'espansore di 1500 rpm, condizione che rappresenta un ottimo compromesso tra rendimento isoentropico dell'espansore e la portata. Infatti il rendimento isoentropico aumenta al diminuire della velocità, quindi al diminuire della portata e di conseguenza all'aumentare della pressione di laminazione; mentre la portata aumenta al diminuire della pressione di laminazione.

Nei diagrammi è stato indicato il punto nominale di funzionamento con un cerchio verde.

Figura 3.15: Sliding pressure 1000 rpm. Caso senza rigenerazione.

Figura 3.16: Sliding pressure 1500 rpm. Caso senza rigenerazione.

Figura 3.17: Sliding pressure 2000 rpm. Caso senza rigenerazione.

Le successive tre mappe rappresentano il solito tipo di controllo ma con il caso con rigenerazione. In questo caso il ristretto campo di funzionamento è dato dalla frazione di vapore in uscita dallo scambiatore di calore, soprattutto per il controllo a 1000 rpm. Infatti in questo caso la portata rigeneratrice è maggiore, e quindi si ha una maggior temperatura all'ingresso dello scambiatore.

Si osserva inoltre che il rendimento è leggermente maggiore nel caso della rigenerazione, ma la differenza non supera i decimi di grado di percentuale in condizioni nominali.

Figura 3.18: Sliding pressure 1000 rpm. Caso con rigenerazione.

Figura 3.19: Sliding pressure 1500 rpm. Caso con rigenerazione.

Figura 3.20: Sliding pressure 2000 rpm. Caso con rigenerazione.

Andiamo ora a osservare il comportamento dell'impianto nel caso di SV (*sliding velocity*) e di SPV (*sliding pressure velocity*). Come gli altri casi l'andamento del rendimento è molto simile, ma il caso con rigenerazione presenta sempre un valore di circa mezzo punto percenturale maggiore. Il ridotto campo di funzionamento è dovuto anche al limite di velocità dell'espansore, che non supera i 3000 rpm.

Figura 3.21: Sliding velocity. Caso senza rigenerazione.

Figura 3.22: Sliding velocity. Caso con rigenerazione.

Nella strategia di controllo SPV il rendimento è leggermente maggiore nel caso con rigenerazione, ma nonostante ciò è inferiore al caso di SP a 1500 rpm in Fig. 3.16. Unica particolarità è che per bassi valori di temperatura della sorgente il rendimento del caso in esame è maggiore rispetto al caso di SP a 1500 rpm. Questo fatto si spiega osservando il numero di giri del motore: nelle prove di simulazione si osserva che per temperature di sorgente maggiori di 150°C la velocità dell'espansore che ottimizza il rendimento varia da 1400 a 1600 rpm; per temperature inferiori la velocità di abbassa fino a circa 1000 rpm, consentendo di mantenere una discreta differenza di pressione alle flange dell'espansore a costo di una minor portata.

Si ricorda inoltre che questa differenza di rendimento rispetto al caso di SP a 1500 rpm è data dalla presenza dell'inverter. La variazione della velocità di rotazione dell'espansore prevende la presenza di un inverter, di cui si è assunto un rendimento del 95%.

Figura 3.23: Sliding pressure velocity. Caso senza rigenerazione

Figura 3.24: Sliding pressure velocity. Caso con rigenerazione.

É interessante osservare l'andamento del rendimento del caso di SP a 1500 rpm con la presenza dell'inverter. Infatti in impianti stand-alone, o comunque dove la presenza dell'inverter è necessaria, la Fig. 3.16 perde di validità. Facendo riferimento alla Fig. 3.25 si nota come le due mappe sono molto simili. I valori del rendimento sono pressocchè uguali, se non per le condizioni della sorgente a bassa

entalpia. La strategia migliore quindi risulta essere il controllo con SPV con rigenerazione: oltre ai miglior rendimenti per basse entalpie di sorgente, si hanno minor costi dello scambiatore di calore e del condensatore.

Figura 3.25: Sliding pressure a 1500 rpm con inverter. Caso con rigenerazione.

Tutte le simulazioni eseguite fin'ora sono state fatte considerando la portata del fluido operativo costante. Variando la velocità di rotazione della pompa è possibile variare la portata del fluido operatore in modo da evitare problemi di valori di titoli all'uscita dello scambiatore elevati. In ambiente di simulazione, in cui la pompa non è stata dimensionata, è stata fatta variare la portata semplicemente inserendola come variabile nella configurazione ORIGINAL. È stato utilizzato lo schema Box, perché garantiva una miglior accuratezza nell'ottimizzazione con due variabili.

Come si osserva nei grafici 3.26 e 3.27 il rendimento con la portata del fluido operativa variabile è complessivamente maggiore. Questa differenza è più evidente in caso di bassa portata della sorgente, infatti la portata operativa è stata variata dall'ottimizzatore per migliorare lo scambio termico all'interno dello scambiatore di calore in modo da ottenere un temperatura più alta all'uscita dello scambiatore. Inoltre, dalla Fig. 3.27, si nota l'incremento del range di temperatura per il funzionamento dell'impianto: nel caso con controllo SPV si raggiunge una temperatura massima di sorgente di 210 °C.

Figura 3.26: Confronto con e senza rigenerazione con T costante a 180 °C per SP a 1500 rpm e SPV. A) Portata costante. B) Portata variabile.

Figura 3.27: Confronto con e senza rigenerazione con M costante a 540 kg/h per SP a 1500 rpm e SPV. A) Portata costante. B) Portata variabile.

Vediamo ora le mappe isorendimento delle strategie di controllo più interessanti, ovvero la SP a 1500 rpm e la SPV sia nel caso rigenerativo che non. Come appare evidente osservando le figure (3.28, 3.29, 3.30, 3.31) il caso con rigenerazione garantisce in qualsiasi caso un range maggiore di condizioni di funzionamento. La soluzione SP a 1500 rpm con portata variabile sembra essere la migliore: in condizioni nominali è la soluzione che presenta il miglior rendimento, con punte fino al 9%. L'unico possibile difetto di questa soluzione è il rendimento inferiore per bassi valori dell'entalpia della sorgente rispetto al controllo SPV, e, sempre rispetto al controllo SPV con rigenerazione, non funziona per valori elevati dell'entalpia della sorgente. Infatti in Fig. 3.31 si nota come il funzionamento è possibile anche per condizioni come temperatura di 210°C e portate di 540 kg/h.

Figura 3.28: Sliding pressure a 1500 rpm con portata variabile. Caso senza rigenerativo.

Figura 3.29: Sliding pressure a 1500 rpm con portata variabile. Caso con rigenerazione.

Figura 3.30: Sliding pressure velocity con portata variabile. Caso senza rigenerazione.

Figura 3.31: Sliding pressure velocity con portata variabile. Caso con rigenerazione.

3.6 Curve di potenza

Oltre a studiare l'andamento del rendimento globale in funzione delle condizioni della sorgente è stato interessate osservare la potenza sviluppata complessivamente dall'impianto, anche per avere un idea degli ordini di grandezza in gioco. La potenza è stata calcolata conoscendo il rendimento e le condizioni della sorgente:

$$P_{utile} = \eta_q m_h (h_{in} - h_0)$$

In questo modo è stato considerato il rendimento di conversione elettrica, quindi in caso di inverter il valore della potenza utila risulterà leggermente inferiore.

Sono state analizzate le strategie che garantiscono il miglior andamento del rendimento, con portata del fluido operativo sia variabile che costante. Si può osservare che l'andamento della potenza è più sensibile alla variazione della portata della sorgente, perché aumenta più velocemente, rispetto al rendimento, all'aumentare della portata.

Inoltre si può vedere come il caso con rigenerazione, la portata del fluido operativo variabile e il controllo di tipo sliding pressure velocity sono fattori che incrementano il range di funzionamento dell'impianto, perché evitano la formazione di vapore all'uscita del condensatore e all'uscita dello scambiatore di calore, anche se il fattore determinante rimane la rigenerazione.

Le Fig. 3.32 e 3.33, mostrano come, per il controllo SP a 1500 rpm, la rigenerazione aumenti il range di condizioni di funzionamento dell'impianto, soprattutto per alte entalpie della sorgente; in condizioni nominali il valore della potenza utile è pressocchè uguale, mentre cambia per condizioni di off design: la potenza utile è maggiore in off design per il caso con rigenerazione, sia per alte che per basse entalpie.

La stessa cosa si può dire per il controllo SPV: dalle Fig. 3.34 e 3.35 si nota come in condizioni nominale la potenza utile non cambia, mentre è lievemente più alto in condizioni di off design. Inoltre è visibilmente maggiore il range di funzionamento dell'impianto al variare della sorgente termica.

Infine è interessante confrontare le Fig. 3.33 e 3.35, in cui sono poste a confronto i due tipi di controllo diversi in caso di rigenerazione: in condizioni nominali il controllo SP a 1500 rpm garantisce circa 0,5 kW di potenza utile in più, mentre in condizioni di basse entalpie, con temperature minori di 160 °C, e alte entalpie, con temperature maggiori di 200 °C, risulta vantaggioso il controllo SPV, garantendo anche un maggior range di funzionamento.

Nel caso in cui l'inverter è necessario, previa scelta del sistema di controllo, cambia il confronto numerico tra le due soluzioni. Confrontando le Fig. 3.33 e 3.36 si nota come in condizioni nominali ho una potenza utile di circa 0,4 kW inferiore in caso di presenza dell'inverter, mentre in caso di alte temperature della sorgente questa differenza raggiunge i 0,6 kW. Da questo punto di vista è vantaggioso il controllo di tipo SPV con portata variabile, perché garantisce migliore un maggior campo di funzionamento dell'impianto.

