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Abstract

In the last years the world of communications, both research and in-

dustry, is heavily spending the energies on the fifth generation (5G) idea

for wireless communications technology. Standards bodies have orga-

nized a schedule for a proposal of 5G standardization, which is expected

to be in 2018, followed by a final specication around 2020 [1], [2]. With

the coming of 5G, we will attend to the spatial densification of the cel-

lular network, through heterogeneous architectures, i.e., small cells or

a flexible combination of evolved existing technologies (3G, 4G, WiFi).

For such a scenario, multihop communication could have an increasingly

important part. In this thesis are proposed novel strategies of resource al-

location (RA) and path selection (PS) for cognitive radio (CR) multihop

communications over a packet-oriented and bit-interleaved-coded OFDM

transmission, employing practical modulation and coding schemes. CR is

a promising paradigm to achieve efficient use of the frequency spectrum

by allowing the coexistence of both licensed (primary) and unlicensed

(secondary) users together in the same bandwidth.

The performance of the system are evaluated in terms of goodput

(GP), which is defined as the number of information bits delivered in

error free packets per unit of time, and a local RA (L-RA) technique and

a sub-optimal PS (Sub-PS) strategies are formulated for non-cooperative

CR multihop communications. We tackle in particular the problem of to

reduce the computational complexity and the signaling information over

the feedback channel compared to the optimal solutions, called O-RA

and O-PS respectively, and used as benchmark. We demonstrate with

some new simulations that the the combination of L-RA and Sub-PS can

effectively do it, paying a very little reduction of GP performance. An



ii

additional PS solution is presented, called approximated Sub-PS (ASub-

PS), which reduces the complexity further. For these simulations we

use from one to five decode and-forward (DF) relay nodes (RNs) in dif-

ferent network configuration. Finally we have increased the number of

RNs up to ten for to demonstrate that when number of relay grows the

performance does not have a signicant improvement.
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Introduction

In the current standard for wireless communication long term evolution

(LTE) we can use two types of cellular network configuration. The first

one is a conventional network in which a subscriber station (SS) is di-

rectly connect to a base station (BS). In the second type SS is connected

to a BS through relay stations (RSs). In the latter case, we have a

multihop cellular network (MCN) where the RSs cooperate to transmit

information from SS to BS. In literature are present two different multi-

hop communication setup: cooperative and non-cooperative. In the first,

a source node sends information to the destination node exploiting more

than one paths, one directly from the source and others through re-

lay nodes [3], whereas in non-cooperative communication the destination

node receives the message through a single path [4]. The possibility to

use multihop wireless transmission in a 4G in order to improve coverage,

data-rate or quality of service (QoS) [5], [6] is well studied in literature

and an interesting article that describe how the relay technology is used

in LTE standard is [7]. Now with the development of new multimedia ap-

plications and services, like streaming UHD, and the assimilation of the

Internet of Things (IoT), we will attend to the spatial densification of the

cellular network through heterogeneous architectures [8], and very high

data rates transmission. Limitations and security issues [9] in 4G lead

to the vision of new standard (5G) [10] that should be able to support

communications for all special scenarios not supported by 4G networks

1
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and multihop communications could have an increasingly important part

[11]. Already many studies and system designs have been made to ex-

ploit the potential advantages of multihop and have resulted in several

architectures, protocols, and analytical models in particular for (MCNs)

[12],[13]. An example of MCN with relays for to extend the coverage or to

increase the capacity within the cell is show in Figure 1.1. When we have

a network with more RSs and so many possible paths between SS and BS,

therefore routing and resource allocation are the typical problems. Many

papers have been published for to address these problems and present

several solutions for MCN cooperative and non-cooperative. Usually, the

metrics for evaluate the performance of the network are the throughput

or the capacity. For example some significant results are in work [14]

where an optimal RA solution for cooperative orthogonal frequency di-

vision multiplexing access (OFDMA) multihop networks is presented, in

which a centralized network controller maximizes the minimum through-

put among all nodes. In [15], the authors consider a non-cooperative

OFDM multihop link where the RA is based on the outage probability

minimization. An interesting paper is [16], which presents a path selec-

tion (PS) strategy for CR multihop networks. This PS method provides

an unlicensed user with the route which has the lowest probability of

interfering with the licensed users. An optimal power allocation (PA) for

MIMO multihop cooperative transmissions is presented in [17], where the

end-to-end achievable rate is maximized. Moreover, in [18] a PA and a

PS strategy are presented that minimizes an approximate expression of

the overall BER. The authors also make a comparison between the BER

of non-cooperative and cooperative multi-hop networks. In many works,

as in [19], the RA strategy is for dual-hop transmissions. An interesting

case of dual-hop communication is the Device-to-Device (D2D) trans-

mission that allow nearby devices to establish local links so that traffic
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ows directly between them, instead of through the base station and a

particular case is the D2D relay for traffic offloading, where an user with

a better geometry than a base station acts as a relay for another nearby

user [20],[21]. In this thesis we consider a cognitive radio (CR) multihop

scenario with more than two relay and modified RA method of [19] and

PS criterion presented in [18]. In particular, in [18] the PS strategy has

been evaluated for a single carrier system while here we have a multi-

carrier transmission. In detail we present a local RA (L-RA) technique

and a sub-optimal PS (Sub-PS) strategy for non-cooperative CR multi-

hop communications, in which the intermediate nodes transmit packets,

using a DF protocol with a BIC-OFDM modulation [22]. Optimal solu-

tions for RA and PS, called O-RA and O-PS respectively, will be used

as benchmark. The O-RA and O-PS are derived from [19], extending

the solution from a dual-hop to a multihop transmission. In particular,

O-PS provides the optimal path through an exhaustive search, which re-

sults in a polynomial complexity depending on the number M of RNs of

the network. The Sub-PS, instead, has a complexity of O(M3). We will

show that the L-RA and Sub-PS are able to reduce the signaling over

the feedback channel and the computational complexity compared to the

O-RA with O-PS method, while paying only a small penalty in terms of

GP performance The performance of the system are evaluated in terms

of goodput (GP), which is a more suitable metric to quantify the actual

performance of packet-oriented systems respect to the capacity [22]. In

order to optimize the GP, the transmitter must know the channel state,

but in a realistic wireless networks, there are errors in the channel esti-

mation and a delay over the feedback channel. Thus the channel state

information (CSI) will not be perfect and therefore any transmitting node

only will have outdated and imperfect CSI. Consequently in this work

we exploit a prediction of the GP, i.e. PGP as a performance metric [23].
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An additional PS solution will be presented, called approximated Sub-

PS (ASub-PS), which is able to reduce the computational complexity to

O(M2), without showing a signicant GP performance loss. Sub-PS and

ASub-PS do not require information about the network topology and the

coordinates of the source and destination and thus reduce the signaling

over the feedback channel compared with the O-PS method. The effec-

tiveness of the L-RA, Sub-PS and ASub-PS algorithms are corroborated

by extensive simulation results over a ITU multipath channel for various

network setups. Finally we evaluate whether the increase of the number

of relay corresponds to a performance increase.



Chapter 1

Multihop Cognitive Radio

Scenario

1.1 Cognitive Radio Scenario

The cognitive radio (CR) network is an innovative software defined ra-

dio technique considered to be one of the promising technologies to im-

prove the utilization of the congested RF spectrum [24]. Adopting CR

is motivated by the fact that a large portion of the radio spectrum is

underutilized most of the time. In CR networks, a secondary system

can share spectrum bands with the licensed primary system, either on

an interference-free basis or on an interference-tolerant basis [24]. The

CR technique is considered, because it is a possible solution to increase

the overall spectral efficiency by allowing additional users in an already

crowded spectrum. The CR network should be aware of the surrounding

radio environment and regulate its transmission accordingly.

