
Università degli Studi di Pisa

Dipartimento di Informatica

Dottorato di Ricerca in Informatica

Settore Scientifico Disciplinare: INF/01

Ph.D. Thesis

Specification and Verification
of Contract-Based Applications

Davide Basile

Supervisor

Pierpaolo Degano

Supervisor

Gian-Luigi Ferrari

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79621699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Nowadays emerging paradigms are being adopted by several companies, where appli-
cations are built by assembling loosely-coupled distributed components, called services.
Services may belong to possibly mutual distrusted organizations and may have con-
flicting goals. New methodologies for designing and verifying these applications are
necessary for coping with new scenarios in which a service does not adhere with its
prescribed behaviour, namely its contract.

The thesis tackles this problem by proposing techniques for specifying and verifying
distributed applications. The first contribution is an automata-based model checking tech-
nique for ensuring both service compliance and security requirements in a composition of
services. We further develop the automata-based approach by proposing a novel for-
mal model of contracts based on tailored finite state automata, called contract automata.
The proposed model features several notions of contract agreement described from a
language-theoretic perspective, for characterising the modalities in which the duties and
requirements of services are fulfilled. Contract automata are equipped with different
composition operators, to uniformly model both single and composite services, and tech-
niques for synthesising an orchestrator to enforce the properties of agreement. Algorithms
for verifying these properties are introduced, based on control theory and linear program-
ming techniques. The formalism assumes the existence of possible malicious components
trying to break the overall agreement, and techniques for detecting and banning even-
tually liable services are described. We study the conditions for dismissing the central
orchestrator in order to generate a distributed choreography of services, analysing both
closed and open choreographed systems, with synchronous or asynchronous interactions.
We relate contract automata with different intutionistic logics for contracts, introduced
for solving mutual circular dependencies between the requirements and the obligations of
the parties, with either linear or non-linear availability of resources. Finally, a prototypical
tool implementing the theory developed in the thesis is presented.

Acknowledgements

These years as a PhD student have somehow changed my life. In this few lines I wish
to express my gratitude to all the individuals who helped me in this journey, surely
without them this thesis would have not been possible.

Firstly, my special appreciation goes to my PhD advisors, Professor Pierpaolo Degano
and Professor Gian-Luigi Ferrari. I warmly thank them for all the hours we spent to-
gether, transforming ideas and sketches into formal models, algorithms and all you will
find in the next pages. They have been great mentors and friends to me, and work-
ing with them has been an honour. They taught me how to pursue scientific research,
always being enthusiastic, supportive, very helpful and patient in carefully reading, un-
derstanding, and improving all the intricacies and technical details 1. It is difficult to
overstate their impact into this thesis.

I would like to express my deepest gratitude to Professor Emilio Tuosto, whom I
had the pleasure to work with during the months I spent at the University of Leicester.
I still have stored in some folder all the pictures of his whiteboard, full of nodes, arrows
and labels, shaping what has become a chapter into this thesis. I thank him for his
contribution into this thesis, and also for helping me settling down in Leicester.

I am indebted to Professor Giancarlo Bigi, who has provided valuable assistance and
precious insights that helped me dealing with Linear Programming techniques.

I am much obliged to my dissertation committee, Professor Massimo Bartoletti and
Professor Roberto Bruni. Their precious comments, during the various evaluation phases
of the PhD programme, enhanced the quality of this thesis.

Moreover, I would like to thank my reviewers, Professor Hugo Torres Vieira and Pro-
fessor Marco Carbone, that read with such care a preliminary version of this document,
returning insightful observations that improved this work.

I would also like to thank Dr. Stefania Gnesi and Dr. Felicita Di Giandomenico, for
their support and understanding during this final year of completion of my thesis.

I am really glad I met many nice persons during the months I spent in Leicester. I
had a really nice time there, and I was very sad when I came back to Pisa (which was
something I could not expect, considering the gloomy English weather). It is impossible
to mention all of them, I try with Mariano, Gabriela, Octavian, Al Sokkar, Muz, Sam,
Samuel, Matt, Alexey, Xristina, Sarah, Arnab, Alex, all the guys who borrow me their
guitars at the various jam sessions, and especially Richard the one third.

1I remember when one of the proofs was named “proof by intimidation” :)

Colgo l’occasione per ringraziare i colleghi/amici con cui ho condiviso svariate
pause pranzo 2, Matteo, Lillo, Gianluca, Luca, Antonio, Roberto, Simone, Giovanni,
Manuela, Antonella e tutti gli altri che mi scuso di non aver menzionato. Vorrei inoltre
ringraziare tutti gli amici con cui ho passato piacevoli serate nonostante ci trovassimo
a Pisa, chi è andato via e chi è rimasto, citarvi tutti è impossibile, ma ringrazio in par-
ticolare Pietro e Alessandra, con cui ho condiviso i (pochi) momenti di svago in questi
ultimi mesi.

Ringrazio inoltre Margherita, Piero, Giovanni, Giorgio, Daniele, e Miriam, per il
vostro affetto ed i consigli che mi avete dato e continuate a darmi, so di poter sempre
contare su di voi e spero di rivedervi presto, grazie di cuore.

Davide

2ed il pluri-inflazionato caffé lungo in tazza grande macchiato freddo

“...and now it begins”
Ser Arthur Dayne

Contents

Introduction xi

1 Preliminaries 1
1.1 Service Oriented Computing . 2

1.1.1 Service Coordination: Orchestration and Choreography 2
1.1.2 Choreography . 3
1.1.3 Orchestration . 4

1.2 Contracts . 5
1.2.1 Behavioural Contracts . 7
1.2.2 Orchestration in the literature . 10
1.2.3 Choreographies in the literature . 11
1.2.4 Contracts and Session Types . 12
1.2.5 SLA contracts and others . 13

1.3 Communicating machines . 14
1.4 Logics for Contracts . 16

1.4.1 Propositional Contract Logic . 17
1.4.2 Intuitionistic Linear Logic with Mix 19
1.4.3 Logic for Contracts in the literature 21

1.5 Model Checking . 23
1.6 Language-based Security . 24
1.7 Control Theory . 25
1.8 Operations Research, Flow problem . 27
1.9 Concluding Remarks . 28

2 Contract Compliance as a Safety Property 29
2.1 An Example . 30
2.2 Programming Model . 33

2.2.1 Statically Checking Validity . 38
2.3 Checking Service Compliance . 39
2.4 Concluding Remarks . 43

iv Contents

3 Contract Automata 45
3.1 The Model . 46
3.2 Enforcing Agreement . 52
3.3 Strong Agreement . 59
3.4 Weak Agreement . 60

3.4.1 Flow Optimization Problems for Weak Agreement 65
3.5 An example . 72
3.6 Concluding Remarks . 74

4 Contract Automata and Logics 77
4.1 Propositional Contract Logic . 78
4.2 Intuitionistic Linear Logic with mix . 91
4.3 Concluding Remarks . 100

5 Relating Contract Automata and Choreographies 101
5.1 From Contract Automata to Communicating Machines 102
5.2 Agreement and Asynchrony . 110

5.2.1 Agreement . 111
5.2.2 Asynchronous semantics of communicating systems 112

5.3 An example . 117
5.4 Concluding Remarks . 119

6 A Tool For Contract Automata 123
6.1 CAT at work . 123
6.2 Detailing the implementation of CAT . 129
6.3 Integer Linear programming and Contract Automata 130

6.3.1 AMPL code . 132
6.4 Concluding Remarks . 132

7 Conclusions 137
7.1 Main results . 137
7.2 Future work . 139

Bibliography 141

List of Definitions, Lemmata and
Theorems

1 Definition (Behavioural contracts) . 7
2 Definition (Transition Relation of Behavioural Contracts) 7
3 Definition (Observable Ready Sets of Contracts) 8
4 Definition (Compliance of Behavioural Contracts) 8
5 Definition (CFSM) . 14
6 Definition (Communicating systems) . 15
7 Definition (Reachable state) . 15
8 Definition (PCL) . 17
9 Definition (H-PCL) . 18
10 Definition (ILLmix) . 20
11 Definition (H-ILLmix) . 21
12 Definition (History Expression with Planned Selection) 25

13 Definition (History Expression) . 34
14 Definition (Network and Plan) . 35
15 Definition (Validity of Histories) . 38
16 Definition (Validity of History Expressions) 39
17 Definition (Observable Ready Sets of History Expressions) 40
18 Definition (Compliance of History Expressions) 40
19 Definition (Product of History Expressions) 41
1 Lemma (Ready Sets and Product) . 41
1 Theorem (Product Emptiness and Compliance) 42
2 Theorem (Compliance as Invariant Property) 43

20 Definition (Actions) . 47
21 Definition (Complementary Actions) . 47
22 Definition (Observable) . 48
23 Definition (Contract Automata) . 48
24 Definition (Product) . 50
25 Definition (Projection) . 50
26 Definition (a-Product) . 51
27 Definition (Agreement) . 52

vi List of Definitions, Lemmata and Theorems

28 Definition (Safety) . 52
29 Definition (Controller for Agreement) . 54
30 Definition (Hanged state) . 54
31 Definition (Mpc construction) . 54
32 Definition (Liability) . 55
33 Definition (Competitive, Collaborative) . 57
3 Theorem (Competitive, Collaborative and Agreement) 57
34 Definition (Strong Agreement and Strong Safety) 59
35 Definition (Strong Controller) . 59
36 Definition (Strong Liability) . 60
37 Definition (Weak Agreement) . 62
38 Definition (Weak Safety) . 62
4 Theorem (Competitive Collaborative and Weak Agreement) 62
5 Theorem (Weak Agreement Context-Sensitive) 63
39 Definition (Flow Problem for Weak Agreement) 66
2 Lemma (Flow and Traces) . 68
6 Theorem (Flow Problem for Weak Safety) 69
7 Theorem (Flow Problem for Weak Agreement) 70
40 Definition (Weak Liability) . 70
8 Theorem (Flow Problem and Weak Liability) 71

41 Definition (Obligations Fulfilment in PCL) 78
42 Definition (From H-PCL to CA) . 79
3 Lemma (Formula Provability and Traces) 80
43 Definition (Formula Step) . 81
4 Lemma (Formula Step in Automata) . 81
5 Lemma (PCL Auxiliary) . 82
9 Theorem (PCL agreement) . 85
10 Theorem (PCL Weak Agreement) . 90
44 Definition (Concatenation of CA) . 93
45 Definition (Translation of H-ILLmix) . 93
46 Definition (Honoured Sequent) . 93
6 Lemma (Derivation Trees for Honoured Sequents) 94
7 Lemma (Honoured Sequents admit Agreement) 94
47 Definition (ILLmix Formula Step) . 95
8 Lemma (ILLmix Step Automata) . 96
9 Lemma (Multi-set Horn Formulae) . 96
10 Lemma (Admits Agreement and Honoured Sequent) 96
11 Theorem (ILLmixAgreement) . 100

48 Definition (Communicating Machines Translation) 103
49 Definition (1-buffer, convergence, deadlock) 103
50 Definition (Traces Translation) . 105

List of Definitions, Lemmata and Theorems vii

51 Definition (Branching Condition) . 106
52 Definition (States Equivalence) . 107
12 Theorem (Correspondence of Traces) . 107
13 Theorem (Convergence and Branching Condition) 108
53 Definition (Extended Branching Condition) 111
54 Definition (Environment) . 111
14 Theorem (Extendend Branching Condition and Environment) 111
55 Definition (Mixed Choices) . 113
56 Definition (Action Projection) . 114
15 Theorem (Correspondence on Projected Actions) 114
16 Theorem (Mixed Choice and Convergence) 116

viii List of Definitions, Lemmata and Theorems

List of Figures

1.1 Two service coordination mechanisms: orchestration and choreography . 3
1.2 Service-Oriented Architecture . 6
1.3 A Communicating System . 16
1.4 The rules of the sequent calculus for PCL 20
1.5 The sequent calculus for ILLmix . 21

2.1 The automaton for the policy ϕ(c,p,t) . 31
2.2 Two clients, a broker and four cloud providers 31
2.3 A fragment of a computation . 34
2.4 Operational Semantics of History Expressions 35
2.5 Operational Semantics of Network . 37
2.6 the function AP for computing the active policies in a history η 38
2.7 Projection on Communication Actions . 40

3.1 Three contract automata . 49
3.2 Three contract automata, their product and a-product 51
3.3 The contract automata of Example 9 . 55
3.4 The contract automaton Bill ⊗ John of Example 12 57
3.5 The contract automata of Alan, Betty and Carol 60
3.6 The product and most permissive strong controller of Example 13 61
3.7 The contract automata of Example 17 . 61
3.8 The contract automata discussed in Examples 18 and 19 64
3.9 The three flows computed by Theorem 8 72
3.10 The contract automata for the example . 73

4.1 The three rules of PCL for the contractual implication. 78
4.2 The contract automata of Examples 23 and 24 79
4.3 The CA of Example 24, the principals are in Figure 4.2. 82
4.4 The contract automata of Example 27 . 92
4.5 A subset of the rules of the sequent calculus of ILLmix. 92

5.1 The contract automata of Examples 28 and 30. 104
5.2 KSA . 110

x List of Figures

5.3 The CA with a mixed choice of Example 32 and its corresponding com-
municating machines . 113

5.4 The contract automata of Example 33 . 116
5.5 The contract automaton (with mixed choices) of Example 34, its corre-

sponding communicating machines, and the amended contract automa-
ton without mixed choices. 117

5.6 The contract automata for 2-buyers protocol (with distinguished quotes)
and their most permissive controller . 118

6.1 The architecture of CAT . 124
6.2 The contract automata for the updated 2BP 125
6.3 The most permissive controller of 2BP . 129
6.4 The implementation in AMPL of the optimization problem for deciding

weak agreement. 133
6.5 The implementation in AMPL of the optimization problem for deciding

weak safety. 134

Introduction

Nowadays most of ICT infrastructures, as for example financial, business, defence and
healthcare systems, are largely depending on different heterogeneous interorganiza-
tional digital systems, that cooperate with each other without human intervention through
the Internet. Common examples of these technologies are Service Oriented Computing
and Cloud Computing. In the view of software-as-a-service, applications are built by
assembling loosely-coupled services provided by possibly mutually distrusted organi-
zations, where services may collaborate or compete in order to reach their goals.

Quoting [TBB03]:

“Despite advances in programming language and development environment tech-
nologies, the basic paradigm for constructing and maintaining software has altered
little since the 1960s (...) Further shifting the focus from providing software to de-
scribing and delivering a service moves the focus away from the constraints that
traditional software construction, use, and ownership models impose.”

A main challenge for computer scientists is represented by the introduction of new
methodologies that are capable of designing distributed applications as well as guaran-
teeing that their composite behaviour must agree to specified safety requirements. Crit-
ical problems on these computing systems, as failures or attacks by hackers, represent
a threat for our society. For example, malicious services inside composite applications
could perform undesired actions, as stealing sensible information. Serious economic
damages could result from failures in business activities, or in an even worst scenario,
human lives could be in danger in case of failures of safety-critical applications.

Implementing distributed components that safely interact in an unknown and mali-
cious environment is a hard task. Among the many causes we cite the heterogeneity of
the software components that are provided by different entities with possibly conflicting
goals, and misbehaviours that may take an unpredictable variety of different forms.

A feasible solution consists in studying specific requirements of a composite appli-
cation, in order to guarantee them also in the presence of malicious components. This
requires the development of new techniques to design, analyse, and implement service-
based applications.

Formal methods play an important role in providing models and tools for helping
developers in building applications where safety is a main concern from the early design

xii Introduction

phases of a system. For example, model checking is a widely adopted technique for
verifying properties of systems that are modelled through abstract formalisms.

The goal of the thesis is to provide techniques for specifying and verifying properties of service
oriented computing-based distributed systems.

Recently, so called contracts have been introduced as an abstract formalism for spec-
ifying and verifying distributed services. Contracts naturally support the modelling
of service composition, characterized in terms of orchestration and choreography. In an
orchestrated approach, a distinguished entity called the orchestrator regulates how the
composite service evolves. In a choreographed approach, the distributed services au-
tonomously interact without a central coordinator. We will study different formalisms
for contracts, their compositional operators and coordination mechanisms. The main
contributions of the thesis are:

1. We introduce an automata-based model checking technique for ensuring both
service compliance and security requirements in a composition of services, using a
well-known abstract model of service contracts. Intuitively, service compliance
ensures communication safety, and the security requirements are modelled as reg-
ular properties over sequences of security-relevant events. Service compliance is
proved to be a safety property, paving the way to its verification through efficient
model checking techniques.

2. We propose a novel formal model of contracts based on suitable finite state au-
tomata, called contract automata. Contract automata specify what each service is
going to guarantee and offer and what in turn it expects and requires. Either single
or composite services can be expressed and composed within our formalism. Dif-
ferent compositional operators characterising different policies of orchestration are
introduced, to model different interaction patterns. Moreover, properties of con-
tract agreement are defined from a language-theoretic perspective, characterising
the modalities in which the duties and requirements of services are fulfilled. Al-
gorithms for verifying these properties are also developed. Finally, we assume the
existence of possible malicious components trying to break the overall agreement,
and we develop techniques for detecting and banning eventually liable services.
A distinguished feature of our approach is that verification algorithms are based
on control theory and the optimization of network flows. For the last case, we
import efficient techniques originally introduced for solving linear programming
problems.

3. We relate the contract automata approach with different service coordination mech-
anisms and logics for contracts. We study the conditions for dismissing the central
orchestrator in order to obtain a choreographic interaction of services, thus reduc-
ing the communication overhead. We will consider two intuitionistic logics for
contracts, introduced for solving circular dependencies among the interacting par-
ties, with either linear or non-linear availability of resources. In particular, we will
consider the Horn fragments of these logics, which have a neat interpretation in

Introduction xiii

terms of contracts. Verifying the agreement in a composition of services and gen-
erating proofs of formulae in these logics are proved to be the same problem. This
result sheds light on the logical interpretation of contract agreement and opens a
novel perspective on the verification of logical properties of contracts.

4. As a proof of concept, we turned the developed theory into a prototype tool, so to
completely mechanize our proposal.

Structure of the Thesis The thesis is structured as follows:

• Chapter 1 briefly introduces the main subjects of the thesis, namely Service Ori-
ented Computing, its coordination mechanisms and contracts. A brief survey on
the corresponding literature is also discussed. All the material used throughout
the thesis that does not represent an original contribution is introduced here;

• Chapter 2 outlines a formal theory of contracts that supports verification of service
compliance and of security policies enforcing access control over resources;

• Chapter 3 introduces contract automata, a model for describing, composing and
verifying contracts;

• Chapter 4 establishes a correspondence between logics for contracts and contract
automata;

• Chapter 5 investigates the relations between an orchestrated model (contract au-
tomata) and a choreographed model (communicating machines);

• Chapter 6 describes a prototypical tool-kit supporting contract automata.

The material presented in this thesis have been published in the following interna-
tional workshops, conferences and journals:

• the content of Chapter 2 has been presented in:

– Basile, D.: Service interaction contracts as security policies. In: 12th Ital-
ian Conference on Theoretical Computer Science, ICTCS 2012, Varese, Italy,
Septemper 19-21, 2012, available online at http://ictcs.di.unimi.it/
papers/paper_28.pdf;

– Basile, D., Degano, P., Ferrari, G.L.: Secure and unfailing services. In: Pro-
ceedings of the 12th International Conference on Parallel Computing Tech-
nologies (PaCT), St. Petersburg, Russia, September 30 - October 4, 2013.
Malyshkin, V. (ed.) LNCS, vol. 7979, pp. 167–181. Springer (2013);

– Basile, D., Degano, P., Ferrari, G.L.: A formal framework for secure and com-
plying services. The Journal of Supercomputing, volume 69(1), pp. 43–52
(2014), ISSN: 1573-0484;

http://ictcs.di.unimi.it/papers/paper_28.pdf
http://ictcs.di.unimi.it/papers/paper_28.pdf

xiv Introduction

• the content of Chapter 3 and Chapter 4 has been presented in:

– Basile, D., Degano, P., Ferrari, G.L.: Automata for service contracts. In: Hot Is-
sues in Security Principles and Trust - 2nd Workshop, HOTSPOT 2014, Greno-
ble, France, April 12, 2014;

– Basile, D., Degano, P., Ferrari, G.L.: Automata for analysing service contracts.
In: Trustworthy Global Computing - 9th International Symposium, TGC 2014,
Rome, Italy, September 5-6, 2014. Revised Selected Papers, Lecture Notes in
Computer Science, vol. 8902, pp. 34–50. Springer (2014);

– Basile, D., Degano, P., Ferrari, G.L.: Automata for specifying and orchestrat-
ing service contracts. To appear in Journal of Logical Methods in Computer
Science (2016), ISSN: 1860-5974;

• the content of Chapter 5 has been presented in:

– Basile, D., Degano, P., Ferrari, G.L., Tuosto, E.: From orchestration to choreog-
raphy through contract automata. In: Lanese, I., Lluch-Lafuente, A., Sokolova,
A., Vieira, H.T. (eds.) Proceedings 7th Interaction and Concurrency Experi-
ence, ICE 2014, Berlin, Germany, 6th June 2014. EPTCS, vol. 166, pp. 67–85
(2014);

– Basile D. , Degano P. , Ferrari G.L. , Tuosto E.: Relating two automata-based
models of orchestration and choreography, Journal of Logical and Algebraic
Methods in Programming, Volume 85, Issue 3, April 2016, Pages 425-446,
ISSN 2352-2208;

• the content of Chapter 6 has been presented in:

– Basile, D., Degano, P., Ferrari, G.L., Tuosto, E.: Playing with our CAT and
Communication-Centric Applications. In: 36th IFIP International Confer-
ence on Formal Techniques for Distributed Objects, Components and Systems
(FORTE), Held as Part of the 11th International Federated Conference on Dis-
tributed Computing Techniques, DisCoTec 2016, Heraklion, Crete, Greece,
June 6-9, 2016. Revised Selected Papers, Lecture Notes in Computer Science,
volume 9688, pp.62–73. Springer (2016).

Chapter 1

Preliminaries

In this chapter we overview the main concepts addressed in the thesis, and we introduce
all the techniques that will be used throughout the thesis and that do not represent an
original contribution.

We start by introducing Service Oriented Computing and its coordination mecha-
nisms, namely orchestration and choreography (Section 1.1). We will discuss formal
models for specifying service contracts, and the corresponding literature in Section 1.2.
Once orchestration and choreography have been introduced, in Section 1.3 we focus on
a widely adopted formalism related to choreographed distributed applications, namely
communicating machines. Different characterizations of contracts in terms of logic for-
malisms are discussed in Section 1.4. The remaining sections introduce several tech-
niques that will be used throughout the thesis for checking the properties of interest,
namely model checking (Section 1.5), language-based security (Section 1.6), control the-
ory (Section 1.7) and operations research (Section 1.8).

While Sections 1.1 and 1.2 provide a general overview of Service Oriented Comput-
ing and contracts, the remaining sections address topics specific to the different notions
tackled in the thesis. Hence, in order to improve the overall readability, we link the
specific sections to the corresponding chapters:

• Chapter 2: the contract formalism adopted in this chapter is introduced in Sec-
tion 1.2.1. We will extend History Expressions (Section 1.6) to include operators for
describing interactions of services; and we will extend the corresponding model
checking techniques (Section 1.5);

• Chapter 3: the techniques borrowed from Control Theory (Section 1.7) and Oper-
ations Research (Section 1.8) will be used to verify properties of contracts and to
solve circularity issues (Section 1.4), under the assumption that participants may
behave maliciously (Section 1.4.3);

• Chapter 4: we will relate our contract formalism with different logics that are
introduced in Section 1.4;

2 Preliminaries

• Chapter 5: our orchestrated model will be related to a choreographed model called
communicating machines, introduced in Section 1.3.

• Chapter 6: techniques based on optimization research (Section 1.8) will be adopted
for mechanising our proposal.

1.1 Service Oriented Computing

The opportunities of exploiting distributed services are becoming an imperative for all
organizations and, at the same time, new programming techniques are transforming the
ways distributed software architectures are designed and implemented. Distributed ap-
plications nowadays are constructed by assembling together computational facilities and
resources offered by third-party providers. These applications interact in an unknown
and dangerous environment, composed by a heterogeneity of computational entities
that are provided by different mutual distrusted organizations. Guaranteeing that spec-
ified safety requirements are met represents a challenge for computer scientists.

Service-Oriented Computing [WB10, PG03, Pap12] is a paradigm for designing dis-
tributed applications that are built by combining different fine-grained and loosely-
coupled distributed components. The basic building blocks are services, which are
provided by different organizations, and can be autonomous, platform-independent,
reusable and highly portable. Services are equipped with suitable interfaces (roughly)
describing the offered computational facilities and the requirements. Services can be
combined to accomplish a certain computational task or to form a more complex ser-
vice. A service exposes both the functionalities it provides and the parameters it re-
quires. Clients exploit service public information to discover and bind the services that
better fit their requirements. Services can be discovered according to the information
provided in their interface.

Through Service-Oriented Computing companies can implement applications that
are low-cost, interoperable, secure, reliable, massively distributed, and can reduce the
cost and time for upgrading their IT systems by adding new features or deleting old
ones. Web Services [ACKM04] are a common example of Service-Oriented Comput-
ing approach. The Web Service Description Language (WSDL) is used for describing
the messages to be exchanged between services and the Simple Object Access Protocol
(SOAP) take care of the interaction between the parties. Web services are published
and discovered through the Universal Description Discovery and Integration (UDDI),
while the standard for web services composition and orchestration is the Business Pro-
cess Execution Language (BPEL) [Jur06]. Service Oriented Computing relies on different
coordination mechanisms, described below.

1.1.1 Service Coordination: Orchestration and Choreography

Service coordination is a fundamental mechanism of the service-oriented approach,
where coarse-grained applications are built by assembling together multiple, fine-grained

Service Oriented Computing 3

Figure 1.1: Two service coordination mechanisms: orchestration and choreography

and loosely-coupled services. Service coordination policies differ on the supports to the
interactions adopted to pass information among services. A coordination policy suc-
cessfully governs the interacting services when no request is left behind, e.g. when a
principal is invoking a service that nobody will ever be willing to offer. Therefore dis-
tributed services must agree on a shared coordination policy capable of fulfilling all
service demands.

Service composition is the aggregation of multiple services into a single service in order
to develop more complex functions. Resulting composite services can be used as basic
services in further hierarchical service compositions or offered as complete applications
to service clients [IGH+11, PTDL07]. There exists two different approaches to services
composition, depending on their coordination behaviour [Pel03]:

• service orchestration (centralized coordination);

• service choreography (distributed coordination).

In literature precise definitions of the concepts of orchestration and choreography are
missing, and only intuitive descriptions have been given so far. In Figure 1.1 two di-
agrams showing the different coordination mechanisms are displayed, namely service
orchestration, where each service is invoked by the orchestrator, sometimes called the
composite service (as in Figure 1.1); and service choreography, where services interact
autonomously via messages.

1.1.2 Choreography

There is common consensus that the distinguishing element of a disciplined choreo-
graphic model is the specification of a so-called global viewpoint detailing the interactions
among distributed participants and offering a description of their expected communica-
tion behaviour in terms of message exchanges.

4 Preliminaries

This intuition is best described in W3C words [KBR+05]:

Using the Web Services Choreography specification, a contract containing a global
definition of the common ordering conditions and constraints under which messages
are exchanged, is produced that describes, from a global viewpoint [...] observable be-
haviour [...]. Each party can then use the global definition to build and test solutions
that conform to it. The global specification is in turn realised by combination of the
resulting local systems [...]

Noteworthy, the excerpt above points out that in a disciplined choreography local be-
haviour should then be realised by conforming to the global viewpoint in a “top-down”
fashion. Hence, the relations among the global and local specifications are paramount.

1.1.3 Orchestration

The concept of orchestration is more controversial. In this thesis we adopt a widely
accepted notion of orchestration [DD04, ACKM04, Pap12] envisaging the distributed
coordination of services via the mediation of a distinguished participant that – besides
acting as provider of some functionalities – regulates the control flow by exchanging
messages with partner services according to their exposed communication interface. In
Peltz’s words [Pel03]:

Orchestration refers to an executable business process that can interact with both
internal and external Web services. The interactions occur at the message level.
They include business logic and task execution order, and they can span applications
and organisations to define a long-lived, transactional, multi-step process model. [...]
Orchestration always represents control from one party’s perspective.

The “executable process” mentioned by Peltz is called orchestrator and specifies the work-
flow from the “one party’s perspective” describing the interactions with other available
services, so to yield a new composed service. This description accounts for a com-
position model enabling developers to combine existing and independently developed
services.

The orchestrator then “glues” them together in order to realise a new service, as
done for instance in Orc [Mis05]. This is a remarkable aspect since the services com-
bined by an orchestrator are not supposed to have been specifically designed for the
service provided by the orchestrator and can in fact be (re)used by other orchestrators
for realising different services.

Other authors consider orchestration as the description of message exchanges among
participants from the single participants’ viewpoint without assuming the presence of an or-
chestrator. For instance, in [QZCY07, YZCQ07] the local specifications of a choreography
are considered the orchestration model of the choreography itself. In this thesis we do
not consider each local specification of a choreography as an orchestration, because it
may obscure the matter; rather local specifications are tailored to (and dependent of)
the corresponding party of the choreography instead of being independently designed.

Contracts 5

In other words, such local specifications correspond to automata-oriented choreography
adopted here (see Section 1.3) and in [LTY15], as well as to the process-oriented chore-
ography of [LGMZ08]. Instead, in an orchestration model, each participant defines and
exposes its own communication pattern which is then (somehow) assembled in an or-
chestration. Abstracting from technological aspects, we can describe our approach using
Ross-Talbot’s words [Tal]:

In the case of orchestration we use a service to broker the interactions between the
services including the human agents and in the case of choreography we define the
expected observable interactions between the services as peers as opposed to mandat-
ing any form of brokering.

There are several standards for orchestration, such as WS-BPEL (Web Service Busi-
ness Process Execution Language) an XML-based language used to describe composed
Web Services [Jur06].

In Chapter 3 a formal model for describing services will be introduced which adopts
orchestration as coordination model. We will investigate the relations between the or-
chestration model and a choreographic one in Chapter 5.

1.2 Contracts

Software architectures that truly support distributed services require several operational
tools to be in place and effective. Indeed, services are provided by possibly mutual
distrusted organizations, and they may have conflicting goals. Ensuring the reliability of
a composite service is important to avoid economic losses, but also catastrophic failures
for safety critical applications.

When services are made available by different companies, understanding and fulfill-
ing the behavioural obligations of services is crucial to determine whether the interactive
behaviour is consistent with the requirements.

However, in general standard analysis and verification techniques for distributed
systems cannot be applied to third-party services, to which no assumptions can be
made. New compositional techniques must thus cope with services that could not fulfil
their prescribed behaviour, either unintentionally or maliciously. Moreover, they need
to ensure correct interactions even in the case of mutual circular dependencies between
the requirements and the obligations of the parties (see Section 1.4).

Recently, so called contract-oriented design [BTZ12] has been introduced as a suitable
methodology where the interaction between clients and services is specified and regu-
lated by formal specifications, named contracts [EKW+09].

Service Contracts are the standard mechanisms to describe the external observable
behaviour of a service, as well as the security accountability. Service contracts can be
used for guaranteeing that all the services are capable of successfully terminating their
tasks without rising security exceptions.

6 Preliminaries

Figure 1.2: Service-Oriented Architecture

They can be used for describing the requests that a service wants from the system,
and also the offers that it can provide. Contracts may then help characterize the be-
havioural conformance of a composition of different services [BCZ15]. This specification
is used for guaranteeing that a composition of services does not lead to spurious results.
Moreover, it is possible to formally verify that this composition enjoys certain proper-
ties, such as progress of interactions, or agreements of the parties. Indeed, a semantic
model for contracts is necessary to reason about the behaviour of service assemblies, so
as to have formal verification techniques for properties that services must respect. This
is useful for the design and the realization of complex service-based applications which
must be correct and safe, as otherwise it is extremely hard to certify reliability of such
complex services.

The management of service contracts is typically tackled by service providers through
the notion of Service-Level Agreement [WB10, Pap12], which have to be accepted by the
client before using the service. SLAs are documents that specify the level(s) of service
being sold in plain language terms.

In Figure 1.2 a Service-Oriented Architecture [PL03] is depicted. Service contracts
are published in a trusted repository, and are accessed through service discovery. A
Service Broker (i.e. the coordinator) is in charge of finding an agreement required and
provided by the service contracts. Obviously, this arrangement is based on the contracts
of the involved services, and ensures that all requests are properly served when all the
duties are properly kept. The coordinator organises then the overall service coordination
policy and proposes the resulting contract agreement to all the parties, so that services
can start their interactions. Eventually, if any involved service does not fulfil its duties
(i.e. it violates its contract), the coordinator will be capable of finding and blaming those
liable participants.

In the literature, several notions of contracts are available.
Outside the world of services, contracts are used in Component-Based Software En-

gineering [Crn02] for specifying the behaviour of components. In Design-by Contract
methodologies [Mey92], a contract extends the ordinary definition of abstract data types

Contracts 7

with preconditions, postconditions and invariants. They represent the conditions and
obligations that software components must respect.

Concerning services, behavioural contracts use formal models as process algebras [BW90]
to describe the abstract behaviour of services and checking their correctness (see Sec-
tion 1.2.1). Contracts have been applied both for coordination policies based on or-
chestration (see Section 1.2.2), and choreography (see Section 1.2.3). Several logics for
contracts have been described in literature, and are used for identifying the obligations
of the parties, as discussed in Section 1.4.

In the next sections we will describe some of the proposals available in the literature
for specifying and verifying service contracts, focussing on those closer to the results
presented in the thesis.

1.2.1 Behavioural Contracts

Behavioural contracts are expressed in [CGP09] as CCS terms [Mil89], where the inter-
actions between services are modelled via I/O actions. In Chapter 2 we will adopt this
contract model for building our model checking technique. Contracts are built with
three operators: prefix α.σ, internal choice σ1 + σ2 and external choice σ1 ⊕ σ2. A con-
tract α.σ performs the action α and then continues as σ, where α is an abstraction of an
input/output operation from one service to the other. An output action is topped by
a bar, i.e. a, following the CCS notation. We consider a set of communication actions
Comm = {a, a, b, b, . . .}, where as usual we have the involution a = a. The contract
σ1 ⊕ σ2 describes a service that internally decides whether to continue as σ1 or σ2. In
the contract σ1 + σ2 it is the other party that decides whether to continue as σ1 or σ2.
Contract terms are regular trees, so they can be see as the solution of some recursive
definitions. Moreover, 0 is the contract of services that do not perform any action. We
follow the standard convention of omitting trailing 0’s.

Definition 1 (Behavioural contracts). A behavioural contract is a finite term generated by the
following grammar:

σ ::= α.σ | σ1 ⊕ σ2 | σ1 + σ2 | 0 α ∈ Comm

We write ∑i∈I σi for σ1 + σ2 + · · ·+ σn and
⊕

i∈I σi for σ1 ⊕ σ2 ⊕ · · · ⊕ σn where |I| =
n, with (σ,+) and (σ,⊕) abelian groups with identity 0 and +,⊕ idempotent. The
transition relation of behavioural contracts is defined below:

Definition 2 (Transition Relation of Behavioural Contracts). Let σ 6 α−→ be the least relation
such that:

0 6 α−→ β.σ 6 α−→ if α 6= β

σ1 ⊕ σ2 6 α−→ if σ1 6 α−→ and σ2 6 α−→ σ1 + σ2 6 α−→ if σ1 6 α−→ and σ2 6 α−→

The transition relation of contracts, noted α−→, is the least relation satisfying the rules:

α.σ α−→σ
σ1

α−→σ′1 σ2
α−→σ′2

σ1 + σ2
α−→σ′1 ⊕ σ′2

σ1
α−→σ′1 σ2

α−→σ′2

σ1 ⊕ σ2
α−→σ′1 ⊕ σ′2

8 Preliminaries

σ1
α−→σ′1 σ2 6 α−→

σ1 + σ2
α−→σ′1

σ1
α−→σ′1 σ2 6 α−→

σ1 ⊕ σ2
α−→σ′1

and closed under symmetric rules for internal and external choices. We write σ α−→ if there exists
σ′ such that σ α−→σ′.

Note that the transition relation models the evolution of a single service from the
viewpoint of the communicating party, hence there is no synchronization rule. The in-
teractions between two services will be characterized in Definition 4. We now recall the
notion of observable ready sets [CGP09]. Intuitively, these sets represent the communica-
tion actions that a service is ready to execute, so characterising the different behaviour of
internal and external choice. Roughly, a single action at a time is offered by an internal
choice, while in the external choice all the actions are available at the same time.

Definition 3 (Observable Ready Sets of Contracts). Let σ be a contract, and P(Comm) be
the finite set of parts of Comm, called ready sets. Moreover, let σ ⇓ S be the least relation between
contracts σ and ready sets S ∈ P(Comm) such that:

0 ⇓ ∅ α.σ ⇓ {α}
σ1 ⇓ S or σ2 ⇓ S

σ1 ⊕ σ2 ⇓ S

σ1 ⇓ S, σ2 ⇓ R

σ1 + σ2 ⇓ S ∪ R

Example 1. We show some example of observable ready sets:

• (a1 ⊕ a2) ⇓ {a1} and (a1 ⊕ a2) ⇓ {a2};

• (a1 + a2) ⇓ {a1, a2};

When a service offers some set of actions and the client can synchronize with one of
them performing the corresponding co-actions up to the point of client termination, the
two contracts are compliant. Given a service contract, it is possible to determine the set
of clients that comply (written `) with it. Examples of compliant services (for simplicity
we only consider immediate actions) are: a ⊕ b ` a + b and also a ⊕ b ` a + b + c,
moreover a ` a + b but a 6` a ⊕ b since a ⊕ b can internally decide to perform b and
the interaction gets stuck. The sub-contract relation, written σ1 � σ2, characterizes all
services compliant with σ1 that also comply with σ2. It is possible to replace a service
with one that offers more choices, allowing possible compositions and reuse of services.
For example a � a + b (width sub-typing) or a � a.b (depth sub-typing), and with one
that is more deterministic, for example a⊕ b � a.

We now introduce the notion of service compliance. Note that the definition below
does not require both parties to terminate: the client can terminate whenever all its
operations have been completed. Hereafter, let S = {a|a ∈ S}.

Definition 4 (Compliance of Behavioural Contracts). Two contracts σc and σs are compli-
ant, written σc ` σs, if for all observable ready sets C, S:

(1) σ1 ⇓ C and σ2 ⇓ S implies that C = ∅ or C ∩ S 6= ∅, and

Contracts 9

(2) σ1
α−→σ′1 ∧ σ2

α−→σ′2 implies σ′1 ` σ′2.

Note that the compliance relation is indeed defined in terms of the largest relation
over contracts enjoying properties (1) and (2) above.

Example 2. We model an authentication scenario where the server and the client are modelled
respectively by contracts σ1 and σ2 below:

σ1 = Login.(ValidLogin.σ′1 ⊕ InvalidLogin)

σ2 = Login.(ValidLogin.σ′1 + InvalidLogin)

The contracts are now described. After the login action is received by σ1, it checks if the user
name is valid and returns a Valid login or Invalid login message. If the user is authenticated,
the service continues with σ′1 . The service whose contract is σ2 sends the login action and then
waits for the authentication message. If the login is valid then it continues with σ′1. According
to Definition 4, the two contracts are compliant (by assuming σ′1 ` σ′1).

Behavioural contracts in the literature
The approach of Section 1.2.1 is updated to a multi-party version by extending the
π-calculus [MPW92] with the notions of non-deterministic choice in [CP09] (see Sec-
tion 1.2.4).

A CCS-like process calculus, called BPEL abstract activities, is used in [LP15] to repre-
sent BPEL activities [OTC07], for connecting BPEL processes with contracts in [CGP09].
The calculus is endowed with a notion of compliance and sub-contract relation.

A mechanism for recovering from a stuck computation is introduced in [BDLd15],
which is built on top of the contracts of [CGP09]. The external choice is called retractable,
and a client contract which decides whether to send a message a or b, is compliant with
a server which receives only the a message. This is because if the client decides to send
b, it can retract the choice and performs the correct operation.

The compliance relations studied in [CGP09, CP09, LP15, Pad10, BvBd15, BDLd15]
are mainly inspired by testing equivalence [dNH83]: a CCS process (in our case the
service) is tested against an observer (the client), in two different ways. A service may-
satisfy a client if there exists a computation that ends in a successful state, and a service
must-satisfy a client if in every maximal trace (an infinite trace or a trace that cannot be
prolonged) the client can terminate successfully.

The behaviour of web-services is described in [BSBM05] using automata. Only bi-
party interactions are considered, i.e. interactions between a client and a server. Different
notion of progress of interactions are introduced. For example, one of them requires that
given two states (q1, q2), for each outgoing output transition from state q1 there must be
a corresponding outgoing input transition from state q2 and vice-versa, and there must
exist at least one path from the initial state that reaches the final state such that each
intermediary state satisfies the above property. Compared to [CGP09] and the discussed
extensions, in [BSBM05] there is no distinction between internal and external choice,

10 Preliminaries

by assuming that an output corresponds to an internal decision while a request to an
external one.

A notion of abstraction in the contracts of [CGP09] for exposing partial description
of the behaviour is discussed in [BM10]. Abstract processes are introduced, which are a
version of value-passing CCS [Mil89]. A symbolic semantic for evaluating an expression
which possibly contains an abstracted value is described. In the case the value of the
if condition is abstracted, then both branches are followed. A simulation-based abstrac-
tion is proposed, where the abstract process simulates the concrete one if it performs
all the actions that are not hidden by the abstraction. The abstraction operator for con-
tracts is introduced, where the main insight is that an external choice guarded by an
input action turns into an internal choice if the input action is hidden by the abstraction
operator. It has been proved that the abstraction operator preserves the subcontract re-
lation [CGP09]. Abstract-processes allow multi-party interactions via actions, while this
is not the case for the contracts of [CGP09], however recursive processes are not studied.

The problem of checking compliance decidability in different models of contracts
is tackled in [ABZ13]. They propose behavioural contracts with bidirectional request-
response operations, where request-response operations are decomposed into a sequence
of send-receive-reply; and introduce two contract models inspired by WSCL and Ab-
stract WS-BPEL [OTC07]. The difference between the two models is that the first can
not describe intermediary activities of the service between the receive and the reply
steps, while this is possible in the second. In WSCL contracts, there is an invoke opera-
tion and a recreply operation, which corresponds to a sequence of consecutively receive
and reply. In BPEL contracts there is an invoke operation, a receive operation and a
reply operation. The semantics corresponds to an asynchronous pi-calculus. In the in-
voke operation a channel is sent asynchronously and in parallel the process waits on
the channel it has sent the reception of the acknowledgement. In the receive, the pro-
cess receives the channel and binds it to a variable. In the reply step, the process sends
the message in the channel bound at actual time. A process is able to successfully ter-
minate by performing the

√
action. A client is compliant with a service if for every

maximal computation there exists a transition labelled with
√

. It has been proved that
client-server compliance is decidable in WSCL while it is undecidable for BPEL. For the
former a reduction of the model to a Petri net is given with an algorithm for deciding
compliance. For the latter a reduction to the termination problem in Random Access
Machines is provided.

1.2.2 Orchestration in the literature

In [Pad10] the approach of [CGP09] is extended by exploiting an orchestrator for manag-
ing the sub-contract relation. A contract σ1 is sub-contract of σ2 if σ1 is more deterministic
or allows more interactions or is a permutation of the same channels of σ2. However,
it is not always the case that a contract σ, compliant with σ1, is also compliant with
σ2. A technique for synthesising an orchestrator is presented to enforce compliance of
contracts under the sub-contract relation.

Contracts 11

This approach is further extended in [BvBd15], where an orchestrator is synthesised
from session contracts, where actions in a branching can only be all inputs or outputs.
Only bi-party contracts are considered, and synthesis is decidable even in the presence of
messages never delivered to the receiver (orphan messages). Two notions of compliance
are studied: respectful and disrespectful. In the first, orphan messages and circularities
are ruled out by the orchestrator, while in the second they are allowed.

The dichotomy orchestration-choreography has been discussed in several papers (see
e.g., [Pel03]). A choreography is translated into an orchestration of services in [RDRM12],
by adding controllers that make it realisable. It is assumed a possible delay in the trans-
mission of messages that could cause the change of the order in which they are re-
ceived. They deal with both a synchronous and an asynchronous scenario. In [BGG+06]
a bisimulation is used to establish a conformance relation (or its absence) between
choreographed and orchestrated computations. We note that the orchestration model
of [BGG+06] - unlike the one we adopted in the thesis - envisages systems as the paral-
lel composition of orchestrators.

In Chapter 5 we instead devise conditions to correlate orchestrated computations
with local specifications of choreographies so to ensure that the former well-behave and
correspond to communication-safe choreographies.

1.2.3 Choreographies in the literature

Different research problems have been identified and investigated for distributed chore-
ographies, for instance realizability [LMZ13, BBO12, QZCY07, HB10], conformance [LP15,
BB11, BZ09b, BZ08b], or enforcement [ARS+13].

In [LGMZ08] an analysis of the relations between the interaction-oriented choreogra-
phies (i.e., global specifications expressed as interactions) and the process-oriented ones
(i.e., the local specifications expressed as process algebra terms) is presented.

Session types have been introduced to reason over behaviour of choreographic com-
municating processes, and are used for typing channel names by structured sequences
of types [DCD10]. Session types can be global or local. A global type represents a formal
specification of a choreography of services in terms of their interactions. In [HYC08] a
choreography of services is represented in terms of a global type. The projection of a
safe global type to its components yields a safe local type, which is a term of a process
algebra similar to those of [CGP09]. If the processes of a system can be typed with the
corresponding local types, then it is proved that the system is also safe.

Conversely, from given safe local types, a choreography is synthesized with a “bottom-
up” approach, as a safe global type in [LT12, LTY15]. It is proved that if the global type
enjoys safety properties and progress, then this holds also for the end point. More-
over by projecting the global type to its components one obtains terms equivalent to the
starting local types. This makes choreography models more flexible (for instance, chore-
ographies have been exploited in [LS13] as a contract model for service composition).

In [LP15] the compliance and sub-contract relations are extended to deal with chore-
ographies. Compliance is obtained by seeing a choreography as a compound service. A

12 Preliminaries

client cannot interact with the choreography on actions already used while synchronis-
ing with other services, i.e. the choreography refinement is obtained by preventing the
new service to interfere with the others in the network.

A transformation for amending choreographies that do not respect common syntac-
tic conditions for projection correctness is presented in [LMZ13]. The starting point is a
global choreography, which represents the system behaviour. Local points are then ob-
tained through projection. In case the local points do not realise the global viewpoint, a
transformation which reduces the amount of concurrency and adds hidden interactions
is performed. Fresh participants are added to drive the local points with hidden actions,
in order to enforce the admitted behaviours, described by the global viewpoint.

The problem of restricting the behaviour of discovered services in order to fulfil the
collaboration prescribed by a choreography specification, called choreography realizability
enforcement, is tackled in [ARS+13]. They propose a technique to automatically synthe-
sise Coordination Delegates (CD), one for each service, in order to prevent a service to
perform undesired operations. A distributed coordination algorithm is presented that
implements the coordination logic that each CD has to perform in order to solve con-
currency issues arising when two events are activated at the same time. Both the model
and the implementation of each CD are generated.