Nei diagrammi è stato indicato il punto nominale di funzionamento con un cerchio rosso.

Figura 3.32: Curva di potenza per sliding pressure a 1500 rpm e portata variabile. Caso senza rigenerazione.

Figura 3.33: Curva di potenza per sliding pressure a 1500 rpm e portata variabile. Caso con rigenerazione.

Figura 3.34: Curva di potenza per sliding pressure velocity e portata variabile. Caso senza rigenerazione.

Figura 3.35: Curva di potenza per sliding pressure velocity e portata variabile. Caso con rigenerazione.

Figura 3.36: Curva di potenza per sliding pressure a 1500 rpm e portata variabile con inverter. Caso con rigenerazione.

4 Conclusioni

Il lavoro ha permesso di individuare la miglior strategia di controllo per i cicli Flash a fluido organico. Per il controllo di tipo SP (sliding pressure) è migliore il caso con velocità dell'espansore di 1500 rpm, garantendo un rendimento di circa mezzo punto percentuale maggiore (7,5%) rispetto alle velocità di 1000 e 2000 rpm. La rigenerazione non influenza positivamente il rendimento in caso di condizioni nominali, ma solo in condizioni di off design, o più precisamente in condizione di bassa temperatura della sorgente, circa 140 °C, in cui risulta migliore 1000 rpm di velocità all'espansore. Il controllo SV (sliding velocity) non è competitivo, sia come range di funzionamento sia come rendimento complessivo rispetto al controllo SP a 1500 rpm, 6,2% contro i 7,5% in condizioni nominali, anche in caso di rigenerazione. Il controllo SPV presenta un rendimento in condizioni nominali leggermente inferiore (7,2%), a causa della presenza dell'inverter, ma dei rendimenti maggiori per basse temperature della sorgente. Nelle situazioni in cui l'inverter è obbligatorio, a prescindere dal sistema di controllo, il confronto fra le strategie SP a 1500 rpm e SPV non evidenzia particolari differenze, se non il miglior rendimento fuori dalle condizioni di progetto tipico del controllo SPV.

Nel caso in cui la portata del ciclo può essere variata, si ha il vantaggio dell'aumento del range di funzionamento nel caso con rigenerazione. Inoltre cresce il rendimento per basse portate della sorgente, infatti diminuendo la portata del ciclo, migliorano le condizioni di accoppiamento della temperatura dei due flussi. Il range di funzionamento per alte temperature della sorgente si espande fino a 210 °C, perché, aumentando la portata si evita la formazione di vapore all'uscita dello scambiatore di calore. Nel caso senza rigenerazione rimane il problema della condensazione, per cui all'aumento della portata del ciclo, all'uscita del condensatore ho la presenza di vapore. Con la rigenerazione l'aumento della portata al condensatore è relativamente inferiore, quindi il condensatore riesce meglio ad assorbire gli aumenti di portata del ciclo.

Complessivamente si può dire che, con la portata del ciclo variabile, la miglior strategia di controllo è SP a 1500 rpm, i cui limiti, superati dal controllo SPV, sono il minor range di funzionamento e il minor rendimento per basse temperature della sorgente. In caso di presenza necessaria dell'inverter la miglior strategia risulta essere il controllo SPV.

Bisogna sottilineare inoltre che il ciclo con rigenerazione ha un costo inferiore rispetto al ciclo senza rigenerazione, a causa della minor dimensione degli scambiatori di calore.

Il ciclo Flash con fluido organico potrebbe rappresentare una soluzione per lo sfruttamento delle sorgenti a bassa temperatura, ma, anche se utilizza dispositivi già in commercio, è una tecnologia recente che soffre il paragone con i cicli Rankine dal punto di vista prestazionale, ma è competitivo invece, dal punto di vista economico e dal punto di vista della versatilità. É di facile controllo in condizioni di off design e ha un ampio range di funzionamento anche per condizioni della sorgente termica diverse da quelle nominali. Inoltre è una tecnologia in fase di sviluppo e non mancano evoluzioni promettenti quali, la più evidente, l'impianto con doppio flash, che offre rendimenti migliori a costo di una maggior complessità dell'impianto e della regolazione.

