
Davide Mascitti

Opportunistic Service Provisioning

in Mobile Clouds of Users’

Personal Devices

Anno 2016

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in

INGEGNERIA DELL’INFORMAZIONE

Tesi di Dottorato di Ricerca

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79621141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Autore:

Davide Mascitti ____________________

Relatori:

Prof. Enzo Mingozzi ____________________

Dott. Marco Conti ____________________

Ing. Andrea Passarella ____________________

Opportunistic Service Provisioning
in Mobile Clouds of Users’

Personal Devices

Anno 2016
SSD ING-INF/05

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in
INGEGNERIA DELL’INFORMAZIONE

Tesi di Dottorato di Ricerca

Abstract

Opportunistic computing is the recent application of delay-tolerant networking to
the creation of networks of mobile devices that give users the capability to share
and access services provided by other (mobile) devices in proximity without us-
ing any cellular infrastructures. The importance of this paradigm becomes appar-
ent given the ubiquitous proliferation of personal mobile devices in recent years.
Opportunistic computing can also be used to realise service offloading, a recent
trend in mobile networking research where resources on the edge of the cellular
network are used in synergy with the cloud infrastructure. The importance of this
application of opportunistic computing comes from the data traffic generated by
mobile devices that, in the last few years, has been steadily increasing. While the
development of LTE and LTE-A will boost cellular network capacity, it is unclear
whether this would be enough to support the expected exponential increase in
traffic demands in the medium term. Opportunistic techniques can contribute to
solve this problem by offloading computation and data access to locally available
devices, exploiting unused resources and balancing allocation of users requests
to obtain an increase in service provisioning performances and avoiding network
congestion.

This thesis brings contributions in two different scenarios: the first one is purely
opportunistic with the detailing of a distributed system for the establishment and
self-organization of mobile service provisioning. The system is established by
each device autonomously collecting and using context information to individu-
ate sequential compositions of resources for service provisioning and, thanks to a
stochastic model, find the alternative that is expected to result in the lowest ser-
vice provisioning time. In the second scenario, this thesis presents a solution for
the integration of the opportunistic paradigm into a mobile edge system, where

I

service provisioning is orchestrated between mobile devices and a remote cloud
system thanks to the collaboration with network base stations local to the mobile
devices. In the first scenario, experiments are presented to validate the decision
algorithms and the stochastic model they rely on, while in the second scenario, we
evaluate the performance gains obtained by using the opportunistic paradigm for
service offloading in respect to traditional remote cloud systems.

VI

Contents

1 Introduction . 1
1.1 Scenario . 1

1.1.1 Our Approach . 5
1.2 Thesis contribution . 6
1.3 Thesis Layout . 8

2 Related Work . 9
2.1 Service Composition . 9
2.2 Service Provisioning and Opportunistic Computing 9
2.3 Edge Computing . 11

3 Service Selection and Composition in Opportunistic Networks 13
3.1 Overview . 13
3.2 System Architecture . 16
3.3 Modelling service execution . 19

3.3.1 Assumptions . 20
3.3.2 Contacting the service provider W . 21
3.3.3 Data transfer times B and θ . 22
3.3.4 Queue waiting time DQ . 27
3.3.5 Service execution time DS . 27

3.4 Service Composition . 28
3.4.1 Modelling Service Compositions . 30

3.5 System Evaluation . 32
3.5.1 Composition Load Evaluation . 32
3.5.2 Results . 33
3.5.3 Data Transfer and Load System Evaluation 35

VII

3.6 Summary . 40

4 Service Provisioning In Mobile Environments through
Opportunistic Computing . 43
4.1 Overview . 43
4.2 Modelling service provisioning time . 44

4.2.1 Contacting the service provider W . 46
4.2.2 Service execution time DS . 46
4.2.3 Queue waiting time DQ . 47
4.2.4 Data transfer time B and θ . 47
4.2.5 Single service cases probabilities . 56
4.2.6 Data transfer for service compositions 58

4.3 Choice of the best alternative . 59
4.4 Performance Evaluation . 60
4.5 Summary . 68

5 Offloading Service Provisioning on Mobile Devices in Mobile
Cloud Computing Environments . 71
5.1 Introduction . 71
5.2 Hybrid mobile edge computing solution for service provisioning 73

5.2.1 Resolution process . 74
5.2.2 Data collection . 75
5.2.3 Evaluation of service provisioning alternatives 76

5.3 System evaluation . 78
5.3.1 Service provisioning time comparison 79
5.3.2 Split of service executions in the hybrid approach 84

5.4 Summary . 85

6 Conclusions . 87

References . 91

VIII

List of Figures

1.1 Service provisioning scenario without infrastructure 2
1.2 Edge Computing scenario example . 4

3.1 Service composition: an example . 14
3.2 Service request resolution algorithm . 16
3.3 Service Graph . 17
3.4 Composition graph . 17
3.5 Modelling Data Transfer . 22
3.6 The Service Graph . 28
3.7 The Composition Graph . 29
3.8 Average completion time (general case) . 34
3.9 Average completion time (case08) . 34
3.10 Average provider load (general case) . 35
3.11 Service provisioning time by data transfer sizes, scenario “Single”,

load 20-40 . 37
3.12 Service provisioning time by data transfer sizes, scenario “Single”,

load 5-8 . 37
3.13 Service provisioning time by data transfer sizes, scenario “Comp”,

load 20-40 . 38
3.14 Service provisioning time by data transfer sizes, scenario “Comp”,

load 5-8 . 38
3.15 Service provisioning time by data transfer sizes, scenario “Mixed”,

load 20-40 . 39
3.16 Service provisioning time by data transfer sizes, scenario “Mixed”,

load 5-8 . 39

IX

4.1 Accounted lengths of the first contact period . 48
4.2 Modelling Data Transfer . 48
4.3 Phases of an output transfer starting during a contact, with 2

disconnections afterwards . 50
4.4 Service provisioning time, heavy load . 62
4.5 Service provisioning time, light load . 63
4.6 Average upload transfer time, heavy load . 64
4.7 Average upload transfer time, light load . 65
4.8 Average download transfer time, heavy load . 66
4.9 Average download transfer time, light load . 67
4.10 PMTR average provisioning time against other policies 68
4.11 PMTR average completion rates against other policies 69
4.12 Haggle average provisioning time against other policies 69
4.13 Haggle average completion rates against other policies 70

5.1 Actors of the systems . 74
5.2 Request resolution process . 74
5.3 Service provisioning times, default service request parameters 81
5.4 Fraction of requests . 81
5.5 Service provisioning times - varying network load 82
5.6 % of requests served by the mobile cloud - varying network load 82
5.7 Service provisioning time - varying service popularity - 10% providers 83
5.8 Service provisioning time - varying service popularity - 25% providers 83
5.9 Service provisioning time - varying popularities - 50% providers 84
5.10 Share of requests . 86

X

List of Tables

3.1 System Elements . 19
3.2 Random variables . 19
3.3 Network Statistics . 20
3.4 Simulation parameters . 32
3.5 Default simulation parameters . 36

4.1 Default simulation parameters . 61
4.2 Real traces simulation parameters . 65

5.1 Default simulation parameters . 78
5.2 Service provisioning parameters . 80

XI

XII

1

Introduction

1.1 Scenario

We have seen in recent years a more and more pervasive diffusion of per-
sonal mobile devices like smartphones and wearable sensors. Together with the
widespread use of these devices, there has been a striking evolutionary trend
about their hardware and software characteristics: what were in the past very
limited devices offer now computing capabilities similar to laptops and significant
enough storage to host a great variety of services. This, coupled with wireless
network interfaces, enables the owner of these devices produce and process sig-
nificant amounts of data.

All these elements enable a pervasive computing environment where users’
devices can form self-organising networks and cooperate to offer each other com-
puting resources, abstracted as services. The services that can be offered by this
kind of environment range from raw computing power and storage space to sen-
sor access or software functionalities. Wireless interfaces can be used to establish
direct connections between the devices in order to access resources or exchange
data of interest.

Implementing a self-organizing network of mobile devices for service provi-
sioning presents various challenges, especially when the devices are enclosed
in an area where a common pre-existing network infrastructure is not present or
overloaded. In accessing and retrieving the output of services, mobility impacts
the ability to transfer data and identify the network topology of the devices to find
available services and use them. The devices topology in this case cannot be also
assumed to be completely connected, with the presence of groups of devices that
may not have a connection path to the other ones in the environment.

1

CHAPTER 1. INTRODUCTION

S2

S2

S1
S3

S1

S1

S2

S2

S3
S4

S2

S1

S4

A

C

B

S2

S2

S1
S3

S1

S1

S2

S2

S3
S4

S2

S1

S4

A

C

B

D

E

F

t

D

E

F

Figure 1.1: Service provisioning scenario without infrastructure

An example for this scenario can be seen in Figure 1.1, where several devices
are depicted in an area and some of them share services of different types (indi-
cated as s1, s2, s3, s4) to other devices. In this case device A may initially (left side
of the picture) access a service of type s1 directly from devices D and E or using
a multi-device path to reach device F , but if A wanted to access a service of type
s4 it would not be possible given that only devices B and C offer that service and
they do not have a path connecting them to A. Later, devices mobility may bring
A in contact B and C, while D,E and F may become unreachable, and it may
happen while a service s1 has been requested and is being executed. In this sce-
nario we would ideally like to be able to have knowledge and reach devices that
may not be reachable and also be able to satisfy a service request that is already
being served, even in case of disconnection.

