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Abstract

Nowadays rolling element bearings represent the most used low-friction supports usable
in a wide range of applications thanks to their possibility to be adapted to a wide range
of applications. They allow rotation in one direction while constraining the motions (2
rotations and 3 translations) along the other directions.

This thesis work aims at the numerically efficient simulation of bearing behavior
and a high fidelity prediction of the contact loads by including the most significant
phenomena, such as lubrication, clearance, preload, gyroscopic moments and centrifugal
loads.

The bearing’s inner ring is considered to have 5 dofs (degrees of freedom relatively
to the outer ring) while the reaction forces and moments are computed as output. The
models are based on contact behavior evaluation under different assumptions. The first
step of fidelity concerns the "idealized model" in dry contact model is adopted. In
a second level of fidelity the clearance and the preload are introduced. Since rolling
element bearings can operate at high speeds (e.g. 12000 rpm), as third fidelity level the
centrifugal load on the rolling elements is introduced. This load is due to the rotation
speed of the rolling elements around the bearing axis. The highest fidelity level in this
work introduces the lubrication. Since the contacts between the rolling element and
the raceways are non-conformal contacts, the elastohydrodynamic lubrication theory is
used.

The research presented in this thesis is the result of the work performed during a 6
months internship in Siemens Industry Software, Leuven, Belgium, within the 3D sim-
ulation division, focusing on drivetrain simulation for LMS Virtual.Lab Motion within
the Mechatronics Research and Technology Development team of the 3D Simulation Di-
vision. At the time of writing of this thesis, the modeling techniques developed in this
work are being integrated by means of a prototype implementation in the commercially
available multibody simulation tool LMS Virtual.Lab Motion.

ii



Acknowledgments

I would like to thank Professor Leonardo Bertini who gave me the opportunity to have
this inspiring experience, in which I grew up and I learned more than I thought.

A thank you to my company supervisor Dr. Gert Heirman which had fully supported
me during this six months, sharing with me his deep knowledge in the matter. Moreover
thank you for the effort and the several extra working hours we spent together, working
for new possibilities.

Thank you to all the Driveline RTD Team for have opened my mind with your
knowledge.

A thank you from the bottom of my heart to my dad Salvatore and my mother Mari-
arosa for supporting me during the whole academic path, sharing happiness, worries,
and all the feelings I have felt during these years.

To my friend and sister Matilde for believing in me at least as much as I believe
in her, as person first and as Engineer too, for the hours spent enjoying life as well as
solving technical problems.

To my girlfriend Arianna which has walked beside me through this though path,
sharing the loads weighting on our shoulders. She turned everything to colors.

Thank you to all my friends and colleagues in Siemens for the enjoyed time within
and out of the company.

Massa Marittima,
April 2016

Scurria Leoluca

iii



Ringraziamenti

Voglio ringraziare il Professor Leonardo Bertini il quale mi ha dato l’opportunità di fare
questa stimolante esperienza, nella quale sono cresciuto molto ed ho imparato più di
quanto potessi immaginare.

Un ringraziamento al mio supervisor aziendale Dr. Gert Heirman il quale mi ha
pienamente supportato durante questi sei mesi, condividendo con me la sua grande
esperienza nel campo. Inoltre grazie per l’impegno e le molte ore extra’lavorative spese
insieme per aprirmi nuove possibilità.

Un grazie a tutto il team Driveline RTD per avermi aperto la mente con la vostra
conoscenza.

Un grazie dal profondo del cuore a mio padre Salvatore ed a mia madre Mariarosa
per avermi supportato durante l’intero percorso universitario, condividendo felicità,
preoccupazioni e tutte i sentimenti provati in questi anni.

Alla mia amica e sorella Matilde per aver creduto in me almeno quanto io credo in
lei, come persona in primis ed anche come Ingegnere, per le ore spese godendoci la vita
così come per le ore spese a risolvere problemi tecnici.

Alla mia fidanzata Arianna che ha camminato accanto a me attraverso questo duro
cammino, condividendo il peso sulle nostre spalle. Ha reso tutto più colorato.

Grazie a tutti i miei amici e colleghi di Siemens per il tempo goduto sia all’interno
che all’esterno dell’azienda.

Massa Marittima,
Aprile 2016

Scurria Leoluca

iv



Contents

Abstract ii

Acknowledgments iii

Contents v

List of Figures vii

List of Tables x

1 Introduction 1

2 State of the Art 3

I Development of Modeling Techniques for Angular Contact Ball
Bearings 5

3 Introduction to Angular Contact Ball Bearings Modeling Techniques 6

4 Idealized Model 8
4.1 Dry Contact Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Hertz Contact Theory Applied to Angular-Contact Ball Bearings . . . . 13
4.3 Rolling Element Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Angular-Contact Ball Bearing Model Accounting for Centrifugal Loads 20
5.1 Rolling Element Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Rolling Element Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Rolling Element Behavior Accounting for Lubrication 28
6.1 Elliptical EHL Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Rolling Element Equilibrium in EHL . . . . . . . . . . . . . . . . . . . . 31
6.3 Rolling Element Behavior in EHL . . . . . . . . . . . . . . . . . . . . . . 33

7 Angular Contact Ball Bearing Behavior 36
7.1 From Rolling Element to Bearing Behavior . . . . . . . . . . . . . . . . . 37
7.2 Angular-Contact Ball Bearing Behavior . . . . . . . . . . . . . . . . . . 41

v



8 Angular Contact Ball Bearings Modeling Techniques Conclusions 52

II Development of Modeling Techniques for Roller Bearings 54

9 Introduction to Roller Bearings 55

10 Cylindrical Roller Bearing in Dry Contact 57
10.1 Slicing Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.2 Optimized Logarithmic Roller Crowning . . . . . . . . . . . . . . . . . . 61
10.3 Roller Equilibrium Accounting for Centrifugal Loads . . . . . . . . . . . 62

11 Radial Roller Bearing in EHL Contact 69
11.1 EHL Line Contact Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.2 Roller Equilibrium Accounting for EHL and Centrifugal Loads . . . . . . 74
11.3 Solution Convergence Varying the Amount of Slices . . . . . . . . . . . . 76

12 Tapered Roller Bearing 78
12.1 Tapered Roller Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 78
12.2 Solution Convergence Varying the Amount of Slices . . . . . . . . . . . . 84

13 Roller Bearing Behavior 87
13.1 From Global to Local Displacements . . . . . . . . . . . . . . . . . . . . 87
13.2 From Local to Global Loads . . . . . . . . . . . . . . . . . . . . . . . . . 88
13.3 Cylindrical Roller Bearing Behavior . . . . . . . . . . . . . . . . . . . . . 88
13.4 Tapered Roller Bearing Behavior . . . . . . . . . . . . . . . . . . . . . . 91

14 Roller Bearings Modeling Techniques Conclusions 97

15 Future Developments 99

Bibliography 101



List of Figures

1.1 Parts composing the bearing . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.1 Angular Contact Ball Bearing . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Rolling element moving on a raceway. . . . . . . . . . . . . . . . . . . . 9
4.2 Definition of the principal curvature axes. . . . . . . . . . . . . . . . . . 10
4.3 Ball bearing cross-section geometry . . . . . . . . . . . . . . . . . . . . . 11
4.4 Load-Approach curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 The rolling element under load . . . . . . . . . . . . . . . . . . . . . . . 14
4.6 The parameter A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7 Internal geometry while the ball is under load . . . . . . . . . . . . . . . 16
4.8 Influence of clearance and preload on load distribution over rolling elements 16
4.9 Definition of internal clearance by SKF . . . . . . . . . . . . . . . . . . . 17
4.10 Contact angle variation due to axial clearance . . . . . . . . . . . . . . . 17
4.11 Load-deflection characteristic curve for a rolling element in case of clearance 19
4.12 Load-deflection characteristic curve for a rolling element in case of preload 19
4.13 Influence of radial and axial displacement on the contact angle αr . . . . 19

5.1 Loss of symmetry in rolling element equilibrium. . . . . . . . . . . . . . 21
5.2 Positions and displacements of groove centers and ball center in the cross

section when centrifugal load occurs. . . . . . . . . . . . . . . . . . . . . 22
5.3 Representation of ball and inner-ring velocity. . . . . . . . . . . . . . . . 23
5.4 Contact forces behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Penetrations behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.6 Contact angles behavior behavior . . . . . . . . . . . . . . . . . . . . . . 26

6.1 Pressure and Film thickness distribution in elliptical EHL contact [19]
(Inlet: x < 0, Outlet: x > 0) . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Typical interference plots of film thickness [19] (Inlet: left, Outlet: right) 29
6.3 Stiffness of the EHL contact compared to the Hertzian stiffness [19] . . . 30
6.4 ∆ as a function of N for different values of L [19] . . . . . . . . . . . . . 31
6.5 Contact forces behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.6 Contact angles behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.1 The global and the local coordinate system . . . . . . . . . . . . . . . . 37
7.2 The inner ring reference point Oi . . . . . . . . . . . . . . . . . . . . . . 38

vii



7.3 Transformation to align the global coordinate system to the local one . . 39
7.4 Contact load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.5 Bearing reaction forces, moments and equivalent bearing angle . . . . . 43
7.6 Bearing reaction forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.7 Bearing reaction moments . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.8 Equivalent bearing angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.9 Bearing reaction forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.10 Bearing reaction moments and equivalent bearing angle . . . . . . . . . 49
7.11 Comparison between Dry contact model and EHL of bearing reaction

forces, moments and equivalent bearing angle . . . . . . . . . . . . . . . 51

8.1 Thrust Ball Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.2 Deep Groove Ball Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.3 Self-Aligning Ball Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.1 Cylindrical Roller Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.2 Tapered Roller Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10.1 Roller between two raceways . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.2 Schematic of flat roller profile on a flat race [38] . . . . . . . . . . . . . . 59
10.3 Sliced roller with reference parameters and local coordinate system . . . 60
10.4 Logarithmic profile with the parameters A, ls and zm [39] . . . . . . . . 62
10.5 Logarithmic profile applied to a roller . . . . . . . . . . . . . . . . . . . 63
10.6 Load distribution along the contact lines . . . . . . . . . . . . . . . . . . 66
10.7 Statically equivalent contact forces and moments between roller and race-

ways, setting θi = 0.03° and accounting for centrifugal loads . . . . . . 67
10.8 Static equilibrium solution convergence as function of the amount of slices 68

11.1 Pressure distribution under of RP and RI hypothesis . . . . . . . . . . . 71
11.2 Pressure distribution and fluid film thickness in case of: U = 1011, G =

5000 and: (1)W = 10−5, (2)W = 2 · 10−5, (3)W = 5 · 10−5, (4)W =
2 · 10−4. [41] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

11.3 Contact penetration arrangement. [31] . . . . . . . . . . . . . . . . . . . 73
11.4 Force model of EHL contact. [31] . . . . . . . . . . . . . . . . . . . . . . 74
11.5 Load distribution along the contact lines . . . . . . . . . . . . . . . . . . 75
11.6 Statically equivalent contact forces and moments between roller and race-

ways setting θi = 0.03°and accounting for centrifugal loads and EHL . 76
11.7 Static equilibrium solution convergence as function of the amount of slices 77

12.1 Tapered roller geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
12.2 Tapered roller equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 80
12.3 Tapered roller equilibrium in Dry and EHL lubricated case, where crown-

ing and displacements are magnified for visualization . . . . . . . . . . . 83
12.4 Contact statically equivalent forces and moments between roller and race-

ways and between roller and flange in dry case . . . . . . . . . . . . . . 85



12.5 Contact statically equivalent forces and moments between roller and race-
ways and between roller and flange in EHL regime . . . . . . . . . . . . 86

13.1 Global and local coordinate system in tapered roller bearings . . . . . . 88
13.2 Cylindrical Roller Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . 89
13.3 Roller bearing reaction forces, moments assuming dry contact . . . . . . 90
13.4 Roller bearing reaction forces, moments assuming EHL contact . . . . . 91
13.5 Tapered Roller Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
13.6 Roller bearing reaction forces, moments and real contact angle assuming

Dry contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
13.7 Roller bearing reaction forces, moments and real contact angle accounting

for lubrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
13.8 Roller bearing reaction forces, moments and real contact angle computed

with the two models compared . . . . . . . . . . . . . . . . . . . . . . . 96

14.1 Barrel Roller Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
14.2 Self-Aligning Roller Bearing . . . . . . . . . . . . . . . . . . . . . . . . . 98

15.1 Bevel gears meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
15.2 Analysis of a bearing with combination of FE and multibody modeling . 100



List of Tables

5.1 List of Symbols of Figure 5.2 . . . . . . . . . . . . . . . . . . . . . . . . 21

7.1 Geometrical and material proprieties . . . . . . . . . . . . . . . . . . . . 42
7.2 Displacement applied to the bearing inner ring . . . . . . . . . . . . . . 42
7.3 Displacement applied to the bearing inner ring . . . . . . . . . . . . . . 44
7.4 Displacement applied to the bearing inner ring . . . . . . . . . . . . . . 47
7.5 Displacement applied to the bearing inner ring for the comparison . . . 50

10.1 Crowned profile parameters used in the showcase . . . . . . . . . . . . . 61
10.2 Roller and crowning parameters . . . . . . . . . . . . . . . . . . . . . . . 62

11.1 Showcase parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

12.1 Showcase parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
12.2 Tapered roller showcase parameters . . . . . . . . . . . . . . . . . . . . . 84

13.1 Estimated geometrical and material proprieties of NU 1010 ECP . . . . 89
13.2 Input displacements for the simulation of NU 1010 ECP . . . . . . . . . 90
13.3 Estimated and from catalog values of the geometrical and material pro-

prieties of 33010/Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
13.4 Input displacements for the simulation of 33010/Q . . . . . . . . . . . . 93

x



Nomenclature

u Inner-raceway groove center displacement vector

α Nominal contact angle

α0 The α value with all the axial clearance on one side

αr Contact angle in displaced configuration

αbarus Lubricant pressure-viscosity coefficient

αmax Maximum contact angle allowed

αtot Equivalent bearing angle

β Roller angle

∆ Dimensionless penetration

δ Mutual approach of bodies in contact

δ? Dimensionless contact deformation

δa Axial inner ring displacement

δi Ball-inner raceway penetration

δi Linear displacement along the i-axis

δo Ball-outer raceway penetration

δr Radial inner ring displacement

η0 Lubricant viscosity at ambient pressure

γj Rotational displacement along the j-axis

κ Elliptical eccentricity parameter (a/b)

ν Poisson ratio

ν Poisson ration

ωb Ball rotational speed

xi



ωpw Rotational velocity of ball center around the bearing axis

ωshaft Shaft rotational speed

hc Dimensionless fluid film thickness in the center of the contact

ρ Material density

ρk,j Curvature of the body k along the principal plane j

Σρ Curvature sum

CrownDrop Crown drop vector

E Complete elliptic integral of the second kind

F Complete elliptic integral of the first kind

f Residual forces vector

J Jacobian matrix

Rij Rotation matrix from i− coordinates to j − coordinates

Wgl Wrench transformation matrix

jw Wrench vector w.r.t. the j−coordinate system

A Degree of the curvature of the crowning curve

A Distance between raceway groove curvature centers

a Semimajor axis of the projected contact

a? Dimensionless semimajor axis of contact ellipse

A0 The A value with all the axial clearance on one side

Ar Distance between raceway groove curvature centers in displaced configuration

B Outer ring width

B Total curvature of the bearing

b Semiminor axis of the projected contact

b? Dimensionless semiminor axis of contact ellipse

cl Radial clearance in roller bearings

clnc Axial clearance

clncr Radial clearance in deep groove ball bearing

D Ball Roller diameter



Dg Major tapered roller radius

Dl Minor tapered roller radius

Dib Inner bore diameter

Dob Outer bore diameter

dpw Pitch diameter

E Young modulus

E Young’s modulus

Eeq Reduced modulus of elasticity

F (ρ) Curvature difference

fi Ball-Inner ring osculation

fo Ball-Outer ring osculation

G Dimensionless material parameter

Hc Dimensionless fluid film thickness in the center of the contact

Kqj Load deflection factor for inner(j = i) and outer(j = o) ring

L Contact line length

L Dimensionless lubricant parameter

L Dimensionless material parameter

l Slice length

ls Length of the central straight zone

M Dimensionless load parameter

m Amount of slices

N Dimensionless load parameter

prel Axial preload

Q Force applied on the contact

qi,j , qo,j Contact force between the j-th slice and the inner/outer raceway

Ri Inner raceway radius of curvature (Roller Bearing)

ri Inner-raceway groove curvature radius

ro Outer-raceway curvature radius



rp Radius of the inner raceway groove center

rq Radius of the outer raceway groove center

Ri,x Reduced radius of curvature along the x axis w.r.t. the inner-raceway point of
contact

Ri,y Reduced radius of curvature along the y axis w.r.t. the inner-raceway point of
contact

Rj,x Reduced radius of curvature w.r.t. body j in ball’s motion direction lying in the
contact plane

Rj,y Major reduced radius of curvature w.r.t. body j (Perpendicular to x and lying
on the contact plane)

Rk,eq Reduced radius of curvature (contact k)

Rk,j Radius of the body k along the principal plane j

Ro,x Reduced radius of curvature along the x axis w.r.t. the outer-raceway point of
contact

Ro,y Reduced radius of curvature along the y axis w.r.t. the outer-raceway point of
contact

rpw Pitch radius

Sj Cartesian coordinate system {xj , yj , zj}

t Outer ring thickness

U Dimensionless velocity

ua Inner raceway axial displacement (groove center)

ur Inner raceway radial displacement (groove center)

us Sum velocity

va Rolling element axial displacement

vr Rolling element radial displacement

W Dimensionless load parameter

Z Number of rolling elements

zj Distance, along the zl axis, between the roller mean plane and j-th slice’s mean
plane

zm Crown drop at the end of the ends of the effective contact

dof Degrees of Freedom

w.r.t. With respect to



Chapter 1

Introduction

Rolling element bearings are used to allow low friction rotation in one direction while
constraining motion along the others (three translations, two rotations). They are
largely used in drivelines and gearboxes, mostly to support gears mounted on shafts.

