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Abstract

Virtual Machine systems are commonly used in several organizations providing
network services, since those systems supply high reliability, security and
availability. Therefore, network performance has become a critical issue to deal
with, since Virtual Machine systems are widespread nowadays.

In this thesis we are going to present VirtualBox hypervisor, giving some
details about its architecture and analyzing network performances of the existing
solution. We then implement an extension that interfaces the hypervisor with
netmap framework [1], which provides fast packet I/O. Finally, we present
some optimizations to an emulated network device (e1000 in our case), that
considerably improve network performances.
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Chapter 1

Introduction

It is important to point out that the term Virtual Machine may have multiple inter-
pretations, so we must first specify which one of those meanings we are referring
to.
When we talk about Virtual Machine (VM), we refer to a virtualized computing
environment running on top of a physical computing environment; as a result, we
get one or more independent VMs, which may be different from the original one.
Before proceeding, we introduce some terminology:

• Guest: The VM.

• Host: The physical computing environment that hosts one or more VMs.

• Virtual Machine Monitor (VMM): The software part that provides support
for virtualization. Also known as Hypervisor.

The main reason that caused the spread of VMs is the abstraction levels that it
introduces; this brings many benefits:

• Flexibility: you can run programs compiled for a given Instruction Set Ar-
chitecture (ISA) and/or a given Operating System (OS) on top of a computer
that has a different ISA and/or different OS (e.g. you can test new software
on different architectures without having one machine per architecture).

• Protection: each guest is isolated, which means that you can execute dif-
ferent applications on different VMs, so that if an application has a security
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Figure 1.1: Type 2 System Virtual Machine generic architecture

issue, only the VM (or VMs) running that specific software will be exposed
to it.

• Resources usage: one single physical machine may provide multiple ser-
vices using the 100% of the resources, instead of using many underutilized
physical machines, thus reducing costs and saving energy.

• Mobility: replicating VMs to other locations is only a matter of copying/-
transmitting some files; this helps avoiding multiple setups since through a
VM you can bring a functioning computing environment ready to use to the
user.

As stated before, the term Virtual Machine may have several meanings. A generic
architecture of the ”class” of VMs we will refer to (called Type 2 System Virtual

Machines), is shown in figure 1.1. In this case the VMM is a regular OS process,
that runs in the host OS along with other processes. The VMM can access the
physical resources through the OS services, which depend on the specific OS. We
will not investigate other classes of Virtual Machines since this topic falls outside
this work.
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1.1 Virtual Machine Implementation

The basic idea behind VMs, is to emulate, i.e. to execute code written for a certain
environment, using another environment. In the following, we will briefly present
the three basic techniques to implement emulation: interpretation, dynamic trans-
lation, hardware-based virtualization.

1.1.1 Interpretation

This is the naive emulation technique. The VMM has to perform in software
what a physical CPU would have done in hardware: so it will be implemented
as a loop, for each iteration, performs the fetch, decode and execute phases of
instruction execution.

Writing an interpreter for a modern ISA can be a very long and difficult
process, even if it is conceptually simple; in fact, it is just a matter of reading
an Instruction Set specification and implement all the possible instructions
respecting the specifications.
However, the simplicity of this approach is responsible for its inefficiency; as a
matter of fact, for each source instruction, the VMM has to execute many host
instructions (e.g. 30-100) to perform in software all the necessary operations.
The average translation ratio is very high (e.g. 40).

1.1.2 Dynamic translation

This is a more sophisticated form of emulation. Rather than performing a
”source-code-to-source-code” translation, the idea is to translate it into an
equivalent binary code that can be executed directly on the host CPU.
This method amortizes the cost of interpretation, doing the fetch and decode
phases only once or a few times. The code execution step of an instruction or
a block of instructions is generated once (or a few times) and stored in a Code

Cache. After some time the code cache will contain the complete translation of
the source program into the host ISA.
As a result, the average translation ratio can be close to 1, giving an acceptable
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performance.

This technique is way more complicated than the previous one. In this
case, several problems are present:

• code-discovery: makes impossible to do static translation

• code-location: different address space of the guest and host systems

• state mapping: the way the VMM maps guest registers and the like to the
host ones

It is interesting to notice that both interpretation and dynamic translation can make
sense also in the case that guest and host have the same ISA; if this is the case,
the translation is simplified since the code can be natively executed on the host
machine, without performance losses.
However there are some cases where emulation in software my be necessary. As a
typical example, memory accesses to the I/O space may need software emulation.
In particular, if the guest wants to access a physical resource that is present on the
host (e.g. a network adapter), the VMM cannot allow direct access to the device,
because other processes could be accessing the same device at the same time, and,
obviously, the host network driver and the guest network driver are not aware of
each other. On the other hand, if the guest wants to access a virtual device (which
does not exist on the host), the I/O instruction must be trapped1 in order to emulate
the device behavior in software.

1.1.3 Hardware-based virtualization

Due to the widespread use of VMs, extensions for virtualization were introduced
by processor vendors. Thanks to these hardware assists, some of the problems
affecting dynamic translation techniques have been overcome, and at the same
time they have made it easier to execute guest code natively. Both AMD and
Intel proposed their extensions for the x86 ISA, AMD-v ([4]) and VT-x ([5])
respectively.

1Guest execution is interrupted and the VMM takes control.
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With this new extension, the CPU can execute in two different modes: root

mode and VM mode (or non-root mode). The CPU can switch from root mode
to VM mode through a so called VM entry instruction, while can switch back to
root mode through a so called VM exit instruction. When in VM mode, the CPU
can execute guest code in a controlled environment, i.e. the CPU cannot execute
some safety-critical instructions (e.g. I/O instructions); when necessary, CPU
performs a VM exit and runs host code (VMM or other processes). The switch
operation between host world and guest world is similar to a context switch, since
it involves the saving of the host state and loading the guest state (and vice versa).
Although performed in hardware, these transitions between host and guest worlds
are expensive in terms of performance, because software overhead, OS operations
and userspace/kernelspace transitions are involved in the switching operations,
but they are also necessary when dealing with I/O operations or interrupts. Hence,
VM switches must be minimized in order to achieve good I/O performances.

1.2 I/O Virtualization techniques

Emulating a device means doing in software what the device would do in
hardware. Thus, when a guest accesses an I/O device (e.g. writes to a device
register), the VMM must take over and emulate all the operations associated with
the specific I/O access.

In order to improve I/O virtualization techniques, three approaches have
been defined:

• Hardware support in the devices (virtual functions and IOMMU [6]), so
that a guest can directly access devices in a protected way and run at native
speed.

• Runtime optimizations in VMM. E.g. running short code involving multiple
I/O instructions in interpreted mode saves some VM exits2.

2See [7] for details.
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• Design virtual device models in order to reduce expensive operations in de-
vice emulations (e.g. I/O accesses and interrupts). This approach is known
as device paravirtualization and produced some virtual device models, such
as VirtIO ([8]). This requires synchronization and memory sharing between
the guest and VMM in order to exchange information, while interrupts are
used only for notification purposes. In that way it is easier to minimize the
amount of VM exits.
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Chapter 2

VirtualBox

In this chapter we will present VirtualBox hypervisor, giving details about its
features (section 2.1), its internal architecture (section 2.2), and how the behavior
of e1000 device is emulated (section 2.4).
As host OS, we used Ubuntu 15.10 64-bit with kernel version 4.2.0. The guest OS
is the same as the host one.

2.1 VirtualBox features

VirtualBox is a free, open source hypervisor, written entirely in C/C++. In
particular, it is a cross-platform type 2 VMM, so it is able to run an arbitrary
OS, regardless of the host OS, and it is implemented as a regular process in the
host OS, therefore it can make use of all OS services. At the time of the writing,
VirtualBox version number is 5.0.4, so we will refer to that version for Linux OS
(since our host OS is Linux based).

Here is a brief outline of VirtualBox main features:

• Portability. VirtualBox runs on a large number of a 32-bit and 64-bit host
operating systems. It can run VMs created on different hosts and/or with
different virtualization software.

• Multiple virtualization interfaces. VirtualBox provides three different vir-
tualization interfaces
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– Minimal: Announces the presence of a virtualized environment.

– KVM: Presents a Linux KVM hypervisor interface which is recognized
by Linux kernels starting with version 2.6.25.

– Hyper-V: Presents a Microsoft Hyper-V hypervisor interface which is
recognized by Windows 7 and newer operating systems.

We chose the KVM interface for tests and implementations.

• Multiple frontends: A frontend is a user interface that VirtualBox provides,
such as:

– VBoxManage: A textual interface that allows advanced settings for
VMs.

– VirtualBox: The default frontend, based on Qt [11].

– VBoxSDL: An alternative frontend based on SDL [12]. This is useful
for business use as well as testing during development. The VMs then
have to be controlled with VBoxManage.

– VBoxFB: The ”Framebuffer GUI”, a GUI that sits directly on the
Linux framebuffer. Not currently maintained.

• No hardware virtualization required. Even if hardware virtualization is
fully supported, VirtualBox does not require the processor features such
as Intel VT-x or AMD-V; in that way VirtualBox can be used also on old
hardware which has not these features.

• Guest Additions. VirtualBox Guest Additions are software package which
can be installed inside of supported guest systems to provide additional in-
tegration and communication with the host system (e.g. accelerated 3D
graphics, automatic adjustment of video resolution and more).

• Great hardware support. Among others, VirtualBox supports:

– Guest multiprocessing (SMP). VirtualBox can present up to 32 vir-
tual CPUs to each virtual machine, regardless of how many CPU cores
are physically present on the host.
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– USB device support. VirtualBox implements a virtual USB controller
that allows to connect arbitrary USB devices to VMs without having
to install device-specific drivers on the host.

– Hardware compatibility. VirtualBox virtualizes a vast array of vir-
tual devices. That includes IDE, SCSI and SATA hard disk controllers,
several virtual network cards (including e1000) and so on.

– Full ACPI support. The Advanced Configuration and Power Inter-
face (ACPI) is fully supported by VirtualBox.

• Multigeneration branched snapshots. VirtualBox can save arbitrary snap-
shots of the state of the VM. You can go back in time and revert the VM
to any such snapshot and start an alternative VM configuration from there,
effectively creating a whole snapshot tree.

• VM groups. VirtualBox provides a groups feature that enables the user to
organize and control VMs collectively, as well as individually.

• Clean and modular architecture. VirtualBox has an extremely modular
design with well-defined internal programming interfaces and clean separa-
tion of client and server code (i.e. code related to VMs and code related to
the VMM, respectively).

2.2 VirtualBox architecture

In this section we will present the internal architecture of VirtualBox, giving de-
tails about its implementation that is necessary to understand in order to imple-
ment our optimizations.

2.2.1 VirtualBox components

When the VirtualBox Graphical User Interface (GUI) is opened and at least a VM
is started, three processes are running:
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• VBoxSVC is the VirtualBox service that always runs in background. This
process is started automatically by the first client process 1 and exits a short
time after the last client exits. The service is responsible for maintaining the
state of all VMs. It is also called server process

• The GUI process. It communicates settings and state changes to VBoxSVC.
It is also called client process

• The hypervisor process.

