
Università di Pisa

Dipartimento di Ingegneria dell’Informazione
Corso di Laurea Magistrale in Computer Engineering

Security modeling and automatic code
generation in AUTOSAR

Supervisors:
Prof. Cinzia Bernardeschi
Prof. Gianluca Dini

Candidate:
Gabriele Del Vigna

May 2016

To my family

Abstract

Nowadays, due to the increasing diffusion of software in automotive, security
is becoming increasingly important and should be taken into account from
the early stages of software development. The AUTomotive Open System
ARchitecture (AUTOSAR) standard, an open industry standard for auto-
motive software architecture, covers many aspects of software modeling and
development in automotive, security aspects included.

In this thesis, an extension of security modeling concepts available in
AUTOSAR is proposed. The proposed extension gives to the developers
the possibility to add security requirements (confidentiality and/or integrity)
to a communication links at functional level. They are made available as
attributes and can be used to annotate the high level system specification.

Then, we have developed a tool which can be used to automate some
steps that the developers have to follow in order to use specific AUTOSAR
security services. Our tool automatically add the required security elements
in the AUTOSAR XML (ARXML) file (which is the main file format used in
AUTOSAR to describe a system). The security elements are added within
new software components or within the existing components, based on the
specifications provided by the developers. The security requirements are then
fulfilled by using the services provided by the AUTOSAR standard.

The tool has been applied to an AUTOSAR use case, namely, the front
light management system.

Contents

List of Figures 3

1 Introduction 5

2 Introduction to the AUTOSAR standard 8
2.1 AUTOSAR architecture . 9

2.1.1 Application Layer . 10
2.1.2 RTE layer . 12
2.1.3 Basic Software Layer 12

2.2 AUTOSAR tools . 13

3 AUTOSAR meta-model 14
3.1 UML concepts . 14

3.1.1 Class representation 14
3.1.2 Generalization . 15
3.1.3 Association . 16
3.1.4 Composition . 16

3.2 Software components . 17
3.2.1 Ports . 18
3.2.2 Interfaces . 19
3.2.3 Internal behavior . 21

3.3 AUTOSAR services . 23

4 Safety and security in AUTOSAR 25
4.1 Safety mechanisms . 25

1

CONTENTS

4.1.1 End-to-End protection mechanisms 26
4.2 Security mechanisms . 32

4.2.1 Crypto Service Manager 33

5 Rational Rhapsody modeling tool 36
5.1 Model a simple system . 36
5.2 Internal behavior and runnable entities 42

5.2.1 Implicit and explicit data reception and transmission . 45
5.3 Add End-to-End protection 45
5.4 Add security (by using Crypto Service Manager) 48
5.5 Generate ARXML . 54

6 Security level and automatic generation of security elements 55
6.1 Security level specification and elements generation 57
6.2 Example usage . 58
6.3 ARXML and Python . 61

6.3.1 Python script . 61
6.4 ARXML code . 64

7 Application to an AUTOSAR use case 68
7.1 Use case description . 68
7.2 Application to the use case . 71

8 Conclusions 74

Acknowledgments 75

Acronyms 76

Bibliography 78

2

List of Figures

2.1 AUTOSAR layer overview [1] 10
2.2 Graphical representation of software components [2] 11

3.1 A class representation in UML 15
3.2 Generalization representation in UML 16
3.3 Association relation in UML 16
3.4 Composition relation in UML 17
3.5 Software components meta-model 17
3.6 Components, ports and interfaces meta-model 18
3.7 Sender-receiver interface meta-model 20
3.8 Client-server interface meta-model 21
3.9 Internal behavior meta-model 22
3.10 Service dependency meta-model 23

4.1 Example of faults mitigated by E2E protection 27
4.2 Control fields added to data by the E2E protection 28
4.3 AUTOSAR meta-model for the E2E protection 30
4.4 E2E Protection wrapper . 31
4.5 AUTOSAR layered view with CSM 34

5.1 New project creation in Rhapsody 37
5.2 Create a new component in Rhapsody 38
5.3 Create a port’s interface in Rhapsody 38
5.4 Left panel view in Rhapsody 39
5.5 Software component prototype in Rhapsody 40

3

LIST OF FIGURES

5.6 Select a prototype type in Rhapsody 41
5.7 Software composition model in Rhapsody 41
5.8 Software composition model in Rhapsody (final model) 42
5.9 Specify the period attribute of the RTE TimingEvent 43
5.10 Runnable and RTE events in Rhapsody 44
5.11 Specify an E2E protection profile in Rhapsody 47
5.12 Data element to which the E2E protection has to be applied . 48
5.13 Final view for the E2E protection in Rhapsody 49
5.14 System overview, before the specification of the CSM 50
5.15 Set interface tags for a service interface in Rhapsody 51
5.16 Assign a SwcServiceDependency to a port in Rhapsody 52
5.17 Left panel view after the specification of service dependency . 53

6.1 System used as a starting point 58
6.2 Specify a security tag . 60
6.3 Required elements added by means of new components 60
6.4 Required elements added to the existing components 61

7.1 Front lights system overview 69
7.2 Communication focused view of the front light system 70
7.3 Initial FLM system . 71
7.4 Final FLM system . 72

4

Chapter 1

Introduction

As stated in [3], modern motor vehicles contain an increasing number of com-
puters in the form of Electronic Control Unit (ECU), which control numerous
vehicle functions (such as steering, braking, acceleration, lights and so on).
ECUs are interconnected by common wired networks: the most common
network is the Controller Area Network (CAN) bus. Furthermore, many of
these components also have wireless capability: like keyless entry, diagnos-
tic, entertainment systems and so on. This increased connectivity leads to
an increasing number of potential cyber security threats.

In [4], Stephen Checkoway et al. demonstrate that remote exploitation is
feasible via a broad range of attack vectors (such as CD players, Bluetooth
etc.). Many such systems are connected to the CAN bus, either to directly
interface with other automotive systems (e.g., to support certain hands-free
features, or to display messages on the console) or simply to support a com-
mon maintenance path for updating all ECU firmware. Thus, a compromised
CD player, for example, can offer an effective vector for attacking other au-
tomotive components.

For all these reasons, security in automotive is becoming increasingly
important and should be taken into account from the early stages of software
development. In this work, we focus on the AUTOSAR standard, which is
the de-facto standard in automotive industry. AUTOSAR defines a service
called Crypto Service Manager (CSM)[5], which provides a set of security

5

CHAPTER 1. INTRODUCTION

functionalities (such as Hash function, MAC and so on) that can be used by
software components of a system to add the required security functions. The
steps that the developers have to follow in order to specify an AUTOSAR
security mechanism, are quite complex and error prone. Furthermore, in the
early development stages, the developers may need something less specific to
indicate that a security mechanism is required. AUTOSAR does not provide
any means to specify this kind of high level security requirement.

In this work, we proposed an approach to cover these lacks, which allows
the developers to specify a security level (confidentiality and/or integrity) for
system’s communication links. Then we have developed a tool which auto-
matically add security elements to the system, by following the specification
assigned to the system by the developers.

This work was conducted as part of the European project SAFURE[6]
(Safety And Security By Design For Interconnected Mixed-Critical Cyber-
Physical Systems). The project targets the design of cyber-physical systems
by implementing a methodology that ensures safety and security "by con-
struction". The goals of the SAFURE project are the following:

• to implement a holistic approach to safety and security of embedded
dependable systems, preventing and detecting potential attacks;

• to empower designers and developers with analysis methods, develop-
ment tools and execution capabilities that jointly consider security and
safety;

• to set the ground for the development of SAFURE-compliant mixed-
critical embedded products.

Chapter 2 provides an overview of the AUTOSAR standard and briefly
describes its architecture. Chapter 3 describes the main aspects of the AU-
TOSAR meta-model. Chapter 4 describes the safety and security mecha-
nisms provided by AUTOSAR. Chapter 5 describes how to model an AU-
TOSAR compliant system by using the IBM Rational Rhapsody tool. Chap-
ter 6 describes the tool we have developed, which can be used to automate
some steps during the modeling phase of an AUTOSAR system. Chapter 7

6

CHAPTER 1. INTRODUCTION

shows the application of the proposed approach and the developed tool to
an AUTOSAR use case. Chapter 8 recaps what we have done and briefly
describes what can be subject of future work.

7

Chapter 2

Introduction to the AUTOSAR
standard

In a modern car there are 70 or more ECUs[7] which interact with each other
via a complex wired network. ECUs are made by different manufacturers
and each ECU has a software embedded in it, which provides a specific
functionality. For these reasons, software of an ECU could not work on a
different manufacturers’ ECU; this means that software is not portable. The
main problems can be summaries as follow:

• increasing number of ECUs

• increasing number and complexity of the embedded software

• software is not portable

As a consequence, in the process of cars’ software development, the complex-
ity of software management and the final cost increases, as well as time to
market. To deal with all these problems AUTomotive Open System ARchi-
tecture (AUTOSAR) was founded.

AUTOSAR standard [8] is an open industry standard for automotive
software architecture, founded in 2003 and developed by a partnership of dif-
ferent automotive Original Equipment Manufacturers (OEMs), suppliers and
tool vendors. Some AUTOSAR partners[9] are BMW, Bosch, Ford, General

8

2.1. AUTOSAR ARCHITECTURE

Motor, Toyota and others. The AUTOSAR has been formed with the goals of
create an open and standardized software architecture for automotive ECUs;
it provides a set of specifications that describes the software architecture,
application interfaces and a methodology for the development process. The
main AUTOSAR goals can be summarized as follow:

• fulfillment of future vehicle requirements, such as, availability and safety,
software upgrades/updates and maintainability;

• increased scalability and flexibility to integrate and transfer functions;

• higher penetration of "Commercial off the Shelf" software and hardware
components across product lines;

• improved containment of product and process complexity and risk;

• cost optimization of scalable systems;

2.1 AUTOSAR architecture

AUTOSAR uses a three-layered architecture (shown in figure 2.1):

• Application layer

• Runtime Environment (RTE) layer

• Basic Software (BSW) layer

The application layer contains the Software Components (SWCs): piece of
software which provides specific functionality. RTE layer is the middleware
layer, and it provides a communication abstraction for software components.
BSW provides basic services and basic software modules to software compo-
nents.