The bearing is composed by four parts which are shown in Figure 1.1.

Figure 1.1: Parts composing the bearing

In this work the rolling element can be both a ball (i.e. ball bearings) and a roller
(i.e. cylindrical roller and tapered roller bearings). The rolling elements roll on the
raceways which are located in the internal part of the rings. The nominal contact
between the rolling element and the raceways can be a point (e.g. ball bearings) or a
line (e.g. roller bearings). The contacts in which the nominal (unloaded case) contact
print has a null area are called as non-conformal.

Due to the non-linearity introduced by the non-conformal contacts within the bear-
ings, the system level and the sub-system level behavior can no longer be studied sep-
arately. In order to evaluate the N&V (Noise and Vibration) behavior of mechanical
systems, high-fidelity models for rolling element bearings are required.

The proposed work aim at the high fidelity prediction of rolling element bearings in
order to allow system level N&V analysis.

The proposed work is divided in two parts, the first one concerns the modeling of
ball bearings (i.e. point contact), while the second one concerns roller bearings (i.e. line
contact).

Each part starts with the contact modeling in order to compute the equilibrium of
the rolling element squeezed between the raceways under assumptions which become

1



1. INTRODUCTION 2

less strict at each step.
Part I starts with Chapter 4 in which an Idealized model is introduced, which takes

into account only the non liearity coming from the non-conformal contacts in order
to compute the rolling element equilibrium. Chapter 4 introduces also the effects of
clearance and preload, which can deeply change the load-deflection characteristic curve
of the rolling element. Since the bearing can rotate up to tens of thousands RPM,
the rolling elements rotates around the bearing shaft with a speed which can provoke
non-negligible centrifugal load on the rolling element. The effect of the centrifugal
load on the ball equilibrium is therefore introduced in Chapter 5. In angular contact
ball bearings, the centrifugal load provokes the loss of symmetry, hence the solution
requires an iterative process. Since almost all bearings operate in lubricated conditions,
Chapter 6 introduces the lubricated contact in elastohydrodynamic regime (EHL). EHL
introduces more physics to the model and moreover gives a more reliable solution. The
model presented in Chapter 6 represents the most advanced contact modeling technique
since it accounts for the most influencing phenomena such as lubrication, centrifugal
load, clearance and preload. Finally Chapter 7 concerns the procedure to account for the
contact modeling techniques developed through the beforehand Chapters in the bearing
behavior description. The procedure considers as input a 5 dofs (degrees of freedom)
inner ring displacement (two tilting and three translations). This input is used to
calculate the displacement of the inner ring (w.r.t. the outer ring) in correspondence
of each rolling element. Then the contact model calculates the reaction forces due to
that displacement. Once the reaction forces are computed, they are summed in order
to calculate the reaction forces and moments in correspondence of the bearing axis.

Then Part II is introduced, which concerns roller bearings. Chapter 7 introduces the
solution for dry line contact, accounting for centrifugal load, clearance, crowning and
misalignment between the roller and the raceway. Then the contact model developed is
used to compute the equilibrium of a cylindrical roller squeezed between the raceways.
Chapter 11 introduces the EHL line contact, which allows more accurate analysis. Then
the solution becomes more speed dependent since the lubricant plays a key role. Chap-
ter 11 shows the procedures to account for lubricated line contact in cylindrical roller
equilibrium. The developed line contact modeling techniques in the beforehand Chap-
ters are then used to compute the equilibrium of a tapered roller in Chapter 12. The
equilibrium of a tapered roller introduces more variables, such as flange contact force
and gyroscopic moment. Finally Chapter 13 introduces the procedure to compute the
solution of the whole bearing considering different contact models in order to compare
them. The procedure is based on Chapter 7 even if it includes minor corrections.



Chapter 2

State of the Art

"Nanos gigantium humeris insidentes"
-Bernardo di Chartres

The behavior evaluation of a rolling element bearing is in general a nonlinear, stati-
cally indeterminate problem, except for simple cases such as purely axially loaded thrust
ball bearings. More complicated cases can be studied manually introducing simplifying
assumptions; see Palmgren [1]. If those assumptions are not allowed or desired, iterative
processes and computer simulations have to be introduced.

Models to describe the bearing behavior have been published by Jones [2] [3]. The
work done in [2] includes systems consisting of a number of rolling element bearings
on a rigid shaft, introducing major assumptions not allowed for our purpose (e.g. low
speed roller bearings, non-misaligned cylindrical roller bearings etc..). In [3], the shaft
flexibility has been introduced, by means of influence factors. Later, Jones and McGrew
[4] [5] [6] have done a step further in the analysis of ball, tapered roller and cylindrical
roller bearings (flangeless inner and outer ring). A systematic approach for the solution
of deep groove and angular contact ball bearings and tapered roller bearings has been
done by Andreason [7] [8] [9] in which vectors are introduced to describe the geometry,
displacements and forces. Andreason’s analysis has then been extended by Liu[10] with
the high speed effects of roller centrifugal loads and gyroscopic moment.

Then Harris and Kotzalas have published their books [11] [12] where a broad view
on the most significant phenomena concerning rolling element bearings is given. They
have given a systematic approach to account for almost all rolling element phenomena,
(e.g. gyroscopic moment, skewing, stress distributions etc..).

The approach proposed in this work starts from the contact modeling and rolling ele-
ment behavior to describe the whole bearing behavior under ever less strict assumptions.
This approach is adopted in order to allow different analyses, where the compromise
between fidelity and computational cost can be chosen by the user. In fact, more fidelity
also means typically a computationally more expensive solution.

Concerning contact models, in case of rolling element bearings the contact between
the rolling element and the raceways is defined as non-conformal, since the contact
print in unloaded configuration has a null area. The non-conformal contact ban be

3
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point contact or line contact depending on the unloaded contact print shape. The point
contact is typical of ball bearings, while line contact can be found in roller bearings
(e.g. cylindrical, tapered etc.)

The point contact solution neglecting friction has been developed by Hertz [13] which
formulations is still largely used to model solid bodies contacting at one point in dry
conditions (i.e. no lubricant).

At approximartely the same time, Reynolds described the flow of Newtonian fluids
in narrow gaps [14]. The theory of lubrication started. Then it took over 50 years before
Ertel [15] and Grubin [16] combined both effects to achieve what is nowadays known
as Elastohydrodynamic Lubrication (EHL). Subsequently the solution for EHL point
contacts has been tackled with numerical methods, starting from Newton Raphson al-
gorithms (e.g. Hamrock and Dowson [17]) and then introducing more sophisticated
methods as multigrid (e.g. Brandt and Livne [18]). Thereafter Wijnant [19] has com-
bined numerical models and curve fitting on the solution in order to develop formulations
which describe the steady state and transient lubricated contact behavior.

Line contact modeling presents more complexity due to the bi-dimensionality of the
problem, since along the line of contact the approach between the surfaces can be con-
stant or in general non-constant due to misalignment between the cylinder and the plate
or even non cylindrical body (e.g. crowned cylinder). In case of finite length cylinders,
misalignment etc. the contact is defined as Non-Hertzian, since the assumptions made
by Hertz become questionable. To consider misalignment the roller is sliced up in into
several slices. Along the length of each slice the penetration between the contacting
solid bodies is assumed as constant.

Several methods have been derived to predict the response of the solid near the con-
tact area, given an assumed load distribution (e.g. elliptical in the direction orthogonal
to the contact line). Several empirical models exist (e.g. Rothbart[20], Palmgren[21],
[22], [23]) as well as analytical solutions based on the constitutive behavior of the solid.
The most simple proposed by Weber and Banaschek [24] neglect the coupling between
discretized slices and the finiteness of the cylinder (e.g. rollers in roller bearings have
finite lengths), whereas the more advanced allow to take this into account, either emipir-
ical (e.g. by Teutsch and Sauer [25]), or analytical (e.g. Reussner [26], Kunert [22]).

To improve the model fidelity, lubrication can be introduced in the model. Several
formulas has been developed to predict the fluid film thickness of line contacts under
steady state by Moes [27], Gelink and Schipper [28], or even in transient conditions as
Sasaki et al. [29] and Rahnejat [30] did. As pointed out by Wiegert et al. [31], many
of these rely on superposing analytical solutions to the Reynolds equations for different
simple boundary conditions, which may be questionable.

This work starts from both contact models and bearing modeling techniques, and
merging them creates a novel approach to describe bearings behavior accounting for the
most relevant phenomena (e.g. clearance, centrifugal load, gyroscopic moment etc.).
The models proposed in this work allow the evaluation of the bearing response in steady-
state conditions in order to achieve a more accurate system-level behavior evaluation.
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Development of Modeling
Techniques for Angular Contact

Ball Bearings



Chapter 3

Introduction to Angular Contact
Ball Bearings Modeling Techniques

This part concerns the development of an high fidelity modeling technique for angular
contact ball bearings. In Angular contact ball bearings the inner and the outer raceway
are relatively displaced to each other in the bearing axis direction. This allows them
to accommodate combined loads, as simultaneous axial and radial loads. The angular
contact ball bearing capacity of axial loads carrying increases as the contact angle
increases. It is defined as the angle, on the cross-section, between the line along which
the contact points lay and the line perpendicular to the bearing axis. Figure 3.1 shown
a typical angular contact ball bearing.

Figure 3.1: Angular Contact Ball Bearing

The high fidelity modeling technique developed starts from the contact modeling to
describe the whole bearing behavior. Few contact modeling are introduced in order to
increase the fidelity at each step. Each model is improved introducing more physic to it.
The first one considers what is called idealized bearing, in which the only phenomena
considered is the non linearity coming from the non-conformal contact between the ball
and the raceways. Then some geometrical parameters are included, as clearance (axial
play) and preload. Due to clearance and preload the bearing internal load distribution
changes. The bearing inner ring, rotating provokes the ball rotation around the bearing
axis. This rotation induces centrifugal load on the rolling elements. The centrifugal
load is then introduced as third model, it increases the model complexity since it cause
a loss of symmetry within the bearing.

In order to reduce wear, noises and vibrations in almost all cases, the contact between

6
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the rolling element and the raceways is lubricated. Due to high contact pressure both the
lubricant and the solid bodies behavior is complex. Concerning the lubricant behavior,
the viscosity changes as the local pressure increases. The viscosity increment induces
the solid bodies (ball and raceway) to assume a complex deformation. The effect of
lubrication is introduce as fourth model, which represents the most accurate model
proposed in this work.

As well as the contact fidelity increases, the computational effort does.
Once that the contact modelings are introduced, a procedure to account for all

the rolling element is developed in order to define a law which, for a given inner ring
displacement vector gives back the reaction loads on the bearing axis due to the contacts
between the rolling element and the raceways.



Chapter 4

Idealized Model

This section illustrates the methods used to develop an idealized model to start from
and to move the first steps forward in bearing modeling.

With the adjective "idealized" is meant a model where most part of phenomena,
clearance, centrifugal load etc. are neglected; In particular the following minor assump-
tions are made:

• The internal clearance will be neglected at first;

• Dry contact between ball and raceways;

• Negligible dynamic loads;

• Low rotation speed hence negligible centrifugal effects;

And more, in order to justify using the Hertz contact theory :

• The proportional limit of the material is not exceeded, that is, all deformation
occurs in the elastic range;

• Loading is perpendicular to the surface, that is, the effect of the surface shear
stress is neglected;

• The contact area dimensions are small compared with the radii of curvature of
the bodies under load;

These last assumptions do not limit the model validity since the contact analyzed
fits well in these assumptions.

The classical solution for the local stresses and strains of two elastic bodies appar-
ently contacting at a single point was established by Hertz [13] in 1986. Nowadays,
contact stresses are frequently called Hertzian or simply Hertz in recognition of his
accomplishment.

The above-mentioned assumptions are made in order to allow modeling the ball-
raceway contact as a Hertian contact, which gives a convenient solution to the contact
problem.

8
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4.1 Dry Contact Model

Figure 4.1 shows the configuration of a rolling element moving on a raceway, in particular
the inner one.

As long as we consider the dry contact we will neglect the effects of the lubricant,
leaving the discussion for the following chapters.

Figure 4.1: Rolling element moving on a raceway.

Due to the applied load Q both solids will deform elastically, forming an elastic
contact print or contact area. Since the surfaces have sufficient radii of curvature in
all directions, the unloaded contact will be a point, due to this it is defined as a non-
conforming contact. The footprint produced by the bodies deformation is in general an
ellipse, thus elliptical contact.

Locally, each undeformed surface can be defined by two radius of curvature Rk,j
along the two principal directions of curvature. In order to model them as an equivalent
compliant ellipse contacting an infinite stiff plane, which is exactly what the Hertz theory
does, some parameters have to been introduced.

The first introduced parameter is the surfaces curvature ρ, it is defied as:

ρk,j =

{
1

Rk,j
, For convex surfaces

− 1
Rk,j

, For concave surfaces
(4.1)

Then for each principal direction of curvature an equivalent radius of curvature has
to be introduced in order to account for the different curvature of the bodies along the
same direction. Since for each principal direction an equivalent radius of curvature can
be introduced, the surfaces curvature can be defined by two of them. The first direction
is along the rolling element motion direction while the second one lies on the contact
plane and is perpendicular to the first one. In this work the convention used to refer
to these direction is to use y for the direction with the greater equivalent radius of
curvature while with x the one with the minor one.

In ball bearings, the x direction is the motion direction, while the y direction is the
perpendicular one, as is shown in Figure 4.2.
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Figure 4.2: Definition of the principal curvature axes.

These assumptions lead to:
Rj,y
Rj,x

≥ 1 (4.2)

Where the reduced radii of curvature, Rx and y, are defined according to:

R−1x = ρI,x + ρII,x (4.3)

R−1y = ρI,y + ρII,y (4.4)

Moreover the following definitions are used:

• Curvature sum:

Σρ =
∑
i,j

1

Ri,j
=

1

RI,x
+

1

RI,y
+

1

RII,x
+

1

RII,y
(4.5)

• Curvature difference

F (ρ) =
(ρI,x − ρI,y) + (ρII,x − ρII,y)

Σρ
(4.6)

4.1.1 Hertzian Solution

Our purpose is to develop a model which describes the ball bearing behavior. It will be
based on Hertz contact theory. In this work, nomenclature of Harris and Kotzalas[11]
is adopted.

In ball bearings, the ball is squeezed between two raceways, which causes two contact
point on it; the raceways are defined as the area within the bearing rings where the
rolling elements roll. The two raceways have different curvatures. The inner raceway has
a hyperbolic paraboloid shape, since it is convex in the rolling direction and concave in the
perpendicular one. Hence the contact is defined as sphere-hyperbolic paraboloid contact.
The outer raceway has both rolling direction and the perpendicular one as concave
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surfaces, hence this surface is defined as elliptical paraboloid. The contact between the
rolling element and the outer raceway can be then defined as sphere-elliptical paraboloid.
In Figure 4.3 is showed the cross-section geometry of the bearing, in order to graphically
visualize the problem.

Figure 4.3: Ball bearing cross-section geometry

In this case the reduced radii of curvature for the inner-ring and outer-ring contact
are defined as follow:

• Inner ring:

Ri,y =

(
2

D
− 1

ri

)−1
, Ri,x =

(
2

D
+

1

Ri

)−1
(4.7)

• Outer ring:

Ro,y =

(
2

D
− 1

ro

)−1
, Ro,x =

(
2

D
− 1

Ro

)−1
(4.8)

Where Ri and Ro are the effective radii of curvature along the motion direction,
naming αr the effective contact angle (in displaced configuration), they are defined as:

Ri =
rp

cos(αr)
− D

2
, Ro =

rq
cos(αr)

+
D

2
(4.9)

Omitting the theoretical treatise (a complete explanation can be found in [11]), to
describe the Hertz some parameters still need to be introduced.

Since the solution is given by elliptical integrals, introducing the auxiliary quan-
tity F (ρ) as determined by Equation 4.6, this is found to be function of the elliptical
parameters E and F as well as contact contactprints a and b as follows:
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F (ρ) =
(κ2 + 1)E− 2F

(κ2 − 1)E
(4.10)

where F and E are the complete elliptical integrals of the first and the second kind,
and κ the elliptical eccentricity parameter. Moreover κ represent also the ratio of a and
b respectively, where a is the semimajor axis of the projected elliptic contact surface
and b the semiminor one.

Brewe and Hamrock [32], using a least squares method of linear regression, obtained
simplified approximations defined as:

κ ≈ 1.0339

(
Ry
Rx

)0.636

(4.11)

E ≈ 1.0003 +
0.5968(
Ry

Rx

) (4.12)

F ≈ 1.5277 + 0.6023 ln

(
Ry
Rx

)
(4.13)

For 1 ≤ κ ≤ 10 the errors in the calculation of these parameter is less than 3%.
In our case both bodies are made of the same material, so it was further determined

that [11]:

a = a?

[
3Q

Σρ

(
1− ν2

)
E

]1/3
(4.14)

b = b?

[
3Q

Σρ

(
1− ν2

)
E

]1/3
(4.15)

δ = δ?

[
3Q

Σρ

(
1− ν2

)
E

]2/3
Σρ

2
(4.16)

Where δ is the mutual approach of the two bodies in contact and [11]:

a? =

(
2κ2E
π

)1/3

(4.17)

b? =

(
2E
πκ

)1/3

(4.18)

δ? =
2F
π

( π

2κ2E

)1/3
(4.19)

In Harris and Kotzalas [11], values for the dimensionless parameters are given also
as tables and as functions of F (ρ).
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4.2 Hertz Contact Theory Applied to Angular-Contact Ball
Bearings

This section describes both the static ball equilibrium and the kinematics during the
displacement of the inner ring with respect to the outer ring.
It is shown how displacement can deeply change the bearing conditions of the individual
ball-raceway contacts.

