
Universitá di Pisa

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Magistrale in Computer Engineering

Tesi di Laurea Magistrale

Design and development of an
AllJoyn to CoAP bridge

Candidato:

David Costa
Matricola 455356

Relatori:

Prof. Enzo Mingozzi
Ing. Carlo Vallati

Anno Accademico 2015–2016

C O N T E N T S

1 introduction . 1

1.1 Internet of Things . 1

1.1.1 State of the art . 1

1.1.2 Challenges and limitations . 2

1.2 Implementation of IoT Systems . 3

1.2.1 Software frameworks . 3

1.2.2 Constrained Application Protocol 4

1.2.3 Heterogeneous networks communication 4

2 alljoyn . 6

2.1 System Overview . 6

2.1.1 What is AllJoyn? . 6

2.1.2 Conceptual overview . 7

2.1.3 Software architecture . 8

2.2 D-Bus Specification . 10

2.2.1 Type system . 11

2.2.2 Message format . 12

2.2.3 Valid names . 13

2.2.4 Message types . 14

2.3 System Description . 15

2.3.1 AllJoyn system key concept . 15

2.3.2 Advertisement and discovery 18

2.3.3 AllJoyn transport . 19

2.3.4 Data exchange . 20

2.3.5 AllJoyn session . 22

2.3.6 Sessionless signal . 22

2.3.7 AllJoyn security . 23

3 device system bridge . 25

3.1 Microsoft DSB . 25

3.1.1 DSB overview . 25

3.1.2 Configuration . 26

3.1.3 Development . 28

3.1.4 Limitations . 29

3.2 CoAP Bridge as a DSB . 29

3.2.1 Bridge device as IAdapterDevice 30

3.2.2 CoAP device as IAdapterDevice 31

3.2.3 Configuration . 32

i

CONTENTS ii

4 data mapping . 33

4.1 Resource Directory . 33

4.1.1 Discovery . 34

4.1.2 Registration . 36

4.1.3 Update . 37

4.1.4 Removal . 38

4.2 Resource Directory Entries . 39

4.2.1 Entries format . 39

4.2.2 Storage of resources . 40

4.3 CoAP messages in the AllJoyn network 40

4.3.1 Message fields . 41

4.3.2 Option fields . 41

4.3.3 Query filtering . 43

4.3.4 Request message . 44

4.3.5 Response message . 45

4.4 CoAP resources in the AllJoyn network 47

4.4.1 Setting AllJoyn interface, methods and properties 47

4.4.2 Setting AllJoyn object path . 52

4.4.3 Implementing the observing service 53

4.4.4 About data . 55

4.4.5 Introspection file . 55

5 system design . 58

5.1 Deployment Diagram . 58

5.2 Component Diagram . 59

5.3 Class Diagrams . 60

5.3.1 Bridge . 60

5.3.2 Resource Directory . 61

5.3.3 CoAP Proxy . 62

5.3.4 AJ Object Manager . 62

5.4 Sequence Diagrams . 65

5.4.1 Resource registration . 65

5.4.2 Resource update . 66

5.4.3 Resource removal . 68

5.4.4 GET method call . 69

5.4.5 POST method call . 72

5.4.6 DELETE method call . 73

5.4.7 Observing registration . 74

5.4.8 Notification . 76

5.4.9 Observing cancellation . 76

CONTENTS iii

6 test report . 79

6.1 Environment Setup . 79

6.1.1 Requirements . 79

6.1.2 Preconditions . 79

6.2 Test Case Specificaion . 80

6.2.1 BRIDGE-TC-01 CoAP Resources Registration 80

6.2.2 BRIDGE-TC-02 CoAP Resources Cancellation 80

6.2.3 BRIDGE-TC-03 Discovery of AllJoyn Objects 81

6.2.4 BRIDGE-TC-04 GET Method Call 82

6.2.5 BRIDGE-TC-05 GET Method Call with Cached Response . . 82

6.2.6 BRIDGE-TC-06 POST Method Call 83

6.2.7 BRIDGE-TC-07 DELETE Method Call 84

6.2.8 BRIDGE-TC-08 Observing Registration 84

6.2.9 BRIDGE-TC-09 Observing Cancellation 85

6.2.10 BRIDGE-TC-10 Notification Arrival 86

6.3 Test Cases Summary . 88

6.3.1 BRIDGE-TC-01 CoAP Resources Registration 88

6.3.2 BRIDGE-TC-02 CoAP Resources Cancellation 88

6.3.3 BRIDGE-TC-03 Discovery of AllJoyn Objects 89

6.3.4 BRIDGE-TC-04 GET Method Call 89

6.3.5 BRIDGE-TC-05 GET Method Call with Cached Response . . 90

6.3.6 BRIDGE-TC-06 POST Method Call 90

6.3.7 BRIDGE-TC-07 DELETE Method Call 91

6.3.8 BRIDGE-TC-08 Observing Registration 91

6.3.9 BRIDGE-TC-09 Observing Cancellation 92

6.3.10 BRIDGE-TC-10 Notification Arrival 92

6.4 Detailed Test Result . 92

6.4.1 BRIDGE-TC-01 CoAP Resource Registration 92

6.4.2 BRIDGE-TC-02 CoAP Resource Cancellation 94

6.4.3 BRIDGE-TC-03 Discovery of AllJoyn Objects 96

6.4.4 BRIDGE-TC-04 GET Method Call 98

6.4.5 BRIDGE-TC-05 GET Method Call with Cached Response . . 99

6.4.6 BRIDGE-TC-06 POST Method Call 101

6.4.7 BRIDGE-TC-07 DELETE Method Call 102

6.4.8 BRIDGE-TC-08 Observing Registration 104

6.4.9 BRIDGE-TC-09 Observing Cancellation 105

6.4.10 BRIDGE-TC-10 Notification Arrival 106

7 test in windows environment 108

7.1 Test Setup . 108

7.2 IoT Explorer for AllJoyn . 109

7.2.1 Application discovery . 109

7.2.2 Objects . 110

CONTENTS iv

7.2.3 Interfaces . 110

7.2.4 Methods, signals, properties 110

7.2.5 Method call . 112

7.3 Observing Service . 112

conclusions . 114

L I S T O F F I G U R E S

Figure 1 AllJoyn Bus . 8

Figure 2 AllJoyn Software Architecture 9

Figure 3 AllJoyn Router . 16

Figure 4 AllJoyn in the ISO/OSI 7-layer model 19

Figure 5 Functional architecture . 21

Figure 6 Device System Bridge Overview 26

Figure 7 Class Diagram: DSB Adapter 28

Figure 8 Sequence Diagram: Resource Directory 34

Figure 9 Deployment Diagram . 59

Figure 10 Component Diagram . 60

Figure 11 Class Diagram: Bridge . 61

Figure 12 Class Diagram: Resource Directory 61

Figure 13 Class Diagram: RD Node Resource 62

Figure 14 Class Diagram: CoAP Proxy 63

Figure 15 Class Diagram: Object Manager 63

Figure 16 Class Diagram: Request and Response Messages 64

Figure 17 Sequence Diagram: Registration 65

Figure 18 Sequence Diagram: Registration ”Bad Request” 66

Figure 19 Sequence Diagram: Update 66

Figure 20 Sequence Diagram: Update ”Bad Request” 67

Figure 21 Sequence Diagram: Update ”Not Found” 67

Figure 22 Sequence Diagram: Resource Removal 68

Figure 23 Sequence Diagram: Removal ”Bad Request” 69

Figure 24 Sequence Diagram: Removal ”Not Found” 69

Figure 25 Sequence Diagram: GET Method without cached data . . . 70

Figure 26 Sequence Diagram: GET Method with cached data 71

Figure 27 Sequence Diagram: POST Method 72

Figure 28 Sequence Diagram: DELETE Method 73

Figure 29 Sequence Diagram: Observing Registration 75

Figure 30 Sequence Diagram: Notification 76

Figure 31 Sequence Diagram: Observing Cancellation 77

Figure 32 AllJoyn Client App: Discovery 97

Figure 33 AllJoyn Client App: GET Method Call 99

Figure 34 AllJoyn Client App: GET Method Call with Cached Response100

Figure 35 AllJoyn Client App: POST Method Call 102

Figure 36 AllJoyn Client App: DELETE Method Call 103

Figure 37 AllJoyn Client App: Notification Arrival 107

v

LIST OF FIGURES vi

Figure 38 CoAP Sensor Network Map 108

Figure 39 IoT Explorer for AllJoyn: Discovery 109

Figure 40 IoT Explorer for AllJoyn: Objects 110

Figure 41 IoT Explorer for AllJoyn: Interfaces 111

Figure 42 IoT Explorer for AllJoyn: Methods 111

Figure 43 IoT Explorer for AllJoyn: Method Call 112

Figure 44 Observing Service in Test Case 113

L I S T O F TA B L E S

Table 1 D-Bus Fixed Types . 11

Table 2 D-Bus String-like Types . 11

Table 3 D-Bus Message Header . 12

Table 4 IANA multicast address . 18

Table 5 Session options . 22

Table 6 RD Entry Format . 39

Table 7 Message Fields . 41

Table 8 Option Fields . 43

Table 9 Query Attributes . 44

Table 10 Example: Query Attributes 44

Table 11 Method Codes . 45

Table 12 Response Codes . 46

Table 13 AllJoyn and Java compatible data types 50

Table 14 com.bridge.Coap interface . 51

Table 15 Example: Object Path . 52

Table 16 Match Rule Keys . 54

vii

A C R O N Y M S

AJ AllJoyn

AJTCL AllJoyn Thin Core Library

API Application Programming Interface

CoRE Constrained RESTful Environments

CoAP Constrained Application Protocol

DSB Device System Bridge

DUT Device Under Test

GUID Globally Unique IDentifier

GUI Graphic User Interface

IoT Internet of Things

IP Internet Protocol

IPC Inter-Process Communication

M2M Machine to Machine

OS Operating System

RD Resource Directory

REST REpresentational State Transfer

RMI Remote Method Invocation

RPC Remote Procedure Call

SPQR Senatus PopulusQue Romanus

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI Uniform Resource Identifier

WSN Wireless Sensor Network

XML eXtensible Markup Language

viii

Abstract

The recent advancements of the building automation in the technological
revolution of the Internet of Things (IoT) are leading to the need to enable the
communication between devices extremely different from each other. Smart
objects equipped with communication capabilities may rely on proprietary
IoT solutions consisting of various hardware and software components, that
would not be able to be interworked.

Several companies are developing advanced IoT software frameworks, e.g.
AllJoyn, which enable interoperability between devices across multiple archi-
tectures and protocols. These frameworks provide resource discovery, data
transmission and device management, and they support several platform and
language bindings.

Despite their great effort, further improvements are still needed, due to
technical limitations and framework availability of low-power devices in
pre-existing networks. An example is the Constrained Application Protocol
(CoAP), a redesign of the popular HTTP protocol that aims to support heavily
resource-constrained devices for machine-to-machine (M2M) applications.

In this work we present the design and the implementation of an application
that acts as a bridge between an AllJoyn network and a pre-existing one based
on CoAP, in order to enable the resources provided by resource-constrained
nodes to be reached by a more powerful network, which also includes
computers and smartphones. The bridge allows on-demand registration
of CoAP resources, dynamically translated and advertised on the AllJoyn
network, so that AllJoyn client applications can easily discover and interact
with them.

Experimental tests show the proper functioning of the bridge, the transparent
way it operates, and the amplitude of its application. These tests validate the
work with both an ad-hoc client application and an already existing AllJoyn
application.

The first chapter shows an overview of the Internet of Things and the Smart
Environment. There are the most famous frameworks disclosed, developed to
enable interoperability among connected products and software applications
across manufacturers. Then, we briefly introduce the CoAP protocol for
resource-constrained devices and the idea of introducing the pre-existing
network into the AllJoyn one.

The second chapter covers the whole AllJoyn framework. It includes its
history, its main components and the system description which shows the
framework features. This part also includes an overview of the D-Bus specifi-
cation, on which AllJoyn is based.

In the third chapter we show the Device System Bridge. It is a bridge
developed by Microsoft that enables the communication between AllJoyn and
other networks (ZigBee, BACnet, Z-Wave). We explain the reason why we
preferred to implement the CoAP bridge in another way, and what it would
be like it if we had follow the Microsoft specification.

The forth chapter describes the data mapping process. In order to provide
CoAP resources to the AllJoyn devices, these resources have to be represented
as AllJoyn objects, as well as the CoAP messages. The chapter shows this
translation process.

Chapter five contains the UML diagrams that model our system. Deployment,
component and class diagrams show the bridge components on different
abstraction levels. Sequence diagrams show the dynamic behaviour of the
components in the system and how they interact with each other.

The last two chapter show the tests we have done. The sixth chapter is the
test report, which includes the detailed information about the test setup and
the obtained results, and it is achieved by using an ad-hoc AllJoyn application
that acts as a client. The seventh chapter is a demonstration of the operation
of our bridge in the Windows environment, using real temperature and
light sensors, and the bridge running on a Linux server. Since Windows 10

supports AllJoyn natively, we used a Microsoft application as test client.

1
I N T R O D U C T I O N

In this first chapter we introduce the Internet of Things with particular focus on the
Smart Environment, like the Smart Home and, more in general, the Smart Building. The
Smart Environment includes the proximity services as well as the resource-constrained
devices, and it also focuses on the communication between different technologies.

Here we present some of the most important frameworks that enable the Smart
Environment and that act as a glue between different devices and platforms. Our
attention focuses on the AllJoyn framework, that seems to be the leader in its space.

With regard to the resource-constrained devices, one of the most widely used proto-
cols is the Constrained Application Protocol (CoAP), a standardized software protocol
intended to be used in very simple electronics devices.

Then, a problem of interoperability arises between more powerful devices based
on the new frameworks and the pre-existing networks with very resource-constrained
devices.

1.1 internet of things

1.1.1 State of the art

The Internet of Things (IoT) is a computing concept that describes a network of physical
objects embedded with electronics, software, sensors, and network connectivity throw
which these objects collect and exchange data. Physical objects adopt an IP address for
internet connectivity, so that the IoT extends the internet network beyond traditional
devices like desktop and laptop computers, smartphones and tablets to a diverse range
of devices.

IoT is becoming an increasing topic of interest among technology giants and busi-
ness communities. Estimates set the current number of connected devices at about 6.4
billion, and industry expectations say that the tally will increase to 20.8 billion by 2020 [1].

The Internet of Things enables the implementation of technologies such as smart
grids, smart homes, intelligent transportation and smart cities. In particular, the building
automation has become one of the major points of interest of recent years.

The Smart Building, or its residential extension, the Smart House, is used to monitor
and control the mechanical, electrical and electronic systems inside a building, e.g., at
home, in the hospital, or in the factory. It covers heating, ventilation and air conditioning

1

1.1 internet of things 2

(HVAC), lighting control system, security, automation for the elderly and disabled, and
all sort of other applications.

The Smart Building is mainly implemented in two wireless ways:

• Machine to Machine communication in wireless personal area network (WPAN).
IEEE standard 802.15.4 often offers the fundamental lower network layers for this
kind of network, which focuses on low-power devices. Here, the IoT devices nearby
each other will form proximal IoT networks.

• Powerful communication in wireless local area network (WLAN) based on the IEEE
802.11 standards. Devices which use Wi-Fi technology include personal computers,
smartphones and tablets.

1.1.2 Challenges and limitations

Important features for an IoT system are the network ability to change over time and
the device ability to discover resources, so that smart devices within each IoT proximal
network can dynamically join and leave the network, and discover and communicate
with each other. These key design aspects allow the implementation of IoT use cases
in non-static environments, e.g., hotels and hospitals, where the involved nodes may
continuously change, or scenarios in which always-on device availability is not required.
The discovery should happen automatically based on proximity criteria and application
requirements.

Then, an application can play the role of a provider, a consumer or both depending
upon the service model. Provider applications implement services and advertise them
over the proximal network, and consumer applications interested in these services dis-
cover them. Consumer applications then connect to provider applications to make use of
these services as desired.

One of the remaining critical points in the IoT is the interoperability between devices
across multiple architectures, platforms and language bindings. The proliferation of
communication protocols and data formats across the device ecosystem makes it difficult
for nodes to speak the same language and work together in harmony. In order to realize
the full potential of IoT, technologies which enable devices and applications to interact
each other are needed.

Several companies are working for that common language: software frameworks that
serve as glue to allow devices from different companies, running on different operating
systems, written with different language bindings to all speak together, and just work.

1.2 implementation of iot systems 3

1.2 implementation of iot systems

1.2.1 Software frameworks

Advanced software frameworks, which abstract and isolate the developer from the
complexity of the hardware and the networking sub-systems, re-define the development
and re-usability of integrated hardware and software solutions. These frameworks
enable interoperability among connected products and software applications, across
manufacturers, to create dynamic proximal networks.

In recent years, several consortiums are developing their own IoT frameworks with
focus on the Smart Environment. Industry consortiums are groups of companies which
are working together to produce common standards for the benefit of themselves and the
industry. The consortiums that have made greater effort in this area are the OIC (Open
Interconnect Consortium), which oversees all aspects of IoTivity, and AllSeen Alliance,
which is responsible of the development, marketing and certification around the AllJoyn
platform.

The IoTivity is an open source project. It is developed on the constrained application
protocol (CoAP), which means it is based on a resource-based, RESTful architecture
model.

AllJoyn is an open source project too. It is based on the D-Bus specification, a remote
procedure call (RPC) mechanism, extended by AllJoyn to work on remote devices.

From an OSI network model perspective, IoTivity and AllJoyn are full-stack providers.
If you build a device to work with these, the entire protocol all the way to the application
layer is specified. Even if the architecture of the two frameworks is quite different, they
work with the same goal of creating a new standard by which billions of wired and
wireless devices will connect to each other and to the Internet. Both of them shall provide
resource discovery, data transmission and device management, and both implement a
tiny version of the system for constrained devices.

In order to enable interoperability, these two software frameworks support several
platforms and bindings:

• IoTivity supports Android, Arduino, Linux, Tizen and Yocto. Its core functionality
is written in C, and other available bindings are C++ and Java.

• AllJoyn supports Android, Arduino, iOS, Linux, OS X, Windows and OpenWRT.
Furthermore, Windows 10 includes the AllJoyn framework as core component. Its
core is written in C++ and AllJoyn provides C, Java, JavaScript, C# and Obj-C
bindings.

What has been said shows the great flexibility of AllJoyn regarding multi-platform
interoperability. Moreover, the AllJoyn community is far larger than the IoTivity one, and
there is a wider range of devices supporting it already available in the market.

1.2 implementation of iot systems 4

That, coupled with the absence of cooperation with CoAP, led us to opt for a work on
the AllJoyn framework.

1.2.2 Constrained Application Protocol

The Constrained Application Protocol (CoAP) is a specialized web transfer protocol to be
used with constrained nodes and constrained networks in the Internet of Things. The
nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while
constrained networks such as IPv6 over Low-Power Wireless Personal Area Networks
(6LoWPANs) often have high packet error rates and a typical throughput of 10s of kbit/s.

Like the Hypertext Transfer Protocol (HTTP), CoAP is based on the wildly successful
REST model. This means that servers make resources available under a URL, and clients
access these resources using methods such as GET, PUT, POST, and DELETE.

CoAP is designed to use minimal resources, both on the device and on the network.
Instead of a complex transport stack, it gets by with UDP on IP. A 4-byte fixed header and
a compact encoding of options enables small messages that cause no or little fragmenta-
tion on the link layer. CoAP makes use of two message types, requests and responses.

CoAP has the following main features:

• Web protocol fulfilling M2M requirements in constrained environments.

• UDP binding with optional reliability supporting unicast and multicast requests.

• Asynchronous message exchanges.

• Low header overhead and parsing complexity.

• URI and Content-type support.

• Simple proxy and caching capabilities.

The Internet Engineering Task Force (IETF) Constrained RESTful environments (CoRE)
Working Group has done the major standardization work for this protocol [2].

Since it is one of the most widely used protocols in M2M and IoT, along with MQTT
and LWM2M, and since its success has been well-established over the years, we focus on
CoAP.

1.2.3 Heterogeneous networks communication

One of the greatest limitations of these IoT frameworks is the absence of interoperability
with pre-existing networks. This limitation reflects into three main problems:

1.2 implementation of iot systems 5

• Even if the systems provide a tinier version of themselves for constrained devices,
not all the low-power devices have enough system resources to support the thin
libraries. Sometimes it may be possible to get the tiny version onto these platforms
but they will then have no memory left for the application logic.

• Some networks may use communication technologies that are not supported by the
frameworks. For example, CoAP is based on the IEEE 802.15.4 standard that is not
yet included in the AllJoyn system.

• Pre-existing network means that the network was present before the new network
was installed. If we are making a Smart Building project, it would be convenient to
allow cooperation between them, rather than replace the old one.

The interaction between heterogeneous networks should be done in a transparent
manner, so that an application can communicate with other-network devices as if those
devices were based on the same technology.

It would be even better if integration of different devices was realized on-demand.
This would mean making CoAP resources available to the AllJoyn applications on request
of the CoAP servers, and without pre-configurations.

The aim of the work is to enable the communication between the two different
networks we work on, making CoAP devices available for an AllJoyn network, and
then to allowing AllJoyn applications to interact with CoAP resources. This means that
a pre-existing network, composed by heavily resource-constrained devices, could be
reached by a more powerful network, which also includes computers and smartphones.
Moreover, it is done without the need of a previous configuration of each device.

2
A L L J O Y N

The software framework on which we focus our attention is AllJoyn. In this chapter
we present it, the reason why it was developed and a system overview in which its
functionalities are shown.

Then, the D-Bus is briefly described, on which AllJoyn is based. The framework uses
the D-Bus specification in the naming guidelines, in its data type and in the messages
format.

Finally, we analyse each component of the AllJoyn framework with a system de-
scription. In order to cover the whole system, a brief outline is given for each of those
component. The description shows the basic concepts of AllJoyn, like the sessions and
what is meant by apps and routers, and it includes an explanation on how the framework
behaves during advertisement, discovery and data exchange phases.

2.1 system overview

2.1.1 What is AllJoyn?

AllJoyn is a device discovery and control software framework that was created by Qual-
comm and then open-sourced. Now developed under the guide of the AllSeen Alliance,
itself governed by the Linux Foundation, AllJoyn seems to be the leader in its space.

The AllSeen Alliance is a cross-industry consortium dedicated to driving the widespread
adoption of products, systems and services that support the Internet of Everything. The
Alliance hosts and advances an industry-supported open software connectivity and
services framework based on the AllJoyn open source project.

The AllSeen Alliance has been created to promote some type of interoperability for
the Internet of Things, and a number of consumer brands have signed on including
Microsoft, LG, Sharp, Canon, Haier, Sony, Electrolux, Qualcomm and Arçelik. Other
members include Affinergy, Asus, Canary, Cisco, Hisilicon, HTC, IBM, LIFX, Muzzley,
Panasonic, TP-Link, Vodafone, and ZTE [3].

The AllSeen Alliance gives the following description to the AllJoyn framework [4]:

AllJoyn is an open source software framework that makes it easy for devices and apps
to discover and communicate with each other. Developers can write applications for
interoperability regardless of transport layer, manufacturer, and without the need for
Internet access.

