
Monitoring and testing in LTE networks:
from experimental analysis to

operational optimisation

Simone Roma

Department of Information Engineering

University of Pisa

This dissertation is submitted for the degree of

Doctor of Philosophy

May 2016

a mio padre e mia madre

Acknowledgements

Sono tante le persone che mi piacerebbe ringraziare, da coloro che mi hanno aiutato nella
realizzazione della mia tesi a coloro che semplicemente mi hanno accompagnato durante la
mia esperienza di dottorando.

Grazie a Gregorio e Christian. Non dimenticherò le innumerevoli discussioni, le giocate
di regio quarto, le vie ferrate. Siete delle persone eccezionali, mi mancherete.

Grazie a Rosario e Stefano. Siete stati degli amici prima ancora che i miei tutor, sempre
pronti a stimolare la mie curiosità e ad offrirmi un grande supporto.

Grazie a Simone. Sei stato diponibile con me fin dal primo istante, mi hai ospitato a casa
tua incurante del fatto che sarei potuto essere un serial killer! Mi hai sostenuto e mi hai dato
innumerevoli opportunità di crescita.

Grazie a Gianluca e a tutti gli amici del RadioLab. Calorosi e disponibili, ogni volta era
un piacere tornare a Torino sapendo che vi avrei incontrato.

Grazie a Mihai, Carmen, Valentin, Christina e a tutti gli altri amici di Ixia, con cui ho
condiviso 6 mesi splendidi a Bucharest (chi l’avrebbe mai detto!).

Grazie a Tiziano. Il Gemello. Dopo 8 anni passati sotto lo stesso tetto ci separiamo,
purtroppo. Eppure non dimenticherò quanto fosse piacevole scambiare con te due parole la
sera, quando tutti e due tornavamo a casa distrutti.

Grazie a Michele. Il Fratellone. Sei sempre stato generoso e i tuoi consigli sono sempre
stati preziosi. I week end passati insieme mi riportavano indietro, a quando tutti e tre
vivevamo insieme. Nostalgia canaglia!

Grazie a Serena. Soprattutto nell’ultimo anno hai dovuto sopportarmi anche come
coinquilino, eppure sei sempre stata gentile e premurosa. Grazie a Laia. La tua allegria è
contagiosa, riesci sempre a strapparmi un sorriso.

Grazie a Felice, mio ultimo compagno di mensa. Sei sempre stato disponibile con me. È
sempre un piacere stare in tua compagnia, non sei mai banale.

Grazie a tutti gli amici pisani. Sono innumerevoli le belle serate che abbiamo passato
insieme.

Grazie a mamma e papà. Grazie, grazie e ancora grazie. Senza di voi tutto questo non
sarebbe mai stato possibile.

vi

Grazie a Giusy. Non potevo che lasciare te per ultima, per dare una degna conclusione a
questi ringraziamenti. Non hai mai dubitato di me, sei stata il mio solido appoggio nei miei
momenti di difficoltà. Quando avevo l’impressione di non andare nella direzione giusta tu mi
hai ascoltato, mi hai consigliato e confortato. Sei la mia dolce metà, senza di te non so come
farei.

Abstract

L’avvento di LTE e LTE-Adavanced, e la loro integrazione con le esistenti tecnologie cellulari,
GSM e UMTS, ha costretto gli operatori di rete radiomobile ad eseguire una meticolosa
campagna di test e a dotarsi del giusto know-how per rilevare potenziali problemi durante
il dispiegamento di nuovi servizi. In questo nuovo scenario di rete, la caratterizzazione e il
monitoraggio del traffico nonchè la configurazione e l’affidibilità degli apparati di rete, sono
di importanza fondamentale al fine di prevenire possibili insidie durante la distribuzione di
nuovi servizi e garantire la migliore esperienza utente possibile.

Sulla base di queste osservazioni, questa tesi di dottorato offre un percorso completo di
studio che va da un’analisi sperimentale ad un’ottimizzazione operativa.

Il punto di partenza del nostro lavoro è stato il monitoraggio del traffico di un eNodeB
di campo con tre celle, operativo nella banda 1800 MHz. Tramite campagne di misura
successive, è stato possibile seguire l’evoluzione della rete 4G dagli albori del suo dispie-
gamento nel 2012, fino alla sua completa maturazione nel 2015. I dati raccolti durante il
primo anno, evidenziavano uno scarso utilizzo della rete LTE, dovuto essenzialmente alla
limitata penetrazione dei nuovi smartphone 4G. Nel 2015, invece, abbiamo assistito ad un
aumento netto e decisivo del numero di utenti che utilizzano la tecnolgia LTE, con statistiche
aggregate (come gli indici di marketshare per i sistemi operativi degli smartphones, o la
percentuale di traffico video) che rispecchiano i trend nazionali e internazionali. Questo
importante risultato testimonia la maturità della tecnologia LTE, e ci permette di considerare
il nostro eNodeB un punto di osservazione prezioso per l’analisi del traffico.

Di pari passo con l’evoluzione dell’infrastruttura, anche i telefoni cellulari hanno avuto
una sorprendente evoluzione nel corso degli ultimi due decenni, a partire da dispositivi
semplici con servizi di sola voce, fino agli smartphone di ultima generazione che offrono
servizi innovativi, come Internet mobile, geolocalizzazione e mappe, servizi multimediali, e
molti altri. Monitorare il traffico reale ci ha quindi permesso di studiare il comportamento
degli utenti e individuare i servizi maggiormente utilizzati. Per questo, sono state sviluppate
diverse librerie software per l’analisi del traffico. In particolare, è stato sviluppato in C++14
un framework/tool per la classificazione del traffico. Il progetto, disponibile su github, si
chiama MOSEC, un acronimo per MOdular SErvice Classifier. MOSEC consente di definire

viii

e utilizzare un numero arbitrario di plug-in, che processano il pacchetto secondo le loro
logiche e possono o no ritornare un valore di classificazione. Una strategia di decisione
finale consente di classificare i vari flussi, basandosi sulle classificazioni di ciascun plug-in.
Abbiamo quindi validato la bontà del processi di classificazione di MOSEC utilizzando una
traccia labellata come ground-truth di classificazione. I risultati mostrano una eccellente
capacità di classificazione di traffico TCP-HTTP/HTTPS, mediamente superiore a quella di
altri tool di classificazione (nDPI, PACE, Layer-7), ed evidenzia alcune lacune per quanto
riguarda la classificazione di traffico UDP.

Le carattistiche dei flussi di traffico utente (User Plane) hanno un impatto diretto sul
consumo energetico dei terminali e indiretto sul traffico di controllo (Control Plane) che
viene generato. Pertanto, la conoscenza delle proprietà statistiche dei vari flussi consente
di affrontare un problema del cross-layer optimization, per ridurre il consumo energetico
dei terminali variando dei parametri configurabili sugli eNodeB. E’ noto che la durata della
batteria dei nuovi smartphone, rappresenta uno dei maggiori limiti nell’utilizzo degli stessi.
In particolare, lo sviluppo di nuovi servizi e applicazioni capaci di lavorare in background,
senza la diretta interazione dell’utente, ha introdotto nuovi problemi riguardanti la durata
delle batterie degli smartphone e il traffico di segnalazione necessario ad acquisire/rilasciare
le risorse radio. In conformità a queste osservazioni, è stato condotto uno studio approfondito
sul meccanismo DRX (Discontinuous Reception), usato in LTE per consentire all’utente
di risparmiare energia quando nessun pacchetto è inviato o ricevuto. I parametri DRX e
RRC Inactivity Timer influenzano notevolmente l’energia consumata dai vari device. A
seconda che le risorse radio siano assegnate o meno, l’UE si trova rispettivamente negli stati
di RRC Connected e RRC Idle. Per valutare il consumo energetico degli smartphone, è stato
sviluppato un algoritmo che associa un valore di potenza a ciascuno degli stati in cui l’UE
può trovarsi. La transizione da uno stato all’altro è regolata da diversi timeout che sono
resettati ogni volta che un pacchetto è inviato o ricevuto. Utilizzando le tracce di traffico
reale, è stata associata una macchina a stati a ogni UE per valutare il consumo energetico
sulla base dei pacchetti inviati e ricevuti. Osservando le caratteristiche statistiche del traffico
User Plane è stata ripetuta la simulazione utilizzando dei valori dell’Inactivity Timer diversi
da quello impiegato negli eNodeB di rete reale, alla ricerca di un buon trade-off tra risparmio
energetico e aumento del traffico di segnalazione. I risultati hanno permesso di determinare
che l’Inactivity Timer, settato originariamente sull’eNodeB era troppo elevato e determinava
un consumo energetico eccesivo sui terminali. Diminuendone il valore fino a 10 secondi,
si può ottenere un risparmio energetico fino al 50% (a secondo del traffico generato) senza
aumentare considerevolemente il traffico di controllo.

ix

I risultati dello studio di cui sopra, tuttavia, non tengono in considerazione lo stato di stress
cui può essere sottoposto un eNodeB per effetto dell’aumento del traffico di segnalazione, nè,
tantomeno, dell’aumento della contesa di accesso alla rete durante la procedura di RACH,
necessaria per ristabilire il bearer radio (o connessione RRC) tra terminale ed eNodeB.

Valutare le performance di sistemi hardware e software per la rete mobile di quarta
generazione, cosi come individuare qualsiasi possibile debolezza all’interno dell’architettura,
è un lavoro complesso. Un possibile caso di studio, è proprio quello di valutare la robustezza
delle Base Station quando riceve molte richieste di connessioni RRC, per effetto di una
diminuzione dell’Inactivity Timer. A tal proposito, all’interno del Testing LAB di Telecom
Italia, abbiamo utilizzato IxLoad, un prodotto sviluppato da Ixia, come generatore di carico
per testare la robustezza di un eNodeB. I test sono consistiti nel produrre un differente carico
di richieste RRC sull’interfaccia radio, similmente a quelle che si avrebbero diminuendo
l’Inactivity Timer. Le proprietà statistiche del traffico di controllo sono ricavate a partire
dall’analisi dalle tracce di traffico reale. I risultati hanno dimostrato che, anche a fronte di
un carico sostenuto di richieste RRC solo una minima parte (percentuale inferiore all’1%
nel caso più sfavorevole) di procedure fallisce. Abbassare l’inactivity timer anche a valori
inferiori ai 10 secondi non è quindi un problema per la Base Station.

Rimane da valutare, infine, cosa succede a seguito dell’aumento delle richieste di accesso
al canale RACH, dal punto di vista degli utenti. Quando due o più utenti tentano, simultanea-
mente, di accedere al canale RACH, utilizzando lo stesso preambolo, l’eNodeB potrebbe non
essere in grado di decifrare il preambolo. Se i due segnali interferiscono costruttivamente,
entrambi gli utenti riceveranno le stesse risorse per trasmettere il messaggio di RRC Request
e, a questo punto, l’eNodeB può individuare la collisione e non trasmetterà nessun acknowl-
edgement, forzando entrambi gli utenti a ricominciare la procedura dall’inizio. Abbiamo
quindi proposto un modello analitico per calcolare la probabilità di collisione in funzione
del numero di utenti e del carico di traffico offerto, quando i tempi d’interarrivo tra richieste
successive é modellata con tempi iper-esponenziali. In più, abbiamo investigato le prestazioni
di comunicazioni di tipo Machine-to-Machine (M2M) e Human-to-Human (H2H), valutando,
al variare del numero di preamboli utilizzati, la probabilità di collisione su canale RACH,
la probabilità di corretta trasmissione considerando sia il tempo di backoff che il numero
massimo di ritrasmissioni consentite, e il tempo medio necessario per stabilire un canale radio
con la rete di accesso. I risultati, valutati nel loro insieme, hanno consentito di esprimere
delle linee guida per ripartire opportunamente il numero di preamboli tra comunicazioni
M2M e H2H.

Abstract

The advent of LTE and LTE-Advanced, and their integration with existing cellular technolo-
gies, GSM and UMTS, has forced the mobile radio network operators to perform meticulous
tests and adopt the right know-how to detect potential new issues, before the activation of
new services. In this new network scenario, traffic characterisation and monitoring as well
as configuration and on-air reliability of network equipment, is of paramount relevance in
order to prevent possible pitfalls during the deployment of new services and ensure the best
possible user experience.

Based on this observation, this research project offers a comprehensive study that goes
from experimental analysis to operational optimization. The starting point of our work has
been monitoring the traffic of an already deployed eNodeB with three cells, operative in the
1800 MHz band. Through subsequent measurement campaigns, it was possible to follow
the evolution of the 4G network by the beginning of its deployment in 2012, until its full
maturity in 2015. The data collected during the first year, showed a poor use of the LTE
network, mainly due to the limited penetration of new 4G smartphone. In 2015, however, we
appreciate a clear and decisive increase in the number of terminals using LTE, with aggregate
statistics (e.g. marketshare for smartphone operating systems, or the percentage of video
traffic) that reflect the national trend. This important outcome testifies the maturity of LTE
technology, and allows us to consider our monitored eNodeB as a valuable vantage point for
traffic analysis.

Hand in hand with the evolution of the infrastructure, even mobile phones have had
a surprising evolution over the past two decades, from simple devices with only voice
services, towards smartphones offering novel services such as mobile Internet, geolocation
and maps, multimedia services, and many more. Monitoring the real traffic has allowed us to
study the users behavior and identify the services most used. To this aim, various software
libraries for traffic analysis have been developed. In particular, we developed a C/C++ library
that analyses Control Plane and User Plane traffic, which provides corse and fined-grained
statistics at flow-level. Another framework/tool has been exclusively dedicated to the topic of
traffic classification. Among the plethora of existing tool for traffic classification we provide
our own solution, developed from scratch. The project, which is available on github, is

xii

named MOSEC, an acronym for Modular SErvice Classifier. The modularity is given by the
possibility to implement multiple plug-ins, each one will process the packet according to
its logic, and may or may not return a packet/flow classification. A final decision strategy
allows to classify the various streams, based on the classifications of each plug-in. Despite
previous approaches, the ability of keeping together multiple classifiers allows to mitigate the
deficiency of each classifiers (e.g. DPI does not work when packets are encrypted or DNS
queries don’t have to be sent if name resolution is cached in device memory) and exploit
their full-capabilities when it is feasible. We validated the goodness of MOSEC using a
labelled trace synthetically created by colleagues from UPC BarcelonaTech. The results
show excellent TCP-HTTP/HTTPS traffic classification capabilities, higher, on average, than
those of other classification tools (NDPI, PACE, Layer-7). On the other hand, there are some
shortcomings with regard to the classification of UDP traffic.

The characteristics of User Plane traffic have a direct impact on the energy consumed
by the handset devices, and an indirect impact on the Control Plane traffic that is generated.
Therefore, the acquaintances of the statistical properties of the various flows, allows us to
deal with the problem of cross-layer optimization, that is reducing the power consumption of
the terminals by varying some control plane parameters configurable on the eNodeB. It is
well known that the battery life of the new smartphones is one of the major limitations in the
use of the same. In particular, the birth of new services and applications capable of working
in the background without direct user interaction, introduced new issues related to the battery
lifetime and the signaling traffic necessary to acquire/release the radio resources. Based on
these observations, we conducted a thorough study on the DRX mechanism (Discontinuous
Reception), exploited by LTE to save smartphones energy when no packet is sent or received.
The DRX configuration set and the RRC Inactivity Timer greatly affect the energy consumed
by the various devices. Depending on which radio resources are allocated or not, the user
equipment is in the states of RRC Connected and Idle, respectively. To evaluate the energy
consumption of smartphones, an algorithm simulates the transition between all the possible
states in which an UE can be and maps a power value to each of these states. The transition
from one state to another is governed by different timeouts that are reset every time a packet
is sent or received. Using the traces of real traffic, we associate a state machine to each for
assessing the energy consumption on the basis of the sent and received packets. We repeated
these simulations using different values of the inactivity timer, that appear to be more suitable
than the one currently configured on the monitored eNodeB, looking for a good trade-off
between energy savings and increased signaling traffic. The results highlighted that the
Inactivity Timer set originally sull’eNodeB was too high and determined an excessive energy
consumption on the terminals. Reducing the value up to 10 seconds permits to achieve energy

xiii

savings of up to 50% (depending on the underling traffic profile) without up considerably the
control traffic.

The results of the study mentioned above, however, do not consider neither the stress
level which the eNodeB is subject to, given the raise of signaling traffic that could occur, nor
the increase of collision probability during the RACH procedure, needed to re-establish the
radio bearer (or RRC connection) between the terminal and eNodeB .

Evaluate the performance of hardware and software systems for the fourth-generation
mobile network, as well as identify any possible weakness in the architecture, it is a complex
job. A possible case study, is precisely to assess the robustness of the base station when it
receives many requests for RRC connections, as effect of a decrease of the inactivity timer. In
this regard, within the Testing LAB of Telecom Italia, we used IxLoad, a product developed
by Ixia, as a load generator to test the robustness of one eNodeB. The tests consisted in
producing a different load of RRC request on the radio interface, similar to those that would
be produced by decreasing the inactivity timer to certain values. The statistical properties for
the signalling traffic are derived from the analysis of real traffic traces. The main outcomes
have shown that, even in the face of an high load of RRC requests only a small part (less than
1% in the most unfavorable of the cases) of the procedure fails. Therefore, even lowering the
inactivity timer at values lower than 10 seconds is not an issue for the Base Station.

Finally, remains to be evaluated how such surge of RRC request impacts on users
performance. If one of the users under coverage in the RRC Idle is paged for an incoming
packet or need to send an uplink packet a state transition from RRC Idle to RRC Connected
is needed. At this point, the UE initiates the random access procedure by sending the
random access channel preamble (RACH Preamble). When two or more users attempt,
simultaneously, to access the RACH channel, using the same preamble, the eNodeB may
not be able to decipher the preamble. If the two signals interfere constructively, both users
receive the same resources for transmitting the RRC Request message and, at this point, the
eNodeB can detect the collision and will not send any acknowledgment, forcing both users to
restart the procedure from the beginning. We have proposed an analytical model to calculate
the probability of a collision based on the number of users and the offered traffic load, when
the interarrival time between requests is modeled with hyper-exponential times. In addition,
we investigated some performance for Machine-to-Machine (M2M) and Human-to-Human
(H2H) type communications, including the probability of correct transmission considering
either the backoff time either the maximum number of allowed retransmissions, and the
average time required to established a radio bearer with the access network. The results,
considered as a whole, have made possible to express the guidelines to properly distribute
the number of preambles in H2H and M2M communications.

Table of contents

List of figures xix

List of tables xxiii

Nomenclature xxix

1 Motivation and Scope 1
1.1 Motivation and Scope . 1
1.2 LTE and LTE-Advanced: Fundamentals 2

1.2.1 LTE Architecture . 4
1.2.2 LTE Interfaces and Protocol Stacks 7
1.2.3 LTE Channels . 9

1.3 Thesis Structure . 11
1.3.1 Why Traffic Analysis . 11
1.3.2 UE Power Saving in LTE . 12
1.3.3 eNodeB performance . 13

2 Traffic Analysis 15
2.1 Introduction . 15
2.2 Lesson Learned: Telecom Italia Testing Lab 16
2.3 Related Works: Passive Measurement Analysis 18
2.4 Related Works: Traffic Classification . 19
2.5 Coarse Results . 22
2.6 Traffic Analysis . 24

2.6.1 Application/Service Analysis . 24
2.6.2 Video Analysis . 26
2.6.3 Daily App Distribution . 28

2.7 MOSEC: MOdular SErvice Classifier . 32
2.7.1 MOSEC: Network Processing . 33

xvi Table of contents

2.7.2 MOSEC: Engine . 34
2.7.3 MOSEC: Plug-ins . 38
2.7.4 MOSEC: Decision Algorithm . 45
2.7.5 MOSEC: Statistics . 47

2.8 MOSEC Validation . 50
2.9 Traffic Analysis with MOSEC . 58
2.10 Conclusion . 66

3 Energy Consumption 69
3.1 Introduction . 69
3.2 Discontinuous Reception – DRX . 71
3.3 Energy Consumption Model . 72
3.4 RRC Parameters Inference . 73

3.4.1 RRC Inactivity Timer . 73
3.4.2 Estimation of the Network Re-entry Time 75
3.4.3 Network Overhead . 77

3.5 Which Inactivity Timer is suitable for LTE network? 79
3.6 Experimental Results . 84
3.7 Conclusion . 88

4 RACH/RRC Performance 89
4.1 Introduction . 89
4.2 Stress Test with Ixia . 90

4.2.1 Rate for RRC Connection Requests 91
4.2.2 Test Configuration . 93
4.2.3 Test Results . 96
4.2.4 Other Considerations . 102

4.3 RAN Overload: Machine-to-Machine and Human-to-Human Communication104
4.4 RACH Procedure . 110
4.5 Modelling inter–RACH times . 112
4.6 RACH Collision Probability: Analytical Model 114

4.6.1 Performance Evaluation . 118
4.7 Guidelines for RACH preamble serparation between HTC and MTC 119

4.7.1 Simulation Design: MTC, HTC and RAO definition 120
4.7.2 Simulation results: MTC traffic 122
4.7.3 Simulation results: HTC traffic . 127

4.8 Conclusion . 129

Table of contents xvii

References 131

Appendix A LTE Theoretical Limits 135
A.1 Maximum Number of UE per TTI . 135
A.2 Maximum Downlink Throughput . 136

List of figures

1.1 LTE Architecture . 5
1.2 EPS Bearer . 6
1.3 Uu Interface protocol stack: User Plane 7
1.4 Uu Interface protocol stack: Control Plane 7
1.5 S1 interface protocol stack: Control Plane 8
1.6 S1 interface protocol stack: User Plane . 9
1.7 LTE Channel Mapping: Downlink (left) and Uplink (right) 10

2.1 Average UE number in each day . 22
2.2 Operating System Market Share from selected vantage point 23
2.3 Application Analyisis: Flow Percentage 25
2.4 Application Analyisis: Aggregate Data . 26
2.5 Number of video flow . 27
2.6 Video data . 28
2.7 Working Day 2014 . 29
2.8 Working Day 2015 . 30
2.9 WeekEnd 2014 . 31
2.10 WeekEnd 2015 . 31
2.11 MOSEC: Buffer . 34
2.12 MOSEC: Decoding Process at Layar 4 . 35
2.13 MOSEC: Flow Inforamtion Structure . 36
2.14 MOSEC: Classification Process . 36
2.15 MOSEC: Debug Plug-in . 37
2.16 MOSEC: Framework Design . 38
2.17 MOSEC: Port Plug-in . 40
2.18 MOSEC: DNS Plug-in . 42
2.19 MOSEC: SSL Plug-in . 44
2.20 MOSEC: Cooperative Strategy . 46

xx List of figures

2.21 MOSEC: Per-Classifier Statistics (1) . 47
2.22 MOSEC: Per-Classifier Statistics (2) . 49
2.23 UPC: Application Protocol . 51
2.24 UPC: Application . 51
2.25 UPC: Web Service . 52

3.1 The RRC state machine . 71
3.2 RRC Inactivity Timer . 74
3.3 id-Cause analysis for RRC Connections released before 61 seconds 75
3.4 Flow Message for paged UE . 76
3.5 LTE Promotion Time for paged UE . 77
3.6 Network Overhead . 78
3.7 Maximum Gap: CDF and Histogrm . 81
3.8 R value : CDF . 82
3.9 Maximum Gap for considered applications: CDF and Histogram 83
3.10 R value for considered applications: CDF 84
3.11 Energy Consumed vs Throughput . 85
3.12 Per-UE consumed energy, normalized to the reference value 86
3.13 Per-UE umber of RRC connection procedures, normalized to the reference

value . 86
3.14 Overall number of RRC connection procedures, normalized to the reference

value . 87

4.1 Rate for RRCIT = 70.554s . 91
4.2 Rate for RRCIT = 12.154s . 92
4.3 Rate for RRCIT = 2.134s . 93
4.4 Log file (.dct) for IxLoad . 95
4.5 Latency for RRCIT = 70.544s (left) and 2.035s (rigth) - 100 UEs 98
4.6 Rate for RRCIT = 70.544s (left) and 2.035s (rigth) - 100 UEs 98
4.7 Latency for different Inactivity Timer value - 100 UEs 99
4.8 Latency for different Inactivity Timer value - 400 UEs 100
4.9 Maximum number of DCI in one seconds (up) and average number of DCI

per TTI (down) . 102
4.10 Impact on UP throughput for RRCIT = 2.035s - 400 UEs 103
4.11 RRC Connection Setup/Release Sequence - Table 5.2.1-1 [7] 105
4.12 MAC sub-header for Backoff Indicator . 112
4.13 Map for Backoff Indicator and specific time values 112

List of figures xxi

4.14 BIC vs C for RRCIT = 2,5,10s (Left to Right) 114
4.15 QQplot for Inactivity Timer = 2,5,10 (Left to Right) 115
4.16 Switching analogue to RACH request operations 115
4.17 RACH requests arrival process . 117
4.18 Analytical model vs. simulation results - P(HTC)

C and the P(RAO)
C for different

RACHP values, k . 119
4.19 P(MTC)

c for different PrachConfigIndex - P(MTC)
c is defined in AnnexB of [8] 122

4.20 P(RAO)
c for different PrachConfigIndex - P(RAO)

c is defined in Section 6.3 of [8]123
4.21 P(MTC)

c evaluated with λ2 = 10 (upper curves) and λ1 = 100 (lower curves) 124
4.22 Success Probability with λ2 = 10 (left) and λ1 = 100 (rigth) 125
4.23 Transmission Delay (from the 1st attempt to the successfull one), with

λ1 = 100 (left) and λ2 = 10 (rigth) . 126
4.24 Average maximum number of attempts per UE, with λ2 = 10 (left) and

λ1 = 100 (rigth) . 126
4.25 P(HTC)

c evaluated with RRCIT = 2s, RRCIT = 5s and RRCIT = 10s 127
4.26 Success Probability for HTC evaluated with RRCIT = 2s (left), RRCIT = 5s

(center) and RRCIT = 10s () rigth . 127
4.27 Transmission delay for HTC, evaluated with RRCIT = 2s (left), RRCIT = 5s

(center) and RRCIT = 10s () rigth . 128

List of tables

1.1 LTE and LTE Advanced Requirements . 3
1.2 UE category and capabilities . 4

2.1 Measurement Session: Overall Statistics 21

3.1 Protocol Analysis . 79
3.2 HTTP Protocol Analysis . 81
3.3 Power Model Parameters . 84

4.1 Stats for different RRCIT . 92
4.2 RACH Procedure Configuration . 96
4.3 Test Results with 100 UE . 97
4.4 Test Results with 400 UEs . 100
4.5 IRRi : Statistical Parameters . 113
4.6 Estimated model parameters . 114

Nomenclature

Roman Symbols

3GPP 3rd Generation Partnership Program

ARQ Automatic Repeat Request

AWS Amazon Web Services

BCH Broadcast Channel

BSC Base Station Controller

CAGR Compound Annual Growth Rate

CCCH Common Control Channel

CFI Control Format Indicators

CP Control Plane

CQI Channel Quality Indicators

CS Circuited Switched

CSFB CS Fall Back

DCCH Dedicated Control Channel

DCI Downlink Control Information

DL Downlink

DL-SCH Downlink Shared Channel

DNS Domain Name Server

xxvi Nomenclature

DNS Domain Name Server

DNS Domain Name Server

DPI Deep Packet Inspection

DPI Deep Packet Inspection

DPI Deep Packet Inspection

DRX Discontinuous Reception

DSCP Differentiated Service Code Point

DTCH Dedicated Traffic Channel

E-RAB E-UTRAN Radio Access Bearer

E-UTRAN Evolved UTRAN

eNodeB evolved NodeB

EPC Evolved Packet Core

EPS Evolved Packet System

GBR Guaranteed Bit Rate

GPRS General Packet Radio Service

GSM Global System for Mobile communications

GTP GPRS Tunneling Protocol

HARQ Hybrid ARQ

HSPA High-Speed Packet Access

HSS Home Subscriber Server

IMEI International Mobile Station Equipment Identity

IMSI International mobile subscriber identity

IP Internet Protocol

LCID Logical Channel Identity

Nomenclature xxvii

LTE Long Term Evolution

LTE-A Long Term Evolution Advanced

MBMS Multimedia Broadcast Multicast Service

MBSFN Multicase Broadcast Single Frequency Network

MCCH Multicast Control Channel

MIB Master Information Block

MIMO Multiple Input Multiple Output

MME Mobility Management Entity

MOSEC MOdular SErvice Classifier

MTCH Multicast Traffic Channel

OFDM Orthogonal Frequency-Division Multiplexing

OTT Over The Top

P-GW PDN Gateway

PBCH Physical Broadcast Channel

PCC Policy and Charging Control

PCFICH Physical Control Format Indicator Channel

PCRF Policy and Charging Resource Function

PDCCH Physical Downlink Control Channel

PDCP Packet Data Convergence Protocol

PDN Packet Data Network

PDN-GW PDN Gateway

PDSCH Physical Downlink Shared Channel

PHICH Physical Hybrid ARQ Indicator Channel

PMCH Physical Multicast Channel

xxviii Nomenclature

PRACH Physical Random Access Channel

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel

QoS Quality of Service

RAN Radio Access Network

RAT Radio Access Technology

RI Rank Indicators

RLC Radio Link Control

RNC Radio Network Controller

RNTI Radio Network Temporary Identifier

RoCH Robust Header Compression

RRC Radio Resource Control

RRM Radio Resource Management

S-GW Serving Gateway

SCTP Stream Control Transmission Protocol

SIB System Information Block

SM Spatial Multiplexing

SR Scheduling Request

SRB Signalling Radio Bearer

TAC Type Approval code

TILAB Telcom Italia LAB

TIM Telecom Italia Mobile

TMSI Temporary Mobile Subscriber Identify

UE User Equipment

Nomenclature xxix

UL Uplink

UL-SCH Uplink Shared Channel

UMTS Universal Mobile Telecommunication System

Chapter 1

Motivation and Scope

1.1 Motivation and Scope

The evolution and growth of mobile network is fundamentally changing the way users
access the Internet and consume content and services. Mobile phones have had a surprising
evolution over the last two decades, starting from simple devices with only voice services
towards smartphones offering novel services such as mobile Internet, geolocation and maps,
multimedia services, and many more. To fulfil the demand for high data rate and meet user
expectation a new wireless interface is introduced in mobile networks as part of the fourth
cellular network generation (4G).

Indeed, according to Cisco Visual Networking Index (VNI), globally, mobile data traffic
will increase 10-fold between 2014 and 2019. Mobile data traffic will grow at a Compound
Annual Growth Rate (CAGR) of 57 percent between 2014 and 2019, reaching 24.2 exabytes
per month by 2019, and three time faster than fixed IP traffic in the same range period. Global
mobile data traffic was 4 percent of total IP traffic in 2014, and will be 14 percent of total IP
traffic by 2019. Furthermore, by 20191:

i. there will be 5.2 billion global mobile users, up from 4.3 billion in 2014

ii. there will be 11.5 billion mobile-ready devices and connections, more than 4 billion
more than there were in 2014

iii. the average mobile connection speed will increase 2.4-fold, from 1.7 Mbps in 2014 to
4.0 Mbps by 2019

1http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-
vni/index.html#∼vniforecast

2 Motivation and Scope

iv. global mobile IP traffic will reach an annual run rate of 292 exabytes, up from 30
exabytes in 2014

The increase of traffic (and services), together with the growth of users expectations and
the exponential growth of network complexity, require that telecommunication operators
incorporate the right know-how and the right equipment to perform an effective and efficient
testing for ensuring proper placement on field of the new technologies, and for evaluating
their reliability in particular situations, remarkably in high load conditions. LTE technology
needs extensive studies aimed at experimentally understanding how network resources are
utilised by real users in a deployed commercial network setting.

