
UNIVERSITÀ DI PISA
Scuola di Ingegneria

SCUOLA SUPERIORE SANT’ANNA

Master of Science in Embedded Computing Systems

Software support for dynamic partial
reconfigurable FPGAs on heterogeneous

platforms

Supervisors:
Prof. Giorgio Buttazzo
Dott. Mauro Marinoni

Author:
Marco Pagani

Academic Year 2015/2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79621272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 7
1.1 Objectives . 8
1.2 Contributions . 9
1.3 Thesis outline . 9

2 Background 11
2.1 Overview of Field-Programmable Gate Arrays 12

2.1.1 Internal architecture 12
2.1.2 Logic blocks . 12
2.1.3 Interconnetion system 13
2.1.4 Specialized blocks . 14
2.1.5 System on a chip . 14

2.2 Design flow . 15
2.2.1 Design phase . 16
2.2.2 Synthesis phase . 16
2.2.3 Implementation phase 16
2.2.4 Configuration bistreams 17

2.3 Dynamic partial reconfiguration 17
2.3.1 Structure of a reconfigurable design 17
2.3.2 Benefits of partial reconfiguration 17
2.3.3 Autonomous reconfiguration 18
2.3.4 Common applications of partial reconfigurations . . . 19

2.4 Reconfigurable computing . 19
2.4.1 Taxonomy . 19
2.4.2 Reconfigurable devices classification 20

2.5 Software support for reconfigurable devices 20
2.5.1 Theoretical works . 21
2.5.2 Reconfigurable operating systems 22
2.5.3 Contribution of this work 23

3

3 Platform description 24
3.1 Zynq System On a Chip . 25

3.1.1 Zynq internal architecture 25
3.1.2 Programmable System 25
3.1.3 Programmable Logic 28

3.2 Interconnection between processing system and programmable
logic . 29
3.2.1 AMBA AXI standard 29
3.2.2 Interconnection structure 31

3.3 Programmable logic configuration 34
3.3.1 Device configuration interface subsystem 36

3.4 Design flow and tools . 37
3.4.1 System on a chip design flow 37
3.4.2 High-level synthesis . 38
3.4.3 Partial reconfiguration design flow 39

3.5 Heterogeneous FPGA SoC Architecture 43
3.5.1 Hardware accelerator classification 43
3.5.2 AXI based slave accelerators 44
3.5.3 AXI based master accelerators 46

4 System architecture 50
4.1 System Description . 51

4.1.1 Platform Parallelism 51
4.2 System architecture model . 51
4.3 Software structure . 52

4.3.1 Software support library 53
4.3.2 Software activities . 54

4.4 Reference platform . 58
4.4.1 Zynq SoC family . 59
4.4.2 ZYBO board . 59

4.5 Test implementation . 60
4.5.1 Programmable logic structure 60
4.5.2 Decoupling logic . 62
4.5.3 Hardware accelerator structure 62
4.5.4 Software stack . 63

5 Implementation details 65
5.1 Hardware accelerated operations 66

5.1.1 Hardware accelerators interface 66
5.1.2 Blur and sharp Filters 68
5.1.3 Sobel filter . 70
5.1.4 Matrix multiplier . 72

5.2 Support library software structure 76
5.2.1 Reconfiguration service 76

5.2.2 Hardware operation objects 78

6 Experimental results 80
6.1 Experimental system setup 81

6.1.1 Programmable logic area allocation 81
6.1.2 Hardware operations 81

6.2 Speedup evaluation experiment 85
6.2.1 Results evaluation . 86

6.3 Worst-case response time experiment 87
6.3.1 Results evaluation . 88

6.4 Reconfiguration times profiling 91
6.4.1 Results evaluation . 92

Abstract

This thesis addresses the design and implementation of a software support
for real-time systems developed on heterogeneous platforms that include a
processor and an FPGA with dynamic partial reconfiguration capabilities.
The software support enables tasks to request the execution of accelerated
functions on the FPGA in parallel with other tasks running on the processor.
Accelerated functions are dynamically allocated on the FPGA depending of
the availability of the area and the online requests issued by the processor,
so extending the concept of multitasking to the FPGA resource domain. The
performance of the allocation mechanism has been evaluated in terms of
speed-up and response times. The achieved results show that the system is
able to guarantee bounded delays and acceptable overhead that can be taken
into account for a future schedulability analysis of real-time applications.

6

Chapter 1
Introduction

For the last 50 years Moore’s law has been one of the leading principles
guiding the semiconductor industry. Based on the empirical observation that
the number of transistors in a dense integrated circuit doubles approximately
every two years, the law has successfully predicted the evolution of computer
processors that has dominated the last decades of the previous century.

One of the enabling factors behind the Moore’s laws is the geometric
scaling of complementary metal oxide semiconductor (CMOS) transistors,
the basic switching elements inside integrated circuits. As transistor gets
physically smaller their power density stays constant, therefore the power
consumption scales downward with their area. This effect, referred to as
Dennard scaling, allowed manufacturers to rise clock frequencies every gener-
ation without significantly increasing the power consumption. For decades
frequency scaling has been the main method to achieve performance gains.

However, around the half of the first decade of the 2000s, geometric scaling
had stopped to guarantee the same power reduction benefits. As transistors
came closer in size to the atomic scale leakage current and other non-ideality
factors became more important, setting the baseline for power consumption.
This led to the end of frequency scaling as the main technique to achieve
performance gains. To overcome this issue the industry have reacted with a
paradigm shift, moving from single core processors towards multicore systems,
increasing the level of parallelism instead of rising the clock frequency.

However the still growing number of transistors that can be integrated on
the same die, together with the end of Dennard scaling, resulted in a trend of
increasing power density. This led to the consequences that, in order to meet

7

power and thermal constraints, not all the transistors available in a device
can be fully utilized. The portion of transistors that must be deactivated or
under-clocked to meet the energy requirements is referred as dark silicon.

To mitigate such issues and achieve a better utilization of the transistor
budget the industry has begun to move towards heterogeneous systems
that may include different types of processing elements like general purpose
processors, graphics processing units (GPUs) and dedicated accelerators.
In such systems the computational workload can be distributed among the
different processing units achieving a higher level of energy efficiency and
reducing the power consumption.

However modern CPUs and GPUs are suited for performing a wide range
of computational activities. To support such general purpose capabilities
their internal structure is rather general, and tied to a fixed granularity of
parallelism, compared to a custom microarchitecure, tailored for a specific
purpose. While this flexibility is beneficial in terms of software programma-
bility it inevitably leads to some degree of inefficiency. On the other hand the
high flexibility of field-programmable gate arrays (FPGAs), together with
their high performance in data-flow oriented processing, have made them
increasingly attractive platforms for deploying custom hardware accelerators,
optimized at microarchitecture level, combining high-performance with high
energy efficiency. Moreover, the support for dynamic partial reconfiguration
featured by modern FPGAs further increase their flexibility, providing many
advantages over conventional static designs.

To exploit the advantages of both worlds, FPGAs manufacturers have
developed heterogeneous SoCs platforms that include software programmable
processors and GPUs, integrated with hardware programmable FPGA fabric.
On such platforms the processors can be offloaded by distributing workloads
to custom developed hardware accelerators deployed on the FPGA fabric.

1.1 Objectives

The objective of this thesis is the design and development of a software
support for real-time systems on heterogeneous platforms that includes a
processor and a dynamically reconfigurable FPGA. A real-time software
system is composed by a set of computational activities, or tasks, that can
be classified as periodic or aperiodic. Periodic tasks consist of an infinite

sequence of activities, called jobs, that are regularly activated at a constant
rate. In the proposed approach each job of a periodic task can request the
reconfiguration of a portion of the FPGA to accelerate parts of its execution,
extending the concept of multitasking to the FPGA resource domain. The
system has been built to guarantee by design predictable execution times and
bounded delays.

The performance of the implemented system has been analyzed to evaluate
the feasibly of the proposed approach. In particular the hardware acceleration
speedup factors and reconfiguration overheads have been measured to estimate
the suitability of the proposed approach to real-time systems.

1.2 Contributions

The first part of this thesis work has been dedicated to the study of the
Xilinx’s Zynq SoC architecture in order to define a generic system structure
suitable for supporting different types of hardware accelerators, implementing
different types of operations. Special attention has been dedicated to the
the communication and control mechanisms between the processor and the
accelerator modules, and to the integration of multiple accelerators in the
system from a hardware and software perspective.

In the second part of this work a few simple standard algorithms have been
implemented both in software and hardware. The different implementations
have been tested and evaluated in terms of achieved speedups. Consequently
the hardware accelerators have been used to evaluate the partial reconfigura-
tion capabilities of the platform, swapping accelerators modules at runtime
under software control.

The final part of this work has been the dedicated to the development of
a support library for the FreeRTOS operating system. The library abstracts
the hardware acceleration and reconfiguration mechanisms providing a simple
application programming interface that enables software tasks to request the
execution of accelerated operations on the FPGA.

1.3 Thesis outline

The remainder of this thesis is organized as follows: Chapter 2 presents
an overview of the FPGA internal structure and the integration of such

device in heterogeneous platforms. Then dynamic partial reconfiguration
is introduced and the related aspects are discussed. Next, the concepts of
reconfigurable computing and reconfigurable operating system are discussed.
Then, a taxonomy of the existing solutions to manage reconfigurable hardware
is presented.

Chapter 3 presents an overview of the specific heterogeneous system-on-a-
chip platform used in this thesis, the Xilinx’s Zynq. The internal structure of
the Zynq is presented, and the aspects that are relevant to this work, like the
internal communication infrastructure with the related protocols, and support
for dynamic partial reconfiguration, are discussed in greater detail. Then,
possible architectures for hardware accelerator modules are presented and
classified accordingly to the method used for sharing data with the processor.

Chapter 4 presents the architecture of the reconfigurable system developed
in this thesis. The hardware and software components are presented at a
system level, and the integration is discussed. Consequently a model for the
execution of hardware-accelerated tasks is presented.

Chapter 5 describes the system implementation details. The interface of
the hardware accelerators is described, and the set of accelerator modules
developed is presented. Subsequently the software components of the system
are presented in greater details, and their internal structure is discussed.

Chapter 6 concludes the thesis reporting the experimental results of the
tests carried out to evaluate the platform.

Chapter 2
Background

Contents
2.1 Overview of Field-Programmable Gate Arrays . 12

2.1.1 Internal architecture 12
2.1.2 Logic blocks . 12
2.1.3 Interconnetion system 13
2.1.4 Specialized blocks 14
2.1.5 System on a chip 14

2.2 Design flow . 15
2.2.1 Design phase . 16
2.2.2 Synthesis phase . 16
2.2.3 Implementation phase 16
2.2.4 Configuration bistreams 17

2.3 Dynamic partial reconfiguration 17
2.3.1 Structure of a reconfigurable design 17
2.3.2 Benefits of partial reconfiguration 17
2.3.3 Autonomous reconfiguration 18
2.3.4 Common applications of partial reconfigurations . 19

2.4 Reconfigurable computing 19
2.4.1 Taxonomy . 19
2.4.2 Reconfigurable devices classification 20

2.5 Software support for reconfigurable devices . . . 20
2.5.1 Theoretical works 21
2.5.2 Reconfigurable operating systems 22
2.5.3 Contribution of this work 23

11

2.1 Overview of Field-Programmable Gate Arrays

Field-programmable gate arrays (FPGAs) are integrated circuits designed
to be configured after manufacturing to implement a custom hardware func-
tionality. This feature distinguishes FPGAs from Application Specific In-
tegrated Circuits (ASICs) which are custom manufactured to implement a
specific functionality.

2.1.1 Internal architecture

In ASICs chips logic functions are implemented by wiring together phys-
ical logic gates, while, in the FPGAs, logic functions are realized trough
configurable elements called look-up tables (LUT).

Look-up tables

A n-inputs LUT is a logic circuit that can be configured to implement
any combinational logic function with n inputs. The internal architecture of
a n-inputs LUT in shown in Figure 2.1. In a simplified implementation, 2n

configuration cells store the truth table of the logic function to be implemented,
while a 2n : 1 multiplexer route the state bit of one of the cells to the output
according to the inputs values.

Figure 2.1: Look-up table simplified architecture.

2.1.2 Logic blocks

One or more LUTs, grouped together with carry chains and registers,
constitutes the basic logic cells of the FPGAs architectures. A small set of
such logic cells, called Slices in the Xilinx terminology or Adaptive Logic

Figure 2.2: Schematization of simplified FPGA architecture: Logic blocks
(LBs) are highlighted in blue, I/O blocks in light blue, programmable inter-
connect is in gray.

Modules by Altera are grouped together to build the basic logic block of the
FPGAs structure.

In the Xilinx FPGAs architecture such logic blocks are called CLB (Con-
figurable Logic Blocks) [1] while in the Altera implemetations they are referred
to as LAB (Logic Array Block) [2]. Those blocks constitute the main logic
resources for implementing sequential and combinatorial logic functions [1].

2.1.3 Interconnetion system

To build a programmable computing fabric, logic blocks are distributed
in a regular 2D grid structure across the FPGA chip and connected trough a
programmable routing infrastructure that allows communications between
cells. At the edges of the chip, special configurable blocks, namely IOB (I/O
blocks), implement the input and output functions. Figure 2.2 shows an
overview of a simplified FPGA architecture.

In the Xilinx 7 Series FPGA implementation, shown in Figure 2.3, each
CLB is costituited by 2 slices and it is paired with a switch matrix to access
the general routing infrastructure [1].

Figure 2.3: Structure of a Configurable Logic Block (CLB) of Xilinx 7 Series
FPGAs. The CLB is constituted by 2 logic cells (slices) and can access the
general routing resources trough a switch matrix.

2.1.4 Specialized blocks

The homogeneous fabric composed of logic blocks, I/O blocks and the
interconnect is sufficient to implement logic circuits. However, in real FP-
GAs implementation, to increase the performance and optimize the area
consumption, rows of logic blocks are interleaved with some rows of special
purpose blocks, such as: Random Access Memory blocks (BRAMs) cells and
Adders/Multipliers (DSPs) cells [3]. The availability of such specialized tiles
allows increasing the available memory and boosts arithmetic operations that
are required to implement high-speed signal processing functionality. A more
realistic, non-homogeneous, FPGA architecture is shown in Figure 2.4.