To this end, the Opportunistic Networking paradigm can be used. Opportunistic
Networking is a recently developed technique that aims in solving the issue of data
communications in mobile networks where there are no stable paths between any
couple of participants. The main characteristic of Opportunistic Networks is that
users’ mobility can be exploited to carry messages around the devices network,
waiting for new contacts with other devices that may take the messages nearer
to their destinations. Extending the Opportunistic Networking paradigm from mes-
sage transfer to service provisioning, we obtain Opportunistic Computing. This is a
paradigm where resources on mobile devices are abstracted into services that can
be shared and remotely accessed by other participating devices. A system built us-
ing Opportunistic Computing would form a collaborative mobile devices network,

2

1.1. SCENARIO

sharing a service pool comprised by all the resources shared by the users that
take part in it.

In this work we explore the possibility of building Opportunistic Computing sys-
tems where the participant devices may automatically share and access each
other’s services in a way that would be effective performance-wise for the users
and at the same time sustainable for the participants that are willing to share
resources. To achieve these objectives, we investigate distributed mechanisms
whereby devices are able to individually collect information about the available ser-
vices, the devices that provide them an the state of the network. This information
collection has also to be elaborated to form knowledge, called context informa-
tion, that can be used to provide estimates of the performance obtainable using
different devices as service providers and find the most suitable alternative for the
users’ needs.

Similarly to traditional cloud architecture, with an Opportunistic Computing sys-
tem of this kind it would be possible to obtain the creation of "local mobile clouds",
that means environments where the devices surrounding the users would provide
collaboratively a powerful and rich set of resources that could be used automati-
cally at need, without having to rely on a network infrastructure.

While opportunistic computing addresses a scenario where nodes completely
self-organise in absence of any infrastructure, the concept of opportunistic com-
puting can also be used to integrate conventional cloud platforms and local service
provisioning from local mobile clouds. This is the concept of Mobile Edge and Fog
Computing, which is explored in the second part of thesis.

Mobile Edge Computing is an emerging technology for service provisioning
where mobile devices, located in an area where cellular network connectivity is
available, can use service providers that are geographically near the users and
the network endpoint providing connectivity, specifically on edge gateway at the
border between the access network and the Internet, or even on other mobile de-
vices in proximity. An effect of this solution is that, by obtaining services from edge
devices (gateways or mobile nodes), users can experience lower latencies when
requesting services than using cloud services located remotely on the Internet. A
possible issue in using the cellular network for connectivity is that bandwidth to the
services is shared between all covered devices, meaning that performances may
be impacted by data transfer saturation, which is a likely occurrence given that the
cellular network would be used also for general access to the Internet by all the
users.

Opportunistic Computing can be useful in supporting Mobile Edge Computing
Systems by offloading service requests to the devices in the area, reducing the risk

3

CHAPTER 1. INTRODUCTION

of overloading the access cellular network. Let’s consider the scenario depicted in

S2

S2

S1
S3

S1

S1

S2

S2

S3
S4

S2

S1

S4

A

C

B

S1 S2 S3 S4

eNodeB

Figure 1.2: Edge Computing scenario example

Figure 1.2: in this case, the same mobile devices we had in the first scenario
(in Figure 1.1) are in an area covered by LTE (4th generation cellular network)
connectivity, provided by an LTE base station (eNodeB) that connects the devices
to services s1, s2, s3, s4 provided by some remote cloud provider. Thanks to the
cellular connectivity of mobile devices, those services are always available, so
if device A needs service s4, it can be immediately accessed. But, in the case
congestion, it may be useful for A to obtain the same service from nodes B or C
(assuming they can provide it), which are located nearby.

This scenario can be implemented by using an hybrid system that exploits Op-
portunistic Computing, where mobile devices can autonomously decide whether
to solve a request accessing the cellular network or by offloading the request to
another mobile device offering the same service depending on what solution would
take the shortest time. Through this approach, it is possible to obtain better perfor-
mances for the users and to avoid that the cellular network may incur in bandwidth

4

1.1. SCENARIO

saturation, penalising also all other users that are using the connection for other
purposes.

1.1.1 Our Approach

In this thesis solutions are presented, which demonstrate how Opportunistic Com-
puting is an effective paradigm for the implementation of service provisioning sys-
tems for mobile devices.

First we propose a solution for environments where network infrastructure is
absent. We designed a distributed support layer where users’ mobile devices
are self-organizing in an Opportunistic network and are capable to autonomously
share resources in the form of services and access them remotely through di-
rect connections. In this system, the devices use each contact opportunities with
other devices to exchange information about the services that are available in the
network, the devices that provide them and statistics about the relative mobility
between each couple of devices, the load experienced by providers, and the per-
formance in transferring data between each other. With this knowledge (context
information), a device that needs to solve a service request uses a stochastic
model able to produce an estimate of the expected service provisioning times of
each alternative present in the network, including the impact of disconnections pe-
riods on the process duration itself, without considering it a failure state. In order
to expand the possibility to solve service requests even in sparse network topolo-
gies and to have more alternative solutions to choose from, we implemented an
algorithm to compose sequentially the services in order to obtain functionalities
that are equivalent to the users requests. As an example, in the scenario shown
in Figure 1.1, service s4 is provided by devices B and C and we assume that
the sequential composition of s1 and s2 is equivalent to s4. Device A, when in
need of service s4, may decide to use a composition s1, s2 involving devices that
are already connected with it in order to avoid waiting to meed devices B and C.
These compositions are also evaluated with the stochastic model together with
single service solutions in order to find, among a larger set of alternatives, the
best one. To prove the effectiveness of this solution, we tested the system per-
formances against other service provisioning decision algorithms that do not use
context information to make decisions or service composition.

In the second step in the study of opportunistic service provisioning we fo-
cused on the analysis of the impact of the duration of connections between a
service requester and a provider on the service provisioning process. We modi-
fied the model of the previous system in order to achieve precise estimates of the

5

CHAPTER 1. INTRODUCTION

duration of provisioning processes that involve a single provider by differentiating
its definition depending on the distribution of the duration of the contact used to
start the process itself. We also extensively evaluated the system performances in
scenarios where devices follow real mobility traces. Finally we analysed how pre-
cise are the model estimates for both compositions of services and single services
in scenarios differing by load of requests and size of the input and output data of
the services.

Finally, in the second part of the thesis, we have integrated the Opportunistic
Computing architecture into a Hybrid Mobile Edge Computing support system for
service offloading in scenarios with LTE (4th generation cellular network) conges-
tion. We construct a cooperation system between the mobile devices in an area
(self-organized through Opportunistic Computing) and the LTE base station (eN-
odeB) that provides them with connectivity to access the remote service providers
in the cloud. In this system the LTE eNodeB collects its own set of context infor-
mation about the state of the infrastructure and about the performances of the
remote cloud, while the mobile devices collect context information on the state of
the Opportunistic Network. The mobile devices use their own context information
and the information about the infrastructure, after requesting it to the eNodeB,
to estimate the service provisioning times of all available service alternatives in
the devices network and compare them to an estimate of the remote cloud ser-
vice provisioning time to choose the best service provider alternative. We evaluate
the performances of this solution, focusing specifically on the reduction of service
provisioning time with respect to the case where only the remote cloud is used.
Moreover, we highlight the efficiency of the system in reacting to spikes in infras-
tructure load without impacting on the performances the users’ experience. We
also test our system in scenarios where user requests are not uniform and tend
on preferring certain subsets of offered services.

1.2 Thesis contribution

The main contribution of this thesis consists in the design, validation and evalua-
tion of a system for service provisioning using Opportunistic Computing both as a
mean to create service provisioning opportunities when a network infrastructure is
unavailable, and as a solution to implement service provisioning offloading. This
validation has been developed in three steps.

First of all we show that our service provisioning system performs particularly
well in the analysed scenarios. In particular, thanks to The algorithm that nodes
use to chose the estimated best service composition, and the prediction model

6

1.2. THESIS CONTRIBUTION

on which the algorithm is based, the designed system is able to avoid saturat-
ing the resources of the devices by distributing the load much better than other
service provisioning solutions used as benchmarks. The service provisioning per-
formances are far better than that obtained by the benchmarks in all conditions,
and particularly when either the network starts becoming congested because of
the traffic associated to the input/output data of the services, or when nodes be-
come congested due to high numbers of generated requests by the users. We
show that this holds true in all service composition cases, i.e. either when ser-
vices are entirely available on individual devices (no service composition), or when
composition is the only possibility to provide the required functionality, or in mixed
cases. Improvement of our algorithm with respect to the alternative solutions can
be as high as 50, 40, 75% in these three cases, respectively. These results were
originally presented in [8].