1.2 LTE and LTE-Advanced: Fundamentals

Long Term Evolution (LTE) starts from release 8, standardised by the 3rd Generation
Partnership Program (3GPP) as the successor of the Universal Mobile Telecommunication
System (UMTS) standard. 3GPP Technical Report 25.913 defines the key objectives of LTE
as:

i. support of a flexible bandwidth up to 20 MHs,

ii. peak downlink rate of 100 Mbps when using two receiving antennas at the user
equipment,

iii. peak uplink rate when using 1 transmitting antenna at the user equipment,

iv. round trip time less than 10 ms on the air interface,

v. improve downlink and uplink spectrum efficiency

LTE was designed and optimised with the assumption that all of the services would be
packet-switched rather than circuit switched, thus continuing the trend set from the evolution
of Global System for Mobile communications (GSM), to General Packet Radio Service
(GPRS), Enhanced Data Rates for GSM Evolution (EDGE), UMTS, and High-Speed Packet
Access (HSPA). Nevertheless, it still includes functionality to handle Circuited Switched
(CS), e.g. CS Fall Back (CSFB) to UMTS or GSM.

LTE Advanced (LTE-A) is an evolved version of LTE with increased capabilities and
improved performance. It starts from 3GPP release 10 and introduces Carrier Aggregation to
provide wider effective channel bandwidths. It also introduces MIMO in the uplink direction,
as well as increasing the number ot antenna elements that can can be exploited for MIMO in
downlink direction.

1.2 LTE and LTE-Advanced: Fundamentals 3

Table 1.1 LTE and LTE Advanced Requirements

LTE-A LTE
Requirements Requirements

Peak Throughput
Uplink 500 Mbps 50 Mbps

Downlink 1 Gbps 100 Mbps

Peak Spectrum Efficiency
Uplink 15 bps/Hz 2.5 bps/Hz

Downlink 30 bps/Hz 5.0 bps/Hz

Control Plane Latency
From Idle 50 ms 100 ms

From Connected (DRX) 10 ms 50 ms

User Plane Latency < 5 ms < 5 ms

Table 1.1 compares some of the key requirements for LTE and LTE-Advanced, specified
in TR 25.913 and 36.913 respectively.

Peak throughput requirements for LTE Advanced are 10 times greater then those for
LTE. These improvements are fundamentally achieved using a combination of increased
bandwidth and increased multiple antenna transmission capability. Indeed, the maximum 20
Mhz bandwidth in LTE, can be increased up to 100 MHz, and 4x4 MIMO in LTE evolves
to 8x8 MIMO (even if the assumption of 100 Mbps in LTE is reached with 2x2 MIMO).
Peak spectrum efficiency requirements for LTE-A are 6 times larger than in LTE. Spectrum
efficiency is a measure of throughput per unit of bandwidth: thus increasing throughput
while increasing the available bandwidth, does not provide an higher spectrum efficiency.
The improvement shown in the table primarily resides in MIMO techniques. Control plane
latencies represent the delay in moving the UE into a state where it is ready to transfer data
with user plane connection. The user plane latencies represents the one-way delay between
the IP layer in the UE and IP layer in the eNodeB. This value is strictly related to HARQ
process the regulates transmission on the air interface on both side.

Regardless of the network capabilities, the system is nevertheless constrained by the
actual capabilities of the receiver mobile equipment. That is, the UE capabilities. LTE defines
five UE radio capability categories, to which a given UE has to conform to. These range
from a UE not capable of MIMO transmission with a maximum throughput of 10 Mbit/s DL
and 5 Mbit/s UL to a 4×4-capable MIMO terminal with up to 300 Mbit/s DL and 70 Mbit/s
UL. Table 2.2 details the maximum throughput for both DL and UL, as well as their MIMO
Spatial Multiplexing (SM) capabilities.

4 Motivation and Scope

Table 1.2 UE category and capabilities

Category

1 2 3 4 5

Downlink
max. throughput (Mbps) 10.3 51 102 151.2 302.4

max. number of supported layers for SM 1 2 2 2 4
max. number of supported streams for SM 1 2 2 2 4

Uplink
max. throughput (Mbps) 5.2 25.5 51 51 72.5

support for 64-QAM No No No No Yes

As a results of these appealing characteristics, LTE contributed to boost mobile connec-
tivity and the explosion in the consumer market of smartphones and tablets. On the other
hand, the pervasive usage of social networks and video on-demand has poured millions of
new mobile users into the net, so that Internet mobile traffic is expected to exceed the traffic
generated by the computer in the coming years.

1.2.1 LTE Architecture

The Evolved Packet System (EPS) architecture is shown in Figure 1.1. It is organised in four
groups: User Equipment (UE), Evolved UTRAN (E-UTRAN), Evolved Packet Core (EPC)
and Services. In order to minimise end-to-end latency, the number of network elements
was reduced compared to 2G and 3G, resulting in the so-called “flat architecture”. UEs are
connected with eNodesB that provides all radio interface-related functions. In contrast to
prior architectures, the LTE Radio Access Network (RAN) is a meshed network where the
functions previously fulfilled by the Radio Network Controller (RNC) in UMTS and/or the
Base Station Controller (BSC) in GSM are integrated into the eNodeB. In order to enable
a meshed RAN topology, the eNodeBs are now not only hierarchically connected to the
core network but are also able to communicate with each other, which makes it potentially
possible to employ eNodeB cooperation schemes to increase network performance. eNodeBs
implements the following RAN functionalities:

• All PHY and MAC layer procedures, including link adaptation, Hybrid Automatic
Repeat reQuest (HARQ), and cell search

• Radio Link Control (RLC): Segmentation and Automatic Repeat reQuest (ARQ)
control of the radio bearers

• Packet Data Convergence Protocol (PDCP): IP header compression by means of Robust
Header Compression (RoHC) and encryption of the user data streams.

1.2 LTE and LTE-Advanced: Fundamentals 5

• Radio Resource Control (RRC): at the C-Plane level, it controls the handover, manages
Quality of Service (QoS), establishes and maintains radio bearers, manages keys
(security), and controls/reports UE measurements.

• Radio Resource Management (RRM): ensures that radio resources are assigned effi-
ciently and meeting the QoS constraints imposed by the core network. The RRM layer
achieves it by means of controlling radio admission and bearers, connection mobility,
and UL/DL scheduling.

• Selection of a Mobility Management Entity (MME) at UE attachment.

• Routing of the U-Plane data towards the Serving Gateway (S-GW).

Fig. 1.1 LTE Architecture

The MME manages mobility and is used for all control plane procedures. The MME
controls the access to EPC, i.e. it is responsible for attach and tracking procedure, for
activation and deactivation of the bearers and for the choice of the S-GW during the initial
attach procedure. It is also in charge for ciphering and integrity protection of Non-Access
Stratum (NAS) signalling and for the distribution of paging messages to the eNodeB in the
same tracking area.

S-GW forwards data packets, and serves as anchor for the user plane during inter-
eNodeB and inter-RAT (Radio Access Technology) handovers. It manages and stores UEs
contexts, like IP-related information or network internal routing information. Data packets
are forwarded from eNodeB towards S-GW over a GPRS Tunneling Protocol (GTP) tunnel.
Likewise, S-GW tunnels traffic to the Packet Data Network Gateway (PDN-GW).

6 Motivation and Scope

Fig. 1.2 EPS Bearer

PDN-GW, or simply P-GW, offers connectivity towards Internet and other cellular data
networks. This network element represents the input/output point for UE traffic, and can
block all unwanted traffic like a firewall. P-GW enforces quality of service policies and
provides packet filtering and monitoring to perform billing.

Policy and Charging Resource Function (PCRF) is the network element that is responsible
for Policy and Charging Control (PCC). PCRF is a server usually located with other CN
elements.

EPS uses the concept of EPS bearers to route IP traffic from a gateway in the PDN to
the UE. A bearer is an IP packet flow with a defined quality of service (QoS) between the
gateway and the UE. The EPS bearer model is shown in Figure 1.2. The E-UTRAN and EPC
together set up and release bearers as required by applications. As part of the procedure by
which a UE attaches to the network, the P-GW assigns an IP address to the UE, and at least
one bearer, denoted as default bearer, is established. The default bearer remains established
throughout the lifetime of the PDN connection in order to provide the UE with always-on
IP connectivity to that PDN. The initial bearer-level QoS parameter values of the default
bearer are assigned by the MME, based on subscription data retrieved from the HSS. Other
EPS bearer can be established to connect to other PDN Gateways, or to provide different
QoS to the same PDN Gateway. These bearers are known as dedicated bearers, which can
be either a (Guaranteed Bit Rate) GBR or a non-GBR bearer (the default bearer always has
to be a non-GBR bearer, since it is permanently established). An EPS bearer is generated
form the combination of E-UTRAN Radio Access Bearer (E-RAB) and S5/S8 Bearer. The
S5 interface provides connectivity between the S-GW and PGW, whereas the S8 interface
provides roaming connectivity for the same entities. An E-RAB bearer in turn, is composed
from a combination of the Radio Bearer, which provides the connection across the radio

1.2 LTE and LTE-Advanced: Fundamentals 7

interface and S1 Bearer, which is established at transport network level. Further details about
bearer can be found in 3GPP TS 36.300.

1.2.2 LTE Interfaces and Protocol Stacks

This work involves the study of different E-UTRAN devices and interfaces. Among all the
network device shown in figure 1.1, we focused our investigation on the eNodeB and all
related interface. Therefore, is worth providing further details about the air-interface and the
S1 interface.

Fig. 1.3 Uu Interface protocol stack: User Plane

The air-interface connection between the UE and eNodeB is known as Uu. The radio
protocol architecture of E-UTRAN is given for the user plane and the control plane. Figure
1.3 (figure 4.3.1 at 3GPP TS 36.300 version 8.12.0 Release 8) shows the protocol stack for
the user-plane, where PDCP, RLC and MAC sublayers (terminated in eNodeB on the network
side) perform the functions listed for the user plane in subclause 6 of 3GPP TS 36.300, e.g.
header compression, ciphering, scheduling, ARQ and HARQ.

Figure 1.4 shows the protocol stack for the control-plane, where the PDCP sublayer
performs the functions listed for the control plane in subclause 6 for TS 36.300, e.g. ciphering

Fig. 1.4 Uu Interface protocol stack: Control Plane

8 Motivation and Scope

and integrity protection and RLC and MAC sublayers (terminated in eNB on the network
side) perform the same functions as for the user plane. The main services and functions
handled by the RRC sublayer include

• the broadcast of System Information related to Non-Access Stratum (NAS) and Access-
Stratum (AS), where the terminating points are the MME and eNodeB respectively

• establishment, maintenance and release of an RRC connection between the UE and
E-UTRAN

• security functions including key management;

• establishment, configuration, maintenance and release of point to point Radio Bearers;

• mobility functions

• UE measurement reporting and control;

Fig. 1.5 S1 interface protocol stack: Control Plane

As for the air-interface, the S1 interface is given for the user plane, named S1-U, and the
control plane, named S1-MME. From a logical standpoint, the S1-MME is a point-to-point
interface between an eNodeB within the E-UTRAN and an MME in the EPC. A point-to-
point logical interface should be feasible even in the absence of a physical direct connection
between the eNodeB and MME. The S1-MME interface supports:

• procedures to establish, maintain and release E-UTRAN Radio Access Bearers;

• procedures to perform intra-LTE handover and inter-RAT handover;

• the separation of each UE on the protocol level for user specific signalling management;

1.2 LTE and LTE-Advanced: Fundamentals 9

• the transfer of NAS signalling messages between UE and EPC;

• location services by transferring requests from the EPC to E-UTRAN, and location
information from E-UTRAN to EPC;

S1-MME interface consists of a Stream Control Transmission Protocol (SCTP) over IP
and supports multiple UEs through a single SCTP association. It also provides guaranteed
data delivery. SCTP is defined in RFC 4960. The application signaling protocol is an S1-AP
(Application Protocol). LTE Transport network layer is built on IP transport, similar to the
user plane but for the reliable transport of signaling messages, SCTP is added on top of the
Internet Protocol.

Fig. 1.6 S1 interface protocol stack: User Plane

The S1 user plane external interface (S1-U) is defined between the LTE eNodeB and the
LTE S-GW. The S1-U interface provides non guaranteed data delivery of LTE user plane
Protocol Data Units (PDUs) between the eNodeB and the S-GW. Transport network layer is
built on IP transport and GTP-U. UDP/IP carries the user plane PDUs between the eNodeB
and the S-GW. A GTP tunnel per radio bearer carries user traffic.

The S1-UP interface is responsible for delivering user data between the eNodeB and the
S-GW. The IP Differentiated Service Code Point (DSCP) marking is supported for QoS per
radio bearer.

1.2.3 LTE Channels

Within this thesis, we’ll make reference to different LTE channels. Instead of googling it,
here we provide the whole picture for LTE channels, both for uplink and downlink.

10 Motivation and Scope

Fig. 1.7 LTE Channel Mapping: Downlink (left) and Uplink (right)

Logical channels define what type of data is transferred. These channels define the
data-transfer services offered by the MAC layer. Data and signalling messages are carried
on logical channels between the RLC and MAC protocols. Logical channels can be divided
into control channels and traffic channels. Control channel can be either common channel or
dedicated channel: common channel means common to all users in a cell (Point to multipoint)
while dedicated channels means channels can be used only by one user (Point to Point).

Transport channels define how and with what characteristics the data is transferred by the
physical layer. Data and signalling messages are carried on transport channels between the
MAC and the physical layer.

Data and signalling messages are carried on physical channels between the different
levels of the physical layer and accordingly they are divided into Physical Data Channels,
comprising the Physical Downlink and Uplink Shared Channel (PDSCH, PUSCH), the Phys-
ical Broadcast Channel (PBCH), the Physical Multicast Channel (PMCH), Physical Random
Access Channel (PRACH) and Physical Control Channels, comprising the Physical Control
Format Indicator Channel (PCFICH), Physical Hybrid ARQ Indicator Channel (PHICH), the
Physical Downlink and Uplink Control Channel (PDCCH, PUCCH). Physical data channels
are distinguished by the ways in which the physical channel processor manipulates them, and
by the ways in which they are mapped onto the symbols and sub-carriers used by Orthogo-
nal Frequency-Division Multiplexing (OFDM). The transport channel processor composes
several types of control information, to support the low-level operation of the physical layer.

The BCCH is used to transfer the Master Information Block (MIB) and the System
Information Blocks (SIB). The MIB is then mapped to the BCH and PBC, whereas the
SIB are mapped to DL-SCH and PDSCH. THe CCCH and DCCH are used to transfer
RRC signalling,i.e. data belonging to the set of Signalling Radio Bearer (SRB). All SRB
are mapped onto the DL-SCH (UL-SCH) and PDSCH (PUSCH). Application data are
delivered through the Dedicated Traffic Channel (DTCH), the DL-SCH (UL-SCH) and
PDSCH (PUSCH). For uplink data Uplink Control Information (UCI) can be added to
the data from the UL-SCH during physical channel layer processing. This allows UCI to

1.3 Thesis Structure 11

transferred using the PUSCH when there is RRC signalling or application data to send.
Application data belonging to the MBMS service are delivered through the MTCH, whereas
the MCCH transfers the MBSFN area configuration message.

The PDDCH, PHICH and PCFICH are not used to transfer higher level layer information,
so don’t have associated logical or transport channels. The PDDCH is used to transfer Down-
link control information (DCI). Further details on DCI and PDDCH con be found in Chapter
4 and Annex A. The PHICH transfers HARQ Indicators, such as the acknowledgements for
uplink data and the PCFICH transfers Control Format Indicators (CFI), which specifies how
many OFDMA symbols will be used to allocate the PDDCH.

When a UE receives data on PDDSCH, the PDDCH indicates whether the data belongs to
the DL-SCH or the PCH. This is done by using specific Radio Network Temporary Identifier
(RNTI). For example the P-RNTI indicates PCH data whereas the C-RNTI and SI-RNTI
indicates DL-SCH data. From DL-SCH messages are dispatched exploiting MAC header
Logical Channel Identity (LCID) where a value of 0 correspond to the CCCH (SRB0) values
of 1 and 2 correspond to the DCCH (SRB1 and SRB2 respectively) and values 3 to 10
correspond to DTCH.

In the uplink chain, the PUCCH is used to transfer the UCI. As part of the information
carried in the UCI we remark the precence of the Channel Quality Indicators (CQI), Rank
Indicators (RI), HARQ acknowledgments and Scheduling Request (SR). The PRACH is
associated to RACH transport channel but this transport channel is only used to transfer
random access preamble control information from the MAC layer to the Physical layer. We’ll
talk exhaustively about the RACH procedure in Chapter 4.

1.3 Thesis Structure

The main sections of this thesis, which span Chapters 2 to 4, regard three different topics: i)
passive monitoring and analysis of LTE live traffic ii) practical approach to optimise LTE
network and extend battery life time of handset devices, iii) impact of network parameters
on RRC/RACH eNodeB performance. A short summary of each of the core sections of this
thesis, as well as their relationship, can be found in the subsections below.

1.3.1 Why Traffic Analysis

The advent of LTE and its integration with the existent cellular technologies (GSM, UMTS),
forced network operators to perform a deep experimental analysis carried out with complex
test-beds to discover possible new issues, before the activation of new services.

12 Motivation and Scope

In this new network scenario, traffic characterisation and monitoring is of paramount
relevance in order to prevent possible pitfalls during the deployment of new services.

We present the main issues evidenced by the test activity carried out in TILAB. Telecom
Italia Mobile (TIM) is the major mobile operator in Italy. Thus, the selected lesson learned
can be easily extended and generalised to other mobile operators with their own network
infrastructures. The analysis considers the issues encountered during either the tests of new
devices and network elements in the LTE test-bed of TILAB, or the usual maintenance and
management tasks of TIM network.

This chapter reports on traffic measurements carried out at an LTE eNodeB, located in a
business area of Turin. We show the evolution and the growth of the amount of LTE traffic
and subscribers across three year.

Traffic analysis has been performed either by means of commercial monitoring system
currently available in Telecom Italia, either by means of hand-crafted solution. In particular
we developed a C/C++ software framework that analyses CP and UP traffic, which provides
corse and fined-grained statistics at flow-level. The main outcome of this investigation
becomes the input for the study of energy related issues, as it will be explained in Chapter 3.

Another framework has been exclusively dedicated to the topic of traffic classification.
Among the plethora of existing tool for traffic classification we provide our own, developed
from scratch, solution. The framework is named MOSEC, which enables modular packet
classification. The modularity is given by the possibility to implement multiple plug-ins,
each one will "suggest" its own packet/flow classification. Despite previous approaches,
the ability of keeping together multiple classifiers allows to mitigate the deficiency of each
classifiers (e.g. DPI does not work when packets are encrypted or DNS queries don’t have
to be sent if name resolution is cached in device memory) and exploit their full-capabilities
when it is feasible.

1.3.2 UE Power Saving in LTE

The spread of mobile Internet access introduces new energy-related issues to consider. From
the network side, the eNodeB is the main energy hungry element of the radio access network.
Most of the power consumed by the eNodeB is due to the base band unit, the power amplifier
and the cooling system. Many studies have been focused on the design of techniques for
reducing power consumption in the radio access network. These studies consider strategies
for the energy-efficient resource allocation, for the carrier aggregation or for switching on/off
network elements depending on their load.

From the users side, the battery lifetime represents the main limitation on smartphone
usage. To achieve high data rates, higher order modulations (e.g. 64-QAM), advanced coding

1.3 Thesis Structure 13

and antenna techniques must be used. As a result, newer smartphones need complex circuitry
that quickly consumes User Equipment (UE) battery. To cope with this issue, LTE employs
different mechanisms to save energy.

This chapter enlightens the Discontinuous Reception (DRX) mechanism that allows UE
to power down most of its circuitry when no data needs to be sent/received, and the role of
the inactivity timer, which rules the shifting between the possible UE states.

We present our algorithm to estimate the energy consumed by a generic handset device.
The algorithm represents an emulator of the underlying UE state machine. It accepts as input
one packet with the associated timestamp and the average monitored throughput, and return
the accumulated value of the consumed energy.

We test the impact of the RRCIT on the energy consumed by the UE and on the generated
signalling load.

The configuration set of the algorithm is exhaustively explained and the results provide
an heuristic and a practical approach to optimise LTE network and extend device battery
lifetime.

1.3.3 eNodeB performance

The main outcome of Chapter 3 is that decreasing too much the RRCIT leads to high control
plane traffic load to eNodeB. Therefore, the drawback is that the eNodeB could be stressed by
a large number of RACH/RRC request if the UE under coverage are paged for an incoming
packet or need to send an uplink packet.

First of all we focus on the RACH collision probability experienced by the UEs. To this
aim, we propose a model to analytically derive the RACH collision probability starting from
the inter-arrival times of RACH requests produced by a generic UE. To obtain this result, as
already done for energy consumption estimation, we emulate the RRC state machine taking
into account real traffic acquired at a commercial eNodeB. Several emulation sessions have
been carried out according to different settings of the RRCIT . The output of the emulator
allows to reconstruct the time-series associated with the inter-arrival times of RACH requests
produced by the average UE. Mixture modelling is then applied to such time-series and used
to analytically estimate the RACH collision probability.

We proof the goodness of the model, simulating the scenario in which a large variable
number of handset device exists and performs RACH request either generating hyper expo-
nential inter-arrival times or directly using the inter-arrival obtained by parsing the real data
set.

The analysis here provided, gives the following enhancement:

14 Motivation and Scope

• MTC/RAO collision probability. We carried out several simulations, under different
hypothesis, and evaluate the collision probability considering both the backoff indicator
scheme and the time elapsed in connected by the device

• HTC (Human Type Communication) collision probability. We inferred statistical
properties from live traffic and modeled user access requests using Mixture Modeling
techniques.

• H2H impact on MTC performance. Given actual traffic statistics, the collision proba-
bility has been evaluated if M2M and H2H communication share the same resource,
without exploiting Access Class Barring (ACB) functionality.

Then, to evaluate the robustness of the eNodeB against burst of RRC connection requests,
we set up a test using the Ixia load generator, IxLoad. According to the RRCIT set on the
eNodeB, we change the rate with which the RRC requests are randomly generated by the
UEs camped on the base station. Again, the estimation of the RRC rate has been made
looking at real traffic capture. To appreciate how much the control plane load affects the
capabilities of the eNodeB we decide to measure the latency and the number of failures when
establishing the RRC connection.

Chapter 2

Traffic Analysis

2.1 Introduction

As we already pointed out, globally mobile data traffic will increase 10-fold between 2014
and 2019. By 20191: there will be 5.2 billion global mobile users, up from 4.3 billion in
2014, 11.5 billion mobile-ready devices and connections, more than 4 billion more than there
were in 2014 and the average mobile connection speed will increase 2.4-fold, from 1.7 Mbps
in 2014 to 4.0 Mbps by 2019.

In Italy, after three years of its initial deployment in the major Italian cities, 4G coverages
roughly the 80% of the whole country, serving more than three thousand cities, while LTE-A
has already been deployed in more than 100 cities 2.

As much the network complexity and application/traffic diversity degree arises, as well
the expertise of network operators has to evolve to handle new or consolidate Over-The-
Top (OTT) services. OTT services refers to delivery of audio, video, messaging and other
media over the Internet without the involvement of a multiple-system operator in the control
or distribution of the content. The Internet provider may be aware of the contents of the
Internet Protocol packets but is not responsible for, nor able to control, the viewing abilities,
copyrights, and/or other redistribution of the content. OTT in particular refers to content
that arrives from a third party. The advent of such new services may be disruptive for
consolidated business model and forces network operators to pursue new strategies and
business opportunities. As an example, third parties provides instant messaging services as
an alternative to text messaging services provided by a mobile network operator. Particularly
WhatsApp narrowly focused to replace text messaging on internet connected smartphones.

1http://www.cisco.com/c/en/us/solutions/service-provider/
visual-networking-index-vni/index.html#∼vniforecast

2Pop outdoor commercial value, at 08/2015

16 Traffic Analysis

The ability to intercept new trends has become essential for network operators. Thus, in this
scenario, traffic characterisation and monitoring is of paramount relevance to understand
users behaviour and prevent possible pitfalls during the deployment of new services.

In order to have an in-depth understanding of the evolution of LTE user plane, we carried
out four measurement sessions across three years, from 2013 to 2015. Traffic data has been
acquired at one eNodeB of an Italian mobile operator.

The rest of the chapter is organized as follows. Section 2.2 points out the motivations
the drove our analysis, focusing on the needs for mobile network operators which try to
overcome existing commercial limitations. Sections 2.3 and 2.4 provide a survey on previous
researches concerning traffic measurements in mobile networks, while section 2.4 describes
the measurement scenario. Section 2.6 provides the main outcomes of this study.

2.2 Lesson Learned: Telecom Italia Testing Lab

The analysis and monitoring of data networks try to shed some light on the huge black box of
interconnected computers. In particular, the classification of the network traffic has become
crucial for understanding the Internet.

The commercial monitoring systems used during the test are affected by several limi-
tations or are very expensive. Many of the solutions available in the market are based on
probes able to observe the traffic in the considered network points, and a collector. The
collector gathers and elaborates the data acquired by the probes, and generates alarms and
data on the network state for the network manager. During the tests some issues derived from
the low flexibility given by the commercial solutions. In particular, the key issue is the lack
of flexible solutions able to perform repetitive tasks, and to provide relevant performance
parameters, taking into account that the concept of relevance is correlated with the particular
network scenarios under test. The main manufacturers of network monitoring systems offer
flexible and customized solutions at very high costs.

In order to continuously monitor the network under test, it is important to obtain real
time information (e.g., counters and alarms), through a seamless dialogue between the
probe and the collector. Monitoring is one of the most powerful way to troubleshoot, but
often could be quite complicated and tedious. According to 3GPP technical specifications,
hundreds of performance and measurements counters can be collected as performance
indicators, such as the number of handovers, the number of call drop or the number of RRC
connection established. Thus, the complexity of an E-UTRAN system has far surpassed
the capability of the operators to manually analyze and diagnose problems. These issues
suggest the simplification of O&M functions by means of reconfigurable probes able to

2.2 Lesson Learned: Telecom Italia Testing Lab 17

collect symptomatic information (the network manager should flexibly decide a priori which
counters or messages are relevant).

The test activity pointed out the need for DPI (Deep Packet Inspection) functionality
to retrieve specific information from a “target” message, to facilitate the diagnosis of the
problem. For instance, DPI does not limit to the observation of an Attach Reject (or some
other “bad notice”), but it analyzes the content of this message, e.g. looking at its “Cause”
field. This action is important because different causes may trigger different countermeasures.
Being able to quickly identify such problems becomes more important in a LTE network,
due to high quality of service expectation of end users. Moreover, during test procedures,
gathering immediate feedback when a failure happens in the network can help the operators
to rapidly adjust misconfiguration, avoiding loss of time.

To cope with these issues, one promising alternative is the development of self-made
systems exploiting open-hardware and open-software platforms. Other than a certain reli-
ability level, these platforms should be characterised by the extreme flexibility necessary
to develop self-made systems with a powerful customisation level at relatively low costs.
To this aim, the first step is developing a software library able to process LTE control plane
and user plane traffic. Such library leverages on the well-known libpcap either to capture
packet on the monitored interface or to offline analyze packet captures. The library has been
customized to work on the S1 iterface. It allows to:

• analyse control plane messaging on the S1-MME interface (S1-AP protocol) to identify
basic LTE procedure (i.e. attach, RRC connection establishment, handover) and
retrieve performance indicator (e.g. latency, signalling overhead)

• analyse user plane traffic with the aim of generating both coarse statistic (i.e. the
number of UE under coverage, protocol statistics) and fine grained statistics (i.e. the
number of TCP/UDP flows, the maximum inter-arrival packet within each flow)

• analyse simultaneously control and user plan to infer network parameters (RRC Inac-
tivity Timer) or associate user activity to the correspondent EPS bearer

Explicitly for traffic classification, we designed a tool, called MOSEC. We’ll present this
tool in section 2.7.

Beyond the scope of this thesis, we design an integration of our software package with the
NetFPGA, to allow line-rate packet processing, high–performance and cost–effective solution
to LTE network monitoring lead us to adopt NetFPGA as the basic technological platform to
develop our system prototype. The NetFPGA is a low cost development platform designed in
the framework of the Clean Slate Project at Stanford University. In its basic version, it comes

18 Traffic Analysis

equipped with four 1 Gigabit Ethernet that becomes four 10 Gigabit Ethernet ports in its
advanced version. In addition, it is equipped with a PCI/PCIe (depending on the version) bus
and it allows the hardware/software co-design of advanced networking prototypes/devices.
The software part is developed on the hosting PC under Linux OS, while the hardware part
is developed by using Xilinx CAD tools (usually Verilog HDL). Preliminary results for our
prototype can be found in [45].

2.3 Related Works: Passive Measurement Analysis

Since the beginning of the mobile data era there has been a great interest on the characteriza-
tion and measurement of mobile traffic. The different studies in this area can be classified in
terminal–based and network–based studies. Terminal–based studies are aimed at characteriz-
ing applications and user behavior by acquiring data on terminals (as examples, see [29] and
[53]), whereas the network–based ones attempt to evaluate network performance and usage
by measurement sessions carried out through equipment installed in the network. Hence, in
this latter case the user has no information about the underlying monitoring process.

Among the terminal-based studies, in [33], the authors report the results of a two-day-long
user-based measurement of mobile traffic offloading by over 400 android smartphone users
in Japan. They intended to characterize the usage of the 3G and WiFi of smartphones in
terms of traffic offloading. On the basis of 255 users of two different smartphone platforms,
the authors of [29] characterized users activities and their impact on network and battery.
They found immense diversity among users and some statistics reveal differences about one
or more order of magnitude. In [53], the authors investigate about diverse usage behaviors
of smartphone apps. These studies investigated various aspects such as the diversity of
smartphone users and the popularity of mobile applications. The 3G test study presented in
[35] adopts another approach by publishing an app that actively measures various network
performance metrics on users’ handsets. All these measurements have the drawback that the
user’s behavior could be influenced by the knowledge of the presence of the application that
monitors its usage of the mobile network services.

The network-based studies solve this biasing problem, in fact the user has no informa-
tion about the underlying monitoring process. In [43] the authors conducted a detailed
measurement analysis of network resource usage and subscriber behavior by using a large
scale data set collected inside a 3G cellular data network. They studied the behavior of
mobile subscribers in terms of the traffic they generate, their mobility and their activity,
and find a significant variation of network usage among subscribers. Recently, in [34], the
authors presented an in–depth study of the interactions among applications, network transport

2.4 Related Works: Traffic Classification 19

protocol, and the radio layer in the LTE system. They highlighted that LTE has significantly
shorter state promotion delays and lower RTTs than those of 3G networks, and pointed out
various inefficiencies in TCP over LTE.

2.4 Related Works: Traffic Classification

Finding an efficient method for classifying network traffic using packet layer information is
not an easy problem. An exhaustive review on traffic classification techniques is available at
[51] and [54]. In general, it is possible to distinguish two main classification algorithms: i)
Port and Payload-based algorithms and ii) Behavioural algorithms.

The first one leverages on packet inspection technique to retrieve service related infor-
mation. Port-based techniques are widely regarded as the simplest techniques for traffic
classification. Nevertheless today traffic monitoring reveals port-based techniques weakness
when dealing with peer-to-peer (P2P) applications, which do not use a well-defined port [2].
Some users also configure their programs to use the well-known port for another application
to avoid port-based traffic shaping or filtering mechanisms.

Pretty common and useful is to use DNS information to map each IP flow to the cor-
respondent domain name. Mellia et al. in [17] propose DN-Hunter, a system that tags
network traffic flows with their associated domain name. Their solution comprises a DNS
response sniffer that decodes DNS response and, for each response, stores the set of server
IPs returned for the fully qualified name (FQDN) queried. To identify the application running
on a given port all the FQDNs associated to flows that are directed to that port are tokenized,
and most-present tokens are used to tag the targeted port. In our previous work [47] we use a
similar approach for labelling network traffic starting from DNS queries and answer. Thus,
we apply a string-matching algorithm to bind each flow to a restricted number of service and
gather per-service statistic results. Nevertheless, at a given point in time, using stand-alone
DNS information may not be sufficient to understand the delivered service. Foremski et al.
[31] leverages on the information carried in domain names and port numbers for immediate
traffic classification. The weak point of DNS based algorithm is that a lot of popular services
as Facebook, Youtube ar Twitter can be served by multiple CDN networks as Google CDN,
Amazon Web Services or Akamai. Therefore, if in the FQDN there is no explicit reference
to one of the aforementioned application, it is impossible to discern the correct application.
In addition, P2P are commonly not tagged by DNS-based mechanism, given that P2P data
flows are usually not preceded by DNS resolution, as has been shown in [17].