Appendice

Size 205	5 - 7900	mm Ty	pe BFM	Hor	Connected in	1 parallel	1 series
Surf/unit(eff.)	77,7	m² Shells.	/unit 1		Surf	/shell (eff.)	77,7 m²
		PERFO	RMANCE	E OF ON	IE UNIT		
Fluid allocation				Shell	Side	Tube	Side
Fluid name				isoper	ntane	wat	er
Fluid quantity, Tota		kg/s		0,2	23	0,1	5
Vapor (In/Out)		kg/s	0		0	0	0
Liquid		kg/s	0,2	3	0,23	0,15	0,15
Noncondensable	e	kg/s	0)	0	0	0
Temperature (In/Ou	ut)	*C	30)	168,07	180	41,03
Dew / Bubble p	oint	*C					
Density	Vapor/Liquid	kg/m³	/	613,76	/ 400,16	/ 887,95	/ 992,85
Viscosity	· · ·	mPa s	/	0,2122	/ 0,052	/ 0,1507	/ 0,641
Molecular wt, Vap							
Molecular wt, NC							
Specific heat		kJ/(kg K)	/	2,284	/ 4,018	/ 4,399	/ 4,174
Thermal conductivi	ty	W/(m K)	/	0,1071	/ 0,0656	/ 0,6723	/ 0,6309
Latent heat	·	kJ/kg					
Pressure (abs)		bar	26,	5	26,42088	23	22,98026
Velocity		m/s		0,3	31	0,0	7
Pressure drop, allov	v./calc.	bar	0,9	5	0,07912	0,33	0,01974
Fouling resistance (min)	m² K/W		0,00	04	0,0002	0,00033 Ao based
Heat exchanged	88,5	kW			MTD	corrected	6,34 °C
Transferirate Servi	ce 179.6	Dirty	179,9		Clean 264		₩/(m² K)
TTANSIELIA(C, JEIVI	** '''*'*						
Transierrate, Jervi	CONST	RUCTION OF O	NE SHE	LL		Ske	tch
Transfer late, Jerwi	CONST	RUCTION OF O Shell S	NE SHEI ide	LL	Tube Side	Ske	tch
Design/vac/test pr	CONST essure:g ba	RUCTION OF O Shell S	NE SHEI ide	LL 26	Tube Side / /	Ske	tch
Design/vac/test pr Design temperature	CONST essure:g ba	RUCTION OF O Shell S 1 30/ 205	NE SHEI ide	LL 26	Tube Side / / 215	Ske	tch
Design/vac/test pr Design temperature Number passes per	CONST essure:g ba : *(RUCTION OF O Shell S 30/ 205 2	NE SHEI ide	LL 26	Tube Side / / 215 2	Ske	tch
Design/vac/test pr Design temperature Number passes per Corrosion allowance	CONST essure:g ba e *(shell e mn	RUCTION OF 0 Shell S 30/ / 205 2 3,18	NE SHEI ide	26	Tube Side / / 215 2 3,18	Ske	tchP
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections	CONST essure:g ba e *(shell e mn In mn	RUCTION OF 0 Shell S 30/ / 2005 2 3,18 1 19,05/	NE SHEI	LL 26.	Tube Side / / 215 2 3,18 12,7/ -	Ske	tchp
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating	CONST essure:g ba e *(shell e mn In mn Out	Shell S 30/ / 205 2 3.18 3.18 1 19.05/ 1 12.7/	NE SHEI	L 26,	Tube Side / / 215 2 3,18 12,7/ - 12,7/ -	Ske	tchp
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal	CONST essure:g ba shell e mn In mn Out Intermediate	Shell S 30/ / 205 205 31/1 31/1 1 19.05/ 1 12.7/	NE SHEI	L 26	Tube Side / / 215 2 3,18 12,7/ - 12,7/ -	Ske	tchp
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100	CONST essure:g ba shell e mn In mn Out Intermediate OD 13	Shell S 30/ / 205 205 31 19,05/ 1 12,7/ KsAvg 7	NE SHEI	LL 26, 1 1	Tube Side / / 215 2 3,18 12,7/ - 12,7/ - / - Length 7900	Ske	tch
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t	CONST essure:g ba shell e mn In mn Out Intermediate OD 13 ube	Shell S 30/ / 205 205 2 3,18 1 19,05/ 1 12,7/ / / TksAvg 748	NE SHEI	LL 26 1 1 1 1 sarbon Ste	Tube Side / / 215 2 3,18 12,7/ - 12,7/ - 12,7/ - Length 7900 eel	Ske	tch
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t Shell Carbon Stee	CONST essure:g ba essure:g ba shell e mn In mn Out Intermediate OD 13 ube	Shell S 30/ / 205 205 2 3,18 1 19,05/ 1 12,7/ / / 748 #/m M 205 0 205	NE SHEI ide	LL 26 1 1 1 arbon Ste	Tube Side / / 215 2 3,18 12,7/ - 12,7/ - Length 7900 rel Shell cover	Ske	tch p p 16,25 mm
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t Shell Carbon Stee Channel or bonnet	CONST essure:g ba essure:g ba shell e mn ln mn Out Intermediate OD 13 ube el Carbon Steel	Shell S 30/ / 205 2 3.18 1 1 19.05/ 1 12.7/ 748 #/m M 205 0 205	NE SHEI ide	L 26 1 1 arbon Ste mm	Tube Side / / 215 2 3,18 12,7/ - 12,7/ - Length 7900 rel Shell cover Channel cover	Ske	tch
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t Shell Carbon Stee Channel or bonnet Tubesheet-stationa	CONST essure:g ba essure:g ba shell e î ln mn Out Intermediate OUt Intermediate OD 13 ube el Carbon Steel ry Carbon Steel	Shell S 30/ / 205 2 3.18 1 1 19,05/ 1 12,7/ 748 #/m D 205	NE SHEI ide	L 26 1 1 arbon Ste mm	Tube Side / / 215 2 3,18 12,7/ - 12,7/ - Length 7900 rel Shell cover Channel cover Tubesheet-floating	Ske	tch p
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t Shell Carbon Stee Channel or bonnet Tubesheet-stationa Floating head cove	CONST essure:g ba essure:g ba shell e mn In mn Out Intermediate OD 13 ube el Carbon Steel ry Carbon Steel r	Shell S 30/ / 205 2 3.18 1 1 19.05/ 1 12.7/ 748 #/m D 205	NE SHEI ide	LL 26 1 1 arbon Ste	Tube Side / / 215 2 3,18 12,7/ - 12,7/ - Length 7900 rel Shell cover Channel cover Tubesheet-floating Impingement proter	Ske	tch p 16,25 mm
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t Shell Carbon Stee Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross Ca	CONST essure:g ba essure:g ba shell e mn In mn Out Intermediate OD 13 ube el Carbon Steel r - arbon Steel	Autorion of o Shell S 30/ / 205 2 3,18 1 1 19,05/ 1 12,7/ 748 #/m 0 205 0 0.05 0 0.05 0 0.05 0 0.05	NE SHEI ide	L 26 1 1 arbon Ste mm	Tube Side / / 215 2 3,18 12,7/ - 12,7/ - Length 7900 rel Shell cover Channel cover Tubesheet-floating Impingement protect ut(%d) 22,54	Ske	tch 16,25 mm 55 mm
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t Shell Carbon Stee Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross Ca Baffle-long C.	CONST essure:g ba essure:g ba shell e mn In mn Out Intermediate OD 13 ube el Carbon Steel r - arbon Steel arbon Steel	Shell S 30/ / 205 2 3.18 1 1 19.05/ 1 12.7/ 748 #/m 0 205 0 0.005 0 0.05 0 0.05 0 0.05	NE SHEI ide	L 26 1 1 arbon Ste mm	Tube Side / / 215 2 3,18 12,7/ - 12,7/ - Length 7900 rel Shell cover Channel cover Tubesheet-floating Impingement protect ut(%d) 22,54	Ske	tch 16,25 mm 16,25 mm 55 mm 92,98 mm
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t Shell Carbon Stee Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross Ca Baffle-long C. Supports-tube	CONST essure:g ba essure:g ba shell e mn In mn Out Intermediate OD 13 ube el Carbon Steel r - arbon Steel arbon Steel	RUCTION OF O Shell S 30/ / 205 2 3,18 1 1 19,05/ 1 12,7/ / / 748 #/m M 205 0 205 0 3,18 1 19,05/ 1 12,7/ / / Tks:Avg 748 #/m D 205 OD - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	NE SHEI ide	L 26 1 1 arbon Ste mm	Tube Side / / 215 2 3,18 12,7/ - 12,7/ - Length 7900 rel Shell cover Channel cover Tubesheet-floating Impingement protect ut(%d) 22,54	Ske	tch 16,25 mm 16,25 mm 55 mm 92,98 mm
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t Shell Carbon Stee Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross Ca Baffle-long C. Supports-tube Bypass seal	CONST essure:g ba essure:g ba shell e m In m Out Intermediate OD 13 ube el Carbon Steel r arbon Steel arbon Steel	RUCTION OF O Shell S 30/ / 205 2 3,18 1 1 19,05/ 1 12,7/ / / 748 #/m M 205 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05	NE SHEI ide	LL 26 1 1 arbon Ste mm C	Tube Side / / 215 2 3,18 12,7/ 12,7/ Length 7900 el Shell cover Channel cover Tubesheet-floating Impingement protect ut(%d) 22,54 Type joint Exp.	Ske	tch 16,25 mm 16,25 mm 55 mm 92,98 mm
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t Shell Carbon Stee Channel or bonnet Tubesheet-stationa Floating head cove Baffle-long Ca Supports-tube Bypass seal Expansion joint	CONST essure:g ba essure:g ba shell e m In m Out Intermediate OD 13 ube el Carbon Steel r arbon Steel arbon Steel	RUCTION OF O Shell S 30/ 205 2 3,18 1 1 1 748 #/m D 205 OD - Type Single U-bend	NE SHEI ide - - - - - - - - - - - - - - - - - - -	LL 26 1 1 1 arbon Ste mm C Ubesheet None	Tube Side / / 215 2 3,18 12,7/ - 12,7/ - Length 7900 el Shell cover Channel cover Tubesheet-floating Impingement protect ut(%d) 22,54 Type joint Exp. 3	Ske	tch 16,25 mm 16,25 mm 55 mm 92,98 mm
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t Shell Carbon Stee Channel or bonnet Tubesheet-stationa Floating head cove Baffle-long Ca Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	CONST essure:g ba essure:g ba essure:g ba essure:g ba for the second secon	RUCTION OF O Shell S 30/ 205 2 3,18 1 1 1 748 #/m D 205 OD - Type Single U-bend Bundl	NE SHEI ide - - - - - - - - - - - - - - - - - - -	LL 26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tube Side / / 215 2 3,18 12,7/ - 12,7/ - Length 7900 rel Shell cover Channel cover Tubesheet-floating Impingement protect ut(%d) 22,54 Type joint Exp. 3	Ske	tch 16,25 mm 16,25 mm 55 mm 92,98 mm kg/(m s ²)
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t Shell Carbon Stee Channel or bonnet Tubesheet-stationa Floating head cove Baffle-tong Ca Baffle-long Ca Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	CONST essure:g ba essure:g ba essure:g ba essure:g ba essure:g ba essure:g ba essure:g ba essure:g ba essure:g ba officient for shell for bound for boun	RUCTION OF O Shell S 30/ 2 30/ 2 31 1 1 1 1 748 #/m M 205 0D - Type Single Single Bundl	NE SHEI ide 	LL 26, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tube Side / / 215 2 3,18 12,7/ - 12,7/ - Length 7900 rel Shell cover Channel cover Tubesheet-floating Impingement protect ut(%d) 22,54 Type joint Exp. 3 Flat	Ske	tch 16,25 mm 16,25 mm 55 mm 92,98 mm kg/(m s²)
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t Shell Carbon Stee Channel or bonnet Tubesheet-stationa Floating head cove Baffle-long Ca Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	CONST essure:g ba essure:g ba essure:g ba essure:g ba essure:g ba essure:g ba essure:g ba for the sel for the sel	RUCTION OF O Shell S 30/ 2 2 3,18 1 1 1 1 748 #/m M 205 0D . Type Single Single Bundl	NE SHEI ide 	LL 26, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tube Side / / 215 2 3,18 12,7/ - 12,7/ - Length 7900 rel Shell cover Channel cover Tubesheet-floating Impingement protect ut(%d) 22,54 Type joint Exp. 3 Flat	Ske	tch 16,25 mm 16,25 mm 55 mm 92,98 mm kg/(m s²)
Design/vac/test pr Design temperature Number passes per Corrosion allowance Connections Size/rating Nominal Tube No. 100 Tube type Lowfin t Shell Carbon Stee Channel or bonnet Tubesheet-stationa Floating head cove Baffle-long Co Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating k	CONST construction essure: g ba essure: g ba essure: g ba essure: g ba essure: g ba essure: g ba essure: g ba for a show the sel for an	TION OF 0 Shell S 30/ 205 2 3,18 1 1 1 748 #/m M 205 00 748 #/m M 1205 00 . Type Single Single Bundl Code Sec VIII Div	NE SHEI ide 	LL 26, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tube Side / / 215 2 3,18 12,7/ 12,7/ - Length 7900 rel Shell cover Channel cover Tubesheet-floating Impingement protect ut(%d) 22,54 Type joint Exp. 3 Fla	Ske	tch 16,25 mm 16,25 mm 55 mm 92,98 mm kg/(m s²) herv service

Figura 1: TEMA sheet: scambiatore di calore per l'impianto senza rigenerazione.