4.2.1 The Ball Equilibrium

In ball bearings the contact between the rolling element and both raceways are point
contacts due to the difference between the ball radius and the raceway radius of curva-
ture. That difference is quantified by the osculation:

fi =
ri
D
, fo =

ro
D

(4.20)

To write a simple δ − Q relation based on the formulation proposed by Harris [11]
the constants can be gathered in a single term as follows:

Kqj =

[
1

2

(
3

1− ν2

E

)2/3

δ?j

]−3/2
· Σρ−1/2j (4.21)

The latter equation allows to introduce a more compact formulation:

Qj = Kqj · δ3/2j where j = i, o (4.22)

Typical load-deflection curves are shown in figure 4.4, where by the red curve we
refer to the ball-outer raceway contact while the blue curve refers to the ball-inner
raceway.

In the study-case of a rolling element squeezed between both raceways those contact
forces have to satisfy the equilibrium of the ball. As the approach between the ring is
given, the rolling element equilibrium can be computed introducing the force equilibrium
as follows: {

δtot = δi + δo

Qi = Qo → Kqi · δ3/2i = Kqo · δ3/2o

(4.23)

that leads to: δo =

[(
Kqo

Kqi

)2/3
+ 1

]−1
· δtot

δi = δtot − δo
(4.24)

and finally:
Q = Qi = Qo = Kqi · δ3/2i = Kqo · δ3/2o (4.25)
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Figure 4.4: Load-Approach curves

Where Qi and Qo are respectively the contact force between the inner-raceway or outer-
raceway and the rolling element. The ball under load is shown in figure 4.5.
The momentum equilibrium is not necessary yet since the contact forces lays on the
same straight line.

Figure 4.5: The rolling element under load

The computational cost of the solution is nearly zero, since the ball equilibrium
is computed without iterative processes, which leads to an efficient and immediate
solution.

4.2.2 Internal-Geometry Variation due to Displacement

Displacing the inner-ring changes the contact conditions, the most important variable
parameter is the contact angle α. It is defined as the angle between the bearing radial
direction and the contact-line which is defined as the straight line through the raceways
center of curvature as shown in figure 4.6.
The contact angle varies from an initial nominal value called α to a real value so called
αr. This change will deeply influence the bearing behavior.
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Figure 4.6: The parameter A

The parameter A is the distance between raceway groove curvature centers, also
shown in Figure 4.6. In case of contact between bodies, in unloaded conditions his
value is:

A = (fo + fi − 1) ·D (4.26)

where the first factor is also called total curvature of the bearing, then named B:

B = fo + fi − 1 (4.27)

A = B ·D (4.28)

Displacing the inner ring, also displaces its radius of curvature center, due to this,
the line where the two centers are located change its slope, which means that the contact
angle is no longer equal to the nominal contact angle α.

The real contact angle αr is function of the radial and axial displacement of the inner
ring as is shown in figure 4.7 where co refers to the outer groove radius of curvature
center, ci the inner one, both in undisplaced configuration, while c′i is the displaced
inner groove radius of curvature center.

The terms δa and δr are respectively the axial and the radial inner ring displace-
ment while Ar is the distance between raceway groove curvature centers in displaced
configuration.

By geometrical considerations, a relation for Ar can be easily written as follows:

Ar =
√

(Acosα+ δr)2 + (Asinα+ δa)2 (4.29)

Furthermore:

αr = acos

(
A · cosα+ δr

Ar

)
= asin

(
A · sinα+ δa

Ar

)
(4.30)

4.2.3 Clearance and Preload Effects

The clearance is an essential factor in bearing’s behavior. Due to it the bearing will
present a free-play and free-misalignment, while the opposite effect is given by the
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Figure 4.7: Internal geometry while the ball is under load

preload. One of the most important phenomena concerns the load distribution among
the rolling elements, as is showed in figure 4.8, where is shown the circular sector ψl
where the rolling elements get in contact.

(a) Without clearance (and
preload)

(b) With clearance (c) With preload

Figure 4.8: Influence of clearance and preload on load distribution over rolling elements

Manufacturers data about the internal clearance are defined, in case of angular
contact ball bearings, using a pair of them and defining the axial play as showed in
Figure 4.9.

Since different definitions of clearance exists, in this work the following definition will
be adopted: starting form the inner ring position in which the ball and the raceways are
in contact, and moving backwards (hence loosing the contacts), the clearance is defined
as the maximum axial play allowed between these two configurations. Introducing the
clearance and preload parameters and playing with them, any configuration can be
described.

Supposing as nominal configuration the one in which the rolling elements are in
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Figure 4.9: Definition of internal clearance by SKF

contact with both raceways and then going backwards is possible to define our initial
contact angle and the initial arrangement of internal configuration.

Figure 4.10: Contact angle variation due to axial clearance

The nominal configuration in Figure 4.10 is defined by co and ci where co means
the center of the outer groove radius of curvature and ci the center of the inner groove
radius of curvature, both in undisplaced configuration. Starting from this position we
will impose a negative axial translation of the inner ring as much as the axial clearance
is. Once mounted, the nominal position of the bearing w.r.t. the clearance will be
within this range. Then the contact angle and the distance between the two groove
curvature centers are defined as:

A0 =
√
A2 − 2Asinα · clnc+ clnc2 (4.31)
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α0 = acos

(
A · cosα

A0

)
(4.32)

The axial preload will be taken into account adding this value to the axial displace-
ment in order to allow for any inner raceway groove curvature center between ci and c′i.

When the axial clearance is taken into account, the values of A and α are replaced
by the values of A0 and α0.

In this way an easy way to distinguish whether the rolling element gets in contact
or not is given by: {

Ar < BD, NO Contact
Ar ≥ BD, Contact

(4.33)

In case of deep groove ball bearings the internal clearance is given as radial clearance,
it can be easily convert in axial clearance by [11] :

clnc = 2A · sin
(

acos

(
1− clncr

2A

))
(4.34)

where clncr is the nominal radial clearance. By Eq. 4.34 the technique developed
for the angular contact ball bearings can be extended to deep groove ball bearings
while in thrust ball bearings case the clearance has no reason to exist due to its intrinsic
geometry.

4.3 Rolling Element Behavior

This section shows how the rolling element behaves in case of inner ring displacement.
Thanks to this model’s simplicity the computation is fast and takes negligible time to
be computed.

Figure 4.11-(b) shows the load as function of δr for fixed values of δa. Figure 4.11-(a)
shows the load as function of δa and δr in a three dimensional plot.

Is clearly visible how below a certain displacement there is no contact between the
rolling element and the raceways due to clearance, while when the clearance is totally
covered by the displacement the contact occurs.

The preload provokes the opposite situation in which also for zero-displacement there
is still a certain amount of contact force, this configuration is shown in Figure 4.12.

The second parameter to be investigated is the real contact angle αr which influences
the bearing behavior since it represent the contact force direction. The contact angle
behavior is shown in Figure 4.13 where for low displacement, thus when the rolling
element is not yet in contact, the contact angle in not defined.

Is clearly visible how it increases as the axial displacement δa increases while it
decreases as the radial displacement δr decreases.
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(a) 3D plot (b) 2D plot

Figure 4.11: Load-deflection characteristic curve for a rolling element in case of clearance

Figure 4.12: Load-deflection characteristic curve for a rolling element in case of preload

(a) 2D plot (b) 3D plot

Figure 4.13: Influence of radial and axial displacement on the contact angle αr



Chapter 5

Angular-Contact Ball Bearing
Model Accounting for Centrifugal
Loads

Since angular-contact ball bearings allows speeds up to few thousands rpm; in case of
high fidelity methods, which are our aim, centrifugal loads are not negligible since their
effect can deeply modify the internal position of the rolling element.

In fact, in case of angular contact ball bearings the centrifugal load direction is not
aligned with the contact line of action. To achieve the equilibrium, the ball has to
assume a configuration where the contact contact angle with the inner and outer ring
raceway are different. This configuration can not be defined a priori but requires an
iterative process.

This model is substantially based on the work of De Mul et al.[33], though the algo-
rithm used to solve the base problem differs somewhat and the implemented technique
takes into account the clearance in a different way compared with what De Mul et al.[33]
proposed.

The adopted assumptions made are the same as in Chapter 4 except for the cen-
trifugal load which is no longer neglected.

5.1 Rolling Element Equilibrium

The equilibrium of a rolling element is basically a non-linear, statically indeterminate
problem, except for trivial cases.

Since the contact angles between rolling element and both raceways change and due
to the non-linearity in the contact location, the solution can not be computed in closed
form, thus an iterative process has to be used.

As shown in Figure 5.1 the centrifugal load provokes a loss of symmetry, which
means that the line of action of the contact resultant forces applied from both raceways
on the ball are no more aligned w.r.t. each other.

On the cross-section, the ball has 2 dofs since the rotational equilibrium is not taken
into account since friction is neglected. Therefore the contact forces lines of action have

20
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Figure 5.1: Loss of symmetry in rolling element equilibrium.

to pass through the ball center. The ball position in the cross section plane w.r.t. the
equilibrium without centrifugal load (computable in exact form) can be described by
two independent linear coordinates, vr and va, which are respectively the radial and
axial linear displacement of the ball center.

In order to efficiently figure out the problem, a geometrical representation is needed.
Figure 5.2 shows the geometry of the loaded and displaced equilibrium.

Table 5.1 lists and explains the meaning of the points and lines shown in Figure 5.2.

Co Outer-ring curvature center (Fixed)
Cs Rolling element center
C ′s Rolling element center (Displaced)
Ci Inner-ring curvature center
C ′i Inner-ring curvature center (Displaced)
lo Distance between ball center and Co
l0o Distance between ball center and C ′o
li Distance between ball center and Ci
l0i Distance between ball center and C ′i
αo Outer ring-ball contact angle
αi Inner ring-ball contact angle

Table 5.1: List of Symbols of Figure 5.2

The ball equilibrium without centrifugal load can be calculated as Chapter 4 de-
scribes.

Introducing the centrifugal load the ball center is no longer located on the contact
line connecting inner and outer ring groove centers.

The aim is now to describe the rolling element location by two variables (since it has
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Figure 5.2: Positions and displacements of groove centers and ball center in the cross
section when centrifugal load occurs.

2-dof). Indeed the most suitable variables are the location on the cross-section plane of
the ball’s center w.r.t. the unloaded configuration, so called va and vr.

To align the procedure with what De Mul et al. have done in [33], the equations
have to be pre-processed. In fact the clearance definition adopted in this work is more
accurate since it is based on a single value (retrievable from catalogs) instead of two
values (radial and axial).

Starting from the loaded configuration without ball centrifugal load we can define
an equivalent penetration and contact angle. Through the model proposed in Chapter
4 the rolling element equilibrium can be easily computed (neglecting centrifugal load)
therefore the penetration between ball and both raceways, δi and δo from Eq. (4.25),
as well as the real contact angle αr from Eq. (4.30).

Assuming then αr as nominal contact angle, the equivalent axial and radial inner-
ring displacement can be computed as follows:{

ua = (δi + δo) · sinαr
ur = (δi + δo) · cosαr

(5.1)

In this way the clearance is taken into account as explained in Chapter 4, rephrasing
the problem in an equivalent way which allows to use what proposed in [33]. In fact
the rolling element is being unloaded along the line of action defined by αr.

The above-mentioned procedure leads to assume that the α angle in Figure 5.2
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corresponds to αr calculated neglecting the centrifugal load and u = [ur ua]
T as from

Eq. 5.1.
Referring to Figure 5.2 the following geometric relationships apply[33]:

tanαi =
l0isinαr + ua − va
l0icosαr + ur − vr

(5.2)

tanαo =
l0osinαr + va
l0ocosαr + vr

(5.3)

li =
[
(l0icosαr + ur − vr)2 + (l0isinαr + ua − va)2

]1/2
(5.4)

lo =
[
(l0ocosαr + vr)

2 + (l0esinαr + va)
2
]1/2

(5.5)

δi = li − l0i (5.6)

δo = lo − l0o (5.7)

Combining Eq. (5.6) and (5.7) with Eq. (4.22) the contact forces Qi and Qo due to
ball-raceways penetrations can be easily computed.

The third force acting on the rolling element is the centrifugal force due to the
revolution of the rolling element around the bearing axis. This force can be immediately
calculated as follows:

Fc = mb · rpw · ω2
pw (5.8)

where ωpw is the rotational velocity of ball center around the bearing axis, mb the mass
of the ball and rpw the pitch diameter. Since the shaft speed ωshaft instead of ωpw is
given as input, a relation between these two variables is needed.

Figure 5.3: Representation of ball and inner-ring velocity.

As first approximation (not that far from reality) it is assumed that the ball-raceways
contacts are constantly without sliding, therefore referring to Figure 5.3:

ωb ·D = ωshaft ·
(
rp −

D

2
cosαr

)
(5.9)

vpw = ωb ·
D

2
= ωpw · rpw (5.10)
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combining (5.9) with (5.10) in order to eliminate ωb, leads to the relation between
ωpw and ωshaft as follows:

ωpw =
rp −D/2 cosαr

2 rpw
ωshaft (5.11)

Now that the three forces have been defined, the rolling element equilibrium can be
formulated as follows (see Figure 5.1):

f =

Fr
Fa

 =

Qicosαi −Qocosαo + Fc

Qisinαi −Qosinαo

 =

0

0

 (5.12)

which is a set of non linear equations, where f represents the vector of the residual
forces in each iteration step while the unknown is the ball center position vector v =
[vr va]

T ; to solve Eq. (5.12) a Newton-Raphson method can be introduced, which gives
the following iterative process:

vk+1 = vk − J−1k fk (5.13)

where Jk is the Jacobian matrix for the k-th iteration step. It is defined as follows:

J =


∂Fr
∂vr

∂Fr
∂va

∂Fa
∂vr

∂Fa
∂va

 (5.14)

where (see [33]):

∂Fr
∂vr

= −∂Qi
∂δi

c2αi −
Qi
li

s2αi −
∂Qo
∂δo

c2αo −
Qo
lo

s2αo (5.15)

∂Fa
∂vr

=
∂Fr
∂va

= −∂Qi
∂δi

sαicαi +
Qi
li

sαicαi −
∂Qo
∂δo

sαocαo +
Qo
lo

sαocαo (5.16)

∂Fa
∂va

= −∂Qi
∂δi

s2αi −
Qi
li

c2αi −
∂Qo
∂δo

s2αo −
Qo
lo

c2αo (5.17)

Where the abbreviation s and c are applied to respectively sin and cos to streamline
the notation. Applying Eq. (4.22) to both contacts, leads to:

∂Qi
∂δi

=
3

2
·Ki · δ1/2i (5.18)

∂Qo
∂δo

=
3

2
·Ko · δ1/2o (5.19)

The method has a quadratic convergence rate and having a sufficient accurate guess
value to start from, the method will converge in almost all cases due to the monotonic
set of equations to be solved.

The method breaks down when the rolling element is not or just barely in contact.
This reduce the Jacobian to a badly conditioned, singular or even null matrix. When this
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happens, the new solution vector obtained in the next iteration step becomes extremely
large and physically meaningless. To avoid this solution behavior a "damped" Jacobian
matrix is used. This is roughly achieved limiting the amplitude of the Jacobian changes
at each step w.r.t. the previous one. This prevent possible solution singularity.

5.2 Rolling Element Behavior

This section shows how the rolling element behaves when a load (in terms of displace-
ment) is given to the inner raceway varying the shaft speed.

The behavior is shown introducing a fixed axial displacement of the inner ring δa
and then an increasing radial displacement δr. Different curves are plotted on the same
picture in order to illustrate how the shaft speed influences the solution, in particular
the contact angles.

The first result shown is the contact load in Figure 5.4 where the axial displacement
has been set as:

δa = 0.01 mm (5.20)

while three different shaft speeds are imposed, respectively at 0, 5000, 10000 rpm.

(a) Inner raceway-ball contact force (b) Outer raceway-ball contact force

Figure 5.4: Contact forces behavior

The loading process is composed by three different parts:

• First part: there is no contact between on the inner raceway so the centrifugal
load is carried by the outer raceway contact. Because of this missed contact, there
is no contact force on the inner raceway while a constant force is applied on the
outer one.

• Second part: the rolling element gets in contact also with the inner raceway. It
is clearly visible how this provokes a discontinuity. This behavior will be fully
explained later.

• Third part: the rolling element is significantly loaded, so the centrifugal load
becomes negligible w.r.t. contact forces such that the rolling element behaves
similar to the 0 rpm case.
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The discontinuity can be explained by looking in detail what happens during the
radial displacement. At the beginning the rolling element does not get in contact with
the inner raceway. Then increasing δr the point in which the rolling element would be in
contact, if one were to neglect the centrifugal load, occurs. Due to contact deformation
between the ball and the outer raceway it looses contact. Finally when this deformation
is compensated by δr the rolling element suddenly restores its oblique contact angles.
Due to this both the contact angles have to change in order to compensate for the
centrifugal load, which provokes an increment of penetration on both raceways, leading
to the abrupt step clearly visible in Figure 5.4.

The penetration evaluation comes from Hertz theory (4.22) and it is showed in
Figure 5.5 where is still clearly visible the discontinuity above-mentioned and the three
parts already explained.

(a) Inner raceway-ball penetration (b) Outer raceway-ball penetration

Figure 5.5: Penetrations behavior

The second parameters to investigate are the contact angles, which are showed in
Figure 5.6. In fact, due to centrifugal load, they are no longer identical since they have
to balance the centrifugal effect.

(a) Inner raceway-ball contact angle (b) Outer raceway-ball contact angle

Figure 5.6: Contact angles behavior behavior
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Concerning these parameters the three parts are still the same but they have brought
different behaviors shown in Figure 5.6 and they can be explained as:

• First part: due to the missed ball-inner raceway contact, the rolling element
locates itself in a configuration in which αo = 0 deg while the inner contact angle
is undefined since there is no contact, therefore the nominal value is displayed.
This is a configuration where αo = 0 deg allows the outer ring to carry the whole
centrifugal load.