When we launch VirtualBox (e.g. the VirtualBox GUI), the VBoxSVC compo-
nent starts executing and initializes all the registered VMs. Then, when a VM is
launched, before it starts executing, the client asks the server all settings the de-
tails, so that it can deliver these information to the starting VMM process. Finally,
the hypervisor is able to execute the VM.
In section 3.1.3 we will see these steps in details.

2.2.2 VirtualBox kernel modules

VirtualBox provides different kernel modules that the user should add to the host
kernel:

• vboxdrv: The only mandatory module. This is needed by the VMM to gain
control over the host system. It is used to manage the host/guest world
switches and device emulations.

• vboxnetadp: ”vboxnetadp” stands for ”VirtualBox Network Adapter”. It is
needed to create a host networking interface (called vboxnet); that interface
(basically a virtual switch), is used to connect VMs to each other (and/or
to the host). It is necessary when VirtualBox networking mode is set on
host-only or bridged (these modes will be explained in section 2.2.6).

• vboxnetflt: ”vboxnetflt” stands for ”VirtualBox Network Filter”. It is a ker-
nel module that attaches to a real interface on the host and filters and injects
packets. As for vboxnetadp, it is only necessary for host-only and bridged
modes.

1i.e. a frontend. See section 3.1.2 for more informations.
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• vboxpci: This kernel module provides PCI card passthrough. This is used
when the user wants to use a PCI device on the guest, even if the related
driver is not available on the host.

2.2.3 Software Virtualization

As stated in section 2.1, VirtualBox fully supports hardware virtualization. How-
ever, since this is not a requirement, in the event that hardware virtualization is
not present, VirtualBox makes use of a technique defined as Software virtualiza-

tion. In order to understand the software virtualization technique, it is important
to understand how CPUs provide a mechanism of protection at microcode level
called Protection rings.

Privilege rings

Figure 2.1: Protection rings

As shown in figure 2.1, there are four privilege levels or rings, numbered from
0 to 3, with ring 0 (R0) being the most privileged and ring 3 (R3) being the least.
The use of ring allows for system software to restrict task from accessing data or
executing privileged instructions. In most environments, the OS and some device
drivers run in R0 and applications run in ring 3 [9].
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Software Virtualization

In addition to the four privilege rings provided by the hardware, we need to dif-
ferentiate between host context and guest context.

• In host context, everything is as if no VMM was active. This might be
the active mode if another application on the host has been scheduled CPU
time; in that case, there is a host R3 mode and a host R0 mode.

• In guest context a VM is active. So long as the guest code is running in
ring 3, this is not much of a problem since a hypervisor can set up the page
tables properly and run that code natively on the processor. The problems
mostly lie in how to intercept what the guest’s kernel does.

When starting a VM, VirtualBox sets up the host system through its R0 support
kernel driver so that it can run most of the guest code natively, and it inserts itself
at the ”bottom” of the picture. It can then assume control when needed, e.g. if
a privileged instruction is executed, the guest traps; VirtualBox may then handle
this and either route a request to a virtual device or possibly delegate handling
such things to the guest or host OS. In guest context, VirtualBox can therefore be
in one of three states:

• Guest R3 code is run unmodified, at full speed, as much as possible. The
number of faults will generally be low. This is also referred to as raw mode,
as the guest R3 code runs unmodified.

• For guest code in R0, VirtualBox employs a trick: it actually reconfigures
the guest so that its R0 code is run in ring-1 (R1) instead. As a result,
when guest R0 code (actually running in R1) such as a guest device driver
attempts to write to an I/O register or execute a privileged instruction, the
VirtualBox hypervisor in ”real” R0 can take over.

• The VMM can be active. Every time a fault occurs, VirtualBox looks at the
offending instruction and can relegate it to a virtual device, the host OS, the
guest OS, or run it in the recompiler.
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In particular, the recompiler is used when guest code disables inter-
rupts and VirtualBox cannot figure out when they will be switched
back on. The recompiler is based on the dynamic translation technique
(section 1.1.2).

Unfortunately this only works to a degree. Among others, the following situations
require special handling:

1. Running R0 code in R1 causes a lot of additional instruction faults, as R1 is
not allowed to execute any privileged instructions (of which guest’s R0 con-
tains plenty). With each of these faults, the VMM must step in and emulate
the code to achieve the desired behavior. While this works, emulating thou-
sands of these faults is very expensive and severely hurts the performance
of the virtualized guest.

2. There are certain flaws in the implementation of R1 in the x86 architecture
that were never fixed. Certain instructions that should trap in R1 don’t. If
the guest is allowed to execute these, it will see the true state of the CPU,
not the virtualized state.

3. A hypervisor typically needs to reserve some portion of the guest’s address
space for its own use. This is not entirely transparent to the guest OS and
may cause clashes.

4. The SYSENTER instruction (used for system calls) executed by an appli-
cation running in a guest OS always transitions to R0. But that is where
the VMM runs, not the guest OS. In this case, the hypervisor must trap and
emulate the instruction even when it is not desirable.

5. The CPU segment registers contain a ”hidden” descriptor cache which is
not software-accessible. The hypervisor cannot read, save or restore this
state, but guest OS may use it.

6. Some resources must (and can) be trapped by the hypervisor, but the access
is so frequent that this creates a significant performance overhead.

15



To fix these performance and security issues, VirtualBox contains a Code

Scanning and Analysis Manager (CSAM), which disassembles guest code, and
the Patch Manager (PATM), which can replace it at runtime.

Before executing R0 code, CSAM scans it recursively to discover problem-
atic instructions. PATM the performs in-situ patching, i.e. it replaces the
instruction with a jump to hypervisor memory where an integrated code generator
has places a more suitable implementation. In reality, this is a very complex task
as there are lots of odd situations to be discovered and handled correctly.

In addition, every time a fault occurs, VirtualBox analyzes the offending
code to determine if it is possible to patch it in order to prevent it from causing
more faults in the future. This approach works well in practice and dramatically
improves software virtualization performance.

2.2.4 Hardware virtualization

As stated in section 1.1.3, with Intel VT-x there are two distinct modes of CPU
operation: root mode and non-root mode.

• In root mode, the CPU operates much like older generations of processors
without VT-x support. There are four privilege rings, and the same instruc-
tion set is supported, with the addition of several virtualization specific in-
structions. Root mode is what a host operating system without virtualization
uses, and it is also used by a hypervisor when virtualization is active.

• In non-root mode, CPU operation is significantly different. There are still
four privilege rings and the same instruction set, but a new structure called
Virtual Machine Control Structure (VMCS) now controls the CPU oper-
ation and determines how certain instructions behave. Non-root mode is
where guest systems run.

The VMCS includes a guest and host state area which is saved/restored when
switching between the two modes (VM entry and VM exit). Most importantly,
the VMCS controls which guest operations will cause VM exits. Thanks to the
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VMCS, a hypervisor can allow a guest to write certain bits in shadowed control
registers,but not others. This enables efficient virtualization in cases where
guests can be allowed to write control bits without disrupting the hypervisor,
while preventing them from altering control bits over which the VMM needs to
retain full control. The VMCS also provides control over interrupt delivery and
exceptions.

Whenever an instruction or event causes a VM exit, the VMCS contains
information about the exit reason. Thus the hypervisor can efficiently handle
the condition without needing advanced techniques such as CSAM and PATM
described above.

VT-x inherently avoids several of the problems which software virtualiza-
tion faces. The guest has its own completely separate address space not shared
with the hypervisor, which eliminates potential clashes. Additionally, guest OS
kernel code runs at privilege R0 in non-root mode, obviating the problems by
running R0 code at less privileged levels. Naturally, even at R0 in non-root mode,
any I/O access by guest code still causes a VM exit, allowing for device emulation.

We restrict our work to the Hardware Virtualization solutions, because this
is the one that maximizes overall performance.

2.2.5 Emulation Threads

When a VM is started, a user-defined number of SMP processors is assigned
to the VM itself. Each CPU is emulated through a so called Emulation Thread

(EMT), so we have one EMT per SMP processor. An EMT is responsible of
executing guest code, emulating devices and handle the transition between host
world and guest world.
When using hardware virtualization (as we stated before, this is our case), an
EMT continuously switches between root mode and VM mode (see section 1.1.3).

Let us assume that the EMT is running guest code, e.g. an application. At
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some point, the application tries to execute an I/O operation, causing a SYSEN-
TER instruction in the guest. Therefore, the CPU executing the EMT, switches
from R3 to R0 (still in VM mode), in order to run the guest kernel code. At this
point, the ”true” I/O operation (such as a write operation in a register) produces
a VM exit, so the CPU switches from VM mode to root mode. On a VM exit
the EMT stops executing guest code and start executing VirtualBox code (in
kernelspace), in order to handle the event that caused the VM exit itself. Handling
a VM exit may cause the EMT to execute userspace code in order to emulate a
device, switching back to kernelspace after the device emulation (more on this
in section 2.4). After the event has been handled, the EMT executes a VM entry
(i.e. CPU switches back to VM mode) and continues to run guest code from the
point where it was interrupted.

Figure 2.2 shows the situation described above.

Figure 2.2: Example of EMT execution flow

2.2.6 Networking modes

For a VM it is fundamental to communicate to the outside world using the
networking infrastructure, otherwise the VM becomes useless.
Nevertheless, a VM is ”just” a software entity, so it is not connected to any real
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network. Therefore the VMM must provide some kind of virtualized network
infrastructure, so that guest OS thinks its virtual network device is connected to
a physical network and can then exchange packets with the outside.

VirtualBox provides several of these network infrastructures called Net-

working modes; in that way a user can choose the most suitable way to connect
her VM. Among the others, the main network modes provided by VirtualBox are
the following:

• Not attached In this mode, VirtualBox reports to the guest that a network
card is present, but there is no connection, as if no Ethernet cable was
plugged into the card.

• Network Address Translation (NAT) A VM with NAT enabled acts much
like a real computer that connects to the Internet through a router. The
”router”, in this case, is the VirtualBox networking engine, which maps
traffic from and to the VM transparently. In VirtualBox this router is placed
between each VM and the host.
The VM receives its network address and configuration on the private net-
work from a DHCP server integrated into VirtualBox. The IP address thus
assigned to the VM is usually on a completely different network than the
host.

• Bridged networking With bridged networking, VirtualBox uses a device
driver on the host system (vboxnetflt kernel module) that filters data from
the physical network adapter. That is why it is called ”network filter” driver.
This allows VirtualBox to intercept data from the physical network and in-
ject data into it, effectively creating a new network interface in software.
When a guest is using such a new software interface, it looks to the host
system as though the guest were physically connected to the interface using
a network cable: the host can send data to the guest through that interface
and receive data from it. This means that the user can set up routing or
bridging between the guest and the rest of the network.