2.1.5 System on a chip

To provide some degree of general purpose computing functionality, the
FPGA fabric can be programmed to implement one or more fully functional
microprocessors. A microprocessor that is entirely implemented with the
FPGA logical resources is usually called soft microprocessor or soft-core.

The possibility of deploying an arbitrary number of processors inside the
FPGA fabric provides a high level of flexibility. However, when compared to
processors implementations that are optimized at silicon level, namely hard-
cores, soft microprocessors provide a relatively low processing performance [3].

Figure 2.4: Schematization of more realistic FPGA architecture. Rows of
specialized blocks: memory blocks (MBs) and arithmetic blocks (ABs) are
interleaved with rows of standard logic blocks (LBs).

Heterogeneous platforms

To overcome this limitation and provide an efficient platform for het-
erogeneous computing, the leading manufactures of FPGAs have started to
produces hybrid systems-on-a-chip (SoCs) where one or more CPU hard
cores are tightly coupled with an FPGA device, as shown in Figure 2.5.
The tight coupling between the two parts of such hybrid SoC provide a
high-bandwidth and low-latency connection between the processors and the
FPGA’s programmable fabric.

Such SoCs platforms provide an attractive platform for deploying embed-
ded high-performance computing solutions. The logic fabric can host custom
accelerators that can offload the processors form the most computational
intensive tasks.

2.2 Design flow

A typical FPGA design flow can be summarized in three main steps:
design, synthesis, and implementation. During each step of the flow tests and

Figure 2.5: Overview of a hybrid FPGA SoC. Hard CPU core(s) and pro-
grammable FPGA fabric are integrated on the same physical structure (Die).
A high-bandwidth, low-latency connection infrastructure allows data exchange
between the two sides. Both sides have access to dedicated I/O resources.

verification, sub-steps must be performed to ensure the correctness of the
design flow.

2.2.1 Design phase

During the design phase, a set of logic modules in the form of HDL
(hardware description language) sources and/or intellectual property (IP)
packages are assembled together to form a complete design. Once assembled,
the design must be validated.

2.2.2 Synthesis phase

In the synthesis phase, the set of sources specified in the design phase
are “compiled” into a set gate-level netlists. A netlist is a description of the
connectivity between logical elements. In addition to the gate-level netlists,
the synthesis tool may also provide a representation of the netlists in terms
of logic elements optimized to the specific target architecture.

2.2.3 Implementation phase

The implementation phase maps the output products of the synthesis
phase to the physical resources of the FPGA. The main sub-phase of the
implementation is usually called “place and route”. In such sub-phase the
netlists elements are mapped to physical logic resources located in specific
positions of the FPGA and interconnected trough the routing resources.

2.2.4 Configuration bistreams

Once the design has been implemented to a specific device, the resulting
implementation must be converted to a binary representation that can be
used to program the FPGA. Such a binary representation is called a bitstream.

When the configuration bitstream has been generated it can be transferred
to the FPGA trough a programming interface (usually JTAG) to deploy the
implemented design. Since the configuration is stored in volatile SRAM cells,
the FPGA does not retain the configuration when power is removed. For
such a reason, to allow in the field deployment, the configuration bitstreams
can be stored in an non volatile (usually Flash) memory paired with the
FPGA. In this way, the FPGA can perform a self-configuration every time
the device is power cycled, during the boot process.

2.3 Dynamic partial reconfiguration

Dynamic partial reconfiguration is the ability to dynamically (re)configure
a subset of logic blocks included in the FPGA while the remaining blocks
continue to operate without interruption [4] [5].

2.3.1 Structure of a reconfigurable design

A set of FPGA blocks that can be reconfigured dynamically is generically
referred as reconfigurable partition. A reconfigurable partition can host
one reconfigurable module from a set of reconfigurable modules associated
with the reconfigurable portion. Each module in the set can implement a
different functionality. The remainder of the FPGA, that is not subject
to partial reconfiguration, is usually referred as static region. Figure 2.6
shows an example of an FPGA design that uses partial reconfiguration. A
reconfigurable module implementation is represented by a binary file called
partial bitstream.

2.3.2 Benefits of partial reconfiguration

The possibility to dynamically reconfigure portions of the FPGA allows
to time-multiplex hardware modules dynamically [4]. In this way, the system
functionalities can be changed on-demand, at run-time, providing a higher

Figure 2.6: Example of an FPGA design that uses partial reconfiguration.
Modules A_0 and A_1 share the reconfigurable partition A, while modules
B_0 and B_1 are hosted in the reconfigurable partition B.

degree of flexibility in the choices of algorithms and protocols, implemented
in harware, available to an application [5].

The total resources required by the set of all modules may exceed the
resources available on the FPGA since non all the modules are deployed at
the same time as show in Figure 2.6 and 2.7. This flexibility allows optimizing
resource consumption, therefore area and power requirements.

Figure 2.7: Partial reconfiguration allows to time-multiplex hardware modules
dynamically. Each configuration is defined as a system mode. Reconfigura-
tions overheads are not shown in the figure.

2.3.3 Autonomous reconfiguration

In addition to the external configuration port, modern FPGAs include an
internal reconfiguration port that allows the FPGA to reconfigure portions
of its own fabric. The internal configuration port controller can be driven
by an internal soft-core microprocessor implemented in the static part. The

processor fetches partial bistreams from an external memory and triggers
partial reconfiguration processes trough the internal reconfiguration port.

In hybrid FPGA SoC platforms the internal configuration port logic can
be implemented on silicon, as a peripheral of the processor hard cores. In this
way the reconfiguration process can be managed by the hard cores without
wasting logic blocks.

2.3.4 Common applications of partial reconfigurations

Typical scenarios where an application may benefit from partial recon-
figuration range from network applications, where multiple modules can be
used to implement different protocols, to cryptographic applications where
a set of cryptographic modules can be changed on-demand to extend the
system functionalities [5].

Other classical examples of applications that can take advantage from
partial reconfiguration are those related to software defined radio (SDR),
where different types of baseband processing can be performed by a set
of different modules, and image/video processing applications, where each
module can implement a different video filter.

2.4 Reconfigurable computing

A reconfigurable computer is a device that include a reconfigurable logic
device like a reconfigurable FPGA [4]. A reconfigurable computer differs
from a standard computer is the sense that is able to dynamically make
significant changes in the hardware datapaths. A datapath is defined as a set
of functional units that perform data processing operations. In other words
a reconfigurable computer features the ability to adapt its own hardware
structure to the data that needs to be processed.

2.4.1 Taxonomy

From a more general perspective reconfigurable systems can be considered,
following Tredennick’s classification, repored in Table 2.1, as an evolution
of the “classical” Von Neumann programmable computer model. In reconfig-
urable systems the sources that are used to configure the hardware resources
are usually called configware [6]. The Tredennick’s classification should be

Computer type Algorithms Resources

Hard wired fixed fixed
Von Neumann configurable fixed
Reconfigurable configurable configurable

Table 2.1: Tredennick’s classification

intended as a general taxonomy that classifies different abstract systems
models. Real hardware devices are often heterogeneous systems that may
implement more than one paradigm.

2.4.2 Reconfigurable devices classification

Reconfigurable computing architectures can be classified based on the
granularity [4] offered by the reconfigurable device: fine-grained devices allow
to reconfigure elements that operate at bit-level, while coarse-grained devices
feature the ability to reconfigure large logic blocks, like ALUs.

Modern FPGAs feature a heterogeneous fabric where rows of special
resources like DSPs are interleaved with logic blocks, therefore they can be
classified as mixed-grain devices. CPUs are not considered reconfigurable
devices since the instruction stream can cause only relatively small changes
in a set of fixed datapaths [4].

2.5 Software support for reconfigurable devices

The development process for an application that wants to exploit hardware
acceleration dynamically, on a reconfigurable FPGA platform, is complicated
and often inefficient. The lack of standard interfaces and device abstractions
tie the application structure, and its development, to a specific platform and
the related tools.

These issue can be overcome with the introduction of a software support
for the reconfigurable device. The software support hides the complexity of
the reconfigurable device, providing the developers a set of standard API
(application programming interface) to ease the development process.

The problem of software support and system modeling for reconfigurable
platforms has been investigated from different perspectives: on one side
reconfigurable platforms have been modeled and analyzed from a theoretical

perspective to guarantee real-time predictability. On the other side research
efforts have been dedicated to the development of reconfigurable operating
system (ROS) on real hardware platforms. A ROS is an operating system
augmented with a support for reconfigurable hardware.

In both categories the proposed approaches are quite heterogeneous, due
to the devices evolution and the lack of dominant solutions. A possible
taxonomy to classify the various approaches can be based on the following
features:

• Reconfiguration approach. In the mode-level approach the reconfigu-
ration event can be triggered by a change in the task-set, resulting
from a change in the application mode. In the job-level approach each
instance (job) of a task can trigger a device reconfiguration. In practice
optimization techniques used in real implementations may blur this
distinction but the differentiation remains valid to classify the proposed
solutions.

• Allocation method. In the slotted approach the reconfigurable region of
the FPGA is partitioned into a set of slots. The slots are interconnected
by a bus or a network on chip communication infrastructure, that
usually resides in the static part of the system. Typically each slot can
accommodate a single reconfigurable module. More advanced solutions
allow placing reconfigurable modules in more than one slot [7] [8]. On
the other hand, in the slotless approach, communication channels are
allocated dynamically or emulated trough the reconfiguration port.
Therefore reconfigurable modules can be allocated with less constraints.

2.5.1 Theoretical works

Theoretical works are focused on the modeling and analysis of recon-
figurable platforms to provide real-time guarantee. The system is usually
modeled as a set of hardware activities executed on a reconfigurable device.
Some approaches also comprehends software activities running on a processor.
The following list summarizes relevant contributions in the real-time analysis
of reconfigurable systems:

• Danne and Platzner [9] proposed two algorithms (one EDF-based and
one server-based) for preemptive scheduling of hardware activities on a

reconfigurable device. The model adopted the allocation is quite simple
and does not consider allocation constraints.

• Pellizzoni and Caccamo [10] proposed an optimization method to dynam-
ically distribute a set of computational activities between a processor
and a set of reconfigurable slots. Each activity is available either as
software and hardware implementation.

• Recently, Saha et. al. [11] presented a new scheduling algorithm for
preemptable hardware activities. The approach exploits the higher
speed and the improved capabilities of modern reconfiguration interfaces
to dynamically change the allocation every time a task terminates.

Unfortunately most of the theoretical works have a limited applicability to
real hardware platforms, due to the non realistic assumption on reconfigurable
modules allocation constraints, reconfiguration overheads and communication
mechanisms.

2.5.2 Reconfigurable operating systems

Reconfigurable operating systems aim at creating a uniform system en-
vironment for hardware and software activities. In most of the proposed
solutions, hardware actives are wrapped in software containers and integrated
in the operating system software environment. Recent works in the field of
reconfigurable operating systems are ReconOS [12] and R3TOS [13].

• ReconOS extends the classic multi-threading programming model to
hardware activities executed on a reconfigurable device. “Hardware
threads” interact with software threads trough a custom developed
POSIX-style API, using the same operating system mechanisms, like
semaphore, condition variables and message queues. Hardware threads
are allocated on the reconfigurable device using a slotted approach.

• R3TOS wraps reconfigurable hardware with a Free-RTOS based mi-
crokernel to create a uniform hardware-software environment. R3TOS
differs form other solutions for the novel approach to allocation and
communication problems. Reconfigurable hardware resources are used
either for computation or to establish dynamic communication channels.
The lack of static communication infrastructures removes some placing
constraints allowing a slot-less allocation approach.

2.5.3 Contribution of this work

The reconfigurable operating systems presented above are complete solu-
tion but they are focused on improving the average system performance rather
then guaranteeing worst-case response times. Rather, this thesis addresses the
development of a system prototype built to guarantee by design predictable
execution times and bounded delays, enabling for the development, as a
future work, of a response time analysis.

Chapter 3
Platform description

Contents
3.1 Zynq System On a Chip 25

3.1.1 Zynq internal architecture 25
3.1.2 Programmable System 25
3.1.3 Programmable Logic 28

3.2 Interconnection between processing system and
programmable logic 29

3.2.1 AMBA AXI standard 29
3.2.2 Interconnection structure 31

3.3 Programmable logic configuration 34
3.3.1 Device configuration interface subsystem 36

3.4 Design flow and tools 37
3.4.1 System on a chip design flow 37
3.4.2 High-level synthesis 38
3.4.3 Partial reconfiguration design flow 39

3.5 Heterogeneous FPGA SoC Architecture 43
3.5.1 Hardware accelerator classification 43
3.5.2 AXI based slave accelerators 44
3.5.3 AXI based master accelerators 46

24

3.1 Zynq System On a Chip

This section presents an overview on the internal architecture of the
heterogeneous platform underling the system developed in this thesis, the
Xilinx Zynq system on a chip (SoC). The Zynq is a hybrid FPGA SoC device
that includes a software programmable high-performance ARM processor
coupled with a hardware programmable FPGA fabric.

3.1.1 Zynq internal architecture

The internal structure of the Zynq SoC can be divided in two main
functional blocks referred, in the Xilinx’s terminology, as: Programmable
system (PS) and Programmable logic (PL) [14]. The processing system block
includes two ARM cores, while the programmable logic block contains the
FPGA programmable fabric. A simplified representation of the Zynq internal
architecture is illustrated in Figure 3.1.

3.1.2 Programmable System

Internally, the processing system side of the device is composed by the
following functional blocks [14]:

• Application processor unit (APU);

• Memory interfaces;

• I/O peripherals (IOP);

• Interconnect.

Application processor unit

The main component of the APU is a dual-core ARM Cortex-A9 processor.
The processor implement the ARM v7-A instruction set architecture and can
execute ARM and Thumb instructions. Internally, each A9 core is associated
with a NEON coprocessor unit, a memory management unit (MMU) and a L1
cache memory divided in two 32 KB sections for data and instructions. The
NEON coprocessor extends the instruction set with SIMD (single instructions,
multiple data) instructions targeted for 3D graphics, image, audio and video
processing.

Figure 3.1: Simplified representation of the Zynq SoC internal architecture.
Internal components of the Processing system and the Programmable Logic
fabric are connected trough ARM AMBA interconnect.