• Second part: the ball gets in contact with both raceways; αo set itself to a value
less than the nominal value in order to carry the centrifugal load, while αi becomes
greater than the nominal value in order to satisfy the ball equilibrium.

• Third part: as already explained, the more the rolling element is loaded, the
more the centrifugal load becomes negligible w.r.t. the contact forces, thus both
variables approximate the behavior of the 0 rpm case.



Chapter 6

Rolling Element Behavior
Accounting for Lubrication

In this chapter, the previously presented modeling technique, is extended to account
for lubrication. Lubricated contact models require more computational effort due to
their intrinsic complexity. Since almost all bearings work in lubricated conditions this
will give a additional value to our modeling techniques and moreover a considerable
increment of fidelity.

In case of ball bearings, usually the contact requires to be modeled as elastohydro-
dynamic (EHL) which leads to a more reliable model in terms of behavior prediction,
on the other hand more sophisticated algorithms are involved which raise the compu-
tational effort.

The EHL regime occurs when, due to the contact pressure distribution both the
lubricant piezoviscosity and the solid compliance cannot be neglected, the EHL regime
is the opposite of the rigid-isoviscous regime in which both the bodies compliance and
the lubricant piezoviscosity are neglected.

The model used in this work is based on the work of Wijnant [19] which developed
a dimensionless equation describing the contact behavior. Such equation is estabil-
ished solving the Reynolds [14] and Film Thickness equations combining multigrid and
multilevel methods and then a curve is fitted to approximate the behavior by a single
dimensionless equation.

6.1 Elliptical EHL Contact

Almost all rolling bearings work under lubricated conditions, therefore adding the
physics related to lubrication to the model, also the prediction will be more reliable.

In case of non-conformal point contact the contact behavior can no longer be mod-
eled as rigid-isoviscous and studying the contact by an hydrodynamic analysis only,
immediately shows why. In fact solving the Reynolds equation for point-contact in
steady-state condition, neglecting body elasticity and lubricant piezoviscosity, the pres-
sure field obtained has a high peak already for relatively low speed. This peak easily
reaches a value which brings to non-negligible bodies deformation and non-negligible

28
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lubricant viscosity variation.
When both bodies’ elasticity and lubricant piezoviscosity are of importance, the

regime is called Elastohydrodynamic Lubrication (EHL).
Figure 6.1 shows the typical pressure distribution and film thickness in elliptical

EHL contact. The pressure in the contact closely resembles the Hertzian semi-ellipsoidal
distribution. It deviates from this distribution in the inlet region and in the outlet region
of the contact. In the inlet region the pressure has a smoother distribution instead of
the discontinuity in the pressure gradient occurring for dry contacts. In the outlet part
a pressure peak occurs, known as "pressure spike". The spike is a consequence of the
exponential increase of the viscosity with pressure. Its height depends on the density
and consequently on the density-pressure relation that is used, when studying it by
means of numerical simulation.

(a) Pressure distribution (b) Film thickness distribution

Figure 6.1: Pressure and Film thickness distribution in elliptical EHL contact [19] (Inlet:
x < 0, Outlet: x > 0)

Figure 6.2 shows an interference plot which clearly shows how the film thickness dis-
tribution is horseshoe-shaped where the narrower part is located at the outlet provoking
the pressure spike.

Figure 6.2: Typical interference plots of film thickness [19] (Inlet: left, Outlet: right)

Beyond the increased fidelity, there is a second important goal why EHL phenomena
have to be introduced in the modeling technique. The contact stiffness in lubricated
contacts is a continuous function, as Figure 6.3 shows, while in case of dry contact
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it has a discontinuous behavior. The stiffness function in EHL regime, reaches zero
asymptotically for infinite separation of the surfaces.

Figure 6.3: Stiffness of the EHL contact compared to the Hertzian stiffness [19]

The dimensionless parameters used to describe the contact behavior, are defined in
the work of Wijnant [19] using a powerful tool to obtain similarity groups for a given
set of equations. It is so-called optimum similarity analysis, as presented by Moes [27],
which ensures the minimal number of independent parameters.

The bodies’ behavior and the contact surfaces are defined by the same parameters
as in case of dry contact : respectively Eeq and the reduced radius of curvature of the
surfaces.

Eeq =

(
1− ν2

E

)−1
(6.1)

Rk,eq =
(
R−1k,x +R−1k,y

)−1
(6.2)

The Barus[34] function is introduced to describe the lubricant piezoviscosity.

η = η0e
αbarusp (6.3)

Where η0 is the viscosity at ambient pressure and αbarus is the pressure-viscosity coef-
ficient.

In case of steady-state contact conditions the dimensionless parameters to be intro-
duced are [19]:

N =

(
Rk,x
Rk,y

)0.5 Q

EeqR2
x

(
EeqRk,x
η0us

)3/4

(6.4)

L = αbarusEeq

(
η0us
EeqRx

)1/4

(6.5)

∆ = δ/c (6.6)

Where:

c =
b2

2Req
· F
E

(6.7)
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and:

b =

(
3QReq
Eeq

)1/3(2E
κπ

)1/3

(6.8)

The solution for elliptical contact is then formulated as follows[19]:

∆(N,L) = 1− p(L)N q(L) where (6.9)

p(L) =
(

(4− 0.2L)7 + (3.5 + 0.1L)7
)1/7

(6.10)

q(L) = −
(

0.6 + 0.6 (L+ 3)−1/2
)

(6.11)

Which leads to the contact behavior in Figure 6.4 which clearly shows the asymptotic
characteristic of the EHL contact.

Figure 6.4: ∆ as a function of N for different values of L [19]

6.2 Rolling Element Equilibrium in EHL

The model developed by Wijnant is a powerful tool since it describes the coupled ef-
fect of the lubricant and the solid bodies. The issue gets more complicated when the
equilibrium of a rolling element has to be computed. In this case the input is no more
the load Q but the sum of ball-inner and outer ring penetration. In case of dry contact
the relationship between both penetrations is computed easily. In this case, it is not
possible to manipulate Eq. (6.9) in order to obtain the penetration as function of the
load. This means that to solve the rolling element equilibrium three iterative processes
have to be involved; two parallel ones to calculate the load Q for a given penetration δ
within a third higher-level iterative process to compute the ball center position.
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Contact Solution To compute the contact solution, the first step to be moved is to
expand Eq. (6.9) and then collect the unknown Q in order to separate the constant
part of the formula from the unknown. It reads:

δj

Q2/3CC
= 1− p(L) [Q CN ]q(L) (6.12)

where CC and CN are constant defined as:

CC =

[(
3Req

Eeq

)1/3 (
2E
κπ

)1/3]2 · F
2Req ·E

(6.13)

CN =

(
Rk,x
Rk,y

)0.5 1

EeqR2
x

(
EeqRk,x
η0us

)3/4

(6.14)

therefore δ is defined as:

δ = Q2/3 CC

[
1− p(L) (Q CN )q(L)

]
= Q2/3 CC − p(L)CCC

q(L)
N Qq(L)+2/3 (6.15)

The above mentioned function has to be solved using an iterative method. Therefore
the Newton-Raphson method is used. Moving δ on the right-hand side, the function to
solve can be defined as follows:

f(Q) = Q2/3 CC − p(L)CCC
q(L)
N Qq(L)+2/3 − δ = 0 (6.16)

In order to define the solving routine, ∂f/∂Q has to be defined:

f ′(Q) =
∂f

∂Q
=

2

3
Q−1/3 CC −

(
q(L)− 1

3

)
p(L) CC C

q(L)−1/3
N (6.17)

The resulting Newton-Raphson method reads:

Qk+1 = Qk −
f(Qk)

f ′(Qk)
(6.18)

This procedure is implemented for both contacts (inner and outer) since the higher-
level routine computing the ball position defines the contact penetration between the
rolling element and the raceways. Once the penetration is defined, the load on each
contact is computed by Eq. (6.18).

In this case, the Jacobian does not need to be modified (e.g. damped), since even
for negative penetration a certain amount of stiffness is still present. This also helps
the solution convergence.

Rolling element equilibrium The procedure to compute the rolling element equilib-
rium is exactly the same as proposed in Chapter 5. In particular the Eq. (5.14)(5.15)(5.16)
and (5.17) can be still used where Qi and Qo are computed through the two lower-level
loops by Eq. (6.18). The partial derivatives ∂Qi/∂δi and ∂Qo/∂δo are defined by
deriving Eq. (6.15) w.r.t. Q and then calculating the inverse, which leads to:

∂Q

∂δ
=

(
∂δ

∂Q

)−1
=

[
∂f

∂Q
=

2

3
Q−1/3 CC −

(
q(L)− 1

3

)
p(L) CC C

q(L)−1/3
N

]−1
(6.19)
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Tolerances Particular attention has to be payed to the tolerances of Newton-Raphson
methods. The fact that two loops have to be computed within another one is risky
in terms of numerical stability since the higher-level loop iterates using approximates
solutions. If the tolerance of the lower-level loops is not correctly scaled w.r.t. the
higher-level loop tolerance at each step, the rolling element equilibrium will be influenced
by the contact force solution compromising the method convergence. Usually in such a
case the tolerance of the lower-level loops is set at least one order of magnitude smaller
than the tolerance of the higher-level loop in order to avoid numerical instabilities; in
the specific study-case, after several tests, it was fixed as three order of magnitude
smaller since this is a good compromise between numerical stability and convergence
speed.

Concerning the ball equilibrium the tolerance is based on the centrifugal load value,
which is defined as:

tolb = Fc · scf (6.20)

where scf is the centrifugal load scale factor, suggested as 1 · 10−6. In case of low
speeds, tollb is replaced with a constant value. Therefore since the tolerance tolb has
the dimension of a force, it is not directly comparable with the function f(Q). Thus,
in order to derive the tolerance in the units of a force, the error penetration function
f(Q) needs to be scaled with the quantity f ′(Q)−1 of which the dimension correspond
to that of a stiffness. Which leads to:

tolc =
f(Q)

f ′(Q)
· scf · scfc (6.21)

where scfc has to be at least 10−1.

Relative surfaces speed In order to compute the solution, the mutual surfaces speed
has to be calculated since the contact load is a function of it. The only speed which
plays a role in this solution is the sum of speeds, which means that only the Poiseuille
flow is taken into account (sqeeze). Hence the slipping is neglected.

Referring to Figure 5.3 and still considering the outer ring fixed, the sum velocity
uso and usi can be written as follow:

uso = 2ωpw Ro (6.22)

usi = 2 (ωshaft − ωpw) Ri (6.23)

6.3 Rolling Element Behavior in EHL

This section shows the rolling element behavior when a certain displacement is given
to the inner ring. A smoother behavior is expected, compared with the one obtained
in Chapter 5 since the function characterizing the lubricated contact has a continuous
behavior.

In the case shown here, the axial displacement is fixed at δa = 0.015 mm, then
three different rotational speeds are imposed, 0, 5000 and 10000 rpm, while the radial
displacement δr is kept as a variable. Figure 6.5 shows the contact load behavior. As
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expected the behavior is smooth and without any discontinuity thanks to lubrication.
Moreover, comparing this behavior with Figure 5.4, it can be seen how in this model the
shaft speed plays a key role even for high loads, since it increases the lubricant effects
on the contact spots due to the faster squeezing of the lubricant. Thus the curves for
different speeds are not converging as the penetration increases.

(a) Inner raceway-ball contact force (b) Outer raceway-ball contact force

Figure 6.5: Contact forces behavior

The second parameters to be evaluated are the contact angles which significantly
influence the bearing behavior. Similar to the contact force, a totally smooth behavior
is expected. They are shown in Figure 6.6.

(a) Inner raceway-ball contact angle (b) Outer raceway-ball contact angle

Figure 6.6: Contact angles behavior

For high penetrations the static and the high speed solutions for contact forces are
not converging, while the contact angles do. This is due to the centrifugal load which
becomes negligible compared with the contact forces.

Introducing lubrication, in case of negative penetration (no contact in case of the
dry model) the rolling element does not assume the configuration αo = 0° since the
zero contact load condition can not occur due to lubrication. This indeed leads to a
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smoother behavior and a more reliable contact model. On the other hand these results
come at higher computational cost which could be prohibitive in some cases. Moreover
could also be that this kind of accuracy is not required, especially because it already
represents an improvement with respect to current commonly used modeling techniques.

The above-mentioned means that even if this is the most accurate modeling tech-
nique developed in this work, the one developed in Chapter 5 is still useful since it
requires a low computational effort and depending case by case its accuracy could be
more than enough.



Chapter 7

Angular Contact Ball Bearing
Behavior

Contact modeling and rolling element equilibrium are computed using the procedures
and the models described in the previous chapters. The next step is to develop a rigorous
method to compute the whole bearing equilibrium for a given inner ring displacement.

This section explains the procedure which allows to evaluate the bearing behavior.
It is based on the contact modeling and rolling element equilibrium described in the
previous chapters.

The output is the vector of the total force and moment interaction between the
inner and outer raceway. The procedure to compute the solution can be divided in the
following steps:

1. From the global inner ring displacement, the displacement at the location of each
single rolling element is calculated;

2. The rolling element equilibrium is then computed by non-conformal contact mod-
eling. This step is the process bottle-neck since it is the more time-consuming.
This step gives the contact loads on each individual rolling element due to the
local inner ring displacement;

3. Once all the contact loads between the rolling elements and the inner ring are
computed, they have to be referred to the global coordinate system (on the bearing
axis) and then summed.

To limit the complexity of the analysis, the following major assumptions are made:

• As bearings are frequently mounted in sturdy shafts and in robust housings,
"structural" deformation of the bearing rings is neglected and only elastic de-
formation associated with the concentrated contacts in the bearing is considered;

• Generally, friction in bearings is low and negligible compared to the raceway and
flange normal loads on the rolling elements;

• Loads generated by interaction from the cage are negligible.

36
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At the end a procedure has to be written which first performs a transformation from
the coordinate system of the bearing to the coordinate system of the rolling element, in
order to calculate the local displacements, and then a procedure which transforms the
contact forces from the rolling element coordinate system to the coordinate system of
the bearing.

7.1 From Rolling Element to Bearing Behavior

This section describes the procedure to determine from the displacement and tilting of
the inner w.r.t. the outer raceway, the inner-ring’s displacement in each single rolling
element location, and then to merge each rolling element contribution.
Once this technique is developed it is used for all the ball bearing models further studied.
This is done by a kinematics-based procedure.

The strong point of this method resides in his simplicity; because of this the com-
putation will be elegant and efficient.

Two distinct right-handed Cartesian coordinate system are defined; the first one
fixed in space and so called global which has the z-axis along the bearing’s axis and a
local coordinate system for each rolling element as shown in Figure 7.1.

Figure 7.1: The global and the local coordinate system

7.1.1 From the Global Displacement to the Local One

Since the inputs are the inner ring translations and tiltings along the global axes, the first
step is to convert the displacement of the inner ring w.r.t. the global coordinate system
to local displacement referred at each rolling element location in local coordinates.

The inner ring displacement referred to each rolling element is easily defined remind-
ing that those values are defined w.r.t. the inner raceway groove center Oi in Figure
7.2. Since the difference between the inner groove radius of curvature and the rolling
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element radius is various orders of magnitude smaller than rp, for our current purpose
we can consider Oi ≡ Ob without introducing significant errors.

Figure 7.2: The inner ring reference point Oi

Introducing ψ, which is the angle between the ball position on the global x−y plane
and the global x-axis, the vector

−−−→
OgOi can be written, w.r.t. the global coordinate

system, in the following form:

−−−→
OgOi = rp ·

[
cosψ sinψ 0

]T (7.1)

Now the local inner ring displacement associated to the global displacement can be
written as:

δa = −δz −
[
γx γy 0

]T × [rp cosψ rp sinψ 0
]T (7.2)

δr =
[
δx δy 0

]
·
[
cosψ sinψ 0

]T (7.3)

Where the minus sign in (7.2) is due to the opposite direction between zg and δa.

7.1.2 Methodology to Describe and Sum the Contact Loads in Global
Coordinates

The aim of this methodology is to create a standard procedure which allows to sum all
the rolling element local forces in global coordinate in order to calculate the reaction
forces and moments w.r.t. the origin of the global axis.

In order to align the global coordinate system to the local system two different
rotations have to be composed. Naming {Sg}, {S1} and {Sl} the three coordinate
system as shown in figure 7.3, the transformation’s steps are:

• {Sg} → {S1} The purpose of the first rotation is to to align the global x-axis
with the ball center as shown in Figure 7.3, it can be done rotating to an angle ψ
around the zg axis;
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• {S1} → {Sl} This transformation aligns the xl axis with the contact line as shown
in Figure 7.3. This rotation is done rotating by an angle α around the y1 axis.

Figure 7.3: Transformation to align the global coordinate system to the local one

The first rotation defines the system {S1} by the rotation matrix (7.4).

Rg1 =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

 (7.4)

Thereafter the second one rotates {S1} aligning it to {Sl} by the rotation matrix
(7.5).

R1l =

 cosαr 0 sinαr
0 1 0

−sinαr 0 cosαr

 (7.5)

Since the rotations are given in local axes, the transformation {Sg} → {Sl} has to
be composed from left hand side to right as follows:

Rgl = Rg1 ·R1l =

cψ cαr −sψ cψ sαr
sψ cαr cψ sψ sαr
−sαr 0 cαr

 (7.6)

The contact force between the rolling element and the inner ring raceway is in x-
direction, Figure 7.4 shows a negative force, in the adopted convention. Since friction
is neglected, no forces are introduced along the others directions.