In [BZ08b] contracts are represented in a language independent way, by means of
labeled transition systems. They address the problem of checking, given a global de-
scription of an application (i.e. a choreography specification à la WS-CDL), if a service is
conformant with a given role in the choreography, and can be used in any implementa-
tion of it. In the literature this problem is known as choreography conformance. They also
check contract refinement, that is checking if a contract is a refinement of another one, and
can thus be safely substitute. They operate in an asynchronous settings, where messages
are exchanged through queues. The projection of a choreography into a role produces
a labeled transition system instead of a contract described in a given language. The
Business Process Modelling Notation 2.0 (BPMN2) [(OM11] includes meta-model and
related graphical notation for specifying service choreographies.

1.2.4 Contracts and Session Types

Session types are restricted to perform only output actions in internal choices and in-
put actions in external choices, while this is not the case for contracts [BCZ15]. The
main difference between contracts and session types is that contracts record the over-
all behaviour of a process, while session types project this behaviour onto the private
channels that a process uses.

Session types impose overly restrictions on their actions while contracts only work
for network with fixed topology. A contract language based on the π-calculus is pro-
posed in [CP09], for filling the gap between session types and contracts. Indeed, con-
tracts are also able to send channels in addition to messages. A standard process calculi
syntax with parallel composition and scope extrusion is used. Input and output actions
are denoted respectively as α! f and α? f where f is a pattern for matching messages or

Contracts 13

channels. Contracts include three terminal behaviours: the deadlocked process 0, the
successfully terminated process 1 and Ω that denote indefinite progress without any
further interactions with the environment. Compared to [CGP09], a novel notion of
compliance is presented: T is compliant with S (written T / S) if every computation of
T|S leading to a state where the residual of T is stable is such that either the residual
of T has successfully terminated and the residual of S will eventually terminate suc-
cessfully, or the two residuals can eventually synchronize. The synchronization may
only be available after some time. Divergence of the test T is ignored, since it implies
that T is making progress autonomously; divergence of the contract S being tested is
ignored, in the sense that all the visible actions it provides are guaranteed, for example
c?a.1 / c!a.1 + Ω.

The contracts of [CGP09] are proved to be a model of first-order session types [GH05]
in [BH12]. In particular, a subset of these contracts called session contracts is selected, and
the main result of this paper shows that first-order session types can be smoothly em-
bedded into the theory of contracts, which thus appears to be a more general formalism.
This approach is then extended in [BH14] that introduces a notion of higher-order con-
tracts and relates them to higher-order session types that also handle session delegation.
To give a behavioural interpretation in terms of contracts, higher order session contracts
are introduced, which are a subset of higher-order service contracts, with a novel be-
havioural theory. In particular, a notion of mutual compliance is introduced, and the
sub-contract relation is extended to set of contracts that are in mutual compliance.

1.2.5 SLA contracts and others

A model capable of expressing Service-Level Agreement requirements on contracts is
discussed in [BM11]. They use the notion of constraints systems introduced in the
concurrent constraints calculus [SRP91]. In this calculus there is a global constraints
store that provides only partial information on the value that variables can take. Instead
of writing a value, the store is monotonically redefined by adding constraints with the
tell construct, a constraint is added only if the resulting constraints system is consistent.
In the same fashion, the reading of a value is substituted by the construct ask that checks
whether the given constraint is entailed by the store. The cc-pi calculus admits a retract
construct for removing previously added constraints, which in turns does not satisfy the
monotonicity property. This construct is necessary for the allocation and deallocation of
resources. Compared to the cc-calculus, names are handled in a different way. They are
ordinary names in the pi-calculus style, and are introduced by means of permutation
algebras. The key concept is the support of a value, which specifies the set of names such
that the permutations which do not affect them do not modify the value. Thus the free
names of a constraint c are characterized as the support of c. Finally, two processes can
reach a SLA agreement by synchronizing on a public channel, in case all their constraints
are satisfied.

Concerning Component-Based Software Engineering, several formalisms have been in-
troduced for describing and composing components, which resemble behavioural con-

14 Preliminaries

tract formalisms. Generally these formalisms do not cope with security issues arising in
Service Oriented Computing, as for example the possibility of having liable participants.

I/O Automata [LT89], Interface Automata [dAH01] and Constraint Automata [BSAR06]
are examples of Component-Based Software Engineering formalisms. I/O automata are
input enabled, in that they must be ready to receive any possible input from the envi-
ronment. Interface Automata do not require to be input-enabled, and feature non-linear
behaviours (i.e. broadcasting offers to every possible request), and a notion of compat-
ibility [dAH01] between interfaces requiring that all the offers are matched. Constraint
Automata [BSAR06] do not require to be input-enabled, and do not distinguish between
input and output actions. Their transitions are data-dependent and are activated by
logic constraints on those data. They recognise infinite traces and reject those which do
not satisfy the imposed constraints. Constraint automata are equipped with an equiva-
lence and a refinement relation. Moreover, they are proposed as an operational model
for Reo [Arb04], a coordination language for compositional construction of component
connectors based on a calculus of channels.

1.3 Communicating machines

Communicating machines [BZ83] are a simple automata-based model introduced to
specify and analyse systems made of agents interacting via asynchronous message
passing. In [DY13] a correspondence with choreographies has been proved. In Chap-
ter 5 (adapting the terminology of [LGMZ08]) communicating machines will be used as
automata-oriented choreographies, as in [LTY15]. These automata interact through FIFO
buffers, hence a principal can receive an input only if it was previously enqueued.

We slighty adapt the original definitions and notation from [BZ83] and [CF05]. In
particular, the only relevant difference with the original model is that we add the set
of final states. LetP be a finite set of participants (ranged over by p, q, r, s, etc.), C =

{pq
∣∣ p, q ∈P and p 6= q} be the set of channels, and requests of participants will be built

out of R = {a, b, c, . . .} while their offers will be built out of O = {a, b, c, . . .}; with
R ∩ O = ∅ (offers and requests here should not be confused with the set Comm of
Section 1.2.1).

The set of channel actions is Act = C× (R ∪O) and it is ranged over by `; we abbre-
viate (sr, a) with a@sr when a ∈ O, representing the action of sending a from machine
s to r. Similarly, we shorten (sr, a) with a@sr when a ∈ R, representing the reception of
a by r.

Definition 5 (CFSM). Given a finite set of states Q, a communicating finite state machine
is an automaton M = (Q, q0,Act, δ, F) where

• q0 ∈ Q is the initial state,

• δ ⊆ Q× Act×Q is the set of transitions,

• F ⊆ Q is the set of final, accepting states.

Communicating machines 15

We say that M is deterministic if and only if for all states q ∈ Q and all channel actions
` ∈ Act, if (q, `, q′), (q, `, q′′) ∈ δ then q′ = q′′.
Finally, we write L (M) ⊆ Act

∗ for the language on Act accepted by the automaton, i.e. the
machine M.

The notion of deterministic communicating finite state machines adopted here differs
from the standard one (e.g., the one in [CF05]) which requires that, for any state q, if
(q, a@sr, q′) ∈ δ and (q, b@sr, q′′) ∈ δ then a = b and q′ = q′′. Indeed, hereafter, we will
only consider deterministic communicating finite state machines.

The communication model of communicating finite state machines (cf. Definitions 6
and 7) is based on (unbounded) FIFO buffers, which actually are the elements in C.
They are to be intended as the channels that the participants use to exchange messages.
To spare another syntactic category and cumbersome definitions, we draw the messages
appearing in the buffers of communicating finite state machines from the set of requests
R. Recall that the set of participantsP is finite.

Definition 6 (Communicating systems). Given a communicating finite state machine Mp =

(Qp, q0p,Act, δp, Fp) for each p ∈ P, the tuple S = (Mp)p∈P is a communicating system,
belonging to the set CS.

A configuration of S is a pair s = (~q;~u) where ~q = (qp)p∈P with qp ∈ Qp and where
~u = (upq)pq∈C with upq ∈ R∗; the component ~q is the control state and qp ∈ Qp is the local
state of machine Mp, while ~u represents the contents of the (FIFO buffers of the) channels.

The initial configuration of S is s0 = (~q0;~ε) with ~q0 = (q0p)p∈P and ~ε is the vector of
empty channels.

Hereafter, we fix a machine Mp = (Qp, q0p,Act, δp, Fp) for each participant p ∈P and
we let S = (Mp)p∈P be the corresponding system. The definition below formalises a
computation step of a communicating system: if a machine Ms sends a message a to
a machine Mr then a is inserted on (the FIFO buffer of) the channel sr connecting the
two, rendered by sr · a (condition 1 below). If the channel is in the form a · sr being a
the top of the channel (condition 2 below), then the element is read. In both cases, no
other machine is affected in the step. In the following let ~q(i) be the projection of the
vector ~q on the i-th element.

Definition 7 (Reachable state). A configuration s′ = (~q′; ~u′) is reachable from another con-
figuration s = (~q;~u) by firing ` ∈ Act, written s `−→s′, if there exists a ∈ R such that:

1. if ` = a@sr then (~q(s), `,~q′(s)) ∈ δs and for all p 6= s, ~q′(p) = ~q(p) ∧ ~u′(sr) = ~u(sr) · a;

2. if ` = a@sr then (~q(r), `,~q′(r)) ∈ δr and for all p 6= r, ~q′(p) = ~q(p) ∧ ~u(sr) = a · ~u′(sr);

3. and, in both (1) and (2) above, for all pq 6= sr, ~u′(pq) = ~u(pq).

As usual, the computation s1
`1 · · · `m−−−−→sm+1 shortens s1

`1−→s2 · · · sm
`m−→sm+1 (for some s2, . . . , sm).

The set of reachable configurations of S is RS(S) = {s
∣∣ s0 →∗ s}.

16 Preliminaries

q01start q11

q21

a@AB

b@AC a@AB

a@AB

q02start q12

q22

a@AB

c@BC a@AB

a@AB

q03start q13

q23q33

b@AC

c@BC c@BC

b@AC

Figure 1.3: A Communicating System

Example 3. Figure 1.3 shows a graphical representation of a communicating system made of
three communicating machines, obtained from the contract automata in Figure 5.1 (see Chap-
ters 3 and 5).

Similarly to finite state automata, communicating machines have one initial state and a set
of final states. A transition has a channel as label, e.g. c@BC, indicating that the offer c is sent by
participant B to the buffer of the participant C; similarly for a receive action. Note that channels
of communicating machines specify for each channel action the sender and the receiver.

Compliance in the asynchronous case is not decidable for communicating finite state
machines [BZ83], but become such by using FIFO queues and bags [CHS14]. More-
over in [LTY15] compliance between communicating finite state machines is guaranteed
whenever it is possible to synthesise a global choreography from them.

1.4 Logics for Contracts

In this section we assume that the reader is familiar with classic propositional logic
(see [nE77] for a comprehensive reading).

Recently, the problem of expressing contracts and of controlling that the principals
in a composition fulfil their duties has been studied in Intuitionistic logic, where a clause
is interpreted as a principal in a contract, in turn rendered as the conjunction of several
clauses.

Intuitionistic logic differs from the classic view of logic in that it does require a proof
for assigning a truth value to a proposition. In particular, the axioms of the excluded
middle and double negation elimination are not present. This turns out to be crucial in
modelling circular obligations between contracts, as discussed below.

Actually, the literature only considers fragments of Horn logics because they have
an immediate interpretation in terms of contracts. More in detail, these Horn fragments
avoid contradiction clauses, as well as formulae with a single Horn clause. These two
cases are not relevant because their interpretation as contracts makes little sense, e.g. a
composition requires at least two parties.

The first logic we consider is Propositional Contract Logic (PCL) [BZ09a], which is
able to deal with circular obligations. Its distinguishing feature is a new implication,

Logics for Contracts 17

called contractual implication, that permits to assume as true the conclusions even before
the premises have been proved, provided that they will be in the future.

We then introduce the Intuitionistic Linear Logic with Mix (ILLmix)[Ben95]. In this
logic one can represent the depletion of resources, and the possibility of recording debits.

In Chapter 4 we will relate a model of contracts with both Horn fragments of these
logics.

1.4.1 Propositional Contract Logic

Contracts are modelled as formulae in Intuitionistic logic extended with a contractual
form of implication in [BZ09a]. As motivating example the authors propose a toy ex-
change scenario. Two kids, Alice and Bob, want to share their toys, and their respective
contracts are B = a → b and A = b → a where a is the atomic proposition “Alice lends
her air plane toy” and b is “Bob lends his bike”. However, the formula A ∧ B → a ∧ b
does not hold. This problem has been solved by Propositional Contract Logic (PCL).

Definition 8 (PCL). Assume a denumerable set of atomic formulae Atoms = {a, b, c, . . .}; then
the formulae of PCL are inductively defined by the following grammar.

p ::= ⊥ false
> true
a prime
¬p negation
p ∨ p disjunction
p ∧ p conjunction
p→ p implication
p� p contractual implication

PCL extends Intuitionistic logic with a contractual implication (�) where
((a � b) ∧ (b � a)) → a ∧ b holds. The starting point is Intuitionistic logic and not
the classical one because with the axiom of the excluded-middle the contractual impli-
cation coincides with the right projection: (p� q)↔ q becomes a theorem. Contractual
implication is stronger than standard implication: ` (p � q) → (p → q), and shares
with standard implication a number of properties. A contract that promises true is
always satisfied regardless of the precondition ` p � T. Differently from standard im-
plication, in PCL ` ⊥ � p must not hold (⊥ is the false precondition), otherwise the
contradiction (⊥ � ⊥) → ⊥ would be deducible. The logic enjoys transitivity proper-
ties for implications, moreover the conclusions in a contract can be arbitrarily weakened
while the preconditions can be arbitrarily strengthened.

For example, let Customer be the contract bookFlight� pay and AirLine be the con-
tract pay � bookFlight ∧ f reeDrink. We can weaken the Airline contract
` Airline → (pay � bookFlight) or strengthen the Customer contract
` Customer → ((bookFlight ∧ f reeDrink) � pay). The contract still gives rise to an
agreement. The properties ` q → (p � q) and 6` (p � q) → q also hold. In

18 Preliminaries

the former, if the conclusion is true then it is also for the inner contract which im-
plies q. The second property states that a contract does not imply its conclusion. An
Hilbert-style axiomatization for PCL is presented, which comprises all the axioms of
Intuitionistic logic, modus ponens rule and three axioms T � T, (p � p) → p and
(p′ → p) → (p � q) → (q → q′) → (p′ � q′). The last rule combines the rule for the
weakening of the conclusions and the strengthening of the premises. The set of axioms
are sound and complete with respect to all the properties stated above. It has been
proved that PCL is consistent and negation free formulae do not lead to inconsisten-
cies. The provability of formulae specified in PCL is decidable, indeed a Gentzen-style
sequent calculus for PCL equivalent to the Hilbert-style axiomatization that enjoys cut
elimination has been provided. The rules for its sequent calculus are in Figure 1.4. The
contractual implication rules are Zero, Fix and Prepost while the others are the standards
for Intuitionistic logic. Rules (weakR) and (cut) are proved to be redundant in [BZ09a].

Moreover, a binding mechanism between contracts and principals who issue the con-
tracts is proposed in [BZ09a]. This allows to single out the principal who is responsible
for a violation. In Chapter 3 this problem will be tackled for several properties of agree-
ment between contracts. PCL is extended with the formula a says p, representing the
fact that the principal a has issued the contract p. PCL axioms are extended accounting
with the new formula and it has been proved that the extended logic preserves all the
main results, in particular it is decidable. The toy example becomes:

ptoy =Alice says ((Bob says b)� a)∧Bob says ((Alice says a)� b).
Such contract implies the expected duties: ` ptoy → Alice says a ∧ Bob says b. In case

of a violation, a third party can infer who is responsible of the violation. For example,
suppose Alice has not respected her contract, than a judge could infer the formula
ptoy ∧ ¬a→ (Alice says a) ∧¬a→ Alice says ⊥.

The Horn fragment of PCL (H-PCL) [BCP13, BCPZ15] that has a neat interpretation
in terms of contracts is defined below, under the assumption that a principal cannot
offer and require the same action.

Definition 9 (H-PCL). The H-PCL formulae p, p′, . . . and the clauses α, αi, ... are generated
by the following BNF grammar

p ::=
∧

i∈I αi α ::=
∧

j∈J aj | (
∧

j∈J aj)→ b | (∧j∈J aj)� b
where |I| ≥ 2, |J| ≥ 1, i 6= j implies ai 6= aj, and ∀j ∈ J. aj 6= b

where I and J are finite set of indexes. Also, let λ(p) be the conjunction of all atoms in p.

A standard contract calculus similar to the π-calculus is proposed in [BZ10a], with
primitives for managing constraints (the PCL formulae), which resemble those of [BM11].

The scope delimitation (a)P is used for identifying a session; while the primitive
f usexc implements a contract-based multi-party agreement. It checks the entailment of
the constraint c, and binds the variable x to an actual session identifier, shared among
the parties involved in the contract. For example, continuing the toy-exchange scenario,
Alice is modelled as (x)(tell b(x) � a(x). f usexa(x).lendAirplane). The intended use of
f usexc is to initiate a new session, by accepting a contract which implies c. To do that,

Logics for Contracts 19

x is instantiated to a fresh session ID and some variables are instantiated to actual ones,
representing the binding of the unknown principals to the actual ones. The askxc con-
struct stops a process until a formula c can be deduced from the context. This construct
models a participant joining an already initiated session, since no fresh identifier is gen-
erated. A fusion is driven by the local minimal fusion policy, which only requires to
instantiate those variables actually involved in the entailment of c. Thanks to locality, it
is not necessary to explore the whole system, but it suffices to inspect any set of known
contracts to decide if a set of contracts leads to an agreement.

A simplified version of [BZ10a] has been proposed in [BZ10b]. Principals names
are not specified, and there is a simplified version of the local minimal fusion policy,
providing the calculus with a joinx construct for joining an already initiated session.
The expressiveness of the proposed approach has been shown by encoding some con-
current idioms into their calculus. They express semaphore, memory cells and syn-
chronous π-calculus in their model. For example, concerning π-calculus the output
action a(b).P becomes (x)(msg(x, b)| f usexin(a, x).P), and input action a(b).Q becomes
(y)(in(a, y)|(z)joinzmsg(y, z).Q). In particular, synchronous communications are ex-
pressed through the f use construct: in an output action, the process sends the mes-
sage b, codified in the predicate msg(x, b), and waits with f usexin(a, x) where a is the
identifier of the channel. The input action provides the channel identifier with the pred-
icate in(a, y) and reads the message by fusing the variable z with the message itself. At
runtime x and y will be fused to the same session identifier.

1.4.2 Intuitionistic Linear Logic with Mix

Linear logic [Gir87] has been proposed as a refinement of classic and Intuitionistic logic;
where logical deduction becomes a way of manipulating resources that cannot always be
duplicated or contracted at will. This logic has been shown to be effective in modelling
contracts where actual resources are consumed and produced.

Intuitionistic linear logic with mix [Ben95] is used for modelling exchange of re-
sources between partners with the possibility of recording debits (requests satisfied by
a principal offer but not yet paid back by honouring one of its requests), and has been
recently given a model in terms of Petri Nets [BDGZ15]. As an example, consider the
following contracts expressed in ILLmix:

Alice = ia, ia((ca⊗ cb⊥) Bob = ib, ib((cb⊗ ca⊥)

The above formulas model the scenario where Alice wants a birthday cake (cb),
but she only has the ingredients to make an apple cake (ia); Bob wants an apple cake
(ca), but he only has the ingredients to make a birthday cake (ib). They make a deal:
each one will cook for the other, and then they will exchange cakes (and eat them).
Intuitively, a positive atom ca represents a credit, while a negative atom ca⊥ represents a
debit. The composition (via tensor product) of the three contracts is successful, in that all
resources are exchanged and all debits honoured. Indeed with ILLmix, the entailment

20 Preliminaries

Γ, p ` p
id

Γ, p ∧ q, p ` r

Γ, p ∧ q ` r
∧ L1

Γ, p ∧ q, q ` r

Γ, p ∧ q ` r
∧ L2

Γ ` p Γ ` q

Γ ` p ∧ q
∧ R

Γ, p ∨ q, p ` r Γ, p ∨ q, q ` r

Γ, p ∨ q ` r
∨ L

Γ ` p

Γ ` p ∨ q
∨ R1

Γ ` q

Γ ` p ∨ q
∨ R2

Γ ` p Γ, p ` q

Γ ` q
cut

Γ, p→ q ` p Γ, p→ q, q ` r

Γ, p→ q ` r
→ L

Γ, p ` q

Γ ` p→ q
→ R

Γ,¬p ` p

Γ,¬p ` r
¬L

Γ, p ` ⊥

Γ ` ¬p
¬R

Γ,⊥ ` p
⊥L

Γ ` >
>R

Γ ` ⊥

Γ ` p
weakR

Γ ` q

Γ ` p� q
Zero

Γ, p� q, r ` p Γ, p� q, q ` r

Γ, p� q ` r
Fix

Γ, p� q, a ` p Γ, p� q, q ` b

Γ, p� q ` a� b
PrePost

Figure 1.4: The rules of the sequent calculus for PCL

Alice, Bob ` 1 is proved, which stands for an agreement between Alice and Bob where
all the produced resources are consumed.

Deadlock situations in which the two parties are waiting each other for making the
first step are avoided by allowing Alice to give an apple cake to Bob, provided that
contextually Bob is charged with a debit to give her a birthday cake. This is due to
the axiom a⊗ a⊥ ` 1, called the annihilation principle, which allows a credit and a debit
of the same resource to be cancelled out. The rule Mix (see Figure 1.5) of the sequent
calculus allows for cancelling debits, without freely generating credits and debits, as
done by similar logics such as cancellative linear logic [RRW91].

We recall the full grammar of ILLmix:

Definition 10 (ILLmix). The formulas A, B, . . . of ILLmixare defined as follows:

A ::= a | A⊥ | A⊗ A | A(A | A&A | A⊕ A |!A | 1 | 0 | > | ⊥

The full sequent calculus for ILLmixis displayed in Figure 1.5, where A, B stand for a
Horn formula p or clause α, while γ may also be empty (note that in rule (NegL), A = a
and so A⊥ = a⊥); Γ and Γ′ stand for multi-sets containing Horn formulae or clauses;
and Γ, Γ′ is the multi-set union of Γ and Γ′, assuming Γ, ∅ = Γ. In Chapter 4 we will
only consider proofs without the rule Cut, which is redundant by [Ben95].

We now recall the basics of ILLmix. Let A, A⊥ be respectively the set of positive and
negative atoms, ranged over by a, b, c, . . . ∈ A and by a⊥, b⊥, c⊥, · · · ∈ A⊥. Let L = A∪A⊥

Logics for Contracts 21

A ` A
Ax

Γ ` Γ′ ` γ

Γ, Γ′ ` γ
Mix

Γ ` A

Γ, A⊥ `
NegL

Γ, A, B ` γ

Γ, A⊗ B ` γ
⊗L

Γ ` A Γ′ ` B

Γ, Γ′ ` A⊗ B
⊗R

Γ ` A Γ′, B ` γ

Γ, Γ′, A(B ` γ
(L

Γ, A ` B

Γ ` A(B
(R

Γ ` A Γ′, A ` γ

Γ, Γ′ ` γ
Cut

Γ, A `

Γ ` A⊥
NegR

Γ `

Γ ` ⊥
⊥R

⊥ `
⊥L

` 1
1R

Γ ` γ

Γ, 1 ` γ
1L

Γ ` >
>

Γ, 0 ` A
0L

Γ, A ` γ Γ, B ` γ

Γ, A⊕ B ` γ
⊕L

Γ ` A

Γ ` A⊕ B
⊕R1

Γ ` B

Γ ` A⊕ B
⊕R2

Γ ` A Γ ` B

Γ ` A&B
&R

Γ, A ` γ

Γ, A&B ` γ
&L1

Γ, B ` γ

Γ, A&B ` γ
&L2

Γ, A ` γ

Γ, !A ` γ
!L

!Γ ` A

!Γ `!A
!R

Γ ` γ

Γ, !A ` γ
weakL

Γ, !A, !A ` γ

Γ, !A ` γ
coL

Figure 1.5: The sequent calculus for ILLmix

be the set of literals, and assume Y ⊆ A, X ⊆ L, where X contains no atom a and its
negation a⊥. A positive tensor product is a tensor product of positive atoms.

As said, we will only consider a fragment of Horn ILLmix called H-ILLmix, defined
below. It only has tensor product and Horn implication:

⊗
b∈Y b(

⊗
a∈X a. Note that the

premises of the Horn implication are always positive tensor products, and the conclu-
sion is a tensor product of literals, possibly negative.

Definition 11 (H-ILLmix). The Horn formulae p, pi, ... and the clauses α, αi, ... of H-ILLmix

are defined by
p ::=

⊗
i∈I

αi α ::=
⊗
a∈X

a |
⊗
b∈Y

b(
⊗
a∈X

a

where |I| ≥ 2; |X|, |Y| ≥ 1; {a, a⊥} 6⊆ X; and b ∈ Y implies b 6∈ X.

1.4.3 Logic for Contracts in the literature

Different models of PCL have been proposed in the literature, as event structures, Petri
nets, process algebra [BCZ13, BCP13, BTZ12].

In [BCPZ16] [BCZ13] event structures endowed with certain notions from game the-
ory are used to represent contracts. The property of agreement is studied, which ensures
safe interactions among participants. A principal is culpable if it has not yet fired an

22 Preliminaries

enabled event, and is otherwise innocent. In particular a principal agrees to a contract
if it has a positive pay-off in case all the principals are innocent, or if someone else is
found culpable. Additionally the authors study protection: a protected principal has a
non-losing strategy in every possible context. It is shown that for a particular type of
contracts, with Offer Request pay-off, it is not possible to obtain both agreement and
protection for all principals. Indeed a participant is protected if every offer is performed
only after the corresponding request is obtained. Hence in circular contracts every par-
ticipant is stuck waiting for the other parties to perform the corresponding offers. A new
enabling action, called circular enabling action, is introduced for solving this problem. It
is showed how protection and agreement can coexist by using the circular enabling re-
lation. Finally two encodings from session types to event structures are proposed. Two
session types are compliant if the client can successfully interact with the server. It is
proved how compliance between binary session types corresponds to agreement via an
eager strategy.

Processes and contracts are two separate entities in [BTZ12]. In this formalism con-
tracts can be represented as formulae or as process algebras. A process can fulfil its
duty by obeying its contract or it behaves dishonestly and becomes culpable — and be-
come honest again by performing later on the prescribed actions. A generic calculus for
Contract-Oriented COmputing (CO2) is proposed, where it is possible that contracts can
not be fulfilled after an agreement has been reached. Contracts are used to drive com-
putations after sessions have been established for detecting violations. These contracts
have the form A says c, where A is the principal that advertises the contract c. A set of
observables Φ, which are properties of contracts, and an entailment relation ` between
contracts and observables are given. There is a contract fulfilment relation c,A between
contracts and principals, and contracts are represented as CCS-like processes.

The execution of a contract dictates obligations to principals. The processes have in-
put activities, output activities and autonomous activities. Moreover they have branch-
ing, parallel composition and recursive definition. Φ is the set of LTL formulae. c ` φ

holds when c |=LTL φ. Also c,A ←→ ∀c′, c′′.c ≡ (A says c′)|c′′ → c′ ≡ 0, that
is A has fulfilled all his duties. They also provide contract-as-formulae where con-
tracts are modelled as PCL formulae [BZ09a]. In this framework we have Φ = C and
C,A←→ ∀a.C ` (A says a)→ C ` (A says !a), that is each obligation for A entailed by
C has been fulfilled.

An encoding of H-PCL formulae without nesting contractual implications into
contracts-as-processes is provided. Contractual implications are encoded into parallel
composition, in order to fulfil circular dependencies asynchronously. CO2 is proposed as
a generalization of the calculus presented in [BZ10a], where an abstract contract model
based on cc-calculus [SRP91] is considered. It differs from cc-calculus for not assuming
a global constraint store, instead it uses sessions. Moreover, constraints are multi-sets of
contracts. The construct f use initiates a new session according to a local minimal fusion
policy, likewise of PCL. The construct tell advertises a new contract. The construct askφ

blocks the process until the formula φ is entailed. The construct do makes a multi-set of

Model Checking 23

contracts evolve. A system is composed by a framing A[P] for each agent that contains
his process and the contracts in which it is involved, and by a frame s[C] for the session
that contains all the contracts instantiated by a f use. With f use the contracts involved
are shifted from the agent’s frame to the actual frame of the session.

The system evolves when a session contains the contract A says a and meanwhile
in the frame of the agent, it performs the action do a. In a typical usage, the parties
first publish their contracts with tell, then one of them opens a new session with f use
while the others are waiting with ask to discover their duties in the session, and finally
perform their duties with do. A principal is honest if it performs all the duties provided
by its contract. If in the frame of the agent there are no actions, while in the session
it still has duties to performs, then it is dishonest. An agent can protect himself from
frauds by providing a contract with a contractual implication which implies to perform
his duties only if it is guaranteed that the parties involved fulfil their duties as well.

1.5 Model Checking

Model checking [BK08] is a technique for automatically verifying correctness properties,
which is exhaustive for finite-state systems. It consists in proving that a model M,
i.e. a suitable abstraction of the system under analysis, satisfies a particular property
φ, written M |= φ. An example of a property φ could be the absence of deadlock
states, i.e. the system never gets stuck. The model is generally described by a Kripke
structure [Kri63] and the property of interest φ by a modal temporal logic. In this logic
each formula has a truth value in each possible state of the system. States are temporally
ordered: if a state q′ is reachable from a state q then q temporally precedes q′. Modal
operators allow to express properties that must hold in every possible future state or in
one future state. Since the system is finite, the procedure is decidable: an exhaustive
search on the states space suffices to find states that eventually violate the property φ, if
any.

In this thesis we will use automata-based model checking techniques [VW86, VW08].
In particular, the problem of deciding whether a formula satisfies a given model can be
reduced to the problem of checking the emptiness of the intersection of two languages,
since the set of models of a temporal logic formula can be interpreted as a language
(see [VW86, VW08] for details). In Chapter 2 we will extend the model checking tech-
nique of [BDFZ11, BDF09]. Briefly, the model is described by an abstraction H whose
denotational semantic is a context-free language; its words represent all the possible
execution traces. The property φ is rendered as a regular language representing the
offending traces. In this case, the problem of deciding whether M |= φ reduces to the
problem of checking the emptiness of the intersection of the language of H and the
complement of the language of φ (i.e. the language of ¬φ). This problem is known to
be decidable since regular languages are closed under complements, context-free lan-
guages are closed under intersection with regular languages, and emptiness of context
free languages is decidable [HMU06], yielding an effective model-checking procedure.

24 Preliminaries

Properties under which a model is verified are traditionally:

• invariant properties: this type of properties are memory-less, it suffices to check if
the property holds in each state separately;

• safety properties: these properties are history-dependent; in order to check if a state
q satisfies a safety property φ all the states that are traversed for reaching q are
needed (i.e. the prefix). In particular, φ is characterized by its set of bad prefixes,
that are all those finite traces that lead to a violation of the property;

• liveness properties: these properties cannot be violated by any finite prefix of an ex-
ecution. An example of liveness properties are fairness properties, which are used
for ensuring that if a state q is visited infinitely often, then all possible transitions
from q must be traversed.

1.6 Language-based Security

Security has been seen commonly as a property that relevant programs must fulfil. It is
a composite of three attributes [ALRL04]:

• confidentiality absence of unauthorized disclosure of information;

• availability readiness for correct service;

• integrity absence of improper alterations.

Mechanisms for enforcing security have been developed at operating system level, and
consist mainly of firewalls, monitors, cryptography, etc... With the advent of mobile and
ubiquitous computing, security has become a relevant concern and thus the need for
introducing security mechanisms from the early phases of the development process.

Language-based security [Koz99, SMH01] has been proposed for introducing secu-
rity mechanisms at programming language-level. The introduction of languages con-
structs capable of expressing security issues allow the development of static analysis
techniques to verify and validate security properties. In Chapter 2 we will rely on the
approaches proposed by Bartoletti et al. [BDF09, BDFZ11].

In [BDFZ11, BDF09] services are modelled as expressions of a typed λ-calculus ex-
tended to handle services orchestration, where types are an abstraction of the behaviours
of services. A set of primitive access events are introduced to abstract from activities with
possible security concerns. Security policies are regular properties of execution histories
(i.e. sequences of access events). A service request is modelled by a particular construct
that uniquely identifies the request and the type of the requested service, including the
safety properties that explain how the caller protects itself from the invoked service.
Safety properties are modelled as regular nominal automata recognising data words,
called Usage Automata [BDFZ15], which are a sort of parametric finite state automata.
Services are assumed to be published in a global trusted repository.

Control Theory 25

Plans represent the assignment of services to requests, hence describing each pos-
sible orchestration. There is a type and effect system for the calculus; types are stan-
dard, while effects, called history expressions, are an approximation of all the possible
behaviours of services. History expressions are a sort of context-free grammar, and in-
clude the empty history ε, access events α, sequencing H · H′, non-deterministic choice
H + H′, safety framings ϕ[H], recursion µh.H (µ binds the occurrences of the variable
h in H), and planned selection which abstracts a branch of different history expressions
generated by different plans.

Definition 12 (History Expression with Planned Selection). A History Expression H is a
term generated by the following grammar:

H, H′ ::= ε empty
h variable
α access event
H · H′ sequence
H + H′ choice
ϕ[H] safety framing
µh.H recursion
{π1 � H1 · · ·πk � Hk} planned selection

The denotational semantics of H is the set of histories H that represents all the
possible computations of a service expression.

Static analysis techniques are built to determine plans that drive service executions
enjoying safety properties. A history expression H of a service is valid when it respects
all its security framings, and eventually those of the caller. The effect of a service com-
position is obtained by suitably assembling the effects of the component services, and
of those services they may invoke in a nested fashion.

The validity of a service composition depends thus on the global orchestration that
selects a service for each request. A main result of [BDFZ11, BDF09] shows how to
construct a plan that associates requests with offers so to guarantee that no executions
will violate the security requirements. Indeed, if a service composition is valid, then the
corresponding plan will safely drive the execution without resorting to any run-time
monitor, and guaranteeing all the safety properties required.

Validity of history expressions is ascertained by model checking Basic Process Alge-
bras [BW90] with finite state automata; a history expression H is naturally rendered as
a BPA process, while a finite state automaton models the validity of H. In Chapter 2
these techniques have been applied to an automata based representation of the contracts
of [CGP09], recovering the same notion of progress.

1.7 Control Theory

Ramadge and Wonham’s Theory of Supervisory Control for Discrete Event Systems [CL06]
is concerned with the synthesis of a controller which drives the execution of the system

26 Preliminaries

while enforcing some security properties. The theory was introduced in [RW87, Thi96].
A discrete event system G is a finite state automaton, called the plant, where ac-

cepting states represent successful terminations of a task, e.g. the completion of manu-
facturing processes comprised of series of tasks; while forbidden states should never be
traversed in “good” computations. In forbidden states control problems, the purpose of
supervisory control theory is to synthesise a controller to enforce that forbidden states
cannot actually be reached while marked states are always reachable. To do so, this
theory distinguishes between controllable events, that may be disabled by the controller
even though they are enabled by the plant; and uncontrollable events, i.e. those always
enabled.

In general, the supervisor cannot observe all events. Hence events are partioned into
observable and unobservable. It is assumed that all controllable events are observable.

A solution to the Supervisory Control for Discrete Event Systems may be given
by a finite deterministic transition system called a supervisory controller K, such that
the following conditions are satisfied in the finite transition system K/G obtained by
composing the plan with the controller, called the controlled system:

• all states reachable in the controlled system are not forbidden;

• all uncontrollable events enabled in a state of the plant are also enabled in the
corresponding state of the controlled system, if reachable;

• from every reachable state of the controlled system, there exists a path leading to
some final state of the plant.

If all events are observable then a most permissive controller exists that never blocks
a good computation [CL06]. The most permissive controller can be computed iteratively,
starting fromK0 = G and using a set Bad0 containing at first step all the forbidden states.
At step n in the iteration, one computes Kn and Badn as modified versions of Kn−1 and
Badn−1 updated as follows:

• if there is a controllable transition t in Kn with target state in Badn−1 and source
state q not in Badn−1, then q is added to the updated set Badn and the transition t
is removed from Kn;

• all the states from which it is not possible to reach a marked state are removed in
the updated controller Kn.

When the iteration stops, i.e., when Kn = Kn−1, one finally removes from Kn all
states in Badn. If the initial state is removed, then the control problem has no solution.
Otherwise, Kn yields the most permissive controller K.

In [DDM10, DDM08] the opacity control problem is discussed. Given a finite tran-
sition system and a regular predicate, one is required to compute a controller enforcing
the opacity of a predicate against an attacker that partially observes the system suppos-
edly trying to break the behaviour. In the general case where the property to enforce
has a µ-calculus definable behaviour [Koz83], a general synthesis procedure is proposed

Operations Research, Flow problem 27

in [PR05], which always computes a maximal permissive controller of deterministic
systems under partial observation when it exists. The approach is based on labelling
processes, and characterizes the maximally permissive controllers as models accepted
by some tree automaton, so that their existence (and synthesis when possible) comes
down to the non-emptiness problem of the tree automaton.

In Chapter 3, an orchestration of services in agreement will be generated with a
simplifed construction of the most permissive controller for the agreement property
under analysis.

1.8 Operations Research, Flow problem

Operations research [HL86] is a discipline that deals with calculating optimal or near-
optimal solutions to complex decision-making problems, by using techniques such as
mathematical optimization. In Chapter 3 we will borrow techniques from Operation
research, namely optimization of network flow problem, in order to decide if a composition
of service contracts admits a particular type of agreement.

We fix some useful notation. A flow network [FF10] (also known as a transportation
network) is a directed graph where each edge has a capacity and each edge receives a
flow. Let G = (V, E) be a graph with set of nodes V and edges E, that are pair of nodes.
Generally there are two types of special nodes: source nodes, that are generating flow,
and sink nodes, that are consuming the flow. We assume the presence of a single source
qs node and one sink node q f , and that all nodes are reachable from the source node.
In general, if there are more sink nodes, it is possible to obtain a new graph G′ with
only one sink node by simply adding artificial, dummy edges from all the original sink
nodes to the new single sink node. Given a node q ∈ V, the forward star FS(q) is the set
of out-coming edges of q, while the backward star BS(q) is the set of incoming edges in
the node q.

For each edge e ∈ E, the flow variable xe represents the flow that is passing through
the edge e. Generally, a maximum capacity ue is assigned to each edge e, representing
the maximum amount of flow of e, and a cost ce representing the cost of utilising the
edge e.

A network flow problem is a type of network optimization problem where the ob-
jective function requires to optimize a flow such that the solution respects the following
constraints:

• the amount of flow on an edge cannot exceed the capacity of the edge (capacity
constraints), written ∀e ∈ E.xe ≤ ue;

• the amount of flow into a node equals the amount of flow out of it, unless it is a
source, which has only outgoing flow d, or sink, which has only incoming flow d
(flow conservation),written:

28 Preliminaries

∀q ∈ V. ∑e∈BS(q) xe −∑e∈FS(q) xe =


−d if q = qs

0 if q 6= qs, q f

d if q = q f

• depending on the studied problem, it can be required that the computed flow must
be an integer value (integrity constraints), written: ∀e ∈ E.xe ∈ N.

Examples of network flow problems are the Maximum flow problem [FF57] or the
Minimum-cost flow problem [Kle67]. The first problem consists in maximizing the amount
of flow that can be send from the source nodes to the sink nodes. The objective function
is then max d.

In the second problem a cost is associated to each edge of the network, and the
objective function is minimised in order to find the optimal cost for sending a given
amount of flow from the source nodes to the sink nodes, that is min ∑e∈E xece.

These problems are solved by using Integer Linear programming [HKLW10, Wal89].
Indeed, all constraints are represented by linear inequalities, and the objective function
is linear. Several solvers are available for solving linear optimization problems automat-
ically and efficiently, by using for example the simplex algorithm [FGK89]. Linear pro-
gramming techniques have been used for verifying system properties in [CA95, EM00].
In this papers a set of linear constraints, called the state equation, provide an approxi-
mation of the behaviour of the system (e.g. modelled as a Petri Net [EM00]). A main
benefit of this approach is that properties (expressed as linear constraints) are checked
without generating the whole state space of the model. However the solutions may not
be exact, false positives may be generated. In Chapter 6 we will rely on integer linear
programming problems solvers for mechanising our verification techniques.

1.9 Concluding Remarks

In this chapter we have introduced Service Oriented Computing, its coordination mech-
anisms, namely orchestration and choreography, and service contracts that are useful for
guaranteeing security properties of a composition of services. We have described dif-
ferent formalisms for service contracts, and communicating machines, a formalism that
has been used for representing choreographies of services. We have also introduced two
logics for expressing contract properties, and techniques that will be exploited in the
next chapters for checking properties of a composition of services.

Chapter 2

Contract Compliance as a Safety
Property

In this chapter we outline a formal theory of contracts that supports the verification of
service compliance and of security policies enforcing access control over resources.

Indeed, communications between services occur along specific channels, and it is
equally important to guarantee that the interactions between a client and a server never
get blocked (i.e. services are compliant), and that communications and data exchanged
among services are secure.

Services are compliant when their interactive behaviour eventually progresses, i.e.
all the service invocations are guaranteed to be eventually served. Services are secure
when data are exchanged and accessed according to specific rules, called policies.

Our starting point is the language-based methodology supporting static analysis of
security policies developed in [BDF09], and described in Section 1.6.

We extend this approach to check security and service compliance at the same time.
The first contribution is to extend history expressions with suitable communication facil-
ities to model the interactive behaviour of services, including possibly nested service
sessions in a multiparty fashion. In particular, we extend history expressions to include
communications along channels, and internal/external choice for combining the notions
of security of resource accesses and progress of interactions.

The second contribution is sharpening the verification phase. Intuitively, we prove
that service compliance is a safety property: when it holds, all the involved parties are
able to successfully complete their interactions without getting stuck. Reducing services
compliance to a safety property makes it efficiently to model-check. Finally, we extract
from a history expression all the viable plans for serving a request, i.e. those orchestra-
tions that successfully drive secure and compliant executions. Adopting a valid plan
guarantees that the involved services never go wrong at run-time, in that they are ca-
pable of successfully accomplishing their tasks (progress property) without rising any
security exception. Therefore, no run-time monitor is needed, to control the execution
of the network of services.

The main insight is to reduce the problem of checking compliance to the problem of

30 Contract Compliance as a Safety Property

checking a safety property over a suitable finite state automaton, obtained by tailoring
the notion of product automaton to contracts. Indeed, we will apply an automata-based
model checking technique for verifying compliance between services.

As a further advantage, this transformation allows us to apply all the techniques
and tools developed for checking safety properties to efficiently verify the absence of
communication errors between services, as well as security policies.

The idea of checking the correctness of a composition of services through a suit-
able notion of product automaton will be further developed in the next chapters. We
will introduce a compositional automata-based formalism for specifying service con-
tracts, used for verifying several properties of agreement adopting different coordination
mechanisms.

Structure of the chapter. The chapter is organised as follows. The next section
intuitively presents our formal machineries, the problems we address, and our goals
through an illustrative example. The definition of compliance, its reduction to a safety
property and the technicalities needed to model-check it are in Section 2.3. In Section 2.4,
we summarise our results and future work.

2.1 An Example

To illustrate our approach and help intuition, we consider a simple cloud-based scenario.
We take into account federated cloud services [BYV+09] where a broker is responsible for
collecting the clients’ requests and for sending the information to the multiple cloud
providers. The broker is also granted the rights to negotiate the service contracts with
the providers on behalf of the clients, and to distribute and coordinate requests of clients
across the multiple cloud providers. Finally, formalising and guaranteeing security of
federated cloud services is a major challenge [BJMU11].

When a client submits its service requests to the broker, it also specifies the con-
straints on the required quality of service. In our approach, this negotiation is managed
by issuing the policy ϕ(c,p,t), where its parameters are the configuration profile c, the
pricing p and the workload threshold t. Roughly, policies are regular properties over
the execution progress of service requests (execution histories).

The policy ϕ displayed in Figure 1 will be used in our running example to determine
and minimise the possible bad behaviours, that we will discuss later on.

Since in the cloud federation each provider comprises multiple computing services,
the information stored in the configuration profile is exploited to identify the comput-
ing facilities according to the need of the clients. The configuration profile can also
contain information about the required security constraints to model the fact that cloud
architectures have well-defined security policies and enforcement mechanisms in place.
E.g., the profile could include the requirement to provide a level of isolation over the
virtualization infrastructure.

The pricing information is used to decide how service requests are charged. E.g.,
pricing can be based on the submission time, it can be fixed or depend on the availability

An Example 31

q1start q2 q3

q4 q5q6

αsgn(x),x`c

αsgn(x),x 6`c

αp(y),y≤p

αp(y),y>p

*

αta(z),z≥t

αta(z),z<t
**

Figure 2.1: The automaton for the policy ϕ(c,p,t)

C1 = open1,ϕ({c1},45,100)
Req(Ack.Pay + NoAv)close1,ϕ({c1},45,100)

C2 = open2,ϕ({c2},40,70)
Req(Ack.Pay + NoAv)close2,ϕ({c2},40,70)

B = Req.open3,∅ IdC.(AgOk + UnA)close3,∅(Ack.Pay⊕ NoAv)

S1 = αsgn(1).αp(45).αt(80).IdC(AgOk⊕UnA)

S2 = αsgn(2).αp(70).αt(100).IdC(AgOk⊕UnA⊕ Del)

S3 = αsgn(3).αp(90).αt(100).IdC(AgOk⊕UnA)

S4 = αsgn(4).αp(50).αt(90).IdC(AgOk⊕UnA)

S1 6∈ c1 S1, S3 6∈ c2

Figure 2.2: Two clients, a broker and four cloud providers

of certain resources.
The last parameter t specifies the minimum amount of work expected to be done.

E.g., in a data center this value could be the amount of data processing performed in a
given time. The parameters of the service contract are crucial to identify and supply the
actual demand of computing resources on the cloud.

When a cloud provider accepts the service requests, it signs the contracts, i.e. it
supplies the information x about the profile of the available resources issuing the event
αsgn(x). The cloud provider also publishes its pricing and workload information by
issuing the events αp(y), αt(z). If the profile of the available resources does not match the
given client profile (formally expressed by the guard x 6` c) the policy is violated and
the final state q6 is reached. Note that the forbidden traces belong then to the language
accepted by the automaton, as prescribed by the so called “default-accept” approach. A
violation of the policy also occurs if the pricing of the cloud provider does not fulfil
client’s requirements and the provided workload is lower then t. In this case the policy
is violated and the final offending state q5 is reached. Finally, note that the policy allows
to have a pricing different from the given one whenever a higher workload performance
is ensured.

We abstractly and formally specify the scenario discussed above through a process

32 Contract Compliance as a Safety Property

calculus, namely an extension of History Expressions defined in Section 3.1. We con-
sider a setting (see Figure 2.2) with two clients C1, C2, a cloud broker B and a cloud
federation including computational service providers S1, S2, S3, S4. An important differ-
ence between the computational model considered in our approach and the standard
process calculi is that policies are first class citizens of the calculus. The two clients only
differ in the way they instantiate their policies.