An AUTOSAR software component cannot directly access BSW mod-
ules [10]; software components can communicate between each other and
with BSWs only through the RTE. Due to RTE abstraction layer, software
components can be developed independently of underlying hardware, which

9

2.1. AUTOSAR ARCHITECTURE

Figure 2.1: AUTOSAR layer overview [1]

means that they have the transferability and reusability property. In other
words, software which provides a specific function, can be reused in vehicles
which have ECUs made by different tool vendors.

The following subsections, provides a brief description of the three layers
of the AUTOSAR standard.

2.1.1 Application Layer

The application layer is the highest layer of the AUTOSAR architecture. It
contains all the software components (application, sensor and actuator soft-
ware components) which provides specific functionality. Due to the RTE
abstraction layer, these software components can be implemented indepen-
dently of the underlying hardware. Software components encapsulate the
implementation of their functionality and behavior and they expose well-
defined connection points, called PortPrototypes, to the outside world. The
graphical appearance of a software component is shown in Figure 2.2. SWCs
may only interact by means of their PortPrototypes.

The main communication paradigms between software components are
client/server, for operation-based communication, and sender/receiver, for
data-based communication:

10

2.1. AUTOSAR ARCHITECTURE

Figure 2.2: Graphical representation of software components [2]

• Sender-receiver communication involves the transmission and reception
of signals consisting of atomic data elements that are sent by one com-
ponent and received by one or more components. A sender-receiver
interface can contain multiple data elements. Sender-receiver commu-
nication is one-way: any reply sent by the receiver is sent as a separate
sender-receiver communication.

• Client-server communication involves, the client which is the requirer
(or user) of a service and the server that provides the service. The
client initiates the communication, requesting that the server performs
a service, transferring a parameter set if necessary. The server, in
the form of the RTE, waits for incoming communication requests from
a client, performs the requested service and dispatches a response to
the client’s request. The invocation of a server is performed by the
RTE itself when a request is made by a client. The invocation occurs
synchronously with respect to the RTE (typically via a function call)
however the client’s invocation can be either synchronous (wait for
server to complete) or asynchronous with respect to the server.

11

2.1. AUTOSAR ARCHITECTURE

2.1.2 RTE layer

The RTE [10] provides the infrastructure services that enable communication
to occur between AUTOSAR software components as well as acting as the
means by which software components access basic software modules including
the Operating System (OS) and communication service. As already stated,
the RTE make software components independent from the mapping to a
specific ECU.

2.1.3 Basic Software Layer

The BSW layer is divided in three sub-layer (as shown in Figure 2.1):

• The Services Layer is the highest BSW layer. It provides basic services
for applications, RTE and BSW modules. The Services Layer offers:

– operating system functionality;

– vehicle network communication and management services;

– memory services (Non-Volatile Random Access Memory (NVRAM)
management);

– diagnostic services (memory errors, fault treatment and so on);

– ECU state management, mode management;

– logical and temporal program flow monitoring (Watchdog Man-
ager)

– cryptographic services (Crypto Service Manager)

• The ECU Abstraction Layer interfaces the drivers of the Microcon-
troller Abstraction Layer. It also contains drivers for external de-
vices. It offers an Application Programming Interface (API) for access
to peripherals and devices regardless of their location (internal/exter-
nal micro-controller) and their connection to the micro-controller (port
pins, type of interface). The ECU Abstraction Layer make higher soft-
ware layers independent of ECU hardware layout.

12

2.2. AUTOSAR TOOLS

• The Microcontroller Abstraction Layer is the lowest software layer of
the BSW layer. It contains internal drivers, which are software mod-
ules with direct access to the micro-controller and internal peripherals.
The Microcontroller Abstraction Layer makes higher software layers
independent of micro-controller.

• The Complex Drivers Layer spans from the hardware to the RTE. It
provides the possibility to integrate special purpose functionality, e.g.
drivers for devices:

– which are not specified within AUTOSAR;

– with very high timing constrains;

– for migration purposes;

– ...

2.2 AUTOSAR tools

AUTOSAR tool refers to all tools that support the tasks of creation, modifi-
cation and interpretation of AUTOSAR models. In the development process
of an AUTOSAR compliant system, many tools (coming from different ven-
dors) may be involved. The data exchanged between these different tools
need to agree on a common understanding about the wording and the se-
mantics. AUTOSAR formally defines the structure and semantics of data
by means of Unified Modeling Language (UML) class diagrams. In addition,
AUTOSAR has chosen eXtensible Markup Language (XML) as a language
for exchange of data between different AUTOSAR tools [11]. Therefore, an
AUTOSAR system can be described in AUTOSAR XML (ARXML).

13

Chapter 3

AUTOSAR meta-model

The AUTOSAR meta-model is an UML representation of the AUTOSAR
templates. UML class diagrams are used to describe the attributes and
the operations of each class, and the interrelationships between the various
classes. In the following sections, the main UML diagrams of the AUTOSAR
meta-model are shown. In section 3.1 an overview of the main UML concepts
are provided. Section 3.2 describes the software components meta-model
(and other related concepts like ports, interface, etc.). Section 3.3 provides
a description of the AUTOSAR service meta-model.

3.1 UML concepts

UML is a modeling language used in software development, that is intended
to provide a standard way to visualize the design of a system. UML has many
types of diagrams (class diagram, components diagram, sequence diagram,
etc.), but we focus on the class diagram, which is the main type of diagram
used within the AUTOSAR standard.

3.1.1 Class representation

In UML a class is represented as shown in Figure 3.1. In the figure, Class1
is the name of the class. attribute1 and attribute2 are the attributes of the
class; for every attributes, in addition to the attribute’s name, it is possible

14

3.1. UML CONCEPTS

Figure 3.1: A class representation in UML

to specify a variety of information, such as the type (int, double, etc.), the
multiplicity, a default value, visibility and so on. Operation1 is a function
provided by the class; for every operation it is possible to specify a set of
parameters.

The visibility is specified in the same way for attributes and operations.
The used symbols and their meaning are shown in Table 3.1.

Visibility Description
+ public
- private
protected
~ package

Table 3.1: Attributes visibility in UML

3.1.2 Generalization

Generalization is a relation between two classes and it is graphically repre-
sented as shown in Figure 3.2: the class Animal is a generalization of the
class Owl and Cobra and it contains characteristics that are common to both
classes; every animal has a weight, an average life span and a family. Owl and
Cobra are specializations of the class Animal: they have some characteristics
that not all animals have (i.e. not all animals have wings).

Note that in the figure, the name of the class Animal is written in italic,
because it is an abstract class. Abstract classes cannot be instantiated (i.e.
an animal must belong to some species, it cannot be just an "animal").

15

3.1. UML CONCEPTS

Figure 3.2: Generalization representation in UML

3.1.3 Association

An association is a link between two or more classes and it is graphically
represented with a line (if it is a bi-directional association) or with an arrow
(if it is a uni-directional association). In AUTOSAR, the uni-directional
associations (as the one shown in Figure 3.3) are more common than the
bi-directional associations. The association shown in Figure 3.3, means that

Figure 3.3: Association relation in UML

the class Class1 has exactly one attribute named class2, which is a reference
to Class2. In practice this can be seen as a sort of pointer: every object of
type Class1, has an attribute class2 which point to an object of type Class2.

3.1.4 Composition

Composition is used to represent a containment relation and it is graphically
represented as shown in Figure 3.4. Figure 3.4 can be read as follow: Car
contains exactly one engine. engine is the name of the attribute within the
class Car, and it is of type Engine.

16

3.2. SOFTWARE COMPONENTS

Figure 3.4: Composition relation in UML

3.2 Software components

Software Component (SWC) are one of the most important architectural el-
ements of the AUTOSAR meta-model. They represents piece of software
which provide specific functionalities and they provide and/or require inter-
faces and are connected to each other to fulfill architectural responsibilities[12].

Figure 3.5: Software components meta-model

Figure 3.5 shows the meta-model for SWCs:

• ApplicationSwComponentType and SensorActuatorSwComponentType
represent, respectively, the application software and the software run-
ning on sensor/actuator (there are other types of SwComponentType
which are not shown in figure, because they are not interesting for our
purposes);

17

3.2. SOFTWARE COMPONENTS

• CompositionSwComponentType is used to aggregate two or more SwCom-
ponentPrototype (everyone of which is typed by a SwComponentType).
This can be useful to represents a system composed by two or more
software components and to see how they are connected between each
other;

• SwComponentPrototype represents an instance of a SwComponentType
(ApplicationSwComponentType, SensorActuatorSwComponentType or
other not shown in figure) within a CompositionSwComponentType.
Every SwComponentPrototype is typed by one SwComponentType.

3.2.1 Ports

Software components can communicate between each other, only by means
of their PortPrototype. Every port is typed by one interface. Two ports can
be connected only if they are typed by the same interface.

Figure 3.6: Components, ports and interfaces meta-model

Figure 3.6 shows the meta-model for ports and their relations with soft-
ware components:

• every SwComponentType (ApplicationSwComponentType, SensorActu-
atorSwComponentType, etc.) can have 0 or more ports;

18

3.2. SOFTWARE COMPONENTS

• a port can be:

– a provide-port (PPortPrototype): a port which provides services
or data;

– a require-port (RPortPrototype): a port which requires services or
data;

– a provide-require-port (PRPortPrototype): a port which can pro-
vides and requires services or data;

• as already stated, every port can be typed by one and only one interface.

3.2.2 Interfaces

A PortInterface is used to specifies what kind of information is exchanged
between two PortPrototypes. PortInterface represents also a "compatibility"
between two ports, because the communication between two ports is possible
only if they have the same interface. In this section we focus on two kinds of
interfaces:

• sender-receiver interface;

• client-server interface.

Sender-receiver interface

Sender-receiver interface (SenderReceiverInterface in the AUTOSAR meta-
model) can be used for the specification of the typically asynchronous com-
munication pattern, where a sender provides data that are required by one or
more receivers. A PortPrototypes typed by a SenderReceiverInterface may
be connected to establish a 1:n (i.e. one sender, multiple receivers) communi-
cation relationship. SenderReceiverInterface is also used to specifies the data
elements sent and received over the ports which are typed by that interface.

The meta-model for SenderReceiverInterface is shown in Figure 3.7:

19

3.2. SOFTWARE COMPONENTS

Figure 3.7: Sender-receiver interface meta-model

• PortInterface is the base class from which SenderReceiverInterface de-
rives. The public attributes isService and serviceKind are used to spec-
ify if the interface is related to an AUTOSAR service or not (this aspect
is better explained in section 3.3);

• SenderReceiverInterface is the class used to specify that the commu-
nication is of type sender-receiver. This class contains one or more
dataElement of type VariableDataPrototype, which represents the piece
of information transmitted among PortPrototypes typed by a Sender-
ReceiverInterface.