Traffic classification approaches based on deep packet inspection are considered very
accurate, however, two major drawbacks are their invasiveness with respect to users privacy,

20 Traffic Analysis

and their significant computational cost. Thus, building high performance DPI techniques
require careful design, to do not become the bottleneck of the architecture. Cascarano et al.
in [21] provides some advices to improve DPI performance by exploiting some common
characteristics of the network traffic. They present and evaluate some optimisations that may
be helpful to decrease the processing cost and can even improve the classification precision.
Bujlow et al. in [20] propose a comparison of the most valuable DPI inspection techniques.
Seeing which kind of information are hidden inside the packet, it allows to immediately
know which kind of services that packet belongs to. For example, HTTP "Content Type"
header field gives knowledge if we are getting a video, an application or an image on the fly.
Fiadino et al. [30] present HTTPtag an on-line HTTP classification mechanism based on
pattern matching and tagging. More in detail, every new HTTP transaction is parsed and the
contacted hostname is compared against defined regular expression. If a matching pattern
exists, the flow is signed with the correspondent service. Lin et al. [39] provide a survey
on limitation and advantages of string matching algorithms for DPI. Expressive pattern
specifications, such as regular expressions, can accurately define the signatures to speed up
traffic classification. Thus, string matching, a problem once believed to be a bottleneck, has
become less critical given the latest advance. Alcock et al. [15] implements a “Lightweight
Packet Inspection”, where only a maximum of four bytes of payload are examined for each
packet. This intuition is given by the idea that in almost all application signatures start and
finish within the first 32 bytes of payload, indicating that a lightweight approach using only a
small portion of payload could be viable. Finally, Portload [14] is an hybrid approach that
leverages on the speed, simplicity and reduced invasiveness of port-based approaches, on a
side, and the classification accuracy of DPI on the other one. Although, DPI is an effective
way to identify unencrypted traffic, it is quite useless when traffic is encrypted.

The weakness against encrypted traffic pushes the interest towards behavioural classi-
fication techniques. Statistical methods propose new techniques for classifying traffic at
application layer without accessing the top level payload, but using only network and trans-
port layer information. In this way, any problem that we encounter for accessing application
layer is avoided. The main concept here is that each application behaviour reflects on the
network and transport level statistical properties. Traffic classification can be made observing,
the number of requests/responses by any host in the network, the inter-arrival time between
two packets, the size of each flow and so on and so forth. The cost that has to be payed is a
training period needed to accumulate all the desired information. Crotti et al. [27] use three
simple properties of the captured IP packets: their size, inter-arrival time and arrival order.
These quantities are processed in order to be compared with pre-loaded structures called
protocol fingerprints, which express such quantities in a compact and efficient way. The

2.4 Related Works: Traffic Classification 21

algorithm then classify flows dynamically as packets pass through the classifier, deciding if a
flow belongs to a given application layer protocol, basing on normalised threshold. In the
field of statistical classification techniques, unsupervised machine-learning algorithm has
gained a lot of interest in the recent years ([42]). Singh et al. [48] use unsupervised K-means
and Expectation Maximization algorithm to cluster the network traffic application based on
similarity between them, and compare their performance. Moore at al. [41] use a Naıve
Bayes estimator to categorise traffic. At the beginning the classifier is trained throughout
sets of data consisting of a service category combined with a group of flow features (e.g.,
flow length, port numbers, time between consecutive flows). Upon trained, the classifier
is able to estimate which service a flow belongs to, just extracting those features from the
flow. The drawback for behavioural methods is that the service classification depends strictly
on the knowledge of the application behavior. If a new application comes out it will be not
identified by the classifier, since we’ll know its actual traffic feature.

Dataset Desciption

We acquired data at the S1-U interface of an eNodeB currently used in live network. The
monitored eNodeB works in the bandwidth of 1800 MHz, and is located in a business area of
Turin. In the same site are present other two eNodeB operative at 800/2600 Mhz. The data
are acquired by means of a Tektronix K18 GbE probe, connected to a Tektronix NSA server.
Traffic was treated according to security procedures and properly anonymised to respect
customers privacy. Thus, no payload data is considered except for HTTP headers, and no
personal information is used to develop this study.

The measurement sessions have been carried out across three years: two measurements
studies in 2013 (February and October), one in 2014 (February) and one in 2015 (January).
From now on we also refer to the sessions as dataset I, II, III and IV, respectively. Each
sessions last seven consecutive days. Table 2.1 summarizes for each sessions the overall
amount of data captured.

Table 2.1 Measurement Session: Overall Statistics

Measurement Session Number of Days Aggregate Amount of Data
2013 (Feb) 7 4 GB

2013 (Oct) 7 3 GB

2014 7 25 GB

2015 7 120 GB

22 Traffic Analysis

2.5 Coarse Results

As it was expected, year–by–year the amount of traffic increases. It is worth reminding that
the commercial launch of LTE took place the 7th November, 2012. Hence, the low amount
of traffic in dataset I and II is mainly due to the early stage of LTE services and the lack of
LTE terminal. In our previous work [46] it is possible to find further details.

Such trend is confirmed by the average number of User Equipments (UEs) under coverage
in each day (figure 2.1).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2013(Feb) 2013(Oct) 2014 2015

Average #UE/Day

Fig. 2.1 Average UE number in each day

To obtain the average UE number we collect all the different UE IP addresses (encap-
sulated in the GTP tunnel) which belong to a well known IP mask. To count the effective
number of users "saw" by the eNodeB in one day and obtain a more accurate analysis, we
should consider the International Mobile Subscriber Identity (IMSI), or track the Temporary
Mobile Subscriber Identify (TMSI), instead of the IP address. Due to the presence of NAT
in cellur networks, timers are used to disconnect connections that are idle for too long.
Nevertheless, LTE devices born as always-on device and NAT timers typically are large
enough to ensure that no changes occur during one day. Figure 2.1 shows that in dataset
I and II the average number of UE transited under the coverage of the eNodeB is slightly
more than 100, and become slightly less than 500 in 2014. In 2015 more than 3500 UE are

2.5 Coarse Results 23

captured during our analysis. Such surge of LTE customer witness the penetration of LTE
devices and the success of new business offer.

Figure 2.2 shades some light on the handset types and operating systems which compose
the device pool. To this aim, we explore the "User Agent" field in the HTTP message and
associate to each IP the deducted handset type (e.g. iPhone or Andorid devices). We fail to
associate one IP to the correspondent device if no HTTP message are sent or if the User Agent
field either is not present or doesn’t contain useful information for handset type deduction.

To fairly recognize the kind of device, the Type Approval code (TAC) has to be used.
Depending on the device, the TAC consists of the first 6 or 8 numbers of the International
Mobile Station Equipment Identity (IMEI). Due to privacy constraints, deep inspection of
control plane messaging is not allowed, thus we cannot pursue this approach. Among all
the correctly identified users, we found two kind of smartphone operating system that are
prevailing: iOS and Android. We mark all the other devices (including dongle) as Others.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2013(Feb) 2013(Oct) 2014 2015

iPhone
iPad

Android
Other

Fig. 2.2 Operating System Market Share from selected vantage point

This statistic shows the market share held by the leading operating systems for smart-
phones from 2013 to 2015, from our vantage point. As we can see, Apple’s devices rep-
resented the most used devices during the first years of LTE deployment. In 2013 they
represented almost the totality of the handset device, whereas Android and Other devices
account for less than 10%. This statistics contradict the actual worldwide market share for

24 Traffic Analysis

2013 3. According to a forecast by IDC, the worldwide market share of Apple’s iOS, which
is exclusively used by Apple hardware, will remain relatively stable between 2013 and 2017,
around 16%. Android OS held the highest global market share in 2013, with roaughly 80%.
The explanation of why we are getting such different result is that the few number of LTE
user biased this statistics. Indeed, as much as the number of LTE device increases, the amount
of Andorid smartphone increases as well, showing a positive trend over these three years,
and becoming the most present operating system in 2015. On the other side, the percentage
of Apple device decreases, reaching less then 50% in 2015. This percentages are roughly the
same as the ones presented in [3] for italian country. This important outcome testifies the
maturity of LTE technology, and allows us to consider our monitored eNodeB as a valuable
vantage point for traffic analysis.

2.6 Traffic Analysis

A further analysis is aimed at evaluating the traffic volume of different applications/services.
To the sake of traffic classification we pursue the following approach. Firstly, we identify all
the flows basing on the canonical 5-tuple: Protocol, IP source address, IP destination address,
layer 4 source port, layer 4 destination port. Then, we detected the packets belonging to each
session, and computed the number of exchanged bytes as well as the sessions duration. For
traffic classification we used either an HTTP-based either a DNS-based classification. HTTP-
based classification works simply on the Hostname header field in the HTTP header. The
DNS-based classifier used the information retrieved by the DNS protocol to associate each
resolved IP destination addresses with the associated query. One single map is maintained for
all UEs under coverage to increase the hit ratio when one new flow is discovered. To avoid
misleading IP resolution, we discard an entry from the map if it so not refreshed or overridden
within 60 seconds. In addition, the HTTP-based algorithm has precedence over DNS-based
classification. Finally, we use a service–map to marge different domains to the same service.
For example, flows resolved with ".star.c10r.facebook.com", ".fbcdn-profile-a.akamaihd.net",
".fbcdn-sphotos-c-a.akamaihd.net", belong to Facebook application.

2.6.1 Application/Service Analysis

Basing on our approach, we grouped TCP connection in different applications/services and
select the four ones with the largest number of TCP connections. These are Facebook,
Google, Apple, Whatsapp, and Mail applications.

3http://www.idc.com/prodserv/smartphone-os-market-share.jsp

2.6 Traffic Analysis 25

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2013(Feb) 2013(Oct) 2014 2015

Facebook
Apple

Google
Youtube

Whatsapp
AmazonAWS

Fig. 2.3 Application Analyisis: Flow Percentage

In figure 2.3 we show the percentage of the aforementioned applications. Facebook
always accounts for the highest number of flows, whit a spike in dataset III. Facebook is
among the world’s most popular social networking sites therefore this result is not surprising.
Nevertheless, the drop of Facebook percentage in dataset IV deserves an extra explanation.
As we can see, the drop of Facebook percentage coincides with an unexpected surge of
traffic related to Amazon. In particular, we found a lot of connection towards Amazon
Web Services (AWS). AWS is a collection of remote computing service, that make up a
cloud-computing platform offered by Amazon.com. A Facebook application is, effectively, a
hosted web application that utilizes the Facebook Developer API to be accessed from within
the Facebook environment. Developers can host their Facebook applications on Amazon
Web Services 4. This means that, possibly, the traffic towards Amazon AWS is some kind
related to Facebook as well.

Moving on, we notice a negative trend for Apple and a positive trend for Google, as the
one depicted in figure 2.2 in Section 2.5. In 2014 and 2015, the higher number of Android
devices increases the number of native Google applications, which contribute to augments
the number of Google flows. The number of flows which belongs to Whatsapp and Youtube
is stable across all the datasets, and is equal to 2-3% and 0.5%, respectively.

4https://aws.amazon.com/it/facebook-application-hosting/

26 Traffic Analysis

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2013(Feb) 2013(Oct) 2014 2015

Facebook
Apple

Google
Youtube

Whatsapp

Fig. 2.4 Application Analyisis: Aggregate Data

In figure 2.4 we evaluate the aggregate amount of traffic associated to each applications.

Except for dataset I, Facebook represents more than the 20% of the traffic, with a spike in
dataset II. Although counts few number of flows, Youtube is responsible, on average, of the
20% of all the traffic generated. Google and Apple give approximately the same contribution
in 2015, that is slightly more than 7%. Finally, Whatsapp contribution varies little across all
the years to stabilize around 2% in 2015.

2.6.2 Video Analysis

As we already pointed out, according to Cisco VNI, nearly three-fourths of the world’s
mobile data traffic will be video by 2019. Mobile video will increase 13-fold between 2014
and 2019, accounting for 72 percent of total mobile data traffic by the end of the forecast
period. Due to the relevance of video traffic, we analyze HTTP video traffic, which can be
easily identified by means of the Content Type header field.

In figure 2.5 we propose the number of video flows delivered as different container
formats, normalized to the maximum value, that is 15051066. The largest number of video
has been produced in dataset IV. In 2015, there is the greatest variety of containers as well,
even if the .mp4 is by far the most used.

2.6 Traffic Analysis 27

 0

 0.2

 0.4

 0.6

 0.8

 1

2013(Feb) 2013(Oct) 2014 2015

mp4
mp2

flv
mpeg

f4f
web

3gpp
ms-asf

Fig. 2.5 Number of video flow

The first valuable outcome is that Advanced Video Codec (AVC or H.264) is doubtless
the most widespread video codec for the mobile market. .mp4, .mp2 and .mpeg file containers
are wrapper to the MPEG-4 AVC/H.264 codec, and are the most used file formats in all the
datasets. Surprisingly, in dataset IV the second most used video file is the .ms-asf, which
is not supported by Youtube5. Advanced Systems Format is Microsoft’s proprietary digital
audio/digital video container format, especially meant for streaming media. The format does
not specify how the video or audio should be encoded; it just specifies the structure of the
video/audio stream. Flash Video FLV files usually contain material encoded with codecs
following the Sorenson Spark or VP6 video compression formats 6. The most recent public
releases of Flash Player also support H.264 video. We found two different flash video file
formats: .flv and .f4f. .f4f indicates a Partial FLV file, thus an .f4f file contains a fragment of
a Flash video. Fragmenting separates larger video files into smaller segments easy to be sent
and received. Marginally, we found .web and .3gp containers. 3GP (3GPP file format) is a
multimedia container format defined by the 3GPP. It is used on 3G mobile phones but can
also be played on 4G phones. WebM web video format is based on VP8 and VP9 codec.

In figure 2.6 we show the amount of traffic generated per each video file format. All
values are normalized with the maximum value. Until 2014 almost all video traffic belonged

5https://support.google.com/youtube/troubleshooter/2888402?hl=en-GB
6https://en.wikipedia.org/wiki/Flash_Video

28 Traffic Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

2013(Feb) 2013(Oct) 2014 2015

mp4
mp2

flv
mpeg

f4f
web

3gpp
ms-asf

Fig. 2.6 Video data

to .mp4 file format. In 2015, even if .mp4 still accounts for the larger number of video flows
(figure 2.5), the amount of video traffic is more equally spread across multiple containers.
Conversely from all others video formats .3gpp is the only one which decrease in the last
dataset.

2.6.3 Daily App Distribution

Here we discuss about the distribution of application flows on daily basis. Dataset I and II
depicts a premature scenario, with irregular spike of traffic during working day and almost
zero traffic during the week–end. This observation can be explained taking into account that
the monitored eNodeB is located in a business area of Turin. Hence, we can deduce that
the main part of traffic is generated by workers and trialist during the week. Moreover, the
results show that, typically, the maximum throughput is reached in the interval 12:00–16:00
(e.g. the lunch break and the early afternoon), and then it progressively decreases (refer to
[46]). Of course, this characteristic enforces the idea that LTE devices are not yet spread
outside business environment. Due to the lack of space, we present result only for dataset III
and IV. which offer more useful insights.

Our analysis compares application flow distribution for a generic working day and the
week end. Each pair of figure represents the normalized distribution of flows number (left)

2.6 Traffic Analysis 29

and the amount of data in MByte transmitted in every hour of the day (rigth). During this
study we consider the following applications flow: Facebook, Apple, Google, Mail and
Youtube (from left to rigth in the histogram). Figures 2.7, 2.8 and 2.10 show the well-known
day-night trend. Figure 2.9 has a less pronounced day-night behavior, with low traffic not
only during the night, that is from 2:00 to 7:00, but also from 17:00 to 21:00, which testifies
a lack of LTE technology penetration, even in 2014. Nevertheless, all figures already point
out common characteristics.

Looking the night period, there is a steady percentage of Mail flow, indicating that
always-on smartphone keep receiving update notifications for their mailbox. Working days in
2014 and 2015 have a peak of usage of Facebook or Youtube between 14:00 and 15:00, and
between 13:00 and 14:00 respectively. Both Facebook and Youtube traffic can be considered
as entertainment, therefore it might be representative of the traffic generated during launch
break. A new peak of entertainment traffic can be seen just after working hours and after
dinner time, around 21:00.

Traffic distribution during week end is smoother and less predictable. Surge of entertain-
ment traffic is not correlated to any particular human behavior and is spread more randomly
during the daylight hours. Interestingly, we have spike of such kind of traffic after midnight:
from 00:00 to 04:00 in 2014, and form 00:00 to 03:00 in 2015.

Apple and Google traffic can be seen as background traffic, either automatically generated
by proprietary application, as push or pop notification or backup functionality (i.e. iTunes
and iCloud), either triggered by generic web browsing, which involves advertisements as
well (i.e. Google Advertisements Doubleclick). Spikes of such kind of traffic might represent
direct interaction of the users with this services.

 0

 0.05

 0.1

 0.15

 0.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
e
rc

e
n
ta

g
e

Time [hour]

Facebook
Mail

Google
Apple

Youtube

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

M
b
y
te

Time [hour]

Facebook
Mail

Google
Apple

Youtube

Fig. 2.7 Working Day 2014

30 Traffic Analysis

 0

 0.05

 0.1

 0.15

 0.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
e
rc

e
n
ta

g
e

Time [hour]

Facebook
Mail

Google
Apple

Youtube

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

M
b
y
te

Time [hour]

Facebook
Mail

Google
Apple

Youtube

Fig. 2.8 Working Day 2015

2.6 Traffic Analysis 31

 0

 0.05

 0.1

 0.15

 0.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
e
rc

e
n
ta

g
e

Time [hour]

Facebook
Mail

Google
Apple

Youtube

 0

 50

 100

 150

 200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

M
b
y
te

Time [hour]

Facebook
Mail

Google
Apple

Youtube

Fig. 2.9 WeekEnd 2014

 0

 0.05

 0.1

 0.15

 0.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
e
rc

e
n
ta

g
e

Time [hour]

Facebook
Mail

Google
Apple

Youtube

 0

 200

 400

 600

 800

 1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

M
b
y
te

Time [hour]

Facebook
Mail

Google
Apple

Youtube

Fig. 2.10 WeekEnd 2015

32 Traffic Analysis

Algorithm 1 Basic Classifier Algorithm
1: procedure N BASIC CLASSIFIERS

2: for each Packet do
3: key← make_tuple(Packet)
4: f low_state[N]← map. f ind(key)
5: for each Classi f ier i ∈ N do
6: if f low_state[i]. f lag = f alse then
7: Classi f ier← Packet
8: f low_state[i].verdict =ClassType
9: f low_state[i]. f lag = true/ f alse

10: end ifreturn
11: if f low_state[i]. f lag = true then
12: f low_state[i].verdict
13: end ifreturn
14: end for
15: end for
16: end procedure

2.7 MOSEC: MOdular SErvice Classifier

All the methods described in Section 2.4 have intrinsic weak and strong points. Therefore,
instead of choosing to adopt just one of them, MOSEC try to keep the best from all available
classifiers.

MOSEC is a customisable framework that allows to bring all together all the traffic
classifier that we need. Each classifier becomes an MOSEC plug-in which is able to produce
its own per-packet classification result, either independently or dependently by other plug-in
states and results. Plug-in classification results are gathered all together and the network
administrator can easily implement a decision algorithm to make the final decision. A
complete view of MOSEC design is provided in this section.

There are a lot of available tools for traffic classification either open source, as Tstat [6],
nDPI (now nTop) [4], l-7 Filter [1], either commercial, as PACE [5]. MOSEC is an open
portable framework that allows to classify packets and flows, with an arbitrary number of
plug-ins. Even the aforementioned tool can be slightly modified to become one MOSEC
plug-in. It takes advantages of new functionality provided in C++14 language and has been
tested on Linux, Windows and iOS platforms.

Pseudo-code in 0 show the logical processing inside mosec. MOSEC has five fundamental
building blocks: network processing, engine, plug-ins, decision algorithm and statistics.

2.7 MOSEC: MOdular SErvice Classifier 33

2.7.1 MOSEC: Network Processing

The network processing is responsible for decoding packet in the appropriate way. Leveraging
on our self-developed network processing library allows MOSEC to be portable on all the
main platforms. We run MOSEC on Linux, iOS, and Windows platform successfully.
MOSEC comes with standard packet processing capabilities which include:

• Ethernet and 802.1Q at layer 2

• IPv4 and IPv6 at layer 3

• TCP, UDP, ICMP and SCTP at layer 4

• DNS, HTTP and SSL at application layer

The modular structure of this tool makes easy to integrate new protocol decoding capabil-
ities. The efforts required to parse different packet protocol involves only the modification of
the buffer construction.

The buffer is a logical structure which points to each protocol element which composes
the network packet. The code in figure 2.11 represent the actual implementation of the buffer.

Once a new protocol needs to be parsed in MOSEC, it is sufficient to insert the new
protocol at the right position of the stack. For example, in figure 2.12 we propose the parsing
procedure at layer 4.

As a result of the make_buffer utility we obtain the pointers to each protocol of the packet,
allowing an easy access to every field in packet. The buffer structure is then passed to all the
plug-ins, which can exploit the information carried out by the packet for the decision process.

34 Traffic Analysis

Fig. 2.11 MOSEC: Buffer

2.7.2 MOSEC: Engine

MOSEC engine comprises three main entities: the Flow Information, the Hash Table (or
Decision Map), and the Classifier Tuple.

Flow Information structure is defined in figure 2.13.

Each plug-in maintains its own view of the flow. The internal flow State is defined by
each plug-in (by default is null). The classifier::response<ClassType> is defined by the
plug-ins as well, and represent the classification itself. In addition, a timestamp is updated
every time one packet arrives.

MOSEC internal design represents each flow with a tuple. By default, it is possible to
use the well-known 5-tuple, which comprises transport layer source and destination port,
IP source and destination address and the protocol type, as well as the 3-tuple, which only
consists of the IP addresses and the protocol type. The correspondence between each flow
and the relative classification is maintained by means of an Hash Table. The Hash Table is

2.7 MOSEC: MOdular SErvice Classifier 35

Fig. 2.12 MOSEC: Decoding Process at Layar 4

an unordered_map whose key is the hash value calculated from the packet tuple, and whose
value is a tuple of Flow Information structures, which carry the classifications provided by
each classifier.

All Classifiers process the packet according to their behaviours and may or may not return
a classification. The number of plug-in involved in the decision process is unknown to the
engine. At code level, we leverage on variadic-template to inject this behavior. Plug-in may
decide to not process anymore the packets which belong to a classified flow, or may decide to
provide an earlier classification and keep processing flow packets until they find it necessary.
This behaviour is modelled through an enum-flag which specifies if one packet should be
delivered to the classifier. For every accepted packet each classifier attempts to provide a
classification. Each plug-in returns a pair value containing the optional classification result
and the enum-flag, which can be Strong, Weak, or Abort. Strong classification overrides
previous classifications and informs MOSEC engine to not pass other packet of that flow
to that classifier. Weak classification overrides previous classifications and inform MOSEC

36 Traffic Analysis

Fig. 2.13 MOSEC: Flow Inforamtion Structure

engine to keep delivering packets of that flow. Abort classification does not override previous
classification and informs MOSEC engine to keep delivering packets of that flow. Figure
2.14 show the actual implementation.

Fig. 2.14 MOSEC: Classification Process

All plug-ins share the same structure. Common structure enables modularity and inter-
operability between all plug-ins easily and efficiently. For example, figure 2.15 shows the
structure for the Debug plug-in. As we can see, for each plug-in is defined:

• the name of the plug-in

• the ClassType, which defines the classification type which may be returned by the
classifier. It can be int, string or whatever type you choose to define.

• the FlowState, which defines the Flow State and is used to store flow-related informa-
tion

• the init function, for initialization purpose

• the finish function, to eventually flush pending information

• the classify function, which defines the logic used to classify the packet

2.7 MOSEC: MOdular SErvice Classifier 37

• the stringfy function. We’ll come back later on the stringfy concept

Fig. 2.15 MOSEC: Debug Plug-in

Plug-in may communicate to each other by means of these data structures. For example,
one classifier might ask for the classification provided by a previous classifier, and acts
accordingly.

The packet flow throughout the framework is customisable as well: packet flow can
be stopped at the first plug in which returns a valid classification or can be go through all
classifiers until the end. MOSEC way of working may be set depending on the circumstances.
For example, traffic classification by means of string matching algorithms in network appli-
cations is computationally heavy and could be reasonable to skip this kind of classification if
we already have one available. On the other hand, if we leverage on behavioural algorithms

38 Traffic Analysis

or we simply would like to proof their goodness, we can pass the packet to all classifiers and
merge the results. In particular, we design three possible behaviour:

• Basic: each packet is forwarded to all classifiers.

• First valid classification: each packet is forwarded until one classifier returns a valid
classification tag. In this case is important to take care of classifiers order.

• First non-valid classification: each packet is forwarded until one classifier returns a
non valid classification tag. For port/payload based classification a good approach is to
order plug-ins according to the network layer they are working on.

Figure 2.16 show the design for the Basic configuration.

key1	 flow1	

key2	 flow2	

key3	 flow3	

…	 …	

Make	 Key	

Port-‐based	
Classifier	

HTTP-‐based	
Classifier	

Debug	
Classifier	

DNS-‐based	
Classifier	

Packet	

hash table

<youtube.com, false> <video, true> <http, true> <nullopt, false>

MOSEC
Framework

Fig. 2.16 MOSEC: Framework Design

2.7.3 MOSEC: Plug-ins

MOSEC comes with a set of already available plug-ins. Here we discuss about the imple-
mentation of these plug-ins, namely the IP-Protocol-based, Port-based, the DNS-based, the
HTTP-based and the SSL-based.

IP-Protocol-based

The IP-Protocol-based is the simplest classifier. It extracts the Protocol field in the IP header
and use an intarnal map to associate the correct classification.

2.7 MOSEC: MOdular SErvice Classifier 39

Port-Based Plug-in

The Port-based classifier marks each packet using the implicit information provided by the
port number. The list of assigned port number is available here [2], and has been used in
our plug in. More precisely, The Port-based plug-in inspects the port filed inside TCP and
UDP packets. The plug-in holds an internal map to associate each port to the correspondent
service. For TCP packets, the plug-in checks that is an uplink or downlink packet. In the first
case it refers to destination port, otherwise it refers to the source port. For UDP packets, the
plug-in attempts to find a correspondence first selecting the source port, then the destination
port. If the selected port matches one of the entry of the map, the flow is classified with
the correspondent service, the classification type is tag as strong, port-based classifier is not
call anymore for that flow. In the same way if there is no match between any of the port an
the reference map, the classification type is of kind null-strong and the classifier is not call
anymore, allowing to increase performance. In figure 2.17 we show code details.

40 Traffic Analysis

Fig. 2.17 MOSEC: Port Plug-in

2.7 MOSEC: MOdular SErvice Classifier 41

DNS-Based Plug-in

The DNS-based classification leverages on the information carried out by DNS packets. First,
it inspects the Query inside the DNS Answer message, and then extracts all the CNAME and
IP address within the packet.

From the Query name, the plug-in removes the right-most label which conveys the top-
level domain. In the DNS protocol, the hierarchy of domains descends from right to left; each
label to the left specifies a subdivision, or subdomain of the domain to the right. The plug-in
preserve only the first subdomain level. For example, the query for www.facebook.com is
converted to Facebook, which becomes the label for traffic classification. At this point the
classifier maps every domain name aliases (record CNAME) and IP addrasses (record A) to
the retrieved classification tag. All these entries populate one table which is managed and
update by the DNS plug-in.

For every incoming packet other than DNS, the plug-in takes the IP address (first source,
otherwise destination) and looks for a match inside the table. If one match occurs, the flow is
tagged strongly and the plug-in is not call anymore.

It is worth noticing that the plug-in holds one table for all the users. Keeping one table for
all UEs allows to increase performance but introduces false positive matches, meaning that
flows initiated by some UEs can find a match leveraging on DNS Query/Answer initiated
by other UEs. To mitigate this drawback we introduce two workarounds. First, we parse
all the DNS packets and override the information inside the table, keeping the most recent
IP/CNAME<–>classification mapping. This mechanism takes into account the possibility
that one IP address had been relocated to convey a new service, for example Youtube instead
of Facebook. Second, we introduce a timeout to validate or invalidate one match. Thus,
every time the plug-in inserts a new entry in the map it adds a timestamp as well. When one
match is found, if the gap between the entry timestamp and the packet timestamp exceeds the
timeout value the flow remains untagged. We trained the DNS plug-in with different timeout
values to tune it correctly. We used one of the available trace of dataset IV and for every
timeout value we measured DNS performance in terms of classified flows. With large values
(e.g. 120 seconds) we obtain great perfomance (in the order of 90%), but decreasing them
the number of classified flows decreases as well, showing that previous results were drugged
by false positive matches. Around 30 seconds we found approximately constant result, thus
we set the timeout value to 30 seconds.

In figure 2.18 we show code details about the logic of the DNS-based classifier.

42 Traffic Analysis

Fig. 2.18 MOSEC: DNS Plug-in

HTTP-Based Plug-in

The HTTP-based classified inspects the HTTP header fields to provide the correct classifica-
tion. The plug-in is more properly a template plug-in, which can accept an external value to
specify the mode of use. There are three modes available:

• Mode 0: the plug-in looks for the "Hostname:" header field in the HTTP header and
extract the first subdomain level, in the same way as the DNS classifier (actually both
the plug-ins use the same utility function). This modified "Hostname" is the returned
classification.

2.7 MOSEC: MOdular SErvice Classifier 43

• Mode 1: the plug-in looks for the "Content-Type:" header field in the HTTP header.
The "Content-Type" value is the returned classification.

• Mode 2: the plug-in looks for both the "Hostname:" and "Content-Type:" header field.
The returned classification has the syntax "Hostname|Content-Type".

SSL-Based Plug-in

The SSL-based plug-in tries to retrieve the organization name from the Server Certificate,
that is exchanged as part of the SSL Handshake mechanism. First of all the plug-in checks
that the port field in the TCP packet is one of the following: 443, 465, 636, 989, 990, 992,
993, 994, 995, 5061, and 5228. The client initiates a session by sending a Client Hello
message to the server. The client sends the version number corresponding to the highest
version it supports. Thus the plug-in verifies that the TSL version is one among version 1.0,
1.1. and 1.2. The server responds with a Server Hello message. Among all the other fields,
the Server Hello message includes the Server Certificate. The server certificate contains the
server’s public key, which the client will use to authenticate the server and to encrypt the
premaster secret, and the organization name which delivered the certificate. In particular,
there should be a list of certificate length and certificates. The first certificate is the server
certificate, the second it’s signing CA, the third the CA that signed the CA, etc. When more
than one certificate is present the SSL plug-in refers to the first certificate.

Once the organization name is acquired, the plug-in uses this information to strongly
label the flow. In addition, a cache mechanism is used to augment the hit ratio when no
certificates are found.

In figure 2.19 we show code details about the logic of the SSL-based classifier.

44 Traffic Analysis

Fig. 2.19 MOSEC: SSL Plug-in

2.7 MOSEC: MOdular SErvice Classifier 45

2.7.4 MOSEC: Decision Algorithm

As we mentioned, each plug-ins provides its personal flow/packet classification. Wouldn’t
be more interesting if we were able to provide an ultimate classification for each flow,
considering all the suggestions provided by each classifier? MOSEC gives the opportunity to
consolidate the classification provided by all plug-ins, in one unique classification. The logic
behind the Decision Algorithm is customizable as well. You can choice to prefer one plag-in
classification among the others, or combine them based on the weakness or strogness of the
classification.

In general, combining the classifications provided by all plug-ins is a difficult task. That
is because each plug-in has its own logic and provides the classification according its rules.
For example, each plug-in has its own ClassType, which can be an int, a string or an enum.
This means that the same flow, i.e. facebook, can be represented in different manners, even if
all plug-in agrees that flow is a facebook flow. For this reason, we introduced the stringfy
concept. Every plug in has a stringfy function which allows to represent the classification as
a string. In such a manner, the comparison of the classifications returned by the plug-ins is
reduced at nthe comparison of a group of strings, and we can easily exploit the C++ string
library.

