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Abstract

In the field of model based formal methods we investigate the Abstract State Machine (ASM)
modularity features. With the growing complexity of systems and the experience gained in more
than thirty years of ASM method application a need for more manageable models emerged. We
mainly investigate the notion of modules in ASMs as independent interacting components and the
ability to identify portions of the machine state with the aim of improving the modelling process.

In this thesis we provide a language level semantically well defined solution for (1) the definition
of ASM modules as independent services and their communication behaviour; (2) a new construct
that operates on the global state of an ASM machine that ease the management of state partitions
and their identification; (3) a novel transition rule for the management of computations providing
different execution strategies and putting termination condition for the machine inside the speci-
fication; (4) a data definition convention along with a new transition rule for their manipulation
via pattern matching.

In our work we build upon CoreASM, a well-known extensible modelling framework and tool
environment for ASMs. The semantic of our modularity constructs is compatible with the one
defined for the CoreASM interpreter. This ease the implementation of extension plugins for tool
support of modularity features.

A real world system use case ground model ends the thesis exemplifying the practical usage of
our modularity constructs.
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Chapter 1

Introduction

1.1 Managing the complexity of software systems

Software systems have become integral part of our daily life. We use computers for work and
entertainment, televisions are now equipped with applications and internet access capabilities,
smartphones mostly replaced the old mobile and are entirely based on collections of software ap-
plications, smart watches run Linux based operating systems, fit bands track our fitness activities
and health related information. Even paper books are being substituted by their electronic coun-
terparts. Trains are mainly controlled by software and the first fully software controlled cars are
already available. Software has pervaded also the medical area where it has an important role in
controlling surgical robots and even brain controlled limbs prostheses.

The diffusion of cloud based systems has also pushed the proliferation of web services that
interacts with software applications. The increased development of distributed systems is further
amplified by Internet of Things (IoT) and the Internet of Everything (IoE) where devices and
applications cooperate to generate a highly interconnected system.

In this scenario system development is constantly growing in complexity. Ensuring that the
software construction process results in a reliable and correct system is more than ever important.
Also understanding the behaviour of distributed systems is becoming convoluted.

According to [65], software engineering is “a systematic approach to the analysis, design, as-
sessment, implementation, test, maintenance and engineering of software, that is, the application
of engineering to software”. The field of software engineering is vast, we focus on some of the
aspects of it that has been found useful to cope with system complexity and reliability. Probably
the first well-known strategy to address difficult problems is divide et impera also called divide
and conquer. This strategy has been applied in various forms from algorithms design and Com-
ponent Based Software Engineering (CBSE) [53] to object oriented programming and modelling
[78] or Aspect Oriented programming [61]. Abstracting from the specific applications of the divide
et impera principle, the underneath idea is that system complexity can be managed by proper
decomposition in smaller components, often referred to as modules. One of the consequences of
good decomposition is the improvement of software reliability.

Reliability and dependability of a software system relates to the assessment of quality of the
delivered system after its construction. According to [66] to achieve a dependable system, a
set of methods for dependability procurement and validation are necessary. The dependability
validation consists of error removal and error forecasting, so it depends on the evaluation of an
already constructed system or a prototype for it. Fault tolerance [76] and fault avoidance instead
focus more on the goal to “provide the system with the ability to deliver the specified service”.
Fault tolerance deals with the problem of how to provide resilience to the system when errors or
unexpected behaviour occurs. Fault avoidance instead focuses on how to prevent by construction
fault occurrences.

Formal methods are part of the fault avoidance strategies of software engineering. They repre-
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sent a valid support to system analysis, understanding, specification and verification.

1.2 Subject Area

This thesis belongs to the Software engineering field. From its birth, software engineering is trying
to apply engineering criteria to the process of building software. This goal is meant to provide the
engineers the tools for creating good software and the users with trustworthy systems.

Software engineering research has focused on the goal to produce a design discipline for the
the construction of software intensive systems. The need of such discipline comes from the request
of reliable and dependable systems. A software system should provide the required functionalities
and should be resilient.

Software systems are becoming larger and more elaborate over the years. The decomposition
in modular, self contained components helps to manage such complexity and preserve the under-
standability of the system behaviour. A good design of the software permits to reduce the amount
of code to write and provides as final result a solution to a problem. The first problem in software
system construction is the requirement elicitation, in other words collecting and understanding
the user requirements that define the future system. When the system has been developed, the
problem shifts to the verification that what the system does corresponds to the intended behaviour
and that the way it solves the initial problem is correct.

Formal methods are mathematically based techniques in software engineering that have been
used to specify, develop and verify software and hardware systems. Their utility has been applied
at different levels of the development process from the starting analysis to validation and also to
reverse engineer legacy systems. There exists a large number of different formal methods. Most of
them are designed to solve special problems like the automatic verification of system properties.
Some provide graphical representations while others rely on mathematical formulas to describe a
system.

In this thesis we focus on the Abstract State Machine (ASM) method: a model based formal
method that emphasise freedom of abstraction. We analyse the method from the point of view of
modular features. While there are examples of formal methods that provide modular features like
object orientation or module definition, in the ASM language there are still pragmatic modularity
issues.

1.3 Contribution

We propose modularity features in ASMs. We analyse the current definitions, techniques and
solutions to provide system decomposition capabilities for the ASM method. A need for more
manageable models emerged from the growing complexity of systems and from the experience
gained in more than thirty years of ASM method application. Increasing complexity in specifi-
cations benefits from the ability to split the job of producing a model into smaller components
possibly assigned to different groups of people. Currently the ASM method lacks proper support
for modularity. We focus on the notion of modules in ASMs as independent interacting compo-
nents and the ability to identify portions of the machine state with the goal to make models more
manageable and closer to the problem domain improving the mapping between the real world and
the specification describing it.

We provide a set of new constructs for:

• module definition as independent units of behaviour;

• state partitioning management;

• control flow modularization;

• data representation and decomposition by manipulation via pattern matching.



1.4. PLAN OF THE THESIS 11

We provide the syntax and semantics for these constructs along with examples of usage. Our so-
lutions propose a language level approach to enable modularity features from different perspectives.
We build upon CoreASM [37], a well-known extensible modelling framework and tool environment
for ASMs. In fact, we give the semantic of our modularity constructs as a calculus the extends the
classic ASM language and as an interpreter that is compatible with the one defined for CoreASM.
We have chosen to follow this path since CoreASM is one of the cornerstone of ASM tool support
and provides a reliable mechanism for the extension of the language via plugins that will enable
the support for our modularity features in the ASM framework. In order to exemplify the practical
usage of our constructs, we provide a ground model leveraging modularity features for a European
FP7 project in which we have contributed: the SeaClouds platform.

1.4 Plan of the thesis

The first part of this document introduces the background of our work. After we analyse the status
of the ASM language identifying the motivation of our work. The central chapters discuss some
modularity issues in the ASM language and propose solutions for them. In the final chapters we
exemplify the usage of our contribution with a case study before concluding the document. The
chapters content are organised as follows:

Chapter 2 We outline the context in which we will contribute, namely formal method application
in software intensive analysis and development. We examine how formal methods can improve
the software construction process. Then we focus on the ASM method. We recall the method
core concepts of ground model and stepwise refinement. After that, we report the definition
of ASM and its related concepts like basic ASMs, TurboASM, Control State ASMs, run of a
machine, agents and distributed systems. A review of the current module support continues
the chapter. The CoreASM framework is then presented with its extensibility capabilities
and the description of its interpreter. Finally we introduce the notation for the semantic we
will use throughout the rest of the thesis.

Chapter 3 In this chapter we begin with an historical overview of the ASM method from its origin
to its current state outlining the evolution of the language. We then analyse some issues of
the method that the long experience gained during the years of ASM method application have
produced. Starting from these issues we describe our proposal for improving the language
with modularity features.

Chapter 4 We investigate the status of control flow management in ASMs highlighting how its
semantic has been reshaped multiple times in order to address changing needs in the modelling
process. Then we introduce a construct for the modularization of computations along with
some usage examples.

Chapter 5 We focus on the notion of module for ASM, a concept always needed in the modelling
process and addressed in many different ways. We propose a service oriented construct for
modules that will enable cooperative modelling and reuse of existing modules.

Chapter 6 This chapter deals with the drawbacks of global state management. We analyse how
people coped with state isolation and we investigate different approaches to address this task.
Then propose a construct to partition and manage the state.

Chapter 7 This chapter introduces the support for uniform representation of data values and
their manipulation. A construct for data definition in the form of records and sum types is
proposed. We highlight how the lack of proper support for such data have been a hurdle
for some real attempts of modelling with ASMs. We present a definition for such kind of
data that does not require parser extensions and introduce a pattern matching construct to
manipulate them. We also propose a way to type check data in a typeless world.
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Chapter 8 An example of usage of the novel modularity constructs that we propose for the ASM
framework is provided. We describe the SeaClouds platform: a European FP7 project in the
field of cloud computing. Then we model part of it using the new constructs producing a
ground model for the system.

Chapter 9 In this chapter we summarise the contribution of the thesis an draw some conclusion
and future work.



Chapter 2

Background

This chapter introduces the background concepts of the thesis. We begin with a quick overview
on formal methods and then we focus on Abstract State Machines. We recall the definition for
ASM method describing the ground model and the refinement concepts. After we give the formal
definition of the ASMs describing basic, Control State, Turbo, and multi agent ASM definitions.
Most of the definitions comes from the ASM Book [12]. The state of the art summary with regard
to the notion of module in ASM is presented. The chapter concludes with the description of the
CoreASM framework. These concepts will be given as a prerequisite for the rest of the docu-
ment. The reader familiar with the ASM method can skip the first three sections. To understand
completely the semantic definitions in the following chapters the notation details of the CoreASM
interpreter should be read.

2.1 Formal Methods

According to Daniel M. Berry [8], a formal method is any attempt to use mathematics in the
development of a software intensive computer-based system in order to improve the quality of the
resulting system. So formal methods are mathematically based techniques for the specification,
development and verification of software and hardware systems.

The role of formal method in the software engineering life-cycle is manifold because usually
different methods focus on the formalisation of different aspects. So there are specific methods for
the verification of system properties, for example properties on the expected behaviour. Another
field of application of formal methods is requirement gathering, reasoning and coverage. Usually
the formal method is used to create a formal specification that represent a precise model of the
system. A model allows the system to be described in an abstract way and to reason about it[69].
The model become the starting point to discover requirements inconsistencies and find out implicit
or missing assumptions. In fact requirement engineering [82] [74] [92] is one of the field in which
formal methods have been recognised to be relevant. Depending on the formal language adopted,
the model can describe the system in terms of precondition and post condition or as actual pseudo
code that is also interesting for inspection. Reasoning about requirements in order to build a
formal model of a system is also helpful for design purpose: the problem domain is understood
better with the formal approach and the knowledge acquired influences positively the architectural
decisions. Models represent also a form of precise documentation of the system and of all the design
choices. Another interesting use of formal methods is in the reverse engineering of existing (legacy)
systems for behaviour and architecture analysis and even impact analysis of system functionalities
modifications.

For many years formal methods have been a debated topic since their application seemed an
overkill for small systems[8]. The initial cost in terms of time and money spent to produce a model
for the under subject system seemed exceeding the advantages of using the method. Moreover the
lack of proper tool support had only produced formal models and verification for a subset of the
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required features of systems. Initial models also required simplification in order to be automatically
verified. So the effort of using formal method seemed simply not worth.

With the advancement in the state of the art for formal methods and the development of better
supporting tools, formal method validity has been tested in many contexts [27] [16] with success
and can be considered an indubitable added value in software engineering life-cycle.

2.1.1 Formal methods and languages overview

In literature a great variety of formal methods, languages and notations have been proposed to
model systems. In this section we give a brief overview of them. Probably the most known
modelling language is the Unified Modelling Language (UML). UML is commonly used in industrial
software design and provides a visual language to represent models. However its semantic is not
formally defined (although some attempts have been done in this direction [39]). For this reason
it cannot be included among formal languages.

Formal language features are very diverse. Each formal language includes some of them and
a clear separation between languages is not always possible. We are not going to give a complete
classification of all the formal method features, but we just want to give the idea of the existing
variety of formal languages by their characteristics.

The first type of classification we may attempt regards model versus property based methods.
Property based methods include axiomatic and algebraic methods. Axiomatic methods are based
on Hoare’s work [55] that allow to specify a system in terms of its effects, the behaviour is spec-
ified indirectly through a set of axioms, preconditions and post-conditions that the specification
must satisfy. An example of this kind of languages if Larch [52]. Algebraic methods are usually
applied to describe concurrent and distributed systems. They may include temporal logic, like
Language Of Temporal Ordering Specification (LOTOS) that is a formal specification language
based on temporal ordering of events used for protocol specification of standards, or they can be
based on process calculi or process algebra. Example of this formal languages are π-calculus[71]
and Communicating Sequential Processes (CSP) [54]. Another language based on temporal logic
is TLA+[64], it has been developed by Leslie Lamport to design, model, document and verify
concurrent systems.

Model based approaches, instead, define a system constructing a model in terms of mathemati-
cal structures. This kind of models can be divided in event based or state based methods taking into
account the representation of the model and its evolution. For state based methods, we can further
split between simple and complex state approaches. In simple state approaches the state consists
of simple predefined types for values, while complex state approaches allow arbitrary complex val-
ues in the state. Such values can be described by type constructors or by mathematical tools like
Tarski structures. Among model based formal methods we recall the Vienna Development Method
(VDM) [10] that is one of the older formal methods. It has been developed in the 70’s and has been
used in industrial applications. VDM focuses on the early stages of system development and its
model provide the description of data and functionalities. The analysis of VDM model is mostly
performed by inspection or mathematical proofs. Its extended version, VDM++[34], include also
object oriented features. Z[83] is a notation based on the standard mathematical notation used
in axiomatic set theory, lambda calculus, and first-order predicate logic. Inspired by Z, Alloy [58],
provides a language for the specification of the behaviour of a system for which sets of constraints
can be defined. Its tool support enable fully automatic analysis of software specifications.

Models described by mathematical formulas are also available. For example the Common
Algebraic Specification Language (CASL)[9] is a general-purpose specification language based on
first-order logic with induction.

Other model based languages are the approaches derived by the B method. The B method [2]
and its evolution (Event-B[1]) are formal methods with tool-support based on an abstract machine
notation. They are included in the simple state class, and are used for specification, design and
automatic proof of system properties. A notion of refinement is also available to transforms models
into actual code.
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The Abstract State Machine method is also a model based formal approach to system spec-
ification. It is based on the notion of abstract machine with abstract state. It is a state based
approach where the state can be arbitrary complex. The emphasis of this method is on the freedom
of abstraction. It has been applied in industrial systems, programming language specification and
many other fields. It provides the notion of refinement similarly to B. The verification of properties
is performed manually by means of mathematical proofs of refinement steps or invariants.

All these languages provide a specification in terms of mathematical formulas or pseudo code.
Other methods, instead, provide a graphical representation. For example the Specification and
Description Language (SDL) that is a specification language targeted at the description of the
behaviour of reactive systems, and Petri Nets for the description of distributed systems. Petri nets
are included in the event based approaches.

Some formal methods allows to execute the specification for system simulation and testing, for
example ASM models are in principle executable. In this thesis we will focus on the ASM method,
mainly because we are interested in improving the modularity feature of the language. In the next
section we introduce the ASM method more in detail.

2.2 The ASM method

The ASM method provides a good compromise between declarative, operational and functional
views in modelling software systems and, in time, have been proved its relevance as in the software
engineering process.

The ASM method “is a systems engineering technique which supports the integration of problem-
domain-oriented modelling and analysis into the development cycle”. The method consists of three
concepts: the ASMs, the ground model and the stepwise refinement. In this section we focus on
the last two concepts of the method while ASMs will be described in the following sections. The
ASM method offers a uniform conceptual framework for requirement capture and system design.
It can be applied both to software and hardware systems. Applying the method means to produce
a ground model for the system that is a precise description of the system at the desired level of
abstraction; then by stepwise refinement the model can be incrementally transformed into exe-
cutable code. Notice that also the ground model (in general the ASMs) is in principle executable,
the tools supporting ASMs usually offers a simulator that allow to run ASM models as prototype
of the system itself prior to actual coding. The ground model provides the contract between the
costumer and the software designer because it is intended to be precise enough to be useful to the
designer yet understandable by non expert to allow correctness inspection and avoid conceptual
and implementation mistakes.

2.2.1 The ground model

The ground model is an abstract state machine representing the blueprint of a system as an im-
plementation independent, application oriented model. The ground model also represent a precise
documentation of the system it describes and of the design decisions giving also an architectural
overview useful for reasoning and understanding the system and for the analysis in case of changes
and maintenance of its functionalities.

A ground model focuses on the solution of three main problems: the language and commu-
nication, the verification-method and the validation problems. The language and communication
problem refers to the need to mediate between the application domain language and the math-
ematical world in which the model resides. The solution to this problem allows the generation
of the software contract. The verification-method problem refers to the capability to verify if the
model produced applying the method actually reflects the original intentions of the customer and
is complete and consistent. The ability to inspect the model by the application domain expert ease
the solution to this problem. Finally the validation problem refers to the capability for the model
to be the basis on which a test plan for the system can be defined. In this sense module simulation
for different relevant scenarios and model inspection provides the start point for the validation.
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There are some properties that characterise ground models. A ground model is precise, simple in
order to be inspected by domain experts, concise since compactness improves understanding the
model, abstract, complete meaning that all the relevant features are present, validatable and rooted
on precise semantic foundation.

2.2.2 Stepwise refinement

The idea of stepwise refinement comes from structured programming approach ([90] [33]). The
principle of substitutivity is one of the established principles of refinement. It states that “it is
acceptable to replace one program by another, provided it is impossible for a user of the programs
to observe that the substitution has taken place”. The ASM refinement method also integrates
various more specific notions of refinement ([6], [5], [30], [32], [73], [72]). It is an instrument to
assess the relation between two ASMs one of which is the more abstract and the other is the more
specific (refined) one. With stepwise refinement an abstract model can be specialised down to the
code that realises it (or the opposite). From another perspective, two different behaviour may be
found to be one the refinement of the other allowing the replacement of one with the other. Also
data can be refined to support different level of detail for the model. Each refinement step must be
proved, this way they also represent a documented, step-by-step, validation of the implementation
correctness. Figure 2.1 shows the ASM refinement scheme. Given two ASMs, M and M∗, and
two states of M (S, S′) and two states of M∗ (S∗, S∗

′
), the relation ≡ is an equivalence between

sates1. The transition from one state to another in ASMs is performed via discrete steps. In the
figure τ1, . . . , τm and σ1, . . . , σn are, respectively, the computation segments of M and M∗. Each
computation segment corresponds to a step of the machine. The refinements is constituted by
the relation between a subset of “interesting” states of the abstract machine with a subset of the
refined machine states.

Figure 2.1: The ASM refinement scheme

More formally the definitions of correct and complete refinement are ([12]).

Definition 2.2.1. (Correct refinement) Fix any notion ≡ of equivalence of states and of initial
and final states. An ASM M∗ is a correct refinement of an ASM M if and only if for each M∗-run
S∗0 , S

∗
1 , . . . there is an M -run S0, S1, . . . and sequences i0 < i1 < . . . , j0 < j1 < . . . such that

i0 = j0 = 0 and Sik ≡ S∗jk for each k and either
- both runs terminate and their final states are the last pair of equivalent states, or
- both runs and both sequences i0 < i1 < . . . , j0 < j1 < . . . are infinite.

Definition 2.2.2. (Complete refinement) M∗ is a complete refinement of M if and only if M is a
correct refinement of M∗.

1For the definition of state see section 2.3.
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2.3 ASM Definitions

2.3.1 Basic ASMs

Basic ASMs are tuples 〈Σ, I,R, PM 〉. The elements that constitute the tuple are:

Σ: The signature of the ASM. It is a finite set of function names f with an arity: a non negative
integer, representing the number of arguments for the function. Functions with arity equal
to zero are called constants. Every ASM signature includes the constants true, false, undef,
where undef refers to the undefined value.

I: A set of initial states for the signature. A state A for the signature Σ is a non-empty set X,
the superuniverse of A, together with interpretations of the function names of the signature.
If f is an n-ary function name of Σ, then its interpretation fA is a function from Xn into
X; if c is a constant its interpretation cA is an element of X.

R: A set of rule declarations. A rule ρ ∈ R can be declared giving an expression in the form

r(x1, . . . , xn) = P

where r is a rule name, P is a transition rule (see below) and its free variables are contained in
the x1, . . . , xn list. Rule declarations can be evaluated to produce an update set. An update
set is a set whose elements are of the form (l, v) where:

- l is a pair (f, 〈a1, . . . , an〉) called location where f is a function name in Σ of arity n, and
a1, . . . , an ∈ |A| are elements of the superuniverse of the state.

- v is a value of the superuniverse |A|.

PM : The main rule is an element of R distinguished from the others and with arity zero. It
provides the program of the machine.

State transition

The behaviour of a system can be described by ASM models as the evolution of the machine state.
The simulation of an ASM is the computation described by the, finite or infinite, sequence of
consecutive state transitions

S0
U0−−→ S1

U1−−→ S2
U2−−→ . . .

.
The states of the machine (Si), from the initial state S0, are obtained evaluating the rules in

the state and applying the relative update set Ui. The application of an update set consists of
changing the value of all locations l in the update set U such that (l, v) ∈ U to the new value
v. The transition is allowed only for consistent updates. An update set is consistent if it has no
clashing updates for any location. For each update in the update set U , if (l, v) ∈ U and (l, w) ∈ U
then v = w. The transition from a state to the next is a move of the machine. A run of the
machine is a sequence of moves.

For basic ASMs a set a basic transition rules is defined.

Skip: The skip rule semantic is to do nothing. It produces an empty update set.

Update rule: Writing f(t1, . . . , tn) := t means to assign the value of t interpreted in the current
state to the n-ary function f ∈ Σ at a1, . . . , an where ai are the values of ti interpreted in
the current state. The evaluation of an update rule is the singleton {(l, v)}.

Block Rule: The parallel execution of two transition rules is defined by the block rule as P par Q
with the meaning of evaluating in parallel the transition rules P and Q. The evaluation of
this rule results in the union of the update sets UP , UQ of P and Q.



18 CHAPTER 2. BACKGROUND

Conditional Rule: The conditional rule if φ then P else Q first evaluates the guard φ. If it is
true, the resulting update set is the evaluation of the P transition rule. Otherwise if is the
result of evaluating Q.

Let Rule: let x = t in P means to assign the value of t to the variable x and then to execute P .
The evaluation results in the updates produced by P .

Forall Rule: Given a transition rule P , forall x with φ do P means to execute P for every x
that satisfies φ. The resulting update set is the set produced by the parallel execution over
x of P .

Choose Rule: choose x with φ do P ifnone Q means to non deterministically choose an x that
satisfies φ and for that x execute P . If there is no x that satisfies φ execute Q. The resulting
update set is the update set of the executed rule (P or Q).

2.3.2 Notation for the ASM semantic

The denotation JαP KSζ for a rule P is the update set that results from the interpretation of P in the
state S with the variable assignment ζ. If the variable assignment ζ does not change we simplify
the notation writing JP KS . The notation α denotes the rule identifier. Rule identifiers permit to
make a distinction between rules with the same syntax that appears in different places inside an
ASM model. In order to get a rule identifier we assume that there exists an oracle Ω that, given
a rule P , returns the instance Ω(P ) = α as a location name. In tool environments, such kind of
oracle may be easily encoded by a function that returns the node identifier from, for example, the
abstract syntax tree representation for the ASM specification.

The same notation can be used to denote the interpretation of terms and formulas. The
interpretation of a term t is defined by cases as:

1. JxKSζ = ζ(x) for the variable x;

2. JcKSζ = cS for the constant c;

3. Jf(t1, . . . , tnKSζ = fS(Jt1KSζ , . . . , JtnK
S
ζ ) for functions.

Formulas of a machine signature Σ are generated as follows. The semantics of formulas is defined
by the table 2.1.

1. If s and t are terms of Σ, the s == t is a formula;

2. If φ is a fomula, then the its negation ¬φ is a formula;

3. If φ and ψ, then their conjunction (φ ∧ ψ) is a formula;

4. If φ and ψ, then their disjunction (φ ∨ ψ) is a formula;

5. If φ and ψ, then the implication (φ→ ψ) is a formula;

6. If φ is a formula and x a variable, then (∀xφ) a (∃xφ) are formulas.

Given two update sets U and V , the notation U ⊕V denotes the merge of two update sets and
is defined as:

U ⊕ V =

{
{(loc, val) ∈ U |loc /∈ Locs(V )} ∪ V if U is consistent;
U otherwise

Where Locs is the function that returns the set of locations of an update set. The notation S +U
denotes a state obtained from S applying the updates of the set U . It is defined for each location
l as:

(S + U)(l) =

{
v if (l, v) ∈ U
S(l) otherwise

where S(l) denotes the value of l in the state S.
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Js = tKSζ =

{
true, if JsKSζ = JtKSζ
false, otherwise

J¬φKSζ =

{
true, if JφKSζ = false

false, otherwise

Jφ ∧ ψKSζ =

{
true, if JφKSζ = true and JψKSζ = true

false, otherwise

Jφ ∨ ψKSζ =

{
true, if JφKSζ = true or JψKSζ = true

false, otherwise

Jφ→ ψKSζ =

{
true, if JφKSζ = false or JψKSζ = true

false, otherwise

J∀xφKSζ =

{
true, if JφKSζ[x→a] = true for every element a of the superuniverse of S

false, otherwise

J∃xφKSζ =

{
true, if there exists an a in the superuniverse of S with JφKSζ[x→a] = true

false, otherwise

Table 2.1: The semantics of formulas

2.3.3 Control State ASMs

Control state ASMs are a particular class of abstract state machines. It can be considered a
generalisation of finite state automata.

A control state ASM is an ASM whose rules are all of the form

if ctl state = i then
if condi1 then Ri1
if condi2 then Ri2
. . .
if condin then Rin

The location ctl state ∈ 1, . . . ,m is the control state of the machine that identifies the “internal
states” of the machine, while the conditions condik control which rule (Rik) must be executed. All
the conditions are evaluated in parallel and, if no condition is satisfied, the machine does nothing2.
Figure 2.2 shows the graphical notation for control state ASMs.

Figure 2.2: Control state ASM graphical notation

Such a notation allows to draw ASM diagrams that actually are flow diagrams representing
the behaviour of the ASM. These diagrams usually are more understandable by non experts than
their pseudo-code version. An example of control state ASM diagram is shown in Figure 2.3 that
shows a portion of the control state ASM constituting the ground model for an automated teller

2More precisely, if the else branch of the conditional expression is not present it is assumed to be equal so
else skip
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machine (ATM) in the phase of processing the correctness of the pin inserted see [24] for the full
model. Rounded shapes correspond to values of the control state, blocks are transition rules and
diamond shapes are conditions.

Employee example

if mode = StartP inRequest then
SetTimeout(AskFor(Pin))

mode := AskFor(Pin)
if mode = AskFor(Pin) then

AskFor(Pin)

if mode = Ready(Pin) then
if V alidP in then

if HasMoreAttempts then
mode = StartP inRequest

else
mode := Fail(InvalidP in)

else
mode := V alidP in

Figure 2.3: Process pin control state ASM

Notice that control state ASM are “only” a convenient organisation of basic ASMs. The imposed
structure is helpful to isolate subsets of the system behaviour by its internal states. Composing
each condition with the first level if (the one on the ctl state) generates a basic ASM that is
equivalent to the original one at the cost of worse readability.

2.3.4 Turbo ASMs

Turbo ASM are an extension of basic ASMs that permit the composition of machines. They
introduce three operators for: sequential composition, iteration and parameterized submachines.
Turbo ASMs are a black-box view of the combined machine that hides the the detail of its internal
behaviour. From an external point of view (of the combined machine) the execution of a Turbo
ASM occurs in one single step although, internally, the Turbo ASM may have executed several
steps. Since the computation of a machine may diverge (it requires an infinite number of steps to
be completed), composing a divergent Turbo ASM will result in an undefined behaviour.

Definition 2.3.1. (Turbo ASM) Any ASM obtained from basic ASMs by applying finitely often
and in any order the operators of sequential composition, iteration and submachine call is a Turbo
ASM.

Sequential composition

The sequential composition of two machines P and Q is denoted by P seq Q. It is defined as

JP seq QKSζ = JP KSζ ⊕ JQK
S+JP KSζ
ζ

So if the evaluation of P produces a consistent update set, the machine Q is evaluated in the
state in which JP KSζ is applied and the resulting update set provides the final result.