• Internal networking It is similar to bridged networking in that the VM can
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directly communicate with the outside world. However, the ”outside world”
is limited to other VMs on the same host which connect to the same internal
network, which is identified simply by its name.
Even though technically, everything that can be done using internal net-
working can also be done using bridged networking, there are security ad-
vantages with internal networking. In bridged mode, all traffic goes through
a physical interface of the host system. It is therefore possible to attach a
packet sniffer to the host interface and log all traffic that goes over it. If,
for any reason, the user prefers two or more VMs on the same machine to
communicate privately, hiding their data from both the host system and the
user, bridged networking therefore is not an option.

• Host-only networking Host-only networking can be thought as a hybrid
between the bridged and internal networking modes: as with bridged net-
working, the virtual machines can talk to each other and the host as if they
were connected through a physical Ethernet switch. Similarly, as with in-
ternal networking however, a physical networking interface need not to be
present, and the virtual machines cannot talk to the world outside the host
since they are not connected to a physical networking interface.
Instead, when host-only networking is used, VirtualBox creates a new soft-
ware interface on the host (using vboxnetadp kernel module) which then
appears next to the existing network interfaces. In other words, whereas
with bridged networking an existing physical interface is used to attach vir-
tual machines to, with host-only networking a new ”loopback” interface is
created on the host. And whereas internal networking the traffic between
the VMs cannot be seen, the traffic on the ”loopback” interface on the host
can be intercepted.

NAT mode is not interesting with respect to our goals, since it is only intended
to be a way the VM can easily access the Internet, and it is not intended to be an
efficient networking mode. Similarly, we will not consider bridged networking
mode, because optimizing the performance of a real network adapter is not the
aim of this work. Instead, we will consider the host-only mode, since our goal
is to optimize the communication performances between two VMs on the same
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host, or between a VM and the host (so also internal networking is not interesting
for us), using the netmap framework.

2.2.7 Network port and connector

In order to implement a specific networking architecture, VirtualBox implemen-
tation includes an interface between the code that emulates the network adapter,
and the code that provides access to the chosen networking mode. The reason
is that the two subsystems are completely independent, and a user can easily
combine every virtual network adapter with every networking mode.
VirtualBox defines the network device emulation network port and the network-
ing mode network connector.

Ports and connectors are two interfaces that communicate via a callback
mechanism. In any way a code implements a port interface, it must have a
reference (i.e. a pointer) to a connector, and vice versa.

Ports The methods 2 exported by ports (which are exposed to connectors) are
the following:

• pfnWaitReceiveAvail Waits until there is space for receiving data. It also
takes the number of milliseconds to wait (timeout) as argument. If timeout
parameter is 0, then it returns immediately. The return value specifies if
there is space available to receive data, if timeout expired or if an error
occurred.

• pfnReceive When the connector receives data from the network, it calls
this function on the port, so the latter can push data to the guest. This
function takes the pointer to available data and the number of bytes in the
buffer as arguments.

2The ”pfn” prefix stands for ”pointer to function”. It is imposed by VirtualBox coding guide-
lines.
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• pfnReceiveGso The same as pfnReceive, but it has and additional argu-
ment regarding the segmentation offloading context 3.

• pfnXmitPending This function is used to notify the port that can transmit
pending packets (if any).

Connectors The methods exported by connectors (which are exposed to ports)
are the following:

• pfnBeginXmit It is used by port to get a lock on the connector (only one
port instance can transmit at a time).

• pfnAllocBuf This asks the connector to provide the buffer that the port
will fill with data. The size of that buffer is specified as an argument.

• pfnFreeBuf Frees an unused buffer that has been requested by the port.

• pfnSendBuf Sends data to the network. After the port filled the buffer
(allocated by the connector) with data, it calls this function passing the filled
buffer to the connector.

Moreover, both interfaces export two other (mandatory) methods: pfnConstruct
(constructor) and pfnDestruct (destructor). The constructor is called when the
VMM instantiates a port/connector, the destructor is called during the shutdown
process.

When a port wants to send a frame to the network, it invokes the pfnBeginXmit

function provided by the connector in order to gain lock access on the connector
itself; then it calls pfnAllocBuf function to get a buffer where the port can store
the frame and, finally, it invokes pfnSendBuf so that the connector can push the
frame (passed as argument) to the network. On the other direction, when the
connector gets a frame from the network, it invokes the pfnWaitReceiveAvail

to check whether the port is able to receive data. If this is the case, it immediately
calls pfnReceive so that the port can push the received frame (passed as

3We are not going into details, since in our work we did not implement segmentation offload-
ing.
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Figure 2.3: Example of EMT execution flow

argument) to the guest.
A simplified version of the above interaction is depicted in figure 2.3, where only
the send and receive functions are shown.

2.3 The e1000 network adapter

In this section we will outline of the functioning of an e1000 device. We will
describe only those aspects that are relevant to our goals, in particular we are
interested to the NIC datapath. The complete specifications can be found at [10]

The datapath refers to the software interface that the OS uses in order to
transmit and receive Ethernet frames. It involves just some registers and DMA-
mapped memory.
When the device driver wants to send an Ethernet frame through the adapter, it
has to tell the adapter where the frame is stored in physical memory and how long
it is. Once the device is aware of where the frame is stored, it can directly access
the physical memory and send the frame on the wire. Similarly, when a frame
arrives from the wire, the adapter has to store it in the physical memory. For this
reason, it must know in advance where to store the frames, so the device driver
must tell the adapter where it can store arrived frames. If it is not the case, the
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adapter will drop incoming frames.

As we can see, in order to achieve this information exchange, there must
be a well-defined interface between the device driver and the adapter. This
interface is known as a ring. A ring is a circular array (i.e. a contiguous zone in
memory) of descriptors that are used to exchange those information. A network
device has at least two rings: one for transmission (TX ring) and the other for
reception (RX ring). A network adapter can have multiple TX/RX rings, possibly
with different priorities and/or policies, so that it permits traffic engineering.
However, VirtualBox implementation of e1000 device, offers only one ring per
direction. The number of descriptors per ring (i.e. the length of the array), can be
chosen by the device driver. In e1000 this number must be a power of 2 and less
than or equal to 4096.

2.3.1 TX ring

The TX ring is an array containing N TX descriptors. Each descriptor is 16 bytes
long and contains the physical address of the associated buffer, its length (i.e. the
length of the stored frame) and some status flags. Among the others, it contains
the Descriptor Done flag (DD) and the End of OPeration flag (EOP). The DD
flag is set by the adapter to tell the device driver that the TX descriptor has been
successfully processed. The EOP flag is used by the device driver to tell the
adapter whether that TX descriptor contains a complete packet or only a part of
it (e.g. because it does not fit in the buffer); so if a packet is spread among N TX
descriptors, the first N-1 descriptors will have the EOP flag set to 0, and the last
one will have the flag set to 1.

Since the ring is stored in physical memory, the adapter must know its
physical address. This information is stored in two registers: TDBAL (Transmit

Descriptor Base Address Low) and TDBAH (Transmit Descriptor Base Address

High). These are two 32-bit registers that, concatenated, form a 64-bit string of
bits which is the physical base address of the ring.
Since it is a producer/consumer system, a synchronization mechanism is required
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Figure 2.4: TX ring with its registers. Free descriptors are the grey ones, while
the pending descriptors are the white ones. base is the concatenation of TDBAH
and TDBAL registers.

between the device driver and the adapter. This is achieved using two index

registers: the TDT register (Transmit Descriptor Tail) and the TDH register
(Transmit Descriptor Head). The value of these registers represent an array index

with respect to the TX ring.

At the beginning, TDT and TDH are initialized to their initial value (0) by
the device driver. When the driver wants to send a new frame, it writes the physi-
cal address and the length of the frame in the descriptor pointed by TDT register,
then it increments the TDT register itself (modulo number-of-descriptors).
When the adapter recognizes that TDH and TDT are different, it understands that
there are new frames to be sent on the wire, so it start processing the descriptors
starting from the one pointed by TDH.
For each new descriptor to process, the device:

1. Sends the new frame on the wire.

2. Writes the TX descriptor back in order to set the DD flag to 1.

3. Increments the TDH register circularly.

So the adapter can access the next descriptor to be processed with this formula:

Index = base+(T DH×16)

Where base is the concatenation of TDBAH and TDBAL registers.
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Figure 2.5: RX ring with its registers. Filled descriptors are the grey ones, while
the available descriptors are the white ones. base is the concatenation of RDBAH
and RDBAL registers.

The adapter stop condition is T DH == T DT , i.e. there are no more de-
scriptors to process (TX ring empty).
In order to prevent the index registers to wrap around, the device driver must
never use the last free descriptor. So when the TDT is such that incrementing it
circularly would cause T DH == T DT , the driver must stop transmitting. This is
the TX ring full condition.
Figure 2.4 shows the TX ring with its registers.

2.3.2 RX ring

The RX ring is an array of N RX descriptors. Each RX descriptor is 16 bytes long
and contains the physical address of the associated buffer, its length and some
status flags. Among the others, it contains the DD flag and the EOP flag (just
like a TX descriptor). The DD flag is used by the adapter to notify the device
driver that a the RX descriptor contains new data to be processed. The EOP
flag is used by the adapter to tell the device driver whether that RX descriptor
contains a complete packet or only a part of it. So if a packet is spread over N RX
descriptors, the first N-1 will descriptors will have the EOP flag set to 0, while the
last one will have the flag set to 1.

Just as for TX ring, the adapter must know the physical address of the RX
ring. This address is stored in two registers: RDBAL (Receive Descriptor Base

Address Low) and RDBAH (Receive Descriptor Base Address High). These are
two 32-bit registers that, concatenated, form a 64-bit string of bits which is the
physical base address of the RX ring.
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Here also, the synchronization between the adapter and the device driver is
implemented through two index registers: RDT register (Receive Descriptor Tail)
and RDH (Receive Descriptor Head).

At the beginning, the driver initializes RDH and RDT to their initial values
(0). The adapter still does not know the physical address of any buffer where it
can store frames, so it cannot store incoming frames. Therefore, the driver writes
the physical address of a memory buffer into the RX descriptor pointed by RDT,
and increment RDT circularly4. Now the device know that a new memory buffer
is available, so it use it to store incoming frames. When RDH 6= RDT , the adapter
knows that there are buffers available, so it can accept incoming frames.
When a new frame is arrived from the wire, the adapter:

1. Fetches the RX descriptor pointed by the RDH register.

2. Copies the frame to the buffer pointed by the fetched RX descriptor.

3. Writes back the descriptor in order to set the length of the received frame
and the DD bit (writeback).

4. Increments RDH register circularly.

5. May send an interrupt in order to tell the driver that a new frame is available
to be delivered to the network stack5.

So the adapter can access the next available RX descriptor with this formula:

Index = base+(RDH×16)

where base is the concatenation of RDBAH and RDBAL registers.

The adapter stop condition is RDH == RDT , i.e. there is no available
free descriptor where a frame can be stored.
As for the TX ring, in order to prevent the array indexes to wrap around, the

4It is useless to write the length field in the descriptor, since it will be modified by the adapter
on reception.

5See section 2.4.2.
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driver should never increment RDT if the increment would cause RDT == RDH.
This is the full RX ring condition.
Figure 2.5 shows the RX ring with its registers.

