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Sommario

L’Internet delle cose (IoT) sta velocemente diventando realtà, l’abbassamento dei prezzi
e l’avanzamento tecnologico nel campo dell’elettronica di consumo sono i due principali
fattori trainanti. Per questo motivo, nuovi scenari di applicazione nascono ogni giorno e
quindi nuove sfide da affrontare. Nel futuro saremo circondati da molti dispositivi intel-
ligenti che monitorerranno e agiranno sull’ambiente fisico. Questi dispositivi intelligenti
saranno le fondamenta per una pletora di nuove applicazioni intelligenti che forniranno
agli utenti finali nuovi servizi evoluti. In questo contesto, la qualità del servizio (QoS) è
stata identificata come un requisito non funzionale fondamentale per il successo dell’ IoT.
Infatti, nel futuro Internet delle Cose, avremo applicazioni diverse, ognuna con specifici
requisiti di QoS, che necessiteranno di interagire con un insieme finito di dispositivi intel-
ligenti ognuno con determinate capacità di QoS. Questa mappaturatra richieste e offerte
dovrà essere gestira per soddisfare gli utenti finali.

Il lavoro di questa tesi si focalizza sui meccanismi che permettono di fornire la QoS in
ambito IoT sfruttando un approccio inter-livello. In altre parole, il nostro obiettivo è fornire
un supporto alla QoS che, da un lato, aiuti le architetture di back-end nel gestire il vasto
insieme delle applicazioni IoT, in cui ogni applicazione ha dei requisiti QoS diversi, mentre
dall’altro lato, vogliamo arricchire la rete di accesso aggiungendo la capacità di gestire
richieste con parametri QoS direttamente sui dispositivi intelligenti.

Abbiamo analizzato le piattaforme che già forniscono un certo livello di QoS e, basan-
doci sullo stato dell’arte, abbiamo derivato un nuovo modello specificatamente pensato
per sistemi IoT. Quindi abbiamo definito le procedure necessarie per negoziare il livel-
lo di QoS richiesto e per farlo rispettare. In particolare ci siamo concentrati sul proble-
ma della selezione dei dispositivi che si presenta quando più dispositivi possono fornire
contemporaneamente lo stesso servizio.

Infine abbiamo considerato il livello di accesso fornendo diverse soluzioni atte a ge-
stire il supporto alla QoS a diversi livelli di granularità. Abbiamo proposto una soluzione
totalmente trasparente che utilizza tecniche di virtualizzazione e di proxying per differen-
ziare tra differenti classi le applicazioni fornendo perciò un trattamento di prioritizzazione
basato sulle suddette classi. Quindi siamo andati oltre e abbiamo sviluppato un siste-
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ma di QoS che si basa direttamente sul protocollo IoT chiamato Constrained Applica-
tion Protocol (CoAP). Abbiamo strutturato il sistema di QoS per migliorare il paradigma
denominato Observing che è estremamente importante soprattutto se consideriamo le
applicazioni industriali che potrebbero ottenere un notevole beneficio da assicurazioni di
tipo QoS.
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Abstract

The Internet of Things (IoT) is rapidly becoming reality, the cut off prices as well as the
advancement in the consumer electronic field are the two main training factor. For this
reason, new application scenarios are designed every days and then new challenges that
must be addressed. In the future we will be surrounded by many smart devices, which
will sense and act on the physical environment. Such number of smart devices will be the
building block for a plethora of new smart applications which will provide to end user new
enhanced service. In this context, the Quality of Service (QoS) has been recognized as a
non functional key requirement for the success of the IoT. In fact, in the future IoT, we will
have different applications each one with different QoS requirements, which will need to
interact with a finite set of smart device each one with its QoS capabilities. Such mapping
between requested and offered QoS must be managed in order to satisfy the end users.

The work of this thesis focus on how to provide QoS for IoT in a cross-layer manner.
In other words, our main goal is to provide QoS support that, on one hand, helps the
back-end architecture to manage a wide set of IoT applications, each one with its QoS
requirements, while, on the other hand, enhances the access network by adding QoS
capabilities on top of smart devices.

We analyzed existing QoS framework and, based on the status of the art, we derive a
novel model specifically tailored for IoT systems. Then we define the procedures needed
to negotiate the desired QoS level and to enforce the negotiated QoS. In particular we
take care of the Thing selection problem which is raised whenever more than one thing
can be exploited to obtain a certain service.

Finally we considered the access network by providing different solutions to handle
QoS with different grain scale. We proposed a totally transparent solution which exploits
virtualization and proxying techniques to differentiate between different class of client
and provide a class based prioritization schema. Then we went further by designing a
QoS framework directly on top of a standard IoT protocol called Constrained Application
Protocol (CoAP). We designed the QoS support to enhance the Observing paradigm
which is of paramount importance especially if we consider industrial applications which
might benefit from a certain level of QoS assurances.
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1

Introduction

The recent advancements in embedded computing and sensor technologies are turning
the Internet of Things (IoT) into reality. Many solutions commercially available today ex-
ploit networked smart objects to provide end-users with advanced services connected to
the physical world. Such solutions are however often vertical, isolated, systems based
on ad-hoc HW/SW realizations which are not able to cooperate with each other to share
common smart object capabilities. Isolation is not the only drawback: from a software de-
veloper perspective, the lack of a common software fabric to interact with smart objects
entails great limitations on software portability and maintenance [1].

To overcome such limitations, a layered horizontal approach is by far more appro-
priate and desirable, since it eases the integration of heterogeneous existing systems,
and also facilitates the development of IoT applications based on an unified interface to
a converged infrastructure. In fact, several horizontal IoT platforms have been recently
designed and developed exposing standard interfaces to access smart objects. Most of
these solutions are characterized by a centralized cloud-based approach, which yields
the usual benefits in terms of scalability (potentially infinite computation and storage ca-
pacity), ease of maintenance, time to market and low development costs. On the other
hand, running an IoT platform in a cloud infrastructure deployed far from where the smart
objects are physically located may result in a sub-optimal choice for many classes of
IoT applications, e.g., Machine-to-Machine (M2M) ones, which typically have a limited
scope in time and space (data need to be processed only when and where it is gener-
ated), require simple and repetitive closed-loop interactions, and often must respond with
stringent latency guarantees to avoid service disruption.

For this reason new cloud-based architectural designs are being considered to ac-
count for the distinctive features and characteristics of IoT components, i.e., support of
real-time QoS-aware interactions and collection of fresh and accurate context information.
In particular, such novel hierarchical architectures extend the cloud to the edge through a
capillary infrastructure that moves computing and storage services closer to sensors and
actuators. A notable example of these new approaches is the so called fog computing
paradigm [2][3].
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CHAPTER 1. INTRODUCTION

In this work we design an all-in-one QoS solution for horizontal IoT architecture. Our
main goal is to provide QoS support that, on one hand, helps the back-end architecture
to manage a wide set of IoT applications, each one with its QoS requirements, while, on
the other hand, enhances the access network by adding QoS capabilities.

In order to provide QoS support for the back-end architecture we must consider that
the wide set of future IoT applications will raise new challenges. As an example, latency
(besides dependability) is a critical factor for applications such as real-time sensor mon-
itoring in personal health-care or public safety systems [4]. On the other hand, other
applications like, e.g., road traffic management applications for urban mobility, though
less sensitive to delay bounds, may nevertheless benefit from receiving some form of
soft real-time treatment, at least for a subset of their provided services (e.g., urgent alert
notifications) [5]. Moreover, applications involving streaming of multimedia content like
video surveillance that consume higher bandwidth will require full support from the plat-
form not only to guarantee an acceptable level of service but also to avoid saturation and
waste of network resources.

In this context, efficient support for heterogeneous QoS requirements is a non-trivial
challenge. The number of shared communication and computational resources that will
be highly heterogeneous and constrained in a variety of manners represent a complex
field to operate: smart things are constrained devices in terms of computation, storage
and energy (since they may be battery operated). Moreover, things are more volatile
and dynamic: continuous changing context and intermittent availability are the two main
factors that differentiate IoT services supported by smart objects, i.e., battery powered
devices perhaps in movement, from traditional services running on fixed powerful hosts.

However the integration of different sensing and actuating systems into one single
service infrastructure allows applications to benefit from high IoT service availability: dif-
ferent equivalent smart things may provide similar services - called equivalent services
in the rest of this work - with common functionalities but different QoS and cost (e.g.,
different smart cameras may provide, if appropriately steered, the same view of a given
area from different directions).

In order to handle this heterogeneity a comprehensive QoS management framework
is needed. The framework must operate at different time scales, i.e., resource provi-
sioning and runtime, and comprises a general QoS model, SLA-based negotiation and
admission control, and optimized resource provisioning.

Thus we propose a new QoS framework, which could be integrated into existing IoT
architectures, that try to achieve the following objectives: (i) guaranteeing scalability over
large IoT deployments characterized by heterogeneous devices, (ii) supporting M2M ap-
plications with a wide range of QoS requirements, (iii) exploiting the large number of
smart objects that are expected to be connected providing equivalent services in order to
allow the definition of efficient resource allocation algorithms.

To support large IoT deployments we focus on architectures which follows the fog
paradigm by implementing a distributed architecture made of interconnected gateways.
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Support for heterogeneous applications is guaranteed through Service Level Agree-
ments that allow the negotiation of the desired QoS including also hard real-time require-
ments. A SLA negotiation framework is included in the design to expose to applications
an interface to negotiate the desired QoS level.

Finally, due to the unique features exposed by smart things the standard algorithms
used to handle resource allocation are not suitable. For this reason we move forward
by developing a novel efficient service selection algorithm which take into account the
energy consumption and perform the selection of things matching application requests,
whilst guaranteeing to meet the respective QoS requirements.

Taking into account the access network we focus our research on the application
layer. In recent years a considerable effort has been carried out to integrate the IoT into
the Web. The Web of Things (WoT) envisions a full integration of smart objects within
the World Wide Web: objects implementing a REST interface are seamlessly accessed
by applications through the same successful RESTful paradigm adopted to access web
resources [6]. With the aim of making the WoT real the IETF Constrained RESTful En-
vironments (CoRE) Working Group has recently specified the Constrained Application
Protocol, CoAP [7]. Defined to bring the RESTful paradigm to constrained devices, CoAP
is not just a lightweight version of HTTP with reduced overhead and limited complexity
in order to fit the limited capabilities of constrained devices. While preserving the original
paradigm, CoAP extends HTTP by introducing a set of functionalities to provide features
specifically tailored to Machine-to-Machine (M2M) applications. Among them, it is worth
to mention the observing operation, which provides applications with the ability to specify
an interest on the status of a resource in order to obtain unsolicited updates whenever
the latter changes [8].

The structure of current deployments is, however, far from supporting the long-term
WoT evolution. The latter will need large deployments that can efficiently satisfy concur-
rent requests also implementing security and QoS features to enforce access control and
service differentiation, respectively. In this context the variety of applications exploiting
smart objects for heterogeneous purposes will demand support for easy customization
to implement third-party functionalities, e.g., for protocol translation or custom features.
In fact, the embedded computing systems implementing smart objects may have sev-
eral constraints in terms of computation, storage, communication, and time operation,
if battery powered. To scale to the expected levels of concurrency and implement addi-
tional features, intermediate devices are needed to appropriately manage concurrency of
access.

Thus we propose a framework to address the challenges of large-scale WoT de-
ployments. The proposed solution aims, on one side, at ensuring scalability to multiple
concurrent requests, and, on the other, at guaranteeing expandability through the imple-
mentation of QoS policies for request differentiation. Deployed on intermediate devices,
e.g., gateways, the proposed solution makes use of the functionalities offered by CoAP
proxies to transparently isolate clients, i.e., applications, from servers. Virtualization is
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included in the design to allow implementation of future custom functionalities that can
be introduced to manage the requests from one (or a group of) application(s).

In fact, we can exploit virtualization techniques to differentiate applications by expos-
ing, through a virtualized gateway, a different set of smart things. This solution is totally
transparent and powerful. However, to obtain a fine grained control of QoS capabilities
we have to break this rule and introduce software logic on both sides of the interactions.

As an example suppose to have a smart thing, e.g. a temperature sensor, that can
be queried by two different applications. The first application wants a fresh value every 5
seconds while the latter one just wants to store data for later historical processing, so a
fresh message every 10 minutes is enough.

Obviously both applications should receive updates based on their needs so such
different requirements must be negotiated between the applications and the smart device.
On the other hand, the smart devices will be, usually, a constrained devices which cannot
handle complex interactions.

To address this issue we propose a solution that leverages on gateways to add QoS
support directly between smart devices and applications. The role of each gateways is
to limit the number of message exchanged by the constrained devices and to manage
complex interactions on behalf of constrained devices. Moreover, each gateway may acts
as a point of access to a set of smart devices and it is the best candidate for hosting
security and QoS managers.

Another point to take into account is the meaning of "freshness". Constrained devices
usually work in Low power Lossy Networks (LLN) where delays may occur due to con-
gestion more often then in traditional networks. Such delays affect the freshness of the
information dispatched to the customers by the gateway.

Coming back to the previous example, an application which requires data every 5
seconds may not be interested anymore if the information that he receives is older that
5 seconds. This approach is outlined also by the Data Distribution System (DDS) archi-
tecture [9], where clients specify the maximum acceptable delay from the time the data
is produced until the time the data is inserted in the receiver’s application cache. The
gateway that manages the interactions must take delays into account in order to avoid
the dispatching of older information according to clients needs.

In order to overcome this issues we propose a solution to integrate the QoS support
over the CoAP protocol. In particular we developed a standard solution that enhance the
Observing feature of CoAP [8] in order to provide to clients notifications based on their
requirements. To achieve this we partially exploited the CoRE Interfaces draft [10] for the
negotiation phase, while we leverage on the CoCoA work [11] to monitor continuously the
delays in the LLN network in order to avoid the dispatching of old information.

Finally we also consider the IoT field from the prospective of the developer. We de-
velop a CoAP library called CoAPthon. CoAPthon is specifically designed to offer soft-
ware developers an easy-to-use programming interface that can simplify application de-
velopment. Its goal is to provide a tool for fast development of IoT application and rapid
prototyping of IoT systems. In fact, CoAPthon is fully implemented in Python in order
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to exploit its simple easy-to-learn syntax that looks very similar to pseudo code, and
the built-in portability of the language. Initially proposed as a teaching language, Python
has evolved today into a general-purpose language suitable for easy development of
real-world applications [12], also already adopted in the context of IoT applications in
both academic projects [13] and real deployments [14]. Its portability, instead, allows IoT
applications to run without modifications on heterogeneous embedded systems. Such
requirement is mandatory to handle the large heterogeneity of architectures and capa-
bilities of systems adopted today for prototyping and small-scale deployments, such as
UDOO [15], Raspberry PI [16], and Arduino YUN [17]. To the best of our knowledge,
CoAPthon is the first full-fledged CoAP library implemented in Python.