Client-server interface

A client-server interface (ClientServerInterface in the AUTOSARmeta-model)
is used to define a client-server communication, where a client may initiate
the execution of an operation by a server which supports that operation. The
server executes the operation and, when completed, it provides the client with
the result (synchronous operation call) or else the client checks for the com-
pletion of the operation by itself (asynchronous operation call). A client shall
not be connected to multiple servers.

The meta-model for ClientServerInterface is shown in Figure 3.8:

• a ClientServerInterface defines a collection of client-server operations
(ClientServerOperation in figure);

20

3.2. SOFTWARE COMPONENTS

Figure 3.8: Client-server interface meta-model

• a ClientServerOperation consists of 0..* ArgumentDataPrototypes (the
parameters for the operation). Every parameter has a direction, which
can be:

– in: the parameter is passed to the operation;

– inout: the parameter is passed to, and returned from the opera-
tion;

– out: the parameter is returned from the operation.

3.2.3 Internal behavior

Internal behavior (SwcInternalBehavior in the AUTOSAR meta-model) pro-
vides means for formally defining the behavior of a software component. In
other words, it describes the relevant aspects of the software-component with
respect to the Runtime Environment (RTE), i.e. the runnable entities (which
are the the smallest code-fragments that are provided by a software compo-
nent) and the RTE events they respond to. The meta-model for internal
behavior is shown in Figure 3.9:

• SwcInternalBehavior can contain one or more RunnableEntity;

21

3.2. SOFTWARE COMPONENTS

Figure 3.9: Internal behavior meta-model

• implicitInterRunnableVariables and explicitInterRunnableVariables are
variables which can be written and read by runnable entities belonging
to the same software component; the difference between the two is that:

– implicitInterRunnableVariable is used to avoid concurrent access
to a variable, by creating copies of it (one for every runnable entity
that want to access the variable);

– explicitInterRunnableVariable is used to block potential concur-
rent accesses to a variable; it is used to get data consistency;

• RTEEvents are used to trigger the execution of runnable entities; it
is important to note (as stated in Section 2.2.4 of [10]) that all ac-
tivities within an AUTOSAR application is initiated by the triggering
of runnable entities by the RTE as a result of RTE events. Relation
between a runnable entity and an RTEEvent is specified by means of
startOnEvent reference (as shown in figure); this means that when an
RTEEvent occurs, it is the responsibility of the RTE to trigger the
execution of the corresponding runnable entity.

One of the most common RTE events is the TimingEvent: a periodic

22

3.3. AUTOSAR SERVICES

Figure 3.10: Service dependency meta-model

event whose period can be specified (in seconds) in the period attribute
of the TimingEvent class. The complete list of events is written in
section 4.2.2.4 of [10].

3.3 AUTOSAR services

AUTOSAR Services can be seen as an hybrid concept between Basic Soft-
ware Modules and Software components. Software components that requires
AUTOSAR services use standardized AUTOSAR interfaces to communicate
with them.

The dependency of a software component from an AUTOSAR service
is modeled by adding provided or required ports (hereinafter referred to as
’service ports’) to the software component. The interface for these ports needs
to be one of the standardized service interfaces defined in the AUTOSAR
documentation, and the attribute isService of the interface must be set to
true. Furthermore, the internal behavior of the software component shall
contain a SwcServiceDepencency, which is used to add more information
about the required service.

The meta-model of the SwcServiceDepencency is shown in Figure 3.10:

23

3.3. AUTOSAR SERVICES

• SwcServiceDepencency is used to associate ports, port groups and (in
special cases) data defined for a software component to a given Ser-
viceNeeds element;

• ServiceNeeds are used to provide detailed information about what a
software component expects from the AUTOSAR service. For instance,
CryptoServiceNeeds can be used to specify a maximum length for the
key used in cryptographic services;

• RoleBasedPortAssignment is used to specify an assignment of a role to a
particular service port of a software component. With this assignment,
the role of the service port can be mapped to a specific ServiceNeeds
element. The attribute portPrototype of this class, is used to refer a
service port of the software component.

There are many other classes derived from ServiceNeeds, but they are not
shown in figure 3.10 to avoid unnecessary complexity; the other classes can
be seen in Figure 7.36 of [2].

24

Chapter 4

Safety and security in
AUTOSAR

The AUTOSAR standard provides a number of mechanisms which can be
used by the software developers to build safe and secure software. In the
following sections an overview of these mechanisms is provided (with a spe-
cial focus on the End-to-End (E2E) protection mechanisms and the Crypto
Service Manager (CSM), which are more for our purposes).

4.1 Safety mechanisms

AUTOSAR supports the development of safety-related systems by offering
safety measures and mechanisms. Those mechanisms assist with the pre-
vention, detection and mitigation of hardware and software faults to en-
sure freedom from interference between software components. However AU-
TOSAR is not a complete safe solution. The use of AUTOSAR does not
imply ISO26262[13] compliance (ISO26262 is an international standard for
functional safety of automotive equipment). It is still possible to build unsafe
systems using the AUTOSAR safety measures and mechanisms. This should
be taken into account by the software developers.

Safety mechanisms provided by AUTOSAR are the following[14]:

• Memory partitioning: it provides protection by means of restricting

25

4.1. SAFETY MECHANISMS

access to memory. Memory partitioning means that OS-Applications
reside in different memory areas (partitions) that are protected from
each other. In particular, code executing in one partition cannot modify
memory of a different partition;

• Timing monitoring: timing protection and monitoring can be described
as monitoring of the following properties: monitoring that tasks are
dispatched at the specified time, meet their execution time budgets,
and do not monopolize OS resources. To guarantee that safety-related
functions will respect their timing constraints, tasks monopolizing the
Central Processing Unit (CPU) (such as heavy CPU load, many inter-
rupt requests) shall be detected and handled;

• Logical supervision: it is a technique for checking the correct execution
of software and focuses on control flow errors. Control flow errors
cause a divergence from the valid program sequence during the error-
free execution of the application. An incorrect control flow occurs if
one or more program instructions are processed either in the incorrect
sequence or are not even processed at all;

• E2E protection: in a distributed system, the exchange of data between
a sender and the receiver(s) can affect functional safety (if safety de-
pends on the integrity of such data). Therefore, such data shall be
transmitted using mechanisms to protect it against the effects of faults
within the communication link, and this can be done by means of E2E
protection mechanisms.

4.1.1 End-to-End protection mechanisms

The concept of E2E protection[15] assumes that safety-related data exchange
shall be protected at runtime against the effects of faults within the commu-
nication link. Examples for such faults (as shown in Figure 4.1) are random
hardware faults, interference, and systematic faults within the software. By
using E2E communication protection mechanisms, the faults in the com-
munication link can be detected and handled at runtime. The algorithms

26

4.1. SAFETY MECHANISMS

Figure 4.1: Example of faults mitigated by E2E protection

of protection mechanisms are implemented in the E2E Library. The E2E
protection has the following characteristics:

1. it can be used to protects safety-related data elements to be sent over
the Runtime Environment (RTE) by attaching control data;

2. it can be used to verifies safety-related data elements received from the
RTE using those control data;

3. it indicates that received safety-related data elements are faulty, which
then has to be handled by the receiver software component.

To provide the appropriate solution addressing flexibility and standardiza-
tion, AUTOSAR specifies a set of E2E profiles that implement an appropriate
combination of E2E protection mechanisms.

It is important to note that the E2E protection is for data elements and a
data element (and the corresponding signal group) is either completely E2E-
protected, or it is not protected. It is not possible to protect only a part of
it.

An appropriate usage of the E2E library alone is not sufficient to achieve
a safe E2E communication according to ASIL D requirements (Automotive

27

4.1. SAFETY MECHANISMS

Safety Integrity Level (ASIL) is a risk classification scheme used in automo-
tive industry and defined by the ISO 26262 standard[13]; the possible ASIL
values are A, B, C and D, where D is the highest). Solely the user is responsi-
ble to demonstrate that the selected profile provides sufficient error detection
capabilities for the considered network.

E2E protection works as follows:

• on sender side: it adds control fields like Cyclic Redundancy Check
(CRC) or counter to the transmitted data (as shown in Figure 4.2);

• on receiver side: it evaluates the control fields of the received data (e.g.
it computes the CRC on the received data and then it compares the
computed CRC with the received CRC in the control field).

Figure 4.2: Control fields added to data by the E2E protection

Overview of E2E Profiles

The E2E profiles provide a consistent set of data protection mechanisms, de-
signed to protect against the faults considered in the fault model. Each E2E
profile provides an alternative way to protect the data, by means of different
algorithms and it defines a subset of the following protection mechanisms:

1. A CRC;

28

4.1. SAFETY MECHANISMS

2. A Sequence Counter incremented at every transmission request; the
value is checked at receiver side for correct incrementation;

3. An Alive Counter incremented at every transmission request; the value
is checked at the receiver side if it changes at all, but correct incremen-
tation is not checked;

4. A specific ID for every port’s data element sent over a port or a specific
ID for every Interaction layer Protocol Data Unit (I-PDU) group;

5. Timeout detection:

• Receiver communication timeout;

• Sender acknowledgement timeout.

The E2E profiles can be used for both inter and intra Electronic Control Unit
(ECU) communication. The E2E profiles are optimized for communication
over the following buses: CAN, FlexRay and can be used also for Local
Interconnect Network (LIN). Depending on the system, the user selects which
E2E profile is to be used from those provided by E2E library.

E2E meta-model

To avoid unnecessary complexity, some attributes and stereotypes are not
shown in the meta-model of Figure 4.3. The complete meta-model can be
found in section 4.7 of [2].

In Figure 4.3:

• EndToEndProtectionSet can contain multiple EndToEndProtection;

• EndToEndProtection is the basic class used to specify the desired char-
acteristics for one end-to-end protection and it contains:

– one EndToEndDescription, which is used to specify an end-to-end
profile by means of its attribute category;

29

4.1. SAFETY MECHANISMS

Figure 4.3: AUTOSAR meta-model for the E2E protection

– zero or more EndToEndProtectionVariablePrototype, which is used
to specify which data has to be protected and if the protection has
to be applied by the sender (it adds the additional control fields to
the data element) and/or by the receivers (they check the received
content, e.g. CRCs comparison).