2.3.3 e1000 interrupts

The e1000 network adapter can generate interrupts for several reasons, but we are
only interested in two of them:

• TX interrupts: these interrupts are raised when the transmission of one or
more frames completed. Each TX descriptor has a bit flag Report Status

(RS), that, if set, tells the adapter to raise an interrupt as soon as the asso-
ciated frame is transmitted. Anyway, an interrupt is always sent when the
adapter reaches the stop condition (T DT == T DH).
The interrupt handler frees the descriptors that have been processed (DD
flag set), and mark them as free (unset the DD flag).

• RX interrupts: these are raised whenever the adapter stores a new incoming
frame in physical memory; in that way the device driver knows that a new
frame has been received and it can be pushed to the kernel network stack.

When we are dealing with high packet rates, e.g. 1 Mpps, interrupt rate becomes
a critical issue. In fact, interrupt routines have a fixed cost that must be paid
before doing useful work, such as push the received frame to the network stack
and let the receiver application to process it.
At this rate, if each received packet raised a RX interrupt, the we would handle
up to 1 million of interrupts per second, which would stall the machine. In that
case, the CPU would spend almost all of its time in handling interrupts, and the
receiver application could not do any useful work. This problem is known as the
livelock problem.

This problem can be solved if the device ”skips” some RX interrupts, rais-
ing an interrupt every batch of received frames, e.g. 100 frames per batch, and not
every single frame. In that way, the interrupt rate is 100 lower and the interrupt
overhead is amortized over 100 frames. Anyway, the device must guarantee that
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a RX interrupt is raised after a period of time, even if the 100-frames batch is not
completed, because the device cannot know when the next frame will arrive.
These mechanisms are known as interrupt mitigation.
The e1000 network adapter implements two interrupt mitigation mechanism, but
since the older one is strongly discouraged by the Intel manual, we will consider
only the most recent one.

The e1000 network adapter has a register, called Interrupt Throttling Regis-

ter (ITR), which controls the interrupt mitigation mechanism. If the driver
sets this register to a value of δ , the hardware ensures that δ is the minimum
inter-interrupt interval, regardless of the interrupt type. In other words, whenever
an event that requires an interrupt occurs, such as TX completion or RX com-
pletion, the device raises an interrupt as soon as possible, while meeting the ITR
inter-interrupt delay constant.

2.4 VirtualBox e1000 emulation

The e1000 port is implemented in VirtualBox through three source files 6:
DevE1000.cpp, which is the one we are interested in, DevE1000Phy.cpp and
DevEEPROM.cpp. The first one contains all the ”emulation logic” part, while the
others implement only the internal physical emulation and the internal EEPROM
respectively.
The code is an implementation of the interfaces provided by VirtualBox. As
mentioned in section 2.2.7, the first and last called method are the constructor
(pfnConstruct) and the destructor (pfnDestruct) respectively. The main
purpose of these functions is to register/deregister the new PCI Ethernet device
with the rest of the emulator. In this way, it is possible to have multiple instances
of the e1000 network device when launching VirtualBox.
Furthermore, the code contains (in the first part of the file), a set of options , im-
plemented as define statements, that can be enabled/disabled before compiling
(e.g. enable usage of caches, ITR register, and so on).

6These source files are located in src/VBox/Devices/Network/ in the VirtualBox project root
directory.
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When registering a new PCI device, it is necessary to describe the I/O or
MMIO regions that the device implements the device: this is done registering
callback functions to to those regions, one for in operations, on for out operations.
The e1000 emulation code registers a MMIO region and an I/O region, but the
latter is not used. The MMIO region maps all the register the e1000 device
implements.
A statically defined mapping table is used to associate a couple of functions to
each register, one for IN operation, one for OUT operation. In that way, one may
associate a different read callback and a different write callback for each e1000
register. Is also possible to have the same callback function for multiple registers,
or have no callbacks for some of them.
In short, the emulation of a device is achieved with pre-registered callbacks.

Now we will see in details how the register callbacks are invoked.
When an EMT is executing guest code, e.g. the e1000 device driver, it may try
to access a MMIO location corresponding to an e1000 register. The accessing
instruction causes a VM exit, so the EMT switches from the guest context to the
host context. At this point, the VirtualBox driver analyzes the VM exit reason
and understand that the VM exit was caused by an MMIO access. In our case,
the callback registered with the e1000 MMIO is invoked. This callback uses the
address to get the index of the accessed register and calls the read (write) handler
specific for that register.
After the callback returns, a VM entry is executed and the EMT resumes
executing guest code.

Event queues

A register callback is invoked by the EMT (section 2.2.5) while it is handling the
VM exit event. So we are in R0 context. That said, writing a register may cause
some side effects, therefore these side effects should be emulated. However, since
it may take an amount of time that is, possibly, much longer than a simple register
update, and also because it is unnecessary to execute that code in kernelspace, it
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is reasonable to execute the ”side-effect” code in userspace.
In order to achieve this, VirtualBox provides the so called Event queues. As the
name suggests, these are queues in which an event can be posted. Each queue has
a callback function that is associated to the queue itself.
Every time the EMT finishes handling a VM exit it checks all the event queues
before executing a VM entry. If an event is found, the EMT removes that event
from the queue and switches from R0 context to R3 context, so that it can start
executing the callback associated to that queue.
When the callback returns, the EMT switches back to the kernelspace and contin-
ues scanning all event queues. Finally, when there are no more pending events, it
executes a VM entry and resumes executing guest code.

2.4.1 TX emulation

The TX execution path is performed by the EMT thread. As described in
section 2.3, when the device driver wants to notify the hardware that a new TX
frame is ready to be processed, it writes to the TDT register. This causes a VM
exit to occur, so the EMT passes from guest context to host context.
Writing to the TDT register causes the adapter to transmit one or more frames,
so the transmission handling must be done in userspace. So the write callback
for the TDT register, aside from updating the register value, posts an event to an
event queue (TxQueue); in this way the EMT, before switching back to the guest
world, executes the transmission of frames in userspace.
The callback associated with the event queue simply calls the e1kXmitPending

function. The way this function is implemented is regulated from the
E1K WITH TXD CACHE define.

When TX descriptors cache is disabled, the e1kXmitPending function:

1. Tries to acquire the lock It calls the pfnBeginXmit function provided by
the connector, where it tries to acquire the lock on the connector itself.
This is a so called trylock function, because if the lock is busy, the thread
does not block waiting for the lock to be acquired. Instead, the function
returns a busy value. This is necessary because the thread trying to get the
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lock is the EMT, so it must never block, since it is in charge of emulating
all the system. If the trylock succeeds, then go to the next step, otherwise
the function returns without doing any transmission.

2. Loads the current descriptor If there are available descriptors (T DT 6=
T DH), then it reads the TX descriptor pointed by TDH register from the
guest physical memory.

3. Allocates buffer The port asks the connector to allocate the buffer where
it can store the frame, which is pointed by the loaded TX descriptor. The
information about the length of the frame is contained in the TX descriptor
itself.

4. Writes back the descriptor It writes the descriptor back into the guest phys-
ical memory, setting the DD bit to 1.

5. Copies the frame It reads the physical address pointed by the current de-
scriptor (where the frame is stored) and copies it into the buffer provided by
the connector.

6. Possibly Transmits frame If the packet is complete, i.e. EOP flag of TX de-
scriptor is set to 1, then it calls the pfnSendBuf provided by the connector,
passing the previously allocated buffer as an argument.

7. Updates register It circularly increments the TDH register.

8. Possibly raises an interrupt If at least one complete packet has been sent, it
may raise an interrupt to notify the guest that one or more frames have been
sent (see section 2.3.3). If there are other descriptors available (T DT 6=
T DH), then go back to step 2.

9. Releases the lock After all operations, it releases the lock acquired at step 1
calling the pfnEndXmit provided by the connector.

We can see that for each available descriptor, the EMT must read the guest
physical memory in order to get the current TX descriptor. This introduces an
high overhead, particularly when the number of available descriptors is much
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higher than 1.

The reading overhead can be amortized using a local TX descriptor cache.
This can be done enabling the related option (define E1K WITH TXD CACHE).
When the cache is enabled, the e1kXmitPending function behaves much like
the same as before, except for the step 2. Previously, we had one TX descriptor
per read. Now, instead, the EMT tries to load all the available TX descriptors in
one single physical read (two reads in case the tail wrapped around the end of the
TX descriptor ring). However, it may happen that only a fraction of the available
descriptors is loaded, e.g. the cache is almost full. In that case, after the partial
loading, the fetched descriptors are processed (like the previous case), the frames
are sent and the cache is flushed, so that other available descriptors can be loaded.
In that way, the cost of the readings is amortized over the number of fetched
descriptors.

2.4.2 RX emulation

This time the RX execution path is not performed by the EMT, but it is performed
by another thread. The reason is that the EMT is in charge of the entire emulation
process, so it must never do blocking operations, so it cannot wait for incoming
frames from the network.
The thread in charge of receive frames is dependent on the used connector: in
fact the frames flow from the network to the connector, and the latter sends them
to the port (see section 2.2.7, figure 2.3).
From now on, we will refer to this thread as recv thread.

When one or more frames from the network, the recv thread stores them in
a buffer (that is dependent from the connector implementation). Then it first
calls the port callback pfnWaitReceiveAvail to check if the port is able to
receive at least one frame. If that callback returns successfully, the thread calls
the pfnReceive callback, passing the buffer with the available data.

The e1000 port implements the pfnReceive method with
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e1kR3NetworkDown Receive function, which takes the buffer and the size
of the available data in the buffer as arguments.
As in the TX case, the behavior (i.e. the implementation) is controlled by the
E1K WITH RXD CACHE define.

When RX descriptor cache is disabled, this function:

1. Filters the packet It determines if the packet is to be delivered to the upper
layer. The decision is based on:

• Length: if the packet length is greater than the maximum supported
size (16384 bytes) or if long 7 packet reception is disabled 8, then drop
the packet.

• VLAN tag: if the filter does not find a match for the VLAN tag, then
drop the packet.

• Exact Unicast/Multicast: if the packet destination address exactly
matches the address (either unicast or multicast address), then deliver
the packet, otherwise drop it.

• Promiscuous Unicast/Multicast: if the adapter is set in promiscuous
mode 9, then deliver the packet, otherwise drop it.

• Broadcast: if the packet destination address is broadcast, deliver it.

2. Pads the packet If the received packet is too short (less than 60 bytes), the
packet is padded with zeroes.

3. Loads the RX descriptor If there is at least one available RX descriptor
(RDT 6= RDH), then it loads the RX descriptor pointed by RDH register
from the guest physical memory.

4. Fills the buffer After loading the RX descriptor, it writes the (possibly
padded) packet into the buffer pointed by the loaded RX descriptor. If the

7Packet greater than 1522 bytes.
8For further information, see [10].
9The adapter accepts packets even if they are not addressed to it
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packet does not fit the buffer, the EOP flag of the RX descriptor is set to 0,
otherwise the flag is set to 1.

5. Writes back the RX descriptor After the RX descriptor has been filled with
data, it sets the DD bit to 1 and writes back the RX descriptor in memory.