The two ARM cores are connected with a 512 KB L2 8-way set-associative
unified cache memory trough a snoop control unit (SCU). The SCU ensures
the coherency between data caches. The cores are also connected to a 256 KB
on-chip SRAM memory (OCM) module that provides a low-latency memory
close to the processors.

Memory interfaces

The memory interface unit includes controllers for dynamic and static
memories. The dynamic memory (DRAM) controller is a multi-protocol
controller that supports different double-data rate types (DDR2, DDR3,
DDR3L) memories. The static memory controller supports NAND flash,
Quad-SPI flash and parallel NOR flash interfaces.

The DRAM memory controller is multi-ported to allow uniform memory
access from the PS and the PL sides. The controller features four AXI slave
ports [14]:

• The ARM processor cores can access the memory, trough the L2 cache,
from a dedicated 64-bit port;

• Memory access from programmable logic is ensured by two dedicated
64-bit ports;

• All other masters shares a 64-bit dedicated port trough the central
interconnect.

Input/Output peripherals

The I/O subsystem includes a wide range of industry-standard interfaces
that allow to control, and to communicate with, external devices. The
peripherals can access the physical pins of the processing system trough a
multiplexer. The pins mapping is controlled by a configuration register of
the MIO (multiplexed input/output) control module.

Although the I/O subsystem is part of the processing system the periph-
erals connections can be routed to the programmable logic to access the I/O
resources included in the programmable logic side. This feature is called
EMIO (extendable multiplexed input/output).

The following list summarize the peripherals included in the I/O subsys-
tem:

• Up to 54 GPIO (general purpose input/output) signals routable to the
physical pins trough MIO. 192 GPIO signals shared between the PS
and PL trough EMIO;

• Two Gigabit Ethernet controllers;

• Two USB 2.0 high speed, dual-role, controllers that can operate as host
or device;

• Two SD/SDIO (Secure Digital) cards controller;

• Two SPI (Serial Peripheral Interface) master/slave controllers;

• Two I2C (Inter-Integrated Circuit) controllers;

• Two CAN (Controller Area Network) Controllers;

• Two UART (Universal Asynchronous Receiver/Transmitter) controllers.

Interconnect

The functional blocks included in the programmable systems are connected
to each other, and to the programmble logic, trough ARM AMBA AXI
(Advanced eXtensible Interface) interconnect. The AMBA interconnect
supports multiple simultaneous master-slave transactions [14]. The interfacing
between the programmable system and programmable logic sides will be
discussed later.

3.1.3 Programmable Logic

The programmable logic side of the Zynq SoC is based on the Xilinx 7
Series (Artix-7 or Kintex-7) FPGA fabric. The 7 Series FPGA fabric is an
heterogeneous structure where the main logic resources, configurable logic
blocks (CLBs), are interleaved with specialized blocks. The main types of
logic blocks included insides the programmable logic are:

• Configurable logic blocks (CLBs) are the main resources for imple-
menting logic or distributed memory. Each CLB is composed by two
slices. Each slice contains four 6-input look-up tables (LUTs), eight
flip-flops and other logic. Each 6-input can be configured as two 5-input
LUTs [1][3].

• Block RAMs (BRAMs) are specialized blocks used for implementing
dense memory storage. RAM blocks allow to implement random access
storages effectively without wasting generic logic resources. Each RAM
block is dual-ported and can store up to 36 Kb of data. A single RAM
block can also be configured as two independent 18 Kb RAM memories.
More RAM blocks can be combined together to form a large memory [3].

• Digital signal processing (DSP48E1) slices are specializied unit opti-
mized to perform arithmetic operations. The units are targeted to
signal processing and computational intensive applications in general.
The DSP includes a 25x18 two’s complement multiplier/accumulator
and a 48-bit adder/accumulator and can be programmed to perform
different computations [14]. It can be also configured in SIMD mode
where it is capable to perform 2 or 4 operations on shorter operands [3].

• Input/Output blocks (IOBs) are the interfaces between the programmable
logic resources and the physical pins. Each programmable IOB handles
1 bit as input or output and is compatible with voltage levels ranging
from 1.2 V to 3.3 V [14].

3.2 Interconnection between processing system and
programmable logic

The main interface for data exchange between the PS and PL sides of
the device is implemented trough a set of AXI interfaces. Before introducing
the structure of the interconnection the following sections provides a brief
introduction to the AXI protocols.

3.2.1 AMBA AXI standard

Advanced Microcontroller Bus Architecture (AMBA) is a family of open
standard, on-chip interconnect specification for the connection and integration
of functional blocks in SoC platforms [15]. AMBA provides a standard set of
standard interfaces that facilitates the integration and re-use of intellectual
proprieties reducing development timescales and costs.

Advanced eXtensible Interface (AXI) standard is an interconnection
standard, part of the AMBA 3.0 specifications, targeted for hi-performance

systems. The last version of the standard AXI4 is part of the AMBA 4.0
specifications. The AXI standard provides two classes of interconnections:
stream and memory mapped.

AXI stream interconnections

AXI stream interconnection provide a point-to-point high-speed unidi-
rectional link between a master and a slave interfaces. The endpoint that
implements the master interface is the data producer while the endpoint that
includes the slave interface is the data consumer. In the simplest form an
AXI stream link comprises a set of data signals, usually 32-bit wide, and
two handshake signals: valid and ready. The master controls the valid signal
and assert it when new data are available. The slave applies a back pressure
trough the ready signal to notify when it is ready to consume a new data.
A data transfer takes place when both signals, valid and ready, are asserted
true.

AXI memory mapped interconnections

Memory mapped AXI extends the protocol with the concept of memory
addresses. An interconnection is memory mapped in the sense that the
addresses specified in the transactions are mapped in the global memory
space of the system. A memory mapped AXI (AXI for simplicity) link
provides a bidirectional connection between a master and a slave interfaces.
The data can be transfer as single beat or bursts. Read and write transactions
are initiated by the master to read or write data to the slave. An AXI link
comprises five independent channels: two channels are involved in read
requests, the remaining three are involved in write requests:

• Read channels:

– Read address channel: used by the master to send the address to
the slave for a read request;

– Read data channel: used by the slave to send data to the master
in response to a read request;

• Write channels:

– Write address channel: used by the master to send the address to
the slave for a write request;

– Write data channel: used by the master to send data to the slave
in a write transaction;

– Write response channel: used by the slave to inform the master if
a write transaction was successful.

Each channel comprises two valid and ready handshake signals. Separate
channels for address and data, reads and writes, allow simultaneous bidirec-
tional data transfer [16]. Multiple AXI master and slaves interfaces can be
connected using a structure called AXI interconnect block. The interconnect
routes the traffic between the master and the slave interfaces and performs
the appropriate conversion if the interfaces use different configurations or
versions of the standard.

The latest version of the AXI standard, AXI4, allows burst transfer of up
to 256 data words. The word size can be configured up to 1024 bits. In the
Xilinx’s implementation word sizes from 32 to 256 bits are supported [16]. The
standard also includes a simplified version of the protocol, named AXI4-Lite,
tailored for those applications that require transferring only small amount of
data in single beat transactions, like accessing the control registers exported
by a peripheral. Such a simplified version does not support burst transactions
and the data width is limited to 32 bits. Compared to regular AXI, AXI4-Lite
is simpler and its implementation consumes a smaller amount of logic and
routing resources [17].

3.2.2 Interconnection structure

The main interconnection between the processing system and the pro-
grammable logic comprises a set of nine AXI interfaces exported by the
processing system side to the programmable logic side, as shown in Figure 3.2.
Those interfaces can be used by custom peripherals and computational ac-
celerators, deployed in the programmable logic, to access the system AXI
interconnect. In this way custom modules that implement AXI interfaces
can be seamlessly integrated in the system. The interfaces exported by the
processing system can be classified accordingly to the mode and the interface
type, as summarized in Table 3.1.

Figure 3.2: AXI interfaces exported by the processing system to the pro-
grammable logic. The direction of the arrows points from the master towards
the slave, to empathize that transactions are initiated by the master.

Mode Name Description

Slave M_AXI_GP0

General Purpose (AXI_GP)M_AXI_GP1

Master

S_AXI_GP0
S_AXI_GP0

S_AXI_ACP Accelerator Coherency Port (AXI_ACP)

S_AXI_HP0

High Performance Ports (AXI_HP)S_AXI_HP1
S_AXI_HP2
S_AXI_HP3

Table 3.1: AXI interfaces exported by the processing system side to the
programmable logic side.

The slave interfaces allow modules deployed on the programmable logic,
which implements master interfaces, to access the global address space where
the physical DRAM memory is mapped. In this way, modules deployed on
the programmable logic can share the same memory with the ARM cores
included in the processing system. The different types of AXI interfaces are
designed to fulfill different roles:

• General Purpose AXI interfaces: suited for low and medium rate data
transfer and modules control. The interfaces supports 32-bit wide
data transfer and are connected directly to the ports of the “master
interconnect” and the “slave interconnect” that route the transaction to
“central interconnect” in the processing system [14].

• High Performance AXI interfaces: designed for high-speed burst data
transfer. Those interfaces provide a high bandwidth channel to access
the system memory from the programmable logic. Each interface
supports 64-and 32-bit wide data transfer and includes two FIFO buffers
for read and write transactions. The interfaces and are connected to the
“PL to memory interconnect” that routes the request to two dedicated
ports of the DRAM memory controller [14].

• Accelerator Coherency Port AXI interface: designed to allow high-speed
low-latency cache-coherent access to the system memory. The interface
supports 64-bit wide data transfer and it is connected directly to the
snoop control unit (SCU) inside the application processing unit (APU)
that includes the L2 cache and the two ARM core with their private L1
caches. The cache coherent port should be used with caution since large
coherent ACP transfers can cause the thrashing of the cache with severe
impact on the processors performance. Also the ACP shares with the
APU the same interconnect path to DRAM memory. Therefore memory
accesses through the ACP, that requires access down to the DRAM
memory, can potentially decrease the ARM cores performances [14].

The choice between accessing system memory trough the high perfor-
mance interfaces or trough the cache-coherent interface largely depends on
the granularity of the data and on the number of master modules. A complete
modeling and evaluation of the possible design alternatives goes beyond the
scope of this thesis. An experimental evaluation, in terms of performance

Interfaces bandwidth (MB/s)

Class Type Number Read Write Read+Write Total

Internal
AXI_GP 2M + 2S 600 600 1200 4800
AXI_HP 4S 1200 1200 2400 9600
AXI_ACP 1S 1200 1200 2400 2400

External DRAM 1 4264 4264 4264 4264

Table 3.2: Theoretical Bandwidth of the AXI interfaces exported by the
processing system and the DRAM external memory interface.

and energy efficiency, of the different design alternatives is presented in [18].
Table 3.2 summarizes the maximum theoretical bandwidth of the different
types of AXI interfaces exported by the processing system side to the pro-
grammable logic side compared to the DRAM external memory controller.
The actual throughput for the DRAM memory depends on the type of DDR
memory, its specific timings and the arrangement.

3.3 Programmable logic configuration

The programmable logic side of the Zynq device is an FPGA programmable
fabric made of heterogeneous logic resources and routing resources. The con-
figuration of such resources is stored in volatile SRAM memory cells. The
process of transferring the content of a bitstream file, containing a design,
to the SRAM cells is commonly referred as device configuration. On the
Zynq device the programmable logic fabric can be configured, and reconfig-
ured, trough three different paths named after the employed configuration
controller:

• JTAG: the programmable logic can be configured and reconfigured by
the TAP (test access port) controller on the JTAG chain. This path is
commonly used for development.

• PCAP (Processor Configuration Access Port): with this path the pro-
grammable logic can be configured and reconfigured, under software
control, by the processing system trough its device configuration inter-
face (DevC) subsystem. This is the most common path used for partial
reconfiguration since it is entirely comprised in the processing system,

Figure 3.3: Programmable logic configuration paths.

therefore it does not require additional control modules to be deployed
on the programmable logic.

• ICAP (Internal Configuration Access Port): this path allows the pro-
grammable logic to reconfigure itself autonomously trough a controller
module (AXI_HWICAP) deployed in its static region. The controller
is usually driven by a soft-core processor, typically a Xilinx MicroBlaze
core. This path is not a common option for the Zynq.

At the end of the diffent paths the configuration module processes the
bitstream and loads the data into the SRAM configuration cells of the
programmale logic [14]. A complete overview of the programmable logic
configuration paths is shown in Figure 3.3. The JTAG, PCAP and ICAP
configuration paths are mutually exclusive among each other. Switching
between the configuration paths should be performed only when all pending
transactions are completed [14].

Figure 3.4: Programmable logic reconiguration path trough DevC.

3.3.1 Device configuration interface subsystem

The Device Configuration (DevC) subsystem comprises three main func-
tional sub-blocks: AXI-PCAP bridge, Device Security Management and the
XADC interface. The DevC control and status registers are mapped in the
system memory space trough an AXI slave control interface connected to the
main interconnect.

The AXI-PCAP bridge is the main sub-block of the DevC involved in the
programmable logic configuration. It includes the PCAP interface, a DMA
engine that accesses the system memory trough an AXI master interface.
The DMA engine and the PCAP interface are coupled trough FIFO buffers.
Through the DevC control interface the DMA engine can be programmed to
transfer bitstreams from the main memory to the PL configuration memory
through the PCAP interface. Once both transfers (AXI to FIFO and FIFO to
PCAP) are completed, the programmable logic configuration is done and the
DevC can notify the processing system by triggering the D_P_DONE_INT
interrupt. An overview of a typical PCAP reconfiguration path is shown in
Figure 3.4.

Figure 3.5: Simplified Vivado design flow. The IP integrator environment
allows to integrate IP cores at system level

3.4 Design flow and tools

Vivado is the Xilinx’s design suite for hardware and embedded software
co-development. Vivado extends the traditional RTL (register transfer level)
hardware description to device programming design flow, focusing on higher
level system integration. Providing, on top of the traditional design flow, an
intellectual property (IP) centric, block-based environment where IPs can be
instantiated, configured and connected. Intellectual proprieties are reusable
design units that can be integrated in a hardware design similarly to the way
in witch software libraries can be integrated in a software design. IP cores
can be designed by the user or imported from the internal Xilinx library or
third party libraries. Figure 3.5 provides a schematization that highlights
the main steps of a Vivado design flow.