Current MOSEC version comes with two available strategies: the all and cooperative.
The all strategy simply prints all the returned classification, separated by the "pipe" symbol.
If one plugin doesn’t provide any classification a blank space is added. The cooperative
strategy implement a simple decision mechanism which prefers HTTP-classification and
HTTPS-classification over DNS classification. Then we stacked up all stringfied classification
in one label, that we use as a reference to retrieved aggregate statistics (see figure 2.20). The
label takes the following form:

:Port-Based Classification:HTTP/HTTPS/DNS-Based Classification

which could be like:

:tcp:HTTPS:Facebook

46 Traffic Analysis

Fig. 2.20 MOSEC: Cooperative Strategy

2.7 MOSEC: MOdular SErvice Classifier 47

2.7.5 MOSEC: Statistics

MOSEC uses an efficient and fine-grained method to provide per-classifier statistics at flow,
packet and byte level. After receiving one packet, the packet and byte number statistics are
update for the flow which the packet belongs to. The update function in figure 2.21 shows
how the process is performed.

The function receives the key, which identifies the flow, and the results provided by all
plug-ins (notice that this is a variadic template function). For all the plug-ins, which return a
non-nullopt classification, that is a valid classification, the total number of packets and bytes
"classified" by that plug-in is updated (the +=operator has been overloaded to update both
the packet and byte number - look at figure 2.22), as well as the packet and byte number
related to that particular label. Indeed, the stringfied response is used as a key to address and
update the correct entry inside a map defined in the stats struct.

Fig. 2.21 MOSEC: Per-Classifier Statistics (1)

48 Traffic Analysis

As you notice, also the total number of unique flow is updated. To correctly inter-
preter MOSEC stats, the flow uniqueness concept needs to be clarified. MOSEC engine
doesn’t distinguish between connectionless or connection-oriented protocol. Therefore for
connection-oriented flows (e.g. TCP flows), it doesn’t look for FIN or RST packets to
determine when the connection is closed, but use an internal, configurable timeout. Thus, if
no packet are received or transmitted for more than timeout seconds the connection is closed
and the classification results are dumped to desired output (e.g. the standard output). This
choice is motivated by the fact that we are in a mobile environment, where user can camp on
other eNodeB due to handover procedure. Thus, it is reasonable to consider a flow closed
(from our eNodeB perspective) even if it is still going somewhere else.

Therefore, when one flow is flushed away from the hash table, in the same time the
flow version number is incremented by one, to infer uniqueness to the flow from statistics
perspective. When one packet with the same key is received again, a new entry in the hash
table is added, the classification process starts from the scratch, and the statistics are update
for the flow with the unique key, that is a pair of the packet key and flow version number.

As the reader probably knows, is very important to provide statistics in intelligible format.
When dealing with high amount of traffic and, likely, with thousand of different flow label,
which has to be reported to every plug-in, it is easy to loose yourself in a great amount of
information, many of those probably refer to punctual information, which do not provide
particular insight on user behaviours.

To facilitate the comprehension of the output, and to be able to quickly understand plug-in
performance, standard output for plug-in statistics offers an overview of the total number of
the packet, byte, and flow classified. Then, the details for each flow label is provided only if
certain threshold are exceeded. Is it possible to filter basing on the percentage of bytes or the
percentage of packets (the percentage is calculated considering the overall traffic statistics)
or considering a minimum amount of unique flow with a certain label.

2.7 MOSEC: MOdular SErvice Classifier 49

Fig. 2.22 MOSEC: Per-Classifier Statistics (2)

50 Traffic Analysis

2.8 MOSEC Validation

Deep Packet Inspection is the state-of-the-art technology for traffic classification. According
to the conventional wisdom, DPI is the most accurate classification technique. Consequently,
most popular products, either commercial or open-source, rely on some sort of DPI for
traffic classification. However, the actual performance of DPI is still unclear to the research
community, since the lack of public datasets prevent the comparison and reproducibility of
their results. Here we provide qualitative result about the potentiality and the goodness of our
approach. To this aim we use the labeled trace provided by UPC Broadband Communication
Group. In [20], Bujlow et al. presents a comprehensive comparison of 6 well-known DPI
tools, which are commonly used in the traffic classification literature. Thier study includes 2
commercial products (PACE and NBAR) and 4 open-source tools (OpenDPI, L7-filter, NDPI,
and Libprotoident). They studied their performance in various scenarios (including packet
and flow truncation) and at different classification levels (application protocol, application
and web service). The authors carefully built a labeled dataset with more than 750 K flows,
which contains traffic from popular applications. They used the Volunteer-Based System
(VBS), developed at Aalborg University, to guarantee the correct labeling of the dataset and
released it, including full packet payloads, to the research community. We believe this dataset
could become a common benchmark for the comparison and validation of network traffic
classifiers.

The dataset used in the paper "Independent Comparison of Popular DPI Tools for Traffic
Classification?" consists of 767690 flows, which account for 53.31 GB of pure packet data.
The application name was present for 759720 flows (98.96 % of all the flows), which account
for 51.93 GB (97.41 %) of the data volume. The remaining flows are unlabeled due to
their short lifetime (usually below 1 s), which made VBS incapable to reliably establish the
corresponding sockets. The dataset has been artificially built in order to allow its publication
with full packet payload. However, the authors claimed to have manually simulated different
human behaviours for each application studied in order to make it as representative as
possible. The dataset consists of a pcap traces and an INFO file. Each line in the INFO file
corresponds to a flow in the pcap trace and is described as follows:

flow_id # start_time # end_time # local_ip # remote_ip #"...

local_port # remote_port # transport_protocol # operating_system # ...

process_name # HTTP Url # HTTP Referer # HTTP Content-type #

For your convenience here we provide a summary of the classified flows present in
dataset. They provided classification at protocol, application and web service level (figures
2.23,2.24,2.25).

2.8 MOSEC Validation 51

Fig. 2.23 UPC: Application Protocol

Fig. 2.24 UPC: Application

To collect and accurately label the flows, the adapted Volunteer-Based System (VBS)
developed at Aalborg University. The task of VBS is to collect information about Internet
traffic flows (i.e., start time of the flow, number of packets contained by the flow, local and
remote IP addresses, local and remote ports, transport layer protocol) together with detailed
information about each packet (i.e., direction, size, TCP flags, and relative timestamp to
the previous packet in the flow). For each flow, the system also collects the process name
associated with that flow. The process name is obtained from the system sockets. This way,
we can ensure the application associated to a particular traffic. Additionally, the system
collects some information about the HTTP content type (e.g., text/html, video/x-flv). The
captured information is transmitted to the VBS server, which stores the data in a MySQL
database.

52 Traffic Analysis

Fig. 2.25 UPC: Web Service

Retaining this method clear and reliable, we decide to integrate the labeled INFO trace
in MOSEC package, to offer a benchmarking platform and a tool for immediate checking
the goodness of new developed plug-ins or the enhancements of already provisioned ones.
Colleagues from UPC, gave us the .pcap trace as well, thus we can verify MOSEC capabilities.

Here we focus on a single performance parameter: the classification accuracy. We
acknowledge that other performance parameters are also important, such as speed, scalability,
complexity, and robustness. However, given that the research community is mainly using
DPI based technique for offline ground-truth generation, we think that those metrics are less
decisive.

The comparison between the UPC INFO file and MOSEC results is automatically offered
specifying the option –upc from command line. In this way, a map containing the INFO
file information is uploaded. Every time one packet is processed, we look up in table if the
packet timestamp matches one of the end_time taken from the INFO file. If one match is
found, that means that that packet is the last one of the relative flow and the classification has
to be provided.

We provide two kind of statistics: direct and reverse.

Direct statistics indicates the percentage of our classification which match UPC ones.

• 100% -> every flow that we classified is marked in the same way in the UPC INFO file.
Tagged in the same way means that same matching or submatching criteria is satisfied.

2.8 MOSEC Validation 53

• 0% -> we got a false positive. None of the recognized flow is tagges in the same way
in the UPC INFO file. Notice that sometimes, even if there is no matching, the two
classification are almost equivalent (e.g. GoogleVideo on side has no matching with
Youtube, but actually they are the same thing)

Reversed statistics indicates the percentage of UPC flow that we marked in the same way.
The usage of these two mechanism is necessary to recognize which the weak point of our
framework.

Below, the direct statistics follows:

UPC direct statistic:

tcp HTTPS Go: {0 0 0 7 0} 100 %

tcp HTTP Craigslist: {0 124 0 0 0} 100 %

tcp HTTP Steamcommunity: {0 0 46 0 0} 100 %

tcp HTTP Steampowered: {0 0 169 0 0} 100 %

tcp HTTPS Adadvisor: {8 0 0 0 0} 0 %

tcp HTTP Skype: {0 19 0 0 0} 100 %

tcp HTTPS Adnxs: {24 0 0 0 0} 0 %

tcp HTTPS Windows Azure: {37 0 0 0 0} 0 %

tcp HTTPS Skype: {0 198 0 0 0} 100 %

udp Skype: {0 16 0 0 0} 100 %

tcp POP3-TLS Google|Mail: {0 0 0 12 0} 100 %

tcp IMAP-TLS Google|Mail: {0 0 0 103 0} 100 %

tcp HTTP Yieldmanager: {13 0 0 0 0} 0 %

tcp HTTPS Hotmail: {13 0 0 0 0} 0 %

tcp HTTP Anyclip: {18 0 0 0 0} 0 %

tcp HTTP Z5x: {27 0 0 0 0} 0 %

tcp HTTP Taobao: {19 453 0 0 0} 95.9746 %

tcp HTTP Tanx: {21 0 0 5 0} 19.2308 %

tcp HTTP Synacast: {109 0 0 0 0} 0 %

tcp HTTP Pplive: {1 174 0 0 0} 99.4286 %

tcp HTTP Qq: {32 0 0 760 0} 95.9596 %

tcp HTTP Cyworld: {0 280 0 0 0} 100 %

tcp HTTPS Windows: {6 0 0 0 0} 0 %

tcp HTTPS Vimeo: {0 40 0 0 0} 100 %

tcp HTTPS Mydisk: {55 0 0 0 0} 0 %

tcp HTTP 4shared: {1 135 0 0 0} 99.2647 %

tcp HTTP Wp: {8 0 0 0 0} 0 %

tcp HTTP Adfunky: {10 0 0 0 0} 0 %

54 Traffic Analysis

tcp HTTP Sport: {20 0 0 0 0} 0 %

tcp HTTPS Linkedin: {0 18 0 0 0} 100 %

tcp HTTPS Edgecast: {11 0 0 0 0} 0 %

tcp HTTPS Apple|iTunes: {0 31 0 0 0} 100 %

tcp HTTPS Apple: {38 2 0 0 0} 5 %

tcp HTTPS Mozilla: {13 0 0 0 0} 0 %

tcp HTTP Iqiyi: {60 0 0 0 0} 0 %

tcp HTTP Battle: {7 0 0 0 0} 0 %

tcp IMAP: {1 0 0 35 0} 97.2222 %

tcp POP3: {1 0 0 26 0} 96.2963 %

tcp HTTPS Tor: {0 87 0 0 0} 100 %

tcp HTTPS Gazeta: {68 0 0 0 0} 0 %

tcp HTTP Scdn: {19 0 0 0 0} 0 %

tcp HTTP Adnxs: {95 0 0 0 0} 0 %

tcp HTTPS Mediafire: {0 328 0 0 0} 100 %

tcp HTTPS Homebroker: {7 0 0 0 0} 0 %

tcp HTTPS Tumblr: {0 11 0 0 0} 100 %

tcp HTTP Ebay|com.au: {0 6 0 0 0} 100 %

tcp HTTPS Msn: {53 1 0 0 0} 1.85185 %

tcp HTTPS Dropbox: {0 90 0 0 0} 100 %

tcp HTTP Pps: {0 0 0 33 0} 100 %

tcp Back Orifice: {46 0 0 0 0} 0 %

udp Computer Aided Design Software Inc: {29 0 0 0 0} 0 %

tcp Sub7’s: {33 0 0 0 0} 0 %

tcp BitTorrent: {17 0 0 15018 0} 99.8869 %

tcp HTTP Huffingtonpost: {0 0 0 41 0} 100 %

tcp Nintendo Wi-Fi Connection: {6 0 0 0 0} 0 %

tcp HTTPS Amazon|CloudFront: {7 0 0 0 0} 0 %

tcp HTTPS Scorecardresearch: {29 0 0 0 0} 0 %

tcp FTP: {0 0 0 11 0} 100 %

tcp FTP-active: {0 0 0 58 0} 100 %

tcp HTTPS Akamai: {44 0 0 0 0} 0 %

tcp HTTPS Google|Maps: {4 82 0 0 0} 95.3488 %

tcp HTTPS Google|Mail: {0 12 0 0 0} 100 %

tcp HTTPS Msads: {32 0 0 0 0} 0 %

tcp Microsoft-DS|Samba Aau: {0 0 0 21076 0} 100 %

tcp Webmin: {12 0 0 0 0} 0 %

tcp HTTP Amazon|CloudFront: {10 0 0 0 0} 0 %

udp Battlefield 2 and mods: {8 0 0 0 0} 0 %

2.8 MOSEC Validation 55

tcp Emule: {36 0 0 487 0} 93.1166 %

tcp HTTP Apple: {173 568 0 0 0} 76.6532 %

tcp HTTP Ebay: {0 48 0 0 0} 100 %

tcp Bittorrent: {36 0 0 110500 0} 99.9674 %

tcp BitTorrent tracker: {0 0 0 36 0} 100 %

tcp Apache Tomcat: {150 0 0 0 0} 0 %

tcp SMTP-TLS: {0 0 0 68 0} 100 %

tcp HTTPS Wikipedia: {0 36 0 0 0} 100 %

tcp DBGp: {32 0 0 0 0} 0 %

tcp HTTP Huffpost: {28 0 0 0 0} 0 %

tcp HTTP eBay: {29 217 0 0 0} 88.2114 %

tcp HTTPS: {238 0 0 0 0} 0 %

tcp HTTP Bing: {3 471 0 0 0} 99.3671 %

udp: {126851 0 0 0 0} 0 %

tcp HTTPS Twitter: {13 246 0 0 0} 94.9807 %

tcp HTTPS Microosft|Live: {35 0 0 8 0} 18.6047 %

udp BitTorrent: {95 0 0 6564 0} 98.5734 %

udp Netbios: {0 0 0 10198 0} 100 %

tcp HTTP Wordpress: {0 169 0 0 0} 100 %

tcp HTTP Justin.tv: {0 0 0 853 0} 100 %

tcp Half-Life: {7 0 0 0 0} 0 %

tcp HTTP Go: {0 0 0 257 0} 100 %

tcp HTTPS Facebook: {196 186 0 0 0} 48.6911 %

tcp HTTP Putlocker: {0 81 0 0 0} 100 %

tcp Edonkey2000: {15 0 0 0 0} 0 %

tcp HTTP Tumblr: {1 390 0 0 0} 99.7442 %

tcp HTTP Wikipedia: {0 6055 0 0 0} 100 %

udp Webmin: {87 0 0 0 0} 0 %

tcp HTTP Facebook: {101 6762 0 0 0} 98.5283 %

udp MS-Streaming: {13 0 0 0 0} 0 %

tcp HTTP Google: {337 4826 0 0 0} 93.4728 %

tcp BEA WebLogic: {551 0 0 0 0} 0 %

tcp HTTP Google|YouTube: {13 2234 0 0 0} 99.4215 %

udp SafetyNET: {58 0 0 0 0} 0 %

tcp HTTPS Aspnetcdn: {31 0 0 0 0} 0 %

udp NTP: {0 42227 0 0 0} 100 %

tcp HTTP Bittorrent: {0 0 0 6 0} 100 %

tcp HTTP Google|Mail: {0 7 0 0 0} 100 %

tcp HTTP Twitter: {0 841 0 0 0} 100 %

56 Traffic Analysis

udp H323: {15 0 0 0 0} 0 %

tcp HTTP Pandomediabooster: {0 28 0 0 0} 100 %

tcp HTTP Yahoo: {12 17115 0 0 0} 99.9299 %

tcp HTTP Leagueoflegends: {0 9 0 0 0} 100 %

tcp RDP (Microsoft): {1 153888 0 0 0} 99.9994 %

udp Half-Life: {6 0 0 0 0} 0 %

tcp HTTP Images-amazon: {0 153 0 0 0} 100 %

tcp MySQL Database system: {31 0 0 0 0} 0 %

tcp HTTP Instagram: {0 9 0 0 0} 100 %

tcp HTTP Linkedin: {0 44 0 0 0} 100 %

tcp HTTP Dr: {15 0 0 0 0} 0 %

tcp HTTPS Google|DoubleClick: {3 145 0 0 0} 97.973 %

tcp HTTP Justin: {0 0 0 1297 0} 100 %

tcp HTTPS Google: {163 1478 0 0 0} 90.067 %

udp DNS dns: {28 18250 0 0 0} 99.8468 %

udp DropBox|Sync: {14 0 0 0 0} 0 %

tcp HTTP: {2557 0 0 0 0} 0 %

tcp SSH: {0 36697 0 0 0} 100 %

tcp HTTP Amazon: {1 279 0 0 0} 99.6429 %

tcp HTTP Chango: {56 0 0 0 0} 0 %

tcp HTTP Ask: {0 171 0 0 0} 100 %

tcp HTTP Vimeo: {0 84 0 0 0} 100 %

tcp HTTP Mediafire: {0 145 0 0 0} 100 %

tcp HTTPS Yahoo: {0 67 0 0 0} 100 %

tcp HTTP Pinterest: {0 198 0 0 0} 100 %

tcp POP3-TLS Interia: {0 0 0 89 0} 100 %

udp Call of Duty 2: {13 0 0 0 0} 0 %

tcp VNC: {18 0 0 0 0} 0 %

tcp HTTP Scorecardresearch: {17 0 0 0 0} 0 %

tcp HTTP Cnn: {0 247 0 0 0} 100 %

tcp HTTP Utorrent: {36 0 0 0 0} 0 %

tcp HTTPS Atdmt: {20 0 0 0 0} 0 %

tcp HTTP 9yx: {9 0 0 0 0} 0 %

udp VTun: {6 0 0 0 0} 0 %

tcp RTMP Yahoo: {0 15 0 0 0} 100 %

tcp HTTPS Amazon: {3 148 0 0 0} 98.0132 %

udp Aleph One: {11 0 0 0 0} 0 %

udp BitTorrent Bittorrent: {0 0 0 8 0} 100 %

tcp HTTP Pptv: {280 0 0 0 0} 0 %

2.8 MOSEC Validation 57

tcp SafetyNET: {601 0 0 0 0} 0 %

tcp WebCT e-learning portal: {0 0 0 63 0} 100 %

tcp Tuxanci game: {255 0 0 0 0} 0 %

tcp Microsoft DCOM services: {134 0 0 0 0} 0 %

tcp SHOUTcast: {78 0 0 0 0} 0 %

tcp HTTP Craigslist|com.tr: {0 55 0 0 0} 100 %

tcp psyBNC: {23 0 0 0 0} 0 %

tcp HTTPS Wordpress: {0 8 0 0 0} 100 %

tcp HTTP Microosft|Live: {0 0 0 19 0} 100 %

udp NetBus: {13 0 0 0 0} 0 %

tcp HTTPS Taobao: {0 7 0 0 0} 100 %

tcp HTTP S-msn: {0 0 0 428 0} 100 %

tcp HTTP Cyworld|co.kr: {0 45 0 0 0} 100 %

tcp PPTP: {6 0 0 0 0} 0 %

tcp HTTP Cdn-apple: {0 6 0 0 0} 100 %

tcp SMTP-TLS Google|Mail: {0 0 0 50 0} 100 %

tcp MS-Streaming: {8 0 0 0 0} 0 %

tcp NetBus: {31 0 0 0 0} 0 %

tcp HTTP Msn: {1 494 0 0 0} 99.798 %

tcp FileMakerPro: {24 0 0 0 0} 0 %

tcp Tor: {0 62 0 0 0} 100 %

tcp HTTP Blogspot: {31 179 0 0 0} 85.2381 %

tcp X11: {6 0 0 0 0} 0 %

udp Gnutella-svc: {35 0 0 0 0} 0 %

udp Cisco HSRP: {122 0 0 0 0} 0 %

tcp HTTPS 4shared: {0 109 0 0 0} 100 %

tcp HTTP Google|DoubleClick: {17 2479 0 0 0} 99.3189 %

tcp Netbios: {0 0 0 11 0} 100 %

udp VLC: {12 0 0 0 0} 0 %

tcp: {136381 0 0 0 0} 0 %

udp Xbox: {10 0 0 0 0} 0 %

tcp Microsoft-DS|Samba: {1 0 0 21732 0} 99.9954 %

tcp HTTP Vk: {0 0 0 343 0} 100 %

tcp Symantec VOPIED (VERITAS): {31 0 0 0 0} 0 %

udp Nintendo Wi-Fi Connection: {12 0 0 0 0} 0 %

tcp HTTP 2nike: {6 0 0 0 0} 0 %

udp SSMP Message: {7 0 0 0 0} 0 %

tcp Freeciv multiplay: {29 0 0 0 0} 0 %

tcp Winbox: {9 0 0 0 0} 0 %

58 Traffic Analysis

tcp HTTP Akamai: {84 0 0 0 0} 0 %

udp Zabbix-Server: {9 0 0 0 0} 0 %

udp Stun: {78 0 0 0 0} 0 %

tcp RuneScape: {26 0 0 0 0} 0 %

tcp HTTP Putlockerdownloader: {0 0 6 0 0} 100 %

udp Unreal-turn: {74 0 0 0 0} 0 %

tcp HTTP Adform: {35 0 0 0 0} 0 %

tcp FTP-active Webd: {0 0 0 62 0} 100 %

udp Octopus Multiplexer: {11 0 0 0 0} 0 %

tcp HTTPS Google|YouTube: {3 96 0 0 0} 96.9697 %

tcp Usermin: {24 0 0 0 0} 0 %

udp Emule: {0 0 0 4240 0} 100 %

tcp RTMP: {87 366 0 0 0} 80.7947 %

tcp HTTP Google|Maps: {147 85 0 0 0} 36.6379 %

tcp Skype: {0 28 0 0 0} 100 %

udp cft-0: {12 0 0 0 0} 0 %

tcp IRC: {1981 0 0 0 0} 0 %

udp BMC Software: {8 0 0 0 0} 0 %

total_packets: 64308125, elapsed time: 227:834215 (sec:usec), rate: 0.282258 Mpps (2.00773 Gbps)

These results show that MOSEC works very well with TCP/HTTP, whereas has some
difficulties when dealing with UDP traffic. This is an expected result. As you probably
noticed, most of the plug-in that we developed works specifically with HTTP/HTTPS
information, while we did not provide such drill down for UDP traffic. Indeed, we’re able
to classify UDP traffic only exploiting the port-based algorithm or, when it is possible, the
DNS classifier. As you can see, for UDP flows we experienced many times false positive
matching. This is due because UDP ports are often used randomly by upper layer applications.
Therefore, without an adequate deep packet inspection also for UDP traffic, we wrongly
assumed that that traffic is generated by the application that should use that not-so-well-known
port.

Reverse statistics (not shown here) highlight the same weakness.

2.9 Traffic Analysis with MOSEC

As an example, in this section we provided classification results obtained with MOSEC,
when we analyze one the .pcap trace captured on the S1-U interface of our eNodeB. In

2.9 Traffic Analysis with MOSEC 59

particular, this analysis refers to one day taken from dataset IV. We exploited the Basic
configuration with five classifiers, namely the IP-Protocol, Port-based, the DNS-based and
the HTTP-based-Mode0/1/2, and the SSL-based classifier. An additional module is added for
dubugging and is named Debug Classifier.

Stats summary:

bytes : 17544175555

packets : 32434526

flows : 343379

classifier ’IP-protocol’

total:

bytes : 17544175555 (100 %)

packets: 32434526 (100 %)

flows : 343376 (99.9991 %)

class packets:

sctp -> { packets: 9428157 (29.0683 % 29.0683 %) -

bytes: 1147506454 (6.54067 % 6.54067 %) -

flows: 75 (0.0218418 % 0.0218419 %) }

tcp -> { packets: 21905347 (67.5371 % 67.5371 %) -

bytes: 15841524137 (90.2951 % 90.2951 %) -

flows: 225854 (65.774 % 65.7745 %) }

udp -> { packets: 1101022 (3.3946 % 3.3946 %) -

bytes: 555144964 (3.16427 % 3.16427 %) -

flows: 117447 (34.2033 % 34.2036 %) }

classifier ’Port’

total:

bytes : 15842846753 (90.3026 %)

packets: 22020238 (67.8914 %)

flows : 322188 (93.8287 %)

class packets:

Imaps -> { packets: 494070 (1.52328 % 2.24371 %) -

bytes: 269668088 (1.53708 % 1.70214 %) -

flows: 3554 (1.03501 % 1.10308 %) }

HTTP -> { packets: 10469874 (32.28 % 47.5466 %) -

bytes: 8559944283 (48.7908 % 54.0303 %) -

flows: 99699 (29.0347 % 30.9444 %) }

HTTPS -> { packets: 9838526 (30.3335 % 44.6795 %) -

bytes: 6649191129 (37.8997 % 41.9697 %) -

60 Traffic Analysis

flows: 99131 (28.8693 % 30.7681 %) }

others -> { packets: 1217768 (3.75454 %) -

bytes: 364043253 (2.07501 %) -

flows: 119804 (34.8897 %) }

classifier ’dns’

total:

bytes : 15247166370 (86.9073 %)

packets: 21246011 (65.5043 %)

flows : 304927 (88.8019 %)

class packets:

Ororo -> { packets: 587541 (1.81147 % 2.76542 %) -

bytes: 621713435 (3.5437 % 4.07757 %) -

flows: 100 (0.0291223 % 0.0327947 %) }

Ticdn -> { packets: 2123705 (6.54767 % 9.99578 %) -

bytes: 2079022727 (11.8502 % 13.6355 %) -

flows: 156 (0.0454309 % 0.0511598 %) }

Amazon CloudFront -> { packets: 231038 (0.712321 % 1.08744 %) -

bytes: 194645286 (1.10946 % 1.2766 %) -

flows: 1021 (0.297339 % 0.334834 %) }

Rncdn3 -> { packets: 204480 (0.630439 % 0.962439 %) -

bytes: 164831618 (0.939523 % 1.08106 %) -

flows: 86 (0.0250452 % 0.0282035 %) }

Xvideos -> { packets: 762841 (2.35194 % 3.59051 %) -

bytes: 606357042 (3.45617 % 3.97685 %) -

flows: 1372 (0.399559 % 0.449944 %) }

Apple -> { packets: 1167418 (3.59931 % 5.49477 %) -

bytes: 882361719 (5.02937 % 5.78705 %) -

flows: 12732 (3.70786 % 4.17543 %) }

Google|Mail -> { packets: 409728 (1.26325 % 1.9285 %) -

bytes: 237376965 (1.35302 % 1.55686 %) -

flows: 2192 (0.638362 % 0.718861 %) }

Hotmail -> { packets: 418929 (1.29161 % 1.9718 %) -

bytes: 141832728 (0.808432 % 0.930224 %) -

flows: 2001 (0.582738 % 0.656223 %) }

Google -> { packets: 4687307 (14.4516 % 22.0621 %) -

bytes: 3868824839 (22.0519 % 25.3741 %) -

flows: 26393 (7.68626 % 8.65551 %) }

Instagram -> { packets: 338347 (1.04317 % 1.59252 %) -

2.9 Traffic Analysis with MOSEC 61

bytes: 225723174 (1.2866 % 1.48043 %) -

flows: 3113 (0.906578 % 1.0209 %) }

Whatsapp -> { packets: 394768 (1.21712 % 1.85808 %) -

bytes: 207278207 (1.18146 % 1.35945 %) -

flows: 3568 (1.03909 % 1.17012 %) }

Facebook -> { packets: 4843788 (14.934 % 22.7986 %) -

bytes: 3368801731 (19.2018 % 22.0946 %) -

flows: 30245 (8.80805 % 9.91877 %) }

Akamai -> { packets: 282132 (0.869851 % 1.32793 %) -

bytes: 201376764 (1.14783 % 1.32075 %) -

flows: 3295 (0.959581 % 1.08059 %) }

others -> { packets: 4793987 (14.7805 %) -

bytes: 2447020135 (13.9478 %) -

flows: 218653 (63.6769 %) }

classifier ’http[host]’

total:

bytes : 8433384547 (48.0694 %)

packets: 10060924 (31.0192 %)

flows : 64242 (18.7088 %)

class packets:

Xvideos -> { packets: 761812 (2.34877 % 7.57199 %) -

bytes: 605570342 (3.45169 % 7.18063 %) -

flows: 1354 (0.394316 % 2.10766 %) }

Instagram -> { packets: 344406 (1.06185 % 3.4232 %) -

bytes: 232816445 (1.32703 % 2.76065 %) -

flows: 3016 (0.87833 % 4.69475 %) }

Amazon CloudFront -> { packets: 162302 (0.500399 % 1.61319 %) -

bytes: 140448847 (0.800544 % 1.66539 %) -

flows: 526 (0.153184 % 0.818779 %) }

Ororo -> { packets: 587535 (1.81145 % 5.83977 %) -

bytes: 621713035 (3.5437 % 7.37205 %) -

flows: 98 (0.0285399 % 0.152548 %) }

Google -> { packets: 2246290 (6.92561 % 22.3269 %) -

bytes: 1899938242 (10.8295 % 22.5288 %) -

flows: 7706 (2.24417 % 11.9953 %) }

Apple -> { packets: 854789 (2.63543 % 8.49613 %) -

bytes: 782780907 (4.46177 % 9.28193 %) -

flows: 2165 (0.630499 % 3.37007 %) }

62 Traffic Analysis

Ticdn -> { packets: 2238023 (6.90013 % 22.2447 %) -

bytes: 2202481580 (12.5539 % 26.1162 %) -

flows: 157 (0.0457221 % 0.244388 %) }

Rncdn3 -> { packets: 213259 (0.657506 % 2.11968 %) -

bytes: 171309072 (0.976444 % 2.03132 %) -

flows: 91 (0.0265013 % 0.141652 %) }

others -> { packets: 2652508 (8.17804 %) -

bytes: 1776326077 (10.1249 %) -

flows: 49129 (14.3075 %) }

classifier ’http[content-type]’

total:

bytes : 8417006546 (47.9761 %)

packets: 9986040 (30.7883 %)

flows : 58763 (17.1132 %)

class packets:

image/png -> { packets: 238963 (0.736755 % 2.39297 %) -

bytes: 166472189 (0.948874 % 1.97781 %) -

flows: 3088 (0.899298 % 5.25501 %) }

application/json -> { packets: 210958 (0.650412 % 2.11253 %) -

bytes: 110076020 (0.627422 % 1.30778 %) -

flows: 6670 (1.94246 % 11.3507 %) }

image/jpeg -> { packets: 1016636 (3.13443 % 10.1806 %) -

bytes: 686773701 (3.91454 % 8.15936 %) -

flows: 11260 (3.27918 % 19.1617 %) }

video/mp4 -> { packets: 3293270 (10.1536 % 32.9787 %) -

bytes: 2984535822 (17.0115 % 35.4584 %) -

flows: 1219 (0.355001 % 2.07443 %) }

image/gif -> { packets: 204172 (0.62949 % 2.04457 %) -

bytes: 104738979 (0.597001 % 1.24437 %) -

flows: 7185 (2.09244 % 12.2271 %) }

text/html -> { packets: 321249 (0.990454 % 3.21698 %) -

bytes: 152012816 (0.866457 % 1.80602 %) -

flows: 12128 (3.53196 % 20.6388 %) }

text/plain -> { packets: 807299 (2.48901 % 8.08428 %) -

bytes: 740486565 (4.2207 % 8.7975 %) -

flows: 2792 (0.813096 % 4.75129 %) }

application/octet-stream -> { packets: 1400461 (4.31781 % 14.0242 %) -

bytes: 1250574341 (7.12815 % 14.8577 %) -

2.9 Traffic Analysis with MOSEC 63

flows: 3582 (1.04316 % 6.09567 %) }

others -> { packets: 2493032 (7.68635 %) -

bytes: 2221336113 (12.6614 %) -

flows: 10839 (3.15657 %) }

classifier ’http[host|content-type]’

total:

bytes : 8433384547 (48.0694 %)

packets: 10060924 (31.0192 %)

flows : 64242 (18.7088 %)

class packets:

Xvideos|video/mp4 -> { packets: 735377 (2.26727 % 7.30924 %) -

bytes: 593223357 (3.38131 % 7.03423 %) -

flows: 321 (0.0934827 % 0.499673 %) }

Ticdn|video/mp4 -> { packets: 350981 (1.08212 % 3.48856 %) -

bytes: 394009620 (2.24581 % 4.67202 %) -

flows: 124 (0.0361117 % 0.19302 %) }

Instagram|image/jpeg -> { packets: 173175 (0.533922 % 1.72126 %) -

bytes: 110226965 (0.628282 % 1.30703 %) -

flows: 2393 (0.696898 % 3.72498 %) }

Rncdn3|video/mp4 -> { packets: 213259 (0.657506 % 2.11968 %) -

bytes: 171309072 (0.976444 % 2.03132 %) -

flows: 91 (0.0265013 % 0.141652 %) }

Google|video/mp4 -> { packets: 870878 (2.68503 % 8.65604 %) -

bytes: 729709069 (4.15927 % 8.65262 %) -

flows: 182 (0.0530027 % 0.283304 %) }

Ororo|video/mp4 -> { packets: 582613 (1.79627 % 5.79085 %) -

bytes: 616734926 (3.51533 % 7.31302 %) -

flows: 81 (0.0235891 % 0.126086 %) }

Google|application/octet-stream -> { packets: 1151780 (3.55109 % 11.4481 %) -

bytes: 1033915412 (5.89321 % 12.2598 %) -

flows: 1602 (0.46654 % 2.4937 %) }

Apple|text/plain -> { packets: 740996 (2.28459 % 7.36508 %) -

bytes: 709381299 (4.0434 % 8.41158 %) -

flows: 62 (0.0180559 % 0.0965101 %) }

others -> { packets: 5241866 (16.1614 %) -

bytes: 4074874827 (23.2264 %) -

flows: 59386 (17.2946 %) }

64 Traffic Analysis

classifier ’SSL’

total:

bytes : 6815864957 (38.8497 %)

packets: 9998067 (30.8254 %)

flows : 74147 (21.5933 %)

class packets:

Whatsapp -> { packets: 249006 (0.767719 % 2.49054 %) -

bytes: 219809305 (1.25289 % 3.22497 %) -

flows: 559 (0.162794 % 0.753908 %) }

Hotmail -> { packets: 435994 (1.34423 % 4.36078 %) -

bytes: 146924452 (0.837454 % 2.15562 %) -

flows: 1908 (0.555654 % 2.57327 %) }

Facebook -> { packets: 4450805 (13.7224 % 44.5167 %) -

bytes: 3111073319 (17.7328 % 45.6446 %) -

flows: 21330 (6.2118 % 28.7672 %) }

Google|Mail -> { packets: 391147 (1.20596 % 3.91223 %) -

bytes: 232892970 (1.32747 % 3.41692 %) -

flows: 1733 (0.50469 % 2.33725 %) }

Google -> { packets: 2465442 (7.60129 % 24.6592 %) -

bytes: 2014508036 (11.4825 % 29.5562 %) -

flows: 13061 (3.80367 % 17.615 %) }

Akamai -> { packets: 531443 (1.63851 % 5.31546 %) -

bytes: 367322151 (2.0937 % 5.38922 %) -

flows: 5113 (1.48903 % 6.89576 %) }

others -> { packets: 1474230 (4.54525 %) -

bytes: 723334724 (4.12293 %) -

flows: 30443 (8.86571 %) }

Stats summary:

bytes : 17544175555

packets : 32434526

flows : 343379

classifier ’aggregate’

total:

bytes : 17544175555 (100 %)

packets: 32434526 (100 %)

flows : 343379 (100 %)

class packets:

sctp -> { packets: 9428157 (29.0683 % 29.0683 %) -

2.9 Traffic Analysis with MOSEC 65

bytes: 1147506454 (6.54067 % 6.54067 %) -

flows: 75 (0.0218418 % 0.0218418 %) }

tcp HTTP Ororo -> { packets: 587541 (1.81147 % 1.81147 %) -

bytes: 621713435 (3.5437 % 3.5437 %) -

flows: 100 (0.0291223 % 0.0291223 %) }

tcp HTTPS Akamai -> { packets: 531076 (1.63738 % 1.63738 %) -

bytes: 366936895 (2.0915 % 2.0915 %) -

flows: 5251 (1.52921 % 1.52921 %) }

udp -> { packets: 816396 (2.51706 % 2.51706 %) -

bytes: 519993244 (2.96391 % 2.96391 %) -

flows: 9853 (2.86942 % 2.86942 %) }

tcp HTTP Rncdn3 -> { packets: 213259 (0.657506 % 0.657506 %) -

bytes: 171309072 (0.976444 % 0.976444 %) -

flows: 91 (0.0265013 % 0.0265013 %) }

tcp HTTP Ticdn -> { packets: 2238357 (6.90116 % 6.90116 %) -

bytes: 2202672524 (12.555 % 12.555 %) -

flows: 163 (0.0474694 % 0.0474694 %) }

tcp HTTPS Google -> { packets: 2448187 (7.54809 % 7.54809 %) -

bytes: 2012535286 (11.4712 % 11.4712 %) -

flows: 15835 (4.61152 % 4.61152 %) }

tcp HTTPS Facebook -> { packets: 4494118 (13.856 % 13.856 %) -

bytes: 3116983861 (17.7665 % 17.7665 %) -

flows: 26581 (7.74101 % 7.74101 %) }

tcp HTTPS Hotmail -> { packets: 423923 (1.30701 % 1.30701 %) -

bytes: 143538676 (0.818156 % 0.818156 %) -

flows: 2012 (0.585941 % 0.585941 %) }

tcp Imaps Google|Mail -> { packets: 386263 (1.1909 % 1.1909 %) -

bytes: 228909891 (1.30476 % 1.30476 %) -

flows: 1873 (0.545461 % 0.545461 %) }

tcp HTTPS Whatsapp -> { packets: 340375 (1.04942 % 1.04942 %) -

bytes: 232031756 (1.32256 % 1.32256 %) -

flows: 2155 (0.627586 % 0.627586 %) }

tcp HTTP Apple -> { packets: 856194 (2.63976 % 2.63976 %) -

bytes: 783258583 (4.46449 % 4.46449 %) -

flows: 2330 (0.678551 % 0.678551 %) }

tcp HTTP Xvideos -> { packets: 763591 (2.35425 % 2.35425 %) -

bytes: 606722421 (3.45826 % 3.45826 %) -

flows: 1384 (0.403053 % 0.403053 %) }

tcp HTTP Google -> { packets: 2251615 (6.94203 % 6.94203 %) -

66 Traffic Analysis

bytes: 1900344654 (10.8318 % 10.8318 %) -

flows: 15835 (4.61152 % 4.61152 %) }

tcp HTTPS Facebook -> { packets: 4494118 (13.856 % 13.856 %) -

bytes: 3116983861 (17.7665 % 17.7665 %) -

flows: 26581 (7.74101 % 7.74101 %) }

tcp HTTPS Hotmail -> { packets: 423923 (1.30701 % 1.30701 %) -

bytes: 143538676 (0.818156 % 0.818156 %) -

flows: 2012 (0.585941 % 0.585941 %) }

tcp Imaps Google|Mail -> { packets: 386263 (1.1909 % 1.1909 %) -

bytes: 228909891 (1.30476 % 1.30476 %) -

flows: 1873 (0.545461 % 0.545461 %) }

tcp HTTPS Whatsapp -> { packets: 340375 (1.04942 % 1.04942 %) -

bytes: 232031756 (1.32256 % 1.32256 %) -

flows: 2155 (0.627586 % 0.627586 %) }

tcp HTTP Apple -> { packets: 856194 (2.63976 % 2.63976 %) -

bytes: 783258583 (4.46449 % 4.46449 %) -

flows: 2330 (0.678551 % 0.678551 %) }

tcp HTTP Xvideos -> { packets: 763591 (2.35425 % 2.35425 %) -

bytes: 606722421 (3.45826 % 3.45826 %) -

flows: 1384 (0.403053 % 0.403053 %) }

tcp HTTP Google -> { packets: 2251615 (6.94203 % 6.94203 %) -

bytes: 1900344654 (10.8318 % 10.8318 %) -

flows: 8706 (2.53539 % 2.53539 %) }

tcp HTTP Amazon CloudFront -> { packets: 179774 (0.554267 % 0.554267 %) -

bytes: 152466041 (0.869041 % 0.869041 %) -

flows: 611 (0.177937 % 0.177937 %) }

tcp HTTP Instagram -> { packets: 345146 (1.06413 % 1.06413 %) -

bytes: 233102795 (1.32866 % 1.32866 %) -

flows: 3130 (0.911529 % 0.911529 %) }

others -> { packets: 6130554 (18.9013 %) -

bytes: 3104149967 (17.6933 %) -

flows: 263229 (76.6584 %) }

2.10 Conclusion

This chapter reports on reports on the traffic measurements carried out at an eNodeB of Tele-
com Italia located in a business area in Turin. Through subsequent measurement campaigns,
it was possible to follow the evolution of the 4G network by the beginning of its deployment

2.10 Conclusion 67

in 2012, until its full maturity in 2015. The data collected during the first year, showed a
poor use of the LTE network, mainly due to the limited penetration of new 4G smartphone.
In 2015, however, we appreciate a clear and decisive increase in the number of terminals
using LTE, with aggregate statistics (e.g. marketshare for smartphone operating systems,
or the percentage of video traffic) that reflect the national trend. This important outcome
testifies the maturity of LTE technology, and allows us to consider our monitored eNodeB as
a valuable vantage point for traffic analysis.

A further analysis is aimed at evaluating the traffic volume of different applications/services.
We select the four ones with the largest number of TCP connections. These are Facebook,
Google, Apple, Whatsapp, and Mail applications. Facebook always accounts for the highest
number of flows, this is not surprising given that Facebook is among the world’s most popular
social networking sites, We notice a negative trend for Apple and a positive trend for Google,
as effect of the the higher number of Android devices in 2014 and 2015. The number of
flows which belongs to Whatsapp and Youtube is stable across all the datasets, and is equal
to 2-3% and 0.5%, respectively. We evaluate the aggregate amount of traffic associated to
each applications, as well. Facebook represents more than the 20% of the traffic Although
counts few number of flows, Youtube is responsible, on average, of the 20% of all the traffic
generated. Google and Apple give approximately the same contribution in 2015, that is
slightly more than 7%. Finally, Whatsapp contribution varies little across all the years to
stabilize around 2% in 2015.

In addition, in this chapter we present a new framework/tool exclusively dedicated to the
topic of traffic classification. Among the plethora of existing tool for traffic classification we
provide our own solution, developed from scratch. The project, which is available on github,
is named MOSEC, an acronym for Modular SErvice Classifier. The modularity is given by
the possibility to implement multiple plug-ins, each one will process the packet according to
its logic, and may or may not return a packet/flow classification. A final decision strategy
allows to classify the various streams, based on the classifications of each plug-in. Despite
previous approaches, the ability of keeping together multiple classifiers allows to mitigate the
deficiency of each classifiers (e.g. DPI does not work when packets are encrypted or DNS
queries don’t have to be sent if name resolution is cached in device memory) and exploit
their full-capabilities when it is feasible. We validated the goodness of MOSEC using a
labelled trace synthetically created by colleagues from UPC BarcelonaTech. The results
show excellent TCP-HTTP/HTTPS traffic classification capabilities, higher, on average, than
those of other classification tools (NDPI, PACE, Layer-7). On the other hand, there are some
shortcomings with regard to the classification of UDP traffic.

Chapter 3

Energy Consumption

3.1 Introduction

The evolution and growth of mobile network is fundamentally changing the way users
access Internet and consume content and services. Mobile phones have had a surprising
evolution over the last two decades, starting from simple devices with only voice services
towards smartphones offering novel services such as mobile Internet, localization and maps,
multimedia services, and many more. The new wireless interface introduced in mobile
networks, i.e. the Long Term Evolution (LTE) technology, fulfills the demand for high
data rate and meets user expectation. Simultaneously, the spread of mobile Internet access
introduces new energy-related issues to consider.

From the network side, the eNodeB is the main energy hungry element of the radio
access network. Most of the power consumed by the eNodeB is due to the base band unit,
the power amplifier and the cooling system. Many studies have been focused on the design
of techniques for reducing power consumption in the radio access network. These studies
consider strategies for the energy-efficient resource allocation, for the carrier aggregation or
for the simply switching on/off of network elements depending on their load ([19], [50]).

From the users side, the battery lifetime represents the main limitation on smartphone
usage. To achieve high data rates, higher order modulations (e.g. 64-QAM), advanced coding
and antenna techniques must be used. As a result, newer smartphones need complex circuitry
that quickly consumes User Equipment (UE) battery. To cope with this issue, LTE employs
different mechanisms to save energy. The main one is Discontinuous Reception (DRX) that
allows UE to power down most of its circuitry when no data needs to be sent/received.

Huang et al. [34] present an analysis of the power characteristics in LTE systems. They
developed an empirically derived power model of a commercial LTE network, inferring
network parameters through a publicly deployed tool called 4G Test. By applying the power

70 Energy Consumption

model to a comprehensive dataset, they identify that the smartphone energy consumption is
significantly influenced by the RRC inactivity timer. Deng et al. [28] measured the power
consumption and inactivity timer values using the Monsoon Power Monitor. Based on the
obtained results, they provide a simplified energy consumption model. To reduce 3G/4G
energy consumption, a control module can predict when to put the radio into its Idle state,
and when to move from Idle to Active state. The test of the proposed solution required to
modify the socket layer and to add a control module inside the Android OS source code.

Aucinas et al. [16] studied the energy and network costs of mobile application that are
continuously attached to the network, revealing the effect of such always-on application on
smartphone battery lifetime. Qian et al. [44] propose a novel TCP extention called STC
(Silent TCP connection Closure) to close TCP connection silently without exchanging SYN
or RST packet between endpoints, and quantify the saved smartphone energy. However,
the proposed solution requires the modification of the smartphone operating system and the
introduction of a middle box in the radio access network. Stea et al. [49] investigate how to
configure DRX parameters and explores the trade-off between energy saving and per-user
QoS for different services.

J. Fan et al. proposed to use the so-called RRC semi-connected state to reduce simul-
taneously the signalling load and the energy consumed by the UE. As a general principle
on RRC connected to idle transition the eNodeB shall delete all the keys associated to the
access stratum, needed for RRC protection. The authors proposed that when UE returns to
idle state, the generated RRC protection keys are kept both in the network and the UE. UE is
then in RRC semi-connected state which resembles both the idle and connected state. In this
state the UE can still listen paging message but all other AS functionality can be stopped or
semi-stopped. When a paging message comes, the device wakes up, triggering the transition
to connected state. Thus, the device can return to a communication state without necessarily
requiring RRC connection setup procedures. As a results, Uu and S1 signalling overheads
decreased and, consequently, UE power consumption will be relatively reduced.

With respect to these previous works, the main contribution of this paper is to provide an
analysis aimed at defining how to properly set the RRC Inactivity Timer to achieve a trade-off
between energy consumption and traffic overhead on the control plane. The main novelty of
the presented analysis is that the key parameters used inside the energy consumption model
are inferred directly from passive measurements carried out by monitoring a commercial
eNodeB of one of the Italian Mobile Operators. Furthermore, in the presented analysis, we
account for the traffic overhead on the control plane, needed to establish/remove one RRC
connection, and for other procedures, such as handover.

3.2 Discontinuous Reception – DRX 71

DRX Short

Continuous
Reception

DRX Long

DRX Idle

State RRC Connected
State RRC Idle

Fig. 3.1 The RRC state machine

3.2 Discontinuous Reception – DRX

To reduce UE energy consumption, the existing wireless mobile networks adopt the DRX
mechanism, exhaustively explained in [18]. The DRX mechanism is an effective way to
reduce the UE’s battery power usage, but it simultaneously introduces a cost in terms of
signalling load and an average increase of packets delivery delays. In LTE systems, DRX
is configured at a per-UE basis and controlled by a list of parameters. From the RRC
perspective, a UE can be found in two different states, depending on whether radio resources
are assigned to it or not. The two states are denoted as RRC Connected and RRC Idle. In
both states, DRX is supported. Figure 3.1 shows the RRC states and the permitted transitions.

In the RRC Connected state, the UE can be in one of the three modes: Continuous
Reception, Short DRX, and Long DRX. On the contrary, in the RRC Idle state, UE is only
in DRX mode. When a UE in the RRC Idle receives/sends a packet, a state transition from
RRC Idle to RRC Connected is completed in an almost constant time interval, denoted as
TPro, LTE promotion time. During TPro, radio resources are allocated to the UE. By default,
the UE switched to the RRC Connected state enters the Continuous Reception mode and
monitors the Physical Downlink Control Channel (PDCCH) to identify DL data. The UE
also starts the DRX Inactivity timer, which is reset every time the UE receives/sends a packet.
When the DRX Inactivity timer expires, the UE enters Short DRX mode. Furthermore, if no
data are transmitted/received during the Short DRX cycle, the UE enters Long DRX mode.

A DRX cycle includes an “On Duration Time” during which the UE monitors PDCCH,
and an “Off Time” to save energy. The trade–off between battery saving and latency is the
guideline for tuning the parameters of DRX cycle. Once the “On Duration Time” is fixed,
the increase of the DRX cycle reduces energy consumption at the expense of a growth of the
network latency perceived by the user.

72 Energy Consumption

Every time a packet is sent/received, the UE goes back to the Continuous Reception
mode. The DRX Inactivity timer and the RRC Inactivity timer are reset. When the RRC
Inactivity timer expires, the UE switches from the RRC Connected state to the RRC Idle
state, and the RRC connection state is released.

3.3 Energy Consumption Model

The considered energy consumption model is a simplified version of the model presented
in [34]. In particular, with respect to the original model, we assume that i) no energy is
consumed during RRC Idle state, and ii) the power is considered constant and equal to PDRX ,
when the UE is in one of the two DRX modes.

Taking into account the RRC state machine, the different terms of the energy consump-
tion model can be calculated as follows. The first term is related to the case of a packet
transmission/reception event when the UE is in the RRC Idle state (assume that this happens
at time t0). In this case, the necessary energy is equal to:

Et0 = TPro ∗PPro (3.1)

where TPro and PPro are the time and power needed to switch the UE to the RRC
Connected state, respectively. In case a new packet has to be received/sent at time t1, two
alternatives are possible. If the elapsed time between this packet and previous one is less
than DRX Inactivity Timer (DRXIT), the required energy is equal to

Et1 = PN ∗ (t1− t0) (3.2)

where PN = PT X if we have a packet transmission or PN = PRX if we have a reception.
Otherwise, the energy can be calculated as

Et1 = PN ∗DRXIT +PDRX ∗ (t1− t0−DRXIT). (3.3)

As last case, if a packet transmission/reception event occurs at a time t2 – when the RRC
Inactivity Timer (RRCIT) has expired – we have to take into account that the UE must switch
from the RRC Idle state. Then the consumed energy is equal to

Et2 = PN ∗DRXIT +PDRX ∗RRCIT +TPro ∗PPro (3.4)

3.4 RRC Parameters Inference 73

Depending on the evolution of the RRC state of the UE on a per packet basis, the overall
energy, E, necessary to a UE for its traffic activity can be computed as

E =
N

∑
k=1

Etk (3.5)

Based on the model presented in [34], the power needed for a transmission and a reception
(PT X and PRX , respectively) depends on the throughput and can be evaluated as:

PT X = αul ∗Tul +β

PRX = αdl ∗Tdl +β
(3.6)

where Tul and Tdl represent the uplink and the downlink throughput, respectively. The
parameters αdl , αul and β can be extracted from the linear model which, as shown in [34],
fits well both the uplink and the downlink relations for the PT X and PRX values. The values
of these parameters are shown in table 3.3. In our analysis, Tul and Tul are computed by
averaging the observed traffic over a moving time window of 1 s.

3.4 RRC Parameters Inference

To infer the parameters RRCIT and TPro, and to quantify the network overhead, we monitored
real network traffic through a suitable probing system based on Tektronix commercial
solution.

3.4.1 RRC Inactivity Timer

The RRCIT parameter regulates the transitions from the RRC Connected state to the RRC Idle
state. This switching implies that the RRC Connection of the UE is closed and the associated
radio resources are released. In particular, when the RRCIT expires the eNodeB initiates
the procedure for the RRC Connection release, sending the message UE Context Release
towards the MME on the S1 interface. This message signals to the Serving Gateway (SGW)
to release the S1-U bearer. On the reverse path, the SGW communicates to the Mobility
Management Entity (MME) if the procedure is correctly concluded, then the MME transmits
the UE Context Release command to the eNodeB. On air interface the eNodeB sends the
RRC Connection Release message to the UE and removes the UE context.

To calculate the RRCIT , we analyze both the Control Plane (CP) and the User Plane (UP)
traffic. Taking into account the RRC procedures, we identify each connection by analysing
the acquired traffic data on the monitored S1 interface. For each connection, we evaluate the

74 Energy Consumption

gap between the last packet sent/received on UP (S1-U protocol), and UE Context Release
message captured on CP (S1-AP protocol). Figure 3.2 shows the sequence of all RRCIT

values estimated from a subset of the collected traffic data.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000

T
im

e
[s

ec
]

i-th Call

Fig. 3.2 RRC Inactivity Timer

To better understand what is happening, we explore the Network id-Cause field in the
UEContextRelease message for all connections. For those released at 61 seconds, the id-
Cause is equal to 20, meaning that the RRC connection is released due to user-inactivity.
Unequivocally, these results suggest that the RRCIT inside our monitored network is about 61
seconds and confirm our previous analysis [46], based on a commercial monitoring system.
We filtered those connections released before 61 seconds and analyze the Network id-Cause.
Figure 3.3 shows the percentage with which each case occur. Only 4 distinct causes are
observed, with value 21, 23, 24 and 28.

id-Cause equals to 21 means radio-connection-with-UE-lost: it happens either when the
UE goes out of radio coverage, or when eNB does not support RRC Connection reestablish-
ment. In this case, the eNodeB responds with an RRC Connection Reestablishment Reject
message on e-UU interface and simultaneously, request the connection to be release to the
MME with cause value set to 21.

id-Cause values equal to 23 or 24 stand for ue-not-available-for-ps-services and cs-
fallback-triggered respectively. Both of them are related to Circuited Switched Fallback
(CSFB) procedure to allow subscriber to use existing CS based service such as voice. Thus,

3.4 RRC Parameters Inference 75

when a mobile terminating or originating voice call must be performed, CSFB temporally
moves subscribers down to 2G/3G and the RRC connection is released.

id-Cause with value 28 means interrat-redirection. Redirection in LTE is one of the
mobility cases, along with handover and reselection. Same as for handover, it is triggered by
eNodeB and can happen only if the UE is in connected mode. Redirection can be intra-LTE
or inter-RAT. Upon the RRC Connection Release is received, the UE goes in idle mode and
based on redirection information, tries to camp on a certain frequency on certain technology.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

21 23 24 28

Cause-Id

Fig. 3.3 id-Cause analysis for RRC Connections released before 61 seconds

3.4.2 Estimation of the Network Re-entry Time

During the RRC Idle state, the UE may be paged when there are data addressed to it. Paging
messages are sent by the MME to all eNodeBs in a Tracking Area, to be transmitted on air.
The eNodeBs compute the Paging Frame and Paging Occasion to find exact time when the
UEs wake up and check the PDCCH for incoming Paging message. If the PDCCH indicates
that a paging message is transmitted in the subframe, then the UEs demodulate the PCH to
acquire the destination of the paging message. As shown in figure 3.4, the UE destination
of the paging message starts the exchange of messages with the eNodeB so as to complete
the setup of the RRC connection. Upon reception of the RRC Connection Setup message,
the UE switches to the RRC Connected state and sends the Service Request message to the

76 Energy Consumption

UE eNodeB MMEAir Interface S1 Interface

Paging

Paging

RACH Preamble

RACH Response

RRC Connection
Request

RRC Connection
Setup

RRC Connection
Setup Complete

Service Request

NAS Common Procedures

Initial Context
Setup Request

RRC Connection
Reconfiguration

RRC Connection
Reconfiguration Complete

Initial Context
Setup Complete

Promotion Delay
or

Network Reentry
Time

Fig. 3.4 Flow Message for paged UE

MME. Common Non-Access Stratum (NAS) procedure may follow. After receiving the
RRC Connection Reconfiguration Complete message by the eNodeB, the UE is able to send
an uplink packet. At this point, the eNode sends the Initial Context Setup Complete to the
MME to trigger the update bearer request for downlink data.

Traffic data captured at the S1 interface allows inferring the parameter TPro by computing
the time elapsed between the Paging message and the associated Initial Context Setup
Complete message. The observed values of TPro for one subset of the acquired data traffic are
shown in figure 3.5. In the figure, the average value (0.9165 s) obtained over the observed
values during one of the one day monitoring session is shown. The relative large deviation
from the average value is due to different factors. Firstly, paging DRX cycle affects the
observed TPro. Indeed, after the reception of the paging message sent by the MME, the
eNodeB cannot immediately send the paging, but it must wait for the paging occasion to

3.4 RRC Parameters Inference 77

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900

T
im

e
[s

ec
]

i-th Call

Fig. 3.5 LTE Promotion Time for paged UE

send this message to the UE, as specified in TS 36.304 [11]. Further delay variance is added
by the messages exchanged to allow the UE to complete the RRC Connection Setup. Lastly,
delay variance is increased because of the UL bandwidth grant.

3.4.3 Network Overhead

In this subsection, we evaluate the cost to complete the UE transition from the RRC Connected
to the RRC Idle (and viceversa) in terms of the number of Bytes transmitted on the CP.
Furthermore, we evaluate the number of Bytes of signalling needed to complete some
relevant procedures when the UE is in the RRC Connected state. The results derived from
the analysis of the traffic data acquired during one day of monitoring session are shown in
figure 3.6. The figure depicts the amount of bytes exchanged inside each observed RRC
connection. We observed similar results by analysing the traffic data acquired in different
one-day measurement sessions.

In the figure, we can identify different groups of values that appear more frequently than
others. In particular, we can recognize six main groups of values.

The first group accounts for connections where 646–658 bytes are exchanged in the
CP. The values in this range are the basic amount of data needed to build and remove RRC

78 Energy Consumption

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0 500 1000 1500 2000 2500

B
yt

e

i-th Call

Fig. 3.6 Network Overhead

connections triggered by Mobile Originated (MO) calls. More than 50% of RRC connections
are MO.

The second group (752–764 bytes) represents the basic amount of data needed to setup
and remove RRC connections triggered by Mobile Terminating (MT) calls. About 25% of
RRC connections are MT. The difference between MO and MT calls, is given by Paging
message (106 bytes).

The third group (around 1150–1200 bytes) is composed of several contributions: i) MO
calls with NAS common procedures, ii) MO calls released by Handover procedure, and iii)
MO calls with Context Modification procedure inside. This group encloses less than 10% of
all detected connections.

The fourth group encloses less than 10% of the observed connections, and includes the
same contributions of the previous one, but for MT calls.

Fifth and sixth groups incorporate MO and MT calls released by CSFB procedure,
respectively. Both represent more or less the 5% of all calls.

3.5 Which Inactivity Timer is suitable for LTE network? 79

Table 3.1 Protocol Analysis

Session HTTP HTTPS DNS Other TCP Other UDP
Day1 54.114% 33.53% 1.17% 2.99% 8.13%

Day2 69.00% 22.57% 1.01% 3.25% 4.12%

Day3 51.87% 42.27% 1.38% 3.24% 0.98%

Day4 6.05% 0.11% 33.87% 57.74% 2.13%

Day5 2.53% 0.60% 63.39% 32.28% 1.12%

Day6 2.73% 0.53% 50.20% 45.16% 1.32%

Day7 3.61% 4.76% 46.14% 43.96% 1.46%

3.5 Which Inactivity Timer is suitable for LTE network?

In the previous section, RRCIT and TPro were inferred analyzing real traffic. Tuning properly
these parameters it is a mandatory to save power and resource inside LTE network. In
particular, RRCIT , which mostly affects power consumption, should be set according to
statistical nature of traffic. To evaluate and characterize traffic behaviour, we analyse traffic
of dataset III, by using the methodology explained in Chapter 2. extending the libpcap library.
Traffic was treated according to security procedures and properly anonymized to respect
customers privacy. Thus, no payload data is considered except for HTTP headers, and no
personal information is used to develop this study. The measurement session has been carried
out in winter 2014. As for your convenience, the measurement session has been carried out
for 7 days in winter 2014, providing 25 GB of LTE traffic data.

The first analysis is devoted to find the percentage of the most common protocols. Table
3.1 summarizes the results.

TCP packets, and in particular HTTP and HTTPS packets, always represent the dominant
portion of the traffic. It means that understanding the TCP/HTTP connection behaviour
is crucial to properly set RRCIT and TPro in order to achieve the trade-off between energy
savings and signalling traffic overhead. For each observed connection, we collect the
exchanged frames using the canonical 5-tuple: Protocol, IP source address, IP destination
address, source port, and destination port. Then, we compute the number of exchanged
bytes as well as the duration of the observed TCP connections. For TCP flows, we set
the beginning of the connection when the three-way-handshake is completed successfully,
and declare the connection finished when the last FIN or RST packet is received. HTTP
persistent connections use a single TCP connection to send and receive multiple HTTP
requests/responses. From one side, this strategy is efficient since it avoids opening a new
TCP connection for each request/response pair. On the other side, an open TCP connection
wastes radio resources if it is unused. In the HTTP 1.0, there is no official specification about

80 Energy Consumption

how keep-alive operates. If the client supports keep-alive, it adds an additional header to the
request:

Connection : keep-alive

Under HTTP 1.1 any HTTP connection is a persistent connection by default. Thus, unless
otherwise indicated, the client should assume that the server will maintain opened the current
connection, even if some errors occur. To close a persistent connection either the client or
the server can use the Connection header field as follows:

Connection : close

In this way, the connection will be closed after the completion of the response. In addition,
a default connection timeout can be used to close the connection if no new requests are
received by the server before the timeout expires. For example, Apache 2.0 and 2.2 use 15
and 5 seconds timeout, respectively. The server can notify the keep-alive timeout using the
Keep-Alive header field as follows:

Keep-Alive : timeout = ’value’

Exploiting DPI functionality, we analyse HTTP header for HTTP GET, POST, CON-
NECT or Response messages. Table 3.2 summarizes the main results. For each TCP/HTTP
connection we evaluate the HTTP version both on client side, analysing HTTP GET, POST
or CONNECT messages, and on server side, analysing HTTP Response messages. If client
and server use the same HTTP version we labeled the connection with that version, otherwise
we labeled the connection with the lowest version. Under each connection, if both client and
server use the Keep-Alive command, we tagged the connection as Keep Alive. If one of them,
or both, use Close command, we marked the connection as Close.

Approximately, 99% of HTTP connections uses HTTP 1.1. Out of them, the 88% uses
Keep-Alive command.