Depending on the knowledge that is needed to coexist with the pri-

mary network, cognitive radio approaches fall into two classes:

• interference-free CR networks

5
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• interference-tolerant CR networks

In interference-free CR networks, CR users are allowed to borrow spec-

trum resources only when licensed users do not use them. A key to

enabling interference-free CR networks is figuring out how to detect the

spectrum holes (white space) that spread out in wideband frequency spec-

trum. CR receivers should first monitor and allocate the unused spectrum

via spectrum sensing (or combining with geolocation databases) and feed

this information back to the CR transmitter. A coordinating mechanism

is required in multiple CR networks that try to access the same spec-

trum to prevent users colliding when accessing the matching spectrum

holes. In interference-tolerant CR networks, CR users can share the

spectrum resource with a licensed system while keeping the interference

below a threshold. In comparison with interference-free CR networks,

interference-tolerant CR networks can achieve enhanced spectrum uti-

lization by opportunistically sharing the radio spectrum resources with

licensed users, as well as better spectral and energy efficiency. It has

been shown that the performance of CR systems can be very sensitive to

any slight change in user densities, interference threshold, and transmis-

sion behaviors of the licensed system. This fact is illustrated in Figure

1.2, where we notice that the spectral efficiency decreases quickly with

the increase in the number of primary receivers. However, the spectral

efficiency can be improved by either relaxing the interference threshold

of the primary system or considering only the CR users who have short

distances to the secondary BS. In [25], hybrid CR networks have been

proposed for adoption in cellular networks to explore additional bands

and expand the capacity.
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Figure 1.1: Example of multihop network

Figure 1.2: The average system spectral efficiency of a CR network as a

function of the number of primary receivers (Q) with different values of

interference thresholds Iq (number of secondary receivers = 20)
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A major issue in interference-tolerant CR networks in 5G is how to re-

liably and practically manage the mutual interference of CR and primary

systems. Regulating the transmit power is essential for the CR system to

coexist with other licensed systems. An interference temperature model

is introduced for this purpose to characterize the interference from the

CR to the licensed networks. Interference cancellation techniques should

also be applied to mitigate the interference at CR receivers. Another

issue in interference-tolerant CR networks is that a feed-back mechanism

is important to periodically inform the CR network about the ”current”

interference status at the licensed system. A practical solution is that

the interference state information can be sent from licensed systems and

collected by a central unit (or a third party system). Any CR network

should first register to the central unit in order to be updated regarding

the allowed spectrum and interference. Alternatively, the CR transmit-

ters can listen to beacon signals transmitted from the primary receivers

and rely on the channel reciprocity to estimate the channel coefficient.

In this case, the CR transmitters can cooperate among themselves to

regulate the transmit power and prevent the interference at the primary

receivers being above the threshold. All these aspects define three main

cognitive radio network paradigms interweave, overlay and underlay.

The interweave systems based on the original motivation of cognitive

radio [26]. The secondary user (SU) detect the absence of PU signals

in space, time, or frequency, and opportunistically communicate during

these absences. The idea came about after studies conducted by the

FCC [27], universities [28], and industry [29] showed that a major part of

the spectrum is not fully utilized most of the time. In other words, there

exist temporary space-time-frequency voids, referred to as spectrum holes

or white spaces, that are not in constant use in both the licensed and

unlicensed bands, as shown in Figure 1.3. Spectral holes can be exploited
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by SU to operate in orthogonal dimensions of space, time or frequency

relative to the primary user signals. Thus, the utilization of spectrum is

improved by opportunistic reuse over the spectrum holes. The interweave

technique requires detection of primary (licensed or unlicensed) users in

one or more of the space-time-frequency dimensions. This detection is

quite challenging since primary user activity changes over time and also

depends on geographical location.

The premise for overlay systems, illustrated in Figure 1.4, is that the

secondary transmitter has knowledge of the primary users transmitted

data sequence (also called its message) and how this sequence is encoded

(also called its codebook). Similar ideas apply when there are multiple

secondary and primary users. The codebook information could be ob-

tained, for example, if the primary users follow a uniform standard for

communication based on a publicized codebook. Alternatively, the PUs

could broadcast their codebooks periodically. In other words, in overlay

systems the SU overhear the transmissions of the primary users, then

use this information along with sophisticated signal processing and cod-

ing techniques to maintain or improve the performance of primary users,

while also obtaining some additional bandwidth for their own commu-

nication. Under ideal conditions, sophisticated encoding and decoding

strategies allow both the secondary and primary users to remove all or

part of the interference caused by other users.

The underlay paradigm allows SU to operate if the interference they

cause to PU is below a given threshold or meets a given bound on pri-

mary user performance degradation. Therefore in the underlay paradigm,

rather than determining the exact interference it causes, a SU spread its

signal over a very wide bandwidth such that the interference power spec-

tral density is below the noise floor at any PU location (Figure 1.5).

These spread signals are then despread at each of their intended sec-
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ondary receivers. This spreading technique is the basis of both spread

spectrum and ultrawideband (UWB) communications [30]. Alternatively,

the secondary transmitter can be very conservative in its output power to

ensure that its signal remains below the prescribed interference thresh-

old. In this case, since the interference constraints in underlay systems

are typically quite restrictive, this limits the SU to short range com-

munications. Both spreading and severe restriction of transmit power

avoid exact calculation of SU interference at primary receivers, instead

using a conservative design whereby the collective interference of all sec-

ondary transmissions is small everywhere. This collective interference,

sometimes called the interference temperature. In Figure 1.6 the inter-

ference toward the PU is represented in green. In this work we assume

this underlay approach and in order to satisfy these constraints about the

tolerable interference threshold, the transmitters of the secondary user

network adapt their transmit power according to a dynamic resource al-

location algorithm [31], [32]. These algorithms require the availability

of CSI at the transmitting node. In most wireless networks, because of

channel estimation errors and channel feedback delay, this CSI will not

be perfect!



Multihop Cognitive Radio Scenario 11

Figure 1.3: Spectral occupancy measurements up to 6 GHz in an urban

area at mid-day (Berkeley Wireless Research Center (BWRC) [28]).

Figure 1.4: The overlay paradigm
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Figure 1.5: The underlay paradigm: wideband signaling (e.g. spread

spectrum)

Figure 1.6: Example of interference toward PU in CR network

1.2 Multihop with Decode-and-Forward Re-

lays

The next-generation cellular wireless networks will support high data

rates and provide quality of service (QoS) for multimedia applications
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with increased network capacity. Under limited frequency resources, the

conventional approach to increase network capacity is to install more base

stations to exploit spatial reuse. This solution is not very efficient because

the cost of the BS transceiver is quite high. An alternative approach is to

employ relay stations as intermediate nodes to establish multihop com-

munication paths between mobile hosts and their corresponding BSs. So

this approach leads to a multihop cellular network. MCNs have experi-

enced a strong growth in recent years. An example of MCN with relays

for to extend the coverage or to increase the capacity within the cell

is show in Figure 1.1. A number of different architectures, protocols,

and analytical models for MCNs have been proposed in the literature

where different system aspects were investigated. There are two different

type of MCN cooperative and non-cooperative. The main difference is

that in cooperative the source node sent an information at the destina-

tion through diverse path, one directly from the source, whereas in non

cooperative the destination node receives the message through a single

path. Most common relaying strategies are or decode-and-forward (DF)

or amplify-and-forward (AF). While a DF relay decodes, re-modulates

and retransmit the received signal, an AF one simply amplifies and re-

transmit the signal without decoding. Compared to an AF relay, the

complexity of a DF one is significantly higher due to its full processing

capability. The DF protocol also requires a sophisticated media access

control layer, which is unnecessary in the AF protocol. Overall, a DF

relay is nearly as complex as a base station but some studies shows that

DF protocol is better. For example the study in [33] shows that the

outage probability in multihop relay channels is higher under the AF

protocol, which automatically transforms into smaller outage capacity.

Therefore, one has to conclude that while the AF protocol is better for

uncoded systems (where the error propagation effect outweighs the noise
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amplification), the opposite is true for systems using powerful capacity-

approaching codes [34] as in this thesis. Thus the relay nodes will be DF.

Because between ST and SR there are M fixed RNs the transmission of

a data message always occurs in NTS ≤ M + 1 time slots (TSs), simply

called links, which are assumed with different duration. L = NTS − 1 is

the number of exploited RNs for the transmission. Below, we define the

notation to define a generic path to connect the ST to the SR:

1. P(ST,Ri1 , · · · ,RiL , SR) is the path connecting ST to SR passing

through the Ri1 , . . . ,RiL with 0 ≤ L ≤ M , i1, ..., iL ∈ {1, ...,M},
and ij 6= ik∀j 6= k ∈ {1, ..., L};

2. l ∈ L ∆
= {0, · · ·L} is the generic link, l = 0 is the link ST-Ri1 and

l = L is the link RiL-SR.

Figure 1.7 shows an example of non-cooperative CR network, where the

blu line indicates the selected path to transmit the information packet.