Now a transformation matrix has to be build in order to transform this force in a
statically-equivalent combination of forces and moments referred to the global axes. All
the actions can be combined in a vector, called wrench, as follows:

jw =
[
jFx

jFy
jFz

jMx
jMy

jMz

]T (7.7)
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Figure 7.4: Contact load

It is possible to change the application point and coordinate system by a wrench
transformation matrix:

Wgl =

I3×3 03×3

Ôgl I3×3

Rgl 03×3

03×3 Rgl

 (7.8)

Writing the vector
−−−→
OgOl =

−→
Ogl in global coordinates:

−→
Ogl =


Oglx

Ogly

Oglz

 (7.9)

Ôgl is then the cross product matrix defined as follows:

Ôgl =


0 −Oglz Ogly

Oglz 0 −Oglx

−Ogly Oglx 0

 (7.10)

Now the contribution of the j−th rolling element w.r.t. the global coordinate system
centered in Og can be written as follows:

gwj = Wgl · lwj (7.11)
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Since contact load is in x−direction, the expressions will be considerably simplified
in order to make the code faster. Now it becomes easy to sum all the forces into a
single, so called total, wrench vector:

gwtot =
∑
j

gwj =
[
Fx Fy Fz Mx My Mz

]T (7.12)

This method will be used to combine the effects of the rolling elements in all devel-
oped models, both for ball as well as roller bearings. Concerning roller bearings, minor
corrections are needed due to their geometry.

The implementation of this methodology results in a simple, fast and efficient algo-
rithm.

7.2 Angular-Contact Ball Bearing Behavior

This section analyzes the bearing behavior, using the above-mentioned procedure. The
behavior is illustrated for a certain displacement of the inner ring w.r.t. the outer ring.
Furthermore the inner ring is rotated along the bearing axis (i.g. global z-axis), i.e. the
shaft rotation.

To be more precise, the inner ring rotates around the virtual axis defined by the
displaced inner ring. The shaft rotation induces a cage rotation, so the position of the
balls changes during the simulation. This causes the overall bearing stiffness to vary in
time, or as a function of the shaft rotation angle as will be shown.

The behavior is computed for each developed model in order to clarify the difference
between them and in order to illustrate the advantages and disadvantages of each contact
model. Particular attention will be payed to comparing the model which takes the
centrifugal loads into account in dry contact with the one which includes EHL.

In order to be consistent with the comparisons, it is mandatory to select a model of
angular-contact ball bearing. For this from the SKF catalog, the bearing 7202 BE-2RZP
is chosen. Since no information is available about dimensions as ball diameter, inner
and outer ring raceway curvature radius, pitch radius etc., they are estimated according
to the ISO norms [35] and [36] using the static and dynamic load ratings reported by
the SKF catalogue. As material proprieties the typical values of Young modules and
Poisson ratio are choosen since they do not vary too much between different steels.
Concerning the lubricant characteristics, the same lubricant used in the SKF bearing
DGBB 6202 analyzed by Wensing [37] is considered, since the dimensions are similar
to the ones of 7202 BE-2RZP. The estimated dimensions and the parameters retrieved
together known parameters are listed in Table 7.1.

We should remark that the developed codes do not have any sort of restrictions in
terms of geometry or material proprieties, in fact their architecture is made to work for
small bearings as well as big bearings.

Concerning the displacement, the outer ring will be fixed while the inner one will be
displaced in 5-dofs (in global coordinate-system). The rotation around the global z-axis
will be accounted for as well, but since friction is neglected it is not considered as a dof.
Therefore the model accounts for two tilting directions x and y and three displacement
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B 11 mm Outer ring width
Dob 35 mm Outer bore diameter
Dib 15 mm Inner bore diameter
ri 3.07 mm Inner-ring curvature radius
ro 3.24 mm Outer-ring curvature radius
D 6 mm Ball diameter
rp 15.7 mm Radius of the inner raceway groove center
rq 15.56 mm Radius of the outer raceway groove center
clnc 0.0335 mm Axial clearance
α 40° Nominal contact angle

αmax 70° Maximum contact angle allowed
rpw 15.63 mm Pitch radius
Z 8 Number of rolling elements
E 206 GPa Young modulus
ν 0.3 Poisson ratio
ρ 7.8 kg/dm3 Material density

αbarus 1 · 10−8 Pa−1 Lubricant pressure-viscosity coefficient
η0 0.1 Pas Lubricant viscosity at ambient pressure

Table 7.1: Geometrical and material proprieties

directions x, y and z.
The linear displacement along the i-direction is then named δi whereas the j -direction
tilting γj .

7.2.1 Idealized Bearing Behavior

This subsection shows the achievements obtained by the ideal model introduced in
Chapter 4. Reminding that this model takes into account the clearance while it ne-
glects the centrifugal loads, the behavior will be influenced only by geometrical bearing
proprieties.

To compute the solution, the translations of the inner ring are fixed as well as γy.
In particular the values shown in Table 7.2 are used.

δx 1.5 · 10−2 mm
δy 0 mm
δz −2.5 · 10−2 mm
γy 0°

Table 7.2: Displacement applied to the bearing inner ring

The results are plotted as a function of the shaft rotational angle while four different
values of γx are used.

Figure 7.5 (a-c) shows the bearing behavior, it is clearly visible how the bearing
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(a) Bearing reaction force along the x-axis (b) Bearing reaction force along the y-axis

(c) Bearing reaction force along the z-axis (d) Bearing reaction moment along the x-axis

(e) Bearing reaction moment along the y-axis (f) Equivalent bearing angle αtot

Figure 7.5: Bearing reaction forces, moments and equivalent bearing angle

stiffness depends from the internal ball arrangement. In fact rotating the shaft, also
the position of the ball changes. This leads to a non-constant reaction for a fixed
displacement which means a non-constant stiffness.
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Then the moments are computed and shown in Figure 7.5 (d-e).
In all the shown pictures it is clearly visible how the stiffness oscillations have a

fixed period which corresponds to the following shaft rotational angle:

ψT =
2π

Z
· rp −D/2 cosαr

2 rpw
(7.13)

Furthermore the equivalent contact angle αtot is computed. With equivalent contact
angle is meant the angle between the resultant of the forces and the plane perpendicular
to the bearing axis. It can be seen as a weighted mean value of the contact angles of
all the rolling elements. The above-mentioned angle is computed and his behavior is
shown in Figure 7.5 (f)

7.2.2 Bearing Behavior Accounting for Centrifugal Loads

As seen in Chapter 5, introducing the centrifugal load, the load symmetry of the contact
loads is lost due to the contact angles αi and αo which are no more coincident. Moreover
the discontinuity will play a major role in the bearing behavior since it will deeply
influence the stiffness fluctuations.

The load-deflection characteristic of the rolling element will be more similar to the
idealized model as the penetration increases, since the centrifugal load looses its rele-
vance if compared with the contact loads.

To compute the solution the displacements listed in Table 7.3 are introduced.

δx −2.5 · 10−2 mm
δy −2.5 · 10−2 mm
δz −2.5 · 10−2 mm
γy 0.01°

Table 7.3: Displacement applied to the bearing inner ring

Two different values are studied for γx, respectively 0.01°and 0.02°. The bearing
behavior under the mentioned hypotheses is shown in Figure 7.6 and Figure 7.7.

It is clearly visible how the discontinuity affects the behavior.
Moreover in Figure 7.8 the equivalent bearing angle αtot is shown. Also here, the

discontinuity and the fluctuating trend are visible.
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(a) Reaction force along the x-axis with γx =
0.01°

(b) Reaction force along the x-axis with γx =
0.02°

(c) Reaction force along the y-axis with γx =
0.01°

(d) Reaction force along the y-axis with γx =
0.02°

(e) Reaction force along the z-axis with γx =
0.01°

(f) Reaction force along the z-axis with γx =
0.02°

Figure 7.6: Bearing reaction forces
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(a) Reaction moments along the x-axis with γx =
0.01°

(b) Reaction moments along the x-axis with γx =
0.02°

(c) Reaction moments along the y-axis with γx =
0.01°

(d) Reaction moments along the y-axis with γx =
0.02°

Figure 7.7: Bearing reaction moments

(a) Equivalent bearing angle with
γx = 0.01°

(b) Equivalent bearing angle with
γx = 0.02°

Figure 7.8: Equivalent bearing angle
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7.2.3 Bearing Behavior Accounting for EHL

This subsection shows the bearing behavior accounting for elastohydrodynamic lubrica-
tion as fully explained in Chapter 6. The solution is computed exactly as done for the
previous models but, as already mentioned, this model requires more computational
effort due to all the involved iterative processes.

In this model, the shaft speed plays a major role, since the contact load is highly
influenced by it. As done before, three translations of the inner ring and the tilting
around y-axis are fixed. The imposed displacements are summarized in the Table 7.4.

δx −2.5 · 10−2 mm
δy −2.5 · 10−2 mm
δz −2.5 · 10−2 mm
γy 0.01°

Table 7.4: Displacement applied to the bearing inner ring

Two different values of γx are studied, respectively 0.01°and 0.02°, and four different
rotation speeds, respectively 0 rpm 4000 rpm 8000 rpm and 12000 rpm. The results
are shown in Figure 7.9 and Figure 7.10 where also the equivalent bearing angle is
computed and shown.
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(a) Reaction force along the x-axis with γx =
0.01°

(b) Reaction force along the x-axis with γx =
0.02°

(c) Reaction force along the y-axis with γx =
0.01°

(d) Reaction force along the y-axis with γx =
0.02°

(e) Reaction force along the z-axis with γx =
0.01°

(f) Reaction force along the z-axis with γx =
0.02°

Figure 7.9: Bearing reaction forces
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(a) Reaction moments along the x-axis with γx =
0.01°

(b) Reaction moments along the x-axis with γx =
0.02°

(c) Reaction moments along the y-axis with γx =
0.01°

(d) Reaction moments along the y-axis with γx =
0.02°

(e) Equivalent bearing angle with
γx = 0.01°

(f) Equivalent bearing angle with
γx = 0.02°

Figure 7.10: Bearing reaction moments and equivalent bearing angle

7.2.4 Dry-Centrifugal vs. EHL-Centrifugal

In this section a comparison between the developed model is shown. In particular the
dry contact model and the EHL model are compared, both accounting for centrifugal
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load. As already seen in Chapter 5, the shaft speed has only limited influence on the
bearing behavior in case of dry contact, since increasing the load on the rolling element,
the behavior converges to the one without centrifugal load. While in case of EHL
contact, the influence of the shaft speed plays a key role since it increases the lubricant
effect, deeply changing the bearing response.

Introducing the displacements in Table 7.5 the model solution is then computed.

δx −2.5 · 10−2 mm
δy −2.5 · 10−2 mm
δz −2.5 · 10−2 mm
γy 0.01°
γx 0.03°

Table 7.5: Displacement applied to the bearing inner ring for the comparison

The comparison between the models is shown in Figure 7.11. It is clearly visible
how, when the shaft speed exceeds a certain value, the dry contact model returns
underestimated values. Moreover the EHL model returns a smoother behavior, hence
more suitable. On the other hand, the process to compute the solution accounting for
EHL, is more time consuming than the dry contact model, even if it still allows for a
fast solution.

Concerning forces and moments the dry contact returns, varying ωshaft, curves
which are almost overlapping, while considering the angle αreal a slight difference can
be already seen even if lubrication is neglected. Introducing the lubrication the char-
acteristic curves are shifting while the shape and the wave frequency remains the same
since it is defined by the number of rolling element within the bearing.
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(a) Bearing reaction force along the x-axis (b) Bearing reaction force along the y-axis

(c) Bearing reaction force along the z-axis (d) Bearing reaction moment along the x-axis

(e) Bearing reaction moment along the y-axis (f) Equivalent bearing angle αtot

Figure 7.11: Comparison between Dry contact model and EHL of bearing reaction
forces, moments and equivalent bearing angle



Chapter 8

Angular Contact Ball Bearings
Modeling Techniques Conclusions

In this part, the developed modeling techniques for ball bearings have been described.
First clearance and preload have been introduced defining the first model. Then, the
second model has been defined introducing the centrifugal load which causes loss of
symmetry. Finally, the third model has been defined introducing the lubrication in
elastohydrodynamic regime.

The models developed through this part, allow the computationally efficient and
high-fidelity prediction of angular contact ball bearings. The developed modeling tech-
niques are generic. The same procedure has been applied to thrust ball bearings (Figure
8.1) deep groove ball bearings (Figure 8.2). However the results are not shown since
they are alike the ones obtained for angular contact ball bearings.

Figure 8.1: Thrust Ball Bearing

Figure 8.2: Deep Groove Ball Bearing

The developed contact models allow to predict the bearing behavior based on models
with increasing fidelity. As the fidelity increases, also the computational effort required
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to compute the solution increases. Even if the computational cost increases, the process
remains affordable, since the computational time remains low if compared with the
achieved fidelity level.

Since the developed modeling techniques are modular and based on contact model-
ing, they can be easily adapted to broaden the covered types. For example, a modeling
technique for self aligning ball bearing (Figure 8.3) and all the types based on point
contact can be easily created.

Figure 8.3: Self-Aligning Ball Bearing



Part II

Development of Modeling
Techniques for Roller Bearings



Chapter 9

Introduction to Roller Bearings

This part shows how cylindrical and tapered roller bearings are modeled starting from
the contact model to describe the bearing behavior.

Figure 9.1 shows a cylindrical roller bearing which is studied as first case since the
tapered roller bearing case can be seen as a more complex variation of cylindrical roller
bearings.

Figure 9.1: Cylindrical Roller Bearing

As first contact model the dry contact accounting for centrifugal load and clearance
of a cylindrical roller on a raceway is analyzed. The introduced roller shape, takes into
account the roller crowning by means of a logarithmic shape. In order to account for
misalignment between the roller and the raceways a slicing technique is introduced. The
slicing technique allows to account for variable penetration along the contact line. It
consist of a discretization of the roller in slices, the thiner the slices, the more accurate
is the solution since the penetration is considered constant in each slice. The coupling
between deformation of slices is neglected.

Then once all these techniques are introduced, the equilibrium of a roller squeezed
between the raceways is introduced.

The second level of fidelity introduces the lubricant effects. The roller is still dis-
cretized in slices and the leakage between slices is neglected. Due to the non-conformal
contact, the contact operates in Elastohydrodynamic regime (EHL). The lubrication
ensures more fidelity even if it increases the computational effort required to compute
the solution.

The second type of roller bearings studied is the tapered roller bearings. An example
is shown in Figure 9.2.
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Figure 9.2: Tapered Roller Bearing

In order to model the tapered roller, the same contact models are introduced for
the cylindrical roller are used. While the roller equilibrium has to be reformulated due
to the flange and the conical shape of the roller which introduces one more direction in
which the equilibrium has to computed. The flange is modeled as a constraint, even if
a contact model for it can be easily introduced.

Once the solution for the tapered roller squeezed between the raceways is defined,
a study case is introduced to show his behavior achieved with the techniques proposed,
pointing out the differences between the different models.



Chapter 10

Cylindrical Roller Bearing in Dry
Contact

The first model which has to be developed concerns the modeling technique for a roller
squeezed between two raceways in dry contact. With respect to the ball, this case has
an increased complexity since the load-deflection relation is no more 1-D but it has 2
degrees of freedom, since the penetration along the contact line can be both uniform (e.g.
pure translation of the raceway, remaining parallel to the roller axis) or a linear function
(e.g. pure rotation of the raceway along a direction perpendicular to the cross-section).

Moreover the crowning of the rolling element is taken into account, since any roller is
not a perfect cylinder but is shaped in a way which reduces the stress concentration on
the roller sides. The roller crowning adds more complexity to the penetration since it can
no more be characterized as sum of a linear function and a constant one. The crowning of
the roller is defined as micro-geometry correction since the amount of material removed
is small compared to the roller dimensions and normally it cannot be seen by the unaided
eye.

As done for angular contact ball bearings, the outer raceway is considered fixed in
space while the inner one is displaced. The inner raceway movement can be defined by
two parameters, si and θi, where the first one is the translation approach perpendicular
to the roller axis and the second one is the inner raceway rotation on the cross section
plane as shown in Figure 10.1.

The following assumptions are made:

• Roller skewing is neglected, since the focus in this work is to obtain accurate
load-displacement predictions for the overall bearing, whereas roller skewing pre-
dominantly affect bearing durability;

• Raceway shoulder and flange effects are negligible;

• The dynamic loads as impacts or roller inertia forces are not taken in account
(except centrifugal loads);

• Stress concentrations at roller sides due to line contact do not influence the solu-
tion;
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Figure 10.1: Roller between two raceways

• The proportional limit of the material is not exceeded, that is, all the deformation
occurs in the elastic range;

• Shear stress on the contact surface is neglected, which means friction is neglected;

• The radii of curvature at the contact areas are very large compared with the
dimensions on these areas;

• Lubricant effects are neglected, hence dry contact.

Since the penetration along the contact line is no more constant, the Hertz for-
mulation for line contacts which predicts the contact load-deflection behavior is not
further applicable. The technique which allows us to take into account this non uniform
penetration is the Slicing Technique.

10.1 Slicing Technique

The slicing technique here described allows to consider variable penetration along the
contact line, coming from raceway rotation and roller crowning. The slicing technique in
line contact has been used in several cases (e.g. roller bearing, bevel gears etc.) because
of its simplicity and its capability to account for many effects such as line contact along
a curved line (e.g. bevel gears), non-uniform penetration and, moreover, the fidelity of
the slicing technique can be tuned case by case.

The developed slicing technique is basically based on the work of Teutsch [25] which
proposed first the classic slicing technique including some formulations to model the
contact slice-raceway and then a method to take into account the coupling between
slices. The coupling method presented in that work [25] is not suitable in our modeling
technique since is not reliable for all cases. In fact the solution achieved with the method
described in [25], fits the real solution only in some cases and it does not converge as
the number of slices increases, making it somewhat questionable.