A client opens a session and sends his request to the broker, who must respect the
policy ϕ. Sending the request is modelled by the action Req, while receiving the request
is done through Req, the complementary action (for brevity and simplicity we omit the
data information). The client is then willing to receive the confirmation of the policy
agreement and to settle the payment (Ack.Pay). The client is also ready to receive a
negative message in the case where no resources are available (NoAv). When either
message is received, the session with the broker is closed.

As discussed above, the broker receives the service request Req and then opens a
session with the service providers. Here for simplicity we only model the interactions
with the providers and not the actual deployment of the service. The broker sends the
client Id and all the related data by issuing the event IdC, and then waits for either the
agreement or for the negative messages with (AgOk + UnA) (note that now different
channels are used). Then the session is closed, and the response message is forwarded
to the client.

The cloud providers perform the events of signing and publishing the pricing and
the workload; and they then interact with the broker. Here we assume a fixed pricing
strategy and a basic description for the workload. Note that all services, except for
S2, have the internal choice AgOk ⊕ UnA. This abstractly represents that the cloud
providers can decide on their own which message to send depending on their state of
affairs. Being purely non-deterministic, in our computational model the internal choice
behaves differently than the external choice, e.g. AgOk +UnA, that is instead driven by
the message received.

Since the broker B is ready to receive each sent message, we say that the mentioned
providers are compliant with B. Instead, the provider S2 is not compliant with B. Indeed,
the broker can also send the message Del (meaning that there will be available services
later) but the broker cannot handle it, and therefore the interaction gets stuck.

As far as security is concerned, assuming that S1 does not match the configuration
profile c1, then it turns out that the providers S1 and S4 violate the policy settled by
C1, since S1 has not the required profile and S4 does not respect the required workload
and price. Finally, note also that the services S1 and S3 do not satisfy the configuration
parameters of C2.

Figure 2.3 displays a fragment of a computation. It is a sequence of configurations
χ and of transitions χ

γ→ χ′, where γ records either an event relevant to security or
progress, or a communication made of two complementary actions (disregard for a
while the indexes ~π, R of the arrows).

A configuration is made of tuples η, ` : S, put in parallel (through ‖), where η is a

Programming Model 33

sequence of events, and ` is the location of the service/client S. In our example, the
starting configuration has the two clients, one at location `c1, the other at `c2. Both
performed no actions, so their execution history is empty (ε).

The first step opens a session between C1 and B and registers in the history that
the whole session, in particular B, is subject to the policy ϕ, duly instantiated (call it
ϕ1 = ϕ({c1},45,100)).

The second step shows that the request of the client C1 has been accepted by the
broker, via a communication.

Now a nested session is opened involving the broker and S3, in the third step, and
no policy is imposed over the called service S3.

Concurrently, C2 can perform its service request, as expressed by the fourth step,
that registers that the policy ϕ2 = ϕ({c2},40,70) is active. Note that we assume that the
broker can replicate its code at will.

The two parallel sessions can evolve concurrently. For simplicity, we proceed with
service S3, that signs, shows the pricing and its workload threshold (all displayed in the
same line).

The broker is ready to send the data of the client to S3, and to receive back an answer,
say “no services are available” (S3 is now ε, because it has no further activities to do).

The session is then closed in step 10; the broker resumes its conversation with the
client C1, and forwards the non-availability message in step 11.

The next steps close the session numbered 1 and the security framing implementing
and enforcing the policy ϕ1. The last transition continues the session involving the
second client. The index R of the arrows shows that the transitions depend on the
service providers constituting the cloud federation.

The index ~π is a vector of functions that indicates how the requests are bound to
services, i.e. a plan. The plan π1 for the first client maps the request 1, originated by
open1 of the client, to `br, and the request 3 from open3 of the broker, to `s3. We
call π1 valid, because it drives a computation where both the security constraints and
compliance of clients/services are guaranteed.

Suppose now that the plan π2 for the second client maps request 2 to `br and request
3 (from the second instance of the broker) to `s2. Since S2 does not comply with B, at
run-time a communication involving the action Del cannot be performed because the
broker has no action Del. Our assumption that the service can decide what to send on
its own is violated. For this reason, we say that this plan is not valid. Finally, consider a
plan that maps request 3 to `s3, that this time is compliant with the broker. However S3

does not satisfy the configuration profile settled by C2, and so a policy violation occurs;
also this plan is not valid.

2.2 Programming Model

Here we define the syntax and the semantics of services and of networks of services.
The abstract behaviour of services is represented in the form of history expressions.

34 Contract Compliance as a Safety Property

ε, `c1 : C1‖ε, `c2 : C2
open1,ϕ1→~π,R (1)

Lϕ1 , [`c1 : Req.(Ack. . . .)close1,ϕ1 , `br : Br]‖ε, `c2 : C2
τ→~π,R (2)

Lϕ1 , [`c1 : (Ack. . . .)close1,ϕ1 , `br : open3,∅ IdC . . .]‖ε, `c2 : C2
open3,∅→ ~π,R (3)

P︷ ︸︸ ︷
Lϕ1 , [`c1 . . . , [`br : IdC . . . , `s3 : αsgn(3) . . .]] ‖ε, `c2 : C2

open2,ϕ2→ ~π,R (4)

P‖

Q︷ ︸︸ ︷
Lϕ2 , [`c2 : Req . . .close2,ϕ2 , `br : Br]

αsgn(3)→ π,R
αp(90)→ π,R

αta(100)→ ~π,R (5-7)
η︷ ︸︸ ︷

Lϕ1 αsgn(3)αp(90)αta(100), [`c1 : . . . , [`br : IdC . . . , `s3 : Idc . . .]]‖Q τ→π,R
τ→~π,R (8-9)

η, [`c1 : . . . , [`br : close3,∅ . . . , `s3 : ε]]‖Q
close3,∅→ ~π,R (10)

η, [`c1 : (Ack.Pay + NoAv)close1,ϕ1 , `br : (Ack.Pay⊕ NoAv)]‖Q τ→~π,R (11)

η, [`c1 : close1,ϕ1 , `br : ε]‖Q
close1,ϕ1→ ~π,R (12)

ηMϕ1 , `c1 : ε‖Lϕ2 , [`c2 : Req. . . . , `br : B] τ→~π,R . . . (13)

Figure 2.3: A fragment of a computation

We further extend the basic model of history expressions (see Definition 12) with
standard I/O operations of contracts of Definition 1, because we want to explicitly
represent through communications also the interactions between clients and services.
Moreover, we explicitly deal with sessions, and our history expressions will therefore
record also the operations of opening and closing them. Our final extension permits to
have several sessions in parallel.

Compared to [BDF09], we address neither the analogous extensions to the λ-calculus,
nor the definition of a type and effect system for it.

Some auxiliary notions are in order. We assume to have a set of security relevant
operations described by events α ∈ Ev, and a set of policies ϕ ∈ Pol, i.e. a regular
language over Ev. Opening and closing a session is modelled through communica-
tion actions, labelled by a request identifier r ∈ Req and a policy ϕ. These special
activities will be logged in computations by framing actions Frm = {Lϕ, Mϕ|ϕ ∈ Pol}.
We also assume the presence of channels along which clients and services commu-
nicate. Hereafter, the set of communication actions of Section 1.2.1 is extended as
Comm = {a, a, . . . , τ,openr,ϕ,closer,ϕ}, and let λ ∈ Comm ∪ Ev ∪ Frm. Finally, we
assume services and clients be hosted in locations ` ∈ Loc.

Definition 13 (History Expression). A history expression is a term generated by the following
grammar:

H ::= ε | h | µh.H | (∑
i∈I

ai.Hi) | (
⊕
i∈I

ai.Hi) | α | H · H | openr,ϕ H closer,ϕ

Programming Model 35

⊕
i∈I ai.Hi

ai
� Hi (I-Choice) ∑i∈I ai.Hi

ai
� Hi (E-Choice)

α
α
� ε (Acc) openr,ϕ H closer,ϕ

openr,ϕ
� H closer,ϕ (S-Open)

H
λ
� H′

H · H′′
λ
� H′ · H′′

(Conc)
H{µh.H/h}

λ
� H′

µh.H
λ
� H′

(Rec)

Figure 2.4: Operational Semantics of History Expressions

where I is a set of indexes such that if i, j ∈ I then i 6= j.

Intuitively, ε is the history expression that cannot do anything, and thus we stipulate
ε · H ≡ H ≡ H · ε.

Infinite behaviour is denoted by µh.H, restricted to be tail-recursive and contractive,
i.e. guarded by communication actions ā or a. Events α can occur, if they do not violate
any active policy. The expression H1 · H2 is the sequential composition.

An expression can send/receive on a channel messages. This model of contracts have
some restrictions, that is internal choices on outputs and external choices on inputs (see
Section 1.2.4), while in the next chapter these restrictions will be relaxed. Intuitively,
each internal choice needs to be communicated through an output action to the other
communicating party, and an input is necessary to evaluate an external choice. In this
way a tailored automata-based model checking technique can be applied. To stress that
the non-deterministic choice of the output ai is up to the sender only (internal choice),
we use ⊕, while the external choice only involves inputs ai and is denoted by Σ. Note
that these requirements are fulfilled by the prefixing for summations in Definition 13.

A service is engaged in a session with another through openr,ϕHcloser,ϕ, where r
is a unique identifier and ϕ is the policy to be enforced while the responding service is
active.

As anticipated, a policy is a parametric finite state automaton (see [BDFZ15]) that
accepts those strings of access events that violate it, in the default-accept paradigm. An
example is “never write (αwrite) after read (αread)”, and a trace that violates it is αreadαwrite.
When entering a security framing, all the histories, i.e. the sequence of events previously
fired, must respect the policy: ours is a history-dependent approach. We remark that
policies are safety properties: something bad will never happen.

Later on we will require that a client must be able to synchronize with the server
and correctly terminate the session, i.e. client and service have to be compliant.

The operational semantics of stand-alone history expressions is defined inductively
by rules in Figure 2.4.

We now turn our attention to our specification of networks of services N. In the
following definition, we also introduce the notion of plan π.

36 Contract Compliance as a Safety Property

Definition 14 (Network and Plan). A network N, session S and plan π are terms defined by
the following grammars:

N ::= N‖N | S S ::= ` : H | [S, S]

~π = [π1, . . . , πn], where πi, π′i ::= ∅ | r[`] | π ∪ π′

A network N is composed of the parallel composition of different clients H, each
hosted at a location ` ∈ Loc, and of sessions S involving a client (or a service) and a
service. Services are published in a global trusted repository R = {`j : Hj | j ∈ J}, and
they are always available for joining sessions (while clients are not).

We assume that the operator ‖ is associative, but not commutative, so a network can
be written as a vector ~N. Instead, we stipulate that [S, S′] ≡ [S′, S].

We can have nested sessions, modelling that a service involved in a session can open
a new session with another service. In this case the previous session will be restored
upon termination of the new one.

The semantic of networks is the transition system inductively defined by the rules in
Figure 2.5. Network configurations have the form ‖i∈I ηi, Si abbreviated by

−−→
η, N, where

ηi is the history of Si. As a matter of fact, access events α and policy framings Lϕ, Mϕ are
logged into the history ηi. A session can evolve only if its history respects all the active
policies in ηi, denoted by |= ηi.

We briefly comment on the rules of the operational semantic of networks. The first
rule is for opening a session: the service at `i fires an event openr,ϕ (in the stand-alone
semantics); the plan πi selects the service at `j; and the client and the server get involved
in a new session. However, this only occurs if the history η, updated with Lϕ recording
the policy imposed by the client, satisfies all the policies that are active.

Symmetrically, the rule Close ends a session. The client continues computing on its
own, while the server H′′j is terminated. The history of the client is updated with the
closing frame of the policy ϕ imposed over the session.

Rule Session governs the independent evolution of an element within a session.
Similarly, rule Net updates the network according to the evolution of one of its

components.
Rule Access fires an access event γ, appends it to the current history η; and checks

ηγ for validity.
The premises of rule Synch require a service to send/receive a message ā/a, and its

partner to receive/send it, written as the co-action a/ā. The resulting communication is
labelled with the (non observable) action τ. Note that a communication can only take
place if both services are inside the same session.

As usual, a computation starts from the initial configuration N0 = ‖j∈Jε, Hj, and it is

a sequence N0
λ−→~π,R ‖i∈Iηi, Ni

λ′−→~π,R ‖i∈Iη
′
i , N′i . . . We now give some remarks on the

two ways its participants may get stuck. The first is when all the access events a service
H may perform violate the security policies that are active. In this case, a resource mon-
itor, formalised by the validity relation |= η, aborts the execution of H. Note however

Programming Model 37

H
openr,ϕ
� H′ r[`j] ∈ π {`j : Hj} ⊆ R |= ηLϕ

η, `i : H
openr,ϕ−→π,R ηLϕ, [`i : H′, `j : Hj]

(Open)

H
closer,ϕ
� H′

η, [`i : H, `j : H′′j]
closer,ϕ−→π,R η Mϕ, `i : H′

(Close)

η, S λ−→π,R η′, S′ |= η′

η, [S, S′′] λ−→π,R η′, [S′, S′′]
(Session)

ηi, Ni
λ−→πi ,R η′i , N′i |= η′i (~π)i = πi

−−−→
(η, N)i = ηi, Ni

−−−→
(η, N)

λ−→~π,R
−−−−−−−−−−−−−−→
(η, N)[η′i , N′i 7→ ηi, Ni]

(Net)

H
γ
� H′ |= ηγ

η, `i : H
γ−→π,R ηγ, `i : H′

γ ∈ Ev (Access)

Hi
a
� H′i Hj

co(a)
� H′J

η, [`i : Hi, `j : Hj]
τ−→π,R η, [`i : H′i , `j : H′j]

a ∈ Comm (Synch)

Figure 2.5: Operational Semantics of Network

that the computation proceeds if there is an event that H can fire without violating any
active policies: our semantics implements the so-called angelic non-determinism.

The second way for deadlocking a component of a network is when two services
in a session want to communicate, but the output of one of them is not matched by
an input of the other, in other words, the two services are not compliant. Also here our
semantics is angelic, in that it does not respect the requirement saying that the choice
among various outputs is done regardless of the environment and of its capability of
accepting the sent message.

The main task of this chapter is proposing an automated technique to construct plans
that drive executions that do not deadlocks, namely valid plans. We present a static
analysis, that guarantees that the networks only have computations that can always
proceed, i.e. that at run-time a component of a network neither violates any security
policies, nor does it get stuck because of missing communications.

Both safety policies and services compliance are verified through automata-based
model checking techniques. For verifying the security properties, here we adopt a sim-
plified version of the approach of [BDFZ11, BDF09] (see Section 1.6), which is presented
in the next section. The compliance between services is addressed through a novel

38 Contract Compliance as a Safety Property

AP(ε) = ∅ AP(αη) = AP(η)
AP(Lϕη) = AP(η)] {ϕ} AP(Mϕη) = AP(η) \ {ϕ}

Figure 2.6: the function AP for computing the active policies in a history η

model checking technique, discussed in Section 2.3.

2.2.1 Statically Checking Validity

We first intuitively define when a history η ∈ (Ev∪ Frm)∗ is valid, written |= η.
Let η[be the history obtained by erasing all the framing events from it. For example,

if η0 = γαLϕβMϕ then η[
0 = γαβ. A history η[respects a policy ϕ, in symbols η[|= ϕ, if it

is not recognized by the automaton ϕ; and it is valid if it respects all the polices that are
opened, but not closed, i.e. the policies active in η.

Since our approach to security is history-dependent, we actually require that all the
prefixes of η[respect the relevant policies. For example, consider again the history η0

above, and let ϕ require that no α occurs after γ. Then, η0 is not valid according to our
intended meaning, because when firing β, the policy ϕ is activated and the prefix γα

does not obey ϕ — note instead that Lϕγ Mϕαβ would be valid, as ϕ is no longer active
after γ is fired.

The definition of validity follows.

Definition 15 (Validity of Histories). A history η is valid (written |= η) when:

∀η0η1 s.t. η0η1 = η, ϕ ∈ AP(η0).η[
0 |= ϕ

where the auxiliary function AP used for computing the multi-set of active policies in η is given
in Figure 2.6, , where] is multi-set union.

Now the problem is verifying if all the histories generated by a given network lead
to a final configuration, with no security violations. This can be done by separately
checking if all its clients H are valid, i.e. that all the histories generated when it is
executed are valid. Most likely, H will contain some requests, and serving them will
open and eventually close possibly nested sessions with other services H′, H′′, . . . , made
available by the repository R. The idea is to suitably assemble the history expressions
H, H′, H′′, . . . , and recording in a plan for H which service to invoke for each request,
as to obtain the pair Ĥ, π.

Note that Ĥ may be non-valid, even if the selected services are valid, each in isolation.
Indeed, the impact on the execution history of selecting a service Hr for a request r is
not confined to the execution of Hr, but it spans over the whole execution, because
security is history-dependent. The validity of the composed service Ĥ depends thus on
the global orchestration, i.e. on the plan π.

In order to ascertain the validity of Ĥ, we resort to model checking.

Checking Service Compliance 39

Definition 16 (Validity of History Expressions). Let H be a history expression of a client, R
be a repository of services and π be a plan that associates each request of H to a service in R,
then the set of all the prefixes of histories generated by H under π, R is:

JHKπ
R = {η | ε, ` : H →π,R . . .→π,R η, S}

Then the client H is valid under π, R, written JHKπ
R |=, iff ∀η ∈ JHKπ

R, |= η.

Since history expressions are regular, likewise the policies ϕ, we know that JHKπ
R is a

regular language and can be rendered as a finite state automaton. Defining the function
which computes the finite state automaton generating JHKπ

R is out of the scope of this
chapter, as we are interested in verifying compliance of history expressions.

A policy ϕ to be enforced is rendered as an automaton ϕLM with two layers recording
the activation of the policy – event Lϕ, and the deactivation – event Mϕ. Each layer
contains a replica of the policy ϕ. However, only the layer corresponding to an activated
policy contains accepting states.

Since all policies are regular, the intersection of the two automaton JHKπ
R ∩ ϕLM is

regular. Checking its emptiness is then decidable, and suffices to verify that the policy
ϕ will be never violated by the client H under the plan π. By repeating this technique
for all the policies ϕ in H it is possible to verify that JHKπ

R |=.

2.3 Checking Service Compliance

We introduce a technique to construct a plan that provides the assurance that compliance
between clients and services is guaranteed at run-time. Again, we can consider a client
(or server) at a time, and, for each of its requests, we determine the compliant services.

First we manipulate the syntactic structure of a service in order to identify and pick
up all the requests, i.e. the subterms of the form openr,ϕH1closer,ϕ. Then, to check
compliance of the service request r against an available service `2 : H2, we compute
the projection of H1 and H2 on their communication actions. This projection removes
from H1 and H2 all the access events α, as well as all the inner service requests, i.e. the
subterms of the form openr′,ϕ′ . . .closer′,ϕ occurring inside H1 and H2. The inductive
definition of the projection on communication actions is given in Figure 2.7.

Note that if H is a closed history expression then H! is closed. Moreover the projec-
tion function H! yields a behavioural contract as defined in Definition 1, for this reason
we feel free to call contracts these kind of history expressions.

More precisely, the projection function produces a subset of those contracts, since in
our history expressions the internal choice is always guarded by output action and the
external choice is always guarded by input actions. Finally, we only have guarded tail
recursion.

Because of the last restriction, it turns out that the transition system of H! is finite
state; in other words there only is a finite number of expressions that are reachable from
H! through the transitions defined by the operational semantics of history expressions in

40 Contract Compliance as a Safety Property

(H · H′)! = H! · H′! h! = h (µh.H)! = µh.(H)!

(∑
i∈I

ai.Hi)
! = ∑

i∈I
ai.(H!

i) (
⊕
i∈I

ai.Hi)
! =

⊕
i∈I

ai.(Hi)
!

(openr,ϕ.H.closer,ϕ)
! = ε! = α! = ε

Figure 2.7: Projection on Communication Actions

isolation. We now adapt the notion of observable ready sets introduced in Section 1.2.1(see
Definition 3) to our history expressions.

Definition 17 (Observable Ready Sets of History Expressions). Let H = H!
1 be (the pro-

jection of) a history expression. The observable ready set of H is the finite set S ∈ P(Comm)

given by the relation H ⇓ S inductively defined below.
ε ⇓ ∅ h ⇓ ∅

⊕
i∈I ai.Hi ⇓ {ai} ∑i∈I ai.Hi ⇓

⋃
i∈I{ai}

H ⇓ S

µh.H ⇓ S

H ⇓ S S 6= ∅

H · H′ ⇓ S

H ⇓ ∅ H′ ⇓ S

H · H′ ⇓ S

Example 4. We show some example of ready set:

• let H = µh.(a1 ⊕ a2) · b · h, then H ⇓ {a1} and H ⇓ {a2};

• ε · (a + b) · (d⊕ e) ⇓ {a, b}.

We now extend the notion of compliance (see Definition 4) to history expressions.
Given the service request openr,ϕH1closer,ϕ and the service H2, we say that the two
contracts H!

1 and H!
2 are compliant if for every possible internal action of a party, the

other is able to perform the corresponding coaction (recall that S = {a|a ∈ S}).

Definition 18 (Compliance of History Expressions). Two history expressions Hc and Hs are
compliant, written Hc ` Hs, if for all C, S ∈ P(Comm), H1 = H!

c and H2 = H!
s are such that

(1) H1 ⇓ C and H2 ⇓ S implies that C = ∅ or C ∩ S 6= ∅, and

(2) H1
a
� H′1 ∧ H2

co(a)
� H′2 implies H′1 ` H′2.

We introduce a model-checking technique for verifying if two contracts are compli-
ant. We remark that the key idea is to reduce the problem of checking compliance to the
problem of checking a safety property over a suitable finite state automaton, obtained
by tailoring the notion of product automaton to contracts. Notice that this transforma-
tion will allow us to apply all the techniques and tools developed for checking safety
properties.

Checking Service Compliance 41

The product automaton A = H!
1 ⊗ H!

2 of two contracts H!
1 and H!

2 models the be-
haviour of contracts composition. Final states represent stuck configurations: these
states are reached whenever the two contracts are not compliant.

Definition 19 (Product of History Expressions). Let H′1 and H′2 be history expressions. The
product automata H1 ⊗ H2 of (H′1)

! = H1 and (H′2)
! = H2 is defined as follows.

H1 ⊗ H2 = 〈Q1 ×Q2, {τ}, δ, 〈H1, H2〉, F〉 where

• Q1 and Q2 are the states of the transition systems of H1 and H2;

• {τ} is the alphabet and 〈H1, H2〉 is the initial state;

• the set of final states is F = {〈H1, H2〉|H1 6= ε ∧ ¬(i) ∨ ¬(ii)} where :

(i) ∃a.(H1
a
� H′1 ∨ H2

a
� H′2)

(ii) (∀H1
a
� H′1, ∃H2

a
� H′2) ∧ (∀H2

a
� H′2, ∃H1

a
� H′1)

• the transition function δ is:

δ = {(〈H1, H2〉, τ, 〈H′1, H′2〉)|H1
a
� H′1 ∧ H2

co(a)
� H′2 ∧ 〈H1, H2〉 6∈ F}

The correctness of the definition of the product automaton relies on the fact that
the projection function yields finite state contracts since recursive behaviour is obtained
only via tail recursion.

Note that condition (i) ensures that both services are not waiting on input actions.
Condition (ii), instead, ensures that for all the possible output actions that a service
is ready to fire, the other party is ready to perform the corresponding input action.
Moreover a final state has no outgoing transition.

Intuitively, H1 and H2 are compliant if and only if the language of the product
automaton A is empty.

Lemma 1 (Ready Sets and Product). Let Hc and Hs be closed history expressions with H1 =

H!
c and H2 = H!

s. For all C, S ∈ P(Comm) such that H1 ⇓ C, H2 ⇓ S we have that C ∩ S 6= ∅
if and only if conditions (i) and (ii) of Definition 19 hold.

Proof. (→) We know that either H1 or H2 performs an output action, because C∩ S 6= ∅,
so condition (i) holds. W.l.o.g. assume that H1 performs an output. The proof in the
other case is symmetric. By definition of observable ready sets and C ∩ S 6= ∅, we have
that H1 must be of the form H · H′ with H either

⊕
i∈I ai.Hi or µh.

⊕
i∈I ai.Hi, (recall that

ε · H ≡ H ≡ H · ε), with I 6= ∅. Also H2 must be of the form H′2 · H′′2 with H′2 either
∑j∈J aj.Hj or µh. ∑j∈J aj.Hj with J 6= ∅. For H1 we have |I| different ready sets forming
IC = {{ai}|H1 ⇓ {ai}}. Instead H2 has a single ready set of the form S = {aj|j ∈ J}.

Now by hypothesis ∀C ∈ IC. C ∩ S 6= ∅, that implies (∀H1
a
� H′1, ∃H2

a
� H′2)∧ (∀H2

a
�

H′2, ∃H1
a
� H′1) because H2 performs no output actions.

(←) By (i) we have that either C or S contains an output action. W.l.o.g. assume that

42 Contract Compliance as a Safety Property

H1 performs an output. The proof in the other case is symmetric. By definition of
operational semantics of history expressions, H1 must be of the form H · H′ with H
either

⊕
i∈I ai.Hi or µh.

⊕
i∈I ai.Hi with I 6= ∅. Hence by definition H1 has |I| different

ready sets in IC = {{ai}|H1 ⇓ {ai}}. By condition (ii), H2 must be able to execute
any corresponding coaction. Therefore by definition of operational semantic of history
expressions, H2 must be of the form H′2 · H′′2 with H′2 either ∑j∈J aj.Hj or µh. ∑j∈J aj.Hj

with |J| 6= ∅. Hence by definition H2 has a single ready set of the form S = {aj|j ∈ J}.
Condition (ii) ensures that ∀C ∈ IC it must be C ∩ S 6= ∅.

We now state our main theorem that guarantees compliance of two services when-
ever their languages have an empty intersection.

Theorem 1 (Product Emptiness and Compliance). Let H′1 and H′2 be closed history expres-
sions and let (H′1)

! = H1 and (H′2)
! = H2. Then H1 ` H2 if and only if L (H1 ⊗ H2) = ∅.

Proof. (→) assume H1 ` H2. We firstly show that H1 ` H2 → 〈H1, H2〉 6∈ F. We have
two possible cases:

• H1 ⇓ ∅: by definition it must be H1 = ε, since H1 = h is not closed. Hence by
construction the set of final states of the product is empty.

• H1 ⇓ C, H2 ⇓ S with C ∩ S 6= ∅: by Lemma 1 (i) ∧ (ii) holds, and therefore
〈H1, H2〉 6∈ F.

We prove by induction on the length of the path of the finite state product automaton
that no final states are reachable. From this follows that L (H1 ⊗ H2) = ∅. For the base
case (the empty path) we have already showed 〈H1, H2〉 6∈ F.

Suppose now that 〈H1i, H2i〉 is a reachable non final state through a path of length n.
We prove that ∀(〈H1i, H2i〉, τ, 〈H′1i, H′2i〉) ∈ δ there must be 〈H′1i, H′2i〉 6∈ F. By hypothesis

H1 ` H2 we know that H1
a
� H1′ ∧ H2

co(a)
� H′2 implies H′1 ` H′2, i.e. compliance is

preserved under synchronization. An easy inductive reasoning guarantee both H1i ` H2i

and H′1i ` H′2i. We already proved that H′1i ` H′2i implies 〈H′1i, H′2i〉 6∈ F. Note that if H
is closed and H � H′ then also H′ is closed.
(←) Let I to be the set:

I = {〈H′1, H′2〉|〈H′1, H′2〉 6∈ F ∧ 〈H′1, H′2〉 reachable state of the product automaton }

We show that I enjoys the properties characterizing the notion of compliance relation
and the thesis follows from the fact that relation ` is the largest compliance relation. By
hypothesis it follows that ε 6∈ L (H1⊗H2), hence the initial state is not final and belongs
to I.

Assume that 〈H′1, H′2〉 ∈ I, and therefore is reachable from the initial state. We have
to show that H′1 ⇓ C and H′2 ⇓ S implies C = ∅ or C ∩ S 6= ∅. Now we have two sub
cases:

• C = ∅, the result follows; or

Concluding Remarks 43

• C 6= ∅ we apply Lemma 1.

It remains to prove that H′1
a
� H′′1 ∧ H′2

co(a)
� H′′2 implies 〈H′′1 , H′′2 〉 ∈ I. By construction

of the product automaton (〈H′1, H′2〉, τ, 〈H′′1 , H′′2 〉) ∈ δ, by hypothesis 〈H′′1 , H′′2 〉 6∈ F and
since 〈H′1, H′2〉 is reachable it has to be the case also for 〈H′′1 , H′′2 〉, hence 〈H′′1 , H′′2 〉 ∈ I.

An important consequence of our model-checking technique is that the property of
progress of a session (even for infinite executions) is not a liveness property, but an
invariant property (see Section 1.5). An invariant property Pinv only inspects a state at
time, without looking at all the past history, i.e. Pinv = {q0q1q2 . . . | ∀j ≥ 0. qj |= Φ},
where q0q1q2 . . . is the sequence of visited states. Since conditions (i) and (ii) of Def-
inition 19 do not inspect the past states, it turns out that compliance is an invariant
property: a subset of the safety properties.

Theorem 2 (Compliance as Invariant Property). Compliance is an invariant property.

Proof. Given two services (H′1)
! = H1 and (H′2)

! = H2 by Theorem 1 H1 ` H2 iff
L (H1 ⊗ H2) = ∅, i.e. all states 〈H′1, H′2〉 reachable from 〈H1, H2〉 are such that
〈H′1, H′2〉 |= (H′1 = ε ∨ (i) ∧ (ii)) ((i) and (ii) conditions of Definition 19).

Since all invariant properties are safety properties, the following corollary holds.

Corollary 1 (Safety Compliance). Compliance is a safety property.

This result paves the way to the application of techniques and tools developed for
checking safety properties to efficiently verify the compliance of services.

2.4 Concluding Remarks

In this chapter, we provided the means to statically verify whether a network of services
will evolve without incurring in security nor compliance violations. Given a repository
R and a vector of clients, pick up one of them, say H, at a time; generate a valid plan
πH for H; for each request openr,ϕH1closer,ϕ occurring in the composed service check
if H1 ` H2, where πH(r) = `2 and `2 ∈ R. If all these steps succeed, we have guaranteed
that nothing bad will happen, allowing to safely switch off any run-time monitor.

This result relies on suitable extensions of the methodology proposed in [BDF09]
with standard operations of contracts, and on a careful definition of service sessions,
possibly nested, and of compliance. Indeed, Theorem 2 shows that compliance of be-
havioural contracts is a safety property, paving the way to its verification via standard
model-checking, for example with existing tools like [BZ08a].

As a matter of fact, the results presented in this chapter establish a novel connection
between the world of service contracts compliance and the world of security.

An interesting line of research concerns studying a restricted form of service avail-
ability, that now can replicate themselves boundlessly many times. We are confident
that more detailed rules for opening and closing sessions can be easily given.

44 Contract Compliance as a Safety Property

The formalization of contracts compliance in terms of product of finite state au-
tomata will be deepened in the next chapters, where a novel formalism called contract
automata will be presented. Security concerns will focus on detecting the services re-
sponsible of failures.

Chapter 3

Contract Automata

In this chapter an approach to the formal description of service contracts in terms of
automata is presented.

We address two main questions. First, we propose a rigorous formal technique
for describing and composing contracts. Second, we develop techniques capable of
determining when a contract composition is correct and leads to a successful service
composition. Thus reaching the contract agreement is the basic ingredient to design
successful orchestrations.

More in detail, we introduce an automata-based model for contracts called contract
automata, that are a special kind of finite state automata, endowed with two composition
operations. A contract automaton may represent a single service or a composition of
several services. Its language describes the possible executions of the services bound in
it. The traces accepted by a contract automaton show the possible interactions among
the principals, by recording which offers and requests are performed, and by which
principals in the composition. This provides the basis to define criteria that guarantee a
composed service to well behave.

These services are oblivious of their communicating partners, and the underlying
coordination mechanism of contract automata is orchestration. The messages have to be
thought of as directed to an orchestrator synthesised out of the principals; the orches-
trator directs the interactions in such a way that only good executions actually happen.

We then rephrase in our model three notions presented in the literature that charac-
terise when contracts are honoured. The first one is called agreement and considers the
case when all the requests made are synchronously matched by offers, and thus satis-
fied, while the second one called strong agreement requires that all the requests and offers
are satisfied. The third property, weak agreement, is more liberal, in that requests can be
asynchronously matched, and an offer can be delivered even before a corresponding
request, and vice-versa. We say that a contract automaton is safe (strongly/weakly safe,
respectively) when all the interactions among principals are carried out as required by
the (strong/weak) agreement.

The notions of safety presented above may appear too strict since they require that
all the words belonging to the language recognised by a contract automaton must sat-

46 Contract Automata

isfy (strong/weak) agreement. We thus introduce a more flexible notion that charac-
terises when a service composition may be successful, i.e. at least one among all the
possible service interactions well behaves. We say that a contract automaton admits
(strong/weak) agreement when such interaction exists.

When a contract automaton admits (strong/weak) agreement, but it is not (strong-
ly/weakly) safe, we define those principals in a contract that are (strongly/weakly)
liable, i.e. those responsible for leading a contract composition into a failure. This may
happen either because a final state cannot be reached or because some requests have not
been satisfied.

The main idea behind our notion of agreement is the assumption that possible
“good” executions exist together with “bad” computations, that are those breaking the
overall agreement. In our case the orchestrator eventually cuts off “bad” computations,
while the literature has also notions that require composition of participants to have
“good” computations, only.

For checking when a contract automaton enjoys the properties sketched above, we
propose two formal verification techniques that have been implemented (see Chapter 6).

The first amounts to build the so-called controllers in Control Theory [CL06]. We
show that controllers are powerful enough to synthesise a correct orchestrator enforcing
(strong) agreement and to detect the (strongly) liable principals. In order to check weak
agreement and detect weak liability we resort to techniques borrowed from Operational
Research [HKLW10], namely optimisation of network flows (see Section 1.8). The intu-
itive idea is that service coordination is rendered as an optimal flow itinerary of offers
and requests in a network, automatically constructed from the contract automaton.

A brief introduction to Control Theory and Flow Problems can be found in Chapter 1.

Structure of the chapter.

In Section 3.1 we introduce contract automata and two composition operators. Sec-
tion 3.2 discusses the properties of agreement and safety. The technique for checking
and enforcing them are also presented here, along with the notion of liability. Strong
agreement is briefly discussed in Section 3.3. Weak agreement and weak liability are
defined in Section 3.4, along with a technique to check them. A case study is proposed
in Section 3.5. Finally, concluding remarks are in Section 3.6.

3.1 The Model

This section formally introduces the notion of contract automata, that are finite state
automata with a partitioned alphabet. We start with some notation and preliminary
definitions.

A contract automaton (cf. Definition 23 below) represents the behaviour of a set of
principals (possibly a singleton) capable of performing some actions; more precisely, as
formalised in Definition 20, the actions of contract automata allow them to “advertise”

The Model 47

offers, “make” requests, or “handshake” on simultaneous offer/request actions. The
number of principals in a contract automaton is called rank, and a vectorial representa-
tion is used for tracking the moves of each principal in the composition.

Let L = R∪O∪ {�} be the alphabet of basic actions such that:

• requests of principals will be built out of R = {a, b, c, . . .} while their offers will be
built out of O = {a, b, c, . . .};

• R∩O = ∅;

• � 6∈ R∪O is a distinguished label to represent components that stay idle.

We define an involution co(•) : L 7→ L such that:

• co(R) = O;

• co(O) = R;

• ∀α ∈ R∪O : co(co(α)) = α;

• co(�) = �.

Let ~v = (a1, ..., an) be a vector of rank n ≥ 1, in symbols rv, whose elements are
actions and belong to L, then ~v(i) denotes the i-th element. We write ~v1~v2 . . .~vm for the
concatenation of m vectors ~vi, while |~v| = n is the rank (length) of ~v and ~vn is the vector
obtained by n concatenations of ~v. The alphabet of a contract automaton consists of
vectors, each element of which intuitively records the activity, i.e. the occurrence of a
basic action of a single principal in the contract.

In a vector there is either a single offer or a single request, or there is a single pair
of request-offer that matches, i.e. there exists exactly i, j such that ~v(i) is an offer and ~v(j)

is the complementary request or vice-versa; all the other elements of the vector contain
the symbol �, meaning that the corresponding principals stay idle. In the following let
�

m denote a vector of rank m, all elements of which are �. Formally:

Definition 20 (Actions). Given a vector~a ∈ Ln, if

• ~a = �
n1 α�

n2 , n1, n2 ≥ 0, then ~a is a request (action) on α if α ∈ R, and is an offer
(action) on α if α ∈ O

• ~a = �
n1 α�

n2 co(α)�
n3 , n1, n2, n3 ≥ 0, then~a is a match (action) on α, where α ∈ R∪O.

We now define complementary actions.

Definition 21 (Complementary Actions). Two actions~a and~b are complementary, in sym-
bols~a ./~b if and only if

• ∃α ∈ R∪O : ~a is either a request or an offer on α;

• ~a is an offer on α =⇒ ~b is a request on co(α) and

48 Contract Automata

• ~a is a request on α =⇒ ~b is an offer on co(α).

We now extract from an action the request or offer made by a principal, and the
matching of a request and an offer, and then we lift this notion to a sequence of actions,
i.e. to a trace of a contract automaton that intuitively corresponds to an execution of a
service composition.

Definition 22 (Observable).

Let w = ~a1 . . .~an be a sequence of actions, and let ε be the empty one, then its observable is
given by the partial function Obs(w) ∈ (R∪O∪ {τ})∗ where:

Obs(ε) = ε

Obs(~a w′) =

{
~a(i) Obs(w′) if ~a is an offer/request and~a(i) 6= �

τ Obs(w′) if ~a is a match

We now define contract automata, the actions and states of which are vectors of basic
actions and of states of principals, respectively.

Definition 23 (Contract Automata). Assume as given a finite set of states Q = {q1, q2, . . .}.
Then a contract automaton A (CA for short) of rank n is a tuple 〈Q, ~q0, Ar, Ao, T, F〉, where

• Q = Q1 × . . .×Qn ⊆ Qn

• ~q0 ∈ Q is the initial state

• Ar ⊆ R, Ao ⊆ O are finite sets (of requests and offers, respectively)

• F ⊆ Q is the set of final states

• T ⊆ Q× A×Q is the set of transitions, where A ⊆ (Ar ∪ Ao ∪ {�})n and if
(~q,~a,~q′) ∈ T then both the following conditions hold:

– ~a is either a request or an offer or a match

– if~a(i) = � then it must be ~q(i) = ~q′(i)

A principal contract automaton (or simply principal) is a contract automaton of rank 1 such
that Ar ∩ co(Ao) = ∅.

A benefit of adopting contract automata for describing services is the possibility to
express as a single automaton both individual principals, where no action is matched,
closed systems (i.e. composition of principals) where all actions are matched, and open
systems, where not all actions are matched.

Given a contract automaton A of rank n, the standard definitions and constructions
of finite-state automata apply. In particular,

• the configurations of A are pairs in A∗ ×Q;

The Model 49

q01start q11
sig

res

(a) A1

q02start q12
sig

res

(b) A2

q01, q02start q11, q12
(sig, sig)

(res, �) (�, res)

(c) A3

Figure 3.1: Three contract automata

• A moves a step from (w,~q) to (w′,~q′), written (w,~q) ~a−→(w′,~q′), if and only if w =

~aw′, w′ ∈ A∗ and (~q,~a,~q′) ∈ T; we write (w,~q) → (w′,~q′) when ~a is immaterial
and ~q ~a−→~q′ when w is immaterial (note that transitions are triples, instead);

• the language of A is L (A) = {w
∣∣ (w, ~q0) →∗ (ε,~q),~q ∈ F} where→∗ is the reflex-

ive transitive closure of→. As usual ~q1
~a1 · · ·~am−−−−→~qm+1 shortens ~q1

~a1−→~q2 · · ·~qm
~am−→~qm+1

(for some ~q2, . . . ,~qm) and we say that ~q1 is reachable in A if ~q0
w−→~q1; finally ~q 6→ if

and only if for no ~q′ it is the case that ~q→ ~q′.

Note that for principals we have the restriction Ar ∩ co(Ao) = ∅. Indeed, a principal
who offers what he requires makes little sense.

Example 5. Figure 3.1 shows three contract automata. The automaton A1 may be understood
as producing a certain number of resources through one or more offers res and it terminates with
the request of receiving a signal sig. The contract A2 starts by sending the signal sig and then it
collects the resources produced by A1. The contract A3 represents the contract automaton where
A1 and A2 interact as discussed below. Both A1 and A2 have rank 1 while A3 has rank 2.

Contract automata can be composed, by making the cartesian product of their states
and of the labels of the joined transitions, with the additional possibility of labels record-
ing matching request-offer. This is the case for the action (sig, sig) of the contract au-
tomaton A3 in Figure 3.1.

Below, we introduce two different operators for composing contract automata. Both
products interleave all the transitions of their operands. We only force a synchronisa-
tion to happen when two contract automata are ready on their respective request/offer
action. These operators represent two different policies of orchestration. The first oper-
ator is called simply product and it considers the case when a service S joins a group of
services already clustered as a single orchestrated service S′. In the product of S and S′,
the first can only accept the still available offers (requests, respectively) of S′ and vice
versa. In other words, S cannot interact with the principals of the orchestration S′, but
only with it as a whole component, that is already matched actions in S′ are not split.
This is obtained in Definition 24 through the relation ./ (see Definition 21), which is
only defined for actions that are not matches.

This is not the case with the second operation of composition, called a-product: it
puts instead all the principals of S at the same level of those of S′. Any matching
request-offer of either contract can be split, and the offers and requests, that become
available again, can be re-combined with complementary actions of S, and vice-versa.

50 Contract Automata

The a-product turns out to satisfactorily model coordination policies in dynamically
changing environments, because the a-product supports a form of dynamic orchestration,
that adjusts the workflow of messages when new principals join the contract.

We now introduce our first operation of composition; recall that we implicitly assume
the alphabet of a contract automaton of rank m to be A ⊆ (Ar ∪ Ao ∪ {�})m. Note that
the first case of the definition of T below is for the matching of actions of two automata,
while the other considers the action of a single automaton.

Definition 24 (Product). Let Ai = 〈Qi, ~q0i, Ar
i , Ao

i , Ti, Fi〉, i ∈ 1 . . . n be contract automata
of rank ri. The product

⊗
i∈1...nAi is the contract automaton 〈Q, ~q0, Ar, Ao, T, F〉 of rank

m = ∑i∈1...n ri, where:

• Q = Q1 × ...×Qn, where ~q0 = ~q01 . . . ~q0n

• Ar =
⋃

i∈1···n Ar
i , Ao =

⋃
i∈1···n Ao

i

• F = {~q1 . . .~qn | ~q1 . . .~qn ∈ Q,~qi ∈ Fi, i ∈ 1 . . . n}

• T is the least subset of Q× A×Q s.t. (~q,~c,~q′) ∈ T iff, when ~q = ~q1 . . .~qn ∈ Q,

either there are 1 ≤ i < j ≤ n s.t. (~qi,~ai,~q′i) ∈ Ti, (~qj,~aj,~q′j) ∈ Tj,~ai ./~aj and
~c = �

u~ai�
v~aj�

z with u = r1 + . . . + ri−1, v = ri+1 + . . . + rj−1, |~c| = m
and
~q′ = ~q1 . . .~qi−1 ~q′i ~qi+1 . . . ~qj−1 ~q′j ~qj+1 . . .~qn

or there is 1 ≤ i ≤ n s.t. (~qi,~ai,~q′i) ∈ Ti and
~c = �

u~ai�
v with u = r1 + . . . + ri−1, v = ri+1 + . . . + rn, and

~q′ = ~q1 . . .~qi−1 ~q′i ~qi+1 . . .~qn and
∀j 6= i, 1 ≤ j ≤ n, (~qj,~aj,~q′j) ∈ Tj it does not hold that~ai ./~aj.

There is a simple way of retrieving the principals involved in a composition of con-
tract automata obtained through the product introduced above: just introduce projec-
tions ∏i as done below. For example, for the contract automata in Figure 3.1, we have
A1 = ∏1(A3) and A2 = ∏2(A3).

Definition 25 (Projection). Let A = 〈Q, ~q0, Ar, Ao, T, F〉 be a contract automaton of rank n,
then the projection on the i-th principal is:

i

∏(A) = 〈
i

∏(Q), ~q0(i),
i

∏(Ar),
i

∏(Ao),
i

∏(T),
i

∏(F)〉

where i ∈ 1 . . . n and:
i

∏(Q) = {~q(i) | ~q ∈ Q}
i

∏(F) = {~q(i) | ~q ∈ F}

i

∏(Ar) = {a | a ∈ Ar, (q, a, q′) ∈
i

∏(T)}
i

∏(Ao) = {a | a ∈ Ao, (q, a, q′) ∈
i

∏(T)}
i

∏(T) = {(~q(i),~a(i),~q′(i)) | (~q,~a,~q′) ∈ T ∧~a(i) 6= �}

The Model 51

q02start q12
toy

(a) Bill

q01start q11
toy

(b) Mary

q03start q13
toy

(c) John

q01, q02, q03start q11, q12, q03

q01, q02, q13 q11, q12, q13

(toy, toy, �)

(�, �, toy) (�, �, toy)

(toy, toy, �)

(d) (Bill ⊗Mary)⊗ John

q01, q02, q03start q01, q12, q13

q11, q02, q03 q11, q12, q13

(�, toy, toy)

(toy, �, �) (toy, �, �)

(�, toy, toy)

(e) Bill ⊗ (Mary⊗ John)

q01, q02, q03start q11, q12, q03

q11, q02, q13 q11, q12, q13

(toy, toy, �)

(toy, �, toy) (�, �, toy)

(�, toy, �)

(f) Bill�Mary� John

Figure 3.2: Three contract automata, their product and a-product

The following property states that decomposition is the inverse of product.

Property 1 (Product Decomposition). Let A1, . . . ,An be a set of principal contract automata,
then ∏i(

⊗
j∈1...nAj) = Ai.

Proof. We have Ai = 〈Qi, q0i, Ar
i , Ao

i , Ti, Fi〉, and by Definition 24 ∏i(Q) = Qi, ∏i(F) = Fi,
also ∏i(T) = Ti since by Definition 25 we take only the transition whereAi makes a step,
while avoiding the transitions in which Ai stays idle. Finally ∏i(Ar) = Ar

i , ∏i(Ao) = Ao
i

because we select only the actions that appear as labels in the transitions of Ai.

Our second operation of composition first extracts from its operands the principals
they are composed of, and then reassembles them.

Definition 26 (a-Product). Let A1,A2 be two contract automata of rank n and m, respectively,
and let I = {∏i(A1) | 0 < i ≤ n} ∪ {∏j(A2) | 0 < j ≤ m}. Then the a-product of A1 and
A2 is A1�A2 =

⊗
Ai∈I Ai.