6. Updates register It circularly increments the RDH register.

7. Possibly raises an interrupt If at least one complete packet is successfully
delivered, it may raise an interrupt to notify the guest that one or more
frames have been received (see section 2.3.3). If there is still data to be
processed (e.g. a packet is not completely stored), go back to step 3.

When the reception is completed (i.e. the pfnReceive function returns), the recv
thread goes back to sleep waiting for new incoming packets.

Just as in the TX case, we can see that for each available descriptor, the
recv thread must read the guest physical memory to get the current RX descriptor.
Therefore we have an high overhead, in particular when we are dealing with large
incoming packets.

This overhead can be amortized using a local RX descriptor cache, that
can be enabled through the related option (define E1K WITH RXD CACHE).
When the cache is enabled, the e1kR3NetworkDown Receive function behaves
much like before, except for what concerns the loading of RX descriptors. In the
previous case, we had one single RX descriptor per read. Now the recv thread,
instead of loading the descriptor in memory, looks at the local cache: if the
cache is empty, it prefetches a number of RX descriptors, which is the minimum
between the cache size and the number of available RX descriptors in memory,
with a single memory read (two reads in case the tail wrapped around the end of
the RX ring). If the cache is not empty, it uses the first available RX descriptor in
cache.
After the RX descriptor is processed and written back, the related position in
cache is cleaned.
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It is important to point out that the physical guest memory is different
from the physical host memory. Therefore, all the accesses to the guest physical
memory (such as TX/RX descriptor loads) require an address translation, that
introduces additional overhead. The way it can be obviated will be described in
section 4.3.
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Chapter 3

Implementation of netmap support

In chapter 2 we described the VirtualBox architecture, its implementation and
the interfaces it provides. In this chapter we will implement an extension
to VirtualBox that provides fast packet I/O. This is achieved by interfacing
VirtualBox with the netmap framework [1].

As described in section 2.2.7, VirtualBox includes two interfaces in order
to implement the networking infrastructure: ports and connectors. Our goal is
to create a new connector that implements the interfaces a VirtualBox port to a
VALE switch [3] provided by the netmap framework.
Our netmap connector will be implemented through one single source file:
DrvNetmap.cpp1.

3.1 Integration with VirtualBox

Before going into details of our implementation, we must first ”integrate” our
work in VirtualBox system. It basically involves the VirtualBox build process, the
user interface, so that a user can choose netmap as connector for his system, and
the VMs configuration mechanism, in order to set/save/load the new configuration
parameters needed by netmap.

1This source file will be located in src/VBox/Devices/Network/ in the VirtualBox project root
directory. The Drv prefix in the filename is due to the VirtualBox coding guidelines.
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3.1.1 Building VirtualBox

The VirtualBox build process is performed through two steps: the configuration
and the compilation.

Configuration

Before starting the compilation process, we must run the script configure2, in
order to check if the system meets the requirements, e.g. the presence of
needed libraries, and to let the user to specify some custom options (e.g. the
--disable-docs option prevents the compilation of documentation files). There-
fore, we added the ”--with-netmap=dir” option to that script, so that the user can
specify the absolute path 3 of netmap libraries in the system.
The effect of the new option is to set an environment variable that the Makefile
will check, so that it knows whether to include or not our DrvNetmap.cpp source
file in the compilation process, and the netmap headers in the list of directories to
be searched for header files4.

Compilation

As mentioned before, the Makefile will check a netmap-related environment vari-
able that can be enabled through the configuration process. VirtualBox has one
virtual Makefile, that is actually splitted in many files (more than two hundreds).
Those files are organized in a hierarchical manner: there is one Makefile for each
level of the source tree. Therefore, the more we go deeper in the source tree, the
more specific the present Makefile is for that subtree.
Since our new file will be placed in the network devices directory, we will modify
the devices-related Makefile, located in src/VBox/Devices/ directory.

2Located in the root directory of VirtualBox project.
3It is requested the path to the subdirectory sys of netmap source tree, e.g.

--with-netmap=/path/to/netmap/sys/.
4-I option of GNU C compiler.
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3.1.2 The VirtualBox User Interface

As stated in section 2.1, VirtualBox offers multiple frontends as user interfaces.
We need to extend those interfaces so that a user can choose netmap as connector.
We focused on the VirtualBox frontend (the default one), and VBoxManage fron-
tend, since VBoxSDL only launches a VM, but the related configuration is done
through VBoxManage.

VirtualBox frontend

This is the default frontend. It offers a user-friendly Graphical User Interface
(GUI). The related source files are located in src/VBox/Frontends/VirtualBox/src.
Since we are interested in the networking part, we will focus on it.
As shown in figure 3.1, VirtualBox frontend allows to specify network settings for

Figure 3.1: Sample of VirtualBox network settings tab. In this case the adapter is
an e1000 device, that is bridged to the host interface eth2.

each VM independently and, for each VM, to specify up to 4 different network
adapters. For each adapter, the following options are available:

• Enable flag If checked, the network adapter is enabled in the Guest.
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• Attached to This drop down menu specifies the connector the adapter will
be attached to. See section 2.2.6.

• Name It is used in some networking modes. E.g. the bridged mode needs to
know which physical interface will be bridged with the emulated interface.

• Adapter Type Here we can select the preferred emulated adapter (such as an
e1000 device).

• Promiscuous mode It is used to set/unset the promiscuous mode on the
adapter.

• MAC Address The MAC address of the emulated interface.

• Cable Connected If enabled, the adapter will be (virtually) connected to the
connector.

• Port Forwarding Only in NAT mode.

Our goal is to extend this interface so that a user can choose netmap as preferred
connector. What we have to do is to include netmap in the ”Attached to” drop
down menu, then add an additional text box where some netmap parameters can
be specified by the user.
To achieve this, we modified some source files that define this frontend. They are
located in src/VBox/Frontends/VirtualBox/src/settings/machine. In that way, we
added netmap as an item of the drop down menu and we used the name field as
a textbox to specify to which netmap port the adapter will be attached to (e.g. a
vale switch).

Moreover, we modified the UIMachineSettingsNetwork.ui file; this file,
which is used by Qt designer tool, describes all the GUI elements in XML (e.g.
textboxes, flags, etc). Therefore, we added in the GUI a textbox where the user
can specify some netmap parameters, such as the number of netmap rings and the
related number of netmap slots 5.
Figure 3.2 shows the result of our modifications.

5For further information, refer to [1].
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Figure 3.2: The extended VirtualBox network settings interface. It uses the port
1 of the vale0 netmap virtual switch (vale0:1) and specifies 4 netmap rings per
direction, having 1024 slots each.

VBoxManage frontend

VBoxManage is a Command Line Interface (CLI) that allows the user to
completely control VirtualBox from the command line. VBoxManage supports
all the features that the GUI gives the user access to, but it supports a lot more
than that. VBoxManage must always be used with a specific subcommand, such
as createvm, modifyvm, controlvm and others 6.
The modifyvm subcommand allows the user to specify many options for a specific
VM, included the networking ones. So, what we have to do is to modify this
command so that it supports netmap connector, netmap device name and netmap
options. To achieve this we must modify the related source files in order to extend
the command.

6For a full list of available commands and their functions, refer to [2, chapter 8].
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The source files are located in src/VBox/Frontends/VBoxManage/ and there
is a file for each subcommand. Therefore, since we are interested in the modi-
fyvm command, we modified the VBoxManageModifyVM.cpp.
We extended the --nic option, which specifies the connector, so that it recognizes
netmap as an argument. Then, we added two more options to the subcommand:

• --nicnetmapdev It specifies the netmap device the adapter will be attached
to (just like the name field in the GUI.

• --nicnetmapoption It specifies the netmap parameters (number of netmap
rings and so on).

Furthermore, we modified the file VBoxManageHelp.cpp, that is the implementa-
tion of the help command, so that the above netmap options and extensions are
shown to the user.

3.1.3 VirtualBox VM settings

In section 3.1.2 we discussed about how the user can interact with VirtualBox
in order to tell it how to configure a VM. In the following, we will show how
VirtualBox uses these information to actually configure a VM.

XML settings file

In VirtualBox, each VM has one directory where all files of that machine are
stored; in particular, there is an XML file that describes the VM and all its
settings.
The settings file contains all those information that a user can specify for that
specific VM, in particular the networking ones, using either the GUI frontend or
the VBoxManage frontend. Therefore, when a user sets some options for a VM,
e.g. specifies a certain connector, the information is stored in the related settings
file.

Since we modified the user interface so that it recognizes netmap, now we
have to tell VirtualBox how to parse the information coming from the UI.
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This is achieved by modifying the file /src/VBox/Main/xml/Settings.cpp, that
contains functions which manage the XML settings file. Here we extended the
functions that read (write) the settings file so that they are able to return (store)
the netmap-related information.

VirtualBox internal configuration

As mentioned in section 2.2.1, when a VM is started, we have three processes:
VBoxSVC (the server), the frontend process (the client) and the VMM process
(that runs the VM).
The VBoxSVC code is splitted in several source files located in
src/VBox/Main/src-server/ directory, due to its modularity, but the only
components we are interested in are:

• VirtualBoxImpl.cpp It is the main component, the ”core” of the server pro-
cess. It is able to communicate with all other components.

• MachineImpl.cpp The Machine component. It is an abstraction of a VM. It
pares the XML settings file.

• NetworkAdapterImpl.cpp The NetworkAdapter component. It is the com-
ponent that manages the networking settings.

The client code is also splitted in several source files located in src/VBox/Main/src-

client/ directory, but the only part we are interested in is the ConsoleImpl2.cpp

one, since it initializes the VM components.

From now on we will focus only on the handling of the networking set-
tings, since it is the only relevant part for our purposes.

When we launch VirtualBox (e.g. the GUI frontend), the server process
starts executing and initializes all the registered VMs through an init function.
For each VM, that function, asks the machine component to load the (networking)
settings for that specific VM from the related XML settings file. After reading
the XML file, the machine component gives the NetworkAdapter component the
settings information, so that it can store them in its internal structure.
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When we launch a VM, before the VM starts executing, the client asks the
server process (VBoxSVC) all the (networking) settings details. The information
request is then handled by the NetworkAdapter component, that returns the
needed information.
The client then:

1. Discriminates which is the port/connector type using the information re-
trieved from the server.

2. Initializes two configuration data structures that will contain all the net-
working details returned by the server.

3. Delivers to the VMM the information about which port/connector has been
chosen by the user and the related data structure. In that way the VMM
knows which port/connector has to instantiate among all registered 7 ones.

So, in the end, when the port and the connector will be instantiated by the VMM,
i.e. the VMM will call the respective constructors, the related configuration data
structures will be passed to the constructors as arguments.

In order to integrate netmap-related options, we had to extend both server
and client codes. In particular we modified the VirtualBoxImpl.cpp, Net-

workAdapterImpl.cpp and ConsoleImpl2.cpp source files.