Finally, the secondary user (SU) network consist of:

1. SU transmitter and receiver in underlay fashion;

2. M fixed DF relay nodes;

3. Q primary user

4. BIC-OFDM modulation
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Figure 1.7: Example of CR non-cooperative multihop network, M = 5,

NTS = 3, L = 2

1.3 BIC-OFDM

Multicarrier system have been proposed as a solution to channel vari-

ations. In this system the available bandwidth is divided into several

subchannel or subcarrier. Each subcarrier experiences flat fading and

therefore simple equalization techniques are applicable. If the channel

bandwidth and transmission parameters are chosen properly, each sub-

carrier will be orthogonal to other subcarriers and we have a OFDM

system. OFDM is usually combined with binary coding and the com-

bination is referred to as bit interleaved coded OFDM (BIC-OFDM).

BIC-OFDM is used in many standard like the 3GPP Long Term Evolu-

tion (LTE) wireless cellular systems.
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Figure 1.8: SISO-BIC-OFDM System Model

The block diagram of the single-input single-output (SISO) BIC-

OFDM transceiver system is shown in Figure 1.8.

On the transmitter side, each packet is one to one mapped to a Radio

Link Control sub-layer Protocol Data Unit (RLC-PDU) made of Nu =

Nh + Np + NCRC bits where Nh, Np and NCRC are the header, the pay-

load and the CRC section respectively. Than it is transmitted through

Φ consecutive OFDM symbols, which form an OFDM frame. All the

OFDM symbols, belonging to the same frame (or block), experience the

same fading realization. Each RLC-PDU is processed in two steps:

• packet processing

• frame processing

In the packet processing step, the RLC-PDU is input to the channel
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encoder. For our channel encoding, we employ convolutional codes. The

Nu bits are encoded by a convolutional coder, then punctured to obtain

a certain code rate r. The code rate r is chosen in the set of punctured

rates Dr , {r0, · · · , rmax}, where r0 is the mother code rate and rmax

the minimum code rate. The resulting block consist of Nc = Nu/r coded

binary symbols (CBS) bk, which are subsequently randomly interleaved.

Interleaving is an important part of BIC because it guarantees the nearby

bits from convolutional encoder to be separated over different fading

samples. Therefore, nearby bits experience different fading gains and

thus the diversity present in the channel can be exploited during decoding

at the receiver. The bit-level interleaver randomly maps the generic cbs

bk, onto one of the label bits, carried by the symbols of the OFDM

subcarriers, according to the follow notation:

bk → cΠ(k), (1.1)

Π(k) , {ϕk, nk, ik} is the interleaver law, which maps the index k of the

CBS into a set of three coordinates:

1. ϕk, the position of the OFDM symbol within the frame;

2. nk, the OFDM subcarrier number;

3. ik, the position of the cbs within the label of the QAM symbol on

a certain subcarrier.

The interleaver is assumed to be fully random, so that the probability

of mapping the generic cbd bk - into the i -th label bit of the QAM symbol

transmitted on the n-th subcarrier into the ϕ-th OFDM block - denoted

as cϕ,n,i, with ϕ = 1, . . . ,Φ, n = 1, . . . ,N and i = 1, . . . ,m(n), is

Pr {bk → cϕ,n,i} ,
1

Nc
(1.2)
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In the next frame processing that follows, the coded information in

mapped onto the physical resources available in the time-frequency grid.

With mn denotes the number of CBS, allocated on the n-th subcarrier.

In detail, the interleaved sequence of CBS is broken into subsequences

of mn bits each, which are Gray mapped onto the unit-energy symbols

xn ∈ 2mn-QAM constellation, with mn ∈ Dm ={2, 4, 6}. This means

that the index k of CBS bk is one-to-one mapped into a set of two coor-

dinates (ik, nk), that is, bk occupies the ikth position within the label of

the 2mn-QAM symbol sent on the nk subcarrier. The modulation sym-

bols are re-arranged into the vector x , [x1, · · ·, xN ] and allocated

over the N available subcarriers along with a certain amount of power

P , [P1, · · · ,PN ], where Pn denotes the power load over the nth sub-

carrier, and satysfing:
N∑
n=1

Pn ≤ P (1.3)

with P the available power in transmission. The process of power and bits

distribution (among the subcarriers with a certain criterion) is called Bit

loading. At this point, the data-bearing QAM symbols are transmitted,

after having been subjected to the digital OFDM processing, including:

• IFFT with length NFFT;

• addiction of cyclic prefix (CP);

• Digital to Analog (D/A) conversion.

Then, the obtained signal is up-converted at carrier frequency fc and

transmitted over a frequency selected channel. The channel will be as-

sumed stationary for whole frame duration. The duration in the time-

domain of an OFDM symbol is equal to Ts , (NFFT +Ng)T , where Ng is

the length of the CP and T is the sample time in output at the OFDM

transmission block.
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At the receiver side, the signal will go through the whole inverse

OFDM processing, in order to be coherently demodulated, subcarrier

per subcarrier, exploiting the channel estimation, which will be assumed

perfect. So the signal passes trough:

• the analogic-to-digital converter;

• the CP removal;

• the serial-to-parallel (S/P) converter.

The resulting signal samples are input to the discrete Fourier Trans-

former (DFT) block. The model of the signal samples at the output of

the DFT block results:

zn =
√
Pnxnhn + wn, (1.4)

where

• hn is the complex-valued channel coefficient on subcarrier n, that is

obtained as the nth coefficient of the DFT of the channel response

(1.8), encompassing also the transmitter and receiver filter;

• wn ∈ CN (0, σ2
w) is the circular-symmetric complex-Gaussian ran-

dom variable with standard deviation σw, denoting the thermal

noise sample on subcarrier n.

The instantaneous post processing SNR values are then defined as

γn = Pn
|hn|2

σ2
w

, (1.5)

This post-processing SNRs are used for the BICM metric evaluation

and for the Viterbi decoding. They are also used for making Link Adap-

tation at the next packet transmission. Finally, the soft-demodulated

metrics are deinterlived and the Log-Likelihood Ratios (LLRs) will feed
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a Viterbi decoder, in order to obtain a Maximum Likelihood (ML) esti-

mation of the information bits, ûk, composing the RLC-PDU. In partic-

ular, the soft metric of the kth coded binary symbol at the input of the

decoder is expressed by:

Λk = log

∑
x̃∈χ

(ik,nk)

b′
k

p (znk
|xnk

= x̃, γ1,···,N )∑
x̃∈χ

(ik,nk)
bk

p (znk
|xnk

= x̃, γ1,···,N )
(1.6)

where

p (znk
|xnk

= x̃, γ1,···,N ) ∝ exp

(
−
∣∣∣znk
−
√
γnk

x̃
∣∣∣2) (1.7)

is the Gaussian-shaped probability density function (p.d.f.) of the re-

ceived sample value, conditioned on the transmitted symbol x̃ and on

γ1,...,N, χ
(i,n)
a represents the subset of all symbols belonging to the mod-

ulation adopted on the nth subcarrier whose ith label bit is equal to a

and b′k denotes the complement of bit bk.

1.4 Channel Prediction Model

In a mobile-radio scenario, signals experience several degradation factors

due to reflection, diffraction, scattering and, in general, to any obstacle

that obstruct the line-of-sight (LOS) between transmitter and receiver.

This phenomenon is called multipath fading (Figure 1.9). As a result,

the receiver sees the superposition of multiple copies of the transmitted

signal, each traversing a different path. Each signal copy will experience

differences in attenuation, delay and phase shift while traveling from the

source to the receiver. This can result in either constructive or destruc-

tive interference, amplifying or attenuating the signal power seen at the

receiver. Moreover, another significant effect is the time variation in the

structure of the medium. As a results, the characteristics of the paths
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experienced by the transmitted signal can vary during time [35]. Sta-

tistical models for the channel impulse response of a fading multipath

channel have been described in literature over the past years [36].

Figure 1.9: Multipath scenario

For our scenario we modeled the fading problem with the Rayleigh dis-

tribution. It is well known that a Rayleigh fading process is characterized

by its power spectral density and its auto-correlation function.The auto-

correlation function depends on the Doppler frequency which corresponds

to the relative motion of the receiver and transmitter. In particular we

have a Rayleigh fading (or small scale fading) if the multiple reflective

paths are large in number and there is no line of sight signal component,

hence the envelope of the received signal is statistically described by a

Rayleigh probability density function (pdf).