Note that if A,A′ are principal contract automata, then A⊗A′ = A�A′, and that
the complexity of this operation is similar to the complexity of the product. E.g. in
Figure 3.1, we have that A3 = A1 ⊗A2 = A1�A2.

From now onwards we assume that every contract automaton A of rank rA > 1
is composed by principal contract automata using the operations of product and a-
product.

Both compositions are commutative, up to the expected rearrangement of the vectors
of actions, and � is also associative, while ⊗ is not, as shown by the following example.

Example 6. In Figure 3.2 Mary offers a toy that both Bill and John request. In the product
(Bill ⊗ Mary) ⊗ John the toy is assigned to Bill who first enters into the composition with
Mary, no matter if John performs the same move. Equally, in the product Bill⊗ (Mary⊗ John)
the toy is assigned to John. In Figure 3.2f we have the a-product that represents a dynamic re-
orchestration: no matter of who is first composed with Mary, the toy will be non-deterministically
assigned to either principal.

52 Contract Automata

Proposition 1. The following properties hold:
– ∃A1,A2,A3.(A1 ⊗A2)⊗A3 6= A1 ⊗ (A2 ⊗A3)

– ∀A1,A2,A3.(A1�A2)�A3 = A1� (A2�A3)

Proof. Example 6 suffices to prove the first statement. For the second statement one has
A = (A1�A2)�A3 =

⊗
Ai∈I Ai = A1� (A2�A3) where I = {Πi(A) | i ∈ 1, 2, 3}.

3.2 Enforcing Agreement

It is common to say that some contracts are in agreement when all the requests they
make have been fulfilled by corresponding offers [CGP09, CP09, BSBM05, LP15, BvBd15,
BDLd15, dNH83, BH14, BCPZ16, BTZ12] (see Section 1.2). In terms of contract au-
tomata, this is rendered in two different ways, the first of which is introduced below
and resembles the notion of compliance introduced in [CGP09, CP09]. We say that
two or more contract automata are in agreement when the final states of their product
are reachable from the initial state by traces only made of matches and offer actions.
Our goal is to enforce the behaviour of principals so that they only follow the traces of
the automaton which lead to agreement. Additionally, it is easy to track every action
performed by each principal, because we use vectors of actions as the elements of the
alphabet of contract automata. It is equally easy finding who is liable in a bad interac-
tion, i.e. the principals who perform a transition leaving a state from which agreement
is possible, reaching a state where instead agreement is no longer possible.

We now introduce the notion of agreement as a property of the language recognised
by a contract automaton.

Definition 27 (Agreement). A trace accepted by a contract automaton is in agreement if it
belongs to the set

A = {w ∈ (Ln)∗ | Obs(w) ∈ (O∪ {τ})∗, n > 1}

Note that, if an action observable in w is a request, i.e. it belongs to R, then w is
not in agreement. Intuitively, a trace is in agreement if it is only composed of offer and
match actions, that is no requests are left unsatisfied.

Example 7. The automatonA3 in Figure 3.1 has a trace in agreement: Obs((res, �)(sig, sig)) =
res τ ∈ A, and one not in agreement: Obs((sig, sig)(�, res)) = τ res 6∈ A.

A contract automaton is safe when all the traces of its language are in agreement,
and admits agreement when at least one of its traces is in agreement. Formally:

Definition 28 (Safety). A contract automaton A is safe if L (A) ⊆ A, otherwise it is unsafe.
Additionally, if L (A) ∩A 6= ∅ then A admits agreement.

Example 8. The contract automaton A3 of Figure 3.1 is unsafe, but it admits agreement since
L (A3) ∩ A = (res, �)∗(sig, sig). Consider now the contract automata Bill and Mary in
Figure 3.2; their product Bill ⊗Mary is safe because L (Bill ⊗Mary) = (toy, toy) ⊂ A.

Enforcing Agreement 53

Note that the set A can be seen as a safety property in the default-accept approach [Sch00],
where the set of bad prefixes of A contains those traces ending with a trailing request,
i.e. {w~a | w ∈ A, Obs(~a) ∈ R}. One could then consider a definition of product that
disallows the occurrence of transitions labelled by requests only. However, this choice
would not prevent a product of contracts to reach a deadlock. In addition, composition-
ality would have been compromised, as shown in the following example.

Example 9. In what follows, we feel free to present contract automata through a sort of extended
regular expressions. Consider a simple selling scenario involving two parties Ann and Bart.

Bart starts by notifying Ann that he is ready to start the negotiation, and waits from Ann to
select a pen or a book. In case Ann selects the pen, he may decide to withdraw and restart the
negotiation again, or to accept the payment. As soon as Ann selects the book, then Bart cannot
withdraw any longer, and waits for the payment. The contract of Bart is:

Bart = (init.pen.cancel)∗.(init.book.pay + init.pen.pay)

The contract of Ann is dual to Bart’s. Ann waits to receive a notification from Bart when
ready to negotiate. Then Ann decides what to buy. If she chooses the pen, she may proceed with
the payment unless a withdrawal from Bart is received. In this case, Ann can repeatedly try to
get the pen, until she succeeds and pays for it, or buys the book but maliciously omits to pay it.

The contract of Ann is:

Ann = (init.pen.cancel)∗.(init.pen.pay + init.book)

The contract A = Ann⊗ Bart is in Figure 3.3a.
Assume now to change the product ⊗ so to disallow transitions labelled by requests. The

composition of Ann and Bart is in Figure 3.3c, and contains the malformed trace in which Bart
does not reach a final state:

(init, init)(book, book)

In addition, if a third principal Carol = pay were involved, willing to pay for everybody, the
following trace in agreement would not be accepted

(init, init, �)(book, book, �)(�, pay, pay)

because Bart’s request was discarded by the wrongly amended composition operator. So, compo-
sitionality would be lost.

To avoid the two unpleasant situations of deadlock and lack of compositionality, we
introduce below a technique for driving a safe composition of contracts, in the style of
the Supervisory Control for Discrete Event Systems (see Section 1.7).

The purpose of contracts is to declare all the activities of a principal in terms of
requests and offers. Therefore all the actions of a (composed) contract are controllable
and observable. Clearly, the behaviours that we want to enforce upon a given contract
automaton A are exactly the traces in agreement, and so we assume that a request leads
to a forbidden state. A most permissive controller exists for contract automata and is
defined below.

54 Contract Automata

Definition 29 (Controller for Agreement). Let A and K be contract automata, we call K
controller of A if and only if L (K) ⊆ A∩L (A).
A controller K of A is the most permissive controller (mpc) if and only if for all K′ controller
of A it is L (K′) ⊆ L (K).

Proposition 2. Let K be the mpc of the contract automaton A, then L (K) = A∩L (A).

Proof. The existence of K is guaranteed since all actions are controllable and observable
and L (A) is regular, as well as A [CL06]. By contradiction assume L (K) ⊂ A∩L (A),
then there exists another controller K′A such that L (K) ⊂ L (K′) = A∩L (A).

In order to effectively build the most permissive controller, we introduce below the
notion of hanged state, i.e. a state from which no final state can be reached.

Definition 30 (Hanged state). Let A = 〈Q, ~q0, Ar, Ao, T, F〉 be a contract automaton, then
~q ∈ Q is hanged, and belongs to the set Hanged(A), if for all ~q f ∈ F,@w.(w,~q)→∗ (ε, ~q f).

Definition 31 (Mpc construction). Let A = 〈Q, ~q0, Ar, Ao, T, F〉 be a contract automaton,
K1 = 〈Q, ~q0, Ar, Ao, T \ ({t ∈ T | t is a request transition }, F〉 and define

KA = 〈Q \ Hanged(K1), ~q0, Ar, Ao, TK1 \ {(~q, a,~q′) | {~q,~q′} ∩ Hanged(K1) 6= ∅}, F〉

Proposition 3 (Mpc). The controller KA of Definition 31 is the most permissive controller of
the contract automaton A.

Proof. In KA every request transition is removed in the first step, so it must be L (KA) ⊆
A ∩L (A). We will prove that L (KA) = A ∩L (A), from this follows that KA is
the most permissive controller. By contradiction assume that exists a trace w ∈ A ∩
L (A), w 6∈ L (KA). Then there exist a transition t = (~q,~a,~q′) 6∈ TKA in the accepting
path of w (i.e. the sequence of transitions used to recognise w). The transition t is not
a request since w ∈ A ∩L (A), and ~q,~q′ 6∈ Hanged(KA) because the transition belongs
to an accepting path. Since the only transitions removed to obtain KA are requests and
those involving hanged states, it follows that t ∈ TKA .

Example 10. Consider again Example 9. For obtaining the most permissive controller we first
compute the auxiliary set K1 that does not contain the transition ((q21, q22), (�, pay), (q21, q32))

because it represents a request from Bart which is not fulfilled by Ann. As a consequence, some
states are hanged:

Hanged(K1) = {(q21, q22)}

By removing them, we eventually obtain KA, the most permissive controller of A depicted in
Figure 3.3b (unreachable states are not considered).

The following property rephrases the notions of safe, unsafe and admits agreement
on automata in terms of their most permissive controllers.

Enforcing Agreement 55

q01, q02start q11, q12 q21, q22

q41, q42 q51, q52

q21, q32
(init, init) (book, book)

(pen, pen)

(�, pay)

(cancel, cancel)

(pay, pay)

(a) A = Ann⊗ Bart

q01, q02start q11, q12

q41, q42 q51, q52

(init, init)

(pen, pen)
(cancel, cancel)

(pay, pay)

(b) KA

q01, q02start q11, q12 q21, q22

q41, q42 q51, q52

(init, init) (book, book)

(pen, pen)
(cancel, cancel)

(pay, pay)

(c) an automaton obtained with an in-
accurate filtering composition of A

Figure 3.3: The contract automata of Example 9

Property 2. Let A be a contract automaton and let KA be its mpc, the following hold:

• if L (KA) = L (A) then A is safe, otherwise if L (KA) ⊂ L (A) then A is unsafe;

• if L (KA) 6= ∅, then A admits agreement.

Proof. If L (KA) = L (A) then by Proposition 2 we have L (A) = A ∩L (A), hence
L (A) ⊆ A and A is safe.

If L (KA) ⊂ L (A) then A∩L (A) ⊂ L (A), hence L (A) 6⊆ A and A is unsafe.
Finally if L (KA) 6= ∅ then A∩L (A) 6= ∅, and A admits agreement.

We introduce now an original notion of liability, that characterises those principals
potentially responsible of the divergence from the expected behaviour. The liable prin-
cipals are those who perform a transition t from a state ~q such that ~q is reachable in
the mpc but t is not allowed in it. As noticed above, after this step is done, a success-
ful state cannot be reached any longer, and so the principals who performed it will be
blamed. (Note in passing that hanged states play a crucial role here: just removing the
request transitions from A would result in a contract automaton language equivalent to
the mpc, but detecting liable principals would be much more intricate).

Definition 32 (Liability). Let A be a contract automaton and KA be its mpc of Definition 31;
let (v~aw, ~q0)→∗ (~aw,~q) be a run of both automata and let ~q be such that (~aw,~q) → (w,~q′) is
possible in A but not in KA.

The principals Πi(A) such that ~a(i) 6= �, i ∈ 1 . . . rA are liable for ~a and belong to
Liable(A, v~aw). The set of liable principals in A is Liable(A) = {i | ∃w.i ∈ Liable(A, w)}.

Note that by using as a controller the intersection of the bad prefixes of the safety
property A with A we would not be able to compute the set of participants which are
responsible for the violation of the agreement. Indeed in this case the liable participants
would be the first ones to perform a request in a run.

56 Contract Automata

Example 11. In Figure 3.3b, we have Liable(A) = {1, 2}, hence both Ann and Bart are
possibly liable, because the match transition with label (book, book) can be performed, that leads
to a violation of the agreement. Note that by computing BadPre f ix ∩ A (Figure 3.3c), the set
of liable participants becomes {2} (Bart). Indeed in this way it is not possible to track the first
transition which diverges from the agreement.

The following proposition relates safety and liability.

Proposition 4. A contract automaton A is safe if and only if Liable(A) = ∅.

Proof. If Liable(A) = ∅ then L (KA) = L (A). The thesis follows by applying Proposi-
tion 2.

The set Liable(A) is easily computable as follows.

Proposition 5 (Liable Sets). Let A be a CA and KA be its mpc as in Definition 31, then

Liable(A) = {i | (~q,~a,~q′) ∈ TA,~a(i) 6= �,~q ∈ QKA ,~q′ 6∈ QKA}

Proof. Let Liable(A) be the set of Definition 32 and I = {i | (~q,~a,~q′) ∈ TA,~a(i) 6= �,~q ∈
QKA ,~q′ 6∈ QKA} .

• I ⊆ Liable(A): assume i ∈ I, hence there exists a string w~a such that ~a(i) 6= � and
(w~a, ~q0)→∗KA

(~a,~q)→A (ε,~q′) and (~a,~q) 6→KA (ε,~q′) , hence i ∈ Liable(A).

• Liable(A) ⊆ I: assume i ∈ Liable(A), we have (w~a, ~q0) →∗KA
(~a,~q) →A (ε,~q′) and

(~a,~q) 6→KA (ε,~q′) , for some w~a with ~a(i) 6= �. We have (~q,~a,~q′) ∈ TA such that
~q ∈ QKA ,~q′ 6∈ QKA , hence i ∈ I.

If the composition of contracts is safe, then it is possible to turn off the controller: an
unsafe trace will never belong to

⊗
i∈I Ai. To statically decide if a contract automaton is

safe it suffices to compute its mpc and to check whether it is equivalent to A.
Some properties of ⊗ and � follow, that enable us to predict under which conditions

a composition is safe without actually computing it, so avoid generating the whole state
space. This supports modular and compositional verification of service contracts.

We first introduce the notions of collaborative and competitive contracts. Intuitively,
two contracts are collaborative if some requests of one meet the offers of the other, and
are competitive if both can satisfy the same request. An example follows.

Example 12. Consider the contract automata Bill, Mary, John in Figure 3.2. In Figure 3.4 the
contract automaton Bill⊗ John is displayed. The two contract automata Mary and Bill⊗ John
are collaborative and not competitive, indeed the offer toy of Mary is matched in Bill⊗ John, and
no other principals interfere with this offer. Moreover, let A1 = apple + cake⊗ apple + cake
and A2 = apple. The pair A1,A2 is competitive since A2 interferes with A1 on the apple offer.

Enforcing Agreement 57

q02, q03start q12, q03

q02, q13 q12, q13

(toy, �)

(�, toy) (�, toy)

(toy, �)

Figure 3.4: The contract automaton Bill ⊗ John of Example 12
.

Definition 33 (Competitive, Collaborative). The pair of contract automata

A1 = 〈Q1, ~q01, Ar
1, Ao

1, T1, F1〉 A2 = 〈Q2, ~q02, Ar
2, Ao

2, T2, F2〉

are

• competitive if Ao
1 ∩ Ao

2 ∩ co(Ar
1 ∪ Ar

2) 6= ∅

• collaborative if (Ao
1 ∩ co(Ar

2)) ∪ (co(Ar
1) ∩ Ao

2) 6= ∅.

Note that competitive and collaborative are not mutually exclusive, as stated in the
first and second item of Theorem 3 below. Moreover if two contract automata are non-
competitive then all their match actions are preserved in their composition, indeed we
have A1�A2 = A1 ⊗A2.

The next theorem says that the composition of safe and non-competitive contracts
prevents all principals from harmful interactions, unlike the case of safe competitive
contracts. In other words, when A1 and A2 are safe, no principals will be found liable
in A1⊗A2 (i.e. Liable(A1⊗A2) = ∅), and the same happens for A1�A2 if the two are
also non-competitive (i.e. Liable(A1�A2) = ∅).

Theorem 3 (Competitive, Collaborative and Agreement). If two contract automata A1 and
A2 are

1. competitive then they are collaborative,

2. collaborative and safe, then they are competitive,

3. safe then A1 ⊗A2 is safe,A1�A2 admits agreement,

4. non-collaborative, and one or both unsafe, then A1 ⊗A2,A1�A2 are unsafe,

5. safe and non-competitive, then A1�A2 is safe.

Proof. 1) Assume by contradiction that A1 and A2 are non-collaborative, that is

(Ao
1 ∩ co(Ar

2)) ∪ (co(Ar
1) ∩ Ao

2) = ∅

Since the two automata are competitive, we have

Ao
1 ∩ Ao

2 ∩ (co(Ar
1) ∪ co(Ar

2)) 6= ∅

58 Contract Automata

By the distributive law

(Ao
1 ∩ (co(Ar

1) ∪ co(Ar
2))) ∩ (Ao

2 ∩ (co(Ar
1) ∪ co(Ar

2))) 6= ∅

By hypothesis the two automata are non-collaborative, hence the above term can be
rewritten as

(Ao
1 ∩ co(Ar

1)) ∩ (co(Ar
2) ∩ Ao

2) 6= ∅

By associative and commutative laws

(Ao
1 ∩ co(Ar

2)) ∩ (co(Ar
1) ∩ Ao

2) 6= ∅

Which implies
(Ao

1 ∩ co(Ar
2)) ∪ (co(Ar

1) ∩ Ao
2) 6= ∅

obtaining a contradiction.

2) By hypothesis the automata are collaborative:

(Ao
1 ∩ co(Ar

2)) ∪ (Ao
2 ∩ co(Ar

1)) 6= ∅

By hypothesisA1 andA2 are safe, hence for each request there is a corresponding action,
that is co(Ar

i) ⊆ Ao
i where i = 1, 2. Then the following holds

Ao
i ∩ co(Ar

i) = co(Ar
i) i = 1, 2

By substitution in the previous term we obtain

(Ao
1 ∩ Ao

2 ∩ co(Ar
2)) ∪ (Ao

2 ∩ Ao
1 ∩ co(Ar

1)) 6= ∅

Which implies

(Ao
1 ∩ Ao

2 ∩ (co(Ar
1) ∪ co(Ar

2))) ∪ (Ao
2 ∩ Ao

1 ∩ (co(Ar
1) ∪ co(Ar

2))) 6= ∅

By simplification we have

(Ao
1 ∩ Ao

2 ∩ (co(Ar
1) ∪ co(Ar

2))) 6= ∅

Hence A1 and A2 are competitive.
3) Note that the labels of A1 ⊗ A2 are the union of the labels of A1 and A2 (ex-

tended with idle actions for fitting the rank), hence no request transitions are added,
and A1 ⊗A2 is safe.

Since the traces of A1 ⊗A2 are a subset of A = A1 �A2, A has at least a trace in
agreement. Example 12 shows that not all the traces of A admit agreement.

4) Without loss of generality assume that A1 is unsafe, hence there exists a request
~a, and traces w, v such that w~av ∈ L (A1).

Since A1 and A2 are non-collaborative there will be no match between the actions
of A1 and A2, hence we have w1~a′v1 ∈ L (A1 ⊗ A2), w2~a′v2 ∈ L (A1 �A2) for some

Strong Agreement 59

w1, w2, v1, v2, where ~a′ is obtained from ~a by adding the idle actions to principals from
rA1 + 1 to rA1 + rA2 .

5) The proof is similar to 3, indeed it suffices to prove that no new matches between
principals in A1 and A2 are introduced in A1 �A2. By 2 it follows that A1 and A2 are
non-collaborative:

(Ao
1 ∩ co(Ar

2)) ∪ (Ao
2 ∩ co(Ar

1)) 6= ∅

This suffices to prove that no matches will be introduced in their composition.

Note that in item 3 of Theorem 3 it can be that A1�A2 is not safe. Moreover consider
the contract automata A1 and A2 of Example 12. We have thatA1�A2 is unsafe because
the trace (�, apple, apple)(cake, �, �) belongs to L (A1�A2).

The following property relates liability with collaborative and competitive contracts.
When A1 and A2 are safe, no participants will be found liable in A1⊗A2, and the same
happens for A1�A2 if the two are also non-competitive.

Property 3. Let A1,A2 be two safe CA, then Liable(A1 ⊗A2) = ∅. If additionally A1,A2

are non-competitive, then Liable(A1�A2) = ∅.

Proof. The first item is a direct consequence of Theorem 3(3), while the second is a
consequence of Theorem 3(5).

3.3 Strong Agreement

This section introduces the notion of strong agreement on contract automata, that is a
tighter version of the property of agreement. It requires synchronous fulfilment of all
offers and requests. Strong agreement is introduced to prove the correspondence with
communicating machines that always succeed in Chapter 5. The notions of strong agree-
ment, strong safety, strong controller and strong liability are similar to those of the agree-
ment property, and similar results can be obtained by simply substituting A with Z

(defined below).
In the remaining of this section we report the main definitions.

Definition 34 (Strong Agreement and Strong Safety). A strong agreement on (Ln)∗,
n > 1, is a finite sequence of match actions. We let Z denote the set of all strong agreements on
(Ln)∗.

A contract automaton A is strongly safe if L (A) ⊆ Z. We say that A admits strong
agreement when L (A) ∩ Z 6= ∅.

Definition 35 (Strong Controller). A (strong) controller of A is a contract automaton KSA
such that L (KSA) ⊆ Z∩L (A).

The most permissive (strong) controller of A is the controller KSA such that
L (KS ′A) ⊆ L (KSA) for all KS ′A controllers of A.

60 Contract Automata

q0start

q1

a

q0start

q1 q3

q2
a

b

a

b

q0start

q1

ba

(a) Automaton of Alan (b) Automaton of Betty (c) Automaton of Carol

Figure 3.5: The contract automata of Alan, Betty and Carol

In the next definition, we introduce a notion of strong liability, to single out the prin-
cipals that are potentially responsible of the divergence from the expected behaviour.

Definition 36 (Strong Liability). Given the most permissive strong controller KSA of the
contract automaton A, let (v~aw, ~q0)→∗ (~aw,~q) be a run of both automata and let ~q be such
that (~aw,~q)→ (w,~q′) is possible in A but not in KSA.

The principals Πi(A) such that ~a(i) 6= �, i ∈ 1 . . . rA are strongly liable for ~a and belong
to SLiable(A,~a). Then, the set of strongly liable principals in A is SLiable(A) = {i | ∃w.i ∈
SLiable(A, w)}. Finally, let TSLiable(A) denote the set of transitions of A that make principals
strongly liable.

Example 13. We illustrate the strong agreement property with the following simple example.
Alan is willing to lend an apple, Betty offers a blueberry in order to exchange it with an apple,
while Carol wants to eat either the apple or the blueberry. Let a and b denote respectively the
actions of offering an apple or a blueberry and, dually, a and b denote the corresponding request
actions.

The principal automata of Alan, Betty, and Carol are in Figure 3.5, and their product is
in in Figure 3.6a. Their most permissive strong controller is in Figure 3.6b; it is composed by
states~q0,~q1,~q3, and~q4 and transitions (~q0, (a, a, �),~q1), (~q3, (a, a, �),~q4), (~q0, (�, b, b),~q3), and
(~q1, (�, b, b),~q4).

The strongly liable indexes are 1 and 3, corresponding to Alan and Carol respectively; the
transitions that make them liable are respectively (~q0, (a, �, a), ~q6) and

(
~q1, (�, �, a), ~q2). The

former liable transition is a match that leads to non-matching transitions.

3.4 Weak Agreement

We will now consider a more liberal notion of agreement, where offers can be asyn-
chronously fulfilled by matching requests, even though either of them occur before-
hand. In other words, some actions can be taken on credit, assuming that in the future
the obligations will be honoured. According to this notion, called here weak agreement,

Weak Agreement 61

~q0start ~q1 ~q2

~q6 ~q3

~q7 ~q8 ~q4

(a, a, �)

(�, b, b)
(a, �, a)

(�, �, a)

(
�, b, b)

(�, b, �)
(a, a, �)

(�, a, �)

(�, b, �)

(�, b, �)

(�, a, �)

(a) Alan⊗Betty⊗Carol

~q0start ~q1

~q3 ~q4

(a, a, �)

(�, b, b) (�, b, b)

(a, a, �)

(b) KSAlan⊗Betty⊗Carol

Figure 3.6: The product and most permissive strong controller of Example 13

q1start q2

a/b

sig

(a) A4

q′1start q′2
sig

a/b

(b) A5

q1, q′1start q2, q′2
(sig, sig)

(a, �)/(b, �) (�, a)/(�, b)

(c) A4 ⊗A5

Figure 3.7: The contract automata of Example 17

computations well behave when all the requests are matched by offers, in spite of lack
of synchronous agreement, in the sense of Section 3.2. This may lead to a circularity,
as shown by the example below, because, e.g. one principal first requires something
from the other and then is willing to fulfil the request of the other principal, who in
turn behaves in the same way. This is a common scenario in contract composition,
and variants of weak agreement have been studied using many different formal tech-
niques, among which Process Algebras, Petri Nets, non-classical Logics, Event Struc-
tures [BZ09a, BCZ13, BCP13, BTZ12].

Example 14. We recall the toy exchange scenario presented in Section 1.4.1. Suppose Alice and
Bob want to share a bike and an airplane, but neither trusts the other. Before providing their offers
they first ask for the complementary requests. As regular expressions: Alice = bike.airplane
and Bob = airplane.bike. The language of their composition is: L (Alice⊗ Bob) =

{(�, airplane)(bike, bike)(airplane, �), (bike, �)(airplane, airplane)(�, bike)}

In both possible traces the contracts fail in exchanging the bike or the airplane synchronously,
hence L (Alice⊗ Bob) ∩A = ∅ and the composition does not admit agreement.

62 Contract Automata

The circularity in the requests/offers is solved by weakening the notion of agree-
ment, allowing an action to be performed on credit and making sure that in the future
the complementary action will occur, giving rise to a trace in weak agreement. As for
agreement, we have an auxiliary definition.

Definition 37 (Weak Agreement). A trace accepted by a contract automaton of rank n > 1
is in weak agreement if it belongs to W = {w ∈ (Ln)∗ | w = ~a1 . . .~am, ∃ a function
f : [1..m]→ [1..m] total and injective on the requests of w, and such that f (i) = j only if
~ai ./~aj}.

Needless to say, a trace in agreement is also in weak agreement, so A is a proper
subset of W, as shown below.

Example 15. Consider A3 in Figure 3.1, whose trace (res, �)(sig, sig)(�, res) is in W but not
in A, while (res, �)(sig, sig)(�, res)(�, res) 6∈W.

Definition 38 (Weak Safety). Let A be a contract automaton. Then

• if L (A) ⊆W then A is weakly safe, otherwise is weakly unsafe;

• if L (A) ∩W 6= ∅ then A admits weak agreement.

Example 16. In Example 14 we have L (Alice⊗ Bob) ⊂ W, hence the composition of Alice
and Bob is weakly safe.

The following theorem states the conditions under which weak agreement is pre-
served by our operations of contract composition.

Theorem 4 (Competitive Collaborative and Weak Agreement). Let A1,A2 be two contract
automata, then if A1,A2 are

1. weakly safe then A1 ⊗A2 is weakly safe, A1�A2 admits weak agreement

2. non-collaborative and one or both unsafe, then A1 ⊗A2,A1�A2 are weakly unsafe

3. safe and non-competitive, then A1�A2 is weakly safe.

Proof. Let reqw
a , o f w

a be the number of requests and offers of an action a ∈ R ∪O in a
trace w.

1. For ⊗: we will prove that in every trace of A1 ⊗A2, for each action the number of
requests are less than or equal to the number of offers, and the thesis follows. By
contradiction, assume that there exists a trace w in A1 ⊗A2 and an action a with
reqw

a > o f w
a . Assume that w is obtained combining two traces w1, w2 of A1 and

A2, that is each principal in each automaton performs the moves prescribed by its
trace. Since both automata are weakly safe, we have reqw1

a ≤ o f w1
a and reqw2

a ≤ o f w2
a

for all actions a.

Independently of how many matches occur, in w we still have more requests than
offers: reqw1

a + reqw2
a − k ≤ o f w1

a + o f w2
a − k where k are the new matches.

Weak Agreement 63

For � it suffices to take a trace w in A1 �A2 obtained by combining two traces
w1, w2 of respectively A1 and A2, where the match actions of both automata are
maintained in w (the matches are performed by the same principals). In this case,
the trace w will be present also in A1 ⊗A2, hence w ∈W.

2. Without loss of generality assume that A1 is weakly unsafe, hence there exists an
action a and a trace w1 in A1 such that reqw1

a > o f w1
a . Since A1 and A2 are non-

collaborative, in every trace w of A1 ⊗ A2 or A1 �A2 obtained by shuffling w1

with an arbitrary w2 in A2 we will have reqw
a > o f w

a .

3. from Theorem 3.5 A1�A2 is safe and since A ⊂W the thesis follows.

The following proposition helps the proof of Theorem 5.

Proposition 6. Let WA(W) = {w ∈ (R∪O∪ {τ})∗ | ∃ f : [1 . . . |w|]→ [1 . . . |w|] injective
and such that f (i) = j only if w(i) = co(w(j)), total on the requests of w}.
Then, Obs(w) ∈WA(W) implies w ∈W.

Proof. Let σ = Obs(w) ∈WA(W), and let f be a function that certifies that σ ∈WA(W),
i.e. that all the requests in w are fulfilled. Then f certifies w ∈W.

The example below shows that weak agreement is not a context-free notion, in lan-
guage theoretical sense; rather we will prove it context-sensitive. Therefore, we cannot
define the most permissive controller for weak agreement in terms of contract automata,
because they are finite state automata.

Example 17. Let A4, A5 and A4 ⊗ A5 be the automata in Figure 3.7, then we have that
L = W∩L (A4 ⊗A5) 6= ∅ is not context-free. Consider the following regular language

L′ = {(a, �)∗(b, �)∗(sig, sig)(�, a)∗(�, b)∗}

We have that

L ∩ L′ = {(a, �)n1(b, �)m1(sig, sig)(�, a)n2(�, b)m2 | n1 ≥ n2 ≥ 0, m1 ≥ m2 ≥ 0}

is not context-free (by pumping lemma), and since L′ is regular, L is not context-free.

Theorem 5 (Weak Agreement Context-Sensitive). W is a context-sensitive language, but
not context-free. Word decision can be done in O(n2) time and O(n) space.

Proof. Example 17 shows that the property is not context-free. For proving that W

is context-sensitive we now outline a Linear Bounded Automata (LBA) [Kur64] that de-
cides whether a trace w belongs to W, giving us time and space complexity for the mem-
bership problem. Roughly, a LBA is a Turing machine with a tape, linearly bounded by
the size of the input. Since we have an infinite alphabet due to the (unbounded) rank

64 Contract Automata

~q0start ~q1 ~q2 ~q3

~q4 ~q5

(b, b)

(a, a)
(b, b)
(a, a) (�, c)

(c, �)

(b, b)

(�, a)

(a) The product of two contract au-
tomata of Examples 18 and 19

~q0start

~q1

~q2 ~q3 ~q4

~q5 ~q6

~q7

~q9

~q8

~q10

(r, r)
(�, b)

(t, �)

(t, t)

(�, c)

(b, �) (e, e)

(t, �) (b, �)

(b, b)
(�, c)

(�, t)

(e, e)

(b) The booking service of Example 18

q0start q1 q2
a b

c

d

(c) The principal contract automaton
whose flow constraints generate many
traces, as discussed at the end of Ex-
ample 18

Figure 3.8: The contract automata discussed in Examples 18 and 19

of vector ~a, we compute Obs(w) and decide if Obs(w) ∈ WA(W). By Proposition 6 we
obtain the thesis. Below is the scheme of the algorithm:

for i = 0; i < length(w); i ++ do
if wi ∈ R then

for j = 0; j < length(w); j ++ do
if wj = co(wi) then

wj ← #
break

else
if j = length(w)− 1 then return false
end if

end if
end for

end if
end for
return true

The length of the tape equals the length of w, so the algorithm is O(n) space, while it is
O(n2) time, because of the two nested for cycles.

In general, it is undecidable checking whether a regular language L is included in
a context-sensitive one, as well as checking emptiness of the intersection of a regular
language with a context-sensitive one. However in our case these two problems are
decidable: we will introduce an effective procedure to check whether a contract au-
tomaton A is weakly safe, or whether it admits weak agreement. The technique we
propose amounts to find optimal solutions to network flow problems [HKLW10], and

Weak Agreement 65

will be used also for detecting weak liability.
As an additional comment, note that the membership problem is polynomial in time

for mildly context-sensitive languages [JSW90], but it is PSPACE-complete for arbitrary
ones. In the first case, checking membership can be done in polynomial time through two
way deterministic pushdown automata [GHI67], that have a read-only input tape readable
backwards and forwards. It turns out that W is mildly context-sensitive, and checking
whether w ∈ W can be intuitively done by repeating what follows for all the actions
occurring in w. Select an action α; scroll the input; and push all the requests on α on
the stack; scroll again the input and pop a request, if any, when a corresponding offer is
found. If at the end the stack is empty the trace w is in W.

The following property characterize the language of weak agreement as the shuffling
of context-free languages.

Property 4. The language W is the shuffle of a set of context-free languages.

Proof. First consider only the language WA(W) over an alphabet consisting of the single
action a, i.e. R = {a}, O = {a}, and without τ. Note that if Obs(w) ∈ WA(W), also
the string obtained by adding in or removing τ from σ belongs to WA(W). In this case,
WA(W) is generated by the context-free productions G ::= aGaG | aGaG | aG | Ga | ε.
Consider now the case of many actions, and the context-free languages associated with
each of them. It is easy to show that the overall language for WA(W) is obtained
by shuffling all these context-free languages. Additionally, the shuffle of context-free
languages is context-sensitive [Gis81].

3.4.1 Flow Optimization Problems for Weak Agreement

Before presenting our decision procedure we recall the notation introduced in Sec-
tion 1.8, and we adapt it to contract automata. Assume as given a contract automaton
A, with a single final state ~q f 6= ~q0. If this is not the case, one simply adds artificial,
dummy transitions from all the original final states to the new single final state. Clearly,
if the modified contract automaton admits weak agreement, also the original one does
— and the two will have the same liable principals. We assume that all states are reach-
able from ~q0 and so is ~q f from each of them. In addition, we enumerate the requests
of A, i.e. Ar = {ai | i ∈ Il = {1, 2, . . . , l}}, as well as its transitions T = {t1, . . . , tn}.
Also, let FS(~q) = {(~q,~a,~q′) | (~q,~a,~q′) ∈ T} be the forward star of a state ~q, and let
BS(~q) = {(~q′,~a,~q) | (~q′,~a,~q) ∈ T} be its backward star. For each transition ti we intro-
duce the flow variables xti ∈ N, and z~qti

∈ R where ~q ∈ Q,~q 6= ~q0.
We are ready to define the set F~s,~d of flow constraints, an element of which ~x =

(xt1 , . . . , xtn) ∈ F~s,~d defines traces from the source state ~s to the target state ~d. The
intuition is that each variable xti represents how many times the transition ti is traversed
in the traces defined by ~x. Hereafter, we will abbreviate F~q0,~q f

as Fx, and we identify a
transition through its source and target states.

An example follows.

66 Contract Automata

Example 18. Figure 3.8b shows a simple service of booking, which is the composition of a client
and a hotel contracts.

The contract of the client requires to book a room (r), including breakfast (b) and a transport
service, by car (c) or taxi (t); finally it sends a signal of termination (e). The contract of the client
is then:

C = r.b.(c + t).e

The hotel offers a room, breakfast and taxi. Its contract is:

H = r.t.b.e

Four traces accepted by the automaton H ⊗ C are:

w1 = (r, r)(�, b)(t, t)(b, �)(e, e)

w2 = (r, r)(�, b)(�, c)(t, �)(b, �)(e, e)

w3 = (r, r)(t, �)(b, b)(�, t)(e, e)

w4 = (r, r)(t, �)(b, b)(�, c)(e, e)

We now detail the flows associated with each trace giving the set of variables with value 1, all the
others having value 0, because there are no loops. The associated flows are:

w1 : {x~q0,~q1 , x~q1,~q2 , x~q2,~q3 , x~q3,~q4 , x~q4,~q10}

w2 : {x~q0,~q1 , x~q1,~q2 , x~q2,~q5 , x~q5,~q6 , x~q6,~q9 , x~q9,~q10}

w3 : {x~q0,~q1 , x~q1,~q7 , x~q7,~q8 , x~q8,~q4 , x~q4,~q10}

w4 : {x~q0,~q1 , x~q1,~q7 , x~q7,~q8 , x~q8,~q9 , x~q9,~q10}

Note that a flow ~x may represent many traces that have the same balance of requests
and offers for each action occurring therein. For example, in the contract automatonof
Figure 3.8c, the same flow xq0,q1 = 3, xq1,q2 = 2, xq2,q0 = xq1,q0 = 1 represents both w1 =

acabdab and w2 = abdacab. The following auxiliary definition introduces a notation for
flow constraints. It is beneficial in the statements of Theorems 6, 7 and 8 below.

Definition 39 (Flow Problem for Weak Agreement). Given a source state~s and a destination
state ~d, the set of flow constraints F~s,~d from~s to ~d is defined as:

F~s,~d = {(xt1 , . . . , xtn) | ∀~q : (∑
ti∈BS(~q)

xti − ∑
ti∈FS(~q)

xti) =


−1 if ~q =~s
0 if ~q 6=~s, ~d
1 if ~q = ~d

∀~q 6=~s, ti. 0 ≤ z~qti
≤ xti ,

∀~q 6=~s, ∀~q′ : (∑
ti∈BS(~q′)

z~qti
− ∑

ti∈FS(~q′)

z~qti
) =


−p~q if ~q′ =~s
0 if ~q′ 6=~s,~q
p~q if ~q′ = ~q

where p~q =

{
1 if ∑ti∈FS(~q) xti > 0
0 otherwise

}

Weak Agreement 67

In the definition above, the variables z~qti
represent |Q| − 1 auxiliary flows and make

sure that a flow ~x represents valid runs only, that is they guarantee that there are no
disconnected cycles with a positive flow. A more detailed discussion is in Example 19
below. Note that the values of z~qti

are not integers, and so we are defining Mixed Integer
Linear Programming problems that have efficient solutions [HKLW10].

We eventually define a set of variables ai
tj

for each action and each transition, that
take the value -1 for requests, 1 for offers, and 0 otherwise; they help counting the
difference between offers and requests of an action in a flow.

∀tj = (~q,~a,~q′) ∈ T, ∀i ∈ Il : ai
tj
=


1 if Obs(~a) = ai

−1 if Obs(~a) = ai

0 otherwise

Example 19. Figure 3.8a depicts the contract A⊗ B, where

A = a.c∗.b + b.(b.c∗.b + a) B = a.b.a + b.(b.b.a + a.c)

To check whether there exists a run recognising a trace w with less or equal requests than offers
(for each action) we solve ∑tj

ai
tj

xtj ≥ 0, for ~x ∈ Fx.

We illustrate how the auxiliary variables z~qti
ensure that the considered solutions represent

valid runs. Consider the following assignment to ~x: x~q0,~q1 = x~q1,~q2 = x~q2,~q3 = 1, x~q4,~q4 ≥ 1,
and null everywhere else. It does not represent valid runs, because the transition (~q4, (c, �),~q4)

cannot be fired in a run that only takes transitions with non-null values in ~x. However, the
constraints on the flow ~x are satisfied (e.g. we have ∑tj∈FS(~q4) xtj = ∑tj∈BS(~q4) xtj). Now the

constraints on the auxiliary z~qti
play their role, checking if a node is reachable from the initial

state on a run defined by ~x. The assignment above is not valid since for z~q4 we have:

0 ≤ z~q4
(~q0,~q4)

≤ x(~q0,~q4) = 0

0 ≤ z~q4
(~q1,~q4)

≤ x(~q1,~q4) = 0

0 ≤ z~q4
(~q4,~q5)

≤ x(~q4,~q5) = 0

Hence ∑tj∈BS(~q4) z~q4
tj
= z~q4

(~q4,~q4)
, ∑tj∈FS(~q4) z~q4

tj
= z~q4

(~q4,~q4)
and we have:

∑
tj∈BS(~q4)

z~q4
tj
− ∑

tj∈FS(~q4)

z~q4
tj
= 0 6= 1 = p~q4

Finally, note in passing that there are no valid flows ~x ∈ Fx for this problem.
More importantly, note that the auxiliary variables z~qti

are not required to have integer values,
which is immaterial for checking that those solutions represent valid runs, but makes finding them
much easier.

The following result is auxiliary to Theorems 6, 7 and 8 below.

68 Contract Automata

Lemma 2 (Flow and Traces). Let A be a contract automaton such that ~x ∈ Fx, then there
exists a run (w, ~q0)→∗ (ε,~q f) that passes through each tj ∈ T exactly xtj times.

Proof. We outline an algorithm that visits all the transitions tj with xtj > 0, starting from
~q f and proceeding backwards to ~q0.

We use auxiliary variables xtj , tj ∈ T, initialised to zero, for storing how many times
we have passed through a transition tj. At each iteration the algorithm selects non
deterministically a transition t̂ in the backward star of the selected node such that xt̂ −
xt̂ > 0, and increases by one unit the variable xt̂ for the selected t̂. The next node will
be the starting state of t̂. The algorithm terminates when for all the transitions tj in the
backward star we have xtj − xtj = 0.

We prove that the algorithm terminates and constructs a trace that passes through
each tj exactly xtj times, and the last transition considered leaves the initial state. For
the first step we have ∑tj∈BS(~q f)

xtj − ∑tj∈FS(~q f)
xtj = 1 hence there exists at least one

ti ∈ BS(~q f) such that xti > 0 (and xti = 0).
Pick up one of these transitions, say ti, and assign it to the iteration variable t̂. Two

cases may arise, depending on the source of t̂:

1. the source of t̂ is ~q 6= ~q0: we have ∑tj∈BS(~q) xtj −∑tj∈FS(~q) xtj ≥ 0 and we know that

∑tj∈FS(~q) xtj > 0, because t̂ ∈ FS(~q) and xt̂ > 0, hence ∑tj∈BS(~q) xtj > 0.

We now show that there is at least one t ∈ BS(~q) such that (xt − xt) > 0. By
contradiction, assume ∑tj∈BS(~q) xtj −∑tj∈BS(~q) xtj = 0. We distinguish two cases:

• ~q = ~q f : we have ∑tj∈FS(~q) xtj = ∑tj∈BS(~q) xtj , since at every iteration we increase
of one unit the value of xti for t̂ and we are proceeding backwards starting
from ~q f (the flow variable of a loop belongs to both backward and forward
star). Since ∑tj∈BS(~q) xtj > ∑tj∈FS(~q) xtj , we have ∑tj∈FS(~q) xtj −∑tj∈FS(~q) xtj < 0.
Contradiction, since by definition the value xtj for a transition tj will never be
greater then the corresponding value xtj .

• ~q 6= ~q f : we have ∑tj∈FS(~q) xtj > ∑tj∈BS(~q) xtj . Since ∑tj∈BS(~q) xtj = ∑tj∈FS(~q) xtj ,
we have ∑tj∈FS(~q) xtj −∑tj∈FS(~q) xtj < 0 obtaining a contradiction as above.

Then, we iterate the algorithm taking the above t as t̂.

2. the source of ti is ~q0: we have ∑tj∈BS(~q0) xtj −∑tj∈FS(~q0) xtj = −1.
Let k1 = ∑tj∈FS(~q0) xtj −∑tj∈FS(~q0) xtj , k2 = ∑tj∈BS(~q0) xtj −∑tj∈BS(~q0) xtj , and note that
since we are proceeding backwards starting from ~q f it must be that
∑tj∈FS(~q0) xtj = 1 + ∑tj∈BS(~q0) xtj . Hence, from the previous equations it must be
that k2 − k1 = 0. We have that:

• if k1 = 0, we have k2 = 0 and the algorithm terminates;

• if k1 > 0, we have k2 > 0 and the algorithm continues by selecting a transition
t̂ ∈ BS(~q0) such that xt̂ − xt̂ = 0.

Weak Agreement 69

Since at every iteration we increase the value xt̂, the constraints on Fx guarantee
that the algorithm will eventually terminate. Moreover there exists an execution of the
algorithm that traverses all the possible cycles of the trace induced by ~x. Hence we
have a trace from ~q0 to ~q f that passes through each transition tj visited by the algorithm
exactly xtj times.

It remains to prove that for all the transitions tj not visited by the algorithm we
have xtj = 0. By contradiction assume that there exists a transition ti = (~qs,~a,~qd) with
xti − xti > 0 for all the possible executions of the algorithm.

This is possible only if~qd it is not connected to~q f by the flow ~x. Moreover in this case
by the flow constraints on ~x it follows that~qs is not reachable from~q0 by the flow ~x, i.e. ti

is not part of the trace induced by ~x. Then there must exist a cycle C = {tc1, . . . , tcm}with
ti ∈ C and disconnected from ~q0 and ~q f with positive flow. Let QC be the set of nodes
having ingoing or outgoing transitions in C. The constraints ∑t∈BS(~q) xt−∑t∈FS(~q) xt = 0
are satisfied for all ~q ∈ C.

We show that C will eventually violate the constraints defined by the variables z~qs
tj

.
We have:

∀~q′ ∈ Q : ∑
tj∈BS(~q′)

z~qs
tj
− ∑

tj∈FS(~q′)

z~qs
tj
=


−p~qs if ~q′ = ~q0

0 if ~q′ 6= ~q0,~qs

p~qs if ~q′ = ~qs

∀tj ∈ T. z~qs
tj
∈ R, 0 ≤ z~qs

tj
≤ xtj

We have ∑tj∈FS(~qs) xtj > 0 and p~qs = 1, hence ∑tj∈BS(~qs) z~qs
tj
−∑tj∈FS(~qs) z~qs

tj
= 1 and for

all ~q ∈ QC,~q 6= ~qs : ∑tj∈BS(~q) z~qs
tj
− ∑tj∈FS(~q) z~qs

tj
= 0. Note that is not possible to satisfy

these constraints since for all t ∈ C, xt are all equal and positive and 0 ≤ z~qs
t ≤ xt.

The main results of this section follow.

Theorem 6 (Flow Problem for Weak Safety).
Let ~v be a binary vector. Then a contract automaton A is weakly safe if and only if min γ ≥ 0
where:

∑
i∈Il

vi ∑
tj∈T

ai
tj

xtj ≤ γ ∑
i∈Il

vi = 1 ∀i ∈ Il . vi ∈ {0, 1} (xt1 . . . xtn) ∈ Fx γ ∈ R

Proof. (⇒) By contradiction assume that min γ < 0. Hence there exists an action aj such
that vj = 1, ∀i ∈ Il , i 6= j.vi = 0 and γ = ∑tj∈T aj

tj
xtj < 0. By Lemma 2 we know that ~x

builds a trace recognising w ∈ L (A), and the number of offers for aj in w are less than
the corresponding number of requests since ∑tj∈T aj

tj
xtj < 0, hence w 6∈W.

(⇐) By contradiction there exists w ∈ L (A) \W. Hence there exists an action aj

that occurs in w fewer times as an offer than as a request. Let ~x be the flow induced in
the obvious way by the trace w, counting the number of times each transition occurs in
the path accepting w. We have ∑tj∈T aj

tj
xtj < 0, hence it must be min γ < 0.

70 Contract Automata

The minimum value of γ selects the trace and the action a for which the difference
between the number of offers and requests is the minimal achievable from A. If this
difference is non-negative, there will always be enough offers matching the requests,
and so A will never generate a trace not in W. In other words, A is weakly safe, otherwise
it is not.