The attribute category of the EndToEndDescription class can have one of
the following values:

• NONE

• PROFILE_01

• PROFILE_02

These values are standardized, however, if needed, it is possible to define
non-standardized values provided that they do not create name clashes with
future standardized values. This can be achieved by using, for example, a
company-specific prefix or suffix to the value of category.

30

4.1. SAFETY MECHANISMS

Usage of E2E protection (E2E protection wrapper)

One possible usage of the E2E library is by means of an E2E wrapper (sec-
tion 12.1 of [15]). In this approach, every safety-related software component
has its own additional sub-layer (which is a .h/.c file pair) called E2E Pro-
tection Wrapper, which is responsible for correct invocation of E2E library
and the RTE. The functions provided by the E2E Protection Wrapper, act
as a wrapper over the write and read functions, and they are provided to
software components.

Figure 4.4: E2E Protection wrapper

The overall flow of usage of E2E library and E2E Protection Wrapper
from software components is shown in Figure 4.4:

1. the sender application produces safety critical data;

2. the sender application invokes a function provided by the E2E protec-
tion wrapper;

3. the E2E protection wrapper invokes the protection routine provided by

31

4.2. SECURITY MECHANISMS

the E2E library, to protect the data received from the sender applica-
tion. These routines are specified in section 8.3 of [15];

4. Once that data has been updated with the needed information (CRC,
etc.), the E2E protection wrapper invokes the write function of the
RTE to transmit the data;

5. RTE deals with data transmission (intra or inter ECU);

6. on the receiver side, when the RTE receives the data, it wakes up the
receiver, which invokes the function provided by the E2E protection
wrapper to read the data;

7. the E2E protection wrapper invokes the read function of the RTE to
get the received data;

8. the E2E protection wrapper invokes the check routine provided by the
the E2E library to check if the data has been received correctly or if it
is corrupted;

9. the receiver application consumes the data;

Without the E2E protection wrapper, the correct usage of the E2E library
would fall on the developers of the sender/receiver application.

4.2 Security mechanisms

AUTOSAR provides different methodologies which can be used by the devel-
opers to develop secure software. The main methodologies are the following:

• Secure On-board Communication (SecOC) [16]: the purpose of the
SecOC module is to provide an AUTOSAR Basic Software (BSW) to
transmit secured data between two or more peers exchanging informa-
tion over an automotive embedded network;

• Crypto Abstraction Library (CAL) [17]: the AUTOSAR library CAL
provides other BSW modules and application software components

32

4.2. SECURITY MECHANISMS

with cryptographic functionalities. As the CAL is a library, it is not
related to a special layer of the AUTOSAR Layered Software Architec-
ture. CAL has been introduced for using cryptographic functionalities
directly by bypassing the RTE [18].

• CSM: CSM is an AUTOSAR service which provides cryptographic
functionalities to other software modules, based on a software library
or based on an hardware module.

The AUTOSAR CSM and CAL specifications define the same cryptographic
functionalities, which cover the following areas[18]:

• Hash calculation

• Generation and verification of message authentication codes

• Random number generation

• Encryption and decryption using symmetrical algorithms

• Encryption and decryption using asymmetrical algorithms

• Generation and verification of digital signature

• Key management operations

The existence of both CSM and CAL, which provide the same (or similar)
functionalities is for historical reasons, and as already stated, CAL is a library
whereas CSM is a service.

4.2.1 Crypto Service Manager

As already stated, the CSM[5] is an AUTOSAR service, and so it is part of
the AUTOSAR service layer, as shown in Figure 4.5 (the AUTOSAR service
meta-model is described in Section 3.3). The CSM provides an abstraction
layer, which offers a standardized interface to higher software layers to ac-
cess to cryptographic functionalities. Different software modules can require

33

4.2. SECURITY MECHANISMS

Figure 4.5: AUTOSAR layered view with CSM

different security functionalities. For this reason the CSM service can be con-
figured individually by each software module. This configuration comprises
as well the selection of synchronous or asynchronous processing of the CSM
services. It also controls the concurrent, multiple and synchronous/asyn-
chronous access of one or multiple clients to one or more services (i.e. it
performs buffering, queuing, arbitration, multiplexing).

The services offered by the CSM can be used locally only[18]: it is not
possible to access to those services directly from a different ECU. If this
is needed, it is up to the provider to specify, implement and provide some
proxy for access to CSM. If the CSM is used remotely (via a proxy), it must
be taken into account that this raises security implications: any communi-
cation between ECUs is done via not protected communication buses (e.g.
CAN). This means, that unencrypted data, not yet signed data, would be
transmitted and might become stolen or manipulated.

34

4.2. SECURITY MECHANISMS

CSM services use cryptographic algorithms that are implemented using a
software library or cryptographic hardware modules - both are out of scope
and not specified by AUTOSAR.

Note that there is no user management in place, which prevents non-
authorized access to any of CSM’s services. This means, that if any access
protection is needed, it must be implemented by the application; access pro-
tection is not target of the CSM.

35

Chapter 5

Rational Rhapsody modeling
tool

This chapter provides an overview of IBM Rational Rhapsody (hereinafter
referred to as Rhapsody), which is a modeling tool developed by IBM com-
pany which can be used to model an AUTOSAR system. It is not free but a
30 days trial is available for download on [19].

Section 5.1 describes the main modeling concept. Section 5.2 describes
how to specify the internal behavior, the runnable entities and the RTE
events of a software component. Section 5.3 and 5.4 focus respectively on
the E2E and CSM modeling within a given system. Section 5.5 describes
how to generate the ARXML code of the modeled system.

5.1 Model a simple system

This section describes how to create a simple system, based on AUTOSAR,
in Rhapsody. The described system is composed by two application soft-
ware components (one sender and one receiver) that exchange data between
each other by means of sender/receiver communication paradigm provided
by AUTOSAR.

To create this system in Rhapsody the sequence of steps to follow are the
following:

36

5.1. MODEL A SIMPLE SYSTEM

Figure 5.1: New project creation in Rhapsody

1. In the starting window of Rhapsody, it is possible to start a new AU-
TOSAR project. In the Project Type drop down menu select the desired
AUTOSAR release as shown in Figure 5.1.

2. Right click on the Default folder in the left panel and click on Add New
→ AUTOSAR components → ApplicationSwComponentType as shown
in Figure 5.2 and then insert a name for the component.

3. Software components in AUTOSAR communicate by means of their
ports. To add a new port on the created component, right click on it in
the left panel and click on Add New → AUTOSAR_42 → dataSender-
Port and then insert a name for the port.

4. Every port must have an interface (as described in Section 3.2.2). To
add an interface to a port right click on the desired port in the left
panel and click on Features. Then in the Contract drop down menu
select <New> as shown in Figure 5.3; in the interface window that
appear, insert a name for the interface and then click Ok.

37

5.1. MODEL A SIMPLE SYSTEM

Figure 5.2: Create a new component in Rhapsody

Figure 5.3: Create a port’s interface in Rhapsody

38

5.1. MODEL A SIMPLE SYSTEM

Figure 5.4: Left panel view in Rhapsody

5. For sender/receiver interface, is necessary to specify a data element
(the piece of information transmitted among the ports typed by that
interface). To specify a data element for an interface, right click on
the interface in the left panel and click on Add New → AUTOSAR_42
→ dataElement. In the window that appears, it is possible to insert a
name for the dataElement and a type.

6. Repeat steps 2 and 3 to create another application software component.
This time, to add an interface to the port, there’s no need to create a
new interface, because to be able to communicate between each other,
two ports must have the same interface. So, we assign to this port
the interface created in step 4: right click on the desired port in the
left panel and click on Features, then in the Contract drop down menu
select <Select> and choose the interface created in step 4.

7. At this point, the left panel should be similar to the one shown in
Figure 5.4.

8. To specify the connection between components, we need to create a
CompositionSwComponentType; to create it, right click on the Default

39

5.1. MODEL A SIMPLE SYSTEM

Figure 5.5: Software component prototype in Rhapsody

folder in the left panel and click on Add New → AUTOSAR compo-
nents → CompositionSwComponentType and insert a name for it. The
following steps can be completed like before (by adding components
from the left panel) or can be completed "graphically" by simply drag
and drop (we follow this way, because it is faster than the other way).

9. Drag and drop the CompositionSwComponentType created in the pre-
vious step, in the Model tab.

10. Using the right panel, add two SwComponentPrototypes (as shown in
Figure 5.5). SwComponentPrototypes are going to be an instance of
the software components created in the previous steps.

11. To specify the type for a SwComponentPrototypes, right click on it and
then click on Features. In the Features window, in the Type drop down
menu, select a type as shown in Figure 5.6.

12. Repeat the step 11 for the other SwComponentPrototypes. Now the
model should look like the one shown in Figure 5.7.

13. To connect the two components, click on the AssemblySwConnector in
the right panel, then click the ports that have to be connected.

14. Final result is shown in Figure 5.8.

40

5.1. MODEL A SIMPLE SYSTEM

Figure 5.6: Select a prototype type in Rhapsody

Figure 5.7: Software composition model in Rhapsody

41

5.2. INTERNAL BEHAVIOR AND RUNNABLE ENTITIES

Figure 5.8: Software composition model in Rhapsody (final model)

5.2 Internal behavior and runnable entities

This section describes how the internal behavior and the runnable entities
of a software component can be specified in Rhapsody, and it specifies also
the relations between a runnable entity, the software component’s ports and
RTE events.

Take the system created in Section 5.1 as a starting point, the following
steps refer to the sender component (comp1):

1. The first step consists in adding the internal behavior element, which
acts as a container for runnable entities and RTE events: right click on
the sender component in the left panel and then click on Add New →
AUTOSAR_42 → SwcInternalBehavior.

2. To add a runnable entity inside the behavior element, right click on
SwcInternalBehavior element created in the previous step and then
click on Add New → AUTOSAR_42 → RunnableEntity.

3. In AUTOSAR all runnable entities are activated by the RTE as a re-
sult of an RTE events (as stated in Section 4.2.2.3 of [10]); so, for every
runnable entity we have to specify the triggering RTE event. Sup-
pose that the sender component is activated periodically (i.e. once per

42

5.2. INTERNAL BEHAVIOR AND RUNNABLE ENTITIES

second). This kind of RTE event is called TimingEvent and can be
created by right clicking on the SwcInternalBehavior element and then
by clicking on Add New → AUTOSAR_42 → TimingEvent. To specify
the period of the event, right click on the TimingEvent element and
then click on Features. In the Tags tab there is the period attribute in
which we can specify the period in second (as shown in Figure 5.9).