Server code In NetworkAdapterImpl.cpp source file we added some statements
used to get/set the new netmap options from/in the internal data structure (e.g.
when the machine component initializes this network component). Moreover we
added two new methods, a getter and a setter, that are exposed to the main com-
ponent so that it can get/set the netmap options.
In VirtualBoxImpl.cpp source file we added the getter method (which calls the new
getter function in the NetworkAdapter component) that is exposed to the client so
that it can retrieve the new netmap-related information.

7See section 3.1.4.
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Client code In ConsoleImpl2.cpp source file there is a code part that discrim-
inates all the registered connector types. Therefore, we extended that part by
adding a possible case in which a netmap connector has been specified. Our code
gets the netmap settings8 from the server, puts them in the configuration data
structure and deliver these information to the VMM.

3.1.4 Connector registration

Compiling our new source file and configuring it through a frontend is not
sufficient to make the VMM aware of the new connector. In fact, VirtualBox
separates the configuration from the registration of a port/connector.

In the initialization phase the VMM registers all connectors by calling the
global function VBoxDriverRegister defined in VBoxDD.cpp source file,
located in src/VBox/Devices/build directory. This, in turn, for each available
connector in VirtualBox (not necessarily configured), calls the registration
function that takes the pointer to the Driver Registration Record.
The driver registration record is a data structure containing some information
about the connector itself that each connector has to statically allocate. These
information are basically the name of the connector, the connector class (in our
case is a network class connector) and a list of callbacks, such as the constructor
and the destructor callbacks. Since a connector is identified by its name, it must
be unique among all connectors. Furthermore, this registration record is useful to
the VMM on startup. For these reasons, the structure must have a global scope.

As explained in section 3.1.3, during the startup of a VM, a client tells the
VMM which connector has to instantiate and delivers it the related settings
information.
The VMM scans the list of registered connectors looking for a connector having
a name that matches with the one given by the client. If a match is found, then
the VMM instantiates the matching connector and calls the constructor using the
pointer specified in its driver registration record.

8These settings are the netmap device name (e.g. vale0:1) and, possibly, the netmap options.
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It is clear that if we do not register our new connector, the VMM will not
be able to instantiate it and, therefore, our code will never be executed.
In order to register our connector, we simply added a couple of lines of code in
VBoxDD.cpp source file, that call the register function passing the netmap driver
registration record as argument. This registration record is contained in our new
source file DrvNetmap.cpp, which implementation will be described in the next
section.

3.2 Connector implementation

In section 3.1 we discussed how we extended VirtualBox so that it is now ”aware”
of netmap. In the following, we will show our implementation of connector code.

3.2.1 Internal data structures

As we mentioned in section 3.1.4 we need the driver registration record in order
to register our new connector. The most relevant fields in the registration record
are:

• Connector name, which identifies it among all other connectors. In our case
is ”Netmap”

• The class of the connector. It could be an audio connector, a block connector
and so on. In our case it is a network connector.

• Pointer to the constructor function (pfnConstruct). It points to our con-
structor function, which name is drvNetmapConstruct.

• Pointer to the destructor function (pfnDestruct). It points to our destructor
function, which name is drvNetmapDestruct.

Once our driver registration record is ready, we must instance the data structure
that will implement (and extend) the network connector interface. The data struc-
ture contains:
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• INetworkUp The connector interface data structure. This contains the
pointers to the functions 9 that we will implement.

• pIAboveNet A pointer to the port interface we are attached to. With this,
we can invoke the callbacks 10 exposed to the port.

• pDrvIns The pointer to a structure used to retrieve the actual instance of
the connector.

• pszDeviceName A string containing the name of the netmap device (e.g.
vale0:1).

• pNetmapDesc The netmap descriptor data structure.

• pTxSgBuf A scatter/gather structure (S/G structure). This contains the
buffer in which the port writes the frame it wants to transmit and some
related information.

• pIOThread A pointer to the asynchronous I/O thread.

• hPipeRead The read end of a control pipe. It is read only by the asyn-
chronous I/O thread.

• hPipeWrite, hPipeRead The write end of a control pipe. It is written by
the EMT and by the VMM.

• XmitLock The transmit lock that must be acquired by the port.

3.2.2 Connector initialization

Since the constructor is the first called function, this will be our starting
point. The function that implements the pfnConstruct interface is called
drvNetmapConstruct. Its purpose is to initialize our internal data structure (see
section 3.2.1). It takes the pointer to the structure of the instance of the connector
and the pointer to the configuration data structure.
The basic steps this function performs are:

9See section 2.2.7, paragraph Connectors.
10See section 2.2.7, paragraph Ports.
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1. Initialization of the connector interface For each callback exposed to the
port, it assigns the related implementation.

2. Parsing of the configuration It parses the configuration parameters given by
the user 11. For example, if the netmap device name is missing (which is
mandatory), then the constructor returns an error shutting down the VM.
The same happens if a user specifies some parameters not supported by
netmap.

3. Opening of netmap descriptor It calls the nm open function12 using the user-
specified parameters, if any, otherwise it uses the default ones. Opening
a netmap descriptor involves the allocation of the netmap rings and, the
netmap slots and, therefore, the buffer associated with each slot. Once that
these buffer are allocated, their memory is never freed until the netmap de-
scriptor is closed.

4. Initialization of lock and pipe It initializes the transmit lock structure and
the control pipe.

5. Thread creation It instantiates the asynchronous thread, which has to handle
the asynchronous I/O operations. The thread is instantiated with a function
exposed by the VMM. In that way, the VMM takes care of suspending,
resuming and destroying the thread as the VM state changes. In particular,
this function takes two functions as arguments: the body of the thread, and
the wakeup callback. This is called on the VMM on a VM state change 13.

When the VM is shutdown, the VMM destroys all the connectors instances by
calling the destructor (pfnDestroy) function on each connector. Our implemen-
tation is a function called drvNetmapDestruct, and it performs almost all the
operations done by the constructor backwards. In particular, it closes the pipe,
deletes the lock and closes the netmap descriptor.
The asynchronous thread destruction is performed internally by the VMM.

11See section 3.1.3.
12Provided by the netmap user API.
13See section 3.2.4.
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3.2.3 Send side

In this section we explain the implementation of the operations related to the send
side. In the following we will show, step by step, what happens on the connector
side when a port wants to send a frame 14.

1. drvNetmapNetworkUp BeginXmit Implements: pfnBeginXmit. When a
port wants to transmit, the first thing it has to do is to acquire the lock on the
connector. This function performs a trylock operation 15 on the connector
internal lock (XmitLock). If this operation is successful, the thread has
exclusive access to the connector, so that there cannot be races.

2. drvNetmapNetworkUp AllocBuf Implements: pfnAllocBuf. After the
lock acquisition, the port asks the connector to allocate the data structure,
the S/G buffer structure, where it will store the packet. Since we are using
netmap, the buffers associated with the netmap slots are allocated on the
initialization phase (constructor), so there is no need to dynamically allo-
cate/free memory. Therefore, we keep a statically allocated S/G structure
(pTxSgBuf) which parameters will be configured on each pfnAllocBuf

call. In particular, the buffer pointer in pTxSgBuf will point to the available
netmap slot buffer. The function returns a pointer to pTxSgBuf. This allows
to save the overhead caused by memory allocation/deallocation.
However, it may happen that the netmap TX rings are full, so there is no
space available for transmission. If this is the case, we try to flush any po-
tential pending slots by calling a TX SYNC on the netmap File Descriptor
(FD) through the ioctl system call. If this has no effect 16, we write one
byte with value 1 on the write end of the control pipe (the effects will be
explained in 3.2.4) and return.

3. drvNetmapNetworkUp FreeBuf Implements: pfnFreeBuf. This is called
by the port when it wants to free the previously allocated buffer 17. In our

14This implementation is not e1000 dependent, since it must work with any port.
15The transmitting thread is the EMT, so it must never block.
16E.g. we are transmitting on a netmap pipe and there is no one reading on the other end.
17E.g. at the end of transmission, or if an error occurred during some phase.
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case, since the buffer points to the netmap slot buffer, this function will
simply reset the fields of pTxSgBuf instead of actually freeing the memory.

4. drvNetmapNetworkUp SendBuf Implements: pfnSendBuf. After the port
has successfully filled the buffer, it calls this callback on the connector.
This function increments the indexes of the netmap ring and performs a
TX SYNC on the netmap FD.

5. drvNetmapNetworkUp EndXmit Implements: pfnEndXmit. This simply
releases the transmit lock on the connector.

There are two additional callback functions: pfnSetPromiscuousMode and
pfnNotifyLinkChanged. These two functions are not useful for our purposes,
but since it is mandatory that a connector implements all the exported methods,
we just implemented these two callbacks with two stub functions.

3.2.4 Receive side

In this section we will explain the implementation of the operations related to the
receive side. In the following we will show, step by step, what happens on the
connector side when a frame is received from the ”outside world” 18.

In section 3.2.2 we stated that the constructor initializes the thread that will
handle the asynchronous I/O operations. We called this thread NETMAP thread.
Mostly, the thread is in charge of handling the incoming frames.

The reception must be necessarily handled by a dedicated thread, and not
the EMT, because it has to wait for incoming packets. In our case, the thread
must do a poll system call on the netmap FD 19, which is a blocking operation.
The NETMAP thread body is implemented by drvNetmapAsynchIOThread

function, while its wakeup callback is implemented by
drvNetmapAsynchIOWakeup. The wakeup callback writes one byte with
value 0 to the write end of the pipe (hPipeWrite) and returns. The body of the

18This implementation is not e1000 dependent, since it has to work with any port
19For further information refer to [1].
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thread, instead, performs two different phases: the initialization and the loop.
As a first step, the thread initializes the polling data structures that contain a
reference to the FDs to be monitored by the poll system call. These FDs are
two: the netmap FD and the FD of the read end of the control pipe (hPipeRead),
both waiting for a POLLIN event.

After the initialization, the function goes in a loop, that iterates until the
VM is in RUNNING state, that performs the following operations:

1. Reset of polling data structures. On the first iteration this has no effect,
since those structures have just been initialized. From the second iteration
on, since the poll modifies the revents field of these structures, they must
be reinitialized 20.

2. Wait for a POLLIN event. It calls the poll system call, so that the
NETMAP thread blocks until a POLLIN event occurs on one of the FD
specified in the initialization phase, or an internal error occurs.

3. Wake up. The thread wakes up. This may happen for several reasons, so it
must handle all the possible situations:

• POLLIN on netmap FD. ITherefore, it will wait for the port to be ready
to receive data by calling the pfnWaitReceiveAvail callback on the
port itself, passing the RT INDEFINITE WAIT value as argument; this
will cause the thread to block until the port is ready to receive. Of
course, if it is not the case, the callback will return immediately.
When the port is ready, the thread starts a loop in which:

(a) Fetches the first available frame, if any. Otherwise it exits the
loop.

(b) Checks if the port is able to receive it through the
pfnWaitReceiveAvail callback. This time, we pass a 0 value
as argument, so that if the port cannot receive, the function imme-
diately returns with a negative value. If this is the case, the thread
exits the loop.

20See the poll man page for details.
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(c) Pushes it to the port through the pfnReceive callback.

(d) Goes back to step (a).