To validate the model accuracy we analysed, via real mobility trace simulations
and synthetic mobility traces the precision of the estimates that can be produced
by a stochastic model using context information in an Opportunistic Computing
system, that estimates service provisioning times based exclusively on local infor-
mation at mobile devices, i.e., without centralised information. In scenarios varying
in service request loads, sizes of service input and output parameters and length
of the compositions used we also highlight the behaviour of the solution as a func-
tion of service availability. Results show that the model used to estimate service
provisioning time is accurate, as the maximum estimation error is in the order of
15%. Then we compare the performances of the system against other alternatives
using real mobility traces. We show that it can achieve up to 43% shorter average
service provisioning times with respect to the closest benchmark. Therefore, the
proposed model is a viable practical tool to implement efficient service provisioning
between mobile nodes. These results were originally presented in [23].

At last we evaluated the efficacy of using Opportunistic Computing in a Mobile
Edge Computing scenario. We present simulation results showing that our solution
is capable of offering better service provisioning time than a system where service
offloading is unavailable. We also explore the effects on service provisioning per-
formances of user service preferences and cellular network congestion. We show
that the proposed system is able to autonomously adapt to the level of congestion
of the cellular network, avoiding to contribute to its saturation, and still preserv-
ing low service provisioning times to the users, even in cases where the cellular
network is highly congested or users have strong preferences on certain services.
These results were originally presented in [9] and [5].

7

CHAPTER 1. INTRODUCTION

With this thesis we show how, in pervasive environments, the use of the Op-
portunistic Computing paradigm can bring several advantages in creating service
provisioning systems, both in absence or in presence of a supporting infrastruc-
ture.

1.3 Thesis Layout

The remainder of this thesis is organized as it follows. In Chapter 2 we present
works in the literature that are related to ours in the themes of service composition,
Opportunistic Computing solutions and Mobile Edge Computing. Then we present
our proposals for using Opportunistic Computing in pervasive environments. In
Chapter 3 we delineate the Opportunistic Computing system for service composi-
tion and provisioning in pervasive environments and show the results of the sim-
ulation experiments comparing it with different opportunistic computing systems
that do not use context information. Then, in Chapter 4 we illustrate the system
containing a refined stochastic model for service provisioning time estimates for
compositions and single services (Section 4.2), and show (Section 4.4) through
simulations its accuracy and effectiveness in a varied range of scenarios, also us-
ing real mobility traces. In the following chapter (Chapter 5) we present our hybrid
system for Mobile Edge Computing and the results of our experiments to show
the performance contribution in using Opportunistic Computing for Mobile Edge
computing (Section 5.3). Finally, in Chapter 6 we sum up the results obtained in
our work and how they relate to the future research directions.

8

2

Related Work

2.1 Service Composition

The sharing of resources in a heterogeneous mobile network can be used to com-
pose functionalities not available in a single node of the network thus providing
a much more rich functionality set. Such a vision requires new solutions for or-
chestration and management of resources on different devices [7]. Service com-
position exploits a mechanism based on graph theory that allows to collect the
knowledge of the services offered to evaluate the best alternative to use. Some re-
cent research proposal take into accounts these aspects. [18] describes a system
allowing service discovery and composition in networks with stable connectivity.
The proposed system includes a mechanism for modelling services representing
their semantics through the use of ontologies. They define a taxonomy of services
through a list of concepts describing them [3]. A key problem of service provision-
ing through direct communication between nodes in mobile environments con-
cerns the possibility that possible service providers may not be directly reachable
(even through a multi-hop ad hoc path) when the seeker issues a request.

2.2 Service Provisioning and Opportunistic Computing

In opportunistic computing the fact that nodes may not be reachable is considered
as the rule, and proposed mechanisms are designed correspondingly. For exam-
ple, in [38] fault tolerance is achieved through a middleware that exploits informa-
tion about the devices to create parallel service compositions, in order to increase
the probability for successful executions. [29] proposes some heuristics for service

9

CHAPTER 2. RELATED WORK

composition taking into account the last time of encounter between nodes and the
reported load at providers.

In [11], [40] the problem is addressed using a stochastic analysis in order to
find providers that are most likely reachable from the seeker during the entire pe-
riod necessary to perform the composition. In these works, the loss of connection
is considered as a failure state, and therefore they are not suitable to dynamic
mobile scenarios where nodes disconnections are normal. A system that exploits
composition of services coupled with a stochastic model to determine the system
behaviour is MobIoT, presented in [15]. MobIoT is a service-oriented middleware
for mobile participatory sensing, in which the mobility paths of the devices are es-
timated to decide whether their services should be shared in order to avoid redun-
dancy of services in an area and waste of resources. In MobIoT this is achieved
also composing already available services to obtain functionalities that would have
to be covered by services from other unregistered devices in the area. MobIoT al-
lows a new device to register its services only if it increases the sensing coverage
of a physical attribute. To do so the model is used to elaborate the probability that
another node with coverage for that attribute will cross devices’ path. The middle-
ware uses a registry connected to the infrastructure that maintains the information
on the registered services in the area. With respect to MobIoT, we use a system
policy that optimises service provisioning time and only uses information gathered
by the devices themselves through opportunistic contacts.

Unlike these proposals, opportunistic computing does not assume that mobile
nodes are well connected. The fact that nodes may not be reachable is considered
as the rule, and proposed mechanisms are designed correspondingly. For exam-
ple, in [38] fault tolerance is achieved through a middleware that creates parallel
service compositions, in order to increase the probability for successful executions.
[29] proposes some heuristics for service composition taking into account the last
time of encounter between nodes and the reported load at providers. With respect
to [38] and [29] our proposal is based on an analytical model for computing the
expected completion time of each alternative, rather than on simple heuristics for
selecting the composition. [26] analyses the issue of single service provision in
opportunistic networks. The main aim is to improve the efficiency of service provi-
sion by replicating requests to a set of different providers. The optimal number of
requests is computed by considering information on the mobility of the users and
on the load of the nodes. The optimal number of requests is computed through
an analytical model that minimizes the expected service provisioning time. With
respect to [26], the solution we present, considers the possibility of composing
different services.

10

2.3. EDGE COMPUTING

Other approaches have been proposed in the literature where mobile nodes
collaborate to provide services to each other. With respect to the solution pro-
posed in [14], in this paper we put much more emphasis on the conditions of
the mobile networking environment, and how they can be taken into account to
select the most suitable service composition. We consider this focus particularly
important, since we target a very dynamic mobile networking environment. In [17],
authors propose a system where mobile nodes form a mobile cloud (similar to
the opportunistic computing approach), but service between nodes is supported
only for those nodes that are guaranteed to stay in contact during service execu-
tion. Therefore, our approach is much more general. Finally, [33] also assumes a
network environment similar to ours. However, service provisioning times are not
modelled, and therefore the proposed system is based on very simple heuristics,
such as minimising execution times during contacts between nodes. Thanks to a
more accurate modelling of providers availability, our solution can allocate service
requests to available providers in a more efficient way.

2.3 Edge Computing

Research on Edge Computing spurs from the advancements in the branch of Mo-
bile Cloud Computing showing a strong effort towards finding ways to relieve mo-
bile devices from the execution of services, in favour of using the cloud infrastruc-
ture. In [28] authors present many different propositions for doing so, but in this
approach the possibility of offloading computation or services execution to other
mobile devices is rarely discussed. In [12] authors present cloud solutions where
mobile devices provide services to other users, but such proposals consider mo-
bility only as an exception. Depending on the application and objectives, mobile
cloud computing solutions may differ in their architectures and in how the ser-
vice behaves in case of service requests. Four main types of system architecture
may be individuated: remote cloud solutions, local mobile clouds, edge computing
solutions (or cloudlets), and hybrid solutions [1]. Systems for remote cloud com-
puting offload functionalities (computation, storage, coordination) on the remote
cloud. [21] describes numerous proposals for transferring computation functionali-
ties from mobile devices to the cloud to improve performances or with the objective
of saving energy. Local mobile clouds are systems where mobile devices collab-
orate in an area in order to provide functionalities to other participants, without
using the infrastructure. MobiCloud [16] is a cloud framework in which mobile de-
vices in a MANET are virtualized to service nodes or service broker, linked through
a MANET routing protocol.

11

CHAPTER 2. RELATED WORK

In Edge Computing, services and resources are also located dynamically on
static devices connected to the wireless infrastructure in the vicinity of the mo-
bile devices. For example [31] describes how to dynamically instantiate Virtual
Machines for mobile users that can be accessed through wireless LAN networks.
Hybrid solutions unite remote, local clouds and cloudlets to create systems where
functionalities can be provided on different sites. Some initial proposals going into
this direction have been proposed recently. For example SAMI [30] and MOCHA
[35] are two examples of systems where computation activities needed by mobile
devices are divided and distributed to sites of different nature. SAMI has the ob-
jective of minimizing the energy and monetary cost of computation when deciding
to execute code on other mobile devices, a local cloudlet or on the remote cloud,
while MOCHA uses information on latency and response times for all available re-
mote cloud sites and the local cloudlet to decide where to execute code. However,
none of these solutions exploit collaborative service provisioning among mobile
devices, which is the key element of our approach, given that Edge Computing
solutions can be supported by the Opportunistic paradigm by handling mobility as
a functional part of the system and using the available resources offered by mobile
devices in the area in the proximity of the edge system.