Size 25	7 - 2550		mm T	ype BEM	Hor	Connected in	1 parallel	1 series
Surf/unit(eff.)		18,6	m² Shell:	s/unit 1		Surf	/shell (eff.)	18,6 👖
			PERFO	ORMANCI	E OF ON	IE UNIT		
Fluid allocation					Shell	Side	Tu	be Side
Fluid name				W	cold in->\	W cold out		9->0
Fluid quantity, Tota			kg/ł	1	500	00		828
Vapor (In/Out)			kg/ł	1 C)	0	828	0
Liquid			kg/ł	1 50	00	5000	0	828
Noncondensabl	е		kg/ł	1 ()	0	0	0
Temperature (In/O	ut)		*(1!	5	29,72	45,04	27,72
Dew / Bubble p	oint		•(2			29,96	29,96
Density	Vapor/L	.iquid	kg/m	•	/ 999,11	/ 995,73	3,09 /	/ 612,2
Viscosity			ct	, ,	/ 1,1376	/ 0,802	0,0078 /	/ 0,210
Molecular wt, Vap							72,15	
Molecular wt, NC								
Specific heat			kJ/(kg K		4,188	/ 4,179	1,783 /	/ 2,28
Thermal conductivi	ity		W/(m K		/ 0,5888	/ 0,614	0,017 /	/ 0,106
Latent heat			kJ/ko	1			341,6	341.7
Pressure (abs)			kPa	11	0	108,211	109	108.801
Velocity			m/s		0.2	29		3.65
Pressure drop, allow	v./calc.		kPa	2.5	35	1,789	0,574	0,199
Fouling resistance	(min)		m² K/W	/	0		0	0 Ao base
Heat exchanged	85,	5	kW	•		MTD	corrected	5,35 *
Transfer rate. Servi	ice 861	17	Dirtu	866.5		Clean, 866.5		W/(m² k
		1,1	D III Y	000,0				
	<u> </u>	ONSTR	RUCTION OF O	DNE SHE	LL		S	ketch
	<u> </u>	ONSTR	Shell :	DNE SHE Bide	LL I	Tube Side	S	ketch
Design/vac/test p	essure:g	ONSTE kPa	Shell: 300/	DNE SHE Bide 7	LL 300	Tube Side	<u> </u>	ketch
Design/vac/test pr	essure:g	ONSTE kPa	Shell 300/ 65	DNE SHE Bide /	LL 300	Tube Side / / 85	S	ketch
Design/vac/test pr Design temperature Number passes pe	essure:g	ONSTF kPa *C	300/ 300/ 300/ 1	DNE SHE Side /	LL 300	Tube Side / / 85 1	s . רְדָרַקָּיָרָקָיָרָ	ketch
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc	essure:g essure:g s r shell e	kPa *C	300/ 300/ 55 300/ 55 300/	DNE SHE Dide /	LL 300,	Tube Side / / 85 1 3,18	s C	ketch
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections	essure:g e r shell e I In	kPa *C	300/ 300/ 55 300/ 55 3,1 52,5/	DNE SHE Side / 8	LL 300, 1	Tube Side / / 85 1 3,18 54,05/ -		
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating	essure:g eshell e In Out	kPa *C	300/ 300/ 55 300/ 55 3,1 1 52,5/ 1 77,93/	DNE SHE Side / 8 8	LL 300, 1 15 1 3	Tube Side / / 85 1 3,18 54,05/ - 35,05/ -		
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID	essure:g e r shell e In Out Intermedi	kPa *C	300/ 300/ 55 5 5 5 5 5 5 5 5 5 5 5 5	DNE SHE Side / 8	LL 300, 1 15 1 3	Tube Side / / 85 1 3,18 54,05/ - 35,05/ -		
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183	essure:g er shell e In Out Intermedi	kPa kPa *C mm mm iate D 13	300/ 5hell 300/ 55 1 3,1 1 52,5/ 1 77,93/ / TksAv	DNE SHE Gide / 8 - - - - - - - - - - - - -	LL 300, 1 15 1 3	Tube Side / / 85 1 3,18 54,05/ - 35,05/ - Length 2,55		ketch
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain	essure:g e r shell e In Out Intermedi	kPa *C mm mm iate D 13	300/ Shell : 300/ 65 1 3,1 1 52,5/ 1 77,93/ / TksAv #/m	DNE SHE Bide / B - - g 0,56 4aterial C	LL 300, 1 15 1 3 mm arbon Ste	Tube Side / / 85 1 3,18 54,05/ - 35,05/ - Length 2,55 eel	S	ketch
Design/vac/test pi Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain Shell Carbon Ster	essure:g e r shell e In Out Intermedi	kPa kPa *C mm mm iate D 13	Suction of (Shell 300/ 65 1 3,1 1 52,5/ 1 77,93/ / TksAv \$257,45 0	DNE SHE Bide / B - - g 0,56 4aterial C 273,05	LL 300 1 15 1 3 mm arbon Ste	Tube Side / / 85 1 3,18 54,05/ - 35,05/ - / - Length 2,55 sel Shell cover	S	ketch
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain Shell Carbon Ster Channel or bonnet	essure:g ershell e In Out Intermedi carbo	kPa kPa °C mm mm iate D 13 II n Steel	BUCTION OF (Shell ! 300/ 65 1 3,1 1 52,5/ 1 77,93/ / TksAv \$257,45	DNE SHE Side / 8 - - g 0,56 4aterial C 273,05	LL 300 1 15 1 3 mm arbon Ste	Tube Side / / 85 1 3,18 i4,05/ - 55,05/ - Length 2,55 rel Shell cover Channel cover	m Pit Tube pattern	ketch
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa	essure:g essure:g r shell e In Out Intermedi : 0 carbo	kPa kPa °C mm mm jate D 13 II n Steel n Steel	BUCTION OF (Shell ! 300/ 65 1 3,11 1 52,5/ 1 77,93/ / TksAv \$257,45 O	DNE SHE Side / 8 - 9 0,56 4aterial C 273,05	LL 300 1 15 1 3 mm arbon Ste mm	Tube Side / / 85 1 3,18	m Pit Tube pattern	ketch
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove	essure:g essure:g r shell e Intermedi Intermedi Intermedi Carbo	kPa kPa C mm mm jate D 13 II n Steel n Steel	Suction of (Shell ! 300/ 65 1 3,11 1 52,5/ 1 77,93/ / TksAv \$257,45 O	DNE SHE Side / 8 - 9 0,56 4aterial C 273,05	LL 300 1 15 1 3 mm arbon Ste mm	Tube Side / / 85 1 3,18	m Pit Tube pattern - - - - -	ketch
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross C.	essure:g essure:g e Intermedi Out Intermedi Carbo ry Carbo er -	kPa kPa C mm mm iate D 13 II n Steel n Steel	300/ Shell : 300/ 65 1 3,1 1 52,5/ 1 77,93/ / TksAv #/m N 257,45 0D - Type Single	DNE SHE Side / 8 - 9 0,56 4aterial C 273,05 ·	LL 300 1 15 1 3 arbon Ste mm	Tube Side / / 85 1 3,18	m Pit Tube pattern - - - - - - - - - - - - - - - - - - -	ketch
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross C. Baffle-long	essure:g essure:g e Intermedi Out Intermedi Carbo ry Carbo er carbon Steel	kPa kPa C mm mm iate D 13 II n Steel n Steel	300/ Shell : 300/ 65 1 3,1 1 52,5/ 1 77,93/ 7,93/ 7,93/ 1 77,93/ 257,45 0D Type Single	DNE SHE Side / 8 - - g 0,56 4aterial C 273,05 - segmental Seal type	LL 300 1 15 1 3 arbon Ste mm	Tube Side / / 85 1 3,18	m Pit Tube pattern - - - - - - - - - - - - - - - - - - -	ketch
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross Ca Baffle-long - Supports-tube	essure:g essure:g e Intermedi Out Intermedi Carbo rry Carbo er carbon Steel	kPa kPa C mm mm iate D 13 II n Steel n Steel	Buction of (Shell ! 300/ 65 1 3,11 1 52,5/ 1 77,93/ / TksAv #/m 0 257,45 O Type Single Substrained U-bend	DNE SHE Side / 8 - - g 0,56 4aterial C 273,05 - segmental Seal type 0	LL 300 1 15 1 3 mm arbon Ste mm	Tube Side / / 85 1 3,18 i4,05/ - 35,05/ - Length 2,55 rel Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 28,14 Type	m Pit Tube pattern - - - - - - - - - - - - - - - - - - -	ketch
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross C. Baffle-long - Supports-tube Bypass seal	essure:g r shell e In Out Intermedi Carbo rry Carbo rr - arbon Steel	kPa kPa C mm mm iate D 13 II n Steel n Steel	BUCTION OF (Shell ! 300/ 65 1 3,11 1 52,5/ 1 77,93/ / TksAv #1/m 0.257,45 O Type Single S U-bend	DNE SHE Side / / 8	LL 300 1 15 1 3 mm arbon Ste mm	Tube Side / / 85 1 3,18	m Pit Tube pattern - - - - - - - - - - - - - - - - - - -	ketch
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-tong Supports-tube Bypass seal Expansion joint	essure:g r shell e In Out Intermedi Carbo rry Carbo rr - arbon Steel	kPa kPa C mm mm iate D 13 II n Steel n Steel	BUCTION OF (Shell ! 300/ 65 1 3,11 1 52,5/ 1 77,93/ / TksAv #/m 0 257,45 O Type Single S U-bend	DNE SHE Side / / 8 g 0,56 4aterial C 273,05 - segmental Seal type 0 Tube-t Type	LL 300 1 15 1 3 mm arbon Ste mm C Ubesheet None	Tube Side / / 85 1 3,18 i4,05/ / - Length 2,55 rel Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 28,14 Type joint Exp.	m Pit Tube pattern - - - - - - - - - - - - - - - - - - -	ketch
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-long Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	essure:g r shell e In Out Intermedi Carbo rry Carbo rr - arbon Steel	kPa kPa C mm mm iate D 13 II n Steel I steel I - 412	BUCTION OF (Shell 1 300/ 65 1 3,1 1 52,5/ 1 77,93/ 7,93/ 7,83Av #/m N 0 257,45 0D - 5 Type Single 9 U-bend 8 U-bend	DNE SHE Side / / 8	LL 300 1 15 1 3 mm arbon Ste mm C Ubesheet None 60	Tube Side / / 85 1 3,18	s	ketch
Design/vac/test pi Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-tong Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	essure:g r shell e In Out Intermedi Carbo rry Carbo rr - arbon Steel	kPa kPa C mm mm iate D 13 II n Steel I steel I - 412 -	BUCTION OF (Shell : 300/ 65 1 3,1 1 52,5/ 1 77,93/ 7,	DNE SHE Side / / 8	LL 300 1 15 1 3 mm arbon Ste mm c ubesheet None 60 Side	Tube Side / / 85 1 3,18 i4,05/ - 35,05/ - 25,05/ - Length 2,55 rel Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 28,14 Type joint Exp. Fla	s	ketch
Design/vac/test pi Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-long Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell sid	essure:g r shell e Out Intermedi Carbo rry Carbo rry Carbo sr - arbon Steel	kPa kPa C mm mm iate D 13 I n Steel I steel I 412 - -	BUCTION OF (Shell !: 300/ 65 1 3,11 1 52,5/ 1 77,93/ / TksAv #/m D 257,45 OD - Type Single U-bend Bunc	DNE SHE Side / / 8 - - g 0,56 4aterial C 273,05 - - 273,05 - - - - - - - - - - - - - - - - - - -	LL 300 1 15 1 3 mm arbon Ste mm c ubesheet None 60 Side	Tube Side / / 85 1 3,18 54,05/ - 25,05/ - 25,05/ - Length 2,55 rel Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 28,14 Type joint Exp. Fla	s	ketch
Design/vac/test pi Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 183 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stations Floating head cove Baffle-long Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell sidt Floating Code requirements	essure:g r shell e In Out Intermedi Carbo rry Carbo rry Carbo rr - arbon Steel	kPa kPa C mm mm iate D 13 II n Steel I A teel I A Steel I A Steel I A Steel I A Steel I A Steel I A Steel I A Steel I A Steel I A Steel I A Steel I A Steel A A A A A A A A A A A A A	BUCTION OF (Shell !: 300/ 65 1 3,11 1 52,5/ 1 77,93/ / TksAv #/m D 257,45 OD - Type Single S U-bend Bunc Code Sec VIII Dir	DNE SHE Side / / 8	LL 300 1 15 1 3 mm arbon Ste mm C ubesheet None 60 Side	Tube Side / / 85 1 3,18 54,05/ - 35,05/ - 25,05/ - Length 2,55 rel Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 28,14 Type joint Exp. Fla	m Pit Tube pattern - - - - - - - - - - - - - - - - - - -	ketch Image: state