Iteration

Starting from the sequential operator, if it is applied to the same machine repeatedly it is possible
to define an iteration operator. From the nature of the sequential operator, the iteration can be
stopped only in two cases: when the produced update set is inconsistent or empty. So the operator
for iteration is defined by.
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Definition 2.3.2. (Iterate Operator) Jiterate RKS = limn→∞JRnK if for some n ≥ 0 holds that
JRKSn is empty or inconsistent. Where Sn is the state obtained by applying the update set produced
by Rn in state S and Rn is recursively defined as:

Rn =

{
skip if n = 0
Rn−1 seq R otherwise

Submachines

ASM submachines have been introduced to allow recursive calls to machines. They are defined by
a notation extension of the macro technique providing parameterized machines. The definition of
submachine is given only when the chain of nested calls is finite. The definition of a submachine
is given declaring a parametric rule R(x1, . . . , xn) = body. Where x1, . . . , xn are the formal pa-
rameters of the submachine and body is the rule with free variables the parameters that define the
submachine behaviour. R is the name of the submachine.

The transition rules are extended with rule calls. A rule call is denoted by R(a1, . . . , an) where
R is the name of a declared parametric submachine and a1, . . . , an are the actual parameters passed
by name replacing the formal parameters.

Definition 2.3.3. (Turbo submachine) Let R be a named rule declared by R(x1, . . . , xn) = body
and let S be a state. If Jbody[a1/x1, . . . , an/xn]KS is defined, then

JR(a1, . . . , an)KS = Jbody[a1/x1, . . . , an/xn]KS

Local state

Turbo submachines also introduce the concept of local functions. At declaration time, a parametric
machine may contain a set of local function definitions with a corresponding initialisation rule. On
rule call, the function initialisers are called before the actual body evaluation. The rule call
declaration becomes:

R(x1, . . . , xn) = local f1[Init1], . . . , local fk[Initk]body

So the rule R has its own definition for the functions f1, . . . , fk. The restriction of the scope is
achieved discarding, at the end of the rule call, all the updates concerning the local functions.

Definition 2.3.4. (Turbo ASM with local functions) Let R be a rule declaration with local
functions as given above. The two terms in the following equation are either both undefined or
both defined and equal:

JR(a1, . . . , an)KS = J({Init1, . . . , Initk} seq body)[a1/x1, . . . , an/xn]KS \ Updates(f1, . . . , fk)

Where Updates is returns the set of updates generated for its parameters.

Error handling

From the observation that programming languages usually offer some kind of error handling con-
structs that allow to separate error handling procedures from the normal execution of code, Turbo
ASMs introduce a form of error handling support. In the ASM world an exception, abstractly,
is represented by an inconsistent update. Given two turbo ASMs, P and Q, and set of terms T ,
writing try P catch TQ means to execute P and if the produced update set is not consistent on
the location t ∈ T execute Q. More formally:

Definition 2.3.5. Let P and Q be turbo ASMs and T a set of terms,

Jtry P catch TQKS =

{
JP KS if it is consistent on Locs(T )
JQKS otherwise
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Return values

Turbo ASMs with return values have been introduced to allow rule calls to behave as function
calls. Submachine parameters are considered the input to the function and a special global dy-
namic function is responsible for storing the function output value. The reserved zero-ary function
result is introduced to store the output value computed inside a submachine. The notation
l ← R(a1, . . . , an) denotes that the execution of the R submachine produce an update for the
location result whose value is assigned to the location l.

Definition 2.3.6. (Machine with return value) Let R(x1, . . . , xn) = body be a rule declaration.

Jl← R(a1, . . . , an)KS = Jbody[l/result , a1/x1, . . . , an/xn]K

2.3.5 Multi-agent ASMs

All the ASMs described in this chapter till now belong to the single agent ASM class. The ASM
method is also meant to support another modularization mechanism for the design of large systems.
Multi-agent ASMs provide a way to describe a system from a component view to analyse their
interaction, moreover they are useful to describe the behaviour of distributed systems. There are
two kind of multi-agent ASMs: synchronous and asynchronous.

Before describing the two versions of multi-agent ASM we want to recall what an agent is in
the ASM method.

The notion of Agent has been introduced in the Lipari guide [45], and is an element of a dynamic
set Agents. Elements of the Agents set are couples 〈a, π〉 of agent names (a) with the associated
program (π). A program for an agent is a basic or a turbo ASM.

Synchronous multi-agent ASMs

A multi-agent synchronous ASM is a set of agents which execute their own program in parallel,
synchronised using an implicit global system clock. The behaviour of a synchronous multi-agent
ASM is equivalent to an agent whose program is the parallel execution of all the programs of
the agents concurring to the definition of the multi-agent ASM. The agents may have different
signatures, but the communication between agents occurs modifying the value of common locations
that constitute the communication interface.

Asynchronous multi-agent ASMs

Asynchronous multi-agent ASMs are a set of Agents whose program run in the local state identified
by the reserved self location. Each function and rule of the agent program signature is parameter-
ized with self . For a function f the expression f(self) indicates the “private” version3 of f that
belongs to agent self.

Since all the agents composing an asynchronous multi-agent ASM run their own program
independently with different clocks, step moments and duration, a different definition of run that
relates single agents executions is needed.

The run of an asynchronous ASM is a partially ordered run, that is an ordered set (M,<) of
rule applications m (moves) of its agents satisfying three conditions:

- finite history : for all m ∈ M the set {m′|m′ < m} is finite. In other words each move has
finitely many predecessors,

- sequentiality of agents: exists a function < that linearize the set of agents moves {m|m ∈
M,a ∈ Agents performs m},

- coherence: each final segment X of (M,<) has an associated state σ(X), that corresponds to
the result of applying in order (<) all the moves in X, which for every maximal element m ∈ X is
the result of applying m in the state σ(X − {m}).

3Actually the global function with the addition of self parameter as first argument, self value is usually the
identity of the agent
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2.3.6 ASM modules

Syntactical declaration of modules

The following definition introduces a mechanism to syntactically structure large ASMs. The module
definition in the ASM book [12] consists of a pair: the Header and the Body. The body of an ASM
module contains function and rule declarations for the module. A module header consists of the
name of the module, its import and export clauses, and its signature:

asm module

MODULE m
IMPORT m1(id1l, . . . , id1l1), . . . ,mk(idk1, . . . , idklk )
EXPORT id1, . . . , ide
SIGNATURE s

The names id1l, . . . , id1l1 are functions or rules imported from another modulemi, and id1, . . . , ide
are the names for functions or rules which can be exported from module m. The signature s of a
module contains all the basic functions occurring in the module and all the functions which appear
in the parameters of any of the imported modules. This definition assumes that there are no name
clashes in these signatures. Notice that this assumption makes the definition impractical: during
the modelling process each module should be free to choose the names that better suits the module
domain.

Every ASM M becomes an ASM module if its main rule is added to the declarations and its
name appears in the export list.

Asmundo composition operators

Restricting to basic ASMs, in [4], Asmundo and Riccobene address the problem of composing
specifications. They define two operators for machines composition with the goal to provide a
mechanism to safely combine specifications developed separately. With regards to safety they
consider the absence of conflicts with regard to the machine signatures. The first operator is
meant to be used for feature composition and is denoted by the symbol ⊕, while the second is
denoted by ⊗ and refers to component composition. Both operators are applied to two sequential
ASMs but the first is meant to describe a device as the composition of its features while the second
combine components of a system.

The ⊕ operator is defined only for sequential ASMs that meet compatibility, consistency and
safe tests. In the following definitions Υi is the signature of the machine, Πi is a program. The
notation Fi(M) stands for the set of functions of M in the class i, where the possible classes are
Out, Mon for monitored, Ctrl for controlled, Sh for shared functions. If the safe test fails, an
unsafe test must be checked.

Definition 2.3.7 (Compatible sequential ASMs). Let M1, . . . ,Mn be sequential ASMs. They are
compatible if for every f ∈ Υi ∩ Υj , i, j ∈ {1, . . . , n}, i 6= j, if dynamic, f belongs to the same
function class in Mi and in Mj .

If the ASM machines to combine are compatible they can be combined without update incon-
sistencies only if a safe test succeeds. The safe test is defined as:

Definition 2.3.8 (Safe Test). For every couple of indexes i, j ∈ {1, . . . , n}, i 6= j and for every

f ∈ (FOut(Mi) ∪ FCtrl(Mi) ∪ FSh(Mi)) ∩ (FOut(Mj) ∪ FCtrl(Mj) ∪ FSh(Mj))

do the following:

• let R1
i , . . . , R

l
i be all the rules in Mi updating f

• let R1
j , . . . , R

m
j be all the rules in Mj updating f

• let ghi , h ∈ {1, . . . , l}, and gkj , h ∈ {1, . . . , l}, k ∈ {1, . . . ,m}, be the guards of the rules above.
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If ϕ =
∨
h,k(ghi ∧gkj ) is a ground contradictory formula, then there are no simultaneous updates

for f .

Definition 2.3.9 (Unsafe test). Check whether the composition M is a model for ϕ or not.

If M 0 ϕ then there are not simultaneous updates of the same function so the composition is
consistent with respect to updates. The first operator is then defined as:

Definition 2.3.10 (⊕-Composition for Features of a Same Device). Given n compatible sequen-
tial ASMs M1, . . . ,Mn with vocabularies Υ1, . . . ,Υn, the ⊕-composition of M1, . . . ,Mn is the
sequential ASM M = ⊕ni=1Mi constructed as follows:

1. the vocabulary of M is Υ =
⋃n
i=1 Υi and the classes of dynamic functions of M are con-

structed by the function classes of the components in this way: FClass(M) =
⋃n
i=1 FClass(Mi),

for Class = Mon,Ctrl, Out, Sh;

2. the program of M is Π: do in parallel Π1, . . . ,Πn, where Π1, . . . ,Πn are respectively the
programs of M1, . . . ,Mn;

3. the set of states, S(M), is a set of Υ-structures X constructed from a (not necessarily unique)
n-uple X1, . . . , Xn of states of M1, . . . ,Mn such that:

• there exists an i ∈ {1, . . . } such that Xi is the reduct of X to Υi,

• and for every f ∈ Υ \Υi, f is interpreted in X as Xj for some j such that f ∈ Υj ;

S(M) is closed under isomorphism;

4. the set of initial states I(M) ⊆ S(M) is constructed from I(M) (as in step 3.); I(M)is closed
under isomorphism;

5. the one-step transformation of M is the map τM to S(M).

The second operator is defined in two versions, one for the composition of synchronous compo-
nents, the other version instead is for asynchronous systems.

Before introducing the composition operation for synchronous components, we present the
condition that must be meet when the operator ⊗ is applied to machines where the self function is
replaced by the name of the agent running their program. A notion of compatibility is given also
for this second operator.

Definition 2.3.11 (Compatibility). M ′1, . . . ,M
′
n are compatible if for every f ∈ Υ′i ∩Υ′j , i 6= j, f

has the same arity in Υ′i and in Υ′j .

The composition of machines can be tested with respect to updates applying the following
function test.

Definition 2.3.12 (Function Test). If the following condition are satisfied, then the composition
of M ′1, . . . ,M

′
n is consistent with respect to updates:

• for every f ∈
⋃n
i=1 Υ′i if f ∈ FCtrl(M ′i) , i ∈ {1, . . . , n}, then f /∈ (FCtrl(M

′
j) ∪ FSh(M ′j) ∪

FMon(M ′j) ∪ FOut(M ′j)) for every j ∈ {1, . . . , n}, i 6= j;

• (FOut(M
′
i) ∪ FSh(M ′i)) ∩ (FOut(M

′
j) ∪ FSh(M ′j)) = ∅ for every i, j ∈ {1, . . . , n}, i 6= j.

If this test fails, it is possible to apply the safe and unsafe test defined previously on the machine
result of the combination ⊗ that is defined as:

Definition 2.3.13 (⊗-Composition of System Components Moving Synchronously). Given n com-
patible synchronised sequential ASMs M ′1, . . . ,M

′
n, the ⊗-composition of M ′1, . . . ,M

′
n is the multi-

agent ASM M = ⊗ni=1M
′
i with synchronised agents a1, . . . , an, constructed as follows:
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1. a finite indexed set of programs Π′1, . . . ,Π
′
n(modules) named as ν1, . . . , νn;

2. the vocabulary Υ =
⋃n
i=1 Υ′i{Mod, ν1, . . . , νn}, the function Mod assigns to each agent its

program name; dynamic function symbols in Υ are classified as follows:

(a) FSh(M) =
⋃n,i 6=j
i,j=1 ({f |f ∈ FMon(M ′i) ∩ FOut(M ′j)}

⋃⋃n
i=1 FSh(M ′i)

(b) FMon(M) =
⋃n
i=1 FMon(M ′i) \ FSh(M)

(c) FOut(M) =
⋃n
i=1 FOut(M

′
i) \ FSh(M)

(d) FCtrl(M) =
⋃n
i=1 FCtrl(M

′
i)

3. a collection of Υ-structures being the states of M which are constructed from the S(M ′)
in this way: for every n-uple X ′1, . . . , X

′
n of states of M ′1, . . . ,M

′
n such that all the shared

locations are identically evaluated, construct a Υ-structure X which interprets symbols in Υ
as X ′1, . . . , X

′
n.

4. a collection of Υ-structures being the initial state of M constructed from I(Mi) as in step 3.

The asynchronous version of the same operator is given by:

Definition 2.3.14 (Consistency). A multi-agent ASM M with asynchronous agents is consistent
with respect to updates if it cannot happen that from a state X of M , moves x and y from agents
a and b are independently fired and x and y respectively originate updates (f, ā, b2) and (f, ā, b2)
such that b1 6= b2 with f ∈ Υ vocabulary of M,a, b1, b2 elements of X.

Definition 2.3.15 (⊗-Composition of System Components Moving Asynchronously). Given n
compatible not synchronised sequential ASMs M ′1, . . . ,M

′
n, the ⊗-composition of M ′1, . . . ,M

′
n is

the multi-agent ASM M = ⊗ni=1M
′
i with asynchronous agents a1, . . . , an constructed as follows:

1. a finite indexed set of programs Π′1, . . . ,Π
′
n (modules) named ν1, . . . , νn;

2. the vocabulary Υ =
⋃n
i=1 Υ′i

⋃
{Mod, ν1, . . . , νn}, Mod assigns to each agent its program

name; Υ has the same dynamic function classification as the synchronous case;

3. a collection of Υ-structures being the states of M which are constructed from the S(M ′i) as
in the synchronous case;

4. a collection of Υ-structures being the initial states of M constructed from I(Mi).

Contract based modular refinement for submachines

In [36] Ernst et al. have defined another notion of module4 for a variant of the ASMs. Their work
has been motivated by their effort to construct a verified file system for flash memory. Inspired by
contract refinement in Z [91] they adapted the notion of contract refinement to ASMs.

The working definition of ASMs for their work are data type-like ASMs.

Definition 2.3.16. A (data type-like) ASMs M = (SIG,Ax, Init, {Opj}j∈J) consists of a sig-
nature SIG, a set Ax of predicate logic axioms for the static part of the signature, a predicate
Init to characterise initial states, and a set of operations for indices j ∈ J . Each operation
Opj = (prej , inj , αj , outj) consists of an ASM rule αj that describes possible state transitions,
provided precondition prej holds. It reads input from a vector inj of input locations, and writes
output to a vector outj of output locations. It may modify local variables, controlled locations and
the locations of outj . The rules should have no non-local variables.

4To be more precise of modular refinement
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It is interesting to notice that there are different point in which is required to have care in
crafting the operation rules. The reasons are justifiable but from a practical point of view, using
data-like ASMs requires a supplementary effort for the specifier.

The definition of run for such machines is given from an atomic and non atomic perspective.
Here we recall the definition of atomic semantic for the operation that allow the definition of a run
for data type-like ASMs.

Definition 2.3.17. The atomic semantics JOP K ⊆ S⊥×S⊥ of an ASM operationOp = (pre, in, α, out)
is defined as:

(s, s′) ∈ JOpK if and only if either s 6= ⊥ and s 2 pre (and s′ is arbitrary from S⊥) or
s 6= ⊥, s � pre and there is I with I(0) = s, I � α and if I is finite then s′ = I.last, otherwise
s′ = ⊥ or s = s′ = ⊥.

Where the semantic of rules is assumed to be executed non-atomically. The notation I =
(I(0), I(1), . . . ) introduces finite or infinite sequences called intervals, with the meaning that if
I � α, I is a possible execution of α.

A run of a machine is so defined by:

Definition 2.3.18. An ASM program over a machine M is a possibly infinite sequence j =
(j0, j1, . . . ) of (indices or names of) operation calls. An execution of the program j is an interval
I with states in S⊥ and #I = #j, where

(s, s′) ∈ JOpjkK for s = I(k) and s′ = I(k + 1){injk 7→ s(injk)}
holds for all 0 ≤ k < #I. An execution is a run of the program, written I ∈ runsM (j) if it

starts with an initial state I(0) 6= ⊥, I(0) � Init.

In this definition the interval I may contain ⊥, and #I stands for the cardinality of the interval.
The notion of submachine allow from a machine M to call the operation of another submachine.
Given two machines M = (SIG,Ax, Init, {Opj}j∈J) and L = (SIGL, AxL, InitL, {OpLk }k∈K), M
can call the operation of L if:

- M extends L’s signature and axioms: SIGL ⊆ SIG and AxL ⊆ Ax,
- initialisation of M includes initialisation of L
- M respects information hiding: the signature of L is never accessed directly by operations of

M (M can only access SIGL via operation calls)
The operation call is performed passing the input parameters for the operation by value and

by copying the outputs to the specified caller locations. The call of an operation is considered as
one atomic step.

The notion of refinement of such machines is given in order to be able to replace an abstract
machine with a concrete one that has the same operations of the abstract machine. It is called
contract refinement for ASMs.

The approach presented in this work is really promising, although the definition of the machine
require to be really careful about locations access and introduces yet another variant of ASMs.

2.4 CoreASM

CoreASM [37] is an extensible modelling framework and tool environment that support the ASM
method. It is focused on the early phases of the software design process providing the instruments
to rapidly building system prototypes with ASMs. Models are built with the CoreASM language,
an untyped abstract language that is very close to the standard ASM language. The focus on
prototyping allows to experiment with the system design producing abstract models that can be
later refined to more concrete ones. Although abstract, CoreASM models are mathematically-
precise and executable in order to allow the simulation of prototypes.

One peculiar characteristic of the language is extensibility: a plugin-based mechanism allows
the language to be extended with new constructs. This feature has been emphasised a lot since in
the history of ASM, as we have discussed in chapter 2, new transition rules and syntactic sugar
enriched the language.
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CoreASM is an open source project continuously updated and maintained by part of the ASM
community.

The framework principal component is the engine that provide an interpreter of CoreASM spec-
ification. In the following sections we describe the architecture of CoreASM, how the interpreter
executes the specification and introduces the notation to specify the semantic of new plugin rules.
This last information is at the basis of the semantic definitions of our modularity constructs.

2.4.1 Engine

The CoreASM engine is the heart of the framework. It consists of four macro components: a
parser, an interpreter, a scheduler and an abstract storage (see Figure 2.4). The cooperation of
these components allows CoreASM to execute ASM models. The component Control API provide
the interface to instruct the engine and control the simulation, for example it is possible to load a
specification, start a run, execute a single step of the simulated machine, pausing the simulation
and so on. All the tools available for the CoreASM environment are bound to the Control API.
There exists a plugin for the Eclipse IDE, a debugger, a command line interface to the engine,
graphical user interfaces and other applications that together constitute the CoreASM framework.

Figure 2.4: CoreASM architectural view

Each component of the engine has its own specific function in the simulation of ASM models.
The parser reads a model specification and generate from it an annotated abstract syntax tree for
the rules and definitions of the specification (see Figure 2.5). The tree is the input of the interpreter
that communicates with the abstract storage in order to get the values from the current state and
evaluates the rules to generate update sets. The abstract storage manages the state of the simulated
machine maintaining also the history of the simulation keeping the previous states. For each step
of execution, the scheduler orchestrate the evolution of the computation choosing the agents of the
simulated model accordingly to a specified policy.

The simulation of a model is a complex process that requires various steps. The first step is the
engine initialisation that prepares it to execute every CoreASM specification. Then a specification
must be loaded into the engine that parses it and retrieve all the necessary components (plugins)
that are needed by the specification. The abstract storage is initialised setting up the initial state.
At this point, through the control API, step commands start the simulation. The execution of a
move for the simulated machine starts with the scheduler that selects a (subsets) of agent that
will concur to the computation of the next step. For each of the selected agents, the interpreter
proceed with the evaluation of their programs that corresponds to traversing the parse tree of the
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Figure 2.5: Parsing tree

program. The result is a set of update instructions that, if found consistent, updates the state
of the machine. These steps are reiterated until a termination condition is met. With regard
to termination conditions, CoreASM permits to specify them outside the specification itself as a
property of the execution.

Plugins

The architecture of CoreASM is also identified by the kernel of the engine and the set of extension
plugins. Figure 2.6 shows this view of the CoreASM architecture. The kernel represents the
minimal set of functionalities that are needed to execute the most basic ASM models. Kernel
functionalities can be extended providing plugins. CoreASM supports three classes of plugins:
backgrounds, rules and policies.

Figure 2.6: CoreASM architecture layers

Background plugins provide extensibility of the domains the language can use in the speci-
fication. Example of domains are sets, lists, maps, numbers. A plugin in this class specify the
nature of the elements belonging to the background, the concrete syntax to operate on them, the
corresponding semantic and some functions for encoding and decoding that will be used by the
abstract storage to manage these elements inside the simulated machine state.

Rule plugins extend the set of constructs that generates updates. The syntax and semantic for
new rules must be provided as an extension of the parser and of the interpreter. For example, in
CoreASM also the if statement is not inside the kernel but it is implemented as a rule plugin for
the engine.
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Policy plugins extend the scheduler strategies for the selection of the agents that, at each step,
move forward the machine computation. CoreASM allow only a single policy plugin to be chosen
for a computation. Changing the policy require to modify the specification and to choose another
policy.

The CoreASM engine provides an already defined standard library of plugins that implements
the most common background plugins (e.g. numbers, sets, maps, strings, bags) and all the transi-
tion rules for the ASMs described in [12].

2.4.2 The interpreter

The CoreASM language is specified by its interpreter. As we already mentioned, the plugin archi-
tecture allows to extend the language adding new transition rules and backgrounds. When a spec-
ification is loaded into the engine, all the plugin needed to parse and interpret it are loaded as well.
The interpreter is constituted by the collection of ASM rules from kernel and plugins. After the
parser generates the abstract syntax tree representation of the specification, each engine step trig-
gers a traverse of it. The tree nodes are evaluated and update sets are collected during the process.
The nodes contain a reference to the plugin in charge of its interpretation. In order to navigate the
tree the function first, next, parent has been defined. The function first : Node→ Node points
to the first child of a node, while next : Node→ Node accesses to the next sibling of the param-
eter node. To access the parent node the interpreter applies the function parent : Node→ Node.
The variable pos holds the current evaluation position of the interpreter in the abstract syntax
tree. Another class of functions are available to retrieve information about nodes. The function
class : Node → Class returns the syntactical class of a node. Examples of classes for a node
are literals, identifiers and rule declarations. The syntactical token of the node is returned by the
function token : Node → Token. Each grammar rule has associated a symbolic name that is
accessible via the function pattern : Node→ Pattern. Information about the plugin responsible
for parsing and evaluating the node is referred by the plugin : Node→ Plugin.

The evaluation function is denoted by J.K : Node→ Loc×Updates× Element. The result
of evaluating a node is a triple consisting of a location, a multiset of update instructions and
a value. To access the single elements in the triple, the three projection function loc, updates,
value are provided. Testing the evaluation status of a node is possible applying the function
evaluated : Node→ Boolean defined as evaluated(n) ≡ JnK 6= undef .

Accessing the value of local variables to get their value is performed by the environment function
env : Token → Element The association for each value to its background is maintained by the
function bkg : Element→ Background.

Semantic rules for the interpreter usually require to define complex conditions on the abstract
syntax tree nodes. CoreASM defines a concise form of pattern matching to denote such conditions.
A rule pattern is written in the form

L pattern M → actions

and is to be intended as

if conditions then actions

Where the conditions are derived from the pattern according to the of table 2.3. In the action
part of the rule, occurrences of unquoted and unbound occurrences of l, u, v and x are to be
interpreted as, respectively, the loc, updates, value and token of the corresponding node.

The following conventions define the condition on nodes for rule patterns:

•
e
? denotes a generic node;

•
e

denotes a generic unevaluated node, the semantically equivalent versions of it
e
e ,

e
r ande

l are defined as an aid for the reader and their meaning denotes that the expected result of
the evaluation is a value from an expression, a set of updates from a rule or a location;
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• x denotes an identifier node;

• v denotes an evaluated expression node whose value is not undef ;

• u denotes an evaluated statement node whose updates are not undef ;

• l denotes an evaluated expression for which a location has been computed (loc is not undef);

• Greek letters denote positions in the parse tree (typically children of the pos current node),
for example in if α

e
? then β

e
? the letters α and β denotes the first condition node and the

then block of an if statement.

As an example we now show how a typical definition of the semantic for a rule to extend the
ASM parser, we show how to define with the pattern rule conventions the semantic of the if-then
statement. In Table 2.2, the left side contains the rule definition while the right side shows the
correspondent expansion of the conditions on the nodes.

Compact notation Actual rule

L if α
e
e then β

e
r M → pos := α

if class(pos) 6= Id
∧ pattern(pos) = IfThen
∧ class(first(pos)) 6= Id
∧ ¬evaluated(first(pos))
∧ class(next(first(pos))) 6= Id
∧ ¬evaluated(next(first(pos)))

then
pos := alpha

L if αv then β
e
r M → if αv = true then

pos := β
else

JposK := (undef, {||} , undef)

if class(pos) 6= Id
∧ pattern(pos) = IfThen
∧ value(first(pos)) 6= undef

∧ class(next(first(pos))) 6= Id
∧ ¬evaluated(next(first(pos)))

then
if value(first(pos)) = true then
pos := next(first(pos))

else
JposK := (undef, {||} , undef)

L if αv then βu M → JposK := (undef, αu, undef)

if class(pos) 6= Id
∧ pattern(pos) = IfThen
∧ value(first(pos)) 6= undef

∧ updates(next(first(pos))) 6= undef

then
JposK := (undef, updates(next(first(pos))), undef)

Table 2.2: Rule pattern for if statement semantic

Throughout the rest of this thesis we will use the same style of semantic definition for the
constructs we introduce as modularity features. We could use any other formalism but this ap-
proach has the advantage of building up on the top of the solid CoreASM semantic and prepare
the definitions to be integrated in the framework in the form of plugins. This way the support for
our constructs becomes complete.
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Abbreviation Condition Mention
α, β, etc. first(pos),next(first(pos)), etc.

α
e
? class(α) 6= Id

α
e

class(α) 6= Id ∧ ¬evaluated(α)
α
e
e ,α

e
r , α

e
l class(α) 6= Id ∧ ¬evaluated(α)

αx class(α) = Id token(α)
αv value(α) 6= undef value(α)
αu updates(α) 6= undef updates(α)
αl loc(α) 6= undef loc(α)

Table 2.3: Abbreviations in syntactic pattern-matching rules.
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Chapter 3

Proposal

In this section we recall the history of ASMs to understand why we think the ASM method
should be improved, then we analyse what the experience that applying the method have brought
to light highlighting some drawbacks of the method. The chapter concludes with a proposal of
improvement for the ASM method that will be further explored in the next chapters. Our goal
is to boost modularity features of the language in order to make specifications more manageable
when modelling complex software intensive system.

3.1 The history of ASMs

The ASM method has a long history, from the very first discovery of the ASM concept to its
adoption as a valuable formal method in software engineering the ASMs have gone through different
phases.

The ASM concept have been first discovered by Yuri Gurevich [43][47] in an attempt to improve
on the Church-Turing thesis. At that time Gurevich used the term dynamic structures. The
main goal was to include resource boundaries considerations for the Chruch-Turing thesis. Later
on the name evolving algebras took the place of dynamic structures. The first real test for the
ASM as a formal method came in 1988 when a complete and precise yet compact semantic for
Prolog has been defined in terms of ASMs [13, 14, 15]. The Prolog full semantic definition is
one of the first significant example of ASM specification that paved the way to the recognition of
practical relevance of the method. In that case also the concept of stepwise refinement have been
introduced. The idea of stepwise refinement allows the model description to be defined at different
levels of abstraction, for the Prolog model stepwise refinement provided a mathematically provable
relation between the high level view of the model down to the software implementation details.

Although the Prolog model has to be considered an important contribution to the method
assessment, looking now at the model produced for Prolog makes wonder how structured it was:
the model has been presented as a set of flat if - then statements with the only structure being
the textual paragraph in which they were presented. In fact the notion of module at that time
overlapped with the label for a set of if statements and a textual description to relate them.