• POLLIN on control pipe. It means that the EMT wrote a value in the
pipe. If the value is 0, it means that the EMT executed the wakeup
callback due to a state change of the VM, e.g. passed from the RUN-

NING state to SUSPENDING state. In that case, the thread reiterates
the loop, thus it tests the loop condition (VM in RUNNING state). The
condition will fail this time, since the VM, following the example, is
in SUSPENDED state. Therefore, the thread it will exit the loop.
If the read value is 1, it means that the EMT was trying to transmit a
frame, but it found all netmap TX rings full (see section 3.2.3). There-
fore, the thread, besides waiting for a POLLIN event on the netmap
FD, it also waits for a POLLOUT event on the same FD and goes back
to step 1. In that way, the NETMAP thread will be awaken even when
there is at least one available netmap TX slot.

• POLLOUT on netmap FD. It means that at least one netmap TX slot
is available for transmission. Therefore, we have to disable POLL-
OUT event on the netmap FD, and we must notify the port so that
it can transmit its pending packets. So we call the pfnXmitPending

callback of the port and go back to step 1. Notice that this time the
NETMAP thread is doing the transmission path.

• Polling failure. An error during the poll system call occurred. This
should never happen, but if does, the thread relinquish the CPU and,
whenever it is scheduled, goes back to step 1.

4. End of loop. Only happens if the VM is not in RUNNING state anymore.
In that case the thread function returns.
As already mentioned, the VMM will take care of re-initializing the thread
when the VM will switch back to RUNNING state.
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Chapter 4

Optimizations on e1000 port and
netmap connector

In chapter 3 we described how we extended VirtualBox so that it can make use
of netmap framework. In this chapter we will discuss about the problems and
bottlenecks related to the current implementation, analyzing the performance.
We will prove that our netmap extension is strictly necessary to achieve much
better packet rates and, finally, we will propose some optimizations so that we
can improve performance even further.

We consider two VMs, we will call them Guest 1 (G1) and Guest 2 (G2).
The VMs use an e1000 device as a virtual network card, and they are connected
through a virtual switch so that they can communicate with each other. Since we
want the maximum achievable performance, we installed netmap on both VMs,
so that they can use the patched e1000 device drivers and the tools provided by
the netmap framework to send/receive traffic at maximum rate.
In particular, guests run pkt-gen: a UDP traffic generator that makes use of the
netmap framework to speed-up the packet I/O. The application can be run in
sender mode and receiver mode. In sender mode, the VM sends UDP packets
of a given size at a given rate, while in receiver mode the VM receives all UDP
packets it can.
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Figure 4.1: An UDP sender running on G1 sends packets to an UDP receiver
running on G2. The VMs can communicate with each other through a virtual
switch.

In our case G1 will act as a sender and G2 as a receiver 1. This situation
is shown in figure 4.1.
Starting from this situation, we will analyze two scenarios: in the first case
the VMs will be attached to the virtual switch provided by VBoxNetAdp kernel
module (section 2.2.2) called vboxnet0. So we will use the host-only networking
mode (see section 2.2.6). In the second case the VMs will be attached to a VALE
switch, in particular G1 will be connected to the first port (vale0:1) and G2 will
be connected to the second port of the switch (vale0:2).

The first scenario will be our reference for performance analysis. In this
way we will prove that the second scenario is the most efficient in terms of packet
rate.

1Since both VMs run the same OS (Ubuntu 15.10), we can swap the roles of G1 and G2 without
any issue.
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4.1 Analysis of current implementation

Now we are going to discuss about the performance of the current implementation
(see section 2.4 2) using both host-only and netmap networking modes.

In this section we will make two experiments, both with G1 acting as a
sender and G2 acting as a receiver. In the first experiment we will run a simple
application that will send (receive) UDP packets using a simple UDP socket in
an infinite loop. This will be our first reference in terms of performance. In the
second experiment, instead, we will run the aforementioned pkt-gen application
that will make use of the netmap framework. This application is just an infinite
loop that, for each iteration, fills its local netmap TX ring with a batch of packet
(256) and performs a TX operation. In both cases, the packets are 60 bytes long.

4.1.1 Using host-only networking mode

We first analyze the case where the VMs are connected with each other using
the host-only networking mode, in particular using the vboxnet0 virtual switch
provided by VirtualBox. We are going to analyze TX and RX performances sep-
arately.

TX performance

The measurements are shown in table 4.1. All the values are computed counting
the number of occurrences of each event over a period of 1 second and dividing
the count itself for that time period.

When we use a UDP socket, we have a TX packet rate that is not really
high, about 30.5 Kpps. We can see that there is a TX notification (i.e. TDT
write) and an interrupt for each packet. TX descriptor load is the number of
times the emulation code accesses the guest physical memory to read the transmit
descriptors, while TX descriptor fetched is the average value of fetched TX
descriptors in a single memory access.

2For now we keep both TX and RX descriptor caches enabled.
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Measured quantity UDP Socket Netmap native mode

TX packet rate 30.5 KHz 340 Kpps

Interrupt rate 30.5 KHz 1.35 KHz

TX notifications 30.5 KHz 1.35 KHz

TX descriptors load 30.5 KHz 6.8 KHz

TX descriptor fetched (average) 1 51

Table 4.1: This table shows statistics about the sender VM attached to the
vboxnet0 virtual switch. The descriptor load shows how many times the guest
physical memory is accessed to read the TX descriptors.

Even if we enabled the cache for transmit descriptors, we are not effectively
taking advantage of it (only one fetched descriptor per memory access). This is
due to the fact that we have one TX notifications per packet. When the device
driver in the guest writes in the TDT register, the EMT performs a VM exit and
executes the emulation code. As a result, when it wants to transmit, it finds only
one descriptor that must be processed. After the descriptor processing, the EMT
performs a VM entry and executes the device driver, that, in turn, will prepare
another descriptor and write in TDT register and the EMT will go back to the
emulation code in the host world. This procedure introduces a lot of overhead.

The problem of TX notification is not present when we run pkt-gen, since
it exploits the modifications provided in the patched e1000 device driver. In fact,
for each TXSYNC operation invoked by the application, the driver pushes down
packets in batch, resulting in one TDT register write per batch instead of one
TDT write per packet. As a result, we have an improvement of performance that
is about 10 times than before (about 340 Kpps).
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Measured quantity UDP Socket Netmap native mode

RX packet rate 30.5 Kpps 340 Kpps

Interrupt rate 14.8 KHz 31.8 KHz

RX notifications 14.4 KHz 2.11 KHz

RX descriptors load 2 KHz 23.08 KHz

RX descriptor fetched (average) 15 15

Table 4.2: This table shows some statistics about the receiver VM attached to the
vboxnet0 virtual switch. In this case the RX descriptor cache is exploited.

RX performance

All measurements are shown in table 4.1. Again, the values are computed
counting the number of occurrences of each event over a period of 1 second and
dividing the count itself for that time period.

When we use UDP Sockets the packet rate is the same as the transmitter,
so it is able to receive all the packets coming from the switch.
We can see that the RX descriptor cache is exploited this time. This is due
to the fact that the cached RX descriptors are the free descriptors that the
adapter can fill with incoming packets (see section 2.4.2), so it is not strictly
dependent on the RDT register writes performed by the device driver on the guest.

When we run pkt-gen, we can see an improvement of performance in terms of
packet rate. In fact, we can see that the RX notification rate decreased greatly
decreased even if the packet rate is about 10 time higher than the previous case.
This is thanks to the fact that the modified e1000 driver writes to the RDT register
only at the end of the interrupt routine, not for each packet.
We can also notice that the interrupt rate is much higher (31.8 KHz) with respect
to the sender one (1.35 KHz). The reason is that, potentially, in the RX case
an interrupt is raised for each received packet. This is unavoidable because the
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Measured quantity UDP Socket Netmap native mode

TX packet rate 23.8 Kpps 1.148 Mpps

Interrupt rate 23.8 KHz 3.8 KHz

TX notifications 23.8 KHz 4.5 KHz

TX descriptors load 23.8 KHz 22.4 KHz

TX descriptor fetched (average) 1 51

TXSYNC rate 26.3 KHz 1.148 MHz

Table 4.3: This table shows some statistics about the sender VM attached to the
vale0 virtual switch. In native mode we have a great improvement of performance
in terms of packet rate.

adapter cannot guess whether or not an incoming frame is the last of a batch.

4.1.2 Using netmap networking mode

Now we analyze the case where the VMs are connected with each other using the
netmap networking mode, in particular using the VALE virtual switch provided
by netmap.

TX performance

The measurements are shown in table 4.3.
Using UDP packets, we have a packet rate that is even lower than the host-only
case. This is due to the fact that, since the netmap connector is designed for
packet batching, the overhead is not amortized over a batch of packets, so we
have a decrease of performance.

In netmap native mode, instead, we can see that the performance dramati-
cally increased to 1.148 Mpps, that is over 3 times better than the host-only case
with the adapter in native mode.
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Measured quantity UDP Sockets Netmap native mode

RX packet rate 23.8 Kpps 588 Kpps

Interrupt rate 15 KHz 23.2 KHz

RX notifications 15 KHz 5.4 KHz

RX descriptors load 1.7 KHz 42.7 KHz

RX descriptor fetched (average) 14 14

Table 4.4: This table shows some statistics about the receiver VM attached to the
vale0 virtual switch. Also here, in native mode we have a great improvement of
performance in terms of packet rate.

The TXSYNC rate shows how many times the TXSYNC operation is called in
the connector. As we can see, we have one TXSYNC per frame. This means that,
even if the e1000 adapter receives batches of packets, they are sent on the VALE
switch one by one. Since the connector knows nothing about the packets arriving
from the port, this situation is unavoidable, unless we do not modify the e1000
emulation code.
Ultimately, if we were able to perform only one TXSYNC per batch, we would
see a great improvement of performance. A solution will be presented in
section 4.2.

RX performance

The measurements are shown in table 4.4.
As far as concerns UDP sockets experiment, all the discussions made for the pre-
vious cases are still valid.
In netmap native mode, we can see a quite improvement of performance, about
3/4 times faster than the generic case, about 73% than host-only case with the
adapter in native mode. The reason why the performance are not as high as the
transmission ones, resides in the interrupt rate. Since the adapter knows nothing
about packet batches, it raises an interrupt as explained in section 2.3.3. Even if
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the connector is able to understand whether or not the current packet is the last one
of the batches, there is no way to send this information to the port without modi-
fying the port itself. Therefore, in order to improve performance, we must modify
the e1000 emulation code. These modifications will be explained in section 4.2.

4.2 Packet batching

In the previous section we discussed about the performances using both host-only
networking mode and and VALE switches, and we proved that we achieved very
high performance using the latter.
Moreover, we showed that we can further increase both TX and RX performances
by making the connector and the port aware of packet batching. In this section we
will present our solution.

4.2.1 Implementation

In order to achieve higher performance on both TX and RX sides, we made some
modifications on the e1000 port and on our netmap connector.