3.4.1 System on a chip design flow

With the Vivado suite the SoC design flow can be divided in two phases:
hardware development and software development. The hardware development
phase involves the design an integration of custom peripherals or hardware
accelerators to be deployed in the programmable logic. One of the key point
in this phase is the integration between the custom logic and the processing

Figure 3.6: Software stack for a Vivado hardware design.

system. Inside the Vivado IP integrator the processing system (comprising the
ARM hard cores) appears as a customizable IP block exporting AXI interfaces
and other ports. The interconnections between this special block and the rest
of the system represent the interconnections between the processing system
and the programmable logic.

Once the hardware configuration has been defined, the system can be
exported to the Vivado SDK (software development kit) environment to
initiate the software development. For a given hardware design, the basic
component exported to the SDK is the hardware platform representing the
customized hardware design. The hardware platform contains software
definitions for the registers addresses, interrupt signals, etc, and low-level
control functions for peripherals and hardware accelerators.

On top of the base platform there is the board support package (BSP)
software layer. The BSP includes a set of drivers and support functions
for the internal peripherals comprised in processing system. The BSP can
be customized depending on the user requirements and the upper software
layers.

The operating systems runs above the BSP. During the definition of the
software stack the user can choose one of the supported operating systems:
Linux, FreeRTOS and others. If the operating system layer is not required,
the user can choose the bare metal option. Figure 3.6 presents an overview
of such a software stack.

3.4.2 High-level synthesis

High-level synthesis is a hardware design process that takes as input a
high-level algorithmic description of a behavior and generates, as output, a
hardware level description that implements such a behavior. The Vivado

suite includes the Vivado High-Level synthesis (HLS) tool. Vivado HLS
transforms an high-level C/C++ behavioral description into an RTL level
Verilog and/or VHDL implementation. After the high-level synthesis process,
the resulting designs can be exported as IPs core package, in the IP-XACT
standard format. Such IPs can be imported in Vivado and integrated into
a system design, as shown in Figure 3.5. The Vivado high-level synthesis
process comprises two aspects: algorithm synthesis and interface synthesis.

Algorithm Synthesis

In the algorithm synthesis process the behavior specified by the user with
a C/C++ description is translated into an RTL implementation. The process
is divided in two sub-phases: scheduling and binding. In the scheduling phase
the operations that compose the algorithm are distributed in time among
clock cycles. In the binding phase the operations are associated with physical
resources on the target device like LUTs, DSP48, etc.

Trough a set of directives the user can control the algorithm synthesis
process. For instance, such directives can control the actual level of parallelism
of the implementation, and the preferred type of resources used to store a
specific variable. Trough those directives the HLS programmer can perform
an iterative exploration of design space, evaluating aspects like the trade-off
between resources consumption and degree of parallelism.

Interface synthesis

In the interface synthesis process the interface of the hardware design
is inferred form the arguments of the top level function of the C/C++
description. For each argument of the top function HLS synthesizes a default
interface block depending on the type of the argument. The default mapping
rules are specified inside the HLS user manual [19]. The user can override
the default mapping by manually specifying, for each argument, the type
interface block trough a set of directives.

3.4.3 Partial reconfiguration design flow

The partial reconfiguration flow is an advanced feature of the Vivado suite,
currently supported only in non-project mode through Tcl commands in

interactive shell or batch modes. Following the Xilinx’s partial reconfiguration
guide [5] the design flow can be summarized in the following steps:

1. Synthesize the static part and the reconfigurable module separately.

2. For each reconfigurable region define a physical area constraint (Pblock).

3. Set the propriety HD.RECONFIGURABLE on each reconfigurable partition.

4. Implement a complete design comprising the static region and one
reconfigurable module for each partition.

5. Save a design checkpoint for the routed design.

6. Remove the reconfigurable module from the design and save a static
only checkpoint.

7. Lock the static placement and routing.

8. For each reconfigurable module: add the module to the static design,
do the implementation and save the obtained configuration.

9. For each configuration: verify the configuration by running the partial
reconfiguration design rules check, and generate the bitrstream in the
required format.

Fortunately, this sequence of operations can be partially automatized
trough a partial reconfiguration reference Tcl script provided by Xilinx. The
partial reconfiguration flow used in this thesis work is based on the one used in
the Xilinx’s application note XAPP1231 [20]. To ease the system development
process the static part of the design can be designed and synthesized through
the Vivado IP integrator environment. Once the design of the static part has
been completed, the following steps must be followed to generate the input
files for the partial reconfiguration script:

1. Build a design that includes the static part an one hardware accelerator
(reconfigurable module) for each slot (reconfigurable partition).

2. Set the black_box attribute on each reconfigurable module to crave
out the implementation.

3. Run the synthesis and save the resulting synthesized design as a check-
point.

4. For each reconfigurable module in the netlist view of the synthesized
design, define the physical layout of the reconfigurable partition (slot)
by drawing a Pblock on the FPGA area representation.

5. For each Pblock set the proprieties RESET_AFTER_RECONFIG and HD.RE-

CONFIGURABLE and save the resulting constraint file.

Once the static part has been synthesized and the reconfigurable parti-
tions (slots) has been floorplanned, the resulting output files, together with
the hardware accelerators source IPs, can be imported into the scripted
environment. The scripted flow can be summarized as follows:

1. Import the static design synthesis checkpoint.

2. Define each hardware accelerator as a reconfigurable module. Each
module will be synthesized out-of-context, without the static design
part.

3. For each hardware accelerator define a configuration for the imple-
mentation phase. The configuration includes the static part and the
specific hardware accelerator (reconfigurable module) instantiated in
each reconfigurable partition (slot). The set of defined configurations
will be implemented. Actually the static part will be implemented only
once for the first configuration and then imported by the following
configurations.

4. Once the configurations have been successfully implemented each con-
figuration will be verified trough the partial reconfiguration design
rules check. If the test is successful, full and partial bitstreams will
be generated. The partial bitstreams will be further converted to the
binary PCAP format.

At the end of the process, for each hardware accelerator, a full bistream
and a set of partial bistreams, one for each slot, will be generated.

(a) System on a chip com-
prising a CPU, a memory
controller (MemC), and
a set of peripherals (P).

(b) Heterogeneous FPGA - SoC. The
system includes custom peripherals
deployed on the FPGA.

(c) Heterogeneous, dynamic partial recon-
figuration enabled, FPGA - SoC. Through
dynamic partial reconfiguration the set of
peripherals deployed on the FPGA can be
changed at runtime.

Figure 3.7: Comparison of traditional SoC architecture, comprising a proces-
sor (CPU) and a set of peripherals (P) against an heterogeneous FPGA - SoC
extensible architecture. Dynamic partial reconfiguration allows to change
the set of modules programmed on the FPGA at runtime, extending the
configurability in time domain.

3.5 Heterogeneous FPGA SoC Architecture

Traditional SoC devices comprise one or more main processors and a set
of peripherals, controllers and computational accelerators, connected through
an interconnect, and integrated on the same chip, as shown in Figure 3.7a.
In heterogeneous FPGA SoC, like the Zynq, the programmable logic FPGA
fabric can be used as a “canvas” to deploy custom peripherals and hardware
accelerators that extends the capabilities of the processors and the peripherals
built in the system, as shown in Figure 3.7b. Custom hardware modules can
be seamlessly integrated in the system through the AXI interconnect. Such a
tight coupling ensures that the FPGA fabric can be effectively used for the
deployment of hi-performance hardware accelerators.

From a certain perspective the Zynq SoC can be considered an extensible
SoC device. The possibility to reconfigure portions of the programmable logic
fabric, while the system is running, extends this flexibility by another degree
of freedom, allowing to change dynamically, in the time domain, the set of
hardware accelerators modules deployed in the programmable logic.

3.5.1 Hardware accelerator classification

The way in which an accelerator module interacts with the main processor
and other modules largely depends on the type of interface trough which
it is connected to the rest of the system. The class of interface also has a
large impact on the internal structure of the module. Following this approach
hardware accelerator modules can be classified, according to the interface
adopted, as follows:

• Custom (Non AXI) accelerators: this class includes all kind of accel-
erator modules that use custom buses, network on chip or point to
point links to communicate among themselves and with the rest of the
system. The main reason for developing a custom communication in-
frastructure is to give support for important features that are currently
not supported by vendor’s standard tools, using AXI interconnect, like
bitstreams relocation, multi-slot allocation, floating placement, etc. The
main drawbacks of those approaches are: higher complexity, limited
portability and dependence upon custom third-party tools that often
are device specific. Another drawback is that the performance of such

custom solutions are not guaranteed and need to be evaluated against
the standard interconnect. For this reason those approaches were not
considered in this thesis.

• AXI based accelerators: this class includes all accelerators modules
that rely on the standard interconnect to communicate with the rest
of the system. The main benefits of this approach are: support from
the vendor’s standard tools, platform independence and guaranteed
performance, since it relies on the native interconnect used by all other
modules in the system. Another benefit is the design portability, since
AXI is an open industry-standard defined by ARM and adopted by
both leading FPGAs manufacturers: Xilinx and Altera. The main
drawbacks comes from the fact that desirable features, like bitstreams
relocation or multi-slot allocation, are currently not supported by the
vendor’s standard tools. Third-party and research tools that support
such features, do not rely on the AXI interconnect but use custom
buses. Therefore, without the support of those advanced features, some
compromises have to be made in the design of the reconfigurable system.

The AXI based accelerator modules can be classified as master and slave
modules. Master accelerator modules are able to autonomously retrieve the
data they need to process from the system memory, while slave modules
should be “feed” with data by the processing system.

3.5.2 AXI based slave accelerators

The typical architecture of this kind of accelerator includes an AXI slave
port, used for both control and data transfer, and an interrupt signal to
notify the processor. The module can be connected to one of the processing
system’s general purpose master ports, as shown in Figure 3.8. In this way the
module’s control and data registers are mapped in the system memory space.
If the module requires a larger buffer, registers banks can be implemented
with BRAMs elements to increase the storage density. However, even by using
BRAMs, the maximum amount of storage available is practically limited to
hundreds of KB, depending on the programmable logic total area and on the
share allocated to the module.

In order to perform a computation, the processor should load the input
data into the slave module by performing a sequence of write operations in

Figure 3.8: AXI Slave accelerator internal structure. The control flow and
the data flow are directed by the processing system.

the module’s data registers. When the data have been loaded the module
can be started by writing in the module’s control registers. Once the module
has been started the processor must wait until the computation has been
completed. After the computation has been completed, the module notifies
the processor trough the interrupt signal. At this point the processor can
retrieve the processed data by reading again the module’s data registers.

Slave accelerators are the simplest type of AXI based accelerator. The
main advantage is that the development of the interface part is simpler
compared to other solutions. Also the complexity of the control software
is reduced since, at the most basic level, it comprises a set of functions
for reading an writing registers, as well as an interrupt service routine, if
the accelerator will be used in interrupt mode. Also the number of FPGA
resources required to implement the slave interface logic is small.

The main drawback of those kind of accelerator is that they are unsuitable
for operations that require the processing of large amounts of data, since
data transfer is done actively by the processor. If a large chunk of data is
required to be transfer, a large number of processor cycles will be wasted,
degrading the system performance.

A more sophisticated approach relies on the processing system’s internal
DMA controller (DMAC) to move data from the system memory to the slave
accelerator module. However the relatively small amount of data transferable

per transaction and the increased software complexity reduces the overall
versatility of this approach.

To summarize, this approach is unsuitable for stream processing oper-
ations that require to transfer and process large amount of data. Such
operations represents a large share in the space of operations that FPGAs
are required to accelerate. In practice, slave accelerators are limited to very
specific applications and do not provide a structure that it generic enough
to fit conveniently most of the operations that can be accelerated on the
programmable logic.

3.5.3 AXI based master accelerators

Master accelerators features the ability to retrieve and write back data
autonomously from the system memory space. From the processor perspective
such a kind of accelerators requires only control operations while the data
flow path passes trough another independent channel. The main advantage
of this architecture is the data access decoupling between the processor and
the accelerator. Such a decoupling enables the accelerator to process large
chunks of data without affecting the processor.

A further possible classification of master accelerators modules can be
made conceptually partitioning the master module structure in two parts:
the logic required to access and move the data, and the logic that performs
the data processing.

AXI stream accelerators

In this architecture the accelerator module comprises two separated parts:
a memory access part and a data processing part, an shown in Figure 3.9.
The memory access and data movement operations are typically performed by
a companion DMA module that includes an AXI master interface required to
access the memory space. Only the data processing part defines the module
specific functionality since the DMA is typically implemented with a standard
“library” element. The DMA and the data processing part are connected
together through one or more AXI stream channels.

From the processing system perspective, in the simplest possible imple-
mentation, only the data movement part of the accelerator, the DMA engine,
is visible in the memory space trough its control register. In order to perform

Figure 3.9: AXI Stream accelerator internal structure.

an operation, the accelerator’s DMA engine must be programmed by the
processing system to specify the area of the memory space where the data
that need to be processed reside and the destination area where the results
should be written.

The working cycle of a typical stream accelerator can be summarized as
follows: first the DMA engine reads the input data from a specified location
in the memory space, and transfer it to the accelerator trough an AXI input
stream channel. When the accelerator receives the first data block of the input
stream from the DMA it starts processing the data. Once the computation
has been completed the accelerator sends back the processed data to the
DMA trough an AXI stream output channel. As soon as the DMA receives
the processed data from the accelerator it will copy them to a specified set of
locations in the memory space.

Stream accelerators appears, to the processing system, as peripherals that
process sequences of data. As the name suggests, this class of accelerators
fits perfectly with stream processing operations that dominate the FPGA
processing. However, when the data that need to be processed are organized
in complex structures that are allocated in memory in a non-contiguous
fashion, the complexity of the accelerator’s control software may increase

Figure 3.10: AXI Master accelerator internal structure.

significantly, requiring periodic interventions of the processing system to
reprogram the DMA. More sophisticate approaches may take advantage from
vectored I/O support, referred by Xilinx as scatter/gather mode. However,
in this case the whole design complexity increases and the possibility of
performing conditional executions inside the accelerator module may still
require a dedicated software support.

To summarize, stream accelerators are optimized for stream processing
operations, but their specific structure and related programming model may
not fit generic co-processing units.

AXI master accelerators

With this architecture the accelerator module is a monolithic structure
that comprises both: the full AXI master logic, required to access the memory
space, and the computational logic required to process the data. This is the
most generic type of hardware accelerator, since its behavior entirely depends
on the internal structure.