The experience with Prolog led to further experiment ASM potentialities in documenting design
decisions and capturing requirements giving birth to the ground model notion, in other words a
model at the abstraction level required by the problem domain itself. The nature of pseudo code
over abstract data of ASMs also started to incorporate the idea of executable models into the
method. An executable model can simulate a system prior to coding in an attempt to reduce the
errors during its development.

In 1991 Gurevich gave the first definition of sequential ASMs [46] that will be completed in the
Lipari guide [45]. Such definition can be considered the foundation for the proof of the ASM thesis
[48].

We recall that a sequential ASM is a set of guarded rules in the form
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if g then R

here g is a boolean guard and R is a set of update instructions. An update instruction is an
expression in the form f(t̄) := t0 with f being a function, t̄ a tuple of terms and t0 another term.
In the Lipari guide definition the core elements of ASMs where already present. In particular the
concept of update, the parallelism of updates as default behaviour, the notion of run, and Tarski
structures to represent abstract state. In such definition also the difference between internal and
external functions has appeared. The external functions are function that only the environment
may change. In this case the environment is seen as everything outside the machine, while the
internal functions represent the machine global state.

Distributed ASMs are also part of the Lipari guide definition bringing the notion of agent as a
module identified by a name and a program. The definition of agent already shows in embryo the
need for a local state relative to the agent.It refers to two special functions self and V iew. The
self function is an attempt to define the identification of the state relative to an agent. The V iew
function is exactly defined as “local state of agent a corresponding to the global state”.

In those years, a great variety of ASM models for programming language definitions have been
produced, notably a semantic for C [49], COBOL[88], Smalltalk[11].

The flourishing number of successful programming language specification was the lever to fur-
ther test the practicability of ASMs in different contexts [23, 89, 22, 56, 50]. A good survey of
these works can be found in [16].

The ASMs where tested against architecture design problems such as the control unit processor
zCPU [18, 25]. Also virtual machines have been specified, an interesting example is the Parallel
Virtual Machine (PVM) for which a ground model has been defined in [20, 21]. Other problems in
which the ASM has been found to be a successful approach are compilation process correctness (see
[77]). Testing the ASM method has also been achieved through protocols modelling, for example
in [22] three ASMs describe in a readable but precise way the Lamport’s mutual exclusion protocol
[62, 63].

During the history of the ASM method a set of tools for their support has been developed.
Tool support is an important part of a formal method since they ease the adoption of the method
and reduce the cost of application of its. Among them we recall ASMGofer [79] an extension
of the functional programming language Gofer [80] with parallel update and state notions; the
ASM workbench[31] a comprehensive tool based on the ASM-SL language and equipped with a
simulator, a GUI and model-checker; Asmeta[42] a meta model language along with a simulator,
refinement prover, validation and model checking support; the ASML language [51] that provide a
.NET based language supporting classes and interfaces; last but not least the CoreASM framework
[37] a plugin based extensible framework supporting model simulation and debugging (see Section
2.4).

The experience gained with these tests made the ASM method a valid approach to tackle and
manage the complexity of software engineering problems providing a way to define pseudo code
over abstract data that is understandable even by non experts, executable for simulations prior to
implementation, and mathematically precise for properties verification and correct implementation.

3.2 Lessons from the experience with ASMs (Shortcomings)

Although the ASM method has reached its maturation and the large set of cases in which it has
been successfully applied establish it as a relevant formal method for system specification, there
are some drawbacks for a fully satisfying adoption of the method.

The ASM language, from its initial definition of the Lipari guide, has been reshaped and
extended multiple times in order to address uncomfortable modelling routines.

We now outline some of the major drawbacks of the method and how people have overcome
them. Since for most of them we will provide an analysis and a solution in the following chapters,
we now just go through them quickly to give a taste of the motivation that have driven us to look
for a solution.
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Guarded statement limitations

The first aspect we want to discuss is how the initial ASM defined in the Lipari guide has evolved
with practical application of the method. The original definition, as reported in Section 3.1,
consisted primarily of a set of guarded update instructions. The two major changes have been
relaxation of places in which if statement may appear and on the body of the guarded statement.
The body initially was composed only by update instructions that correspond to modification of
the machine state. The guard was meant to discriminate enabled rules from the others. In order
to have a more readable model, along with update instructions, other constructs were allowed to
be part of the definition of rules body. Nested if statement have appeared inside the guarded
body. On one end this choice allows the condition in the guard to be more readable and better
presented. On the other hand the meaning of enabled rules, previously clearly identified by guard
conditions, introduced a degree of confusion. From the point of view of the expressitivity is always
possible to flatten nested if and go back to the initial ASM form.

For example the following guarded statement with nested if can be flattened into two guarded
statement combining the inner condition with the top-level guard.

if a then
if b then

R1

else
R2

The result of such transformation is:

if a ∧ b then R1

if a ∧ ¬b then R2

The two versions are equivalent but the conditions become more complex. If the nesting level
is deeper the readability of a model composed by this kind of rules deteriorates rapidly. Moreover
if statements are suitable to describe the behaviour of a system but not its structure.

The second change to the language introduced a macro expansion mechanism. A macro is a
map between a name and a set of transition rules. The macro may be parametric and, through a
macro expansion process, each occurrence of the macro name is replaced by the corresponding set
of transition rule. Macros represents the first form of modularity in ASMs for their capability to
group and organise set of related rules.

An emblematic application of macros can be found in the model for the Java Virtual Machine
(JVM) [84].
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JVM ground model

execJava ≡
execJavaI
execJavaC
execJavaO
execJavaE
execJavaT

execJavaI ≡
execJavaExpI
execJavaStmI

execJavaC ≡
execJavaExpC
execJavaStmC

execJavaO ≡
execJavaExpO

execJavaE ≡
execJavaExpE
execJavaStmE

execJavaT ≡
execJavaStmT

The main rule (execJava) is a set of other macros named execJavax with x ∈ {I, C,O,E, T}
where the values of x represent sub-models respectively for the imperative (I), classes (C), object-
orientation (O), exception handling (E) and concurrency via threads (T ) portion of the Java
language. The JBook model represents one of the most shining example of the ASM method
success. Looking at the macro composing the execJava rule, they also are the parallel composition
of other macros. This approach is effective when presenting an ASM model.

Nevertheless, macro expansion reveals the very nature of the model: a long block of if state-
ments without structure. Building ASM models structuring them with macros requires extreme
care since all the macros will be flattened and the growing complexity of systems requires several
macro definitions that must ensure the absence of conflicts for the conditions inside their definition
when composed in parallel with the others.

Unclear notion of module

As we already mentioned, a set of if statements easily models the behaviour of a system but not
its structure. A notion of module, in time, has always been felt as needed. An example may be
found in Mearelli’s production cell model [67][68] where modules are presented as labels followed
by a set of ASM transition rules. Unfortunately this approach does not scale well for complex
systems.

The first real notion of module is present in [12]. The definition is meant to “syntactically
structure large ASMs”. The definition (see Chapter 2 for the whole definition) contains notion
for communication between machines, module retrieval by import clause, and visibility selection
of internal module functions. Unfortunately, at the best of my knowledge, nobody has never used
this notion in a real case probably because the syntax to define and use the module is impractical.

Another form of modularization is presented again in [12] in the chapter dedicated to structured
ASMs: TurboASM. In this case the focus is on how to modularize the computation. TurboASMs
for sequential composition, iteration, recursion via submachines are provided. The behaviour of
TurboASM, however, moves away from the original simplicity of the first ASM definition and does
not represent structure.
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Figure 3.1: Schmid’s graphical notation for components

The work by Schmid in [81] gives another definition and graphical notation (see Figure 3.1) of
module where the notion of component that requires inputs and provide output is defined for ASMs.
The definition is justified, as Schmid writes, by the “difficult of dividing an ASM specification in
smaller independent parts”. For this reason he gives a definition that is tailored especially for its
problem domain that is digital hardware circuits specification.

In [4], Asmundo et al. define two version of machine composition useful, for example, when
the model can be seen as a device composed by different features. Two composition operators are
defined but only for sequential ASMs.

Dausend in [29] brings the concepts of aspect oriented programming [61] into the specification
world. One of the main benefit of aspect oriented approaches is to be able to isolate and define
the so called crosscutting concerns of a problem that will be later wove (composed) together when
executing the program (in this case when simulating the ASM machine). Unfortunately the model
becomes scattered into several “aspects” making it less understandable and with a more obscure
architectural structure.

Recently, ASM nets [19] gives another take to ASM modules. Here the aim is to specialise ASM,
and in particular control state ASMs, for business process modelling (BPM). An explanation on
how to tailor ASMs for BPM and a graphical notation (see Figure 3.2) are defined. ASM nets have
been inspired by the IBM’s Guard Stage Milestone (GSM) [57] approach. An ASM net is made
of initial states (the stages) in which a set of enter conditions are tested, just like a control state
ASM. If one of the enter conditions is true a machine M is executed until one of the exit conditions
is true. An exit condition whose value is true sets the new stage from which the computation will
continue. Wiring starting states and exit states compose the whole net.

Figure 3.2: ASM nets diagram
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Global state management

The state of an ASM is, by default, global. From any point in the model, every name of rule or
function identify the same entity. Sometimes information hiding is a better approach for organising
the model. Being sure that any modification in a controlled space will not affect other parts of the
model is a desirable property. In fact there have been different attempt to manage the global state
in order to achieve local state.

In the Lipari guide, the special function self was already present to identify the private state
of an agent whose related location are usually implicitly parameterized with the value of self.
This is a special case of location parameterization that is the more frequent approach to state
partitioning. A clear example of state partitioning can be found in control state ASMs where some
location, often called mode, phase or stage, is used to partition the behaviour of the machine. The
manual management of mode locations is error prone and become difficult when the location is
not parameterized by a single but multiple values. The approach in such cases requires to split
the parameterization on multiple locations or to carefully assume a policy for it that each location
occurrence must follow.

In [12] the local keyword appears. Its meaning is to provide local state inside a rule definition
that, as a consequence, can have different incarnation of functions. For each of these local functions
an init rule can be defined. This approach has the drawback of the restricting on the scope of
these functions to the rule body, while is usually desirable to have a finer grain.

A more sophisticated version of state modification control could be found on TurboASM s
where the rules behaviour collapse multiple steps of the machine into a single one discarding all
the updates but one specific location updates (result ).

Finally the ambient ASMs [17] introduce the support for “apparently any environment paradigm”
through the definition of ambient expression, ambient ASMs isolate the desired portion of the state.
As we will see in chapter 6, the expressiveness of ambients is undermined by their practical usage.

Inconvenient application of the method

Another aspect of modularity that can be improved in ASM relates to data representation modu-
larity and in particular freely generated data types. In [35] a model for Virtual Filesystem Switch
(VFS) using ASMs is provided. The authors however had to rely on the KIV[7] prover to axioma-
tized data types. Also in [60] the author state that “direct support for free data types in CoreASM
would be preferable – which we have not addressed as it would require deep modifications, for
example in the parser”. These cases arise the need for freely generated data types support for
ASMs and we will investigate them in this thesis.

Cooperative and reusable view of the method

The application of ASMs for producing models can be improved also from the point of view of the
ground model creation process. Usually ground models are produced by a single person that has
the complete view of the model or by a group of people that must work together to define it to
ensure that the guards of the rules will not produce inconsistencies when all the macros are pulled
together. Being able to divide the responsibilities and work independently only on portion of the
specification can improve the process in the same way software project management tool do for
programming languages packages. Another aspect is related to the reuse of specifications portion.
Currently there is no proper support for cooperative work in the ASM method.

3.3 Proposal

The experience gained during the long history of the method creates a need for a comprehensive
study on the modularity feature of ASMs and a consequent effort to provide a language level
solution to such issues.
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Analysing the history of the ASM method, we identified some features of ASMs that are not
fully satisfying during the modelling process or some lacking support for other features that had
as a consequence the choice to use other modelling methods (see [60]). Nevertheless the nature
of ASMs with his abstraction freedom and simple core concepts make it really helpful in captur-
ing system requirements, simulating prior to coding, understanding and reverse engineer already
defined system, and verifying properties. Being pseudo-code over abstract data makes models read-
able for engineers and even for non experts. For this reason we believe that allowing such good
features to scale with the ever growing systems complexity will allow the method to further be
established and integrated in the software engineering process.

In this thesis we will introduce novel constructs to manage the complexity of software intensive
systems with ASMs. Our goal is to give the instruments to achieve more manageable ASM models
improving their modularity, clarity, readability and compactness of ASM specifications.

We will give the syntax and formal semantic for each construct in terms of the CoreASM[37]
interpreter. CoreASM is a well established framework that supports the ASM method, it is mature
and extensible via a plugin architecture that allows the interpreter to introduce new constructs
into the framework seamlessly. This approach on the semantic definition make our modularity
constructs ready for the integration with CoreASM, de facto enabling modularity feature to the
ASM method. For this reason, we will try to be the less disruptive is possible with regard to the
CoreASM interpreter in giving the semantic. When multiple solutions for the same problem will be
available, we will choose the one that fits the most the CoreASM framework. The same approach
will be applied to the mathematical foundation of ASMs: we will try not to rebuild from scratch
the fundamental concepts of ASMs and whenever our approach could require such modifications,
we will provide a translation that shows equivalence with the foundational definitions of ASMs.

We propose a language level solution to: module definition, modularization of computations,
state management and data values representation and manipulation.
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Chapter 4

Modularity of Computation

4.1 Control flow in ASMs

In this chapter we are interested in how to structure the control flow of ASM computations. In
the history of ASM many different strategies for the execution of a set of statements have been
developed.

Control flow is usually managed by programming languages using a program counter that points
to the instruction to be executed, each construct changes the position of the program counter, and
the sequence of such positions define the flow of a program. In ASMs the concept of control flow
does not depend on a program counter, instead at each machine step a subset of rules that are part
of the specification are selected to be performed. The aggregation of all the update sets produced
by such rules determine the state evolution. The sequence of selected rules constitutes the flow of
execution of an ASM specification.

The control flow can be altered in multiple ways. It is possible to act on the set of rules to be
executed at each step, or on the number of times a rule must be executed. Another way to alter
the control flow is to change the order in which a set of rules is executed. In the following sections
we analyse these possibilities starting from the current status of the ASM language.

4.1.1 Rule execution conditions

The original ASM definition of the Lipari guide [45], defines the concept of enabled rules. The
enabled rules of a computation are the set of rules that contribute to the next step in a run of
an ASM applying the update instructions (assignment to the state locations) that make the state
of the machine evolve. Guarded statements defined how to distinguish which rules are enabled.
Guarded rules are if statements in the form if G then R where G is a boolean predicate on the
current machine state called guard and R is a set of update instructions. An ASM model thus is a
collection of guarded rules. At each step, the interpreter of the machine evaluates the guard and,
if it is true, considers the corresponding update instructions (R) enabled.

Although the Lipari definition was already Turing complete, soon the practical application of
ASMs have shown the need to change the expressiveness of the language. For this reason the
update instructions have been allowed to contain not only update instructions but also macros and
nested if statements. This choice allowed a better organisation of the execution conditions and
presentation of the models (Control State ASMs are an notable example of this case). The downside
of this approach is a dulled language semantic: the top-level ifs have a different semantic from
the nested ifs. Enabled rules were selected by the interpreter and contribute to the computation
with non empty update instructions sets. With the introduction of transition rules after the guard
an enabled rule can produce an empty update set. So two forms of if statements have appeared.
A top level if maintains the role of enabling or disabling rules, while the nested ifs introduced
the possibility to produce empty update sets for enabled rules. An empty update rule can be
generated, for example, by an inner if with false condition.
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However the relation between top-level and nested ifs is really close. It is always possible, as we
already mentioned in Section 3.2, to rewrite nested ifs and macros following the original semantic.
Such transformation shows the equivalence of the more structured ASM models to the guarded
rules version.

Translating nested if requires to compose complex conditions whose complexity depends on the
degree of nesting of the if statements. This problem is already visible with a simple top-level if
statement with a nested if:

if a then
R1

if b then
R2

else
R3

This would be translated into:

if a then
R1

if a ∧ b then
R2

if a ∧ ¬b then
R3

The readability of this version is worse and inspecting the model has become more difficult.
Moreover, the translation to “simple” guarded rules introduces a great number of guards that
depends on how many inner level ifs there are.

Although equivalent in behaviour, having the capability to structure the specification improves
readability and understandably which are paramount in a specification language.

While, on one hand, the concept of enabled rules is related to the selection of when rules must
be executed, on the other hand it is important to decide when to stop their execution. In the
literature, ASM models do not contain the definition of a termination condition. Instead it is
stipulated outside the specification. This has been the direct consequence of the run definition
for ASMs. A computation is a, possibly infinite, sequence of moves that produces a sequence
of update sets describing the evolution of the machine state. The termination conditions are
usually encoded as functions of the update sets that are described outside the specification itself.
Examples of termination conditions are: reaching an inconsistent update set, the same set of
update is generated (a particular case is the empty update set), executing a fixed number of steps.

Nevertheless, the specification should contain every information about the problem domain it
models, including termination conditions. The capability to specify the termination conditions
for a whole computation (or sub-computation) improves the completeness of the ASM model and
its clarity from the specification process point of view. So we intend to bring them back to the
specification where they belong.

4.1.2 Rules composition

Knowing when to start and terminate the execution of a rule is not the only interesting operation
on the control flow. Another distinctive operation on a set of rules is deciding which and how to
execute them.

Given a set of rules it is possible to choose which rules should be executed. There are many
ways of choosing among the rules. It can depend on the textual position, on some property of the
state, on the computation itself. In the current ASM language there is no direct support for rule
selection different from guarded statements. Of course it can be emulated with a level of encoding,
and the Control State ASMs are an example of that. Writing:
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if mode = 1 then
R1

mode := 2

if mode = 2 then
R2

mode := 3

. . .

if mode = n then
Rn
mode := 1

encodes in the mode location the selection of the Ri rules by a natural number. Controlling the
selection in this case is achieved providing predicates on the mode location and managing its value.
More control is possible if equality guards are replaced by more complex encoding or properties.
Although feasible, this approach requires to maintain the encoding of properties making the process
error prone and worsening the clarity of the specification.

The other operation on rule sets to control the flow is how to execute the selected rules. The
ASM language provide various statements to control the composition of multiple rules. The most
common example is the parallel block composition in which all the rules in the block are executed
in parallel and the resulting update sets are joined to compose the final one. For this kind of flow
composition the statement par and parblock have appeared in the language. Another type of flow
composition is the sequentiality that allows two or more rules to be executed one after the other.
Executing a set of rules in sequence can be performed in different ways. For example the seq-next
and seqblock statement of Turbo ASM executes each rule in the rules block in sequence applying
the intermediate updates to a provisional state until the last rule has been executed resulting in
a single big step of the computation. Another sequential execution of the rules instead could be
performed by applying the updates after the first rule has produced its update set and then, in the
next step of the machine, continue the execution with the next rule and so on. Other possibilities
could be found interesting for some systems.

4.1.3 Proposed solution

The ASM language provides a lot of different constructs to handle control flow management. Most
of them are part of the Turbo ASM definitions where iteration, sequential execution and exception
handling have been defined1. All the constructs have a specific reason for their introduction
in the language but too many variants even for the same control flow specification have been
generated. For example sequential and parallel execution have two definitions each (par, parblock,
seq, seqblock). Is it possible to reduce all these construct to a single one? A positive answer to
this question would simplify the semantic of several different execution strategies that have found
various incarnation from Basic to Turbo ASMs. Moreover such single construct would also be
helpful to organise and modularize the description of computations.

Here we are not implying that the current available constructs are not modular. The pseudo
code of ASM statement is, of course, modular in the sense that it can be defined as the composition
of such constructs. What we are trying to achieve is a uniform and unified view of the control
flow in an attempt to simplify the definition of complex flows and to reduce future transition rule
extensions to special cases of this unified view, and to make ASM specification more readable and
complete.

Thus, although maintaining the semantic that each statement returns a set of updates, we
intend to allow more latitude in the way they collect updates.

1See chapter 2 for the definitions
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〈DoBlock〉 ::= ‘do’ 〈ExecutionCondition〉 〈ExecutionMethod〉 〈SelectionMethod〉 ‘enddo’

〈ExecutionCondition〉 ::= ‘if’ 〈Condition〉 | ‘while’ 〈Condition〉 | ‘until’ 〈Condition〉 | ‘forever’
| 〈Number〉 ‘times’ | ‘once’

〈Condition〉 ::= 〈BooleanExpression〉 | ‘noupdates’ | ‘fixpoint’

〈ExecutionMethod〉 ::= ‘in sequence’ | ‘stepwise’ | ‘in parallel’

〈SelectionMethod〉 ::= ‘all of’ 〈Rules〉 〈Reset〉?
| ‘any of’ 〈Rules〉 〈Reset〉?
| ‘one of’ 〈Rules〉 〈Reset〉?

〈Rules〉 ::= 〈Rule〉 | 〈Rule〉 〈Rules〉

〈Reset〉 ::= ‘reset on’ 〈Condition〉

Figure 4.1: do-block EBNF

In order to control the execution of a set of rules, the construct must provide a mechanism to
define when the execution is allowed to be performed. After this check, the computation should
proceed selecting how and which rules will contribute to the step. The construct would also contain
a clear indication of when to terminate the execution. If putting these concepts together results in
a easy to use compact and readable statement, the specification process will improve.

We propose a single ASM rule form to handle selection, repetition, execution mode and termi-
nation conditions for the execution of a set of ASM rules.

In detail, selection refers to the way a subset of all available rules is selected for execution (other
available rules that are not selected are ignored and do not contribute updates to the execution
step); repetition refers to the repeated execution of a set of rules over a single or multiple steps of the
machine; execution mode refers to the way in which updates from executed rules are accumulated,
and potentially applied to the state prior to the execution of further rules, and finally termination
condition refers to the criterion for stopping the execution of a set of selected rules.

Since our attempt is to unify the semantic of every control flow construct for ASMs that
has been defined till now, we would also like to define the construct in a way that is naturally
extensible. This way it will not be yet another construct but can be the replacement for the
well-known control flow statements and it will support future additions to the language as minor
extension of the semantic we are going to provide.

Abiding to a long tradition in language design, we use the keyword do to introduce the control
set of statements. We call the construct do-block.

In the following sections we define the syntax of the do-block and the intuitive semantic,
followed by some examples and the full semantic in terms of the CoreASM interpreter 2.

4.2 Block rule syntax

For clarity, we start by presenting the syntax of the proposed block construct, so that semantics
can be detailed later (see Section 4.6) with reference to syntactic clauses. Each clause parameterize
some aspect of execution flow control.

The construct includes three clauses, two of which are optional:

2A variation of the do-block construct semantic has been developed independently and in parallel to our work
at the University of Ulm by Michael Stegmaier. A paper about this work has been submitted to the ABZ 2016
conference.
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1. a repetition clause, specifying when rules are enabled for execution (enter condition) and
whether the block should be re-executed or not (exit condition). We have defined concrete
clauses for standard control flow such as simple conditional (if ), head- and tail-conditions
for indefinite iteration (while and until ), infinite repetition (forever ) and two special
conditions that predicate on the internals of the ASM computation step (no updates and
fixpoint ). Details are defined in Section 4.6.1. If the repetition clause is not provided, by
default we assume that the repetition condition is if true (i.e., a single execution). Other
forms of repetition can be defined; as an example, we suggest an implicit-counter determined
iteration loop, and a guaranteed single-execution form.

2. an execution mode specifies how the selected rules have to be executed in a single iteration
of the repetition loop. We define three execution modes:

• in parallel executes all selected rules in the current state, accumulates the correspond-
ing updates, and (provided they are consistent) the resulting update set is considered to
be the updates generated by the given iteration of do-block. This mode coincides with
the traditional (Lipari guide [45]) parallel execution of ASM rules, and is the default.

• in sequence executes each of the selected rules in the provisional state resulting from
applying the updates from the preceding rule to the state. The final update set is
whatever is needed to update the initial state to the provisional state resulting from
the execution of the last rule in the sequence. This mode coincides with the TurboASM
definition of sequential execution (variously defined as seq − next , seqblock −
endseqblock , etc.). In particular, the in sequence execution of a set of selected
rules still constitutes a single step of the machine.

• stepwise executes the selected rules, but each on a different (successive) step of the
machine. Intuitively, the construct behaves as if an internal program counter directed
the execution in sequence, at each step, of each of the selected rules.

3. the selection clause lists the rules that are candidates for execution, and specifies which
subset has to be considered for actual execution on each iteration of the repetition clause. We
define three selection policies; each is applied to a sequence of candidate rules and produces
a sequence of selected rules.

• all of R1 . . . Rn results in [R1 . . . Rn] being selected for execution;

• one of R1 . . . Rn results in [Rk] being selected for execution, with k non-deterministically
chosen between 1 and n;

• any of R1 . . . Rn results in [Rk1 . . . Rkm ] being selected for execution, with m ≤ n, and
the result being a non-deterministically chosen, order-preserving, sparse sub-list of the
source list.

The selected rules can be changed repeating the selection process. To provide a finer
grained control over the selected rules, we add a reset on condition for selection clauses.
If the reset condition becomes true, a new list of rules is selected.

The default is all of R1, . . . , Rn reset on false with the meaning that the selection chooses
all the rules and never resets.

4.3 Intuitive semantics

Intuitively, our do-block works as follows. On execution of the block, the execution condition is
evaluated in the current state, resulting in a pair of boolean values (the enter-condition and the
exit-condition). If the enter-condition is false, the block terminates resulting in an empty update
set. Otherwise, a sequence of rules from the candidates list is selected, according to the selection
clause. We call these the enabled rules.
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Figure 4.2: do-block semantic diagram

Execution then proceeds by computing the updates from the enabled rules, by executing all
of them in parallel or in sequence, or by executing one of them (the “next” one according to the
internal program counter) in case of stepwise execution.

The produced updates3 are then provisionally applied to the state, and the execution condition
is evaluated again (in the modified state). If the exit-condition is true, the execution of the do-
block is complete, resulting in the set of updates needed to transform the initial state (the one
in effect upon the initial execution of the do-block) into the final provisional state. Otherwise,
the reset condition is evaluated and the execution of the enabled rules is repeated, in the current
provisional state. The diagram in Figure 4.2 shows the control state ASM version of the do-block
behaviour.

In the following section we show some usage examples of the do-block construct. For the
formal definition of the semantic refer to Section 4.6

4.4 Examples

In this section we present some examples for the do-block. The specifications proposed as examples
compare the new construct with the classic ASM language. With these examples we want to show
some concrete cases of do-block usage and how the proposed transition rule can simplify and
accelerate the modelling process. Moreover the resulting model improves two of the key aspects of
ground models: simplicity and conciseness.

3Technically: update instructions, but we can abstract here from the details of the aggregation process.
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4.4.1 Round-robin DNS

In this example we specify a simple round-robin Domain Name System (DNS) server. A DNS
servers implement a translation service that maps resource names (usually domain names) to
internet protocol (IP) addresses. A round-robin DNS provides, for a single resource, multiple IP
addresses from a list. They are often used for load balancing the resource request splitting them
among, for example, multiple servers. The procedure of choosing the IP from the available list
is not standardised but, in round-robin approach, each DNS request permutes the list of IPs in
circular order.

When a DNS request arrives the condition hasPendingRequests enables the do-block that
stepwise performs one of the corresponding IPs.

doBlock

RoundRobinDNS ≡
do if hasPendingRequestsstepwise

AnswerReqWith(ip1)
AnswerReqWith(ip2)
AnswerReqWith(ip3)

doend

A possible version of the same example with classic ASMs, requires to encode the stepwise be-
haviour with a function nextIp that must be initialised. The do-block rule avoids the initialisation
step for the set of available IPs.

asm

init ≡
. . .
currentIp := ip1
nextIp(ip1) := ip2
nextIp(ip2) := ip3
nextIp(ip3) := ip1
. . .

RoundRobinDNS ≡
if hasPendingRequests then

AnswerReqWith(nextIp(currentIp))
currentIp := nextIp(currentIp)

4.4.2 Book

In this example we specify the process of buying a book online. A customer can select books to
buy adding them to the shopping cart. Whenever the customer decides to pay for the book, he
checks the cart, then inserts payment info and finally terminates the payment with the checkout.
The customer may end the shopping anytime. The process can be described as a continuous choice
of one of the possible actions the customer may perform that terminates when the session ends
(the payment or an explicit termination are performed). The checkout procedure is a sequential
process that requires each step to be performed one after the other. We have chosen to define it
as a stepwise execution strategy because we want to leave open the possibility to end the session
before payment. If the checkout procedure is meant to be non interruptible, changing stepwise
with in sequence is enough.