6

2.1 system overview 7

That is because the AllJoyn framework handles the complexities of discovering nearby
devices, creating sessions between devices, and communicating securely between those
devices. It abstracts out the details of the physical transports and provides a simple-to-use
API. Multiple connection session topologies are supported, including point-to-point and
group sessions. The security framework is flexible, supporting many mechanisms and
trust models. And the types of data transferred are also flexible, supporting raw sockets
or abstracted objects with well-defined interfaces, methods, properties, and signals.

One of the defining traits of the AllJoyn framework is its inherent flexibility. It
was designed to run on multiple platforms and it supports multiple language bindings
and transports. And since the AllJoyn framework is open-source, this flexibility can be
extended further in the future to support even more transports, bindings, and features.

• Transports: Wi-Fi, Ethernet, Serial, Power Line (PLC)

• Bindings: C, C++, Obj-C, Java

• Platforms: RTOS, Arduino, Linux, Android, iOS, Windows, Mac

• Security: peer-to-peer encryption (AES128) and authentication (PSK, ECDSA)

In order to fully realize the vision of the Internet of Things, devices and applications
need a common way to interact and speak to each other. The AllJoyn framework can serve
as the glue to allow devices from different companies, running on different operating
systems, written with different language bindings to all speak together.

2.1.2 Conceptual overview

The most basic abstraction of the AllJoyn system is the AllJoyn bus (Figure 1a). It provides
a fast, lightweight way to move marshaled messages around the distributed system. The
AllJoyn application connects to a local AllJoyn bus and each connection is assigned a
unique connection name.

The AllJoyn bus is typically extended across devices as shown in Figure 1b. The
figure illustrates that the logical distributed bus is actually split up into a number of
segments, each running on a different device. The AllJoyn functionality that implements
these logical bus segments is called an AllJoyn router.

These routing nodes coordinate the message flow across the logical bus, which ap-
pears as a single entity to the connections. In this configuration, client component can
make remote method calls to service component as if it were a local object.

That is a Remote Method Invocation: a program calls a procedure located in another
address space on a physically separate machine. RMI provides a proxy that implements
an interface which looks just like that of the remote object. A proxy object is a local
representation of a remote object that is accessed through the bus.

2.1 system overview 8

(a) Prototypical AllJoyn bus

(b) A distributed AllJoyn bus

Figure 1: AllJoyn Bus

Therefore, the AllJoyn framework is fundamentally an object-oriented system. Objects
in the object-oriented programming sense have members. Classically, these are object
methods or properties, which are known as BusMethods and BusProperties in the AllJoyn
framework. The AllJoyn framework also has the concept of a BusSignal, which is an
asynchronous notification of some event or state change in an object.

Since the devices have been physically separated, there is no way for the involved
bus routers to have any knowledge of the others. In order to determine that the other
routers exist, and to determine that there is any need to connect to each other and form a
logical distributed AllJoyn bus, AllJoyn provides advertisement and discovery. When
a service is started on a local device, it reserves a given well-known name and then
advertises its existence to other devices in its proximity. The AllJoyn framework provides
an abstraction layer that makes it possible for a service to do an advertise operation that
may be communicated transparently via underlying technologies.

2.1.3 Software architecture

The AllJoyn network comprises AllJoyn Applications and AllJoyn Routers. Figure 2 shows
the AllJoyn software architecture.

An AllJoyn Application comprises the following components:

• AllJoyn App Code

• AllJoyn Service Frameworks Libraries

• AllJoyn Core Library

An AllJoyn Router can either run as standalone or is sometimes bundled with the
AllJoyn Core Library.

AllJoyn Router

The AllJoyn router routes AllJoyn messages between AllJoyn Routers and Applications,
including between different transports.

2.1 system overview 9

Figure 2: AllJoyn Software Architecture

AllJoyn Core Library

The AllJoyn Core Library provides the lowest level set of APIs to interact with the AllJoyn
network. It provides direct access to:

• Advertisements and discovery

• Session creation

• Interface definition of methods, properties, and signals

• Object creation and handling

AllJoyn Service Framework Libraries

The AllJoyn Service Frameworks implement a set of common services, like onboarding,
notification, or control panel. By using the common AllJoyn service frameworks, ap-
plications and devices can properly interoperate with each other to perform a specific
functionality.

AllJoyn App Code

This is the application logic of the AllJoyn application. It can be programmed to either
the AllJoyn Service Frameworks Libraries, which provide higher level functionality, or
the AllJoyn Core Library, which provides direct access to the AllJoyn Core APIs.

Thin and Standard

The AllJoyn framework provides two variants:

• Standard, for non-embedded devices.

• Thin, for resource-constrained embedded devices with limited memory.

2.2 d-bus specification 10

Components of the AllJoyn Standard Core Library are designed to run on Microsoft
Windows, Linux, Android, iOS, OS X, and OpenWRT. A common characteristic of all of
these software systems is that they run on general-purpose computers. General purpose
computers usually have significant amounts of memory, available energy, and computing
power, along with significant operating systems that support multiple processes and
multiple threads with multiple standard language environments.

An embedded system, on the other hand, is one designed to provide specific function-
ality running on a microcontroller embedded within a larger device. Since an embedded
system need only perform a specific function or a small number of functions, engineers
are free to optimize them to reduce the size and cost of the product, often by limiting
memory size, processor speed, available power and user interfaces. AllJoyn Thin Core
Library (AJTCL) is designed to bring the benefits of the AllJoyn distributed programming
environment to embedded systems.

Since the operating environment in which an AJTCL will run may be very constrained,
an AllJoyn component running on such systems must live within those constraints. This
means, specifically, that we do not have the luxury of bundling in an AllJoyn router,
having many network connections, and using relatively large amounts of RAM and
ROM.

D-Bus

AllJoyn provides its own bus based on D-Bus Wire protocol, described in Section 2.2. The
AllJoyn system makes use of the D-Bus specification as follow:

• It uses the D-Bus data type system and D-Bus marshaling format.

• It implements an enhanced version of the D-Bus over-the-wire protocol by adding
new flags and headers.

• It uses D-Bus naming guidelines for naming well-known names, interface names
and object path names.

• It uses a D-Bus defined Simple Authentication and Security Layer framework for
application layer authentication between applications.

2.2 d-bus specification

D-Bus is an inter-process communication (IPC) and remote procedure call (RPC) mecha-
nism that allows communication between multiple processes concurrently running on
the same machine. D-Bus has the merit of being low-overhead because it uses a binary
protocol, and does not have to convert to and from a text format such as XML.

The AllJoyn system re-implements the wire protocol set forth by the D-Bus specifica-
tion and extends the D-Bus wire protocol to support distributed devices. In this section
are described they key points of the D-Bus specification [5].

2.2 d-bus specification 11

2.2.1 Type system

D-Bus has a type system, in which values of various types can be serialized into a
sequence of bytes referred to as the wire format in a standard way. Converting a value
from some other representation into the wire format is called marshaling and converting
it back from the wire format is unmarshaling.

The D-Bus protocol does not include type tags in the marshaled data; a block of
marshaled values must have a known type signature. The type signature is made up of
zero or more single complete types, each made up of one or more type codes. A type
code is an ASCII character representing the type of a value.

The simplest type codes are the basic types, which are the types whose structure is
entirely defined by their 1-character type code. Basic types consist of fixed types and
string-like types.

The fixed types are basic types whose values have a fixed length, namely BYTE,
BOOLEAN, DOUBLE, UNIX FD, and signed or unsigned integers of length 16, 32 or 64

bits. The characteristics of the fixed types are listed in Table 1.

NAME ASCII TYPE-CODE ENCODING

BYTE y Unsigned 8-bit integer

BOOLEAN b Boolean value

INT16 n Signed (two’s complement) 16-bit integer

UINT16 q Unsigned 16-bit integer

INT32 i Signed (two’s complement) 32-bit integer

UINT32 u Unsigned 32-bit integer

INT64 x Signed (two’s complement) 64-bit integer

UINT64 t Unsigned 64-bit integer

DOUBLE d Double-precision floating point

Table 1: D-Bus Fixed Types

The string-like types are basic types with a variable length. The value of any string-like
type is conceptually 0 or more Unicode codepoints encoded in UTF-8. The characteristics
of the string-like types are listed in Table 2.

NAME ASCII TYPE-CODE

STRING s

OBJECT PATH o

SIGNATURE g

Table 2: D-Bus String-like Types

2.2 d-bus specification 12

In addition to basic types, there are some container types, among which stand out the
STRUCT and the ARRAY.

STRUCT has a type code, ASCII character ’r’, but usually this type code does not
appear in signatures. Instead, ASCII characters ’(’ and ’)’ are used to mark the beginning
and end of the struct.

ARRAY has ASCII character ’a’ as type code. The array type code must be followed
by a single complete type and the single complete type following the array is the type of
each array element.

The container types include also the VARIANT (ASCII character ’v’). A marshaled
value of type VARIANT will have the signature of a single complete type as part of the
value. This signature will be followed by a marshaled value of that type.

2.2.2 Message format

A message consists of a header and a body. The header is a block of values with a fixed
signature and meaning. The body is a separate block of values, with a signature specified
in the header.

The signature of the header is:

”yyyyuua(yv)”

These values have the meanings described in Table 3.

VALUE DESCRIPTION

1st BYTE Endianness flag

2nd BYTE Message type

3rd BYTE Bitwise OR of flags

4th BYTE Major protocol version of the sending application

1st UINT32 Length in bytes of the message body, starting from the
end of the header

2nd UINT32 The serial of this message

ARRAY of (BYTE,VARIANT) An array of zero or more header fields where the byte
is the field code, and the variant is the field value

Table 3: D-Bus Message Header

Message types that can appear in the second byte of the header are: INVALID,
METHOD CALL, METHOD RETURN, ERROR, SIGNAL.

The array at the end of the header contains header fields, where each field is a 1-byte
field code followed by a field value. The message type determines which fields are
required. The header fields include the object path, the interface, the member name, the
sender and the destination, among other fields.

2.2 d-bus specification 13

2.2.3 Valid names

The various names in D-Bus messages have some restrictions. There is a maximum name
length of 255 which applies to bus names, interfaces, and members.

Interface names

Interfaces have names with type STRING, meaning that they must be valid UTF-8.
However, there are also some additional restrictions that apply to interface names
specifically:

• Interface names are composed of 1 or more elements separated by a period (’.’)
character. All elements must contain at least one character.

• Each element must only contain the ASCII characters ”[A-Z][a-z][0-9] ” and must
not begin with a digit.

• Interface names must contain at least one ’.’ character (and thus at least two
elements).

• Interface names must not begin with a ’.’ character.

• Interface names must not exceed the maximum name length.

Interface names should start with the reversed DNS domain name of the author of
the interface (in lower-case), like interface names in Java.

For instance, if the owner of example.com is developing a D-Bus API for a music player,
they might define interfaces called com.example.MusicPlayer.

Bus names

Connections have one or more bus names associated with them. A connection has exactly
one bus name that is a unique connection name. The unique connection name remains
with the connection for its entire lifetime. A bus name is of type STRING, meaning that
it must be valid UTF-8. However, there are also some additional restrictions that apply to
bus names specifically:

• Bus names that start with a colon (’:’) character are unique connection names. Other
bus names are called well-known bus names.

• Bus names are composed of 1 or more elements separated by a period (’.’) character.
All elements must contain at least one character.

• Each element must only contain the ASCII characters ”[A-Z][a-z][0-9] -”. Only
elements that are part of a unique connection name may begin with a digit, elements
in other bus names must not begin with a digit.

• Bus names must contain at least one ’.’ character (and thus at least two elements).

2.2 d-bus specification 14

• Bus names must not begin with a ’.’ character.

• Bus names must not exceed the maximum name length.

Like interface names, well-known bus names should start with the reversed DNS domain
name of the author of the interface (in lower-case).

For instance, if the owner of example.com is developing a D-Bus API for a mu-
sic player, they might define that any application that takes the well-known name
com.example.MusicPlayer should have an object at the object path /com/example/MusicPlayer
which implements the interface com.example.MusicPlayer.

Member names

Member (i.e. method or signal) names:

• Must only contain the ASCII characters ”[A-Z][a-z][0-9] ” and may not begin with a
digit.

• Must not contain the ’.’ character.

• Must not exceed the maximum name length.

• Must be at least 1 byte in length.

It is conventional for member names on D-Bus to consist of capitalized words with
no punctuation (”camel-case”). Method names should usually be verbs, such as GetItems,
and signal names should usually be a description of an event, such as ItemsChanged.

2.2.4 Message types

Each of the message types (METHOD CALL, METHOD RETURN, ERROR, and SIGNAL)
has its own expected usage conventions and header fields.

Method calls

Some messages invoke an operation on a remote object. These are called method call
messages and have the type tag METHOD CALL. Such messages map naturally to
methods on objects in a typical program.

A method call message is required to have a MEMBER header field indicating the
name of the method. Optionally, the message has an INTERFACE field giving the interface
the method is a part of.

Method call messages also include a PATH field indicating the object to invoke the
method on. If the call is passing through a message bus, the message will also have a
DESTINATION field giving the name of the connection to receive the message.

When an application handles a method call message, it is required to return a reply.
The reply can have one of two types, either METHOD RETURN or ERROR. If the reply
has type METHOD RETURN, the arguments to the reply message are the return value.

2.3 system description 15

Signal emission

Unlike method calls, signal emissions have no replies. A signal emission is simply a
single message of type SIGNAL. It must have three header fields: PATH giving the object
the signal was emitted from, plus INTERFACE and MEMBER giving the fully-qualified
name of the signal. The INTERFACE header is required for signals, though it is optional
for method calls.

Errors

Messages of type ERROR are most commonly replies to a METHOD CALL, but may be
returned in reply to any kind of message. The message bus for example will return an
ERROR in reply to a signal emission if the bus does not have enough memory to send
the signal.

An ERROR may have any arguments, but if the first argument is a string, it must be
an error message.

2.3 system description

In this section is described how the AllJoyn framework works, which includes its main
components and how they are composed, the discovery of services, the interaction
between applications, and other features. The system description follows the AllJoyn
documentation provided by the AllSeen Alliance [6].

2.3.1 AllJoyn system key concept

AllJoyn router

The AllJoyn Router component provides core functionality of the AllJoyn system, including
peer-to-peer advertisement and discovery, connection establishment, broadcast signaling
and messages routing. The AllJoyn router implements software bus functionality and an
application connects to this bus to avail core functions of the AllJoyn framework.

Each instance of the AllJoyn router has an associated globally unique identifier (GUID)
which is self-assigned.

An AllJoyn router can live on the same physical device of the application, or on
different devices. Three common topologies exist, shown in Figure 3

1. An application uses its own Router. In this case, the Router is called a ”Bundled
Router” as it is bundled with the application. Mobile applications usually fall in
this group.

2. Multiple applications on the same device use one Router. In this case, the Router is
called a ”Standalone Router” and it typically runs in a background process. This is
common on Linux systems where the AllJoyn Router runs as a daemon process.

2.3 system description 16

3. An application uses a Router on a different device. Embedded devices, which use
the AJTCL, typically fall in this camp.

Figure 3: AllJoyn Router

AllJoyn bus

An AllJoyn router provides software bus functionality where one or more applications
can connect to it to exchange messages. AllJoyn router instances on a device form a
logical AllJoyn bus local to the device. The logical AllJoyn bus maps to a single AllJoyn
router in the case of standalone deployment model or bundled deployment model with
only one application on the device. Instead, the logical AllJoyn bus maps to multiple
AllJoyn router instances in the bundled deployment model with multiple applications on
the device.

Multiple instances of AllJoyn buses across multiple devices form a logical distributed
AllJoyn software bus. The distributed AllJoyn bus hides all the communication link
details from the applications running on multiple devices.

Unique name

In order to enable addressing for individual applications, an AllJoyn router assigns a
unique name to each connecting application. The unique name uses AllJoyn router GUID
as the prefix. It follows the following format:

Unique Name = ”:”<AJ router GUID>”.”<Seq #>

Well-known name

A well-known name is a consistent way to refer to a service offered over the AllJoyn
bus. An application can request use of one or more well-known names from the AllJoyn
bus for services it provides. If the requested well-known name is not already in use,
exclusive use of that well-known name is granted to the application. This ensures that

2.3 system description 17

well-known names represent unique addresses on the AllJoyn bus at any point. However,
its uniqueness is guaranteed only within the local AllJoyn bus.

In order to distinguish multiple instances of a given application on the AllJoyn bus,
the well-known name should have a unique identifier as a suffix The AllJoyn well-known
name follows the D-Bus specification guidelines for naming and has following format:

WKN = <reverse domain style name for app>”.”<app instance GUID>

AllJoyn object

AllJoyn applications implement one or more AllJoyn objects to support AllJoyn services
functionality. These AllJoyn objects are advertised over the AllJoyn bus. Other AllJoyn
applications can discover these objects from the AllJoyn bus and access them remotely to
consume services provided by them. A consumer application accesses an AllJoyn service
object through a proxy object, which is a local representation of a remote service object
that is accessed through the AllJoyn bus.

Each AllJoyn service object instance has an associated object path that uniquely identi-
fies that object instance. This object path gets assigned when a service object gets created
on the provider, and the proxy object requires an object path to establish communication
with the remote service object. The object path scope is within a given application, so
object paths must be unique only with the associated application implementing the
objects.

The object path naming also adheres to the D-Bus specification naming guidelines:

Object Path = /Application/Object

AllJoyn interface

Each AllJoyn object exposes its functionality over the AllJoyn bus through one or more
AllJoyn interfaces. An AllJoyn interface can include one or more of following types of
members:

methods A method is a function call that performs some processing and typically
returns outputs reflecting the results of the processing operation.

signals A signal is an asynchronous notification that is generated by a service to notify
one or more remote peers of an event or state change.

properties A property is a variable that holds values and it may be read-only, read-
write or write-only.

Every AllJoyn interface has a globally unique interface name that identifies the
grouping of methods, signals, and properties provided by that interface. Similar to the
well-known name, the AllJoyn interface name also follows reverse domain name format
and D-Bus specification naming guidelines:

Interface Name = com.example.Interface

2.3 system description 18

2.3.2 Advertisement and discovery

The AllJoyn system supports a mechanism for providers to advertise their services over
the AllJoyn network, and for consumers to discover these services for consumption. The
AllJoyn discovery protocol makes use of IP multicast over Wi-Fi for advertisement and
discovery, even if the details of discovery over underlying networks are hidden from the
AllJoyn applications.

Applications can use one of the following methods to advertise and discover services
over the AllJoyn framework:

• Name-based discovery: Service advertisement and discovery occurs either using a
well-known name or unique name.

• Announcement-based discovery: Service advertisement and discovery occurs using
AllJoyn interface names.

Name-based discovery

The AllJoyn router supports a Name Service to enable the name-based service discovery.
The Name Service supports a UDP-based protocol for discovery over IP-based access
networks. Name-based discovery APIs are exposed through the AllJoyn Core Library.

The Name Service is implemented using IS-AT and WHO-HAS protocol messages,
which carry well-known names to be advertised and discovered, respectively. These
protocol messages are multicast over the AllJoyn proximal network over IANA-registered
IP multicast groups and port number as listed in Table 4.

TYPE ADDRESS

IPv4 Multicast group address 224.0.0.113

IPv6 Multicast group address FF0X::13A

Multicast port number 9956

Table 4: IANA multicast address

The IS-AT message advertises AllJoyn services using the well-known name or the
unique name. A single IS-AT message can include a list of one or more well-known
names or unique names for advertisement. The AllJoyn router at the provider device
send out IS-AT message periodically over IP multicast to advertise the set of services it
supports. The IS-AT message can also be sent out in response to a received WHO-HAS
message that is looking for that advertised service.

The WHO-HAS message discovers one or more AllJoyn services using the well-known
name or the unique name. Similar to IS-AT, a WHO-HAS message can include a list of
one or more well-known names or unique names for discovery. When a consumer device
wants to discover a service, it sends out the WHO-HAS message over IP multicast.

2.3 system description 19

Announcement-based discovery

In the announcement-based discovery, the provider device announces the set of AllJoyn
interfaces supported via an announcement broadcast signal. The consumer device inter-
ested in making use of the AllJoyn services opts to receive these broadcast announcement
messages from providers to discover the interfaces for the supported AllJoyn services.

The Announcement message is generated by the About feature and is delivered as
an AllJoyn sessionless signal using the sessionless signal mechanism provided by the
AllJoyn router, described further below. The sessionless signal module makes use of the
AllJoyn name service messages (IS-AT and WHO-HAS) to notify the consumer of new
signals using a specially formatted well-known name for the sessionless signal. Once the
consumer AllJoyn router discovers the sessionless signal’s well-known name, it connects
back to the provider over an AllJoyn session to fetch the service announcement message
from the provider device.

2.3.3 AllJoyn transport

The AllJoyn Transport supports connections establishment and delivering messages
over multiple underlying physical transport layers including TCP, UDP and local UNIX
transport. AllJoyn Transport functionality can be divided into two categories:

• Local AllJoyn Transports: designed to essentially provide communication between
Core Library and associated AllJoyn Router.

• Bus-to-Bus AllJoyn Transports: enable connection establishment and message routing
between AllJoyn routers.

Although the primary task of an AllJoyn transport is to transport, or move, AllJoyn
messages from one endpoint to another, it is important to distinguish the AllJoyn
Transport from the concept of transport layer (layer 4) in the ISO/OSI 7-layer model, as
shown in Figure 4.

Figure 4: AllJoyn in the ISO/OSI 7-layer model

2.3 system description 20

Underneath the Application Logic, there exists an AllJoyn Message layer which is
responsible for marshaling and unmarshaling of AllJoyn messages (Signals and Method
Calls). This layer can be thought of as residing in the presentation layer (layer 6) of the
ISO/OSI model.

These AllJoyn messages are routed to their intended destination by the AllJoyn
Transport layer. Since the AllJoyn Transport layer manages connections across applications
and AllJoyn routers in the network, it can be thought of corresponding to the session
layer (layer 5) of the ISO/OSI model. AllJoyn Transports make use of layer 4 transports
like TCP or UDP in order to manage the actual movement of AllJoyn messages between
various network entities.

Bus-to-Bus AllJoyn Transports

The Bus-to-Bus AllJoyn Transports enable connection establishment and message routing
between AllJoyn routers. The most commonly used Bus-to-Bus transports in the AllJoyn
system are based on the underlying IP-based transport mechanisms. These include TCP
Transport and UDP Transport. An AllJoyn applications may select the AllJoyn Transport
that is actually used by choosing one or more TransportMask bits in the appropriate
AllJoyn APIs.

Since TCP provides a reliable data stream guarantee, the TCP Transport must only
provide enough mechanism to translate AllJoyn messages to and from byte streams.

Since UDP does not provide a reliability guarantee, the UDP Transport must provide
some mechanism to provide a reliable message delivery guarantee. The UDP Transport
uses the AllJoyn Reliable Datagram Protocol (ARDP) to provide reliable delivery of messages.
ARDP is based loosely on the Reliable Data Protocol (RDP) [7].