The rest of the manuscript is organized as follow: in Chapter 2 we present a generic
architecture (called Things as a Service) which has been used as the reference archi-
tecture to integrate the QoS support into existing IoT frameworks. Chapter 3 provides a
detailed description of the negotiation framework involved between the reference archi-
tecture and applications. In Chapter 4 we present the two-step QoS procedure used to
reserve and allocate requests to resources while in 5 the detail of the resource reserva-
tion algorithm is presented. Then in Chapter 6 we start to analyze the access network
introducing our virtualization framework for the Web of Things. Chapter 7 go further by
taking into account the integration of the QoS support on top of the CoAP protocol while
in Chapter 8 we present our python implementation of the CoAP protocol. Finally Chapter
9 depicts the conclusions of our work.
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Part I

QoS in the Fog layer
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2

Things as a Service Architecture

The integration of existing heterogeneous vertical M2M systems into a new horizontal
platform has been recognized as a key factor to boost the development of the Internet
of Things vision. In this scenario, many different project aim at developing a framework
to enable integration of different M2M systems exposing physical objects to applications
through a novel service-oriented interface, the Things as a Service model. In this chap-
ter we present a generic Thing as a Service architecture which has been used as the
reference architecture for the work presented in Chapter 3, Chapter 4 and Chapter 5.

We started with a deep analysis of existing reference models and architectures for
IoT, then we derive our architecture which can be seen as an abstract model for all the
existing IoT architecture. In particular we design a distributed framework composed by
different interconnected gateways which has been also referred in the literature as fog
computing [2].

Figure 2.1: Functional model.

Each gateway is an independent entity and runs the overall stack as in Fig. 2.1. The
Functional model follows a layered approach composed by three layers: the Thing as
a Service layer (TaaS hereafter for short), the Adaptation layer and the Physical layer,
respectively. This layered approach as been chosen to be as more general as possible
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on one side, but on the other hand to separate functionalities in order to better describe
capabilities.

The Adaptation layers has been defined to enable the integration and access of dif-
ferent existing IoT/M2M systems. It guarantees transparent access to physical objects
regardless of their physical model or their location. Differences among the physical sys-
tems are conformed at this layer, which exposes a common interface to the TaaS layer.
This interface is deployed as a set of APIs, which are used by the TaaS layer to access
the functionalities offered by IoT/M2M systems in a uniform manner.

The TaaS layer, by definition, enables the service layer to access things as a service.
TaaS is implemented in a distributed manner: each gateway runs a TaaS local compo-
nent, which connects to its peers to provide access to things regardless of their location.
An application requiring access to one thing interacts with its TaaS local component,
which represents its unique interface towards the things. The local component is then
responsible for accessing the thing through its own Adaptation layer, if the thing is con-
nected to the local network, or for forwarding the service request to the TaaS local com-
ponent of the gateway where the thing is connected. Instead of providing direct access to
the uniform interface provided by the Adaptation layer, TaaS is included in the design not
only to provide location independent access but also to enrich data with context informa-
tion in order to allow context-aware discovery and access.

Figure 2.2: Functional model instance.

As already pointed out gateways are interconnected as in Fig. 2.2 forming the so
called instance. In this way, when an application interacts with the TaaS layer deployed
on a gateway, it can access to all the IoT/M2M systems within the instance regardless
where such system is physically connected.

Finally, let us introduce the following assumptions:

• A thing service is uniquely identified by a thingServiceID (TSID).
• A Thing is uniquely identified by a thingID (TID).
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Specific requirement of the proposed platform is the exploitation of the possibilities
offered by equivalent things. As a result of the integration of different systems, large IoT
networks are expected to be characterized by a large number of equivalent things, which
can potentially provide the same services.
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3

QoS Negotiation in Things as a Service architectures

Quality of Service support is a non-functional requirement of paramount importance for
applications with stringent requirements which will be common in the M2M field. In this
chapter we present our negotiation framework which allows Machine-to-Machine (M2M)
applications to negotiate the required Service Level Agreement. The goal is to expose
to applications a standard interface which can be exploited to negotiate the desired QoS
selecting one of the service classes defined by the framework.

For an overview of Things as a Service architectures we refer the reader to Chapter
2.

3.1 Motivation

Quality of Service support has been identified as a key non-functional requirement to en-
able many IoT-related application scenarios. Although several proposals have been pre-
sented in order to enable end-to-end QoS in constrained environments, all these works
focus on a particular technology or address a specific sub-problem and do not propose
a solution to handle the problem entirely. An example is the field of Wireless Sensor Net-
works (WSN) in which many models for QoS have been developed for the MAC layer
[18], [19] or the routing protocol [20], [21]. The future IoT world, however, will go beyond
current WSNs with a new generation of devices such as actuators or smart cameras that
differ significantly from traditional sensors.

Several proposals aimed at introducing QoS support have been proposed for Service
Oriented Architectures (SOA) where QoS is a crucial requirement. A first QoS framework
for SOA is presented in [22], where applications request services with certain require-
ments and the framework manages to find a possible allocation, among the set of regis-
tered service, in order to fulfill QoS requirements. In [23] authors propose a QoS frame-
work supporting also Real-Time requirements in a distributed heterogeneous environ-
ment. Approaches defined in the context of SOA systems lack of support for constrained
devices that introduce new non-trivial issues and would require significant modifications.
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To the best of our knowledge, a first attempt to address such issues has been done in
[24], where the use of web services for sensors integration is proposed. However, this ap-
proach aims at implementing a service-oriented middleware directly on the nodes, which
is not always feasible due to their constrained environment. To overcome these limita-
tions, in [25] an adaptable middleware is proposed; the middleware functionalities can be
configured to reduce their complexity in case of constrained devices such as sensors.
The proposed solution exposes a SOA interface to applications in which a flexible QoS
support is provided by means of Service Level Agreements (SLAs) between the appli-
cations and the middleware. The solution proposed, however, is specifically tailored to
WSNs.

In the context of distributed real-time systems, in [26] a framework for dynamic re-
source allocation and re-distribution is presented, however it lacks of admission control
functionalities that are important especially in constraint environments. To partially over-
come this issue, authors of [27] propose a middleware that implements an admission
control and a load balancer. The latter in particular is responsible for optimizing resource
allocation at run time by migrating tasks between processors, if necessary.

We saw the lack of a uniform middleware which try to address the following require-
ments:

• Provide support for negotiating the QoS required by applications.
• Not grant the service to applications not reaching an agreement during negotiation.
• Provide a re-negotiation procedure which might be requested by the framework in

order to handle internal status changes.
• The framework shall be based on open technologies and standard protocols.
• A common set of predefined Service Level Agreement (SLA) templates shall be in-

cluded in the system in order to enable the framework to consider a wide set of QoS
requirements.

• Time critical services shall be supported with the definition of a real-time class of
service.

3.2 QoS Model

In order to guarantee a QoS that can be negotiated by applications, a uniform QoS model
has to be defined first. The categorization of the requirements is necessary to derive a
classification adopted by the system to support applications efficiently. In this following
we first provide an overview of the state of the art on QoS models, and then we present
the classification derived for our framework.

3.2.1 Overview of existing QoS Models

A QoS service model and relate requirements for M2M applications was developed in [28]
and [29] with specific reference to cellular networks as access technology. In particular,
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authors of [29] group M2M applications into five categories: mobile streaming, smart
metering, regular monitoring, emergency alerting, and mobile POS (Point Of Sales). Each
category poses different QoS requirements to the underlying network:

• Mobile streaming traffic involves continuous video transmission at high data rate with
lower priority than other traffic. On one hand, video requires high bandwidth, soft
real-time delivery and low jitter. On the other hand, the traffic is error tolerant.

• Smart metering traffic is characterized by large sporadic burst of packets with a
request-response pattern. Its priority is low and the transmission can be rejected
in case of network congestion. Its transmission has to be reliable but the traffic is
delay-tolerant.

• Regular Monitoring traffic is characterized by small periodic packets(the period is in
the order of seconds). Its priority is low and it does not have real-time requirements.
Transmission reliability, instead, is critical.

• Emergency Alerting traffic is the most critical category.It is characterized by bursts
of data which require the highest priority. The packet size is not predictable and a
real-time and reliable transmission is needed.

• Mobile POS traffic is characterized by bursts of data with low priority. Real-time trans-
mission is not required but reliability is a crucial requirement.

Starting from this traffic categorization, the authors uniform QoS requirements in order
to cover both H2H and M2M services. The categorization is based on the main features
of three types of services: conversational, data transferring and emergency alarming,
characterized respectively by real-time transmission, data accuracy and trans- mission
priority. Based on this three macro types seven service categorizations ranging from real-
time to best-effort service have been developed.

In [30] three service models are defined based on the following factors: interactivity,
delay and criticality: Open Service Model, interactive, non real-time and non mission-
critical; Supple Service Model, interactive or non-interactive (according to the user sub-
scription), soft real-time and mission-critical; Complete Service Model, non interactive
(continuous flow of data), hard/soft real-time and mission-critical.

Since the framework takes into account different heterogeneous scenarios it is im-
portant to consider a wide set of QoS requirements. However, M2M applications have
their core functionalities relying on sensors and actuators which are constrained devices
in terms of computational and communication capabilities. In the field of Wireless Sen-
sor Networks (WSN) several studies have been carried on to highlight application QoS
requirements.

In [31] a QoS management system with requirements designed specifically for WSNs
is presented. In particular, energy consumption is considered as it is one of the most im-
portant QoS metrics for WSN. Different sensors, due to their own characteristics, have dif-
ferent requirements: battery powered sensors need a reduced data sampling frequency
while sensors without energy limitations can use a higher data sampling frequency. How-
ever, in order to have a fine grained characterization of sensors, other capabilities are also
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taken into consideration besides energy operation. In particular, a sensor can be single
or redundant. A single sensor can be polled by different sources at the same time; in
this case the middleware has to manage the requests with a certain priority following the
set of QoS metrics. A redundant sensor, instead, is a virtual sensor whose information is
provided by a group of physical sensors which can provide an equivalent information. In
this case, the middleware can issue the request to any physical sensor belonging to this
group thus applying a load balancing policy. Another differentiation is related to sensor
data: on one hand, multimedia sensors have strict delay requirements but are packet loss
tolerant, on the other hand monitoring sensors do not have stringent real-time require-
ments but rely on reliable transmission. Eventually, the authors present a categorization
based on sensor transmission type: Event driven, Query driven, and Continuous. Each
category is mapped to different QoS requirements:

• Event driven: Medium access delay, Reliability, Energy consumption, Flexibility;
• Query Driven: Medium access delay, Reliability, Energy consumption, Flexibility;
• Continuous: Collision rate, Energy consumption, Interference/ Concurrency.

In [32] the authors categorize applications in three major classes with different re-
quirements: inquiry tasks, control tasks and monitoring tasks. Inquiry tasks require ser-
vice timeliness and reliability. Monitoring tasks require reliability but the service is delay
tolerant. A three-layer taxonomy is proposed: the Application and Service Layer which
contains all services, the Network Layer which manages network functionalities and pro-
vides QoS support, and the Perception Layer, which is used for system monitoring. At
the application layer, the QoS is intended by the user point of view and the focus is on
Service Time, Service Delay, Service Accuracy, Service Load and Service Priority. At
the network layer, QoS requirements are related with the network itself, but, in general,
main indicators are: bandwidth, delay, packet loss rate and jitter. A method for passing
QoS requirements from the upper layer (customers’ requirements) to the lower layer (re-
source allocation and scheduling) is proposed. QoS communication and translation is
another critical point: QoS requirements are different at each layer and depend on the
corresponding level of abstraction. Authors partially overcome this problem by adopt-
ing a cross-layer approach and dividing services into four classes: Control, Guaranteed
Service; Query, Guaranteed Service/Differentiated Service; Real-Time monitoring, Differ-
entiated Services; Non Real-Time monitoring, Best Effort. Network Layer and Perception
Layer use a QoS broker which is responsible for adapting QoS requirements received
from the Application Layer.

3.2.2 Service Classes

A significant trend emerges from the analysis of existing QoS models: the wide-range of
application requirements is handled by means of a very detailed classification that results
in numerous service classes. These approaches necessarily increase the complexity of
the infrastructure without fully satisfying M2M applications which often require ad-hoc
QoS assurances.
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For this reason, in the our framework a simple schema composed by three classes of
services has been adopted, in order to reduce the complexity of platform management
functionalities. At the same time, applications are allowed to customize their QoS require-
ments through a dynamic negotiation procedure. The three classes of services adopted
are the following: Real-time, Assured services and Best-effort.

The Real-time class is designed for applications with hard response time require-
ments where timing responses are usually mission-critical, e.g., surveillance alarm sys-
tem, health-care monitoring, industrial control. The negotiation phase is based on param-
eters, such as response time or service period, expressed in a deterministic manner. The
platform must respect the QoS guarantees provided to this class of applications strictly.

The Assured services class instead is for applications with soft response time re-
quirements. These applications usually tolerate some out-of-contract interaction, for this
reason the negotiation procedure is based on probabilistic requirements. This class can
be used by interactive application - ticketing or user information gathering – or may be
used by tracking applications for logistic.

Finally, the Best-effort class is used by applications that do not require any guarantee
such as an application for historical data collection.

3.3 Negotiation Framework

The framework has to allow applications to negotiate QoS through a standard protocol.
The literature about services and, in general, Service Oriented Architecture (SOA) is rich
and can provide standard solutions. In particular, a key feature in SOA systems is the
service negotiation procedure. The WS-Agreement [33] and WS-Agreement-Negotiation
[34] are the de-facto standards for SLA agreement negotiating, establishing and man-
aging in the Web Service field. It is worth to mention that the WS-Agreement and the
WS-Agreement Negotiation standards are already implemented by the WSAG4J [34]
project. The implementation is Java-based, it is publicly available, and the code is well
documented and stable.

The structure of the QoS framework is illustrated in Fig. 3.1. QoS negotiation capa-
bilities are provided to applications through a standard interface which has been imple-
mented by means of the WS-Agreement-Negotiation protocol.

Two main advantages characterize the WS-Agreement-Negotiation protocol: flexibil-
ity and interoperability. QoS support provided by the framework goes beyond the classic
approach adopted in SOA architectures, i.e., QoS functionalities have to take into ac-
count the characteristics of the things and the unique requirements of M2M applications.
To this aim, a flexible negotiation interface is needed to support future technologies with
requirements that might not be already defined. On the other hand, the use of a stan-
dard protocol for QoS negotiation between the applications and the TaaS layers assures
interoperability by definition while guaranteeing also a higher level of implementation ef-
ficiency.
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Figure 3.1: QoS framework with negotiation interactions.