Figure 5.9: Specify the period attribute of the RTE TimingEvent

4. To specify that a runnable entity has to be triggered by an RTE
event, right click on the RTE event element (which, in our case, is
the TimingEvent created in the previous step) and then click on Add
New → AUTOSAR_42 → I_startOnEvent, which is used to reference
the runnable entity that has to be started when this event occurs. In
the drop down menu that appears, select the runnable entity which has
to be triggered.

5. To be able to send data, the runnable entity needs to access to the
sender’s port and to the data element defined in the port’s interface.
For this purpose, we need to add a dataWriteAccess element to the

43

5.2. INTERNAL BEHAVIOR AND RUNNABLE ENTITIES

runnable entity: right click on the runnable entity and then click on Add
New → AUTOSAR_42 → dataWriteAccess. Now, to specify the data
element to which the runnable entity needs to access, right click on the
dataWriteAccess and then click on Add New → AUTOSAR_42 → ac-
cessedVariable. Finally, to reference the data element, right click on the
accessedVariable element and then click on Add New→ AUTOSAR_42
→ I_localVariable. In the drop down menu select the name of the data
element to be accessed, which in our example is data_elem belonging
to the data_interface.

At this point, the left panel in Rhapsody should be similar to the one shown
in Figure 5.10. Note the reference of the dataWriteAccess (datawriteaccess_0
in figure) to the data element data_elem, which is the data element of the
sender-receiver interface named data_interface.

Figure 5.10: Runnable and RTE events in Rhapsody

Repeat all the previous steps on the receiver side (comp2). The differences
are the following:

44

5.3. ADD END-TO-END PROTECTION

1. The RTE event which trigger the runnable entity of the receiver, in this
case, could be the DataReceivedEvent: this event trigger the referenced
runnable entity when the referenced data element is received.

2. This time the runnable entity needs a read access to the receiver’s port,
not a write access. So the element to add to the runnable entity is the
dataReadAccess element.

5.2.1 Implicit and explicit data reception and trans-
mission

The RTE supports ’explicit’ and ’implicit’ data reception and transmission:

• Implicit data access transmission means that a runnable does not
actively initiate the reception or transmission of data. Instead, the
required data is received automatically when the runnable starts and is
made available for other runnables at the earliest when it terminates.

The dataWriteAccess fall in this category.

• Explicit data reception and transmission means that a runnable em-
ploys an explicit API call to send or receive certain data elements.
Depending on the category of the runnable and on the configuration
of the according ports, these API calls can be either blocking or non-
blocking.

More information about implicit and explicit data reception and transmission
can be found in Section 4.3.1.5 of [10].

5.3 Add End-to-End protection

This section describes how the End-to-End (E2E) protection mechanism can
be specified in Rhapsody, in order to protect the data exchanged between
two or more software components, against the effect of software or hardware
faults (more information about E2E protection mechanism can be found in
Section 4.1.1).

45

5.3. ADD END-TO-END PROTECTION

Starting from the system created in Section 5.1, to add E2E protection
the steps to follow are:

1. Right click on Default folder in the left panel and then click on Add
New → AUTOSAR_42 → EndToEndProtectionSet.

2. To add an EndToEndProtection, right click on the EndToEndProtec-
tionSet element created in the previous step and then click on Add
New → AUTOSAR_42 → EndToEndProtection. EndToEndProtec-
tion acts as a container for configuration of the E2E protection: it is
used to specifies an E2E protection profile and to specifies on which
ports the E2E protection mechanism has to be applied.

3. To specify an E2E protection profile, right click on EndToEndProtec-
tion element created in the previous step, then click on Add New →
AUTOSAR_42 → endToEndProfile; right click on it and then click on
Features. In the Tags tab, click on the category attribute and insert a
profile as shown in Figure 5.11. The possible values (defined in Section
4.7 of [2]) are the following:

• NONE

• PROFILE_01

• PROFILE_02

The value NONE specifies that the E2E protection wrapper (described
in Section 4.1.1) works as pass-through. Everyone of the other profiles
has a different E2E protection setting: for instance, algorithm used to
compute CRC in PROFILE_01 is not the same as the one used in
PROFILE_02.

4. Now we have to define to which VariableDataPrototypes, in the roles
of one sender and one or more receivers, this EndToEndprotection ap-
plies. "In the role of a sender" means that the sender applies the E2E
protection mechanism by attaching control information (CRC, counter
etc.) to the data. "In the role of one or more receivers" means that the

46

5.3. ADD END-TO-END PROTECTION

Figure 5.11: Specify an E2E protection profile in Rhapsody

receiver/receivers of the data applies the E2E protection by verifying
the control information attached to the data. To define to which Vari-
ableDataPrototypes the E2E protection has to be applied, we have to
add an EndToEndProtectionVariablePrototype element: right click on
the endToEndProfile created in the previous step and then click on Add
New → AUTOSAR_42 → EndToEndProtectionVariablePrototype.

5. To specify a sender for the EndToEndProtectionVariablePrototype, right
click on EndToEndProtectionVariablePrototype element created in the
previous step, then click on Add New → AUTOSAR_42 → sender.
This sender has to have a reference to the data element to be pro-
tected; right click on the sender element, then click on Add New →
AUTOSAR_42 → targetDataPrototype (in Rhapsody the name of this
element is I_targetDataPrototype). In the drop down menu select the
data element of the interface created in our example as shown in Figure
5.12.

47

5.4. ADD SECURITY (BY USING CRYPTO SERVICE MANAGER)

Figure 5.12: Data element to which the E2E protection has to be applied

6. Repeat the previous step, but this time, instead of sender select re-
ceiver.

7. At this point the left panel of Rhapsody should be similar to the one
shown in Figure 5.13.

5.4 Add security (by using Crypto Service
Manager)

This section describes how the Crypto Service Manager (CSM) can be spec-
ified in Rhapsody, in order to protect the communication between two or
more software components against malicious alteration of messages (CSM
provides not only this kind of protection, but it provides a variety of pro-
tection mechanisms; more information about CSM can be found in Section
4.2.1).

Starting from the system created in Section 5.1 (and shown in Figure
5.14), suppose that we don’t want only data integrity to be guaranteed (which
can be achieved by using the E2E protection), but we want also data origin
authentication: the receiver should be able to verify that the received data
comes from a trusted entity. For this purpose, the E2E protection is not
sufficient, because it can only guarantees data integrity. To achieve both
(integrity and authenticity) we can make use of a service provided by the

48

5.4. ADD SECURITY (BY USING CRYPTO SERVICE MANAGER)

Figure 5.13: Final view for the E2E protection in Rhapsody

CSM. CSM offers a variety of services related to security aspects and for our
example we focus on Message Authentication Code (MAC) service (for more
information about CSM, see Section 4.2.1).

Before continue, it is important to remember that a SwComponentPro-
totype represents an instance of a SwComponentType within a composition
(CompositionSwComponentType). In our example, itsComp1 and itsComp2
are SwComponentPrototypes. itsComp1 is an instance of comp1 (the sender
component), and itsComp2 is an instance of comp2 (the receiver compo-
nent). It is also important to remember that the CSM can be used locally
only (in this context locally means "on the same ECU"). So, if the sender
and the receiver reside on different ECUs, CSM has to be placed on both of
them.

Furthermore, the following assumptions are made:

• The sender and the receiver share a secret key. This key will be used for
MAC computation. The sender component, by means of the operations
provided by the CSM, computes the MAC on the data he wants to send,
he attaches the MAC to the data and then he sends the message (data
+ MAC) to the receiver. Note that, as specified in Section 8.1.7 of [5],

49

5.4. ADD SECURITY (BY USING CRYPTO SERVICE MANAGER)

Figure 5.14: System overview, before the specification of the CSM

it is the CSM that shall checks if the provided buffer is large enough
to hold the result of the MAC computation. The receiver, after the
reception of the message, verifies the MAC by means of the operations
provided by the CSM.

• The communication between sender and the CSM, and also between
the receiver and the CSM, is synchronous.

Starting from the sender (comp1), to specify that he needs to use the
MAC service provided by the CSM, the steps to follow are listed below:

1. The CSM is an AUTOSAR service and it uses a client-server communi-
cation paradigm: the client of the service requires a service (invoke an
operation) and the CSM performs the required operation and returns
the result to the client of the service. So, we need to add a client port to
the sender: right click on the sender in the left panel (comp1 in Figure
5.14) and then click on Add New → AUTOSAR_42 → clientPort, and
insert a name for it.

2. Create the port interface: right click on the port created in the previous
step and then click on Features. In the Contract drop down menu
select <New>. The name of the interface cannot be chosen at will,
and must be exactly CsmMacGenerate, because in AUTOSAR, every
service interface has standardized name (specified in the AUTOSAR
documentation).

50

5.4. ADD SECURITY (BY USING CRYPTO SERVICE MANAGER)

Furthermore, in the Tags tab of the interface features window, check
the isService box (to specify that this interface is used to interact with
an AUTOSAR service) and select cryptoServiceManager in the ser-
viceKind drop down menu (as shown in Figure 5.15).

Figure 5.15: Set interface tags for a service interface in Rhapsody

3. Add an internal behavior element to the sender component: right click
on the sender in the left panel and then click on Add New → AU-
TOSAR_42 → SwcInternalBehavior.

4. Right click on the internal behavior element of the sender, created
in the previous step, and then click on Add New → AUTOSAR_42
→ SwcServiceDependency (which is used to associate ports to a given
service).

5. Within a SwcServiceDependency we need to add one and only one class
derived from ServiceNeeds. In our case we add a cryptoServiceNeeds
by clicking on SwcServiceDependency element created in the previous
step and then clicking on Add New→ AUTOSAR_42 → cryptoService-
Needs. In the Features window of the cryptoServiceNeeds (in the Tags

51

5.4. ADD SECURITY (BY USING CRYPTO SERVICE MANAGER)

tab) there is the attribute maximumKeyLength, in which it is possible
to specify the maximum length of a cryptographic key (in bit).

6. We also have to add a RoleBasedPortAssignment to the SwcServiceDe-
pendency element: right click on SwcServiceDependency created in
step 4 and then click on Add New → AUTOSAR_42 → assigned-
Port. Add a reference to the service port by clicking on the assigned-
Port element and then by clicking on Add New → AUTOSAR_42 →
I_portPrototype. In the drop down menu that appears, select the ser-
vice port of the software components as shown in Figure 5.16.