2.3.4 Data exchange

The AllJoyn provider application (Figure 5a) implements one or more service objects
that provide service functionality. These service objects implement one or more Bus
interfaces which support methods, signals, and properties as interface members. AllJoyn
applications can exchange data using these interface members. An AllJoyn session,
described in Section 2.3.5, must be established to exchange data between provider and
consumer applications except when sending sessionless signals.

After an AllJoyn session is established, the consumer application (Figure 5b) can
invoke methods and properties on the remote service objects, or can opt to receive signals
emitted by the provider application. A ProxyBusObject is needed to exchange data via
methods and properties, and a signal handler is needed to receive signal data from the
provider application.

2.3 system description 21

(a) Provider application (b) Consumer application

Figure 5: Functional architecture

Match rules

The AllJoyn framework supports D-Bus match rules for the consumer application to
request and receive specific set of messages. Match rules describe the messages that
should be sent to a consumer application based on the contents of the message. Consumer
applications can add a match rule by using the AddMatch method exposed by the AllJoyn
router. Match rules are specified as a string of comma-separated key/value pairs.

For example:

Match Rule = ”type=’signal’,interface=’org.freedesktop.DBus’,path=’/bar/foo’”

Message routing

The AllJoyn framework uses the D-Bus marshaling format and the D-Bus message format
(Section 2.2) and extends it with additional header flags and header fields for AllJoyn
messages. The AllJoyn message format is used to send messages between AllJoyn routers
as well as between the application and the AllJoyn router.

The AllJoyn system supports message routing based on session ID and destination
fields for application-specific messages. A session ID-based routing table is formed
and maintained at the AllJoyn router for routing messages. Conceptually, for every
session ID, the routing table maintains a list of destination application endpoints for
every application participating in the session and next hop bus-to-bus endpoint for those
application endpoints which are remote.

When selecting a route, sessionId is used first to find a matching entry in the rout-
ing table. Destination field is used next to select a bus-to-bus endpoint, for remote
destinations.

2.3 system description 22

2.3.5 AllJoyn session

After an AllJoyn consumer has discovered some desired services offered by provider
devices, the next step is to establish an AllJoyn session with the provider to consume
those services. An AllJoyn session is a logical connection between consumer and provider
applications that allows these applications to communicate with each other and exchange
data.

A provider application creates an AllJoyn session and waits for consumer applications
to join the session. The provider AllJoyn router assigns a unique session ID for the
session and also creates a session map storing the relevant session information.

The AllJoyn system supports the following types of session based on allowed number
of participants:

point-to-point session An AllJoyn session with a single consumer (joiner) and
single provider (session host) endpoints participates in the session.

multi-point session An AllJoyn session that involves a provider application (session
host) and one or more consumer applications (joiners) participating in the same
session.

A compatible set of session options must be agreed upon between two endpoints to
establish a session. If a compatible set of session options cannot be established between
two endpoints, session establishment fails. Table 5 capture the session options supported
for the AllJoyn session.

OPTION DESCRIPTION

traffic Specifies if type of traffic sent over the session is message-based or raw.

isMultipoint Specifies whether the session is multi-point or point-to-point.

proximity Specifies the proximity scope for this session (physical or network).

transport Specifies the allowed transports for this Session between TCP, UDP or
any.

Table 5: Session options

2.3.6 Sessionless signal

The sessionless signal is an AllJoyn feature that enables broadcasting of signals to all
reachable nodes in the AllJoyn proximal network. This is different than the session-based
signals described in Section 2.3.5, where signals are sent only to participants connected
over a given session or multiple sessions.

Sessionless signals are logically broadcast signals and any application on the AllJoyn
proximal network interested in receiving sessionless signals will receive all sessionless

2.3 system description 23

signals sent by any other application on that network. The AllJoyn system design refers
to sessionless signals as logically broadcast because signals themselves are not broadcast,
only an indication for signals is sent over multicast to all the nodes on the network.

Applications can specify match rules, as described in Section 2.3.4, to receive a specific
set of sessionless signals and the AllJoyn router filters out signals based on those match
rules.

2.3.7 AllJoyn security

The AllJoyn system provides a security framework for applications to authenticate each
other and send encrypted data between them. Authentication and data encryption are
done at the application level.

An application can tag an interface as secure to enable authentication and encryption.
Then, all of the methods, signals, and properties of a secure interface are considered
secure. Authentication and encryption related key exchange are initiated on demand
when a consumer application invokes a method call on a secure interface, or explicitly
invokes an API to secure the connection with a remote peer application.

Authentication and encryption keys are stored in a Key Store. Storage and data used
to implement the AllJoyn security are described below.

Key store

The Key Store is a local storage used to persistently store authentication-related keys, and
to store master secret and associated TTL. Multiple applications on a device can share a
given key store.

Authentication GUID

The Authentication GUID is a GUID assigned to an application for authentication purposes.
This GUID is persisted in the key store and provides a long-term identity for the
application.

Master secret

The Master Secret is a key (48 bytes long) shared between authenticated peer applications.
Two peer applications generate the same master secret independently, and store it
persistently in the key store.

Session key

A cryptographic Session Key (128 bits long) used to encrypt point-to- point data traffic
between two peer applications. A separate session key is maintained for every connected
peer application. A session key is valid as long as peers are connected.

2.3 system description 24

Group key

The Group Key (128 bits long) is a cryptographic key used to encrypt point-to-multipoint
data traffic sent out by a provider application. Only provider applications use the group
key to send out encrypted broadcast signals. Applications exchange their group keys
using an encrypted method call that involves the session key.

The AllJoyn framework uses the Simple Authentication and Security Layer (SASL)
security framework for authentication, which makes use of D-Bus defined SASL protocol
D-Bus Specification for exchanging authentication related data.

The session key and the group keys are generated using the algorithm described in
the Transport Layer Security Protocol [8]. Message encryption is done using AES CCM
algorithm [9].

3
D E V I C E S Y S T E M B R I D G E

In order to realize the full capabilities of AllJoyn, companies and users might need to
replace their existing device with devices that support AllJoyn or update their existing
devices with AllJoyn-capable firmware. In many cases, these options are not feasible due
to device cost, technical limitations, or AllJoyn firmware availability for the device.
In order to address these challenges, an element that behaves as a bridge between AllJoyn
and other technologies is needed.

Microsoft developed its own bridge and called it Device System Bridge [10]. The DSB
enables non-AllJoyn devices to be included in the AllJoyn ecosystem. A DSB uses existing
device interfaces to access the non-AllJoyn devices and creates a virtual proxy of these
devices on the AllJoyn bus.

In this chapter we describe the DSB made by Microsoft, the reason why we preferred
to implement it in another way, and what it would be like our bridge if we had follow
the Microsoft specification.

3.1 microsoft dsb

Each DSB is implemented as a separate AllJoyn application. Windows 10 provides an
AllJoyn router node as part of the OS and the DSB depends on these OS supplied AllJoyn
APIs and the AllJoyn Framework for enablement. In Windows, the DSB is designed as a
single Universal Application for each DSB type, e.g. Z-Wave or BACnet.

3.1.1 DSB overview

A DSB has three structural components:

communication stack provides interconnection to the purpose built device system.

adapter instantiates and manages a virtual device on behalf of each device from the
alternative network that can be exposed to the AllJoyn bus. This information is
consumed by the Bridge.

bridge instantiates a bus attachment for each of these devices. The bridge also exposes
an AllJoyn bus attachment for itself with three bus objects: one which implements
the AllJoyn standard About interface and two configuration interfaces, one for the
Bridge and one for the Adapter.

25

3.1 microsoft dsb 26

Figure 6 shows the DSB overview with two pre-existing networks: Z-Wave and
BACnet.

Figure 6: Device System Bridge Overview

The configuration interfaces provide settings to the DSB including:

• Access information for connecting to the alternate network and its devices.

• List of devices to be exposed as AllJoyn bus object.

• Security settings for each bus object.

3.1.2 Configuration

There are two separate configuration interfaces exposed by a DSB one for the Bridge and
one for the Adapter. The configuration structure for the Bridge interface is the same for
each DSB containing the bridge and device configuration. The structure of the Adapter
is specific for each DSB containing e.g. access information for the pre-existing device
network.

Bridge configuration

The XML file below shows an example of a Bridge configuration for three devices, only
one of which is exposed to the AllJoyn bus. When a DSB runs the first time, a default
configuration file is generated.

3.1 microsoft dsb 27

<?xml version="1.0" encoding="utf-8"?>

<BridgeConfig>

<Settings>

<Bridge>

<KEYX></KEYX>

</Bridge>

<Device>

<DefaultVisibility>false</DefaultVisibility>

<KEYX></KEYX>

<USERNAME></USERNAME>

<PASSWORD></PASSWORD>

<ECDHEECDSAPRIVATEKEY></ECDHEECDSAPRIVATEKEY>

<ECDHEECDSACERTCHAIN></ECDHEECDSACERTCHAIN>

</Device>

</Settings>

<Objects>

<Object Id="001-001-001" Visible="false">

<Desc>2 X Switch</Desc>

</Object>

<Object Id="001-002-001" Visible="true">

<Desc>Dim Control 725</Desc>

</Object>

<Object Id="001-003-001" Visible="false">

<Desc>Temperature Sensor 155</Desc>

</Object>

</Objects>

</BridgeConfig>

It includes authentication keys for Bridge and Device, and unique ID, visibility and
description for each virtual device as it appears on the AllJoyn Network.

Adapter configuration

The sample XML below shows the configuration for a BACnet DSB adapter. The configu-
ration details are Adapter specific and are defined by each adapter implementer.

<?xml version="1.0" encoding="UTF-8"?> <BACnetConfig>

<BACnetStack BBMD_IPAddress="xxx.xxx.xxx.xxx" BBMD_Port="yyyyy"

NetworkInterface="" RequestPriority="8" DeviceInstanceMin="-1"

DeviceInstanceMax="-1"/>

<AllowedDeviceList>

<Allowed>device_model_filter_token</Allowed>

</AllowedDeviceList>

</BACnetConfig>

3.1 microsoft dsb 28

3.1.3 Development

Microsoft provides the Visual Studio DSB Template, an extension to Visual Studio that
lets developers create new DSB projects [11]. It includes the DSB components such as
the Bridge and a shell project for the adapter. These templates are provided to enable
building AllJoyn Device System Bridges for Visual C# and Visual C++ projects.

The diagram in Figure 7 shows the classes developers will use in the Microsoft DSB
template to create an abstraction of the native devices that need to be bridged into AllJoyn.
The Bridge will use the instance of the adapter class to create the bus attachments for
each device in the Adapter.devices list.

Figure 7: Class Diagram: DSB Adapter

Microsoft provides an API in order to map Bridge interface object to AllJoyn [12].
The main components are the following interfaces and methods.

IAdapter

An IAdapter represents the controller for a system of one or more devices that map to
the AllJoyn bus. IAdapter declares interfaces necessary to support device enumeration,
general configuration and life-cycle management. It also declares device properties,
methods and signals. To expose a device as an AllJoyn service, it is necessary to
implement a concrete class that inherits from IAdapter.

The IAdapter interface declares certain properties that must be implemented, like
the application name and the application ID, that will be mapped to AllJoyn. The class
also includes the GetConfig and SetConfig methods, used for accessing the adapter’s
configuration data described in section 3.1.2.

3.2 coap bridge as a dsb 29

IAdapterDevice

From the bridge’s perspective a device represents a device that the adapter implementer
wants exposed to the AllJoyn bus as an AllJoyn Service. Each device has an AllJoyn
interface for exposing all properties, method and signals encapsulated by the device.

IAdapterProperty, IAdapterMethod, IAdapterSignal

Set of the properties, the methods and the signals that a device exposes to AllJoyn.
Properties and parameters are IAdapterValue classes.

3.1.4 Limitations

The main limitation of the DSB is the Microsoft environment, that constrains the bridge
to run on Microsoft products. We preferred to develop our bridge in Java, in order to
obtain a more portable and versatile product. Moreover, Java allows us to communicate
with the CoAP network using Californium, a stable and powerful CoAP framework.

Microsoft developed its DSBs for some technologies like ZigBee [13] and BACnet [14].
We analyzed them and we noticed that each of them requires a pre-configuration that
makes the bridge less versatile, especially on on-line device arrivals.

For example, in the Mock BACnet Adapter all devices need to be previously con-
figured: device ID, name, vendor, description and the other device properties must be
set in a device structure before the bridge starts to run. It also implies the possibility of
inconsistency of data between the device descriptor and the physical device.

Otherwise, the ZigBee Adapter allows device arrivals and removals, but it maps
devices using a dictionary. ZigBee adapter only supports some devices defined in ZigBee
Light Link or Home Automation profiles. This means that it only implements the neces-
sary ZCL clusters and ZDO commands to handle them. If an arriving device does not
belong to a pre-defined cluster, it cannot be recognized by the bridge.

We prefer a more elastic solution, where every device that is supposed to be available
for the AllJoyn network can be so, regardless of the arrival time and the kind of device
this is. In the CoAP a device registers its resources to the bridge, and then they will be
mapped into AllJoyn objects without the need of pre-configuration or device-specific
dictionary.

3.2 coap bridge as a dsb

Even if we preferred to develop the bridge in a more portable Java environment, it
was possible to follow the Microsoft way and to develop a CoAP bridge as a DSB, for
Microsoft products. AllJoyn objects and interfaces, and the methods and properties they
implement, used to represent CoAP devices and resources, will be analyzed in a later

3.2 coap bridge as a dsb 30

chapter. In the meantime, we can briefly show how to associate our bridge with the
Device System Bridge, i.e. how to make a CoAP DSB using the Microsoft API.

We present two solutions that could be implemented. The first one uses the bridge
device as an IAdapterDevice which contains all the CoAP resources; the second solution
maps the CoAP devices as IAdapterDevice and each of them contains its own resources.

3.2.1 Bridge device as IAdapterDevice

The CoAP DSB could be developed with the bridge device mapped into an IAdapterDe-
vice. In this way the devices in the AllJoyn network do not know anything about the
CoAP devices and all the CoAP resources are presented by the bridge. However, this
solution also has a lot of advantages: less information to be stored in the bridge, easier
management of resources and freedom in on-line device arrivals and removals. The
first statement is due to the fact that in this model the bridge has not to store neither
information and configuration for each device it presents nor BusAttachment and other
elements AllJoyn requires. The second and third statements are due to the fact that in
the standard CoAP solution, the CoAP devices register to the Resource Directory giving
only information about the resources they want to register, and here the focus is exactly
on the resources and not on the devices.

In particular, a device which wants to provide its resources to the AllJoyn network,
registers the resources in the Resource Directory and they are automatically and easily
provided to the AllJoyn devices, without a previous configuration. The same thing
happens during resource removals.

So, we opt to use a model like this one. In the Microsoft environment the bridge
could be developed as follow:

• The CoAPBridgeAdapter is the main class of the CoAP adapter. This class derives
from IAdapter and contains a BridgeDevice instance. CoAPBridgeAdapter class uses
CoAPAdapterSignal to signal device arrival or removal.

• The only one device we see is the BridgeDevice. This class derives from the IAdapter-
Device and contains a collection of CoAPResource instances.

• The CoAPResource class represents a CoAP resource provided by a CoAP device
and it derives from IAdapterProperty. The class contains a collection of CoAPMethod
instances, a collection of CoAPProperty instances and an istance of CoAPSignal.
To be more accurate it contains a collection of method classes (Get, Post, Delete,
Registration and Cancellation methods) which derive from the CoAPMethod abstract
class. Similarly, it contains a collection of property classes (InterfaceDescription and
ResourceType properties) which derive from the CoAPProperty abstract class. The
signal class Notification represents the CoAP notification and it derives from the
CoAPSignal abstract class.

3.2 coap bridge as a dsb 31

• The CoAPMethod class is an abstract class that represents the CoAP methods.
It derives from IAdapterMethod. This class contains a list of input and output
parameters, that represent the request and response messages. These parameters
are IAdapterValue classes.

• The CoAPSignal class is an abstract class that represents the CoAP notifications. It
derives from IAdapterSignal. The notification message derives from IAdapterValue.

• The CoAPProperty class is an abstract class that represents the properties of a CoAP
resource. It derives from IAdapterAttribute. This class contains an instance of
IAdapterValue which contains the property value.

• The CoAPAdapterSignal class is used to handle notifications such as device arrival
or removal. This class derives from IAdapterSignal.

3.2.2 CoAP device as IAdapterDevice

The second way to develop a CoAP DSB could be achieved by mapping each CoAP device
as an IAdapterDevice. Using this solution the bridge presents to the AllJoyn network a
virtual device for each CoAP device, and each of them contains its set of resources. This
DSB is more similar to the DSBs that Microsoft developed for other technologies with
respect to the first solution we presented, but it is not CoAP friendly.

The meaning of the last statement is for the fact that we cannot use the CoAP Resource
Directory as it was defined, because now the bridge requires more information for each
device that wants to register. Furthermore, the bridge has to contain a dictionary that
allows to map all the device information, e.g. device manufactor, device model and so
on; there is also the possibility that a device cannot be recognized and mapped, since it
is not present in the dictionary. Microsoft used this DSB model in the ZigBee Adapter,
where it only supports some devices defined in cluster profiles.

Otherwise, the bridge could present to the AllJoyn network only pre-configured de-
vices. In this way no changes to the CoAP Resource Directory and on the CoAP devices
are needed, but the bridge no longer supports on-line device arrivals and removals.
Microsoft used this DSB model in the Mock BACnet Adapter, where each device must be
configured before the bridge starts.

Due to the limitations described above, we preferred not to follow this model of
bridge. However, it could be developed as follow:

• The CoAPAdapter is the main class of the CoAP adapter. This class derives from
IAdapter and contains a collection of CoAPDevice instances. The CoAPAdapter class
uses CoAPAdapterSignal to signal device arrival or removal.

• The CoAPDevice class represents a CoAP device. This class derives from the
IAdapterDevice and contains a collection of CoAPResource instances.

3.2 coap bridge as a dsb 32

• The CoAPResource class represents a CoAP resource provided by a CoAP device
and it derives from IAdapterProperty. The class contains a collection of CoAPMethod
instances, a collection of CoAPProperty instances and an istance of CoAPSignal.
To be more accurate it contains a collection of method classes (Get, Post, Delete,
Registration and Cancellation methods) which derive from the CoAPMethod abstract
class. Similarly, it contains a collection of property classes (InterfaceDescription and
ResourceType properties) which derive from the CoAPProperty abstract class. The
signal class Notification represents the CoAP notification and it derives from the
CoAPSignal abstract class.

• The CoAPMethod class is an abstract class that represents the CoAP methods.
It derives from IAdapterMethod. This class contains a list of input and output
parameters, that represent the request and response messages. These parameters
are IAdapterValue classes.

• The CoAPSignal class is an abstract class that represents the CoAP notifications. It
derives from IAdapterSignal. The notification message derives from IAdapterValue.

• The CoAPProperty class is an abstract class that represents the properties of a CoAP
resource. It derives from IAdapterAttribute. This class contains an instance of
IAdapterValue which contains the property value.

• The CoAPAdapterSignal class is used to handle notifications such as device arrival
or removal. This class derives from IAdapterSignal.

3.2.3 Configuration

As it happens in the DSBs developed by Microsoft, the Adapter configuration file will
contain the configuration details of the bridge with respect to the pre-existing device
network, i.e. the CoAP network. It necessarily will include the device IP address and
port.

4
D ATA M A P P I N G

The key part of the bridge design is the data mapping process. It means that we have
to find the best way to model a CoAP resource into an AllJoyn object, to choose how to
represent CoAP messages into the AllJoyn network, and how the communication works
between the two networks.

The Constrained Application Protocol (CoAP) is a web transfer protocol based on
a REST architecture. CoAP provides a request/response interaction model between
application endpoints and includes key concepts of the Web such as URIs and Internet
media types. It is designed to easily interface with HTTP.

On the other hand, AllJoyn is an object-oriented software framework, based on the
D-Bus specification. Objects have methods, signals and properties.

Having said that, it can be seen how out of touch the two technologies are and how
many ways to map the data exist.

This chapter describes the data mapping process. It starts from the Resource Direc-
tory, that allows CoAP devices to register their resources. The bridge has to store the
information that it needs in order to identify a device and to characterise a resource.

Then, we show how the request and response messages are represented, which means
that CoAP messages must be translated into Java objects. It also includes a selection of
CoRE attributes that should be provided to the AllJoyn applications, with the goal of an
user-friendly experience.

The last section focuses on the AllJoyn objects that represent CoAP resources. In
particular, the objects in the AllJoyn side have to implement the more suitable methods
for a good modelling of a REST interface. The section also covers the implementation
of the CoAP observing service in the AllJoyn network, using the signals the framework
provides.

4.1 resource directory

The discovery of resources offered by a constrained server is very important in machine-
to-machine applications where there are no humans in the loop and static interfaces
result in fragility.

Discovery of resources hosted by constrained web servers is specified by the CoRE
Link Format [15]. This specification however only describes how to discover resources
from the web server that hosts them by requesting ”/.well-known/core”. In many M2M
scenarios, direct discovery of resources is not practical due to sleeping nodes, disperse

33

4.1 resource directory 34

networks, or networks where multicast traffic is inefficient. These problems can be solved
by employing an entity called a Resource Directory, which hosts descriptions of resources
held on other servers, allowing lookups to be performed for those resources.

A Resource Directory (RD) is used as a repository for resources hosted on other web
servers, which are called endpoints (EP). An endpoint is a web server associated with a
scheme, IP address and port (called Context), thus a physical node may host one or more
endpoints. The RD implements a set of REST interfaces for endpoints to register and
maintain sets of resource directory entries.

Endpoints are assumed to proactively register and maintain resource directory entries
on the RD, which are soft state and need to be periodically refreshed. An endpoint
is provided with interfaces to register, update and remove a resource directory entry.
Furthermore, a mechanism to discover an RD using the CoRE Link Format is defined.

Figure 8: Sequence Diagram: Resource Directory

Figure 8 shows the sequence diagram for the Resource Directory. In particular, the
diagram is divided into four phases: Discovery, Registration, Update and Removal.

4.1.1 Discovery

The REST interfaces between an RD and endpoints is called the Resource Directory Function
Set. Before an endpoint can make use of an RD, it must first know the RD’s IP address,
port and the path of its RD Function Set.

4.1 resource directory 35

Discovery is performed by sending either a multicast or unicast GET request to
”/.well-known/core” and including a Resource Type (rt) parameter with the value ”core.rd”
in the query string. Upon success, the response will contain a payload with a link format
entry for each RD.

The discovery request interface is specified as follows:

interaction: EP→ RD

method: GET

uri template: /.well-known/core{?rt}

uri template variables:

• rt: Resource Type (optional). May contain the value ”core.rd” or ”core.rd*”.

content-type: application/link-format (if any)

The following response codes are defined for this interface:

success: 2.05 ”Content” with an application/link-format payload containing one or more
matching entries for the RD resource.

failure: 4.04 ”Not Found” is returned in case no matching entry is found for a unicast
request.

failure: 4.00 ”Bad Request” is returned in case of a malformed request for a unicast
request.

failure: No error response to a multicast request.