In detail, the WS-Agreement protocol defines the message exchange by two end-
points in order to create a service level agreement – see Fig. 3.1. In the first step, the
service consumer requests all the available templates from the service provider. The
consumer selects a template and creates a new agreement offer. Then, it sends the offer
to the service provider to create a new agreement. The service provider replies with a
confirmation or a rejection message, the confirmation contains an Agreement Endpoint
Reference (AgreementEPR) generated to uniquely identify the committed agreement. An
offer describes the service as well as the guarantees required for each service. Offers,
templates and, in general, agreements are defined by an XML document with a specific
schema outlined in Fig. 3.2.

An agreement schema is composed by two main parts: Context and Terms Compos-
itor. The Context provides information on both consumer and provider and optionally an
expiration time that defines how long an agreement (and associated services) is valid.
One or more Terms Compositor are specified to describe the services. The Terms Com-
positor is used to structure all the different terms related to each service by creating a so
called Terms Tree. It is important to highlight that a Terms Compositor can contain zero or
more other Terms Compositors. Each Terms Compositor is composed by Service Terms,
a Service Term describes the service and gives a pointer to reference it and, finally, de-
fines and evaluates the guarantees of the WS-Agreement. It is worth to note that multiple
Service Terms can describe a single service in an agreement. In fact, each Service Term
describes a different aspect of the service.

The WS-Agreement Negotiation standard is an improvement built on top of the WS-
Agreement. It gives to the consumer and provider, involved in the process of establish-
ing an agreement, the capability of negotiating by means of offer (as the basic WS-
Agreement) and counter offer.

In order to enable QoS negotiation within the platform, specific templates are de-
fined. As an example, Fig. 3.3 shows the template included for Thing Service negotia-
tion between an application and the TaaS layer. This template, compliant with the WS-
Agreement specifications, defines a specific schema to describe the Service Description
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Figure 3.2: Agreement schema.

Terms required for the Thing Services invocation. The template follows the structure of
the WS- Agreement standard: a Context section (<wsag:Context> tag) which contains
the template name and the template id followed by a Service Description Term sec-
tion (<wsag:ServiceDescriptionTerm> tag) which defines the terms of the Thing Service
(<TSA:ThingService> tag). This section, in turn, includes the transaction ID needed to
identify the Thing Service (<TSA:Definition> tag) and the QoS parameters, (<TSA:QoS>
tag). In this example, a simple set of QoS parameters which can be included are defined:

• MaxResponseTime, used to specify the Response Time of the Thing Service. In de-
tail, it indicates the maximum delay between a Thing Service invocation and its re-
sponse, measured at the service layer.

• MinAvailability, used to specify the availability of the Thing Service.This parameter
is associated to each Thing Service and is, in principle, a static parameter. How-
ever, since the environment can change unpredictably the QoSMonitoring functional-
ity must control and adjust this parameter continuously.

• MaxRate, is the maximum rate a Service can invoke the thing service, in other terms,
a minimum inter-request time between two different requests from the same service.

19



CHAPTER 3. QOS NEGOTIATION IN THINGS AS A SERVICE ARCHITECTURES

1 <?xml version="1.0" encoding="UTF−8"?>
<wsag:Template wsag:TemplateId="1"

3 xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws−agreement">
<wsag:Name>Framework−Template</wsag:Name>

5 <wsag:Context>
<wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>

7 <wsag:TemplateId>1</wsag:TemplateId>
<wsag:TemplateName>Framework−Template</wsag:TemplateName>

9 </wsag:Context>
<wsag:Terms>

11 <wsag:All>
<wsag:ServiceDescriptionTerm wsag:Name="THING"

13 wsag:ServiceName="THINGSERVICE">
<TSA:ThingService

15 xmlns:TSA="http://iet . unipi . it /schemas/TSA">
<TSA:Definition>

17 <TSA:transactionID>
$TRANSACTIONID

19 </TSA:transactionID>
</TSA:Definition>

21 <TSA:QoS>
<TSA:MaxResponseTime>

23 $MAXRESPONSETIME
</TSA:MaxResponseTime>

25 <TSA:MinAvailability>
$MINAVAILABILITY

27 </TSA:MinAvailability>
<TSA:MaxRate>

29 $MAXRATE
</TSA:MaxRate>

31 </TSA:QoS>
</TSA:ThingService>

33 </wsag:ServiceDescriptionTerm>
</wsag:All>

35 </wsag:Terms>
</wsag:Template>

Figure 3.3: Service Layer – TaaS Layer negotiation template.

3.4 Conclusions

In this chapter the QoS negotiation framework which allows applications to negotiate the
desired QoS of the things exposed as a service is presented. A QoS model for M2M ap-
plication is derived from the existing QoS models to be used within an open negotiation
framework integrated in the system as an interface exposed to applications for QoS ne-
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gotiation. Considered the layered architecture of the reference platform, the same open
and standard interface can be adopted in order to extend the proposed framework to any
existing platform following a standard integration procedure.
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4

QoS Reservation and Allocation: a differentiated
time-scale approach

Let’s start by considering the reference architecture presented in Chapter 2 with the QoS
negotiation framework outlined in Chapter 3. The QoS negotiation framework alone is
obviously not enough to enforce and monitor the negotiated QoS requirements. To this
aim a pervasive QoS framework must be included in the architecture. Thus, once the
negotiation phase is performed, a SLA is established and applications could invoke thing
services with the negotiated QoS level. However, in order to accept or deny a specific re-
quest the framework must verify if the requirements can be fulfill. For this reason we need
a specific QoS procedure which is involved during the negotiation phase but also during
the invocation phase. In detail, the framework must reserve resources during the negoti-
ation phase and select the thing service at runtime among the possible set of equivalent
thing services in order to fulfill the committed agreement. The latter function is partic-
ularly relevant in the IoT field, due to the unique characteristics of smart thing, a thing
may be connected during the first phase but at runtime in the invocation phase it may be
disconnected. To solve this issue we design a two phase procedure called Reservation
and Allocation respectively.

4.1 The two-phase QoS Procedure

In our QoS framework we propose a two-phase procedure, namely, reservation and al-
location. The reservation phase is handled by a sub-component called QoSBroker. The
QoSBroker manages the QoS negotiation, performs admission control and, most impor-
tantly, manages resource reservation by exploiting equivalent thing services. It also gen-
erates Agreement End Point References (AEPRs) to authorize thing service invocation.
The allocation phase, instead, is managed by another subcomponent called QoSDis-
patcher. The QoSDispatcher performs allocation of resources at time of thing service
invocation. The QoSDispatcher can optimize the allocation by means of a number of pa-
rameters, e.g., in terms of energy efficiency. The reservation and allocation procedures
are tightly connected. However, while the allocation procedure may be involved in each
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thing service invocation, the reservation procedure is executed only once at time of ne-
gotiation.

To avoid data inconsistencies, race conditions, and long response times, which can
affect functionalities implemented in a distributed manner over large deployments, critical
system functions are provided through a centralized point of decision, which however
can be implemented in a distributed manner for scalability and resiliency over a subset of
nodes. For the sake of simplicity, we assume hereafter that this functionality is provided by
a single gateway called Designated GW. The choice of which GW become the Designated
GW is out of the scope of this work, however we can assume, without lack of generality,
that a distributed election procedure is adopted between gateways.

To reflect this design the QoSBroker and the QoSDispatcher are divided into two dif-
ferent sub-component with different scope: local and global, respectively. In the reserva-
tion phase we rely on a QoSGlobalBroker and on a set of QoSLocalBrokers. The former
is one for TaaS instance residing on the Designated GW, while one instance of the lat-
ter is deployed in every gateway. The same approach is adopted for the QoSDispatcher
(QoSGlobalDispatcher and a set of QoSLocalDispatchers). The local components man-
age, in term of QoS, the thing services provided by things that are directly connected to
the gateway where the component is deployed. The global components, instead, have a
global view of all the thing services available in the TaaS instance and are involved only
when a global view is required. The overall architecture is shown in Fig. 4.1. Below we
provide a detailed description of the two main procedures that are involved to provide
QoS support to applications.

Figure 4.1: Deploy diagram.

4.2 Reservation

The reservation procedure is involved when an application wants to negotiate a set of
thing services each one with certain QoS requirements. The applications can access
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thing services from any gateway that is part of the TaaS instance; however, from the
TaaS point of view, one and only one of the gateways is the application’s gateway –
GW1 in sequence diagrams. First of all, the application sends an agreement request to
its gateway. The agreement request encapsulates the TSID required by the application.
The request is handled by the QoSLocalBroker that forwards it to the QoSGlobalBroker.
The QoSGlobalBroker validates the agreement request and, if it is feasible, reserves
resources for the application, performing so the admission control functionality. Then the
QoSGlobalBroker replies with the AEPR, which is also stored by the QoSLocalBroker of
the GW1. The AEPR is forwarded back to the application in order to enable the application
to invoke the negotiated thing services. For a detailed sequence diagram see Fig. 4.2.

Figure 4.2: Reservation.

It is worth to mention that, in this phase, we do not perform the mapping between
thing services and things. In fact, the time between the negotiation and the invocation
phase is unknown, thus if we perform the selection in this phase this might result in a
suboptimal allocation or incur in unpredictable errors due to the highly dynamic envi-
ronment. However, the QoSGlobalBroker has the view of all the committed agreements,
so it checks if the new agreement can be satisfied without violating previously accepted
agreements. In other words, the QoSGlobalBroker checks if there is at least one alloca-
tion schema that can be adopted in order to fulfill the requirements of every agreement
plus the new one. If the answer is positive, the new agreement is accepted; otherwise,
the agreement is rejected and the application is notified. The application can obviously
start a new negotiation phase with less stringent QoS requirements.

4.3 Allocation

The allocation procedure is performed every time an application invokes thing services.
Applications can invoke thing services several times, thus the selected things can change
between two different invocations. However, there is a drawback in this approach, which
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is the overhead associated to each invocation. In order to overcome this limitation, we
can perform the allocation phase only every γ invocations reducing the computational
overhead. Thus, there is a trade-off, modeled by the γ parameter, between the optimal
selection of things and the overhead associate to each allocation. To the sake of simplicity
in the rest of the paper we assume γ = 1, however the same considerations can be
written for larger values of γ.

Due the distributed nature of the TaaS, we can have two different types of allocation
scenarios: local allocation and global allocation. The dispatcher uses the list of equivalent
thing in order to discriminate between the two different procedures. The local allocation
is adopted when all the thing services requested are provided only by things directly
attached to the same gateways of the application. In this case, shown in Fig. 4.3, the
overall process starts and ends in the local gateway without any external interaction. For
the sake of explanation, we consider the case in which an application asks only for one
thing service. First of all, the application invokes the thing service (TSID) with also the
AEPR previously retrieved. These data are forwarded to the QoSLocalDispatcher, which
validates the AEPR with the help of the QoSLocalBroker. If the QoSLocalDispatcher is
authorized, it resolves the requested TSID to a TID that can be used to provide the thing
service by exploiting the equivalent things list.

Figure 4.3: Local allocation.

The global allocation is performed when the list of equivalent things contains at least
one thing not attached to the application’s gateway. In this case, the QoSLocalDispatcher
must delegate the allocation procedure to the QoSGlobalDispatcher. The global alloca-
tion is split in two more cases: one that takes place when the things involved are attached
to multiple gateways, and another one that takes place when all things, in the list of equiv-
alent things, are attached to only one remote gateway. The first case is explained in Fig.
4.4. After the authorization interaction, the QoSLocalDispatcher forwards the TSID to the
QoSGlobalDispatcher that replies back with the selected TID. Finally, the Thing Services
modules interact and the results are sent back to the application.
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Figure 4.4: Global allocation, first case.

The second case, instead, is a mix of the local and the global allocation, because if the
application is attached to the remote gateway the overall process will be accomplished
with the local allocation procedure. However, because the gateway involved is not the
application’s gateway a central point of coordination is needed. The overall process is
shown in Fig. 4.5 and is similar to the first global allocation procedure, however when the
QoSGlobalDispatcher receives the allocation request it must forward such request to the
QoSLocalDispatcher of the remote gateway. The remote instance of the QoSLocalDis-
patcher performs the allocation process following the local allocation procedure and then
replies back with the selected TID. The QoSGlobalDispatcher sends the response to the
origin QoSLocalDispatcher that forwards the TID to the Thing Service module. After the
interaction, between the Thing Service modules involved, the results are sent back to the
application.

Figure 4.5: Global allocation, second case.
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4.4 Conclusions

In this chapter a distributed QoS procedure specifically designed for Thing as a Service
architectures is presented. The proposed solution aims at introducing in large heteroge-
neous IoT systems functionalities for QoS enforcement. Specific attention to scalability is
given in the design at any rate. The proposed framework establishes a fertile soil for the
definition of algorithms and schedulers that can guarantee efficient resource allocation,
which will be presented in the next chapters.
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Energy-Efficient QoS-aware Thing Service Selection

The two-phase QoS procedure presented in Chapter 4 base its decision on the Thing
Service Selection algorithm. In this Chapter we present an energy efficient allocation
algorithm that takes into account the unique features of smart things. Moreover the al-
gorithm fully exploits the concept of equivalent services in order to extend the lifetime of
battery powered devices. The contribution is twofold: (i) an energy-efficient thing alloca-
tion problem is formally defined as an instance in the class of generalized assignment
problems; and (ii) a time-efficient heuristic algorithm is proposed that is shown, through
numerical analysis, to find a solution close to the optimal one in a time suitable for imple-
mentation in a real system.

5.1 Related Work

Research efforts aimed at deploying large-scale IoT systems are only recent. For this
reason, although the QoS-aware service selection problem has been widely studied in
traditional platforms, solutions specifically designed for IoT are still missing. To the best
of our knowledge, [35] is the only work proposing a QoS aware scheduling designed for
service-oriented IoT platforms. A multi-layered scheduling model is proposed to evaluate
the optimal allocation that meets the QoS requirements of applications. Different solutions
are deployed at different layers to manage different system resources, such as network
resources and IoT services. However, the proposed approach cannot be used for on-line
IoT-service selection, since it is mainly suited for off-line provisioning and planning. Our
approach, instead, is designed for run-time service selection and takes into account real-
time requirements of applications with stringent deadlines. In the field of SOA several
solutions for QoS-aware service selection have been proposed. In particular, in Web
Service architectures, support for QoS is a challenge considering the requirements of
both users and service providers [36]. In [37] authors propose a QoS broker for web
service composition that aims at finding the best combination in order to maximize the
end-user satisfaction. The proposed approach is based on a utility function that takes
into account only end-users without analyzing constraints from server providers. The first
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work that tries to meet both end-user and server provider requirements is [38], where the
authors propose a QoS-aware adaptive load balancing strategy. The proposed solution,
however, does not consider hard real-time requirements but only customer fixed priorities.
Finally, in [39] the authors present a heuristic that aims at finding the optimal allocation
that minimizes the overall response time. The proposed solution, however, provides only
probabilistic guarantees that cannot support hard real-time applications.