12

3

Service Selection and Composition in Opportunistic
Networks

3.1 Overview

The basic idea of opportunistic computing is to allow the users to take advan-
tage of the resources and services that other users share, by exploiting the direct
physical contacts between the users, and the resulting possibility to exchange data
through a direct connection between their devices (e.g. through WiFi or Bluetooth).
Opportunistic computing is complementary to conventional service oriented com-
puting approaches. In opportunistic computing resources available on mobile de-
vices can be directly shared among users in a very dynamic and situated way (i.e.,
following very closely the dynamic process of users availability and needs), with-
out requiring to go through any pre-existing infrastructure, either at the networking
level (e.g., cellular networks) or at the computing/service level (e.g., the cloud).
Therefore, opportunistic computing permits to take advantage of typically unused
resources available on users’ devices, thus augmenting the total "service capac-
ity" of a pervasive networking environment. Another exploitable capability of op-
portunistic computing is to compose the services provided in the devices network,
giving two main advantages: to add or substitute features that are momentarily
or definitively absent due to unavailability of the devices that provide the service
and to widen the choice of providers that can be used. This gives to the system
the means to exploit policies to balance the load on the providers and network or
obtain a possibility to achieve better performances.

A challenge to realise the opportunistic computing vision is that in this sce-
nario, the mobility of devices makes it impossible to create and maintain a stable
network topology, so that the problem of the instability of the connections has to
be considered. Moreover, given the great heterogeneity of the devices, it is impor-

13

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

tant to define a support able to manage the on-line selection and composition of
resources and services by exploiting an analysis of the mobility and of the charac-
teristics of the nodes, to satisfy a request submitted by a user or by an application.
Thanks to such a support, opportunistic computing can provide, despite intermit-
tent connectivity, a functioning and dynamic distributed computing environment,
taking advantage of any resources available in the environment.

In this chapter we propose a system for the selection and composition of
services in opportunistic computing environments, realised as a distributed sup-
port layer active on users’ devices. This support layer is responsible for sharing
resources on the devices in the form of services and dynamically accumulates
knowledge on resources and services from other participants in the network, find-
ing also suitable composition of services to be used in alternative to the default
offered services. With this knowledge, our system can process service requests
generated either by the user or by the applications that reside on the device. It
proceeds to evaluate the possible alternatives which can be exploited to resolve
these requests and chooses the most convenient, taking into account both the mo-
bility of the nodes, the heterogeneity of the participating devices, and the expected
status of their resource usage (e.g., the computational load on the devices). The
system we propose is able to choose the best alternative through the definition of
a mathematical model taking into account both the mobility of the devices and their
computational capabilities in order to derive statistical measures useful for com-
paring the alternatives. In particular in this chapter we select the alternative that
minimises the expected service provisioning time, defined as the period between
the choice of an alternative and the reception of the service results.

S1

S2

S3

S1

S2

S3

S1

S2

S3

t

N1

N2

N4

N3 N1

N2

N3

N4

N1
N2

N3

N4

Figure 3.1: Service composition: an example

Figure 3.1 shows a possible scenario for our system. A user (in the follow-
ing, the seeker, marked as node n1) asks for a service which consists in the

14

3.1. OVERVIEW

transformation of a raw video file into a compressed video file and a separate
audio file. The seeker knows three nodes of the network (in the following, the
providers, marked as nodes n2, n3, n4) which have published, respectively, the
services s1, s2, s3. n1 recognizes as viable alternatives the service s1 which offers
the required transformations and the sequential composition of the services s2, s3.

In this chapter, we also present a set of simulation results, obtained using the
TheOne simulator [20], which has been proposed for evaluating opportunistic envi-
ronments and includes different mobility models. The simulator has been modified
in order to make it suitable for the management of service composition. Thanks
to the simulations, we compare the performance of our system against a set of
alternative solutions. The rationale is considering lightweight solutions, that do not
estimate service execution times as a function of the state of the devices network.
We also evaluate the impact of service compositions on the system performance
and how the knowledge collected by the devices influences them.

The comparison is done in a variety of scenario, differing by the network traffic
caused by the service requests and the amount generated by the devices in the
system.

In our tests, we show that our system performances particularly well in the
analysed scenarios. In particular, our algorithm avoids saturating the resources of
the network by distributing the load much better than other solutions. The resulting
service provisioning time is far better than that obtained by the benchmarks in all
conditions, and particularly when either the network starts becoming congested
because of the traffic associated to the input/output data of service execution, or
nodes becomes congested due to increased number of requests. We show that
this holds true in all service composition cases, i.e. either when services are en-
tirely available on individual nodes (no service composition), or when composition
is the only possibility to provide the required function, or in mixed cases. Improve-
ment of our algorithm with respect to the alternative solutions can be as high as
50, 40, 75% in these three cases, respectively, when network and provider satura-
tion don’t become unmanageable for the benchmark algorithms.

The simulations also highlight the effectiveness of the approach we propose,
especially in presence of a large amount of requests. Our system provides better
performance in terms of provisioning time in particular when this is most needed,
i.e. when a high load of requests is generated. For instance, with respect to the
policy selecting the first available alternative, our system reduces the provisioning
time up to 86%, and the average load on providers up to 40%.

15

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

Servicek

queryk

reception

Researchkfork

resolution

alternatives

Application

Alternatives

evaluation

Waitkfor

best

alternative

contact

Query

resolution

Knowledge

base
Mathematicalk

model

Devices

network

Contact

detection

Figure 3.2: Service request resolution algorithm

This chapter is organized as follows. The overall architecture of the system is
defined in Section 3.2 and the policy for selection of the composition is introduced
in Section 3.3 and 3.4. Section 3.5.2 discusses the experimental results. Finally,
concluding remarks are reported in Section 3.6.

3.2 System Architecture

To describe the system behaviour we show how a service request is managed
and what is the logical decision process to select the components that form the
composition involved in the resolution of the request. Fig. 3.2 shows a graphical
representation of the algorithm used by seekers. Let us consider a chosen seeker
running an application that at some point generates a request. The system run-
ning at the seeker first finds, through the knowledge base (i.e., a local storage
with information about available services, managed as described in the following
of the section), all possible compositions that would satisfy the request. Then, the
service provisioning time of each composition is estimated, and the one providing
the minimum provisioning time is selected. If the first provider in the composition is
in contact with the seeker, the execution of the first component starts. Otherwise,
the seeker waits to encounter this provider. In the meanwhile, it may encounter
other nodes, which, as explained in the following, could result in updating the local
knowledge at the node. In this case, the selected composition is re-evaluated, and
possibly modified according to more refined knowledge acquired by the seeker.
Eventually, the service composition starts and proceeds until the application re-
quest is satisfied. Between two consecutive components, output parameters of
the former are passed to the next provider as input parameters.

Let us discuss more in detail how the key components of Fig. 3.2 are realised.
Let us first consider the block indicated as "research for resolution alternatives":
once a service request is generated at a seeker, the system searches for reso-

16

3.2. SYSTEM ARCHITECTURE

S1
0,2

S3
0,1

S5
2,3

S2
1,3

start

0
end

3

S4
1,2

Figure 3.3: Service Graph

S3,N2
0,1

S5,N4
2,3

start,N0
0

end,N0
3

S1,N1
0,2

S4,N4
1,2

S1,N3
0,2

S2,N3
1,3

Figure 3.4: Composition graph

lution alternatives to satisfy the request. To this end, the system searches in the
local knowledge base, in order to collect all the known service components that
might be used and the statistics needed for the evaluation of the alternatives. The
knowledge base is updated by each node upon encountering other nodes. In par-
ticular, for each encountered node it stores (i) the set of provided services, (ii)
an estimate of the computation time for each provided service, (iii) an estimate
of the number of service requests generated by the node upon encounter, and the
respective size of exchanged parameters, (iv) an estimate of contact and inter-
contact times, and (v) an estimate of the average throughput available when the
two nodes encounter. Specifically, for the reason explained in Section 3.3, upon
encountering, nodes exchange the first two moments of service computation time,
as well as the list of provided services. The number and size of requests, contact

17

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

and inter-contact times and average throughout estimates are simply monitored by
each node without requiring exchange of information. This information is sufficient
for the chosen node to estimate the service provisioning time.

After collecting the service components from the knowledge base, the sys-
tem builds a Service Graph out of them (an example is shown in Fig. 3.3) where
vertices are components, and edges represent the fact that two components can
be executed sequentially. Note that in the Service Graph there is not yet infor-
mation about which nodes provide components, which is added in the following
logical step (the Composition Graph). Each path connecting two vertices of the
graph shows a possible composition to satisfy the application request. Each ser-
vice component sj is identified in our system as a pair (Ij , Oj) where Ij is the
input type and Oj is the output type of sj . For the sake of simplicity, in the fol-
lowing we assume that these types are codified by integer values, furthermore we
will consider acyclic compositions, i.e. compositions where the same components
cannot appear twice. To ensure this, any Service Graph we consider will contain
only services sj such that Ij < Oj . For instance, Fig. 3.3 shows a set of service
components {s1, s2, s3, s4, s5} linked by their type dependencies together with two
special components Start and End, representing the start and the end points of
the service composition corresponding to the considered request.