The following example shows an endpoint discovering an RD using this interface,
thus learning that the base RD resource is, in this example, at /rd.

req: GET coap://[ff02::1]/.well-known/core?rt=core.rd*

res: 2.05 Content

</rd>;rt="core.rd"

It is however expected that RDs will also be discoverable via other methods depending
on the deployment, including assuming a default location (e.g. on an Edge Router in a
LoWPAN), by assigning an anycast address to the RD or using DHCP.

4.1 resource directory 36

4.1.2 Registration

After discovering the location of an RD Function Set, an endpoint may register its re-
sources using the registration interface. This interface accepts a POST from an endpoint
containing the list of resources to be added to the directory as the message payload. All
parameters except the endpoint name are optional. The RD then creates a new resource
or updates an existing resource in the RD and returns its location. An endpoint must use
that location when refreshing registrations using this interface. Endpoint resources in the
RD are kept active for the period indicated by the lifetime parameter. The endpoint is
responsible for refreshing the entry within this period using either the registration or
update interface. The registration interface must be implemented to be idempotent, so
that registering twice with the same endpoint parameter does not create multiple RD
entries.

The registration request interface is specified as follows:

interaction: EP→ RD

method: POST

uri template: /{+rd}{?ep,lt,con}

uri template variables:

• rd: RD Function Set path (mandatory). This is the path of the RD Function
Set, as obtained from discovery.

• ep: Endpoint name (mandatory). The endpoint name is an identifier that must
be unique within a domain.

• lt: Lifetime (optional). Lifetime of the registration in seconds. Range of 60-
4294967295. If no lifetime is included, a default value of 86400 (24 hours)
should be assumed.

• con: Context (optional). This parameter sets the scheme, address and port at
which this server is available in the form scheme://host:port. In the absence of
this parameter the scheme of the protocol, source IP address and source port
of the register request are assumed.

content-type: application/link-format

The following response codes are defined for this interface:

success: 2.01 ”Created”. This Location must be a stable identifier generated by the
RD as it is used for all subsequent operations on this registration. The resource
returned in the Location is only for the purpose of the Update (POST) and Removal
(DELETE), and must not implement GET or PUT methods.

4.1 resource directory 37

failure: 4.00 ”Bad Request”. Malformed request.

failure: 5.03 ”Service Unavailable”. Service could not perform the operation.

The following example shows an endpoint with the name ”node1” registering two
resources to an RD using this interface.

req: POST coap://rd.example.com/rd?ep=node1

Content-Format: 40

Payload:

</sensors/temp>;ct=41;rt="temperature-c";if="sensor",

</sensors/light>;ct=41;rt="light-lux";if="sensor"

res: 2.01 Created

Location: /rd/4521

4.1.3 Update

The update interface is used by an endpoint to refresh or update its registration with an
RD. To use the interface, the endpoint sends a POST request to the resource returned in
the Location option in the response to the first registration. An update may update the
lifetime or context parameters if they have changed since the last registration or update.
Parameters that have not changed should not be included in an update. Upon receiving
an update request, the RD resets the timeout for that endpoint and updates the scheme.

The update request interface is specified as follows:

interaction: EP→ RD

method: POST

uri template: /{+location}{?lt,con}

uri template variables:

• location: This is the Location path returned by the RD as a result of a successful
earlier registration.

• lt: Lifetime (optional). Lifetime of the registration in seconds. Range of 60-
4294967295. If no lifetime is included, a default value of 86400 (24 hours)
should be assumed.

• con: Context (optional). This parameter sets the scheme, address and port at
which this server is available in the form scheme://host:port. In the absence of
this parameter the scheme of the protocol, source IP address and source port
of the register request are assumed.

4.1 resource directory 38

content-type: application/link-format

The following response codes are defined for this interface:

success: 2.04 ”Changed”. The update was successfully processed.

failure: 4.00 ”Bad Request”. Malformed request.

failure: 4.04 ”Not Found”. Registration does not exist (e.g. may have expired).

failure: 5.03 ”Service Unavailable”. Service could not perform the operation.

The following example shows an endpoint updating its registration at an RD using
this interface.

req: POST /rd/4521

res: 2.04 Changed

4.1.4 Removal

Although RD entries have soft state and will eventually timeout after their lifetime, an
endpoint should explicitly remove its entry from the RD if it knows it will no longer be
available (for example on shut-down). This is accomplished using a removal interface on
the RD by performing a DELETE on the endpoint resource.

The removal request interface is specified as follows:

interaction: EP→ RD

method: DELETE

uri template: /{+location}

uri template variables:

• location: This is the Location path returned by the RD as a result of a successful
earlier registration.

The following response codes are defined for this interface:

success: 2.02 ”Deleted” upon successful deletion.

failure: 4.00 ”Bad Request”. Malformed request.

failure: 4.04 ”Not Found”. Registration does not exist (e.g. may have expired).

failure: 5.03 ”Service Unavailable”. Service could not perform the operation.

4.2 resource directory entries 39

The following examples shows successful removal of the endpoint from the RD.

req: DELETE /rd/4521

res: 2.02 Deleted

4.2 resource directory entries

4.2.1 Entries format

The resources obtained during the registration phase, as seen in 4.1.2, are kept in a
database managed by the Resource Directory. Each resource involves inserting a new
entry in the database. The entries remain in the database until the end of the lifetime
specified at registration or when explicitly called the resource removal.

Each entry in the RD includes:

• Endpoint Name, that is the local unique identifier of the CoAP node;

• the Endpoint Context, i.e. address and port at which this server is available;

• the Resource Path, that identifies the resource within the device;

• the Context Format, in order to know the resource representation format;

• the Resource Type and Interface Description strings that act as information for clients;

• the resource Lifetime, at the end of which the resurce is no longer valid;

• the Location, that uniquely represents the device within the RD.

Table 6 shows the database entries format.

NAME QUERY TYPE DESCRIPTION

Endpoint Name ep string Unique local name

Endpoint Context con ip:port EP IP address and port

Location location string Used by the EP for Update and Removal

Resource Path rd string Path of the resource in the EP

Context Format ct int Resource representation

Resource Type rt string Opaque string for resource description

Interface Description if string Opaque string for interface description

Lifetime lt int Lifetime of the resource in seconds

Table 6: RD Entry Format

4.3 coap messages in the alljoyn network 40

Not all the fields are mandatory. In particular, ep, con, rd and location are mandatory,
the other fields are optional. If optional fields are not present, default values are assigned:
rt and if have a null string as default value, and lt is set to 24 hours.

A resource is uniquely identified within the Resource Directory by the pair location
and rd since they uniquely identify the device and the resource within the device. So,
this pair serves as the primary key of the resource.

Each entry in the database has a timer initialized at Lifetime, at the end of which the
resource will be removed.

4.2.2 Storage of resources

Currently, the entry fields are stored in several hash maps in a volatile manner, but
they can be easily stored in a non-volatile way by the implementation of a database. In
particular, there are five hash maps:

• A map containing the (identifier, context) pair for each registered node. The identifier
is the local unique identifier of the CoAP node specified during the registration
phase.

• A map containing the (resource, node) pair for each registered resource, where
resource is the resource path within the RD.

• A map containing the (resource, type) pair for each registered resource. The type is
the resource type field rt set during the resource registration, if specified.

• A map containing the (resource, interface) pair for each registered resource. The
interface is the interface description field if set during the resource registration, if
specified.

• A map containing the (resource, path) pair for each registered resource. The two
fields are, respectively, the resource path within the RD and the resource path
within the node.

4.3 coap messages in the alljoyn network

CoAP request and response semantics are carried in CoAP messages. The messages that
are exchanged in the AllJoyn network should carry request and response messages of
the same format specified in the Constrained Application Protocol [2].

4.3 coap messages in the alljoyn network 41

4.3.1 Message fields

Not all the CoAP message fields are useful to the AllJoyn application, thus we analyze
which fields should be included and which not:

version: It must be set to 1, otherwise the message will be ignored. Not included.

type: Indicates if this message is of type Confirmable, Non-confirmable, Acknowledgement,
or Reset. It is used in the CoAP side and it regards a lower level respect to AllJoyn.
Not included.

token length: Indicates the length of the variable-length Token field, not used here.
Not included.

code: In case of a request, the Code field indicates the Request Method; in case of a
response, a Response Code. Included.

message id: Used to detect message duplication. As for the Type field, it regards a
lower level. Not included.

token: The Token value is used to correlate requests and responses. It regards a lower
level, again. Not included.

options: Message options, explained later. Included.

payload: The body data. Included.

The included fields and the types with which they are represented are shown in Table
7. The correspondence between AllJoyn type ID (used in Table 7) and AllJoyn type is
shown in Table 13.

FIELD AJ TYPE JAVA TYPE

Code u enum

Options r Options

Payload ay byte[]

Table 7: Message Fields

4.3.2 Option fields

Both requests and responses may include a list of one or more options. The options in
the Options field and their usefulness in AllJoyn are the following:

content-format: It indicates the representation format of the message payload. The
representation format is given as a numeric Content-Format identifier. Included.

4.3 coap messages in the alljoyn network 42

etag: It is a resource-local identifier for differentiating between representations of the
same resource that vary over time. The ETag option in a response provides the
current value of the entity-tag for the ”tagged representation”. In a GET request,
an endpoint that has one or more representations previously obtained from the
resource, and has obtained ETag response options with these, can specify an instance
of the ETag option for one or more of these stored responses. Included.

location-path & location-query: The two options together indicate a relative
URI that consists either of an absolute path, a query string, or both. A combination
of these options is included in a 2.01 (Created) response to indicate the location
of the created resource. Each Location-Path option specifies one segment of the
absolute path to the resource, and each Location-Query option specifies one argument
parameterizing the resource. Not included.

max-age : It indicates the maximum time a response may be cached before it is consid-
ered not fresh. Caching is managed by the Bridge. Not included.

proxy-uri & proxy-scheme: They are used to make a request to a forward-proxy.
Proxying is managed by the Bridge. Not included.

uri-host, uri-port, uri-path, & uri-query: They are used to specify the target
resource of a request to a CoAP origin server. Since host, port and path are managed
by the Bridge, they are not used in AJ messages. About the Uri-Query field, the
query filtering will be handled in a more user-friendly manner. Not included.

accept: It can be used to indicate which Content-Format is acceptable to the client. The
server returns the preferred Content-Format if available. If the preferred Content-
Format cannot be returned, then a 4.06 ”Not Acceptable” will be sent as a response.
Included.

if-match & if-none-match: The first one may be used to make a request condi-
tional on the current existence or the value of an ETag for one or more represen-
tations of the target resource. The second one may be used to make a request
conditional on the nonexistence of the target resource. Included.

size1: It provides size information about the resource representation in a request. In-
cluded.

observe: When included in a GET request, it extends the GET method so it does not
only retrieve a current representation of the target resource, but also requests the
server to add or remove an entry in the list of observers of the resource. When
included in a response, the Observe option identifies the message as a notification.
Here the observing service will be implemented in a more user-friendly manner.
Not included.

Table 8 lists the included options and their types.

4.3 coap messages in the alljoyn network 43

OPTION AJ TYPE JAVA TYPE

Content-Format u int

ETag ay byte[]

Accept u int

If-Match ay byte[]

If-None-Match b boolean

Size1 u int

Table 8: Option Fields

Since it may be present more than one ETag - and then more than one If-Match field
- and due to the problems that may arise in AllJoyn during data marshalling/unmar-
shalling with arrays of arrays of bytes, we preferred to store the ETags and the If-Match
fields as strings.

We represent the options as a class:

public class Options {

public int contentFormat;

public String[] etags;

public int accept;

public String[] ifMatch;

public Boolean ifNoneMatch;

public int size1;

}

Since AllJoyn cannot recognize the parameters signature during data marshalling if
they contain private fields, all the classes we use must have public attributes. It affects
the options class as well as the request and the response messages.

4.3.3 Query filtering

The syntax of a CoAP URI Scheme is the follow one:

coap-URI = ”coap:” ”//” host [”:” port] path [”?” query]

It is composed by the Uri-Host, the Uri-Port, the Uri-Path and the Uri-Query, where
each option holds the following values:

• The Uri-Host option specifies the Internet host of the resource being requested. It is
managed by the AllJoyn framework and the Bridge.

4.3 coap messages in the alljoyn network 44

• The Uri-Port option specifies the transport-layer port number of the resource. It is
managed by the AllJoyn framework and the Bridge.

• The Uri-Path option specifies a segment of the absolute path to the resource. It is
managed by the Bridge.

• Each Uri-Query option specifies one argument parameterizing the resource.

The Uri-Query field in the option list is used to perform query filtering. The query
serves to further parameterize the resource. It consists in a sequence of arguments
separated by the ”&” character. An argument is in the form of a ”key=value” pair. Since
in CoAP the query is represented by a string, it would be better to do query filtering in a
more user-friendly way in AllJoyn using a dictionary of key-value pairs (Table 9).

AJ TYPE JAVA TYPE

a{ss} Map<String,String >

Table 9: Query Attributes

Table 10 shows an example of transition from the URI to the query attributes.

URI KEY VALUE

/.well-known/core?rt=light-lux rt light-lux

rt light-lux

/.well-known/core?rt=light-lux&if=sensor&ct=41 if sensor

ct 41

Table 10: Example: Query Attributes

An AllJoyn application specifies zero or more query options, the Bridge composes
the URI from them, and then it sends the message to the CoAP Server.

4.3.4 Request message

A request is initiated by setting the Code field in the CoAP header to a Method Code and
including request information. The Code field is a 8-bit unsigned integer, split into a 3-bit
class (most significant bits) and a 5-bit detail (least significant bits). The class can indicate
a request (0), a success response (2), a client error response (4), or a server error response
(5).

In the Request Message the Code field can assume one of the CoAP Method Codes in
Table 11.

4.3 coap messages in the alljoyn network 45

CODE NAME INTEGER VALUE

0.01 GET 1

0.02 POST 2

0.03 PUT 3

0.04 DELETE 4

Table 11: Method Codes

The request message does not need the Code field in AllJoyn, since the code is assigned
by the Bridge according to the called method (e.g., the Get method corresponds to the
GET code). Therefore, the Request Message includes the message fields (4.3.1), the
options (4.3.2) and the query attributes (4.3.3).

The CoAPRequestMessage Java interface is used in the request messages.

public interface CoAPRequestMessage {

public Options getOptions();

public void setOptions(Options options);

public Map<String,String> getAttributes();

public void setAttributes(Map<String,String> attributes);

public byte[] getPayload();

public String getPayloadString();

public void setPayload(byte[] payload);

public void setPayload(String payload);

}

The CoAPRequestMessage interface is implemented by the RequestMessage class.

4.3.5 Response message

After receiving and interpreting a request, a server responds with a CoAP response.
A response is identified by the Code field in the CoAP header being set to a Response
Code. As descibed in 4.3.4, the upper three bits of the 8-bit Code field define the class of
response. There are three classes of Response Codes:

2 - success: The request was successfully received, understood, and accepted.

4 - client error: The request contains bad syntax or cannot be fulfilled.

5 - server error: The server failed to fulfill an apparently valid request.

4.3 coap messages in the alljoyn network 46

We simply consider the code as an unsigned integer, without its division into class
and detail. The Code field in the ResponseMessage class can assume one of the CoAP
Response Codes in Table 12.

CODE NAME INTEGER VALUE
2.01 Created 65

2.02 Deleted 66

2.03 Valid 67

2.04 Changed 68

2.05 Content 69

4.00 Bad Request 128

4.01 Unauthorized 129

4.02 Bad Option 130

4.03 Forbidden 131

4.04 Not Found 132

4.05 Method Not Allowed 133

4.06 Not Acceptable 134

4.12 Precondition Failed 140

4.13 Request Entity Too Large 141

4.15 Unsupported Content-Format 143

5.00 Internal Server Error 160

5.01 Not Implemented 161

5.02 Bad Gateway 162

5.03 Service Unavailable 163

5.04 Gateway Timeout 164

5.05 Proxying Not Supported 165

Table 12: Response Codes

The response code is represented by the ResponseCode enumerated type, contained in
the CoAP class.

public enum ResponseCode {

CREATED(65),

DELETED(66),

VALID(67),

CHANGED(68),

CONTENT(69),

CONTINUE(95),

BAD_REQUEST(128),

UNAUTHORIZED(129),

BAD_OPTION(130),

FORBIDDEN(131),

NOT_FOUND(132),

METHOD_NOT_ALLOWED(133),

NOT_ACCEPTABLE(134),

PRECONDITION_FAILED(140),

4.4 coap resources in the alljoyn network 47

REQUEST_ENTITY_TOO_LARGE(141),

UNSUPPORTED_CONTENT_FORMAT(143),

INTERNAL_SERVER_ERROR(160),

NOT_IMPLEMENTED(161),

BAD_GATEWAY(162),

SERVICE_UNAVAILABLE(163),

GATEWAY_TIMEOUT(164),

PROXY_NOT_SUPPORTED(165);

}

In addition to the code, the ResponseMessage includes the message fields (4.3.1) and
the options (4.3.2).

The ResponseMessage class implements the CoAPResponseMessage Java interface.

public interface CoAPResponseMessage {

public CoAP.ResponseCode getCode();

public void setCode(CoAP.ResponseCode code);

public Options getOptions();

public void setOptions(Options options);

public byte[] getPayload();

public String getPayloadString();

public void setPayload(byte[] payload);

public void setPayload(String payload);

}

4.4 coap resources in the alljoyn network

The resources obtained should be available to the AllJoyn network. To achieve this, CoAP
resources need to be mapped in AJ objects, creating an association between the data in
the database and the features that characterize objects like interfaces, path, methods,
properties.

4.4.1 Setting AllJoyn interface, methods and properties

The AllJoyn framework enables inter-process communication through an object. The
object is defined as a bus interface. An interface can contain methods, signals and
properties.

@BusInterface (name = "org.my.interface.name")

public interface MyInterface {

4.4 coap resources in the alljoyn network 48

@BusMethod

public String MyMethod(String inStr) throws BusException;

@BusSignal

public void MySignal(String inStr) throws BusException;

@BusProperty

public String GetMyProperty() throws BusException;

@BusProperty

public void SetMyProperty(String myProperty) throws BusException;

}

The @BusInterface annotation tells the code that this interface is an AllJoyn interface.
All bus interfaces must have a name. If no name is specified, a default name is assigned.
The default interface name is ”.”.

Interface naming rules follow the D-Bus specification.

The @BusMethod annotation tells the Java compiler that this is a bus method. AllJoyn
methods work almost equal to a regular method in Java. The major difference is that
the AllJoyn methods execute on a different process or device. The method can accept
multiple arguments and reply with multiple arguments.

The @BusMethod annotation has four properties: annotation, name, signature, and
replySignature. Under normal circumstances, the values for the annotation properties
can be determined by the AllJoyn framework. However, there are instances in which
the signature must be specified: for example an unsigned integer must be sent in a
method. Since Java does not have an unsigned integer type, this must be specified in the
@BusMethod annotation.

@BusMethod(signature="u", replySignature="u")

public int MyMethod3(int unsignedArg) throws BusException;

The valid values for the signature and replySignature are the set of values that are valid
according to the D-Bus specification.

The @BusSignal annotation specifies that the following code is an AllJoyn signal.
Unlike methods, signals have no replies. For this reason signals always have a return
type of void. Like methods, signals can take multiple arguments.

A signal is seen only if a program has registered a signal handler for that signal.

The @BusProperty annotation specifies that the following code is an AllJoyn property.
AllJoyn properties are exactly like AllJoyn methods except they are specialized for get/set

4.4 coap resources in the alljoyn network 49

commands of a single value.

Beyond simple data types, the AllJoyn framework can handle complex data types
such as arrays, maps, and structs. In the case of arrays and maps, the data type can be
handled by the AllJoyn code with no special action. However, structs require additional
annotation. The AllJoyn framework must know the order of all elements of a struct so
that it can marshal and unmarshal the message. This is where the @Position annotation is
used.

public class MyStruct{

@Position(0)

public String name;

@Position(1)

public int valueOne;

@Position(2)

public int valueTwo;

}

The @Position annotation numbering must start from ”0” (zero) and count up in incre-
ments of one. Skipping a number, like going from @Position(1) to @Position(3) without
having an @Position(2) anywhere in the code, is a logic error.

Table 13 shows valid AllJoyn data types which signature and replySignature can assume,
and compatible Java types. The signature for all structures is ”r” or the list of all the
values of the structure inside parentheses. For example, the signature for the MyStruct
class would be ”(sii)”. Structs can be nested.

Since all CoAP resources have the same REST methods and the same attributes, the
same interface is implemented by all the objects, and then by all the resources. Further-
more, to compute discovery an application either should know in advance the interface
name or must invoke introspection to know the methods and properties the interface
is made of. Therefore, there is no need to know the resource by the interface name
(e.g. temperature sensor or light sensor) because all of them are REST interfaces and the
resources they are related to will be shown by the object path and the resource properties
rt and if.

In the default scheme the interface implements the get, post and delete methods. The
signature and the reply signature of the first one and of the second one are structs, according
to the RequestMessage and the ResponseMessage classes described in 4.3, since the messages
are composed by the payload, the options and the attributes. The same is true for the
signature of the registration method and the notification signal, and for the reply signature
of the delete method. We used the classes as parameters instead of the interfaces because
AllJoyn could not recognize the fields from which the messages are composed.

In addition to them, the interface implements the registration and cancellation methods
and the notification signal used in the observing service. These methods uses the client

4.4 coap resources in the alljoyn network 50

TYPE ID ALLJOYN TYPE COMPATIBLE JAVA TYPES

y byte byte

b boolean boolean

n int16 short

q uint16 short

i int32 int

u uint32 int

x int64 long

t uint64 long

d double double

s string String

o object path String

g signature String

a array Array

r struct User-defined type

v variant Variant

a{TS} dictionary Map< JT,JS>

Table 13: AllJoyn and Java compatible data types

application unique name as parameter in order to avoid duplicate registrations from the
same client. The registration function returns an integer as a status value, in which it
specifies the success of the observing registration.

Finally, the CoAPInterface implements two properties, ResourceType and InterfaceDescrip-
tion, which allow to read the resource type and the interface description attributes of the
resource.

@BusInterface (name="com.bridge.Coap", announced="true")

public interface CoAPInterface {

@BusMethod (name="get", signature="r", replySignature="r")

public ResponseMessage get(RequestMessage request) throws BusException;

@BusMethod (name="post", signature="r", replySignature="r")

public ResponseMessage post(RequestMessage request) throws BusException;

@BusMethod (name="delete", replySignature="r")

public ResponseMessage delete() throws BusException;

@BusMethod (name="registration", signature="sr", replySignature="i")

public Status registration(String uniqueName, RequestMessage request) throws

BusException;

@BusMethod (name="cancellation", signature="s")

4.4 coap resources in the alljoyn network 51

public void cancellation(String uniqueName) throws BusException;

@BusSignal (name="notification", signature="r")

public void notification(ResponseMessage message) throws BusException;

@BusProperty (name="ResourceType")

public String getResourceType() throws BusException;

@BusProperty (name="InterfaceDescription")

public String getInterfaceDescription() throws BusException;

}

The definition of the com.bridge.Coap interface is reported in Table 14.