Example 20. Consider again Example 18 and let a1 = r, a2 = b, a3 = t, a4 = c, a5 = e.
If v1 = 1, for each flow ~x ∈ Fx, we have that ∑tj

a1
tj

xtj = 0 (for i 6= 1, we have vi = 0). This
means that the request of a room is always satisfied. Similarly for breakfast and the termination
signal e. If v3 = 1, for the flow representing the traces w1, w3 we have ∑tj

a3
tj

xtj = 0, while for
the flow representing the traces w2, w4 the result is 1. The requests are satisfied also in this case.
Instead, when v4 = 1, for the flow representing the traces w1, w4 we have ∑tj

a4
tj

xtj = 0, but for
the flow representing w2, w3, the result is −1. Hence min γ = −1, and the contract automaton
H ⊗ C is not weakly safe, indeed we have w2, w3 6∈W.

In a similar way, we can check if a contract automaton offers a trace in weak agree-
ment.

Theorem 7 (Flow Problem for Weak Agreement). The contract automaton A admits weak
agreement if and only if max γ ≥ 0 where

∀i ∈ Il . ∑
tj∈T

ai
tj

xtj ≥ γ (xt1 . . . xtn) ∈ Fx γ ∈ R

Proof. (⇒) Let w be a trace in weak agreement, and let ~x be the flow induced by w. Then
by construction ∀i ∈ Il . ∑tj∈T ai

tj
xtj ≥ 0, hence max γ ≥ 0.

(⇐) Follows from Lemma 2 and the hypothesis.

The maximum value of γ in Theorem 7 selects the trace w that maximises the least
difference between offers and requests of an action in w. If this value is non-negative,
then there exists a trace w such that for all the actions in it, the number of requests is less
or equal than the number of offers. In this case, A admits weak agreement; otherwise it
does not.

Example 21. In Example 18, max γ = −1 for the flows representing the traces w2, w3 and
max γ = 0 for those of the traces w1, w4, that will be part of the solution and are indeed in weak
agreement. Consequently, H ⊗ C admits weak agreement.

We now define the weakly liable principals: those who perform the first transition t
of a run such that after t it is not possible any more to obtain a trace in W, i.e. leading
to traces w ∈ L (A) \W that cannot be extended to ww′ ∈ L (A) ∩W.

Definition 40 (Weak Liability). Let A be a contract automaton and let w = w1~aw2 such
that w ∈ L (A) \W, ∀w′.ww′ 6∈ L (A) ∩W, ∀w3.w1~aw3 6∈ L (A) ∩W and ∃w4.w1w4 ∈
L (A) ∩W.

The principals Πi(A) such that~a(i) 6= � are weakly liable and form the set WLiable(A, w1~a).
Let WLiable(A) = {i | ∃w such that i ∈ WLiable(A, w)} be the set of all potentially

weakly liable principals in A.

Weak Agreement 71

For computing the set WLiable(A) we optimise a network flow problem for a transi-
tion t to check if there exists a trace w in which t reveals some weakly liable principals.
By solving this problem for all transitions we obtain the set WLiable(A).

Theorem 8 (Flow Problem and Weak Liability). The principal Πi(A) of a contract automa-
ton A is weakly liable if and only if there exists a transition t = (~qs,~a, ~qd),~a(i) 6= � such that
γt < 0, where

γt = min {g(~x) | ~x ∈ F~q0,~qs , ~y ∈ F~qs,~q f
, ∀i ∈ Il . ∑

tj∈T
ai

tj
(xtj + ytj) ≥ 0}

g(~x) = max {γ | ~u ∈ F~qd,~q f
, ∀i ∈ Il . ∑

tj∈T
ai

tj
(xtj + utj) + ai

t ≥ γ, γ ∈ R}

Proof. (⇒) By hypothesis ∃w1 such that ∀w3. w1~aw3 ∈ L (A) \W and ∃w2. w1w2 ∈
L (A) ∩W. Let t = (~qs,~a,~qd) be the transition such that (w1~a,~q0) →∗ (~a,~qs) → (ε,~qd),
i.e. the principal i in~a is weakly liable. We show that γt < 0.

Let w1 from ~q0 to ~qs induce the flow ~x, while w2 from ~qs to ~q f induce ~y. Since w1w2

is in weak agreement, ∀i ∈ Il . ∑tj∈T ai
tj
(xtj + ytj) ≥ 0.

Since by hypothesis the i-th principal is liable, the flow ~x corresponding to the trace
w1 is such that g(~x) < 0. Otherwise if g(~x) ≥ 0 we can choose a trace, say, w3 such that
w1~aw3 ∈ L (A) ∩W, obtaining a contradiction. Therefore, γt ≤ g(~x) < 0.

(⇐) by hypothesis γt < 0 and by Lemma 2 ~x corresponds to a run w from the initial
state to ~qs such that (by hypothesis again) ∀w3.w1~aw3 6∈ L (A) ∩W and ∃w4.w1w4 ∈
L (A) ∩W, that is t is a weakly liable transition.

Figure 3.9 might help understanding how the flows ~x,~y (and ~u) and the transition
t are composed to obtain a path from the initial to the final state. Intuitively, the flow
defined above can be seen as split into three parts: the flow ~x from ~q0 to ~qs, the flow ~y
from ~qs to ~q f , and the flow ~u from ~qd to ~q f , computed through the function g.

This function takes as input the flow ~x and selects a flow ~u such that, by concate-
nating ~x and ~u through t, we obtain a trace w, where the least difference between offers
and requests is maximised for an action in w. Using the same argument of Theorem 7,
if the value computed is negative, then there not exists a flow ~u that composed with ~x
selects traces in weak agreement.

Finally γt yields the minimal result of g(~x), provided that there exists a flow ~y, that
combined with ~x represents only traces in weak agreement. If γt < 0 then the transition
t identifies some weakly liable principals. Indeed the flow ~x represents the traces w such
that (1) ∃w1, represented by ~y, with ww1 ∈ L (A) ∩W and (2) ∀w2, represented by ~u,
with w~aw2 ∈ L (A) \W. Note that if a flow ~x reveals some weakly liable principals,
the minimisation carried on by γt guarantees that the relevant transition t is found.
Finding the weakly liable principals is a hard task, and belongs to the family of bilevel
problems [Bar06]. Basically, these problems contain two optimization problems, one
embedded in the other, and finding optimal solutions to them is still a hot research
topic.

72 Contract Automata

~q0start ~qs

~qd

~q f
~x ~y

t ~u

Figure 3.9: The three flows computed by Theorem 8

Example 22. In Figure 3.8b, the transitions (~q2, (�, c), ~q5) and (~q8, (�, c),~q9) reveal the second
principal (i.e. C) weakly liable. Indeed the trace (r, r)(�, b) ending in ~q2 can be extended to
one in weak agreement, while (r, r)(�, b)(�, c) cannot. Also the trace (r, r)(t, �)(b, b) can be
extended to one in weak agreement while (r, r)(t, �)(b, b)(�, c) cannot.

For the transition (~q2, (�, c), ~q5) we have the trace (r, r)(�, b) for the flow ~x and the trace
(t, t)(b, �)(e, e) for the flow~y, and we have ∀i ∈ Il . ∑tj∈T ai

t(xtj + ytj) ≥ 0. Note that if we select
as flow ~y the trace (�, c)(t, �)(b, �)(e, e) then the constraints ∀i ∈ Il . ∑tj∈T ai

tj
(xtj + ytj) ≥ 0

are not satisfied for the action a4 = c (recall Example 20). For the flow ~u the only possible trace
is (t, �)(b, �)(e, e), and max γ = −1 = γ(~q2,(�,c),~q5) since ∑tj∈T a4

tj
(xtj + utj) + (−1) = −1.

For the transition (~q8, (�, c),~q9) the flow ~x selects the trace (r, r)(t, �)(b, b), the flow ~y
selects the trace (�, t)(e, e), since the other possible trace, that is (�, c)(e, e), does not respect the
constraints for the action a4 (i.e. c). Finally, for the flow ~u we have the trace (e, e), and as the
previous case max γ = −1 = γ(~q8,(�,c),~q9).

3.5 An example

In this section we consider a well-known case study taken from [Pel03]. This is a pur-
chasing system scenario, where a manufacturer (the buyer) wants to build a product.
To configure it, the buyer lists in an inventory the needed components and contacts a
purchasing agent. The agent looks for suppliers of these components, and eventually
sends back to the buyer its proposal, if any. A supplier is assumed to signal whether
it can fulfil a request or not; if neither may happen, the interactions between it and
the purchasing agent are rolled back, so as to guarantee the transactional integrity of
the overall process. We are interested in an abstract description of the services through
contract automata. A description of the WSDL code of the services, as well as the BPEL
process from the perspective of the purchasing agent are out of the scope of this chapter,
and can eventually be found in [Pel03].

We slightly modify the original protocol, where the purchasing agent guarantees
its identity to the buyer through a public-key certificate. For brevity, here we assume to
have two sellers S1 and S2, and two purchasing agents A1 and A2, that behave differently.
A service instance involves the buyer, an agent and both sellers. The buyer B requires
the certificate of an agent (action cert), then it offers the inventory requirements (inv).
Finally, it terminates by receiving either a proposal (pro) or a negative message (nop), if
no proposal can be formulated. The seller S1 waits for a request (pen) of a component
from an agent. It then replies by offering a quote for that part (pquo), or a negative

An example 73

qB1 qB2 qB3

qB4

qB5

cert inv

pro

nop

the buyer B

qS1 1 qS1 2
pen

nope

pquo

the seller S1

qS2 1

pen

the seller S2

qA1 qA2 qA3 qA4

qA5

qA6

qA7
cert inv pen

pquo

nope

nop

pro

pen

pquo

nope

pen

the purchasing agent A1

qA1 qA2 qA3 qA4

qA5

qA6

qA7
inv cert pen

pquo

nope

nop

pro

pen

pquo

nope

pen

the purchasing agent A2

~q1 ~q2 ~q3 ~q4

~q5

~q6

~q7

~q8

~q9
(cert, �, �, cert) (inv, �, �, inv) (�, pen, �, pen)

(�, pquo, �, pquo)

(�, nope, �, nope)

(nop, �, �, nop)

(pro, �, �, pro)

(�, pen, �, pen)

(�, pen, �, pen)

(�, pquo, �, pquo)

(�, nope, �, nope)

the mpc K of B⊗ S1 ⊗ S2 ⊗ A1

~q1

~q2

~q3

~q4

~q5

~q6 ~q7

~q8

~q9

~q10

~q11

~q12

(�, �, �, inv)

(cert, �, �, �)

(cert, �, �, cert) (inv, �, �, �)

(inv, �, �, inv)

(�, �, �, cert)

(�, pen, �, pen)

(�, pquo, �, pquo)

(�, nope, �, nope)

(nop, �, �, nop)

(pro, �, �, pro)

(�, pen, �, pen)

(�, pen, �, pen)

(�, pquo, �, pquo)

(�, nope, �, nope)

a portion of B⊗ S1 ⊗ S2 ⊗ A2 in weak agreement

Figure 3.10: The contract automata for the example

74 Contract Automata

message (nope) if it is unavailable, and restarts. The second seller S2 always accepts a
request, but never replies. The first agent A1 offers its certificate (cert), then requires
the inventory list (inv). It then sends a request to and waits for a reply from the sellers.
The agent must communicate at least with one supplier before replying to the buyer,
and it can span over all the available suppliers in the network, unknown a priori, before
compiling its proposal. Finally, it sends to the buyer a proposal (prop), or the negative
message (nop). The second agent A2 behaves similarly to A1, except the first two actions
are exchanged: before sending its certificate to B, it first requires the inventory list.

In Figure 3.10 from top to bottom, we display, from left to right, the automata B, S1

and S2; the automata A1 and A2; then the most permissive controller K of B⊗ S1⊗ S2⊗
A1 (the whole composition is omitted to save space); finally a portion of B⊗ S1⊗ S2⊗ A2

in weak agreement. This example shows that through contract automata one can iden-
tify which traces reach success, and which reach a failure, together with those principals
responsible for diverging from the expected behaviour, as well as to single out which
failures depend on the order of actions, and which not. Indeed, by inspecting K, that of
course is safe, one can notice that A1 never interacts with S2 because it never replies and
so it is recognised liable. As a matter of fact, the composed automaton B⊗ S1⊗ S2⊗ A1

admits agreement, but it is not safe. Note that K blocks every communication with
S2, so enforcing transactional integrity, because K removes all possibilities of rollbacks
from a trace not in agreement. The composed automaton B⊗ S1⊗ S2⊗ A2 admits weak
agreement but not agreement (and its most permissive controller is empty), because B
and A2 fail in exchanging the certificate and the inventory requirements, as both are
stuck waiting for the fulfilment of their requests. However, by abstracting away the
order in which actions are performed circularity is solved, and these requests satisfied.
Note that S2 is detected to be also weakly liable.

3.6 Concluding Remarks

We have studied contracts composition for services, focussing on orchestration. Ser-
vices are formally represented by a novel class of finite state automata, called contract
automata. They have two operators that compose services according to two different
notions of orchestrations: one when a principal joins an existing orchestration with no
need of a global reconfiguration, and the other when a global adaptive re-orchestration
is required.

We have defined notions that illustrate when a composition of contracts behaves
well, roughly when all the requests (and offers) are fulfilled. These properties have been
formalised as (strong/weak) agreement and (strong/weak) safety, and have been stud-
ied both in the case when requests are satisfied synchronously and asynchronously. Fur-
thermore, a notion of (strong/weak) liability has been put forward. A (strongly/weakly)
liable principal is a service leading the contract composition into a fail state.

Key results of this chapter are ways to enforce good behaviour of services. For the
synchronous versions of agreement and safety, we have applied techniques from Control

Concluding Remarks 75

Theory, while for the asynchronous versions we have taken advantage of optimisation
techniques borrowed from Operations Research. Using them, we efficiently find the op-
timal solutions of the flow in the network automatically derived from contract automata.

We briefly relate our approach to others willing to describe and analyse service
contracts (see Chapter 1 for a brief survey on this subject).

Contract automata are similar to I/O [LT89] and Interface Automata [dAH01], in-
troduced in the field of Component Based Software Engineering. A first difference is
that our operators of composition track each principal, to find the possible liable ones.
Also we do not allow input enabled operations and non-linear behaviour (i.e. broad-
casting offers to every possible request), and our notion of agreement is dual to that of
compatibility in [dAH01], that requires all the offers to be matched.

Contract automata deals with multi-party interactions through orchestration, while
in [BSBM05] only bi-party interactions are considered, i.e. interactions between a single
client and a single server.

Our model represents internal/external choice of [CGP09] and [CP09] as a branching
of requests/offers. Also, we consider stronger properties than theirs: progress guaran-
tees that a subset of contracts meets their requests, while agreement requires that all of
them do, i.e. that each principal reaches a successful state.

Our notion of weak agreement is close to the orchestrator of [Pad10, BvBd15] in the
case of disrespectful compliance.

The controller for the case of agreement cuts all the paths which may lead one prin-
cipal to perform a retract. Hence, a controlled interaction of services needs not to roll
back, as in [BDLd15], because the orchestrator prevents firing of liable transitions. This
means that, if a composition of contracts is safe then the contracts are compliant ac-
cording to [BDLd15]. The converse does not hold. Indeed, our notion of agreement is
stronger, as we force an interaction of services to reach a successful state.

We conjecture that may-test of [dNH83] corresponds to the notion of strong agreement,
while must-test implies strong safety, but not vice-versa. For example the service a∗.b
does not must-satisfy the client a∗.b, but their product is strongly safe (if unfair, the
service may never offer b to its client). Actually, strong safety is alike should testing
of [RV07], where the divergent computations are ruled out.

In [LP15] the compliance and sub-contract relations are extended to deal with chore-
ographies. Compliance is obtained by seeing a choreography as a compound service,
similarly to our composed contract automata. Since a client cannot interact with the
choreography on actions already used while synchronising by other services, in order
to obtain compliance the client must be non-competitive with the other services.

Our notion of liability slightly differs from other versions [BTZ12] (see Section 1.4.3),
mainly because we do not admit the possibility of redeeming from culpability. In-
deed, after a liable transition has been performed, it is no longer possible to reach an
agreement. Moreover, circularity issues are solved with weak agreement, allowing asyn-
chronous matches between requests and offers.

Circularity issues in contracts composition have been studied with several logic for-

76 Contract Automata

malisms (see Section 1.4). While in this chapter we have solved circularity issues through
weak agreement, a connection between our notion of agreement and provability of for-
mulae representing contracts will be discussed in the next chapter.

A central coordinator (i.e. the controller) is in charge of driving the interactions in
a contract composition. We will investigates the conditions under which it is possible
to remove this central control in Chapter 5. A comparison between our approach and
those in the literature on choreographed approaches is in Section 5.4.

A main advantage of our framework is that it supports development of automatic
verification tools for checking and verifying properties of contract composition. In par-
ticular, the formal treatment of contract composition in terms of optimal solutions of
network flows paves the way of exploiting efficient optimisation algorithms. We have
developed a prototypical verification tool, described in Chapter 6.

Chapter 4

Contract Automata and Logics

In this chapter we establish correspondence results between (weak) agreement (see
Chapter 3) and provability of formulae in two fragments of different intuitionistic logics,
that have been used for modelling contracts and are introduced in Section 1.4.

The obtained results allow us to use techniques developed for verifying the prop-
erties of agreement of contract automata to the verification of the corresponding logic
formulae. Moreover, once the relation between a formula p and the corresponding au-
tomaton A has been established, it is possible to verify the correctness of A by proving
the corresponding formula p, so exploiting polynomial time algorithms for provability
of logic formulae [BCGZ13]. These correspondences provide us with further insights on
the relations between circularity issues in logics and in contract automata, both for the
case of unrestricted resources (i.e. non-linear logic) and restricted ones (i.e. linear logic).

We now recall the fragments of intuitionistic logics discussed in this chapter. The
first one, Propositional Contract Logic [BZ09a], has a special logical connective, called
contractual implication, to deal with circularity between offers and requests, arising when
a principal requires, say a, before offering b to another principal who in turn first re-
quires b and then offers a; note that weak agreement holds for this kind of circularity.

The second fragment, Intuitionist Linear Logic with Mix [Ben95] is a linear logic
capable of modelling the exchange of resources with the possibility of recording debts,
that arise when the request of a principal is satisfied, but it is not paid back through a
due offer.

The Horn fragments of these logics have an immediate interpretation in terms of
contracts, and these theories can be interpreted as contract automata, without much
effort. Roughly, a contract is rendered as a Horn clause, and a composition is a conjunc-
tion of clauses. When a Horn formula is provable, then all the contracts are fulfilled, i.e.
all the requests (represented as premises of implications) are entailed.

Firstly, we translate a fragment of the Horn formulae of Propositional Contract Logic
into contract automata, and we prove that a formula is entailed if and only if the contract
automaton admits agreement. The notion of weak agreement will be also related to the
provability of (a subset of) Horn formulae of Propositional Contract Logic. After that,
the connection between contract automata and the Intuitionistic Linear Logic with Mix

78 Contract Automata and Logics

Γ ` q

Γ ` p� q
Zero

Γ, p� q, r ` p Γ, p� q, p ` q

Γ, p� q ` r
Fix

Γ, p� q, a ` p Γ, p� q, q ` b

Γ, p� q ` a� b
PrePost

Figure 4.1: The three rules of PCL for the contractual implication.

(ILLmix)[Ben95] is studied. Again, we translate a fragment of Horn formulae as contract
automata, and we prove that a theorem in ILLmix corresponds to an automaton that
admits agreement.

Structure of the chapter In Section 4.1 we present correspondence results with frag-
ments of Propositional Contract Logic, while the correspondence with Intuitionistic Lin-
ear Logic with Mix is discussed in Section 4.2. Concluding remarks are in Section 4.3

4.1 Propositional Contract Logic

The usual example for showing the need of circular obligations is Example 14 (recalled
below). In the Horn fragment of PCL we use, called H-PCL, the contracts of Alice and
Bob make use of the new contractual implication F � F′, whose intuition is that the
formula F′ is deducible, provided that later on in the proof also F will be deduced.

According to this intuition and elaborating over Example 14, Alice’s contract (I offer
you my aeroplane provided that in the future you will lend me your bike) and Bob’s (I offer you
my bike provided that in the future you will lend me your aeroplane) are rendered as

bike� airplane airplane� bike

Their composition is obtained by joining the two, and one represents that both Alice
and Bob are proved to obtain the toy they request by

((bike� airplane) ∧ (airplane� bike)) ` (bike ∧ airplane)

In words, the composition of the two contracts entails all the requests (bike by Alice and
airplane by Bob).

The Horn fragment of PCL (H-PCL) [BCP13, BCPZ15] is given in Definition 9.
In Figure 4.1 we recall the three rules of the sequent calculus for the contractual

implication [BZ09a]; the others are the standard ones of the Intuitionistic Logic and are
reported in Chapter 1.

As anticipated, in H-PCL all requests of principals are satisfied if and only if the
conjunction p of the contracts of all principals entails all the atoms mentioned.

Definition 41 (Obligations Fulfilment in PCL). The formula p represents a composition
whose principals respect all their obligations if and only if p ` λ(p).

Propositional Contract Logic 79

q11start q21
b

a

(a) JAliceK

q12start q22

q32 q42

a

c

b

b

c

a
b b

(b) JBobK

q13start

c

(c) JCharlieK

~q1start ~q2 ~q3

~q4 ~q5 ~q6

(b, b, �)

(�, c, c)

(�, b, �)

(a, a, �)

(�, c, c) (�, c, c)

(a, �, �), (�, b, �)

(�, �, c)
(b, b, �)

(�, b, �), (�, �, c)

(a, a, �)
(a, �, �), (�, b, �), (�, �, c)

(d) KJAliceK⊗JBobK⊗JCharlieK

Figure 4.2: The contract automata of Examples 23 and 24

Below, we define the translation from an H-PCL formula p to a contract automata
A = JpK. This function helps relating the property of agreement of A with the prov-
ability of p. A simple inspection of the rules below suffices to verify that the obtained
automata are deterministic.

Definition 42 (From H-PCL to CA). A H-PCL formula is translated into a contract automaton
by applying the following rules, where P = {q ∪ {∗} | q ∈ 2J}:

J
∧

i∈I αiK = �i∈IJαiK

J
∧

j∈J ajK = 〈{{∗}}, {∗}, ∅, {aj | j ∈ J}, {({∗}, aj, {∗}) | aj ∈ Ao}, {{∗}}〉

J(
∧
j∈J

aj)→ bK =〈P , J ∪ {∗}, {aj | j ∈ J}, {b},

{(J′ ∪ {j}, aj, J′) | J′ ∪ {j} ∈ P , j ∈ J} ∪ {({∗}, b, {∗})}, {{∗}}〉

J(
∧
j∈J

aj)� bK =〈P , J ∪ {∗}, {aj | j ∈ J}, {b},

{(J′ ∪ {j}, aj, J′) | J′ ∪ {j} ∈ P , j ∈ J} ∪ {(q, b, q) | q ∈ P}, {{∗}}〉

As expected, a Horn formula is translated as the product of the automata rising from
its components αi. In turn, a conjunction of atoms yields an automaton with a single
state and loops driven by offers in bijection with the atoms. A (standard) implication
shuffles all the requests corresponding to the premises aj and then has the single offer
corresponding to the conclusion b. A contractual implication is similar, except that the
offer (b in the definition) can occur at any position in the shuffle, and from there onwards
it will be always available. Each state stores the number of requests that are still to be

80 Contract Automata and Logics

fired, and {∗} stands for no requests Note that there is no control on the number of
times an offer can be taken, as H-PCL is not a linear logic.

Example 23. Consider again Example 14, and let us modify it to better illustrate some pecu-
liarities of H-PCL. Assume then that there are three kids: Alice, Bob and Charlie, who want to
share some toys of theirs: a bike b, an aeroplane a and a car c. The contract of Alice says “I will
lend you my aeroplane provided that you lend me your bike”. The contract of Bob says “I will
lend you my bike on credit that in the future you will lend me your aeroplane and your car”.
The contract of Charlie says “I will lend you my car”. The contract of Alice is expressed by the
classical implication b → a. The contract of Bob is (a ∧ c)� b, while the contract of Charlie is
simply c. The three contracts reach an agreement: the conjunction of the formulae representing
the contracts entails all its atoms, that is (b→ a) ∧ ((a ∧ c)� b) ∧ c ` a ∧ c ∧ b.

Figure 4.2 shows the translation of Alice ∧ Bob ∧ Charlie, according to Definition 42. It is
immediate to verify that the automaton is safe, since all its traces are in agreement.

The following property helps to understand the main result of this section. Item
1 shows that in the final state of JpK all requests have been satisfied and all offers are
available, while in item 2 it is proved that each state of JpK is used for recording all
requests that must be satisfied.

Property 5. Given a H-PCL formula p and the automaton JpK = 〈Q, q0, Ar, Ao, T, F〉:

1. F = {~q = 〈{∗}, . . . , {∗}〉}, and all (~q,~a,~q′) are such that ~q′ = ~q and~a is an offer;

2. every state ~q = 〈J1, . . . , Jn〉 has as many request or match outgoing transitions as the
request actions prescribed by

⋃
i∈1...n Ji;

3. JpK is deterministic.

Proof. The first item follows immediately from Definition 42.
For the second item, we first consider the translation of the clauses in the formula. By
construction, for each of them two cases are possible when considering request actions:
either J(

∧
j∈Ji

aj) → bK or J(
∧

j∈Ji
aj) � bK. In both cases we have outgoing request

transitions of the form {(J′ ∪ {j}, aj, J′) | J′ ∪ {j} ∈ 2Ji , j ∈ J}. Finally by applying the
associative composition � (Definition 26), some requests may be matched with corre-
sponding offers, but no new request can be originated.
The third item follows immediately by the translation and by the condition in Defini-
tion 9, that all the atoms are different.

The following lemma shows that if an atom a is entailed by a formula p then there
is a trace recognised by the contract automaton JpK where the request corresponding to
the atom a, if any, is always matched.

Lemma 3 (Formula Provability and Traces). Given a H-PCL formula p and an atom a in p
we have:

p ` a is provable implies ∃w ∈ L (JpK) such that no~a request on a occurs in w

Propositional Contract Logic 81

Proof. Consider each of the conjuncts α of p. If a does not appear in α as the premise of an
implication/contractual implication, then the statement follows trivially by Definition 42
and by hypothesis, since the translation of a is an offer action. Otherwise a also occurs
in α within:

1. a conjunction, or

2. the conclusion of a contractual implication, or

3. the conclusion of an implication.

For the first two cases, by Definition 42, a transition labelled by the relevant offer a
is available in all states, so preventing a request a to appear in JpK, i.e. after the product
of the principals (Definition 26).

For proving case 3, α =
∧

j∈J aj → a and we proceed by induction on the depth of
the proof of p ` a. It must be the case then that ∀j it holds p ` aj. We can now either
re-use the proof for cases 1 and 2 (that act as base cases), or the induction hypothesis if
aj occurs in the conclusion of an implication. By Definition 42 after all aj are matched,
the offer a will be always available, preventing a request a to appear.

The following definition and lemma relate the residual of the contract automaton JpK
after the execution of a transition labelled by~a with the corresponding formula, namely
p/~a. This result will be used for proving Theorem 9.

In order to keep the following definition compact, we use ◦ for either → or �. In
addition, with a slight abuse of the notation we also use ∧ to operate between formulas,
we write p′ for an empty formula or with a single clause, and we allow the indexing
sets J and K in clauses to be empty. Finally, we let (

∧
j∈∅ aj) ◦ b stand for b.

Definition 43 (Formula Step). Given a formula p, if from the initial state of JpK there is an
outgoing offer or an outgoing match transition with label~a, we define

p/~a =



p if~a is an offer
p′ ∧ (

∧
z∈Z cz � b) ∧ (

∧
j∈J aj) ◦ b′ if~a is a match with~a(i) = b and

p = p′ ∧ (
∧

z∈Z cz � b) ∧ (
∧

j∈J aj ∧ b) ◦ b′

p′ ∧ (
∧

k∈K ak ∧ b) ∧ (
∧

j∈J aj) ◦ b′ if~a is a match with~a(i) = b and
p′ ∧ (

∧
k∈K ak ∧ b) ∧ (

∧
j∈J aj ∧ b) ◦ b′

We now establish a relation between Jp/~aK, and the contract automaton obtained by
changing the initial state ~q0 of JpK to ~q, for the transition (~q0,~a,~q) of JpK. Recall that the
translation given in Definition 42 yields deterministic automata.

Lemma 4 (Formula Step in Automata). Given a H-PCL formula p and the contract automaton
JpK = 〈Q, ~q0, Ar, Ao, T, F〉, if t = (~q0,~a,~q) ∈ T is an offer or a match transition, then L (A) =
L (Jp/~aK) where A = 〈Q,~q, Ar, Ao, T, F〉.

82 Contract Automata and Logics

~q1start ~q2 ~q3

~q4 ~q5 ~q6 ~q8

~q7

(b, b, �)

(�, c, c)

(�, a, �)

(�, b, �)

(a, a, �)

(�, c, c) (�, c, c)

∗

(�, �, c)
(b, b, �)

(�, b, �), (�, �, c)

(a, a, �)

∗∗

(�, c, c)
(b, b, �)

(b, b, �)

(�, �, c)

JAlice ∧ Bob ∧ CharlieK

∗ = (a, �, �), (�, b, �), ∗∗ = (a, �, �), (�, b, �), (�, �, c)

Figure 4.3: The CA of Example 24, the principals are in Figure 4.2.

Proof. The proof is by cases of ~a. If ~a is an offer, then by Definition 42 it must be ~q = ~q0

and trivially A = Jp/~aK.
Otherwise, since~a is a match action, say on atom b, it contains a request from, say, the

i-th principal and a corresponding offer from another. Therefore, p =
∧

k∈K αk contains
within a clause αj the atom b, originating the offer, as a conjunction or as a conclusion
of a contractual implication (note that it cannot be an implication because we are in the
initial state), and αi also contains b originating this time the request.

We now prove that the automata A and Jp/~aK have the same initial state. Let ~q0 =

〈J1, . . . , Jn〉, then, since ~a(i) = b, the states ~q0 and ~q only differ in the i-th element,
where in ~q(i) the request action b is not available anymore; formally, ∀j 6= i it must be
~q(j) = ~q0(j) = Jj, and ~q(i) = ~q0(i) \ {i}. By Definition 43 p and p/~a differ because of the
single atom b has been removed from αi. By these facts and by item 2 of Property 5 the
language equivalence follows. Indeed, Jp/~aK is the product of the same JαkK, k 6= i used
for JpK, and the match on b of A leaves ~q0, that is not reachable from ~q.

Example 24. Let JpK be the automaton shown in Figure 4.3, where p = Alice ∧ Bob ∧ Charlie
and the principals are those of Figure 4.2. Consider now p′ = p/(b, b, �) = (a ∧ ((a ∧ c) �
b) ∧ c) and build Jp′K = {〈{~q2,~q3,~q5,~q6}, ~q2, Ar, Ao, T, ~q6〉} (transitions, alphabets and states
are taken from JpK). It is immediate to verify that the language of Jp′K is the same of JpK, when
the initial state is ~q2 instead of ~q1.

The following lemma is auxiliary for proving the next theorem. Its second item is
similar to Lemma 1 in [Pfe00].

Lemma 5 (PCL Auxiliary). Let a, b be atoms, p, q be conjunction of atoms, with q possibly
empty, p1, . . . , pn be formulae, and ◦ ∈ {→,�}, then

(i) if
∆

Γ, q ◦ b ` p
then ∃∆′ :

∆′

Γ, (q ∧ a) ◦ b, a ` p

(ii) if Γ ` p then ∀Γ′. Γ, Γ′ ` p

Propositional Contract Logic 83

(iii) if
∧

i∈1...n pi ` q then p1, . . . , pn ` q

(iv) if Γ ` ∧i∈1...n pi then ∀i. Γ ` pi

Proof. To prove the first item, we proceed by induction on the depth of ∆ and by cases
on the last rule applied. In the base case ∆ is empty, we have two cases

1. q non-empty or p 6= b: then it must be that Γ = p, Γ′ for some Γ′ and the last rule
applied is id. Trivially, ∆′ will be empty and we have

Γ′, p, (q ∧ a) ◦ b, a ` p
id

2. q empty and p = b: our hypothesis reads as
Γ, b ` b

id, and we build the following

deduction
Γ′, a ◦ b, a ` a

id
Γ, a ◦ b, a, b ` b

id

Γ, a ◦ b, a ` b
♦

where if ◦ =→ then Γ′ = Γ and ♦ =→ L, otherwise if ◦ =� then Γ′ = Γ, b and
♦ = Fix.

For the inductive step, we distinguish two cases:

1. the last rule applied to deduce the hypothesis does not involve q ◦ b. Hence the
rule must be applied on p or on a formula in Γ. We can apply the same rule to
Γ, (q ∧ a) ◦ b, a ` p and use the inductive hypothesis.

2. the last rule applied to deduce the hypothesis involves q ◦ b. There are two ex-
haustive cases

(a) ◦ =→, then the last rule applied is → L and the deduction tree has the
following form:

∆1

Γ, q→ b ` q
∆2

Γ, q→ b, b ` p
Γ, q→ b ` p

→ L

Then by induction hypothesis we have

∆′1
Γ, (q ∧ a)→ b, a ` q

∆′2
Γ, (q ∧ a)→ b, a, b ` p

From the right one and a derivation tree ∆3 detailed below, we build

∆3
∆′2

Γ, (q ∧ a)→ b, a, b ` p
Γ, (q ∧ a)→ b, a ` p

→ L

∆3 is the derivation tree:

∆′1
Γ, (q ∧ a)→ b, a ` q Γ, (q ∧ a)→ b, a ` a

id

Γ, (q ∧ a)→ b, a ` q ∧ a
∧ R

84 Contract Automata and Logics

(b) ◦ =�, then the last rule applied is Fix and the deduction tree has the follow-
ing form:

∆1

Γ, q� b, p ` q
∆2

Γ, q� b, b ` p
Γ, q� b ` p

Fix

Then by the induction hypothesis we have

∆′1
Γ, (q ∧ a)� b, a, p ` q

∆′2
Γ, (q ∧ a)� b, a, b ` p

From the above, we build the following

∆′1
Γ, (q ∧ a)� b, a, p ` q Γ, (q ∧ a)� b, a, p ` a

id

Γ, (q ∧ a)� b, a, p ` q ∧ a
∧ R

∆′2
Γ, (q ∧ a)� b, a, b ` p

Γ, (q ∧ a)� b, a ` p
Fix

For the second item, we prove a stronger fact: the last rule used to deduce Γ, Γ′ ` p
is the same used for proving Γ ` p. We proceed by induction on the depth of the
derivation for Γ ` p and then by case analysis on the last rule applied.

The base case is when the axiom id is applied, and the proof is immediate.
For the inductive case, we assume that for some rule ♦

∆
Γ ` p

♦ implies
∆

Γ, Γ′ ` p
♦

Rather than considering each rule at a time, we group them in two classes: those with
two premises, and those with one premise. Below, we discuss the first case, and the
second follows simply erasing one premise in what follows. The deduction tree in the
premise above has the following form

∆′

Γ ` q
∆′′

Γ′ ` q′

Γ ` p
♦

and by applying the induction hypothesis to both the premises we conclude

∆′

Γ, Γ′ ` q
∆′′

Γ′, Γ′ ` q′

Γ, Γ′ ` p
♦

Moreover note that in this fragment no contradictions can be introduced.
For the third item, we have a derivation tree ∆ for the sequent

∧
i∈1...n pi ` q. To

build a derivation tree ∆′ for p1, . . . , pn ` q apply the following two steps. The first step
removes from ∆ all the rules ∧Li applied to (each sub-term of)

∧
i∈1...n pi, obtaining ∆′′.

Then, replace all applications of the axiom (id) in ∆′′ of the form

Γ,
∧

j∈J pj `
∧

j∈J pj
id

Propositional Contract Logic 85

with a derivation tree with k = |J| leaves of the form

Γ, p1, p2, ..., pk ` pj
id

and by repeatedly applying the rule (∧R) until we obtain the relevant judgement
Γ, p1, p2, ..., pk `

∧
i∈1...n pi.

For the fourth item, we have a derivation tree ∆ for the sequent Γ ` ∧i∈{1...n} pi.
For each sequent Γ ` pj, j ∈ {1 . . . n}, the derivation tree is then:

∆
Γ ` pj ∧

∧
i∈{1...n}\{j} pi

pj,
∧

i∈{1...n}\{j} pi ` pj
id

pj ∧
∧

i∈{1...n}\{j} pi ` pj
∧L1

Γ ` pj
cut

As said above, when seen in terms of composed contracts, the formula p ` λ(p)
expresses that all the requests made by principals in p must be fulfilled sooner or later.
We now show that the contract automaton JpK admits agreement if and only if p ` λ(p)
is provable.

Theorem 9 (PCL agreement). Given a H-PCL formula p we have p ` λ(p) if and only if JpK
admits agreement.

Proof. (⇒) Since p ` λ(p) by Lemma 5(iv) (where Γ = p) we have p ` a for all atoms
a in p. It suffices to apply Lemma 3 to each of these atoms, and by Definition 42 the
offers are never consumed, there must be a trace w ∈ L (JpK) where all the requests are
matched.

(⇐) Let ~q0 be the initial state of JpK and ~f be the final state. We proceed by induction
on the length of w.

In the base case w is empty, hence the initial state of JpK is also final. This situation
only arises when the second rule of Definition 42 has been applied for all conjuncts αi

corresponding to principals. Therefore it must be that p is a conjunction of atoms, so
p = λ(p) and the thesis holds immediately.

For the inductive step we have w = ~aw2, and (~aw2, ~q0) → (w2,~q) →+ (ε, ~f). By in-
ductive hypothesis and Lemma 4 we have p/~a ` λ(p/~a). If~a is an offer by Definition 43
we have p = p/~a and the thesis holds directly. Note that λ(p) = λ(p/~a) because~a labels
a match or an offer transition outgoing from ~q0 and the offer comes from the conclusion
of a contractual implication or a conjunction of atoms, that is unmodified in p/~a . Hence
since by inductive hypothesis p/~a ` λ(p/~a) and since λ(p) = λ(p/~a), proving p ` p/~a
entails p ` λ(p). This is because of the following proof (note that there exists a longer
one, cut-free) and Lemma 5 (ii)

p ` p/~a p, p/~a ` λ(p)
p ` λ(p)

cut

To prove p ` p/~a we proceed by cases according to the structure of p, (omitting the
cases for J = ∅ for which the proof is trivial)

86 Contract Automata and Logics

• if p = p′ ∧ (∧z∈Z cz � b)∧ (∧j∈J aj ∧ b→ b′) we have to prove the sequent p ` p/~a
that reads as

(p′ ∧ (
∧

z∈Z cz � b) ∧ (
∧

j∈J aj ∧ b→ b′)) ` (p′ ∧ (
∧

z∈Z cz � b) ∧ (
∧

j∈J aj → b′))

For readability, we first determine the sequent Γ ` (
∧

j∈J aj) → b′ where
Γ = p′, (

∧
z∈Z cz � b), (

∧
j∈J aj ∧ b) → b′ from p, by applying the rule ∧R, and

Lemma 5(iii). Then we build the following derivation, where * is detailed below:

Γ,
∧

j∈J aj `
∧

j∈J aj
id

∗
Γ,
∧

j∈J aj ` b
♦

Γ,
∧

j∈J aj `
∧

j∈J aj ∧ b
∧ R

Γ,
∧

j∈J aj, b′ ` b′
id

Γ,
∧

j∈J aj ` b′
→ L

Γ ` (
∧

j∈J aj)→ b′
→ R

The fragment * of the proof can have two different forms, depending on the set Z:

– if Z = ∅, then * is empty and the rule ♦ is id

– otherwise the fragment * consists of the two sub-derivations below, and the
rule ♦ applied to them is Fix

∆3

Γ,
∧

j∈J aj, b ` ∧z∈Z cz
(4.1)

Γ,
∧

j∈J aj, b ` b
id

We now show how to obtain ∆3. Let ∆ be the derivation tree for p/~a ` λ(p/~a), that
exists by the inductive hypothesis. Note that since λ(p/~a) is a conjunction where∧

z∈Z cz occurs, the following proof can be obtained by applying Lemma 5(iv) for
all cz and by combining them with rule ∧R:

∆2

(p′, (
∧

z∈Z cz � b), (
∧

j∈J aj → b′)) ` ∧z∈Z cz
(4.2)

Now, in order to obtain the following from the proof (4.2), i.e.

∆3

(p′, (
∧

z∈Z cz � b), (
∧

j∈J aj ∧ b)→ b′,
∧

j∈J aj, b) ` ∧z∈Z cz
(4.3)

we apply Lemma 5(ii): the left hand-side of the sequent

(p′, (
∧

z∈Z

cz � b), (
∧
j∈J

aj → b′)) `
∧

z∈Z

cz

is augmented with
∧

j∈J aj. Finally by applying Lemma 5(i), the formula
∧

j∈J aj → b′

above becomes (
∧

j∈J aj ∧ b)→ b′, b, obtaining (4.3).

Propositional Contract Logic 87

• if p = p′ ∧ (∧k∈K ak ∧ b)∧ ((∧j∈J aj ∧ b)→ b′) we have to prove the sequent p ` p/~a
that reads as

(p′ ∧ (
∧

k∈K ak ∧ b) ∧ (
∧

j∈J aj ∧ b)→ b′) ` (p′ ∧ (
∧

k∈K ak ∧ b) ∧ (
∧

j∈J aj → b′))

For readability, we first determine the sequent Γ ` (
∧

j∈J aj) → b′ where
Γ = p′, (

∧
k∈K ak ∧ b), ((

∧
j∈J aj ∧ b) → b′) from p, by applying the rule ∧R and

Lemma 5(iii). Then we build the following derivation, where * is detailed below:

Γ,
∧

j∈J aj `
∧

j∈J aj
id

∗
Γ,
∧

j∈J aj ` b
♦

Γ,
∧

j∈J aj `
∧

j∈J aj ∧ b
∧ R

Γ,
∧

j∈J aj, b′ ` b′
id

Γ,
∧

j∈J aj ` b′
→ L

Γ ` (
∧

j∈J aj)→ b′
→ R

The fragment * of the proof can have two different forms, depending on the set K:

– if K = ∅, then * is empty and the rule ♦ is id

– otherwise the rule ♦ is ∧L2 applied to the fragment * below

p′, (
∧

k∈K ak ∧ b), b, ((
∧

j∈J aj ∧ b)→ b′),
∧

j∈J aj ` b
id

• if p = p′ ∧ (
∧

z∈Z cz � b) ∧ ((
∧

j∈J aj ∧ b) � b′) we have to prove the sequent
p ` p/~a that reads as

(p′ ∧ (
∧

z∈Z cz � b) ∧ (
∧

j∈J aj ∧ b)� b′) ` (p′ ∧ (
∧

z∈Z cz � b) ∧ (
∧

j∈J aj � b′))

For readability, we first determine the sequent Γ ` ∧j∈J aj � b′ where
Γ = p′, (

∧
z∈Z cz � b), (

∧
j∈J aj∧ b� b′), by applying the rule ∧R and Lemma 5(iii).

Then we build the following derivation, where * is detailed afterwards:

∗
Γ, b′ ` ∧j∈J aj ∧ b

Fix
Γ, b′ ` b′

id

Γ ` b′
Fix

Γ ` ∧j∈J aj � b′
Zero

The fragment * of the proof can have two different forms, depending on the set Z:

– if Z = ∅, we have that Γ = p′, b, (
∧

j∈J aj ∧ b)� b′ and

Γ, b′,
∧

j∈J aj ∧ b ` ∧j∈J aj ∧ b
id

∆′3
Γ, b′ ` ∧j∈J aj Γ, b′ ` b

id

Γ, b′ ` ∧j∈J aj ∧ b
∧ R

Γ, b′ ` ∧j∈J aj ∧ b
Fix

88 Contract Automata and Logics

Since the inductive hypothesis guarantees that p/~a ` λ(p/~a) holds and
λ(p/~a) is a conjunction where

∧
j∈J aj occurs, by applying the reasoning of

the previous case we have a derivation tree ∆′2 for the sequent

(p′, b, (
∧
j∈J

aj � b′)) `
∧
j∈J

aj

As done above, by applying Lemma 5 we obtain the derivation tree ∆′3 for

(Γ′′, p′, b, (
∧
j∈J

aj ∧ b)� b′, b′) `
∧
j∈J

aj

– if Z 6= ∅ we obtain:

(∗∗)
Γ, b′,

∧
j∈J aj ∧ b ` ∧z∈Z cz

(∗ ∗ ∗)
Γ, b′, b ` ∧j∈J aj Γ, b′, b ` b

id

Γ, b′, b ` ∧j∈J aj ∧ b
∧ R

Γ, b′ ` ∧j∈J aj ∧ b
Fix

From the induction hypothesis, with the argument used in the previous cases, we
prove the following sequent

(p′, (
∧

z∈Z

cz � b), (
∧
j∈J

aj � b′)) `
∧

z∈Z

cz

Now, we apply Lemma 5 to it, we determine the deduction (∗∗) and a proof for
the leftmost sequent above

(p′, b′,
∧
j∈J

aj ∧ b, (
∧

z∈Z

cz � b), (
∧
j∈J

aj ∧ b� b′)) `
∧

z∈Z

cz

Just as done above, from the induction hypothesis we prove the sequent

(p′, (
∧

z∈Z

cz � b), (
∧
j∈J

aj)� b′) `
∧
j∈J

aj

from which we obtain the right-most sequent above (***), by applying Lemma 5

(p′, b′, b, (
∧

z∈Z

cz � b), (
∧
j∈J

aj ∧ b)� b′) `
∧
j∈J

aj

• if p = p′ ∧ (
∧

k∈K ak ∧ b) ∧ (
∧

j∈J aj ∧ b� b′) we have to prove the sequent p ` p/~a
that reads as

(p′ ∧ (
∧

k∈K ak ∧ b) ∧ (
∧

j∈J aj ∧ b� b′)) ` (p′ ∧ (
∧

k∈K ak ∧ b) ∧ (
∧

j∈J aj � b′))

Propositional Contract Logic 89

For readability, we first determine the sequent Γ ` ∧j∈J aj � b′ where
Γ = p′, (

∧
k∈K ak ∧ b), (

∧
j∈J aj ∧ b� b′), by applying the rule ∧R and Lemma 5(iii).