Using persistent connection, increases the possibility to reuse the same connection and
query more objects to the same server, reducing the overhead due to three way handshake and
slow start. On the other hand, delaying the closure of a TCP connection can impact resource
usage in wireless network: delayed FIN packets force the reestablishment of the radio bearer
to exchange just few packets, that will remain active until the RRCIT expires. Knowing
the statistical properties of the underlying traffic is essential to configure radio parameters
conveniently. From our perspective, it is important to provide statistical information about
the Maximum Packet Delay seen inside each TCP connection. Intuitively, we defined the

3.5 Which Inactivity Timer is suitable for LTE network? 81

Table 3.2 HTTP Protocol Analysis

Measurement Session Connection Version Keep-Alive Close
HTTP 1.1 99,90% 88,40% 11,60%Day1
HTTP 1.0 0,10% 20,00% 80,00%

HTTP 1.1 98,27% 81,66% 18,37%Day2
HTTP 1.0 1,73% 80,00% 20,00%

HTTP 1.1 99,12% 84,86% 15,14%Day3
HTTP 1.0 0,88% 20,83% 79,17%

HTTP 1.1 98,15% 88,64% 11,36%Day4
HTTP 1.0 1,85% 77,01% 22,99%

HTTP 1.1 99,50% 79,61% 20,39%Day5
HTTP 1.0 0,50% 8,00% 92,00%

HTTP 1.1 98,03% 83,44% 16,56%Day6
HTTP 1.0 1,97% 89,06% 10,94%

HTTP 1.1 98,80% 82,71% 17,29%Day7
HTTP 1.0 1,20% 45,72% 54,28%

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 200 400 600 800 1000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

MaxDelay [sec]

Histogram
CDF

Fig. 3.7 Maximum Gap: CDF and Histogrm

Maximum Packet Delay as the maximum gap between two consecutive packets inside one
TCP connection. Referring to a one day monitoring session, the histogram and the CDF of
the observed Maximum Gap are shown in figure 3.7. The results obtained in the traffic data
acquired in the other days are quite similar.

82 Energy Consumption

Figure 3.7 points out that about 85% of TCP connections have a Maximum Gap value
lower than 5 s, whereas approximately more than 99% have a value lower than 1000 s. For
values higher than 60 s, we observe several TCP connections showing a Maximum Gap of
110, 600 and 890 s. Later in this section, we’ll explore who are this connection.

To better appreciate TCP connection behavior, we correlated the Maximum Gap with the
connection duration. Thus, we defined R, as the ratio between the TCP connection duration
and relative maximum packet delay:

R =
ConnectionDuration

MaximumPacketDelay
(3.7)

In figure 3.8 is plotted the cumulative density function (CDF) for the R value.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

R

Fig. 3.8 R value : CDF

The figure shows that, in most of TCP connections, the maximum gap between two
consecutive packets belonging to the same connection is comparable with the duration of the
connection itself. In other words, it means that, during its lifetime, the connection is kept
open without transferring packet. This is probably due to the HTTP keep-alive mechanism
described before.

The next step was to investigate how the most common applications behave. By applying
the procedure described in Chapter 2, section 2.6, we select the four applications/services with

3.5 Which Inactivity Timer is suitable for LTE network? 83

the largest number of TCP connections: Facebook, Akamai, Google and Apple. Facebook
is responsible for TCP connections with Maximum Gap equal to 110 and 890 s, whereas
connections to Apple mostly contribute to the observation of 600 s. Apparently, no match for
a particular behaviour can be deducted for Google or Akamai connections (figure 3.9).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 200 400 600 800 1000
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

MaxDelay [sec]

Facebook

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 200 400 600 800 1000
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

MaxDelay [sec]

Apple

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 200 400 600 800 1000
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

MaxDelay [sec]

Akamai

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 200 400 600 800 1000
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

MaxDelay [sec]

Google

Fig. 3.9 Maximum Gap for considered applications: CDF and Histogram

Finally, in figure 3.10 we propose the CDF of the R value, for the TCP connections
belonging to the aforementioned four service groups in comparison with the CDF for all
TCP connections.

Our results show that especially Facebook and Akamai connections have a Maximum
Packet Delay comparable with the connection duration: more than 80% of these connections
have a silence period that is at least one half of the overall duartion.

In conclusion, this section has provided useful information about TCP/HTTP(s) behavior
and packet distribution inside connections. Even if some applications present peculiar
characteristics, the larger part of TCP connections have a maximum inter-packet delay that

84 Energy Consumption

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

R

Facebook
Akamai

Apple
Google

All

Fig. 3.10 R value for considered applications: CDF

is less than 60 seconds, therefore it seems that setting the RRCIT equals to 61 seconds is
over-sized, and causes to the smartphone to spend more power than it is needed.

3.6 Experimental Results

To estimate the power consumed by handset devices we apply our power model to each user,
observed during one day of monitoring session. Table 3.3 summarizes the parameters used
during our simulations.

Table 3.3 Power Model Parameters

RRC Inactivity Timer 61 - 70.554 - 12.154 - 3.275 - 2.065 s
Promotion Delay 0.916 s

DRX Inactivity Timer 0.100 s
αul , αdl , β 438 mW, 52mW, 1288mW

Power DRX Connected 1325 mW
Power Promotion Delay 1210 mW

Power Idle 0 mW

It is worth noting that the DRX Inactivity timer has been set to default value, TPro to the
value estimated with the analysis presented in section 3.4.2, and the power values are taken
from [34].

3.6 Experimental Results 85

Firstly, we calculated the consumed energy setting the RRCIT with the value obtained in
section 3.4.1, considering it as the reference value.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 48000 48500 49000 49500 50000 50500 51000 51500 52000
 0

 500

 1000

 1500

 2000

 2500
T

hr
ou

gh
pu

t [
M

bi
t/s

]

E
ne

rg
y

C
on

su
m

ed
 [J

]

Time [sec]

Downlink
Uplink

Energy

Fig. 3.11 Energy Consumed vs Throughput

In figure 3.11 is shown the output of our model together with the uplink and downlink
throughput. It is worth to be noted that, depending on user throughput, the growth of energy
consumed is more or less pronounced.

Accounting for the characteristics of UP traffic highlighted in section 3.5, we decide to
estimate the energy consumption in different scenarios characterized by a different value
of the RRCIT . In particular, we considered the reference scenario, where RRCIT = 61s, and
other 4 other scenarios with RRCIT equal to 70.449, 12.154, 3.275 and 2.065 s. These values
respectively represent the 90, 85, 80 and 75 percentile of the empirical cumulative density
function of the Maximum Gap, shown in figure 3.7. Hence, for each scenario, we simulate
the evolution of the RRC state machine of each user. Simultaneously, tacking into account
the traffic exchanged by each user, we computed the number of RRC Connection procedures
triggered by the expiration of the RRCIT .

The analysis considers the eight users that exchange the highest number of bytes with the
network. The results obtained in each scenario have been normalized with those obtained
with the reference scenario. Figure 3.12 and 3.13 show the total amount of consumed energy
and the number of RRC connection procedures respectively.

Setting RRCIT = 70.449s does not provide significant differences with respect to the
reference scenario. The scenario RRCIT = 12.154s allows saving energy from 30% to 50%

86 Energy Consumption

100

90

80

70

60

50

40

30

20

10

0

-10

UE1 UE2 UE3 UE4 UE5 UE6 UE7 UE8

E
ne

rg
y

S
av

ed
 (

%
)

RRCIT: 61s
RRCIT: 70.449s
RRCIT: 12.154s

RRCIT: 3.275s
RRCIT: 2.065s

Fig. 3.12 Per-UE consumed energy, normalized to the reference value

 0

 5

 10

 15

 20

 25

UE1 UE2 UE3 UE4 UE5 UE6 UE7 UE8

N
um

be
r

of
 E

st
im

at
ed

 R
R

C
 C

on
ne

ct
io

ns
 (

N
or

m
al

iz
ed

) RRCIT: 61s
RRCIT: 70.449s
RRCIT: 12.154s

RRCIT: 3.275s
RRCIT: 2.065s

Fig. 3.13 Per-UE umber of RRC connection procedures, normalized to the reference value

for all UEs, except for UE1. The cost of the energy savings is the increase of the number
of RRC connections. We explore UE1 and UE8 to understand the impact of traffic profile
in the simulations. Looking at UE1 we noticed that it was performing one video streaming
session. In this case, changing the RRCIT has no impact on the evolution of the RRC state
machine, because the Maximum Gap is very low, less then RRCIT . The device remains in
RRC Connected state during the whole video session. UE8 traffic profile, instead, is much
more varied and involves different applications, such as Twitter, Facebook and Web Browsing

3.6 Experimental Results 87

sessions. In this case, we can save up to 30% of the consumed energy, increasing the number
of RRC connections of 5.72 times.

Configuring RRCIT = 3.275s allows saving, on average, an additional 20% as compared
to the previous value. Depending on the user traffic, we observe an increase of the number of
RRC connections up to 18.2 times.

Changing the RRCIT from 3.275 s to 2.065 s does not produce significant energy savings,
whereas the number of RRC connections is considerably increased.

It is worth noticing that by increasing the number of RRC connections on a large time
scale, it is approximately costless for handset device, because the average amount of network
overhead has been estimated around 650 or 756 bytes for MO or MT calls, respectively.
Therefore, rather than estimating per-user network overhead, it is reasonable to evaluate
the cumulative impact of all users. Figure 3.14 shows the total number of estimated RRC
connections triggered by the users under coverage. In this case, increasing too much the
number of RRC procedures could be troublesome for the eNodeB. Heuristically, we can say
that decreasing the RRCIT beyond the 80 percentile of the observed Maximum Gap does not
produce significant energy savings, but a significant increase of signaling traffic overhead.
In addition, it should be considered that forcing too many UEs to enter the RRC Idle state
increases the probability of collision during RACH procedure whenever more UEs decide to
wake up at the same time.

 0

 1

 2

 3

 4

 5

All Users

N
um

be
r

of
 E

st
im

at
ed

 R
R

C
 C

on
ne

ct
io

ns
 (

N
or

m
al

iz
ed

) RRCIT: 61s
RRCIT: 70.449s
RRCIT: 12.154s

RRCIT: 3.275s
RRCIT: 2.065s

Fig. 3.14 Overall number of RRC connection procedures, normalized to the reference value

88 Energy Consumption

3.7 Conclusion

Based on a simplified power model, this Chapter presents the analysis of the energy consumed
by the UE and of the control traffic overhead for different values of the RRC Inactivity Timer.
The key parameters used during the simulation analysis are inferred directly from passive
measurements carried out monitoring a commercial eNodeB of one of the Italian Mobile
Operators. In particular, reasonable values for RRCIT were deducted looking at UP traffic
and exploring TCP/HTTP(s) behavior and packet distribution inside connections. Even if
some applications present peculiar characteristics, the larger part of TCP connections have
a maximum inter-packet delay that is less than 60 seconds, therefore it seems that setting
the RRCIT equals to 61 seconds is over-sized, and causes to the smartphone to spend more
power than it is needed. Thus, we compared simulation results with the reference value and
heuristically we noticed that decreasing too much the RRCIT does not provide significant
energy savings, at the cost of an high increase of network overhead. The simulation results
suggest that RRC Inactivity Timer set in the monitored devices is not optimized to obtain a
good trade-off between traffic signalling load and smartphone battery usage. The analysis
shows that values of the timer obtained analysing the User Plane traffic can lead to saving
UE’s energy, at the cost of a low increase of the signalling traffic overhead. Good values
for RRCIT should be in the range of 12-3 seconds. The results of this work open promising
research opportunities, such as the definition of algorithms for adaptive setting of the RRC
Inactivity Timer, and the evaluation of the RRC performance under different (specially,
heavy) load conditions, which will be evaluated in the next Chapter.

Chapter 4

RACH/RRC Performance

4.1 Introduction

In the LTE systems, battery lifetime and network traffic overhead on control plane may be
largely affected by the Discontinuous reception (DRX) configuration and the RRC Inactivity
Timer. In Chapter 3 we propose an analysis aimed at defining how to properly set the RRC
Inactivity Timer to achieve a trade-off between energy savings and traffic overhead on the
control plane. The results suggest lowering the RRC inactivity timer to save energy of
user’s device. Nevertheless, diminishing the RRCIT and forcing too UEs to release radio
resource, may cause the eNodeB to be stressed by a burst of RACH/RRC connection requests
if such UEs are paged for an incoming packet or need to send an uplink packet. Therefore,
beyond the heuristic provided in the previous chapter, the question on how much decrease
the Inactivity Timer is still open and constrained by eNodeB capability to handle surge of
control plane traffic.

In this Chapter, in order to evaluate the robustness of the eNodeB against burst of
signalling traffic, we provide:

• experimental results, testing a real eNodeB with burst of RRC connection request

• analytical models to forecast the collision probability for RACH procedure, depending
on the number of under coverage devices and the actual traffic statistics

• simulation results and guidelines for preamble separation between Human Type and
Machine Type Communications

In section 4.2 we’ll show how we set up RRC stress-test using the Ixia load generator,
IxLoad.

90 RACH/RRC Performance

In section 4.6 we propose an analytical model to evaluate the collision probability on
the RACH as a function of the number of UEs, the number of available preambles and the
Interarrival times of the RACH Requests of the average user. The model for the IRR of the
average user is obtained from real traffic data captured at the eNodeB of a mobile operator,
and is derived by emulating the RRC state machine for different RRCIT settings.

In section 4.7 we provide a set of guidelines for the resource allocation task in the RACH.
In particular, the study investigates the impact of both the backoff indicator scheme and
the maximum number of retransmissions on the RACH performance parameters. The rate
of RACH requests associated with the HTC traffic is modelled by inferring their statistical
properties starting from a dataset acquired in an operational eNodeB. The estimation of the
average delay and the average number of maximum retransmissions gives insights on how
many preambles should be reserved for HTC in order to meet the target performance, and
provides suggestions on the configuration of the backoff indicator.

4.2 Stress Test with Ixia

Diminishing the RRCIT and forcing too UEs to release radio resource, may cause the eNodeB
to be stressed by a burst of RRC connection requests if such UEs are paged for an incoming
packet or need to send an uplink packet. In order to evaluate the robustness of the eNodeB
against burst of RRC connection requests, we set up a test using the Ixia load generator,
IxLoad. b IxLoad is a commercial solution for testing network devices throughout the
emulation of data, voice, video and their associated protocols. IxLoad works with Ixia’s
hardware platforms to transmit and receive control and data plane traffic with the device
under test. Ixia’s chassis are populated with hot-swappable test interface cards. Each test port
is equipped with an independent processor and substantial memory in addition to specialized
traffic stream generation and capture hardware. For our test we used the XGS12 Chassis with
three Xcellon-UltraTM NP, each one equipped with 12-1Gb port.

The test is designed as follow. On the eNodeB, we set the maximum number of UEs
that can be RRC connected at the same time and the RRCIT . We change the RRCIT across
multiple tests. According to the RRCIT set on the eNodeB, we change the rate with which the
RRC requests are randomly generated by the UEs camped on the base station. The estimation
of the RRC rate has been made looking at real traffic capture and is described below. Once
the UE is in connected, it creates a dummy HTTP 1.1 Request, throughout a GET command
for a file of 4KB size. Upon the reception of the HTTP response, the UE doesn’t perform
traffic anymore and comes back in idle state.

4.2 Stress Test with Ixia 91

4.2.1 Rate for RRC Connection Requests

We calculate the rate distribution for the RRCIT values shown in table 3.3. As we’ve done
to estimate the number of RRC connections (section 3.6), we use one live traffic capture as
reference and, basing on the UP packet inter-arrival times, we calculated the inter-arrival times
for the triggered RRC connection requests. Figures 4.1, 4.2, 4.3 show the histograms and
the empirical cumulative density functions (ecd f) for the RRC connection inter-arrival time,
setting the RRCIT to 70.554, 12.154 and 2.035 seconds. The ecd f s for RRCIT equal to 61
and 3.275 seconds are similar to those calculated for 70.554 and 2.035 seconds, respectively.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250 300

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RRC Procedure InteArrivalTimes

Histogram
CDF

Fig. 4.1 Rate for RRCIT = 70.554s

To detect any possible weaknesses for the eNodeB, we propose a worst case scenario in
which we don’t consider RRCIT larger than 300s, that explains why the largest value for the
histogram/cdf is 300s. Thus, the interval between two consecutive RRC request is included
between the RRCIT (we cannot trigger one RRC Connection Request until the connection
itself has not been released by the eNodeB, of course) and 300s.

It is worth noticing how the trend of the probability density function (pdf) and the slope of
the cumulative density function (cdf) are affected by the chosen inactivity value. In particular,
as smaller is the value for the inactivity timer, the more is the probability of getting a low
value for the inter arrival time. The main stats for all the selected RRCIT are collected and
displayed in table 4.1.

92 RACH/RRC Performance

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250 300
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RRC Procedure InteArrivalTimes

Histogram
CDF

Fig. 4.2 Rate for RRCIT = 12.154s

Table 4.1 Stats for different RRCIT

RRC Inactivity Timer (sec) 70.554 61 12.154 3.275 2.035

Mean (sec) 173.359 163.212 84.536 42.805 34.348

Standard Deviation (sec) 61.574 63.695 69.973 59.519 55.144

90 Percentile (sec) 268.210 260.004 193.493 128.025 108.289

80 Percentile (sec) 235.808 228.0733 142.031 64.910 45.235

70 Percentile (sec) 204.673 198.038 105.422 33.866 22.229

60 Percentile (sec) 185.912 177.444 77.987 21.666 14.942

On IxLoad we have the constraint to use uniform random variables, that means that if
we want to confer randomness on the RRC request generation, the only way is to generate
uniformly distribute request over a customizable period of time. This approximation is
acceptable for RRCIT equals to 70.554 and 61 seconds (figure 4.1), but the other distributions
are far away for being uniformly distributed (figures 4.2 and 4.3). We decide to limit the
possible values for the RRC request in the range (RRCIT , 60Percentile(RRCIT)], to generate
the most probable values for these distribution. As explained before, our first purpose is to
test eNodeB reaction under heavy load conditions, thus, even with the limitation imposed
by our tools, we may reuse the statistical information inferred by live capture analysis to
perform comparable fair tests.

4.2 Stress Test with Ixia 93

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250 300
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RRC Procedure InteArrivalTimes

Histogram
CDF

Fig. 4.3 Rate for RRCIT = 2.134s

4.2.2 Test Configuration

Here we provide a more detailed discussion about our test setup. For each RRCIT we perform
the test as follows. On the eNodeB, the maximum number of UEs that can be RRC connected
has been set. On Ixload, we set the number of UEs under coverage. Five UEs are always
responsible for generating uplink and downlink UDP packets to fill the available bandwidth
in both directions. We configure the eNodeB with 10MHz (50 Resource Block), thus the
maximum throughput that we may theoretically achieve is 70Mbps in downlink e 25Mbps
in uplink, with smartphone category 5. The Xcellon card in the Ixia Chassis handles the
generation and incapsulation of all data units from Application to PDCP layer. PDCP layer
is the most CPU hungry element and the load is proportional the throughput that have to be
generated. In order to not overload the port CPU and obtain results that are affected by this,
we configure the test with multiple port and maintain the average CPU load lower than 50%.

The left UEs are used to generate the HTTP requests and trigger the RRC Connection
Requests. According to the RRCIT set on the eNodeB, we change the rate with which the
connection are randomly generated by the UEs camped on the base station, as explained in
section 4.2.1. Once the UE is in connected, it creates a dummy HTTP Request, throughout a
GET command for a file of 4KB size.

94 RACH/RRC Performance

In IxLoad we can select the version of the HTTP protocol that you want to use in the
test: 1.0 or 1.1. Under HTTP 1.0 without Keep-Alive, when a user clicks on a link for a web
page, a TCP connection request is sent by the client to the server. When the server accepts
the connection, the client sends an HTTP GET request to download the web page from the
server. After making a single HTTP request, the client closes the TCP connection. If we
check Keep-Alive box, the client adds the Connection: Keep-Alive header to its request and
the server keeps the connection open after the first request. When the client sends another
request, it uses the same connection. This will continue until either the client or the server
decides that the session is over, and one of them closes the connection. If a client and server
use HTTP 1.1, multiple HTTP requests can be sent by the client on a single TCP connection.
This saves processing power, since fewer TCP connections need to be established. HTTP
1.1 also allows for persistent connections, enabling connections to stay up for (relatively)
long periods of time. In HTTP 1.1, the server initiates the closing of the TCP connection by
sending a FIN message.

As we saw in section 3.5, most modern browsers use HTTP 1.1. To be fair with our
analysis, we choose HTTP 1.1 (both for client and server) and set the maximum number of
transaction for each connection as maximum as possible. Upon the reception of the HTTP
response, the UE doesn’t perform traffic anymore and comes back in idle state.

The UE waits for a random value of time, that depends on the RRCIT , and then performs
another GET request, and so on. Each test lasts two hours.

At the end of each test we export the log .dct file from Ixload test repository folder and
parse it with a perl script. The log looks like the picture in figure 4.4. The perl script check
for the user id (UEid) if the RACH procedure is completed correctly (highlighted in red) and
calculate the time needed to setup the RRC connection (highlighted in yellow).

4.2 Stress Test with Ixia 95

Fi
g.

4.
4

L
og

fil
e

(.d
ct

)f
or

Ix
L

oa
d

96 RACH/RRC Performance

4.2.3 Test Results

To appreciate how much the Control Plane load affects the capabilities of the eNodeB
we decide to measure the latency and the number of failures when establishing the RRC
connection. Mainly, RRC connections can fail by three reasons.

The first one is because RACH procedure fails (RRC Connection NOT RACHED).
Network knows when UE will send the RACH even before UE sends it because eNodeB
tells UE when the UE is supposed to transmit the RACH. (If UE fails to decode properly
the network information about the RACH, eNodeB will fail to detect it even though UE
sends RACH). All the information related to the RACH procedure are sent within the System
Information Block2 (SIB2) message. Details about the information element carried out in
SIB2 messages can be found in 3GPP 36.331. When a UE transmit a RACH Preamble, it
transmits with a specific pattern and this specific pattern is called a "Signature". The location
of the RACH in the frequency/time resource grid is notified to the mobile via the downlink
Broadcast Channel (BCH). In each LTE cell, total 64 preamble signatures are available
and UE select randomly one of these signatures. The eNodeB set the maximum number
of non-dedicated access preambles that can be used with a parameter called "Number Of
RA-Preambles". When and where the UE is supposed to send the RACH is depending on a
parameter called "PRACH Configuration Index". For example, if the UE is using "PRACH
Configuration Idex = 0", it should transmit the RACH only in EVEN number SFN(System
Frame Number), according to 3GPP specification TS36.211 - Table 5.7.1-2 (ADD REF).
Table 4.2 displays the main parameter values in our setup.

Table 4.2 RACH Procedure Configuration

Number of RA-Preambles 40

PRACH Configuration Index 3

Root Sequence Index 12

RACH Response Window Size (ms) 10

Once the preamble is transmitted, the UE shall monitor the PDCCH for Random Access
Response (RAR) identified by the RA-RNTI, in the RAR window wich starts at the subframe
that contains the end of the preamble transmission plus three subframes and has the length of
"ra-Response Window Size". In our case "ra-Response Window Size = 10" and this means
that the maximum time difference between the end of RACH preamble and RACH Response
is only 12 subframes (12 ms) which is pretty tight timing requirement. Thus, we can obtain a
RACH failure if we don’t receive the RAR in 12ms.

The establishment of the RRC connection may also fail when the T300 timer expiry.
The RRC Connection Request is transferred using SRB 0 on the Common Control Channel

4.2 Stress Test with Ixia 97

(CCCH) because neither SRB 1 nor a Dedicated Control Channel (DCCH) have been setup at
this point. The uplink Resource Block allocation for the RRC Connection Request message
is signalled by the RAR message. It includes a UE identity and an establishment cause. The
UE starts the T300 timer after transmitting the RRC Connection Request message. The value
of T300 is broadcast within SIB2. LTE uses the T300 timer to define how long the UE waits
for a response to the RRC Connection Request message. The establishment procedure fails
if T300 expires before receiving an RRC Connection Setup message. In our test T300 is
set to 200ms. The UE proceeds to wait for an RRC Connection Setup message from the
eNodeB. The PDCCH specifies the set of PDSCH Resource Blocks used to transfer the RRC
Connection Setup message. The RRC Connection Setup message is transferred using SRB 0
on the CCCH. The RRC Connection Setup message contains configuration information for
SRB1. This allows subsequent signalling to use the DCCH logical channel.

The eNodeB may also reject the connection establishment request as a result of congestion.
Upon receiving an RRC Connection Reject message, the UE starts the T302 timer set with
the wait time included in the reject message. The reject message is returned to the UE using
SRB0 on the CCCH logical channel. The UE is not allowed to send another RRC Connection
Request until T302 expires. In that case, the UE is permitted to send an RRC Connection
Request to the new cell. We set T302 to be 3000ms.

Table 4.3 Test Results with 100 UE

Inactivity Timer Request Setup Setup Complete RACH Failure T300 Failure Rejected Failure Percentage
70.554 5734 5734 5734 1 0 0 0.017%

61.000 6436 6436 6436 1 0 0 0.015%

12.154 19565 19565 19565 16 0 0 0.081%

3.275 58647 58647 58647 53 0 0 0.090%

2.035 91641 91641 91641 114 0 0 0.124%

The eNodeB allows us only to use integer value for the inactivity timer and the minimum
value is 5 seconds. The minimum value is a vendor specific parameter. This represents
a limitation for the test cases with RRCIT lower then 5 seconds. Nevertheless, since we
are mainly interested in the rate with which RRC connection request are generated, this
limitation doesn’t affect our results.

So for each test we set the inactivity timer according to the formula:

InactivityTimer = max(5, f loor(RRCIT)) (4.1)

98 RACH/RRC Performance

Test with 100 UEs

Figure 4.5 show the histogram and cdf of the time required to accomplish the procedure for
two different inactivity timer values. For the same values, figure 4.6 show the number of
RRC connection attempts per second.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.05 0.1 0.15 0.2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RRC Procedure InteArrivalTimes

Histogram
CDF

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.05 0.1 0.15 0.2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RRC Procedure InteArrivalTimes

Histogram
CDF

Fig. 4.5 Latency for RRCIT = 70.544s (left) and 2.035s (rigth) - 100 UEs

 0

 5

 10

 15

 20

 25

 500 1000 1500 2000 2500 3000 3500 4000

R
R

C
 C

o
n
n
e
c
ti
o
n
 A

tt
e
m

p
ts

/s
e
c

Time [sec]

RRC Connection Rate

 0

 2

 4

 6

 8

 10

 500 1000 1500 2000 2500 3000 3500 4000

R
R

C
 C

o
n
n
e
c
ti
o
n
 A

tt
e
m

p
ts

/s
e
c

Time [sec]

RRC Connection Rate

Fig. 4.6 Rate for RRCIT = 70.544s (left) and 2.035s (rigth) - 100 UEs

Table 4.3 displays the main results for each test case. The first important outcome is that
we never received a failure due to T300 timeout or RRC rejection message.

Figure 4.7 summarizes the latency-related results.
On each box, the central mark is the median, the edges of the box are the 25th (q1) and

75th (q3) percentiles, the whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually. Points are drawn as outliers if they are larger
than q3 + w*(q3-q1) or smaller than q1 - w*(q3 - q1). We set w equal to 1.5. The default

4.2 Stress Test with Ixia 99

20

30

40

50

60

70

80

2.065 3.275 12.154 61 70.544
RRC Inactivity Timer (sec)

L
a

te
n

c
y

Fig. 4.7 Latency for different Inactivity Timer value - 100 UEs

of 1.5 corresponds to approximately +/-2.7*std and 99.3 coverage if the data are normally
distributed.

As we can see, the results for 70.544 and 61 seconds are pretty similar: all the RRC
procedures are completed within 0.15 ms, and we got only 1 RACH failure that represents
the 0.017% and 0.015% off all attempts, respectively. The 75th percentile is pretty similar as
well: 0.0369 and 0.0370 seconds. The mean values are 0.0354 and 0.0360 seconds.

Setting the RRCIT equal to 12.154 seconds, the percentage of RACH failure due to RAR
timeout increases. The mean time value for the procedure completion is 0.0359 that is slightly
greater than the previous ones and this is due to the larger number of outliers, evidenced in
the boxplot figure.

Further increasing the RRC request rate, involves an augmentation of the RACH failures,
which represent the 0.09% and 0.125% of all the attempts for the RRC rate that we would
have with an RRCIT equal to 3.275 and 2.035, respectively. If UE doesn’t receive RACH
Response at the first trial, it just retries the procedure. The Backoff Indicator (BI) is a special
MAC subheader (sent with RAR) that carries the parameter indicating the time delay between
a PRACH and the next PRACH. We set the eNodeB with the BI parameter set to 2, that
means that the UE can resend the preamble randomly between 0 and 20ms. See 3GPP 36.321
for more details.

In our tests one UE never experiences two consecutive RACH failures. This mean that,
with an hypothetical inactivity timer of 2 seconds, in the worst case scenario that we need to
reestablish the RRC connection immediately after realising it, if we get a RACH failure, we
add a delay for packet transmission of 37.2ms (average latency) + 10ms (average backoff
time). For a default bearer with QCI=9 this is an acceptable value, given that the standardized
packet delay budget is 300ms (table 6.1.7 from TS 23.203).

100 RACH/RRC Performance

Test with 400 UEs

We repeat the same tests increasing the number of UE that can be RRC connected at the same
time. Now, the maximum number of allowed UE is set to 405. Each test lasts 45 minutes.

Table 4.4 Test Results with 400 UEs

Inactivity Timer Request Setup Setup Complete RACH Failure T300 Failure Rejected Failure Percentage
70.554 5896 5896 5896 1 0 0 0.017%

61.000 6289 6289 6289 0 0 0 0.000%

12.154 18385 18385 18385 10 0 0 0.054%

3.275 52217 52217 52217 52 0 0 0.099%

2.035 73404 73404 73404 140 0 0 0.191%

In comparison with previous results, we obtained the same percentage of failure, approxi-
mately, and all the failures are due to RAR timeout. Only for the last test we experience a
significant increase of 54%.

Looking at latency variations, we notice more evident differences among different test
configurations. In figure 4.8 we limit the view at 100 ms, to appreciate these differences.

20

30

40

50

60

70

80

2.065 3.275 12.154 61 70.544
RRC Inactivity Timer (sec)

L
a

te
n

c
y

Fig. 4.8 Latency for different Inactivity Timer value - 400 UEs

As we can see, as we move from the highest to the lowest value, both the 75th percentiles
and the upper whiskers are larger, indicating that in heavy load condition and with a larger
number of UE the eNodeB requires, on average, more sub-frames to schedule in downlink
the RRC Connection Setup and in uplink the RRC Connection Setup Complete. At this point,
it is worth noting the following: as we said before the PDCCH specifies the set of PDSCH
and PUSCH Resource Blocks used to transfer the RRC messages. Within the PDCCH the
eNodeB use DCI1 message to tell one UE where are the PDSCH Resource Blocks addressed
to him. But in the same sub-frame, the eNodeB could have to assign Uplink grants to a
certain number of UEs, and this is made sending DCI0 in the PDCCH (e.g. to send the RRC

4.2 Stress Test with Ixia 101

Setup Complete message). Therefore, the total number of UEs that can be addressed in one
sub-frame is physically limited by the number of physical resource on the PDCCH. The
dimension of the PDCCH in each sub-frame is determined by the information carried into the
Physical Control Format Indicator Channel (PCFICH). Mapped to the first OFDM symbol in
each of the downlink sub-frame, it carries the number of OFDM symbols used for PDCCH
and PHICH. In our test PCFICH is set to 2, that means that 2 OFDM are used for PDCCH.
In Annex A the way to calculate the maximum UE number that can be scheduled within one
TTI is proposed.

That is not all: depending on vendor implementation, the eNodeB can be configured
with the maximum number of DCIs that can be sent within one sub-frame. During our test,
we use the vendor default configuration, that provides 9 maximum DCI in downlink, and 7
maximum DCI in uplink per TTI. Vendor default implementation could limit the number of
possible DCI per TTI due to scheduling implementation, allowed load (e.g. we may not want
to allocate 100% resources), the usage of GBR and the Semi-Persistent scheduling, that does
not require transmission on DCI, but allow UE to reuse preallocate PRB on the PDSCH.

Every second, we collect the maximum number of DCI transmitted in one TTI, and the
total number of DCI transmitted in the previous one thousand TTI. Figure 4.9 (up) shows
the average value of the maximum number of DCI in one TTI per polling interval, across all
the tests and all the inactivity timer value. Figure 4.9 (down) shows the average number of
transmitted DCI per polling interval. The dotted and dashed lines distinguish UL and DL
DCI, whereas the ’o’ and ’x’ markers refers to the tests with 100 and 400 UEs, respectively.