Many formulations to characterize the contact are listed in [25]; one of the most
accurate predictions is done by Dinnik [20] which considered a parabolic distribution of
pressure along the width of contact.
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In the developed work, the Dinnik’s formulations (10.1) and (10.2) are used. How-
ever, the developed modeling technique is modular and any other formulation could be
used instead. This formulation is used since it takes into account the surfaces curvature
and raceway thickness.
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Where Ri is the inner raceway radius of curvature.
Many different formulations have been proposed in the past. Many authors no-

ticed that in line contacts the surfaces curvature has a minor influence on the solution,
while many others developed formulas which account for more geometrical parameters,
therefore offering a better contact prediction. The more accurate were developed by
Kowalsky [20] in 1940 and by Tripp [23] in 1985. The last two cited authors’ formulas
are very close to the Dinnik’s formulation. Since this, in order to be aligned with [25]
the Dinnik’s formulation is used.

Figure 10.2 shows a roller contacting with a flat raceway, where the contact semi-
length b is shown.

Figure 10.2: Schematic of flat roller profile on a flat race [38]

In order to implement a procedure as simple as possible, the equations (10.1)(10.2)
have to be expressed as δ = C Qn where C is a constant variable and n ∈ R, in order
to inverse and derive them easily. As reported in [25], Dinnik’s formulas can be written
in the following equivalent form:

δi = 3.17

(
dpw
2
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·
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EL
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(10.3)

δo = 2.66

(
t

1 +D/dpw
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·

(
Q
(
1− ν2

)
EL

)0.91

(10.4)

By the latter equations the load Q can be isolated achieving the targeted expression.
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The slicing technique principle is based on an approximation of the problem, by
dividing the roller along its axis in a certain amount of slices which are analyzed sepa-
rately assuming that the penetration remains constant along each slice. Thus at each
slice the used value for penetration is calculated in correspondence of his mean plane.

The position of each slice along the roller axis, is defined by the parameter zj
which represent the distance between the roller mean plane and the j-th slice mean
plane. Then, since the outer raceway is considered fixed in space, the inner raceway
displacement w.r.t. the outer one has to be defined. This can be done introducing two
motion parameters, si and θi which represent respectively the radial translation and
the rotation in the cross-section plane of the inner raceway w.r.t. tho outer raceway.
The same is done to describe the roller position w.r.t. an initial position, in the roller
case they are called sx and θy where the subscripts are referred to the local coordinate
system. The above-mentioned is shown in Figure 10.3 where the following convention is
adopted for the zero-position of the roller: the mean position between the undisplaced
raceways considering also the radial clearance referred to as cl.

Figure 10.3: Sliced roller with reference parameters and local coordinate system

Figure 10.3 also shows the contact force acting between the raceway and the j-th
slice, which is called qi,j or qo,j depending from which contact is referred to.

The slices are supposed to be short, the length of each slice will be called l while
the amount of slices will be called as m.

Since the inner raceway displacement is the model input, the first step is to define
an algorithm to calculate the penetration of the contact of each rolling element. First
the penetration between the roller and the outer raceway is formulated, which is easier
since it is function only of the roller position. Then the roller-inner raceway penetration
is defined.

Roller-Outer Raceway Penetration Introducing the vector z ∈ Rm which collects
the z-coordinates of the slices’ mean planes, the penetration can be divided in two
contributions: a constant one which considers the translation of the rolling element and
a linear function which describes the rotation effect. Therefore, adding the clearance
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contributions, the penetration can be written as follows:

peno =
[
δo,1 . . . δo,m

]T
= sx + θyz− cl/4 (10.5)

Roller-Inner Raceway Penetration This penetration can be defined considering
peno with the opposite sing, since if one slice approaches to the outer raceway it moves
further away from the inner raceway of the same quantity. Then the contribute of
the inner raceway movement is summed, which can be modeled as done before for the
roller-outer raceway penetration. Thus the formulation reads:

peni =
[
δi,1 . . . δi,m

]T
= si + θiz− (sx + θyz)− cl/4 (10.6)

During the penetration calculation also the real shape of the roller has to be taken
into account, since till now only a cylindrical shape has been considered. To do so, a
crowning formulation has to be introduced, then both formulation will be merged in
order to formulate the complete problem.

10.2 Optimized Logarithmic Roller Crowning

During the bearing design process, roller crowning is introduced in order to better
distribute the contact stresses along the rolling element length, since without crowning
the roller edges would be highly loaded because of stress concentrations. Moreover,
in case of pure tilting, with a straight profile the line contact can degenerate in a
point contact in the edge location which provokes a high stress gradient, which could
compromise the durability of the component.

Currently there is not a standard shape, each supplier tunes it case by case. Many
formulations have been proposed over the years and many different profiles have been
studied. In the work of Fujiwara [39] the crowning issue is fully discussed in terms of
durability and stress concentrations. This work refers to the formulation proposed in
his work [40], which fits with many of the most used profiles.

Such a type of crowning can prevent the edge loading even in case the roller is tilted.
It takes into account the fact that bearing rollers typically have a central land without
any crowning. Then the crowning profile slightly tapers off the roller radius toward the
roller ends, therefore the radius reduction is referred to as crown drop. The straight
part of the profile together with the crowned one cover the whole roller length. In this
formulation three parameters, shown in Table 10.1, are introduced to describe the roller
shape.

A Degree of the curvature of the crowning curve
ls Length of the central straight zone
zm Crown drop at the end of the ends of the effective contact

Table 10.1: Crowned profile parameters used in the showcase
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According with Fujiwara [40], the crown drop of the j-th slice is defined as:

CrownDropj = −A ln

(
1−

[
1− exp

(
−zm
A

)](2 z (j)− ls
l − ls

)2
)

(10.7)

Which brings the shape shown in Figure 10.4, where only a quarter of the roller is
shown, as the roller is symmetric.

Figure 10.4: Logarithmic profile with the parameters A, ls and zm [39]

This method is illustrated in the following case study. For this purpose the param-
eters in Table 10.2 are introduced. The studied roller corresponds to the bearing which
will be used to study the whole bearing behavior.

L Roller length 10 mm
D Roller diameter 5.69 mm
A Degree of the curvature of the crowning curve 3.46 · 10−3 mm
ls Length of the central straight zone 5 mm
zm Crown drop at the end of the ends of the effective contact 6.49 · 10−3 mm

Table 10.2: Roller and crowning parameters

The parameters in Table 10.2 with the Eq. (10.7) return the shape shown in Figure
10.5 where the shape is magnified due to the different axes scale.

It is clear that as the inner raceway approaches, the contact line length increases,
which influences the contact stiffness. On the other hand, it requires finer roller slices
as well. In fact the stiffness variation is the only effect which matters for this work’s
purpose, since the goal is not a durability study but the overall bearing behavior.

10.3 Roller Equilibrium Accounting for Centrifugal Loads

This section describes the method to compute the rolling element equilibrium. As
already mentioned, the axial displacement of the inner ring is not taken into account
for two reasons. First, this type of bearings are not meant to bear axial loads, therefore
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Figure 10.5: Logarithmic profile applied to a roller

they are usually combined with a tapered, angular contact or thrust bearing which
carries the axial load. The second reason is based on the fact that most part of the
radial roller bearing have flanges only on the outer ring while the inner one do not have
them in order to avoid accidental axial loads. Because of this the roller has 2 dofs, one
translation and one tilting.

Section 10.1 explained how the roller and the inner ring displacement provoke pen-
etration between the surfaces and by Eq. (10.6)and Eq. (10.5) the penetration vectors
are calculated. However they do not account for the real profile shape. This can be
done by subtracting the vector CrownDrop to the penetration, which brings to the
following formulas:

peno = sx + θyz− cl/4−CrownDrop (10.8)

peni = si + θiz− (sx + θyz)− cl/4−CrownDrop (10.9)

The load-deflection relation for each contact of each slice can be formalized from
Eq. (10.3) and Eq. (10.4) as follows:

qi,j = Ci peni (j)1/0.92 (10.10)

qo,j = Co peno (j)1/0.91 (10.11)

Where:
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Finally the roller equilibrium can be written as:
Fx =

m∑
j=1

(qi,j − qo,j) + Fc = 0

My =
m∑
j=1

[(qi,j − qo,j) z (j)] = 0
(10.14)

Where Fc represent the centrifugal load acting on the roller.
In order to solve Eq. (10.14) an iterative process has to be used, since a closed-

form solution would be difficult or even impossible to formulate. As usual, the iterative
process is based on the Newton-Raphson method, which requires the evaluation of the
Jacobian consisting of the partial derivative of the Eq. (10.14) w.r.t. the roller position
parameters sx and θy, as shown in Eq. (10.15).

J =


∂Fx
∂sx

∂Fx
∂θy

∂My

∂sx

∂My

∂θy

 (10.15)

Deriving Eq. (10.14) w.r.t. sx and θy, it becomes:

∂Fx
∂sx

=

m∑
j=1

(
∂qi,j
∂sx

− ∂qo,j
∂sx

)
(10.16)

∂Fx
∂θy

=
m∑
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)
(10.17)

∂My

∂sx
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[(
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∂sx
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∂sx

)
z (j)

]
(10.18)

∂My

∂θy
=

m∑
j=1

[(
∂qi,j
∂θy

− ∂qo,j
∂θy

)
z (j)

]
(10.19)

The latter equations do not allow to find an immediate solution, therefore it is nec-
essary to rework them in order to achieve an easy formulation for the partial derivatives.
Those terms can be considerably simplified expanding the derivatives in more factors,
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as follows:

∂qi,j
∂sx

=
∂qi,j

∂peni (j)

∂peni (j)

∂sx
(10.20)

∂qo,j
∂sx

=
∂qo,j

∂peno (j)

∂peno (j)

∂sx
(10.21)

∂qi,j
∂θy

=
∂qi,j

∂peni (j)

∂peni (j)

∂θy
(10.22)

∂qo,j
∂θy

=
∂qo,j

∂peno (j)

∂peno (j)

∂θy
(10.23)

Each factor in these formulas can be easily calculated analytically:

∂qi,j
∂peni (j)

=
1

0.92
Ci peni (j)1/0.92−1 (10.24)

∂qo,j
∂peno (j)

=
1

0.91
Ci peno (j)1/0.91−1 (10.25)

∂peni (j)

∂sx
= −∂peno (j)

∂sx
= −1 (10.26)

∂peni (j)

∂θy
= −∂peno (j)

∂θy
= −z (j) (10.27)

(10.28)

Substituting the Eq. (10.27)-(10.24) in Eq. (10.20)-(10.23) and then again in Eq.
(10.16)-(10.19) the Jacobian formulation is finally achieved.

Obviously this kind of formulation returns reliable results just in case of positive
penetration (i.g. bodies deformation), otherwise in case of negative values of the pene-
tration it will return a complex value which is indeed physically meaningless.

Since the Jacobian is defined, the Newton Raphson method can be implemented.
Then the usual formulation follows in Eq. (10.29), where k refers to the k-th iteration
step. sx

θy


k+1

=

sx
θy


k

− J−1k

Fr
Fa


k

(10.29)

The load distribution along the contact line obtained by the above-mentioned solu-
tion process is in general variable along the line of contact.

A case study is done using the following parameters:
Running the method the contact loads distribution shown in Figure 10.6 is ob-

tained. The roller crowning and the inner ring displacement have been magnified for
visualization and the centrifugal load has been visualized with the red arrow.
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si 2.8 · 10−2 mm

θi 0.03°

ωpw 1000 rpm

Figure 10.6: Load distribution along the contact lines

The roller behavior is now computed setting as inner raceway tilting θi = 0.03°while
varying the inner raceway approach si and the shaft rotational speed ωshaft. The
simulation results are shown in Figure 10.7, where with Meqy and Feqx are indicated
the statically equivalent contact force and moment acting on the roller element.

It is clearly visible how the centrifugal load slightly affect the solution; in fact
differences between different speeds are visible only in the first zone of the plots where
there is no contact due to clearance. In that part the only non-zero load is the one
between the roller and the outer raceway since it has to balance the centrifugal load.
After all, since the centrifugal load does not increase the computational cost of the
procedure, it has no sense to neglect it. Even if the differences are nearly negligible, it
has sense to account for it, since it slightly decreases the reaction loads on the inner
ring. This increased accuracy comes at no additional cost.

10.3.1 Solution Convergence Varying the Amount of Slices

The solution is affected by the number of slices used, as well as the computational
cost. It is somehow predictable that increasing the number of slices, the solution for
a given inner ring displacement will converge to a value. This can be shown plotting
the statically equivalent forces and moments w.r.t. the center of gravity of the roller
varying the number of slices. First the inner ring displacement has to be introduced as
si = 0.028 mm and θi = 0.03°, and then the statically equivalent force and moment
are plotted as function of the amount of slices used. The obtained function is shown in
Figure 10.8.

In this particular case the solution converges using at least 40 slices; increasing this
number the solution remains almost the same while the computational effort increases.
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(a) Equivalent contact force between roller and
inner raceway

(b) Equivalent contact moment between roller
and inner raceway

(c) Equivalent contact force between roller and
outer raceway

(d) Equivalent contact moment between roller
and outer raceway

Figure 10.7: Statically equivalent contact forces and moments between roller and race-
ways, setting θi = 0.03° and accounting for centrifugal loads
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(a) Equivalent force (b) Equivalent moment

Figure 10.8: Static equilibrium solution convergence as function of the amount of slices



Chapter 11

Radial Roller Bearing in EHL
Contact

In almost all of the application cases of roller bearings and, more in line contact in
general, the interface between the two bodies in contact is lubricated in order to re-
duce noise while increasing durability and reliability. Also in gears, seals, cams etc.
the contact area is lubricated and they are designed to operate in specific lubrication
regimes. Among the years many models have been developed to calculate the minimum
film thickness in order to evaluate the correct design of the pair. The minimum lubri-
cant film thickness has negligible effects for our purpose, while the key-role is played
by the film thickness in the contact center, which defines the lubricant stiffness. An
approximation of the central film thickness is proposed by Gelink and Schipper [28],
which proposed a formulation fitting a function through the four lubrication regimes
(isoviscous-rigid, pieziviscous-rigid, isoviscous-elastic, piezoviscous-elastic). To evaluate
the combined lubricant-bodies effect an efficient methodology has been proposed by
Wiegert et al. [31] where the contact is modeled as two springs in series, one repre-
senting the lubricant and one the solid bodies in contact. Less work has been done
to investigate the load-deflection behavior of the contact with coupled fluid film-bodies
effect.

Even so, an accurate solution can be computed modeling the contact as two springs
in series.

11.1 EHL Line Contact Modeling

This section describes the model used to model the lubricated contact behavior. The
roller is divided in several slices as described in Chapter 10 and for each slice the EHL
contact model is applied to estimate the contact loads due to a given penetration coming
from the current iteration step.

The lubricant fluid film thickness is estimated by the model proposed by Gelink
and Schipper [28], while the coupling between lubricant and solid bodies behavior is
modeled as two spring in series as proposed by Wiegert et al. [31]. As will be fully
explained, since the fluid film behavior has a complex formulation, an iterative process

69
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will be involved to compute the contact force for a given penetration.

11.1.1 Lubricant Fluid Film Behavior

As usual in tribology, the problem is formulated introducing dimensionless quantities,
usually defined using optimum similarity analysis, which allow to determine the most
efficient set of dimensionless parameters to model the problem. Usually, to avoid heavy
calculations, pre-existing sets of parameters are used, as in this case in which the Moes-
Numbers are used.

Moes-Numbers are then defined as follows [28]:

Hc = hcU
−1/2, M = WU−1/2, L = GU−1/4 (11.1)

Where [28]:

hc =
hc
Req

, W =
q

EeqReql
, U =

η0us
EeqReq

, G = αbarusEeq (11.2)

The formula developed by Gelink and Schipper can also account for the direction
and the value of the surface roughness. This parameter is hard to estimate, and its effect
is orders of magnitude smaller than many others effects which are not accounted for in
this work. In fact, line contact modeling is more complex if compared with point contact
modeling, since the side effects, lubricant leakage between slices and slice coupling are
still phenomena which cannot be modeled in an analytic way.

Based on the Reynolds equation, Moes [27] made an accurate function fit to predict
the central film thickness in line contact:

Hc =

[(
H

7/3
RI +H

7/3
EI

)3/7 s
+
(
H
−7/2
RP +H

−7/2
EP

)−2/7 s]s−1

(11.3)

where s is an auxiliary variable defined as:

s =
1

5
(7 + 8 exp (−2 HEI/HRI)) (11.4)

in which the four basic asymptotes relevant in EHL are described as function of L
and M .

HRI = 3M−1 (11.5)

HEI = 2.621M−1/5 (11.6)

HRP = 1.287L2/3 (11.7)

HEP = 1.311M−1/8L3/4 (11.8)

In the latter equations the subscripts denote:

• RI: Rigid/Isoviscous;

• RP: Rigid/Piezoviscous
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• EI: Elastic/Isoviscous

• EP: Elastic/Piezoviscous

By Eq. (11.3) the load-fluid film thickness relation for the lubricant is defined; since
the lubricant behavior is been defined, now a model to describe the bodies deformation
has to be introduced. Therefore merging the two models the contact behavior will be
described.

11.1.2 Solid Bodies Behavior

The bodies behavior results from the pressure distribution through the fluid film. In
case of zero speed the model corresponds to the one developed in Chapter 10, while
in case of surfaces velocity the lubricant plays a key role to determine the pressure
distribution.

For zero or even negative penetration, as the surfaces velocity increases, the solid
bodies compliance cannot be neglected, even if the lubricant separates the surfaces from
each other. This can be proven solving the Reynolds equations accounting for lubricant
piezoviscosity while neglecting the bodies compliance. The result is a narrow and high
pressure peak, of which the maximum value exceeds the values which no longer allows to
neglect the body compliance. A qualitative example of this solution is shown in Figure
11.1.

Figure 11.1: Pressure distribution under of RP and RI hypothesis

Accounting for surface deformation, the solution is similar to what is described in
Chapter 6. The roller deformed shape changes depending on the dimensionless pa-
rameters (11.2). When varying for example the load dimensionless parameter W , the
deformed shape of the roller surface and the pressure distribution will be as shown in
Figure 11.2.