Figura 2: TEMA sheet: condensatore per l'mpianto con rigenerazione.

Size 25	i4 - 6096		mm	Τı	pe BFM	Hor	Connected in	1 parallel	1 series		
Surf/unit(eff.)	41	1,3	m²	Shells	/unit 1		Su	rf/shell (eff.)	41,3 👖		
				PERFO	RMANCE	OF ON	IE UNIT				
Fluid allocation						Shell	Side	Tube	e Side		
Fluid name						Isoper	ntane	W	Water		
Fluid quantity, Total kg/s					0,23			0,15			
Vapor (In/Out) kg					0		0	0	0		
Liquid				kq/s	0,23		0,23	0,15	0,15		
Noncondensable k				kg/s	0		0	0	0		
Temperature (In/C	lut)			*C	60		168,12	180	73,15		
Dew / Bubble point				*C	170,46		170,46				
Density Vapor/Liquid				kg/m ³	/ 578,38		/ 396,57	7 / 827,73	/ 946,2		
Viscosity	· · ·			mPa s	/	0,1603	/ 0,0873	3 / 0,1487	/ 0,390		
Molecular wt, Vap											
Molecular wt, NC											
Specific heat			k.	l/(ka K)	/	2,428	/ 4,741	/ 4,951	/ 4,54		
Thermal conductiv	ritu		V	₩/(m K)	1	0.1006	/ 0.0643	3 / 0.6769	/ 0.659		
Latent heat				kJ/ka							
Pressure (abs)				bar	26,9	5	26,46184	23	22,99086		
Velocity				m/s		0	2	0.	02		
Pressure drop, allo	w./calc.			bar	0,499	187	0.03816	0,33	0.00914		
Fouling resistance	(min)			m² K/W		0.00	04	0.0002	0.00022 Ao base		
Heat exchanged	75.3		k٧	V			MT) corrected	8.04 *		
				-		-			-/		
	CON	ISTE	RUCTIO)N OF O	NE SHEL	L.		l Sk	etch		
	CON	ISTF	RUCTIO I	IN OF O Shell S	NE SHEL ide	.L	Tube Side	Sk	etch		
Design/yac/test p	CON	ISTF bar	3UCTIO 3.64747	ON OF O Shell S	NE SHEL ide	.L 5.51061	Tube Side		etch		
Design/vac/test p Design temperatur	CON ressure:g e	ISTF bar	3UCTIO 3,64747	IN OF 0 Shell S 7/ / 204,4	NE SHEL ide 4	.L 5,51061	Tube Side / / 215.56	Sk 	etch		
Design/vac/test p Design temperatur Number passes pe	CON ressure:g e er shell	ISTF bar *C	3UCTIO 3,64747	DN OF 0 Shell S 7/ / 204,4 2	NE SHEL	.L 5,51061	Tube Side / / 215,56 2	Sk	etch		
Design/vac/test p Design temperatur Number passes pe Corrosion allowani	CON ressure:g e er shell ce	bar *C	3UCTIO 3,64747	DN OF 0 Shell S 7/ / 204,4 2 3,18	NE SHEL ide 4	L 5,51061	Tube Side / / 215,56 2 3,18	Sk -	etch		
Design/vac/test p Design temperatur Number passes pe Corrosion allowand Connections	CON ressure:g e er shell ce In	ISTF bar *C mm	3UCTIO 3,64747	Shell S Shell S 7 204,4 2 3,18 19.05/	NE SHEL ide 4	L 5,51061	Tube Side / / 215,56 2 3,18 12.7/ ·	Sk Q	etch		
Design/vac/test p Design temperatur Number passes pe Corrosion allowand Connections Size/rating	CON ressure:g e r shell ce In Out	bar *C mm	3 UCTIO 3,64747 1 1	DN OF 0 Shell S 7/ / 204,4 2 3,18 19,05/ 12,7/	NE SHEL ide 4 	L 5,51061 1 1	Tube Side / / 215,56 2 3,18 12,7/ - 12,7/ -	Sk ,	etch		
Design/vac/test p Design temperatur Number passes pe Corrosion allowand Connections Size/rating Nominal	CON ressure:g er shell ce In Out Intermediate	ISTF bar *C mm mm	3,64747 3,64747 1 1	DN OF 0 Shell S 7/ / 204,4 2 3,18 19,05/ 12,7/ /	NE SHEL	L 5,51061 1 1	Tube Side / / 215,56 2 3,18 12,7/ - 12,7/ - /	Sk	etch		
Design/vac/test p Design temperatur Number passes pe Corrosion allowane Connections Size/rating Nominal Tube No. 16	CON ressure:g er shell ce In Out Intermediate 3 OD	ISTF bar *C mm mm	3,64747 3,64747 1 1	IN OF O Shell S 7 / 204,4 2 3,18 19,05/ 12,7/ / TksAvg	NE SHEL ide 4 	L 5,51061 1 1	Tube Side / / 215,56 2 3,18 12,7/ - 12,7/ - / Length 6096	Sk	etch		
Design/vac/test p Design temperatur Number passes per Corrosion allowane Connections Size/rating Nominal Tube No. 16 Tube type Plain	CON ressure:g er shell ce In Out Intermediate 3 OD	bar *C mm mn 13	3UCTIO 3,64747 1 1	Shell S Shell S 204,4 2 3,18 19,05/ 12,7/ / TksAvg B/m	NE SHEL ide 4 - - 0,56 aterial Ca	L 5,51061 1 1 rbon Ste	Tube Side / / 215,56 2 3,18 12,7/ - 12,7/ - 12,7/ - / - Length 6096 eel	mm Pitch	etch 		
Design/vac/test p Design temperatur Number passes per Corrosion allowane Connections Size/rating Nominal Tube No. 16 Tube type Plain Shell Carbon Ste	CON ressure:g er shell ce In Out Intermediate 3 OD el	bar *C mm 13	3UCTIO 3,64747 1 1 1 1 2 257,45	IN OF O Shell S Y 204,4 2 3,18 19,05/ 12,7/ / TksAvg #/m M 0D	NE SHEL ide 4 0,56 aterial Ca 273,05	L 5,51061 1 1 rbon Ste	Tube Side / / 215,56 2 3,18 12,7/ - 12,7/ - 12,7/ - Length 6096 rel Shell cover	mm Pitch Tube pattern	etch		
Design/vac/test p Design temperatur Number passes per Corrosion allowane Connections Size/rating Nominal Tube No. 16 Tube type Plain Shell Carbon Ste Channel or bonne	CON ressure:g er shell ce In Out Intermediate 3 OD el Carbon Si	ISTF bar *C mm mm 13	3UCTIO 3,64747 1 1 1 1 0 257,45	IN OF O Shell S '/ 204,4 2 3,18 19,05/ 12,7/ / TksAvg Ill, 'm M OD	NE SHEL ide 4 0,56 aterial Ca 273,05	L 5,51061 1 1 rbon Ste	Tube Side / / 215,56 2 3,18 12,7/ - 12,7/ - 12,7/ - Length 6096 rel Shell cover Channel cover	mm Pitch Tube pattern	etch 		
Design/vac/test p Design temperatur Number passes pe Corrosion allowani Connections Size/rating Nominal Tube No. 16 Tube type Plain Shell Carbon Ste Channel or bonne Tubesheet-station	CON ressure:g e r shell ce In Out Intermediate 3 OD el Carbon Si ary Carbon Si	ISTF bar *C mm mm 13 13 teel teel	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IN OF O Shell S '/ 204,4 2 3,18 19,05/ 12,7/ / TksAvg Ill, 'm M OD	NE SHEL ide 4 0,56 aterial Ca 273,05	L 5,51061 1 1 rbon Ste	Tube Side / / 215,56 2 3,18 12,7/ 12,7/ - 12,7/ - Length 6096 sel Shell cover Channel cover Tubesheet-floatin	mm Pitch Tube pattern	etch		
Design/vac/test p Design temperatur Number passes pe Corrosion allowand Connections Size/rating Nominal Tube No. 16 Tube type Plain Shell Carbon Ste Channel or bonne Tubesheet-station Floating head cov	CON ressure:g e r shell be In Out Intermediate 3 OD el carbon Si ary Carbon Si er	ISTF bar *C mm mm 13 13 iceel iceel	1 1 257,45	IN OF O Shell S '/ 204,4 2 3,18 19,05/ 12,7/ / TksAvg Ik/m M OD	NE SHEL ide 4 0,56 aterial Ca 273,05	L 5,51061 1 1 rbon Ste mm	Tube Side / / 215,56 2 3,18 12,7/ - 12,7/ - Length 6096 rel Shell cover Channel cover Tubesheet-floatin Impingement prot	mm Pitch Tube pattern	etch 		
Design/vac/test p Design temperatur Number passes pe Corrosion allowand Connections Size/rating Nominal Tube No. 16 Tube type Plain Shell Carbon Ste Channel or bonne Tubesheet-station Floating head cov Baffle-cross	CON ressure:g e r shell ce In Out Intermediate 3 OD el carbon Si ary Carbon Si er carbon Steel	ISTF bar °C mm mm 13 13 iEeel ieeel	3UCTIO 3,64747 1 1 1 1 2257,45	IN OF O Shell S Y / 204,4 2 3,18 19,05/ 12,7/ / TksAvg #/m M i OD - -	NE SHEL ide 4 0,56 aterial Ca 273,05	L 5.51061 1 1 rbon Ste mm	Tube Side / / 215,56 2 3,18 12,7/ 12,7/ - 12,7/ - / - Length 6096 sel - Shell cover - Channel cover - Tubesheet-floatin - Impingement prot ut(%d)	mm Pitch Tube pattern c g ection None V Spacing: c/c	etch 		