Figure 5.16: Assign a SwcServiceDependency to a port in Rhapsody

Repeat all the previous steps for the receiver (comp2 in Figure 5.14). The
only differences are in the name of the interface and obviously in the assigned
port:

• the name of the interface in this case must be CsmMacVerify: because
the receiver of the data does not generate MAC, but when he receives
the data, he needs to verifies it;

• the assigned port will be the port which is typed by the CsmMacVerify
interface.

52

5.4. ADD SECURITY (BY USING CRYPTO SERVICE MANAGER)

Figure 5.17: Left panel view after the specification of service dependency

At this point the left panel in Rhapsody should be similar to the one shown
in Figure 5.17. How the services are used by a software component, depends
on the software component’s runnable entities and on their implementation.

To specify the needs to use other kind of security mechanisms, such as:
hash function, symmetric or asymmetric cryptography, etc. the steps to fol-
low are the same. The main difference is in the names of the interfaces (all
the standardized names of the interfaces can be found in the CSM documen-
tation [5]).

53

5.5. GENERATE ARXML

5.5 Generate ARXML

As already stated in Section 2.2, the standardized format for exchanging data
between different AUTOSAR compliant tools is AUTOSAR XML (ARXML).
Also Rhapsody is able to generate ARXML.

To generate ARXML in Rhapsody:

• click on the Tools menu and then click on AUTOSAR → Export AU-
TOSAR XML Document;

• click on the Browse button to specify a name for the generated ARXML
file.

• click on the Export button to start the ARXML generation process.

If no errors occurs, the ARXML description of the model will be generated.

54

Chapter 6

Security level and automatic
generation of security elements

As described in Chapters 3 and 5, to specify that a software component
needs to use an AUTOSAR service, the procedure that system developers
have to follow is a bit tricky and error prone: they have to know the services
meta-model and the features of the service they need to use. The AUTOSAR
documentation provides all these information, but is not easy to found what
you are looking for in more than 200 documents (in the AUTOSAR release
4.2.2), someone of which are more than one thousand pages long.

With this in mind, we proposed an approach for the specification of se-
curity levels and for the automatic generation of the AUTOSAR elements
which are required to use the security services provided by AUTOSAR by
means of the Crypto Service Manager (CSM). The security levels that we
have defined are the following:

• integrity;

• confidentiality;

• both;

They apply to communication links (or better, to the ports involved in the
communication), and can be specified by the developers by the insertion of

55

CHAPTER 6. SECURITY LEVEL AND AUTOMATIC GENERATION
OF SECURITY ELEMENTS

a specific security tag in the description field (desc, in AUTOSAR specifica-
tions) of the ports of a software component. At the end, the security levels
must be written in the ARXML file, which is the file format used in AU-
TOSAR to describes a system. For this purpose, the developers have two
possible choices:

1. they can insert the security tag by using an AUTOSAR compliant tool
like Rhapsody, and then they can export the system as ARXML file;

2. they can insert the security tag directly in the ARXML file which rep-
resents the system.

By parsing the ARXML file, the Python[20] script that we have developed,
automatically generates the required elements based on the specified security
level.

The security requirements are fulfilled by using the services provided by
the CSM (which is part of the AUTOSAR service layer). In order to use
these services, a component has to have what we called "elements", which
in practice are client ports, interfaces, and so on. The script allows the
developers to choose if these elements have to be added directly within the
component which requires a specific security level, or if they have to be added
within a new component (which acts as a filter) that performs the following
actions:

1. it takes the data to protect as input;

2. it applies the required security level to the received data;

3. it sends out the protected data.

The modified ARXML file can be imported in Rhapsody; all the elements
added by the script are visible in the graphical representation of the system.

In order to use Python, Windows users can install LiClipse; an Integrated
Development Environment (IDE) based on Eclipse which provides the plugin
for Python development. For Linux users, Python is usually available in the
official repository of the Linux distribution.

56

6.1. SECURITY LEVEL SPECIFICATION AND ELEMENTS
GENERATION

6.1 Security level specification and elements
generation

In practice, the security levels are expressed as a tag in the form of a pair
[name; value] within the description field of the two ports involved in the
communication and they can assume the following values:

• SecurityNeeds=INTEG, which stands for "integrity": in a communica-
tion between two entities (A and B), if A sends a message to B, B is
able to verify that the received message was not altered by an external
entity;

• SecurityNeeds=CONF, which stands for "confidentiality": in a commu-
nication between two entities (A and B), a third (non-authorized) entity
(C), is not able to understands the content of the message exchanged
between A and B;

• SecurityNeeds=BOTH, which means that both (integrity and confiden-
tiality) are required.

In addition, the developers can specify if the security has to be added by
means of a new component or if it has to be added on the existing component.
For this purpose, the tag to add in the description field of the port is the
following:

• NewComponent=TRUE : the script adds a new component which pro-
vides the required security elements. This component acts as a filter: it
takes the output data of one component, it applies the required security
service to that data, and then it sends out the protected data;

• NewComponent=FALSE : the required security elements are added di-
rectly within the component which requires the security service.

Setting NewComponent=TRUE can be useful when the developers cannot
modify an existing component (i.e. a legacy component). If the NewCompo-
nent tag is not found, the script assumes NewComponent=FALSE as default
value: no new component is added.

57

6.2. EXAMPLE USAGE

The values of the SecurityNeeds tag has to be the same for the ports
involved in the communication; instead, the value of the NewComponent tag
can be different.

6.2 Example usage

Take the simple system modeled in Section 5.1 as a starting point (reported
in Figure 6.1 for convenience), in which there is one sender (comp1) and one
receiver (comp2) which exchange data between each other. Suppose that we

Figure 6.1: System used as a starting point

are not interested in confidentiality, instead we want the receiver to be able
to verify the integrity of the messages received from the sender. For this pur-
pose the CSM offers the Message Authentication Code (MAC) service, which
guarantees integrity and also authenticity of the received data (Section 8.1.7
of [5]), under the condition that the key used for MAC computation is not
compromised by an external entity. Under the assumption of a synchronous
communication paradigm between the component and the AUTOSAR ser-
vice, the steps that the developers have to follow, in order to specify that a
software component wants to use the MAC service, are described in Section
5.4 and they are briefly recap here for convenience:

58

6.2. EXAMPLE USAGE

1. the software component that wants to use the MAC service needs to
have a client port;

2. the interface of the client’s port has to have exactly one of the follow-
ing names: CsmMacGenerate if the software component is a sender,
CsmMacVerify if it is a receiver. All the standardized names of all the
interfaces provided by the CSM are written in [5];

3. the isService attribute of the interface must be set to true;

4. the value of the serviceKind attribute of the interface must be crip-
toServiceManager ;

5. the internal behavior element of the software component must con-
tain a SwcServiceDependency, which in turn must contain exactly one
cryptoServiceNeeds and one or more RoleBasedPortAssignment;

6. the RoleBasedPortAssignment must have a reference to the service port
of the software component (the port defined in the step 1).

The script we have developed, automates this process. The developers
only need to insert the tags previously described:

1. SecurityNeeds=INTEG, SecurityNeeds=CONF or SecurityNeeds=BOTH ;

2. NewComponent=TRUE or NewComponent=FALSE (if no specified,
NewComponent=FALSE is assumed as default);

The aforementioned tags have to be inserted in the description field of the
ports involved in the communication. In Rhapsody this can be done by right
clicking on the port element of a software component and then by clicking
on Features. In the Tags tab of the Features window, there is the desc field
in which the developers can insert the desired tags. An example is shown in
Figure 6.2. Rhapsody also allows the user to define a new couple [tag; value]
within an element, which seems a most reasonable solution than inserting the
tags in the description field. But we decided to use the description field, since
it is part of the AUTOSAR standard and then it is exported in ARXML file.

59

6.2. EXAMPLE USAGE

Figure 6.2: Specify a security tag

If we specify SecurityNeeds=INTEG andNewComponent=TRUE for both
components, by executing the script on the ARXML representing the mod-
eled system, the resulting system is shown in Figure 6.3. The script added

Figure 6.3: Required elements added by means of new components

the two components (comp1Filter0 and comp2Filter0):

• on the sender side, the filter takes the data produced by the sender,
it computes the MAC value on the data, and then it sends out the
data+MAC;

60

6.3. ARXML AND PYTHON

• on the receiver side, the filter reads the data+MAC, it verifies the MAC
value and it sends the data to the receiver component.

If we specify SecurityNeeds=INTEG and NewComponent=FALSE for
both components, the resulting system is the one shown in Figure 6.4. This

Figure 6.4: Required elements added to the existing components

time, no new components have been added to the system, because we spec-
ify NewComponent=FALSE for both components. All the required elements
have been added to the existing components: the service ports, the interfaces
needed to use the MAC service and other elements not visible in the figure.

6.3 ARXML and Python

This section provides a brief description of the python script and shows an ex-
cerpt of the ARXML file before and after the script execution. The ARXML
file refers to the system used also in Section 6.2.

6.3.1 Python script

The input parameters of the script are the name of the ARXML file and,
optionally, a name for the output file. If no name is specified for the output
file, the script use a default name for it.

For every connections, the script performs the following steps:

61

6.3. ARXML AND PYTHON

1. it checks if the ports involved in the communication have a security
tags specified in their description field;

2. if no security tag was found, or if the two ports have two different
security tags, the script moves on the next connection to analyze;

3. if the two ports have the same security tag, the script first looks for
the NewComponent tags and based on their value, it builds 0, 1 or 2
new components;

4. it adds the following elements in the components created in the pre-
vious step, or in the existing components, based on the value of the
NewComponent tag:

(a) based on the security tag it creates the needed ports;

(b) it creates the service interface;

(c) it creates the internal behavior element;

(d) it adds the SwcServiceDependency, RoleBasedPortAssignment and
all the other required elements to the internal behavior;

(e) it creates the connection between all the involved components;

(f) if needed, it deletes the original connection;

At the end, the script saves the changes in the specified ARXML file. Below,
the pseudo-code of the add_security function is shown.

#Analyze and add the required security levels to the system described in the
#ARXML file and saves the changes in a new ARXML file
#function’s paramentes:
file_name: the name of the ARXML file which describes the system
new_file_name: the name of the file where the changes have to be saved
#returned value:
−1 in case of errors
0 otherwise
def add_security(file_name, new_file_name=’’):

#Variables initialization

62

6.3. ARXML AND PYTHON

...