Solutions proposed in the field of SOA and Web Service architectures are not suited
for IoT deployments, as IoT systems are composed of service providers characterized
by constrained capabilities with limited battery capacity. On the other hand, such charac-
teristics are considered by design in solutions proposed in the field of Wireless Sensor
Networks (WSN), in which several solutions for task assignment have been proposed.
In [40] the authors present a novel methodology to assign tasks to sensors in order to
minimize the overall energy consumption. The WSNs is considered composed of het-
erogeneous devices with different capabilities. The proposed solution aims at minimizing
the overall energy consumption through a greedy approach: each task is assigned to the
sensor that consumes less power. The proposed approach, however, is also specifically
designed for WSNs and leverages a depth knowledge of the sensors and their connec-
tions, assumptions that do not apply to the general IoT field, which is usually agnostic to
network structure and hardware capabilities.

5.2 Assumptions

We base our work on the reference architecture presented in Chapter 2. In particular
in this chapter we address the Thing Service selection problem, for this reason we fo-
cus only on the Designated GW which runs the Reservation algorithm while, the QoS
procedure presented in Chapter 5, is hidden for the sake of simplicity.

The Designated GW acts as the central point of decision and fully exploit the concept
of equivalent things presented in Chapter 2, to this aim, the QoS Broker leverages on the
Context Engine and on the QoS Monitor.

Context, defined as “any information that characterize the situation of an entity” [41],
enhances the description of a thing service, e.g., acquisition of the temperature, with any
additional relevant information related to it, e.g., its location, its freshness, etc. Context
information is processed by the Context engine, the entity within the framework responsi-
ble for collecting and managing all the context information related to things. The Context
engine implements also a context-based service look-up functionality: it determines, for
each application service request, the list of equivalent things that can provide that ser-
vice. This is done by analyzing both the current context information associated to things,
and the context information associated to the required service. Algorithms for context
management and analysis are however outside the scope of this work.

The status of the system, instead, is maintained by a QoS monitoring entity, which
provides information about the battery level, as well as the computational, communica-
tions, and storage capabilities of things.
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Figure 5.1: Conceptual model.

Based on the information about the status of things provided by the QoS monitor-
ing entity, and the set of equivalent things per service request determined by the Con-
text engine, the QoS broker determines if all requests can be satisfied. It then allocates
one thing to each service request so as to minimize the energy consumption in case of
energy-constrained devices, thus maximizing the lifetime of the system. In this chapter,
we specifically focus on this allocation problem for a fixed set of requests and available
things, and develop a heuristic algorithm to find a solution close to the optimal one.

As other requests are negotiated or the system status changes, thing selection and
allocation to application requests need to be re-computed (transparently to applications)
in order to continue guaranteeing the commitment to meet QoS requirements.

5.3 Problem Formulation

We now formally define the thing allocation problem addressed in this chapter. We are
given a system comprising n things, each exposing a subset of IoT services, and a set
of k requests for service invocation. Each service j is assumed to be invoked periodi-
cally with period pj , e.g., in order to retrieve periodic updates from sensors or to send
periodic commands to actuators. Thing i is assumed to be a constrained device capable
of satisfying only one service invocation at a time. Moreover, a thing may be battery-
powered. Let bi be the battery capacity on thing i, i.e., the amount of available energy
before service allocation (possibly equal to +∞, if not battery-powered). Each invocation
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of a service j on thing i has a fixed execution time tij , including both communication
and computation times, and a fixed energy cost cij , representing the overall amount of
energy needed to accomplish the invocation of service j on thing i (including also energy
consumption due to communication). The cost of execution of a service on a thing has a
different impact depending on the initial battery level of the thing. In order to make a fair
comparison among costs, we consider costs of execution over a common (hyper-)period
h and normalized with respect to the available energy bi. The hyper-period h is computed
as the least common multiple among all request periods pj ; the normalized energy cost
fij of executing service j on thing i is given by

fij =
h

pj

cij
bi

(5.1)

Not all services can be invoked on any thing, but the same service can be invoked
on multiple equivalent things. Equivalence among things is based on context information
associated to thing services, which we assume is provided by mij as follows

mij =

{
1 if servicej can be invoked on thingi
0 otherwise

(5.2)

Without losing generality, we assume that each service request can be executed by
at least one thing, i.e., for any j, there is at least one i such that mij = 1.

The utilization uij of allocating requests for service j on thing i is finally defined as

uij =

{
tij
pj

if mij = 1

+∞ otherwise
(5.3)

The thing allocation problem is then to allocate the k requests to the n things to mini-
mize the maximum (normalized) energy cost among things over a hyper-period h, whilst
guaranteeing that all service invocations are completely executed before their implicit
deadline, i.e., the arrival of another invocation of the same service. Formally:

min

 max
1≤i≤n

k∑
j=1

fijxij

 (5.4)

s.t.

n∑
i=1

xij = 1, j ∈ K (5.5)

k∑
j=1

fijxij ≤ 1, i ∈ N (5.6)

k∑
j=1

uijxij ≤ v, i ∈ N (5.7)
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xij ∈ {0, 1} , i ∈ N, j ∈ K (5.8)

where

xij =

{
1 if requestj is allocated to thingi
0 otherwise

(5.9)

and K = {1, ..., k} , N = {1, ..., n}.
Constraint (5.5) ensures that each service request is assigned to only one thing,

whereas constraint (5.6) bounds the energy consumption of each thing in the hyper-
period h to its battery capacity bi. Finally, constraint (5.7) bounds the overall utilization
of each thing to a schedulability limit v to guarantee that the implicit deadline of each
invocation is satisfied. The limit v is a bound based on the well-known sufficient condition
for the schedulability of a set of periodic tasks on a single CPU [42].

The problem is an Integer Linear Problem that results to be an instance of the Agent
Bottleneck Generalized Assignment Problem (ABGAP) [43], a variation of the well-known
Generalized Assignment Problem (GAP) defined in the literature and known to be NP-
hard. To the best of our knowledge, there is no well-known general algorithm specifically
designed to solve ABGAP. Stemming from heuristics proposed to solve GAP and BGAP
in [44] and [45], respectively, we developed a novel greedy polynomial-time heuristic al-
gorithm to solve ABGAP, and applied it to the problem defined by (5.4)-(5.7)

5.4 The RTTA Algorithm

In this section we describe the proposed heuristic, named Real Time Thing Allocation
algorithm (RTTA), to solve the ABGAP problem defined in the previous section. The input
to RTTA are: the number of things n, the number of requests k, the normalized energy
cost matrix F = {fij}, the utilization matrix U = {uij}, a precision threshold ε, and,
finally, an optional priority matrix P = {pij}. The latter is used to steer the thing allocation
procedure Feas described in detail below. The output is: a boolean isFeasable, which
takes the True value if at least one allocation exists, the allocation vector y that maps
service requests to things, and the corresponding residual battery vector z.

The rationale behind RTTA is to iteratively search for the first feasible allocation that
guarantees the highest minimum level of residual battery for all things. To this aim, RTTA
leverages a procedure Feas that, given a threshold θ, finds an allocation so that the resid-
ual battery on each thing after service invocation is no lower than θ. On every iteration,
the threshold θ is decreased until a feasible solution is found with an acceptable precision
level measured by ε. More specifically, a binary search strategy is used to reduce the time
needed to execute the overall procedure. At any iteration, upper and lower give the cur-
rent upper and lower bounds of threshold θ, respectively. When the difference between
upper and lower is less than the input parameter ε, the algorithm stops - see Fig. 5.2.

The core of the RTTA algorithm is the procedure Feas which is derived from a classical
approach in the literature to tackle assignment problems [45]. The pseudocode of the
Feas algorithm is reported in Fig. 5.3. The allocation is based on the values of a priority
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Algorithm RTTA
2 Input: n, k, P , F , U , ε

Output: z, y, isFeasable
4

[z, y, isFeasable]← Feas(...)
6 if isFeasable = True then:

lastFeas← 0; upper ← 1; lower ← 0
8 while upper − lower > ε do:

θ ← (upper−lower)
2

10 [z, y, isFeasable]← Feas(...)
if isFeasable = True then:

12 lastFeas← θ; lower ← θ

θ ← θ + (upper−lower)
2

14 else:
upper ← θ; θ ← θ − (upper−lower)

2
16 if isFeasable = False then:

θ ← lastFeas
18 [z, y, isFeasable]← Feas(...)

Figure 5.2: Pseudo-code of RTTA.

matrix P passed as input. In particular, element pij of P is a measure of the desirability of
allocating request j to thing i. All requests are then considered iteratively for allocation. At
each step, the next request to allocate, say j, is the one having the maximum difference
between the largest and the second largest pij (for all things i such that constraint 5.7 is
met). Request j is then allocated to the thing i for which pij is a maximum. If a service
request for which no feasible assignment is found, i.e., any possible allocation to a thing
implies its residual battery level goes below θ, the algorithm returns isFeasable equal to
False.

Otherwise, a post-processing local optimization procedure is performed in order to
improve the optimality of the solution. This is achieved by performing local exchanges:
for each request, the procedure verifies that the exchange of a service request j from
the selected thing i′ to any other thing i∗ increases the overall residual battery; if that
happens, the allocation is modified to select the thing i∗ instead of i′. The final solution
represented by y and z is then returned. Several choices are possible for setting the pri-
ority values in P . Preliminary numerical tests have shown that good results are obtained
when P is set equal to F or U . Both cases are then considered in the final specification
of the heuristic solution. The computational complexity of the RTTA algorithm is given by
the result below.

Property 1. The complexity of RTTA is O
(
β
(
nk3

))
.

Proof. Let us first evaluate the complexity of the Feas procedure. The most expensive
phase, on each iteration, is to compute Fj which requires O (nk) time. To compute the
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Algorithm Feas
2 Input: n, k, P , F , U , θ

Output: z, y, isFeasable
4

N ← {1...n}; K ← {1...k}; v ← k
(
21/k − 1

)
; isFeasable← True

6 for i← 1 to n do: ci← 0
for i← 1 to n do: zi← 1

8 while isFeasable = True and K 6= ∅ do:
d∗ ← −∞

10 foreach j ∈ K do:
Fj ← {i ∈ N : ci + uij < v, zi − fij > θ}

12 if Fj = ∅ then:
isFeasable← False

14 return
i′ ← argmax {pij : i ∈ Fj}

16 if Fj \ {i′} = ∅ then: d← +∞
else: d← pi′j −max2 {pij : i ∈ Fj}

18 if d > d∗ then:
d∗ ← d; i∗ ← i′; j ← j′

20 if isFeasable = True then:
yj∗ ← i∗; zi∗ ← zi∗ − fi∗j∗

22 ci∗ ← ci∗ + ui∗j∗ ; K ← K \ {j∗}
#Local optimization

24 foreach j ∈ K do:
i′ = yj

26 Fj ← {i ∈ N : ci + uij < v, zi − fij > θ, i 6= i′}
if Fj = ∅ then: continue

28 i∗ ← argmax {zi − fij : i ∈ Fj}
maximum← max {zi − fij : i ∈ Fj}

30 if maximum > zi′ − fi′j then:
yj ← i∗; zi ← zi′ + fi′j ; zi∗ ← zi∗ −minimum

32 ci′ ← ci′ − ui′j ; ci∗ ← ci∗ + ui∗j

Figure 5.3: Pseudo-code of Feas.

first and the second max the algorithm needs O (nk). The while loop (line 8) performs
O (k) assignments, hence by considering also the inner loop (line 10) we obtain a total of
O
(
k2
)

time. We can conclude that the overall time complexity isO
(
nk3

)
. The complexity

of RTTA is governed by the choice performed on ε. We can derive β according to:

β = log2
upper − lower

ε
(5.10)

ut

Hence, the overall complexity is O
(
β
(
nk3

))
.
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5.5 Performace Evaluation

In this section we report a numerical evaluation of RTTA as compared to the optimal al-
location obtained by solving the problem defined by (5.4)-(5.7), by means of a standard
optimization solver, i.e., IBM ILOG CPLEX. RTTA was implemented in C++. Experiments
were run on a machine with a Linux 64bit operating system. The machine is equipped
with an Intel Core i7-4770 CPU @ 3.40GHz, and 16 GB of RAM. The algorithm is evalu-
ated in different scenarios, each one characterized by a number of service requests and
available things, and an average number of services exposed by each thing, expressed
as a fraction of the overall number of service requests. For each scenario, one hun-
dred different inputs are randomly generated. More specifically, the initial battery levels,
computational costs and periods are drawn from a uniform distribution with parameters
as reported in 5.1. Moreover, mij ’s, i.e. context information about which services can
be invoked on which things, are also randomly generated so that the average number
of services per thing characterizing the scenario is fulfilled. Metrics of interest are then
estimated for each scenario along with 95% confidence interval.

Parameter Range
Period 10 - 100 s, step 10 s

Initial battery level 50 - 25 mJ, step 5 mJ
Execution cost 210−4 - 610−4 mW
Execution time 7 - 22.5 ms

Table 5.1: Experiments Parameters

Numerical experiments have been conducted with several combinations of the num-
ber of service requests and things. Results are similar in all considered scenario, there-
fore we limit in this work to report results to two different scenarios only. The first scenario
is characterized by 50 things and 500 requests, while the second consists of 100 things
and 500 requests. In both scenarios, the following average number of services exposed
by each thing are considered (expressed as a fraction of the overall number of service
requests, i.e., 500): 15%, 25%, 50%, 75% and 100%, respectively. To evaluate the per-
formance of RTTA, we consider the residual battery ratio defined as the ratio between the
battery level of a thing at the end of the hyper-period and the initial battery level.

Fig. 5.4 and Fig. 5.5 show the average minimum residual battery ratio over the set
of different inputs for the first and second scenarios, respectively. The objective of RTTA
is to maximize such ratio among all things, hence this metric can provide a measure
of how far is the heuristic solution from the optimal one. As can be seen, in all cases
the heuristic succeeds into finding an allocation which is very close to the optimum. The
difference reduces as the percentage of the average number of service requests that a
thing can satisfy increases. This means that RTTA is more efficient when there are more
opportunities to allocate a service to thing, i.e., the solution space is larger. On the other
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Figure 5.4: Min residual battery ratio (50
things, 500 requests).