48 CHAPTER 4. MODULARITY OF COMPUTATION

doblock

BookShoppingProcess ≡
do stepwise all of

do until customerEndsSession one of
AddBookToCart

do stepwise all of
CheckCart

InsertPaymentInfo

DoCheckout

doend
doend
EndSession

doend

In this example we highlight that a one-to-one translation from the do-block to the classic
version for this specification is not straightforward. The rule selector one of ensure that exactly
one of the inner rules will be enabled at each step of the execution. In the classic version we needed
to prioritise the check for some of the operation so that only one of the sub-processes will produce
updates in order to avoid possible inconsistent updates. Moreover the payment process is encoded
by a control state ASM that reduces the readability.

asm

BookShoppingProcess ≡
if customerWantsToEndShopping then

EndSession

else
if customerWantsToBuyBook then

AddBookToCart

else
if mode = Idle ∧ReadyToPay then
mode := CheckingCart

if mode = CheckingCart then
CheckCart

mode := InsertingInfo
if mode = InsertingInfo then

InsertPaymentInfo

mode := DoingCheckout
if mode = DoingCheckout then

DoCheckOut

mode := Idle

Another way of specifying such behaviour (with classic ASMs) could have been to encode the
possible choices, for example with an enumeration, and non deterministically choose among them
guarding the execution of the related rules. We will show such approach in the example of Section
4.4.4.

4.4.3 AJAX Call

In this example we give a specification for a simplified AJAX call. AJAX stands for asynchronous
Javascript and XML and is a collection of web development techniques to create asynchronous
web applications. AJAX is based on the capability to send and receive data from a web page
independently from the display process. AJAX calls provide the data interchange mechanism.

An AJAX call is composed by three steps: sending a request to a web server, waiting for the
answer and processing the received data when the answer arrives. The natural way to describe this
behaviour with the do-block is to put the three steps performed by a stepwise execution strategy.

After the SendRequest rule execution, we want to show a waiting animation (usually called



4.4. EXAMPLES 49

trobber) until an answer is received (its state is ready). The until execution condition handles this
situation. Finally DisplayData processes the received data displaying the request answer.

doblock

HandleAjaxCall ≡
do stepwise

SendRequest

do until RequestState = Ready
ShowThrobber

doend
DisplayData

doend

To describe the same example with classic ASMs, the natural way is to define a Control State
ASM whose mode represents the status of the request. The mode location contains the information
about the request status and must be initialised somewhere outside the HandleAjaxCall rule. The
do-block version removes the need of initialisation since the mode is implicit in the composition

of do statements providing less encoding and improved compactness and readability.

asm

. . .
mode := SendingRequest
. . .
HandleAjaxCall ≡

if mode = SendingRequest then
SendRequest

mode := WaitingReadyState
if mode = WaitingReadyState then

if RequestState 6= Ready then
ShowThrobber

else
mode := ReadyToDisplay

if mode = ReadyToDisplay then
DisplayData

4.4.4 Mouse Input Simulator

Another example that shows how the do-block rule improves compactness and readability of mod-
els is the specification of a mouse input simulator. The model must provide a simulation of the
events generated by an hardware mouse.

The rule MouseInputSimulator emulates the possible mouse inputs. A mouse can be left-
or right-clicked, moved and its wheel can be shifted up or down. Each of this inputs may occur
simultaneously but the wheel shift that cannot be moved up and down at the same time.

doblock

MouseInputEmulator ≡
do any of

MouseLeftClick

MouseRightClick

do one of
MouseWheelUp

MouseWheelDown

doend
MouseMove

doend

Modelling the mouse simulator is simply the execution of any of the possible events with the
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exception of the wheel inputs. Since they are mutual exclusive we group them inside another do-
block that selects only one of the two possibilities.

The classic ASM version of the input simulator instead requires to encode the list of inputs and
to choose a subset of them explicitly. On such subset a forall statement is in charge of executing
the rule that fires the corresponding event. The mouse wheel events requires a double encoding to
discriminate the event cases similarly to the other inputs.

asm

MouseInputEmulator ≡
let Inputs = {LClick,RClick,Wheel,Move} in
choose I with I ⊆ Inputs do

forall x in I do
case x of
LClick :

MouseLeftClick

RClick :
MouseRightClick

Move :
MouseMove

Wheel :
choose w in {Up,Down} do

if w = Up then
MouseWheelUp

else
MouseWheelDown

4.4.5 Cellular Automaton

This example implements the state evolution of a cellular automaton. In particular the following
specifications implements rule 44 of the Wolfram code for elementary cellular automata. The
computation terminates when the updates produced does not change the state (a fixpoint has
been reached). The automaton consists of a set of cells. Each cell can be in the alive and dead
state and a set of neighbours denotes the relation of adjacency with other cells. The system evolves
based on the initial cell configuration and on some rules that take into account the neighbourhood
state to determine a cell status change.

We assume that the functions leftIsAlive, rightisAlive and selfIsAlive are defined and their eval-
uation result in a boolean value representing the status of the adjacent cells and of the parameter
cell.

The do-block allows to specify compactly the initialisation and the termination condition for
the automaton. The once execution condition performs the inner rules just one time and is useful
for initialisation. The fixpoint condition instead allows to assess a condition on the state of the
computation and determine when termination occurs.
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doblock

CellularAutomata ≡
do until fixpoint

do once
forall c ∈ Cells do
state(c) := pick x in {Alive,Dead}

doend
forall c ∈ Cells do

if (leftIsAlive(c) and rightIsAlive(c)) or
(leftIsAlive(c) and not rigthIsAlive(c)

and selfIsAlive(c)) then
ChangeCellState(c)

doend

In classic ASMs the initial state has to be stipulated outside the specification. CoreASM im-
proves on this situation by introducing a special init rule that is performed first at the beginning
of the specification execution and then is disabled in the succeeding steps. The init rule con-
tains all the update instructions that initialise the machine state and sets the program of the
running agents. An additional encoding is required to check the state evolution in the form of
stateIsChanged location. This encoding, besides being unnecessary, requires to be managed and
worsen the readability of the specification.

asm

...
Init ≡
stateIsChanged := true
program(self) := @CellularAutomata

...
CellularAutomata ≡

while stateIsChanged do
seq
stateIsChanged := false

next
forall c ∈ Cells do

if (leftIsAlive and rightIsAlive) or
(leftIsAlive and not rigthIsAlive and

selfIsAlive) then
ChangeCellState(c)
stateIsChanged := true

4.5 Formal semantics

In this section we present the formal semantics for the do-block construct by providing a calculi
for the transition rules. Each inference rule derives the update set that the transition rule yields.
Since the combination of the various execution conditions would generate a large number of cases,
we summarise all the execution condition by describing only their evaluation result as a pair
(φ1, φ2) where the φ1 is the formula representing the entering condition and the φ2 is the formula
representing the exit condition. For each case of the execution conditions we will provide an
interpreter semantic in section 4.6. For presentation reasons we separate the do-block execution
strategy and selection clause parts from the execution conditions. For this reason, the rule R
presented in section 4.5.1 are constrained to the rules described in the sections 4.5.2, 4.5.3, 4.5.4.

4.5.1 Do-block

When the enter condition ϕ1 evaluates to false, the entire rule returns an empty update set.
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Jϕ1KSζ = false

Jdo (ϕ1, ϕ2) αR doendKSζ = ∅
(1)

If the enter condition ϕ1 evaluates to true, the rule R is evaluated yielding the update set U .
If the evaluation of the exit condition firing U is true, U is the resulting update set. Otherwise,
the block is evaluated again in a new state that is the result of firing U ; the resulting update set
V is composed with U to get the final update set.

Jϕ1KSζ = true JαRKSζ = U Jϕ2KS+Uζ = true

Jdo (ϕ1, ϕ2) αR doendKSζ = U
(2)

Jϕ1KSζ = true JαRKSζ = U Jϕ2KS+Uζ = false Jdo (ϕ1, ϕ2) αR doendKS+Uζ = V

Jdo (ϕ1, ϕ2) αR doendKSζ = U ⊕ V
(3)

4.5.2 In parallel

In this section we define the semantics for the execution strategy in parallel. If the selection clause
is all of, the execution of this strategy is the union of the updates produced by the rules R1, . . . , Rn
in the initial state.

JR1KSζ = U1 . . . JRnKSζ = Un

Jin parallel all of R1 . . . RnKSζ =
⋃
i∈{1,...,n} Ui

Evaluating in parallel a set of rules with the selection clause one of requires the selection of a single
rule picked in the set R1, . . . , Rn. The function selectedRule stores such information. Initially the
value of selectedRule is undefined for every rule identifier α, in this case an Ri is selected and
evaluated yielding the U update set. The resulting update set for the whole rule must update the
selected rule for the current instance. If the reset condition ϕ evaluates to true in the state after
firing U , a new rule is selected.

JRiKSζ = U i ∈ {1, . . . , n} JselectedRule(α)KSζ = undef JϕKS+Uζ = false

Jαin parallel one of R1 . . . Rn reset on ϕKSζ = U ∪ {((selectedRule, α), Ri)}
(1)

JRiKSζ = U i, j ∈ {1, . . . , n} JselectedRule(α)KSζ = undef JϕKS+Uζ = true

Jαin parallel one of R1 . . . Rn reset on ϕKSζ = U ∪ {((selectedRule, α), Rj)}
(2)

JselectedRule(α)KSζ = R JRKSζ = U JϕKS+Uζ = false

Jαin parallel one of R1 . . . Rn reset on ϕKSζ = U
(3)

JRKSζ = U i ∈ {1, . . . , n} JselectedRule(α)KSζ = R JϕKS+Uζ = true

Jαin parallel one of R1 . . . Rn reset on ϕKSζ = U ∪ {((selectedRule, α), Ri)}
(4)

Like the one of clause, also the evaluation of a subset of rules as a result of the any of clause needs
to store the information about the selected subset. In the following inference rules, the symbol v∗
denotes the sub-sequence operator.
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JRn1
KSζ = Un1

. . . JRnhKSζ = Unh 〈n1, . . . , nh〉 v∗ 〈1, . . . , n〉

JselectedRule(α)KSζ = undef JϕKS+Un1+···+Unh
ζ = false

Jαin parallel any of R1 . . . Rn reset on ϕKSζ =
⋃nh
i=n1

Ui ∪ {((selectedRule, α), 〈Rn1
, . . . , Rnh〉〉}

(1)

JRn1
KSζ = Un1

. . . JRnhKSζ = Unh 〈n1, . . . , nh〉 v∗ 〈1, . . . , n〉

JselectedRule(α)KSζ = undef JϕKS+Un1
+···+Unh

ζ = true 〈n′1, . . . , n′h〉 v∗ 〈1, . . . , n〉

Jαin parallel any of R1 . . . Rn reset on ϕKSζ =
⋃nh
i=n1

Ui ∪ {(selectedRule, α), 〈Rn′1 , . . . , Rn′h〉)}
(2)

JRn1KSζ = Un1 . . . JRnhKSζ = Unh

JselectedRule(α)KSζ = 〈Rn1
, . . . , Rnh〉 JϕKS+Un1

+···+Unh
ζ = false

Jαin parallel any of R1 . . . Rn reset on ϕKSζ =
⋃nh
i=n1

Ui
(3)

JselectedRule(α)KSζ = 〈Rn1
, . . . , Rnh〉 JRn1

KSζ = Un1
. . . JRnhKSζ = Unh

JϕKS+Un1+···+Unh
ζ = true 〈n′1, . . . , n′h〉 v∗ 〈1, . . . , n〉

Jαin parallel any of R1 . . . Rn reset on ϕKSζ =
⋃nh
i=n1

Ui ∪ {(selectedRule, α), 〈Rn′1 , . . . , Rn′h〉)}
(4)

4.5.3 In sequence

In this section we define the semantics for the execution strategy in sequence. Executing all the
rules R1, . . . , Rn sequentially means to evaluate each rule Ri, starting from the initial state S, in
the state that results from firing the previous update set Ui−1. The update set that the in sequence
rule yields will be the composition of such updates.

JR1KSζ = U1 . . . JRnK
S+U1+···+Un−1

ζ = Un

Jin sequence all of R1 . . . RnKSζ =
⊕

i∈{1,...,n} Ui

If the one of selection clause is applied to a set of rules, the rule evaluation requires to evaluate
one rule Ri in the current state. The selected rule is stored inside the function selectedRule if the
reset condition ϕ evaluates to false. Otherwise a new rule must be selected. The final update set
for the rule is the union of U , the update set of the evaluated rule, and the update for the location
holding the rule selection.

JRiKSζ = U i ∈ {1, . . . , n} JselectedRule(α)KSζ = undef JϕKS+Uζ = false

Jαin sequence one of R1 . . . Rn reset on ϕKSζ = U ∪ {((selectedRule, α), Ri)}
(1)

JRiKSζ = U i, j ∈ {1, . . . , n} JselectedRule(α)KSζ = undef JϕKS+Uζ = true

Jαin sequence one of R1 . . . Rn reset on ϕKSζ = U ∪ {((selectedRule, α), Rj)}
(2)

JselectedRule(α)KSζ = R JRKSζ = U JϕKS+Uζ = false

Jαin sequence one of R1 . . . Rn reset on ϕKSζ = U
(3)
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JRKSζ = U i ∈ {1, . . . , n} JselectedRule(α)KSζ = R JϕKS+Uζ = true

Jαin sequence one of R1 . . . Rn reset on ϕKSζ = U ∪ {((selectedRule, α), Ri)}
(4)

The any of selection clause, identify a subset of rules to be executed. Such subset is stored in the
selectedRule function just like the one of version of this do-block rule version. Similarly to the
all of version for the sequential execution of rules, all the rules in the selected subset are executed
in the appropriate state and their update sets are composed to get the final update set.

JRn1
KSζ = Un1

. . . JRnhK
S+Un1

+···+Unh−1

ζ = Unh 〈n1, . . . , nh〉 v∗ 〈1, . . . , n〉

JselectedRule(α)KSζ = undef JϕKS+Un1+···+Unh
ζ = false

Jαin sequence any of R1 . . . Rn reset on ϕKSζ =
⊕nh

i=n1
Ui ∪ {((selectedRule, α), 〈Rn1

, . . . , Rnh〉)}
(1)

JRn1KSζ = Un1 . . . JRnhK
S+Un1+···+Un1−1

ζ = Unh 〈n1, . . . , nh〉 v∗ 〈1, . . . , n〉

JselectedRule(α)KSζ = undef JϕKS+Un1
+···+Unh

ζ = true 〈n′1, . . . , n′h〉 v∗ 〈1, . . . , n〉

Jαin sequence any of R1 . . . Rn reset on ϕKSζ =
⊕nh

i=n1
Ui ∪ {(selectedRule, α), 〈Rn′1 , . . . , Rn′h〉)}

(2)

JRn1
KSζ = Un1

. . . JRnhK
S+Un1

+···+Unh−1

ζ = Unh

JselectedRule(α)KSζ = 〈Rn1
, . . . , Rnh〉 JϕKS+Un1+···+Unh

ζ = false

Jαin sequence any of R1 . . . Rn reset on ϕKSζ =
⊕nh

i=n1
Ui

(3)

JselectedRule(α)KSζ = 〈Rn1
, . . . , Rnh〉 JRn1

KSζ = Un1
. . . JRnhK

S+Un1+···+Unh−1

ζ = Unh

JϕKS+Un1
+···+Unh

ζ = true 〈n′1, . . . , n′h〉 v∗ 〈1, . . . , n〉

Jαin sequence any of R1 . . . Rn reset on ϕKSζ =
⊕nh

i=n1
Ui ∪ {(selectedRule, α), 〈Rn′1 , . . . , Rn′h〉)}

(4)

4.5.4 Stepwise

In this section we define the semantic of the execution strategy stepwise. Given a list of rules
R1, . . . , Rn, this strategy starts executing the first rule R1. Each new evaluation of this do-block
form, selects the next rule in the list (following the textual order) and evaluates it. In order
to remember which rule to execute in the current evaluation step, the function lpc stores this
information and behaves as a local program counter with respect to the rule identifier.

i =

{
0 if Jlpc(α)KSζ = undef

Jlpc(α)KSζ otherwise
JRiKSζ = U

Jαstepwise all of R0, . . . , Rn−1KSζ = U ∪ {((lpc, α), i+ 1 (mod n))}

Similarly to the parallel and sequential execution strategies, the one of and all of selection clauses
need to store also the information about the selected rules. For this purpose we use the function
selectedRule with the rule identifier α as parameter.

R =

{
Ri, i ∈ {0, . . . , n− 1} if JselectedRule(α)KSζ = undef

JselectedRule(α)KSζ otherwise
JRKSζ = U JϕKS+Uζ = false

Jαstepwise one of R0, . . . , Rn−1 reset on ϕKSζ = U ∪ {((selectedRule, α), R)}
(1)
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JRKSζ = U JϕKS+Uζ = true j ∈ {0, n− 1}

R =

{
Ri, i ∈ {0, . . . , n− 1} if JselectedRule(α)KSζ = undef

JselectedRule(α)KSζ otherwise

Jαstepwise one of R0, . . . , Rn−1 reset on ϕKSζ = U ∪ {((selectedRule, α), Rj)}
(2)

JselectedRule(α)KSζ = undef 〈Rn0
, . . . , Rnh−1

〉 v∗ 〈R0, . . . , Rn−1〉
r = 〈Rn0

, . . . , Rnh−1
〉

JRn0
KSζ = U JϕKS+Uζ = false

Jαstepwise any of R0, . . . , Rn−1 reset on ϕKSζ = U ∪ {((selectedRule, α), r), ((lpc, α), 1 (mod h))}
(1)

〈Rn0
, . . . , Rnh−1

〉 v∗ 〈R0, . . . , Rn−1〉
r = 〈Rn0 , . . . , Rnh−1

〉
〈Rn′0 , . . . , Rn′k−1

〉 v∗ 〈R0, . . . , Rn−1〉
r′ = 〈Rn′0 , . . . , Rn′k−1

〉
JRn0KSζ = U JϕKS+Uζ = true JselectedRule(α)KSζ = undef

Jαstepwise any of R0, . . . , Rn−1 reset on ϕKSζ = U ∪ {((selectedRule, α), r′), ((lpc, α), 0)}
(2)

JselectedRule(α)KSζ = 〈Rn0
, . . . , Rnh−1

〉 Jlpc(α)KSζ = i JRniKSζ = U JϕKS+Uζ = false

Jαstepwise any of R0, . . . , Rn−1 reset on ϕKSζ = U ∪ {((lpc, α), i+ 1 (mod h))}
(3)

JselectedRule(α)KSζ = 〈Rn0 , . . . , Rnh〉 Jlpc(α)KSζ = i JRniKSζ = U JϕKS+Uζ = true

〈Rn′0 , . . . , Rn′k−1
〉 v∗ 〈R0, . . . , Rn−1〉

r = 〈Rn′0 , . . . , Rn′k−1
〉

Jαstepwise any of R0, . . . , Rn−1 reset on ϕKSζ = U ∪ {((lpc, α), 0), ((selectedRule, α), r)}
(4)

4.6 Interpreter semantics

In this section, we present the formal semantics of our proposed construct by providing an ASM
specification for an interpreter. The rules presented here integrate with the CoreASM language
[37], both at the semantics level, and in implementation (through CoreASM’s plug-in architecture).

The semantic of the do-block is defined in terms of the result of the evaluation of its clauses.
For clarity and readability we have decided to present the clauses semantic separately from the
general do-block semantic.

The execution strategy clause is denoted by the additional notation αs that is to be considered
part of the notation defined in Section 2.4.2.

Such notation is an abbreviation for the pattern notation whose condition part is token(α) =
Id ∧ token(α) ∈ {stepwise, inparallel, insequence} and the action part is token(α). This way we
abstract the do-block semantic from the execution strategy. We will address separately the logic
of each strategy providing an instance of the parametric rule ComputeUpdatestoken(α).
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do-block semantic

L doα
eβsγ

e
doend M → pos := α

rulePos(α) := pos

L doαvβsγ
e

doend M → if enterCond(αv) then
pos := γ
rulePos(γ) := pos
composedUpdates(pos) := {}
PushState

else
JposK := (undef, {}, undef)
lastUpdates(pos) := composedUpdates(pos)

L doαvβsγv doend M → if currUpdates(pos) = undef then
ComputeUpdatesβs(pos, γ)

else
if appliedUpdates(pos) then

if exitCond(αv) then
PopState

JposK := (undef, composedUpdates(pos), undef)
lastUpdates(pos) := composedUpdates(pos)

else
currUpdates(pos) := undef

PrepareNextStep(γv)
appliedUpdates(pos) := false
ClearTree(γ)
rulePos(γ) := pos
pos := γ

else
let uSet = Aggregate(currUpdates(pos)),
composed← Compose(composedUpdates(pos),

currUpdates(pos)) in
composedUpdates(pos) := composed
lastUpdates(pos) := currUpdates(pos)
if aggregationConsistent(currUpdates(pos))∧
isConsistent(uSet) then

Apply(uSet)
appliedUpdates(pos) := true
ClearTree(α)
pos := α

else
JposK := (undef, composed, undef)
currUpdates(pos) := undef

PopState

The evaluation of a do-block statement begins with the interpretation of the execution condi-
tion. If the execution condition is met, the rules to be enabled are chosen following the selection
clause. Then, based on the execution strategy, the updates are computed.

We define two function enterCond and exitCond applied to a pair as, respectively, the projec-
tion on the first and second element of it. Since the computation of the updates for a single step
of the do-block could require several succeeding actions we use the location composedUpdates to
accumulate and store the intermediate provisional updates which contributes to the final update
set of the rule.

Some termination condition (e.g. fixpoint and noupdates) could require a check on the update
set produced during the computation of a do-block step. For this reason we store the current
updates in the location currUpdates and the last computed update set in the location lastUpdates.
The condition on the updates requires the location rulePos to be initialised with the executing
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rule pos. So we forward it to the clauses that could require a termination condition check (α, γ).

When the execution condition and the selection clause have been evaluated, the process con-
tinues with the computation of a step that will assign the produced updates to the location
currUpdates.

The macro ComputeUpdates is parametric with respect to the execution strategy. After the exe-
cution of a single step, the do-block evaluation proceed aggregating the updates of such step and
checking the exit condition. If more steps are to be computed, the PrepareNextStep macro arranges
the selected rules initialising the next compute step accordingly with the execution strategy.

Here we define three of the possible strategies that cover the update set computation of basic and
Turbo ASMs. We also include the stepwise strategy that in most cases improves the specification
of control state ASMs.

The parallel strategy selects non-deterministically the unevaluated rules from the pool of se-
lected rules stored in γv, and produces as update the union of all the executed rules updates. The
semantic of this strategy corresponds to the default parallel behaviour of the ASM rules.

Parallel Strategy

ComputeUpdatesinparallel(pos, γ) ≡
choose λ ∈ γv with ¬evaluated(λ) do
pos := λ

ifnone
currUpdates(pos) :=

⋃
i∈γv updates(i)

The stepwise strategy evaluates the list of enabled rules one by one for each step of the do-
block evaluation. This behaviour is achieved keeping an internal implicit program counter that
chooses, step by step, the next rule to be executed.

If a do-block statement defines a repeating execution condition (e.g. while), an executing
machine step corresponds to the aggregation of the sequence of update sets generated by the
application of the execution strategy. The list of rules to be executed are stored, like for the other
strategies, into γv.

Stepwise Strategy

ComputeUpdatesstepwise(pos, γ) ≡
if ¬evaluated(head(γv)) then
pos := head(γv)

else
currUpdates(pos) := updates(head(γv))

The sequence strategy executes all the selected rules one after the other in a provisional state.
The composition of these updates is the result of a single step with the sequence strategy. This
strategy replaces the seqblock rule of TurboASMs. In fact, all the selected rules are executed in
sequence as a single step of the do-block evaluation. As for the other strategies, also sequence
may execute the selected rules multiple times depending on the execution condition.
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Sequence Strategy

ComputeUpdatessequence(pos, γ) ≡
if seqUpdates(pos) = undef then
seqUpdates(pos) := {}
PushState

else
if γv = [] then

PopState

currUpdates(pos) := seqUpdates(pos)
else

if ¬evaluated(head(γv)) then
pos := head(γv)

else
let uSet = Aggregate(updates(head(γv))),

composed← Compose(seqUpdates(pos), updates(head(γv))) in
seqUpdates(pos) := composed
if aggregationConsistent(updates(head(γv)))∧
isConsistent(uSet) then

Apply(uSet)
JγK := (undef, undef, tail(γv))

else
PopState

currUpdates(pos) := composed

The PrepareNextStep macro ensures that, if the exit condition is not met, the enabled rules for
the next computation step of the do-block are in the correct state. For example the node trees
of the rules are cleared in order to make them ready for a new evaluation, and (for the stepwise
strategy) the rule list is modified in order to maintain the internal counter of such rules.

do-block macros

PrepareNextStep(strategy, γ) ≡
case strategy of
inparallel :

forall r ∈ γv do
ClearTree(pos(r))

stepwise :
if |γv| ≤ 1 then

forall r ∈ storedRules(γ) do
ClearTree(pos(r))

JγK := (undef, undef, storedRules(γ))
else

JγK := (undef, undef, tail(γv))
insequence :

forall r ∈ storedRules(γ) do
ClearTree(pos(r))

JγK := (undef, undef, storedRules(γ))

In the following sections, the clause definitions are intended to be used only inside a do-block
statement. The evaluation of any occurrences of them in other contexts is undefined.

The body of the semantic contains some macros that have been defined in [37]. We only give
the intuitive semantic for them. The macros PushState and PopState are responsible for saving and
restoring the state of the interpreter. The Apply rule applies an update set to the current state.

4.6.1 Execution Conditions

In this section we define some execution condition clauses. An execution condition evaluates to a
pair of boolean values. The do-block interprets the first element in the pair as enter condition
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while the second as exit condition. The set of execution conditions we define here is not exhaustive,
any new execution condition could be added similarly. Nevertheless it covers basic and turbo ASMs.

The if execution condition allows the do-block body to be executed when its condition is true
and, after the execution of a single step, the do-block rule terminates its computation.

If Execution conditions

L if α
e
e M → pos := α

rulePos(α) := rulePos(pos)

L if αv M → JposK := (undef, undef, 〈αv = true, true〉)

The while execution condition allows the do-block body to be executed if its condition is
true. A new execution step will be performed while the condition holds true.

While Execution conditions

L while αe
e M → pos := α

rulePos(α) := rulePos(pos)

L while αv M → let b = αv = true in
JposK := (undef, undef, 〈b,¬b〉)

The until execution condition always perform at least one step of the do-block body. Until
the condition becomes true, further steps must be performed.

Until Execution conditions

L until α
e
e M → pos := α

rulePos(α) := rulePos(pos)

L until αv M → JposK := (undef, undef, 〈true, αv = true〉)

The times execution condition executes the do-block body a specified number of times.

times

L α
e

times M → if times(pos) = undef ∨ times(pos) ≤ 0 then
pos := α

else
times(pos) := times(pos)− 1
JposK := (undef, undef, 〈times(pos) > 0, times(pos) ≤ 0〉)

L αv times M → if αv ∈ Number then
times(pos) := αv − 1
JposK := (undef, undef, 〈αv > 0, αv ≤ 0〉)

else
Error(“The parameter is not a number”)

The forever execution condition always permit entering the do-block but does not let the
execution to exit it. Notice that such condition does not permit the observation of the computed
steps of the do-block evaluation. If observing the evolution of the machine state is the intended
behaviour, an if true condition preferable.

forever

L forever M → JposK := (undef, undef, 〈true, false〉)

For practical reasons of specification simulation it is possible to define the always execution
condition as syntactic sugar for “if true”.

The once execution condition performs the do-block exactly one time. After the first execution
the associated rule will always produce an empty update set.
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Once

L once M → if executed(rulePos(pos)) = undef then
executed(rulePos(pos)) = true
JposK := (undef, undef, 〈true, true〉)

else
JposK := (undef, undef, 〈false, true〉)

The following definitions add two boolean expressions to be used as termination conditions:
no updates , fixpoint . The no updates expression evaluates to true if the associated do-
block have produced an empty update set. The fixpoint expression checks if the associated
do-block have produced an update set that does not alter the state.

No updates and fixpoint expression

L no updates M →
let u = lastUpdates(rulePos(pos)) in

JposK := (undef, undef, u = undef ∨ u = {})

L fixpoint M →
if lastUpdates(rulePos(pos)) 6= undef ∧ currUpdates(rulePos(pos)) 6= undef then

let isF ixPoint = ∀〈l, u, v〉 ∈ currUpdates(rulePos(pos)).
〈l, u, v′〉 ∈ lastUpdates(rulePos(pos))⇒ v = v′ in

JposK := (undef, undef, isF ixPoint)
else

JposK := (undef, undef, false)

In order to access the information about the state evolution of a do-block evaluation, we assume
that the rulePos, and lastUpdates locations are initialised. The first represents a reference to the
parent do-block node for which the condition will check the updates state. The second contains
the last computed updates set. For this reason in Section 4.6 the semantic rules set them.