NAME TYPE PARAMETERS REPLY

get method RequestMessage ResponseMessage

post method RequestMessage ResponseMessage

delete method none ResponseMessage

ResourceType property none String

InterfaceDescription property none String

registration method uniqueId, RequestMessage Status

cancellation method uniqueId none

notification signal ResponseMessage none

Table 14: com.bridge.Coap interface

Setting the signature value to struct does not means that AllJoyn can recognize the
field from which the parameters are composed. That value indicates an user-defined
type, but you have to specify the signatures of the elements inside the classes. In this
context, we set the following signature for the classes we used:

• The Option class is composed, as described in 4.3.2, by:

– an integer,

– an array of strings,

– an integer,

– an array of strings,

– a boolean,

– an integer.

So, its signature will be (iasiasbi).

4.4 coap resources in the alljoyn network 52

• The RequestMessage class, described in 4.3.4, is composed by:

– an Option class,

– a map with (string, string) pairs,

– an array of bytes.

So, its signature will be (ra{ss}ay), that AllJoyn will interpret as ((iasiasbi)a{ss}ay).

• The ResponseMessage class, described in 4.3.5, is composed by:

– an integer,

– an Option class,

– an array of bytes.

So, its signature will be (iray), that AllJoyn will interpret as (i(iasiasbi)ay).

4.4.2 Setting AllJoyn object path

When connecting to the bus, a program may act as a service, a client, or both.

Connecting a service consists on the creation of a new BusAttachment, on the regis-
tration of a BusObject with a given absolute path using the BusAttachment and on the
connection of the BusAttachment to the bus.

mBus = new BusAttachment("applicationName");

mBus.registerBusObject(this, "/servicepath");

mBus.connect();

Resources are represented by instances of objects of the same type that implements
the same interface defined in 4.4.1. Each instance is identified by the object path that has
to be unique local and is composed by:

• Location;

• Resource Path (rd).

The two attributes guarantee uniqueness, since location is a stable CoAP Server identifier,
unique within the Resource Directory and rd is unique within the CoAP Server.

Using the example in 4.1.2 the object paths obtained are shown in Table 15.

LOCATION RESOURCE PATH OBJECT PATH

/rd/4521 /sensors/temp /rd/4521/sensors/temp

/rd/4521 /sensors/light /rd/4521/sensors/light

Table 15: Example: Object Path

4.4 coap resources in the alljoyn network 53

4.4.3 Implementing the observing service

A CoAP resource may be observable. It means that a client interested in that resource can
register to the observing service and then the CoAP server will send him notifications
containing the resource value.

The corresponding CoAP observing service is implemented in AllJoyn by Signals. In
particular, the resource observing service is divided in two phases:

• registration phase;

• notification phase.

In the registration phase, an AllJoyn application interested into observing a resource
calls the Registration method on the object representing that resource. In the CoAP side
it corresponds to a resource registration via extended GET request. The bridge sends
the GET request to the server with the observe field set to 0 (register), and waits for
a response: if the response message has the observe field set, it means that the server
implements the observing service, otherwise it don’t. The registration method returns
the status OK if the resource is observable, and the status NOT IMPLEMENTED if the
resource is not observable. Once almost one AJ device is interested into observe a
resource, each time the resource sends new data, it is forwarded via signal (notification
phase).

The CoAPInterface interface in the AllJoyn object implements the Notification signal.
Signals, unlike methods, never return a value. Client applications that are interested in
receiving a signal must register for that signal with the bus. The client should implement
a signal handler to respond to the signal for which it was registered.

In the service side, a SignalEmitter is required to emit a signal. Once a SignalEmitter is
created, an interface can be made to send the actual signals. No coding is needed to emit
the signals beyond defining and using the interface.

Considering an object that implements the interface ”MyInterface”, used in 4.4.1, the
emission of a signal will be as follows:

SignalEmitter emitter = new SignalEmitter(myObject, joinerName, sessionId,

SignalEmitter.GlobalBroadcast.Off);

myInterface = emitter.getInterface(MyObject.class);

myInterface.MySignal("message");

In the client side, when registering for signal handlers, a class should contain a
method with the @BusSignalHandler annotation.

@BusSignalHandler(iface="org.my.interface.name", signal="MySignal")

public void MySignal(String inStr) {

// handle signal

4.4 coap resources in the alljoyn network 54

}

The important part of the BusSignalHandler is to get the iface name and the signal argu-
ments correct. If these are not correct, it does not catch the emitted signal.

The observing service could be done both with sessionful and sessionless signals.
The way to send sessionless signals is not much different than sending a regular

signal. Only the setting of the the flag specifying that it is a sessionless signal and the
setting of the session ID used to send the signal to 0 are needed. A sessionless signal
does not need a session id. The two things to know in the case of a sessionless signal are:

• It has a session ID of 0.

• It has the sessionless flag set to indicate that it is a sessionless signal.

We prefer to have signals associated with sessions. In this way the bridge can choose
the destination to which it sends the notification, and only registered clients can receive
it. In order to implement it, there is a SignalEmitter for each pair composed by application
unique name and session ID.

On the consumer side, the application registers an interest in a signal by calling the
D-Bus AddMatch method. This must be done during the registration phase.

Status status = mBus.addMatch("interface=org.my.interface.name’");

Rules are specified as a string of comma separated key/value pairs. Multiple key/-
value pairs may be specified in a single match rule. These are treated as a logical AND
when discovering signal providers. The exclusion of a key from the rule indicates a
wildcard match. Table 16 describes some keys that can be used to create a match rule.

KEY POSSIBLE VALUES DESCRIPTION

type ’signal’, ’method call’, ’method return’,
’error’

Match on the message type.

sender A bus or unique name Match messages sent by a particular
sender.

interface An interface name Match messages sent over or to a
particular interface.

path An object path Matches messages which are sent
from or to the given object.

Table 16: Match Rule Keys

For instance, if an AJ client is interested into receiving notifications from a CoAP
resource with object path /rd/4521/sensors/temp, it adds the following math rule:

”inter f ace =′ com.bridge.Coap′, path =′ /rd/4521/sensors/temp′”

4.4 coap resources in the alljoyn network 55

An AllJoyn application interested in receiving notification from an object, first calls
the registration method on that object, then adds the match rule for the ”com.bridge.Coap”
interface and the interested object path.

The application unregisters interest in a resource observation by calling the cancellation
method on the AllJoyn object. Then the application calls the removeMatch method with a
previously added match rule to remove the reception of a signal.

When no applications are interested into receiving resource notification, the Bridge
informs the CoAP Server that it wants to be removed from the list of observers for that
resource. This is done either rejecting a notification with a RST message or performing a
GET request that has the Token field set to the token of the observation to be cancelled
and includes an Observe Option with the value set to 1 (deregister) [16].

4.4.4 About data

The About interface is to be implemented by an application on a target device. This
interface allows the application to advertise itself so other applications can discover
it. A client can discover the application via an announcement which is a sessionless
signal containing the basic application information like application name, device name,
manufacturer, and model number. The announcement also contains the list of object
paths and service framework interfaces to allow the client to determine whether the
application provides functionality of interest.

The bridge implements the About interface and it sends about data every time a
CoAP resource registers or unregisters to it. The about data contains the AppId and the
AppName, the software version, the description and the other required information. It
contains also the list of registered CoAPResource objects.

An AllJoyn client interested into the available CoAP resource in the network, inspects
the about data it receives and then it knows all the objects the bridge offers. Using
the object paths contained in the about data, the AJ client can obtain the proxy objects
representing the resources it wants, and then it can call methods on them.

4.4.5 Introspection file

The formal definition of an AllJoyn Interface is expressed in a well-defined XML format,
called the Introspection XML language. The name is due to the fact that the definition
format was originally designed for run-time introspection of D-Bus (and later AllJoyn)
bus objects and their Interfaces.

The interfaces that are available to the AJ network follow the form described in the
introspection file using the Introspection XML language. The interface definition specifies
the interface name, the implemented methods and properties and their names.

4.4 coap resources in the alljoyn network 56

<node>

<interface name="com.bridge.Coap">

<description>RESTful CoAP interface</description>

<method name="get">

<description>Send a GET method call</description>

<arg name="request" type="((iasiasbi)a{ss}ay)" direction="in"/>

<arg name="response" type="(i(iasiasbi)ay)" direction="out"/>

</method>

<method name="post">

<description>Send a POST method call</description>

<arg name="request" type="((iasiasbi)a{ss}ay)" direction="in"/>

<arg name="response" type="(i(iasiasbi)ay)" direction="out"/>

</method>

<method name="delete">

<description>Send a DELETE method call</description>

<arg name="response" type="(i(iasiasbi)ay)" direction="out"/>

</method>

<method name="registration">

<description>Start to observe the resource</description>

<arg name="uniqueName" type="s" direction="in"/>

<arg name="request" type="((iasiasbi)a{ss}ay)" direction="in"/>

<arg name="status" type="i" direction="out"/>

</method>

<method name="cancellation">

<description>Stop to observe the resource</description>

<arg name="uniqueName" type="s" direction="in"/>

</method>

<signal name="notification" sessionless="false">

<description>A notification arrived</description>

<arg name="message" type="(i(iasiasbi)ay)" direction="out"/>

</signal>

<property type="s" access="read">

<description>The Resource Type field</description>

</property>

<property type="s" access="read">

<description>The Interface Description field</description>

</property>

</interface>

<interface name="org.freedesktop.DBus.Introspectable">

<method name="Introspect">

<arg name="data" type="s" direction="out"/>

</method>

</interface>

<interface name="org.allseen.Introspectable">

<method name="GetDescriptionLanguages">

<arg name="languageTags" type="as" direction="out"/>

</method>

4.4 coap resources in the alljoyn network 57

<method name="IntrospectWithDescription">

<arg name="languageTag" type="s" direction="in"/>

<arg name="data" type="s" direction="out"/>

</method>

<annotation name="org.alljoyn.Bus.Secure" value="off"/>

</interface>

</node>

The interfaces described using the Introspection XML language is validated against
an XML scheme.

Introspect is a method call. This method call is a member of org.freedesktop.DBus.Introspectable
interface. It takes no input arguments and returns a string in XML format, as described
in the D-Bus Specification.

Using the Introspection XML file, a client could use the AllJoyn Code Generator [17]
in order to obtain code ready for compilation and running, without the need to know in
advance the CoAP resource interface.

5
S Y S T E M D E S I G N

The Unified Modeling Language (UML) is a standard visual modelling language intended
to be used for analysis, design, and implementation of software-based systems. UML
specification defines two major kinds of UML diagram:

• Structure diagrams, which show the static structure of the system and its parts on
different abstraction and implementation levels and how they are related to each
other.

• Behaviour diagrams which show the dynamic behaviour of the objects in a system,
which can be described as a series of changes to the system over time.

The UML standard provides over than twenty diagram to design and model a soft-
ware.

In this chapter we shows how the bridge was design using three structure diagrams,
and how the components interact each other using a behaviour diagram. About the
structure ones, the chapter includes the deployment diagram, the component diagram,
and the class diagrams. About the behaviour, the chapter shows a sequence diagram for
each use case we met.

5.1 deployment diagram

The deployment diagram in Figure 9 models the physical deployment of artifacts (soft-
ware components) on nodes (hardware components). A device node is a physical
computational resource with processing capability upon which artifacts may be deployed
for execution. An artifact is the specification of a physical piece of information that is
used or produced by a software development process, or by deployment and operation
of a system. Artifacts are the physical entities that are deployed on nodes.

Our scheme is composed by the following nodes:

• The AllJoyn Device, which belongs to the AllJoyn network. An AllJoyn network can
be composed by one or more AllJoyn devices. The AJ Device can be a computer,
a smartphone or a smart object able to run the AllJoyn framework (e.g., a smart
TV, a smart refrigerator). The AJ Device contains two artifacts: the AllJoyn Client
Application and the AllJoyn framework. On a single device should run more than one
AJ application.

• The Bridge Device, which is located between the two networks. A single Bridge
device is sufficient to connect the two networks and to map the CoAP resources

58

5.2 component diagram 59

Figure 9: Deployment Diagram

into AJ objects. A Bridge device can be any device able to support the AllJoyn
framework. It contains the AJ framework and the Bridge application.

• The CoAP Device, which belongs to the CoAP network. A CoAP network can be
composed by one or more CoAP devices. Tipically, CoAP devices are constrained
nodes, which often have 8-bit microcontrollers with small amounts of ROM and
RAM. CoAP networks are constrained (e.g., low-power, lossy) networks, such as
IPv6 over Low-Power Wireless Personal Area Networks (6LowPANs), which often
have high packet error rates and throughput of 10s of Kbit/s. The CoAP Device
contains the CoAP Server application.

The nodes are interconnected through communication paths by which they are able to
exchange signals and messages. The communication between an AllJoyn device and the
Bridge device can be done either via reliable connection (TCP) or unreliable connection
(UDP). The communication between a CoAP device and the Bridge device is done via
UDP connection.

5.2 component diagram

The component diagram describes how the software system is split up into components
and shows the dependencies among them. It is shown in Figure 10.

The main components are the AJ Client inside the AJ device, the Bridge and the CoAP
Server inside the CoAP device. The AJ Client contains both the following:

• The AllJoyn Application that acts as the client application.

• The AllJoyn Core Library, which provides the lowest level set of APIs to interact with
the AllJoyn network and with the Bridge.

The Bridge has five sub-components:

• The Resource Directory, which accepts requests from CoAP resources and stores
their information.

5.3 class diagrams 60

Figure 10: Component Diagram

• The CoAP Proxy, which interacts with the other components during the resource
registration, resource removal, method invocation and notification, and provides
caching.

• The Cache, inside the CoAP Proxy, which stores data to make future requests for
that data served faster.

• The AllJoyn Object Manager Application, which interacts with the AllJoyn network
and provides it the CoAP resources in the form of AJ objects.

• The AllJoyn Core Library, which provides the lowest level set of APIs to interact with
the AllJoyn network.

5.3 class diagrams

The class diagram is a type of static structure diagram that describes the structure of a
system by showing the system classes, their attributes, methods, and the relationships
among objects. The class diagrams for each of the component we have implemented are
shown below.

5.3.1 Bridge

The Bridge is the main class of the project. It implements the main method in which it
instantiates and starts the other components.

5.3 class diagrams 61

Figure 11: Class Diagram: Bridge

5.3.2 Resource Directory

The Resource Directory is composed by its main class, which contains the maps that are
used to store registered resource information, and it implements the methods used to
manage RD entries insertion and removal.

The ResourceDirectory class instantiates a RDResource class. It represents the /rd
CoAP resource in which CoAP servers performs resources registration, managed by the
handlePOST method. The diagram is shown in Figure 12.

Figure 12: Class Diagram: Resource Directory

Every time a CoAP server registers a resource, its location is instantiated in the
Resource Directory as a RDNodeResource class (Figure 13). It stores the node information
and allows endpoints update and removal. The ExpiryTask class represents the timer task
and it ensures resources deletion when their time expires.

5.3 class diagrams 62

Figure 13: Class Diagram: RD Node Resource

5.3.3 CoAP Proxy

The CoAPProxy class is the element that interacts with the CoAP network. It implements
the methods that allow to send request messages to the CoAP servers, and to register
and unregister to a resource.

The observing service is managed by the ObserverThread, which listens for resource
notifications and returns them to the proxy.

The proxy also implements the caching service. The cache is represented by the
ProxyCacheResource class, which contains all the stored data in the form of CacheResource
classes. Each cache entry is identified by a CacheKey.

The class diagram is shown in Figure 14.

5.3.4 AJ Object Manager

The AJObjectManagerApp is the component that deals with the AllJoyn devices. It
implements the methods used in object creation, object cancellation and notifications
registration. The class contains all the registered CoAP resources in the form of CoAPRe-
source AllJoyn objects, that implement the CoAPInterface interface. The last one provides
the methods that allow the client to handle with CoAP resources (GET, POST, DELETE,
and observing service).

The CoAPResource class also contains the resource information, like its path, the
resource type and the interface description.

5.3 class diagrams 63

Figure 14: Class Diagram: CoAP Proxy

The Object Manager uses the BridgeAboutData to inform the AllJoyn network about
the application information and the advertised AllJoyn objects.

The Figure 15 shows the Object Manager class diagram.

Figure 15: Class Diagram: Object Manager

The Object Manager interacts with the AllJoyn client using an AllJoyn representation
of CoAP messages. The request and the response messages are mapped, respectively, into

5.3 class diagrams 64

the RequestMessage class and the ResponseMessage class, which implement the CoAPRe-
questMessage and the CoAPResponseMessage interfaces (Figure 16).

The messages classes contain the attributes that could be useful to the AllJoyn client
to interact with the CoAP resources. The request message allows to set the message
payload and the query string; the response message has the response code and the
message payload. Both the request and the response messages contain the Options field.

The RequestCode and the ResponseCode enumerators are provided by the CoAP class.

Figure 16: Class Diagram: Request and Response Messages

5.4 sequence diagrams 65

5.4 sequence diagrams

5.4.1 Resource registration

Registration: ”Created”

Figure 17: Sequence Diagram: Registration

The sequence diagram in Figure 17 shows the interaction between the components
during the registration phase, when the request has been fulfilled and resulted in a just
created new location:

1. The CoAP Server registers a resource sending a POST method to the Resource Directory.

1.1. The Resource Directory adds a new entry including the new registered resource, its
associated node, and assigns it a timer initialized to lt (or to the default value, if
the option is not present).

1.2. The Resource Directory sends the resource path and its attributes to the AllJoyn Object
Manager Application.

1.2.1. The AJ Object Manager Application creates the new objects and registers them with
their object path in the AllJoyn Core Library.

1.2.2. If errors do not occur, the AJ Core Library responds to the AJ Object Manager App
with a Status.OK.

1.3. The AJ Object Manager App informs the Resource Directory that it has terminated.

1.4. If errors do not occur, the Resource Directory sends a response to the CoAP Server
with response code 2.01 and the resource location in the message payload.

5.4 sequence diagrams 66

Registration: ”Bad Request”

Figure 18 shows the sequence diagram with a bad request during the registration phase.
It happens when the request cannot be understood by the RD due to malformed syntax.

Figure 18: Sequence Diagram: Registration ”Bad Request”

1. The CoAP Server sends a POST method to the Resource Directory with incorrect syntax.

1.1. The Resource Directory sends a response message to the CoAP Server with response
code 4.00.

5.4.2 Resource update

Update: ”Changed”

The sequence diagram in Figure 19 shows the interaction between the components
during a resource update, when a resource exists at the request URI and the enclosed
representation should be considered as a modified version of that resource. The update
interface is used by an endpoint to refresh or update its registration with an RD. To use
the interface, the endpoint sends a POST request to the resource returned in the Location
option in the response to the first registration. An update may update the lifetime or
context parameters if they have changed since the last registration or update.

Figure 19: Sequence Diagram: Update

1. The CoAP Server sends a POST method to the Resource Directory including its location
in the URI.

1.1. The Resource Directory updates the entries corresponding to the received location.

5.4 sequence diagrams 67

1.2. If errors do not occur, the Resource Directory sends a response to the CoAP Server
with response code 2.04.

Update: ”Bad Request”

Figure 20 shows the sequence diagram with a bad request during a resource update. It
means that the request could not be understood by the RD due to malformed syntax.

Figure 20: Sequence Diagram: Update ”Bad Request”

1. The CoAP Server sends a POST method to the Resource Directory with incorrect syntax.

1.1. The Resource Directory sends a response message to the CoAP Server with response
code 4.00.

Update: ”Not Found”

Figure 21 shows the sequence diagram in the case in which the resource to be updated is
not found or it has expired. It means that the RD has not found anything matching the
request URI.

Figure 21: Sequence Diagram: Update ”Not Found”

1. The CoAP Server sends a POST method to the Resource Directory.

1.1. The Resource Directory does not find a match with the request URI and it sends a
response message to the CoAP Server with response code 4.04.

5.4 sequence diagrams 68

Figure 22: Sequence Diagram: Resource Removal

5.4.3 Resource removal

Removal: ”Deleted”

The sequence diagram in Figure 22 shows the interaction between the components during
the resource removal:

1. The CoAP Server sends a DELETE method to the Resource Directory specifying the
location to be removed.

1.1. The Resource Directory removes the entries corresponding to the specified location.

1.2. The Resource Directory informs the AJ Object Manager Application that some resources
have been removed.

1.2.1. The AJ Object Manager App unregisters the objects corresponding to the removed
location from the AJ Core Library.

1.2.2. The AJ Object Manager App informs the Resource Directory that it is completed.

1.2.3. The Resource Directory sends a response to the CoAP Server with response code
2.02.

Removal: ”Bad Request”

Figure 23 shows the sequence diagram with a bad request during a resource removal. It
means that the request could not be understood by the RD due to malformed syntax.

1. The CoAP Server sends a DELETE method to the Resource Directory with incorrect
syntax.

1.1. The Resource Directory sends a response message to the CoAP Server with response
code 4.00.

5.4 sequence diagrams 69

Figure 23: Sequence Diagram: Removal ”Bad Request”

Removal: ”Not Found”

Figure 24 shows the sequence diagram in the case in which the resource to be deleted is
not found or it has expired. It means that the RD has not found anything matching the
request URI.

Figure 24: Sequence Diagram: Removal ”Not Found”

1. The CoAP Server sends a DELETE method to the Resource Directory.

1.1. The Resource Directory does not find a match with the request URI and it sends a
response message to the CoAP Server with response code 4.04.

5.4.4 GET method call

GET: no cached data

The message exchange that occours during a GET method call is described in the
Sequence Diagram in Figure 25. In this case, the Cache does not contain stored data for
the request.

1. The AJ App executes a get method call on the AJ Proxy Object.

1.1. The client AJ Core Library sends a METHOD CALL message to the Bridge AJ Core
Library.

1.1.1. The Bridge AJ Core Library calls a get method call on the CoAP resource object in
the AJ Object Manager App.

1.1.1.1 . The AJ Object Manager App makes a request message and adds the GET request
code to it.

5.4 sequence diagrams 70

Figure 25: Sequence Diagram: GET Method without cached data

1.1.1.2. The AJ Object Manager App sends the request message to the CoAP Proxy.

1.1.1.2.1 . The CoAP Proxy checks on the Cache to find stored data for the received
request.

1.1.1.2 .2 . The CoAP Proxy asks the Resource Directory for the destination context.

1.1.1.2.3 . The Resource Directory gives back the destination IP address and port.

1.1.1.2.4 . The CoAP Proxy sends the request message to the CoAP Server.

1.1.1.2.5 . The CoAP Server sends the response message to the CoAP Proxy. The response
message can contain one of the following response codes:

• 2.05 Content: the request is fulfilled and the returned payload in the response
is a representation of the target resource.

• 4.xx Client Error: the client seems to have made a mistake.

• 5.xx Server Error: the server is aware that it has made a mistake or is incapable
of performing the request.

1.1.1.3. The CoAP Proxy returns the response message to the AJ Object Manager App.

1.1.2. The AJ Object Manager sends the response to the AJ Core Library.

1.1.3. The Bridge AJ Core Library sends a METHOD RETURN message to the client AJ
Core Library.

1.1.3.1. The client AJ Core Library sends a method return to the AllJoyn App.

5.4 sequence diagrams 71

Figure 26: Sequence Diagram: GET Method with cached data

GET: cached data

The message exchange that occours during a GET method call is described in the
Sequence Diagram in Figure 26. In this case, the Cache contains stored data for the
request.