Figure 5.5: Min residual battery ratio (100
things, 500 requests).

hand, when low percentages are considered (e.g., 15%), i.e., the sets of equivalent things
are small, we can notice that also the optimal solution decreases, though at a lower rate
than the heuristic algorithm.

Figure 5.6: Residual battery ratio (50
things, 500 requests).

Figure 5.7: Residual battery ratio (100
things, 500 requests).

Fig. 5.6 and Fig. 5.7 illustrate the distribution of the residual battery level in the first
and second scenario, respectively. The distribution is shown through the box-plot repre-
sentation where the bottom and top of the box represent the 25th and 75th percentile, the
band in the box the median (50th percentile), while the ends of the whiskers represent
the minimum and 95th percentile. As can be seen, even if the objective function tries to
maximize the remaining battery of the thing with less energy, the algorithm succeeds in
distributing the energy consumption among all the things obtaining uniform battery con-
sumption.

Finally, Fig. 5.8 and Fig. 5.9 illustrate the computation time required by the heuristic
algorithm and the optimization tool to find the optimal allocation in the first and second
scenario, respectively. As can be seen, the time required by the solver to find the optimal
solution is at least an order of magnitude higher than the time required by the proposed
algorithm to find an allocation that is comparable to the optimal value. It is also worth
noting that the performance of the heuristic algorithm is only slightly affected by the size
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Figure 5.8: Computation time (50 things,
500 requests).

Figure 5.9: Computation time (100 things,
500 requests).

of the problem (100 things in the second scenario vs. 50 things in the first one), whereas
this has a much higher impact on the solver, which take almost an additional order of
magnitude of time to find the solution.

5.6 Conclusions

In this chapter we tackled the problem of QoS-aware service selection in Things as a
Service architectures. First, we formally defined the problem of optimum energy-efficient
service selection in which real-time QoS requirements are enforced considering context-
information. We then derived a heuristic to solve the problem in a polynomial time in order
to allow its implementation in real systems. The heuristic algorithm was validated through
simulation which demonstrated that it guarantees an allocation close to the optimal value
in polynomial time.
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QoS in the Access layer
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6

CoAP Proxy Virtualization for the Web of Things

From this chapter we start to analyze the access network. The future Web of Things
(WoT) foresees a web in which applications can seamlessly access physical objects
through the same REST interface used today to access web services. A key enabler of
this shift is the Constrained Application Protocol (CoAP), a redesign of the popular HTTP
protocol that aims at supporting resource-constrained devices for Machine-to-Machine
applications. In the following we briefly introduce the CoAP protocol which will be used in
al the following chapters in order to give the basis to unaware readers.

Then we present a proxy virtualization framework to support scalability and easy im-
plementation of custom functionalities in large WoT deployments. The functionalities of-
fered by a CoAP proxy are exploited to transparently decouple applications from servers
and to guarantee the implementation of custom policies and functionalities through vir-
tualization techniques. A solution based on Linux Containers is implemented in a real
testbed made of off-the-shelf hardware and open-source software, demonstrating the
feasibility of the proposed design. Experimental results have shown that the response
time is highly improved by our solution thanks to central coordination of concurrent re-
quests from different virtual proxy instances. Moreover, to highlight the potential of the
proposed framework, a priority-based Quality of Service policy is also implemented and
evaluated.

6.1 Motivation

In the attempt of enabling concurrent execution of applications over the same sensor
network infrastructure, research work has been carried out extensively in the context of
Wireless Sensor Networks (WSN). The first concept has been introduced in [46] where
the authors defined the concept of Virtual Sensor Networks (VSN). A VSN is sensor
network deployment capable of sharing its sensor capabilities and network resources
to support the execution of different tasks and applications, concurrently over the same
physical infrastructure. Such abstract initial concept has triggered the definition of differ-
ent VSN architectures such as the work presented in [47], which presents VITRO, an
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architecture specifically designed to introduce virtualization techniques in WNS. In [48]
the authors propose to improve QoS performance of applications by means of caching
strategies. The authors consider a deployment in which a proxy is employed to perform
HTTP-CoAP protocol translation and also implements caching policies. In [49], instead,
the authors propose modifications to the CoAP observing extension to prioritize notifi-
cations between critical and non-critical. Notifications marked as critical are delivered
immediately to destination. Congestion control is only marginally handled by CoAP spec-
ifications. For this reason, the subject has been studied in [50], in which the authors pro-
pose congestion control algorithms to regulate the number of outstanding transactions
from the same client in order to minimize the amount of buffer overflows.

The scenario we consider is a WoT deployment composed of a set of smart objects,
usually implemented through embedded devices with constrained capabilities. The CoAP
protocol is used as the enabler to allow applications to interact with smart objects that
expose their services as resources of a CoAP server. An intermediate device, e.g., a
gateway, is assumed to act as a bridge between smart objects and the Internet.

A large-scale scenario, where sensors and actuators are exposed to different het-
erogeneous applications, presents new challenges to ensure scalability, considering the
limited memory and computational capabilities of constraint devices that cannot man-
age efficiently concurrent requests from multiple applications. Moreover, this scenario
requires additional features to support heterogeneous applications characterized by dif-
ferent contexts and different technologies that might also be unknown at the time of the
deployment. Service differentiation, for example, is required to handle heterogeneous ap-
plications with different QoS or security requirements. Service customization, instead, is
mandatory to ensure system expandability over a long lifespan: allowing third-party imple-
mentations to introduce custom functionalities or implement custom protocol translation
is essential to guarantee expandability towards future technologies and protocols.

6.2 Proxy Virtualization Framework

The solution we propose is a proxy virtualization framework that can be implemented on
each gateway linking a network of smart objects to the rest of the Internet. The overall
idea is to install on the gateway a CoAP proxy that could be virtualized. The implemen-
tation of a proxy allows transparent detachment between applications and smart objects.
Scalability is accomplished by leveraging the resources offered by the gateway, usually
not deployed on constrained hardware, which can provide buffering and additional pro-
cessing. Since the proxy is responsible for managing all the requests, it can be exploited
to implement service request differentiation.

The usage of a proxy does not necessarily require virtualization. Implementation of
custom policies and functionalities can be performed directly in the proxy modifying its
standard implementation. Such practice, however, does not guarantee easily expandabil-
ity and does not enable clean installation of third party functionalities, unless allowing
external entities to modify the proxy itself. In this context, virtualization is an attractive
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Figure 6.1: Proxy virtualization framework concept.

solution to allow third party customization, which can benefit from strong isolation of the
software introduced in the platform and device abstraction provided by the proxy itself.

The overall concept architecture is illustrated in Fig. 6.1. Core of the architecture is
a CoAP proxy called proxy hypervisor1. Only the hypervisor has direct access to the
smart objects and it manages the access to them. A virtualization framework is then
introduced in the gateway to deploy a set of virtual proxies, whose interface is exposed to
applications, which lack direct access to the interface exposed by the hypervisor. Virtual
proxies run inside virtualized environments created and managed by the hypervisor.

External modules are required to implement the CoAP protocol by means of a CoAP
endpoint sub-component, hereafter CoAP endpoint for short, in order to communicate
with smart things. External modules can be exploited to implement a wide range of func-
tionalities offered to applications such as protocol translation. Each virtual proxy has a
dedicated virtual network interface and a specific IP address and is instantiated to man-
age a group of applications. Within each group, applications know the IP address of the
associated virtual proxy and interact only with it to discover resources and issue requests,
completely unaware of the framework.

Virtual proxies interact with the hypervisor to implement their operations. The hypervi-
sor exposes towards them the same interface as a reverse proxy, in order to allow virtual
proxies to act transparently as they were interacting directly with resources. At the time
of activation, each virtual proxy interrogates the hypervisor to discover the available re-
sources and expose them to applications. This procedure follows the Resource Discovery
procedure defined in the CoAP RFC [7].

1 The term hypervisor here is employed to highlight that it controls the access to hardware re-
sources (CoAP servers) and it creates and configure the virtualized containers according to
configuration parameters
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As the virtual proxy receives a request from an application, it issues the request to
the resource exposed by the hypervisor. Eventually, the hypervisor manages the request
as any standard reverse proxy: requests for the same device are buffered and dispatched
once at a time as the device becomes available (as required by the CoAP standard).

The hypervisor can be exploited to implement service differentiation policies for dif-
ferent groups of applications. Modifications to the standard reverse proxy behavior can
be implemented to manage requests coming from different virtual proxies, hence from
different groups of applications.

In particular, QoS policies can be enforced implementing different management
strategies for CoAP requests coming from different virtual proxies. Moreover, the solu-
tion based on virtualization does not require modifications to applications and does not
require the hypervisor to be aware of any information specific to application; the hypervi-
sor differentiate its behavior only taking into account virtual proxies.

In order to illustrate an example of the possibilities offered by the proposed frame-
work, a QoS priority schema is proposed. Applications using CoAP to interact with things
are grouped into priority classes, each one associated with a virtual proxy. A strict priority
policy is implemented in the hypervisor: different queues, instead of a single one, are
implemented for each CoAP server, requests for resources hosted on the same devices
are queued based on the virtual proxy that issues the request. A fixed priority scheduler
is then implemented to dispatch the requests according to a strict priority policy: the re-
quests of a class are scheduled only when there are no requests from higher classes.
More complex QoS policies can be easily implemented in the proposed framework, how-
ever their definition and implementation is out of the scope of this work.

6.3 Framework Implementation

In order to validate the proposed solution, we have prototyped the proposed framework
using Linux Container [51], a lightweight operating-system level virtualization framework
for running multiple isolated Linux systems on a single host. Among different virtualiza-
tion techniques, Linux Container has been selected as it provides a high level of isolation
and security with good efficiency [52]. Although our implementation leverages a specific
virtualization technology, it is worth to highlight that it does not exploit any specific func-
tionality. Any virtualization technique, e.g. other hypervisor-based ones such as KVM[53],
can be adopted without requiring modifications to the overall concept, although at the cost
of an increased overhead of the virtualization functions.

The overall structure of the implementation is depicted in Fig. 6.2. Core of the im-
plementation is the proxy hypervisor, deployed using the Californium framework [54], a
Java-based CoAP library. A standard proxy is deployed with additional customized func-
tionalities to manage Linux Container instances. Containers are configured with one vir-
tual network interface of type veth whose peer device on the host operating system is
connected to a virtual bridge (br0) that includes also the physical Ethernet interface.
Each virtual interface is configured, at time of container creation, with a different public
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Figure 6.2: Proxy virtualization implementation.

IP addresses in order to allow external applications to reach the services running in each
one of them. The hypervisor runs directly on the host operating system and has direct
access to the NIC interface that communicates with the sensor network and to the virtual
bridge br0 to communicate with the virtual proxies.

Each container could be considered as a standard Linux host that can run the custom
code provided by third-parties to manage the requests of a group of applications. The
code running on the container can be written on any language and implement any kind of
functionality, the only requirement is the deployment of CoAP endpoint functionalities to
interact with the hypervisor. The custom code is responsible for implementing an interface
towards applications that will be accessible through the public IP address of the container.

As a simple proof-of-concept, we deploy on each container a standard CoAP proxy
to realize a simple CoAP-to-CoAP proxy that exposes a simple pass-through interface for
applications. To this aim, the CoAP proxy implementation of the Californium framework is
exploited.

Finally, the simple QoS prioritization policy, illustrated in Fig. 6.3, is implemented to
demonstrate the possibilities offered by the architecture for implementing custom request
management policies. The goal is to differentiate the service offered to requests from
two different groups of applications, a high priority group and a low priority group. Two
buffers for each CoAP server are introduced in the hypervisor to differentiate requests
from the two groups of applications. A strict priority-based scheduler is introduced in the
hypervisor to select the request to be served towards each CoAP server: requests of
the former group are always served first, while requests from the latter are selected only
when no high priority requests are waiting.
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Figure 6.3: Prioritization schema.

6.4 Performance Evaluation

In order to assess the performance of the proposed solutions, our implementation has
been evaluated by means of a real-world testbed. In the following, we first illustrate the
hardware platform we adopted for our experiments, then we show the results obtained
with the platform compared with the results obtained deploying a standard solution.

6.4.1 Testbed design

The testbed is a proof-of-concept platform implemented using off-the-shelf hardware and
open-source software freely available. Smart objects are deployed by means of Zolertia
Z1 [55] nodes, equipped with an IEEE 802.15.4 wireless interface capable of running
Contiki [56] as operating system. Contiki is an operating system specifically designed for
con- strained devices and the Internet of Things. A striped networking stack called uIP
is implemented to fit the limited memory capacity of devices. However, uIP implements
a single packet buffer that represents a performance bottleneck in several scenarios,
as shown in the experimental results. The sensor node exposes its resources running
Erbium [57], a lightweight CoAP server part of the official standard release of Contiki.
In order to simulate processing operations, an active task is triggered by each CoAP
request, resulting in a processing delay of around 300ms.

Considering that smart objects are often equipped with a wireless interface for ease-
of-deployment (e.g. IEEE 802.15.4 or IEEE 802.11), a gateway is usually deployed as
point of access for one or more smart objects towards/from the Internet, performing, if
necessary, protocol translation functionalities. In our deployment, a prototype of a gate-
way that links sensor nodes with the Internet is emulated by means of a laptop. The
system is an Intel(R) Core(TM) i5 CPU @ 2.40GHz and 4 GB of RAM. Since the laptop is
not equipped with an IEEE 802.15.4 transceiver, a Zolertia Z1 is connected to the laptop
to act as border router managing the low level communication between sensors and the
laptop. A daemon called tunslip runs in the background to manage the communication
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Figure 6.4: Standard solution deployment.

(through the Serial Line IP protocol, SLIP for short) between the Zolertia and the Linux
operating system that eventually sees the node as a tun virtual interface 2.

CoAP clients are deployed using the Californium framework and runs on a laptop.
Every client issues CoAP requests in CON mode in order to guarantee reliable delivery
of information.

6.4.2 Standard Solution

Current approaches towards the Web of Things allow applications to directly access
smart devices: things acting as CoAP servers expose a set of resources. Applications
interact with constrained devices as CoAP clients in order to retrieve information from
smart objects or to send data to actuators.