In practice, if a master module must be controlled by the processing
system, it should also implement an AXI slave control interface. In this case
the complexity of the related control software largely depends on the module
implementation and its behavior.

Actually, this is more a super-class of hardware modules, rather than a
class. Also stream accelerators, if the data processing part and the DMA
engine are packed together, can be seen as monolithic modules that export
the DMA AXI master interface.

The main drawback of this architecture is the increased complexity of
the hardware implementation, since the module must include the full master
logic required to access the interconnect and move the data. Also, due to
its monolithic nature, the data access part and the processing part cannot
be separated and should both be placed inside the module structure in the
reconfigurable partition.

Chapter 4
System architecture

Contents
4.1 System Description 51

4.1.1 Platform Parallelism 51
4.2 System architecture model 51
4.3 Software structure 52

4.3.1 Software support library 53
4.3.2 Software activities 54

4.4 Reference platform 58
4.4.1 Zynq SoC family 59
4.4.2 ZYBO board . 59

4.5 Test implementation 60
4.5.1 Programmable logic structure 60
4.5.2 Decoupling logic 62
4.5.3 Hardware accelerator structure 62
4.5.4 Software stack . 63

50

4.1 System Description

A real-time software system is composed by a set of computational
activities or tasks that can be classified as periodic or aperiodic. Periodic
tasks consist of an infinite sequence of activities, called jobs, that are regularly
activated at a constant rate. In a conventional system tasks are executed on
a processor in a sequential fashion.

In the system developed in this thesis tasks can accelerate parts of their
computations by requesting the execution of accelerated operations on the
reconfigurable device included in the heterogeneous system. Each accelerated
operation is implemented as a hardware accelerator module that can be
dynamically configured on the programmable logic FPGA fabric. When a task
request the execution of an accelerated operation, it will be suspended until the
request accelerator has been configured on the programmable logic. Therefore,
compared to other approaches to real-time reconfigurable computing, in this
system each job can request the reconfiguration of a portion of the FPGA.

4.1.1 Platform Parallelism

With respect to a conventional system, where tasks execution is serialized
on the processor, the proposed approach can provide relevant speedups on the
tasks execution times. The factors that contribute to such speedups depends
on the parallelism achievable both at operation level and system level:

• Operation level parallelism. The execution time of a single task can be
substantially reduced, when part of its computation are performed by
a hardware accelerator, due to the high level of parallelism achievable
on the FPGA.

• Platform level parallelism. Depending on the number of slots, an equal
number of hardware accelerator can run concurrently on the FPGA,
enhancing the system parallelisms and reducing the computational load
on the processor

4.2 System architecture model

From a model perspective the hardware structure of the heterogeneous
SoC platform, underlying the system, comprises the following elements:

Figure 4.1: System architecture model. The system can be described as a
shared memory architecture with dynamically interchangeable co-processors.

• a processor;

• a set of N reconfigurable slots;

• a set of M hardware accelerator modules;

• a shared physical memory.

Each slot can accommodate a hardware accelerator as a reconfigurable
module. The processor and the hardware accelerators share and access
the same memory space where the physical memory is mapped. Hardware
accelerators are able to access the physical memory autonomously to retrieve
data. Such shared memory is used to exchange data between the processor
and the hardware accelerators. The whole system structure resembles a
uniform memory access (UMA) shared memory architecture since the access
time does not depend on the location of the data in memory [21]. Figure 4.1
shows a graphical representation of the system architecture.

4.3 Software structure

The software part of the system comprises the following components:

• a set of periodic computational activities (tasks);

• a real-time operating system;

• a support library to extend the operating system with functions to man-
age partial reconfiguration and the execution of hardware accelerated
operations.

4.3.1 Software support library

From the client programmer perspective the concept of hardware acceler-
ation is wrapped in two software entities: a set of objects named hardware
operations and a reconfiguration service. The set of hardware operations rep-
resents all the accelerated operations that the user can request to accelerate
the execution. The reconfiguration service is the component through which
tasks can request the execution of accelerated operations.

Hardware operation

The hardware operation objects wraps the set of data required to define an
accelerated operation. Each hardware operation object includes the following
proprieties:

• a set of bistreams, one for each slot, containing the configuration data
required to reconfigure the hardware accelerator that implements the
operation.

• two functions that are used to prepare the input data before the exe-
cution on the accelerator, and to transform the output data, after the
execution, before being retrieved by the task. Typically, such functions
are used to ensure the cache coherency of the data.

• an interface function used by the programmer to specify the pointers to
input and output data before requesting the execution of the operation.
The data will be stored inside the operation structure.

The internal structure of the hardware operation object will be discussed
with greater detail in chapter 5.

Reconfiguration service

The reconfiguration service abstracts the reconfiguration and a hardware
acceleration mechanisms. From the client programmer perspective the re-
configuration service software interface consists of a single function that can

be used to request the execution of an accelerated operation. The requested
operation is passed to the service as an argument of the function. When
the function is called the reconfiguration service use the hardware operation
parameter to specialize the hardware structure of the device for the requested
operation, through the reconfiguration mechanism. The internal structure of
the reconfiguration service will be discussed with greater detail in chapter 5.

4.3.2 Software activities

The computational actives that can be executed on the system consists
of a set of periodic tasks. Each task in the task-set is subject to timing
constraints, including its execution period, computation time, and relative
deadline equal to the period. The tasks are scheduled by the real-time
operating system according to a fixed priority scheduling policy. During
its execution a task can request the execution of one or more accelerated
operations through the reconfiguration service.

Structure of a hardware accelerated task

The structure of a task that requests the execution of a hardware accel-
erated operation is presented in Listing 4.1. Io order to use an accelerated
operation the programmer must define an hardware operation structure in the
initialization section the task, as shown at line 7. Consequently the hardware
operation structure must then be initiated, as done at line 10.

The body of the tasks can be divided in three sections or chunks. In
first chunk, at line 15, the task can perform any software computation, like a
regular software block. Before the end of the chunk the task must prepare the
input data for the accelerated operation inside a memory buffer. Next the
the pointers to input and output data buffers must be set inside the hardware
operation structure, through the related function, as done at line 18. At this
point everything is ready and, at line 21, the reconfiguration service can be
called to reserve the execution of the operation on the reconfigurable device.
After the call the task will be suspended.

When the hardware operation has been completed the task can resume its
execution starting the second chunk, as shown at line 23. In this final chunk
the task can consume the output data produced by the hardware operation
and perform any other computation. After the end of the second chunk, at

Listing 4.1: Structure of a hardware accelerated software task.
1 void accelerated_task()
2 {
3 // Task initialization (executed only once)
4 << Initialization part >>
5

6 // Define an instance of an accelerated operation
7 Hw_Op hardware_op;
8

9 // Initialize the hardware operation
10 hw_op_init_optype(hardware_op, "Operation name");
11

12 // Task body
13 while (1) {
14

15 << Software elaborations chunk >>
16

17 // Set operation parameters in the hardware operation structure
18 hw_op_optype_set_args(hardware_op, input_data, output_data);
19

20 // Call the reconfiguration service to execute the hardware operation
21 rcfg_manager_execute_hw_op(hardware_op);
22

23 << Software elaborations chunk >>
24

25 // Wait for the next job
26 suspend_unitl(last_wake_time, period);
27 }
28 }

Figure 4.2: Execution model of a software task that requires the execution of
an accelerated operation.

line 26, the task will be suspended until the next activation.

Structure of the reconfiguration function

A pseudocode description of the reconfiguration function is shown in
Listing 4.2. When the task call the reconfiguration service function, at line 21
of Listing 4.1, for requesting the execution of a hardware operation, the
reconfiguration service first check for a vacant slot, at line 4. If all the
slots are occupied the calling task will be suspended until one of the slots
has been released. When at least one slot is available the function search
if any of the vacant slot already contains the accelerator required by the
hardware operation, as shown at line 8. If none of the vacant slots contains
the required accelerator one of the vacant slot the will be reconfigured with
the corresponding bistream of the required accelerator, as done at line 14. The
calling task will be suspended until the reconfiguration has been completed.
Once the requested accelerator is available, whether it was already allocated
or it has been reconfigured, it will be configured and started, at line 19. The
calling task will be suspend again until the hardware accelerator has finished
its execution. When the computation has been completed, at line 24, the slot
will be released.

Execution model of hardware accelerated tasks

The execution of a hardware accelerated task can be modeled accordingly
to the structure shown in Figure 4.2. The sequence of operations performed
by the task can be summarized as follows:

• At time t0 the task is activated;

Listing 4.2: Pseudocode the reconfiguration function call. The GOTO
statement is used in this description for the sake of simplify. The real
implementation does not contain any GOTO statement.

1 rcfg_manager_execute_hw_op(hardware_op);
2 {
3 // Try to take a slot, wait if there isn’t one available
4 slots_semaphore.wait();
5

6 // Search if one of the free slots already
7 // contains the require hardware module
8 for (slot : free_slots) {
9 if (slot.id == hardware_op.id);

10 GOTO execution;
11 }
12

13 // Start device reconfiguration
14 transfer_bitstream(slot, hardware_op.bitstream);
15

16 << wait until the device has been reconfigured >>
17

18 // Start hardware accelerator
19 execution: start_op(slot, hardware_op.args)
20

21 << wait until the the accelerator has finished >>
22

23 // Free the slot
24 slots_semaphore.signal();
25

26 }

• Between time t0 and time t1 the task executes software computations
and prepare the input data for the accelerated operation;

• At time t1 the task call the reconfiguration service to request the
execution of an accelerated operations;

• If all the slots are busy the task will be suspend until time t2, when
one of the slots becomes available. The time interval W = [t1, t2] is the
slot contention delay;

• Once a vacant slot is available, the reconfiguration service starts to
reconfigure the slot at time t2;

• At time t3 the reconfiguration has been completed and the hardware
accelerator can be started. The time interval P = [t2, t3] is the time
required to reconfigure the FPGA. It depends on the size of the bitstream
and on the throughput of the reconfiguration port;

• At time t4 the hardware computation has been completed and the
software task can be resumed. The time interval H = [t3, t4] is the
time required by the hardware accelerator to compute the hardware
operation;

• At time t5 the task concludes its execution.

The total suspension time for a task that requires the execution of an
accelerated operation is S =W + P +H.

4.4 Reference platform

Before discussing the deployment on the reference platform a brief overview
of the different SoCs featuring the Zynq family is presented. Such overview
is useful to compare the features of the specific Zynq SoC, used as devel-
opment platform in this thesis, with the other SoCs members of the family.
Consequently the development board used to develop and test the system is
presented. Important features provided by the development board are the
DDR system memory and the video output support.

Device Z-7010 Z-7015 Z-7020 Z-7030 Z-7045 Z-7100

ARM Cores
Max clock

667 MHz (-1)
766 MHz (-2)
866 MHz (-3)

667 MHz (-1)
800 MHz (-2)
1 GHz (-3)

667 MHz (-1)
800 MHz (-2)

PL type Artix-7 FPGA Kintex-7 FPGA

LUTs 17.6 k 46.2 k 53.2 k 171.9 k 218.6 k 277.4 k

FlipFlops 35.2 k 92.4 k 106.4 k 157.2 k 437.2 k 544.8 k

BRAMs 60
(240 KB)

95
(380 KB)

140
(560 KB)

265
(1060 KB)

545
(2180 KB)

755
(3020 KB)

DSPs 80 160 220 400 900 2020

Table 4.1: Summary of the characteristics of the Zynq-7000 SoCs.

4.4.1 Zynq SoC family

The main difference between the SoCs of the Zynq family is the type
and size of the programmable logic fabric. The programmable logic of the
smaller Zynq SoCs is based on Artix-7 logic fabric while, for the larger ones,
is based on Kintex-7 fabric. Other differentiation factors are the availability
of PCI Express ports and hi-speed communication interfaces. The processing
system is the same among all the members of the family being that the only
difference is the maximum frequency of the ARM cores. Table 4.1 summarizes
the features of the Zynq-7000 family SoCs.

4.4.2 ZYBO board

The ZYBO (diminutive of Zynq Board) is an entry level development
board built around the Zynq Z-7010 SoC, the smallest device of the Zynq-7000
family. With respect to other popular Zynq boards, like the ZedBoard, the
ZYBO does not feature high density I/0 FMC connectors. The main features
of the board are:

• ZYNQ XC7Z010-1CLG400C SoC;

• 512 MB of DDR3 memory;

• Ethernet (1Gbit/100Mbit/10Mbit);

• MicroSD slot;

• VGA / HDMI video output;

• On board JTAG programming and UART to USB converter;

• Audio codec.

4.5 Test implementation

To evaluate the performances of the system, and estimate the suitability
of the proposed approach to real-time computing, a test implementation of
the system has been developed on a ZYBO board. The processor referred
in the model is implemented by one of the ARM cores included in the APU
inside the processing system of the Zynq Z-7010 SoC. The physical memory is
mapped on the DDR3 memory featured on the ZYBO board. The hardware
accelerators are deployed on the Zynq programmable logic.

4.5.1 Programmable logic structure

In order to support the deployment of dynamically interchangeable accel-
erators modules the programmable logic area is divided in two main regions: a
static region and a reconfigurable region. The static region contains the static
portion of communication infrastructure and other support modules while
the reconfigurable region is organized as a set of reconfigurable partitions
that implement the slots. Each slot can accommodate a hardware accelerator
as a reconfigurable module. A schematization of the programmable logic
structure, in a two slots configuration, is provided in Figure 4.3.

For a given set of M hardware accelerators, required to support the
related set of M hardware operations, each of the N slots must be able to
accommodate every accelerator in the set. Since bitstream relocation is not
supported by the Xilinx’s standard tools [4][5], each hardware accelerator is
implemented as a set of N bitstreams, one for each slot. Therefore the total
number of bitstreams is NxM . In this way each slot can accommodate all
its specific implementations of each hardware accelerator.