In the figures, it is evident that decreasing the inactivity timer, can occur to reach the
maximum allowed number of DCI per TTI. This means that if the eNodeB has to schedule
more UEs, for example more than 9 UEs in downlink, it needs more TTI to address all the
UEs. The probability to postpone one DCI to the next TTI, is obviously larger if the number
of DCI to be sent increases.

This analysis confirms our intuition that the congestion on physical channel is the main
reason for the growth of the RRC latency.

In particular, in the worst test case with 400 UEs and inactivity timer of 2.054, the
eNodeB generates on average 7 DL and 6.25 UL DCI each TTI, and in one second at least
one TTI reaches the maximum number of allowable DCI. In this very congested scenario we
notice the highest growth for the RRC latency, with the mean value to complete the RRC
procedure equals to 40.7 ms, and about the 25% of all attempts needs more than 50 ms to
setup the radio connection.

102 RACH/RRC Performance

2 3 12 61 70
6

6.5

7

7.5

8

8.5

9

Inactivity Timer

A
v
e

ra
g

e
 m

a
x
 n

u
m

b
e

r
o

f
D

C
I

p
e

r
T

T
I

2 3 12 61 70
4

4.5

5

5.5

6

6.5

7

Inactivity Timer

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
D

C
I

p
e

r
T

T
I

Fig. 4.9 Maximum number of DCI in one seconds (up) and average number of DCI per TTI
(down)

4.2.4 Other Considerations

Here we present other problems that may come out and that are not addressed by this work,
but that can be evaluated in future works.

First of all, during our test we configure the MME to perform NAS procedures only as
part of the attach procedure. As we already pointed out in section 3.4, NAS procedures
are optional and may occur depending on internal MME policy. Performing Security and
Authentication procedures imply to load further the eNodeB and to occupy physical channel
with additional control plane messages.

This paper focus on eNodeB performance only, nothing has been mentioned about MME.
The MME is key control-node for the LTE access-network. It can be addressed by several
eNodeB, basing on local policy and network topology. Diminishing the inactivity timer

4.2 Stress Test with Ixia 103

 90

 92

 94

 96

 98

 100

 102

 104

 0 500 1000 1500 2000

T
h

ro
u

g
h

p
u

t
P

e
rf

o
rm

a
n

c
e

s
 (

%
)

Time [sec]

Throughput Degradation

Fig. 4.10 Impact on UP throughput for RRCIT = 2.035s - 400 UEs

impacts also the signalling load forwarded to the MME, that may suffer for a large number of
request coming from all the eNodeB attached to it. According to vendor’s evaluation, MME
may represent the bottleneck that leads performance degradations.

Our work has been dedicated to evaluate the impact of signalling load on eNodeB
performance. Nothing has been said about how control plane could impact data plane
throughput performance. Here we’d like to provide some suggestion and results. According
to 3GPP TS 36.322, paragraph 5.1.3.1.1, SRB has precedence over DRB at RLC level: the
transmitting side of an Acknowledgment Mode (AM) RLC entity shall prioritize transmission
of RLC control PDUs over RLC data PDUs. The transmitting side of an AM RLC entity shall
prioritize retransmission of RLC data PDUs over tx of new AMD PDUs. This means, that in
congested network, if there are buffered data that belong to different UEs, the eNode shall
prioritize control plane traffic among data plane traffic. With the constraint of the maximum
number of the allowed DCI in PDCCH, the eNodeB will delay data plane traffic transmission,
decreasing the overall throughput.

104 RACH/RRC Performance

Control plane and data plane share the PDSCH/PUSCH to transmit transport blocks,
therefore increasing signalling load will automatically affect throughput performance. This
is neglectable in normal conditions, but is not automatically true in heavy load conditions.

In figure 4.11, we show all the messages exchanged on the radio interface to setup/release
the RRC connection. Some of the associated layer 1 control aspects are also included. MAC
PDU sizes are shown without padding or sub-headers padding. CQI/CSI transmission may
also be present after the RRC connection setup messages, but they are not explicitly shown in
the picture. In bold, the messages that are transmitted on the PDSCH/PUSCH channels are
highlighted. In particular, each RRC establishment/release procedure involves nine messages
in downlink that use the PDSCH, and five messages in uplink that use the PUSCH. We
assume that all messages are received without errors (i.e. no retransmissions).

We performed a test to measure the impact of CP traffic only, in our worst case scenario
(i.e. minimum inactivity timer). Test design is the same as the one in 4.2.3 and 4.2.3, except
for "HTTP-Users" which don’t perform data plane traffic: they establish the radio connection
and send a dummy Service Request without sending any packet. In background 5 UEs
generate UDP traffic to fulfill the available bandwidth.

Figures 4.10 shows layer 7 throughput, normalized to the maximum value. After few
seconds, as soon as the HTTP-Users start requesting the radio bearer, the throughput decrease
on average of 6%. This means that we loose approximately 3 Mbps, for a system with
10MHz bandwidth.

4.3 RAN Overload: Machine-to-Machine and Human-to-
Human Communication

Since LTE-Advanced evolves from LTE, it is still highly optimized and suitable for legacy
H2H communications such as voice calls, video streaming, online gaming, social networking
and web surfing. The requirements of H2H communications are high data rates, mobility,
and human quality of service and experience. M2M communications desire a very different
set of requirements than H2H communications because they are mainly characterized by a
high device density in a cell, small amounts of payload, machine-originated communications
and low traffic volumes per machine.

Laya et al. [38] described the main differences between H2H and M2M communications,
which can be summarized as follow:

• Traffic Direction:

4.3 RAN Overload: Machine-to-Machine and Human-to-Human Communication 105

Fig. 4.11 RRC Connection Setup/Release Sequence - Table 5.2.1-1 [7]

106 RACH/RRC Performance

– M2M involves mainly uplink data to report sensed information. For some appli-
cations, symmetric uplink and downlink capacity is needed in order to allow the
dynamic interaction between sensors and actuators

– H2H traffic is mostly downlink; although uplink traffic is increasing over the last
year , human still download more than they upload

• Message Size

– M2M: the size of the messages is generally very short (e.g. few nits as part of a
reading meter)

– H2H: the size of the messages is generally big and high variable, due to applica-
tion such as multimedia, real time transmissions, including video streaming

• Connection and Access Delay

– many M2M applications will be based on duty-cycling, for example having
device sleeping and waking up from time to time to transmit data

– Human-based traffic ten to be very demanding once the connection is established.
However, although not desirable, longer connection delays are well tolerated

• Transmission Periodicity

– this will be very variable for MTC

– Human traffic is very random and asynchronous in nature, In addition, the
frequent transmission of control information is required to ensure high throughput
and good delay performance

• Mobility

– for many M2M applications, mobility is not a major concern: some applications
may not have mobility at all (e.g. sensors for metering)

– mobility management and exchange of location information is required to ensure
seamless connectivity

• Information Priority

– some M2M may transmit critical information and thus require very high priority
level

– in general, there is no major differentiation between users in term of priority, but
only on the applications running on their handset devices

4.3 RAN Overload: Machine-to-Machine and Human-to-Human Communication 107

• Amount of Device

– hundreds or thousands of device per connection point

– at most few hundreds of device per connection point

RAN overload has gained a lot interest in research communities, mainly due to the advent
of M2M Type Communication (MTC). In TR 37.868 ([8]), 3GPP defines six key performance
indicators to evaluate the goodness of the new proposals that intend to improve the operation
of RACH. And these are the following:

• Collision probability, defined as the ratio between the number of occurrences when two
or more MTC devices send a random access attempt using exactly the same preamble
and the overall number of opportunities (with or without access attempts) in the period.

• Access success probability, defined as the probability to successfully complete the
random access procedure within the maximum number of preamble transmissions.

• Statistics of number of preamble transmissions, defined as the CDF of the number of
preamble transmissions to perform a random access procedure, for the successfully
accessed MTC devices.

• Statistics of access delay, defined as the CDF of the delay for each random access
procedure between the first RA attempt and the completion of the random access
procedure, for the successfully accessed MTC devices.

• Statistics of simultaneous preamble transmissions (for UMTS FDD), defined as the
CDF of the number of MTC devices that transmit preamble simultaneously in an access
slot. This serves an indirect measure of Rise over Thermal (RoT).

• Statistics of simultaneous data transmissions (for UMTS FDD), defined as the CDF of
the number of MTC devices that transmit pilot or pilot AND data simultaneously in an
access slot. This serves an indirect measure of Rise over Thermal (RoT).

As specified in that documentation, a large number of MTC devices are expected to be
deployed in a specific area, thus the network has to face increased load as well as possi-
ble surges of MTC traffic. Network congestion including Radio Network Congestion and
Signalling Network Congestion may happen due to massive concurrent data and signaling
transmission. This may cause intolerable delays, packet loss or even service unavailability.
Mechanisms to guarantee network availability and help network to meet performance re-
quirements under such MTC load need to be investigated. In reference to this document, for

108 RACH/RRC Performance

the collision probability we consider either the definition provided in section 6.3 (P(RAO)
c)

either in ANNEX B (P(HTC)
c).

As part of the improvement process for the random access procedure, the following
enhancements have been identified :

• Optimized MAC: aiming at applications where M2M devices transmit small amounts
of data, the authors in [22] suggest removing the need to connect to the network to
transmit data. The key idea is to transmit data embedded into the access process by
attaching data in one of the messages involved in the Random Access procedure

• Access Class Barring: ACB is the actual mechanism exploited by LTE and LTE-
Advanced system to control access to hte air interface. ACB is based on the idea
that certain access classes, which are indicated by means of network broadcasting
information, are not allowed to access the network in some PRACH opportunities. As
specified by 3GPP a different number of classes could be defined, depending on the
granularity of the control policy that is intended to deploy. The possible solutions are:

– Individual ACB: in order to achieve more control granularity, the network shall
signal how individual devices or groups of devices will sale the barring parameters

– Extended ACB: the basic idea is that devices that belong to delay-tolerant appli-
cations are not permitted to access the network in the case of congestion, leaving
the contention for devices that are delay-sensitive

– Dynamic Access Barring: in this method the eNodeB continuously monitors
the loading state of the network in order to control the number of preamble
transmission in each slot. In case of RAN overload new attempts by MTC are
delayed.

• Separation of RA resources: the separation of resources can be obtained either by
splitting the available preambles between HTC and MTC or by allocating different
slots to HTC and MTC [23]

R. Cheng et al. in [24] use the result presented in 3GPP TR 37.868 and present an
analytical model to derive collision and success probability for both RAO and MTC. The
analytical model has been validated by numerical results. Nevertheless, neither the analytical
model nor the simulation result take into account the backoff indicator, that is used after a
collision event, and the time spent in connected state by the device, if the access procedure is
successfully completed.

4.3 RAN Overload: Machine-to-Machine and Human-to-Human Communication 109

The technical report signed as FFS (For Further Study) the impacts of H2H traffic. Indeed,
for the purpose of RACH capacity evaluation, all RACH attempts are assumed to be initiated
by MTC devices with no background noise caused by H2H UEs. The introduction of separate
Access Class(es) for MTC devices legitimates this assumption, because it allows the network
to separately control the access from these MTC, in addition to access control for other
devices. Depending on the granularity of the control needed among MTC devices, either one
or several Access Classes can be introduced. By the way it is worth mentioning that this is
not mandatory, thus without access class control MTC and H2H devices share the RACH
resource and experience the same access collision probability. Separate RACH resources
can be also provided for the H2H and MTC devices: for LTE the separation of resources
can be done by either splitting the preambles into H2H group(s) and MTC group(s) or by
allocating PRACH occasions in time or frequency to either H2H or MTC devices. In any
case, coexistence of MTC and H2H handset device is an open problem that needs to be
addressed for future (LTE-Advanced, 5G) networks deployments.

M. Condoluci et al. [25] proposed a 3GPP-compliant architecture that absorbs MTC traffic
via home evolved eNodeB, allowing to reduce congestion and overloading of radio access
and core networks. Throughout this novel design, MTC should not affect the performance
of classical H2H communication, at the cost of introducing new network devices able to
communicate with existing core network devices. Conversely from this approach, our intend
is to evaluate network performance in terms of random access collision probability in existing
network architecture. Lo et al. [40] investigate the impact of massive M2M communication
and proposed a self-optimizing overload control mechanism that can tune RACH resources
according to current load status. Even in this case, they considered separately the background
H2H traffic and the RA attempt generated by MTC devices.

From HTC point of view, lot of researchers have addressed the problem of energy
consumption, to figure out how to increase battery lifetime. Indeed, battery lifetime represents
the first limitation on smartphone usage today. In LTE systems, Discontinuous Reception
represents a strategy for power savings. Jha et al. [36] and Koc et al. [37] studied how to find
the best trade-off between latency and power saving through optimum DRX configuration
set. Power savings can be obtained by reducing the Radio Resource Control Inactivity Timer
(RRCIT), which leads the User Equipment (UE) to stay in the RRC Idle state, where its RF
circuitry has a near zero power consumption. On the other hand, low values of RRCIT may
imply a high rate of access requests to the Random-Access CHannel (RACH), which may
increase the collision probability.

This section proposes an analytical model to evaluate the collision probability on the
RACH as a function of the number of UEs, the number of available preambles and the

110 RACH/RRC Performance

Interarrival times of the RACH Requests (IRR) of the average user. The model for the IRR of
the average user is obtained from real traffic data captured at the eNodeB of a mobile operator,
and is derived by emulating the RRC state machine for different RRCIT settings. The output
of the emulator allows reconstructing the timeseries associated with the interarrival times
of RACH requests produced by the average UE. Mixture modelling is then applied to such
timeseries and used to analytically estimate the RACH collision probability.

4.4 RACH Procedure

The random access procedure is detailed in 3GPP TS 36.300 [10]. Current specification
states that the procedure can be triggered by any of the following events: (i) initial access
from RRC Idle; (ii) RRC Connection Re-establishment procedure; (iii) handover; (iv) DL/UL
data arrival during RRC Connected requiring random access procedure; (v) for positioning
purpose during RRC Connected requiring random access procedure;

Furthermore, the random access procedure takes two distinct forms:

• Contention based: applicable to first four events;

• Non-contention based: applicable to only handover, DL data arrival, positioning.

This work focused on initial access from RRC idle, so from now on we’ll talk about
contention based RACH procedure. When a UE in the RRC Idle receives/sends a packet, a
state transition from RRC Idle to RRC Connected is needed. At this point, the UE initiates the
random access procedure by sending the random access channel preamble (RACH Preamble).
When a UE transmits a PRACH Preamble, it transmits with a specific pattern and this specific
pattern is called "signature". In each LTE cell, total 64 preamble signatures are available and
UE select randomly one of these signatures.

Network knows when UE will send the RACH even before UE sends it because eNodeB
tells UE when the UE is supposed to transmit the RACH. If UE fails to decode properly
the network information about the RACH, eNodeB will fail to detect it even though UE
sends RACH. All the information related to the RACH procedure are sent within the System
Information Block2 (SIB2) message. Details about the information element carried out in
SIB2 messages can be found in 3GPP 36.331 [13].

The location of the RACH in the frequency/time resource grid is notified to the mobile
via the downlink Broadcast Channel (BCH).

The eNodeB set the maximum number of non-dedicated access preambles that can be
used with a parameter called "Number Of RA-Preambles". The other "signatures" can be
used for contention free procedure, e.g. during handover.

4.4 RACH Procedure 111

When and where the UE is supposed to send the RACH is depending on a parameter
called "PRACH Configuration Index" (PracConfigIndex). For example, if the UE is using
"PRACH Configuration Idex = 0", it should transmit the RACH only in EVEN number
SFN(System Frame Number), according to 3GPP specification TS36.211 - Table 5.7.1-2 [9].
One LTE SFN lasts 10ms, so one UE can use the RACH channel every 20 ms. The PRACH
Configuration Index and the number of preambles reserved for contention based procedure
are responsible for the number of Random Access Opportunity (RAO) per second. If we
defined L as the total number of RAO per second, with a PRACH Configuration Idex = 0 and
20 available preambles, we’ll have L = 20x50 RAO/second.

Being a contention based procedure, this procedure can fail if two or more UEs attempt to
access the RACH channel using the same RAO. In this case, both of the UE will receive the
same TC-RNTI and resource allocation in the RAR (Random Access Response) messages.
As a result, both UE would send the RRC connection request message through the same
resource time/frequency location, to the eNodeB. At this point, one possibility is that these
two signal act as interference to each other and the eNodeB decode neither of them. In this
case, none of the UE would have any response (HARQ ACK) from the network and they all
think that RACH process has failed and start and procedure from the beginning. The other
possibility would be that the eNodeB successfully decodes the message from only one UE
and failed to decode it from the other UE. In this case, just one UE will get the HARQ ACK
from Network. This HARQ ACK process is called "contention resolution" process.

If a collision occurs, meaning that the UE sent a PRACH but didn’t get a RAR for
some reason, or UE sent a PRACH and got RAR, but the RAPID in the RAR is not for
the UE, that UE has to repeat the procedure. The Backoff Indicator is a special MAC
subheader that carries the parameter indicating the time delay between a PRACH and the
next PRACH. Figure 4.12 shows the mac header/subheader structure carrying the backoff
indicator information.

The bit field shown below, is made up of 4 bits, implying that it can carry the value from
0 to 15. Each of these value maps to a specific time value as shown in table 4.13 taken from
3GPP TS 36.321 [12]. For example, if the BI field value is 10, Backoff Parameter value is
320 ms. This means UE can send PRACH any time in between 0 and 320 ms from now.
This is used to reduce the collision probability, dispersing random access across multiple
successive slots.

112 RACH/RRC Performance

Fig. 4.12 MAC sub-header for Backoff Indicator

Fig. 4.13 Map for Backoff Indicator and specific time values

4.5 Modelling inter–RACH times

The first goal of our analysis is to derive a statistical model for the interarrival times of the UE
RACH requests. These observations depend on the configuration of the eNodeB (specifically,
in terms of RRCIT) and on the traffic generated by end-users. Our starting point is the traffic
data acquired by passive measurements carried out at a commercial eNodeB of a mobile
operator. Upon the necessary anonymization procedures and after stripping out privacy–
sensitive data, the acquired traffic dump consisted of a list of entries each one reporting the
IP source and destination addresses of each observed packet along its timestamp.

To obtain the interarrival times of RACH requests for each user, a simulator of the RRC
state machine has been developed. For each user (say, i), the input of the simulator is the set
of the traffic interarrival times associated with it. By emulating the RRC state machine and by
taking into account the RRCIT , the output of the simulator is the timeseries representing the
“Interarrival times between successive RACH Requests” (IRR) of the user i. We emulated the
RRC state machine for different RRCIT values, namely 2, 5 and 10 s. The timeseries IRR j,
j = 2,5,10, is obtained by merging the IRR obtained for all users i when the RRCIT is set to
j. The timeseries IRR j represent the observations of interarrival times of the triggered RACH
for the average user. Some statistical properties of these timeseries are shown in Table 4.5.
Obviously, having the same input traffic, the emulator of the RRC state machine generates
higher numbers of triggered RACHs (and lower mean IRR values) for lower RRCIT values.

4.5 Modelling inter–RACH times 113

Table 4.5 IRRi : Statistical Parameters

Dataset Size Mean (s) Covariance (s2) Coef. Var.
IRR2 22654 47.46 1.98e+04 2.96
IRR5 13424 80.03 3.16e+04 2.22
IRR10 9106 117.73 4.48e+04 1.80

The coefficient of variation (CV), which represents a standardized measure of dispersion
of a probability distribution, is defined as the ratio of the standard deviation to the mean.
The CV values higher than 1, as shown in the Table, suggest to consider a model based on a
mixture of exponential distribution, since the exponential distribution has CV = 1. Hence,
the considered timeseries have been modeled by i.i.d. random variables with density equal to
a mixture of exponentials:

f (x) =
C

∑
c=1

αcλce−λcx (4.2)

where C refers to the number of components in the mixture, αc is the mixing coefficients
(with ∑

C
c=1 αc = 1), and λc is the parameter of the c-th exponential component.

For each considered RRCIT value, the Bayesian model selection approach has been
applied to estimate the mixture parameters of timeseries IRR j, with j = 2,5,10.

In particular, we referred to the algorithm presented in [52], where the prior distribution
assumes that αc and λc are independent. The symmetric Dirichlet distribution is used as
a prior of αc, whereas the gamma distribution Γ(a0,b0) is selected as the conjugate prior
distribution on λc. As suggested in [52], a0 is set to a small value (we set a0 = 0.1) and
b0 is chosen in such a way that the prior mean is matched to the mean of the data, Y , i.e.
b0 = a0 ∗Y . The Markov Chain Monte Carlo (MCMC) algorithm described in [32] has been
used for the estimation of the model parameters for different number of components.

Different techniques can be used to estimate how to choose the number of components C,
such as those based on Akaike information criterion (AIC) or its Bayes Information Criterion
(BIC) variant, as well as other different classification–based information criteria, which are
minimized for the optimal model among a set of potential models (see [32] for details).

Any of these criteria should be based on the maximum likelihood (ML) estimator, and
require iterative runs of the algorithm used for the estimation of model parameters. In figure
4.14, the BIC values evaluated at the ML estimator for diverse C are shown for the three
sequences IRR j. The figure suggests that C = 3 is the optimal value for IRR5 and IRR10,
whereas 4 components are needed for the IRR2. The estimated parameters are summarised in
table 4.6. The Table shows that in all timeseries, more than 74% of samples can be modelled

114 RACH/RRC Performance

Table 4.6 Estimated model parameters

Dataset αc λc
IRR2 0.7782, 0.0955, 0.0102, 0.1160 0.0804, 0.0192, 0.0013, 0.0046
IRR5 0.1935, 0.0149, 0.7916 0.0043, 0.0013, 0.0334
IRR10 0.0291, 0.2269, 0.7441 0.0015, 0.0039, 0.0185

with exponential distribution with a mean value around 50 s or less (λc are around 0.02 or
higher), whereas the remaining observations are in the range of 250 s (i.e., λc around 0.004)
and 750 s ((i.e., λc around 0.0013). Figure 4.15 shows the quantile–quantile (QQ) plot for
the different timeseries. Each subfigure reports the QQ curves obtained by comparing the
actual dataset to the “Exponential” model, and to the “Mixture” model. In the first case, the
parameters are set according to the mean values reported in Table I, while in the second case
according to Table II. To immediately visualize the quality of the fitting results, the reference
“Best Fitting” curve is also reported. The figure shows that for the IRR2 and IRR5 timeseries,
the points of the curve “Mixture” lay very close to the “Best Fitting” curve, whereas they
deviate for high quantile values in the case of IRR10. Conversely, we observe that the points
of the “Exponential” curve are always far from the “Best Fitting” curve.

1 2 3 4 5 6 7

1.9655

1.966

1.9665

1.967

1.9675

1.968

x 10
5

C

B
IC

 V
a

lu
e

1 2 3 4 5 6 7
1.3708

1.3709

1.371

1.3711

1.3712

1.3713

1.3714

1.3715

1.3716
x 10

5

C

B
IC

 V
a

lu
e

1 2 3 4 5 6 7
1.0255

1.0256

1.0257

1.0258

1.0259

1.026

1.0261

1.0262
x 10

5

C

B
IC

 V
a

lu
e

Fig. 4.14 BIC vs C for RRCIT = 2,5,10s (Left to Right)

4.6 RACH Collision Probability: Analytical Model

In this section we derive the analytic expression of the probability of collision for RACH
procedures initiated by different stations under a quite general RACH request model. The
result is then specialized for the mixture model (4.2) and used next in the performance
evaluation section 4.6.1.

4.6 RACH Collision Probability: Analytical Model 115

Fig. 4.15 QQplot for Inactivity Timer = 2,5,10 (Left to Right)

To this aim, let us first indicate the number of stations in the RRC Idle state with N and
the number of available preambles with k. In addition, let T be the duration of each timeslot.
At each timeslot, any station i (with i≤ N) in RRC Idle state may place a RACH request by
requesting a given preamble j, with j ≤ k.

The problem of successfully select a transmission preamble is “nearly” equivalent to that
of successfully switching a cell in an unbuffered N×k crossbar switch with Bernoulli arrivals
and uniform routing. The analogy is not perfect, however, in that multiple cells colliding on
the same switch outlet result in the transmission of a cell only, whereas, in the RACH case,
no transmission occurs.

N k

N x k

Fig. 4.16 Switching analogue to RACH request operations

116 RACH/RRC Performance

Figure 4.16 visualizes the equivalent system: RACH procedure requests arrive at the N
inlets of the switch by requesting for a preamble, represented by one of the k outlet of the
switch.

Let Ai(n) ∈ {0,1} be the number of requests placed by station i at time nT and with
Ai, j(n) ∈ {0,1} the number of requests placed by station i by selecting preamble j.

Assume now that stations in RRC Idle state may each independently place a request with
probability p, i.e. Pr{Ai(n) = 1}= p and that preambles are selected uniformly at random
with probability 1/k. As such: Pr

{
Ai, j(n) = 1

}
=

p
k

. Consider now the total number of

requests X j(n) to preamble j at time nT : X j(n) = ∑
N
i=1 Ai, j(n). At each time n, and for each

preamble, RACH collision occurs whenever X j(n) ≥ 2. The random variable X j(n) has
binomial distribution with parameter p/k, and the number of RACH request failures L j(n) is:

L j(n) =

0 if X j(n)< 2

X j(n) otherwise
(4.3)

Note that, since we assume the system at the statistical equilibrium, the dependence on time
can be safely omitted. Hence, the mean number of RACH collisions to each single preamble
is:

E
[
L j
]

= ∑
N
n=2 nPr

{
X j = n

}
= ∑

N
n=2 n

(N
n

)(p
k

)n(
1

p
k

)N−n

=
N p
k

(
1−

(
1− p

k

)N−1
) (4.4)

and the overall RACH collision probability P(HTC)
C is:

PC =
E
[
L j
]

E
[
X j
]

=

N p
k

(
1−

(
1− p

k

)N−1
)

NP
k

= 1−
(

1− p
k

)N−1

(4.5)

4.6 RACH Collision Probability: Analytical Model 117

VV

TT

XX

t1t1 t2t2 t3t3 t4t4

Fig. 4.17 RACH requests arrival process

From the point of view of an external observer, instead, it is easy to prove that the
collision probability of a generic RAO is given by:

P(RAO)
C = 1− # of idle RAOs in τ s.

of RAOs in τ s.
+

− # of successful RAOs in τ s.
of RAOs in τ s.

= 1−
(

1− p
k

)N
− N p

k

(
1− p

k

)N−1

(4.6)

Equations (4.5) and (4.6) assume the probability p of a RACH request for any idle station
at each timeslot is known. Hence, the next step in the derivation is to analytically find the
value of p.

In the previous section, we assumed the process of RACH requests to be a point process
(figure 4.17) {t1, t2, . . .} in which the inter–arrival times {X1,X2, . . .} form a sequence of
i.i.d. random variables each of them with probability density function given by (4.2). More
generally, by indicating the common pdf with fX(x) and the common probability distribution
with FX(x), the overall arrival process is a renewal process [26] and the arrival events are
called renewals.

Under this assumption, finding the value of p is equivalent to compute the probability
that one renewal occurs in the generic time interval ((n−1)T,nT]. Notice that, depending on
the renewal distribution, the inter–arrival times can be arbitrarily small so that more than one
renewal event may occur in the same timeslot. However, this phenomenon is not possible in
practice and, as it will be shown, its probability becomes analytically negligible for physically
reasonable model parameters and small timeslots.

In order to compute p, let us consider a generic timeslot that begins at time t. As the
beginning of the timeslot is asynchronous with the arrival process, the first renewal following
time t occurs after time V , while the second, third, etc. occur after time V +X2, V +X2 +X3,
V +X2+X3+ The time V is called forward recurrence time, while X2,X3, are usual

118 RACH/RRC Performance

renewal times and the resulting renewal process is referred to as modified. When t is large
enough so that the system has been running for long, it can be proven [26] that the forward

recurrence time has pdf fV (x) =
1−FX(x)
E[X]

.

Under the previous hypothesis, the overall process is called equilibrium renewal process
and the probability p of at least one arrival in the timeslot of length T is:

p = 1−Pr{V > T} (4.7)

The RACH collision probability and the RAO collision probability are then readily
obtained by substituting (4.7) in (4.5), and (4.6) respectively.

Finally, expression (4.7) can be specialized when the pdf of renewals is that of (4.2).
Indeed, in this case,

p = 1−
∑

C
c=1

αc

λc
e−λcT

∑
C
c=1

αc

λc

(4.8)

So far, the value of p has always been computed as the probability of the complementary
event of observing zero arrivals in a timeslot. For the sake of completeness, the probability
of having exactly one arrival in a timeslot is given by:

Pr{N(T) = 1}= Pr{V ≤ T}−Pr{V +X ≤ T}=

=

T
C

∑
c=1

α
2
ce−λcT +

C

∑
c=1

C

∑
k ̸=c

αcαk

(
e−λkT − e−λcT

)
λc−λk

C

∑
c=1

αc

λc

(4.9)

and it is easy to prove that, under practical parameter configuration such as the one of table
4.6, the difference between equation (4.9) and (4.8) is in the order of 10−4.

4.6.1 Performance Evaluation

The accuracy of the proposed model is assessed by simulating a cell with 1000 UEs, each
one independently placing RACH requests with inter–arrival times picked randomly from
the IRR j timeseries. Simulation runs are carried out with different configuration of the
RRCIT value (namely, 2, 5, and 10s), and the performance parameters, P(HTC)

C and P(RAO)
C ,

are estimated after an observation time of 1000 s.

4.7 Guidelines for RACH preamble serparation between HTC and MTC 119

0 10 20 30 40 50 60
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k: Premables

C
o
lli

s
io

n
 P

ro
b
a
b
ili

ty

Analytical

Simulation with RealData

P
(HT C)
c

P
(RAO)
c

RRC I T = 2

RRC I T = 2

RRC I T = 5

RRC I T = 10

RRC I T = 10

RRC I T = 5

Fig. 4.18 Analytical model vs. simulation results - P(HTC)
C and the P(RAO)

C for different
RACHP values, k

Figure 4.18 shows the average values of the P(HTC)
C and the P(RAO)

C along with the 95%
confidence interval estimated over 10 simulation runs for the three RRCIT configurations.

Moreover, the figure reports the analytic collision probability curves, P(HTC)
C and the

P(RAO)
C , derived in (4.5) and (4.6) respectively, using the values of p computed for the renewal

times IRR j modelled as shown in section 4.5 (i.e., p is set according to relation (4.8)). The
results show an excellent adherence of the theoretical model with respect to the simulation
outcomes as the analytical curves almost always lay within the 95% C.I. of simulations for
all RRCIT configurations.

4.7 Guidelines for RACH preamble serparation between
HTC and MTC

In LTE and LTE–Advanced systems the rate of requests on the Random Access CHannel
(RACH) can be high. Indeed, the Machine Type Communication (MTC) implies to have a
high number of devices that need to request radio resources for transmitting small amount
of data. Furthermore, reducing the time in which radio resources are allocated to Human
Type Communications (HTC) for energy savings purposes, may lead to radio access network

120 RACH/RRC Performance

overload as well. In this framework, this section aims at providing a set of guidelines for
the resource allocation task in the RACH. In particular, the study investigates the impact
of both the backoff indicator scheme and the maximum number of retransmissions on the
RACH performance parameters. The rate of RACH requests associated with the HTC
traffic is modelled by inferring their statistical properties starting from a dataset acquired
in an operational eNodeB. The estimation of the average delay and the average number of
maximum retransmissions gives insights on how many preambles should be reserved for
HTC in order to meet the target performance, and provides suggestions on the configuration
of the backoff indicator.

4.7.1 Simulation Design: MTC, HTC and RAO definition

The content-based operation of the RACH is based on ALOHA-type acces, that means
"transmit the request in the first available opportunities". As we explained before the
maximum number of RAO opportunities is determined by the PracConfigIndex and the
number of available preambles.

Two definitions of collision probability are given in TR 37.686.