TX path

On the TX path, we modified both port and connector. In particular:

• We added some lines of code where the port calls the pfnSendBuf callback
on the connector. Before calling it, we check if the current outgoing frame
is the last one in the batch by looking at TDT and TDH registers.
Let Ns be the number of TX descriptors. If

(T DT −T DH) mod Ns ≡ 1

then we set a flag (TXSYNC flag) on the S/G data structure passed to the
callback as an argument, so that the connector understands that this is the
last frame in the batch.
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• In the implementation of the pfnSendBuf callback in the connector, we
check if the TXSYNC flag is set. If this is the case, then we perform the
TXSYNC operation, otherwise we just update the netmap indexes and re-
turn.

In that way, instead of doing a TXSYNC for each outgoing packet, we perform
that operation only at the end of the batch.
We must point out that we did not add anything new in the S/G data structure. In
fact, this structure contains a string of 32 bits used for flags. 28 bits of this string
are used for other purposes, while the remaining four bits are available for new
custom features.

The modification on the port has effect only in netmap networking mode,
since the flag we set are checked only by our connector.

RX path

Also on the RX path, we modified both port and connector. In particular:

• In the asynchronous thread body, we enter a loop in which we call the pfn-

Receive callback on the port until there are available incoming frames or
until the port is not available for receiving anymore. After the loop, we
added a further call to the pfnReceive callback, passing a NULL pointer in-
stead of available data. This is our way to notify the port that there are no
more packets in the batch.

• We added a check on the pfnReceive implementation of the e1000 port,
in which we check the pointer to available data passed as argument. If it
is NULL, it means that the batch is finished, so we raise an interrupt and
return.
Moreover, since we want to raise an interrupt only in that case, we disabled
all other interrupts in the receiving path.

In this case the modifications we made are compatible only using the netmap
networking mode and the e1000 device as emulated network adapter. In fact,
the modified port will raise an interrupt if and only if it has a NULL pointer as
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Measured quantity TX stats. RX stats.

Packet rate 1.615 Mpps 940 Kpps

Interrupt rate 6.3 KHz 2 KHz

TX/RX notifications 6.3 KHz 83 KHz

Descriptors load 32 KHz 63.2 KHz

Descriptor fetched (average) 51 15

TXSYNC 6.38 Khz /

Table 4.5: This table shows statistics about both VMs attached to the vale0 virtual
switch. We highlighted the items that caused the performances improvements.

argument, but only our connector will pass this value to the port. Therefore, if we
change the networking mode (e.g. host-only), the guest will not be able to receive
any packets.
The same may happen if we change the port. Since it is not suppose to happen
that a connector passes a NULL value to the port instead of the available data, the
effects of this particular function call may be unpredicted and may also cause a
crash of the VM itself.

4.2.2 Performance analysis

The results are shown in table 4.5. As we can see, we have a great improvement
of performances. We achieved 1.615 Mpps on the sender and 940 Kpps on the
receiver.
As highlighted in the table, we can see that the TXSYNCs are performed only at
the end of the batch. Also the interrupt raised to the guest from the port are now
amortized over the batch.

We can also notice that the receive rate is less than the transmit rate. That
is caused by a bottleneck in a chained producer-consumer system.
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Figure 4.2: Two producer-consumer systems forming a chain. The first system is
composed by the sender EMT as a producer and the Asynchronous I/O thread on
the receive side as a consumer. The second system is composed by the the same
asynchronous thread as a producer and the receiver EMT as a consumer.

Figure 4.2 depicts our situation. We have the sender EMT that sends frame using
the virtual switch. The receiver thread reads the new available data, writes them
in the guest physical memory, and raises an interrupt to the guest so that the EMT
of the receiver VM can consume the new data.
In this system, the slow part is on the receive side. The reasons for this slowness
are multiple, such as synchronization between the receiver thread and the receiver
EMT and context switches between guest world and host world. The overhead
introduced by these factors is not manageable since it is strictly dependent on the
computation power of the host.

4.3 Implementing mapping of descriptors

Looking at the previous tables, in particular table 4.5, we can see the Descriptor

load row, which has a value of 32 KHz for transmitter and 63.2 KHz for receiver.
As already mentioned, this value measures the accesses in guest physical memory
performed by the emulated adapter. Each guest physical memory access involves
an address translation, that implies some overhead. At normal packet rates (e.g.
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Figure 4.3: The mapped memory region for TX descriptors. The RX descriptor
are mapped in the same way, but with the RX related registers. Notice that TDLEN
is right-shifted by 3. This represent the division by 8.

about 30 Kpps), this overhead is negligible, but when we deal with very high
packet rates, this becomes notable.
Therefore, we adopted a solution that avoids those translations by mapping a por-
tion of the guest physical memory into the host virtual memory, so that the de-
scriptors can be accessed by the host world using pointers.

4.3.1 Memory region containing descriptors

In order to map the e1000 descriptors in the host virtual memory, we need to
know where the descriptors are located in the guest physical memory. To do so,
we look at the aforementioned TDBAH and TDBAL registers for TX descriptors,
and RDBAH and RDBAL registers for RX descriptors. In this way, we find the
base address of the physical pages containing the descriptors.
Moreover, the TDLEN and RDLEN registers contain the length in bytes of
the physical memory occupied by the TX descriptors and RX descriptors,
respectively.

Since the descriptors must be accessed in DMA by the adapter, we have
the guarantee that the descriptors are allocated in contiguous pages 3 in physical

3In most Operating Systems, the size of a page is 4 Kilobytes.
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memory.
Therefore, the mapped region will start from the base address

T DBAH|T DBAL

up to
T DBAH|T DBAL+T DLEN/8

address for the TX descriptors 4.
Figure 4.3 depicts the memory region mapped in the host virtual memory.

Since each descriptor is 16 bytes long, and a memory page is 4 kilobytes,
in a single page we can map up to 256 descriptors, which is the default number of
descriptors per ring that the device driver sets by default. Furthermore, the e1000
devices support up to 4096 descriptors per ring, so our implementation supports
the mapping of up to 16 memory pages, containing 256 descriptor each.

4.3.2 Implementation

Since we want to map the descriptors, we do not need any descriptor cache. There-
fore, we disabled both TX and RX descriptor caches on the e1000 emulation code.

We implemented the mapping of the region using a function provided by
VirtualBox: PDMDevHlpPhysGCPhys2CCPtr. This function maps a guest
physical memory page into the virtual memory of the host. It takes, among the
others, the base address of the physical memory and a pointer that, after the
execution of the function, will be used to access the mapped page.
Since the base address of the descriptors may change during the execution of the
VM (i.e. the value TDBAH/RDBAH and TDBAL/RDBAL registers), or even the
number of descriptors itself (i.e. TDLEN/RDLEN), we customized the callback
functions for write operation of these registers so that we can remap the pages
when the registers values change.
The mapping function is only available in R3 context, but the callbacks are

4The mapping of RX descriptors is analogous.
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always called in R0 context. Therefore, we added two new event queues to the
port, one for TX descriptors, one for RX descriptors (see section 2.4). When
there is a write in one of the descriptors-related registers, the EMT:

1. Stores the old value of the register.

2. Updates the register.

3. Since it is in R0 context, posts an item in the event queue, so that it will
execute the related callback after it switches to R3 context, but before it
resumes executing guest code.

4. Executes the related callback function. This function checks whether or
not the new value is equal to the old value. If it is true, then simply returns,
otherwise it unmaps all the mapped memory pages (if any) and remaps them
back using the new value of the register.

All these operations may be expensive in terms of execution time, but since a
remapping operation seldom happens (e.g. the reset of the adapter), its cost is
well amortized.

This new optimization is completely compatible with other networking modes,
since it does not affect the interaction between port and connector.

4.3.3 Performance analysis

Thanks to this optimization, we do not need to translate the guest physical address
each time we need a descriptor. Instead, we can directly access it by means of a
pointer.
Table 4.6 shows the performances in both TX and RX sides.

We can see that we have an improvement of performance in terms of packet rates
that is 33% in TX case and 45% in RX case.
Since we disabled descriptors caches, the adapter would have loaded only one
descriptor per memory access. Therefore, thanks to memory mapping, we saved
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Measured quantity TX stats. RX stats.

Packet rate 2.2 Mpps 1.370 Mpps

Interrupt rate 8.9 KHz 2.8 KHz

Descriptors accesses 2.2 MHz 1.37 MHz

Table 4.6: This table shows the performances when we enable both packet batch-
ing and memory mapping. Since we disabled descriptors caches, we have an
access for each packet transmitted/receive

the overhead time that a total of 3.5 millions of address translations would have
caused for each packet.

4.4 Code optimization

We can further improve performance by means of small optimizations in the e1000
port.
The emulation code contains some statements that are not useful (e.g. collecting
statistics) and, at very high packet rates, introduce a notable overhead because
they are executed for each single packet. We deleted those statements to improve
performance:

• Useless lock acquisitions Acquiring a lock may cause overhead. In the code
there are some locks that are useless: as a matter of fact, also the documen-
tation contained in the code itself says that one of these locks is useless.
Therefore, we eliminated these locks.

• Collecting statistics In the code there are some functions whose purpose is
to collect some statistics. These functions introduce overhead since they
need to acquire a lock (that we already deleted) but also they perform some
memory comparisons that introduce some overhead. Therefore, we deleted
the calls to those functions.

• Extra memory copy In the RX path, for each received packet, there is copy
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Measured quantity TX stats. RX stats.

Packet rate 2.2 Mpps 1.750 Mpps

Table 4.7: This table shows the packet rates after our code optimizations and when
we enable both packet batching and memory mapping. We have an improvement
only on RX side because it is the one that mostly depends on the computation
power of the host.

from a local buffer to another local buffer, which is completely useless.
Therefore, we avoid this extra copy.

As already mentioned, these statements would not affect performance with
normal rates, but since we are dealing with millions of packets per second, the
effect of a negligible overhead is amplified hundreds of times, so that it becomes
notable.
In table 4.7 the packet rates after these optimizations are shown.

As we can see, we have an improvement in terms of rate of received pack-
ets, while the TX packet rate remains equal to the previous case. This is due to
the fact that the optimizations mostly concern the RX path, and, moreover, this is
is the part that is strictly related to the computation power of the host. Therefore,
it is easy to understand that avoiding statements that imply some expense in terms
of computation time, it can quite improve performance.
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Chapter 5

Conclusions

In this work we showed the architecture of VirtualBox, in particular we gave
details on the virtualization and networking architecture parts. We then presented
our extension to VirtualBox so that it can support the netmap framework, imple-
menting a new connector that is able to connect a VM to a VALE virtual switch.
Subsequently, we analyzed the performance of the existing implementation using
an e1000 device as virtual adapter and comparing the performances with the
host-only networking mode and our new extension, pointing out the bottlenecks
and problems. We also presented solutions to these problems exploiting packet
batching, memory mapping and optimization of the e1000 emulation code in
order to further improve performance.

We successfully improved performance starting from 340 Kpps in the host-
only case, both TX and RX rates, achieving up to 2.2 Mpps in transmission and
1.75 Mpps in reception using netmap mode with optimizations. This means that
we improved the TX packet rate of 6.5 times and the RX packet rate of 5 times
with respect to host-only mode.
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