Then we build the following derivation, where * is detailed afterwards:

∗
Γ, b′ ` ∧j∈J aj ∧ b

Fix
Γ, b′ ` b′

id

Γ ` b′
Fix

Γ ` ∧j∈J aj � b′
Zero

The fragment * of the proof can have two different forms, depending on the set K:

– if K = ∅, we have Γ = p′, b, (
∧

j∈J aj ∧ b)� b′ and

Γ, b′,
∧

j∈J aj ∧ b ` ∧j∈J aj ∧ b
id

∆′3
Γ, b′ ` ∧j∈J aj Γ, b′ ` b

id

Γ, b′ ` ∧j∈J aj ∧ b
∧ R

Γ, b′ ` ∧j∈J aj ∧ b
Fix

Since the inductive hypothesis guarantees that p/~a ` λ(p/~a) holds and
λ(p/~a) is a conjunction where

∧
j∈J aj occurs, by applying the reasoning of

the previous case we have a derivation tree ∆′2 for the sequent

(p′, b, (
∧
j∈J

aj � b′)) `
∧
j∈J

aj

As done above, by applying Lemma 5 we obtain the derivation tree ∆′3 for

(p′, b, (
∧
j∈J

aj ∧ b)� b′, b′) `
∧
j∈J

aj

– if K 6= ∅ we have that Γ = p′, (
∧

k∈K ak ∧ b), (
∧

j∈J aj ∧ b)� b′ and

Γ, b′,
∧

j∈J aj ∧ b ` ∧j∈J aj ∧ b
id

∆′3
Γ, b′ ` ∧j∈J aj

Γ, b′, b ` b
id

Γ, b′ ` b
∧ L2

Γ, b′ ` ∧j∈J aj ∧ b
∧ R

Γ, b′ ` ∧j∈J aj ∧ b
Fix

Since the inductive hypothesis guarantees that p/~a ` λ(p/~a) holds and
λ(p/~a) is a conjunction where

∧
j∈J aj occurs, by applying the reasoning of

the previous case we have a derivation tree ∆′2 for the sequent

(p′, (
∧

k∈K

ak ∧ b), (
∧
j∈J

aj � b′)) `
∧
j∈J

aj

As done above, by applying Lemma 5 we obtain the derivation tree ∆′3 for

(p′, (
∧

k∈K

ak ∧ b), (
∧
j∈J

aj ∧ b)� b′, b′) `
∧
j∈J

aj

90 Contract Automata and Logics

We have showed that a formula p fulfils all its obligations if and only if the corre-
sponding automaton JpK admits agreement. This result allows us to generate a deduc-
tion tree for an H-PCL formula p using the technique for checking agreement of the
contract automaton JpK. Interestingly, a contractual implication a � b corresponds to
a contract automaton that is able to fire the conclusion (i.e. b) at each state; while for
the standard implication a → b the conclusion is available only after the corresponding
premise (i.e. a) has been satisfied.

Example 25. Consider Example 23. The conjunction of all the formulas entails its atoms, indeed
the corresponding translation into contract automata displayed in Figure 4.2 admits agreement.

Needless to say, the provability of p ` λ(p) implies that JpK admits weak agreement.
However, the implication is in one direction only, as shown by the following example.

Example 26. Consider the H-PCL formula p = (b → a) ∧ (a → b). We have that JpK does
not admit agreement and p 6` λ(p). Nevertheless JpK admits weak agreement. For example,
(b,−)(a, a)(−, b) ∈ L (JpK) is a trace in weak agreement.

As a matter of fact, weak agreement implies provability when a formula p contains
no (standard) implications, as stated below.

Theorem 10 (PCL Weak Agreement). Let p be a H-PCL formula with no occurrence of stan-
dard implications→, then p ` λ(p) if and only if JpK admits weak agreement.

Proof. (⇒) Straightforward from Theorem 9 and from A ⊂W.
(⇐) Since JpK admits weak agreement there exists a trace w ∈ L (JpK) where each

request is combined with a corresponding offer. For proving p ` λ(p) we will prove
p ` a for all the atoms a in λ(p) and the thesis follows by repeatedly applying the rule
∧R. If a occurs within:

1.
∧

j∈J aj: it suffices to apply the rules ∧L1,∧L2, id;

2.
∧

j∈J aj � a: p ` a holds if we prove the sequent

Γ, (
∧
j∈J

aj � a) ` a

that is obtained from p ` a by repeatedly applying the rules ∧Li, for some Γ
containing p and sub-formulas of p. The proof of this sequent has the following
form: ∗

Γ, (
∧

j∈J aj � a), a ` ∧j∈J aj Γ, (
∧

j∈J aj � a), a ` a
id

Γ, (
∧

j∈J aj � a) ` a
Fix

We prove the sequent in the left premise, it suffices to establish the sequents
Γ, (

∧
j∈J aj � a), a ` aj, for all the atoms aj of

∧
j∈J aj. Then, the derivation proceeds

Intuitionistic Linear Logic with mix 91

by repeatedly applying the rule ∧R. We are left to prove Γ, (
∧

j∈J aj � a), a ` aj,
which is done by recursively applying the construction of cases (1) and (2). This
procedure will eventually terminate. Indeed, at each iteration aj is either a con-
junct in

∧
k∈K ak (case 1) and the proof is closed by rule (id), or aj is the conclusion

of the contractual implication
∧

k∈K ak � aj and the proof proceeds as in case (2) by
applying the rule (Fix). In the last case, the premise in the left hand-side becomes
Γ′, (

∧
k∈K ak � aj), a, aj `

∧
k∈K ak, so adding aj in the left part of the sequent. The

number of iterations is therefore bound by the number of atoms in p.

3.
∧

j∈J aj � b where a 6= b. This case reduces to one of the above two, because
if ∃j ∈ J such that aj = a, then a must also appear in another conjunct

∧
z∈Z az

or in another contractual implication
∧

z∈Z az � a, otherwise all the traces of JpK
would have an unmatched request on a, against the hypothesis that it admits weak
agreement.

This result helps to gain insights on the relation between the contractual implication
connective � and the property of weak agreement. Indeed, checking weak agreement
on a contract automaton JpK is equivalent to prove that the formula p fulfils all its obli-
gations (i.e. p ` λ(p)) only if p contains no standard implication. This is because all the
connectives→ are lifted to the contractual version� when checking weak agreement.

4.2 Intuitionistic Linear Logic with mix

In this sub-section we will interpret a fragment of the Intuitionistic Linear Logic with
Mix (ILLmix) [Ben95] in terms of contract automata. Originally, this logic has been used
for modelling exchange of resources between partners with the possibility of recording
debits, through the so-called negative atoms.

Below, we slightly modify Example 23 to better illustrate some features of ILLmix.

Example 27. Alice, Bob and Charlie want to share their bike, aeroplane and car, according to the
same contracts declared in Example 23. In ILLmixthe contract of Alice is expressed by the linear
implication b(a; the contract of Bob is a⊥ ⊗ c⊥ ⊗ b (⊗ is the tensor product of Linear Logic);
the contract of Charlie is the offer c. The intuition is that a positive atom, e.g. c in the contract of
Charlie, represents a resource that can be used; similarly for the b of Bob. Instead, the negative
atoms (a⊥ and c⊥ of Bob) represent missing resources that however can be taken on credit to be
honoured later on. The implication of Alice says that the resource a is produced by consuming b,
provided b is available. (There are some restrictions on the occurrences of negative atoms made
precise below).

The composition (via tensor product) of the three contracts is successful, in that all resources
are exchanged and all debits honoured. Indeed it is possible to prove that all the negative atoms,
i.e. all the requests, will be eventually satisfied. In this case we have that all the resources are
consumed, and that the following sequent is provable: Alice⊗ Bob⊗ Charlie `.

92 Contract Automata and Logics

q11start q21 q31
b a

(a) JAliceK

q12start q22

q32 q42

q52 q62

q72 q82

a

c

b

b

c

a

b b

a

c c

a

(b) JBobK

q13start q23
c

(c) JCharlieK

~q1start ~q2 ~q3

~q4 ~q5 ~q6

(b, b, �)

(�, c, c)

(a, a, �)

(�, c, c) (�, c, c)

(b, b, �) (a, a, �)

(d) KJAliceK�JBobK�JCharlieK

Figure 4.4: The contract automata of Example 27

A ` A
Ax

Γ ` Γ′ ` γ

Γ, Γ′ ` γ
Mix

Γ ` A

Γ, A⊥ `
NegL

Γ, A, B ` γ

Γ, A⊗ B ` γ
⊗L

Γ ` A Γ′ ` B

Γ, Γ′ ` A⊗ B
⊗R

Γ ` A Γ′, B ` γ

Γ, Γ′, A(B ` γ
(L

Γ, A ` B

Γ ` A(B
(R

Figure 4.5: A subset of the rules of the sequent calculus of ILLmix.

The Horn fragment of ILLmix given in Definition 11, while the complete set of rules
for ILLmix can be found in Section 1.4.2.

We recall the subset of the rules of the sequent calculus of ILLmix relevant to our
treatment in Figure 4.5, where A, B stand for a Horn formula p or clause α, while γ may
also be empty (note that in rule (Neg L), A = a and so A⊥ = a⊥); Γ and Γ′ stand for
multi-sets containing Horn formulae or clauses; and Γ, Γ′ is the multi-set union of Γ and
Γ′, assuming Γ, ∅ = Γ.

Since the treatment for non-linear implications of ILLmix is similar to that presented
in sub-section 4.1, we feel free to only deal below with linear implications and tensor
products of literals.

The following auxiliary definition of the concatenation of two automata helps to
translate a H-ILLmix formula. Since the automata obtained by the translation have no
cycles, the following definition ignores loops.

Intuitionistic Linear Logic with mix 93

Definition 44 (Concatenation of CA). Given two principal contract automata
A1 = 〈Q1, q1

0, Ar1
, Ao1

, T1, F1〉 and A2 = 〈Q2, q2
0, Ar2

, Ao2
, T2, F2〉, their concatenation is

A1 · A2 = 〈Q1 ∪Q2, q1
0, Ar1 ∪ Ar2, Ao1 ∪ Ao2,

T1 ∪ T2 \ {(q, a, q′) ∈ T1 | q′ ∈ F1}
∪{(q, a, q2

0) | (q, a, q′) ∈ T1, q′ ∈ F1}, F2〉

Concatenation is almost standard, with the proviso that we replace every transition
of A1 leading to a final state with a transition with the same label leading to the initial
state of A2. Similarly to what has been done in the previous sub-section, a tensor
product is rendered as all the possible orders in which the automaton can fire (the
actions corresponding to) its literals. If the literal is a positive atom, then it becomes
an offer, while it originates a request if the atom is negative. A linear implication is
rendered as the concatenation of the automaton coming from the premise, and that of
the conclusion, with the following proviso. In the premise all the atoms are positive, but
they are all rendered as requests (i.e. as negative atoms), and shuffled. The states are in
correspondence with the atoms still to be fired and {∗} stands for the (final) state where
all atoms have been fired.

Definition 45 (Translation of H-ILLmix). Given a set of atoms X, let P = {q∪ {∗} | q ∈ 2X}
with typical element Z. The translation of a H-ILLmix formula p into a contract automata JpK
is inductively defined by the following rules:

J
⊗

i∈I αiK = �i∈IJαiK

J
⊗
a∈X

aK =〈P, X ∪ {∗}, {a | a⊥ ∈ X ∩A⊥}, {a | a ∈ X ∩A},

{(Z ∪ {a⊥}, a, Z) | Z ∪ {a⊥} ∈ P, a⊥ ∈ X}∪
{(Z ∪ {a}, a, Z) | Z ∪ {a} ∈ P, a ∈ X},
{{∗}}〉

J
⊗

b∈Y b(
⊗

a∈X aK = J
⊗

b∈Y b⊥K · J⊗a∈X aK

Moreover, we homomorphically translate multi-sets of Horn formulae and clauses as follows:

Jp, ΓK = JpK� JΓK Jα, ΓK = JαK� JΓK

The automata obtained by translating the formulae representing the contracts of
Alice, Bob and Charlie in Example 27 are in Figure 4.4.

Definition 46 (Honoured Sequent). A sequent Γ ` Z is honoured if and only if it is provable
and Z is a positive tensor product or empty.

94 Contract Automata and Logics

Intuitively, honoured sequents can be proved and additionally they have no negative
atoms, i.e. no debts. The main result of this section is that a sequent Γ ` Z is honoured
if and only if the corresponding contract automaton JΓK admits agreement.

The importance of this relation lies on the possibility of expressing each H-ILLmix

formula as a contract automaton A, so to use our verification techniques.
In the statement below, we say that JΓK admits agreement on Z whenever there

exists a trace in L (JΓK) only made of match actions and offers in correspondence with
the literals in Z.

Lemma 6 (Derivation Trees for Honoured Sequents). If Γ ` Z is an honoured sequent, there
exists a derivation tree for Γ ` Z such that:

• it only uses the rules Ax, Mix, NegL,⊗L,⊗R and(L of Figure 1.5;

• it is only made of honoured sequents.

Proof. Recall that we are in the Horn fragment and we only consider cut-free proofs.
Since Z is a positive tensor product (or empty), a simple inspection on the rules in
Figure 1.5 suffices to prove the first statement. The second statement is proved because
Ax, Mix, NegL,⊗L,⊗R and (L introduce no sequents with negative literals on their
right hand-side.

The first side of the correspondence is proved now, that is if a sequent Γ ` Z is
honoured then the corresponding automaton JΓK admits agreement on Z.

Lemma 7 (Honoured Sequents admit Agreement). Let Γ ` Z be an honoured sequent, then:

Γ ` Z implies JΓK admits agreement on Z.

Proof. We will prove that there exists a trace w ∈ L (JΓK) made of matches and as many
offers as the literals in Z =

⊗
a∈Y a (recall that they all are positive), or it is made by

only matches if Z is empty. Also, note that the sequents in the proof of Γ ` Z are all
honoured, by hypothesis and Lemma 6. We proceed by induction on the depth of the
proof of Γ ` Z.

In the base case, the proof consists of a single application of the rule Ax. By Defini-
tion 45 one first has an offer transition for each a in Z, and then interleaves them in any
possible order. Hence the thesis holds trivially.

For the inductive case we proceed by case analysis on the last rule applied. We
assume that all clauses (i.e. principals) in Γ are divided by commas, which can be easily
obtained by repeatedly applying the rule ⊗L.

In the following, let a be offers in correspondence with the literals a in Z, we will
consider only the relevant rules as stated by Lemma 6.

•
Γ ` Γ′ ` Z

Γ, Γ′ ` Z
Mix By induction hypothesis there exists w ∈ L (JΓK) with match

actions, only, and w1 ∈ L (JΓ′K) with match actions and offers in correspon-
dence with the literals in Z (if non-empty). By Definition 26, there exists w2 ∈

Intuitionistic Linear Logic with mix 95

L (JΓK� JΓ′K) in agreement.

•
Γ ` A

Γ, A⊥ `
NegL By induction hypothesis there exists w ∈ L (JΓK) with match ac-

tions, and with offers in correspondence with the literals in A. By Definition 45
the traces of the automaton JA⊥K are all the possible permutations of the requests
in correspondence with the literals in A⊥. The thesis follows, because there is an
offer for each request, and by Definition 26.

•
Γ, A, B ` Z

Γ, A⊗ B ` Z
⊗L By the induction hypothesis there exists w ∈ L (JΓ, A, BK) =

L (JΓK� JAK� JBK) with offers in correspondence with the literals in Z (if non-
empty). No atom and its negation can occur in A⊗ B by Definition 11, because it
is a principal. Hence JA⊗ BK and JA, BK are the same automaton (with a different
rank), and the statement follows immediately.

•
Γ ` A Γ′ ` B

Γ, Γ′ ` A⊗ B
⊗R By the induction hypothesis there exist w ∈ L (JΓK) and w′ ∈

L (JΓ′K) with only match actions and offers in correspondence with the literals in
A and in B, respectively. Now Definition 26 guarantees that there exists a trace in
L (JΓK� JΓ′K) in agreement.

•
Γ ` A Γ′, B ` Z

Γ, Γ′, A(B ` Z
(L By the induction hypothesis there exists w ∈ L (JΓK) and

w′ ∈ L (JΓ′, BK) with only match actions and offers in correspondence with the
literals in A and in Z (if non-empty), respectively. By Definition 45 the literals
occurring in A become requests in JA(BK, in all possible ordering. The trace w
contains exactly the needed matching offers. We conclude by noting that no other
request is possible in L (JΓ, Γ′, A(BK).

In order to keep the following definition compact, with a slight abuse of the notation
we use ⊗ to operate between formulas; we remove the constraints of Definition 11 on the
indexing sets I in formulas and X1, X2 and Y in clauses; and we let

⊗
b∈∅ b(

⊗
a∈X2

a
to stand for

⊗
a∈X2

a.
The following definition is useful for relating an execution step of the automaton JpK

with one derivation in the proof tree of p.

96 Contract Automata and Logics

Definition 47 (ILLmix Formula Step). Given a Horn formula p and an offer or match transi-
tion leaving the initial state of JpK with label~a, then define the formula p/~a as:

p/~a =



p′ ⊗⊗a1∈X1
a1 if~a is an offer on c and

p = p′ ⊗⊗a1∈X1∪{c} a1

p′ ⊗⊗a1∈X1
a1 ⊗

⊗
a2∈X2

a2 if~a is a match on c and
p = p′ ⊗⊗a1∈X1∪{c} a1⊗⊗

a2∈X2∪{c⊥} a2

p′ ⊗⊗a1∈X1
a1 ⊗

⊗
b∈Y b(

⊗
a2∈X2

a2 if~a is a match on c and
p = p′ ⊗⊗a1∈X1∪{c} a1⊗⊗

b∈Y∪{c} b(
⊗

a2∈X2
a2

We now establish a relation between Jp/~aK, and the contract automaton obtained by
substituting the initial state ~q0 of JpK with ~q, for the transition (~q0,~a,~q) of JpK.

The main idea is to relate the formula p/~a to the residual of the automaton JpK after
the execution of an initial transition labelled by~a, that is Jp/~aK.

Without loss of generality we assume that the automaton obtained from Definition 45
is deterministic. If not, we first transform the non deterministic automaton to a deter-
ministic one.

Lemma 8 (ILLmix Step Automata). Given a Horn formula p and the contract automaton
JpK = 〈Q, ~q0, Ar, Ao, T, F〉, if t = (~q0,~a,~q) ∈ T is an offer or a match transition, then L (A) =
L (Jp/~aK), where A = 〈Q,~q, Ar, Ao, T, F〉.

Proof. The proof is similar to the one of Lemma 4. The statement follows by noting that
in Definition 45 a tensor product is translated in all the possible permutations of actions
corresponding to the literals, and noting that in p/~a we remove exactly the actions fired
in~a, that are therefore not available any more in the state ~q.

The following lemma suggests that we can safely substitute a multi-set of Horn
formulae and clauses Γ with a single Horn formula, without affecting the corresponding
automaton. This result will be used in the proof of Lemma 10.

Lemma 9 (Multi-set Horn Formulae). Let Γ be a non-empty multi-set of Horn formulae, then
there exists a Horn formula p such that:

JΓK = JpK

Proof. Immediate from Definition 45 (recall the slight abuse of notation).

We now prove the following lemma, which states that if the automaton JΓK obtained
from the translation of Definition 45 admits agreement on Z, then the corresponding
sequent Γ ` Z is honoured.

Lemma 10 (Admits Agreement and Honoured Sequent). Let Γ 6= ∅ be a multi-set of Horn
formulae and Z be a positive tensor product or empty. Then

JΓK admits agreement on Z implies Γ ` Z is an honoured sequent

Intuitionistic Linear Logic with mix 97

Proof. By hypothesis w ∈ L (JΓK) is a trace only composed of match and offer actions
on Z. We proceed by induction on the length of w.

In the base case w has length one. Note that it is not possible to have w = ε by the
hypothesis Γ 6= ∅ and Definition 11. Moreover by Definition 11 it must be that w = ~a
where ~a is a match on action a (a Horn formula must contain at least two principals).
Hence by Definition 45 it must be that Z = ∅ and Γ = {α⊗ α′} where α = a and α′ = a⊥

for some literal a. Then we have:

a ` a
Ax

a, a⊥ ` Neg

a⊗ a⊥ ` ⊗ L

For the inductive step, let w = ~aw2, let ~q0 and ~f be the initial and the final states of
JΓK, then (~aw2, ~q0) → (w2,~q) →+ (ε, ~f). Let p be a Horn formula such that JΓK = JpK
(Lemma 9), so it suffices to prove p ` Z. By the induction hypothesis and Lemma 8 we
have that Jp/~aK admits agreement on some Z′ implies p/~a ` Z′ is honoured. To build Z
from Z′, we proceed by cases on~a:

• if ~a is an offer action on c we prove that p ` Z where Z = Z′ ⊗ c. We have the
following

∆′

p ` (p/~a)⊗ c

∆
(p/~a) ` Z′ c ` c

Ax

p/~a⊗ c ` Z′ ⊗ c
⊗ R

p ` Z
cut

where ∆ is obtained by the inductive hypothesis and for ∆′ we have two cases
depending on p:

– p = p′ ⊗⊗a1∈X1∪{c} a1 then the derivation
∆′

p ` (p/~a)⊗ c
becomes

p′ ⊗ c ` p′ ⊗ c
Ax

if X1 = ∅ and the following otherwise

p′ ` p′
Ax ⊗

a1∈X1
a ` ⊗a1∈X1

a
Ax

p′,
⊗

a1∈X1
a ` p′ ⊗⊗a1∈X1

a
⊗R

c ` c
Ax

p′,
⊗

a1∈X1
a, c ` p′ ⊗⊗a1∈X1

a⊗ c
⊗R

p′,
⊗

a1∈X1∪{c} a ` p′ ⊗⊗a1∈X1
a⊗ c

⊗L

p′ ⊗⊗a1∈X1∪{c} a ` p′ ⊗⊗a1∈X1
a⊗ c

⊗L

• if~a is a match action we prove that p ` Z. We have the following

∆′

p ` p/~a
∆

p/~a ` Z′

p ` Z′
cut

98 Contract Automata and Logics

where ∆ is obtained by the inductive hypothesis, Z = Z′ because~a is a match, and
for ∆′ we have eight cases depending on p:

– p = p′ ⊗ c⊗ c⊥

then the derivation
∆′

p ` p/~a
becomes:

∆mix

p′, c⊗ c⊥ ` p′
⊗ L

p′ ⊗ c⊗ c⊥ ` p′
⊗ L

Since the deduction tree ∆mix will be also used later on, we keep it more
general, by writing q for p′:

∆mix =

c ` c
Ax

c, c⊥ ` NegL
q ` q

id

q, c, c⊥ ` q
Mix

– p = p′ ⊗⊗a1∈X1∪{c} a1 ⊗ c⊥

then, writing in ∆mix p′ ⊗⊗a1∈X1
a1 for q the derivation

∆′

p ` p/~a
becomes:

∆mix

p′ ⊗⊗a1∈X1∪{c} a1, c⊥ ` p′ ⊗⊗a1∈X1
a1
⊗ L

p′ ⊗⊗a1∈X1∪{c} a1 ⊗ c⊥ ` p′ ⊗⊗a1∈X1
a1
⊗ L

– p = p′ ⊗⊗a2∈X2∪{c⊥} a2 ⊗ c

then, writing in ∆mix p′ ⊗⊗a2∈X2
a2 for q the derivation

∆′

p ` p/~a
becomes:

∆mix

p′ ⊗⊗a2∈X2∪{c⊥} a2, c ` p′ ⊗⊗a2∈X2
a2
⊗ L

p′ ⊗⊗a2∈X2∪{c⊥} a2 ⊗ c ` p′ ⊗⊗a2∈X2
a2
⊗ L

– p = p′ ⊗⊗a1∈X1∪{c} a1 ⊗
⊗

a2∈X2∪{c⊥} a2

then, writing in ∆mix p′ ⊗⊗a1∈X1
a1 ⊗

⊗
a2∈X2

a2 for q the derivation
∆′

p ` p/~a
becomes:

∆mix

p′ ⊗⊗a1∈X1∪{c} a1 ⊗
⊗

a2∈X2
a2, c⊥ ` p′ ⊗⊗a1∈X1

a1 ⊗
⊗

a2∈X2
a2
⊗ L

p′ ⊗⊗a1∈X1∪{c} a1 ⊗
⊗

a2∈X2∪{c⊥} a2 ` p′ ⊗⊗a1∈X1
a1 ⊗

⊗
a2∈X2

a2
⊗ L

Intuitionistic Linear Logic with mix 99

– p = p′ ⊗ c⊗ (c(
⊗

a2∈X2
a2)

then the derivation
∆′

p ` p/~a
becomes:

∆ax ∆(
p′, c, (c(

⊗
a2∈X2

a2) ` p′ ⊗⊗a2∈X2
a2
⊗ R

p′ ⊗ c⊗ (c(
⊗

a2∈X2
a2) ` p′ ⊗⊗a2∈X2

a2
⊗ L(x2)

where letting q = p′

∆ax =
q ` q

Ax

and ∆(is the following proof:

c ` c
Ax ⊗

a2∈X2
a2 `

⊗
a2∈X2

a2
Ax

c, (c(
⊗

a2∈X2
a2) `

⊗
a2∈X2

a2
(L

– p = p′ ⊗⊗a1∈X1∪{c} a1 ⊗ (c(
⊗

a2∈X2
a2)

then, letting in ∆ax q = p′ ⊗⊗a1∈X1
a1, the derivation

∆′

p ` p/~a
becomes:

∆ax ∆(
p′ ⊗⊗a1∈X1

a1, c, (c(
⊗

a2∈X2
a2) ` p′ ⊗⊗a1∈X1

a1 ⊗
⊗

a2∈X2
a2
⊗ R

p′ ⊗⊗a1∈X1∪{c} a1 ⊗ (c(
⊗

a2∈X2
a2) ` p′ ⊗⊗a1∈X1

a1 ⊗
⊗

a2∈X2
a2
⊗ L — twice

– p = p′ ⊗⊗a1∈X1∪{c} a1 ⊗ (
⊗

b∈Y∪{c} b(
⊗

a2∈X2
a2)

then writing q̂ for p′ ⊗⊗a1∈X1
a1 ⊗ (

⊗
b∈Y b (

⊗
a2∈X2

a2) below, the deriva-

tion
∆′

p ` p/~a
becomes:

∆ax ∆(2

p′ ⊗⊗a1∈X1
a1, c, (

⊗
b∈Y∪{c} b(

⊗
a2∈X2

a2) ` q̂
⊗ R

p′ ⊗⊗a1∈X1∪{c} a1 ⊗ (
⊗

b∈Y∪{c} b(
⊗

a2∈X2
a2) ` q̂

⊗ L(x2)

where q = p′ ⊗⊗a1∈X1
a1 in ∆ax, and ∆(2 is the deduction tree below:

c ` c
Ax ⊗

b∈Y b ` ⊗b∈Y b
Ax

c,
⊗

b∈Y b ` ⊗b∈Y∪{c} b
⊗ R ⊗

a2∈X2
a2 `

⊗
a2∈X2

a2
Ax

c, (
⊗

b∈Y∪{c} b(
⊗

a2∈X2
a2),

⊗
b∈Y b ` ⊗a2∈X2

a2
(L

c, (
⊗

b∈Y∪{c} b(
⊗

a2∈X2
a2) `

⊗
b∈Y b(

⊗
a2∈X2

a2
(R

– p = p′ ⊗ c⊗ (
⊗

b∈Y∪{c} b(
⊗

a2∈X2
a2)

100 Contract Automata and Logics

then, letting q = p′ in ∆ax, the derivation
∆′

p ` p/~a
becomes:

∆ax ∆(2

p′, c⊗ (
⊗

b∈Y∪{c} b(
⊗

a2∈X2
a2) ` p′ ⊗ (

⊗
b∈Y b(

⊗
a2∈X2

a2)
⊗ R

p′ ⊗ c⊗ (
⊗

b∈Y∪{c} b(
⊗

a2∈X2
a2) ` p′ ⊗ (

⊗
b∈Y b(

⊗
a2∈X2

a2)
⊗ L

The main theorem of this sub-section has now an immediate proof.

Theorem 11 (ILLmixAgreement). Given a multi-set of Horn formulae Γ, we have that

Γ ` Z is an honoured sequent if and only if JΓK admits agreement on Z

Proof. By Lemmata 7 and 10.

Through this result we have linked the problem of verifying the correctness of a
composition of services to the generation of a deduction tree for proving H-ILLmix for-
mulae. Moreover, we have shown that the possibility of recording debts in H-ILLmix can
be used for solving circularity issues arising from a composition of services.

4.3 Concluding Remarks

We have investigated the relationships between contract automata and two intuitionis-
tic logics, particularly relevant for their ability in describing the potential, but harmless
and often essential circularity occurring in services. We have considered a fragment of
the Propositional Contract Logic [BZ09a] particularly suited to describe contracts, and
we relate it through a translation of its formulas into contract automata. Similarly, we
have examined certain sequents of the Intuitionistic Linear Logic with Mix that natu-
rally represent contracts in which all requests are satisfied. Then we have proved that
these sequents are provable if and only if a suitable translation of them as contract au-
tomata admits agreement. These results allow to use both logics as formalisms for the
specification of the requirements and the obligations that each service must fulfil.

Our constructions have been inspired by analogous ones [BDGZ15]; ours however
offer a more flexible form of compositionality. Indeed, for checking if two separate
formulas are provable, it suffices to check if the composition of the two corresponding
automata is still in agreement. If the two automata are separately shown to be safe,
then their composition is in agreement due to Theorem 3. In [BDGZ15] one needs to
recompute the whole translation for the composed formulas, while here we propose a
modular approach.

Chapter 5

Relating Contract Automata and
Choreographies

The relations between an orchestrated model called contract automata (see Chapter 3),
and a choreographed model called communicating machines (see Section 1.3) are inves-
tigated in this chapter. In an orchestrated model, the distributed computational compo-
nents coordinate with each other by interacting with a special component, the orchestra-
tor, which at runtime dictates how the computation evolves. In a choreographed model,
the distributed components autonomously execute and interact with each other on the
basis of a local control flow expected to comply with their role as specified in the “global
viewpoint” (see Section 1.1.1).

We show that, under certain conditions, the above two models are related, in spite
of the different problems they address and the different mechanisms they use for coor-
dination.

We consider convergent communicating systems, that are those exhibiting success-
fully terminating computations only. The machines of convergent systems respect their
contracts, namely they accomplish their tasks and receive what they look for. Strong
safety (see Section 3.3) and convergence are key notions for semantically linking con-
tract automata and communicating machines. We proceed as follows. We first define a
mapping for translating (each principal of) a contract automaton in the corresponding
(machine composing a) communicating system, and we prove that the computations of
the two correspond in a precise way. In the beginning we endow communicating sys-
tems with a synchronous semantics, while the general case is considered in Section 5.2.2.

Then, if a contract automaton is strongly safe then the corresponding communicating
system is convergent, and vice-versa.

To be more precise, we first establish the above semantic connection by requiring
the buffers of communicating machines to contain at most one message and contract
automata to well-behave on branching constructs (a notion made precise below).

Later on, by observing that agreement on contract automata allows a service to be
compositionally placed in an unknown environment that may accept the unmatched
offers of the automaton, we will show a correspondence between contract automata in

102 Relating Contract Automata and Choreographies

agreement and well-behaving on branches and the corresponding convergent commu-
nicating systems.

Finally, we consider the fully asynchronous semantics of communicating machines,
and we prove a weaker result: a strongly safe contract automaton satisfying tighter
constraints on branches represents a convergent communicating system.

A practical outcome of the results of this chapter is that contract automata enjoying
(strong) agreement can execute without controller, if they are trusted. This yields the
further advantage that contract automata are translated into communicating machines
that run without any central control: disposing the orchestrator reduces the communi-
cation overhead.

Structure of the chapter In Section 5.1 the translation of contract automata into com-
municating machines is given, where we also prove our main theorem of correspon-
dence. In Section 5.2 we extend these results by relaxing the constraints put on both
kinds of automata, i.e. we consider agreement on contract automata and the fully asyn-
chronous semantics for communicating machines. Section 5.3 works out in full detail an
example. Finally, Section 5.4 concludes, and discusses possible extensions of our results.

5.1 From Contract Automata to Communicating Machines

Through this chapter we assume fixed a generic contract automaton, namely
A = 〈Qn, ~q0, R, O, T, F〉, and that the states of any automaton/machine are built out
of a fixed universe Q (of states).

Moreover, as for communicating machines (see Section 1.3), we assume that all prin-
cipal contract automata are determistic, and so are their compositions. Note that it is
always possible to convert non-deterministic automata to deterministic ones.

The translation of a principal into a communicating machine is conceptually straight-
forward as the two automata are almost isomorphic, apart from their labels.

Recall that the principals in a contract automaton can fire transitions not matched
by other principals. To account for this kind of “openness”, Definition 48 below uses
the new “−” symbol to represent a special “anonymous” participant, distinguished
from those composing the contract automaton in hand, and playing the role of the
environment.

For this reason, we will assume from now onwards that channel actions in Act are
built on C = {pq

∣∣ p, q ∈P∪ {−} and p 6= q}.
We now define the translation of contract automata into communicating machines.

From Contract Automata to Communicating Machines 103

Definition 48 (Communicating Machines Translation). For a participant p ∈ P, let J_Kp :
Ln → Act be defined as:

J~aKp =



a@ij if~a is a match action and i and j are such that
~a(i) ∈ O and~a(j) ∈ R and p = i

a@ij if~a is a match action and i and j are such that
~a(i) ∈ O and~a(j) ∈ R and p = j

a@i− if~a is an offer action and i is such that~a(i) ∈ O and p = i

a@−j if~a is a request action and j is such that~a(j) ∈ R and p = j

ε otherwise

The translation of A to a communicating finite state machine is given by the map

JAKp = 〈Q, ~q0(p),Act, {(~q(p), J~aKp,~q′(p))
∣∣ (~q,~a,~q′) ∈ T and J~aKp 6= ε},

p

∏(F)〉

The communicating system (see Definition 6) corresponding to the contract automaton A is
S(A) = (JAKp)p∈{1,...,n}.

The following example illustrates the composition of three contract automata, its
most permissive controller, and its translation into a system of three communicating
machines.

Example 28. Figure 5.1 shows three contract automata A, B, and C, their product A⊗ B⊗ C,
with initial state ~q0 = 〈q01, q02, q03〉, and the corresponding most permissive strong controller
KSA⊗B⊗C. The translations JKSA⊗B⊗CKA, JKSA⊗B⊗CKB, and JKSA⊗B⊗CKC as per Definition 48
yield the three communicating machines in Figure 1.3.

We constrain the behaviour of communicating machines, so to make it easier re-
flecting in this model the notion of strong agreement defined on contract automata.
Intuitively, the new semantics, called 1-buffer semantics, only allows a machine Mp to
send a message a to a partner Mq if in the communicating system S all the channels are
empty. To specify the 1-buffer semantics, it suffices to constrain the component ~u(pq) of
the reachable configurations RS(S) of S (see Definition 7), and only keeping the tran-
sitions between the selected configurations. We also define convergent communicating
systems that always reach a final configuration and so they are deadlock-free. Note that
a deadlock-free system may not be convergent, because of the presence of possible live-
locks, while convergent systems are deadlock-free. Indeed, convergence is a stronger
requirement than the absence of deadlocks. In the following, we will prove that under
certain conditions the system of communicating machines obtained from Definition 48
is convergent.

Definition 49 (1-buffer, convergence, deadlock). Let S = (Mp)p∈P be a communicating
system. A configuration s = (~q;~u) of S is stable if and only if ~u =~ε; additionally, s is final if
it is stable and ~q ∈ (Fp)p∈P.

The transition relation of the 1-buffer semantics of S is the following

� =→ ∩(RS≤1(S)× Act× RS≤1(S))

104 Relating Contract Automata and Choreographies

q01start q11

q21

a

b a

a

(a) A

q02start q12

q22

a

c a

a

(b) B

q03start q13

q23q33

b

c c

b

(c) C

~q9 ~q7 ~q0 ~q1 ~q2

~q10 ~q8 ~q3 ~q4 ~q5

~q6

(a, a, �)

(�, c, c)

(b, �, b) (a, a, �)

(�, c, c)

(a, a, �)

(�, �, c)

(b, �, b)

(a, a, �)

(a, a, �)
(a, a, �)

(�, �, b)

(a, a, �)

(a, a, �)

(�, �, b)

(�, �, c)

(a, a, �)

(�, �, b)

(a, a, �)

(�, �, c)

(a, a, �)

(d) A⊗ B⊗ C

~q0start ~q1 ~q2

~q3 ~q4 ~q5~q6

(�, c, c)

(b, �, b) (a, a, �)

(�, c, c)

(a, a, �)

(b, �, b)(a, a, �) (a, a, �)
(a, a, �)

(a, a, �)

(e) KSA⊗B⊗C

The communicating machines JKSA⊗B⊗CKA, JKSA⊗B⊗CKB, JKSA⊗B⊗CKC

corresponding to the contract automata A, B and C are showed in Figure 1.3.

Figure 5.1: The contract automata of Examples 28 and 30.

From Contract Automata to Communicating Machines 105

where→ is the relation introduced in Definition 7 and

RS≤1(S) = {(~q;~u) ∈ RS(S)
∣∣ (~q;~u) is stable or

∃pq ∈ C : ∃a ∈ R : ~u(pq) = a ∧ ∀sr 6= pq.~u(sr) = ε}

We say that the system S is convergent (with the 1-buffer semantics) if and only if for every
reachable configuration (~q;~u) ∈ RS≤1(S), there exists a final configuration s such that

(~q;~u)�∗ s.

Moreover a configuration (~q;~u) is a deadlock if and only if it is not final and (~q;~u) 6�.

In order to relate the computations of contract automata and those of communicating
systems, it is convenient to define a translation from the first to the second ones, as
follows.

Definition 50 (Traces Translation). Given a sequence of n-tuples of actions ϕ ∈
(
Ln)∗, we

define

JϕK =



a@ij a@ijJϕ′K if ϕ =~aϕ′ and~a is a match action on a
with~a(i) ∈ O and~a(j) ∈ R

a@i−Jϕ′K if ϕ =~aϕ′ and~a is an offer action on a
with~a(i) ∈ O

a@−jJϕ′K if ϕ =~aϕ′ and~a is a request action on a
with~a(j) ∈ R

ε if ϕ = ε

undefined otherwise

Now we are ready to establish a first property showing how a sequence of channel
actions labelling a computation of the corresponding communicating system, is mapped
into a trace in strong agreement, i.e. a string of matches.

Property 6. Let S(KSA) be the communicating system corresponding to KSA, and let s0 be its

initial configuration. If s0
f
� s, then

• f ∈ Act
∗ is a sequence of pairs (a@ij a@ij) possibly followed by a′@i′j′, for some

a, a′, i, j, i′, j′, and

• there exists a strong agreement ϕ such that either f = JϕK or f = JϕKa′@i′j′.

Proof. The first item follows from Definition 49, and the second is then immediate by
Definition 50.

Before establishing our main results, we introduce a notion of well-formedness of
contract automata. We require that if an output of a principal i is enabled in two
different states, it can be taken in both, so generating the same match, regardless of the
(projection of these) states on the other principals j 6= i in the product automaton.

106 Relating Contract Automata and Choreographies

In what follows, it is convenient to highlight the principal of a contract automaton
that makes an offer or a request. For that, we define snd(~a) = i when~a is a match action
or an offer action and ~a(i) ∈ O; similarly, let rcv(~a) = j when ~a is a match or a request
action and ~a(j) ∈ R. Also, we will omit the target configuration of a transition when
immaterial, e.g. ~q ~a−→ or s `−→.

Definition 51 (Branching Condition). A contract automaton A has the branching condition
if and only if the following holds for each ~q1,~q2 reachable in A

∀~a match action .(~q1
~a−→∧ snd(~a) = i∧ ~q1(i) = ~q2(i)) implies ~q2

~a−→

Example 29. The product automaton A ⊗ B ⊗ C of Example 28 enjoys the branching condi-
tion. Indeed, consider the match action (a, a, �) and the transition ~q0

(a, a, �)−−−−→. We have that
~q0(1) = ~q3(1) = q01 and there also exists the transition ~q3

(a, a, �)−−−−→. The same happens for:

~q1
(a, a, �)−−−−→ , ~q4

(a, a, �)−−−−→ ~q2
(a, a, �)−−−−→ , ~q5

(a, a, �)−−−−→ ~q6
(a, a, �)−−−−→ , ~q5

(a, a, �)−−−−→

~q7
(a, a, �)−−−−→ ~q9

(a, a, �)−−−−→ ~q7
(a, a, �)−−−−→, ~q8

(a, a, �)−−−−→ ~q9
(a, a, �)−−−−→, ~q10

(a, a, �)−−−−→

~q8
(a, a, �)−−−−→, ~q10

(a, a, �)−−−−→ ~q0
(b, �, b)−−−−→, ~q3

(b, �, b)−−−−→ ~q0
(�, c, c)−−−−→, ~q1

(�, c, c)−−−−→

Instead, the most permissive strong controller of A⊗ B⊗ C does not enjoy the branching condi-
tion. Consider again the match action (a, a, �): while ~q0(1) = ~q3(1) = q01 and ~q3

(a, a, �)−−−−→, no
transition labelled by (a, a, �) exits from ~q0.

Theorem 12 characterises the relations between a contract automaton A, its most per-
missive strong controller KSA and the corresponding communicating system S(KSA).
It states that S(KSA) is capable of performing all the moves of the controller (item 1),
while A, but possibly not KSA, can perform all the traces of S(KSA) in strong agree-
ment (item 2a). Moreover the runs of S(KSA) leading to a configuration from which no
final configuration is reachable correspond to runs inA that traverse strongly liable tran-
sitions (item 2b). The following example illustrates the relations between convergence
and deadlock freedom discussed above on the automata in Figure 5.1.

Example 30. Consider the contract automata and communicating machines of Figure 5.1 and
Figure 1.3. A trace of the system S(KSA⊗B⊗C) is (assuming that AB is the first element of ~u):

((q01, q02, q03); (ε, ε, ε, ε, ε, ε)) a@AB−−→

((q11, q02, q03); (a, ε, ε, ε, ε, ε)) a@AB−−→

((q11, q12, q03); (ε, ε, ε, ε, ε, ε)) = s

We have J(a, a, �)K = a@AB a@AB, and the contract automaton A⊗ B⊗ C is capable of performing
the transition (~q0, (a, a, �),~q7), while this is not true for the controller KSA⊗B⊗C.

Note that from the configuration s it is not possible to reach a final configuration, since the
participant C is prevented from reaching a final state, and thus the transition (~q0, (a, a, �),~q7) of
A⊗ B⊗ C is strongly liable.

From Contract Automata to Communicating Machines 107

Moreover s is not a deadlock, indeed it is always possible to perform the loop:

((q11, q12, q03); (ε, ε, ε, ε, ε, ε)) a@AB−−→

((q11, q12, q03); (a, ε, ε, ε, ε, ε)) a@AB−−→

((q11, q12, q03); (ε, ε, ε, ε, ε, ε))

As a matter of fact S(KSA⊗B⊗C) is deadlock-free but not convergent.

It is convenient to introduce an equivalence between the states of a contract automaton
and those of a configuration of a communicating system (assuming them ordered by
their indexes). This equivalence will be exploited in Theorem 12 for relating the traces
of a communicating system and those of the corresponding contract automaton.

Definition 52 (States Equivalence). Let (~q;~u) be a reachable configuration of a communicating
system, and let ~q′ be a state of a contract automaton A. Then we let

~q ∼ ~q′ iff |~q| = |~q′| = n and ∀i ∈ 1 . . . n.~q(i) = ~q′(i)

Theorem 12 (Correspondence of Traces). Let A be a contract automaton with initial state
~q0; let KSA be its most permissive strong controller with initial state ~qmpc; let S(KSA) be
the corresponding communicating system with initial configuration s0. Then, given a strong
agreement ϕ ∈ Z, the following hold:

1. if ~qmpc
ϕ−→~q′mpc, then there exists a configuration s such that s0

JϕK
� s = (~qs;~u) and

~q′mpc ∼ ~qs;

2. if s0
f
� s = (~qs;~u), then

(a) if f = JϕK, then there exists ~q′ such that ~q0
ϕ−→~q′ and ~qs ∼ ~q′;

(b) if no final configuration is reachable from s, with either f = JϕK or f = JϕKa@ij,
then the run ~q0

ϕ̂−→~q′ has traversed a transition in TSLiable(A) with either ϕ̂ = ϕ or
ϕ̂ = ϕ~a, where~a is a match on a and snd(~a) = i, rcv(~a) = j.

Proof. Through the proof assume that ~q′, ~q′mpc and s are such that ~q0
ϕ−→~q′, ~qmpc

ϕ−→~q′mpc
and s0

JϕK� s = (~qs;~u). Also, let~a be a match with snd(~a) = i and rcv(~a) = j.

1. By induction on the length of ϕ.

The base case is when ~qmpc
~a−→~q′mpc. Let ~qmpc(i) and ~qmpc(j) be the initial states of

participants i and j in S(KSA). By Definition 48, we have that

(~qmpc(i), a@ij,~q′mpc(i)) and (~qmpc(j), a@ij,~q′mpc(j))

are transitions of participants i and j, respectively. We have s0
a@ij� si

a@ij� s
since after the first transition participant j remains in its initial state. Moreover by

108 Relating Contract Automata and Choreographies

Definition 48 and Definition 24 we have ~q′mpc(i) = ~qs(i) and ~q′mpc(j) = ~qs(j), all the

other components of the states remain in their initial state, and thus ~q′mpc ∼ ~qs.

For the inductive case we have ϕ =~a ϕ′, and the run ~qmpc
~a−→~q′′mpc

ϕ−→~q′mpc for some
~q′′mpc. The same argument used above guarantees that there exists s′′ = (~qs′′ ; ~u′′)

and ~qs′′ ∼ ~q′′mpc, such that s0
a@ij� si

a@ij� s′′ Jϕ′K� s and the induction hypothesis
suffices.

2. The proof of the statement 2a is by induction on the length of f and the proof of 2b
is by contradiction.

(a) By hypothesis the base case is when s0
a@ij� si

a@ij� s, in other words s0
J~aK
� s.

Now, in order to obtain S(KSA) through Definition 48 there must exist two
automata such that ~q(i) = ~qs(i) and ~q(j) = ~qs(j). Consequently, the product
automaton A has the transition (~q0,~a,~q) where ∀k 6= i, j. ~q0(k) = ~q(k). Thus
~q ∼ ~qs.

For the inductive case we have ϕ = ~a ϕ′ and the computation s0
J~a′K� s′′ Jϕ′K� s

where s′′ = (~qs′′ ; ~u′′). The same argument used above guarantees that there
exists a transition (~q0,~a, ~q′′) and ~q′′ ∼ ~qs′′ and we conclude by applying the
induction hypothesis. Note that there is only one s such that s0

J~a′K� si
Jϕ′K� s,

and only one ~q′mpc such that ~qmpc
~a−→ ϕ′−→~q′mpc; because we are considering de-

terministic automata only.

(b) Assume by contradiction that ~q0
ϕ̂−→~q′ has traversed no liable transitions. Then

by Definition 36 there exists ϕ′ such that ~q′ ϕ′−→~q′′ and ~q′′ is a final configu-
ration. By Definition 35 we must have ~qmpc

ϕ̂ϕ′−−→~q′mpc where ~q′mpc is a final
configuration.

Hence by applying the first item of Theorem 12 we have s
f ′
� s′′ where s′′ is a

final configuration and f ′ = Jϕ′K or f ′ = a@ijJϕ′K, obtaining a contradiction.

As a side comment to item 2b, we can also prove that if s is a deadlock configuration
(and either f = JϕK or f = JϕKa@ij for some ϕ ∈ Z) and A enjoys the branching
condition, then there exists a run ~q0

ϕ̂−→~q′ traversing a transition in TSLiable(A) with
either ϕ̂ = ϕ or ϕ̂ = ϕ~a, where~a is a match on a and snd(~a) = i, rcv(~a) = j. Recall that,
if a contract automaton A fires through a liable transition, it can be that S(KSA) never
reaches a deadlock configuration, as shown by Example 30.