1. The AJ App executes a get method call on the AJ Proxy Object.

1.1. The client AJ Core Library sends a METHOD CALL message to the Bridge AJ Core
Library.

1.1.1. The Bridge AJ Core Library sends a get method call on the CoAP resource in the AJ
Object Manager App.

1.1.1.1 . The AJ Object Manager App makes a request message and adds the GET request
code to it.

1.1.1.2 . The AJ Object Manager App sends the request message to the CoAP Proxy.

1.1.1.2.1 . The CoAP Proxy checks on the Cache to find stored data for the received
request.

1.1.1.2 .2 . The CoAP Proxy has stored data inside its Cache and returns it to the AJ Object
Manager App.

1.1.2. The AJ Object Manager App sends a method response to the AJ Core Library.

1.1.3. The Bridge AJ Core Library sends a METHOD RETURN message to the client AJ
Core Library.

1.1.3.1. The client AJ Core Library sends a method return to the AllJoyn App.

5.4 sequence diagrams 72

5.4.5 POST method call

The message exchange that occours during a POST method call is described in the
Sequence Diagram in Figure 27.

Figure 27: Sequence Diagram: POST Method

1. The AJ App executes a post method call on the AJ Proxy Object.

1.1. The client AJ Core Library sends a METHOD CALL message to the Bridge AJ Core
Library.

1.1.1. The Bridge AJ Core Library sends a post method call to the CoAP resource in the
AJ Object Manager App.

1.1.1.1 . The AJ Object Manager App makes a request message and adds the POST request
code to it.

1.1.1.2 . The AJ Object Manager App sends the request message to the CoAP Proxy.

1.1.1.2.1 . The CoAP Proxy asks the Resource Directory for the destination context.

1.1.1.2.2 . The Resource Directory gives back the destination IP address and port.

1.1.1.2.3 . The CoAP Proxy sends the request message to the CoAP Server.

1.1.1.2.4 . The CoAP Server sends the response message to the CoAP Proxy. The response
message can contain one of the following response codes:

• 2.04 Changed: the request is fulfilled and the returned payload in the response,
if any, is a representation of the action result.

5.4 sequence diagrams 73

• 4.xx Client Error: the client seems to have made a mistake.

• 5.xx Server Error: the server is aware that it has made a mistake or is incapable
of performing the request.

1.1.1.2.5 . If the message response code is the 2.04 Changed code, the CoAP Proxy updates
the Cache entries corresponding to the updated resources to the new values.

1.1.1.2 .6 . The CoAP Proxy returns the response message to the AJ Object Manager App.

1.1.2. The AJ Object Manager sends a method response to the AJ Core Library.

1.1.3. The Bridge AJ Core Library sends a METHOD RETURN message to the client AJ
Core Library.

1.1.3.1. The client AJ Core Library sends a method return to the AllJoyn App.

5.4.6 DELETE method call

Figure 28: Sequence Diagram: DELETE Method

The message exchange that occours during a DELETE method call is described in the
Sequence Diagram in Figure 28.

1. The AJ App executes a delete method call on the AJ Proxy Object.

1.1. The client AJ Core Library sends a METHOD CALL message to the Bridge AJ Core
Library.

5.4 sequence diagrams 74

1.1.1. The Bridge AJ Core Library sends a delete method call to the AJ Object Manager App.

1.1.1.1 . The AJ Object Manager App makes a request message and adds the DELETE
request code to it.

1.1.1.2 . The AJ Object Manager App sends the request message to the CoAP Proxy.

1.1.1.2.1 . The CoAP Proxy asks the Resource Directory for the destination context.

1.1.1.2.2 . The Resource Directory gives back the destination IP address and port.

1.1.1.2.3 . The CoAP Proxy sends the request message to the CoAP Server.

1.1.1.2.4 . The CoAP Server sends the response message to the CoAP Proxy. The response
message can contain one of the following response codes:

• 2.02 Deleted: the request is fulfilled, the resource ceases to be available and
the returned payload in the response, if any, is a representation of the action
result.

• 4.xx Client Error: the client seems to have made a mistake.

• 5.xx Server Error: the server is aware that it has made a mistake or is incapable
of performing the request.

1.1.1.2.5 . If the message response code is the 2.02 Deleted code, the CoAP Proxy removes
the Cache entries corresponding to the deleted resources.

1.1.1.2 .6 . If the message response code is the 2.02 Deleted code, the CoAP Proxy tells the
Resource Directory to remove the entries corresponding to the deleted resources.

1.1.1.2 .7 . The CoAP Proxy returns the response message to the AJ Object Manager App.

1.1.1.3 . If the message response code is the 2.02 Deleted code, the AJ Object Manager App
unregisters the objects corresponding to the deleted resources.

1.1.1.4 . The AJ Object Manager sends a method response to the AJ Core Library.

1.1.2. The Bridge AJ Core Library sends a METHOD RETURN message to the client AJ
Core Library.

1.1.2.1. The client AJ Core Library sends a method return to the AllJoyn App.

5.4.7 Observing registration

The message exchange that occours during a observing registration is described in the
Sequence Diagram in Figure 29.

1. The AJ Application registers a signal handler for the notification it wants to receive.

2. The AJ App executes a registration method call on the AJ Proxy Object in which it also
includes its unique name, in order to be recognized by the bridge.

5.4 sequence diagrams 75

Figure 29: Sequence Diagram: Observing Registration

2.1. The client AJ Core Library sends a METHOD CALL message to the Bridge AJ Core
Library.

2.1.1. The Bridge AJ Core Library sends a registration method call to the AJ Object Manager
App.

2.1.1.1 . The AJ Object Manager App makes an extended GET request message with observe
option to 0 (register).

2.1.1.2. The AJ Object Manager App sends the request message to the CoAP Proxy.

2.1.1.2.1 . The CoAP Proxy asks the Resource Directory for the destination context.

2.1.1.2.2. The Resource Directory gives back the destination IP address and port.

2 .1.1.2.3. The CoAP Proxy sends the request message to the CoAP Server.

2 .1.1.2.4. The CoAP Server sends the response message to the CoAP Proxy. The response
message can contain one of the following response codes:

• 2.05 Content: the request is fulfilled and the returned payload in the response
is a representation of the target resource.

• 4.xx Client Error: the client seems to have made a mistake.

• 5.xx Server Error: the server is aware that it has made a mistake or is incapable
of performing the request.

2.1.1.3. The CoAP Proxy returns the status to the AJ Object Manager App.

5.4 sequence diagrams 76

2.1.2. The AJ Object Manager sends the status as the method response to the AJ Core
Library.

2.1.3. The Bridge AJ Core Library sends a METHOD RETURN message to the client AJ
Core Library.

2.1.3.1. The client AJ Core Library sends a method return to the AllJoyn App.

2.1.3.1.1 . If the message response code is the 2.05 Content code, the AJ App adds a match
rule for the signal it wants to receive.

5.4.8 Notification

The sequence diagram in Figure 30 shows the interaction between the components when
there is a notification to be sended. Notifications typically have a 2.05 (Content) response
code and a payload in the same Content-Format as the initial response.

Figure 30: Sequence Diagram: Notification

1. The CoAP Server sends a notification message to the CoAP Proxy.

1.1. The CoAP Proxy updates the stored data corresponding to the received resource.

1.2. The CoAP Proxy informs the AJ Object Manager App that a new notification has been
arrived and passes it the data.

1.2.1. The AJ Object Manager sends a signal to the AJ Core Library.

1.2.1.1 . The Bridge AJ Core Library sends a SIGNAL message to the client AJ Core Library.

1.2.1.1 .1 . The client AJ Core Library calls the signal handler corresponding to the received
signal.

5.4.9 Observing cancellation

The sequence diagram in Figure 31 shows the interaction between the components when
a client wants to be unsubscribed from the observing service.

5.4 sequence diagrams 77

Figure 31: Sequence Diagram: Observing Cancellation

1. The AllJoyn Application removes the match rule for the signal it does not want to
receive anymore.

2. The AJ App calls a cancellation method on the AJ Proxy Object including its unique
name, in order to be recognized by the bridge.

2.1. The client AJ Core Library sends a METHOD CALL message to the Bridge AJ Core
Library.

2.1.1. The Bridge AJ Core Library sends a cancellation method call to the AJ Object Manager
App.

The AJ Object Manager App decreases the number of observers for that resource. If no
more clients want to receive notification from a resource, then the Bridge is no more
interested to receive notification from the CoAP Server.

A client (the Bridge, in this case) that is no longer interested in receiving notification
for a resource can simply forget the observation. When the server sends the next
notification, the client will not recognize the token in the message and thus will return
a Reset message. This cause the server to remove the associated entry from the list of
observers.

In some circumstaces, it may be desiderable to cancel an observation and release
the resources allocated by the server to it more eagerly. In this case, a client can
explicity deregister by issuing a GET request that has the Token field set to the token
of the observation to be cancelled and includes an Observe option with the value of 1

(deregister):

2.1.1.1 . The AJ Object Manager App makes an extended GET request message and
includes an observe option with the value set to 1 (deregister).

2.1.1.2 . The AJ Object Manager App sends the request message to the CoAP Proxy.

5.4 sequence diagrams 78

2.1.1.2 .1 . The CoAP Proxy asks the Resource Directory for the destination context.

2.1.1.2 .2 . The Resource Directory gives back the destination IP address and port.

2.1.1.2 .3 . The CoAP Proxy sends the request message to the CoAP Server.

2.1.1.2 .4 . The CoAP Server sends the response message to the CoAP Proxy.

6
T E S T R E P O RT

In order to examine the proper functioning of the system some tests were made. They
cover all the system use cases.

This chapter is the test report in which the setup, the specification, the summary and
the result for each test we made are specified.

6.1 environment setup

6.1.1 Requirements

The following are required in order to execute these test cases:

• An AllJoyn-enabled device on which the CoAP Bridge will run.

• A device on which the CoAP server will run.

• An AllJoyn-enabled device on which the AllJoyn client will run.

• A Wi-Fi access point (referred to as the personal AP).

During the test cases, the three listed applications will run on the same machine.

6.1.2 Preconditions

Before running these test cases, it is assumed that:

• The device under test (or DUT) is connected to the personal AP.

• At least one process on the DUT is announcing its capabilities through its About
announcement, including its support for the CoAP interface.

• The CoAP server application implements at least one CoAP resource.

• The CoAP server application knows the Bridge Resource Directory IP address and
port.

79

6.2 test case specificaion 80

6.2 test case specificaion

6.2.1 BRIDGE-TC-01 CoAP Resources Registration

Objectives

Verify that CoAP devices can register their resources to the Bridge Resource Directory.

Procedure

1. The CoAP test device sends a GET request to ”well-known/core” to the Bridge
Resource Directory and includes a Resource Type parameter with the value ”core.rd”
in the query string.

2. After receiving the response, the CoAP test device sends a POST request to the
Bridge Resource Directory and includes the Endpoint Name parameter in the query
string and a list of resources in the payload.

3. The CoAP test device waits to receive the response message.

Expected results

• The CoAP test device sends a GET request to ”well-known/core” and receives a
response message with 2.05 as response code and a link format entry for the
Resource Directory in the payload.

• The CoAP test device sends a POST request to the Bridge Resource Directory and
receives a response message with 2.01 response code and a location in the payload.

– If not equal to 2.01, the test fails.

– If no response messages arrive, the test fails.

6.2.2 BRIDGE-TC-02 CoAP Resources Cancellation

Objectives

Verify that CoAP devices can unregister their previously registered resources from the
Bridge Resource Directory.

Procedure

1. The CoAP test device sends a GET request to ”well-known/core” to the Bridge
Resource Directory and includes a Resource Type parameter with the value ”core.rd”
in the query string.

2. After receiving the response, the CoAP test device sends a POST request to the
Bridge Resource Directory and includes the Endpoint Name parameter in the query
string and a list of resources in the payload.

6.2 test case specificaion 81

3. The CoAP test device waits to receive the response message.

4. The CoAP test device sends a DELETE request to the Bridge Resource Directory
and includes its location in the request URI.

5. The CoAP test device waits to receive the response message.

Expected results

• The CoAP test device sends a GET request to ”well-known/core” and receives a
response message with 2.05 as response code and a link format entry for the
Resource Directory in the payload.

• The CoAP test device sends a POST request to the Bridge Resource Directory and
receives a response message with 2.01 response code and a location in the payload.

• The CoAP test device sends a DELETE request to the Bridge Resource Directory
and receives a response message with 2.02 response code.

– If not equal to 2.02, the test fails.

– If no response messages arrive, the test fails.

6.2.3 BRIDGE-TC-03 Discovery of AllJoyn Objects

Objectives

Verify that AllJoyn devices can discovery the objects advertised by the Bridge.

Procedure

1. The AllJoyn test device calls the findAdvertisedName() method with ”com.bridge.coap”
as parameter.

2. After that the foundAdvertisedName() method has been called, the AllJoyn test device
joins a session with the Bridge.

3. The AllJoyn test device calls the whoImplements() method with ”com.bridge.Coap” as
parameter.

4. The AllJoyn test device listens for an About announcement from the Bridge.

Expected results

• The AllJoyn test device receives a foundAdvertisedName() method call.

• The AllJoyn test device joins a session with the Bridge.

• The AllJoyn test device receives an About announcement from the Bridge containing
all its advertised objects that implement the ”com.bridge.Coap” interface.

6.2 test case specificaion 82

6.2.4 BRIDGE-TC-04 GET Method Call

Objectives

Verify that AllJoyn devices can call the get() method to call the method of the CoAP
device through the Bridge. The test starts after that the session with the Bridge has been
established and the test device has received an About announcement.

Procedure

1. The AllJoyn test device creates an AllJoyn Proxy Object for the object announced
by the Bridge.

2. The AllJoyn test device calls the get() method on the Proxy Object with the request
message as parameter.

3. The AllJoyn test device waits to receive the response message as method return.

Expected results

• The AllJoyn test device calls the get() method.

• The Bridge sends a GET request method call to the CoAP server in which the
resource is and the method returns a response message with a valid response code.

• The AllJoyn test device receives a response message as return of the get() method
and the response message contains a valid response code.

– If a bus exception occurs, the test fails.

6.2.5 BRIDGE-TC-05 GET Method Call with Cached Response

Objectives

Verify that if AllJoyn devices call the get() method on the same resource with the same
request more than once, the Bridge gives it a cached response. The test starts after that
the session with the Bridge has been established and the test device has received an
About announcement.

Procedure

1. The AllJoyn test device creates an AllJoyn Proxy Object for the object announced
by the Bridge.

2. The AllJoyn test device calls the get() method on the Proxy Object with the request
message as parameter.

3. The AllJoyn test device waits to receive the response message as method return.

6.2 test case specificaion 83

4. The AllJoyn test device calls the get() method on the Proxy Object with the same
request message as parameter.

5. The AllJoyn test device waits to receive the response message as method return.

Expected results

• The AllJoyn test device calls the get() method.

• The Bridge sends a GET request method call to the CoAP server in which the
resource is and the method returns a response message with a valid response code.

• The AllJoyn test device receives a response message as return of the get() method
and the response message contains a valid response code.

• The AllJoyn test device calls the get() method with the same request.

• The Bridge gets the response message in the cache and sends it to the test device.

• The AllJoyn test device receives a response message as return of the get() method
and the response message contains a valid response code.

– If a bus exception occurs, the test fails.

6.2.6 BRIDGE-TC-06 POST Method Call

Objectives

Verify that AllJoyn devices can call the post() method to call the method of the CoAP
device through the Bridge. The test starts after that the session with the Bridge has been
established and the test device has received an About announcement.

Procedure

1. The AllJoyn test device creates an AllJoyn Proxy Object for the object announced
by the Bridge.

2. The AllJoyn test device calls the post() method on the Proxy Object with the request
message as parameter.

3. The AllJoyn test device waits to receive the response message as method return.

Expected results

• The AllJoyn test device calls the post() method.

• The Bridge sends a POST request method call to the CoAP server in which the
resource is and the method returns a response message with a valid response code.

6.2 test case specificaion 84

• The AllJoyn test device receives a response message as return of the post() method
and the response message contains a valid response code.

– If a bus exception occurs, the test fails.

6.2.7 BRIDGE-TC-07 DELETE Method Call

Objectives

Verify that AllJoyn devices can call the delete() method to call the method of the CoAP
device through the Bridge. The test starts after that the session with the Bridge has been
established and the test device has received an About announcement.

Procedure

1. The AllJoyn test device creates an AllJoyn Proxy Object for the object announced
by the Bridge.

2. The AllJoyn test device calls the delete() method on the Proxy Object with the
request message as parameter.

3. The AllJoyn test device waits to receive the response message as method return.

Expected results

• The AllJoyn test device calls the delete() method.

• The Bridge sends a DELETE request method call to the CoAP server in which the
resource is and the method returns a response message with a valid response code.

• The AllJoyn test device receives a response message as return of the delete() method
and the response message contains a valid response code.

– If a bus exception occurs, the test fails.

6.2.8 BRIDGE-TC-08 Observing Registration

Objectives

Verify that AllJoyn devices can call the registration() method to start observing a CoAP
resource. The test starts after that the session with the Bridge has been established and
the test device has received an About announcement.

Procedure

1. The AllJoyn test device registers a signal handler.

2. The AllJoyn test device creates an AllJoyn Proxy Object for the object announced
by the Bridge.

6.2 test case specificaion 85

3. The AllJoyn test device calls the registration() method on the Proxy Object with its
unique id and the request message as parameters.

4. The AllJoyn test device waits to receive the method return.

5. The AllJoyn test device adds a match rule for the object it has registered.

Expected results

• The AllJoyn test device successfully registers the signal handler.

• The AllJoyn test device calls the registration() method.

• The Bridge sends a GET request method call to the CoAP server in which the
resource is and the method returns a response message with a valid response code
and the observe option set to 0.

• The status code returned by the registration() method equals OK.

– If a bus exception occurs, the test fails.

– If not equal to OK and not equal to NOT IMPLEMENTED, the test fails.

– If the returned status code equals NOT IMPLEMENTED, the CoAP resources
cannot be observed.

• The AllJoyn test device successfully adds the signal match rule.

6.2.9 BRIDGE-TC-09 Observing Cancellation

Objectives

Verify that AllJoyn devices can call the cancellation() method to stop observing a CoAP
resource. The test starts after that the session with the Bridge has been established and
the test device has received an About announcement.

Procedure

1. The AllJoyn test device registers a signal handler.

2. The AllJoyn test device creates an AllJoyn Proxy Object for the object announced
by the Bridge.

3. The AllJoyn test device calls the registration() method on the Proxy Object with its
unique id and the request message as parameters.

4. The AllJoyn test device waits to receive the method return.

5. The AllJoyn test device adds a match rule for the object it has registered.

6. The AllJoyn test device calls the cancellation() method on the Proxy Object with its
unique id as parameters.

6.2 test case specificaion 86

7. The AllJoyn test device removes the match rule for the object it doesn’t want more
to observe.

Expected results

• The AllJoyn test device successfully registers the signal handler.

• The AllJoyn test device calls the registration() method.

• The Bridge sends a GET request method call to the CoAP server in which the
resource is and the method returns a response message with a valid response code
and the observe option set to 0.

• The status code returned by the registration() method equals OK.

• The AllJoyn test device successfully adds the signal match rule.

• The AllJoyn test device calls the cancellation() method.

• The Bridge sends a GET request method call to the CoAP server in which the
resource is and the method returns a response message with a valid response code
and the observe option set to 1.

• The AllJoyn test device successfully removes the match rule.

– If a bus exception occurs, the test fails.

6.2.10 BRIDGE-TC-10 Notification Arrival

Objectives

Verify that AllJoyn devices receive signal when a CoAP resource they are following sends
a notification. The test starts after that the CoAP test device has registered its resources,
the session with the Bridge has been established and the test device has received an
About announcement.

Procedure

1. The AllJoyn test device registers a signal handler.

2. The AllJoyn test device creates an AllJoyn Proxy Object for the object announced
by the Bridge.

3. The AllJoyn test device calls the registration() method on the Proxy Object with its
unique id and the request message as parameters.

4. The AllJoyn test device waits to receive the method return.

5. The AllJoyn test device adds a match rule for the object it has registered.

6.2 test case specificaion 87

6. The CoAP test device sends two notifications to the Bridge with 5 seconds of period
between them.

7. The AllJoyn test device receives notification signals and handles them.

8. The AllJoyn test device calls the cancellation() method on the Proxy Object with its
unique id as parameters.

9. The AllJoyn test device removes the match rule for the object it doesn’t want more
to observe.

Expected results

• The AllJoyn test device successfully registers the signal handler.

• The AllJoyn test device calls the registration() method.

• The Bridge sends a GET request method call to the CoAP server in which the
resource is and the method returns a response message with a valid response code
and the observe option set to 0.

• The status code returned by the registration() method equals OK.

• The AllJoyn test device successfully adds the signal match rule.

• The CoAP test device sends two notifications to the Bridge.

• The Bridge sends two signals to the AllJoyn side for the object representing the
resource that sent the notifications.

• The AllJoyn test device receives two notification signals and successfully handles
them.

• The AllJoyn test device calls the cancellation() method.

• The Bridge sends a GET request method call to the CoAP server in which the
resource is and the method returns a response message with a valid response code
and the observe option set to 1.

• The AllJoyn test device successfully removes the match rule.

– If a bus exception occurs, the test fails.

6.3 test cases summary 88

6.3 test cases summary

6.3.1 BRIDGE-TC-01 CoAP Resources Registration

VALIDATION TEST RESULT

Test Case ID BRIDGE-TC-01 Test Title CoAP Resources Registration

Test Setup

The CoAP server emulates two resources: a light sensor and a temperature sensor. In order to register them, it sends
a POST request message to the bridge in which it specifies the URI, the content format, the resource type and the
interface description for both the resources. In the message URI query, the CoAP server includes the endpoint name
field, unique within the CoAP network.

Result

OK

Execution Info

Date: 02/05/2016

Author: David Costa

6.3.2 BRIDGE-TC-02 CoAP Resources Cancellation

VALIDATION TEST RESULT

Test Case ID BRIDGE-TC-02 Test Title CoAP Resources Cancellation

Test Setup

The CoAP server emulates two resources: a light sensor and a temperature sensor. In order to register them, it sends
a POST request message to the bridge in which it specifies the URI, the content format, the resource type and the
interface description for both the resources. In the message URI query, the CoAP server includes the endpoint name
field, unique within the CoAP network.

Result

OK

Execution Info

Date: 02/05/2016

Author: David Costa

6.3 test cases summary 89

6.3.3 BRIDGE-TC-03 Discovery of AllJoyn Objects

VALIDATION TEST RESULT

Test Case ID BRIDGE-TC-03 Test Title Discovery of AllJoyn Objects

Test Setup

CoAP resources are previously registered on the bridge. The AllJoyn client looks for the available CoAP objects in
the network. It means that the parameter of the whoimplement() function is set to ”com.bridge.Coap”.