Given that each component may be offered by different providers known by the
seeker, there can be different composition alternatives depending on the chosen
providers. To identify these alternatives, a Composition Graph is created (as in
Fig. 3.4), where, for each component, vertices are created for all known providers
offering the component. On the resulting graph, each path from component Start
to component End is a suitable composition. The graph is weighed, and weights
are the key elements provided by our analytical model to estimate the service
provisioning time, as explained in Section 3.3. Note that the graph may change
from node to node, as we assume it is built based on information available locally
and collected through direct pairwise contacts, and not on global information.

In the "alternatives evaluation" block, the list of alternatives taken from the
graph is then evaluated by the system through a mathematical model that takes
each composition to estimate its expected service provisioning time. How the
model does these estimates is described in Section 3.3. After the evaluation, the
system ranks the alternatives, choosing the one with the least expected service
provisioning time.

In the "wait for best alternative contact" block, the seeker, if it is not currently
in contact with the chosen provider for the first component, waits for a contact with
it. Otherwise the decision process is over and the service request is queued to be

18

3.3. MODELLING SERVICE EXECUTION

sent to the provider. If the seeker has to wait for the first provider, it continues to
monitor the state of the network upon new contacts. Any new contact triggers a
new exchange of information between the nodes. This information may alter the
classification computed previously, so, in this case, the system goes back to the
alternatives evaluation phase to update the ranking of the compositions.

3.3 Modelling service execution

This section introduces the stochastic model exploited to estimate the execution
time of a single component service. Modelling the execution time of a single com-
ponent service is the building block to evaluate the completion time of a composi-
tion. Starting from this, we will model service composition in Section 3.4.

Table 3.1: System Elements

N Nodes Set
S Service components Set
ni ∈ N i-th node of the network
si ∈ S i-th service
Ii Input type of the i-th service
Oi Output type of the i-th service

Table 3.2: Random variables

R Completion time of service i on provider j, for a service required by
node h

W Time h spent by h to establish a contact with j
B Time required to upload data of size k from node h to node j
θ Time necessary to download data of size k from node h to node j
DS Execution time of service i in provider j
DQ Queue waiting time for a service request in provider j
L Number of queries in a batch received by a provider
TC Contact duration of node h and node j
TIC inter contact period of node h and node j

We can divide the execution time of a single component service (R) into the
following phases:

19

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

Table 3.3: Network Statistics

δ Contact rate between node h and node j
δ′ Intercontact rate between node h and node j
ρ Average load on provider j
µ Average service time for service i on provider j
λ Query arrival rate on provider j
V Average throughput between nodes h and j

• Contact of the service provider (W). The time to contact the node providing
the service is determined by the intercontact time between the seeker and the
provider. This value depends on the their relative mobility.

• Data transfer (Input Time B, Output Time θ). Input/output data for the service
execution must be transferred from the seeker to the provider and back. Note
that in an opportunistic network data transfer between two nodes may be af-
fected by connection disruptions due to the nodes mobility. This implies that
the duration of contacts affects the number of contact events required to com-
plete the transfer, while both contact and intercontact duration affect the time
to transfer data.

• Queue waiting time (DQ). Once transferred, requests may be delayed at the
provider due to previous pending executions (we model this as a FIFO queue
at the provider). The duration of this delay depends both on the frequency of
the request arrivals to the provider and on the time to process them.

• Service execution time (DS). The time to execute a service on the provider
depends both on its computational capabilities and on the type of the service.

Since the execution of previous phases is sequential, we obtain:

R =W +B +DQ+DS + θ

We will define R as a random variable whose expected value will be exploited
to choose the best alternative. The random variables corresponding to the different
phases will be introduced in the following sections.

3.3.1 Assumptions

This section defines some basic assumptions we introduce to reduce the complex-
ity of the mathematical analysis. We will exploit some notations used also for the
definition of the model which are summarized in tables 3.1,3.2,3.3.

20

3.3. MODELLING SERVICE EXECUTION

Assumption. For each service request q generated by the seeker nh ∈ N , it
is possible to satisfy the request by a composition of services allocated on the
provider nodes nj , ..., nm ∈ N which have been previously contacted by nh

This assumption guarantees that the nodes satisfying the user query may be
detected at the node where the query is generated, with the knowledge it has pre-
viously gained from the network.

Assumption. Each seeker nh and each provider nj have the same knowledge
about the service s requested by nh e and provided by nj .

This property is needed to model symmetric service knowledge between seek-
ers and providers so that the the types of input/output parameters known by seek-
ers and providers match

3.3.2 Contacting the service provider W

We introduce the random variables TC and TIC modelling, respectively, the con-
tact and intercontact times between two nodes nh and nj . For each pair of nodes,
we assume that contact and intercontact times between those nodes are inde-
pendent and identically distributed (i.i.d.). We also assume that contact and inter-
contact times of different pairs of nods are independent of each other. Finally, we
assume that the variables TC and TIC follow exponential probability distributions
with rates δ and δ′. As shown by real trace analysis presented, for example, in
[13, 39], although controversial, exponential contact and intercontact times is one
of the possibilities, and is a common assumption in the literature on opportunistic
networking and computing (e.g. [36, 26]). Since a node cannot know beforehand
the values of δ and δ′, each node computes an estimate of these values by av-
eraging the values of contact and intercontact time with other nodes collected by
opportunistic contacts.
The time for node nh to contact the generic service provider nj , is denoted by the
random variable W . This is equal to 0 if, at the time when the evaluation is done,
nh and nj are in contact, while it is equal to the residual intercontact time TIC
otherwise (and, under our assumption, its expected value is equal to E[TIC] due
to the memoryless property of the distribution).

The expected value of W is recomputed at each connection/disconnection of
the two nodes, changing from 0 to E[TIC] when a disconnection occurs or from

21

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

E[TIC] to 0 in case of a connection establishment.

3.3.3 Data transfer times B and θ

The estimation of the time to transfer data between two nodes requires to take into
account the network dinamicity, since disconnections may occur during the trans-
fer process. If a transfer between two nodes starts at the beginning of a contact
period, it may be interrupted at the end of each contact, to be resumed when a new
contact (between the same nodes) is established. This means that the total time
for the transfer has to be computed by considering a sequence of time intervals.

k

V-1

End of standard

transfer

k/V k/V+TICTIC t

Transferred

data

Connection

down

Connection

up

End of

transfer

Intercontact

period

Figure 3.5: Modelling Data Transfer

We assume that the data throughput is a constant V > 0 computed by aver-
aging its values measured during the contact periods.

We denote the random variable modelling the time needed to transfer the input
data from the seeker nh to the provider nj as B. The input data transfer is charac-
terized by starting while a contact is established with the provider and, hereafter,
we refer as B for each data transfer time starting during a contact period. B de-
pends on k, the size of data to transfer, on V and on the number N of contacts re-
quired to transfer data. Figure 3.5 illustrates through an example the general data
transfer process. If no disconnections would occur during the whole process, the
data transfer time would be k/V . Otherwise, additional intercontact times must be
added, depending on the encounter pattern between the nodes. Specifically, the
number of contact events necessary to complete the data transfer is equal to n
with a probability that the sum of n contact times between the two nodes is less
than k/V , and the sum of n+ 1 contact times is greater than k/V .

22

3.3. MODELLING SERVICE EXECUTION

Denoting with TC(i) the length of the i-th contact event between ni and nj , the
probability that N is equal to n is thus:

P{N = n} = P{
n∑
i=1

TC(i) <
k

V
≤
n+1∑
i=1

TC(i)}

If we condition to the number of contact events required to complete the data
transfer, B can be computed as k/V (the sum of the contact times during which
the data transfer occur) plus the sum of the n intercontact times occurring between
the required contacts.