#Checks if file exists
if (os.path. isfile (file_name) == False):

return −1

if (new_file_name == ’’):
new_file_name = "new_" + file_name.split(".arxml")[−2]

#For every connections (ASSEMBLY−SW−CONNECTOR) checks if a
security level is specified , and applies it .
#Note: root is the root of the tree
for conn in root.iter(namespace+"ASSEMBLY−SW−CONNECTOR"):

#Get the ports involved in the communication (the provider port and
#the required port)
...

#Get the two components to which the ports belong
comp1 = get_component(root, provider_name)
comp2 = get_component(root, requester_name)
...

#Checks the tags within the ports . "add_filter1" is equal to
#TRUE if "provider_port" of "comp1" has the tag
#"NewComponent=TRUE". The same reasoning applies to
#"add_filter2"
[add_filter1, tag1] = get_tags(comp1, provider_port)
[add_filter2, tag2] = get_tags(comp2, requester_port)

#If the two tags are the same and they are not empty...
if (tag1 == tag2) and (tag1 != ""):

if (add_filter1 == "FALSE"):
#Add service elements to component1 (comp1)

63

6.4. ARXML CODE

...
else:

#Build a new component (filter1) which act as a filter
#for comp1
...

if (add_filter2 == "FALSE"):
#Add service elements to component2 (comp2)
...

else:
#Build a new component (filter2) which act as a filter
#for comp2
...

#Update connections
...

#save the changes to ’new_file_name’ and return
update_tree(root, new_file_name)
return 0

6.4 ARXML code

In this section, an excerpt of the ARXML code of the system modeled in
Section 6.2 is shown: the code refers to the comp1 of Figure 6.1. Below, the
ARXML which describes the comp1 is shown.

...
<SENSOR−ACTUATOR−SW−COMPONENT−TYPE>

<SHORT−NAME>comp1</SHORT−NAME>
<PORTS>
<P−PORT−PROTOTYPE>

<SHORT−NAME>send_port</SHORT−NAME>
<PROVIDED−INTERFACE−TREF DEST="SENDER−RECEIVER−

INTERFACE">/Default/data_interface</PROVIDED−INTERFACE−

64

6.4. ARXML CODE

TREF>
</P−PORT−PROTOTYPE>
</PORTS>

</SENSOR−ACTUATOR−SW−COMPONENT−TYPE>
...

After the specification of the security tag SecurityNeeds=INTEG, the ARXML
of comp1 looks like the one shown below. The differences are highlighted in
green.
...
<SENSOR−ACTUATOR−SW−COMPONENT−TYPE>

<SHORT−NAME>comp1</SHORT−NAME>
<PORTS>
<P−PORT−PROTOTYPE>

<SHORT−NAME>send_port</SHORT−NAME><DESC>
<L−2 L="FOR−ALL">SecurityNeeds=INTEG</L−2>
</DESC>
<PROVIDED−INTERFACE−TREF DEST="SENDER−RECEIVER−

INTERFACE">/Default/data_interface</PROVIDED−INTERFACE−
TREF>

</P−PORT−PROTOTYPE>
</PORTS>

</SENSOR−ACTUATOR−SW−COMPONENT−TYPE>
...

Note that there isn’t theNewComponent tag in the description field (<DESC>);
so, after the script execution, the elements that are needed to use the ser-
vices provided by the CSM, are written inside the block which represents
the comp1. The resulting ARXML is the following (the differences are high-
lighted in different colors):
...
<SENSOR−ACTUATOR−SW−COMPONENT−TYPE>

<SHORT−NAME>comp1</SHORT−NAME>
<PORTS>
<P−PORT−PROTOTYPE>

<SHORT−NAME>send_port</SHORT−NAME>
<DESC>
<L−2 L="FOR−ALL">SecurityNeeds=INTEG</L−2>

65

6.4. ARXML CODE

</DESC>
<PROVIDED−INTERFACE−TREF DEST="SENDER−RECEIVER−

INTERFACE">/Default/data_interface</PROVIDED−INTERFACE−
TREF>

</P−PORT−PROTOTYPE><R−PORT−PROTOTYPE>
<SHORT−NAME>service_1</SHORT−NAME>
<REQUIRED−INTERFACE−TREF DEST="CLIENT−SERVER−

INTERFACE">/Default/CsmMacGenerate</REQUIRED−INTERFACE−
TREF>

</R−PORT−PROTOTYPE>
</PORTS>
<INTERNAL−BEHAVIORS>
<SWC−INTERNAL−BEHAVIOR>

<SHORT−NAME>comp1_IB</SHORT−NAME>
<SERVICE−DEPENDENCYS>
<SWC−SERVICE−DEPENDENCY>

<SHORT−NAME>comp1_servive_dep</SHORT−NAME>
<ASSIGNED−PORTS>
<ROLE−BASED−PORT−ASSIGNMENT>

<PORT−PROTOTYPE−REF DEST="R−PORT−PROTOTYPE">/
Default/comp1/service_1</PORT−PROTOTYPE−REF>

</ROLE−BASED−PORT−ASSIGNMENT>
</ASSIGNED−PORTS>
<SERVICE−NEEDS>
<CRYPTO−SERVICE−NEEDS>

<SHORT−NAME>cryptoserviceneeds</SHORT−NAME>
</CRYPTO−SERVICE−NEEDS>
</SERVICE−NEEDS>

</SWC−SERVICE−DEPENDENCY>
</SERVICE−DEPENDENCYS>

</SWC−INTERNAL−BEHAVIOR>
</INTERNAL−BEHAVIORS>

</SENSOR−ACTUATOR−SW−COMPONENT−TYPE>
...

The blue part contains the service port, which has a reference to the CsmMac-
Generate interface. The green part contains the internal behavior elements,
the service dependency and so on.

In the other component (comp2) the changes are similar to that of comp1 ;

66

6.4. ARXML CODE

the main noticeable differences is the service interface, which is CsmMacVer-
ify.

The ARXML structure, obviously reflects the service meta-model de-
scribed in Section 3.3 and shown in Figure 3.10.

67

Chapter 7

Application to an AUTOSAR
use case

This chapter, shows a possible usage of the python script, by applying it to
an AUTOSAR use case. Section 7.1 provides a description of the use case.
Section 7.2 shows the systems before and after the execution of the script.

7.1 Use case description

The AUTOSAR document [21], describes the low beam function of the front
light system of a car. In the following we focus on the security aspects.

The system overview is shown in Figure 7.1. The general purpose of the
low beam system is to illuminate the roadway in the dark. The low beams
are turned on by the user through the Light Switch, if the Ignition Key is
ON. System status (malfunctions included) shall be reported to the driver
through the Human Machine Interface (HMI). The functioning rules for the
Front Light Management (FLM) are the following:

1. Detection of a low beam request:

• The FLM shall evaluate the Ignition Key position;

• The FLM shall read the Light Switch position;

2. Evaluate the low beam light request:

68

7.1. USE CASE DESCRIPTION

Figure 7.1: Front lights system overview

• The FLM shall evaluate the Light Switch status;

• The FLM shall create a switch event ON if the Light Switch status
changes from OFF to ON;

• The FLM shall create a switch event OFF if the Light Switch
status changes from ON to OFF;

3. Control the low beam lights:

• The FLM shall activate the low beam lights if the Ignition Key
position is ON and a Light Switch event ON is detected;

• The FLM shall deactivate the low beam lights if the Ignition Key
position is OFF, or a Light Switch event OFF is detected;

4. Monitoring the low beam lights function:

• The FLM shall supervise the low beam lights;

69

7.1. USE CASE DESCRIPTION

System element Communication mean
Light Switch Digital Input Output (DIO)
Ignition Key Controller Area Network (CAN)
HMI CAN
Head Lights (left and right) Pulse Width Modulation (PWM)
Daytime Running Lights (left and right) PWM

Table 7.1: Communication means between FLM and other elements

• The FLM shall display the low beam lights status and report
malfunctions to the user by means of the HMI;

5. Activation of the daytime running lights:

• The FLM shall activate the daytime running lights in case of a
low beam lights malfunctioning.

Figure 7.2 and table 7.1 shows how the involved entities communicate with
the FLM.

Figure 7.2: Communication focused view of the front light system

70

7.2. APPLICATION TO THE USE CASE

7.2 Application to the use case

As stated in [4], since many ECUs are connected to the CAN bus, a com-
promised ECU can sends altered messages to every ECU connected to the
CAN. For this reason, we apply security on the CAN bus communications.

The initial system is shown in Figure 7.3. Note that represents a
sender-receiver port, which can be used for both sending and receiving data,
and represents a client port, which is used here for communication with
the services provided by the CSM.

Figure 7.3: Initial FLM system

We assume the following:

• LightRequest and FLM reside on the same ECU;

• IgnitionKey and HMI share a secret key with FLM ;

• IgnitionKey and HMI cannot be modified by the developers;

We also assume that communications within the same ECU are secure. So,
we apply the following tags to the components’ ports:

71

7.2. APPLICATION TO THE USE CASE

• FromToLR of IgnitionKey: SecurityNeeds=INTEG and NewCompo-
nent=TRUE ;

• FromToIK of LightRequest: SecurityNeeds=INTEG;

• ToHMI of FLM : SecurityNeeds=INTEG;

• FromFLM ofHMI : SecurityNeeds=INTEG andNewComponent=TRUE.

After the script execution, the resulting system is shown in Figure 7.4. The

Figure 7.4: Final FLM system

script, based on the specified tags, has made the following changes to the
system:

• it adds IgnitionKeyFilter1, which is connected to IgnitionKey and to
LightRequest;

• it adds the required service ports to LightRequest and FLM ;

• it adds HMIFilter0, which is connected to FLM and to HMI.

Both, IgnitionKeyFilter1 and LightRequest, have two service ports, because
the communication is bi-directional:

72

7.2. APPLICATION TO THE USE CASE

• when IgnitionKey sends data to LightRequest, IgnitionKeyFilter1 (on
the behalf of IgnitionKey) has to compute the MAC value on the data,
so it needs to use the CsmMacGenerate service;

• when IgnitionKey receives data from LightRequest, IgnitionKeyFilter1
(on the behalf of IgnitionKey) has to verify the MAC value of the
received data, so it needs to use the CsmMacVerify service.

73

Chapter 8

Conclusions

In this work, we analyzed the AUTOSAR standard, which is quite verbose,
but it is the de-facto standard for embedded software development in auto-
motive industry. In order to develop an AUTOSAR compliant system, the
developers must have a good knowledge of the standard and often this is not
enough.