In ANNEX B, the so colled "MTC collision probability" has been defined as the collision
probability of an MTC device which transmits a preamble. This is a conditioned probability,
and is calculated as:

o f collided Preambles in T seconds
o f transmitted Preambles in T seconds

We apply the same definition, for HTC. The different between MTC and HTC is given
by their statistical behavior (e.g. the rate of random access attempts).

In section 6.3, the "RAO collision probability" is defined as the ratio between the number
of occurrences when two or more MTC/HTC devices send in the same RAO, meaning in the
same timeslot and with the same preambles, and the total number of RAO, no matter if there
was or not a random access. This is an unconditioned probability, and it is given by

o f collided Preambles in T seconds
o f RAO in T seconds

In our simulation, it is assumed that the network reserves L RAOs per second for MTC
devices to transmit their preambles. We considered 1000 MTC and/or HTC devices under
coverage. Already deployed eNodeBs allow to host few thousand of devices (MTC and
HTC), depending on their configuration. This is to say that we don’t have to wait for 5G
networks to solve and analyze this kind of problem.

4.7 Guidelines for RACH preamble serparation between HTC and MTC 121

Time is dived in time slot defined by the currently set PracConfigIndex. In this study,
it has been considered that 10 out of the 64 available preambles are always reserved for
contention free procedure. The MTC/HTC devices which wake up between two slots shall
wait and transmit at the beginning of the next available RACH slot, using one of the available
preambles. Two possible scenarios could happen.

The random access is completed without collision. The device is supposed to transmit
data and remains in connected state until the RRC inactivity timer elapses. Theoretically,
if new data have to be transmitted during the connected state, the MTC/HTC device has no
need to perform the random access again. Taking into account the time spent in connected
state, it lowers the number of devices that at a given time can compete on a given resource. In
other words, this methodology allows us to obtain a tighter bound for the collision probability
estimation.

The random access is not completed, due to a collision. When two or more UEs use the
same RAO we assume that the signal always act as interference to each other, and every
UEs will experience a collision. Each one of these UEs, will retransmit the PRACH at
any time between 0 and the given backoff indicator time. This procedure is repeated until
all UEs successfully perform the random access. There is no maximum value for RACH
retransmissions.

122 RACH/RRC Performance

4.7.2 Simulation results: MTC traffic

The first analysis aims at evaluating the impact of PrachConfigIndex on the collision proba-
bility. The different parameter setups associated with each PrachConfigIndex are reported
in [9].

Across all simulations we modify the random access intensity for a specific RAO, to be
fair in our results. The access attempts generated at every timeslot follow a Poisson process.
The rate, Λ, is set to obtain the same access intensity in all simulations. For example, with
PrachConfigIndex equal to 0 or 1 or 2, the Poisson rate Λ = 10 (as in [24]), whereas with
PrachConfigIndex equal to 3 or 4 or 5, the value of Λ is set to 5. It is worth noticing that
evaluating results for configuration indexes up to 14 is completely exhaustive for all 64
possible values. Our results consider the first 11 PrachConfigIndex.

0 10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

k: Preambles

P
c
,M

T
C

PrachConfIndex = [0,1,2]

PrachConfIndex = [3,4,5]

PrachConfIndex = [6,7,8]

PrachConfIndex = [9,10]

Fig. 4.19 P(MTC)
c for different PrachConfigIndex - P(MTC)

c is defined in AnnexB of [8]

We compute the collision probability by varying the number of available preambles from
2 to 54. For each possible value we repeat the simulations 10 times. Each simulation lasts
for 106 timeslots.

As expected, the larger the granularity of RAO, the lower the collision probability (see fig-
ures 4.19 and 4.20). In addition, by increasing too much such granularity (PrachConfigIndex
from 6 to 11) does not provide significant improvements when the access rate is not so high.
Conversely, this leads to wasting unnecessary resources. Thus, the next presented results are
obtained by assuming PrachConfigIndex 0, which represents our worst case scenario.

4.7 Guidelines for RACH preamble serparation between HTC and MTC 123

0 10 20 30 40 50 60
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k: Preambles

P
c
,R

A
O

PrachConfIndex = [0,1,2]

PrachConfIndex = [3,4,5]

PrachConfIndex = [6,7,8]

PrachConfIndex = [9,10]

Fig. 4.20 P(RAO)
c for different PrachConfigIndex - P(RAO)

c is defined in Section 6.3 of [8]

Previous studies do not consider the effect of the backoff timer on the performance
parameters. They assume that if two or more MTCs fail during the initial RACH procedure, no
successive attempts will be made, leading to an under estimation of the collision probability.
To overcome this issue, instead of considering a Poisson process to generate the aggregate
number of RACH requests, we consider 1000 MTC devices individually, each one generates
random access attempts with i.i.d. exponential interarrival times. We carried out two
simulation runs, one with mean inter–arrival times λ1 = 100s , and the other with λ2 =

10s. The backoff indicator varies from 20ms to 320ms and a maximum number of 10
retransmissions are allowed.

Figures 4.21 shows the results. Using low backoff allows MTC to reduce the time needed
for a new attempt, lowering the overall latency for RACH procedure. Depending on M2M
application class, it could be important not to excessively delay retransmissions. It is worth
recalling that the setting PrachConfigIndex equal to 0, and Backoff Indicator (BI) equal to
20ms implies "to retransmit the next slot", whereas a BI of 160ms uniformly spreads the
probability of retransmission over the next 8 time slots.

When the traffic load is limited (λ1), numeric results demonstrate that introducing the
backoff scheme has low impact, and the Pc,MTC has a similar trend as the case without the
backoff. Indeed, except for the first preambles (up to 5), Pc,MTC can be evaluated considering
the analytical model provided in [24]. With such a low rate, even when few preambles are
disposed to MTC devices the radio interface does not become highly congested and the

124 RACH/RRC Performance

0 10 20 30 40 50 60
10

−3

10
−2

10
−1

10
0

k: Preambles

P
c
,M

T
C

BI=20

BI=40

BI=80

BI=160

BI=320

Analytical

Fig. 4.21 P(MTC)
c evaluated with λ2 = 10 (upper curves) and λ1 = 100 (lower curves)

probability of correct transmission gets immediately close to one. Due to the low rate of
requests, the benefit obtained from the backoff timer is hardly perceptible.

Instead, when random access rate is higher and equal to 1/λ2 per second, the Pc,MTC

deviates from the performance expected by the analytical curve. This analysis proves that
the analytical formula for Pc,MTC is not accurate enough in presence of backoff timer and
maximum number of transmissions, especially when a small number of preambles is reserved.
Indeed, in order to observe acceptable performance (e.g. in the order of 10−1) at least 20
preambles must be reserved.

It is worth looking at the average delay (figure 4.23) and the success probability (figure
4.22) to appreciate the influence of the BI, in the two cases. For λ1, MTC devices always
manage to correctly transmit data, whatever backoff scheme is used. For λ2, the success
probability suggests not to reserve less than 7–8 preambles, depending on the backoff which
is used. The average delay is evaluated by considering only the correct transmissions. If
we do not consider the very low k values (few units), for which the collision probability is
close to one and the success probability (goodputh) gets close to zero, the results suggest the
uselessness of using large BI. Indeed, setting the BI to 320ms does not allow to achieve high
improvements from the goodputh point of view, though it produces larger access delay.

We analyze the average maximum number of attempts 4.24 needed to successfully
establish the RRC connection, when λ2 is used. The results have been evaluated for a subset
of the available preambles, namely from 2 up to 30.

4.7 Guidelines for RACH preamble serparation between HTC and MTC 125

0 10 20 30
0

0.2

0.4

0.6

0.8

1

k: Preambles

G
o
o
d
p
u
th

0 10 20 30
0

0.2

0.4

0.6

0.8

1

k: Preambles

BI=20

BI=40

BI=80

BI=160

BI=320

Fig. 4.22 Success Probability with λ2 = 10 (left) and λ1 = 100 (rigth)

Given that the maximum number of possible retransmissions is set to 10, the event "11-th
attempts" in the graph means that the request will not be acknowledged by the network. The
results, shown in figure 4.24, reflect the behavior described in figure 4.22 and 4.23.

126 RACH/RRC Performance

0 10 20 30

100

200

300

400

500

600

700

800

900

k: Preambles

T
x
 D

e
la

y
 [

m
s
]

0 10 20 30

100

200

300

400

500

600

700

800

900

k: Preambles

BI=20

BI=40

BI=80

BI=160

BI=320

Fig. 4.23 Transmission Delay (from the 1st attempt to the successfull one), with λ1 = 100
(left) and λ2 = 10 (rigth)

0 10 20 30
0

2

4

6

8

10

k: Preambles

A
v
e
ra

g
e
 M

a
x
im

u
m

 A
tt
e
m

p
ts

0 10 20 30
0

2

4

6

8

10

k: Preambles

BI=20

BI=40

BI=80

BI=160

BI=320

Fig. 4.24 Average maximum number of attempts per UE, with λ2 = 10 (left) and λ1 = 100
(rigth)

4.7 Guidelines for RACH preamble serparation between HTC and MTC 127

4.7.3 Simulation results: HTC traffic

For each considered RRCIT value, the Bayesian model selection approach has been applied
to estimate the parameters of the hyperexponential distribution.The estimated parameters are
summarized in table 4.6.

0 10 20 30 40 50 60
10

−3

10
−2

10
−1

10
0

k: Preambles

P
c
,H

T
C

BI=20

BI=40

BI=80

BI=160

BI=320

Fig. 4.25 P(HTC)
c evaluated with RRCIT = 2s, RRCIT = 5s and RRCIT = 10s

0 10 20 30
0.75

0.8

0.85

0.9

0.95

1

k: Preambles

G
o

o
d

p
u

th

0 10 20 30
0.75

0.8

0.85

0.9

0.95

1

k: Preambles
0 10 20 30

0.75

0.8

0.85

0.9

0.95

1

k: Preambles

BI=20

BI=40

BI=80

BI=160

BI=320

Fig. 4.26 Success Probability for HTC evaluated with RRCIT = 2s (left), RRCIT = 5s (center)
and RRCIT = 10s () rigth

The first (expected) outcome is that, decreasing the RRCIT values induces an increase of
the Pc,HTC (figure 4.25). Interestingly, if we used the analytical model provided in section 4.6,
equations (4.5) and (4.6), which doesn’t take into account the backoff scheme we’d obtain

128 RACH/RRC Performance

0 10 20 30

20

40

60

80

100

120

k: Preambles

T
x
 D

e
la

y
 [

m
s
]

0 10 20 30

20

40

60

80

100

120

k: Preambles

0 10 20 30

20

40

60

80

100

120

k: Preambles

BI=20

BI=40

BI=80

BI=160

BI=320

Fig. 4.27 Transmission delay for HTC, evaluated with RRCIT = 2s (left), RRCIT = 5s (center)
and RRCIT = 10s () rigth

almost a perfect matching with simulation result. Thus, given the low rate of RACH request,
even for the lowest RRCIT value, we can predict the Pc,HTC using the proposed formula when
enough preambles are reserved for HTC. This interesting result may be really helpful if
we’d like to determinate the number of preambles that have to be allocated given a target
Pc,HTC. Furthermore, we observe that for larger numbers of preambles, the BI has no effect
on the collision probability. By looking at the success probability (figure 4.26) we found out
that few preambles are enough to assure that all RACH requests are acknowledged by the
eNodeB.

To properly interpreter transmission delay results, it is worth reminding that in LTE/LTE-
Advanced each bearer is associated to a QoS Class Identifier (QCI) with standardized delay
budget. For example, the delay budget associated to QCI = 5 and QCI = 9 is 100ms and
300ms, respectively. Figure 4.27 shows the drawback of using large values of BI. Indeed, with
large BI, we observe a slight decrease of the collision probability at the cost of increasing the
access delay, almost achieving the maximum delay budget defined for some QCIs. Simulation
results demonstrate that this is unnecessary, because few preambles has to be allocated to
obtain the same performance for all the backoff values.

Numerical results point out that using an RRCIT of 5 s with a BI of 40 ms guarantees that
all RACH requests are delivered to the eNodeB. To attain a collision probability of 10−2 at
least 30 preambles must be reserved. The average transmission delay is slightly above 20 ms,
which is slightly higher than the minimum delay imposed by the PrachConfigIndex.

4.8 Conclusion 129

4.8 Conclusion

Evaluate the performance of hardware and software systems for the fourth-generation mobile
network, as well as identify any possible weakness in the architecture, it is a complex job. A
possible case study, is precisely to assess the robustness of the base station when it receives
many requests for RRC connections, as effect of a decrease of the inactivity timer. In this
regard, within the Testing LAB of Telecom Italia, we used IxLoad, a product developed
by Ixia, as a load generator to test the robustness of one eNodeB. The tests consisted in
producing a different load of RRC request on the radio interface, similar to those that would
be produced by decreasing the inactivity timer to certain values. The statistical properties for
the signalling traffic are derived from the analysis of real traffic traces. The main outcomes
have shown that, even in the face of an high load of RRC requests only a small part (less than
1% in the most unfavorable of the cases) of the procedure fails. Therefore, even lowering the
inactivity timer at values lower than 10 seconds is not an issue for the Base Station.

Finally, remains to be evaluated how such surge of RRC request impacts on users
performance. If one of the users under coverage in the RRC Idle is paged for an incoming
packet or need to send an uplink packet a state transition from RRC Idle to RRC Connected
is needed. At this point, the UE initiates the random access procedure by sending the
random access channel preamble (RACH Preamble). When two or more users attempt,
simultaneously, to access the RACH channel, using the same preamble, the eNodeB may not
be able to decipher the preamble. We presented a procedure to model the interarrival times of
RACH requests by means of a mixture of exponential distributions. This procedure and the
proposed analytical model provide an accurate estimation of the P(HTC)

C and the P(RAO)
C as a

function of the number of UEs and the number of available preambles, for different RRCIT

settings.
In addition, we investigated the issue of radio access network overloading due to HTC

and MTC by elaborating upon the impact of both the backoff indicator scheme and the
maximum number of retransmissions in the RACH procedure. The performance evaluation
is carried out by simulation under different number of available preambles. In the case
of MTC, the results show that for high RACH request rate and small number of allocated
preambles, the analytical model discussed in [24] losses accuracy in estimating the collision
probability. In the case of HTC, the results suggest the use of low backoff values in that the
negligible improvements in terms of collision probability obtained by increasing the backoff
are obtained at the cost of a relatively high access delay. In particular, we recall that the
estimated average delay in some cases almost achieves the maximum delay budget defined
for some QCIs. The results prove that the adoption of an RRCIT of a few seconds does not
significantly affect the RACH performance, while still reducing power consumption.

References

[1] (2015). Layer-7. http://www.l7-filter.clearos.com.

[2] (2015). List of assigned port numbers. http://www.iana.org/assignments/port-numbers.

[3] (2015). Marketshare. http://www.marketshare.com.

[4] (2015). Ntop. http://www.ntop.org.

[5] (2015). Pace. http://www.ipoque.com/en/products/pace.

[6] (2015). Tstat. http://tstat.tlc.polito.it.

[7] 3GPP Standard; 3GPP TR 36.822 (2012). LTE RAN Enhancements for Diverse Data
Applications. Technical report.

[8] 3GPP Standard; 3GPP TR 37.868 (2011). Technical Specification Group Radio Access
Network; Study on RAN Improvements for Machine-type Communications. Technical
report.

[9] 3GPP Standard; 3GPP TS 36.221 (2014). Evolved Universal Terrestrial Radio Access
(E-UTRA); Physical channels and modulation. Technical specification.

[10] 3GPP Standard; 3GPP TS 36.300 (2014). Evolved Universal Terrestrial Radio Access
(E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall
description; Stage 2. Technical specification.

[11] 3GPP Standard; 3GPP TS 36.304 (2014). User Equipment (UE) procedures in idle
mode (Release 12). Technical specification.

[12] 3GPP Standard; 3GPP TS 36.321 (2014). Evolved Universal Terrestrial Radio Access
(E-UTRA); Medium Access Control (MAC) protocol specification. Technical specifica-
tion.

[13] 3GPP Standard; 3GPP TS 36.331 (2014). Evolved Universal Terrestrial Radio Access
(E-UTRA); Radio Resource Control (RRC); Protocol specification. Technical specifica-
tion.

[14] Aceto, G., Dainotti, A., De Donato, W., and Pescap, A. (2010). Portload: taking the
best of two worlds in traffic classification. In INFOCOM IEEE Conference on Computer
Communications Workshops, 2010, pages 1–5. IEEE.

132 References

[15] Alcock, S. and Nelson, R. (2012). Libprotoident: Traffic classification using lightweight
packet inspection. WAND Network Research Group, Tech. Rep.

[16] Aucinas, A., Vallina-Rodriguez, N., Grunenberger, Y., Erramilli, V., Papagiannaki, K.,
Crowcroft, J., and Wetherall, D. (2013). Staying online while mobile: The hidden costs.
In Proceedings of the ninth ACM conference on Emerging networking experiments and
technologies, pages 315–320. ACM.

[17] Bermudez, I. N., Mellia, M., Munafò, M. M., Keralapura, R., and Nucci, A. (2012).
Dns to the rescue: discerning content and services in a tangled web. In Proceedings of the
2012 ACM conference on Internet measurement conference, pages 413–426. ACM.

[18] Bontu, C. S. and Illidge, E. (2009). Drx mechanism for power saving in lte. Communi-
cations Magazine, IEEE, 47(6):48–55.

[19] Bousia, A., Kartsakli, E., Antonopoulos, A., Alonso, L., and Verikoukis, C. (2013).
Game theoretic approach for switching off base stations in multi-operator environments.
In Communications (ICC), 2013 IEEE International Conference on, pages 4420–4424.
IEEE.

[20] Bujlow, T., Carela-Español, V., and Barlet-Ros, P. (2015). Independent comparison of
popular dpi tools for traffic classification. Computer Networks, 76:75–89.

[21] Cascarano, N., Este, A., Gringoli, F., Risso, F., and Salgarelli, L. (2009). An ex-
perimental evaluation of the computational cost of a dpi traffic classifier. In Global
Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, pages 1–8. IEEE.

[22] Chen, Y. and Wang, W. (2010). Machine-to-machine communication in lte-a. In
Vehicular Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd, pages 1–4.
IEEE.

[23] Cheng, J.-P., Lee, C.-h., and Lin, T.-M. (2011). Prioritized random access with dynamic
access barring for ran overload in 3gpp lte-a networks. In GLOBECOM Workshops (GC
Wkshps), 2011 IEEE, pages 368–372. IEEE.

[24] Cheng, R.-G., Wei, C.-H., Tsao, S.-L., and Ren, F.-C. (2012). Rach collision probability
for machine-type communications. In Vehicular Technology Conference (VTC Spring),
2012 IEEE 75th, pages 1–5. IEEE.

[25] Condoluci, M., Dohler, M., Araniti, G., Molinaro, A., and Zheng, K. (2015). Toward
5g densenets: architectural advances for effective machine-type communications over
femtocells. Communications Magazine, IEEE, 53(1):134–141.

[26] Cox, D. R., Cox, D. R., Cox, D. R., and Cox, D. R. (1962). Renewal theory, volume 4.
Methuen London.

[27] Crotti, M., Dusi, M., Gringoli, F., and Salgarelli, L. (2007). Traffic classification
through simple statistical fingerprinting. ACM SIGCOMM Computer Communication
Review, 37(1):5–16.

References 133

[28] Deng, S. and Balakrishnan, H. (2012). Traffic-aware techniques to reduce 3g/lte wireless
energy consumption. In Proceedings of the 8th international conference on Emerging
networking experiments and technologies, pages 181–192. ACM.

[29] Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., and Estrin, D.
(2010). Diversity in smartphone usage. In Proceedings of the 8th international conference
on Mobile systems, applications, and services, pages 179–194. ACM.

[30] Fiadino, P., Bar, A., and Casas, P. (2013). Httptag: A flexible on-line http classification
system for operational 3g networks. In Computer Communications Workshops (INFOCOM
WKSHPS), 2013 IEEE Conference on, pages 71–72. IEEE.

[31] Foremski, P., Callegari, C., and Pagano, M. (2014). Dns-class: immediate classification
of ip flows using dns. International Journal of Network Management, 24(4):272–288.

[32] Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. Springer
Science & Business Media.

[33] Fukuda, K. and Nagami, K. (2013). A measurement of mobile traffic offloading. In
Passive and Active Measurement, pages 73–82. Springer.

[34] Huang, J., Qian, F., Guo, Y., Zhou, Y., Xu, Q., Mao, Z. M., Sen, S., and Spatscheck, O.
(2013). An in-depth study of lte: Effect of network protocol and application behavior on
performance. In ACM SIGCOMM Computer Communication Review, volume 43, pages
363–374. ACM.

[35] Huang, J., Xu, Q., Tiwana, B., Mao, Z. M., Zhang, M., and Bahl, P. (2010). Anato-
mizing application performance differences on smartphones. In Proceedings of the 8th
international conference on Mobile systems, applications, and services, pages 165–178.
ACM.

[36] Jha, S. C., Koc, A. T., and Vannithamby, R. (2012). Optimization of discontinuous re-
ception (drx) for mobile internet applications over lte. In Vehicular Technology Conference
(VTC Fall), 2012 IEEE, pages 1–5. IEEE.

[37] Koc, A. T., Jha, S. C., Vannithamby, R., and Torlak, M. (2014). Device power saving
and latency optimization in lte-a networks through drx configuration. Wireless Communi-
cations, IEEE Transactions on, 13(5):2614–2625.

[38] Laya, A., Alonso, L., and Alonso-Zarate, J. (2014). Is the random access channel of lte
and lte-a suitable for m2m communications? a survey of alternatives. Communications
Surveys & Tutorials, IEEE, 16(1):4–16.

[39] Lin, P.-C., Lin, Y.-D., Lai, Y.-C., and Lee, T.-H. (2008). Using string matching for deep
packet inspection. Computer, (4):23–28.

[40] Lo, A., Law, Y. W., Jacobsson, M., and Kucharzak, M. (2011). Enhanced lte-advanced
random-access mechanism for massive machine-to-machine (m2m) communications. In
27th World Wireless Research Forum (WWRF) Meeting, pages 1–5.

134 References

[41] Moore, A. W. and Zuev, D. (2005). Internet traffic classification using bayesian analysis
techniques. In ACM SIGMETRICS Performance Evaluation Review, volume 33, pages
50–60. ACM.

[42] Nguyen, T. T. and Armitage, G. (2008). A survey of techniques for internet traffic
classification using machine learning. Communications Surveys & Tutorials, IEEE,
10(4):56–76.

[43] Paul, U., Subramanian, A. P., Buddhikot, M. M., and Das, S. R. (2011). Understanding
traffic dynamics in cellular data networks. In INFOCOM, 2011 Proceedings IEEE, pages
882–890. IEEE.

[44] Qian, F., Sen, S., and Spatscheck, O. (2013). Silent tcp connection closure for cel-
lular networks. In Proceedings of the ninth ACM conference on Emerging networking
experiments and technologies, pages 211–216. ACM.

[45] Roma, S., Donatini, L., Foddis, G., Garroppo, R., Giordano, S., Procissi, G., and
Topazzi, S. (2014a). Advances in lte network monitoring: A step towards an sdn solution.
In Mediterranean Electrotechnical Conference (MELECON), pages 339–343. IEEE.

[46] Roma, S., Foddis, G., Garroppo, R., Giordano, S., Procissi, G., and Topazzi, S. (2014b).
Lte traffic analysis and application behavior characterization. In Networks and Communi-
cations (EuCNC), 2014 European Conference. IEEE.

[47] Roma, S., Foddis, G., Garroppo, R., Giordano, S., Procissi, G., and Topazzi, S. (2015).
Traffic analysis for signalling load and energy consumption trade-off in mobile networks.
In International Conference on Communications (ICC). IEEE.

[48] Singh, H. (2015). Performance analysis of unsupervised machine learning techniques
for network traffic classification. in advanced computing. In In Advanced Computing &
Communication Technologies (ACCT), pages 401–404. IEEE.

[49] Stea, G. and Virdis, A. (2014). A comprehensive simulation analysis of lte discontinuous
reception (drx). Computer Networks, 73:22–40.

[50] Sundaresan, K. and Rangarajan, S. (2013). Energy efficient carrier aggregation algo-
rithms for next generation cellular networks. In Network Protocols (ICNP), 2013 21st
IEEE International Conference on, pages 1–10. IEEE.

[51] Valenti, S., Rossi, D., Dainotti, A., Pescapè, A., Finamore, A., and Mellia, M. (2013).
Reviewing traffic classification. In Data Traffic Monitoring and Analysis, pages 123–147.
Springer.

[52] Wagner, H. (2007). Bayesian analysis of mixtures of exponentials. Journal of Applied
Mathematics, Statistics and Informatics, 3:165–183.

[53] Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., and Venkataraman, S. (2011). Iden-
tifying diverse usage behaviors of smartphone apps. In Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference, pages 329–344. ACM.

[54] Xue, Y., Wang, D., and Zhang, L. (2013). Traffic classification: Issues and challenges.
In Computing, Networking and Communications (ICNC), 2013 International Conference
on, pages 545–549. IEEE.

Appendix A

LTE Theoretical Limits

A.1 Maximum Number of UE per TTI

Here we presented a rough calculation for the maximum number of UEs that can be scheduled
in one TTI. Each vendor defines this value, but there’s a theoretical max limit for the number
of UEs to be allocated within a single TTI. As we mentioned before, this strictly affects the
maximum achievable throughput in the cell.

Roughly speaking, PDCCH is the bottleneck when we talk about max number of UEs can
be scheduled in single TTI. Let’s say we have the following settings: one cell with bandwidth
size of 20MHz, 100 PRB, and 1 antenna ports. With this setting, we calculate the number
of REG (Resource Element Group) that are available for PDCCH, when 3 OFDM symbols
are dedicated to the channel. In the first symbol we have 2RE per PRB for RS (Reference
Signals), whereas the second and third symbol don’t have RS. Thus, the first symbol has 2
REGs/RB while the 2nd and 3rd symbols each has 3REGs/RB, therefore in 100 PRB channel,
there are 100 x (2+3+3) = 800 REGs for PDCCH, PCFICH and PHICH.

Considering that:

• PCFICH consumes 4 REGs

• mimimum size for PHICH in 20 MHz = 3 * ceil ((1/6) * (100/8)) = 9 REGs

• Size of PDCCH in REGs = 800 -4 -9 = 787 REGs

• Size of PDCCH in CCEs = floor (787/9) = 87 CCEs

The number of CCEs used to transfer a DCI is called CCE aggregation level, and may be
1, 2, 4, or 8 consecutive CCEs (logical sequence), depending on the used PDCCH format.
PDCCH format 0 uses 1 CCE, PDCCH format 1 uses 2 CCEs,and so on. Three main reasons

136 LTE Theoretical Limits

justify different aggregation level. First, PDCCH format is selected according to the size
of the DCI: different type of DCI are used to improve resource utilization. Second, to
accommodate different RF conditions. The ratio between the DCI size and the PDCCH size
indicates the effective coding rate. With the DCI format fixed, higher aggregation levels
provide more robust coding and reliability for the UEs under poor RF conditions. For a UE
in good RF conditions, lower aggregation levels can save resources. Third, to differentiate
DCIs for control messages and DCIs for UE traffic. Higher aggregation levels can be used
for control message resource allocations to provide more protection.

Thus, if we use only PDCCH format 0 for allocating resources within this TTI, there are
possible 87 DCI allocations i.e. 87 UEs can be effectively allocated resources. On the other
extreme if we only use PDCCH format 3 (i.e. most robust scheme), then we have: floor(787 /
72) = 10 DCI allocations. Meaning 10 UEs can be allocated resources.

It is worth to be noted that that these DCI are used to allocate both DL and UL, and there
are also some common messages using DCIs, such as System Info and Paging (that typically
use higher formats, i.e. requires more robust PDCCH schemes, because they need to be
received by users without knowing their channel conditions).

A.2 Maximum Downlink Throughput

You may hear it many times that the peak data rate of LTE is about 300Mbps. Let’s estimate
it in a simple way. Assume 20 MHz channel bandwidth, normal CP, 4x4 MIMO.

First, calculate the number of resource elements (RE) in a subframe with 20 MHz channel
bandwidth: 12 subcarriers x 7 OFDMA symbols x 100 resource blocks x 2 slots= 16800 REs
per subframe. Each RE can carry a modulation symbol.

Second, assume 64 QAM modulation and no coding, one modulation symbol will carry 6
bits. The total bits in a subframe (1ms) over 20 MHz channel is 16800 modulation symbols
x 6 bits / modulation symbol = 100800 bits. So the data rate is 100800 bits / 1 ms = 100.8
Mbps.

Third, with 4x4 MIMO, the peak data rate goes up to 100.8 Mbps x 4 = 403 Mbps. Fourth,
estimate about 25% overhead such as PDCCH, reference signal, sync signals, PBCH, and
some coding. We get 403 Mbps x 0.75 = 302 Mbps.

Is there a way to calculate it more accurately? If this is what you look for, you need to
check the 3GPP specs 36.213, table 7.1.7.1-1 and table 7.1.7.2.1-1. Table 7.1.7.1-1 shows the
mapping between MCS (Modulation and Coding Scheme) index and TBS (Transport Block
Size) index. Let’s pick the highest MCS index 28 (64 QAM with the least coding), which is
mapping to TBS index of 26. Table 7.1.7.2.1-1 shows the transport block size. It indicates

A.2 Maximum Downlink Throughput 137

the number of bits that can be transmitted in a subframe/TTI (Transmit Time Interval). For
example, with 100 RBs and TBS index of 26, the TBS is 75376. Assume 4x4 MIMO, the
peak data rate will be 75376 x 4 = 301.5 Mbps.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Motivation and Scope
	1.1 Motivation and Scope
	1.2 LTE and LTE-Advanced: Fundamentals
	1.2.1 LTE Architecture
	1.2.2 LTE Interfaces and Protocol Stacks
	1.2.3 LTE Channels

	1.3 Thesis Structure
	1.3.1 Why Traffic Analysis
	1.3.2 UE Power Saving in LTE
	1.3.3 eNodeB performance

	2 Traffic Analysis
	2.1 Introduction
	2.2 Lesson Learned: Telecom Italia Testing Lab
	2.3 Related Works: Passive Measurement Analysis
	2.4 Related Works: Traffic Classification
	2.5 Coarse Results
	2.6 Traffic Analysis
	2.6.1 Application/Service Analysis
	2.6.2 Video Analysis
	2.6.3 Daily App Distribution

	2.7 MOSEC: MOdular SErvice Classifier
	2.7.1 MOSEC: Network Processing
	2.7.2 MOSEC: Engine
	2.7.3 MOSEC: Plug-ins
	2.7.4 MOSEC: Decision Algorithm
	2.7.5 MOSEC: Statistics

	2.8 MOSEC Validation
	2.9 Traffic Analysis with MOSEC
	2.10 Conclusion

	3 Energy Consumption
	3.1 Introduction
	3.2 Discontinuous Reception – DRX
	3.3 Energy Consumption Model
	3.4 RRC Parameters Inference
	3.4.1 RRC Inactivity Timer
	3.4.2 Estimation of the Network Re-entry Time
	3.4.3 Network Overhead

	3.5 Which Inactivity Timer is suitable for LTE network?
	3.6 Experimental Results
	3.7 Conclusion

	4 RACH/RRC Performance
	4.1 Introduction
	4.2 Stress Test with Ixia
	4.2.1 Rate for RRC Connection Requests
	4.2.2 Test Configuration
	4.2.3 Test Results
	4.2.4 Other Considerations

	4.3 RAN Overload: Machine-to-Machine and Human-to-Human Communication
	4.4 RACH Procedure
	4.5 Modelling inter–RACH times
	4.6 RACH Collision Probability: Analytical Model
	4.6.1 Performance Evaluation

	4.7 Guidelines for RACH preamble serparation between HTC and MTC
	4.7.1 Simulation Design: MTC, HTC and RAO definition
	4.7.2 Simulation results: MTC traffic
	4.7.3 Simulation results: HTC traffic

	4.8 Conclusion

	References
	Appendix A LTE Theoretical Limits
	A.1 Maximum Number of UE per TTI
	A.2 Maximum Downlink Throughput