B|N=n =
k

V
+

n∑
i=0

TIC(i)

To associate the distribution of N to B, we can note that
∑n
i=1 TIC(i) and∑n

i=1 TC(i) are Erlang random variables with average rates respectively δ′ and δ
and we will call them SIC,n and SC,n.
Given that we are interested in getting a formulation of the expected value ofB, we
can use the Laplace transform of B to ease the analisys. Also, we can formulate
the expected value of N using its Z-transform ΠN (z).
The transform of B is LB(s) = Lk/V+SIC,N (s) = e−sk/V LSIC,N (s) and thanks
to a property of the Laplace transform of an Erlang variable which has a ran-
dom variable as the number of components, we can write e−sk/V LSIC,N (s) =

e−sk/VΠN (LTIC (s)), successfully separating the number of intercontacts from the
intercontacts distribution.
This composite function can be changed thanks to the definition of Z-transforms

into e−sk/V
∑∞
n=0 P{N = n}∗(LTIC (s)N) = e−sk/V

∑∞
n=0 P{N = n}∗

(
δ′

δ′+s

)n
The probability of N = n depends on the probability that n contact periods won’t
be enough to finish transfering the data, but that with another contact the transfer
will end:

P{N = n} = P{
n∑
i=1

TC(i) <
k

V
≤
n+1∑
i=1

TC(i)}

We considerate the sum of n contact periods as an Erlang with average rate δ that
we call SC,n:

P{N = n} = P{SC,n <
k

V
≤ SC,n + TC,n+1} =

= P{SC,n + TC,n+1 ≥
k

V
∧ SC,n <

k

V
} =

=

∫ k/V

0

P{x+ TC,n+1 ≥
k

V
∧ SC,n = x}dx =

23

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

=

∫ k/V

0

P{TC,n+1 ≥
k

V
− x|SC,n = x} ∗ P{SC,n = x}dx =

We substitute the probability values with the cumulative probability distribution of
the intercontact times FTIC and the density function of SIC,n:

=

∫ k/V

0

(1− FTC (
k

V
− x)) ∗ fSC,n(x)dx =

=

∫ k/V

0

(1− (1− e−δ(kV −x))) ∗ δ
nxn−1e−δx

(n− 1)!
dx =

=

∫ k/V

0

e−[δ(
k
V −x)+δx] ∗ δ

nxn−1

(n− 1)!
dx =

=

∫ k/V

0

e−δ
k
V ∗ δ

nxn−1

(n− 1)!
dx =

= e−δ
k
V δn ∗

∫ k/V

0

xn−1

(n− 1)!
dx = e−δ

k
V ∗

(δkV)n

n!

substituting this value to the formulation of the trasform of B, we have:

LB(s) = e−sk/V
∞∑
n=0

e−δ
k
V ∗

(δkV)n

n!
∗
(

δ′

δ′ + s

)n
=

= e−(s+δ)k/V
∞∑
n=0

(
δkδ′

V (δ′ + s)

)n
∗ 1

n!
=

Given that
∑∞
n=0 c

n/n! = ec, we have:

= e
−(s+δ)k

V ∗ e
δkδ′

V (δ′+s) = e
−(s+δ)k(δ′+s)+δkδ′

V (δ′+s) = e
−(δ+δ′+s)ks
V (δ′+s)

To obtain the expected value of B, we calculate the value of the derivate function
of the transform:

L′B(s) =
k

V
∗
(
(δδ′ + (δ′ + s)2)

(δ′ + s)2
∗ e(−

ks(δ+δ′+s)
V (δ+s)

)

)
And we calculate it for s = 0:

E[B] = (−1) ∗ L′B(0) =
k

V
∗
(
δδ′ + (δ′)2

(δ′)2

)
=
k

V
∗
(
1 +

δ

δ′

)
Using the transform LB(s) it is also possible to extract the value of the variance

ofB, given that we only need to find the second moment E[B2] ofB and substract

24

3.3. MODELLING SERVICE EXECUTION

the square of the expected value. We can obtain the second moment by calculating
the second derivative L′′B(s) of the laplace trasform of B and put s = 0.
With simple calculations we have that:

L′′B(s) =
k(k(δδ′ + (δ′ + s)2)2 + 2δδ′V (δ′ + s)

V 2(δ′ + s)4
∗ e
−(δ+δ′+s)ks
V (δ′+s)

E[B2] = L′′B(0) =
k(k(δδ′ + (δ′)2)2 + 2δV (δ′)2

V 2(δ′)4
=

=
k(k(δδ′)2 + k(δ′)4 + 2kδ(δ′)3 + 2δV (δ′)2)

V 2(δ′)4
=

=
k(kδ2 + k(δ′)2 + 2kδδ′ + 2δV)

V 2(δ′)2
=

V ar(B) = E[B2]− E[B]2 =
k(kδ2 + k(δ′)2 + 2kδδ′ + 2δV)

V 2(δ′)2
−

− k
2

V 2

(
(δ′)2 + 2δδ′ + δ2

(δ′)2

)
=

2kδ

V (δ′)2

To calculate the expected value of the time to transfer data not knowing
whether to start from an intercontact or contact period, we use thee results from
B:

• θ = B if there is a contact time.
• θ = B+TIC otherwise, thanks to the memorylessness propery of exponential

distributions.

If we indicate with pC and pIC the probabilities that the previous cases happen,
we can calculate the expected value of θ as:

E[θ] = E[B] ∗ pC + E[B + TIC] ∗ pIC =

We substitute the values;

=
k

V

(
1 +

δ

δ′

)
∗ E[TC]

E[TC] + E[TIC]
+

(
k

V

(
1 +

δ

δ′

)
+

1

δ′

)
∗ E[TIC]

E[TC] + E[TIC]
=

=
k

V

(
1 +

δ

δ′

)
∗ δ′

δ′ + δ
+

(
k

V

(
1 +

δ

δ′

)
+

1

δ′

)
∗ δ

δ′ + δ
=

=
1

δ′ + δ
∗
(
(δ′ + δ) ∗ k

V
∗
(
1 +

δ

δ′

)
+

1

δ′
∗ δ
)

=

25

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

=
k

V
∗
(
1 +

δ

δ′

)
+
δ

δ′
∗ 1

δ′ + δ

We use the same approach to extract, from the definition of B, the value of the
variance of θ:

V ar(θ) = E[θ2]− E[θ]2

• Second moment:

E[θ2] = E[B2] ∗ pC + E[(B + TIC)
2] ∗ pIC =

= E[B2] ∗ pC + E[B2 + 2B ∗ TIC + T 2
IC] ∗ pIC =

= E[B2] ∗ (pC + pIC) + 2 ∗ E[B] ∗ E[TIC] ∗ pIC + E[T 2
IC] ∗ pIC =

= E[B2] + 2 ∗ E[B] ∗ E[TIC] ∗ pIC + E[T 2
IC] ∗ pIC

• Square of the expected value:

E[θ]2 = (E[B] ∗ pC + (E[B] + E[TIC]) ∗ pIC)2 =

= E[B]2 ∗ p2C + (E[B]2 + E[TIC]
2 + 2 ∗ E[B] ∗ E[TIC]) ∗ p2IC+

+2(E[B] ∗ pC ∗ (E[B] + E[TIC]) ∗ pIC) =

= E[B]2 ∗ (p2C + p2IC + 2pCpIC) + 2 ∗ E[B] ∗ E[TIC]∗

∗(p2IC + pCpIC) + E[TIC]
2 ∗ p2IC =

= E[B]2 + 2 ∗ E[B] ∗ E[TIC] ∗ (p2IC + pCpIC) + E[TIC]
2 ∗ p2IC

With the second moment and the square of the expected value, we can show the
formulation of V ar(θ):

V ar(θ) = E[θ2]− E[θ]2 =

= E[B2] + 2 ∗ E[B] ∗ E[TIC] ∗ pIC + E[T 2
IC] ∗ pIC

−E[B]2 − 2 ∗ E[B] ∗ E[TIC] ∗ (p2IC + pCpIC)− E[TIC]
2 ∗ p2IC =

We note that E[B2]− E[B]2 is equal to V ar(B).

= V ar(B)+2E[B]E[TIC](pIC−p2IC−pC ∗pIC)+E[T 2
IC]∗pIC−E[TIC]

2∗p2IC =

= V ar(B)+2E[B]E[TIC](pIC(1−pIC −pC))+E[T 2
IC]∗pIC −E[TIC]

2 ∗p2IC =

Given that (1− pIC − pC) = 0, we can delete 2E[B]E[TIC].

= V ar(B) + E[T 2
IC] ∗ pIC − E[TIC]

2 ∗ p2IC =

26

3.3. MODELLING SERVICE EXECUTION

We substitute the explicit values of the probabilities and the expected values:

=
2kδ

V (δ′)2
+

2

(δ′)2
∗ δ

δ′ + δ
− 1

(δ′)2
∗ δ2

(δ′ + δ)2
=

=
2kδ

V (δ′)2
+

2δδ′ + 2δ2 − δ2

(δ′)2(δ′ + δ)2
=

2kδ

V (δ′)2
+

2δδ′ + δ2

(δ′)2(δ′ + δ)2
=

=
2kδ

V (δ′)2
+

(δ′ + δ)2 − (δ′)2

(δ′)2(δ′ + δ)2
=

=
2kδ

V (δ′)2
+

1

(δ′)2
− 1

(δ′ + δ)2

3.3.4 Queue waiting time DQ

A provider offering a set of services receives a stream of requests from the network
and enqueues them, waiting for the execution.
We consider the M [X]/G/1 [37] queueing model, where nodes generate queries
according to a Poisson distribution with rate λ and send batches of requests to the
provider (upon encountering). Consider the random variable DQ modelling the
waiting time for a service request in the queue of provider j in a M [X]/G/1 queue
system and the random variable G modelling the number of queries in a batch
received by the provider. The expected value of the random variable DQ can be
computed [37] if we assume that the first two moments of the general distribution of
the service execution timeDS (with expected value d and d(2) its second moment)
and of the random variable L (with expected value l and l(2) its second moment)
do exist. These values can be estimated by monitoring the batches arriving to the
provider and the executed services.