Result

OK

Execution Info

Date: 02/05/2016

Author: David Costa

6.3.4 BRIDGE-TC-04 GET Method Call

VALIDATION TEST RESULT

Test Case ID BRIDGE-TC-04 Test Title GET Method Call

Test Setup

CoAP resources are previously registered. CoAP server emulates the temperature sensor with the temperature set to
18 degrees. During the execution, the user interacts with the AllJoyn client application using its GUI. He first selects
the temperature resource, and then he calls the GET method with the accept field set to 40.

Result

OK

Execution Info

Date: 02/05/2016

Author: David Costa

6.3 test cases summary 90

6.3.5 BRIDGE-TC-05 GET Method Call with Cached Response

VALIDATION TEST RESULT

Test Case ID BRIDGE-TC-05 Test Title GET Method Call with Cached Response

Test Setup

CoAP resources are previously registered. CoAP server emulates the temperature sensor with the temperature set to
18 degrees. During the execution, the user interacts with the AllJoyn client application using its GUI. He first selects
the temperature resource, and then he calls the GET method with the accept field set to 40.

Result

OK

Execution Info

Date: 02/05/2016

Author: David Costa

6.3.6 BRIDGE-TC-06 POST Method Call

VALIDATION TEST RESULT

Test Case ID BRIDGE-TC-06 Test Title POST Method Call

Test Setup

CoAP resources are previously registered. During execution, the user interacts with the AllJoyn client application
using its GUI. He first selects the temperature resource, and then he calls the POST method with the content format
field set to 40 and the payload field set to 22.

Result

OK

Execution Info

Date: 02/05/2016

Author: David Costa

6.3 test cases summary 91

6.3.7 BRIDGE-TC-07 DELETE Method Call

VALIDATION TEST RESULT

Test Case ID BRIDGE-TC-07 Test Title DELETE Method Call

Test Setup

CoAP resources are previously registered. During execution, the user interacts with the AllJoyn client application
using its GUI. He first selects the temperature resource, and then he calls the DELETE method.

Result

OK

Execution Info

Date: 02/05/2016

Author: David Costa

6.3.8 BRIDGE-TC-08 Observing Registration

VALIDATION TEST RESULT

Test Case ID BRIDGE-TC-08 Test Title Observing Registration

Test Setup

CoAP resources are previously registered as observable resources. During execution, the user interacts with the
AllJoyn client application using its GUI. He first selects the temperature resource, and then he calls the registration
method with the accept field set to 40.

Result

OK

Execution Info

Date: 02/05/2016

Author: David Costa

6.4 detailed test result 92

6.3.9 BRIDGE-TC-09 Observing Cancellation

VALIDATION TEST RESULT

Test Case ID BRIDGE-TC-09 Test Title Observing Cancellation

Test Setup

CoAP resources are previously registered as observable resources. During execution, the user interacts with the
AllJoyn client application using its GUI. He first selects the temperature resource, calls the registration method with
the accept field set to 40, and then he calls the cancellation method.

Result

OK

Execution Info

Date: 02/05/2016

Author: David Costa

6.3.10 BRIDGE-TC-10 Notification Arrival

VALIDATION TEST RESULT

Test Case ID BRIDGE-TC-10 Test Title Notification Arrival

Test Setup

CoAP resources are previously registered as observable resources. The resources are configured to set a notification
every 5 seconds. CoAP server emulates the temperature sensor with the temperature set to 18 degrees. During exe-
cution, the user interacts with the AllJoyn client application using its GUI. He first selects the temperature resource,
calls the registration method with the accept field set to 40, he waits for the arrival of two notifications, and then he
calls the cancellation method.

Result

OK

Execution Info

Date: 02/05/2016

Author: David Costa

6.4 detailed test result

6.4.1 BRIDGE-TC-01 CoAP Resource Registration

Test setup

The CoAP server emulates two resources: a light sensor and a temperature sensor. In
order to register them, it sends a POST request message to the bridge in which it specifies
the URI, the content format, the resource type and the interface description for both the
resources. In the message URI query, the CoAP server includes the endpoint name field,
unique within the CoAP network.

6.4 detailed test result 93

Uri-query: ep=node1

Payload:

</temp>;ct=40;rt=temperature;if=sensor,

</light>;ct=40;rt=light;if=sensor

Test results

In this section the selection of the output logs lines are shown as an evidence of the test
result.
Bridge Console:

mag 02, 2016 12:28:22 PM org.eclipse.californium.core.network.config.NetworkConfig

createStandardWithFile

INFO: Loading standard properties from file Californium.properties

mag 02, 2016 12:28:22 PM org.eclipse.californium.core.CoapServer start

INFO: Starting server

mag 02, 2016 12:28:22 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /fe80:0:0:0:642e:d9ff:fe8a:9043%awdl0:5683

mag 02, 2016 12:28:22 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /fe80:0:0:0:a65e:60ff:fece:6c25%en0:5683

mag 02, 2016 12:28:22 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /131.114.221.215:5683

mag 02, 2016 12:28:22 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /fe80:0:0:0:0:0:0:1%lo0:5683

mag 02, 2016 12:28:22 PM it.dc.bridge.rd.ResourceDirectory run

INFO: ResourceDirectory listening on port 5683

mag 02, 2016 12:28:22 PM it.dc.bridge.om.AJObjectManagerApp start

INFO: Starting AllJoyn server

mag 02, 2016 12:28:23 PM it.dc.bridge.om.AJObjectManagerApp start

INFO: BusAttachment.connect successful on null

mag 02, 2016 12:28:23 PM it.dc.bridge.om.AJObjectManagerApp start

INFO: BusAttachment.request ’com.bridge.coap’ successful

mag 02, 2016 12:28:23 PM it.dc.bridge.om.AJObjectManagerApp start

INFO: BusAttachment.advertiseName ’com.bridge.coap’ successful

mag 02, 2016 12:28:23 PM it.dc.bridge.om.AJObjectManagerApp bindSessionPort

INFO: BusAttachment.bindSessionPort successful

mag 02, 2016 12:28:23 PM it.dc.bridge.om.AJObjectManagerApp start

INFO: Announce called announcing SessionPort: 42

mag 02, 2016 12:28:25 PM it.dc.bridge.rd.RDResource handlePOST

INFO: Registration request: /131.114.221.215

mag 02, 2016 12:28:25 PM it.dc.bridge.om.AJObjectManagerApp addResource

INFO: Registered bus object: /rd/2080/temp

mag 02, 2016 12:28:25 PM it.dc.bridge.om.AJObjectManagerApp announce

INFO: Announce called announcing SessionPort: 42

mag 02, 2016 12:28:25 PM it.dc.bridge.om.AJObjectManagerApp addResource

INFO: Registered bus object: /rd/2080/light

mag 02, 2016 12:28:25 PM it.dc.bridge.om.AJObjectManagerApp announce

INFO: Announce called announcing SessionPort: 42

mag 02, 2016 12:28:25 PM it.dc.bridge.rd.RDResource handlePOST

INFO: Adding new endpoint: coap://131.114.221.215:5682

CoAP Server Console:

mag 02, 2016 12:28:25 PM org.eclipse.californium.core.network.config.NetworkConfig

createStandardWithFile

INFO: Loading standard properties from file Californium.properties

6.4 detailed test result 94

mag 02, 2016 12:28:25 PM dc.coaptest.ServerTest setup

INFO:

Start ServerTest

mag 02, 2016 12:28:25 PM org.eclipse.californium.core.CoapServer start

INFO: Starting server

mag 02, 2016 12:28:25 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /fe80:0:0:0:642e:d9ff:fe8a:9043%awdl0:5682

mag 02, 2016 12:28:25 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /fe80:0:0:0:a65e:60ff:fece:6c25%en0:5682

mag 02, 2016 12:28:25 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /131.114.221.215:5682

mag 02, 2016 12:28:25 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /fe80:0:0:0:0:0:0:1%lo0:5682

mag 02, 2016 12:28:25 PM dc.coaptest.ServerTest rdDiscovery

INFO: Send GET request for RD discovery

mag 02, 2016 12:28:25 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at 0.0.0.0/0.0.0.0:0

mag 02, 2016 12:28:25 PM org.eclipse.californium.core.network.EndpointManager createDefaultEndpoint

INFO: Created implicit default endpoint 0.0.0.0/0.0.0.0:63193

mag 02, 2016 12:28:25 PM dc.coaptest.ServerTest rdDiscovery

INFO: Received response with code:2.05

mag 02, 2016 12:28:25 PM dc.coaptest.ServerTest rdRegistration

INFO: Send POST request for resource registration

mag 02, 2016 12:28:25 PM dc.coaptest.ServerTest rdRegistration

INFO: Received response with code:2.01

mag 02, 2016 12:28:25 PM dc.coaptest.ServerTest rdRegistration

INFO: Received location:/rd/2080

Encountered problems

None.

Deviations from test case

None.

6.4.2 BRIDGE-TC-02 CoAP Resource Cancellation

Test setup

The CoAP server emulates two resources: a light sensor and a temperature sensor. In
order to register them, it sends a POST request message to the bridge in which it specifies
the URI, the content format, the resource type and the interface description for both the
resources. In the message URI query, the CoAP server includes the endpoint name field,
unique within the CoAP network.

Test results

In this section the selection of the output logs lines are shown as an evidence of the test
result.
Bridge Console:

6.4 detailed test result 95

mag 02, 2016 12:41:34 PM org.eclipse.californium.core.network.config.NetworkConfig

createStandardWithFile

INFO: Loading standard properties from file Californium.properties

mag 02, 2016 12:41:34 PM org.eclipse.californium.core.CoapServer start

INFO: Starting server

mag 02, 2016 12:41:34 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /fe80:0:0:0:642e:d9ff:fe8a:9043%awdl0:5683

mag 02, 2016 12:41:34 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /fe80:0:0:0:a65e:60ff:fece:6c25%en0:5683

mag 02, 2016 12:41:34 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /131.114.221.215:5683

mag 02, 2016 12:41:34 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /fe80:0:0:0:0:0:0:1%lo0:5683

mag 02, 2016 12:41:34 PM it.dc.bridge.rd.ResourceDirectory run

INFO: ResourceDirectory listening on port 5683

mag 02, 2016 12:41:34 PM it.dc.bridge.om.AJObjectManagerApp start

INFO: Starting AllJoyn server

mag 02, 2016 12:41:35 PM it.dc.bridge.om.AJObjectManagerApp start

INFO: BusAttachment.connect successful on null

mag 02, 2016 12:41:35 PM it.dc.bridge.om.AJObjectManagerApp start

INFO: BusAttachment.request ’com.bridge.coap’ successful

mag 02, 2016 12:41:35 PM it.dc.bridge.om.AJObjectManagerApp start

INFO: BusAttachment.advertiseName ’com.bridge.coap’ successful

mag 02, 2016 12:41:35 PM it.dc.bridge.om.AJObjectManagerApp bindSessionPort

INFO: BusAttachment.bindSessionPort successful

mag 02, 2016 12:41:35 PM it.dc.bridge.om.AJObjectManagerApp start

INFO: Announce called announcing SessionPort: 42

mag 02, 2016 12:41:45 PM it.dc.bridge.rd.RDResource handlePOST

INFO: Registration request: /131.114.221.215

mag 02, 2016 12:41:46 PM it.dc.bridge.om.AJObjectManagerApp addResource

INFO: Registered bus object: /rd/8517/temp

mag 02, 2016 12:41:46 PM it.dc.bridge.om.AJObjectManagerApp announce

INFO: Announce called announcing SessionPort: 42

mag 02, 2016 12:41:46 PM it.dc.bridge.om.AJObjectManagerApp addResource

INFO: Registered bus object: /rd/8517/light

mag 02, 2016 12:41:46 PM it.dc.bridge.om.AJObjectManagerApp announce

INFO: Announce called announcing SessionPort: 42

mag 02, 2016 12:41:46 PM it.dc.bridge.rd.RDResource handlePOST

INFO: Adding new endpoint: coap://131.114.221.215:5682

mag 02, 2016 12:41:46 PM it.dc.bridge.rd.RDNodeResource delete

INFO: Removing endpoint: coap://131.114.221.215:5682

mag 02, 2016 12:41:46 PM it.dc.bridge.om.AJObjectManagerApp announce

INFO: Announce called announcing SessionPort: 42

mag 02, 2016 12:41:46 PM it.dc.bridge.om.AJObjectManagerApp announce

INFO: Announce called announcing SessionPort: 42

CoAP Server Console:

mag 02, 2016 12:41:45 PM org.eclipse.californium.core.network.config.NetworkConfig

createStandardWithFile

INFO: Loading standard properties from file Californium.properties

mag 02, 2016 12:41:45 PM dc.coaptest.ServerTest setup

INFO:

Start ServerTest

mag 02, 2016 12:41:45 PM org.eclipse.californium.core.CoapServer start

INFO: Starting server

mag 02, 2016 12:41:45 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /fe80:0:0:0:642e:d9ff:fe8a:9043%awdl0:5682

mag 02, 2016 12:41:45 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /fe80:0:0:0:a65e:60ff:fece:6c25%en0:5682

6.4 detailed test result 96

mag 02, 2016 12:41:45 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /131.114.221.215:5682

mag 02, 2016 12:41:45 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at /fe80:0:0:0:0:0:0:1%lo0:5682

mag 02, 2016 12:41:45 PM dc.coaptest.ServerTest rdDiscovery

INFO: Send GET request for RD discovery

mag 02, 2016 12:41:45 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at 0.0.0.0/0.0.0.0:0

mag 02, 2016 12:41:45 PM org.eclipse.californium.core.network.EndpointManager createDefaultEndpoint

INFO: Created implicit default endpoint 0.0.0.0/0.0.0.0:65471

mag 02, 2016 12:41:45 PM dc.coaptest.ServerTest rdDiscovery

INFO: Received response with code:2.05

mag 02, 2016 12:41:45 PM dc.coaptest.ServerTest rdRegistration

INFO: Send POST request for resource registration

mag 02, 2016 12:41:46 PM dc.coaptest.ServerTest rdRegistration

INFO: Received response with code:2.01

mag 02, 2016 12:41:46 PM dc.coaptest.ServerTest rdRegistration

INFO: Received location:/rd/8517

mag 02, 2016 12:41:46 PM dc.coaptest.ServerTest cancellation

INFO: Send DELETE request for resource cancellation

mag 02, 2016 12:41:46 PM dc.coaptest.ServerTest cancellation

INFO: Received response with code:2.02

Encountered problems

None.

Deviations from test case

None.

6.4.3 BRIDGE-TC-03 Discovery of AllJoyn Objects

Test setup

The CoAP resources are previously registered on the bridge. The AllJoyn client looks
for the available CoAP objects in the network. It means that the parameter of the
whoimplement() function is set to the regular expression ”com.bridge.Coap”.

Test results

In this section the selection of the output logs lines are shown as an evidence of the test
result.
Bridge Console:

mag 02, 2016 1:57:47 PM it.dc.bridge.om.AJObjectManagerApp$1 acceptSessionJoiner

INFO: SessionPortListener.acceptSessionJoiner called

mag 02, 2016 1:57:47 PM it.dc.bridge.om.AJObjectManagerApp$1 acceptSessionJoiner

INFO: SessionPortListener.acceptSessionJoiner called

mag 02, 2016 1:57:47 PM it.dc.bridge.om.AJObjectManagerApp$1 sessionJoined

INFO: SessionPortListener.sessionJoined(42, 1129795701, :WMVdnuwD.2)

mag 02, 2016 1:57:47 PM it.dc.bridge.om.AJObjectManagerApp$1 sessionJoined

INFO: SessionPortListener.sessionJoined(42, 1129795701, :WMVdnuwD.2)

6.4 detailed test result 97

mag 02, 2016 1:58:14 PM it.dc.bridge.om.AJObjectManagerApp$1 acceptSessionJoiner

INFO: SessionPortListener.acceptSessionJoiner called

mag 02, 2016 1:58:14 PM it.dc.bridge.om.AJObjectManagerApp$1 acceptSessionJoiner

INFO: SessionPortListener.acceptSessionJoiner called

mag 02, 2016 1:58:14 PM it.dc.bridge.om.AJObjectManagerApp$1 sessionJoined

INFO: SessionPortListener.sessionJoined(42, 832032745, :_j-Lfibq.2)

mag 02, 2016 1:58:14 PM it.dc.bridge.om.AJObjectManagerApp$1 sessionJoined

INFO: SessionPortListener.sessionJoined(42, 832032745, :_j-Lfibq.2)

AllJoyn Client Console:

mag 02, 2016 1:58:14 PM it.dc.ajtest.Client setup

INFO: BusAttachment.connect successful on null

mag 02, 2016 1:58:14 PM it.dc.ajtest.Client setup

INFO: BusAttachment.findAdvertisedName successful com.bridge.coap

mag 02, 2016 1:58:14 PM it.dc.ajtest.Client$MyBusListener foundAdvertisedName

INFO: BusListener.foundAdvertisedName(com.bridge.coap, 256, com.bridge.coap)

mag 02, 2016 1:58:14 PM it.dc.ajtest.Client$MyBusListener foundAdvertisedName

INFO: BusListener.foundAdvertisedName(com.bridge.coap, 4, com.bridge.coap)

mag 02, 2016 1:58:14 PM it.dc.ajtest.Client$MyBusListener foundAdvertisedName

INFO: BusAttachement.joinSession successful sessionId = 0

mag 02, 2016 1:58:14 PM it.dc.ajtest.Client$MyBusListener foundAdvertisedName

INFO: BusAttachement.joinSession successful sessionId = 832032745

mag 02, 2016 1:58:14 PM it.dc.ajtest.Client setup

INFO: BusAttachment.registerSignalHandlers successful

mag 02, 2016 1:58:15 PM it.dc.ajtest.Client findObjects

INFO: BusAttachment.whoImplements successful com.bridge.Coap

Screenshots

In this section the screenshot of the AllJoyn Client application is shown in Figure 32 as
an evidence of the test result.

Figure 32: AllJoyn Client App: Discovery

6.4 detailed test result 98

Encountered problems

None.

Deviations from test case

None.

6.4.4 BRIDGE-TC-04 GET Method Call

Test setup

The CoAP resources are previously registered. CoAP server emulates the temperature
sensor with the temperature set to 18 degrees. During the execution, the user interacts
with the AllJoyn client application using its GUI. He first selects the temperature resource,
and then he calls the GET method with the accept field set to 40.

Test results

In this section the selection of the output logs lines are shown as an evidence of the test
result.
AllJoyn Client Console:

mag 02, 2016 2:21:35 PM it.dc.ajtest.Client get

INFO: Send GET request to:/rd/411/temp

Bridge Console:

mag 02, 2016 2:21:35 PM it.dc.bridge.om.AJObjectManagerApp callMethod

INFO: Object Manager received a GET method call on the object /rd/411/temp

mag 02, 2016 2:21:35 PM it.dc.bridge.proxy.CoAPProxy callMethod

INFO: CoAP Proxy sends a GET method call to coap://131.114.221.215:5682 on the resource /temp

mag 02, 2016 2:21:35 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at 0.0.0.0/0.0.0.0:0

mag 02, 2016 2:21:35 PM org.eclipse.californium.core.network.EndpointManager createDefaultEndpoint

INFO: Created implicit default endpoint 0.0.0.0/0.0.0.0:51259

CoAP Server Console:

mag 02, 2016 2:21:35 PM dc.coaptest.MyResource handleGET

INFO: Received GET request from /131.114.221.215 on temp

Screenshots

In this section the screenshot of the AllJoyn Client application is shown in Figure 33 as
an evidence of the test result.

6.4 detailed test result 99

Figure 33: AllJoyn Client App: GET Method Call

Encountered problems

None.

Deviations from test case

None.

6.4.5 BRIDGE-TC-05 GET Method Call with Cached Response

Test setup

CoAP resources are previously registered. CoAP server emulates the temperature sensor
with the temperature set to 18 degrees. During the execution, the user interacts with the
AllJoyn client application using its GUI. He first selects the temperature resource, and
then he calls the GET method with the accept field set to 40.

Test results

In this section the selection of the output logs lines are shown as an evidence of the test
result.
AllJoyn Client Console:

mag 02, 2016 2:24:30 PM it.dc.ajtest.Client get

INFO: Send GET request to:/rd/1141/temp

mag 02, 2016 2:24:32 PM it.dc.ajtest.Client get

INFO: Send GET request to:/rd/1141/temp

6.4 detailed test result 100

Bridge Console:

mag 02, 2016 2:24:30 PM it.dc.bridge.om.AJObjectManagerApp callMethod

INFO: Object Manager received a GET method call on the object /rd/1141/temp

mag 02, 2016 2:24:30 PM it.dc.bridge.proxy.CoAPProxy callMethod

INFO: CoAP Proxy sends a GET method call to coap://131.114.221.215:5682 on the resource /temp

mag 02, 2016 2:24:30 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at 0.0.0.0/0.0.0.0:0

mag 02, 2016 2:24:30 PM org.eclipse.californium.core.network.EndpointManager createDefaultEndpoint

INFO: Created implicit default endpoint 0.0.0.0/0.0.0.0:59930

mag 02, 2016 2:24:32 PM it.dc.bridge.om.AJObjectManagerApp callMethod

INFO: Object Manager received a GET method call on the object /rd/1141/temp

mag 02, 2016 2:24:32 PM it.dc.bridge.proxy.ProxyCacheResource getResponse

INFO: Cache hit

mag 02, 2016 2:24:32 PM it.dc.bridge.proxy.CoAPProxy callMethod

INFO: Cache returned ACK-2.05 MID=59813, Token=ea,

OptionSet={"Content-Format":"application/link-format", "Max-Age":59}, "18 Cel"

CoAP Server Console:

mag 02, 2016 2:24:30 PM dc.coaptest.MyResource handleGET

INFO: Received GET request from /131.114.221.215 on temp

Screenshots

In this section the screenshot of the AllJoyn Client application is shown in Figure 34 as
an evidence of the test result.

Figure 34: AllJoyn Client App: GET Method Call with Cached Response

Encountered problems

None.

6.4 detailed test result 101

Deviations from test case

None.

6.4.6 BRIDGE-TC-06 POST Method Call

Test setup

The CoAP resources are previously registered. During execution, the user interacts with
the AllJoyn client application using its GUI. He first selects the temperature resource, and
then he calls the POST method with the content format field set to 40 and the payload
field set to 22.

Test results

In this section the selection of the output logs lines are shown as an evidence of the test
result.
AllJoyn Client Console:

mag 02, 2016 2:31:14 PM it.dc.ajtest.Client post

INFO: Send POST request to:/rd/170/temp

Bridge Console:

mag 02, 2016 2:31:14 PM it.dc.bridge.om.AJObjectManagerApp callMethod

INFO: Object Manager received a POST method call on the object /rd/170/temp

mag 02, 2016 2:31:14 PM it.dc.bridge.proxy.CoAPProxy callMethod

INFO: CoAP Proxy sends a POST method call to coap://131.114.221.215:5682 on the resource /temp

mag 02, 2016 2:31:14 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at 0.0.0.0/0.0.0.0:0

mag 02, 2016 2:31:14 PM org.eclipse.californium.core.network.EndpointManager createDefaultEndpoint

INFO: Created implicit default endpoint 0.0.0.0/0.0.0.0:60039

CoAP Server Console:

mag 02, 2016 2:31:14 PM dc.coaptest.MyResource handlePOST

INFO: Received POST request from /131.114.221.215 on temp

Screenshots

In this section the screenshot of the AllJoyn Client application is shown in Figure 35 as
an evidence of the test result.