Design/vac/test p Design temperatur Number passes pe Corrosion allowand Connections Size/rating Nominal Tube No. 16 Tube type Plain Shell Carbon Ste Channel or bonne Tubesheet-station Floating head cov Baffle-cross C Baffle-long (CON ressure:g e r shell ce In Out Intermediate 3 OD el Carbon Si ary Carbon Si er carbon Steel Carbon Steel	ISTF bar C mm mm 13 L teel teel	3UCTIO 3,64747 1 1 1 2 257,45	IN OF O Shell S Y / 204,4 2 3,18 19,05/ 12,7/ TksAvg #/m M 0 D : - e Single :	NE SHEL ide 4 0,56 aterial Ca 273,05 segmental sal type	L 5.51061 1 1 rbon Ste mm	Tube Side / / 215,56 2 3,18 12,7/ 12,7/ - 12,7/ - Length 6096 sel Shell cover Channel cover Tubesheet-floatin Impingement protut(%d) 33,6	mm Pitch Tube pattern	101,6 mi 115,89 mi		
Design/vac/test p Design temperatur Number passes pe Corrosion allowand Connections Size/rating Nominal Tube No. 16 Tube type Plain Shell Carbon Ste Channel or bonne Tubesheet-station Floating head cov Baffle-cross C Baffle-long (CON ressure:g e r shell ce In Out Intermediate 3 OD el Carbon Steel Carbon Steel Carbon Steel	ISTF bar C mm mm 13 13 L L teel teel	3UCTIO 3,64747 1 1 1 2 257,45 Type U-ber	IN OF O Shell S Y / 204,4 2 3,18 19,05/ 12,7/ / TksAvg / ithm M 00 : is 00 : is 00 : is State is State	NE SHEL ide 4 0,56 aterial Ca 273,05 segmental sal type 0	L 5.51061 1 1 rbon Ste mm	Tube Side / / 215,56 2 3,18 12,7/ 12,7/ - 12,7/ - / - Length 6096 sel Shell cover Channel cover Tubesheet-floatin Impingement protut(%d) 33,6	mm Pitch Tube pattern	101,6 mi 115,89 mi		
Design/vac/test p Design temperatur Number passes pe Corrosion allowani Connections Size/rating Nominal Tube No. 16 Tube type Plain Shell Carbon Ste Channel or bonne Tubesheet-station Floating head cov Baffle-cross C Baffle-long () Supports-tube	CON ressure:g e r shell ce In Out Intermediate 3 OD el Carbon Steel Carbon Steel Carbon Steel	ISTF bar *C mm mm 13 IE teel	3UCTIO 3,64747 1 1 1 2257,45 Type U-ber	IN OF O Shell S Y / 204,4 2 3,18 19,05/ 12,7/ / TksAvg Ither Million i OD e Single Single	NE SHEL ide 4 0,56 aterial Ca 273,05 segmental sal type 0 Tube-tu	L 5,51061 1 1 rbon Ste mm C	Tube Side / / 215,56 2 3,18 12,7/ 12,7/ - 12,7/ - 12,7/ - Length 6096 sel Shell cover Channel cover Tubesheet-floatin Impingement protut(%d) 33,6 Type joint Exp	mm Pitch Tube pattern c g ection None V Spacing: c/c Inlet	101,6 mi 115,89 mi		
Design/vac/test p Design temperatur Number passes per Corrosion allowant Connections Size/rating Nominal Tube No. 16 Tube type Plain Shell Carbon Ste Channel or bonne Tubesheet-station Floating head cov Baffle-cross C Baffle-long (Supports-tube Bypass seal Expansion joint	CON ressure:g e r shell ce In Out Intermediate 3 OD el Carbon Si ary Carbon Si er arbon Steel Carbon Steel	ISTF bar *C mm mm 13 IC teel teel	3UCTIO 3,64747 1 1 1 2257,45 Type U-ber	IN OF O Shell S Y / 204,4 2 3,18 19,05/ 12,7/ / TksAvg / it/m M io 0D s Set e Single s Set	NE SHEL ide 4 0,56 aterial Ca 273,05 segmental sal type 0 Tube-tu Type	L 5,51061 1 1 rbon Ste mm C besheet None	Tube Side / / 215,56 2 3,18 12,7/ 12,7/ - 12,7/ - 12,7/ - 12,7/ - / - Length 6096 - Shell cover - Channel cover - Tubesheet-floatin - Impingement protukt(%d) 33,6 - Type - joint Exp	mm Pitch Tube pattern	etch 16,25 m 30 101,6 m 115,89 m		
Design/vac/test p Design temperatur Number passes per Corrosion allowant Connections Size/rating Nominal Tube No. 16 Tube type Plain Shell Carbon Ste Channel or bonne Tubesheet-station Floating head cov Baffle-tong (Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	CON ressure:g e r shell >e Out Out Intermediate 3 OD el Carbon Steel carbon Steel Carbon Steel Carbon Steel - - - - - - - - - - - - -		3UCTIO	IN OF O Shell S Y / 204,4 2 3,18 19,05/ 12,7/ / TksAvg / iii/m M iii OD e Single nd Single	NE SHEL ide 4 	L 5,51061 1 1 rbon Ste mm C besheet None 15	Tube Side / / 215,56 2 3,18 12,7/ - 12,7/ - Length 6096 el Shell cover Channel cover Tubesheet-floatin Impingement prot ut(%d) 33,6 Type joint Exp	mm Pitch Tube pattern	etch 16,25 m 101,6 m 115,89 m kg/(m s ²		
Design/vac/test p Design temperatur Number passes per Corrosion allowant Connections Size/rating Nominal Tube No. 16 Tube type Plain Shell Carbon Ste Channel or bonne Tubesheet-station Floating head cov Baffle-tong (Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzli Gaskets - Shell sid	CON ressure:g e r shell ce In Out Out Intermediate 3 OD el Carbon Steel carbon Steel ca	ISTF bar *C mm mm 13 12 12 12 12 12 12 12 12 12 12	3UCTIO	IN OF O Shell S Y / 204,4 2 3,18 19,05/ 12,7/ / TksAvg / iii/m M iii OD e Single nd	NE SHEL ide 4 	L 5,51061 1 1 rbon Ste mm C besheet None 15 ide	Tube Side / / 215,56 2 3,18 12,7/ 12,7/ - 12,7/ - Length 6096 sel Shell cover Channel cover Tubesheet-floatin Impingement prot ut(%d) 33,6 Type joint Exp	mm Pitch Tube pattern G ection None V Spacing: c/c Inlet . 2 grv Bundle exit 22 at Metal Jacket Fibe	etch 16,25 m 101,6 m 115,89 m kg/(m s ²		
Design/vac/test p Design temperatur Number passes per Corrosion allowani Connections Size/rating Nominal Tube No. 16 Tube type Plain Shell Carbon Ste Channel or bonne Tubesheet-station Floating head cov Baffle-cross C Baffle-long C Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzli Gaskets - Shell sid Floating	CON ressure:g e r shell ce In Out Intermediate 3 OD el Carbon Steel carbon	ISTF bar *C mm mm 13 13 12 12	3UCTIO	IN OF O Shell S 7/ / 204,4 2 3,18 19,05/ 12,7/ / TksAvg #/m M i OD i - - - - - - - - - - - - - - - - - - -	NE SHEL ide 4 - - 0,56 aterial Ca 273,05 segmental eal type 0 Tube-tu Type e entrance Tube S	L 5,51061 1 1 rbon Ste mm C besheet None 15 ide	Tube Side / / 215,56 2 3,18 12,7/ 12,7/ - 12,7/ - Length 6096 el Shell cover Channel cover Tubesheet-floatin Impingement protut(%d) 33,6 Type joint Exp	mm Pitch Tube pattern G ection None V Spacing: c/c Inlet . 2 grv Bundle exit 22 at Metal Jacket Fibe	etch 16,25 m 101,6 m 115,89 m kg/(m s		
Design/vac/test p Design temperatur Number passes per Corrosion allowant Connections Size/rating Nominal Tube No. 16 Tube type Plain Shell Carbon Ste Channel or bonne Tubesheet-station Floating head cov Baffle-cross C Baffle-long C Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzli Gaskets - Shell sid Floating Code requirements	CON ressure:g e r shell ce In Out Intermediate 3 OD el Carbon Steel carbon	ISTF bar *C mm mm 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12	3UCTIO	IN OF O Shell S 7/ / 204,4 2 3,18 19,05/ 12,7/ / TksAvg #/m M i OD : - - - - - - - - - - - - - - - - - - -	NE SHEL ide 4 - - 0,56 aterial Ca 273,05 segmental eal type 0 Tube-tu Type e entrance Tube S	L 5,51061 1 1 rbon Ste mm C besheet None 15 ide	Tube Side / / 215,56 2 3,18 12,7/ 12,7/ - 12,7/ - 12,7/ - 2 - 2,7/ - 12,7/ - 2,7/ - Length 6096 el Shell cover Channel cover Tubesheet-floatin Impingement protut(%d) 33,6 Type joint Exp joint Exp FI	mm Pitch Tube pattern Tube pattern g ection None V Spacing: c/c Inlet .2 grv Bundle exit 22 at Metal Jacket Fibe	etch 16,25 m 101,6 m 115,89 m kg/(m s ²		

Figura 3: TEMA sheet: scambiatore di calore per l'impianto con rigenerazione.