To complete the characterization of DQ we extract the average rate λ of the
query batches arrivals to the provider and compute the average load ρ of the
provider as λ ∗ l ∗ d. Starting from these values, the expected value of DQ can be
computed, as shown in [37], as:

E[DQ] =
λld(2)

2(1− ρ)
+

l(2)d

2l(1− ρ)

3.3.5 Service execution time DS

The random variable DS for the execution of the service si on a provider nj is
influenced both by the device computational power and by the implementation

27

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

of the requested service. Each provider estimates the expected value of the DS
by collecting the execution times of that service and transmits this value in each
opportunistic contact.

3.4 Service Composition

A service request may be satisfied by a composition of the services offered by the
nodes of the network. In our solution, the composition is defined by the seeker
which exploits its local knowledge of the services present in the network and of
the providers offering them.

As described in Section 3.2 At an abstract level, we define a directed Service
Graph showing the execution dependencies inside a composition. Each path con-
necting two vertices of the graph shows a valid sequence of service executions.
Each service sj is identified in our system as a pair (Ij , Oj) where Ij is the input
type and Oj is the output type of sj and these types are atomic. For the sake
of simplicity, in the following we assume that these types are codified by integer
values, furthermore we will consider acyclic compositions since they represent
the most frequent situation in real scenarios. For instance, Figure 3.6 shows a
set of services {s1, s2, s3, s4} linked by their type dependencies together with two
special services start and end representing the start and the end points of the
composition to which are assigned the input, respectively the output type of the
service request. Each other node is paired with a pair of integers that represents
the input, respectively the output type of the corresponding service.
To evaluate alternative compositions, each service in this graph has to be paired

S1
0,2

S3
0,1

S5
2,3

S2
1,3

start

0
end

3

S4
1,2

Figure 3.6: The Service Graph

with the nodes (providers) offering it. The Composition Graph, shown in Figure 3.7

28

3.4. SERVICE COMPOSITION

is defined by replacing each vertex of the service graph corresponding to a ser-
vice si by a set of vertexes (si, nj) such that node nj provides service si, and the
edges of the modified graph link the same services pairs of the abstract graph.
Note that node n0 corresponds to the seeker, while services start and end repre-
sent, respectively, the service request issued by the seeker n0 and the reception
of the request output by n0.

The Composition Graph can be used to determine, based on the seeker’s local
knowledge, all the compositions which satisfy the service request, just by identify-
ing the set of paths from the start to the end service. Each path corresponding to
a sequential composition of services is shown in Figure 3.7.

S3,N2
0,1

S5,N4
2,3

start,N0
0

end,N0
3

S1,N1
0,2

S4,N4
1,2

S1,N3
0,2

S2,N3
1,3

Figure 3.7: The Composition Graph

To estimate the execution time of different compositions and choose the best
one, the graph is weighted by considering the local knowledge of the node. Each
vertex of the graph is paired with the average queue waiting time at the corre-
sponding provider and with the average service execution time of the correspond-
ing service at that provider, while the edges of the graph are labelled by consid-
ering the average time required for contacting the next node and for transferring
data to it.

The time to transfer intermediate results between providers may be computed
in different ways according to the knowledge of the network collected by the
seeker. In the solution requiring the minimal overhead in terms of amount of ex-
changed information between nodes, each provider transfers the results back to
the seeker which forwards them to the next provider of the composition. In the
solution that maximises the amount of knowledge that the seeker can exploit to

29

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

estimate the best composition, the intermediate results of the composition are di-
rectly transferred between the providers. In this case the seeker needs to know the
contact and intercontact rates of any pair of providers involved in the composition.
These values may be epidemically exchanged when nodes come into contact. Let
ni and nj be a pair of nodes establishing a contact and exchanging their knowl-
edge of the network. ni needs to get each contact rates δ and intercontact rates
δ′ of each other node nh that is known by nj (so that its services are also known).
This solution may require to exchange up to n2 elements, where n is the number
of nodes in the network. The trade-off is between the data exchanged and the
possibility to exploit direct data transfer between nodes, which may result in more
efficient solutions, because data has not to be transferred back to the seeker af-
ter each invocation. As we discuss next, the estimation of the time required for a
specific service composition also depends on which solution is used.

3.4.1 Modelling Service Compositions

Let us consider a vertex (sj , ni) of the Composition Graph: it represents the exe-
cution of the service sj on the provider ni, while an edge ((sj , ni), (st, nk)) shows
that nk waits from ni the results produced by service sj to start execution of ser-
vice st. In the following, without loss of generality, we will assume that the node cor-
responding to the seeker is n0. Let us consider a path p from the vertex (start, n0)

to the vertex (sj , ni) of the composition graph: our goal is to define a random vari-
able Rp,sj ,ni modelling the time to execute the sequence of services on the path
p, starting from the seeker n0, up to the end of the execution of service sj inside
the provider ni. The expected value of Rp,end,n0

is an estimation of the time to
execute the composition corresponding to a specific alternative, available through
path p.

The form taken by the random variable Rp,sj ,ni depends on the solution
adopted to transfer data between the providers of the composition. Let us intro-
duce the variable θsj ,ni,st,nh modelling the time required to transfer data from the
service sj of the provider ni to the service st of the provider nh. In the first sce-
nario, the intermediate results generated are transmitted to the seeker which, in
turn, propagates them to the next provider of the composition. In this case, we
define the variable θsj ,ni,st,nh , by distinguishing the first step of the composition
from the other ones. As discussed in section 3.3, when considering the first data
transfer, the seeker is able to know whether the contact with the first provider is
available, while this is not possible in the following transfers. Therefore, if an edge
of the graph connects the start service with another service, we sum up the ini-
tial contact waiting time and the data transfer starting during a contact period. In

30

3.4. SERVICE COMPOSITION

the other cases, we sum up the data transfer time between each provider and the
seeker.

The definition of θsj ,ni,st,nh is therefore the following one:

θsj ,ni,st,nh =

{
Wni,nh +Bni,nh if sj = start.
θni,n0

+ θn0,nh otherwise.

where Wnt,nk ,Bnt,nk ,θnt,nk have value 0 if t = k.
In the second scenario the seeker estimates if the lower execution time is ob-

tained by transmitting the intermediate results directly between the providers or by
returning them to itself. In this case, the random variable θsj ,ni,st,nh is computed
as in the previous case, by considering that each transfer between two providers
may be realized by relying on the seeker or by a direct transfer.

θsj ,ni,st,nh =

{
Wni,nh +Bni,nh if sj = start

min(θni,nh , θni,n0 + θn0,nh) if sj 6= start

Let us now compute the random variable Rp,end,n0 expressing the execution
time of the composition corresponding to the path p.

Consider a path p in the Composition Graph defined by m providers n1, ..., nm
and m service invocations sn1 , ..., snm , where sni is the service invoked on the
node ni of p. and consider a query submitted by the seeker n0. The random vari-
able defining the execution time of the path p, is defined by adding a component
for the first composition step, one for the sequence of service executions up to end
of the composition and a component for the final data transfer to the seeker. Re-
calling the notation for the waiting time in the providers’ queues and the execution
times at the providers (defined in Section 3.3), and the formulas presented in this
Section, it is easy to derive the following expression:

Rp,n0,end = Tfirst + Tp + Tlast
where:

Tfirst =Wn0,n1 +Bn0,n1 +DQn1 +DSsn1
,n1

Tp =

m∑
i=2

(θsni−1
,ni−1,sni ,ni

+DQni +DSsni ,ni
)

Tlast = θsnm ,nm,n0,end.

The expected value of the execution time may be computed by assigning a
weight to each edge, according to the previous formula, and then using the short-
est path algorithm to find the best alternative.

31

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

3.5 System Evaluation

In order to validate the effectiveness of a system where the choice of the service
composition exploits the model presented above, we developed a set of simula-
tions through TheOne [20]. The experiments exploit a set of mobility traces gen-
erated according to the RandomWayPoint model, modified as discussed in [4] in
order to avoid problems related to the initial transient phase of the mobility model.1

3.5.1 Composition Load Evaluation

In the first set of experiments we evaluate the system in scenarios with different
kinds of requested compositions. The main parameters of the simulations are de-
scribed in Table 3.4.

Table 3.4: Simulation parameters

Simulation runs 5
Number of nodes 500m× 500m
Total simulation time 70000s
Warm-up time 10000s
Request generation phase 30000s
Connectivity range 90m
Transmission speed 2Mbps
Input/output data size 20KB/2MB
Density of each service 25%
Input type range i ∈ [0, 7]
Requests output type range o ∈ [1, 8], o > i

As previously described, each service is identified by the type of its input/output
which is codified by an integer. In our simulation an input type i is selected in the
integer range [0,7], while output type o in the range [1,8], with the constraint that i
is less than o to avoid cyclic compositions. Each service is randomly assigned to
25% of nodes.
We consider two different scenarios for service requests. In the first one, the ser-
vice requests are generated so that both the input and the output type of each

1 Note that, although in general other mobility models are considered more realistic, RWP
is still a valid option when users form a unique social community moving in a common
area [4]

32

3.5. SYSTEM EVALUATION

service is randomly selected. In the second scenario, referred as (case08), all re-
quests have input type 0 and output type 8. This represents the case with the
longest possible composition in our scenario.

We compare the following service selection policies:

• Minimum Expected Value (MEV). The choice of the service composition is se-
lected according to our model.