4.6.2 Selection Clause

The selection clause is responsible for choosing rules that concur to the update set production of
a do-block rule. We foresee three kind of selection clauses that cover most of the common usage
cases: one, all, any. If more selection clauses are needed, the semantic can be extended in the same
flavor of the following definitions. As suggested by their names, the one of ,any of and all of
selection clauses choose, respectively, one, a subset and all the rules in the do-block body. The
selection is fixed the first time each clause is evaluated. The selected rules are stored in the location
storedRules. If the selection process should be performed again, we provide the selection clause
with an optional reset on condition. When the reset on condition is true, a new selection is
performed and the new list of selected rules is stored in storedRules. We have chosen to store the
selected rules as a list since some execution strategy may depend on the textual order of such rules
(e.g. stepwise ).

All of rule

L all of λ1
e
? λ2

e
? . . . λn

e
? M →

let selectedRules = [CopyTree(λ1), . . . ,CopyTree(λn)] in
JposK := (undef, undef, selectedRules)
storedRules(pos) := selectedRules

For the all of selection clause, the reset on condition is trivial since reselection computes
always the same rules set. For this reason the semantic does not provide a definition of reset on
for this case.
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One of rule

L one of λ1
e
? λ2

e
? . . . λn

e
? M → if storedRules(pos) = undef then

choose λi ∈ [λ1, . . . , λn] do
let selectedRules = [CopyTree(λi)] in

JposK := (undef, undef, selectedRules)
storedRules(pos) := selectedRules

else
JposK := (undef, undef, storedRules(pos))

L one of λ1
e
? λ2

e
? . . . λn

e
? reset on αe

e M → if storedRules(pos) 6= undef then
pos := α

else
choose λi ∈ [λ1, . . . , λn] do

let selectedRules = [CopyTree(λi)] in
JposK := (undef, undef, selectedRules)
storedRules(pos) := selectedRules

L one of λ1
e
? λ2

e
? . . . λn

e
? reset on αv M → if αv = truee then

choose λi ∈ [λ1, . . . , λn] do
let selectedRules = [CopyTree(λi)] in

JposK := (undef, undef, selectedRules)
storedRules(pos) := selectedRules

else
JposK := (undef, undef, storedRules(pos))

The one of clause chooses one of the rules and assigns it to the storedRules location that
contains a copy of the selected rule in case of multiple steps in the evaluation of a do-block rule.
When specified, the reset on clause is evaluated if the storedRules location is defined, otherwise
it means that it is the first evaluation and instead of checking the reset condition, one of the rules
must be selected. If the reset condition is evaluated and holds the true value, a new selection is
performed updating the storedRules. Otherwise the already selected rules are returned as value.

Any of rule

L any of λ1
e
? λ2

e
? . . . λn

e
? M →

choose {λn1 , . . . , λnk} v
∗ {λ1, . . . , λn} do

let selectedRules = [CopyTree(λn1), . . . ,CopyTree(λnk )] in
JposK := (undef, undef, selectedRules)
storedRules(pos) := selectedRules

L any of λ1
e
? λ2

e
? . . . λn

e
? reset on αe

e M →
if storedRules(pos) 6= undef then
pos := α

else
choose {λn1 , . . . , λnk} v

∗ {λ1, . . . , λn} do
let selectedRules = [CopyTree(λn1), . . . ,CopyTree(λnk )] in

JposK := (undef, undef, selectedRules)
storedRules(pos) := selectedRules

L any of λ1
e
? λ2

e
? . . . λn

e
? reset on αv M →

if αv = truee then
choose {λn1 , . . . , λnk} v

∗ {λ1, . . . , λn} do
let selectedRules = [CopyTree(λn1), . . . ,CopyTree(λnk )] in

JposK := (undef, undef, selectedRules)
storedRules(pos) := selectedRules

else
JposK := (undef, undef, storedRules(pos))
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The semantic of any of selection clause is similar to the one of but here the selected rules
are a subset of all the available rules. With v∗ we denote the sub-sequence operator that, given a
list, returns a sub-list such that ni ∈ {1, . . . , n} and i < j ⇒ ni < nj .

4.7 Extending the do-block construct

The do-block we presented in this chapter covers most of the common control flow construct that
have appeared in the history of ASMs. The semantic has been presented split into different clauses
not only to make it more readable but also to prepare it for future extensions.

The construct can be extended in each of its components: execution condition, strategy and rule
selection. We foresee possible extensions since in the past several addition to the ASM language
have been made, so we wanted to make the construct general enough to not invalidate it for future
needs.

To extend the do-block with a new execution condition one must provide a semantic that
evaluates to a pair of boolean. It is possible to think also at the simple case in which the pair itself
represents the execution condition. If the elements of the pair are bounded to location values,
the execution of the do block could be instrumented by the logic defined inside its body. One
disadvantage of this kind of execution condition, and the main reason we have not listed it among
the other execution conditions, it that the behaviour of the rule may become easily obscure and
as a consequence abdicate to the readability goal of the construct.

Extending the strategies requires to provide a new ComputeUpdates macro for the intended be-
haviour that sets currUpdates location when its computation is complete. Also PrepareNextStep

macro that is aware of the new strategy must be extended. Some fancy example of other execution
strategies may be:

• lexical reversed order

• a generalised stepwise that executes subsets of the enabled rules step by step instead of just
one

• asynchronous execution of a subset of the rules (managing each rule as the execution of a
separate agent with the rule as program)

Finally the extension of the rule selection clause only requires to provide the semantic for the
selection that sets the storedRules location. An example of another rule selection clause may be
indexed selection. In other words the ability to choose rules accessing them by properties of their
lexical position.



Chapter 5

Modularity as Services

In this chapter we address modularity from the point of view of structuring a specification into
independent units of behaviour (the modules). We describe how modular decomposition improves
the specification process and then evaluate the current status with regard to module support in
the ASM language. The chapter concludes with the description of our model proposal.

5.1 Modular decomposition

One of the most valuable technique in software engineering is decomposition. The principle of
deconstructing a problem into smaller and more manageable parts has been addressed in several
ways and at different levels of abstraction.The decomposition produces different sub-component
often called modules, each of them:

• represents a smaller and possibly easier problem to address;

• may be solved independently from the others;

• shifts the main problem concerns to the communication among such modules.

5.1.1 Why decomposing?

The first motivation for the decomposition of a system into modules is related to its complexity.
When dealing with large systems, it is not feasible to maintain all the information about its func-
tionalities in a single place both because it is an hardly manageable task and because it is difficult
to track all the dependencies between them. Identifying sets of related features and categorising
them instead reduces the effort needed to understand the behaviour of the system. Most program-
ming languages provide some sort of modular constructs. For example, object oriented languages
group unit of behaviour into classes that represent an abstraction of all the possible entities sharing
the same capabilities. Similarly, specification languages are endowed with modularization mecha-
nisms. The main reason of having such mechanisms is that they improve the readability and slice
the problem into different abstract components that do not require a full understanding of all the
detail they cover providing an abstract view of their sub-domains.

Modular decomposition is also useful for information hiding. Usually modules provide an
interface through which it is possible to interact with its functionalities but all the internal logic is
not accessible or at least not visible from the user point of view. This structure allows to separate
the sub-component logic from the way to access it.

Decomposing with modules create a twofold abstraction mechanism. On the horizontal level,
all the modules that communicates among each other give a perspective at the same abstraction
level. On a vertical level looking inside a module allow system details to emerge.

Modular decomposition improves the modelling process reducing a big problem into smaller
problems. Moreover each sub-problem tends to be orthogonal to the others describing the initial
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system as a set of independent entities with their own responsibilities. From a specification point
of view, this means that is possible to divide the task of producing the specification for a large
system among various people. Each of them can focus on a specific aspect of the initial problem
without worrying about the other details.

Finally, a module can also be seen as a behaviour container. This approach allows to cre-
ate specification as composition of instances of already available modules and to decompose the
specification into sub-modules that address sub-problems.

5.1.2 Current support for modules of the ASM language

In this section we analyse the current module support for the ASM language. In the ASM method
the main elements of decomposition are rules, TurboASMs, agents and standard syntactical mod-
ule[12].

Rules can be used at every desired granularity. A rule can specify a single action or a whole
process via refinement steps. They represent a form of parametric macro definition. Most of the
ASM models of complex systems (e.g. the Java Virtual Machine) are defined as parallel execution
of macros. The downside of using macro as modules is that macros are not independent. When
put together in parallel each macro must be checked to not interfere with the others in order to
avoid inconsistent updates. This process is error prone since it requires to carefully look inside all
the other macros for inconsistencies. The lack of independence make rules not suitable to be used
as modules.

Turbo ASMs instead encapsulate the behaviour but not the structure of a system. From a
functional point of view, Turbo ASMs structure the computation as a whole with return value
while modules are often required to handle different actions. For example classes are containers
with a set of methods that implement as functions their behavioural features.

An agent is a independent ASM running its program. The communication between agents is
delegated to synchronisation with other agents using some state location that are read and modified
accordingly to the communication logic. Agents appear to be a good candidate for the definition of
a module. Modules defined as agents have the characteristic to represent active unit of behaviour
and not only a collection of static behaviour definitions. Moreover, decomposing by agents may
also shows the structural view of a system. Yet the independence of agents in the ASM language is
not complete since it is achieved by convention, parameterising all the locations inside the program
of an agent by the self special function that evaluates to the unique reference to the running agent.
The self function has also the goal to allow the execution of different agent with the same program.

The ASM book [12] also defines a syntactical module to structure large ASMs (see Chapter
2). Such module definition is a collection of static rules and function definitions and assumes no
name clashes. To the best of our knowledge they have never been used, since their definition is
not completely clear and their practical use is inconvenient.

The proposal of Ernst et al. [36] introduces the concept of operation call from a machine to
another and replacement via modular refinement (see Section 2.3.6 for further details). The only
problem is that it is defined on a variant of ASM and not on the classic definition. We would
like to remain as close as possible to the standard semantic. Moreover the definitions for modular
decomposition require to be careful in the creation of machines and submachines, in particular
regarding the constraint about avoiding using internal functions of a submachine outside the set
of operations. Each operation requires that some preconditions are met and a set of input and
output location parameterizes the operation and stores the results. A similar idea, but tailored for
hardware logic component specification, has been proposed by Shimd [81], where each component
contains input and output lines.

It seems that there is no common established notion of module but it appears that the module
should provide a set of accessible operation, possibly hiding the internal logic, and that can be
considered as a running machine (or agent) or as a static collection of rules. The current module
definitions require to meet some construction criteria when modelling yet it would be more prac-
tical, from a pragmatic point of view, to give more freedom about function and location names as
well as operation call behaviour.
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5.2 Towards a module definition

From the perspective that emerges from the current status of ASM support for modules and
from the various module and component definitions that have appeared as a result of the ASM
method application during the years, a module should encompass the boundaries of a sub-problem.
A module may be a static or active entity since it can be seen as a process whose behaviour
implements the desired sub-component or as a set of aggregated definitions that can be performed
when needed. The definition of a module should be abstract enough to allow the specification of
any kind of component from web services with their REST APIs [38] to protocols. With regard to
protocol definition, usually during the specification of a process (for example business processes)
various components must interact with a specific interface but the definition of the communication
protocol is not important. An example of this situation is [93] where in order to define a business
process, also a model for the communication protocol has been provided. So we would like to
endow modules with the ability to abstract from the actual protocol definition when not needed.

In this chapter we will provide a definition of such modules. We believe that our definition
provides an improvement over the current state of the modelling process with ASMs. In particular,
a large set of models will be naturally expressed by our module definition, for example services
orchestration, business processes and in general sub-systems description.

The ASM agents are already a good behavioural description of an independent entity that
runs its program. So the behavioural aspect of modules can be captured by the definition of
agents. Unfortunately, agents do not provide clear interface definition that establish a contract
for the synchronisation with other agents. Moreover, the communication between agents is not
standardised: several versions of the definition of ASM runs have been proposed depending on agent
synchronisation. To address these two aspects we should enrich the agent with a communication
abstraction for requiring the module to perform certain behaviours and to let the module be aware
of such request to perform them.

The availability of module definitions will also be reflected on the models definition process. A
model may become naturally a composition of, potentially already defined, modules. This means
that modules also improve the reuse of specifications, and allow different people to work in parallel
on different parts of the model. In order to provide such flexibility, modules should be retrievable so
one can fetch the modules needed to compose a new one as the current project management systems
actually do for programming languages. Platforms like Maven [75] implements a mechanism for
software component organisation to handle components dependencies. We would like to pave the
way for a similar system but in the world of specifications through module retrieval.

In the following sections we will introduce the syntax and semantic for our proposal of ASM
modules. The semantic is given in terms of extension of the CoreASM interpreter and has been
inspired by ADA’s tasks with rendezvous[28].

Our module definition will allow to define:

• a behaviour

• a compact representation of interface reflecting its capabilities

• an abstraction of the communication protocol to interact with the module itself

• a clear process to instantiate and access it

We propose modules as values of the Module domain. A module is an active unit of behaviour
that is able to accept and fulfil requests based on its internal state. Module instances extend the
Agent set with a new agent whose program describes the module behaviour. The communication
with a module instance is performed with two new transition rules request and accept that together
abstract the communication protocol between modules. Finally modules can be imported with the
new import transition rule that is in charge of retrieving a module instance.
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5.3 Modular Services

We define an ASM module as an agent together with a set of offered services. With the word
service we mean every functionality or process that the specifier needs to describe the behaviour
of the module and that wants to expose to other modules. Each service can be requested to the
module that will eventually perform it according to its behaviour. Services will eventually produce
results to the requester.

The agent program determines the module internal logic. A service offered by a module is
defined by an entry e ∈Entry that is identified by its name, a list of parameters and a list of
output locations. The list of parameters represents the required data that are needed to perform
the service, the output parameters, instead, represent the expected locations in which the relevant
portion of the computed module state is stored to be accessible to the service client. Together
name, input and output parameters establish the contract between the module and its clients for a
single service. The set of entries of a module can be seen as the interface to the it. For each module
we assume that the following functions are defined, otherwise the interaction with the module is
not possible:

namem : Module→ Name

entriesm : Module→ Set(Entry)

agentm : Module→ Agent

requestsm : Module→ Set(Request)

modulem : Name→Module

Where given a module, namem is the name associated with it, entriesm holds the set of
entries exposed by the module, and agentm is the agent associated with the module. The function
requestsm contains, for each module, a set of pending requests for services whose elements are in
the domain Request. The requestsm of a module behaves like a mailbox where requests arrive.
The management of this mailbox depends on the module logic.

Regarding the elements in the Entry domain we assume that the following functions are
defined:

namee : Entry→ Name

inParamse : Entry→ List(Name)

outParamse : Entry→ List(Name)

modulee : Entry→Module

getEntry : Request→ Entry

entryByNamee : Name→ Set(Entry)

Similarly to modules, namee holds the name of the given entry element. The function modulee
refers to the module the entry belongs to, and inParamse, outParamse return respectively the
input and output parameters for the entry. It is possible to retrieve the name of an entry from a
request using the function getEntry. The function entryByNamee retrieves all the entry elements
with a given name. Notice that the same name can be used in different modules.

Finally we introduce some functions on the Request domain to manage service requests.
The Request domain contains the service requests and the following functions define the data
associated to them.
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entryr : Request→ Entry

paramsr : Request→ List(Element)

resultr : Request→ List(Element)

The function entryr gets the entry for which the request has been created. The request data
parameters are stored by paramsr and the result of the request after its completion is accessible
from resultr.

In order to perform services, a module first must be imported. Importing a module creates an
instance of a module (an element of Module with the related functions initialised). We propose
two forms of module import: an explicit module expression and an implicit module creation from a
source. In the following sections we introduce these two constructs and the interaction mechanism
to request and perform module services.

5.3.1 Creating Modules

In this section we introduce two expression, module and fetch to declare in a compact way a
module and to get a module from a given source.

Definition 5.3.1. (Module declaration) A module declaration is an expression:

Module declaration

module m with
entry e1(x11, . . . , x

1
i1) into y11 , . . . , y

1
j1

entry e2(x21, . . . , x
2
i2) into y21 , . . . , y

2
j2

. . .
entry en(xn1 , . . . , x

n
in) into yn1 , . . . , y

n
jn

do
R

where m is the module name, ei are the entries of the module and R is the body, a rule defining
the module behaviour.

A module declaration extends the Agent domain with a new agent a whose program is R and
the Module domain with a new element e with:

• namem(e) = m

• agentm(e) = a

• module(a) = m

• requestsm(e) = {}

• modulem(m) = e

• entriesm(e) = {d1, . . . , dn}

For each element dh ∈ entriesm(e), dh ∈ Entry and the entry related function are initialized
with:

• namee(dh) = eh

• inParamse(dh) = [xi1, . . . , x
i
ih

]

• outParamse(dh) = [yi1, . . . , y
i
jh

]

• dh ∈ entryByNamee(eh)
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Each entry is defined by its name eh and two sets of identifiers: the input parameters xh1 , . . . , x
h
ih

and the output locations yh1 , . . . , y
h
jh

. Entries only define the interface to access module services,
the actual behaviour is defined inside the module body as we describe in Section 5.3.3.

Instead of defining the entries set, we could avoid writing it and just rely on the accept rule
that is in charge of performing a service inside the module body. We have chosen to keep entry
definitions as they constitute a compact view of the module capabilities without the need of reading
also its behaviour. In this way the readability and understandability of the module improve.

The formal semantics for an interpreter of this construct is the following:

Module creation

L module αx with λ1
e
e . . . λn

e
e do βe

r M →
choose λ ∈ {λ1, . . . , λn} with ¬evaluated(λ) do
pos := λ

L module αx with λ1v . . . λnv do βe
r M →

if ∃λ ∈ {λ1, . . . , λn} ∧ λv /∈Module then
Error(“Non entry value in module definition”)

else
extend Module with m do
namem(m) := αx

forall e ∈ {λ1v, . . . , λnv} do
modulee(e) := m

entriesm(m) := {λ1v, . . . , λnv}
extend Agents with a do
agentm(m) := a
module(a) := m
let mainRule = CopyTree(body(ruleV alue(β)), true) in
program(a) := mainRule
SetParentModule(mainRule,m)

JposK := (undef, undef,m)

Module creation is composed mainly of entry and body definitions. The body definition (β
e
r )

is a rule that describes the module behaviour. Entry definitions (λi) instead are expressions that
evaluates to elements in the Entry domain. The identifier αx represents the name of the module.
After the evaluation of the entry expressions, if all of them are actually entry elements, the module
creation extends Module (the universe of modules) with a new one and initialises the functions
for it. In particular the entry set (entriesm) and the agent that will run the module. Each entry
has the referring modulee set to the new module. Finally the new module element is returned as
value of the entire expression.

The CopyTree rule shares the definition given in [37] and copies the body of the rule passed as
parameter. In order to make the rule call process aware of the modules we provide a refinement
of the CopyTreeSub rule; the refinement adds the assignment module(n) := module(α) that allows
the accept rule to check if the requested entry is in the module contract (see Section 5.3.3). The
refinement for CopyTreeSub is defined as follows:
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CopyTreeSub refinement

CopyTreeSub(α, 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉) ≡
if α 6= undef then

if class(α) = Id ∧ ∃s.t.token(α) = xi then
result ← CopyTree(λi, false)

else
let n = new(Node) in
first(n)← CopyTreeSub(first(α), 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉)
next(n)← CopyTreeSub(next(α), 〈x1, . . . , xn〉, 〈λ1, . . . , λn〉)
class(n) := class(α)
pattern(n) := pattern(α)
token(n) := token(α)
module(n) := module(α)
grammarRule(n) := grammarRule(α)
plugin(n) := plugin(α)
result := n

else
result := undef

The rule SetParentModule annotates the rule body with the module reference. The annotation
process walks recursively through the AST of the rule passed as parameter and whenever a pos
with accept pattern is found, the function module for that pos is defined with the module value
m. This process allows the accept statement to check its entry against the module’s allowed set.
The definition of SetParentModule is the following:

SetParentModule definition

SetParentModule(pos,module) ≡
if pattern(pos) = Accept then
module(pos) := module

SetParentModule(first(pos),module)
SetParentModule(next(pos),module)

Each λi
e
e expression in the module creation construct is checked to be an element of the

Entry domain. An entry expression evaluates to elements of Entry and are used to populate
the set of offered services of a module. Entries are defined by their name, input and output
parameters identifiers. The association between entry and module is made inside the module
creation expression assigning modulem

1.

Entry creation

L entry αx(λ1x1, . . . ,
λnxn) into γ1x, . . . , γmx M →

extend Entry with e do
namee(e) := αx

inParamse(e) := 〈λ1x, . . . , λnx〉
outParamse(e) := 〈γ1x, . . . , γmx〉
JposK := (undef, undef, e)

Definition 5.3.2. (Module fetching) The expression fetch from s extends the domain Module
with a new element e that is the module definition retrieved from the source s. The module element
has the related functions initializes as shown by the module declaration expression.

Analogously to module , the fetch from expression evaluates to an element of the Module
domain. In this case the process of creating and defining a new module element is implicit. This
form of expression is meant to retrieve a module from a source given as parameter. Examples of

1An extension of this approach would allow an entry to be part of more than one module. In this case instead of
assigning modulem to an entry value, the location value will become a set of module elements requiring the insertion
of the new module reference in this set.
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sources are files, URLs and binaries. The nature of such source is not constrained. We want to
give maximal freedom on sources in order to let every potential module provider to be included.
The idea is to be able to get interoperability with every that can be described by a module with
the assumption that a translation function from such entity to a module element exists. We call
this function fetchModule with the following signature:

fetchModule : Source→Module

The function fetchModule is in charge of recognising the source and get a module element
from it.

Module fetching

L fetch from αe
M →

if ¬evaluated(α) then
pos := α

else
let m = fetchModule(αv) in

if m ∈Module then
JposK := (undef, undef,m)

else
Error(“Unable to import module from source”)

The simplest example of fetch from statement usage consists on considering file paths as
resource parameter. The fetchModule function would be implemented in order to look for an
ASM specification file and to parse it. If the file contains a module definition, the interpretation
of the parsed tree would result in a module element.

5.3.2 Importing Modules

Importing a module permits to implicitly retrieve a module element to request its services. In
our setting this operation means simply to assign a module element to a location. There is no
need to add other mechanisms. For example, assuming that there exists a repository of modules
at “http://asmmodulesrepo.net” we could import a module that expose mathematical functions
doing simply:

Importing module example

mathModule := fetch from “http://asmmodulesrepo.net/math”

Assigning mathModule to other locations provide an aliasing mechanism for the same module.
If more than one module instance of a kind are needed importing the same module multiple times
is enough. The following example shows the difference between aliasing and multiple instantiation
for modules.

Aliasing and multiple instantiation example

parser := fetch from “http://asmmodulerepo.new/parser”
. . .
aliasedParser := parser
anotherParser := fetch from “http://asmmodulerepo.new/parser”

This approach solve the namespace problem. Each module is evaluated to a module element, so
the same module name can be used for different module definitions and the same module definition
can be assigned as different module elements to multiple locations.
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5.3.3 Requesting and performing a service

The basic interaction with a module is achieved by requesting a service. The outcome of requesting
a service is to put a new request inside the module request set and waiting for the answer. A module
runs the program of its agent and accordingly to the program definition may accept service requests.
In order to enable ASMs for these two operations we extend the set of transition rules by adding
accept and request statements.

request m to e(x1, . . . , xn) into y1, . . . , ym

accept e(x1, . . . , xn) [ with e′] do R

The intuitive meaning of the request rule is to ask a module m to perform the service e
with input parameters the value of x1, . . . , xn terms and to assign the results of the service to
the locations y1, . . . , ym. Notice that a service request does not require to specify every (input
or output) parameter. This means that a module service can have optional parameters (that are
assumed to be undef) and that the service requester can provide a smaller set of output location
with the result of ignoring any other result the service has provided. For example if a module offer
the division service:

entry divide(x, y) into quotient, remainder

when requesting this service, only the quotient can be of interest. In this case the requester will
ignore the remainder specifying only one location for the output parameters:

request m to divide(42, 5) into res

The accept rule checks if the service e has been requested; if a request is available it performs
the rule R, otherwise the agent continue with its program so the accept rule is not blocking.

Each module manages requests using a set as pool of pending requests. Every time a request
transition rule is triggered, a new request is added to the module pool. The module will eventually
consume the requests whenever a corresponding accept is triggered. The request-accept mecha-
nism has been inspired by the concept of tasks and rendezvous of the Ada programming language
[28].

Synchronous Service Request

The semantic we define in this section describes a synchronous request-accept communication that
is the default behaviour of module communication. We introduce the semantic of a request by
providing an extension to the classic ASM calculus and an interpreter definition for it.

JtKSζ ∈Module e ∈ entriese(JtKSζ ) namee(e) = x

r ∈ requestsr(JtKSζ ) entryr(r) = e paramsr(r) = 〈Jt1KSζ , . . . , JtnKSζ 〉
Jaccept x(y1, . . . , yn) with ϕKS

′

ζ = U 〈(l1, v1), . . . , (lm, vm)〉 = U �outParamse(e)

Jrequest t to x(t1, . . . , tn) into x1, . . . , xmKSζ = {(x1, v1), . . . , (xm, vm)}

The interpreter semantic definition is the following.
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Requesting a service rule

L request αe
to βx(λ1

e
e , . . . , λn

e
e ) into γ1

e
l , . . . , γm

e
l M →

pos := α

L request αv to βx(λ1
e
e , . . . , λn

e
e ) into γ1

e
l , . . . , γm

e
l M →

if v /∈Module then
Error(“Requesting to non module”)

else

choose e in entriesm(αv) with namee(e) = βx do
choose λ ∈ {λ1, . . . , λn, γ1, . . . , γm} with ¬evaluated(λ) do
pos := λ

ifnone
if ¬requestSent(pos) then

let r = new(Request) in
entryr(r) := e
paramsr(r) := 〈λ1, . . . , λn〉
request(pos) := r
requestSent(pos) := true
add r to requestsm(αv)

else
if requestFulfilled(pos) then

let 〈v′1, . . . , v′m′〉 = resultr(request(pos)) in
let k = min(m′,m) in

JposK := (undef, {|〈γ1 l, v′1〉, . . . , 〈γk l, v′k〉, 〈γk+1 l, undef〉, . . . , 〈γm l, undef〉|} , undef)
requestSent(pos) := false

ifnone
Error(“Entry not found in module”)

The first step for requesting a service is to check if the element we are asking to perform it
(α

e
? ) is indeed a module element. Every expression that evaluates to an element in the Module

domain is allowed in the α position. If it is a module, the evaluation proceeds looking for an
entry among the module entriesm, if any, with the same requested name βx. At this point a new
request element r is inserted into the requestsm pool of the module waiting for the service to be
performed. When the request is fulfilled, the location designated to hold the service output are
assigned producing the resulting request update set. The function requestFulfilled checks if the
module that will handle the request has already fulfilled the request and is defined as:

requestFulfilled(pos) ≡ resultr(request(pos)) 6= undef

When the answer for the request from the module is ready, the location resultr for the re-
quest will contain the computed values. The number of locations in the rightmost portion of the
request rule is not constrained by the number of expected output parameter of the correspondent
entry. This permit the specification of fewer parameter if the module client is not interested in all
the results produced by the module service. The selection of which parameters to take is bound
to the positional occurrence in the entry definition2. If the requester specify a number of location
parameter greater than the entry definition output parameters number, the exceeding location will
be set to undef.

Asynchronous Service Request

The default behaviour of the request mechanism keeps the the evaluation of the request rule at
the same position of the syntax tree until the request is not fulfilled. In this sense the evaluation
of a request is stuck until the module performs and completes it. In this section we address the
scenario in which a non blocking version of request is desirable. To achieve the asynchronous

2Another way to select parameter would be by assigning a selector like l ← x where l is the location in which
the requester wants the parameter named x in the entry definition.
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behaviour for service requests there are different possible approaches. One possibility is to spawn
a new agent that performs the request. This way the agent program will contain the request and
the spawner machine can continue its computation. Some synchronisation will be necessary on
the request completion. Another way to asynchronously request a service is to provide a new
transition rule that passes also the rule to be called on completion into the request in a sort
of continuation passing style. This approach would make specification more intricate and less
readable. A third approach requires the introduction of a new asynchronous transition rule for
asynch request that produces an empty update set and the newly created request as value. A set
of predicates in the form of expressions on request elements will allow the requester to assert on
the request features, in particular the completion state. The following rules patterns will show
the semantic of asynchronous requests along with an expression that asserts the completion of the
request.