6.4 detailed test result 102

Figure 35: AllJoyn Client App: POST Method Call

Encountered problems

None.

Deviations from test case

None.

6.4.7 BRIDGE-TC-07 DELETE Method Call

Test setup

CoAP resources are previously registered. During execution, the user interacts with the
AllJoyn client application using its GUI. He first selects the temperature resource, and
then he calls the DELETE method.

Test results

In this section the selection of the output logs lines are shown as an evidence of the test
result.
AllJoyn Client Console:

mag 02, 2016 2:33:17 PM it.dc.ajtest.Client delete

INFO: Send DELETE request to:/rd/6890/temp

Bridge Console:

mag 02, 2016 2:33:17 PM it.dc.bridge.om.AJObjectManagerApp callMethod

INFO: Object Manager received a DELETE method call on the object /rd/6890/temp

6.4 detailed test result 103

mag 02, 2016 2:33:17 PM it.dc.bridge.proxy.CoAPProxy callMethod

INFO: CoAP Proxy sends a DELETE method call to coap://131.114.221.215:5682 on the resource /temp

mag 02, 2016 2:33:17 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at 0.0.0.0/0.0.0.0:0

mag 02, 2016 2:33:17 PM org.eclipse.californium.core.network.EndpointManager createDefaultEndpoint

INFO: Created implicit default endpoint 0.0.0.0/0.0.0.0:57201

CoAP Server Console:

mag 02, 2016 2:33:17 PM dc.coaptest.MyResource handleDELETE

INFO: Received DELETE request from /131.114.221.215 on temp

Screenshots

In this section the screenshot of the AllJoyn Client application is shown in Figure 36 as
an evidence of the test result.

Figure 36: AllJoyn Client App: DELETE Method Call

Encountered problems

None.

Deviations from test case

None.

6.4 detailed test result 104

6.4.8 BRIDGE-TC-08 Observing Registration

Test setup

The CoAP resources are previously registered as observable resources. During execution,
the user interacts with the AllJoyn client application using its GUI. He first selects the
temperature resource, and then he calls the registration method with the accept field set
to 40.

Test results

In this section the selection of the output logs lines are shown as an evidence of the test
result.
AllJoyn Client Console:

mag 02, 2016 2:35:56 PM it.dc.ajtest.Client register

INFO: Send registration request to:/rd/5786/temp

Bridge Console:

mag 02, 2016 2:35:56 PM it.dc.bridge.proxy.CoAPProxy register

INFO: CoAPProxy requests for observe the resource /temp from coap://131.114.221.215:5682

mag 02, 2016 2:35:56 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at 0.0.0.0/0.0.0.0:0

mag 02, 2016 2:35:56 PM org.eclipse.californium.core.network.EndpointManager createDefaultEndpoint

INFO: Created implicit default endpoint 0.0.0.0/0.0.0.0:63191

mag 02, 2016 2:35:56 PM it.dc.bridge.proxy.CoAPProxy register

INFO: Start receiving notification from coap://131.114.221.215:5682 for the resource /temp

CoAP Server Console:

mag 02, 2016 2:35:56 PM dc.coaptest.MyResource handleGET

INFO: Received GET request from /131.114.221.215 on temp

mag 02, 2016 2:35:56 PM dc.coaptest.MyResource handleGET

INFO: Received extended GET request for observing registration

mag 02, 2016 2:35:56 PM org.eclipse.californium.core.CoapResource addObserveRelation

INFO: Successfully established observe relation between /131.114.221.215:63191#9c86f1 and resource

/temp

Encountered problems

None.

Deviations from test case

None.

6.4 detailed test result 105

6.4.9 BRIDGE-TC-09 Observing Cancellation

Test setup

The CoAP resources are previously registered as observable resources. During execution,
the user interacts with the AllJoyn client application using its GUI. He first selects the
temperature resource, calls the registration method with the accept field set to 40, and
then he calls the cancellation method.

Test results

In this section the selection of the output logs lines are shown as an evidence of the test
result.
AllJoyn Client Console:

mag 02, 2016 2:39:04 PM it.dc.ajtest.Client register

INFO: Send registration request to:/rd/5768/temp

mag 02, 2016 2:39:06 PM it.dc.ajtest.Client unregister

INFO: Unregister from:/rd/5768/temp

Bridge Console:

mag 02, 2016 2:39:04 PM it.dc.bridge.proxy.CoAPProxy register

INFO: CoAPProxy requests for observe the resource /temp from coap://131.114.221.215:5682

mag 02, 2016 2:39:04 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at 0.0.0.0/0.0.0.0:0

mag 02, 2016 2:39:04 PM org.eclipse.californium.core.network.EndpointManager createDefaultEndpoint

INFO: Created implicit default endpoint 0.0.0.0/0.0.0.0:60101

mag 02, 2016 2:39:04 PM it.dc.bridge.proxy.CoAPProxy register

INFO: Start receiving notification from coap://131.114.221.215:5682 for the resource /temp

mag 02, 2016 2:39:06 PM it.dc.bridge.proxy.CoAPProxy cancel

INFO: CoAPProxy requests for stop observing the resource /temp from coap://131.114.221.215:5682

mag 02, 2016 2:39:06 PM it.dc.bridge.proxy.CoAPProxy cancel

INFO: Stop receiving notification from coap://131.114.221.215:5682 for the resource /temp

CoAP Server Console:

mag 02, 2016 2:39:04 PM dc.coaptest.MyResource handleGET

INFO: Received GET request from /131.114.221.215 on temp

mag 02, 2016 2:39:04 PM dc.coaptest.MyResource handleGET

INFO: Received extended GET request for observing registration

mag 02, 2016 2:39:04 PM org.eclipse.californium.core.CoapResource addObserveRelation

INFO: Successfully established observe relation between /131.114.221.215:60101#0c32384408f1 and

resource /temp

mag 02, 2016 2:39:06 PM dc.coaptest.MyResource handleGET

INFO: Received GET request from /131.114.221.215 on temp

mag 02, 2016 2:39:06 PM dc.coaptest.MyResource handleGET

INFO: Received extended GET request for observing cancellation

Encountered problems

None.

6.4 detailed test result 106

Deviations from test case

None.

6.4.10 BRIDGE-TC-10 Notification Arrival

Test setup

The CoAP resources are previously registered as observable resources. The resources are
configured to set a notification every 5 seconds. CoAP server emulates the temperature
sensor with the temperature set to 18 degrees. During execution, the user interacts with
the AllJoyn client application using its GUI. He first selects the temperature resource,
calls the registration method with the accept field set to 40, he waits for the arrival of
two notifications, and then he calls the cancellation method.

Test results

In this section the selection of the output logs lines are shown as an evidence of the test
result.
Bridge Console:

mag 02, 2016 2:57:24 PM it.dc.bridge.proxy.CoAPProxy register

INFO: CoAPProxy requests for observe the resource /temp from coap://131.114.221.215:5682

mag 02, 2016 2:57:24 PM org.eclipse.californium.core.network.CoapEndpoint start

INFO: Starting endpoint at 0.0.0.0/0.0.0.0:0

mag 02, 2016 2:57:24 PM org.eclipse.californium.core.network.EndpointManager createDefaultEndpoint

INFO: Created implicit default endpoint 0.0.0.0/0.0.0.0:59812

mag 02, 2016 2:57:24 PM it.dc.bridge.proxy.CoAPProxy register

INFO: Start receiving notification from coap://131.114.221.215:5682 for the resource /temp

mag 02, 2016 2:57:27 PM it.dc.bridge.om.AJObjectManagerApp notify

INFO: A notification arrived from object /rd/360/temp with code 2.05

mag 02, 2016 2:57:32 PM it.dc.bridge.om.AJObjectManagerApp notify

INFO: A notification arrived from object /rd/360/temp with code 2.05

mag 02, 2016 2:57:35 PM it.dc.bridge.proxy.CoAPProxy cancel

INFO: CoAPProxy requests for stop observing the resource /temp from coap://131.114.221.215:5682

mag 02, 2016 2:57:35 PM it.dc.bridge.proxy.CoAPProxy cancel

INFO: Stop receiving notification from coap://131.114.221.215:5682 for the resource /temp

AllJoyn Client Console:

mag 02, 2016 2:57:24 PM it.dc.ajtest.Client register

INFO: Send registration request to:/rd/360/temp

mag 02, 2016 2:57:29 PM it.dc.ajtest.Client$MySignalHandler notification

INFO: A notification arrived with code 2.05

mag 02, 2016 2:57:33 PM it.dc.ajtest.Client$MySignalHandler notification

INFO: A notification arrived with code 2.05

mag 02, 2016 2:57:35 PM it.dc.ajtest.Client unregister

INFO: Unregister from:/rd/360/temp

6.4 detailed test result 107

Screenshots

In this section the screenshot of the AllJoyn Client application is shown in Figure 37 as
an evidence of the test result.

Figure 37: AllJoyn Client App: Notification Arrival

Encountered problems

None.

Deviations from test case

None.

7
T E S T I N W I N D O W S E N V I R O N M E N T

Microsoft joined the AllSeen Alliance in 2014 and added AllJoyn as a core component in
Windows 10. AllJoyn capable applications can run on any of the Windows 10 devices
including PCs, tablets, phones, Xbox as well as devices using Windows IoT Core.

So, due to the CoAP bridge we made, Windows devices can interact with CoAP
devices natively. We have demonstrated it using the IoT Explorer for AllJoyn Windows
application as AllJoyn client, a Wireless Sensor Network composed by several CoAP
servers, and a Linux host on which the bridge runs. This chapter shows the test results.

7.1 test setup

The test case is set up in the Dipartimento di Ingegneria dell’Informazione of the University
of Pisa, in which there is a pre-existing Wireless Sensor Network composed by 21 CoAP
servers split into as many rooms in two separated floors. Figure 38 illustrates the test
case plan.

(a) Downstairs (b) Upstairs

Figure 38: CoAP Sensor Network Map

Each of these devices contains a temperature sensor, a light sensor and a humidity
sensor, and exposes two resources:

• tmp, which provides the temperature sensor value;

• getalldata, which provides all the data the device exposes.

108

7.2 iot explorer for alljoyn 109

Then, the test is set up using the components as follows:

• A Windows 10 device on which the IoT Explorer for AllJoyn application will run.

• A Linux host on which the CoAP bridge will run.

• A WSN composed by devices based on CoAP, each of which provides two resources.

The bridge address and port are known by the CoAP servers, and each of them
registers its resources on the bridge.

7.2 iot explorer for alljoyn

The IoT Explorer for AllJoyn is a Windows Universal Application for interacting with
AllJoyn devices on the local proximity network [18]. Developers can list all available
AllJoyn devices, inspect their interface and object structure, as well as receive signals, set
and get properties, and call methods.

We used the Windows application as an AllJoyn client and we interacted with the
CoAP servers through the bridge we made.

7.2.1 Application discovery

The IoT Explorer for AllJoyn application will search for available AllJoyn producers
(devices) on the same subnet, and it will dynamically listen for AllJoyn services to
announce themselves and add them to this view. Figure 39 shows the application during
the discovery phase, after that the bridge application announced itself.

Figure 39: IoT Explorer for AllJoyn: Discovery

7.2 iot explorer for alljoyn 110

7.2.2 Objects

By clicking on any of the service tiles, the application shows more detailed information
about that service. After selecting the Bridge device, the application shows the AllJoyn
objects exposed by the bridge (Figure 40). Each tile shown on this page represents a
single bus object that can be interacted with using IoT Explorer for AllJoyn. In this test,
there are all the CoAP resources provided by the Wireless Sensor Network, after that
every CoAP device registered on the bridge.

Figure 40: IoT Explorer for AllJoyn: Objects

7.2.3 Interfaces

We can get a more detailed information about a bus object by clicking on the correspond-
ing tile. At the top of the page, we see the AllJoyn service name and bus object name,
and at the bottom of the page we see tiles corresponding to each of the interfaces that
this bus object exposes. Each interface can expose a number of properties, methods, and
signals for this bus object. We can see in Figure 41 the com.bridge.Coap interface, among
other ones.

7.2.4 Methods, signals, properties

Clicking on any of the interface tiles lets you see more information about the properties,
methods, and signals that they expose. Figure 42 display the methods, the signals and the
properties provided by the com.bridge.Coap interface. This interface exposes two properties
allowing to read the Resource Type and the Interface Description of the resource, the
REST methods get, post and delete, and the members related to the observing service.

7.2 iot explorer for alljoyn 111

Figure 41: IoT Explorer for AllJoyn: Interfaces

Figure 42: IoT Explorer for AllJoyn: Methods

7.3 observing service 112

7.2.5 Method call

When you click on a tile corresponding to a method, you are taken to a page with more
details about that method. The page will indicate what input parameters the method
takes, including their types and names (if available). It also gives information about the
method’s return parameters. After entering the input parameters in the provided fields,
you can invoke the method with the Invoke button. Instead, when you click on a property
tile, you will be taken to a more detailed view of that property. You will be able to see
the type, the current value of the property, and if the property is writable, you will be
able to set a new value.

For example, Figure 43 shows what happen during a method call and a property call.
In particular, the response received after the get method has been called (Figure 43a) and
the value of the Resource Type property (Figure 43b).

(a) Get Method (b) Resource Type Property

Figure 43: IoT Explorer for AllJoyn: Method Call

7.3 observing service

An important feature of the Constrained Application Protocol is the observing service,
which allows client nodes to retrieve a representation of a resource and keep this
representation updated by the server as long as the client is interested. The observing
service is implemented in AllJoyn using signals.

The devices used in the test case described above provide observable resources, so
that an AllJoyn client application can receive the resource representation over time. The
CoAP device contains one temperature sensor and one light sensor, and provides both
them using a CoAP resource, which sends notifications every minute. The consumer
application registered its interest into receiving the resource updates, and it registers a

7.3 observing service 113

signal handler in order to manage the received notifications. Figure 44 illustrates how the
light value changes, sensed by the CoAP device’s sensor, at the end of a 30 minutes test.

Figure 44: Observing Service in Test Case

C O N C L U S I O N S

In this work an AllJoyn to CoAP bridge application has been presented. The work
starts off by surveying the AllJoyn framework architecture and the state of the art of the
building automation. It includes the observed limitations of these advanced software
frameworks, with focus on the interoperability with the Constrained Application Protocol.
The survey then presents the bridging solution proposed by Microsoft and the reason for
the development of our own bridge.

The proposed solution is designed to enable CoAP resources in low-power devices to
be reached by AllJoyn applications, without the need of further configurations. Resource-
constrained nodes based on CoAP can easily register their resources on the bridge, which
provides to translate and advertise these resources, so that AllJoyn consumer application
are enabled to discover and interact with them.

Experimental results carried out by means of both a simulated testbed and a real
testbed demonstrated that the proposed solution succeeds in extending the AllJoyn
framework.

The developed solution enables AllJoyn to communicate with the CoAP protocol in a
low level of abstraction, setting itself in the CoAP message exchange level. Related works
can easily exploit the proposed bridge in order to implement applications based on it,
addressed to specific use cases.

114

R E F E R E N C E S

[1] Gartner, “Gartner Says 6.4 Billion Connected ”Things” Will Be in Use in 2016,
Up 30 Percent From 2015,” 2015. [Online]. Available: http://www.gartner.com/
newsroom/id/3165317.

[2] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol
(CoAP),” RFC 7252, RFC Editor, June 2014.

[3] A. Alliance, “The innovative companies that support AllJoyn,” 2016. [Online].
Available: https://allseenalliance.org/alliance/members.

[4] A. Alliance, “AllJoyn Framework,” 2016. [Online]. Available: https://

allseenalliance.org/framework.

[5] H. Pennington, A. Carlsson, A. Larsson, S. Herzberg, S. McVittie, and D. Zeuthen,
“D-Bus Specification,” tech. rep., February 2015.

[6] A. Alliance, “Documentation,” 2016. [Online]. Available: https://

allseenalliance.org/framework/documentation.

[7] C. Partridge and R. Hinden, “Version 2 of the Reliable Data Protocol (RDP),” RFC
1151, RFC Editor, April 1990.

[8] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,”
RFC 5246, RFC Editor, August 2008.

[9] D. McGrew and D. Bailey, “AES-CCM Cipher Suites for Transport Layer Security
(TLS),” RFC 6655, RFC Editor, July 2012.

[10] Microsoft, “AllJoyn Device System Bridge,” 2016. [Online]. Available: http://

ms-iot.github.io/content/en-US/win10/AllJoynDSB.htm.

[11] Microsoft, “AllJoyn Device System Bridge Template,” 2016. [On-
line]. Available: https://visualstudiogallery.msdn.microsoft.com/

aea0b437-ef07-42e3-bd88-8c7f906d5da8.

[12] Microsoft, “Mapping Bridge Interface Objects to Alljoyn,” 2016. [Online]. Available:
http://ms-iot.github.io/content/en-US/win10/AlljoynDsbApiGuide.htm.

[13] Microsoft, “ZigBee Adapter,” 2016. [Online]. Available: http://ms-iot.github.

io/content/en-US/win10/samples/ZigBeeAdapterTutorial.htm.

[14] Microsoft, “BACnet Sample,” 2016. [Online]. Available: http://ms-iot.github.

io/content/en-US/win10/samples/BACnetAdapterTutorial.htm.

115

http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/3165317
https://allseenalliance.org/alliance/members
https://allseenalliance.org/framework
https://allseenalliance.org/framework
https://allseenalliance.org/framework/documentation
https://allseenalliance.org/framework/documentation
http://ms-iot.github.io/content/en-US/win10/AllJoynDSB.htm
http://ms-iot.github.io/content/en-US/win10/AllJoynDSB.htm
https://visualstudiogallery.msdn.microsoft.com/aea0b437-ef07-42e3-bd88-8c7f906d5da8
https://visualstudiogallery.msdn.microsoft.com/aea0b437-ef07-42e3-bd88-8c7f906d5da8
http://ms-iot.github.io/content/en-US/win10/AlljoynDsbApiGuide.htm
http://ms-iot.github.io/content/en-US/win10/samples/ZigBeeAdapterTutorial.htm
http://ms-iot.github.io/content/en-US/win10/samples/ZigBeeAdapterTutorial.htm
http://ms-iot.github.io/content/en-US/win10/samples/BACnetAdapterTutorial.htm
http://ms-iot.github.io/content/en-US/win10/samples/BACnetAdapterTutorial.htm

REFERENCES 116

[15] Z. Shelby, “Constrained RESTful Environments (CoRE) Link Format,” RFC 6690,
RFC Editor, August 2012.

[16] K. Hartke, “Observing Resources in the Constrained Application Protocol (CoAP),”
RFC 7641, RFC Editor, September 2015.

[17] A. Alliance, “AllJoyn Code Generator,” 2015. [Online]. Available: https://wiki.
allseenalliance.org/devtools/code_generator.

[18] Microsoft, “IoT Explorer for AllJoyn,” 2015. [Online]. Available: https://www.

microsoft.com/it-it/store/apps/iot-explorer-for-alljoyn/9nblggh6gpxl.

https://wiki.allseenalliance.org/devtools/code_generator
https://wiki.allseenalliance.org/devtools/code_generator
https://www.microsoft.com/it-it/store/apps/iot-explorer-for-alljoyn/9nblggh6gpxl
https://www.microsoft.com/it-it/store/apps/iot-explorer-for-alljoyn/9nblggh6gpxl

	Introduction
	Internet of Things
	State of the art
	Challenges and limitations

	Implementation of IoT Systems
	Software frameworks
	Constrained Application Protocol
	Heterogeneous networks communication

	AllJoyn
	System Overview
	What is AllJoyn?
	Conceptual overview
	Software architecture

	D-Bus Specification
	Type system
	Message format
	Valid names
	Message types

	System Description
	AllJoyn system key concept
	Advertisement and discovery
	AllJoyn transport
	Data exchange
	AllJoyn session
	Sessionless signal
	AllJoyn security

	Device System Bridge
	Microsoft DSB
	DSB overview
	Configuration
	Development
	Limitations

	CoAP Bridge as a DSB
	Bridge device as IAdapterDevice
	CoAP device as IAdapterDevice
	Configuration

	Data Mapping
	Resource Directory
	Discovery
	Registration
	Update
	Removal

	Resource Directory Entries
	Entries format
	Storage of resources

	CoAP messages in the AllJoyn network
	Message fields
	Option fields
	Query filtering
	Request message
	Response message

	CoAP resources in the AllJoyn network
	Setting AllJoyn interface, methods and properties
	Setting AllJoyn object path
	Implementing the observing service
	About data
	Introspection file

	System Design
	Deployment Diagram
	Component Diagram
	Class Diagrams
	Bridge
	Resource Directory
	CoAP Proxy
	AJ Object Manager

	Sequence Diagrams
	Resource registration
	Resource update
	Resource removal
	GET method call
	POST method call
	DELETE method call
	Observing registration
	Notification
	Observing cancellation

	Test Report
	Environment Setup
	Requirements
	Preconditions

	Test Case Specificaion
	BRIDGE-TC-01 CoAP Resources Registration
	BRIDGE-TC-02 CoAP Resources Cancellation
	BRIDGE-TC-03 Discovery of AllJoyn Objects
	BRIDGE-TC-04 GET Method Call
	BRIDGE-TC-05 GET Method Call with Cached Response
	BRIDGE-TC-06 POST Method Call
	BRIDGE-TC-07 DELETE Method Call
	BRIDGE-TC-08 Observing Registration
	BRIDGE-TC-09 Observing Cancellation
	BRIDGE-TC-10 Notification Arrival

	Test Cases Summary
	BRIDGE-TC-01 CoAP Resources Registration
	BRIDGE-TC-02 CoAP Resources Cancellation
	BRIDGE-TC-03 Discovery of AllJoyn Objects
	BRIDGE-TC-04 GET Method Call
	BRIDGE-TC-05 GET Method Call with Cached Response
	BRIDGE-TC-06 POST Method Call
	BRIDGE-TC-07 DELETE Method Call
	BRIDGE-TC-08 Observing Registration
	BRIDGE-TC-09 Observing Cancellation
	BRIDGE-TC-10 Notification Arrival

	Detailed Test Result
	BRIDGE-TC-01 CoAP Resource Registration
	BRIDGE-TC-02 CoAP Resource Cancellation
	BRIDGE-TC-03 Discovery of AllJoyn Objects
	BRIDGE-TC-04 GET Method Call
	BRIDGE-TC-05 GET Method Call with Cached Response
	BRIDGE-TC-06 POST Method Call
	BRIDGE-TC-07 DELETE Method Call
	BRIDGE-TC-08 Observing Registration
	BRIDGE-TC-09 Observing Cancellation
	BRIDGE-TC-10 Notification Arrival

	Test in Windows Environment
	Test Setup
	IoT Explorer for AllJoyn
	Application discovery
	Objects
	Interfaces
	Methods, signals, properties
	Method call

	Observing Service

	Conclusions