We assume that the wireless channel between any two nodes of the

SU network is a frequency-selective multipath fading channel with a cor-

relation time that is much longer than the OFDM symbol duration Ts,

so that the complex path gains can be considered constant over an inter-

val Ts. Considering root-raised-cosine transmit and receive filters with
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roll-off factor β [37], the impulse response hv(i) of the cascade of the

transmit filter, the wireless channel and the receive filter, related to the

ith OFDM symbol, is expressed as

hv(i) =
Ξ∑
ξ=0

cξ(i)g(v − τξ) (1.8)

where cξ(i) and τξ denote the gain and delay of the ξth path, and g(v)

is a raised-cosine pulse with roll-off factor β. We assume that hv(i) = 0

for v < 0 and for v > ν, which is achieved by adding to all path delays

a sufficiently large common delay to make hv(i) causal, and by taking

ν sufficiently large. The gains of the different paths are independent

zero-mean circularly symmetric CGRVs. According to Jakes model [38],

where the power spectral density S(f), also call DSP of Jakes, of the

received signal is:

S(f) =
σ2
v

πfd

1√
1−

(
f
fd

) (1.9)

for −fd ≤ f ≤ fd and the relative autocorrelated function computing the

inverse Fourier transform of eq.(1.9) is

E {hv(i+m)h∗v(i)} , J0(2πfdmTs)σ
2
v (1.10)

where J0(x) represents the zeroth-order Bessel function of the first kind,

and fd denotes the Doppler spread.

For later use, we define Rc = diag(σ2
0, ..., σ

2
L) and the vector h(i) ,

[h0(i), . . . , hν(i)]
T ∈ C(ν+1)×1 containing the ν+ 1 samples of hv(i), given

by

h(i)
4
= Gc(i) (1.11)

where c(i)
4
= [c0(i), ..., cξ(i)]

T and G is the (ν + 1)(Ξ + 1) matrix with

entries Gk,ξ
4
= g(kT − τξ), for k = 0, . . . ,ν and ξ = 0, . . . ,Ξ.
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The corresponding frequency response is given by

H(i) = Fh(i) = [H1(i), . . . , HN(i)]T (1.12)

where the Fourier matrix F ∈ CNFFT×(ν+1) is determined by

Fn,u
4
= e−j2π(n−1)(u−1)/NFFT , n = 0, ..., NFFT ; u = 0, ..., ν + 1.

The nth component of H(i) denotes the channel gain seen by the

kth subcarrier in the ith OFDM symbol. In order to perform dynamic

resource allocation, the transmitting nodes need some form of CSI. There-

fore we assume that the transmitting node obtains the estimated impulse

response from the corresponding receiving node via a feedback channel.

If the transmitting node sends known pilot symbols, the receiving node

is able to obtain a noisy version Ĥ(i) of the frequency response H̃(i), i.e.,

H̃(i)
∆
= H(i) + ẽ(i), (1.13)

where ẽ(i) ∼ CN (0, σ2
eIN) and σ2

e , E{|ẽn|2} ∼= σ2
w/Pp ∀n ∈ N . We

denote by Pp the power per subcarrier pilot.

By using the prior knowledge that h(i) has only ν+1 components, an

estimate h̃∗(i) of the impulse response h(i) is obtained from the following

optimization:

h̃∗(i) = min
h̃(i)

∥∥∥H̃(i)− Fh̃(i)
∥∥∥2

(1.14)

which yields

h̃∗(i) = (FHF)−1FHH̃(i) = h(i) + n(i) (1.15)

where n(i) ∼ Nc(0, (FHF)−1σ2
e). This estimate h̃∗(i) is feedback to the

corresponding transmitter. However, the transmitter receives an impulse

response estimate only once every D OFDM symbols, which means that

the CSI received at the transmitter will be outdated. The transmitter
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uses a minimum-mean-square-error (MMSE) predictor to estimate the

actual impulse response. The predicted impulse response ĥ(i) is derived

from the P previously received impulse response estimates

zp(i)
4
= [h̃

∗
(i−D)T , ..., h̃

∗
(i−DP )T ] T .

It can be proven that the following relationship holds [46]

h(i) = ĥ(i) + e(i) (1.16)

where ĥ(i) ∼ Nc(0,Rh−Re) and e(i) ∼ CN (0,Re). Now, before defining

Re introducing the matrix J ∈ CP × P with entries,

Jk,t
4
= J0(2πfdDTs(k − l)) k = 1, ..., P ; t = 1, ..., P.

Therefore the definition of the channel predictor model can be concluded

with

Re , Rh −RhΨP
R−1

ΨP ΨP
RH

hΨP
, (1.17)

the correlation matrices can be written as follows

RhΨP
= [J0(2πfdDTs), ..., J0(2πfdPDTs)] GRc ⊗GH

RΨP ΨP
= J⊗Rh+Ip ⊗ (FHF)−1σ2

e .

The predicted channel gains for the subcarriers are the components

of the vector Ĥ(i) = Fĥ(i). The index i will be omitted in the sequel

for simplicity. Based on the study performed in [39], we fixed the CSI

update interval D = 7 and the memory of the predictor P = 4 in order to

obtain an efficient prediction of the channel and to reduce the signaling

over the feedback channel. Also define the average interference from the

generic transmitting node l to the qth PU receiver as [39]

Il,q , E

{
N∑
n=1

Pl,n|Hl,q,n|2
∣∣∣ [Ĥl,q,m,m = 1, ..., N

]}
(1.18)
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=
N∑
n=1

Pl,nE
{
|Hl,q,n|2

∣∣∣ [Ĥl,q,m,m = 1, ..., N
]}

=
N∑
n=1

Pl,n

(∣∣∣Ĥl,q,n

∣∣∣2 + (VReV
H)n,n

)
where, for the last step, we have used the Fourier transform of the

eq. (1.16). Further, Hl,q,n and Ĥl,q,n represent the actual channel co-

efficient and the predicted channel coefficient, respectively from ST to

the qth PU receiver for l = 0, or from the RN Ril to the qth PU receiver

for 1 ≤ l ≤ L.



Chapter 2

Goodput Performance

Metrics

2.1 Goodput for Multihop

For evaluating the performance of a transmission system we can use many

metrics like capacity or outage probability. In this thesis we consider the

GP because is able to quantify the trade-off between data rate and link

reliability, and it is a more suitable metric to quantify the actual perfor-

mance of packet-oriented systems, employing practical modulation and

coding schemes, respect to the capacity for example. Goodput is defined

as the number of information bits delivered in error free packets per unit

of time. A generic transmitter of the network is able to optimize the

GP by a proper selection of the transmission parameters, if the CSI are

perfect. In most wireless networks, because of channel estimation errors

and channel feedback delay, this CSI will not be perfect therefore any

transmitting node only has CSI and the channel prediction and as a con-

sequence, a PGP, will be optimized. The PGP function is defined as the

GP that is achieved when the actual channel is equal to the predicted

26
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channel and depends on the Packet Error Rate (PER). It is well known

that PER link performance, of a given coded digital communication over

a stationary Additive White Gaussian Noise (AWGN) channel, can be ex-

pressed as a function of the Signal To Noise Ratio (SNR). In multi-carrier

systems such as Orthogonal Frequency Division Multiplexing (OFDM),

however, the frequency selective fading over the transmission channel,

introduces large SNR variations across the subcarriers, thus making link

PER prediction a demanding task. The need of an accurate yet manage-

able link level performance figure has led to the Effective SNR Mapping

(ESM) concept, where the vector of the received SNRs (Γ) across the

subcarriers is compressed into a single SNR value, called effective SNR

and tagged in the sequel as γeff , that is used to find an estimate of the

PER from a basic AWGN link level performance.

In literature, different ESM methods based on different mapping func-

tions have been proposed like Exponential ESM (EESM) based on the

pairwise error probability PEP Chernhoff bound for the case of binary

signaling. It can be expressed in a simply closed form, but a generaliza-

tion for high order modulations does not exist. Another solution is the

Mutual Information Based ESM (MIESM) that includes two separates

models, one for the modulation and the other one for the coding, pro-

viding good performance prediction for the mixed-modulation as well.