We are now ready to state one of our main result: the most permissive strong con-
troller of a contract automaton has the branching condition if and only if the corre-
sponding communicating system is convergent.

From Contract Automata to Communicating Machines 109

Theorem 13 (Convergence and Branching Condition). LetA be a contract automaton, KSA
be its most permissive strong controller, and S(KSA) be the corresponding communicating sys-
tem. Then

S(KSA) is convergent if and only if KSA satisfies the branching condition.

Proof. Let ~q0, ~qmpc, and s0 be the initial configurations of A, KSA, and S(KSA), respec-
tively.
(⇒) By contradiction assume that the branching condition does not hold in KSA, i.e. in
KSA ~q1

~a−→~q′′, ~q2 6~a−→ where~a is a match on a with snd(~a) = i, rcv(~a) = j for some i, j ∈P
and ~q1(i) = ~q2(i). Suppose that ϕ and ϕ′ are such that ~qmpc

ϕ−→~q1 and ~qmpc
ϕ′−→~q2.

By the first item of Theorem 12 we have s0
JϕK−→s a@ij−−→ŝ a@ij−−→s′′ = (~qs′′ ;~u) with ~qs′′ ∼ ~q′′

and s0
Jϕ′K−−→s′. Moreover, since by hypothesis ~q1(i) = ~q2(i), we also have s′ a@ij−−→s̄. The

computation s̄ a@ijJϕ2K−−−−−→s f , for any ϕ2 and s f final, is not possible, because otherwise by
item 2a of Theorem 12 we would have ~q2

~aϕ2−→~q f , with ~q f final state of the automaton A,
as well of KSA. This would be a contradiction, because ~q2 6 ~a−→ by hypothesis. Hence
S(KSA) is not convergent, since from s̄ it is not possible to reach a final configuration.

(⇐) Assume by contradiction that S(KSA) is not convergent, i.e. s0
f
� s = (~qs;~u) and

no final configurations are reachable from s. By Property 6, f is either f = JϕK or
f = JϕKa′@i′j′. Hence by applying item 2b of Theorem 12 we have that ~q0

ϕ̂−→~q′ has
traversed a transition in TSLiable(A) with either ϕ̂ = ϕ or ϕ̂ = ϕ~a′. Hence ϕ̂ = ϕ1~aϕ′′

for some ϕ1,~a, ϕ′′ such that ~q0
ϕ1−→~q1 is a run of A and (~q1,~a, ~q′1) ∈ TSLiable(A), with

snd(~a) = i, rcv(~a) = j for some i, j ∈P.

There exists then a (sub-)computation s0
Jϕ1K
� s′ = (~qs′ ; ~u′)

a@ij
� , and by item 2a of

Theorem 12 we have ~qs′ ∼ ~q1. Since we obtained S(KSA) through Definition 48, the

transition s′
a@ij
� has been originated by a transition (~q2,~a, ~q3) in KSA, for some ~q2 such

that ~q2(i) = ~q1(i). We have that ~q1 6= ~q2 because (~q1,~a, ~q′1) ∈ TSLiable(A). The transitions

of KSA include ~q2
~a→, but not ~q1

~a→ and since ~q2(i) = ~q1(i), KSA violates the branching
condition, against our hypothesis.

A consequence of Theorem 13 is that a strongly safe contract automaton has the
branching condition if and only if its corresponding communicating system is conver-
gent.

Corollary 2. Let A be a contract automaton, then

A is strongly safe and satisfies the branching condition
if and only if S(A) is convergent.

Proof. The statement follows by applying Theorem 13, because if A is strongly safe then
A = KSA, hence KSA has the branching condition.

We have fully characterised the conditions under which the orchestration of services
can be safely translated in a distributed synchronous choreography. Note that the prin-
cipals are oblivious of their partners, and computing the most permissive controller is a

110 Relating Contract Automata and Choreographies

~q0start ~q1 ~q2

~q3~q4 ~q5

(a, �, a, �)

(a, �, �, a)

(�, a, a, �)

(�, a, �, a)
(�, a, �, a)

(a, �, �, a)

(�, a, a, �)

(a, �, a, �)

Figure 5.2: KSA

necessary step for matching the requests and offers of each service, as well as removing
the liable transitions. Once the orchestration has been computed, if each principal exe-
cutes its transitions independently of the state of the other principals (i.e. the branching
condition holds), then the central control can be removed. In this case, it is possible
to compute the system of communicating machines, which are now equipped with the
information necessary to execute synchronously without central control, so avoiding
communications overhead. Intuitively, all the possible behaviours exposed by the sys-
tem of communicating machines are exactly those computed by the corresponding most
permissive controller.

Example 31. Consider the automaton A = A⊗ B⊗ C⊗ D depicted in Figure 5.2. Both prin-
cipals A and B only offer a and then stop, while the other principals B and C only perform the
complementary request a.

The contract automaton A is strongly safe, but it does not enjoy the branching condition. As
an example of violation, notice that the state of B in both ~q1,~q3 is the same, i.e. ~q1(2) = ~q3(2).
But the match transition (�, a, �, a) is possible from state ~q1, and not from the state ~q3; also from
state ~q3 we can fire the match transition (�, a, a, �), which is not available in state ~q1.

The translation of A yields the communicating machines:

JKSAKA = a@AC+ a@AD JKSAKB = a@BC+ a@BD

JKSAKC = a@AC+ a@BC JKSAKD = a@AD+ a@BD

A deadlock configuration is generated by the trace a@AC.a@AC.a@BC.

5.2 Agreement and Asynchrony

We now extend the previous results along two lines. First we consider the more permis-
sive notion of agreement on contract automata introduced in Chapter 3. Then, we drop
the constraints on the number of messages that a buffer can contain, and we consider
the fully asynchronous semantics of communicating machines of Definition 7.

Agreement and Asynchrony 111

5.2.1 Agreement

The notion of agreement (Definition 27) considers as forbidden actions only the non-
matching requests while for strong agreement (Definition 34) both non-matching re-
quests and offers are forbidden.

Intuitively, the notion of agreement allows for unmatched offers, thus modelling
open systems, where possibly new principals can join the composition and match the
available offers.

Below, we extend Theorem 13 and establish a correspondence between contract au-
tomata enjoying the property of agreement and the convergent communicating systems
with the one buffer semantics. The following definition accordingly extends the branch-
ing condition of Definition 51.

Definition 53 (Extended Branching Condition). A contract automaton A has the extended
branching condition if and only if it has the branching condition and for each~q1,~q2 reachable
in A the following holds

∀~a offer action .(~q1
~a−→∧ snd(~a) = i∧ ~q1(i) = ~q2(i)) implies ~q2

~a−→

To easily handle the offer actions that are now admitted, we introduce a special
contract automaton, called environment, that “captures” them all. In this way we can
re-use the notion of strong agreement. The environment has a single state, both initial
and final and a request loop transition for each possible offer.

Definition 54 (Environment). The environment is the contract automaton

E = 〈{qe}, qe, R, O, {(qe, a, qe) | a ∈ R}, {qe}〉

Note that by composing a contract automaton A with the environment E, that is
A⊗ E, all the offer actions of A are turned into match actions with the environment.

The next theorem shows how the most permissive controller of a contract automaton
A and the controller ofA⊗E are related by the two branching conditions of Definition 51
and Definition 53.

Theorem 14 (Extendend Branching Condition and Environment). Given the most permis-
sive controller KA for the contract automaton A, then KA has the extended branching condition
if and only if KA⊗E has the branching condition.

Proof. (⇒) By hypothesis KA has the extended branching condition. By Definition 24 all
offers of KA are turned into matches with the environment in KA⊗E. By contradiction
assume that KA⊗E does not have the branching condition.

Hence there must be two states ~q1,~q2 and a principal p such that ~q1
~a−→,~q2 6 ~a−→ with

~q1(p) = ~q2(p) where~a is a match with snd(~a) = p.
Moreover it must be that rcv(~a) = E (with a slight abuse of notation E is the principal

corresponding to the environment); otherwise the match transition would also be in KA,
obtaining a contradiction. By Definition 24 the match ~a in KA⊗E is turned into an offer

112 Relating Contract Automata and Choreographies

action ~a′ in KA, and we obtain a contradiction because KA does not have the extended
branching condition since ~q1

~a′−→,~q2 6~a
′−→.

(⇐) By hypothesis we have that KA⊗E has the branching condition. By Definition 24
we know that in the contract automatonKA⊗E all the matches involving the environment
are coupled with offers of KA.

By contradiction assume that KA does not hold the extended branching condition.
Hence there must be two states ~q1,~q2 and a principal p such that ~q1

~a−→,~q2 6~a−→ with ~q1(p) =

~q2(p) and snd(~a) = p.
We distinguish two cases:

• ~a is a match action: then by Definition 24 the match is present also in KA⊗E,
obtaining a contradiction since KA⊗E has the branching condition.

• ~a is an offer action: then by Definition 24 ~a is turned into a match ~a′ with E in
KA⊗E. Since ~q1

~a′−→,~q2 6~a
′−→ we have that KA⊗E does not hold the branching condition,

obtaining a contradiction.

Finally we relate the most permissive controller KA of a contract automaton A with
the corresponding system S(KA⊗E), obtained from the controller composed with the
environment. Indeed as a direct consequence of Theorem 13 and Theorem 14 we have
that KA has the extended branching condition if and only if S(KA⊗E) is convergent.

Corollary 3. Given the most permissive controller KA for the contract automaton A, then
KA has the extended branching condition iff S(KA⊗E) is convergent.

Proof. (⇒) By hypothesis KA has the extended branching condition, by Theorem 14
we have that KA⊗E has the branching condition. Finally by Theorem 13 we have that
S(KA⊗E) is convergent.

(⇐) By hypothesis S(KA⊗E) is convergent, by applying Theorem 13 we have that
KA⊗E has the branching condition. Finally by Theorem 14 we have that KA has the
extended branching condition.

A benefit of this result is the possibility of disposing the central orchestrator even in
case of open-ended systems, where new principals can be dynamically added. Indeed, it
suffices to provide a special contract automaton, called the environment, and to slightly
extend the branching condition, so to consider all the unmatched offers.

5.2.2 Asynchronous semantics of communicating systems

We now discuss the relations between contract automata and communicating systems,
with the semantics of Definition 7, i.e. when the buffers of the communicating machines
can contain more than one message. From now onward, the notions of convergence and
deadlock introduced in Definition 49 are considered using the semantics of Definition 7.
The following example shows the difficulties with the unrestricted semantics.

Agreement and Asynchrony 113

~q0start ~q1

~q2

(a, a)

(b, b)

(a) A⊗ B (A = a + b, B = b + a)

q01start q11

q22

a@AB

b@BA

(b) JKA⊗BKA

q02start q12

q22

a@AB

b@BA

(c) JKA⊗BKB

Figure 5.3: The CA with a mixed choice of Example 32 and its corresponding commu-
nicating machines

Example 32. Consider the contract automaton A ⊗ B and the corresponding communicating
machines of Figure 5.3. This contract automaton is strongly safe and has the branching condition.
However the translated system is not convergent. Indeed a possible deadlock in S(KA⊗B) occurs
if A performs the action a@AB and then B performs the action b@BA. This is because participant
B can ignore the message received by the participant A and follow the other branch of the contract
automaton. These behaviours are not permitted by the 1-buffer semantics.

In order to guarantee that a system of communicating machines corresponding to a
contract automaton is convergent, we constrain contract automata as follows. Intuitively,
we will discard those contract automata that have a request and an offer transition of a
principal outgoing from the same node, like the automata A and B of Example 32.

Indeed, similar conditions are required in the literature for asynchronous chore-
ographed systems, for example branching property [LTY15], knowledge of choice [LT12],
dominant role of choice [QZCY07], existence of a unique point of choice [LGMZ08]. In-
tuitively, in each state there must be a single participant who decides which branch must
be taken. We will prove that the absence of mixed choices and the branching condition
in the most permissive controller suffices to ensure that the corresponding system of
communicating machines with unbounded buffers is convergent. In general, the ab-
sence of deadlock is not decidable for this type of systems. A reduction to the Halting
problem for Turing machines is showed in [BZ83], that only requires two communicat-
ing machines.

In the following we say that a communicating machine has no mixed choices if it is
never the case that both offer and request transitions leave one of its states.

More precisely:

Definition 55 (Mixed Choices). Let A be a contract automaton, then A has a mixed choice
if and only if there exists a reachable state ~q with two outgoing transitions ~q ~a1−→ ,~q ~a2−→ such that
snd(~a1) = rcv(~a2).

Moreover, let M = (Q, q0,Act, δ, F) be a communicating machine of a participant i, then
M has a mixed choice if and only if there exists a reachable state q ∈ Q with two outgoing
transitions q a@ij−−→, ~q b@zi−−→ for some a ∈ O, b ∈ R and j, z ∈P.

In the following we will prove that if the most permissive strong controller of a

114 Relating Contract Automata and Choreographies

contract automaton A has the branching condition and no mixed choices then the cor-
responding system is convergent.

It is convenient to define how to project a trace of a communicating system into its
offer actions, and to prove an auxiliary property.

Definition 56 (Action Projection). Given f ∈ Act
∗, its projection on its offers is defined as

follows:

f�O=


a@ij (f ′�O) if f = a@ij f ′ for some i, j ∈P, a ∈ O

f ′�O if f = a@ij f ′ for some i, j ∈P, a ∈ R

ε if f = ε

The following property relates the mixed choices of contract automata and commu-
nicating machines.

Property 7. Let KSA be the most permissive strong controller of A and S(KSA) be the corre-
sponding communicating system.

If KSA has the branching condition and no mixed choices then all the communicating ma-
chines of the participants in S(KSA) have no mixed choices.

Proof. By contradiction assume that there is a participant p with two transitions
(q1, a@pj, q2), (q1, b@ip, q3).
By Definition 48 there must be two transitions (~q,~a, ~q1), (~q2,~b, ~q3) where ~q(p) = ~q2(p),

and~a,~b are match actions on a and b, respectively, with snd(~a) = p, rcv(~a) = j, snd(~b) =
i, rcv(~b) = p. There are the following two cases:

• ~q = ~q2 we obtain a contradiction since we have a mixed choice;

• ~q 6= ~q2 then since ~q(p) = ~q2(p) by the branching condition KSA must have the
transition (~q2,~a, ~q4), hence ~q2 has a mixed choice, obtaining a contradiction.

The following theorem relates the traces of a communicating system with the ones
of the most permissive strong controller KSA it comes from, provided that KSA has
the branching condition and no mixed choices. Under the above conditions a trace of
a communicating system only differs from the corresponding trace of the KSA in the
order in which the request actions are fired in the system. Indeed by considering only
offer actions the two traces are equal.

Theorem 15 (Correspondence on Projected Actions). Let KSA be the most permissive con-
troller of A, with the branching condition and no mixed choices, and let Φ be the set of its
non-empty traces; let S(KSA) be the communicating system obtained from KSA and let F be
the set of its non-empty traces. Then

∀ f ∈ F there exists ϕ ∈ Φ such that f�O= JϕK�O .

Agreement and Asynchrony 115

Proof. Let ~qmpc and s be the initial configurations of KSA and S(KSA), respectively.
Assume by contradiction that there exists a f with s f−→ such that for all ϕ with ~qmpc

ϕ−→
we have f�O 6= JϕK�O.

Since f 6= ε, by Definition 7 it must be that f = a1@i1j1 f ′1 for some i1, j1, a1, f ′1, and
by Definition 48 there must be a transition (~qmpc,~a′,~q′mpc) in KSA, and therefore there is

a ϕ = ~a′ ϕ′1, for some ~q′mpc and ϕ′1, where ~a′ is a match on a1 with snd(~a′) = i1, rcv(~a′) =
j1. Moreover by hypothesis it must be that f ′1�O 6= Jϕ′K�O.

Now split f as f1 f2, and select a trace ϕ = ϕ1ϕ2 such that f1 is the longest prefix
of f with Jϕ1K �O= f1 �O (6= ε because of the above). Then we have f2 = a@ij f3 for
some i, j, a, and ~qmpc

ϕ1−→~q1mpc 6
~a−→ where ~a is a match with snd(~a) = i, rcv(~a) = j. By

Definition 48 there must exist a transition (~q2mpc ,~a,~q2′mpc
), for some ~q2mpc ,~q2′mpc

. Assuming
s f1−→(~qr,~u), we have then that ~qr(i) = ~q2mpc(i)

.
Note that there is only one ~q1mpc such that ~qmpc

ϕ1−→~q1mpc , and only one (~qr,~u) such that
s f1−→(~qr,~u); because we are considering deterministic automata only.

Since the branching condition holds, it turns out that ~q1mpc(i)
6= ~q2mpc(i)

.
By Jϕ1K�O= f1�O it follows that participant i has performed all its offers (if any)

both in ϕ1 and in f1. By Property 7 we have that the communicating machine of the
participant i has no mixed choices (so it cannot choose between offering or requesting)
and is therefore forced to read from its buffer all the received offers (if any) before
firing a@ij, because these were coupled (with corresponding requests of i) in matches
occurring in Jϕ1K. Since all actions of participant i prescribed by ϕ1 are performed in
f1, it follows that ~q1mpc(i)

= ~q2mpc(i)
, obtaining a contradiction.

Note in passing that for simulating a step in a non-empty trace ϕ of the most per-
missive strong controller, the corresponding communicating system can pass through
several possible configurations, in order to execute a sequence of actions f such that
f�O= JϕK�O.

As a matter of fact, a participant can fire many requests, not registered in JϕK�O, after
its last offer registered therein. Indeed the trace ϕ is formed by match actions, hence all
the requests are fired, while in the trace f there could be some participant which has
fired all the offers but not yet all its requests.

Example 33. Consider the automata depicted in Figure 5.4. The most permissive strong con-
troller KSA⊗B⊗C has the branching condition and no mixed choices. Three possible traces of
S(KSA⊗B⊗C) are:

f = a@AB b@CB a@AB b@CB c@BC d@BA f1 = f c@BC f2 = f1 d@BA

Consider the trace of KSA⊗B⊗C:

ϕ = (a, a, �)(�, b, b)(�, c, c)(d, d, �)

We have f �O= f1�O= f2�O= JϕK�O. Note that in order to fire the offer c@BC the participant
C needs to fire all the previous requests. Moreover in the trace f2 each participant has fired all

116 Relating Contract Automata and Choreographies

~q0start ~q1 ~q2

~q3 ~q4 ~q5

(�, b, b)

(a, a, �)

(�, b, b)

(a, a, �) (�, c, c)

(d, d, �)

(a) KSA⊗B⊗C

q01start q11

q21

a@AB

d@BA

(b) JKSA⊗B⊗CKA

q02start q12 q22

q32 q42 q52

b@CB

a@AB

b@CB

a@AB c@BC

d@BA

(c) JKSA⊗B⊗CKB

q03start q13

q23

b@CB

c@BC

(d) JKSA⊗B⊗CKC

Figure 5.4: The contract automata of Example 33

its requests, indeed we have: ~qmpc
ϕ−→~q′mpc, s f2−→(~qr;~u) and ~q′mpc ∼ ~qr, where ~qmpc and s are the

starting configurations of KSA⊗B⊗C and S(KSA⊗B⊗C).

The main result of this sub-section follows. If the strong controller of a contract
automaton A has the branching condition and no mixed choices, then its corresponding
system is convergent with unrestricted semantics.

Theorem 16 (Mixed Choice and Convergence). Let S(KSA) be the communicating system
corresponding to the most permissive controller KSA. Then

KSA has the branching condition and no mixed choices
implies S(KSA) is convergent.

Proof. Let s be the initial configuration of S(KSA) and ~qmpc be the initial state of KSA.
By contradiction assume that KSA has the branching condition and no mixed choices
but S(KSA) is not convergent, i.e. there exists a non-empty run f such that s f−→(~qr;~u)
and no final configurations are reachable from (~qr;~u). By Theorem 15 there exists a
non-empty trace ϕ of the most permissive strong controller such that ~qmpc

ϕ−→~q′mpc and
f �O= JϕK�O. Since all the offers are matched in ϕ, by Definitions 7 and 48 there exists
a trace of the communicating system where all the remaining request actions are fired,
and let it be our f (recall that there could be a f ′ 6= f such that f ′�O= JϕK�O). Hence it
follows that ~qr ∼ ~q′mpc (recall that the automata are deterministic).

Finally since KSA is the most permissive strong controller, there must be a trace
ϕ′ and a final state ~q f such that ~q′mpc

ϕ′−→~q f . By applying Theorem 12.1 we obtain
(~qr;~u) Jϕ′K−−→s f where s f is a final configuration, because the transition relation of the
1-buffer semantics is included in that of the semantics of Definition 7: contradiction.

Intuitively, if each principal performs its outputs independently of the state of the
other principals (i.e. the branching condition holds) and it has enough information to

An example 117

~q0start ~q1

~q2 ~q3

(a, a)

(b, b) (b, b)

(a, a)

(a) A⊗ B (A = a.b + b.a, B =

b.a + a.b)

q01start q11

q21 q31

a@AB

b@BA b@BA

a@AB

(b) JKA⊗BKA

q02start q12

q22 q32

a@AB

b@BA b@BA

a@AB

(c) JKA⊗BKB

~q0start

~q1

~q2 ~q3

~q4 ~q5

(d1, �, d1)

(�, d2, d2)

(a, a, �)

(b, b, �)

(b, b, �)

(a, a, �)

(d) KA⊗B⊗D (A = d1.a.b + b.a, B = d2.b.a + a.b,
D = d1 + d2)

Figure 5.5: The contract automaton (with mixed choices) of Example 34, its correspond-
ing communicating machines, and the amended contract automaton without mixed
choices.

know the status of the overall execution (i.e. there are no mixed choices), then each
principal is capable of interacting autonomously without breaking the correctness of the
composition. In this case, the central control can be removed. This is important because
the communication overhead can be reduced, also taking advantage of the parallelism
coming from an asynchronous system.

The above theorem does not fully generalise Corollary 2, as shown by the following
example.

Example 34. Consider the contract automaton of Figure 5.5 that is strongly safe (so it is also
its most permissive strong controller) and has the branching condition. Its corresponding system
consists of the communicating machines in Figure 5.5 and it is convergent. However, a mixed
choice is possible from ~q0 = (q01, q02).

Note that the absence of mixed choice states is not a restrictive condition. Generally, it is
possible to remove the mixed choice states detected by our technique by adding a new dummy
principal D that only performs dummy interactions. The obtained contract automaton is trace-
equivalent to the one with mixed choice states, up to dummy transitions. The dummy principal
non-deterministically decides which branch to take. For example, the amended composition in
Figure 5.5d has no mixed choices.

5.3 An example

We show our proposal at work on the two buyers protocol (2BP for short) presented
in [HYC08]. There are two buyers B1 and B2 that collaborate in purchasing an item from

118 Relating Contract Automata and Choreographies

qB10 qB11

qB12qB13

price

quote

contrib

the first buyer B1

qB20 qB21 qB22

qB23qB24

quote contrib

ok
nop

delivery

the second buyer B2

qS0 qS1 qS2 qS3 qS4

qS5

price quote quote ok

nop
delivery

the seller S

~q0 ~q1

~q2

~q3

~q4

~q5~q6~q7

(price, �, price)

(quote, �, quote)

(�, quote, quote)

(�, quote, quote)

(quote, �, quote)

(contrib, contrib, �)

(�, ok, ok)

(�, nop, nop)

(�, delivery, delivery)

the most permissive strong controller B1 ⊗ B2 ⊗ S

Figure 5.6: The contract automata for 2-buyers protocol (with distinguished quotes) and
their most permissive controller

a seller S. Buyer B1 starts the protocol by asking S the price of the desired item (price); the
seller S replies with the quote for the requested item by sending the quotation message
quote to both buyers. Upon reception of its quote, buyer B1 sends to B2 its contribution
for purchasing the item (contrib).

Buyer B2 waits for the quote from S and the contribution from B1. Then, it decides
whether to terminate by issuing the nop message to S, or to proceed by sending an
acknowledgement to S.

Upon receiving the acknowledgement, the seller sends the item to B2 (delivery), while
if it receives nop it terminates with no further action.

The contract automata B1, B2 and S admit strong agreement, and they are shown in
Figure 5.6, together with their most permissive strong controller.

We now analyse the translation of the orchestration into a choreography of com-
municating finite state machines. The most permissive controller does not enjoy the

Concluding Remarks 119

branching condition as required by Definition 51, because for example:

• in ~q2 and ~q4, buyer B1 is in state qB12,

• ~q4
(contrib, contrib, �)−−−−−−−−−−→, but

• there is no transition from ~q2 such that ~q2
(contrib, contrib, �)−−−−−−−−−−→.

This happens because B1 could send the contribution to B2 before this has received
quote from S, so blocking the system. An easy fix would be forcing the seller to first send
the quotation to buyer B2, so reducing the nondeterminism. A convergent choreography
of communicating machines, both for the synchronous and the asynchronous case is
then derivable as specified above.

The most permissive controller has no states with mixed choices. However, this case
may arise if B2 could additionally withdraw before accepting the contribution from B1,
because the quotation is too high. It is out of the scope of this chapter discussing the
ways to recover from this situation, and we only note that our proposal clearly detects
why and where it shows up, making the corresponding choreography not convergent.

5.4 Concluding Remarks

We have established a formal correspondence between contract automata, an orchestra-
tion model, and communicating systems, i.e. sets of communicating machines, that is a
model of choreography.

More precisely, we proved that strong agreement corresponds to convergence (cf.
Theorem 13) when communicating systems are endowed with the 1-buffer semantics,
according to which the execution of the machines is basically synchronous. We note in
passing that this has some advantages since communicating systems with the 1-buffer
semantics are computationally more tractable than in the general case [CF05].

We then generalise the above result by adopting a more relaxed notion of agreement
that admits computations where offer actions can go unmatched (cf. Corollary 3). We
also proved a slightly weaker result for communicating systems with the unrestricted
semantics (cf. Theorem 16).

A main impact of the proposed results is the possibility of removing the orches-
trator if the composition of contracts satisfies the required properties; so reducing the
communication overhead.

We remark that the idea behind our notions of agreement is the existence in a com-
position of services, of good and bad computations, that the orchestrator eventually
cuts off, while the literature has also notions that require composition of participants
to have good computations only. Further research problems have been identified and
investigated for distributed choreographies, for instance realizability [LMZ13, BBO12,
QZCY07, HB10], conformance [LP15, BB11, BZ09b, BZ08b], or enforcement [ARS+13]
(see Section 1.2.3). Our work departs from the existing literature in that we do not re-
quire to start from a global description of the interactions. In fact, we simply assume

120 Relating Contract Automata and Choreographies

that each service specifies the interactions it is involved in (oblivious of other partners).
Then, we identify (i) the conditions to allow the coordination of a set of services to
satisfy each local requirement (see Chapter 3), and (ii) the conditions for removing the
central orchestrator.

The choreography extraction problem is the process of extracting a global descrip-
tion (choreography) from a distributed implementation of a system [LTY15, LT12]. The
starting point is a system of communicating machines, while in our case this is the
ending point.

We remark that our principals are oblivious of their partners and they can be dynam-
ically added to the overall service composition with different compositional operators.
Hence, synthesising the orchestration through the most permissive controller is a nec-
essary step for matching the requests and offers of each service, as well as for detecting
those liable principals. By changing the composition operator, a different wiring be-
tween requests and offers can be obtained, as well as by changing the agreement notion
to be enforced (see Example 6 and Section 3.5). This is not the case in [LTY15, LT12],
where the local services are already equipped with the information necessary to inter-
act with the other services, which is not automatically generated as it is in our case.
Also there is the assumption that they respect the overall contract agreement, instead
we consider a scenario with possible liable principals.

Consider again Example 13. A corresponding (wrong) communicating system could
be: A = a@AC, B = b@BC.a@AB+ a@AB.b@BC, C = a@AC+ b@BC. This system is not con-
vergent, because Alan decides on his own to give his apple to Carol instead of Betty.
Indeed, by synthesising the orchestration through the controller of Figure 3.6b, we de-
tect the liable transition (~q0, (a, �, a),~q6) (i.e. Alan gives his apple to Carol). From the
orchestration a synchronous convergent communicating system can be generated using
Theorem 13, where Alan correctly exchange his apple with Betty that in turns gives her
blueberry to Carol.

We conjecture that the conditions guaranteeing well-behaviour identified here im-
ply the generalised multiparty compatibility condition identified in [LTY15]. For a given
communicating system satisfying this property, a choreography always exists and can
be synthesised effectively.

In [CDM14] progress is attained under assumptions allowing a process P to expose
unmatched actions as long as the closed system made of P and a catalyser process (de-
rived from P) results to be lock-free. We can give an interesting analogy with this work:
our environments resemble their catalyzers and the extended branching condition is sim-
ilar to their relaxed notion of safety. As far as we can see, our notion of convergence is
stronger than the above notion of safety, in that we also guarantee that a final state is
reached, possibly infinitely often. Additionally, only dyadic session types are dealt with
in [CDM14], while here we can cope with multyparty scenarios.

A possible application of the results in [LTY15] is to use the projections obtained
from the communicating system corresponding to the controller. Through them, we
can identify the principals that could be liable. Indeed, each principal univocally cor-

Concluding Remarks 121

responds to one of those projections. Hence, this would allow to flag the participants
that may lead to communication mismatches so as to refine them and guarantee that the
refined participants execute without the intervention of an orchestrator.

In general, the suggested approach would give a more efficient and more distributed
execution. This is because one can remove the overhead due to the communication
with the orchestrator, and avoid the centralisation point, respectively. Additionally,
one could find that only few principals, and more importantly which of them, spoil
the conditions for achieving choreographed executions. Hence, by modifying/replacing
those principals with the machines obtained by projecting the synthesised choreography
it would be possible to retrieve a choreographed executions of the contract automata.

Our notion of convergence of a system of communicating machines with unbounded
buffers is stricter then the notion of conformance discussed in [BZ08b], as no order is
imposed over the received messages. Moreover, services and a choreography can be
compliant in [LP15], even though they do not satisfy the branching condition. Study
an extended notion of compliance for [LP15] that deals with branching condition is
worthwhile.

A verification toolkit based on the results presented here and in Chapter 3 is pre-
sented in Chapter 6.

122 Relating Contract Automata and Choreographies

Chapter 6

A Tool For Contract Automata

In this chapter we describe a prototypical toolkit supporting contract automata (see Chap-
ter 3), in order to show how the verification techniques discussed in Chapter 3 and
Chapter 5 can be automatized. By means of an example we describe how CAT (acronym
for Contract Automata Tool) can support the modelling and analysis of service-oriented
applications. To this purpose, we borrow here the two-buyer protocols (see Section 5.3).
Then we apply CAT and, when the agreement property of interest is violated, as part
of our checking routine we look at identifying the defects, and subsequently we devise
a different version of the protocol correcting the identified errors. CAT is available at
https://github.com/davidebasile/workspace.

Structure of the Chapter We discuss in Section 6.1 how CAT can be used presenting a
verification session on the proposed case study; details about the implementation of CAT
are in Section 6.2. A component for solving optimization problems related to contract
automata is described in Section 6.3. Finally, Section 6.4 draws some conclusions and
discusses related and future work.

6.1 CAT at work

We have implemented CAT in Java according to the simple architecture of Figure 6.1.
As detailed in Section 6.2, in order to implement contract automata based verifica-

tion, CAT extends Jamata, a Java framework for designing and developing automata-
based models, yielding methods for loading, storing, printing, and representing them.
In other words, CAT originally specializes Jamata on contract automata, offering to the
developers an API for creating and verifying contract automata. Jamata is also available
at https://github.com/davidebasile/workspace. Also, CAT interfaces with a
separate module for solving linear optimization problems, called AMPL [FGK89], de-
scribed in Section 6.3. This is an original facet of CAT; in fact, it maps the (check of)
agreement properties of interest on a linear optimization problem.

The API provided by CAT can be used to perform script analysis of sessions, and
can be conceptually classified as follows:

https://github.com/davidebasile/workspace
https://github.com/davidebasile/workspace

124 A Tool For Contract Automata

AMPL models CAT API JAMATAuses extends

Figure 6.1: The architecture of CAT

Automata operations consist of the methods CA proj(int i), that returns the au-
tomaton specifying the ith service of the composition, CA product(CA[] aut)

and CA aproduct(CA[] aut) that compute respectively the product and the
associative product of contract automata. Interestingly, product has to filter out
the offers and request transitions when the source state has a corresponding out-
going match transition. Method aproduct is built on top of product by invoking
product on the services obtained as projections of the automaton in input.

Safety check consists of the instance methods safe, agreement, strongAgreement,
and strongSafe returning true if the corresponding agreement property holds
on the contract automaton. Section 6.3 discusses the property of weak agreement.

Controllers consist of the methods CA mpc() and CA smpc() that return the most per-
missive controller, for respectively agreement and strong agreement (see Chapter 3).

Liable detection consists of the methods CATransition[] liable() - returning tran-
sitions from a state s to a state t such that s is in the most permissive controller but
t is not - and CATransition[] strongLiable() that similarly returns such
transitions for the most permissive controller of the strong agreement property.
We recall that liable services are those responsible for leading a contract composi-
tion into a failure.

Decentralization includes int[][] branchingCondition(), that returns two states
and an action for which the branching condition is violated. We recall that the
branching condition holds if the actions of a service are not affected by the states
of the other services in the composition. Another similar method that deals with
open-ended interactions is int[][] extendedBranchingCondition(). The
last method in this category is int[] mixedChoice() that returns a mixed-
choice state (a state where a principal has enabled both offers and requests inside
matches). All such methods return null when the conditions they check do not
hold.

Moreover, CAT offers a command line interface to interactively use the functionalities
of the tool. In this chapter we discuss this modality on a slightly modified version of
the 2-buyers protocol (see Section 5.3), where the quote messages are distinguished. The
modified principals are in Figure 6.2.

Jamata first prompts the user for the tool to use; selecting option 4 (lines 2-3 in
Output 1) accesses CAT. This launches CAT which first displays a menu where each
option corresponds to one of the methods described above. (lines 4-19 in Output 1):

CAT at work 125

qB10 qB11

qB12qB13

price

quote1

contrib

the first buyer B1

qB20 qB21 qB22

qB23qB24

quote2 contrib

ok
nop

delivery

the second buyer B2

qS0 qS1 qS2 qS3 qS4

qS5

price quote1 quote2 ok

nop
delivery

the seller S

Figure 6.2: The contract automata for the updated 2BP

Output 1
1

Press 1 for FMA and 2 for PFSA 3 for FSA and 4 for CA 2

4 3

Select an operation 4

1 : product 5

2 : projection 6

3 : aproduct 7

4 : strongly safe 8

5 : strong agreement 9

6 : safe 10

7 : agreement 11

8 : strong most permissive controller 12

9 : most permissive controller 13

10 : branching condition 14

11 : mixed choice 15

12 : extended branching condition 16

13 : liable 17

14 : strongly liable 18

15 : exit 19

To check 2BP we first have to compute the product automaton (described below) of the
two buyers and the seller by selecting option 1.

When option 1 is selected, CAT asks the user to set the contract automata on which
to take the product of (line 2 in Output 2):

Output 2
Reset stored automaton... 1

Do you want to create/load other contract automata? yes 2

Insert the name of the automaton (without file extension) 3

to load or leave empty for create a new one 4

B1 5

Contract automaton: 6

Rank: 1 7

Number of states: [4] 8

Initial state: [0] 9

Final states: [[3]] 10

126 A Tool For Contract Automata

Transitions: 11

12

([0],[1],[1]) 13

([1],[-2],[2]) 14

([2],[3],[3]) 15

16

17

Do you want to create/load other contract automata? yes 18

Insert the name of the automaton (without file extension) 19

to load or leave empty for create a new one 20

On line 4 in Output 2, we load the automaton of the first buyer from the file B1.data,
the content of which is displayed on the screen (lines 6-15 in Output 2) and the user is
asked for the next automaton (lines 18-20 in Output 2). For each entered automaton,
CAT prints a textual description on the screen reporting the rank, initial and final states,
and the list of transitions. The transitions are triples (s, l, t) where s is the source state,
l is the label, and t is the target state. These elements are lists of length r (the rank
of the automaton), for instance in Output 2 line 7 we have r = 1. The i-th element of
each list corresponds to the i-th service. In particular, the i-th action in the list of labels
identifies the action performed by the i-th service; such action is strictly positive (if the
action is an offer), strictly negative (if it is a request), and 0 if the service is idle in the
transition. The offers (requests resp.) of a contract automata are encoded into strictly
positive (negative resp.) integers. For B1, actions price, quote1, and contrib are codified
with the integer 1, −2, and 3 respectively. Once the automata for the buyers and the
seller have been set, the user enters no when prompted for the next automaton. Now,
as per Output 3, CAT computes and displays their product:

Output 3
Computing the product automaton ... 1

Contract automaton: 2

Rank: 3 3

Number of states: [4, 5, 6] 4

Initial state: [0, 0, 0] 5

Final states: [[3][4][5]] 6

Transitions: 7

8

([0, 0, 0],[1, 0, -1],[1, 0, 1]) 9

([0, 1, 0],[1, 0, -1],[1, 1, 1]) 10

([0, 2, 0],[1, 0, -1],[1, 2, 1]) 11

([0, 3, 0],[1, 0, -1],[1, 3, 1]) 12

([0, 4, 0],[1, 0, -1],[1, 4, 1]) 13

([1, 0, 1],[-2, 0, 2],[2, 0, 2]) 14

([1, 1, 1],[-2, 0, 2],[2, 1, 2]) 15

([1, 2, 1],[-2, 0, 2],[2, 2, 2]) 16

([1, 3, 1],[-2, 0, 2],[2, 3, 2]) 17

([1, 4, 1],[-2, 0, 2],[2, 4, 2]) 18

([2, 1, 2],[3, -3, 0],[3, 2, 2]) 19

([2, 1, 3],[3, -3, 0],[3, 2, 3]) 20

([2, 1, 4],[3, -3, 0],[3, 2, 4]) 21

([2, 1, 5],[3, -3, 0],[3, 2, 5]) 22

([2, 0, 2],[3, 0, 0],[3, 0, 2]) 23

([2, 2, 2],[3, 0, 0],[3, 2, 2]) 24

([2, 2, 3],[3, 0, 0],[3, 2, 3]) 25

([2, 3, 2],[3, 0, 0],[3, 3, 2]) 26

CAT at work 127

([2, 3, 3],[3, 0, 0],[3, 3, 3]) 27

([2, 3, 4],[3, 0, 0],[3, 3, 4]) 28

([2, 3, 5],[3, 0, 0],[3, 3, 5]) 29

([2, 4, 2],[3, 0, 0],[3, 4, 2]) 30

([2, 4, 3],[3, 0, 0],[3, 4, 3]) 31

([2, 4, 4],[3, 0, 0],[3, 4, 4]) 32

([2, 4, 5],[3, 0, 0],[3, 4, 5]) 33

([2, 0, 2],[0, -7, 7],[2, 1, 3]) 34

([3, 0, 2],[0, -7, 7],[3, 1, 3]) 35

([0, 0, 0],[0, -7, 0],[0, 1, 0]) 36

([1, 0, 1],[0, -7, 0],[1, 1, 1]) 37

([0, 1, 0],[0, -3, 0],[0, 2, 0]) 38

([1, 1, 1],[0, -3, 0],[1, 2, 1]) 39

([3, 1, 3],[0, -3, 0],[3, 2, 3]) 40

([3, 1, 4],[0, -3, 0],[3, 2, 4]) 41

([3, 1, 5],[0, -3, 0],[3, 2, 5]) 42

([2, 2, 3],[0, 4, -4],[2, 3, 4]) 43

([3, 2, 3],[0, 4, -4],[3, 3, 4]) 44

([0, 2, 0],[0, 4, 0],[0, 3, 0]) 45

([1, 2, 1],[0, 4, 0],[1, 3, 1]) 46

([2, 2, 2],[0, 4, 0],[2, 3, 2]) 47

([3, 2, 2],[0, 4, 0],[3, 3, 2]) 48

([3, 2, 4],[0, 4, 0],[3, 3, 4]) 49

([3, 2, 5],[0, 4, 0],[3, 3, 5]) 50

([2, 2, 3],[0, 5, -5],[2, 4, 5]) 51

([3, 2, 3],[0, 5, -5],[3, 4, 5]) 52

([0, 2, 0],[0, 5, 0],[0, 4, 0]) 53

([1, 2, 1],[0, 5, 0],[1, 4, 1]) 54

([2, 2, 2],[0, 5, 0],[2, 4, 2]) 55

([3, 2, 2],[0, 5, 0],[3, 4, 2]) 56

([3, 2, 4],[0, 5, 0],[3, 4, 4]) 57

([3, 2, 5],[0, 5, 0],[3, 4, 5]) 58

([2, 3, 4],[0, -6, 6],[2, 4, 5]) 59

([3, 3, 4],[0, -6, 6],[3, 4, 5]) 60

([0, 3, 0],[0, -6, 0],[0, 4, 0]) 61

([1, 3, 1],[0, -6, 0],[1, 4, 1]) 62

([2, 3, 2],[0, -6, 0],[2, 4, 2]) 63

([2, 3, 3],[0, -6, 0],[2, 4, 3]) 64

([2, 3, 5],[0, -6, 0],[2, 4, 5]) 65

([3, 3, 2],[0, -6, 0],[3, 4, 2]) 66

([3, 3, 3],[0, -6, 0],[3, 4, 3]) 67

([3, 3, 5],[0, -6, 0],[3, 4, 5]) 68

([2, 1, 2],[0, 0, 7],[2, 1, 3]) 69

([2, 2, 2],[0, 0, 7],[2, 2, 3]) 70

([2, 3, 2],[0, 0, 7],[2, 3, 3]) 71

([2, 4, 2],[0, 0, 7],[2, 4, 3]) 72

([3, 2, 2],[0, 0, 7],[3, 2, 3]) 73

([3, 3, 2],[0, 0, 7],[3, 3, 3]) 74

([3, 4, 2],[0, 0, 7],[3, 4, 3]) 75

([2, 1, 3],[0, 0, -4],[2, 1, 4]) 76

([2, 3, 3],[0, 0, -4],[2, 3, 4]) 77

([2, 4, 3],[0, 0, -4],[2, 4, 4]) 78

([3, 1, 3],[0, 0, -4],[3, 1, 4]) 79

([3, 3, 3],[0, 0, -4],[3, 3, 4]) 80

([3, 4, 3],[0, 0, -4],[3, 4, 4]) 81

([2, 1, 3],[0, 0, -5],[2, 1, 5]) 82

([2, 3, 3],[0, 0, -5],[2, 3, 5]) 83

([2, 4, 3],[0, 0, -5],[2, 4, 5]) 84

([3, 1, 3],[0, 0, -5],[3, 1, 5]) 85

([3, 3, 3],[0, 0, -5],[3, 3, 5]) 86

128 A Tool For Contract Automata

([3, 4, 3],[0, 0, -5],[3, 4, 5]) 87

([2, 1, 4],[0, 0, 6],[2, 1, 5]) 88

([2, 4, 4],[0, 0, 6],[2, 4, 5]) 89

([3, 1, 4],[0, 0, 6],[3, 1, 5]) 90

([3, 2, 4],[0, 0, 6],[3, 2, 5]) 91

([3, 4, 4],[0, 0, 6],[3, 4, 5]) 92

Do you want to save this automaton? (write yes or no) 93

yes 94

Write the name of this automaton 95

B1xB2xS 96

The user can now choose to discard the automaton (if no further operations are
necessary) or save it (if the analysis session continues); here we choose yes since we
want to apply other operations, and enter B1xB2xS to save the automaton in a file
named B1xB2xS.data. After this interaction (lines 93-96 in Output 3), the operations
in Output 1 are displayed so that the user can execute a new one. Options 4 and 5 in
Output 1 check if B1xB2xS admits strong agreement or is strongly safe.

We now compute the most permissive strong controller, by applying operation 8 in
Output 1 to the product automaton B1xB2xS.data saved in the previous interaction
with CAT. Once the product automaton is loaded and the operation 8 is selected (not
shown here), CAT will compute the most permissive strong controller:

Output 4
The most permissive controller of strong agreement for the last 1

CA loaded is 2

Contract automaton: 3

Rank: 3 4

Number of states: [4, 5, 6] 5

Initial state: [0, 0, 0] 6

Final states: [[3][4][5]] 7

Transitions: 8

9

([0, 0, 0],[1, 0, -1],[1, 0, 1]) 10

([1, 0, 1],[-2, 0, 2],[2, 0, 2]) 11

([2, 1, 3],[3, -3, 0],[3, 2, 3]) 12

([2, 0, 2],[0, -7, 7],[2, 1, 3]) 13

([3, 2, 3],[0, 4, -4],[3, 3, 4]) 14

([3, 2, 3],[0, 5, -5],[3, 4, 5]) 15

([3, 3, 4],[0, -6, 6],[3, 4, 5]) 16

Do you want to save this automaton? (write yes or no) 17

yes 18

KS_B1xB2xS 19

As before, we save the automaton computed by CAT in a file named KS_B1xB2xS (lines
17-19 in Output 4); the automaton is displayed in Figure 6.3. The final states are rep-
resented as a list where the i-th element is the list of the final states of the i-th service.
This representation allows to check if a state of the most permissive controller is final or
not without needing to explicitly enumerate all the final states of the most permissive
controller.

Note that in each transition of the most permissive controller there is always an idle
service. For instance, consider the transition ([0, 0, 0],[1, 0, -1],[1, 0, 1]): it corresponds

Detailing the implementation of CAT 129

~q0 ~q1 ~q2

~q3

~q4~q5~q6

(price, �, price) (quote1, �, quote1)

(�, quote2, quote2)

(contrib, contrib, �)

(�, ok, ok)

(�, nop, nop)

(�, delivery, delivery)

the most permissive strong controller B1 ⊗ B2 ⊗ S

Figure 6.3: The most permissive controller of 2BP

to the transition (~q0, (price, �, price), ~q1) of the most permissive controller in Fig. 6.3 (the
second component of the label is 0 because B2 is idle).

Consider now Figure 6.3, where the state ~q2 corresponds to [2,0,2] in Output 5,
the state ~q3 to [2,1,3], and the transition (contrib, contrib, �) to the label [3,-3,0].
The most permissive controller KS_B1xB2xS does not enjoy the branching condition, as
reported by CAT:

Output 5
State [2,0,2] violates the branching condition because it has no 1

transition labelled [3,-3,0] which is instead enabled in 2

state [2,1,3] 3

It is important to observe that the message in Output 5 also flags states and transitions
for which the condition is violated. We discuss the problem by considering the automa-
ton in Figure 6.3. The local state of buyer B1 in ~q2 and ~q3 is qB12 (cf., Figure 6.2) , while
the locale state of B2 in ~q2 is qB20, and in ~q3 is qB21. Therefore, in the case that B2 is in
local state qB20 where it is waiting for quote2, without an orchestrator the offer contrib
from B1 could fill up the 1-buffer of B2, leading to a deadlock.