Video output

The static portion of the programmable logic also include a video output
path used to control a standard “VGA” (DE-15 connector) compatible monitor.
The video output is used to display processed images for test and debug
purposes. The video path consist of VDMA (Video DMA) unit and a custom

Figure 4.3: Schematization of the programmable logic architecture in a two
slots configuration. AXI interconnect blocks and other support blocks are
not shown.

display controller IP developed by Digilent. The VDMA engine is connected
on one side to the processing system through one of the AXI HP ports,
on the other side to the display controller through an AXI stream channel.
The VDMA module periodically reads the video data from a memory buffer
named framebuffer and stream them to the display control module. The
display control module receives the video data and generates a set of video
output signals with the appropriate timings. The digital signals generated
by the display control are converted to analog values through a set of simple
resistor ladder converters.

4.5.2 Decoupling logic

During the partial reconfiguration process the reconfigurable modules do
not output any valid data until the reconfiguration is completed and the
module is reset. Therefore, to avoid spurious transactions, the static part
of the system must ignore the signals received from reconfigurable module
during the partial reconfiguration process [5]. In this system such decoupling
is achieved through the Partial Reconfiguration Decoupler IP included in the
Vivado library. Each reconfigurable slot is paired with a decopler located in
the static part of the system. The decoupler isolates the slot from the rest
of the system during the partial reconfiguration process. The decoupler are
controlled, through the AXI bus, by the software support library running on
the processor inside the processing system.

4.5.3 Hardware accelerator structure

For each slot (reconfigurable partition) all the modules (hardware accel-
erators) that are required to fit in that slot must export an interface that
match the slot’s interface [5]. Therefore, to allow each hardware accelerator
to be accommodated in every slot, all hardware accelerators must have the
same interface.

As discussed in section 3.5.1, the interface of a hardware accelerator has an
impact on the internal structure and on the programming model. To support
a wide range of operations while maintaining the accelerators structure as
generic as possible, without contrasting the computation a specific data
processing paradigm, the standard accelerator structure has been defined,
following the naming convention adopted in this thesis, as an AXI master

accelerator structure. In this way the processing paradigm and the memory
access strategy depends only on the internal structure of the accelerator.
With this approach accelerators that implement operations of different classes
can coexist wrapped in the same generic structure.

Standard interface description

The standard interface is similar to the one by adopted by Sadri et al. [18].
The interface includes an AXI master interfaces for accessing the entire
system memory, an AXI slave interface through which the accelerator can be
controlled by the processor and an interrupt signal to notify the processor.
In the current implementation the AXI master interfaces exported by the
accelerators hosted in the slots are attached to high-performance (HP) ports
exported by the processing system, while the AXI slave control interfaces are
attached to the AXI master general purpose (GP) ports.

Figure 4.4: System software stack.

4.5.4 Software stack

The software stack of the test implementation comprises the following
components:

• A set of tasks and hardware-accelerated tasks;

• A support library enabling hardware acceleration and partial reconfigu-
ration;

• The freeRTOS operating system;

• The software support layer exported by Vivado, including the hardware
platform and the board support package.

A graphical representation of the software stack is presented in Figure 4.4.
In order to test the implementation a set of four accelerated operations has
been developed: three naive implementations of image convolution filters:
sobel, blur and sharp, and a simple implementation of a matrix multiplier.
The underlying hardware accelerator modules has been developed using
Vivado HLS. The implementation details of the hardware accelerators will be
discussed in chapter 5

Chapter 5
Implementation details

Contents
5.1 Hardware accelerated operations 66

5.1.1 Hardware accelerators interface 66
5.1.2 Blur and sharp Filters 68
5.1.3 Sobel filter . 70
5.1.4 Matrix multiplier 72

5.2 Support library software structure 76
5.2.1 Reconfiguration service 76
5.2.2 Hardware operation objects 78

65

5.1 Hardware accelerated operations

To evaluate the performances of FPGA based hardware acceleration on the
developed platform, a set of four standard operations has been implemented
both in software, as regular functions, and in hardware, as accelerator modules.

In general the computational complexity of an operation depends on the al-
gorithm and on the implementation. Both can be optimized but optimization
that performs well on software implementations does not necessary fit well
hardware computation. This because, on a real platform, the performances
depends both on the operations and on the memory access patterns.

In this work, to be as fair as possible, test operation has been realized
using both naive algorithms an implementations. The software versions have
been implemented with standard C code while the hardware counterparts
have been implemented using Vivado high-level synthesis (HLS) tool.

The set of test operations developed in this work includes: three image
filters: a blur filter, a sharpening filter and a sobel edge-enhancement filter,
and a matrix multiplier. Before going into the details of the implementation
of each operation the following section provides a description of the standard
interface that each hardware accelerator implements.

5.1.1 Hardware accelerators interface

As stated in the previous section 4.5.3, in this system every accelerator
module uses a standard interface structure that includes:

• An AXI master interface to access the system physical memory mapped
in the memory space;

• An AXI slave port through witch the module can be controlled by the
processor;

• A interrupt signal to notify the processor.

Vivado HLS synthesize the interface of the hardware module according
to the type of the arguments of the top level function. The default mapping
rules can be overridden by manually specifying the type of interface for each
argument through a set of directives. Listing 5.1 show the HLS interface
specification for the accelerator modules used in the system developed for
this thesis work.

Listing 5.1: Vivado HLS interface specification.
1 void slot_N(volatile args_t *id, volatile data_t *mem_port, volatile args_t

args[ARGS_SIZE], volatile scope_t *state_out)
2 {
3 /* -------- Interface specification -------- */
4

5 // AXI Lite control bus
6 #pragma HLS INTERFACE s_axilite port=return bundle=CTRL_BUS
7 #pragma HLS INTERFACE s_axilite port=id bundle=CTRL_BUS
8 #pragma HLS INTERFACE s_axilite port=args bundle=CTRL_BUS
9

10 // AXI Master memory port
11 #pragma HLS INTERFACE m_axi port=mem_port depth=512
12

13 // Scope output
14 #pragma HLS INTERFACE ap_none port=state_out
15

16 // Operation implementation
17 hw_mod(id, mem_port, args, state_out);
18 }

The top level function slot_N() arguments have the following meanings:

• id is used to specify a numeric identifier for the accelerator module. It
can be accessed by the control software to know what type of hardware
accelerator is allocated in a slot. Typically can be used for debug or
optimization purposes.

• args[] is an array of unsigned/signed elements used by the control
software to send control data to the hardware accelerator. Depending
on the type of operation, if the amount of data that the accelerator is
required to process is huge, the array can be used to pass pointers to
the memory locations where the data resides. Otherwise, if the input
data set is very small, the array can be used to carry the input data
directly, without the need to retrieve the input data from the memory
by the accelerator, saving a memory access.

The id and args[] arguments, including the function return are bundled
together in a AXI4-Lite interface as specified by the the directives at lines 6-8
in Listing 5.1. With those directives HLS exports those arguments in a single
AXI4-Lite interface. For the function return HLS generates an interrupt
signal that will be issued when the execution has completed. When the

accelerator is connected to the processing system the function arguments will
be mapped in the memory space through the AXI4-Lite interface. By default
Vivado HLS generates a set C functions and addresses defines to access such
memory locations.

• mem_port is a data pointer through which the internal logic of the
hardware accelerator can access the memory space. The directive at
line 11 tells Vivado HLS to generate an AXI master interface for this
argument. From the HLS programmer perspective whole memory space
appears, through the pointer, as a regular array that can be addressed
using the index notation or pointer arithmetic. Single access to the
memory array are translated to single memory transfers. If the memory
array is accessed inside a pipelined loop or by using the memcpy()

function a burst memory access is generated.

• state_out is an 8-bit wide output port meant to be connected to the
I/O resources of the programmable logic. It has been used for testing
and validation purposes during the modules development process.

The volatile keyword is used to prevent HLS from performing any kind
of assumption about the pointer accesses. The keyword is recommended
whenever a function pointer argument is accessed multiple times.

5.1.2 Blur and sharp Filters

Blur and sharp are image processing filters implemented using a con-
volution operator. Convolution is a signal processing operation defined
between two functions: a source function f(x) and a filter function g(x). The
convolution operator is defined as:

(f ∗ g)(t) =
∫ ∞
−∞

f(τ) g(t− τ) dτ

In image processing a similar operator can be defined considering a discrete
bi-dimensional spatial domain instead of the continuous time domain. In
such a case a discrete convolution operator can be defined as:

(F ∗K)[x, y] =
N−1∑
i=0

N−1∑
j=0

F [x− i, y − j]K[i, j]

Where F is the source image and K is an N ×N matrix, usually called
kernel. From a practical perspective it means that for each input pixel F [x, y]

the resulting value is computed as a weighted sum of neighboring pixels,
through the weights specified by the elements of the kernel matrix.

For a given input image and a kernel the whole output image can be
produced by “sliding” the kernel over the image. The output pixels are
computed as the result of the convolution between the source image pixels
and the kernel weights.

The weights inside the kernel matrix determine the effects of the filtering
on the image. The filters developed in this work use two different 5 × 5

kernels.
The kernel used for the blur filter is a matrix of ones, called blur-box.

This kernel has the effect of averaging the value of each pixel with the values
of its neighboring pixels, acting like a low-pass filter.

KB =


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1


For the sharpening filter the kernel used is a high-pass operator that

accentuates the comparative differences in the values with the neighboring
pixels.

KS =


−1 −1 −1 −1 −1
−1 2 2 2 −1
−1 2 8 2 −1
−1 2 2 2 −1
−1 −1 −1 −1 −1


Implementation

In the vivado HLS implementation the source image is read line by line
updating an internal window buffer. The window buffer stores the last N = 5

lines of the image, where N is the size of the kernel. Once a new line has
been read from the main memory, and copied into the window buffer, the
convolution kernel will be applied to all the lines inside the window buffer.

The resulting output pixels will be stored inside a single line output buffer.
When the computation is complete the output buffer will be copied back to
main memory. A pseudocode description of the implementation is provided
in Listing 5.2.

In the actual implementation the blur filter differs from the sharp filter
to take advantage from the fact that the kernel is matrix of ones.

Since the kernel size is fixed the computational complexity the operations
depends only on the image size. For an image of size N ×M the complexity
of this implementation of a convolution filter is O(NM).

5.1.3 Sobel filter

Sobel filter is a classical algorithm used in image processing and computer
vision application for the detection of object edges. The algorithm uses two
3× 3 kernels: Gx and Gy to compute the approximate derivatives over the
horizontal and vertical directions.

Gx =

−1 0 1

−2 0 2

−1 0 1

 Gy =

 1 2 1

0 0 0

−1 −2 −1


For each pixel the approximated derivatives are computed considering its

intensity value against the values of his neighboring pixels. The resulting
derivatives are the components of the approximated gradient of the intensity
in that point. An approximation of the absolute magnitude of the gradient is
computed as the sum of the absolute values of its components.

|G| = |Gx|+ |Gy|

The intensity value of each pixel of the output image is set proportional
to magnitude of the intensity gradient in that point of the image.

Implementation

The implementation of the convolution part of the sobel filter is similar
to the implementations described in the previous section. Before being
convoluted with the kernels source pixel are converted from the RGB 24-
bit color representations to 8-bit grayscale representation. The luminance
information is extracted using standard BT.601 “full swing” approximated

Listing 5.2: Image convolution filter pseudocode.
1 void image_convolution(source_image, dest_image)
2 {
3 const var kernel;
4 const var kernel_sum;
5 var window_buffer;
6 var output_buffer;
7

8 var red, green, blue;
9 var pixel_out;

10

11 << pre-fill window buffer >>
12

13 // For each line of the source image
14 for (line : source_image) {
15

16 // Update window buffer. Read a new line for the memory
17 window_buffer.read_mem(source_image[line]);
18

19 // Apply the kernel to the lines inside the window buffer
20 for (x : IMAGE_WIDTH) {
21

22 // Convolution
23 for (i : KERNEL_WIDTH) {
24 for (j : KERNEL_WIDTH) {
25

26 // Multiply and accumulate each color component
27 red += window_buffer(x, i, j).red * kernel(i, j);
28 green += window_buffer(x, i, j).green * kernel(i, j);
29 blue += window_buffer(x, i, j).blue * kernel(i, j);
30 }
31 }
32

33 // Normalize componets values
34 red /= kernel_sum;
35 green /= kernel_sum;
36 blue /= kernel_sum;
37

38 // Range componets values
39 red = range_value(red);
40 green = range_value(green);
41 blue = range_value(blue);
42

43 // Pack
44 pixel_out = pack_rgb(red, green, blue);
45

46 // Store the pixel in the output buffer
47 output_buffer.store(pixel_out);
48 }
49

50 // Write the line to the memory
51 output_buffer.write_mem(dest_image[line], pixel_out);
52 }
53 }

conversion. First a 16-bit luminance value is computed as the weighted mean
of the 8-bit color components:

Y ′ =
[
66 129 25

]RG
B


Then 16-bit luminance value is scaled down to 8-bit:

Y = (Y ′ + 128)� 8

After the convolution the absolute values of the derivative components
are summed together to calculate the approximate magnitude of the gradient.
To enhance the edges separation effect the magnitude is compared with
low and high saturation thresholds. A pseudocode description of the sobel
implementation is provided in Listing 5.3. As for the blur and sharp filters,
for an image of size N ×M , the complexity of the implementation of this
Sobel filter is O(NM).

5.1.4 Matrix multiplier

This operation implements the matrix multiplication between two N ×N
integer square matrices. Given two matrices A a B each element of the
product matrix C = AB can be calculated as:

cij =
N∑
k=1

aik bkj

Implementation

The hardware implementation follows straightly the naive approach,
resulting in a computational complexity of O(N3). For each element of the
matrix C : cij the correspondent line of the matrix A : ai and column of
matrix B : bj are copied into local buffers. The element cij is computed as
the dot product of the elements inside the buffers. The process is repeated
and the elements cij are stored inside a local buffer. When an entire row
of matrix C : ci has been computed the local buffer will be copied back to
memory.