JtKSζ ∈Module e ∈ entriese(JtKSζ ) namee(e) = x

r ∈ requestsr(JtKSζ ) entryr(r) = e paramsr(r) = 〈Jt1KSζ , . . . , JtnKSζ 〉
Jasynch request t to x(x1, . . . , xn) in x′KSζ = {(x′, r)}

The related semantic for the CoreASM interpreter is the following:

Asynchronous service request

L asynch request αe
l to βx(λ1

e
e , . . . , λn

e
e ) M →

pos := α

L asynch request αv to βx(λ1
e
e , . . . , λn

e
e ) M →

if v /∈Module then
Error(“Requesting to non module”)

else

choose e in entriesm(αv) with namee(e) = βx do
choose λ ∈ {λ1, . . . , λn} with ¬evaluated(λ) do
pos := λ

ifnone
let r = new(Request) in
entryr(r) := e
paramsr(r) := 〈λ1, . . . , λn〉
request(pos) := r
add r to requestsm(αv)
JposK := (undef, {||} , r)

The evaluation of an asynch request produces an empty update set and the newly created
request element as value. To manage the just created request element we introduce the completed
expression that checks if the request has been completed and evaluates to true if it is applied to a
Request element that has its resultr function defined.

Jcompleted tKSζ =

{
true if JtKSζ ∈ Requests ∧ resultr(JtKSζ ) 6= undef

false otherwise

The related semantic for the CoreASM interpreter is the following.



74 CHAPTER 5. MODULARITY AS SERVICES

Completed expression

L completed αe
e M → pos := α

L completed αe
e M → if αv /∈ Request then

Error(“Trying to assert completion of non-request element”)
else

JposK := (undef, undef, resultr(
αv) 6= undef)

Combining asynch request and completed expression the service request will not block the
requester. When the request has been answered, the answer must be accessed to retrieve its data.
In order to get the data the answer rule must be called. Its semantic is defined as:

JtKSζ ∈ requestsr(Jmodulem(self)KSζ ) resultr(JtKSζ ) 6= undef 〈v1, . . . , vn〉 = resultr(JtKSζ )

Janswer t into x1, . . . , xnKSζ = {(x1, v1), . . . , (xn, vn)}
(1)

JtKSζ ∈ requestsr(Jmodulem(self)KSζ ) resultr(JtKSζ ) = undef

Janswer t into x1, . . . , xnKSζ = ∅
(2)

The related semantic for the CoreASM interpreter is the following:

answer rule

L answer αe
e into λ1

e
e , . . . , λn

e
e M →

pos := α

L answer αv into λ1
e
e , . . . , λn

e
e M →

if αv /∈ Request then
Error(“Trying to assert completion of non-request element”)

else
choose λ ∈ λ1, . . . , λn with ¬evaluated(λ) do
pos := λ

ifnone
if resultr(request(pos)) = undef then

JposK := (undef,
{∣∣〈λ1 l, undef〉, . . . , 〈λm l, undef〉

∣∣} , undef)
else

let 〈v′1, . . . , v′m′〉 = resultr(request(pos)) in
let k = min(m′,m) in

JposK := (undef,
{∣∣〈λ1 l, v′1〉, . . . , 〈λk l, v′k〉, 〈λk+1 l, undef〉, . . . , 〈λm l, undef〉

∣∣} , undef)

This rule assigns the values produced by the entry to the locations given as argument. It first
evaluates the request expression. If it is an element in Request the evaluation continues, otherwise
an error is raised. The next step of the evaluation is to generate the updates for the locations that
will contain the data produced by the service. The process is equal to the final section of the
synchronous request rule definition. Combining answer and completed it is possible to manage
and control the asynchronous requests to module services.

The expression wait transforms an asynchronous request into a synchronous one. Its semantic
is defined as follow:

JtKSζ ∈ requestsr(Jmodule(self)KSζ ) resultr(JtKSζ ) 6= undef

Jwait tKSζ = ∅
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Wait expression

L wait αe
M → pos := α

L wait αv M → if αv /∈ Request then
Error(“Trying to wait on non-request element”)

else
if resultr(

αv) 6= undef then
JposK := (undef, {||} , undef)

An example of usage of the asynchronous request is the following in which a module is requested
to perform the doComplexOperation service asynchronously. The request is managed by an if
statement that checks if there are no pending requests. If noPendingRequests is true a request
is sent to the module m. Each step of the machine now checks if the request has been performed
and when it is completed the answer is stored in the x location.

if noPendingRequests then
r := asynch request m to doComplexOperation

else
if completed r then

answer r into x

To improve compactness of asynchronous requests we provide also a version of it that calls
a rule when the request has been completed: asynch request when done. Such rule request
asynchronously a service to a module and, on completion, calls a given rule. A possible syntax
would be

To improve compactness of asynchronous request is possible to provide a continuation passing
style inspired version of it. For example writing something like

asynch request m to βe(x1, . . . , xn) into y1, . . . , ym when done r

the request to m for an entry e would still be asynchronous but, when the request has been
performed, the evaluation of the rule r is triggered. We do not give the formal semantic of this rule
but it can be defined as a composition of the asynchronous requests management rules we have
provided.

Accepting requests

In order to perform a service, a module must manage its requests. We introduce the new transition
rule accept that tries to pick a service request in the pool of pending requests of a module and
performs the associated service. The semantic of the accept rule is defined as:

JϕKSζ = false

Jaccept x(x1, . . . , xn) with ϕ do P KSζ = ∅
(1)

JϕKSζ = true Jmodule(self)KSζ = m m ∈Module

∀r ∈ requestsr(m).∃e ∈ entriesm(m) : namee(e) = x ∧ entryr(r) = e

Jaccept x(x1, . . . , xn) with ϕ do P KSζ = ∅
(2)
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JϕKSζ = true r ∈ requestsm(m) Jmodule(self)KSζ = m

namee(e) = x modulee(e) = m m ∈Module

e ∈ Entry JP v1
x1
. . . vnxn KSζ = U

Jaccept x(x1, . . . , xn) with ϕ do P KSζ = U
(3)

The related semantic for the CoreASM interpreter is the following:

Accept rule semantic

L accept αx(λ1x, . . . , λnx) with βe
e do γer M → pos := β

L accept αx(λ1x, . . . , λnx) with βv do γer M →
if βv = true then

if workCopy(γ) = undef then
let m = module(executingAgent) in

choose e in entriesm(m) with namee(e) = αx do
choose r ∈ requestsm(m) with entryr(r) = e do

remove req from requestsm(m)
let c = CopyTreeSub(γ, 〈γ1x, . . . , γnx〉, params(r)) in
pos := c
workCopy(γ) := c
parent(c) := pos
request(pos) := req

ifnone
JposK := (undef, {||} , undef)

ifnone
Error(“Entry not available in module”)

else
JposK := (undef, updates(workCopy(γ), value(workCopy(γ))
workCopy(γ)

resultr(request(pos)) := [v1, . . . , vn | ∀i ∈ {1, . . . , n}.〈λix, vi〉 ∈ workCopy(γ)u ∨ vi = undef]
else

JposK := (undef, {||} , undef)

If multiple accept for the same entry are executed in parallel, one can control their execution
by their guards. The execution of more than one accept statement for the same entry and the same
request is allowed when their execution produces consistent update sets. The with condition
guards the execution of an accept rule. As syntactic sugar the guard can be omitted. An accept
rule without the guard is considered having the guard always satisfiable. Another assumption for
the accept semantic is that the entry names are unique for a module and that there are no
overloaded definition for an entry.

We have decided to separate the accept behaviour definition from the entry in order to
permit different behaviours for the same entry. Service management becomes in this way context
dependent. For example it is possible to define a different behaviour for the same entry based on
the module state.

Notice that a guarded accept rule is different from an accept with an if statement inside its
body. For example

accept x with A do R1

accept x with B do R2

is different from
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accept x do
if A then R1

if B then R2

because in the first case no request is consumed if A or B are not satisfied while, in the second
case, a request to the service x is selected and consumed.

5.4 Examples

In this section we give some example of modules and service requests. We start with the definition
of a simple echo server, then we propose the specification of a data structure where the logic of
its behaviour is described by the module behaviour. Finally we give an example for a simplified
Network File System.

5.4.1 Echo Service

A echo service is a server that exposes a single service echo that takes a parameter and return it
to the service requester as result. We define a module as:

Echo service module

module Echo with
entry echo(x) into y
do

accept echo(x) do
y := x

Before requesting the module to perform its service we first have to import it and then use
the request rule. In this example we assume that an echo module has been imported into the
location echoModule.

Using the echo module

request echoModule to echo(“Hello!”) into answer

5.4.2 Data structures

Another example in which the module we defined is useful is in expressing data structures and
their operations. In this examples we show a module that specifies a buffer and a simple Network
File System (NFS).

N-Buffer

A buffer is finite sequence of elements. We want to describe a buffer of n position as a module
that exposes five services: buffer initialisation (init), element insertion (insert), element removal
(consume), buffer clear ing and reset. We define the buffer state as a queue.
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Buffer module

module Buffer with
entry init(n)
entry insert(item)
entry consume into res
entry clear
entry reset
do

if state = NotInitialized then
accept init(n) do
queue = []
maxLength := n
state = Initialized

if state = Initialized then
accept insert(item) with |queue| < maxLength do

enqueue item into queue
accept consume with |queue| > 0 do

dequeue res from queue
accept clear do
queue = []

accept reset do
state = NonInitialized

The module is composed by five entry elements. A buffer can be in two states (Initialized,
NonInitialized). In the NonInitialized state only the init entry can be served since we are
assuming that the buffer has to be initialised with a specified capacity before using it. After
initialisation the module state becomes Initialized and all the buffer services except for init are
available. This is only one of the possible definitions for buffer behaviours and the module body
is meant to provide such behaviour description while the entries expose the service interface. The
module body is implemented by a control state ASM where state is the mode3.

5.4.3 NFS

In this example we want to provide a module that supplies Network File System (NFS) services.
In our case a NFS exposes entries for operation on files, in particular lookup to get a file handle
from its name, open, read, write, close to provide the access to files. Since we do not want to give
a full definition of a NFS behaviour, for clarity we delegate the technical details of how to get a
file from its name of how to read it to some ASM rules that we assume to be defined and that
provide the expected behaviour. These rules are Find(name) to look up a file by name returning
a file handle, ReadFile(file, count, offset) and WriteFile(file, data, offset) to respectively read and
write some data at a given offset, finally Close(file) for closing a file.

3This module behaviour could be also specified by the do-block constructs we describe in Chapter 4
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Managing the access to files

module NFS with
entry lookup(name) into handle
entry read(file, count, offset) into data
entry write(file, data, offset) into res
entry close(file) into closed
do

accept lookup(name) do
handle← Find(name)

accept read(file, count, offset) with canRead(file) do
data← ReadFile(count, offset)

accept write(file, data, offset) with canWrite(file) do
res← WriteFile(file, data, offset)

accept close(file) with isOpen(file) do
res← Close(file)

The services are provided with guards. The isOpen function evaluates to true if the file param-
eter has been opened. The other two functions, canRead and canWrite, are defined as follows:

canRead(file) = isOpen(file) ∧mode(file) = read

canWrite(file) = isOpen(file) ∧mode(file) = write

The module behaviour is the parallel execution of the accept rules for its entries. Nevertheless,
the accept guards, implicitly, provide a simple workflow for the services.
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Chapter 6

Modularity of State

In this chapter we will to explore the management of the ASM state. At the core of the ASM
language there are two postulates [44] that are related to states: sequential and abstract state. The
sequential state postulate asserts that the behaviour of a sequential time algorithm is determined
by the set of states, the subset of initial states, and the state transition function. The abstract
state postulate asserts that states of an algorithm are structures of a fixed vocabulary. Based on
these postulates, an ASM describe any computation as the evolution of states in discrete time
steps. In ASM models the state is global but as stated in [12] at chapter four

The characteristics of basic ASMs – simultaneous execution of multiple atomic ac-
tions in a global state – come at a price, namely the lack of direct support for practical
composition and structuring principles.

For this reason basic ASMs have been enriched with Turbo ASMs introducing sequential compo-
sition, iteration and (recursive) parameterized submachines. Those extensions provide submachine
calls mechanism for black box computations. One of the structuring principles that Turbo ASMs
do not directly provide is state partitioning that in object oriented programming [78] becomes one
of the characterising features: encapsulation.

With regard to encapsulation, the ASM offer a basic construct to isolate a portion of the state
with local declaration of some dynamic function (see chapter 2). Local functions are part of the
TurboASM extension and allows functions to be declared as local to a rule, so the scope of local
functions is the rule in which they are defined. Each local function fi may be initialised by an
Initi rule that is executed before the body.

Local definition

name(x1, . . . , xn) =
local f1[Init1] . . . fk[Initk]
body

Figure 6.1: Local function definition

Usually this scoping is not enough for describing a subset of the state that shares some concept
meaningful for the problem domain of a specification. Some function should be shared among
different rules but not globally.

Location parameterization is the most common approach that years of modelling with ASM
produced to overcome the state partition problem. A concrete example could be the description of
some business process that involves different organisations; one of the requirements may need the
separation of information between such organisation. Being able to isolate the state by organisation
is one way to model this requirement. So in the business process example each function that belongs
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only to one organisation will have the organisation as first parameter. In the following example a
function models the set of employees for each organisation.

Employee example

FinancialDepartment(invoice) ≡
choose e ∈ employees do
ProcessInvoice(e, invoice)

Depot(order) ≡
choose e ∈ employees do
CheckOrder(e, order)

In this example we assume to have two organisations (the Depot and the FinacialDepartment)
that belong to the domain we are modelling. Each of the organisations needs to manage its em-
ployees but for different purposes. Here we simplify showing just one process for each organisation.
The financial department needs his employees to process invoices, while the depot requires that its
employees to check the orders they receive. The location employees intuitively contains a set of
employees.

Since the two organisation are different but both of them share the concept of employee, in a
global state view we cannot assume that the same location holds the information about two different
sets of employees. There are multiple possibilities to discriminate these sets. The simplest one
is to assume to have a static function worksAt : Organisation × Employee → Boolean that
given an organisation and an employee returns true if the employee works at the organisation. The
above employee selections will become:

choose e ∈ employees with worksAt(o, e) = true do R

Where o ∈ Organisation is an element of the Organisation domain holding the currently
needed organisation (depot or financial department).

One problem of this approach relates to the static function worksAt that describes a static set
of employees and so does not allow modifications of the employee set. This could be a problem if
the set of employees may change to reflect, for example, hiring processes.

The common way to handle this situation is to rely on function parameterization. For each
function that should belong to a certain scope, it is parameterized adding as first parameter such
scope for each occurrence of it. The typical example of this is the parameterization with the
agent running a rule that contain such functions with the self parameter. With regard to the
business process example we need to add the organisation parameter to the employees location.
The example would become:

Employee example

FinancialDepartment(invoice) ≡
choose e ∈ employees(“fd”) do
ProcessInvoice(e, invoice)

Depot(order) ≡
choose e ∈ employees(“depot”) do
CheckOrder(e, order)

In this case, the function employees is defined for the parameters fd and depot. This has the
same effect of having two separate functions named, for example, fdEmployees and depotEmployees,
but this approach keeps the concept of “set of employees” in the same place (the employees). The
downside of parameterising the locations this way is the burden for the modeller that must keep
all the occurrences of interested locations up to date every time she changes something related.

Is possible to think of other possibilities to partition the state different from location parame-
terization or suppose that state parameterization is not general enough to manage state partition
properly.
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One choice to describe state partition could be to add the semantics related to the evaluation
environment, the ambient, changing the foundational semantic of ASMs, in particular the update
definition. An update is a couple (l, v) where l is a location and v is the value to associate to that
location in the state. A location l is as well a couple 〈f, p̄〉 defining for which function name f
and at which point p̄ the update is applied. Adding the ambient information, to describe the state
partition, would result into a triple in the form 〈f, e, p̄〉 where e represents the ambient in which
the location is evaluated and updated. However this approach is not more general than location
parameterization. In fact it is possible to find a bijective function that transforms the update
from the changed semantic version to the parameterized one and vice versa. An example of such
function is the following

〈f, e, p̄〉 ↔ 〈f, e · p̄〉

where the environment parameter is concatenated to the other function parameters. This shows
that the parameterized version, without changing the semantic, encompasses the modified semantic
version of ambient support for ASMs.

Another approach would be to change the function part of the 〈f, p̄〉 couple. For example having
as first argument a function value instead of a function name. The function value evaluation would
depend on the desired ambient. Also in this case it suffices to define a function that given a function
name returns the correspondent function value to go back to the classic update definition.

Thus location parameterization is a general enough mechanism to handle state partition. In
fact, recently the ambient ASMs have been proposed [17] initially to provide support for program-
ming practices (such as object-oriented design patterns, and static and dynamic disciplines for
state isolation). The ambient ASMs can be instantiated to any environment paradigm. A set
of examples mostly taken from design patterns [41] and notably the ambient logic by Cardelli et
al.[26]. In term of ambient ASMs the previous Employee example would be written:

Employee example with ambient ASMs

FinancialDepartment(invoice) ≡
amb “fd” in

choose e ∈ employees do
ProcessInvoice(e, invoice)

Depot(order) ≡
amb “depot” in

choose e ∈ employees do
CheckOrder(e, order)

By the definition of the term and rule translation of ambient ASM definition, this example is
translated to:

Employee example equivalent to ambient ASMs

FinancialDepartment(invoice) ≡
let curamb = “fd” in

choose e(curamb) ∈ employees(curamb) do
ProcessInvoice(e(curamb), invoice)

Depot(order) ≡
let curamb = “depot” in

choose e(curamb) ∈ employees(curamb) do
CheckOrder(e(curamb), order)

Basically each amb rule occurrence is translated to a let rule assigned to the correct ambient
value and each subterm is changed following some translation rules.

Although the ambient ASMs are general enough for describing each possibly needed environ-
ment paradigm (example of lexical and dynamic scoping are given throughout the article), amb



84 CHAPTER 6. MODULARITY OF STATE

results impractical for modelling purposes. To understand why we think amb is not the most
comfortable method to model environment aware ASMs we provide a motivating example.

Let us consider nested ambients. The default behaviour of amb is to consider as ambient the
last computed curamb.

nested ambients

amb e1 in
amb e2 in
R

So the rule R will be evaluated in an environment with ambient equals to e2. Usually the
evaluation of nested ambients results in the last ambient expression as current ambient. This
behaviour is not what is always desirable. Sometime having a structure on the evaluated ambient
may help express clearly some state isolation. Sticking with the organisation example we now want
to describe the employees of the depot but separating the clerks from the engineers. A clear way
to express this is hierarchical structure of the nested ambients.

Depot employees separation

amb depot in
amb clerks in
employees := {c1, . . . , ch}

amb engineers in
employees := {e1, . . . , ek}

The intended meaning of such rule is to set the location employees keeping the worker roles
distinct. With the ambient ASMs will be translated to the following equivalent version.

Depot employees separation translation

let curamb = depot in
let curamb = clerks in
employees(curamb) := {c1, . . . , ch}

let curamb = engineers in
employees(curamb) := {e1, . . . , ek}

The evaluation of such rule will produce the same update set of

employees(clerks) := {c1, . . . , ch}
employees(engineers) := {e1, . . . , ek}

While the intended meaning was closer to

employees(depot, clerks) := {c1, . . . , ch}
employees(depot, engineers) := {e1, . . . , ek}

The difference becomes meaningful if we want employees to contain the information about the
employees other organisations (e.g. financial department employees(fd, clerks) := v).

Another issue in using the ambient ASMs is related to identifiers evaluation. We recall here
one of the examples in [17].

Evaluate identifier with ambient

Example2 ≡
amb a1 in
x := 3
amb a2 in
y := parent(a2).x
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This example is meant to show the need of expressing explicitly an ambient where to evaluate
an expression (x). The function parent should reflect the nesting of occurrences for amb rules; in
this example parent(a2) = a1. The first issue with this solution is syntactical: accessing ambients
from a deeply nested position quickly makes the evaluation unreadable.

evaluating in deeply nested ambients

amb a1 in
x := 3
amb a2 in
. . .

amb ak in
y := parent(parent(parent(. . . parent(a2))).x

The second issue is related to the capability of accessing to the value of an identifier evaluated
in an arbitrary ambient. The parent functions only allows to climb back the nested structure of
ambients. So we consider impractical using ambient ASMs extensively to replace common patterns
of ASM modelling.

In this chapter we introduce an extension to basic ASMs that allows the management of en-
vironments to partition the state and ease the modelling process. In particular we propose three
kind of state partition management that are covered by three transition rules and one evaluation
expression for ambients. We explore the three possibilities and propose one unified version that
combines the three versions.

6.1 State partition management

We identify three interesting cases of environment management for state locations of an ASMs:
plain, hierarchical and set ambients. Plain ambient allows to assign an environment to a rule block.
The behaviour is equivalent to ambient ASMs, an expression is used as environment selector and
the location inside the rule block are evaluated is such environment. With hierarchical ambient,
environments are pushed following the lexical arrangement in the specification. Finally the set
ambient manages environments as sets inserting and removing environment expressions based on
lexical occurrence of ambient blocks but composing them without order dependence. All the
ambient rules we introduce share the syntax shown in Figure 6.2.

ambient syntax

Ambient := ambient [AmbientKind][for Ids] in Rule
AmbientKind := set | push | insert
Ids := x | x, Ids

Figure 6.2: Ambient rules BNF

The AmbientKind set, push and insert correspond respectively to plain, hierarchical and set
state partitioning. The intuitive meaning of a ambient block is to partition the state accordingly
to its AmbientKind for each identifier inside the rule block or, if the for clause is specified, only
for the specified identifiers leaving the others with the last ambient available. An ambient rule
without a specified ambient kind is equivalent to a ambient set by default. Providing state
partitioning management functionalities for the ASM framework requires to define a rule for the
evaluation of identifiers that is aware of environment definition, and to allow their manipulation.
For the first requirement we provide an evaluation rule definition that is a conservative extension
of the one in [37]. We choose this approach because we recall that we want to provide construct
that are easily implementable and nimbly integrated with the existing tool support for ASMs,
especially CoreASM. For the requirement on environment manipulation we have chosen to annotate
the abstract syntax tree (AST) of the evaluating ambient rule with information about ambients,
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and to use working copies of rules inside the ambient block. Choosing to use working copies of
AST trees enables our rule definition to handle uniformly location parameterization in case of rule
calls inside the ambient rule block. An example is given by the parallel execution of the following
ambient rules:

rule calls inside ambient rules

R1 ≡ ambient 1 in
seq
x := new(K)

next
M

R2 ≡ ambient 2 in
seq
x := new(K)

next
M

M ≡ ambient x in R3

The evaluation of M must be aware of the contextual scope for x accordingly to where M is
called (1 for R1, 2 for R2). Using the work copy is also a consequence of abiding to the CoreASM
interpreter semantic.

In the following sections we give the semantic for each of the ambient rule kind we propose and
some examples.

6.1.1 Assigning ambients

The first kind of state partition we address is the ambient assignment. This ambient version is
expressed by the set option for AmbientKind production in fig 6.2. The intuitive meaning is to set
the evaluation environment for each identifier in the ambient rule part to the ambient expression
(e) value. If an environment was already defined for such identifier, it is replaced by the new one.
The formal semantic for ambient set is the following:

Assign scope rule

L ambient set αe
e in βe

r M → pos := α

L ambient set αv in βe
r M → if workCopy(β) = undef then

let b = CopyTree(β) in
SetAmbientset(b,

αv)
pos := b
parent(b) := pos
workCopy(β) := b

else

JposK := (undef,workCopy(β)u,workCopy(β)v)

L ambient set αe
e for λ1x, . . . , λnx in βe

r M → pos := α

L ambient set αv for λ1x, . . . , λnx in βe
r M → if workCopy(β) = undef then

let b = CopyTree(β) in

SetAmbientIdset(b,
αv, 〈λ1x, . . . , λnx〉)

pos := b
parent(b) := pos
workCopy(β) := b

else

JposK := (undef,workCopy(β)u,workCopy(β)v)
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The first step of the rule semantic is to evaluate the environment expression in position α of
the abstract syntax tree. Once the environment expression value αv is available, the rule tree is
copied and set as the next position to be evaluated. The SetAmbientset rule is in charge of setting
the evaluation ambient for each identifier in the evaluating rule tree. The result of the evaluation
is the update set and the value computed by the work copy rule. The other two pattern definition
of the semantic behave similarly to the ambient rule definition but take into account also a set
of identifiers. The list of identifier λ1x, . . . , λnx permits to narrow the set of identifiers on which
setting the ambient is desirable: only the identifiers in the list will be considered for environment
definition.

SetAmbient rule definition

SetAmbientset(α, env) ≡
if class(α) = id ∧ isLocationName(token(α)) then
locEnv(α) := env

else
if isRulename(token(α)) then

let r = ruleV alue(token(α)) in
let c = CopyTree(body(r)) in

TreeSub(α, c)
parent(c) := parent(α)
SetAmbientset(c, env)

else
SetAmbientset(first(α), env)
SetAmbientset(next(α), env)

The rule SetAmbientset manages environment changes for identifiers. The two parameters repre-
sent the tree reference (α) and the the environment value (env). The idea is to annotate each tree
position that contains an identifier with the environment information. If the tree reference α is an
identifier for a location the environment is assigned to locEnv(α). Otherwise if it is a rule name
a copy of the rule body is created and substitutes to α; the SetAmbientset rule is applied to it. If
the current tree reference is neither an identifier nor a rule name, the SetAmbientset rule is applied
recursively to the tree children.

SetAmbientId rule definition

SetAmbientIdset(α, env, locationNames) ≡
if class(α) = id ∧ isLocationName(token(α)) ∧ token(α) ∈ locationNames then
locEnv(α) := env

else
if isRulename(token(α)) then

let r = ruleV alue(token(α)) in
let c = CopyTree(body(r)) in

TreeSub(α, c)
parent(c) := parent(α)
SetAmbientIdset(c, env, locationNames)

else
SetAmbientIdset(first(α), env, locationNames)
SetAmbientIdset(next(α), env, locationNames)

The SetAmbientIdset rule behaviour is similar to SetAmbientset but the only identifiers affected by
environment replacement are the set denoted by the third parameter (locationNames).

We now show some properties of this kind of state partitioning with ambient set .

Property 6.1.1. (Nested ambient set ) Two or more nested occurrence of the ambient set
transition rule applied to a given rule R with the same environment expression e are equivalent to
a single ambient set rule. So writing:
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ambient set e in
ambient set e in
R

is equivalent to:

ambient set e in
R

The second property is a generalisation of the first. Both of them derives from the replacement
properties of the assignment.

Property 6.1.2. (Environment replacement) Nested ambient set rules with e1, . . . , en environ-
ment expression is equivalent to a single ambient set with the innermost environment expression
en. Writing

ambient set e1 in
ambient set e2 in
. . .
ambient set en in
R

is equivalent to

ambient set en in
R

6.1.2 Hierarchical ambients

With hierarchical ambients we want to cover and ease one of the most common strategy that
leverages multiple parameter to partition the state of locations. While plain ambient assignment
(see Section 6.1.1) just replace the evaluation environment for identifiers, hierarchical ambients
manages the current environment keeping track of the previously occurred environment expressions.
By simplifying location parameterization the readability of specifications improves. Intuitively
nesting environment expression corresponds to adding one parameter for each environment value
to each function. So for example:

ambient push e1 in
ambient push e2 in
x := 3

should produce the location update (x, 〈e1, e2〉, 3) that is equivalent to the location assignment

x(e1, e2) := 3

The advantage of using ambient instead of simple assignments becomes more interesting
when the number of parameters and locations with multiple parameters increases. The semantic
for ambient push is defined as:
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PushAmbient

L ambient push αe
e in βe

r M → pos := α

L ambient push αv in βe
r M → if workCopy(β) = undef then

let b = CopyTree(β) in
SetAmbientpush(b, αv)
pos := b
parent(b) := pos
workCopy(β) := b

else

JposK := (undef,workCopy(β)u,workCopy(β)v)

L ambient push αe
e for λ1x, . . . , λnx in βe

r M → pos := α

L ambient push αv for λ1x, . . . , λnx in βe
r M → if workCopy(β) = undef then

let b = CopyTree(β) in

SetAmbientIdpush(b, αv, 〈λ1x, . . . , λnx〉)
pos := b
parent(b) := pos
workCopy(β) := b

else

JposK := (undef,workCopy(β)u,workCopy(β)v)

The environment expression α is evaluated and the rule body β is copied creating the workCopy
that will produce the updates of the partitioned location inside the rule. The workingCopy
is annotated by the SetAmbientpush rule and the evaluation position is set to the working copy.
The result of the evaluation is the update set produced by the value of the interpretation of
workingCopy(β). The second form of ambient push annotates only the identifiers specified by
λ1x, . . . , λnx calling the SetAmbientIdpush rule.