A simple fix consists in swapping the order in which the quotes are sent by the seller;
CAT reports that the amended protocol (not shown here) enjoys branching condition.
The absence of mixed choice states is checked by applying option 11 in Output 1 to
KS_B1xB2xS:

Output 6
The CA has no mixed choice states 1

A mixed choice state could be introduced in 2BP if, e.g., B2 could send the acknowl-
edgement to S or receive contrib from B1 in any order. For this variant of 2BP CAT finds
the mixed choice state, so showing that these services do not form a sound choreogra-
phy.

6.2 Detailing the implementation of CAT

For the sake of completeness, we now discuss some implementation details. CAT con-
sists of a class CAUtil and of other classes CA and CATransition, extending two

130 A Tool For Contract Automata

corresponding super-classes of Jamata. The class CA provides the main functionalities
of CAT; its instance variables capture the basic structure of our automata:

• int rank is the rank of the automaton;

• int[] initial is the initial state of the automaton (the array is of size rank);

• int[] states the vector of the number of local states of each principal in the
contract automaton (the array is of size rank);

• int[][] finalstates the final states of each principal in the contract automa-
ton;

• CATransition[] tra the transitions of the contract automaton.

The n local states of a principal are represented as integers in the range 0, . . . , n− 1;
in this case, states.length = 1 and states[0] = n. The state of an automaton of
rank m > 1 is an m-vector states such that states[i] yields the number of states
of the ith principal. This low-level representation (together with the encoding of actions
and labels as integers) enabled us to optimize space.

The class CATransition, describes a transition of a contract automaton. The in-
stance variables of a CATransition object are:

• int[] source (the starting state of the transition);

• int[] label (the label of the transition);

• int[] target (the arriving state of the transition).

The class CATransition provides methods to extract its instance variables, to check if
the transition is an offer, a request or a match, and to extract the (index of the) principal
performing the offer, if any.

6.3 Integer Linear programming and Contract Automata

In this section we review a component for solving optimization problems related to
contract automata, that complements the functionalities offered by CAT.

This component reduces the analysis of the properties of weak agreement (see Sec-
tion 3.4) to a integer linear programming problem and relies on an ad-hoc solver as ex-
plained below. The decision procedures are implemented in A Mathematical Programming
Language (AMPL) [FGK89], a popular language for describing and solving optimization
problems. In this way, the automatic verification of contract automata under properties
of weak agreement exploits efficient techniques and algorithms developed in the area of
operational research.

We now briefly describe the implementation of the techniques for verifying weak
agreement (the AMPL code is provided in Section 6.3.1). The script flow.run is dis-
played below. It can be launched with the command ampl flow.run from a shell.

Integer Linear programming and Contract Automata 131

flow.run
#reset; 1

option solver cplex; 2

model weakagreement.mod; 3

data flow.dat; 4

solve; 5

display a; 6

display t; 7

display x_t; 8

display z_t; 9

display gamma; 10

The script firstly loads the automaton from the file flow.dat (line 4). The description of
the automata consists of the number of nodes, the cardinality of the alphabet of actions,
and a matrix of transitions for each action a, where there is value 0 at position (s, d) if
there is no transition from state s to state d labelled by a, and respectively 1 or −1 if
there is an offer or request transition on a. In this case, the contract automata described
in flow.dat is representative.

The script flow.run contains commands to display the variables of the linear pro-
gram (lines 7-10). The AMPL linear program to load is given as input parameter to the
script (line 3). The two optimization problem available are:

• weakagreement.mod the file contains the formalization of the optimization prob-
lem for deciding whether a contract automaton admits weak agreement (see The-
orem 7);

• weaksafety.mod it contains the formalization of the optimization problem for
deciding whether a contract automaton is weakly safe (see Theorem 6).

Both formal descriptions are then solved using the solver cplex, that is the simplex
method implemented in C. However it is possible to select other available solvers in the
script flow.run (line 2).

The execution of the script will prompt to the user the value of variables. As proved
in Section 3.4, if the variable gamma is non-negative then the contract automata satisfies
the given property.

Bi-level optimization problems cannot be defined directly in AMPL. Therefore, we
cannot plainly apply formalisation of Theorem 8 for representing weakly liable transi-
tions as an optimization problem. However, different techniques of relaxation of the
bi-level problem for over approximating the set of weakly liable transitions can be used,
as for example Nash equilibria constraints, lagrangian relaxation.

As future work, we are planning to develop a toolchain for fully integrating the
above techniques in CAT, in order to reuse them for the functionalities described in
Section 6.1 and 6.2. In particular, CAT will automatically generate a contract automaton
description flow.dat, execute the script flow.run and collect the results.

132 A Tool For Contract Automata

6.3.1 AMPL code

In the following we provide the code of weakagreement.mod in Figure 6.4 and the
code of weaksafety.mod in Figure 6.5.

6.4 Concluding Remarks

In this chapter we have described CAT, a tool supporting the analysis of contract-based
applications attained with novel techniques based on combinatorial optimization. A
non trivial example was used to show main features of CAT. We briefly discuss some
literature regarding the integration of formal techniques in the realisation of service
applications, and propose some future extensions of the presented toolkit.

Different techniques and tools for translating BPEL processes [Jur06] into automata
models are presented in [WFN04, FBS04]. The behaviour of BPEL processes has been
analysed through constraint automata [BSAR06] and Reo [Arb04] (see Section 1.2.5)
in [TVMS07]. REO and constraint automata have also been used for analysing Business
Process Modelling Notation [(OM11] models, with the linear and branching time model
checker Vereofy [BBK+10].

A model-driven approach would also ease the integration of CAT with e.g., the
tools discussed above. For example, existing tools, like ATLAS Transformation Lan-
guage [JABK08], are capable of generating BPEL code from other formalisms such as
WS-CDL [KSF+11].

This would on the one hand extend CAT applicability to the analysis of actual code of
service-oriented applications and, on the other hand, it would enable the integration of
CAT with existing tools such as those described in [BP06], so to provide the developers
with a wide variety of tools for guaranteeing the quality of the composition of services
according to different criteria.

The properties verified by CAT have not been considered by other approaches. For
example, the identification - even in presence of circular dependencies of services (see
Section 6.3) - of liable transitions that may spoil a composition complement the verifica-
tion done in [TVMS07]

Compared to the reviewed tools, CAT introduces novel techniques based on com-
binatorial optimization; and focuses on, for example, finding liable participants in a
composition of services, as well as analysing circularity issues.

Although useful, the tool is still a prototype; and has been introduced mainly for
proving the effectiveness of verifying services composition through contract automata.
We plan to improve its efficiency, extend it with new functionalities (e.g., relaxation), and
improve its usability (e.g., adding a user-friendly GUI and pretty-printing automata).
We note that CAT provides a valid support to the analysis of applications. In fact, CAT
is able to detect possible violations of the properties of interest (for example branching
condition, mixed choice). A drawback of CAT is that it does not support modelling
and design of applications. An interesting evolution of CAT would be to add func-
tionalities for amending applications violating properties of interest. For instance, once

Concluding Remarks 133

weakagreement.mod
1

n number of nodes 2

m number of actions 3

param n; 4

param m; 5

param K; 6

param final; #final node 7

set N := {1..n}; 8

set M := {1..m}; 9

param t{N,N}; 10

param a{N,N,M}; 11

var x_t{N,N} >=0 integer; 12

var z_t{N,N,N} >=0; 13

var gamma; 14

var p{N} binary; 15

var wagreement; 16

17

#flow constraints 18

subject to Flow_Constraints {node in N}: 19

sum{i in N}(x_t[i,node]*t[i,node]) - sum{i in N}(x_t[node,i]*t[node,i]) = 20

if (node == 1) then -1 21

else if (node == final) then 1 22

else 0; 23

; 24

25

subject to p1{node in N}: p[node] <= sum{i in N}(x_t[node,i]*t[node,i]); 26

subject to p2{node in N}: sum{i in N}(x_t[node,i]*t[node,i]) <= p[node]*K; 27

28

29

30

subject to Auxiliary_Flow_Constraints {snode in N diff {1},node in N}: 31

sum{i in N}(z_t[snode,i,node]*t[i,node]) - sum{i in N}(z_t[snode,node,i]*t[node,i]) = 32

if (node == 1) then - p[snode] 33

else if (node == snode) then p[snode] 34

else 0; 35

36

subject to Auxiliary_Flow_Constraints2{i in N, j in N,snode in N}: 37

z_t[snode,i,j]*t[i,j] <= x_t[i,j]*t[i,j]; 38

39

40

subject to threshold_constraint {act in M}: sum{i in N,j in N} x_t[i,j]*t[i,j]*a[i,j,act] >= gamma; 41

42

#objective function 43

maximize cost: gamma; 44

Figure 6.4: The implementation in AMPL of the optimization problem for deciding weak
agreement.

134 A Tool For Contract Automata

weaksafety.mod
1

n number of nodes 2

m number of actions 3

param n; 4

param m; 5

param K; 6

param final; #final node 7

set N := {1..n}; 8

set M := {1..m}; 9

param t{N,N}; 10

param a{N,N,M}; 11

var x_t{N,N} >=0 integer; 12

var z_t{N,N,N} >=0; 13

var gamma; 14

var p{N} binary; 15

var v{M} binary; 16

var wagreement; 17

18

#flow constraints 19

subject to Flow_Constraints {node in N}: 20

sum{i in N}(x_t[i,node]*t[i,node]) - sum{i in N}(x_t[node,i]*t[node,i]) = 21

if (node == 1) then -1 22

else if (node == final) then 1 23

else 0; 24

; 25

26

subject to p1{node in N}: p[node] <= sum{i in N}(x_t[node,i]*t[node,i]); 27

subject to p2{node in N}: sum{i in N}(x_t[node,i]*t[node,i]) <= p[node]*K; 28

29

30

subject to Auxiliary_Flow_Constraints {snode in N diff {1},node in N}: 31

sum{i in N}(z_t[snode,i,node]*t[i,node]) - sum{i in N}(z_t[snode,node,i]*t[node,i]) = 32

if (node == 1) then - p[snode] 33

else if (node == snode) then p[snode] 34

else 0; 35

36

subject to Auxiliary_Flow_Constraints2{i in N, j in N,snode in N}: 37

z_t[snode,i,j]*t[i,j] <= x_t[i,j]*t[i,j]; 38

39

subject to vi: sum{i in M} v[i] = 1; 40

41

subject to threshold_constraint : 42

sum{act in M,i in N,j in N} (v[act]*x_t[i,j]*t[i,j]*a[i,j,act]) <= gamma; 43

44

#objective function 45

minimize cost: gamma; 46

Figure 6.5: The implementation in AMPL of the optimization problem for deciding weak
safety.

Concluding Remarks 135

liable transitions are identified, CAT could suggest how to modify services to guarantee
the property. This may also be coupled with the model-driven approach by featuring
functionalities tracing transitions in the actual source-code of services.

136 A Tool For Contract Automata

Chapter 7

Conclusions

In this thesis we have proposed a formal model for designing and verifying distributed
applications following the Service Oriented Computing paradigm, under the assump-
tions that services cannot fulfil their prescribed behaviour (either unintentionally or
maliciously) and may have mutual circular dependencies between their requirements
and obligations. We have related the proposed model to different coordination mech-
anisms and logic formalisms, and we have investigated the relations between safety
properties and service compliance. Finally, the theory we have introduced has driven
the implementation of a prototype tool.

7.1 Main results

In this section we summarise the main results of this thesis. The formal verification of se-
curity properties has been related to the notion of compliance of services in Chapter 2.
History expressions (Section 1.6) are extended for expressing a family of behavioural
contracts (Section 1.2.1), and an automata-based model checking technique for verifying
compliance of contracts is proposed in Theorem 1, thus relating compliance with safety
properties (Theorem 2). It is then possible to apply all the techniques and tools devel-
oped for checking safety properties to efficiently verify the absence of communication
errors between services, as well as security policies.

The idea of verifying a composition of service through automata-based model check-
ing techniques has been generalised to a formal theory of service contracts, developed in
Chapter 3. Contract automata are an orchestrated model introduced for describing the
abstract behaviour of services, together with operators for composing them according to
a static orchestration or a dynamic one. Contract automata have the main feature of ex-
pressing as a single automaton both individual principals, where no action is matched,
closed systems (i.e. composition of principals) where all actions are matched, and open
systems, where not all the actions are matched. Different properties of agreement be-
tween services have been studied from a language-theoretic point of view, where the
main idea is the coexistence of “good” executions and “bad” computations, that are
those breaking the overall agreement, and that are eventually removed by the orches-

138 Conclusions

trator. We have considered the case of synchronous matching between requests and
offers, under the requirements that (i) all the requests must be fulfilled, that is agreement
(Section 3.2), and (ii) all requests and offers must be matched, that is strong agreement
(Section 3.3). The notion of strong agreement deals with closed systems where no of-
fers are left unmatched, while agreement allows for unmatched offers, thus modelling
open systems, where possibly new principals can join the composition and match the
available offers.

For deciding whether a composition of contracts admits an agreement (Property 2)
and for finding the liable principals (Proposition 5) we have resorted to techniques bor-
rowed from Control Theory (Section 1.7).

We have identified two class of contracts: competitive and collaborative contracts;
and we have characterized their composition under the property of agreement (Theo-
rem 3). We can prove the correctness of the composition without generating the whole
state space. Indeed, contracts can be modularly checked, provided they satisfy the re-
quired conditions (see Theorem 3). An asynchronous notion of agreement (i.e. weak
agreement) where requests can be fulfilled on credit (Section 3.4) is introduced in or-
der to deal with the potential, but harmless and often essential circularity occurring in
services. It has been proved that the property of weak agreement is context-sensitive
(Theorem 5). Composition of collaborative and competitive contracts has been analysed
under weak agreement (Theorem 4), obtaining results similar to those of Theorem 3. We
have applied techniques based on optimization of flow problems (Section 1.8) for de-
ciding if a composition of contracts is in weak agreement (Theorem 7 and Theorem 6),
and for identifying the weakly liable principals (Theorem 8). In this way, the automatic
verification of weak agreement exploits efficient techniques and algorithms developed
in the area of operational research.

The circularity studied in Chapter 3 has been related to different logic formalisms
in Chapter 4. The obtained results can be used for verifying the corresponding logic
formulae and vice-versa.

We have investigated the relations between a composition of contract automata in
agreement and provability of formulae in different intuitionistic logics (see Section 1.4).
Theorem 9 relates the property of agreement with formulae in the Horn fragment of
propositional contract logic, while Theorem 10 considers weak agreement. This result
shed light on the relation between the contractual implication connective and the prop-
erty of weak agreement. Indeed, checking weak agreement is equivalent to lift in the
corresponding formula all standard implications to the contractual version.

The Horn fragment of intuitionistic linear logic with mix has been related to the
property of agreement in Theorem 11. The importance of this relation lies on the possi-
bility of expressing each H-ILLmix formula as a contract automaton. It is then possible to
compose formulae through the composition operators provided by contract automata,
exploiting compositionality and related results (for example Theorem 3) for efficiently
checking the provability of formulae in H-ILLmix.

While in Chapter 3 we have adopted orchestration as coordination paradigm, the

Future work 139

relations between different services coordination mechanisms have been deepened in
Chapter 5. In particular, an orchestration of services can be related to a choreography
by translating contract automata into communicating machines (Section 1.3). A practical
outcome is disposing the central orchestrator, so reducing the communication overhead.

Theorem 13 establishes conditions for translating a safe orchestration of contracts
into a convergent synchronous system of communicating machines, while Theorem 16
considers the asynchronous case and Corollary 3 deals with open-ended choreographies.
This is important because the communication overhead can be reduced in open-ended
systems, also taking advantage of the parallelism coming from an asynchronous system.

The formal theory we have developed has been applied to a prototypical tool for the
verification of distributed services, discussed in Chapter 6.

7.2 Future work

We address several further lines of research concerning our proposal:

• in Chapter 2 a first connection between the analysis of behavioural types and se-
curity properties has been outlined. In the presented model, services can replicate
themselves boundlessly many times. Future works concern studying a restricted
availability of services. Under this restriction, new deadlock situations may arise,
which have not been considered. For example, assume that a single instance of a
recursive service S1 satisfies the security constraints and it is compliant with two
recursive clients C1 and C2. Then, our analysis synthesises a plan which couples
both clients with S1. However, if the client C1 engages in non terminating inter-
actions with S1, the other client C2 would be prevented from any interaction with
its associated service S1, because only one instance of it is available. Hence, the
presented analysis needs to be enriched with techniques for ensuring that all the
necessary resources are available in a composition.

• Computing the weakly liable principals in a composition of contracts has been
showed to be a hard task. While we have related this notion to a bi-level optimiza-
tion flow problem in Theorem 8, algorithms for solving these types of problems
are still under research.

In order to make the problem tractable, an over approximation of the set of weakly
liable principals can be computed. Techniques based on the relaxation of bi-level
problems (for example, lagrangian relaxation) for computing approximated solu-
tions in acceptable computational time need to be further investigated.

Moreover, while we have proposed tailored optimization techniques for verifying
given safety properties (namely weak agreement), this approach can be gener-
alised. Indeed, when the system under analysis is modelled as a labelled tran-
sition system with weights associated to labels, and the properties to be checked
concern those weights, then an associated flow problem can be derived. In this

140 Conclusions

flow problem, the traces correspond to flows in the graph and the requirements
on the labels are coded into constraints in the corresponding linear problem. By
maximizing (resp. minimising) the corresponding objective function it is possi-
ble to decide whether the property under analysis is satisfied by the model. This
would bring algorithms and tools developed in the area of operational research,
namely optimization of flow problems, to the formal verification of systems.

• An interesting future line of research concerns using the most permissive con-
troller for suggesting corrections. Indeed, by detecting each liable transition and
liable principal, we have a fine grained description of which principals and which
transitions break the correctness of the composition. This information could be
exploited for amending the composite service.

• In Chapter 4 the provability of formulae in Horn fragments of different intuition-
istic logics has been related to properties of agreement between contracts. An
extension of these results to comprehend the full logics is still missing. Indeed,
while the Horn fragments of the considered logics have a neat interpretation in
terms of contracts, the meaning of nested implications as contracts is not clear. For
example, the nested contractual implications p� (q� p′) could be interpreted as
“I promise you p provided that in the future the contract q� p′ will be satisfied ”.
In this case, the inner formula q � p′ is considered as a contract that can be ad-
vertised only if in the future the formula p is satisfied. Hence, in order to express
this type of contracts, a model of the full logics should be enriched with higher
order contracts, where a contract can be offered or required in the same fashion of
resources. Studying a model for these full logics would deepen our knowledge of
contracts and the related circularity and liability issues.

• Theorem 16 attests that a safe orchestration of services satisfying certain properties
corresponds to a convergent asynchronous choreography. While in general the
converse is undecidable [BZ83], an approximate solution could be obtained by
proposing a relaxed optimization problem; similarly to what has been done for
the properties of weak agreement. In this case, in order to enforce the FIFO order
of messages on a trace t, we need to assign a flow to each prefix p of t. The
formalization will feature constraints for ensuring that all prefixes p have a positive
difference between offers and requests, which means that a message can be read
only after it has been received. A solution can be given for a fixed maximal length
of a path, in order to have a finite number of flows. An approximate solution can
be obtained, for example, by relaxing the FIFO constraints on the buffers. This
would provide a finer indication of the behaviour of the system, where possible
mixed choices are now admitted.

• A prototypical tool based on our results has been presented in Chapter 6. Future
developments concernt the integration of the tool with a user-friendly interface,
and the discussed integer linear programming techniques.

Bibliography

[ABZ13] Lucia Acciai, Michele Boreale, and Gianluigi Zavattaro. Behavioural con-
tracts with request-response operations. Sci. Comput. Program., 78(2):248–267,
February 2013.

[ACKM04] G. Alonso, F. Casati, H. A. Kuno, and V. Machiraju. Web Services - Concepts,
Architectures and Applications. Data-Centric Systems and Applications. Springer,
2004.

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. Dependable and Secure Com-
puting, IEEE Transactions on, 1(1):11–33, Jan 2004.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for component
composition. Mathematical Structures in Computer Science, 14(3):329–366, 2004.

[ARS+13] Marco Autili, Davide Di Ruscio, Amleto Di Salle, Paola Inverardi, and Mas-
simo Tivoli. A model-based synthesis process for choreography realizability
enforcement. In Vittorio Cortellessa and Dániel Varró, editors, Fundamental
Approaches to Software Engineering - 16th International Conference, FASE 2013,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7793 of
Lecture Notes in Computer Science, pages 37–52. Springer, 2013.

[Bar06] Jonathan F. Bard. Practical Bilevel Optimization: Algorithms and Applications
(Nonconvex Optimization and Its Applications). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[BB11] Samik Basu and Tevfik Bultan. Choreography conformance via synchroniz-
ability. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P.
Ravindra, Elisa Bertino, and Ravi Kumar, editors, Proceedings of the 20th In-
ternational Conference on World Wide Web, WWW 2011, pages 795–804. ACM,
2011.

[BBK+10] Christel Baier, Tobias Blechmann, Joachim Klein, Sascha Klüppelholz, and
Wolfgang Leister. Design and verification of systems with exogenous coor-
dination using vereofy. In Tiziana Margaria and Bernhard Steffen, editors,

142 Bibliography

Leveraging Applications of Formal Methods, Verification, and Validation - 4th In-
ternational Symposium on Leveraging Applications, ISoLA 2010, Heraklion, Crete,
Greece, October 18-21, 2010, Proceedings, Part II, volume 6416 of Lecture Notes
in Computer Science, pages 97–111. Springer, 2010.

[BBO12] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding choreography
realizability. In John Field and Michael Hicks, editors, Proceedings of the 39th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, pages 191–202. ACM, 2012.

[BCGZ13] Massimo Bartoletti, Tiziana Cimoli, Paolo Di Giamberardino, and Roberto
Zunino. Contract agreements via logic. In Marco Carbone, Ivan Lanese, Al-
berto Lluch-Lafuente, and Ana Sokolova, editors, Proceedings 6th Interaction
and Concurrency Experience, ICE 2013, Florence, Italy, 6th June 2013., volume
131 of EPTCS, pages 5–19, 2013.

[BCP13] Massimo Bartoletti, Tiziana Cimoli, and G. Michele Pinna. Lending Petri nets
and contracts. In Farhad Arbab and Marjan Sirjani, editors, FSEN, volume
8161 of LNCS, pages 66–82. Springer, 2013.

[BCPZ15] Massimo Bartoletti, Tiziana Cimoli, G.Michele Pinna, and Roberto Zunino.
Models of circular causality. In Raja Natarajan, Gautam Barua, and Manas-
Ranjan Patra, editors, Distributed Computing and Internet Technology, volume
8956 of Lecture Notes in Computer Science, pages 1–20. Springer International
Publishing, 2015.

[BCPZ16] Massimo Bartoletti, Tiziana Cimoli, G. Michele Pinna, and Roberto Zunino.
Contracts as games on event structures. Journal of Logical and Algebraic Meth-
ods in Programming, 85(3):399 – 424, 2016. Interaction and Concurrency Ex-
perience.

[BCZ13] Massimo Bartoletti, Tiziana Cimoli, and Roberto Zunino. A theory of agree-
ments and protection. In David A. Basin and John C. Mitchell, editors, POST,
volume 7796 of LNCS, pages 186–205. Springer, 2013.

[BCZ15] Massimo Bartoletti, Tiziana Cimoli, and Roberto Zunino. Compliance in be-
havioural contracts: A brief survey. In Chiara Bodei, Gian-Luigi Ferrari, and
Corrado Priami, editors, Programming Languages with Applications to Biology
and Security, volume 9465 of Lecture Notes in Computer Science, pages 103–121.
Springer International Publishing, 2015.

[BDF09] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. Planning and
verifying service composition. Journal of Computer Security, 17(5):799–837,
2009.

Bibliography 143

[BDFZ11] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto
Zunino. Call-by-contract for service discovery, orchestration and recovery.
In Wirsing and Hölzl [WH11], pages 232–261.

[BDFZ15] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto
Zunino. Model checking usage policies. Mathematical Structures in Computer
Science, 25(3):710–763, 2015.

[BDGZ15] Massimo Bartoletti, Pierpaolo Degano, Paolo Di Giamberardino, and
Roberto Zunino. Debits and credits in petri nets and linear logic. In Nar-
ciso Martí-Oliet, Peter Csaba Ölveczky, and Carolyn L. Talcott, editors, Logic,
Rewriting, and Concurrency - Essays dedicated to José Meseguer on the Occasion
of His 65th Birthday, volume 9200 of Lecture Notes in Computer Science, pages
135–159. Springer, 2015.

[BDLd15] Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan Lanese, and Ugo
de’Liguoro. Retractable contracts. In Simon Gay and Jade Alglave, editors,
Proceedings Eighth International Workshop on Programming Language Approaches
to Concurrency- and Communication-cEntric Software, PLACES 2015, London,
UK, 18th April 2015., volume 203 of EPTCS, pages 61–72, 2015.

[Ben95] P Nick Benton. A mixed linear and non-linear logic: Proofs, terms and
models. In Computer Science Logic, pages 121–135. Springer, 1995.

[BGG+06] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi
Zavattaro. Choreography and orchestration conformance for system design.
In Paolo Ciancarini and Herbert Wiklicky, editors, Coordination Models and
Languages, 8th International Conference, COORDINATION 2006, Proceedings,
volume 4038 of Lecture Notes in Computer Science, pages 63–81. Springer, 2006.

[BH12] Giovanni Bernardi and Matthew Hennessy. Modelling session types using
contracts. In SAC’12, pages 1941–1946, 2012.

[BH14] Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts to
model session types (extended abstract). In Paolo Baldan and Daniele Gorla,
editors, CONCUR 2014 - Concurrency Theory, volume 8704 of Lecture Notes in
Computer Science, pages 387–401. Springer Berlin Heidelberg, 2014.

[BJMU11] Karin Bernsmed, Martin Gilje Jaatun, Per Håkon Meland, and Astrid Und-
heim. Security SLAs for federated cloud services. In ARES, pages 202–209.
IEEE, 2011.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

[BM10] Maria Grazia Buscemi and Hernán C. Melgratti. Contracts for abstract pro-
cesses in service composition. In Axel Legay and Benoît Caillaud, editors,

144 Bibliography

Proceedings Foundations for Interface Technologies, FIT 2010, Paris, France, 30th
August 2010., volume 46 of EPTCS, pages 9–27, 2010.

[BM11] Maria Grazia Buscemi and Ugo Montanari. Cc-pi: A constraint language for
service negotiation and composition. In Wirsing and Hölzl [WH11], pages
262–281.

[BP06] Antonio Brogi and Razvan Popescu. Automated generation of bpel adapters.
In Proceedings of the 4th International Conference on Service-Oriented Computing,
ICSOC’06, pages 27–39, Berlin, Heidelberg, 2006. Springer-Verlag.

[BSAR06] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan J. M. M. Rutten. Mod-
eling component connectors in reo by constraint automata. Sci. Comput. Pro-
gram., 61(2):75–113, 2006.

[BSBM05] Lucas Bordeaux, Gwen Salaün, Daniela Berardi, and Massimo Mecella.
When are two web services compatible? In Ming-Chien Shan, Umeshwar
Dayal, and Meichun Hsu, editors, Technologies for E-Services, volume 3324 of
Lecture Notes in Computer Science, pages 15–28. Springer Berlin Heidelberg,
2005.

[BTZ12] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contract-oriented
computing in co2. Sci. Ann. Comp. Sci., 22(1):5–60, 2012.

[BvBd15] Franco Barbanera, Steffen van Bakel, and Ugo de’Liguoro. Orchestrated
session compliance. In Sophia Knight, Ivan Lanese, Alberto Lluch-Lafuente,
and Hugo Torres Vieira, editors, Proceedings 8th Interaction and Concurrency
Experience, ICE 2015, Grenoble, France, 4-5th June 2015., volume 189 of EPTCS,
pages 21–36, 2015.

[BW90] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University
Press, New York, NY, USA, 1990.

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud computing and emerging it platforms: Vision, hype,
and reality for delivering computing as the 5th utility. Future Generation
Comp. Syst., 25(6), 2009.

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines.
J. ACM, 30(2):323–342, 1983.

[BZ08a] Massimo Bartoletti and Roberto Zunino. LocUsT: a tool for checking usage
policies. Technical Report TR-08-07, Dip. Informatica, Univ. Pisa, 2008.

[BZ08b] Mario Bravetti and Gianluigi Zavattaro. Contract compliance and choreog-
raphy conformance in the presence of message queues. In Roberto Bruni
and Karsten Wolf, editors, Web Services and Formal Methods, 5th International

Bibliography 145

Workshop, WS-FM 2008, Milan, Italy, September 4-5, 2008, Revised Selected Pa-
pers, volume 5387 of Lecture Notes in Computer Science, pages 37–54. Springer,
2008.

[BZ09a] Massimo Bartoletti and Roberto Zunino. A logic for contracts. In Alessandra
Cherubini, Mario Coppo, and Giuseppe Persiano, editors, ICTCS, pages 34–
37, 2009.

[BZ09b] Mario Bravetti and Gianluigi Zavattaro. Contract-based discovery and com-
position of web services. In Marco Bernardo, Luca Padovani, and Gianluigi
Zavattaro, editors, Formal Methods for Web Services, 9th International School on
Formal Methods for the Design of Computer, Communication, and Software Sys-
tems, 2009, volume 5569 of Lecture Notes in Computer Science, pages 261–295.
Springer, 2009.

[BZ10a] Massimo Bartoletti and Roberto Zunino. A calculus of contracting processes.
In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science,
LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 332–341. IEEE
Computer Society, 2010.

[BZ10b] Massimo Bartoletti and Roberto Zunino. Primitives for contract-based syn-
chronization. In Simon Bliudze, Roberto Bruni, Davide Grohmann, and
Alexandra Silva, editors, Proceedings Third Interaction and Concurrency Expe-
rience: Guaranteed Interaction, ICE 2010, Amsterdam, The Netherlands, 10th of
June 2010., volume 38 of EPTCS, pages 67–82, 2010.

[CA95] James C. Corbett and George S. Avrunin. Using integer programming to ver-
ify general safety and liveness properties. Formal Methods in System Design,
6(1):97–123, 1995.

[CDM14] Marco Carbone, Ornela Dardha, and Fabrizio Montesi. Progress as compo-
sitional lock-freedom. In Eva Kühn and Rosario Pugliese, editors, COORDI-
NATION 2014, volume 8459 of Lecture Notes in Computer Science, pages 49–64.
Springer, 2014.

[CF05] Gérard Cécé and Alain Finkel. Verification of programs with half-duplex
communication. Information and Computation, 202(2):166–190, 2005.

[CGP09] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts
for web services. ACM Trans. Program. Lang. Syst., 31(5), 2009.

[CHS14] Lorenzo Clemente, Frédéric Herbreteau, and Grégoire Sutre. Decidable
topologies for communicating automata with FIFO and bag channels. In
Paolo Baldan and Daniele Gorla, editors, CONCUR 2014 - Concurrency The-
ory - 25th International Conference, CONCUR 2014, Rome, Italy, September 2-5,
2014. Proceedings, volume 8704 of Lecture Notes in Computer Science, pages
281–296. Springer, 2014.

146 Bibliography

[CL06] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event
Systems. Springer, Secaucus, NJ, USA, 2006.

[CP09] Giuseppe Castagna and Luca Padovani. Contracts for mobile processes. In
Mario Bravetti and Gianluigi Zavattaro, editors, CONCUR, volume 5710 of
LNCS, pages 211–228. Springer, 2009.

[Crn02] Ivica. Crnkovic. Building reliable component-based software systems. Artech
House computing library. Artech House„ Boston :, c2002.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceedings
of the 8th European Software Engineering Conference held jointly with 9th ACM
SIGSOFT International Symposium on Foundations of Software Engineering 2001,
pages 109–120. ACM, 2001.

[DCD10] Mariangiola Dezani-Ciancaglini and Ugo De’Liguoro. Sessions and session
types: An overview. In Proceedings of the 6th International Conference on Web
Services and Formal Methods, WS-FM’09, pages 1–28, Berlin, Heidelberg, 2010.
Springer-Verlag.

[DD04] Remco Dijkman and Marlon Dumas. Service-oriented design: A multi-
viewpoint approach. International Journal of Cooperative Information Systems,
13(4):337–368, 2004.

[DDM08] J. Dubreil, P. Darondeau, and H. Marchand. Opacity enforcing control syn-
thesis. In Discrete Event Systems, 2008. WODES 2008. 9th International Work-
shop on, pages 28–35, May 2008.

[DDM10] Jérémy Dubreil, Philippe Darondeau, and Hervé Marchand. Supervisory
control for opacity. IEEE Trans. Automat. Contr., 55(5):1089–1100, 2010.

[dNH83] R. de Nicola and M.C.B. Hennessy. Testing equivalences for processes. In
Josep Diaz, editor, Automata, Languages and Programming, volume 154 of Lec-
ture Notes in Computer Science, pages 548–560. Springer Berlin Heidelberg,
1983.

[DY13] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in
communicating automata: Characterisation and synthesis of global session
types. In ICALP (2), pages 174–186, 2013.

[EKW+09] Thomas Erl, Anish Karmarkar, Priscilla Walmsley, Hugo Haas, L. Umit Yal-
cinalp, Kevin Liu, David Orchard, Andre Tost, and James Pasley. Web Service
Contract Design and Versioning for SOA. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1 edition, 2009.

[EM00] Javier Esparza and Stephan Melzer. Verification of safety properties using
integer programming: Beyond the state equation. Formal Methods in System
Design, 16(2):159–189, 2000.

Bibliography 147

[FBS04] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting bpel web
services. In Proceedings of the 13th International Conference on World Wide Web,
WWW ’04, pages 621–630, New York, NY, USA, 2004. ACM.

[FF57] L. R. Ford and D. R. Fulkerson. A simple algorithm for finding maximal
network flows and an application to the hitchcock problem. CANADIAN
JOURNAL OF MATHEMATICS, pages 210–218, 1957.

[FF10] D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, NJ, USA, 2010.

[FGK89] Robert Fourer, David M. Gay, and Brian W. Kernighan. Algorithms and Model
Formulations in Mathematical Programming, chapter AMPL: A Mathematical
Programing Language, pages 150–151. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1989.

[GH05] Simon Gay and Malcolm Hole. Subtyping for session types in the pi calculus.
Acta Informatica, 42(2-3):191–225, 2005.

[GHI67] Jim Gray, Michael A. Harrison, and Oscar H. Ibarra. Two-way pushdown
automata. Information and Control, 11(1/2):30–70, 1967.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1 – 101,
1987.

[Gis81] Jay L. Gischer. Shuffle languages, Petri nets, and context-sensitive grammars.
Commun. ACM, 24(9):597–605, 1981.

[HB10] Sylvain Hallé and Tevfik Bultan. Realizability analysis for message-based
interactions using shared-state projections. In Gruia-Catalin Roman and
Kevin J. Sullivan, editors, Proceedings of the 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010, pages 27–36. ACM,
2010.

[HKLW10] Raymond Hemmecke, Matthias Koppe, Jon Lee, and Robert Weismantel.
Nonlinear integer programming. In Michael Junger, Thomas M. Liebling,
Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard
Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of Integer
Programming 1958-2008, pages 561–618. Springer Berlin Heidelberg, 2010.

[HL86] Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations Re-
search, 4th Ed. Holden-Day, Inc., San Francisco, CA, USA, 1986.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006.

148 Bibliography

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In George C. Necula and Philip Wadler, editors,
POPL, pages 273–284. ACM, 2008.

[IGH+11] Valérie Issarny, Nikolaos Georgantas, Sara Hachem, Apostolos Zarras, Panos
Vassiliadis, Marco Autili, Marco Aurélio Gerosa, and Amira Ben Hamida.
Service-oriented middleware for the future internet: State of the art and
research directions. Journal of Internet Services and Applications (JISA), pages
1–23, June 2011.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: A
model transformation tool. Science of Computer Programming, 72:31 – 39, 2008.

[JSW90] Aravind K. Joshi, K. Vijay Shanker, and David Weir. The convergence of
mildly context-sensitive grammar formalisms, 1990.

[Jur06] Matjaz B. Juric. Business Process Execution Language for Web Services BPEL and
BPEL4WS 2Nd Edition. Packt Publishing, 2006.

[KBR+05] Nickolas Kavantzas, David Burdett, Greg Ritzinger, Tony Fletcher, Yves La-
fon, and Charlton Barreto. Web services choreography description language
version 1.0. World Wide Web Consortium, Candidate Recommendation CR-
ws-cdl-10-20051109, November 2005.

[Kle67] Morton Klein. A primal method for minimal cost flows, with applications to
the assignment and transportation problems, 1967.

[Koz83] Dexter Kozen. Special issue ninth international colloquium on automata,
languages and programming (icalp) aarhus, summer 1982 results on the
propositional mu-calculus. Theoretical Computer Science, 27(3):333 – 354, 1983.

[Koz99] Dexter Kozen. Language-based security. In Proceedings of the 24th Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS ’99,
pages 284–298, London, UK, UK, 1999. Springer-Verlag.

[Kri63] Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica
Fennica, 16(1963):83–94, 1963.

[KSF+11] Ravi Khadka, Brahmananda Sapkota, Luis Ferreira Pires, Marten van Sin-
deren, and Slinger Jansen. Wscdl to wsbpel: A case study of atl-based
transformation. In Ivan Kurtev, Massimo Tisi, and Dennis Wagelaar, edi-
tors, MtATL-2011, volume 742 of CEUR Workshop Proceedings, pages 89–103.
CEUR-ws.org, July 2011.

[Kur64] S.-Y. Kuroda. Classes of languages and linear-bounded automata. Information
and Control, 7(2):207–223, 1964.

Bibliography 149

[LGMZ08] Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro.
Bridging the gap between interaction- and process-oriented choreographies.
In Software Engineering and Formal Methods, SEFM 2008, pages 323–332, 2008.

[LMZ13] Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. Amending chore-
ographies. In António Ravara and Josep Silva, editors, Proceedings 9th In-
ternational Workshop on Automated Specification and Verification of Web Systems,
WWV 2013, Florence, Italy, 6th June 2013., volume 123 of EPTCS, pages 34–48,
2013.

[LP15] Cosimo Laneve and Luca Padovani. An algebraic theory for web service
contracts. Formal Aspects of Computing, pages 1–28, 2015.

[LS13] Julien Lange and Alceste Scalas. Choreography synthesis as contract agree-
ment. In Proceedings 6th Interaction and Concurrency Experience, ICE 2013,
pages 52–67, 2013.

[LT89] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output au-
tomata. CWI Quarterly, 2:219–246, 1989.

[LT12] Julien Lange and Emilio Tuosto. Synthesising choreographies from local
session types. In Maciej Koutny and Irek Ulidowski, editors, CONCUR,
volume 7454 of LNCS, pages 225–239. Springer, 2012.

[LTY15] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating
machines to graphical choreographies. In Sriram K. Rajamani and David
Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2015, pages 221–232.
ACM, 2015.

[Mey92] Bertrand Meyer. Applying "design by contract". Computer, 25(10):40–51,
October 1992.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

[Mis05] Jayadev Misra. Computation orchestration. In Manfred Broy, Johannes Grün-
bauer, David Harel, and Tony Hoare, editors, Engineering Theories of Soft-
ware Intensive Systems, volume 195 of NATO Science Series, pages 285–330.
Springer, 2005.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, i. Inf. Comput., 100(1):1–40, September 1992.

[nE77] Jon Barwise note: Edited with the cooperation of H. J. Keisler, K. Kunen, Y.
N. Moschovakis and A. S. Troelstra, editor. Handbook of mathematical logic.
Studies in Logic and the Foundations of Mathematics. North-Holland Pub-
lishing Co., Amsterdam, 1977.

150 Bibliography

[(OM11] Object Management Group (OMG). Business process model and notation
(bpmn) version 2.0. Technical report, Object Management Group (OMG), jan
2011.

[OTC07] OASIS-Technical-Committee. OASIS WSBPEL TC, Web services business pro-
cess execution language version 2.0, 2007. Technical Report, OASIS, available at
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[Pad10] Luca Padovani. Contract-based discovery of web services modulo simple
orchestrators. Theor. Comput. Sci., 411(37):3328–3347, 2010.

[Pap12] Michael Papazoglou. Web Services and SOA: Principles and Technology.
Pearson-Prentice Hall, 2012.

[Pel03] Chris Peltz. Web services orchestration and choreography. IEEE Computer,
36(10):46–52, 2003.

[Pfe00] Frank Pfenning. Structural cut elimination: Intuitionistic and classical logic.
Information and Computation, 157(1-2):84 – 141, 2000.

[PG03] M. P. Papazoglou and D. Georgakopoulos. Introduction: Service-oriented
computing. Commun. ACM, 46(10):24–28, October 2003.

[PL03] R. Perrey and M. Lycett. Service-oriented architecture. In Applications and
the Internet Workshops, 2003. Proceedings. 2003 Symposium on, pages 116–119,
Jan 2003.

[PR05] S. Pinchinat and S. Riedweg. You can always compute maximally permissive
controllers under partial observation when they exist. In American Control
Conference, 2005. Proceedings of the 2005, pages 2287–2292 vol. 4, June 2005.

[PTDL07] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented
computing: State of the art and research challenges. Computer, 40(11):38–45,
Nov 2007.

[QZCY07] Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the
theoretical foundation of choreography. In Carey L. Williamson, Mary Ellen
Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy, editors, Proceedings
of the 16th International Conference on World Wide Web, WWW 2007, pages 973–
982. ACM, 2007.

[RDRM12] Ismael Rodríguez, Gregorio Díaz, Pablo Rabanal, and Jose Antonio Ma-
teo. A centralized and a decentralized method to automatically derive
choreography-conforming web service systems. The Journal of Logic and Al-
gebraic Programming, 81(2):127 – 159, 2012. Formal Languages and Analysis
of Contract-Oriented Software (FLACOS’10).

Bibliography 151

[RRW91] G. M. Reed, A. W. Roscoe, and R. F. Wachter, editors. Topology and Category
Theory in Computer Science. Oxford University Press, Inc., New York, NY,
USA, 1991.

[RV07] Arend Rensink and Walter Vogler. Fair testing. Information and Computation,
205(2):125 – 198, 2007.

[RW87] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete
event processes. SIAM J. Control Optim., 25(1):206–230, January 1987.

[Sch00] Fred B Schneider. Enforceable security policies. ACM Transactions on Infor-
mation and System Security (TISSEC), 3(1):30–50, 2000.

[SMH01] Fred B. Schneider, J. Gregory Morrisett, and Robert Harper. A language-
based approach to security. In Informatics - 10 Years Back. 10 Years Ahead.,
pages 86–101, London, UK, UK, 2001. Springer-Verlag.

[SRP91] Vijay A. Saraswat, Martin C. Rinard, and Prakash Panangaden. Semantic
foundations of concurrent constraint programming. In David S. Wise, edi-
tor, Conference Record of the Eighteenth Annual ACM Symposium on Principles
of Programming Languages, Orlando, Florida, USA, January 21-23, 1991, pages
333–352. ACM Press, 1991.

[Tal] Stephen Ross Talbot. Orchestration and choreography: Standards, tools and
technologies for distributed workflows. http://www.nettab.org/2005/
docs/NETTAB2005_Ross-TalbotOral.pdf.

[TBB03] M. Turner, D. Budgen, and P. Brereton. Turning software into a service.
Computer, 36(10):38–44, Oct 2003.

[Thi96] J.G. Thistle. Supervisory control of discrete event systems. Mathematical and
Computer Modelling, 23(11–12):25 – 53, 1996.

[TVMS07] Samira Tasharofi, Mohsen Vakilian, Roshanak Zilouchian Moghaddam, and
Marjan Sirjani. Modeling web service interactions using the coordination
language reo. In Marlon Dumas and Reiko Heckel, editors, WS-FM, volume
4937 of Lecture Notes in Computer Science, pages 108–123. Springer, 2007.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to au-
tomatic program verification. In Proc. 1st Symp. on Logic in Computer Science,
pages 332–344, Cambridge, June 1986.

[VW08] Moshe Y. Vardi and Thomas Wilke. Automata: from logics to algorithms.
In Jörg Flum, Erich Grädel, and Thomas Wilke, editors, Logic and Automata:
History and Perspectives [in Honor of Wolfgang Thomas]., volume 2 of Texts in
Logic and Games, pages 629–736. Amsterdam University Press, 2008.

http://www.nettab.org/2005/docs/NETTAB2005_Ross-TalbotOral.pdf
http://www.nettab.org/2005/docs/NETTAB2005_Ross-TalbotOral.pdf

152 Bibliography

[Wal89] Stein W. Wallace, editor. Algorithms and Model Formulations in Mathematical
Programming. Springer-Verlag New York, Inc., New York, NY, USA, 1989.

[WB10] Yi Wei and M. Brian Blake. Service-oriented computing and cloud com-
puting: Challenges and opportunities. IEEE Internet Computing, 14(6):72–75,
2010.

[WFN04] A. Wombacher, P. Fankhauser, and E. Neuhold. Transforming bpel into an-
notated deterministic finite state automata for service discovery. In Web Ser-
vices, 2004. Proceedings. IEEE International Conference on, pages 316–323, July
2004.

[WH11] Martin Wirsing and Matthias M. Hölzl, editors. Rigorous Software Engineer-
ing for Service-Oriented Systems - Results of the SENSORIA Project on Software
Engineering for Service-Oriented Computing, volume 6582 of Lecture Notes in
Computer Science. Springer, 2011.

[YZCQ07] Hongli Yang, Xiangpeng Zhao, Chao Cai, and Zongyan Qiu. Exploring the
connection of choreography and orchestration with exception handling and
finalization/compensation. In John Derrick and Jüri Vain, editors, Formal
Techniques for Networked and Distributed Systems - FORTE 2007, 27th IFIP WG
6.1 International Conference, Proceedings, volume 4574 of LNCS, pages 81–96.
Springer, 2007.

	Introduction
	Preliminaries
	Service Oriented Computing
	Service Coordination: Orchestration and Choreography
	Choreography
	Orchestration

	Contracts
	Behavioural Contracts
	Orchestration in the literature
	Choreographies in the literature
	Contracts and Session Types
	SLA contracts and others

	Communicating machines
	Logics for Contracts
	Propositional Contract Logic
	Intuitionistic Linear Logic with Mix
	Logic for Contracts in the literature

	Model Checking
	Language-based Security
	Control Theory
	Operations Research, Flow problem
	Concluding Remarks

	Contract Compliance as a Safety Property
	An Example
	Programming Model
	Statically Checking Validity

	Checking Service Compliance
	Concluding Remarks

	Contract Automata
	The Model
	Enforcing Agreement
	Strong Agreement
	Weak Agreement
	Flow Optimization Problems for Weak Agreement

	An example
	Concluding Remarks

	Contract Automata and Logics
	Propositional Contract Logic
	Intuitionistic Linear Logic with mix
	Concluding Remarks

	Relating Contract Automata and Choreographies
	From Contract Automata to Communicating Machines
	Agreement and Asynchrony
	Agreement
	Asynchronous semantics of communicating systems

	An example
	Concluding Remarks

	A Tool For Contract Automata
	CAT at work
	Detailing the implementation of CAT
	Integer Linear programming and Contract Automata
	AMPL code

	Concluding Remarks

	Conclusions
	Main results
	Future work

	Bibliography