The approach we have proposed can be used by the developers to specify
high level security requirements already in the early stages of the system de-
sign following a "security by design" methodology. A tool has been developed
to ease the work of system developers and to avoid oversight caused by the
complexity of the AUTOSAR standard. We focused on the security aspects
of communications, but our tool can be further improved, for example, to
take into account also the specification of the End-to-End (E2E) protection
mechanism.

There are other aspects of the AUTOSAR standard that can be subject
of future work; for example, safety requirements in AUTOSAR are expressed
in natural language and this can lead to ambiguity and misunderstandings.
Also the compliance between the final system and the requirements may be
difficult to verify. For this reason, the specification of a formal way to define
the requirements may be useful.

74

Acknowledgments

I would like to thank Prof. Marco Di Natale from Scuola Superiore Sant’Anna,
for the useful discussions and suggestions about the AUTOSAR standard,
and Stefania Botta from Magneti Marelli for her valuable advice on the AU-
TOSAR Crypto Service Manager.

I thank my supervisors, Prof. Cinzia Bernardeschi and Prof. Gianluca
Dini, for their support and guidance during the development of this thesis.

75

Acronyms

API Application Programming Interface. 12, 45

ARXML AUTOSAR XML. 1, 13, 36, 54, 56, 59–62, 64, 65, 67

ASIL Automotive Safety Integrity Level. 27, 28

AUTOSAR AUTomotive Open System ARchitecture. 1, 3, 5–10, 12–14,
16, 17, 19–25, 27, 32, 33, 35–37, 42, 50, 51, 54–56, 58, 59, 68, 74, 75

BSW Basic Software. 9, 12, 13, 32

CAL Crypto Abstraction Library. 32, 33

CAN Controller Area Network. 5, 29, 34, 70, 71

CPU Central Processing Unit. 26

CRC Cyclic Redundancy Check. 28, 30, 46

CSM Crypto Service Manager. 5, 25, 33–36, 48–50, 53, 55, 56, 58, 59, 65,
71

DIO Digital Input Output. 70

E2E End-to-End. 25–29, 31, 32, 36, 45–48, 74

ECU Electronic Control Unit. 5, 8–10, 12, 29, 32, 34, 49, 71

FLM Front Light Management. 68–70

76

Acronyms

HMI Human Machine Interface. 68, 70

I-PDU Interaction layer Protocol Data Unit. 29

IDE Integrated Development Environment. 56

LIN Local Interconnect Network. 29

MAC Message Authentication Code. 49, 50, 52, 58–61, 73

NVRAM Non-Volatile Random Access Memory. 12

OEM Original Equipment Manufacturer. 8

OS Operating System. 12, 26

PWM Pulse Width Modulation. 70

RTE Runtime Environment. 9–13, 21, 22, 27, 31–33, 36, 42, 43, 45

SecOC Secure On-board Communication. 32

SWC Software Component. 9, 10, 17

UML Unified Modeling Language. 13, 14

XML eXtensible Markup Language. 13

77

Bibliography

[1] AUTOSAR: Layered Software Architecture. http://www.autosar.
org/fileadmin/files/releases/4-2/software-architecture/
general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.
pdf.

[2] AUTOSAR Software Component Template, release 4.2.2.
http://www.autosar.org/fileadmin/files/releases/4-2/
methodology-and-templates/templates/standard/AUTOSAR_TPS_
SoftwareComponentTemplate.pdf.

[3] Federal Bureau of Investigation - Internet Crime Complaint Center. Mo-
tor vehicles increasingly vulnerable to remote exploits. http://www.
ic3.gov/media/2016/160317.aspx, 2016.

[4] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska
Roesner, and Tadayoshi Kohno. Comprehensive experimental analyses
of automotive attack surfaces, 2011. USENIX Security.

[5] Specification of Crypto Service Manager, release 4.2.2.
http://www.autosar.org/fileadmin/files/releases/4-2/
software-architecture/safety-and-security/standard/AUTOSAR_
SWS_CryptoServiceManager.pdf.

[6] Safure project. https://safure.eu/.

[7] Robert N. Charette. This car runs on code. http://spectrum.ieee.
org/transportation/systems/this-car-runs-on-code, 2009.

78

http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-and-templates/templates/standard/AUTOSAR_TPS_SoftwareComponentTemplate.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-and-templates/templates/standard/AUTOSAR_TPS_SoftwareComponentTemplate.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-and-templates/templates/standard/AUTOSAR_TPS_SoftwareComponentTemplate.pdf
http://www.ic3.gov/media/2016/160317.aspx
http://www.ic3.gov/media/2016/160317.aspx
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/standard/AUTOSAR_SWS_CryptoServiceManager.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/standard/AUTOSAR_SWS_CryptoServiceManager.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/standard/AUTOSAR_SWS_CryptoServiceManager.pdf
https://safure.eu/
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

BIBLIOGRAPHY

[8] AUTOSAR standard. http://www.autosar.org.

[9] AUTOSAR core partners. http://www.autosar.org/partners/
current-partners/core-partners/.

[10] Specification of RTE, release 4.2.2. http://www.autosar.org/
fileadmin/files/releases/4-2/software-architecture/rte/
standard/AUTOSAR_SWS_RTE.pdf.

[11] Interoperability of AUTOSAR Tools, release 4.2.2. http:
//www.autosar.org/fileadmin/files/releases/4-2/
methodology-and-templates/tools/auxiliary/AUTOSAR_TR_
InteroperabilityOfAutosarTools.pdf.

[12] Glossary, release 4.2.2. http://www.autosar.org/fileadmin/files/
releases/4-2/main/auxiliary/AUTOSAR_TR_Glossary.pdf.

[13] International Organization for Standardization. http://www.iso.org.

[14] Overview of Functional Safety Measures in AUTOSAR, release
4.2.2. http://www.autosar.org/fileadmin/files/releases/
4-2/software-architecture/safety-and-security/auxiliary/
AUTOSAR_EXP_FunctionalSafetyMeasures.pdf.

[15] AUTOSAR E2E Protection library, release 4.2.2. http:
//www.autosar.org/fileadmin/files/releases/4-2/
software-architecture/safety-and-security/standard/AUTOSAR_
SWS_E2ELibrary.pdf.

[16] Requirements on Module Secure Onboard Communication.
http://www.autosar.org/fileadmin/files/releases/4-2/
software-architecture/safety-and-security/auxiliary/
AUTOSAR_SRS_SecureOnboardCommunication.pdf.

[17] Specification of Crypto Abstraction Library, release 4.2.2.
http://www.autosar.org/fileadmin/files/releases/4-2/

79

http://www.autosar.org
http://www.autosar.org/partners/current-partners/core-partners/
http://www.autosar.org/partners/current-partners/core-partners/
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-and-templates/tools/auxiliary/AUTOSAR_TR_InteroperabilityOfAutosarTools.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-and-templates/tools/auxiliary/AUTOSAR_TR_InteroperabilityOfAutosarTools.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-and-templates/tools/auxiliary/AUTOSAR_TR_InteroperabilityOfAutosarTools.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-and-templates/tools/auxiliary/AUTOSAR_TR_InteroperabilityOfAutosarTools.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/main/auxiliary/AUTOSAR_TR_Glossary.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/main/auxiliary/AUTOSAR_TR_Glossary.pdf
http://www.iso.org
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/standard/AUTOSAR_SWS_E2ELibrary.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/standard/AUTOSAR_SWS_E2ELibrary.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/standard/AUTOSAR_SWS_E2ELibrary.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/standard/AUTOSAR_SWS_E2ELibrary.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_SRS_SecureOnboardCommunication.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_SRS_SecureOnboardCommunication.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_SRS_SecureOnboardCommunication.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/standard/AUTOSAR_SWS_CryptoAbstractionLibrary.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/standard/AUTOSAR_SWS_CryptoAbstractionLibrary.pdf

BIBLIOGRAPHY

software-architecture/safety-and-security/standard/AUTOSAR_
SWS_CryptoAbstractionLibrary.pdf.

[18] Utilization of Crypto Services, release 4.2.2. http:
//www.autosar.org/fileadmin/files/releases/4-2/
software-architecture/safety-and-security/auxiliary/
AUTOSAR_EXP_UtilizationOfCryptoServices.pdf.

[19] IBM Rational Rhapsody software. http://www.ibm.com/
developerworks/downloads/r/rhapsodydeveloper/.

[20] Python programming language. https://www.python.org/.

[21] Safety Use Case Example, release 4.2.2. http://www.autosar.
org/fileadmin/files/releases/4-2/software-architecture/
safety-and-security/auxiliary/AUTOSAR_EXP_SafetyUseCase.
pdf.

80

http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/standard/AUTOSAR_SWS_CryptoAbstractionLibrary.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/standard/AUTOSAR_SWS_CryptoAbstractionLibrary.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/standard/AUTOSAR_SWS_CryptoAbstractionLibrary.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_EXP_UtilizationOfCryptoServices.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_EXP_UtilizationOfCryptoServices.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_EXP_UtilizationOfCryptoServices.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_EXP_UtilizationOfCryptoServices.pdf
http://www.ibm.com/developerworks/downloads/r/rhapsodydeveloper/
http://www.ibm.com/developerworks/downloads/r/rhapsodydeveloper/
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_EXP_SafetyUseCase.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_EXP_SafetyUseCase.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_EXP_SafetyUseCase.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/safety-and-security/auxiliary/AUTOSAR_EXP_SafetyUseCase.pdf

	List of Figures
	Introduction
	Introduction to the AUTOSAR standard
	AUTOSAR architecture
	Application Layer
	RTE layer
	Basic Software Layer

	AUTOSAR tools

	AUTOSAR meta-model
	UML concepts
	Class representation
	Generalization
	Association
	Composition

	Software components
	Ports
	Interfaces
	Internal behavior

	AUTOSAR services

	Safety and security in AUTOSAR
	Safety mechanisms
	End-to-End protection mechanisms

	Security mechanisms
	Crypto Service Manager

	Rational Rhapsody modeling tool
	Model a simple system
	Internal behavior and runnable entities
	Implicit and explicit data reception and transmission

	Add End-to-End protection
	Add security (by using Crypto Service Manager)
	Generate ARXML

	Security level and automatic generation of security elements
	Security level specification and elements generation
	Example usage
	ARXML and Python
	Python script

	ARXML code

	Application to an AUTOSAR use case
	Use case description
	Application to the use case

	Conclusions
	Acknowledgments
	Acronyms
	Bibliography