Size 30	7 - 1800		mm Ty	pe BFM	Hor	Connected in	1 paralle	el 1 series	
Surf/unit(eff.)		17,5	m² Shells.	/unit 1		Surl	/shell (eff.)	17,5 <mark>m²</mark>	
			PERFO	RMANCE	OF ON	IE UNIT			
Fluid allocation					Shell	Side	Tube Side		
Fluid name		W cold in->W cold out			5->0				
Fluid quantity, Tota	kg/h	4000			552				
Vapor (In/Out)			kg/h	0		0	552	0	
Liquid	kg/h	4000		4000	0	552			
Noncondensable kg/h				0		0	0	0	
Temperature (In/O	utì		*C	15	i	29.03	70.6	25.35	
Dew / Bubble point							29.96	29.96	
Density Vapor/Liquid			ka/m ³ / !		999.11	/ 995.93	2.84 /	/ 614.64	
Viscosity Vaporziquid			cn	/ 1.1376		/ 0.8142	0.0084 /	/ 0.2157	
Molecular wt. Van					.,	, ,,,,,	72 15	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Molecular wt_NC							12,10		
Specific heat			k.l./(k.a. K.)	/	4 188	/ 418	1.89 /	/ 2272	
Thermal conductivi	itu		W/(m K)	<u> </u>	0.5888	/ 0.6129	0.0197 /	/ 0.1072	
Latent heat	9		kl/ka	,	0,0000	7 0,0120	341.6	241.7	
Pressure (abs)			kPa	11	n	109 307	109	108.675	
Velocitu			m/e		<u> </u>	1/1	105	1 100,010	
Pressure drop allou	w Zeale		kPa	2.53	25	0 693	0.574	0.325	
Fouling resistance	min)		m2 K /u/	2,00	0.00	0,000	0,074	0,020	
Host suchspread	(1100) CE	2	IIF N/W		<u>U,0002</u>		0,0004	0,00044 A0 Dased	
Transfer rate. Servi	00, ioo 448	5.5	Dirtu	445.5		Class 622.2	conecteu	0,37 C	
LITAUSIELIAIE JEIV	LIE 44:	1.11	17010	440.0		Cleari ozz.z		W/INCIN	
	<u>л (00</u>	ONSTR		NE SHEI	1		c	katah	
	C	ONSTR	UCTION OF O	NE SHEI	_L	Tube Side		Sketch	
Design/use/test.pr	C	ONSTR	SUCTION OF O Shell S	NE SHEI ide	L 300	Tube Side		Sketch	
Design/vac/test pr	essure:g	ONSTR kPa	UCTION OF O Shell S 300/ /	NE SHEI ide	-L 300,	Tube Side / /	<u>ب</u>	Sketch	
Design/vac/test pr Design temperature	essure:g	CONSTR kPa *C	SUCTION OF O Shell S 300/ / 65	NE SHEI ide	-L 300,	Tube Side / / 110	ٔ مِتْسَتْ	Sketch	
Design/vac/test pr Design temperature Number passes pe	essure:g e r shell	kPa *C	UCTION OF 0 Shell S 300/ / 65 2	NE SHEI ide	_L 300,	Tube Side / / 110 2 219		iketch	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc	essure:g e r shell e	kPa *C	UCTION OF O Shell S 300/ / 65 2 3.18	NE SHEI ide	L 300,	Tube Side / / 110 2 3,18		iketch	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections	essure:g e r shell e In	kPa *C	UCTION OF O Shell S 300/ / 65 2 3,18 1 52,5/ 1 77,93/	NE SHEI	L 300, 1 10	Tube Side / / 110 2 3,18 12,26/ -			
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating	essure:g ershell e In Out	kPa *C	UCTION OF O Shell S 300/ / 65 2 3,18 1 52,5/ 1 77,93/	NE SHEI	L 300, 1 10 1 2	Tube Side / / 110 2 3,18 12,26/ - 26,64/ -			
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID	essure:g r shell e In Out Intermedi	kPa *C mm mm	UCTION OF O Shell S 300/ / 65 2 3,18 1 52,5/ 1 77,93/ /	NE SHEI	L 300, 1 10 1 2	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - 1000			
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247	essure:g r shell e In Out Intermedi	kPa *C mm mm iate D 13	UCTION OF O Shell S 300/ / 65 2 3,18 1 52,5/ 1 77,93/ / TksAvg	NE SHEI	L 300.	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - / - Length 1800		iketch	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube type Plain	essure:g essure:g r shell e In Out Intermedi	kPa *C mm mm ate D 13	Suction of o Shell S 300/ 65 2 3,18 1 52,5/ 1 77,93/ KsAvg #/m	NE SHEI ide - - 0,56 aterial Ca	L 300, 1 10 1 2 mm arbon Ste	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - / - Length 1800 rel	mm Pi Tube pattern	Sketch Image: state	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube type Plain Shell Carbon Ster	essure:g r shell e In Out Intermedi	kPa *C mm iate D 13	Shell S 300/ / 65 2 3,18 1 1 52,5/ 1 77,93/ KsAvg 4/m 307,09 0D	NE SHEI ide - - - 0,56 aterial Ca 323,85	L 300, 1 10 1 2 mm arbon Ste	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - / - Length 1800 rel Shell cover	mm Pi Tube pattern	Siketch Image: siketch	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube type Plain Shell Carbon Ster Channel or bonnet	essure:g r shell e In Out Intermedi Out Carbo	kPa *C mm mm ate D 13 IE n Steel	Shell S 300/ / 65 2 3,18 1 1 52,5/ 1 77,93/ KsAvg / #/m M 0.307,09 0D	NE SHEI ide - - - - - - - - - - - - - - - - - - -	L 300, 1 10 1 2 mm arbon Ste	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - Length 1800 el Shell cover Channel cover	mm Pi Tube pattern	Sketch Image: state	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube No. 247 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa	essure:g r shell e In Out Intermedi Out Carbo ary Carbo	kPa *C mm mm ate D 13 IE n Steel n Steel	Shell S 300/ / 65 2 3,18 1 1 52,5/ 1 77,93/ KsAvg 4/m 307,09 0D	NE SHEI ide - - - 0,56 aterial Ca 323,85	L 300, 1 10 1 2 mm arbon Ste	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - Length 1800 el Shell cover Channel cover Tubesheet-floating	mm Pi Tube pattern	Sketch Image: state	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube No. 247 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove	essure:g r shell e In Out Intermedi Carbo ary Carbo r -	kPa *C mm mm ate D 13 IE n Steel n Steel	Shell S 300/ / 65 2 3,18 1 1 52,5/ 1 77,93/ / / 307,09 0D	NE SHEI ide - - 0,56 aterial Ca 323,85	L 300, 1 10 1 2 mm arbon Ste	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - Length 1800 rel Shell cover Channel cover Tubesheet-floating Impingement prote	mm Pi Tube pattern - ction None	Sketch Image: state	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross C.	essure:g r shell e In Out Intermedi Carbo ary Carbo r carbon Steel	kPa *C mm mm iate D 13 IE n Steel n Steel	Shell S 300/ / 65 2 3,18 1 1 52,5/ 1 77,93/ / / 307,09 0D . . Type Single	NE SHEI ide - - 0,56 aterial Ca 323,85 segmental	L 300, 1 10 1 2 mm arbon Stee mm	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - Length 1800 el Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 40,83	mm Pi Tube pattern	Sketch Image: size of the size	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross C. Baffle-long C	essure:g r shell e In Out Intermedi Carbo arbon Steel arbon Steel	kPa *C mm mm iate D 13 IE n Steel n Steel	Shell S 300/ / 65 2 3,18 1 1 52,5/ 1 77,93/ / / 307,09 0D . . Type Single	NE SHEI ide - - - - - - - - - - - - - - - - - - -	L 300, 1 10 1 2 mm arbon Ste mn	Tube Side / / 110 2 3,18 12,26/ - 26,64/ / - Length 1800 rel Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 40,83	mm Pi Tube pattern - ction None V Spacing: c/	Sketch Image: state	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross C. Baffle-long C Supports-tube	essure:g r shell e In Out Intermedi Carbo r carbon sr arbon Steel arbon Steel	kPa *C mm mm iate D 13 IE n Steel	Shell S 300/ / 65 2 3,18 1 1 52,5/ 1 77,93/ / / 307,09 0D . . Type Single Single Single	NE SHEI ide - - - - - - - - - - - - - - - - - - -	L 300, 1 10 1 2 mm arbon Ste mn	Tube Side / / 110 2 3,18 12,26/ - 26,64/ / - Length 1800 rel Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 40,83 Type	mm Pi Tube pattern - ction None V Spacing: c/	Sketch Image: state	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross C. Baffle-long C Supports-tube Bypass seal	essure:g r shell e In Out Intermedi Carbo r carbon sr arbon Steel arbon Steel	kPa *C mm mm ate D 13 IE n Steel	Shell S 300/ / 65 2 3,18 1 1 52,5/ 1 77,93/ / / 307,09 0D . . Type Single Single Single	NE SHEI ide - - - - - - - - - - - - - - - - - - -	L 300, 1 10 1 2 mm arbon Ste mm Cr	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - Length 1800 el Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 40,83 Type joint Exp.	mm Pi Tube pattern - ction None V Spacing: c/ Inlet 2 grv	Sketch Image: state	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross C. Baffle-long C Supports-tube Bypass seal Expansion joint	essure:g r shell e In Out Intermedi Carbo arbon Steel arbon Steel	kPa *C mm mm iate D 13 IE n Steel I I	Shell S 300/ / 65 2 3,18 1 1 52,5/ 1 77,93/ / / 307,09 0D . . Type Single Single Single	NE SHEI ide	L 300, 1 10 1 2 mm arbon Ste mm Cr Ubesheet None	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - Length 1800 el Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 40,83 Type joint Exp.	mm Pi Tube pattern - ction None V Spacing: cz Inlet	Sketch Image: state	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross C. Baffle-long C Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	essure:g r shell e In Out Intermedi Carbo ry Carbo ry Carbo ry Carbo ro r Steel Carbo	kPa *C mm mm iate D 13 IE n Steel I steel I - 264	Shell S 300/ / 65 2 3,18 1 1 52,5/ 1 77,93/ / / 307,09 0D . . Type Single Single Single Bundl .	NE SHEI ide 	L 300, 1 10 1 2 mm arbon Ste mm cr ubesheet None 10	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - Length 1800 el Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 40,83 Type joint Exp.	mm Pi Tube pattern - ction None V Spacing: c, Inlet 2 grv Bundle exit 10	Sketch Image: state	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross C. Baffle-long C Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	essure:g r shell e In Out Intermedi Carbo r Carbo r Carbo r Carbo r Carbo r Carbo r Carbo r Carbo r Carbo	kPa kPa *C mm mm iate D 13 IE n Steel I steel I - 264 -	Shell S 300/ / 65 2 3,18 1 1 52,5/ 1 77,93/ / / 307,09 0D . . Type Single Single Single Bundl .	NE SHEI ide 	L 300, 1 10 1 2 mm arbon Ste mm	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - Length 1800 el Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 40,83 Type joint Exp. Fla	mm Pi Tube pattern - ction None V Spacing: c, Inlet 2 grv Bundle exit 10 t Metal Jacket Fi	Sketch Image: state	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross C. Baffle-long C Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating	essure:g r shell e In Out Intermedi Carbo r carbon Steel arbon Steel arbo	kPa kPa *C mm mm iate D 13 IE n Steel I steel I - 264 - -	Shell S 300/ / 65 2 3,18 1 1 52,5/ 1 77,93/ / / 307,09 0D . . Type Single Single Single Bundl .	NE SHEI ide 0,56 aterial Ca 323,85 segmental eal type 0 Tube-tu Tube-tu Tube S	L 300, 1 10 1 2 mm arbon Ste mm cr ubesheet None 10 Side	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - Length 1800 el Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 40,83 Type joint Exp. Fla	mm Pi Tube pattern - ction None V Spacing: c, Inlet 2 grv Bundle exit 10 t Metal Jacket Fi	Sketch Image: state	
Design/vac/test pr Design temperature Number passes pe Corrosion allowanc Connections Size/rating ID Tube No. 247 Tube type Plain Shell Carbon Ster Channel or bonnet Tubesheet-stationa Floating head cove Baffle-cross C. Baffle-long C Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating Code requirements	essure:g r shell e In Out Intermedi Carbo r Carbo r Carbo r Carbo r carbon Steel arbon Steel	kPa kPa *C mm mm iate D 13 IE n Steel I Steel I 4 - 264 - ASME (Shell S 300/ / 65 2 3,18 . 1 52,5/ 1 77,93/ / / 307,09 0D . . Type Single Single . Dubend .	NE SHEI ide	L 300, 1 10 1 2 mm arbon Ste mm cr ubesheet None 10 Side	Tube Side / / 110 2 3,18 12,26/ - 26,64/ - Length 1800 el Shell cover Channel cover Tubesheet-floating Impingement prote ut(%d) 40,83 Type joint Exp. Fla	mm Pi Tube pattern - ction None V Spacing: c, Inlet 2 grv Bundle exit 10 t Metal Jacket Fi MA class R -	Sketch Image: state	