Unfortunately, a closed expression does not exist to calculate the mu-

tual information , so a polynomial approximation is essential. Differ-

ently from the conventional ESM methods cited, in this thesis will be

use kESM technique. It is represented by the model whose compression

function is based on the cumulant moment generating function (CMGF)

of the bit level log-likelihood metrics (1.6) at the input of soft decoder

[22]. This method offers several significant features compared with other

ESM techniques, such as:
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• improved accuracy performance compared with the conventional

EESM method;

• separation of the modulation and coding models, thus making con-

figurations using mixed modulation among subcarriers easy to man-

age;

• the use of a tuning factor (required for turbo codes) to offer even

improved accuracy that is independent of the modulation format

adopted on each subcarrier;

• similar accuracy (or even better for multi-level QAM modulations)

as the MIESM method, while offering (unlike the MIESM) a mod-

ulation model with a convex and simple closed-form mapping func-

tion.

In conclusion we have the following relationship:

PERAWGN(r, γeff) ∼= PEROFDM(φ,Γ) (2.1)

where Γ = [γ1, γ2, ..., γN ] is the set of the instantaneous post-processing

SNRs experienced by the subcarriers of a OFDM system ( with N the

maximum number of subcarriers ) and r and φ are respectively code rate

and modulation. The kESM expression is:

γeff
∆
= − log

(
1∑N

j=1 mj

N∑
n=1

αne
−γ̂nβn

)
, (2.2)

where αn and βn are constant values depending on the number of coded

bits per constellation symbol mn loaded on the nth subcarrier, and γ̂n is

the predicted SNR that is defined as:

γ̂n =
Pn

∣∣∣Ĥn

∣∣∣2
σ2
w

(2.3)
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and Γ̂ = [γ̂1, γ̂2, ..., γ̂N ] is the predicted SNR vector.

Since the presence of outdated and imperfect CSI at any transmit-

ter, the SNR vector Γ is not known, therefore, the predicted SNR is

exploited to evaluate the effective SNR (2.2). This method is different

from the original formulation of the kESM in [22], where Γ is assumed

to be perfectly known by the transmitter but this improvement has been

validated in other work [19]. The PGP function can be derived as the

ratio of the number normalized by the system bandwidth B , N/Ts. So

we get expressed in (bit/s/Hz), the definition of the PGP function for a

single hop as:

ς(φ,P) ,
Ts
N

Np [1− PERAWGN(r, γeff)]
NuTs

r
∑

nmn

(2.4)

=
Np

NNu

r
∑
n

mn [1− PERAWGN(r, γeff)]

This is the result for a generic single link. For find the PGP in a multi hop

network first of all we consider a generic path P(ST,Ri1 , · · · ,RiL , SR)

through L ≤ M relay. The probability of a packet error from ST to SR

is defined as

PER total
AWGN(r0, ..., rL, γ0,eff , ..., γL,eff) , PERAWGN(r0, γeff)

+ [1− PERAWGN(r0, γ0,eff)] · PERAWGN(r1, γ1,eff)

...+
L−1∏
i=1

[1− PERAWGN(ri, γi,eff)] · PERAWGN(rL, γL,eff) (2.5)

From (2.5), the normalized PGP (bits/s/Hz) of the L DF RNs is written

as follows

ς(φ0, ..., φL,P0, ...,PL) ,
Ts
N

Np

[
1− PER total

AWGN(r0, ..., rL, γ0,eff , ..., γL,eff)
]∑L

j=0
NuTs

rj
∑

nmj,n

=
Np

NNu

[
1− PER total

AWGN(r0, ..., rL, γ0,eff , ..., γL,eff)
]∑L

j=0
1

rj
∑

nmj,n

(2.6)
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where φ0 = {m0, r0}, φl = {ml, rl}, P0 and Pl respectively denote the

TM for the ST and RN Ril and the transmit power per symbol for the ST

and RN Ril . The denominator
∑L

j=0
1

rj
∑

nmj,n
in (2.6) represents the

total transmission time of a packet from ST to SR through L RNs. The

transmission time of a packet for each link can vary, because it depends

on the code-rate rl,j and the number of bits per subcarrier ml,j,n that

may be different from a link to another.

2.2 Approximated Goodput

For reduce the signaling traffic between relay nodes and ST and for re-

duce the computational complexity an approximation of the PGP is pro-

posed. Thanks to this approximation we will define a more efficient path

selection strategy between ST and SR that will be presented later. The

Approximated PGP (A-PGP) function is defined as:

ς̃(φ0, ..., φL,P0, ...,PL) ,
Np

NNu

[
1− P̃ER

total

AWGN(r0, ..., rL, γ0,eff , ..., γL,eff)
]

∑L
j=0

1
rj

∑
nmj,n

(2.7)

where

P̃ER
total

AWGN(r0, ..., rL, γ0,eff , ..., γL,eff) ,
L∑
i=0

PERAWGN(ri, γi,eff) (2.8)

The probability (2.7) considers the loss of a packet as an independent

event on each link between ST and SR. The approximation (2.7) of the

true probability (2.5) is based on the fact that PERAWGN(rl, γl,eff) << 1

and consequently (1 − PERAWGN(rl, γl,eff)) ≈ 1) for high values of

effective SNR ∀l ∈ L. The use of the A-PGP causes only a negligible

reduction of the GP performance, respect to the PGP function (Figure

5.5). This is will be shown in Chapter 5. In Figure (2.1) we can see
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the trend of the PER function for different code rates and values of γeff .

Considering a PER value of 0.1 we get the values of γeff shown in the

Table 2.1 below the figures. So we can know the values of transmission

power, Figure (2.2), for which the condition PERAWGN(rl, γl,eff) << 1 is

satisfied and therefore the probability (2.7).

Figure 2.1: PER vs Effective SNR
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Code rate γeff(dBm)

1/2 0.2

2/3 2.2

3/4 3.0

4/5 3.6

Table 2.1: Corresponding values of γeff for PER ≤ 0.1

Figure 2.2: Effective SNR vs Available Power



Chapter 3

Resource Allocation

3.1 Resource Allocation problem

Now focus our attention on the problem of how to allocate the available

radio resource appropriately so that we can get the best link performance

for any given channel conditions. Efficient RA in non cooperative cogni-

tive radio network is essential in order to meet the challenges of future

wireless networks. Knowledge of channel state information is a signicant

input parameter. Here resource allocation algorithms assume that CSI is

known at both transmitter and receiver but is outdated. Our RA tech-

niques are able to select the transmission mode (TM) and power vector

(P) for a packed-oriented BIC-OFDM system in order to maximize the

objective function, so that a robust and spectrally-efficient transmission

over frequency selective channels is obtained. In this section two different

RA algorithms are presented for the system model illustrate in Chapter

1: optimal and local resource allocation. The difference between this two

approaches is in the respective objective function. In the Optimal-RA

(O-RA) the objective function is the end-to-end PGP (2.6). Due to its

complexity and to a high signaling traffic, O-RA is used only as bench-

33
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mark, and it is derived from [19], where the RA algorithm is shown for

dual-hop transmissions. Instead in the new and much simpler Local-

RA (L-RA) problem objective function is the A-PGP (2.8). Thanks to

this approach, L-RA method requires a considerably lower feedback in-

formation from each RN and the SR to the ST respect to the O-RA

method. Before explaining in detail the different methods, let us fix a

generic path P(ST,Ri1 , · · · ,RiL , SR) through L of the M available RNs

for each presented RA technique. Furthermore, let us define the optimal

TM and power allocation vector that are the transmission parameters for

the generic link l ∈ L as

φ∗l , {m∗l , r∗l }

P∗l ,
[
P∗l,1, ...,P

∗
l,N

]T
(3.1)

where m∗l =
[
m∗l,1, ...,m

∗
l,N

]T
, r∗l and P∗l,n are respectively the number

of loaded bits per subcarrier, the selected code rate and the allocated

power over the subcarrier n. From here, moreover, uniform bit allocation

(UBA), ml,n = ml , ∀n ∈ N , ∀l ∈ L , is adopted for simplicity.

3.2 Optimal Resource Allocation Solutionn

O-RA consists in optimizing the PGP object function between ST and

SR, in the domain of the power allocation (PA) and the TM subject

the constraints on the transmitted power and the finite set Φ of allow-

able TMs. Mathematically the RA optimization problem (OP) can be

introduced as:

(φ∗0, ..., φ
∗
L,P

∗
0, ...,P

∗
L) = arg max

φ0,...,φL,P0,...,PL

{ζ (φ0, ..., φL,P0, ...,PL)}
(3.2)

N∑
n=1

Pl,n ≤ Ptot ∀l ∈ L
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Pl,n ≥ 0 ∀n ∈ N , ∀l ∈ L

Il,q ≤ Iq, ∀q ∈ Q, ∀l ∈ L

Problem (3.2) is a mixed integer OP, which includes both variables be-

longing to a discrete finite-size set φl and continuous-valued variables

(Pl). Moreover, given the specific structure of the objective function,

the OP can be solved into two consecutive steps:

1. given a generic TM φl , find the optimal PA vector P∗l

2. the best TM φ∗l is selected in order to maximize the PGP metric.