SetAmbientId push rule definition

SetAmbientIdpush(α, env) ≡
if class(α) = id ∧ isLocationName(token(α)) then

if locEnv(α) 6= undef then
locEnv(α) := [env]

else
locEnv(α) := locEnv(α) + [env]

else
if isRulename(token(α)) then

let r = ruleV alue(token(α)) in
let c = CopyTree(body(r)) in

TreeSub(α, c)
parent(c) := parent(α)
SetAmbientpush(c, env)

else
SetAmbientpush(first(α), env)
SetAmbientpush(next(α), env)

The PushAmbientpush rule firstly checks if the first parameter α (representing the tree to be
annotated) is a location identifier. If so the locEnv location is initialised with the env value
passed as parameter. We represent the nesting structure of ambient occurrences with a list of
environment values, so the initialisation creates a list with a single element containing the env
parameter. In case an ambient has already been set, the rule updates it adding the env to the
tail of the current locEnv. If the first parameter is not an identifier the rule checks it to be a rule
name. If a rule name is encountered, its body is copied and substituted (TreeSub) unfolding the
macro substitution. The copied tree is annotated as well with the env parameter. Finally, if α is
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neither a location identifier nor a rule name, its children are annotated by SetAmbientpush.

PushAmbientId rule definition

SetAmbientIdpush(α, env, locationNames) ≡
if class(α) = id ∧ isLocationName(token(α)) ∧ token(α) ∈ locationNames then

if locEnv(α) 6= undef then
locEnv(α) := [env]

else
locEnv(α) := locEnv(α) + [env]

else
if isRulename(token(α)) then

let r = ruleV alue(token(α)) in
let c = CopyTree(body(r)) in

TreeSub(α, c)
parent(c) := parent(α)
SetAmbientIdpush(c, env, locationNames)

else
SetAmbientIdpush(first(α), env, locationNames)
SetAmbientIdpush(next(α), env, locationNames)

For the ambient push rule variant that considers a subset of identifiers, SetAmbientIdpush has
the same role of SetAmbientpush rule but it also checks that the location identifiers belongs to the
set of interest passed as third parameter1.

The ambient push rules hold the following property:

Property 6.1.3. (Parallel Push Environment) Parallel occurrences of ambient push with the
same environment expression are equivalent to a single ambient push for such expression and as
body rule the parallel block of the body rules in the original ambient push rules. Writing

ambient push e in
R1

ambient push e in
R2

. . .
ambient push e in

Rn

is equivalent to

ambient push e in
R1

R2

. . .
Rn

6.1.3 Set ambients

The third kind of state partition management we show manages environment as sets. With this
version we address the cases in which nesting ambient rules should produces environments that
are independent on their lexical order. We introduce the transition rule ambient insert . As an
example we can consider a note sharing system in which different users can share information. We
want to describe the set of shared notes among users with the location notes.

1Here we are trying to give a uniform representation of the three ambient definition to make their combination
comfortable as we will describe later
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R(user, shareWith) ≡
ambient insert user in

let n = new(Note) in
FillNote(n)
ambient shareWith in

add n to notes

P ≡
R(A,B)
R(B,A)

In this example we are assuming to have the information about the other user with whom to
share the note n in shareWith. Having two users A and B executing P will result in filling the
notes location with two new notes that are shared between A and B. To access the set of shared
notes it is possible to write something like:

ambient set A in
ambient set B in

forall n ∈ notes do
ShowNote(n)

Where ShowNote is a rule that displays appropriately a note.
Similarly to ambient set and ambient push , evaluating the ambient insert rule requires

first to evaluate the environment expression. After that its value is passed to SetAmbientinsert rule
that annotates a work copy of the ambient insert body and the work copy is evaluated. The re-
sult of the evaluation is the update set and value of workCopy. The semantic for ambient insert
is the following:

Set Ambient

L ambient insert αe
e in βe

r M → pos := α

L ambient insert αv in βe
r M → if workCopy(β) = undef then

let b = CopyTree(β) in
SetAmbientinsert(b,

αv)
pos := b
parent(b) := pos
workCopy(β) := b

else

JposK := (undef,workCopy(β)u,workCopy(β)v)

L ambient insert αe
e for λ1x, . . . , λnx in βe

r M → pos := α

L ambient insert αv for λ1x, . . . , λnx in βe
r M → if workCopy(β) = undef then

let b = CopyTree(β) in

SetAmbientIdinsert(b,
αv, 〈λ1x, . . . , λnx〉)

pos := b
parent(b) := pos
workCopy(β) := b

else

JposK := (undef,workCopy(β)u,workCopy(β)v)

A variant that restricts the ambient annotation for a set of identifier is provided. Similarly to
this variant that does not change the ambient of identifiers not in the list λ1x, . . . , λnx others are
possible. For example a rule that changes the ambient of all the identifiers but the members of the
provided list. Another variant could take into account some property of the identifiers and use it



92 CHAPTER 6. MODULARITY OF STATE

to select the identifiers affected by the ambient rule. Regular expression on the identifiers token
could select all the tokens that match a given regex. We do not show these other variants but if
someone is interested in having them she could follow the three semantics we have given here and
provide a rule for environment annotation in the same way we did for SetAmbientId∗. The definitions
for SetAmbientinsert and SetAmbientIdinsert are the following:

SetAmbient rule definition

SetAmbientinsert(α, env, locationNames) ≡
if class(α) = id ∧ isLocationName(token(α)) ∧ token(α) ∈ locationNames then

if locEnv(α) 6= undef then
locEnv(α) := {env}

else
locEnv(α) := locEnv(α) + [env]

else
if isRulename(token(α)) then

let r = ruleV alue(token(α)) in
let c = CopyTree(body(r)) in

TreeSub(α, c)
parent(c) := parent(α)
SetAmbientIdinsert(c, env, locationNames)

else
SetAmbientIdinsert(first(α), env, locationNames)
SetAmbientIdinsert(next(α), env, locationNames)

PushAmbientId rule definition

SetAmbientIdinsert(α, env, locationNames) ≡
if class(α) = id ∧ isLocationName(token(α)) ∧ token(α) ∈ locationNames then

if locEnv(α) 6= undef then
locEnv(α) := {env}

else
locEnv(α) := locEnv(α) + [env]

else
if isRulename(token(α)) then

let r = ruleV alue(token(α)) in
let c = CopyTree(body(r)) in

TreeSub(α, c)
parent(c) := parent(α)
SetAmbientIdinsert(c, env, locationNames)

else
SetAmbientIdinsert(first(α), env, locationNames)
SetAmbientIdinsert(next(α), env, locationNames)

The peculiar property of the ambient rules on sets is that the order in which environments
appear is irrelevant.

Property 6.1.4. (Nesting Order Independence) Given a set of environment expressions e1, . . . , en,
for each permutation eσ(1), . . . , eσ(n) of them such that σ : {1, . . . , n} → {1, . . . , n}, nesting
ambient insert rules with e1, . . . , en is equivalent to nesting eσ(1), . . . , eσ(n)i.

6.1.4 Combining ambient rules

The three state partition strategies we presented in the previous sections have different properties
and cases of use. It would be beneficial for modelling purpose to have a single rule definition that
embraces all of them. With such rule each ambient strategies could be combined with the others
seamlessly.

The fundamental technical difference between ambient set, push and insert is the represen-
tation of the environment as, respectively, a value, a list or a set. With regard to ambient set
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ambient push e1 in
R1

ambient push e2 in
R2

. . .
ambient push en in
Rn

ambient push eσ(1) in
R1

ambient push eσ(2) in
R2

. . .
ambient push eσ(n) in
Rn

environments, we can uniform their representations by using either lists or sets. In the first case
the SetAmbientset rule, instead of assigning the environment expression value to the location locEnv,
will assign a list with such value as list with a single value. Similarly assigning the singleton for
the environment value uniforms set and insert scopes. In order to uniform the push and insert
ambient rules there are at least two possibilities: managing set environments as ordered sets or
delegate the management of them to the evaluation function for language expressions.

The first approach requires a canonical order for the elements in a set. Since values inside a set
could be heterogeneous, an ordering between two elements may not be easy to find. To provide a
set with a canonical ordering we may define a function

canonicalPosition : Element→ Number

that associate each element to a number. The canonical order will be given by the numbers
ordering after applying to each environment element such function2.

The second approach demands to the specifiers the task to build a correct expression for de-
noting the appropriate environment. In this case the three ambient rules could be condensed to
just ambient set with the appropriate environment expression as parameter. This possibility de
facto takes the biggest advantages of ambient rules apart: easing environments management. For
this reason we choose to adopt the fist approach.

To uniform the behaviour of ambient set, push and insert we choose that locEnv location
contains only list values. With this choice ambient set evaluates the environment expression to
a value v and annotate the rules parsing tree filling locEnv with a list whose single element is the
evaluation of the environment expression ([v]). The ambient push does not requires changes.
The ambient insert replaces its ScopeSetinsert and ScopeSetIdinsert with the push version. We
could have chosen to replace push rules by insert ones, we made this choice because we consider
the push version usage more frequent. With this choice the three scope rule can be used together.

As syntactic sugar we rewrite ambient set as just ambient making it the default ambient
management strategy; ambient insert and ambient push become equivalent, the difference
between them is delegated to the evaluation of identifiers. Although annotating the AST nodes
with environment values is crucial to manage environments, the second half of it is making the
evaluation of identifiers aware of these annotations.

6.2 Identifiers evaluation

The three ambient rules we introduced in the previous sections set the stage for state partition
management adding information about environment inside the locEnv location. In order to eval-
uate properly the identifiers in the correct ambient it is needed to make identifier evaluation rules
aware of such information. This step depends on the implementation of the considered ASM frame-
work. In CoreASM the evaluation of identifiers is part of the kernel interpreter, and consists of
two stages. The first step is to check whether the identifier refers to a local variable (env(x)) or
not. If the identifier is not a local variable reference, the interpreter checks if it is a function names

2One possible implementation of this kind of function is the hashCode of the element



94 CHAPTER 6. MODULARITY OF STATE

and, in case, retrieves its value. The macro HandleUndefinedIdentifier comes into play if the identifier
token is unknown. The formal semantic from [37] is the following:

Identifiers evaluation in CoreASM

L αx M → if env(x) 6= undef then
JposK := (undef, undef, env(x))

then
if isFunctionName(x) then

let l = (x, 〈〉) in
JposK := (undef, undef, getV alue(l))

if undefiniedToken(x) then
HandleUndefinedIdentifier(pos, x, 〈〉)

This definition covers identifiers without parameters, its version for parameterized identifiers is
similar:

Parameterized identifier evaluation in coreASM

L αx(λ1
e
? , . . . , λn

e
? M → if isFunctionName(x) then

choose i ∈ [1, n] with ¬evaluated(λi) do
pos := λi

ifnone
let l = (x, 〈value(λ1), . . . , value(λn)〉) in

JposK := (undef, undef, getV alue(l))
if undefiniedToken(x) then

HandleUndefinedIdentifier(pos, x, 〈λ1, . . . , λn〉)

In order to make these evaluation definitions aware of environment information, we have to
change them. Since we want to limit the amount of changes to CoreASM to not be disruptive to
the framework when implementing ambient capabilities, we define the new evaluation definitions
for identifiers as conservative extensions of the old ones. This way the implementation may be
updated using the decorator pattern [41]. First we uniform the two identifier evaluation definitions
providing a macro EvaluateId that includes the two versions.

EvaluateId(x, args) ≡
if args = 〈〉 ∧ env(x) 6= undef then

JposK := (undef, undef, env(x))
else

if isFunctionName(x) then
let 〈λ1, . . . , λn〉 = args in
choose i ∈ [1, n] with ¬evaluated(λi) do
pos := λi

ifnone
let l = (x, 〈value(λ1), . . . , value(λn)〉) in
JposK := (undef, undef, getV alue(l))

if undefiniedToken(x) then
HandleUndefinedIdentifier(pos, x, 〈λ1, . . . , λn〉)

With this macro we can rewrite the evaluation definitions above as:

Identifiers evaluation in CoreASM

L αx M → EvaluateId(αx, 〈〉)

L αx(λ1
e
? , . . . , λn

e
? M → EvaluateId(αx, 〈λ1, . . . , λn〉)

We define the macro EvaluateIdenv as a conservative extension of EvaluateId and then we will give
the new definition for the evaluation of identifiers applying this macro. EvaluateIdenv checks if the
identifier is annotated with environment information, if it is undefined it means that no information
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about the environment is available and the evaluation is performed by the usual EvaluateId macro.
If the identifier is a function (isFunctionName) the environments are used as prefix parameters
of it. Otherwise the old EvaluateId semantic is executed.

EvaluateId env

EvaluateIdenv(x, args, env) ≡
if env 6= undef ∧ isFunctionName(x) then

let 〈λ1, . . . , λn〉 = args in
choose λ ∈ args with ¬evaluated(λ) do
pos := λ

ifnone
let 〈e1, . . . , ek〉 = env in

let l = (x, 〈e1, . . . , ek, λ1v, . . . , λnv〉) in
JposK := (undef, undef, getV alue(l))

else
EvaluateId(x, args)

This definition is a conservative extension since

EvaluationIdenv(x, args, undef) ≡ EvaluationId(x, args)

. The final definitions for identifiers evaluation becomes:

Ambient aware identifier evaluation

L αx M → EvaluateIdenv(αx, 〈〉, locEnv(pos))

L αx(λ1
e
? , . . . , λn

e
? M → EvaluateIdenv(αx, 〈λ1, . . . , λn〉, locEnv(pos))

Notice that the parameterization for locations in this case depends on the order of environments
in the locEnv function. Since we also want to cover the evaluation of ambient insert created
environments, we need to introduce a supplementary evaluation expression for them. We could
have defined the identifiers evaluation expressions for sets but the ordered version is more frequent
so we use it as default evaluation behaviour.

Environment sets evaluation

L set eval αx M → if locEnv(α) 6= undef then
EvaluateIdenv(αx, 〈〉, canonicalOrder(locEnv(α)))

else
EvaluateId(αx, 〈〉)

L set eval αx(λ1
e
, . . . , λn

e
) M → if locEnv(α) 6= undef then

EvaluateIdenv(αx, 〈λ1, . . . , λn〉, canonicalOrder(locEnv(α)))
else

EvaluateId(αx, 〈λ1, . . . , λn〉)

The function canonicalOrder takes a list of environment values and returns them reordered
by some canonical ordering of the elements (for example using the canonicalPosition function of
Section 6.1.4). This way the computed list will be the same for every permutation of the elements
in the scope list. We leave abstract the definition of such ordering since it is an implementation
detail and can be freely defined conforming the chosen ASM framework code-base.

6.2.1 Explicit evaluation

Sometimes the lexical structure of the ambient rules must be bypassed in order to access an
identifier value in a specific environment. To permit this behaviour we introduce some expressions
to denote the desired evaluation environment for one identifier. We present two forms of explicit
environment evaluation with two variant each for parameterless and parameterized identifiers.
The first form requires an environment expression and an identifier, while the second one ignores
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the environment information evaluating the identifier in the global environment (the undefined
environment).

Explicit environment evaluation

L eval αx in [λ1
e
e , . . . , λn

e
e ] M →

choose i ∈ [1, n] with ¬evaluated(λi) do
pos := λi

ifnone

let l = (x, 〈λ1v, . . . , λnv〉) in
JposK := (undef, undef, getV alue(l))

L eval αx(λi+i
e
e , . . . , λn

e
e ) in [λ1

e
e , . . . , λi

e
e ] M →

choose i ∈ [1, n] with ¬evaluated(λi) do
pos := λi

ifnone

let l = (x, 〈λ1v, . . . , λnv〉) in
JposK := (undef, undef, getV alue(l))

The environment expression is expected to be a list of environment values. The order in which
the elements appear in the expression corresponds to the lexical order of the equivalent nested
structure of ambient rules. The second form of eval expression is useful when the identifier
needs to be parameterized.

The classic global state evaluation is accessible inside ambient nested structure using the
following expression. The global keyword denotes that for the identifier αx all the information
about environment must be discarded independently of lexical position in the specification of if.

Explicit environment evaluation

L eval αx in global M → EvaluateId(x, 〈〉)

L eval αx(λ1
e
e , . . . , λn

e
e ) in global M → EvaluateId(x, 〈λ1, . . . , λn〉)

As its definition states, the eval in global corresponds to the classic identifier evaluation
definition of CoreASM.



Chapter 7

Modularity of Data

In this chapter we discuss data representation in the ASM language and tool support for arbitrary
data. Tarski structures are the foundations of abstract data representation in the ASM method
and a very flexible and powerful way to manage arbitrary complex data. Any kind of data can
be represented as a member of a specific domain: a set that contains elements of the same kind.
The properties of such elements are defined by functions. For example if we want to represent all
the possible cars one can define the universe of cars (the set containing all the possible cars) and
then define the functions that describe specific properties of the single elements. Thus the function
colour : Cars → Colours associate an element in the Cars set to an element in Colours
representing its colour. The other properties are defined similarly. Sets and relations are a general
enough mechanism that describes any kind of complex data.

universe Car
universe Colour

function colour : Car → Colour
function name : Car → String
function manufacturer : Car →Manufacturer
. . .
colour(c) := RED
manufacturer(c) := V OLKSV AGEN
name(c) := “Golf”

However different approaches are possible. For example in object oriented programming, lan-
guages define data in terms of classes. A class describes the structure of every possible object in
that class in terms of data and operations. Keeping the car example, in a language supporting
object orientation the natural way to represent a car would be:

class Car{
colour : Colour
manufacturer : Manufacturer
name : String
}

. . .

c := new Car()
c.name := “Golf”
c.colour := RED
c.manufacturer := V OLKSV AGEN
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Another possibility is to represent data as algebraic data types. Algebraic data types are com-
monly available in functional programming languages like ML[70], Haskell[59][87], or F#[85][86].
The most common classes of algebraic data types are product and sum types. A product type, often
called record, is an ordered tuple of types T = A1 × A2 × · · · × An that represents the Cartesian
product of the composing types. A sum type, also called tagged union, is a data structure that
allows its values to belong to a set of (fixed) different types. In the following example, Date is
a product type of three numbers, and a List of numbers is defined by two types: Empty for the
empty list and Cons for the number at head position and the tail list.

Product and Sum types

Date = Number ×Number ×Number //Day, month and year

List = Empty | Cons of Number, List

Representing a car with product types would result in a tuple like:

record Car = String ×Manufacturer × Colour
. . .
c := 〈“Golf”, V OLKSV AGEN,RED〉

Instead, the representation as sum types may identify the possible classes of cars:

sumtype Car = Compact of String ×Manufacturer × Colour
| Suv of String ×Manufacturer × Colour

c := Compact(“Golf”, V OLKSV AGEN,RED)

All these data representation methods have the same expressive power but depending on the
context, some of them may be more suitable to describe data. Algebraic data types have been found
useful in many cases, for example in [40] they are used with Event-B to model system components
on abstract level with the result of simplifying the automated proofs and reduce the amount of
system details during the early phase of the modelling process. In [60][35] the ASM method has
been adopted to describe a formal specification of a file system for flash memory. Such specification
heavily leverages freely generated algebraic data types and the authors have developed an ad hoc
adaptation of algebraic data types as a plugin for CoreASM. Nevertheless, in [60], the authors
write that “direct support for free data types in CoreASM would be preferable – which we have
not addressed as it would require deep modifications, for example in the parser”.

The aim of this chapter is to provide a specification of algebraic data types for the ASM frame-
work that integrates with the CoreASM environment. The context in which algebraic data types
are usually found is strongly typed languages, in which their usefulness relates to the capability of
compilers to statically check types and assure safe usage of algebraic data values. In spite of that,
the lack of strict types in the ASM method is very useful to experiment and prototype specifica-
tions in order to better understand the problem domain. In this spirit, CoreASM implements a
loosely typed language. Strict types come in handy when a specification is executed and during
model verification. For this reason we are going to give first a type-less definition of algebraic data
types that we will enrich afterwards with type definition and checks.

The following sections describe type-less algebraic data types (ADT ), their typed version and
a rule to decompose and manage ADTs. Some examples of ADT usage will be given throughout
the chapter.
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7.1 Algebraic data type representation

The first goal we want to achieve with algebraic data type representation is to give the specifier
as little hurdle as possible in terms of notation and concepts to be known in order to begin using
ADTs. At the same time we want to represent both product and sum type values. Moreover the
representation should fit as close as possible the ASM framework. In order to represent product
values we need ordered tuples of values. Sum type values are described by a tag and an element
with a given signature that depends on the tag. In this scenario lists are the natural choice: tuples
and values with a given signature can be easily represented by list values while a tag is a constant
and constants are part of Tarski structures. In addition, the list concept and its representation is
well known and does not require further explanation.

We establish the convention that product and sum type values are defined by lists. The sum
type values are lists whose first value is a constant representing the tag. In Section 7.3 we introduce
a pattern matching rule that is useful to manage lists of lists.

An example of product type value can be the representation of a car identified by its name,
model and year of production. The values are tuple with signature String × String × Number.
To assign two car product type to two locations it is possible to write:

Car product values

myCar := [“Golf”, “V olkswagen”, 2013]

ferrari := [“FF”, “Ferrari”, 2011]

Another example is the description of a stack of numbers to be either Empty or Top of a
number and the rest of the stack.

Stack tagged values

emptyStack := [Empty]

someStack := [Top, 3, [Empty]]

anotherStack := [Top, 4, someStack]

Notice that anotherStack location is assigned to a sum type value resulting of the composition
with another sum type value. In terms of equality, [Top, 4, [Top, 3, [Empty]]] is considered equal
to [Top, 4, someStack]. Product and sum values can be combined naturally. For example we can
define the concept of point as a product type in Number×Number and a circle as a tagged value
composed by a Point representing its centre and a Number for the diameter.

Product and Sum type composition

myCircle := [Circle, [3, 4], 18]

This approach does not introduce new notation, enables the use of ADTs reusing two well
known concepts (lists and constants) and adheres to the principle of fast prototyping. In the
first phase of the specification process the problem domain is not fully understood so a lot is
continuously changing, in particular data definitions. A strict type system would require, for each
change in an ADT value, to modify its definition and to align each occurrence of its values. This
process is useful when the problem is fully understood and it is needed to check the uniformity of
the specification, but strict types are a hindrance to the prototyping phase.

7.2 Data definition and type checking

In this section we introduce three expressions: two for the definition of product and sum types and
one to type check them at runtime. The ASM framework is inherently typeless since it is based
on Tarski structures that are defined by constants and predicates on them, but some form of type
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definition and type checking has been implemented for example in CoreASM [37]. To talk about
types we will follow the CoreASM approach since we want to be as conservative as possible with
regards to the established ASM framework. In particular, we define a type checking expression that
performs checks during the execution of the specification. In the CoreASM typeless language types
are denoted by elements in Background set. A background is a special universe with a static
membership function. Each background contains all the elements it represents. The declaration of
an ADT as product and sum types follows the syntax:

Data type declaration syntax

product 〈NewType〉 is 〈Bkg〉[, 〈Bkg〉]∗

data 〈NewType〉 is 〈TagName〉 of 〈Bkg〉[, 〈Bkg〉]∗ [ | 〈TagName〉 of 〈Bkg〉[, 〈Bkg〉]∗]∗

The first form declares a product type named 〈NewType〉 as a product of the types denoted by
the associated list of backgrounds. The second form declares a sum type 〈NewType〉 composition
of a set of tagged items 〈TagName〉 of 〈Bkg〉, . . . , 〈Bkg〉. In order to specify the semantic of
ADTs we introduce the backgrounds ProductBkg, SumBkg and TaggedItemBkg and some
functions on elements in these backgrounds.

7.2.1 Product types

A product type is an element of ProductBkg. For each product element, the functions nameprod
and signatureprod contains the name of the element and its signature.

nameprod : ProductBkg→ Name

signatureprod : ProductBkg→ List(Name)

The semantic of declaring a new product type is to create a new element e ∈ ProductBkg
and to define the two related function.

Product type definition

L product αx is λ1x, . . . , λnx M →
if alreadyDefined(αx) then

Error(“Already defined identifier”)
else

choose λ ∈ {λ1, . . . , λn} with ¬IsBkg(λx) do
Error(“Wrong type declaration”)

ifnone
let e = new(ProductBkg) in
nameprod(e) := αx

signatureprod(e) := [λ1x, . . . , λnx]
JposK := (undef, undef, e)

Where isBkg(b) = ∃e ∈ Element ∧ bkg(e) = b.
As syntactic sugar, it would be possible to provide a variant of data that allow the specification

of named accessors for each element in the record. The semantic would introduce function names
whose definitions are the projections on the correspondent record element1.

7.2.2 Sum types

Sum types are elements in SumTypeBkg. Each sum type defines a function namesumtype that
holds the type name and dataItemssumtype that holds the list of tagged items composing the type.

1There would be name clashing problems to address or some convention on names to avoid such issue.
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A tagged item is an element in TaggedItemBkg with the functions nameti that holds the name
of the tagged item and signatureti containing the signature of the tagged item.

nameti : TaggedItemBkg→ Name

signatureti : TaggedItemBkg→ List(Name)

namest : SumTypeBkg→ Name

dataItemst : TaggedItemBkg→ List(Name)

The semantic of a tagged item is the evaluation of the following expression:

Data Items

L αx of λ1x, . . . , λnx M → if pattern(parent(pos)) = Data then
let e = new(TaggedItemBkg) in
name(e) := αx

signature(e) := {λ1x, . . . , λnx}
JposK := (undef, undef, e)

else
Error(“Can’t use data item declaration outside data expression”)

Notice that a tagged item expression is allowed only inside a Sum type declaration (a Data

expression) Sum type semantic is so specified by:

Sum type declaration

L data αx is λ1
e
e , . . . , λn

e
e M → if alreadyDefined(αx) then

Error(“Already defined identifier”)
else

choose λ ∈ {λ1, . . . , λn} with ¬evaluated(λ) do
pos := λ

ifnone

if ∃λv ∈ {λ1v, . . . , λnv}.¬isTagItem(λv) then
Error(“Invalid tagged item”)

else
let e = new(SumTypeBkg) in

dataItems(e) := [λ1v, . . . , λnv]
name(e) := αx

forall i ∈ {λ1v, . . . , λnv} do
bkg(i) := αx

JposK := (undef, undef, e)

Where bkg is the function whose value is the background of the parameter element and
isTagItem(v) = v ∈TaggedItemBkg .

7.2.3 Type checking

In order to check the type of a value before using it, we introduce the as expression. This
expression follows the syntax 〈V alue〉 as 〈TypeName〉. The evaluation of as expressions results
in the checked value when the type used for checking is compatible with the actual value type,
otherwise an error is raised.

As expression

L α
e
e as βx M → pos := α

L αv as βx M → JposK := (undef, undef, αv)

CheckType(αv, βx)
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To check the type we rely on the rule CheckType that raises an error if the value is incompatible
with the parameter for the type.

Checking type

CheckType(v, x) ≡
if (isADT (x) ∧ bkg(v) 6= List) ∨

(¬isADT (x) ∧ bkg(v) 6v x) ∨
(entrySet(x) = ∅) ∨
(dataItemSet(x) = ∅) then

Error(“Incompatible type”)
else

choose e ∈ entrySet(x) do
if e ∈ ProductBkg then

CheckSignature(v, signature(e))
else

choose i ∈ dataItemSet(x) do
CheckSignature(tail(v), signature(i))

where

entrySet(x) = {e ∈ ProductBkg ∪ SumTypeBkg|name(e) = x}
dataItemsSet(x) = {i ∈ dataItem(e)|e ∈ SumTypeBkg, name(e) = x, name(i) = head(v)}

CheckSignature(v, s) ≡
if (|v| 6= |s|)∨

(∃〈vi, xi〉 : v = [v1, . . . , vn] ∧ x = [x1, . . . , xn] ∧ bkg(vi) 6= xi) then
Error(“Incompatible type”)

The first step for checking types is to test if the type is an ADT with the function isAdt :
Name→ Boolean that is defined as:

isAdt(x) = ∃e ∈ ProductBkg ∪ SumTypeBkg : name(e) = x

The function name is defined as:

name(x) =

{
nameprod if x ∈ ProductBkg

namest if x ∈ SumTypeBkg

If the type is an ADT, we proceed to check the signature of the ADT against the values of the
list representing it. In this case there are two kind of failure: the signature and the list length
differs2, or there is some value whose background does not correspond to the signature. If the type
is not an ADT, we just test if the background is the same or is compatible with the type. The
definition of v is

a v b = equals(a, b) ∨ equals(Element, b)

This choice allows ADT definitions to have a limited form of generic type using Element as
background and still successfully type check. For example we can define a pair as a Element×Element
and check it with success against different backgrounds, like Number× String, instead of defin-
ing pairs for each possible types. If all these condition of failure are not satisfied, the value is
compatible with the denoted type.