First of all, it can be noticed that load variations barely affect the film thickness:
between the case (1) and the case (2) in Figure 11.2 the load is increased by a factor
of 20, while the film thickness decreases by a factor of 0.33. Furthermore:
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Figure 11.2: Pressure distribution and fluid film thickness in case of: U = 1011, G =
5000 and: (1)W = 10−5, (2)W = 2 · 10−5, (3)W = 5 · 10−5, (4)W = 2 · 10−4. [41]

• Increasing the load, the pressure distribution tends to fit the Hertian one (exclud-
ing the outlet peak), while reducing the load, the pressure distribution approxi-
mate the isoviscous-rigid one;

• As the load increases, the outlet pressure peak reduces its maximum value, be-
comes narrower and moves closer to the outlet.

A similar effect is observable varying U or G, the peak moves to the outlet, getting
narrower and smaller as the parameters increase.

Due to the similarity between Hertian pressure distribution and EHL pressure dis-
tribution, the solid body behavior is described using the dry contact introduced in
Chapter 10. This deformation will be used to correlate the penetration with the fluid
film thickness described by Eq. (11.3).

11.1.3 Contact Solution

As contact solution input the penetration is given, the corresponding contact force for
each slice has to be computed, as well as his derivative w.r.t. the penetration.

In equilibrium, the penetration is overcome by the solid bodies deformation, while
accounting for the additional surface separation due to the fluid film thickness, and
while respecting the equality of the loading onto the solid and the lubricant.

The penetration can be written as function of fluid film thickness and roller de-
formation, referring to Figure 11.3, penetration, fluid film thickness and solid bodies
relation can be written as in Eq. (11.9) and Eq. (11.10).
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Figure 11.3: Contact penetration arrangement. [31]

peni(j) = δi,j − hci,j −CrownDrop = C−0.92i q0.92i,j −Hci,jU
−1/2
i,j Ri,eq −CrownDrop

(11.9)

peno(j) = δo,j − hco,j −CrownDrop = C−0.91o q0.91i,j −Hco,jU
−1/2
o,j Ro,eq −CrownDrop

(11.10)

Where the Dinnik’s contact model equations (10.12) and (10.13) have been intro-
duced as well as Eq. (11.3). In the solution the above-mentioned equations cannot be
used directly since the inverse formulation is required. Due to the complex formulation
of Hc, the inverse function of Eq. (11.9) and Eq. (11.10) have to computed using an
iterative process, thus the Newton-Raphson method is used again.

The function which has to be solved can be written starting from the definition of
the penetration, for example for the slice-inner raceway contact, it reads:

fi,j(qi,j) = δi,j − hci,j − peni(j)−CrownDrop (11.11)

The same can be done for the slice-outer raceway contact, defining fo,j(qo,j). To
implement the iterative method the derivative of f w.r.t. the contact force has to be
calculated:

∂fk,j(qk,j)

∂qk,j
=

∂δk,j
∂qk,j

−
∂hck,j
∂qk,j

, k = i, o (11.12)

The derivatives of peni(j) and peno(j) are zero, since they are constant, while the
term derived form the Dinnik’s formulation becomes:

∂δi,j
∂qi,j

= 0.92 C−0.92i q0.92−1i,j (11.13)

∂δo,j
∂qo,j

= 0.91 C−0.91o q0.91−1o,j (11.14)
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Concerning the terms ∂hci,j/∂qi,j and ∂hco,j/∂qo,j , the derivative can not be calcu-
lated manually, since qk,j is located also in the exponent of the exponential function.
This derivative has been calculated using a symbolic tool. Finally, the iterative process
can be formulated as follows:

qi,jk+1
= qi,jk +

fi,j(qi,jk)

f ′i,j(qi,jk)
, k = 1, ... (11.15)

qo,jk+1
= qo,jk +

fo,j(qo,jk)

f ′o,j(qo,jk)
, k = 1, ... (11.16)

11.2 Roller Equilibrium Accounting for EHL and Centrifu-
gal Loads

The rolling element equilibrium can be computed using the same procedure described in
Section 10.3. The only difference is situated in the terms ∂qi,j/∂peni (j) and ∂qo,j/∂peno (j)
which are now composed of two different terms, one related to the lubricant stiffness
and one related to the solid bodies stiffness.

According with Wiegert et al. [31] each single contact can be modeled as two springs
in series, as showed in Figure 11.4.

Figure 11.4: Force model of EHL contact. [31]

In order to compute the local stiffness in a defined configuration, one needs to
calculate the two separate stiffnesses and then combine them.

Starting from Eq. (11.12) it can be seen how the total equivalent compliance can
be read as the sum of the compliance of both contributions. The compliance itself is
the inverse of the stiffness. Hence the contact stiffness can be calculated by simply
computing the inverse of Eq. (11.12), hence:

∂qi,j
∂peni(j)

=

(
∂δi,j
∂qi,j

−
∂hci,j
∂qi,j

)−1
(11.17)

∂qo,j
∂peno(j)

=

(
∂δo,j
∂qo,j

−
∂hco,j
∂qo,j

)−1
(11.18)
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This formulation is moreover convenient since the value of any term in the above-
mentioned equations is already calculated during the process to compute the contact
force. Therefore this calculation does not requires any additional computational effort.

Once the contact stiffness is computed, the iterative process can take place using
the equations described in Section 10.3. In this case the process is indeed more time
consuming, due to the iterative processes involved to compute the contact forces.

The roller shape is still the one introduced in Section 10.2, the parameter us which
quantify the surfaces speed is calculated alike what is described in Section 6.2. A case
study was done using the parameters in Table 11.1.

si 2.8 · 10−2 mm
θi 0.03°
ωpw 1000 rpm

Table 11.1: Showcase parameters

The developed methodology returns the qualitative picture shown in Figure 11.5
where the centrifugal load applied in the center of gravity is shown in red, and the
contact forces distribution in blue. The crowning and the fluid film thickness between
the surfaces have been magnified for visualization.

Figure 11.5: Load distribution along the contact lines

It is interesting how, even if the surfaces are relatively far from each other, a certain
amount of force is still visible. Moreover it is visible how the bodies do not get in
contact because of the lubricant film. Which explains why the contact forces are higher
than the ones in the dry case, for the same inner ring displacement.

The roller behavior is now computed setting as inner raceway tilting θi = 0.03°while
varying the inner raceway approach si and the shaft rotational speed ωshaft. The
simulation results are shown in Figure 11.6, where with Meqy and Feqx indicate the
equivalent contact force and moment acting on the rolling element. It can be seen how
the roller-outer raceway contact becomes slightly greater than the roller-inner raceway
contact due to the centrifugal load which becomes non-negligible as the shaft speed
increases.
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(a) Equivalent contact force between roller and
inner raceway

(b) Equivalent contact moment between roller
and inner raceway

(c) Equivalent contact force between roller and
outer raceway

(d) Equivalent contact moment between roller
and outer raceway

Figure 11.6: Statically equivalent contact forces and moments between roller and race-
ways setting θi = 0.03°and accounting for centrifugal loads and EHL

Furthermore, as the speed increases, the contact loads increase too, since the lu-
bricant effect becomes more significant. Therefore the roller is squeezed between the
raceways with greater forces as the velocity increases. This will have a considerable
effect on the whole roller bearing behavior.

Comparing Figure 11.6 with Figure 10.7, it is clearly visible how the model fidelity
of the dry case decreases as ωshaft increases. However, the increase in model fidelity of
the EHL case comes at an increased computation effort.

11.3 Solution Convergence Varying the Amount of Slices

As done in Section 10.3.1 the solution convergence varying the amount of slices used to
describe the roller will now be studied. A smoother convergence is expected, due to the
more continuous contact behavior. In fact, because of the lubrication, the contact force
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is defined even if the penetration is greater than zero. In case of dry contact, when the
slice gets in contact with the raceway, it suddenly transmits a contact force. Whereas
if one accounts for lubrication, even if the surfaces are far from each other, a certain
amount of force is still defined, smoothening the contact behavior.

As done in dry case, the inner ring displacement is set as si = 0.028 mm and
θi = 0.03°, while the amount of slices used is kept as variable. The equivalent force
and moment is then computed, as function of the amount of slices as Figure 11.7 shows.

(a) Equivalent force (b) Equivalent moment

Figure 11.7: Static equilibrium solution convergence as function of the amount of slices

In this case, the convergence is indeed smoother as compared to the dry case, even
if the curves trend is similar to the trend of Figure 10.8. In case of lubricated con-
tact, even for low amount of slices the solution is already reliable, since between the
converged value and the value for low amount of slices there is only a slight difference
(≤ 5%). This allows a coarser roller discretization which drastically reduces the required
computational effort.



Chapter 12

Tapered Roller Bearing

An important type of roller bearing is indeed represented by the Tapered Roller Bearings
which allow both high radial loads and high axial loads due to their design. The roller
shape is then a truncated cone since the axis of rotation is no more parallel to the
bearing axis but it forms an angle which value is between 0°(radial roller bearing) and
90°(thrust roller bearing).

Tapered roller bearing are used, for example, combined with radial roller bearings
in order to allows for high radial loads while being in charge of axial load carrying. The
contact models used for tapered rollers are the same as the ones developed for radial
rollers in Chapter 10 and Chapter 11, while the definition of penetration and the roller
equilibrium changes due to the different geometry. As will be shown the tapered roller
equilibrium is still 2-D but the flange will introduce one more variable to the problem.

12.1 Tapered Roller Geometry

In this section the tapered roller is introduced, Figure 12.1 shows the roller geometry.
As shown, the roller configuration can be defined by the two angles α and β which are
respectively the contact angle and the roller angle.

Since the roller is tapered, the roller diameter D is defined as a function of the vector
z which still represent the roller axial coordinate. Naming Dm the roller mean diameter,
the vector D which collect the diameters corresponding to each slice, is defined as:

D =
Dm

2
+ z

Dg −Dl

L
(12.1)

Where Dg and Dl are respectively the major roller radius and the minor roller radius.
Since the roller diameter is variable, all the radius of curvature are function of z so the
equations mentioned in the previous chapters have increased their complexity even if
they are substantially still equivalent, then in order to streamline the text they are not
mentioned again.

The roller angle β can be easily calculated by:

β = 2atg

(
Dg −Dl

2L

)
(12.2)
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Figure 12.1: Tapered roller geometry

The outer ring thickness vector t, which has to be used in Eq. 10.4 can be only
approximated since the exact geometry has to be known, therefore an approximate
formulation is proposed, it works well with contact angles α up to 40− 50°. Otherwise
a more precise formulation has to be introduced. It is defined as follows:

t =
Dob −Dpw

2
− D

2cos (α− β/2)
+ z tg (α− β/2) (12.3)

Due to the outer ring conformation, the clearance is not defined. In fact the tapered
bearings structure can support only unidirectional axial loads, otherwise the outer ring
gets dismounted.

12.1.1 Tapered Roller Equilibrium

As above-mentioned, the roller equilibrium becomes more complex introducing the
flange effect and the tapered shape of the roller. Since the inner ring approach si is no
more along the radial direction, the axial and the radial inner ring approach are intro-
duced again, as usual they are named respectively δa and δr. By this two parameters
the inner raceway translation perpendicular to the raceway surface can be computed as
follows:

si = δrcos (α− β) + δasin (α− β) (12.4)

while θi comes directly from the inner ring displacement since it is still along the same
direction defined for radial roller bearings.

The roller position is defined as usual by the coordinates sx and θy as shown in
Figure 12.3 where is also shown the centrifugal force Fc which is no more applied on
the roller mean plane due to the tapered shape, moreover is shown the flange contact
force Ffl which act at a distance of df l from the roller axis.

In this model the flange effect is modeled as a force, which means that the roller is
not able to move along its axis. This assumption has negligible effects since the flange-
roller real contact induces small movements along the roller’s axis, since Ffl is usually
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Figure 12.2: Tapered roller equilibrium

few orders of magnitude smaller than the contact forces between the roller and the
raceways. On the other hand it has to be taken into account since provokes a moment
which can slightly change the load distribution between the raceways.

Since the centrifugal load is no more applied to the roller center, if the roller equi-
librium is computed w.r.t. the roller center, it provokes also a moment. Then the total
centrifugal load is considered as a load distribution among the slides. Then each slice
will have his own centrifugal load. Collecting all the centrifugal loads in one vector,
hence fc (j), it can be computed as follows:

fc = ω2
pwj

Dpw,j dmj

2
(12.5)

where dmj is the mass of the j-th slice, Dpw,j is the pitch diameter of the j-th slice and
ωpwj is the rotational speed of the pitch diameter of the j-th slice.

Due to the angle β and the flange contact force, one more equation has to be
introduced at the equilibrium as well as one more unknown is inside these equations.
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They can be written as follows:

Fx =

m∑
j=1

(qi,j − qo,j) cos (β/2) +

m∑
j=1

fc (j) cos (α− β/2) = 0

Fz =
m∑
j=1

(qi,j + qo,j) sin (β/2) +
m∑
j=1

fc (j) sin (α− β/2)− Ffl = 0

My =
m∑
j=1

[(qi,j − qo,j) z (j)] cos (β/2) +
m∑
j=1

fc (j) z (j) cos (α− β/2)

+

m∑
j=1

[
(qi,j − qo,j) sin (β/2)

D (j)

2

]
− Ffldfl +Mg = 0

(12.6)

where Mg is the gyroscopic moment due to the roller rotation around two inci-
dence straight lines. It can be computed as proposed by Harris and Kotzlas [12] which
proposed the following formulation:

Mg = 8.37 · 10−12
(
Dm · 10−3

)4 (
L · 10−3

)(
ωpw

60

2π

)(
ωroll

60

2π

)
sin (α− β/2) (12.7)

To introduce the iterative method to compute the solution of the Eq. (12.6) the
partial derivatives of these equations have to be computed w.r.t. sx, θy and Ffl which
represent the unknowns. Then the derivatives are:

∂Fx
∂sx

=

m∑
j=1

(
∂qi,j
∂sx

− ∂qo,j
∂sx

)
cos (β/2) (12.8)

∂Fy
∂sx

=
m∑
j=1

(
∂qi,j
∂sx

+
∂qo,j
∂sx

)
sin (β/2) (12.9)

∂My

∂sx
=

m∑
j=1

(
∂qi,j
∂sx

− ∂qo,j
∂sx

)
z (j) cos (β/2) (12.10)

∂Fx
∂θy

=

m∑
j=1

(
∂qi,j
∂θy

− ∂qo,j
∂θy

)
cos (β/2) (12.11)

∂Fy
∂θy

=
m∑
j=1

(
∂qi,j
∂θy

+
∂qo,j
∂θy

)
sin (β/2) (12.12)

∂My

∂θy
=

m∑
j=1

(
∂qi,j
∂θy

− ∂qo,j
∂θy

)
z (j) cos (β/2) (12.13)
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∂Fx
∂Ffl

= 0 (12.14)

∂Fy
∂Ffl

= −1 (12.15)

∂My

∂Ffl
= dfl (12.16)

The above-mentioned equations can be handled as explained in Section 10.3 with
the only difference in the partial derivatives of the penetration, since the penetration
vectors have to be modified due to the roller angle β which change the contact normal
vector. By simple mathematical steps the following formulation is achieved:

peni = −zθycos (β/2) +
D
2
θysin (β/2)− sxcos (β/2)

+δrcos (α− β/2) + δasin (β/2) + zθi −CrownDrop
(12.17)

peno = zθycos (β/2)− D
2
θysin (β/2) + sxcos (β/2)−CrownDrop (12.18)

which leads to the following formulation concerned the derivatives:

∂peni (j)

∂sx
= −∂peno (j)

∂sx
= −cos (β/2) (12.19)

∂peni (j)

∂θy
= −∂peno (j)

∂θy
= −zcos (β/2) +

D
2

sin (β/2) (12.20)

Than the Jacobian matrix can be built in the following form:

J =



∂Fx
∂sx

∂Fx
∂θy

∂Fx
∂Ffl

∂Fz
∂sx

∂Fz
∂θy

∂Fz
∂Ffl

∂My

∂sx

∂My

∂θy

∂My

∂Ffl

 (12.21)

Finally the iterative process is formalized as: sxθy
Ffl


k+1

=

 sxθy
Ffl


k

J−1k

FxFx
My


k

(12.22)

A solution is then computed introducing the parameters in Table 12.1. The solution
is computed for both dry and EHL contact models, since the contact models are alike
the ones used for cylindrical roller bearings.

Achieving the qualitative results shown in Figure 12.3 where as usual the crowning
and the penetration are magnified for visualization; the blue arrow represent the flange
contact force, while the red one the centrifugal load.
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δa 0 mm
δr 0.01 mm
θi −0.02°
ωpw 1000 rpm
α 6°
β 0.046°

Table 12.1: Showcase parameters

(a) Equivalent force (b) Equivalent moment

Figure 12.3: Tapered roller equilibrium in Dry and EHL lubricated case, where crowning
and displacements are magnified for visualization

Is interesting to notice how, even if the axial displacement of the inner ring is zero,
the flange is still carrying a certain load due to the β angle which induce a load in z
direction which has to be balanced by the flange.

Moreover Figure 12.3 shows how the surfaces of the rolling element and the raceways
do not get in contact in the EHL case because of the lubricant thin layer between the
them, while in dry case the surfaces get in contact. Another lubricant effect can be seen
in the load distribution which in the EHL case is greater than the dry case since the
solid bodies deformation has to be grater in order to allow the lubricant layer between
the surfaces. In particular, in lubricated case, even if the surfaces are relatively far from
each others a certain amount of load is still defined.

Now the tapered roller equilibrium is computed, both in dry contact and in EHL
field. This is useful to compare the results pointing out which are the advantages and
disadvantages of each model, exactly as has been done for the radial roller bearings.
First some parameters are introduced in Table 12.2.

Figure 12.4 shows the behavior of the statically equivalent forces and moments which
the raceways do on the roller.