As regards the first point, if we keep the global goodput expression

(2.5) we can see that the PGP depends on the power allocation vec-

tor Pl only through the effective SNR γl,eff(φl,Pl). Furthermore, since

the PERtotal
AWGN decreases when the γl,eff(φl,Pl) increases, then the opti-

mal power allocation vector Pl can be found for a given value of φl by

maximizing γl,eff(φl,Pl). For this reasons we can introduce the following

independent OP ∀l ∈ L:

P∗l = arg max
Pl

{γl,eff(φl,Pl)} (3.3)

= arg min
Pl

{χl(ml,Pl)} (3.4)

N∑
n=1

Pl,n ≤ Ptot

Pl,n ≥ 0 ∀n ∈ N ,

Il,q ≤ Iq, ∀q ∈ Q (3.5)

with the new objective function

χl(ml,Pl) ,
N∑
n=1

αl,n · e−γ̂l,nβl,n (3.6)
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It is easy to see that the OP remains unchanged, replacing the objec-

tive function (3.3) by (3.4), because a generic TM φl is fixed. The con-

sidered OP (3.4) is a convex optimization problem [43], and the optimal

solution can be found by the method of Lagrange multipliers. However,

the convergence of such algorithms is often slow. Therefore we will use

the Successive Set Reduction (SSR) approach introduced in [44]. In [44],

the SSR algorithm is shown to achieve almost the same performance as

the method of Lagrange multipliers but with a much faster convergence.

We also note that the optimal value of Pl only depends on the modulation

vector ml and Ĥl .

In the second step we obtain the optimal TM φ∗ by solving the

following problem:

(φ∗0, ..., φ
∗
L) = arg max

φ0,...,φL
{ζ (φ0, ..., φL,P0, ...,PL)} (3.7)

φl ∈ DNm ×Dr, ∀l ∈ L

ml,n = ml, ∀n ∈ N , ∀l ∈ L

OP (3.7) is optimally solved by means of an exhaustive search, be-

cause the variables φl belong to a discrete finite-size set. Pseudo-code of

the O-RA problem is shows in Tab.3.1. At this point the limitation of

the O-RA algorithm for a multi-hop scenario is explained better because

must know:

• predicted SNR vector Γ̂l (with Pl,n = 1,∀l ∈ L,∀n ∈ N ) of each

link belonging to a given path when evaluating the objective func-

tion (3.6);

• predicted channel vectors Ĥl,q from any node of a given path to-

wards the PUs when evaluating the interference constraints (3.5).
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These requirements may lead to a high signaling traffic, causing a

congestion of the feedback channel towards the ST. Moreover, OP (3.7)

is solved in an exhaustive way and this causes an exponential growth

in computational complexity, directly proportional to the number of the

RNs. Therefore, the O-RA is a complex centralized method and it does

not seem interesting in a multi-hop conguration, where it is of paramount

importance to keep low the CSI over the feedback channel. However, O-

RA algorithm returns an optimal solution and consequently it will be

used to provide a benchmark to the L-RA that will be presented in the

next section.

3.3 Local Resource Allocation Solution

The optimal energy allocation (3.3) and the optimal TM (3.7) solution

are found in order to maximize the PGP from the ST to the SR but

as mentioned above, this approach is not very efficient. Local-RA strat-

egy (L-RA) is presented with the aim to tackle the problems that arises

exploiting the O-RA method. L-RA can effectively reduce the computa-

tional complexity to the ST and the signaling over the feedback channel

because essentially maximizes the PGP (2.4) for each transmitting node.

That is the (2.4) is now the object function and every node can allocate

Pl and φl with the other node directly connected to it. The RA OP for

the generic link l ∈ L is:

(φ∗L,P
∗
L) = arg max

φL,PL

{ζ (φL,PL)} (3.8)

N∑
n=1

Pl,n ≤ Ptot,

Pl,n ≥ 0 ∀n ∈ N ,

Il,q ≤ Iq, ∀q ∈ Q,
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It follows that, OP (3.8) is solved in two steps, as for the O-RA OP.

The D-RA problem, therefore, is divided into two consecutive steps:

1. given a generic TM φl , find the optimal power allocation vector P∗l

2. the best TM φ∗l is selected in order to maximize the PGP metric (2.4)

For first step, the optimal power allocation vector Pl is calculated from

the OP (3.3) while the optimal TM φl, in second step, is obtained by

exhaustively solving the following problem

φ∗L = arg max
φL
{ζ (φL,PL)} (3.9)

φl ∈ DNm ×Dr

ml,n = ml, ∀n ∈ N

Obviously, the L-RA method is sub-optimal compared with the O-

RA. In detail, exploiting the L-RA strategy, the local GP between two

generic nodes is maximized, without taking into consideration the end to

end GP from ST to SR. In other words, the packet transmission time from

ST to SR is not considered and this makes up to a big problem that can

be solved by the path selection strategy presented in the next chapter.

However, carrying out the local maximization of the GP, the ST has no

need to know the CSI of each link as in the O-RA strategy therefore, the

wireless network obtains a significant reduction of the signaling over the

feedback channel. This is the big difference between O-RA and L-RA.

Tab.3.2 shows the pseudo-code of the L-RA algorithm.
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Given a generic path P(ST,Ri1 , · · · ,RiL , SR);

Initialize: m̄0 = 0, . . . , m̄L = 0, r = [1/2, 2/3, 3/4, 5/6]T, ζtemp = 0;

For m̄0 = 2 : 2 : m0,max;

·
·
·
For m̄L = 2 : 2 : mL,max;

∀l ∈ L, Evaluate P̄l according the OP (3.4);

For i0 = 1 : length(r);

r̄0 = r(i0);

·
·
·
For iL = 1 : length(r);

r̄L = r(iL);

Compute:

∀l ∈ L, γl,eff(φ̄l, P̄l) in (2.2);

ζ(φ̄0, · · · φ̄L, P̄0, · · · , P̄L) in (2.6);

If ζ(φ̄0, · · · φ̄L, P̄0, · · · , P̄L) ≥ ζtemp

Then ∀l ∈ L

Set φ∗l = {m̄l, r̄l}, P∗l = P̄l, ζtemp = ζ(φ̄0, · · · , φ̄L, P̄0, · · · , P̄L);

End If

End For

·
·
·

End For

End For

·
·
·

End For

Return ∀l ∈ L, φ∗l and P∗l

Table 3.1: O-RA pseudo-code
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Given a generic path P(ST,Ri1 , · · · ,RiL , SR);

Initialize: m̄l = 0, r = [1/2, 2/3, 3/4, 5/6]T, ζtemp = 0;

For m̄l = 2 : 2 : ml,max;

Evaluate P̄l according the OP (3.4);

For il = 1 : length(r);

r̄l = r(il);

Compute:

γl,eff(φ̄l, P̄l) in (2.2);

ζ(φ̄l, P̄l) in (2.4);

If ζ(φ̄l, P̄l) ≥ ζtemp

Then

Set φ∗l = {m̄l, r̄l}, P∗l = P̄l, ζtemp = ζ(φ̄l, P̄l);

End If

End For

End For

Return φ∗l and P∗l

Table 3.2: L-RA pseudo-code
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Path Selection

4.1 Optimal Path Selection

In this chapter we tackle the problem of finding a suitable path between

source (ST) and destination (SR) in the multi hop network. In other

words, from a set of M available RNs in the network, a path P with

L ≤ M relays, will be selected to provide the ”best” GP between ST

and SR. We present three different PS approaches, which are called Op-

timal PS (O-PS), Sub-Optimal PS (Sub-PS) and Approximated Sub-PS

(ASub-PS) respectively. The first method, O-PS, will be not really used

if no as a benchmark for the second and third ones, because the signaling

traffic over the feedback channel and complexity are unsustainable when

increasing the number of relay. It must be underlined that we modi-

fied the PS methods presented in [18], in order to obtain the Sub-PS

and ASub-PS strategies for a packet-oriented BIC-OFDM modulation,

including also the GP metric to evaluate the performance of the transmis-

sion. O-PS method can be nalized by selecting the path that maximizes

the overall PGP metric from the ST to the SR. The PS problem can be

formulated as:

41
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Popt , arg max
P∈G

{η(P)} (4.1)

where G is the set of all possible paths connecting ST with SR and

the objective function is

η(P) , ζ(φ∗0, ..., φ
∗
L,P

∗
0, ...,P

∗
L) (4.2)

The optimal path Popt is found in an exhaustive way. In detail, the

problem (4.7) is solved in two steps:

• O-RA method is performed for any path belonging to the set G

• the best PGP ζ(φ∗0, ..., φ
∗
L,P

∗
0, ...,P

∗
L) ∈ G therefore the best path

L ∈ G is found

In a network with M RNs exist M !/(M −L)! different routes to con-

nect ST to SR passing through L ≤M RNs. As a consequence, problem

(4.7) was solved with an exhaustive search requires combinatorial com-

plexity, which even for small M is clearly unfeasible. Moreover, in order

to solve the O-PS problem (4.7), ST needs to know the CSI Γl of all

active RNs. In this way, the signaling trafc over the feedback channel

will be unsustainable. Subsequently, ST should transmit the best TM

φ∗l and the best power allocation P∗l to every RN Ril , ∀l ∈ L. Thus,

O-PS method is considered only as a benchmark for the methods here

proposed. The pseudo code for O-PS is show in Table 4.1.

4.2 Sub-optimal Path Selection

The Sub-PS method provides a much more efficient path selection algo-

rithm, whose rationale relies on:
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(KG is the total number of path P ∈ G)

Initialize: η(Pk) = 0;

For k = 1 : KG;

Evaluate η̄(Pk) according to the O-RA (3.2);

If η̄(Pk) ≥ η(Pk) Then

Set Popt = Pk;
End If

End For

Return Popt

Table 4.1: O-PS pseudo-code

• first finding the set of candidates, i.e., one path for each value of

L, with 0 ≤ L ≤M

• to define a cost metric for each link of the network

• then, choosing the best path in the candidate set as the one which

maximizes the A-PGP metric (2.7)

We use the A-PGP metric to solve the Sub-PS problem. Indeed, by

means of the approximation of the PGP, we can exploit a sum of PER

that is very useful to approximately find the shortest path. It is necessary

to define a cost metric for each link of the network and this cost is the

PER defined in (2.1). Each transmitting node performs first the RA

method, in order to nd the optimal TM φl and power allocation vector

P∗l (3.1), and then each one evaluates the PER (2.1). In detail, to execute

the Sub-PS method, two steps are needed:

1. the network performs the L-RA algorithm
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2. each transmitting node Ril evaluates the cost as

δRil
−Ril+1

, PERAWGN(r∗l , γ
∗
l,eff) (4.3)

where Ril+1
represents each node directly connected to Ril . For l = 0

the cost is δST−Ri1
and for l = L the cost is δRil

−SR.

At this point the solution for the Sub-PS problem can be obtained

with polynomial complexity O(M 3) by means of a two-step procedure:

Step 1) The M + 1 sub-problems

P(L)
Sub−PS = arg min

P∈GL
{µ(P)} 0 ≤ L ≤M (4.4)

are solved adopting the path metric

µ(P) ,
L∑
l=0

δRil
−Ril+1

=
L∑
i=0

PERAWGN(r∗i , γ
∗
i,eff) (4.5)

= P̃ER
total

AWGN(r∗0, ..., r∗L, γ
∗
0,eff , · · · , γ∗L,eff) (4.6)

where GL , {P|P ∈ G and passes through L RNs only}. The result

is the set C ,
{
P(L)

Sub−PS

}M
L=0

, which includes the M + 1 candidates for

the optimal path.

Step 2) The final selected path follows from

PSub−PS = arg max
P∈C

{η̃(P)} (4.7)

with the objective function defined as

η̃(P) , ζ̃(φ∗0, ..., φ
∗
L,P

∗
0, ...,P

∗
L) (4.8)

and ζ̃(φ∗0, ..., φ
∗
L,P

∗
0, ...,P

∗
L) is the A-PGP metric (2.7).
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Therefore summing up what was said, with Sub-PS algorithm we

have all the paths belonging to GL have L relays. A-PGP function η̃(P)

increases with decreasing the function PER total
AWGN (2.8), then maximizing

ζ̃ is equivalent to minimize µ(P) (4.5) only if optimal TM φ∗l and power

vector P∗l are calculated before for any link of the network, i.e., by means

of the D-RA algorithm. Moreover, µ(P) is an additive metric, i.e., it is

the sum of the positive weights δRil
−Ril+1

belonging to the path P. Hence,

each sub-problem (4.4) of Step 1 turns into a shortest path problem

constrained by L hops with non-negative link metric δRil
−Ril+1

, which can

be efficiently solved with polynomial complexity by applying the modified

Bellman-Ford (BF) algorithm [45]. Pseudo code is show in Table 4.2.

The approximation of the PGP with the A-PGP, therefore, is necessary

to validate the previous proposition. In this case, ST requires only φ∗l and

δRil
−Ril+1

∀l ∈ L, as information to perform the Sub-PS algorithm and

subsequently ST sends a signal in the network to activate the chosen RNs.

It should therefore be emphasised that the signaling over the feedback

channel is drastically reduced compared to O-PS solution.

4.3 Approximated Sub-optimal Path Selec-

tion

Another approximation can be introduced for to reduce the overall com-

putational complexity of the Sub-PS algorithm. The approximated ver-

sion of the Sub-PS algorithm, or ASub-PS for short, can be defined by

the following OP:

P(opt)
ASub−PS , arg min

P∈G
{µ(P)} , (4.9)
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(J is the total number of links)

For j = 1 : J ;

Evaluate φ∗j , P∗j according to the L-RA (3.9)

and δRij
−Rij+1

= ΦAWGN(r∗j , γ
∗
j,eff) (4.3);

End For

For L = 0 : M ;

Select P(L)
Sub−PS = argmin

P∈GL
{µ(P)} (4.4);

Set C(L) = P(L)
Sub−PS;

End For

Select P(opt)
Sub−PS = argmax

P∈C
{η̃(P)} (4.7);

Return P(opt)
Sub−PS

Table 4.2: Sub-PS pseudo-code

where µ(P) is dened in (4.5). Basically, ASub-PS algorithm does not

consider the transmission time of a packet from ST to SR, differently

from the Sub-PS method and because the metric µ(P) is additive on

the links belonging to a given path P , this problem is equivalent to an

unconstrained shortest path problem with non-negative link costs, which

can be efficiently solved through the Fibonacci-heap-based Dijkstra algo-

rithm with complexity O(M2). So the OP (4.9) can be solved in O(M2)

compared to O(M3) for Sub-PS algorithm. However, ASub-PS repre-

sents a good performance-versus-complexity tradeoff as we will show in

the numerical results and its pseudo code is show in Table 4.3. Moreover,

the signaling over the feedback channel is further reduced, respect to O-

PS and Sub-PS. ST, indeed, only needs δRil
−Ril+1

, ∀l ∈ L to perform the

ASub-PS algorithm.
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(J is the total number of links)

For j = 1 : J ;

Evaluate φ∗j , P∗j according to the L-RA (3.9)

and δRij
−Rij+1

= ΦAWGN(r∗j , γ
∗
j,eff) (4.3);

End For

Select P(opt)
ASub−PS = argmin

P∈G
{µ (P)} (4.9);

Return P(opt)
ASub−PS

Table 4.3: ASub-PS pseudo-code
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Simulation

In this section, we evaluate the performance, in terms of GP, of the

L-RA combined with Sub-PA and ASub-PS, by comparing them with

the optimal benchmark O-RA and O-PS. For this purpose have been

considered four different network configurations (NCs) or scenarios as

depicted in Figure 5.1, 5.2, 5.3, 4. The RNs are fixed in all NC except

for NC4. In each simulation the number of PU receivers is NPU = 1 in the

same bandwidth B of the multi-hop system and it is randomly positioned

along the green line, except for the conguration NC4, where it is randomly

positioned within the green square. Convolutional code have been used

to simplify the processing during the soft-demodulation, however, we

also could consider turbo code. The parameters of the CR BIC-OFDM

system and of the channel predictor are summarized in Tabella 5.1 VI.