2In this case we have chosen to check for length equality. Another choice would be to accept lists longer than
the signature and check only the first list values.
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Pair example

data Pair is Element,Element
. . .
l := [3, 4] as Pair
p := [”hello”, 34] as Pair

7.3 Manipulating algebraic data types

The management of algebraic data values would became quickly overwhelming when the data
grows in complexity. Manipulating lists of lists could be very tedious. Without a mechanism
that deconstructs ADTs, the advantages of using them during the specification would be nullified.
Most of the time, programming languages that support ADTs come with the so called pattern
matching. Pattern matching provides a form of elimination that ease the management of algebraic
data values.

A comprehensive support for ADTs in the ASM framework should not ignore pattern matching
support. So we have decided to add a new transition rule for pattern matching.

The syntax of pattern matching is:

Match rule syntax

match 〈expr〉 with {
| 〈pattern〉 : 〈rule〉
| 〈pattern〉 : 〈rule〉
. . .

}

Its intuitive meaning is to check the expression against each pattern and if some pattern
“matches” the expression value, the corresponding rule is enabled.

Before delving into the details of the pattern matching rule, we present some examples to show
its intended meaning and usage.

A simple example of ADT that takes advantage of pattern matching is the representation of a
stack structure with some operation on it to insert (push) or remove (pop) a value, or to return
the value on its top (peek).

We define a stack as a sum type with two possible tagged items: Empty for the empty stack,
and Top of some Element and the rest of the stack. So we are defining a stack that can contain
all kind of values.

Stack definition

data Stack is Empty | Top of Element, Stack

The operations on stacks are specified by rules that take a stack value as parameter. These
operations leverages the match rule to check if the stack is empty or not and perform the corre-
sponding operation.
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Operations on Stacks

Push(stack, v) ≡
match stack with {
| x : result := [Top, v, x]
}

Peek(stack) ≡
match stack with {
| [Empty] : result := undef
| [Top, x, ] : result := x
}

Pop(stack) ≡
match stack with {
| [Empty] : result := undef
| [Top, x, y] : stack := y

result := x

One interesting quality of pattern matching is the ability to reason on data by cases. The
stack operations are tackled decomposing the stack in its possible shapes and giving for each of
them the rule definition. Pattern matching can be seen as a generalised select-case rule, enriched
with structural match and variable bindings. Note that, in this case, the identifiers x, y inside the
patterns behave as placeholders for the inner values of the matching expression. The pattern
means that every value matches this position and no binding to such value is needed to perform
the operation.

To complete the example we show a simple usage of the stack ADT. We put a stack value
inside the myStack location and execute sequentially a Pop and a print of the first element in the
modified stack (the number 1).

Stack usage

seqblock
myStack := [Top, 3, [Top, 1, [Empty]]]
Pop(myStack)
print “The top value in the stack is: ” + Peek(myStack)

endseqblock

Pattern matching can be used not only on ADT values but also on the other values such as
numbers, and sets.

Another example that illustrates how abstract data types help the specification process is
the definition of an algebraic expressions interpreter. We take into account only expression with
additions and multiplications. An expression like [Add, 3, 4] represents the addition 3+4, similarly
[Mul, 3, 4] represents 3∗4. The rule Evaluate takes a numeric expression and computes the resulting
value.

Expression evaluation

Evaluate(expr) ≡
match expr with {

[Const, n] : result ← n
[Add, x, y] : result ← Evaluate(x) + Evaluate(y)
[Mul, x, y] : result ← Evaluate(x) ∗ Evaluate(y)
}

Computing the expression 2 ∗ 3 + 1 can be specified directly as:

Expression evaluator usage

Evaluate([Add, [Mul, 2, 3], 1])
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One final example shows how to handle polymorphic data with abstract data types. In this
example we want to specify a rule that computes the area of geometric shapes. We restrict the
choice of possible shapes to rectangles, circles, and triangles. A possible shape definition could be:

Shape definition

data Shape is Rect of Element, Element
| Circle of Element, Element
| Triangle of Element, Element

To compute the area we define a rule ComputeArea that takes a shape as parameter and returns
the computed area.

Shape Example

ComputeArea(shape) ≡
match shape with
| [Rect, x, y] : result := x ∗ y
| [Circle, r] : result := r ∗ r ∗ PI
| [Triangle, x, h] : result := x ∗ h/2

7.3.1 Pattern matching

A pattern matching rule is made of three parts: matching expression, patterns, rules. Every usual
ASM expression (e.g. functions) can be placed as matching expression in the rule. Rule enabled
by patterns can be every transition rule. The two most simple examples of pattern matching are
the check for equality, and the identifier binding.

Simple patterns example

match v with {
| 3 : R1

| x : R2

}

In this example the location v is matched against the constant value 3 and an identifier x.
Assuming that v has value 3, both patterns matches and the two rules R1, R2 are enabled. Then
the rule R2 is executed in an environment in which the identifier x is bound to the value of v.

These are simple kind of patterns, but for each match expression a great variety of them is con-
ceivable. In order to provide maximal freedom on the possible patterns to be matched, we assume
that each element domain defines its valid patterns for the expressions in it. Performing pattern
matching requires knowing if the expression matches the pattern and which, if any, identifiers to
bound before executing the associated rule. The matches function tests the compatibility of the
matching expression with a pattern expression while the bindings function gathers the bindings
between pattern identifiers and matched values.

matches : Node→ Boolean

bindings : Node→ Set(Name × Element)

These functions are defined as:

matches(n, p) = matchesdomain(n)(n, p)

bindings(n, p) = bindings(n, p)domain(n)(n, p)
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Where domain is responsible for the definition of matching conditions and bindings rules for
the corresponding value domain3. Now we can give the semantic for the pattern matching rule as:

M = {i|i ∈ {1, . . . , n} ∧matches(t, pi)}
∀i ∈M.bindings(t, pi) = {(x1, v1), . . . , (xh, vh)}, JRi v1x1

. . . vhxh KSζ = Ui

Jmatch t with {p1 : R1| . . . |pn : Rn}KSζ =
⋃
i∈M Ui

The related semantic for the CoreASM interpreter is the following:

L match αe
e with |λ1

e
? → ρ1

e
r | . . . |λn

e
? → λn

e
r M →

if ¬busy(pos) then
choose i ∈ {1, . . . , n} with ¬matched(λi) do

if matches(α, λi) then
let b = bindings(α, λi) in

if ∃〈x, v1〉, 〈x, v2〉 ∈ b ∧ v1 6= v2 then
Error(“Multiple binding”)

else
busy(pos) := true
Bind(b)
toUnbind(pos) := b
pos := ρi

ifnone
let matchRules = {ρ ∈ ρ1, . . . , ρn|evaluated(ρ)} in

JposK := (undef,
⋃
ρ∈matchRules

ρu, undef)

else
Unbind(toUnbind(pos))
busy(pos) := false

Note that the semantic allows the same identifier to occur more than one time inside a pattern
but the binding is considered consistent only if all the binding values are equal. The rule Bind

and Unbind are responsible, respectively, for adding and removing the matching identifiers to their
matched values in the environment. They are defined as:

Bind and Unbind rules

Bind(bindSet) ≡
forall 〈x, v〉 ∈ bindSet do

AddEnv(x, v)

Unbind(bindSet) ≡
forall 〈x, v〉 ∈ bindSet do

RemoveEnv(x)

The macros AddEnv and RemoveEnv are part of the CoreASM semantic, they push and remove
the identifier passed as parameter to the local environment.

As syntactic sugar we introduce the when clause on patterns.

When clause on patterns

| 〈pattern〉when 〈exprwhen〉 : 〈rule〉

This form is equivalent to

3In the CoreASM execution environment for the matching rules, the domain corresponds to the plugin that
parses the expression
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| 〈pattern〉 : if 〈exprwhen〉 then 〈rule〉

7.3.2 Matches and bindings functions examples

In this section we want to give some definition examples for the functions matches, and bindings
of Section 7.3.1. We assume that every background (that identifies a type in CoreASM) may define
its own version of matches and bindings in order to provide pattern matching expressions. For
this reason we do not show the definition of such functions for every possible background but only
for a relevant subset of common backgrounds. We consider patterns on values, identifiers, lists,
strings, and sets. Patterns on identifiers and values represent the most basic form of matching.
Patterns for lists enable the full support of ADTs, pattern matching on strings exemplifies how to
use regular expressions[3] on strings, sets are another non trivial expression domain.

In the following definitions we will use the denotations:

• e for expressions,

• v for values,

• x for identifiers,

• l for lists,

• p for a generic pattern

Values and identifiers

For generic values and identifiers the matching process is defined by the following function:

matchesbasic(e, ê) =

{
true if ê = x

value(e) = value(ê) otherwise

matchesbasic(e, ê) =

{
{〈x, value(e)〉 if ê = x

∅ otherwise

The basic pattern for values is an element of the value domain: if the value to be matched is
equal to the pattern value, the two items match and their binding set is empty. A pattern for
an identifier is always a match resulting in the binding composed by such identifier and the value
being matched. With this function definitions we can write match rules such as

match x with
| 3→ R1

| [7]→ R2

| North→ R3

| y → R4

| (y)→ R5

In this example we match the location x against a number to check is its value is 3 or a list with
7 as single element ([7]). These two examples shows that is possible to match every usual value
domain. Assuming that North is a constant of an enumeration, the match checks if the value
of x is such constant. The last two rows shows how to control the bindings during the matching
process. The first expression binds the value of x to the identifier y while the second evaluates
the value of y and matches it against the value of x just like the first to pattern expression of this
example.
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Lists

For lists we introduce some patterns on their structure. The empty list pattern ([]) matches empty
lists, the head and tail pattern (v : l, x : l) that matches the head of a list against a value or an
identifier and recursively its tail.

matcheslists([], []) ≡ true
matcheslists(e : l, v : l′) ≡ matches(e, v) ∧matcheslist(l, l′)
matcheslists(e : l, x : l′) ≡ matcheslist(l, l′)
matcheslists([], l) ≡ false
matcheslists(l, []) ≡ false

bindingslists([], []) ≡ ∅
bindingslists(e : l, v : l′) ≡ bindingslist(l, l′)
bindingslists(e : l, x : l′) ≡ {〈x, value(e)〉} ∪ bindingslist(l, l′)
bindingslists([], l) ≡ ∅
bindingslists(l, []) ≡ ∅

With matching these pattern expression for list an example of pattern matching on list would
be:

match [1, 2, 3, 4] with
| []→ R1

| 1 : x→ R2

| x : y → R3

These patterns matches the list against the empty list, a list whose head contains 1 and whose
tail is bound to the variable x, or any list with x bound to the head and y to the tail.

Sets

There are different possible patterns for sets depending on whether we are interested in the identity
of their elements or not. We define the empty and singleton patterns. We do not give here a general
pattern matching from a set to a set pattern, for example {1, 2, 3} against {x, 2, x′}, since the result
is not uniquely identifiable: x, x′ could be both bounded to 1 and 3. One way to give such matching
semantic would be to give a random bindings set as result, but here we are more interested on
showing how to build matches and bindings functions and not how to define the best set patterns.
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matchessets({}, {}) ≡ true
matchessets({e}, {v}) ≡ matches(e, v)

matchessets({e}, {x}) ≡ true
matchessets(e, p) ≡ false

bindingssets({}, {}) ≡ ∅
bindingssets({e}, {v}) ≡ ∅
bindingssets({e}, {x}) ≡ {〈x, value(e)〉}
bindingssets(e, p) ≡ ∅

These pattern definition allows the match rule to manage sets matching in the following form:

match {1, 2, 3, 4} with
| {} → R1

| {3} → R2

| {3, 1, 4, 2} → R3

| (x)→ R4

| x→ R5

The first pattern matches the empty set, while the second checks if the matching set is the
singleton {3}. The third match equality and correspond to the basic pattern expressions. Also the
last two expressions are example of basic pattern expression applied to sets. We have added them
here to show how every patter definition contributes to the expressiveness of the match rule. In
this case the two last expressions checks the variable value to be equal to the matching set and the
second binds x to the set.

Strings

For strings we sketch a subset of regular expression patterns that can be used for string matching.
We do not give a comprehensive definition of every regular expression operator since they are well
known and here our aim is to show how to add meaningful pattern expressions on common domain
elements such as strings. We denote a single characters by c and sequences of character by s. The
pattern \c denotes that the character c must be escaped for example to match a character that
also denotes an operator.
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matchesstrings(e, “s”) ≡ matchexact(e, s)
matchesstrings(e, x) ≡ true
matchesstrings(e, “[s]”) ≡ matchregex(e, [s])

matchesstrings(e, “[ ŝ]”) ≡ ¬matchregex(e, [s])

matchesstrings(e, “s ∗ ”) ≡ ¬matchregex(e, s∗)
matchesstrings(e, e1|e2) ≡ matchregex(e, e1) ∨matchesregex(e, e2)

matchesstrings(e, e1e2) ≡ matchregex(e, e1) ∧matchesregex(e, e2)

matchesstrings(e, “[c1 − c2]”) ≡ matchregex(e, [c1 − c2])

matchesstrings(e, “\c”) ≡ matchregex(e, “\c”)

. . .

bindingsstrings(e, “s”) ≡ ∅
bindingsstrings(e, x) ≡ {〈x, value(e)〉}
bindingsstrings(e, “[s]”) ≡ ∅
bindingsstrings(e, “[ ŝ]”) ≡ ∅
bindingsstrings(e, “s ∗ ”) ≡ ∅
bindingsstrings(e, e1|e2) ≡ bindingsstring(e, e1) ∪ bindingsstring(e, e2)

bindingsstrings(e, e1e2) ≡ bindingsstring(e, e1) ∪ bindingsstring(e, e2)

bindingsstrings(e, “[c1 − c2]”) ≡ ∅
matchesstrings(e, “\c”) ≡ matchregex(e, “\c”)

. . .

With regular expression patterns for strings we can now match expression like:

match s with
| “\b(?:(?:25[0-5]—2[0-4][0-9]—[01]?[0-9][0-9]?)\.
\b(?:(?:25[0-5]—2[0-4][0-9]—[01]?[0-9][0-9]?)\.)
\b(?:(?:25[0-5]—2[0-4][0-9]—[01]?[0-9][0-9]?)\b)”→ R1

| “asm”→ R2

| “\b[A-Z0-9. %+-]+@[A-Z0-9.-]+ \.[A-Z]{2,}\b”→ R3

This match rule matches the string s against three regular expressions. The first pattern
matches only strings that are IP addresses. The second pattern is a simple exact match check.
The third checks if the string is a mail address. For a complete regular expressions matching, these
pattern should also provide a good binding definition for the matches of the regex.
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Use Case

In this chapter we exemplify the usage of our modularity features for the creation of an ASM model.
We model as case study the European FP71 project SeaClouds, a platform for the management of
cloud applications.

8.1 The SeaClouds project

The SeaClouds project aims to develop an open source platform featuring seamless adaptive multi-
cloud management of service-based applications. The platform consists of an application manage-
ment system over IaaS (Infrastructure as a Service) and PaaS (Platform as a Service) clouds.

SeaClouds permits cloud applications developers to design, deploy, manage and configure com-
plex applications across multiple and heterogeneous clouds

The specific objectives of SeaClouds are:

• Orchestration and adaptation of services distributed over different cloud providers. SeaClouds
aims at providing the assisted design, synthesis, and simulation of service orchestrations on
different cloud providers, by distributing modules of cloud-based applications over multiple
heterogeneous clouds.

• Unified application management of services distributed over different clouds. SeaClouds
is able to deploy, manage, scale and monitor services over technologically diverse cloud
providers. Such operations will be performed by taking into account application require-
ments.

• Monitoring and run-time reconfiguration operations of services distributed over multiple
heterogeneous cloud providers. Monitoring is in charge of detecting the possible need of
redistributing services across cloud providers. Dynamic reconfiguration let orchestrations
evolve to realise all the required changes. Reconfiguration ranges from dynamically replacing
malfunctioning services to migrating them to different cloud providers

In order to achieve such objectives, the platform has been decomposed into modules. The
overview of the SeaClouds architecture is shown in Figure 8.1. Six macro components are respon-
sible for the accomplishment of all the platform functionalities. We now describe the domain and
responsibilities of each of them.

Planner : It is the component in charge of analysing the user requirements, both technical and
quality of service, in order to propose the application developer with a set of deployment
plans. The planning process consist of the cooperation of two sub-components: the match-
maker and the optimizer. The matchmaker is in charge of filtering cloud offerings (that

1Framework Programme for Research and Technological Development
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Figure 8.1: SeaClouds architecture

describe cloud provider platform capabilities) based on the user technical requirements. The
optimizer takes as input the output of the matchmaker and, based on quality of service
requirements, approximates the best deployment plan.

Discoverer : This component is in charge of automatically or semi-automatically look for avail-
able cloud platforms and their characteristics. A set of crawlers searches the web for these
information and produce as output the cloud offerings for IaaS and PaaS providers.

Deployer : Starting from a deployment plan, the deployer is in charge of actually deploying the
user application on the platform discovered and chosen during the planning phase.

SLA Service : The SLA service provides the capability to add information about Service Level
Agreement and to monitor the conformance to SLA rules.

Monitor : This component is responsible for the observation of deployed applications. Based
on some monitoring rule, metrics like computational load, disk usage and many other are
continuously monitored to trigger, when needed, actions to repair or to signal anomalies of
the running application. For example scaling policies may be triggered if the application
requires better computational power.

Dashboard : The dashboard implements the orchestration of the other components providing
the SeaClouds platform functionalities workflows. Moreover it implements the graphical user
interface (GUI) to access the platform.

The main workflow of a typical SeaClouds use case starts from the specification of the user
requirements for a cloud application that produces an Abstract Application Model (AAM). This
model is the input of the planner component that starts the matchmaking process cooperating
with the discoverer to get the available cloud offerings. The matchmaker produces the set of
suitable offerings for each module of the application and the optimizer generates accordingly a set
of abstract deployment plans (ADPs). The ADPs must be enriched with specific information (for
example the cloud provider credentials) creating the final deployment application model (DAM).
The DAM is the input to the deployer that eventually deploys the application.
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8.2 Modelling SeaClouds with modular ASMs

In this section we show how to model a significant portion of the SeaClouds platform. We do not
give a full model of all the components since they would not add more insight about the modularity
constructs we introduced. The aim of this model is to provide a usage example of the new rules for
a real system. Each component of the SeaClouds platform, is implemented as a web service and
they communicate through REST APIs. In the model we are going to present we abstract from
the communication details of REST calls by request and accept statements mechanism. We do not
give a fully detailed data perspective of the REST calls parameters since they can be detailed as
data refinements.

We focus on the definition of the planning phase providing the definition of a module for the
Planner. It will use its sub-component (the matchmaker and the optimizer) that become also other
ASM modules orchestrated by the planner module.

Planner module

module Planner is
entry plan(aam) into adps
entry replan(dam, failureInfo) into adp
entry generateDam(adp) into dam
do

ambient “planner” in
do stepwise all of

do once
mm := fetch from “matchmaker url”
optimizer := fetch from “optimizer url”

do all of
accept plan(aam) do

do in sequence
request mm to match(aam)into validOfferings
request optimizer to optimize(aam, validOfferings)into adps

doend

accept replan(dam, failureInfo) do
do in sequence

request mm to matchmake(aam)into validOfferings
match failureInfo with
| [failingOfferings]→

validOfferings := validOfferings \ failingOfferings
request optimizer to optimize(aam, validOfferings)into adp

doend

accept generateDam(adp) do
dam← GenerateDam(adp)

doend
doend

The Planner module exposes three operations. The plan operation is in charge of finding a set
of possible deployment plan for the user requirement described by the aam. The replan operation
perform a new planning for an already deployed application that needs to be redeployed due to
some failure. In order to provide the correct input for the Deployer, a DAM must be generated
through the generateDam operation.

The module state is restricted to the “planner” environment and the two sub-components
needed to perform the exposed operation are imported from URLs that we assume to be known.
After the initialisation step, the planner is ready to answer to every operation request.

The first module imported from the Planner is the Matchmaker that exposes the matching
service.
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Mathmaker module

module Matchmaker is
entry match(aam)into suitableOfferings
do

ambient “matchmaker” in
do stepwise all of

do once
discoverer := fetch from “discoverer url”

doend

accept match(aam) do
do in sequence all of
request discoverer to getOfferingsinto offerings
match aam with
| [AAM, techRequirements,QoSRequirements]→

suitableOfferings := filter(techRequirements, offerings)
| → RaiseError(“InvalidAAM”)

doend
doend

Similarly to the Planner, the module state is partitioned with the ambient rule and the initial-
isation imports the Discoverer module that will be used to fetch the available cloud offerings to
be compared with the user technical requirements. Notice that the AAM is described by a sum
type whose first and second parameter contain technical and quality of service requirements. The
function filter removes the cloud offerings that do not conforms to the requirements from the
available set.

Discoverer module

module Discoverer is
entry getOfferings into offerings
entry crawlOfferings into offerings
entry getStatistics into stat
entry deleteOffering(offer)
do

ambient “discoverer” in
accept getOfferings do
offerings← GetOfferingsFromRepository

accept crawlOfferings do
do in sequence all of
forall c ∈ Crawlers do

ambient c in
request c to crawlinto crawledOfferings

forall c ∈ Crawlers do
add crawledOfferings(c) to offerings

UpdateStatistics

doend

accept getStatistics do
stat← GetStats

accept deleteOffering(offer) do
remove offer from offerings

The Discoverer module specifies the component that crawls for cloud offerings, that are stored
into the crawledOferings location (parameterized accordingly to the crawler that have found
them). Operations for getting statistics, and remove offerings are also provided.
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the other modules can be defined similarly to the Planner component. We do not provide the
modules for them since our contribution to the project was limited to the Planner and we do not
have enough requirements information to generate accurate module definitions.

Following the SeaClouds platform requirements, we give the definition of the whole SeaClouds
platform as a bigger module that exposes a unified API to access its functionalities. The module
import all the sub-components and can be considered the global service that orchestrate all the
others.

SeaCloudsPlatform

module SeaCloudsP latform is
entry generateP lans(requirements)into plans
entry deployP lan(adp, credentials)into app
entry getMonitoredInfo(app)into monitorInfo
entry repairApplication(app)into plans
do
ambient “sc” in

do forever in sequence
do once
planner := fetch from “planner location”
deployer := fetch from “deployer location”
monitor := fetch from “monitor location”
sla := fetch from “sla location”
applications := {}

accept generateP lans(requirements) do
do in sequence
aam := encodeAAM(requirements)
request planner to plan(aam)into plans

doend

accept deployP lan(adp, credentials) do
do in sequence

request planner to generateDam(adp)into dam
finalDam := insertCredentials(dam, credentials)
request deployer to deploy(finalDam)into app
add app to applications

accept getMonitoredInfo(app) do
request monitor to getMonitoredV alues(app)into monitorInfo

accept repairApplication(app) do
match app with
| [dam, [monitorderV alues, failureInfo]]→

request planner to replan(dam, failureInfo)into plans
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Chapter 9

Conclusions

This thesis belongs to the formal methods field in software engineering. In particular, we have
studied the Abstract State Machine language from the point of view of modularity features. The
goal of this thesis was to improve the management of large software-intensive systems specification.
We have analysed the history of the ASM method in order to understand how it has been applied
and in which ways people actually write ASM specifications to tackle systems complexity.

We have found that there are at least four aspects in ASM models that are related to specifi-
cations modularization and that, if improved, enhance readability and organisation of models. We
decided to improve on such modularity features to advance toward better management of ASM
models. The modularity features we have studied are: control flow modularization, service oriented
sub-components, state partitioning management, and uniform representation and manipulation of
arbitrary data.

We have approached such modularity features at language level with the intent of providing
mechanisms:

• to make large specification more manageable,

• to avoid modification of the ASM foundational semantic,

• to remain compliant with the actual tool environment (especially CoreASM).

With these objectives in mind we have proposed a set of constructs that enables modularity
features into the ASM language and integrates with the CoreASM framework. This integration is
achieved by the definition of the semantic of our construct as extensions of the CoreASM inter-
preter.

We addressed computation modularity defining the do-block construct that provides a uni-
form description of the control flow of ASM machines. This construct covers all the control flow
management constructs that in time have appeared to address specific cases. The do-block con-
struct manages the execution of a set of transition rules. It parameterizes conditions that allow
to control the selection of the rules to be executed, when to enable execution, the strategy that
defines how many and in which order the set of rules should be executed, and the termination
conditions. With this construct we have contributed to unify many different control flow cases,
to provide wider possibilities in the execution of set of rules and, notably to bring termination
conditions back into the specification. Since, in time, many control flow rules have been proposed,
the do-block construct is designed to be easily extensible in order to foresee future control flow
constructs.

The second contribution of our thesis addresses modularity of specifications with respect to
sub-systems description. We have proposed a construct to define a sub-system as an active unit
of behaviour that provides a set of services. The set of services denotes the interface to interact
with the sub-system. Our proposal has been inspired by ADA’s tasks with rendezvous. The
definition leverages the concept of agent and adds an interaction mechanism based on two transition
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rules (accept and request ). We have defined synchronous and asynchronous versions of such
rules. This mechanism abstracts from the interaction protocol between sub-systems simplifying
the specification process. Sub-systems are represented by elements in the Module background.
To retrieve such elements we have defined two expressions: module and fetch . The module
expression creates a new module while fetch provides a mechanism to retrieve modules from a
given source. These two expressions allow to solve the namespace problem for modules and to reuse
sub-system specifications that are retrievable as module elements. Moreover the fetch expression
paves the way for more interesting specification environments different from the usual single file
specification.

Another aspect of modularity that we have addressed is state partitioning. ASMs manage the
state globally. Currently there exists few mechanisms in the ASM method for state hiding and
are restricted to particular cases (like the local keyword). In time, people that have applied the
ASM method established the practice to use location parameterization for state partitioning. This
practice took various forms that have culminated into the definition of ambient ASMs. Ambient
ASMs have proposed a general mechanism to describe any kind of state partition policy. Unfor-
tunately such definition resulted unpractical. We have analysed the drawbacks of ambient ASMs
and proposed an improvement of their definition. We have defined three kinds of state partition
management. The state is partitioned by ambients that are the composition of environment ex-
pressions. With the ambient set rule, environments are managed in the same way the amb rule
did: assigning the current environment to the identifiers inside its block. The ambient push rule
manages the hierarchy of environments. The ambient insert control the composition of ambients
by the management of sets of environments (preserving order independence). We analysed these
three strategies and allowed their combination. To make the management of environments more
fine grained we have provided a direct evaluation rule that evaluates identifier in a specific ambient
parameter.

The last contribution on modularity features is related to the support for a uniform data
representation. We have observed that the proper support for freely generated data types as data
representation tool has been a desired feature in the ASM language that would have helped the
specification process. The context in which is usual to find records and sum types is strictly typed
languages, while the ASM language is typeless. So we have first defined a typeless version of them.
We have proposed a convention to represent records and sum types that enables their representation
with the currently available values of the ASM language. This way we do not require to learn new
notation to start using abstract data types. The convention leverages the list notation and constant
values. In order to allow a form of type checking we also provide abstract data type definitions and
an expression ( as ) that checks if a value belongs to the expected type at specification execution
time. Since we have described abstract data type values as lists of lists, their management may
become soon impractical, we have proposed a pattern matching construct (match ) that ease their
manipulation. The pattern matching rule is a form of generalised select-case rule with identifiers
binding. We have defined pattern matching in order to be used not only on abstract data values,
but also on all the other usual values. We have assumed that each value type may define the legal
patterns and their semantic. We have proposed the definitions to allow pattern matching on the
most common types, in particular on lists that also represent data type values.

Examples of usage for our constructs has been provided throughout the thesis and in the use case
chapter, nevertheless they should be further applied to large system specifications to establish them
in the ASM language practices. Such application could highlight other aspects to be investigated
and improved.

The do-block provides coverage for basic and Turbo ASMs control flow constructs and intro-
duces new execution strategies (e.g. stepwise) and termination conditions. Further extensions to
the construct could be investigated.

The entry-based module definition we presented generates a fixed set of services for a module.
With the accept rule and control state ASMs (or do-block) the body of a module can describe
when to activate and deactivate subsets of services (see the buffer example in Section 5.4). It would
be interesting to allow the set of entries for a module to be dynamic for example introducing rules
to add and remove entries and a way to change dynamically the body of the module. Although
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this approach could deteriorate the readability of the specification it could be helpful to describe
dynamic systems. Also the relation of our sub-system definition with the object oriented world
should be investigated. For example entries could be related to methods but we currently provide
a very limited form of entry overloading allowing input parameters to be optional.

One aspect that we have not covered in this thesis but that would improve specifications
understandability is visualisation. A graphical notation for the do-block and module constructs
could be provided. This notation could be used to allow graphical composition of a specification
from which is possible to generate the corresponding pseudo-code model and vice versa. Another
approach would be to try to adopt already available graphical notations. An example is the
generation of UML diagrams (e.g. activity diagrams from a do-block).
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