In this first set of experiments we evaluate the performance of this approach, as a term
of comparison for the proposed framework. Fig. 6.4 summarizes the logical representa-
tion of our setup for this set of experiments, along with the network stack implemented
by each element. The metric request delay, defined as the time between the CoAP re-
quest is issued by the client and the time the client fully obtain the corresponding reply,
is measured to assess the performance. First, the baseline for the request delay is as-
sessed. To this aim, a simple experiment in which a single client issues 500 requests on
the same resource is run. The client is set in order to issue requests in sequence, i.e.,
a new request is sent only when the previous is satisfied. The resulting average delay is
389.99± 0.042ms3, which includes not only the processing delay on the sensor but also
the round-trip transmission delay. The low variance of the delay that results from the sin-
gle client scenario confirms that this standard setup does not present issues in handling
2 TUN is a virtual network kernel device simulating a network layer device. The device is emulated

at layer 3 for routing purposes.
3 The 95% confidence interval of the average delay is shown
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non-concurrent requests. To evaluate the performance with concurrent requests, a set of
experiments with multiple clients is run. Arrival of CoAP clients is modeled as a Poisson
process (arrival rate λ); each client issues a single CoAP request.

Fig. 6.5 illustrates the cumulative probability distribution function of the request delay
with different λ values. As expected, both the delay distribution shifts forward to the right
and the tail of the distribution gets heavier as the request rate λ increases; at an average
rate of two requests per second, the delay can grow up to 100s in some cases. This be-
havior can be explained by considering the limits of the uIP implementation, which have
only one packet buffer shared for both transmission and reception. This represents a bot-
tleneck on the sensor limiting the number of concurrent CoAP requests that can be pro-
cessed concurrently. As a matter of fact, in case a CoAP request is received while another
is waiting, the frames are correctly decoded and acknowledged by the IEEE 802.15.4 ra-
dio, but discarded at the IP layer. Since CoAP CON mode is employed, clients retransmit
dropped requests until a response is obtained, hence the delay increases dramatically
as the number of retransmissions increases. This is confirmed by the delay distribution
that is characterized by a multi-modal distribution, which can be explained considering
the congestion control defined in the CoAP protocol: when a running request times out
a retransmission is scheduled with a back-off delay increased exponentially after every
retransmission.

Figure 6.5: Request delay CDF, standard solution.
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Figure 6.6: Proxy virtualization deployment.

Figure 6.7: Request delay, proxy-based
solution.

Figure 6.8: Request delay CDF, proxy-
based solution.

6.4.3 Virtualized Proxy Solution

The first set of experiments highlighted the limitations of exposing directly smart objects to
applications. In this section we present the results obtained with the proposed solution.
In regard with the high response delays, the expected result is the minimization of the
CoAP request delay achieved through an efficient usage of the limited capabilities of
smart objects.

The proposed framework has been implemented as described in Section 6.3 and is
illustrated in Fig. 6.6. In order to measure the performance of the proposed architecture, in
this first set of experiments, the hypervisor is deployed as a standard CoAP proxy, without
introducing any policy for service differentiation. Only one virtual proxy is deployed to
manage all the CoAP requests. The custom code implemented within the container is a
standard CoAP proxy. As for the experiments presented in Section 6.4.2, arrival of CoAP
clients is modeled as a Poisson process with an arrival rate λ.

Fig. 6.7 illustrates the experimental results obtained with our framework compared
with the standard solution. A boxplot representation is used: the bottom and top of the box
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represent the 25th and 75th percentile, the band in the box the median (50th percentile),
the ends of the whiskers represent the minimum and 95th percentile. The results show
that the maximum experienced delay decreases dramatically.

Fig. 6.8 illustrates the cumulative probability distribution of the delay. Results show
how the proposed setup succeeds in avoiding the loss of CoAP requests that caused
large delay in the standard solution, as demonstrated by the lack of a multi-modal pattern
in the distribution, typical of the exponential back-off. This experiments demonstrates that
the improved response delay is a consequence of the proxy. In fact, since CoAP requests
are now buffered at the proxy, whose storage capacity is not constrained, no concurrent
request is dropped in this case.

6.4.4 Prioritization Schema

Finally, a set of experiments is run to demonstrate the effectiveness of the deployment.
A simple scenario running two virtual proxies is deployed to test prioritization capabilities
with two categories of applications. Two independent Poisson processes model the arrival
of CoAP requests for the two groups of applications; λlow = 1/800 and λhigh = 1/1200

are adopted as arrival rates of the low priority and high priority applications, respectively.
Fig. 6.9 shows the request delay over time. As expected, the requests of the high priority
class experiences a delay significantly lower than the low priority.

Fig. 6.10, instead, shows the average delay of high priority requests when different
λlow values are considered. As can be seen the average delay of high priority requests is
only slightly affected by the rate of the low priority clients. These results, however, demon-
strates that a full separation between low and high cannot be achieved. This can be
explained considering the priority inversion phenomenon caused by the non-preemptive
execution of tasks. Since preemption is not allowed by the things, it can happen that a low
priority is in execution when a high priority request arrives. In this case the high priority
must wait until the end of the execution of the current request. It is worth to highlight that
the additional delay of the high priority requests is equal to the execution of a request in
the worst case, as demonstrated by results Fig. 6.9.

Figure 6.9: Request delay versus time,
high versus low priority requests.

Figure 6.10: Request delay (high prior-
ity requests) with different lambda values
(low priority requests).
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6.5 Conclusions

In this Chapter a proxy virtualization framework for large-scale WoT deployments has
been presented. The proposed solution is designed to enable scalable and highly cus-
tomizable deployments, ready for supporting the large multitude of heterogeneous of
applications expected in the future. A possible practical deployment based on Linux Con-
tainer as virtualization technology is presented. Experimental results carried on by means
of a real testbed demonstrated that the proposed solution succeeds in overcoming the
limitations of the classic WoT architectures, without introducing significant overhead.
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7

QoS-support for the CoAP Observing paradigm

The Internet of Things field is still in an early stage and different protocols are currently
under evaluation in this specific scenario. Moreover, the heterogeneity of devices, as well
as the different types of communication infrastructure involved, raises many challenges
that must be addressed.

In this chapter we will focus on how to provide QoS capability directly within the ap-
plication protocol. In particular in recent years many application protocols have been
developed or adapted to the IoT field and some of them already provide QoS capabilities.

We will consider the CoAP protocol and its extension in the rest of this chapter, due
to the fact that it has been designed especially for the IoT/M2M field and is suitable for
constrained devices working in constrained networks. Adding QoS capabilities over CoAP
could enhance the protocol in order to enable its adoption in new interesting use cases
e.g. industrial wireless sensor networks.

In particular we focus on the observing paradigm [8]. The QoS support, in fact, can be
exploited to create a new set of applications that use periodic notifications within certain
deterministic bounds to provide near real-time services to the end-user.

7.1 State of Art

At the Application level there are two different protocols suitable for IoT which also pro-
vides a certain level of QoS: Data Distribution Service (DDS) [58] and MQTT [59].

DDS is a publish/subscribe architecture based on topics. Each Publisher publish its
information under a certain topic while each Subscriber register its interest in a certain
topic. Applications that want to publish something send data to their Publisher that is in
charge to send each “packet” to all the interested Subscribers.

Each Subscriber is then exploited by a different application to read “packets”. Discov-
ery of Publisher/Subscriber are left out of the specification and partially covered by the
DDS-RTPS [60], however the overall idea is based on the fact that a Publisher/Subscriber
announces its presence to a list of known locators.
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Finally, the transport layer is considered only marginally, the DDS-RTPS claims to use
UDP as it does not introduce any delay (like TCP) and all the needed functionalities, also
in term of QoS, can rely on it. However, it does not consider communication problems as
well as delays caused by congestion in the network explicitly.

DDS also include a QoS by design with different parameters that can be chosen to
select the required QoS level. Each Publisher, in fact, exposes its topics enriched with
metadata information that explains the QoS capabilities of the Publisher.

On the other hand, Subscribers seek for a certain topic (exposed by a Publisher) that
also satisfies the QoS requirements. In other words, a Subscriber can be associated with
a Publisher only if the topic and the QoS properties exposed by the Publisher match the
topic and the requirements asked by the Subscriber.

Among other parameters DDS provides three different timeliness properties: DEAD-
LINE, LATENCY-BUDGET, TRANSPORT-PRIORITY. Deadline is used by applications to
specify the maximum inter arrival time for data. It is useful when the application wants a
periodic stream of data with a fixed predefined period. Latency budget is not something
that can be enforced, instead it is a sort of hint to the underlying layer. It specifies the
maximum acceptable delay from the time the data is written until the time the data is in-
serted in the receiver’s application cache. It can be read as the maximum latency. Finally
Transport Priority is a hint to the lowest DDS layer to set the priority of the underlying
transport layer. See Fig. 7.1 for a complete overview.

The main problem of DDS is that it is totally agnostic to the underlying transport layer,
from one side this behavior provides a high level of flexibility, but, on the other side, it does
not allow a fine-grained control of the delays that can be raised by the network between
Publishers and Subscribers. Especially in LLN networks, which are more dynamic than
traditional networks, the monitoring of the network is of paramount importance in order to
avoid, or at least reduce, the latency experimented which may violate QoS agreements.

MQTT is a Broker-based publish/subscribe messaging protocol that runs over TCP.
Senders deliver their messages to the Broker under a certain topic, the Broker forwards
messages to Receivers that have been registered for that topic. The delivery protocol is
concerned solely with the delivery of an application message from a single Sender to a
single Receiver. When the Server is delivering an Application Message to more than one
Client, each Client is treated independently.

From the QoS point of view MQTT provides three different level of QoS: At most once,
At least once, Exactly once. The At most once profile delivers message based on Best
Effort. No response is sent by the receiver and no retry is performed by the sender. The
At least once, instead, requires an acknowledge message from the Receiver. Messages
are assured to arrive but duplicates can occur. Finally the Exactly once requires a two-
way acknowledgment mechanism which ensure that the message is delivered without
any duplicates.

It is worth to note that, even if MQTT provides three different level of QoS, the QoS
guarantees provided do not involve timeliness properties. MQTT can only ensure a cer-
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Figure 7.1: DDS QoS architecture

tain level of delivery which may affect indirectly the latency of the information retrieved by
Receivers, but it does not provide any negotiation nor monitoring phase.

7.2 Architecture overview

We consider a classic scenario, we have a set of WSNs connected to clients by means of
a dedicated gateway which acts as a men in the middle. As already pointed out we focus
on how to provide QoS support on top of the Observing paradigm [8], however we would
like to provide an overview of a possible real use case.
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First of all the gateway discovers all the resources available in its WSN, to achieve this
multicast discovery as well as static configuration can be exploited.During the discovery
process the gateway populates its remote resources directory which will be used to reply
to clients on behalf of the origin servers.

The remote resources directory can be seen as a directory hosting links to resources
on remote origin servers, whenever the gateway discovers a resource it creates a new link
in its remote resource directory by performing a namespace translation. In other words,
each link in the remote resource directory is structured as following:

<origin-server-id>/<resource-name>

thanks to that clients can discover available resources by interacting only with the
gateway which acts as a reverse proxy.

Once the discovery procedure ends, the gateway is ready to be used as the interme-
diary entities between the origin servers and the clients.

In every QoS framework we can identify a negotiation phase. This phase takes place
between the service consumer and the service provider, and it is used by the consumer
to specify the QoS requirements for the requested service. The service provider, based
on the status of the system and on the QoS requirements, can allow or deny the service
request.

In our architecture the service provider is the gateway which exploits the CoRE in-
terface draft [10] and especially pmin and pmax for the negotiation phase. The pmin
parameter (Minimum period) means that a notifier should wait for at least pmin seconds
before sending a new notification message. The pmax (Maximum period) instead, indi-
cates the maximum period between two consecutive notification message sent by the
notifier to the client. Clients exploit these two parameters to communicate to the gateway
their QoS requirements. Each client, in fact, has its preferred notification period, however
it is common that a sort of jitter is tolerated if between certain bounds. By using ranges of
notifications periods gives to the gateway a certain level of flexibility when it has to select
the best period to be set on the origin server as explained in much detail below.

From a procedural point of view, a client sends a PUT request to the gateway to a URI
as the following:

<origin-server-id>/<resource-name>?pmin=5&pmax=10

then it sends a normal observing request to the proxy. The meaning of the messages
together is that the client wants a new notification message about the state of the re-
source every X seconds, where X must be between 5 and 10 seconds.

The gateway collects all the incoming requests for a certain resource and then selects
the best period to be set on the origin server following a custom scheduling policy. The
overall negotiation procedure is displayed in Fig. 7.2.

After that, when the gateway receive a notification message from the origin server,
it checks its internal list of QoS observers for the notified resource through a dedicated
Notification Task. In particular, for each client the timestamp of the last notification sent is
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Figure 7.2: Negotiation Procedure

stored so the Notification Task can verify if it is time to send a new notification message
or, instead, it is still to early. In the latter case the Notification Task skips the client and
proceeds with the others. When all clients have been processed the gateway suspends
the Notification Task until a new notification message incomes or a client deadline is
quite expired. The internal structure of the Notification Task, in fact, uses a modified sleep
function where, on one hand, the duration of the sleeping period is computed according
to the minimum remaining time before deadline expiration while, on the other hand, a new
incoming notification always interrupt the sleeping period - see Fig. 7.3.

Let’s make an example to better explain the concept. Suppose that we have two
clients with pmin and pmax as (5,15) (7, 12) respectively. Now let’s suppose that the origin
server use a notification period of 6, and that both client have been notified at t=0. At t=6,
the gateway receive a notification which can be forwarded to the first client, however it
is still to early for the second client so the notification thread is suspended. Anyway, the
notification thread already has a new notification for the second client that can be sent
only after t=7 so the thread go to sleep only for 1 second. At t=7 the notification thread
wakes up and sends the notification message to the second client. This process has been
developed in order to try to achieve the best QoS for all clients by sending notifications
as soon as possible. In the previous example, in fact, the second new notification will be
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Figure 7.3: Notification Task

supposed to arrive at t=12, which will be enough also for the second client but with a
lower quality level.

7.3 Scheduling Policy

In order to guarantee the QoS requirements specified by the clients the gateway collects
all requirements and accepts only requests that can be satisfied. In particular the gateway
estimates the delay between itself and the origin server through the CoCoA extension
[11], and uses it as the limit to accept or reject clients.

The RTT has been chosen as an input to the scheduling policy in order to overcome
the CoAP limitations regarding the freshness of data. In other words a CoAP endpoint
does not estimate in any way the "age" of a packet upon receive, although delays in the
network may affect the freshness of the information. From the CoAP RFC [7]:

The mechanism for determining freshness is for an origin server to provide an
explicit expiration time in the future, using the Max-Age Option. The Max-Age
Option indicates that the response is to be considered not fresh after its age is
greater than the specified number of seconds.