ITU vehicular A channel [47] and modied Cost231 Hata [48] models are

exploited. GP value is calculated by averaging the number of bits/s/Hz

correctly received on Npkt = 1000 transmitted packet over independent

channel realizations. The average GP (AGP), therefore, is defined as:

ςavg ,
1

Npkt

1

B

Npkt∑
k=1

Npδ(k)

Tpkt(k)
(5.1)

48
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where δ(k) = 1 if the kth packet was correctly received, otherwise 0

and Tpkt = Ts ·NOFDM(k) is the transmission time of the packet k. The

simulations have been made varying the available power Ptot that is equal

for all nodes of the network. This is because, all nodes, including PU,

can be positioned at different distances each other, therefore, the path

loss changes and the received SNR is different among the nodes for equal

transmitted power.

First of all, we evaluate the different between PGP and A-PGP or

more precisely, verify the accuracy of the A-PGP function (2.7). The

scenario is show in Figure 5.3 and consist of two fixed relays in square

configuration while PU is randomly positioned along the dashed line. The

PGP and A-PGP values are obtained solving the O-RA problem and the

O-PS one. As we can see, the two curves are practically identical. A small

gap is visible for Ptot ≤ 14 dBm, because the A-PGP is based on the fact

that PERAWGN(rl, γl,eff) << 1, ∀l ∈ L, and consequently, in the case of

low transmitted power, the values of PERAWGN(rl, γl,eff) increase, ∀l ∈ L
. For these reasons, as mentioned in Section 2.2, we have fixed a low PER

value (Figure 2.1) and determinate the corresponding γ for PER function

with different code rate. Then we have obtained the transmission power

range of Ptot as show in Figure 2.2. In the considered range from 16 to

34 dBm, the A-PGP is confirmed to be an excellent approximation of

the PGP function and, therefore, the A-PGP can be used to solve the

Sub-PS problem.

The performance of the L-RA method is evaluated, considering the

scenarios NC1 and NC2, where the path is fixed. The Figures 5.6 and

5.7 confirm that the L-RA is a good sub-optimal method to solve the RA

problem compared with the O-RA. Indeed, there is not an appreciable

loss of AGP performance. Therefore, L-RA solution can be exploited

to allocate the resource in the network, to reduce the signaling among
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the nodes and to calculate the costs of the link δRil
−Ril+1

, ∀l ∈ L which

are necessary in the Sub-PS algorithm and ASub-PS one. Moreover,

observing the performance in Fig. 5.7 we note that the AGP is always

lower than that in Fig. 5.6, because in NC2 is present one RN in more

and the transmission time of a packet from ST to SR inevitably increases.

Now, we can demonstrate the effectiveness of the L-RA combined

with Sub-PA and ASub-PS in the square conguration NC3, showing the

result of Fig. 5.8. It can be immediately seen that the performance

gap between the sub-optimal strategies and the optimal benchmark is

very small. The maximum gap arises when L-RA with ASub-PS solution

is exploited, but leading only to loss of 0.12 bits/s/Hz. In the case,

instead, of L-RA joined to Sub-PS, the loss is even less. The trend of

the curves is exactly as we expected because the L-RA with Sub-PS

strategy evaluates the RA for each link, considering the end-to-end GP

only during the path selection step while in the case of L-RA, ASub-

PS strategy, the path with the minimum PER sum is selected, without

considering the end-to-end GP. In other words, the ASub-PS criterio does

not consider the transmission time of a packet from the source to the

receiver. Therefore, L-RA with Sub-PS offers an excellent solution with

a computational complexity O(M 3) compared to the optimal one O-RA,

O-PS. The L-RA, ASub-PS method, moreover, is a good compromise

between AGP performance and computational complexity that is equal

toO(M 2). The result of Fig. 5.9 verifies the efficiency of the LPP method

based on kESM technique (2.2) that is exploited to dene PGP function

and A-PGP one. This result is shown for a multihop transmission in the

generic random conguration NC4. In this scenario the RNs and the PU

are randomly positioned before starting the transmission of the packets

and then they maintain the position for each value of Ptot. RNs and

PU can be placed in the area delimited by the square with perimeter
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of color blue and green respectively. As we can see, PGP and A-PGP

perfectly predict the AGP performance of the transmission. Therefore,

the transmission parameters, Pl and φl ∀l ∈ L, are correctly chosen by

the O-RA and L-RA algorithms.

Always with reference to the scenario with random position of relays

and PU, another interesting simulation shows the AGP performance for

the proposed RA and PS methods, fixing the maximum number of RNs

Lmax at 2, 3 or 4 in the multihop transmission. Therefore, the constraint

0 ≤ L ≤ Lmax ≤ M is considered. Here too, the performance gap has

remained unchanged, as in Fig. 5.8. and only a slight deterioration of the

ASub-PS method for L ≤ 2 has been registered, most likely due to the

reduction of possible path form ST to SR. This performance is show in

Figure 5.10. Thus, the proposed methods L-RA with Sub-PS and ASub-

PS are definitively confirmed as a good solution for RA and PS in a

multi-hop transmission because reducing at the same time signaling over

the feedback channel and computational complexity. Finally, it should

be noted that for L ≤ 3 the AGP performance is practically identical

to that obtained with L ≤ 4. As a consequence, this result leads to the

further and unexpected conclusion that it makes little sense to increase

indenitely the number of RNs to ensure that the packet reaches the SR.

For to strengthen this conclusion we have increased the number of RNs

in NC4 up to 10 and fixed the available power P to 16 and 26 dBm. The

distance between any two nodes has been fixed to 40 m and the number

of transmitted packet Npck = 500. In Figure 5.11 is show as already after

two or three relay there isn’t any significant improvement! The same

can be said for the Figure 5.12. We can concluded that to growing of

RNs, also the transmission time of the packet increases and, therefore,

the AGP does not improve.
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BIC-OFDM and Channel Parameters Value

Information bits (Np) 1024

CRC (NCRC) 32

Subcarriers (N) 1320

FFT size (Nfft) 2048

Bandwidth (B) 20 MHz

Cyclic prefix (ν) 160

4-, 16-, 64-QAM modulation (mn ∀n ∈ N ) 2, 4, 6

Convolutional code with rate (r) 1/2, 2/3, 3/4, 5/6

Noise in OFDM bandwidth (N0 ·N) -100 dBm

Doppler frequency (fd) 144 Hz

CSI update interval (D) 7

Memory of the predictor (P ) 4

Estimation error (σ2
e) N0/S

Interference threshold (I1/σ
2
w) 50 dB

Table 5.1: System parameters
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Figure 5.1: C1, line conguration with M = 1 RN

Figure 5.2: C2, line configuration with M = 2 RNs
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Figure 5.3: Square configuration with M = 2 RNs and direct link

Figure 5.4: NC4, random conguration with M = 5 RNs and direct link
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Figure 5.5: Predicted goodput approx average goodput

Figure 5.6: AGP comparison in NC1 conguration
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Figure 5.7: AGP comparison in NC2 conguration.

Figure 5.8: AGP comparison in NC3 square conguration
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Figure 5.9: PGP, A-PGP and AGP in NC4 random conguration

Figure 5.10: AGP comparison in NC4 random conguration
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Figure 5.11: A-PGP evolution with variable number of relay

Figure 5.12: A-PGP evolution with variable number of relay



Conclusion

As we have said multihop technique can enhance data rates, coverage

and other specific parameters within a network so multihop comunica-

tion will be an increasingly important part. In this work we have pre-

sented some specific techniques and strategies of RA and PS that are

able to reduce the signaling over the feedback channel and the computa-

tional complexity. The proposed solutions L-RA with Sub-PS and L-RA

with ASub-PS, are able to easily limit the amount of signaling over the

feedback channel when RA and PS problems are evaluated among the

nodes of the network with a irrelevant loss of GP performance compared

with the optimal scheme O-RA, O-PA. Moreover, Sub-PS reduces the

computational complexity to O(M 3) and ASub-PS to O(M 2). However,

ASub-PS problem does not consider the transmission time of a packet, as

a consequence, the GP performance is slightly degraded compared to the

Sub-PS problem. In this work the GP proves to be an excellent metric

to measure the QoS in a multihop network, evaluating the quality of a

path as a ratio between probability of correctly receive the information

and transmission time. Indeed, we showed in a scenario with ten relays,

that the performance does not improve by only increasing the number

of RNs to connect transmitter and receiver, because consequently also

the transmission time of a packet grows. Therefore, the numerical re-

sults make a clear point on the fact that L-RA with Sub-PS or ASub-PS

can be applied in a real packed-oriented multihop communication with

59
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practical modulation and coding schemes.
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