Figura 4: TEMA sheet: condensatore per l'impianto con rigenerazione.

Bibliografia

- Bernardo Peris, Joaquin Navarro-Esbri, Francisco Moles, Adrian Mota-Babiloni. Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry. Energy 85 (2015) 534-542.
- [2] Wei D. Lu X. Lu Z. Gu J. Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery. Applied Thermal Energy 28 (2008) 1216-1224.
- [3] E. Gholamiana, V. Zareb. A comparative thermodynamic investigation with environmental analysis of SOFC waste heat to power conversion employing Kalina and Organic Rankine Cycles. Energy Conversion and Management 117 (2016) 150-161.
- [4] D. Y. Goswami, S. Vijayaraghavan. A combined power and cooling cycle modified to improve resource utilization efficiency using a distillation stage. Energy 31 (2006) 1177-1196.
- [5] Fischer J. Comparison of trilateral cycles and organic Rankine cycles. Energy 36 (2011) 6207–6019.
- [6] Tony Ho, Samuel S. Mao, Ralph Greif. Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy. Energy 42 (2012) 213-223.
- [7] Tony Ho, Samuel S. Mao, Ralph Greif. Increased power production through enhancements to the Organic Flash Cycle (OFC). Energy 45 (2012) 686-695.
- [8] Mago PJ, Srinivasan KK, Chamra LM, Somayaji. An examination of exergy destruction organic Rankine cycle. International journal of energy research 32 (2008) 926-938.
- Bahaa S, Koglbauer G, Wendland M, Fischer J. Working fluids for low temperature organic Rankine Cycles. Energy 32 (2007) 1210–1221.
- [10] Jacopo Vivian, Giovanni Manente, Andrea Lazzaretto. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources. Applied Energy 156 (2015) 727–746.
- [11] Antonio M Pantaleo, Patrizia Ciliberti, Sergio Camporeale, Nilay Shah. Thermo-economic assessment of small scale biomass CHP: steam turbines vs ORC in different energy demand segments. Energy Procedia 75 (2015) 1609-1617.
- [12] J. V. C. Vargas, A. Bejan. Thermodynamic optimization of the match between two streams with phase change. Energy 25 (2000) 15–33.
- [13] Wang JL, Zhao L, Wang XD. A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle. Applied Energy 87 (2010) 3366–3373.
- [14] Cayer E, Galanis N, Desilets M, Nesreddine H, Roy P. Analysis of a carbon dioxide transcritical power cycle using a low temperature source. Applied Energy 86 (2009) 1055–1063.
- [15] DiPippo R. Geothermal power plants: principles, applications, and case studies. Oxford: Elsevier; 2005

- [16] Power plant waste heat rejection using dry cooling towers. EPRI CS-1324-SY, Project 422-2, Summury Report, February 1980.
- [17] Sylvain Quoilin, Richard Aumann, Andreas Grill, Andreas Schuster, Vincent Lemort, Hartmut Spliethoff. Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles. Applied Energy 88 (2011) 2183–2219.
- [18] Lemmon EW, Huber ML, Mc Linden MO. NIST standard reference database 23: reference fluid thermodynamic and trasport properties - REFROP version 8. 0. Gaithersburg: National Institute of Standards and Technology. Standard Reference Data Program, 2010.
- [19] Sylvain Quoilin, Richard Aumann, Andreas Grill, Andreas Schuster, Vincent Lemort, Hartmut Spliethoff. Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles. Applied Energy 88 (2011) 2183–2190.
- [20] Dongshuai Hu, Ya Zheng, Yi Wu, Yiping Dai. Off-design performance comparison of an organic Rankine cycle under different control stategies. Applied Energy 156 (2015) 268-279.

Ringraziamenti

Desidero ricordare tutti coloro che mi hanno aiutato nella stesura della tesi con suggerimenti, critiche ed osservazioni: a loro va la mia gratitudine. Ringrazio anzitutto il Prof. Marco Antonelli della sua disponibilità e il suo aiuto ed il Prof. Umberto Desideri per il suo supporto e per i preziosi consigli. Un grazie particolare va ad Andrea Baccioli, il dottorando che mi ha seguito e sopportato!

Un ringraziamento speciale va ai miei colleghi che mi hanno accompagnato lungo tutto il percorso di studi, voglio ringraziare personalmente Giacomo, Alberto e Leonardo.

Vorrei ringraziare gli amici di paese e i compagni del liceo che hanno dato un contributo unico e indispensabile per farmi diventare la persona che sono oggi.

Infine vorrei ringraziare la mia fidanzata Irene e la mia famiglia, che mi hanno sempre sostenuto anche nei momenti più difficili, a cui spero di poter regalare ora le soddisfazioni che si sono meritate.