However, the above definition does not consider delays introduced between CoAP
endpoints. By using the RTT estimation we can overcome such limitations and derive the
received information "age" in order to avoid the dispatching of old information to observer
clients.

It is important to outline that the RTT estimation is obtained by exchanging periodic
requests, originated by the gateway, with the origin server. In such way the delay com-
puted considers also the processing delay that the origin server may require in order to
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Algorithm Scheduler
2 Input: tasks[n], rtt, STEP

Output: period
4

minimum← min {tasks.pmax}
6 end← False

while not end and minimum > rtt do:
8 end← True

foreach t in tasks do:
10 # Valid as progression?

if minimum < t.pmin then:
12 tmp← 2minimum

while tmp ≤ t.pmax and tmp < t.pmin do:
14 tmp← tmp+minimum

if tmp > t.pmax then:
16 # Reduce the minimum

minimum← minimum− STEP
18 end← False

break
20 return minimum

Figure 7.4: Scheduler.

serve a specific request. Anyway, the period of the evaluation task must be set according
to a trade-off between quick detach of delay changes and communication overhead in
the origin servers network. In the following we choose a period equal to the double value
of the minimum pmin. The Scheduler gets in input all requested ranges as well as the
estimated RTT and try to derive a unique period that can fit all requests following the
algorithm in Fig. 7.4.

The rational behind the algorithm is to find the best minimum period that can fit inside
all the requested ranges. First of all the algorithm starts from the minimum pmax, then
it verifies if such period is greater than all the pmins. If it is the case that the algorithm
stops and the period is the minimum pmax.

Otherwise, the scheduler verifies if a mathematical progression of the minimum pe-
riod is within the range of all the requests, in other words, it may happen that the minimum
period is to fast for a certain request and will generates a notification too early, however
following notifications will arrive within the range of the request and the notification mes-
sage will be able to be used to notify the client.

The mathematical progression check is an iterative process, it starts by doubling the
actual minimum period (Line 12) and verifies if the new virtual period obtained is grater
than pmin, if not the virtual period is incremented to check if the third notification will fall
within the range (Line 14) and so on until the virtual period is greater than pmin or the
virtual period is greater than the allowed pmax (Line 13). If the virtual period obtained is
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greater than pmax, than it means that the starting minimum period is not suited for all
the tasks, the minimum is decremented (Line 17) and the overall process restart from
the beginning (Line 5). The algorithm ends when a unique period is find (Success) or
when the minimum period that should fit all requests is less than the RTT (Failure). In the
latter case, the scheduler remove the request that has the minimum pmax and restart the
algorithm until a solution is found or all requests are discarded.

It is worth to note that, obviously, the problem could be solved also by means of the
g.c.d between all pmaxs, however it will lead to a suboptimal solution, with our algorithm,
instead, we can choose a period greater than the g.c.d. that means less exchange of
messages from the origin server and thus saving energy.

7.4 Monitoring

In order to satisfy QoS agreements the gateway must continuously evaluates the delays
in the LLN to check the freshness of the information retrieved from the origin server. If
the RTT between the gateway and the origin server changes above a certain threshold,
the gateway re-evaluates the accepted requests through the scheduler and, eventually,
changes the notification period on the origin server or removes the clients that cannot be
served anymore.

To better understand the behavior let’s make an example as in Fig. 7.5. Suppose we
have two clients that are interested in the same resource with pmin=1 and pmax=2, for the
first client, and pmin=2 and pmax=12 for the second client. Initially the delay introduced
by the LLN is 1 second and the period computed by the scheduler according to Fig. 7.4
is 2. Following, when a notification arrives to the gateway, the gateway infers that the
notification has been generated 1 second before. So if the exchange starts at t = 2, the
gateway will receive the notification message at t = 3 and can forward such notification
to both clients. The next notification will arrive on the gateway at t = 5 and again it can
be forwarded to both client because the "age" of the information is only 1 second. Now
suppose that the LLN is congested and the delay increase up to 5 seconds. This means
that when a notification arrives on the gateway the "age" of the information is 5 seconds,
which is too much for the first client. The gateway discovers the new RTT and re-run the
scheduler algorithm which will remove the first client because it could not be served with
the new RTT.

7.5 Performance Evaluation

In order to evaluate the proposed solution we run several test with different client and
different network configurations.

In particular we arbitrary introduces delays between the gateway and the origin
servers to emulate congestion in the LLN. To achieve this we use the dummynet soft-
ware [61] which is a live network emulation tool. It can be used to add custom delays
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Figure 7.5: Delay increase

in the stack buffers at the kernel level, only for certain ip addresses. The clients, the
gateway and the origin servers all run on a Intel 4-core i5 @2.67 GHz processor but on
different virtual networks. The network of the origin servers is managed by dummynet in
order to introduce arbitrary delays, while the gateway and the clients run on two different
virtual networks. In particular the delay between the clients and the gateway has been
considered negligible because below 0.1 seconds.

We set up an experiment with 50 pseudo-randomly generated clients, where each
client sends an observing request to the gateway for the same resource but with different
acceptable QoS ranges. In detail, the period of each client has been chosen following an
uniform random distribution between 1 and 20 seconds.

In the first phase of our experiment, which can be seen in Fig. 7.6, all clients are regis-
tered in the gateway and all of them receive notifications according to their requirements.
In particular the RTT evaluated by the gateway is less than 0.5 sec so a period equal to

Figure 7.6: Results
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1 second can be set on the origin server. It is worth to note that such period has been
chosen by the gateway according to the algorithm presented in 7.4. In fact, 1 second is
the only period that can be used to accept all clients, due to four clients with configuration
parameters set to (4, 4), (6, 6), (9, 9) and (2, 2) respectively - see the graphs key.

After 1 minute a delay of 5 seconds is introduced in the origin servers network and the
gateway reacts consequently. All the clients that cannot be served anymore are removed
and the period on the origin server is updated according to the scheduler algorithm.

It is worth to note that, thanks to the modified sleep method the client identified by
(11, 19), see the last row of the first column in the graph key, always receive the best
possible QoS treatment. In the first part of the top most graph in Fig. 7.6 it can be seen
that the client receive a notification every 11 seconds (equal to pmin) even if the gateway
receives a new notification also on t=12, t=13 etc. In the second part, instead, when
the period is set to 5 seconds the above client receives a notification every 15 seconds
without violating its deadline, which is, again, the best notification period possible with
respect to the delay set into the origin servers network.

Finally, except some transitory phases around the introduction of delays all deadlines
are respected for all clients, the transitory phases can be explained by means of the time
needed by the gateway to discover the new delay in the origin server network.

7.6 Conclusions

In this chapter we enriched the standard CoAP protocol with by adding the QoS features.
We explicitly use the IETF CoRE Interface draft for negotiation purposes in order to pro-
vide a standard solution. Specifically, we modified the observing paradigm in order to
allow a periodic observing, where each client was able to specify the timeliness proper-
ties of the observing relationship, which also considers delays that may occur in LLNs.
We demonstrated that the proposed scheduling algorithm can effectively assure the re-
spect of deadlines within the negotiated boundaries as well as the deletion of clients that
cannot be satisfied due to delays in the LLN.
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CoAPthon: Easy Development of CoAP-based IoT
Applications with Python

In this chapter we present CoAPthon [62], an open-source Python-based CoAP library,
which aims at simplifying the development of IoT applications. The library offers software
developers a simple and easy-to-use programming interface to exploit CoAP as a com-
munication protocol for rapid prototyping and deployment of IoT systems. The CoAPthon
library is fully compliant with the CoAP RFC and implements in addition popular exten-
sions such as the block-wise transfer and resource observing.

8.1 CoAP implementations

Name Language Observe Block-wise CoRE Proxy Target
Erbium [63] C X X X - Constrained

microcoap [64] C - - - - Constrained
CoAPTinyOS [65] nesC X X - - Constrained

CoAPSharp [66]
C#

X X X - Constrained
(Micro .Net)

node-coap [67] javascript X X X Forward Web
Ruby coap [68] Ruby X X X - Test

iCoAP [69] Objective C X partial X - iOS

Californium [54] Java X X X Forward
Backend-Server

Embedded
Android

libcoap [70] C X X X -
Embedded
Constrained

txThings [71] Python partial partial X - Backend-Server
openWSN

Python - - - - Embedded
coap [72]

Table 8.1: CoAP Implementations
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Different CoAP libraries have been implemented since the beginning of its specifica-
tion. Started as a reference implementations aimed at driving the standardization pro-
cess, some of them successfully became mature software after the protocol standardiza-
tion. In the following, we provide an overview of the major available CoAP implementa-
tions – see Table 8.1. Projects are grouped according to their target environment. For an
exhaustive presentation of all CoAP implementations, the interested reader is referred to
[73].

The first group of implementations we consider is the group of projects that support
constrained devices, such as sensors or micro-controllers. Within this group, Erbium is
the most popular project as it implements CoAP for Contiki OS [74], one of the most
popular operating systems for constrained devices. The footprint of the library is very
small and many configuration parameters are tunable. Other similar implementations are
available for other operating systems for constrained devices, such as CoAPTinyOS and
micro-coap, tailored for Tiny OS [75] and Arduino [76], respectively. CoAPTinyOS is a
CoAP library written in nesC implementing the draft-13 version of the protocol. Micro-
coap, instead, is written in C and implements the basic functionalities of the protocol
for Arduino devices (e.g. Arduino Mega) on top of Arduino libraries. Although not widely
used, the project CoAPSharp is worth of a specific mention as it is the first CoAP im-
plementation in C# that works on the Microsoft .NET micro framework. Although the use
of .NET micro framework enables CoAPSharp to run both over constrained devices and
regular PCs running Microsoft Windows, the usage of MS Windows as operating system
for embedded devices is limited and only at its early stage.

The second group of implementations includes projects that aim at bringing CoAP
to more powerful devices, for instance Embedded Systems, such as the ones adopted
by makers to build IoT systems, or Backend deployments. In order to guarantee porta-
bility among different architectures, the language adopted by these projects is Java,
which guarantees platform independent programming. Within this group, the most widely
adopted implementation is Californium. The peculiarity of this CoAP library is its modular
structure that guarantees easy expandability and customizability. Simple configuration is
guaranteed by means of a configuration file that is used to specify the overall behavior
and align the software with the underlying hardware. Although Californium is designed for
backbone IoT deployments, integrated for example into the cloud [54], the availability of
the Oracle Java Embedded platform [77] for embedded devices allows Californium to run
also on devices with reduced memory and limited computational capabilities. In addition,
the portability of Java allows Californium to be exploited to integrate CoAP functionalities
within mobile applications for Android devices.

Another CoAP implementation widely adopted in several projects is libcoap, a CoAP
framework written in C. Its lightweight structure not specifically tailored for any OS made
this library popular a basis for different other software deployed for both Linux OSs and
constrained OSs (Contiki OS). Despite its simple structure, the library does not provide
high level APIs, hence it is not easy to be used by software developers, as demonstrated
by its limited use for end-user applications.
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Finally, three niche CoAP implementations are worth to be mentioned: node-coap, a
CoAP implementation written in JavaScript to be use for web applications, Ruby CoAP,
a CoAP implementation written in Ruby mainly for testing purposes and iCoAP, a CoAP
library written in Objective C to integrate CoAP functionalities into iOS applications. In
this context, CoAPthon is the first CoAP implementation that is oriented by design to
offer an easy-to-use programming interface to simplify application development for both
embedded and backend systems. In comparison to the above mentioned CoAP imple-
mentations, CoAPthon is an attractive solution for IoT software developers as it is aligned
with the standard version of the protocol and offers the implementation of a large set of
features, such as CoRE link format parsing, resource observing and Block-wise transfer.
CoAPthon implements also the proxy functionality, in both reverse and forward modes,
which are rarely available together in other libraries. In addition to this, CoAPthon is the
first mature CoAP implementation developed in Python. To the best of our knowledge,
there are two different Python implementations: txThings [71] and openWSN coap [72].
At the time of writing, the former provides only a small subset of the features provided by
CoAPthon and it has been implemented with Python 3.4, which is not yet supported by
many embedded devices. The latter, instead, is part of a bigger framework called open-
WSN [78]; the CoAP implementation, however, is still in its early phase and does not
handle many of the standard features as well as its extensions.

8.2 CoAPthon

The CoAPthon framework architecture is depicted in Fig. 8.1. The library is built on top
of the Twisted framework [79]. Twisted is an event-driven networking engine for Python
that implements several application protocols, such as HTTP and FTP, and can be easily
extended to implement new protocols based on both TCP and UDP transport layers.
Twisted has been selected not only for its small codebase and lightweight implementation,
but also for its robustness, as acknowledged by its adoption by many commercial and
open-source projects. Its implementation of all low-level networking and management
functionalities, such as multi-threading, UDP socket management, and Asynchronous
message exchange, is beneficial to CoAPthon since it allows to easily support Multicast
CoAP server discovery.

The layered architecture of CoAP is reflected in the CoAPthon architecture illustrated
in Fig. 8.1, which presents at the bottom the Message layer and at the top the Request
layer. A middle layer called Extension layer is also introduced to implement extended
functionalities on top of the basic ones, e.g., resource observing and Block-wise transfer.

The Message Layer implements the Message sub-layer of the CoAP protocol. It is in
charge of pairing messages based on the MID header field. In addition, it is responsible
for managing the separate mode (enabled by default): when the server receives a CON
request a timer is triggered; if the server does not complete the processing of the request
before the timer expiration, an ACK message is sent back to notify that the server will
replay later.
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Figure 8.1: CoAPthon implementation architecture.

The Request Layer implements the Request/Response sub- layer of the protocol and
is responsible for handling CoAP re- quests to produce responses. To this aim, a Re-
source Tree is implemented to store information related to resources exposed by a server,
and pairs each resource with the corresponding handler function designated to produce
CoAP responses. When a request is received, the Resource Tree is accessed to find the
resource required by the client, then the associated handler is executed on the method
specified by the CoAP request. CoAPthon is implemented following a resource oriented
approach, i.e., a resource must implement one handler for each of the CoAP methods
(GET, PUT, POST and DELETE) that it wants to expose. If a client requests a method
that is not implemented, a “Not Allowed” response is sent by default. In addition, dynamic
creation of resources is allowed. An example could be the creation of a new resource as
a result of a POST request.