Listing 5.3: Sobel filter pseudocode.
1 void image_convolution(source_image, dest_image)
2 {
3 const var gx;
4 const var gy;
5 var window_buffer;
6 var output_buffer;
7

8 var pix_luma;
9 var dluma_w, dluma_h;

10 var pixel_out;
11

12 << pre-fill window buffer >>
13

14 // For each line of the source image
15 for (line : source_image) {
16

17 // Update window buffer. Read a new line for the memory
18 window_buffer.read_mem(source_image[line]);
19

20 // Apply the Gx and Gy to the lines inside the window buffer
21 for (x : IMAGE_WIDTH) {
22

23 // For each pixel in the central line of the window
24 for (i : KERNEL_WIDTH) {
25 for (j : KERNEL_WIDTH) {
26

27 // Compute pixel brightness value
28 pix_luma = rgb_2_luma(window_buffer(x, i, j));
29

30 // Calculate the approximations of the
31 // horizontal and vertical derivatives
32 dluma_w += pix_luma * gx(i, j);
33 dluma_h += pix_luma * gy(i, j);
34 }
35 }
36

37 // Sum derivative components
38 dluma = ABS(dluma_w) + ABS(dluma_h);
39

40 // Invert
41 luma_out = (MAX_LUMA - dluma);
42

43 // Threshold
44 if (luma_out > H_LUMA)
45 luma_out = MAX_LUMA;
46 else if (luma_out < L_LUMA)
47 luma_out = 0;
48

49 // Store the pixel in the output buffer
50 output_buffer.store(luma_out);
51 }
52

53 // Write the line to the memory
54 output_buffer.write_mem(dest_image[line], pixel_out);
55 }
56 }

Listing 5.4: Matrix multiplier pseudocode.
1 void matrix_mult(matrix_a, matrix_b, matrix_c)
2 {
3 // Local buffers
4 var a_row[];
5 var b_col[];
6 var c_row[];
7 var dp_temp;
8

9 // Iterate over the rows of the A matrix
10 for (i : N) {
11

12 // Copy (burst) matrix A row (i) from memory to local buffer
13 memcpy(a_row, matrix_a.row(i));
14

15 // Iterate over the columns of the B matrix
16 for (j : N) {
17

18 // Copy (burst) matrix B column (j) from memory to local buffer
19 memcpy(b_col, matrix_b.col(j));
20

21 // Inner product between matrix A row and matrix B column
22 dp_temp = 0;
23 for (k : N) {
24 dp_temp += a_row[k] * b_col[k];
25 }
26

27 c_row[j] = dp_temp;
28 }
29

30 // Copy back (burst) matrix C row (i) from local buffer to memory
31 memcpy(matrix_c.row(i), c_row);
32 }
33 }

A pseudocode description of the implementation is reported in listing 5.4.
To allow burst data transfer matrix B must be stored in memory in column
major order.

5.2 Support library software structure

The support library abstracts the hardware acceleration and reconfigura-
tion mechanisms, providing simple API, as discussed is section 4.3.1. The
internal structure of the library follows a modular design. The main com-
ponents of the library are the reconfiguration service and the hierarchy of
hardware operations.

5.2.1 Reconfiguration service

The reconfiguration service is the main component of the library. The
service comprises three software modules:

• Rcfg_Manager module is the main component of the service, used by
the tasks to request the execution of accelerated operations.

• Dev_Cfg module wraps the device configuration interface driver. It’s
used by the Rcfg_Manager to drive the reconfiguration of the pro-
grammable logic.

• Slot_Drv module is the component that performs the low level opera-
tions on the hardware accelerators. The Rcfg_Manager use this module
to control the hardware accelerators and the slots decouplers.

A UML class diagram summarize the reconfiguration service structure in
Figure 5.1. The diagram should be intended as a language-agnostic model of
the service. The real implementation is written in ANSI-C language. Since
the C language does not feature language-level support for object-oriented
programming, the real implementation relies on programming conventions to
emulate object support.

Rcfg_Manager module

This modules manages the execution of accelerated operations and the
allocation of the hardware accelerators. When a task requests the execution
of an accelerated operation, through the execute_hw_op() function, first it
check the availability of a free slot by the take_slot() function. The function
uses a counting semaphore to count the number of vacant slots. Initially the
semaphore is set to the number of slots available in the system. If no vacant

Figure 5.1: UML class diagram model of the reconfiguration service.

slots are available the task will be suspended on a queue associated with
the semaphore. Once a vacant slot is available the take_slot() function
handles the allocation of the hardware accelerator, eventually reconfiguring the
device reconfiguration through the Dev_Cfg module. When the accelerator
is ready the Rcfg_Manager module can control it through the Slot_Drv

module, starting the hardware computation. Once the computation has been
completed the free_slot() function updates the current slots allocation
state.

Slot_Drv module

This module abstracts the low-level details of the hardware accelerators
control, providing a simpler interface for the Rcfg_Manager module. Since all
hardware accelerators use the same interface structure also the control and
data registers are the same for all accelerators. Therefore, also the low level
control functions are uniform. The mapping of the control and data registers
into the memory space depends on the specific slot where the hardware
accelerator resides at that moment. In other words the register’s addresses
are associated with the slot, not the accelerator.

For this reason the Slot_Drv module includes, for each slot, a specific
structure that contains the related addresses. Such structures are used by

the control functions to select the accelerator, hosted in the specific slot,
depending on the slot index argument.

After a hardware accelerator has been allocated in a slot, in order to exe-
cute an accelerated operation, the Rcfg_Manager uses the Slot_Drv module
to perform the low-level control operations. The start_op() function loads
the data contained in the hardware operation structure into the accelerator
and starts the computation. The calling task will be suspended and later
restored, when the computation has been completed, using the FreeRTOS
task notifications mechanism as a binary semaphore.

Dev_Cfg module

This module controls the device configuration interface (DevC) used to
reconfigure the slots inside the programmable logic. During the allocation
process of a hardware accelerator the Rcfg_Manager can request a device
reconfiguration through the transfer_bitfile() function. The underlying
task will be suspended, until the reconfiguration has been completed, using
the task notifications as a lightweight binary semaphore. Before and after
device reconfiguration the Rcfg_Manager module controls the slot decoupling
with the related functions provided by the Slot_Drv module.

Logger module

The Rcfg_Manager module shares with other components of the system
a logger module used to print log messages. Internally the logger uses a
FreeRTOS queue object to store the messages. The messages accumulated in
the queue are flushed, trough the serial port, to the host computer during
IDLE time or after the completion of other tasks.

5.2.2 Hardware operation objects

In the system accelerated operations are represented by hardware op-
eration objects. The set of hardware operation objects defines the set of
accelerated computations available to the user. A hardware operation is
a data structure that contains all the necessary information to define an
accelerated operation including:

• the set of bistreams containing the implementation of the underlying
hardware accelerator;

• the input parameters for the hardware accelerator;

• two optional support functions to prepare the data before and after the
hardware execution.

Conceptually the set of operations is organized as a class hierarchy as
shown in Figure 5.2. The base class defines the interface and the derived
classes implement the specific behavior. The components of the reconfigura-
tion service relies on the interface defined by the base class. In some sense
the hardware operation object “specialize” the programmable logic and the
Slot_Drv control module for the specific hardware accelerator.

As for the reconfiguration service the operation objects are implemented
in ANSI-C. Therefore the object-oriented support is only partially realized
through programming conventions.

Figure 5.2: UML class diagram model of the hardware operations hierarchy.

Chapter 6
Experimental results

Contents
6.1 Experimental system setup 81

6.1.1 Programmable logic area allocation 81
6.1.2 Hardware operations 81

6.2 Speedup evaluation experiment 85
6.2.1 Results evaluation 86

6.3 Worst-case response time experiment 87
6.3.1 Results evaluation 88

6.4 Reconfiguration times profiling 91
6.4.1 Results evaluation 92

80

6.1 Experimental system setup

After the development of the test implementation on the ZYBO board
some preliminary experiments has been carried out to evaluate the perfor-
mances of the proposed approach. The experimental setup is based on the
test implmentation, described in section 4.5, in a two slots configuration. The
static region includes the static part of the communication infrastructure and
the video output path. The ARM cores included in the processing system
run at 650 MHz while the clock frequency for the programmable logic FPGA
fabric is set to 100 MHz.

6.1.1 Programmable logic area allocation

The programmable logic area of the Zynq Z-7010 SoC, included in ZYBO
the board, is divided in four clock regions. Each clock region occupies roughly
a quarter of the total area and contains 25% of the total slices. In the
experimental setup the area comprising two clock regions is allocated to
the static system. The remaining area, organized in two clock regions, is
divided into two equal size reconfigurable partitions allocated to the two
reconfigurable slots. In reality the clock regions allocated to the slots contain
twice the amount of BRAMs resources compared the clock regions occupation
by the static system, while the amount of LUTs and DSP48 is almost the
same. A graphical representation of the Zynq Z-7010 area, comprising the
implementation of the static part, is presented in Figure 6.1. Resource
consumption is represented by highlighting with colors the resources used for
the implementation over the dark fabric of unused resources.

6.1.2 Hardware operations

The set of hardware operations comprises the four operations described
in chapter 5: three image processing filters and a matrix multiplier. The
image processing operations have been synthesized to process images of size
800 × 600 pixels, with 24-bit color depth. The matrix multiplier has been
synthesized to multiply 512 elements integer matrices. For each hardware
accelerator the high-level synthesis resources utilization estimates, provided
by Vivado HLS, are reported in Table 6.1.

Figure 6.1: Device view of the implementation of the static part. From
the left side of the image processing system is highlighted in light blue.
On the right side the programmable logic area is divided into four clock
regions. Two clock regions on the left are allocated to the static part of the
design. The logic resources used for the implementation of the static part are
highlighted in orange. The light orange blocks indicate the resources used for
the implementation of the video output path. The remaining dark orange
blocks are used to implement communication and support functions.
On the right side the two remaining clock regions are allocated to the
reconfigurable slots, physically constrained by the two Pblocks highlighted in
violet. No resources are placed inside those partition since they are reserved
for the reconfigurable modules (hardware accelerators). The gray boxes inside
the Pblocks are the ports for interfacing the reconfigurable modules with the
static logic.

Hardware module LUT FF DSP48E BRAM18K

Sobel 3044
(17 %)

2711
(7 %)

29
(36 %)

10
(8 %)

Blur 4198
(23 %)

2801
(7 %)

8
(10 %)

14
(11 %)

Sharp 4198
(23 %)

3140
(8 %)

5
(6 %)

14
(11%)

Mult 2091
(11 %)

1782
(5 %)

24
(30 %)

19
(15 %)

Zynq Z-7010 Total 17600 35200 80 120

Table 6.1: High-level synthesis resource utilization estimates. The utilization
percentage refers to the whole Zynq device.

The RTL code resulting from high-level synthesis of the hardware modules
has been synthesized, and then implemented, in two different versions, one
for each slot. Since the two slots have equal size, also the resulting bistreams
have the same size. The whole partial reconfiguration flow, for the entire set
of modules, produces eight different partial bistreams, two for each module,
of size 338 KByte. The flow also generates a full bitstream, comprising the
whole area of the Zynq Z-7010, of size 2 MByte. The full bistream includes
the static part and two accelerators placed in the slots. Table 6.2 provides a
comparison between the HLS resources utilization estimates and the more
accurate estimate at synthesis level. Further optimization are possible in the
implementation phase. Figure 6.2 provides a graphical representation of the
implementation of the sharp hardware accelerator inside the slot-1.

Figure 6.2: Device view of the sharp hardware accelerator implemented in slot
1. The logic resources used to implement the computing logic are highlighted
in teal. The AXI master logic is realized by the orange cells. The resources
highlighted in red in the upper part implements the AXI slave control logic.

Hardware module LUT FF DSP48E BRAM

Sobel HLS 3044 2711 29 10 RAMB18

Synth 2584 2188 5 5 RAMB36

Blur HLS 4198 2801 8 14 RAMB18

Synth 2698 2237 8 7 RAMB36

Sharp HLS 4198 3140 5 14 RAMB18

Synth 2870 2635 5 7 RAMB36

Mult HLS 2091 1782 24 19 RAMB18

Synth 1632 2410 18 9 BRAMB36
1 BRAMB18

Zynq Z-7010 Total 17600 35200 80 120

Table 6.2: Comparsion between resources estimates at HLS level and logic
synthesis level.

6.2 Speedup evaluation experiment

The first experiment was carried out to evaluate the speedup factors
achievable from hardware acceleration on FPGA. The execution times of the
four accelerated operations, running on the PL, have been compared to their
software counterparts, running on the ARM core, for a significant number of
runs.

For each operation the tests have been performed using a single benchmark
task, without any other load on the system. Each job of such task first requests
to the reconfiguration manager the execution of the accelerated operation
under test. Once the operation has been completed, the reconfiguration
manger returns to the task a data structure containing the execution time
of the hardware operation. Then the task executes the software version,
measuring the execution time. Since such a task is the only activity running
on the system, the measure is not subject to interference from other activities.
Finally, the task computes the speedup ratio and write the test results into
the log queue through the Logger module.

Once the task has been executed for the required number of jobs, it will
be no longer activated. At this point the Logger module will flush the log
queue to the host PC through the serial port, allowing the user to retrieve

Operation FPGA-ET [ms] Processor-ET [ms] Speedup

pACET pWCET pACET pWCET Avg Min

Sobel 21.523 21.526 179.067 179.074 8.319 8.318

Blur 26.387 26.391 374.780 374.803 14.203 14.201

Sharp 26.390 26.395 304.985 305.015 11.557 11.555

Mult 1698.245 1698.246 8768.543 8769.744 5.163 5.163

Table 6.3: Comparison of the profiled worst-case (pWCET) and average-case
(pACET) execution times of hardware operations and software counterparts.

the test results. The complete results are reported in Table 6.3. Average
speedup factors are graphically visualized in Figure 6.3.

6.2.1 Results evaluation

The results show that, despite the lower clock frequency of the FPGA
fabric, the hardware implementations provide a relevant speedup over the
software versions. It is worth noting that the measured speedup factors are
dependent upon the specific implementation and optimization techniques. In
general, it is safe to assume, for stream processing oriented operations, an
average speedup factor ranging between 5 and 20, due to the higher level of
parallelism achievable on an FPGA.

The low variance observed in the results depends on the fact that the
operation are stream-processing oriented algorithms. For a given stream
of input data, a series of operations, usually referred as kernel function, is
applied to each element in the stream. The execution flow does not contain
any branches and does not depends on the specific value of the input data.

0 100 200 300 400 500 600 700 800 900

Sobel

Blur

Sharp

Mult*

Execution time [ms]

Cpu
Fpga

Figure 6.3: Comparison of the average execution times between hardware
and software implementations. The execution times of the Mult operation
have been scaled down by a factor of 10.