Similar to the case of radial roller in dry contact, the shaft speed do not have a
huge influence on the tapered roller behavior, since due to the high contact stiffness it
becomes quickly negligible. Anyway it do not increases the computational cost. Is also
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δa 1 · 10−3 mm
θi 0.02°
α 6°
β 0.046°

Table 12.2: Tapered roller showcase parameters

visible how the flange works in order to keep the roller between the raceways, which in
case of absence of the flange would be pushed out of the bearing due to the β angle.

Comparing Figure 12.4 with Figure 10.7 is clearly visible how the tapered roller has
less stiffness, due to the displacement δr which is not along the contact direction but it
is reduced by the contact angle α and the roller angle β.

The same solution can be computed for the EHL case, still introducing the displace-
ments from Table 12.2. Figure 12.5 shows the solution achieved.

In EHL regime the shaft speed has a big influence on the solution, in fact increasing
the shaft speed, the centrifugal force indeed increases, but the biggest effect on the
contact force is due to the greater surfaces speed which lead to an increased lubricant
effect. Is clearly visible how the plots translate while in the dry case the curves are
almost overlapped. Furthermore is clear how, as usual, the dry case underestimate the
contact forces.

12.2 Solution Convergence Varying the Amount of Slices

The solution convergence varying the amount of slices used is not computed, since
the contact models used for tapered roller bearings are the same used in radial roller
bearings, thus the behavior will be the same since the only difference is the set of
equations to compute the roller equilibrium.
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(a) Equivalent contact force between roller and
inner raceway

(b) Equivalent contact moment between roller
and inner raceway

(c) Equivalent contact force between roller and
outer raceway

(d) Equivalent contact moment between roller
and outer raceway

(e) Flange-roller contact force

Figure 12.4: Contact statically equivalent forces and moments between roller and race-
ways and between roller and flange in dry case



12.2. SOLUTION CONVERGENCE VARYING THE AMOUNT OF SLICES 86

(a) Equivalent contact force between roller and
inner raceway

(b) Equivalent contact moment between roller
and inner raceway

(c) Equivalent contact force between roller and
outer raceway

(d) Equivalent contact moment between roller
and outer raceway

(e) Flange-roller contact force

Figure 12.5: Contact statically equivalent forces and moments between roller and race-
ways and between roller and flange in EHL regime



Chapter 13

Roller Bearing Behavior

The procedure explained in this chapter is based on what has been developed in Chapter
7, since many steps are exactly the same. The main differences are related to the contact
wrench vector which in this case has two different components: the statically equivalent
force Fx and the statically equivalent moment My. Also the local displacement has
one more component, since in order to define the local inner ring displacement, two
parameters have to be defined: the translation approach si in case of cylindrical roller
bearings or δa and δr in case of tapered roller bearings, while the second parameter is
the same in both cases and it is the local inner ring rotation θi. Since the developed
procedure is general, is easy to adapt it to each case.

13.1 From Global to Local Displacements

In this section is explained how the procedure developed in Chapter 7 is adapted to
roller bearings and tapered roller bearings.

The definition of global and local coordinate system is still the same and they are
shown in Figure 13.1 for a tapered bearing.

The local deflection in case of radial roller bearings is formalized as follows:

si = δxcosψ + δysinψ (13.1)

θi = RT
gl(2, :)

[
γx γy 0

]T (13.2)

Where with RT
gl(2, :) is pointed out the second row of the matrix, since the inner ring

rotation around the x and z axis do not have effects on the model. While in case of
tapered roller bearings the reference radius has to be defined. The reference radius fix
the distance between the bearing axis and the local coordinate system. The mentioned
radius is defined as follows:

rref = rpw −
Dg −Dl

2
cos (α− β/2) (13.3)

then the local displacements as:
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Figure 13.1: Global and local coordinate system in tapered roller bearings

δr = δx cosψ + δy sinψ (13.4)
δa = − [δz + rrif (γx sinψ − γy cosψ)] (13.5)

13.2 From Local to Global Loads

The procedure to calculate the contribution of each rolling element to the global bearing
behavior is exactly the same as described in Chapter 7, the only difference is in the local
wrench vector which in this case is composed by two components:

jw =
[
jFx 0 0 0 jMy 0

]T (13.6)

13.3 Cylindrical Roller Bearing Behavior

This section shows how a cylindrical roller bearing (Figure 13.5) behaves when a certain
displacement is applied st the inner ring. The procedure and the hypothesis are the ones
mentioned in Chapter 7. To compute the solution is taken as showcase the bearing NU
1010 ECP from SKF, as done for angular contact ball bearing the internal geometry
is estimated using the norms [36] and [35], therefore the estimated values are shown in
Table 13.1.

The solution is then computed introducing the displacements in Table 13.2 where
δz is set as zero since it do not affect the solution due to assumptions done.

The shaft speed rotation starts from 0 rpm and it goes up to 10000 rpm with an
intermediate step at 5000 rpm. The shaft rotation angle is given in order to have a cage
rotation of 180°, even if a minor rotation angle would be sufficient since is expected a
behavior periodicity of 360°/Z = 20°.
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Figure 13.2: Cylindrical Roller Bearing

B 16 mm Outer ring width
Dob 80 mm Outer bore diameter
Dib 50 mm Inner bore diameter
D 5.69 mm Roller diameter
L 10 mm Roller length
t 7.16 mm Outer ring thickness

clnc 0.05 mm Radial clearance
Dpw 60 mm Pitch diameter
Z 18 Number of rolling elements
E 206 GPa Young modulus
ν 0.3 Poisson ratio
ρ 7.8 kg/dm3 Material density

αbarus 1 · 10−8 Pa−1 Lubricant pressure-viscosity coefficient
η0 0.1 Pas Lubricant viscosity at ambient pressure

Table 13.1: Estimated geometrical and material proprieties of NU 1010 ECP

Roller Bearing Behavior in Dry Contact The case based on the contact modeling
technique developed in Chapter 10 is shown in Figure 13.6, where are shown all the
bearing reactions to the imposed inner ring displacement.

Is clearly visible how in this case the centrifugal load really matter. Even if the roller
behaves substantially in a similar way with different rotational speeds, this difference
in the bearing behavior can be explained by the amount of rolling elements composing
the bearing. If each rolling element has a inner ring contact load reduction of few tens
of Newton due to the centrifugal load which push in the same direction. If this value is
multiplied by a factor of eight, which can be the number of rolling element in contact
due to clearance, then the factor becomes easily the reduction factor of the reaction
load in Figure 13.6. Moreover, the behavior periodicity above-mentioned is visible since
in the plots nine peaks are visible.

The shaft speed has less influence on the reaction moments, since the centrifugal
load do not provokes any concentrated moment w.r.t. the roller’s gravity center. Thus
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δx 3 · 10−2 mm
δy 3 · 10−2 mm
δz 0 mm
γx 0.03°
γy 0.02°

Table 13.2: Input displacements for the simulation of NU 1010 ECP

(a) Bearing reaction force along the x-axis (b) Bearing reaction force along the y-axis

(c) Bearing reaction moment along the x-axis (d) Bearing reaction moment along the y-axis

Figure 13.3: Roller bearing reaction forces, moments assuming dry contact

the moments variation is just due to the non linear contact behavior.

Cylindrical Roller Bearing Behavior in EHL Contact Now the dry contact
model is replaced with the EHL model which accounts for the lubricant behavior and
interaction between lubricant and bodies. The load conditions of this bearing are exactly
the same of the previous case since comparable results are required, the load conditions
are then listed in Table 13.2.

Computing the solution is immediately clear that the process is slower than the dry
one, this should not be a surprise since more is the model accuracy and more is the
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computational effort required. Even if the computational time is increased, the process
still results as acceptable. The results of the simulation are shown in Figure 13.7.

(a) Bearing reaction force along the x-axis (b) Bearing reaction force along the y-axis

(c) Bearing reaction moment along the x-axis (d) Bearing reaction moment along the y-axis

Figure 13.4: Roller bearing reaction forces, moments assuming EHL contact

As expected, the behavior referred to 0 rpm shaft speed is exactly the same achieved
with the dry contact model of Figure 13.6 while in this case, increasing the shaft speed
the reaction forces and moments increase due to the lubricant effect on the rolling
elements which increases the roller deformation, so the load distribution.

13.4 Tapered Roller Bearing Behavior

This section shows the behavior of a tapered roller bearing (Figure ), as usual it is
based on the contact modeling described thorough Chapter 12. As study-case the
bearing 33010/Q from the SKF catalog, which has dimensions similar to the ones of
NU 1010 ECP. As already done with the previous cases, the internal geometry has been
estimated by the ISO norms [36] and [35]. The estimated values and the ones from the
catalog are listed in Table 13.3.

In order to compute the solution the displacements of Table 13.4 are set as model’s
input. The solution is then computed with both contact models in order to have a clear
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Figure 13.5: Tapered Roller Bearing

B 24 mm Inner ring width
Bo 19 mm Outer ring width
Dob 80 mm Outer bore diameter
Dib 50 mm Inner bore diameter
Dg 7.84 mm Greater roller diameter
Dl 7.06 mm Lower roller diameter
L 17 mm Roller length
dfl 2.6 mm Roller axis and flange contact point distance
α 6° Contact angle
Dpw 65 mm Pitch diameter
Z 24 Number of rolling elements
E 206 GPa Young modulus
ν 0.3 Poisson ratio
ρ 7.8 kg/dm3 Material density

αbarus 1 · 10−8 Pa−1 Lubricant pressure-viscosity coefficient
η0 0.1 Pas Lubricant viscosity at ambient pressure

Table 13.3: Estimated and from catalog values of the geometrical and material propri-
eties of 33010/Q

comparison between the two cases.
The shaft speed rotation starts again from 0 rpm and it goes up to 10000 rpm with

an intermediate step at 5000 rpm. The shaft rotation angle is given in order to have a
correspondent cage rotation of 180°, even if a minor rotation angle would be sufficient
since is expected a behavior periodicity of 360°/Z = 15°.

Tapered Roller Bearing Behavior in Dry Contact In this case the reaction forces
and moments do not have visible fluctuations rotating the shaft, this is because of the
greater amount of rolling element composing the bearing. In fact in this case the amount
of rolling element is 24 while the bearing used as study case for radial roller bearings
had 18 rolling element. Figure 13.6 shows also how increasing the shaft speed, the
reaction forces and moments become smaller due to the centrifugal load which reduces
the contact force between the inner raceway and the rolling element.
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δx 3 · 10−2 mm
δy 3 · 10−2 mm
δz 0 mm
γx 0.03°
γy 0.02°

Table 13.4: Input displacements for the simulation of 33010/Q

Tapered Roller Bearing Behavior in EHL Contact Then the same solution
is computed accounting for lubrication, as usual a more speed-dependent behavior is
expected since the surfaces speed has a big influence in the lubricant effects on the
contact. Figure 13.7 shows the bearing behavior accounting for centrifugal load and
EHL.

In fact the computed solution has a strongly depend on the shaft speed due to the
lubricant effect. In this case increasing the shaft speed, also the reaction forces and
moments increase.

Comparison between Tapered Roller bearing in Dry contact and EHL In
this paragraph a comparison between the two developed methods in showed in order to
evaluate the differences and the advantages of one method w.r.t. another one. Figure
13.8 shows the computed comparison between the methods.

The first difference between the dry model and the EHL model behavior is that
the increment of the shaft rotational speed has two opposite effect. Neglecting the
lubrication the centrifugal force induce a decrease in the reaction forces and moments,
while accounting for EHL the result achieved sometimes is exactly the opposite, since
increasing the shaft speed also the surfaces speed increase then the lubricant effect
becomes more important than the centrifugal load. It is clearly visible in the reaction
forces along the x, y axis. Furthermore the lubricant effect is preponderant in the
bearing behavior since due to this the reaction forces and moments increases even of a
factor of 200÷ 400% .
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(a) Bearing reaction force along the x-axis (b) Bearing reaction force along the y-axis

(c) Bearing reaction force along the z-axis (d) Bearing reaction moment along the x-axis

(e) Bearing reaction moment along the y-axis (f) Real contact angle

Figure 13.6: Roller bearing reaction forces, moments and real contact angle assuming
Dry contact
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(a) Bearing reaction force along the x-axis (b) Bearing reaction force along the y-axis

(c) Bearing reaction force along the z-axis (d) Bearing reaction moment along the x-axis

(e) Bearing reaction moment along the y-axis (f) Real contact angle

Figure 13.7: Roller bearing reaction forces, moments and real contact angle accounting
for lubrication
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(a) Bearing reaction force along the x-axis (b) Bearing reaction force along the y-axis

(c) Bearing reaction force along the z-axis (d) Bearing reaction moment along the x-axis

(e) Bearing reaction moment along the y-axis (f) Real contact angle

Figure 13.8: Roller bearing reaction forces, moments and real contact angle computed
with the two models compared



Chapter 14

Roller Bearings Modeling
Techniques Conclusions

In this part, the developed modeling techniques for cylindrical and tapered roller bear-
ings have been described. First the roller crowning and the slicing technique have been
introduced to describe the roller-raceway penetration. Then, the dry contact model
based on the Dinnik’s formulas has been used to model the discretized line contact.
The first model also accounts for centrifugal load and clearance. While the flange con-
tact in tapered roller bearings has been introduced as constraint. As second model,
the dry contact has been replaced with the EHL contact model in order to account for
lubrication. Introducing the lubricant effects, the solution increased its reliability while
increasing the computational effort required.

The modeling techniques proposed in this part allow the computationally efficient
and high fidelity predictions of cylindrical and tapered roller bearings under different
assumptions. The most important assumption concerns the lubrication of the contact.
In fact, if the contact is modeled as dry, the fidelity becomes questionable, while if the
lubrication is introduced, the fidelity increases significantly, while on the other hand the
computational effort required to compute the solution also increases.

For a given inner ring displacement the models return the reaction forces and mo-
ments accounting for the coupling between axial, radial and tilting motion. The devel-
opd modeling techniques can take into account the most relevant phenomena such as
centrifugal loads, gyroscopic moments, lubrication and roller’s crowning.

It is expected that in many types of analysis, the time to achieve the solution results
more than acceptable if compared with the fidelity offered. As second implementation
step, the iterative processes can be optimized in order to reduce the computational
cost of the procedure, achieving shorter computational time, hence a more suitable
implementation.

Thanks to the modular implementation and to the contact models, the bearing types
covered can be extended with a minimal effort. For example the modeling techniques
can be easily extended to barrel roller bearings (Figure 14.1) and self-aligning roller
bearings (Figure 14.2) since the contact can be described with the techniques developed
in this part.

Possible extensions and improvements are discussed in the next chapter.
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Figure 14.1: Barrel Roller Bearing

Figure 14.2: Self-Aligning Roller Bearing



Chapter 15

Future Developments

The modeling techniques developed in this work can predict the steady-state behavior
of a rolling element bearing under few assumptions. The future developments concern
overcoming the limitations originating from limitations. The first improvement can
indeed be to account for the dynamics of the element motion. Introducing degrees of
freedom for describing the dynamic motion of the rolling element, the solution will be
more accurate, since more phenomena could be predicted (e.g. rolling element bouncing
between the raceways).

The future improvements can be divided in two levels. The first one is the contact
scale, while the second one is the bearing.

Concerning the contact, many improvements can be done. A first one is to account
for the damping of the lubricated contact. Many models already exist to predict the
contact damping for a single exciting frequency, even if due to the non linearity, the
superposition principle cannot be applied. Thus an error evaluation has to be done
in order to evaluate the error produced summing the effects of different frequencies.
If the superposition principle produces non-reliable results, then a novel technique to
evaluate the lubricated contact damping excited with a non-periodic excitation needs to
be developed or identified in literature. A second contact modeling improvement is to
account for contact friction, since it can give multiple advantages. The first is to have
a prediction of the whole bearing friction coefficient. Secondly, it allows to describe the
motion of the cage more accurately, which causes the periodicity of stiffness fluctuations
hence a possible source of vibrations. To predict friction, a more advanced model
for lubricated contact has to be introduced, since local pressure within the lubricated
contact area needs to be evaluated. Due to the accuracy of this model, it could also be
used to predict wear and stresses, and hence for durability purposes.

Furthermore, all these techniques can be applied to many other cases, such as gears.
In fact, the contact between meshing gears teeth is a non-conformal contact, hence the
modeling techniques developed for bearings can be applied to gears and vice versa. For
example the contact modeling developed for the rollers, can be used to model the contact
in spur and helical gears since these are typically also designed to make line contact.
Hypoid and bevel gears (Figure 15.1),typically make point contact, due to restrictions in
common manufacturing techniques. The point contact modeling techniques developed
in this work could be applied there too.
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Figure 15.1: Bevel gears meshing

The bearing level improvements can start with a time dependent solution, in order to
account for the dynamics of the rolling elements. Introducing the dynamics of rollers and
cage more phenomena can be predicted, such as rolling element bouncing between the
raceways, or rolling element slipping on the raceway due to a high inner ring acceleration
etc. A time dependent solution will likely increase the computational cost, even if the
solution process may become more stable and robust. A second but equally important
improvement can be to account for the compliance of the surrounding structure, as
bearing rings, shaft and housing. Figure 15.2 shows a bearing analysis, involving a
combination of FE and multibody modeling, to account for the rings’ compliance.

Figure 15.2: Analysis of a bearing with combination of FE and multibody modeling

The compliance of the surrounding structure can influence the internal load distri-
bution of the bearing as pointed out by Harris and Kotzalas [11]. It can be done with
a hybrid FE-analytical procedure. Siemens PLM has developed such an approach for
gears (see [42]). The procedure splits the problem in two sub-problems: an FE analysis
to evaluate the compliance of the structure far from the contact, hence gentle stress gra-
dients and complex geometry, where a coarser mesh is sufficient, while analytical contact
modeling in the contact area where the stress gradients are strong but the geometry is
simple.

Introducing the above-mentioned, the accuracy of the behavior prediction can achieve
very high levels with high reliability, hence highly accurate N&V analysis. Moreover
these improvements would allow to use these modeling techniques to investigate the
durability of bearings. In both N&V and durability analysis these modeling techniques
allow for fast what if analyses to accurately design alternatives.
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