The Extension Layer is a container for all those functionalities that are not included in
the basic CoAP specification. At the time of writing, CoAPthon implements the resource
observing, the block-wise transfer and the CoRE Link Format parsing features. By default,
they are enabled and are automatically activated when needed. When a client requests
an observe relationship on a resource that has been set as observable, the library initial-
izes the observe relationship, and will send notifications to subscribers as soon as the
payload of the resource changes. Similarly, when the response payload is bigger than
a single CoAP message, or when the client explicitly requests a Block-wise transfer, the
library activates the block-wise transfer. The CoRE Link feature, instead, is involved in
the discovery process, performed by a client on a CoAP Server, and in the creation of re-
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sources on CoAP servers. A resource, in fact, can be enriched with CoRE Link attributes,
which will be automatically communicated to clients upon discovery requests. It is worth
to mention that the Extension Layer is designed with a modular structure to allow further
extensions with new features.

8.3 Usage Example

The modularity of the CoAPthon architecture facilitates the development of CoAP end-
points within applications. To this aim, a simple set of APIs has been defined for im-
plementing not only the basic Client/Server CoAP roles, but also Forward and Reverse
Proxy functionalities. To ease the developer experience, the library already provides dif-
ferent examples of development, which can be exploited as a basis for more complex
custom implementations. In the remainder of this section, we present an example de-
velopment using the APIs exposed by CoAPthon in order to show how the APIs design
jointly with the easy syntax of Python can be used to rapidly develop IoT applications.
For the sake of brevity, only the development of a CoAP server is shown: the interested
reader is referred to the other examples included in the official distribution.

Let us consider a Raspberry Pi [16] board that has a sensor connected to one GPIO
pin. In this example, it is shown how to implement a CoAP server that exposes a re-
source whose state is the reading value from the sensor. The RPi.GPIO Python library is
employed in this example to implement the communication with the GPIO interface.

The definition of a CoAP server is performed in two steps: (i) definition of resources to
be exposed; and (ii) definition of the server engine. In order to define a new resource the
developer must define a new class, which extends the base superclass Resource. In Fig.
8.2 it is shown how to develop a new resource that replies to GET requests with the status
of a specified GPIO pin. The new class ’RPiResource’ is defined to initialize the GPIO
library and to handle GET requests on the resource through the method ‘render_GET’.
A similar approach must be followed to define resources that reply to POST, PUT or
DELETE requests.

Resources must be linked to a CoAP server. To this aim, a new CoAP server must be
defined through the definition of a new class, which extends the base super-class CoAP.

1 class RPiResource(Resource):
channel = 1

3 GPIO.setmode(GPIO.BOARD)
GPIO.setup(channel, GPIO.IN)

5

def render_GET(self, request):
7 self .payload = GPIO.input(self.channel)

return self

Figure 8.2: Resource Definition.
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Fig. 8.3 shows the procedure to define a new CoAP server. The server is configured
with one resource of type ’RPiResource’ through the add_resource method. The first
parameter of such method must be the URI of the new resource, in this case ‘pin1’, while
the second parameter is an instance of the resource class, RPiResource in the example.
As can be seen, the resource is set as observable by simply setting the flag observable
to true. Finally, the CoAP server is initialized to listen on localhost to the default CoAP
UDP port.

There are practical cases in which a request requires a certain amount of time for
processing, e.g., sensors that require a start reading command on a pin and produce
a valid result on another pin after a delay. In this case, the separate mode can be em-
ployed to acknowledge the request immediately and send the response separately as
soon as it is available. The procedure to activate the separate mode is illustrated in Fig.
8.4: the handler returns a reference to a callback function for generating the response
(‘render_GET_separate’ in the example), instead of returning directly the response mes-
sage. With this configuration, the CoAP server immediately acknowledges the client and
then invokes the provided method to generate the response.

Finally, we introduce the approach adopted to trigger observing notifications because
of a change of status. Considering that a resource modifies its status according to ex-
ternal events, often detected by external processes, CoAPthon implementation detaches
event detection from the observe notification process to ease integration. In particular,
notifications are triggered by issuing a PUT request on the resource, allowing external
processes to notify the change of status to the CoAP server in a simple and standard
manner. To this aim, an observable resource must implement a special PUT handler
that updates the resource state according to the PUT payload, triggering the delivery of
notifications to subscribers. In case the CoAP server is instead directly responsible for
updating the state of a resource, the PUT method can be invoked internally. An example
of this approach is provided in Fig. 8.5: the ‘callback’ function, invoked automatically by
the GPIO library when the value on one GPIO pin raises, issues a PUT request on the
loopback interface to trigger observe notifications.

class CoAPServer(CoAP):
2 def __init__( self , host, port ):

CoAP.__init__(self)
4 self .add_resource(’pin1/’, RPiResource("pin1", observable=True))

6 server = CoAPServer("127.0.0.1", 5683)
reactor . listenUDP(5683, server, "127.0.0.1")

8 reactor .run()

Figure 8.3: Server definition and initialization.
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class RPiResource(Resource):
2 ...

start_read = 2
4 GPIO.setup(start_read, GPIO.OUT)

6 def render_GET(self, request):
return self , self .render_GET_separate

8

def render_GET_separate(self, request):
10 GPIO.output(start_read, GPIO.HIGH)

time.sleep(known_wait_time)
12 self .payload = GPIO.input(self.channel)

return self

Figure 8.4: Separate Mode.

1 def callback(channel):
client = HelperClientSynchronous()

3 client .put({ "path": "coap://127.0.0.1:5683/pin1", "payload": GPIO.input(channel)})

5 class RPiResource(Resource):
...

7 GPIO.add_event_detect(channel, GPIO.RISING, callback=callback)
...

9

def render_PUT(self, request):
11 self .payload = request.payload

return self

Figure 8.5: Resource with Observing.

8.4 Performance Evaluation

We have run several experiments in order to assess the performance of CoAPthon
against Californium in different scenarios. Our goal is to show that the proposed imple-
mentation in Python does not pay a considerable price in terms of performance to favor
ease of usage. Our experiments focus on evaluating the performance of the server im-
plementation, which is the bottleneck in a real use case considering that its performance
determines the number of concurrent requests that can be handled by a sensor.

In the first experiment, a benchmark of the server implementation is performed. In
particular, a CoAP server, implemented in both Californium and CoAPthon, is deployed
to expose a resource that returns a simple response with a fixed numeric value. The
CoAP server runs on a Raspberry PI Model B, equipped with a single core ARM System
on a Chip at 700Mhz with 512 Mb of RAM installed. The behavior of a set of CoAP clients
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issuing requests at a fixed rate is mimicked through coapbench, a Java benchmark tool
that sends continuous CoAP requests at a given rate. Clients run on a PC equipped with
an Intel Quad-core 3 GHz processor with 8 GB of RAM. The Raspberry Pi and the PC
are connected by means of a 100 Mbps FastEthernet LAN switch. For each experiment,
an overall number of 10000 requests are issued.

Fig. 8.6 shows the response delay, measured as the time between the delivery of the
request and the reception of the response, with different request rates. The average value
is estimated with a 95% confidence interval. As expected, Californium guarantees lower
response times than CoAPthon. This is expected since the performance of Python as
a programming language favors the ease of programming over efficiency [80]. Although
high request rates are unlikely for a scenario involving embedded/constrained devices, it
is worth to highlight that the CoAPthon performance does not degrade significantly with
rates up to 1000 and 1500 requests per second.

In the second experiment, a benchmark of the performance of the proxy implemen-
tation is carried out. In particular, a CoAP forward proxy (the only one implemented in
Californium) is installed to expose the resources hosted on 20 CoAP servers, emulated
through a process running on a PC with an Intel Dual-core 2.4 GHz and 2 GB of RAM.
The proxy runs on a UDOO board, a more powerful embedded device equipped with
a Quad-core Cortex-A9 CPU at 1000 Mhz and with 1 Gb of RAM [15]. Clients are emu-
lated using the same methodology of the previous experiment except for the request rate,

Figure 8.6: Request delay, Client – Server.
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Figure 8.7: Request delay, Client – Proxy - Server.

which follows a Poisson distribution to model the aggregate rate of simultaneous CoAP
sessions directed to different servers at the same time. For each experiment, an overall
number of 10000 requests are issued.

Fig. 8.7 shows the average delay obtained with increasing values of the average ar-
rival rate λ. As can be seen, proxy implementation in CoAPthon manages a flow of re-
quests up to 100 requests per second However, when the load increases above this
threshold, the response delay increases steeply. This behavior can be explained by con-
sidering that Python does not fully exploit concurrency because of the well-known issue
that characterizes all of its interpreters [81].

8.5 Conclusions

In this chapter, we presented CoAPthon, a Python implementation of the CoAP protocol
that aims at enabling the development of IoT application based on the CoAP protocol
through a simple and easy to use programming interface. To this aim, different usage
examples have been presented to show how a simple CoAP server can be rapidly imple-
mented with CoAPthon, and how different configurations can be implemented with a few
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changes in the code. The performance evaluation of the proposed framework against Cal-
ifornium through real experiments highlighted a trade-off between ease of development
and performance. In particular, it is shown how usability has a price in term of response
delay and scalability, which, however, can be considered acceptable in the considered
scenario.
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Conclusions

In this thesis we study the QoS support in the IoT field. In the first part I we provide
the Thing as a Service architecture which we use as a reference model for all the QoS
considerations in the fog layer. We divide this part of our work in three main sections
following an implementation focus approach.

First of all we define the negotiation framework involved between applications and
the architecture, thus we design an abstract procedure which is suitable to manage QoS
reservation into the fog layer where IoT gateways are distributed close to the access net-
work. Finally we solve the Thing Selection problem by the developing of a new algorithm
which takes care of the unique features of smart things. In particular, we solve a Mixed
Integer Problem to reduce the energy consumption on smart things in order to maximize
the lifetime of smart devices.

Eventually we achieve the following results:

• We derive a novel QoS model tailored for M2M application from the existing QoS
models.

• We design a QoS procedure designated for large heterogeneous IoT systems where
specific attention to scalability is given in the design at any rate.

• We develop a heuristic algorithm to solve the Thing Selection problem in a polynomial
time in order to allow its implementation in real systems.

In the second part of this manuscript II, we focus on the Access Network, and, in
particular, on how to provide QoS support over the CoAP protocol.

We designed a new architecture which exploits gateways, that are located between
WSNs and clients, to provide the QoS support in a transparent way. To this aim we com-
bined different technologies, such as proxying and virtualization, to enhance the standard
CoAP protocol without the needs of any modification to clients or smart devices. Exper-
imental results carried on by means of a real testbed demonstrated that the proposed
solution succeeds in overcoming the limitations of the classic architectures, without intro-
ducing significant overhead.

Then we enriched the standard CoAP protocol with the QoS features by exploiting
existing IETF drafts. Specifically, we modified the observing paradigm in order to allow
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a periodic observing, where each client was able to specify the timeliness properties
of the observing relationship, which also considers delays that may occur in LLNs. We
demonstrated that the proposed scheduling algorithm can effectively assure the respect
of deadlines within the negotiated boundaries as well as the deletion of clients that cannot
be satisfied due to delays in the LLN.
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Constrained Application Protocol

The Constrained Application Protocol (CoAP) is a lightweight RESTful protocol designed
for constrained devices. It is based on UDP, and inherits the same client/server paradigm
adopted in HTTP. The protocol has a two (sub-)layer structure: a request/response sub-
layer and a message sub-layer, respectively.

The request/response sub-layer, similarly to the one included in HTTP, handles CoAP
requests, pairs requests and responses by means of tokens, and invokes application
methods to generate responses. The message sub-layer, instead, is responsible for man-
aging the message exchange between endpoints over UDP, implementing reliable deliv-
ery if enabled. CoAP defines four different types of messages: Non-Confirmable (NON),
Confirmable (CON), Acknowledgment (ACK) and Reset (RST). When unreliable mes-
sage delivery is enabled, NON messages, which do not require confirmation of recep-
tion, are employed. When reliable delivery is enabled, requests/responses are trans-
ported within CON messages that, instead, require an acknowledgement through ACK
messages. The latter can be sent in two alternative modes: separate and piggyback.
In separate mode, the receiver sends an empty ACK message immediately after the
reception of a request, and defers sending the actual response in a separate CON mes-
sage, when it is ready. In piggyback mode, instead, the receiver waits for the response
to be ready and sends it back directly encapsulated in the body of the ACK message.
The sender is responsible for retransmitting messages that are not acknowledged after
a default timeout, implementing an exponential backoff between retransmissions. Finally,
RST messages are employed to handle error situations, such as a recipient that cannot
process a message.

CoAP includes also the definition of a proxy, which is a CoAP endpoint that can issue
requests on behalf of a client. Two different types of proxy are defined: the Reverse Proxy
and the Forward Proxy. A Reverse Proxy is employed to transparently expose resources
hosted on different servers, as if they were hosted by itself, e.g., to simplify the discovery
procedure or to transparently implement custom processing (e.g., caching) or enforce
access policies. A Forward Proxy, instead, does not expose any resource but can issue
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on-demand CoAP transactions on behalf of a client, which specifies the destination URI
as a string in the Proxy-Uri Option.

In addition to the CoAP protocol, some extensions and features are currently under
definition or have been recently defined by IETF. Among them, three ones are worth
to be mentioned: Block-wise transfer [82], Resource Observing [8] and the Constrained
RESTful Environments (CoRE) Link Format specification [83].

Block-wise transfer enables the transmission of a big bunch of data without IP frag-
mentation. Constrained networks usually have a limited maximum frame length that re-
quires large data- gram to be fragmented at the IP layer, resulting in inconvenient com-
munication overhead and additional processing for fragmentation and reassembly. Block-
wise transfer allows big payloads to be fragmented directly by the application into a chain
of messages, each one sent individually to avoid fragmentation at the IP layer.

Resource Observing is a non-RESTful additional mode of operation implementing a
publish/subscribe mechanism that can be exploited to reduce the communication over-
head: a client registers its interest in the status of a resource to receive asynchronous up-
dates when the status changes. In detail, a client issues a GET request with the Observe
option enabled; the server processes the message and registers an observe relation-
ship, whenever the resource representation changes, the server notifies all the observers
sending a normal CoAP response.

Finally, the CoRE link format specification defines a link format to be used by CoAP
servers to describe hosted resources and specify possible link relationships with other
resources. The language is an extension of the Link Header format defined in HTTP,
which includes specific attributes typical of constrained environments.

The CoRE link format is exploited during discovery operations. In particular, CoAP de-
fines two procedures to automate discovery: service discovery and resource discovery,
respectively. Service discovery allows clients to discover CoAP servers on the same sub-
net. CoAP servers join the all-CoAP-nodes IPv6 multicast address, listen to the default
CoAP port, and replies to multicast messages advertising their presence. Once a server
is discovered, a client can retrieve all URIs associated to respective resources hosted
by the server with corresponding attributes through a resource discovery. To this aim, a
client issues a GET request to the “/.well-known/core” URI to obtain the representation of
such resources in the CoRE Link Format.
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