6.3 Worst-case response time experiment

The second experiment was carried out to evaluate the system behavior
in a scenario where the number of tasks, requiring the execution of hardware
operations, exceeds the number of slots. In particular, this experiment aims
at measuring how the priorities assigned to the tasks impact on the observed
worst-case response times.

The task-set used for this test comprises four tasks. Each task requests
the execution of one of the four accelerated operation: sobel, blur, sharp and
mult. The tasks have the following periods:

• Sobel task: 100 ms

• Blur task: 150 ms

• Sharp task: 170 ms

• Mult task: 2500 ms

The underlying operating system, FreeRTOS, uses a fixed-priority pre-
emptive scheduling policy. In a first test all tasks have been assigned the same
priority. Therefore, they are scheduled according to FIFO order, without
preemption among the tasks. In a second test task’s priorities are assigned

according to the Rate Monotonic order. Therefore, each task is assigned a
priory proportional to its request rate. Both tests runs for 5 minutes.

Table 6.4 summarizes the tasks proprieties and reports the profiled worst-
case execution times (pWCETs) and average-case execution times (pACETs)
for both tests. Figure 6.4, 6.5, 6.6 and 6.7 show the distributions of the
response times, normalized with respect to periods, for all the tasks.

6.3.1 Results evaluation

The results of both tests confirm that the system is able to sustain an
area overload condition where the number of hardware operations exceeds
the number of available slots. It is worth to noticing that, in this condition,
the “virtual area”, required to implement all the functionalities exceeds the
physical area available on the device. Here the area is measured in terms of
the number of available logic resources. In such situations the feasibility of
the system can be achieved only by sharing, in the time domain, the FPGA
resources through dynamic partial reconfiguration.

The comparison between Rate Monotonic and FIFO shows that Rate
Monotonic order is able to guarantee lower response times for the tasks
with the higher rate, preserving the feasibility of the scheduling. This is an
expected behavior since Rate Monotonic is optimal, among the class of fixed
priority assignment, in the sense of schedulability. The profiled worst-case
response times are promising results in the direction of applying this approach
to real-time systems.

Task Period
[ms] Jobs HwOp

pWCET
[ms]

RM resp-time
[ms]

FIFO resp-time
[ms]

Worst Avg Worst Avg

Sobel 100 3000 21.526 47.480 27.391 93.330 36.615

Blur 150 2000 26.391 78.623 40.883 67.052 34.218

Sharp 170 1765 26.395 84.030 39.103 80.544 36.178

Mult 2500 120 1698.246 1737.880 1714.244 1737.888 1704.976

Table 6.4: Summary of the worst-case response time experiment.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1,000

2,000

3,000

O
cc
ur
re
nc

es
RM

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1,000

2,000

3,000

Normalized response time

O
cc
ur
re
nc

es

FIFO

Figure 6.4: Response times distributions for the Sobel task.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

500

1,000

1,500

O
cc
ur
re
nc
es

RM

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

500

1,000

1,500

Normalized response time

O
cc
ur
re
nc

es

FIFO

Figure 6.5: Response times distributions for the Blur task.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

500

1,000

1,500

O
cc
ur
re
nc

es
RM

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

500

1,000

1,500

Normalized response time

O
cc
ur
re
nc

es

FIFO

Figure 6.6: Response times distributions for the Sharp task.

0.677 0.680 0.683 0.686 0.689 0.692 0.695 0.698
0

20

40

60

80

100

O
cc
ur
re
nc
es

RM

0.677 0.680 0.683 0.686 0.689 0.692 0.695 0.698
0

20

40

60

80

100

Normalized response time

O
cc
ur
re
nc

es

FIFO

Figure 6.7: Response times distributions for the Mult task.

6.4 Reconfiguration times profiling

This experiment concerns the profiling of the reconfiguration times. As
discussed in Section 3.3 the reconfiguration of programmable logic fabric
is performed by the Device Configuration (DevC) subsystem contained in
the processing system. Such a module transfers bitstreams from the main
memory to the programmable configuration memory trough the processor
configuration access port (PCAP) using an internal DMA engine. The DMA
accesses the system memory through an AXI master interface connected to
the internal AXI interconnect. Unlike the Application Processing Unit, and
the master modules connected to the High-Performance AXI ports, the DevC
subsystem does not have a direct path to the DRAM controller and must
share the access to the controller with other internal modules through the
central interconnect.

In general, the throughput achievable by the Device Configuration internal
DMA depends on the traffic conditions of internal Interconnect, and the load
on the DRAM controller. The modeling and performance evaluation of the
Interconnect goes beyond the objectives of this thesis. However a first test was
carried out to evaluate how a memory intensive software task could interfere
with the Device Configuration throughput, affecting the reconfiguration times.

The task-set used for this test includes the four tasks described in the
previous test, with the addition of a memory intensive software activity,
continuously running in background. The software activity performs memory
transfers between two 32 Mbyte memory buffers. The sizes of the buffers
exceed the size of the Application Processing Unit L2 cache. Therefore, such
a memory transfer generates a continuous stream of request to the DRAM
controller, simulating a generic memory intensive software application. To
summarize, in the test system the DRAM controller can receive requests from
the following modules:

• The Accelerator modules in the first slot;

• The Accelerator module in the second slot;

• The video DMA engine;

• The Processor (memory transfer activity);

• The Device Configuration (through central Interconnect).

The objective of the test is to estimate how the memory transfers generated
by the software activity affect the reconfiguration times. The base task-
set used for this test includes the four tasks used for the prevision test
with the same periods. The task’s priorities are assigned according to the
Rate Monotonic order. Table 6.5 shows the results of test, comparing the
reconfiguration times observed in two different runs of the same duration.
In the first test only the four tasks included in the base task-set are active.
In the second test also the memory traffic generator is active. Figure 6.8
illustrates the distribution of reconfiguration times.

Experiment Reconfiguration time [ms]

Min Avg Max

4 Task-Hw 2.7942 2.8149 2.8434

4 Task-Hw + MemTask 2.8502 2.9230 2.9638

Table 6.5: Reconfiguration times.

6.4.1 Results evaluation

The results of this test show that memory intensive software activities
can affect the reconfiguration times, although the impact is very small,
in the order of 0.1 ms. Therefore, the system is able to sustain memory
intensive software activities without significant impacts on the reconfiguration
performances. This result is important in the perspective of real-time systems,
where bounded reconfiguration delays are essential to guarantee a predictable
system behavior. Given the size of the partial bistreams: 338 KByte, the
average observed throughput for the Device Configuration Interface are 117
MByte/s for the test with the base task-set and 113 MByte/s for the test
with the base task-set and the memory intensive software activity.

2.79 2.79 2.8 2.8 2.81 2.81 2.82 2.82 2.83 2.83 2.84 2.84
0

500

1,000

O
cc
ur
re
nc

es

4 Task-Hw

2.84 2.86 2.88 2.9 2.92 2.94 2.96
0

200

400

600

Reconfiguration time [ms]

O
cc
ur
re
nc
es

4 Task-Hw + MemTask

Figure 6.8: Distribution of reconfiguration times.

Conclusions

This thesis has been dedicated to the design and implementation of a
software support for real-time systems developed on heterogeneous systems
on a chip platform that includes a processor and a dynamically reconfigurable
FPGA. The software support allows real-time applications to exploit the
dynamic partial reconfiguration capabilities of the heterogeneous platform,
extending the concept of multitasking to the FPGA resource domain. With
respect to conventional approaches, based on system-level reconfiguration,
this work proposes a job-level approach, in which each job of a hardware
accelerated software activities can request the reconfiguration of the FPGA
fabric.

The performance of the system has been evaluated in a case study that
includes hardware accelerated image processing operations and a linear algebra
matrix operation. The measured speedup factors for accelerated operations
ranges between 5x and 14x, providing a relevant advantage over equivalent
software versions. Moreover, the time required to reconfigure a portion of
a modern FPGA can be estimated in the order of milliseconds, depending
on the amount of logic resources involved in the process. For the specific
device used in this case study, the Zynq Z-7010 SoC, the time required to
reconfigure roughly 25% of the logic resources of the internal FPGA is less
than 3 milliseconds. The reduction in the measured response times shows
that the speedup factors achievable due to FPGA hardware acceleration and
the system-level parallelism provided by the multi-slot architecture overcomes
the overheads introduced by the partial reconfiguration.

94

As a future work, the mechanisms used in the proposed implementation
can be incorporated in a real-time operating system, extending the inter-
face between the system and userspace with specific system calls to manage
reconfigurable hardware. Moreover, the system architecture deserves fur-
ther studies and evaluation in the belief that integration between hardware
accelerators and software support is the key element of the system.

Bibliography

[1] 7 Xeries FPGAs Configurable Logic Block. UG474. Rev. 1.7. Xilinx.
Nov. 2014.

[2] Stratix V Device Handbook. SV51002. Rev. 1.3. Altera. Nov. 2011.

[3] Louise H Crockett et al. The Zynq Book: Embedded Processing with
the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc.
Strathclyde Academic Media, 2014.

[4] Dirk Koch. Partial Reconfiguration on FPGAs: Architectures, Tools
and Applications. Vol. 153. Springer Science & Business Media, 2012.

[5] Vivado Design Suite User Guide: Partial Reconfiguration. UG909.
v2015.4. Xilinx. Nov. 2015.

[6] Ming Liu et al. “Run-time partial reconfiguration speed investigation
and architectural design space exploration”. In: Field Programmable
Logic and Applications, 2009. FPL 2009. International Conference on.
IEEE. 2009, pp. 498–502.

[7] Dirk Koch, Christian Beckhoff, and Jürgen Teich. “Recobus-builder—a
novel tool and technique to build statically and dynamically reconfig-
urable systems for FPGAs”. In: Field Programmable Logic and Appli-
cations, 2008. FPL 2008. International Conference on. IEEE. 2008,
pp. 119–124.

[8] Christian Beckhoff, Dirk Koch, and Jim Torresen. “Go ahead: a partial
reconfiguration framework”. In: Field-Programmable Custom Computing
Machines (FCCM), 2012 IEEE 20th Annual International Symposium
on. IEEE. 2012, pp. 37–44.

96

[9] K. Danne and M. Platzner. “Periodic real-time scheduling for FPGA
computers”. In: Third International Workshop on Intelligent Solutions
in Embedded System, 2005. Hamburg, Germany, May 2005, pp. 117–127.

[10] R. Pellizzoni and M. Caccamo. “Real-Time Management of Hardware
and Software Tasks for FPGA-based Embedded Systems”. In: IEEE
Transactions on Computers 56.12 (Dec. 2007), pp. 1666–1680.

[11] S. Saha, A. Sarkar, and A. Chakrabarti. “Scheduling Dynamic Hard
Real-Time Task Sets on Fully and Partially Reconfigurable Platforms”.
In: IEEE Embedded Systems Letters 7.1 (Mar. 2015), pp. 23–26.

[12] Enno Lübbers and Marco Platzner. “ReconOS: Multithreaded Pro-
gramming for Reconfigurable Computers”. In: ACM Transactions on
Embedded Computing Systems 9.1 (Oct. 2009), 8:1–8:33.

[13] Xabier Iturbe et al. “Microkernel Architecture and Hardware Abstrac-
tion Layer of a Reliable Reconfigurable Real-Time Operating System
(R3TOS)”. In: ACM Transactions on Reconfigurable Technology and
Systems 8.1 (Feb. 2015).

[14] Zynq-7000 AP SoC Technical Reference Manual. UG585. v1.10. Xilinx.
Feb. 2015.

[15] ARM. AMBA Specifications. url: http://www.arm.com/products/
system-ip/amba-specifications.php.

[16] AXI Reference Guide. UG761. v14.3. Xilinx. Nov. 2012.

[17] Leveraging Data-Mover IPs for Data Movement in Zynq-7000 AP SoC
Systems. WP459. v1.0. Jan. 2015.

[18] Mohammadsadegh Sadri et al. “Energy and performance exploration of
accelerator coherency port using Xilinx ZYNQ”. In: Proceedings of the
10th FPGAworld Conference. ACM. 2013, p. 5.

[19] Vivado Design Suite User Guide - High-Level Synthesis. UG902. v2015.4.
Xilinx. Nov. 2015.

[20] Partial Reconfiguration of a Hardware Accelerator with Vivado Design
Suite for Zynq-7000 AP SoC Processor. XAPP1231. v1.1. Xilinx. Mar.
2015.

[21] John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2011.

http://www.arm.com/products/system-ip/amba-specifications.php
http://www.arm.com/products/system-ip/amba-specifications.php

	Frontespizio
	Introduction
	Objectives
	Contributions
	Thesis outline

	Background
	Overview of Field-Programmable Gate Arrays
	Internal architecture
	Logic blocks
	Interconnetion system
	Specialized blocks
	System on a chip

	Design flow
	Design phase
	Synthesis phase
	Implementation phase
	Configuration bistreams

	Dynamic partial reconfiguration
	Structure of a reconfigurable design
	Benefits of partial reconfiguration
	Autonomous reconfiguration
	Common applications of partial reconfigurations

	Reconfigurable computing
	Taxonomy
	Reconfigurable devices classification

	Software support for reconfigurable devices
	Theoretical works
	Reconfigurable operating systems
	Contribution of this work

	Platform description
	Zynq System On a Chip
	Zynq internal architecture
	Programmable System
	Programmable Logic

	Interconnection between processing system and programmable logic
	AMBA AXI standard
	Interconnection structure

	Programmable logic configuration
	Device configuration interface subsystem

	Design flow and tools
	System on a chip design flow
	High-level synthesis
	Partial reconfiguration design flow

	Heterogeneous FPGA SoC Architecture
	Hardware accelerator classification
	AXI based slave accelerators
	AXI based master accelerators

	System architecture
	System Description
	Platform Parallelism

	System architecture model
	Software structure
	Software support library
	Software activities

	Reference platform
	Zynq SoC family
	ZYBO board

	Test implementation
	Programmable logic structure
	Decoupling logic
	Hardware accelerator structure
	Software stack

	Implementation details
	Hardware accelerated operations
	Hardware accelerators interface
	Blur and sharp Filters
	Sobel filter
	Matrix multiplier

	Support library software structure
	Reconfiguration service
	Hardware operation objects

	Experimental results
	Experimental system setup
	Programmable logic area allocation
	Hardware operations

	Speedup evaluation experiment
	Results evaluation

	Worst-case response time experiment
	Results evaluation

	Reconfiguration times profiling
	Results evaluation