• Random(RAN). For each request of service, a random path in the Composition
Graph is selected.

• Always First (AFIR). The path on the Service-Node Graph is selected by the
seeker by considering, at each composition step, if possible, a suitable provider
that is already in contact with it. If no such provider exists, the seeker waits to
encounter such a provider.

• Atomic (ATOM). The seeker waits for a provider that offers a single component
service satisfying the request. In this case service composition is not taken into
account at all.

Our experiments measure both the average completion time of the service
requests and the average load on the providers. Our results are the average of 5
independent simulation runs, shown with 95% confidence intervals.

TheOne allows us to configure the frequency of requests creation and their
assignment to the seekers. When a new request is created, it is assigned to a
seeker selected at random. We examine the behaviour of the system in different
query load scenarios, by increasing the number of requests generated by the sys-
tem starting with a generation time between requests uniformly distributed in the
range 20-40 seconds, up to a generation time between requests uniformly dis-
tributed in the range 3-5 seconds.
As we will see in the following section, the effectiveness of the policy MEV with
respect to the AFIR, RAN and ATOM policy is more remarkable for higher load
values.

3.5.2 Results

In this section we consider the more general scenario where the seeker exploits
also the information received by the encountered nodes, like the intercontact times
of these nodes with other ones. The results presented in Figure 3.8 and in Fig-
ure 3.9 show how the performance of MEV remains fairly stable when varying the
number of requests, as opposed to the AFIR and RAN policies, which have the
worst performance and present a massive degradation in the case of a high fre-
quency of service requests. ATOM follows the trend of MEV with average times

33

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

Figure 3.8: Average completion time (general case)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

“20-40” “17-35” “15-30” “10-20” “8-10” “5-8” “3-5”

MEV
RAN
AFIR
ATOM

R
e
q
u
e
st

 r
e
so

lu
ti

o
n
 t

im
e
 (

se
co

n
d
s)

Request inter-generation time (seconds)

Figure 3.9: Average completion time (case08)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

“20-40” “17-35” “15-30” “10-20” “8-10” “5-8” “3-5”

RAN
AFIR
ATOM

R
e
q
u
e
st

 r
e
so

lu
ti

o
n
 t

im
e
 (

se
co

n
d
s)

Request inter-generation time (seconds)

slightly larger than MEV in the general case, despite it requires a single compo-
nent service invocation to satisfy the user request. In case case08 its behaviour is
similar to that of other policies different from MEV.

For what concerns the average load (Figure 3.10), RAN and AFIR bring most
of the providers to saturation (as the average load approaches 1). ATOM and MEV
result in a significantly lower average load. Specifically neither of them exceeds
0.6, and MEV achieves a lower average load. This is remarkable, as - in general
- the total number of generated requests is higher in MEV, because MEV exploits
service composition (while ATOM does not) and thus generates a number of re-
quests larger or equal to 1 for each request issued by the applications. Neverthe-

34

3.5. SYSTEM EVALUATION

Figure 3.10: Average provider load (general case)

0

0.2

0.4

0.6

0.8

1

“20-40” “17-35” “15-30” “10-20” “8-10” “5-8” “3-5”

A
v
e
ra

g
e
 p

ro
v
id

e
rs

 l
o
a
d

RAN
AFIR
ATOM

Request inter-generation time (seconds)

MEV

less, this result in an average load even lower than in ATOM, showing that MEV is
able to efficiently distribute the additional load.

Overall, by comparing the four policies based on the two performance figures,
we can conclude that MEV largely outperforms AFIR and RAN. MEV outperforms
also ATOM, though to a lesser extent in the average case. However, as soon as
some specific service becomes very popular (like in the case08), MEV largely
outperforms also ATOM, because it exploits composition to avoid constantly using
only the set of providers that provide exactly that service (as ATOM does), thus
overloading them.

3.5.3 Data Transfer and Load System Evaluation

In this section we analyse the behaviour of our system in different simulated sce-
narios differing for request load and data transfer sizes for long periods of time.
The simulation parameters are described in 3.5. For each simulation scenario, we
averaged the results upon 5 simulation runs. We consider 30 devices that move in
a square with sides 500m long with the devices having a 90m transmission range
and a 2 Mbps maximum bandwidth, so there is a high probability that each node
can have many different direct contacts with other nodes at any time during the
simulation.

Each simulation run covers 400000s of simulated time, with the first 10000s
allotted to only the exchange of mobility data to build the knowledge base of the
nodes. Then service requests are generated for 360000s (100 simulated hours).
The last 30000s are left to complete the service resolution processes.

35

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

Table 3.5: Default simulation parameters

Simulation runs 5
Number of nodes 30
Simulation space 500m× 500m
Total simulation time 400000s
Mobility warm-up period 10000s
Statistics warm-up period 360000s
Request generation phase duration 390000s
Connectivity range 90m
Transmission speed 2Mbps
Density of each service 25%
Input type range i ∈ [0, 7]
Requests output type range o ∈ [1, 8], o > i

Each service can be provided by 25% of the nodes of the network. The behaviour
of the policies are evaluated in three main scenarios. In the first one, all the re-
quests are evaluated and solved using exclusively single service executions (we
will call this scenario “Single”), so that compositions cannot be used (and the RAN
and ATOM policies coincide). In the second one (the “Comp” scenario) requests
cannot be solved using a single service (ATOM is not evaluated in this scenario
because of the inability to abide to the scenario limitation). Finally, we consider a
“Mixed" scenario, where all four policies can use any composition length, accord-
ing to the policy behaviour.
For all scenarios, we have run two sets of simulations where different amounts of
requests are generated. In the “5-8” scenario, a new request is generated after
the previous one, after a time uniformly distributed in the interval between 5 and 8
seconds has passed. Each request is then assigned to a randomly chosen node,
also following a uniform distribution, who will act as a seeker. The “20-40” scenario
is similar to “5-8”, but the intervals between request generations are chosen be-
tween 20 and 40 seconds.
Finally, we consider different sizes for the input/output parameters of the service
components: 80 KBytes, 320 KBytes and 1280 KBytes for the “5-8" setting and
80 KBytes, 320KBytes, 1280 KBytes and 5120 KBytes for the “20-40" setting. In
each simulation, the input and output data sizes are the same for all services and
requests. All the results shown are the average results of the 5 independent sim-
ulation runs executed for each scenario. We also show the confidence intervals,
with a 95% confidence level.

36

3.5. SYSTEM EVALUATION

 0

 200

 400

 600

 800

 1000

 1200

 1400

80k 320k 1280k 5120k

A
v
e
ra

g
e
 r

e
q
u
e
st

 c
o
m

p
le

ti
o
n
 t

im
e
 (

s)

Data transferred (Bytes)

MEV
AFIR
RAN

Figure 3.11: Service provisioning time by data transfer sizes, scenario “Single”,
load 20-40

 0

 200

 400

 600

 800

 1000

 1200

 1400

80k 320k 1280k

A
v
e
ra

g
e
 r

e
q
u
e
st

 c
o
m

p
le

ti
o
n
 t

im
e
 (

s)

Data transferred (Bytes)

MEV
AFIR
RAN

Figure 3.12: Service provisioning time by data transfer sizes, scenario “Single”,
load 5-8

In the "Single" scenario we force each policy to use the least possible number
of service requests to solve any generated user request. In Figure 3.11 we can see
the average service provisioning time for various data transfer size settings with a
low request load (inter-generation interval “20-40”). AFIR and MEV show similar
performance, and both drastically outperform RAN, with up to 50% less time spent

37

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

 0

 500

 1000

 1500

 2000

 2500

 3000

80k 320k 1280k 5120k

A
v
e
ra

g
e
 r

e
q
u
e
st

 c
o
m

p
le

ti
o
n
 t

im
e
 (

s)

Data transferred (Bytes)

MEV
AFIR
RAN

Figure 3.13: Service provisioning time by data transfer sizes, scenario “Comp”,
load 20-40

1K

10K

100K

80k 320k 1280k

A
v
e
ra

g
e
 r

e
q
u
e
st

 c
o
m

p
le

ti
o
n
 t

im
e
 (

s)

Data transferred (Bytes)

MEV
AFIR
RAN

Figure 3.14: Service provisioning time by data transfer sizes, scenario “Comp”,
load 5-8

on small input data sizes.
Once we also set a higher load of requests to the system, we can see (in Figure
3.12) that the advantage in using MEV over AFIR becomes more apparent, with
MEV coping better with the increase of the queue waiting time, keeping at least at
45% the time saved against RAN.

38

3.5. SYSTEM EVALUATION

 0

 500

 1000

 1500

 2000

 2500

80k 320k 1280k 5120k

A
v
e
ra

g
e
 r

e
q
u
e
st

 c
o
m

p
le

ti
o
n
 t

im
e
 (

s)

Data transferred (Bytes)

MEV
AFIR
RAN
ATOM

Figure 3.15: Service provisioning time by data transfer sizes, scenario “Mixed”,
load 20-40

1K

10K

100K

80k 320k 1280k

A
v
e
ra

g
e
 r

e
q
u
e
st

 c
o
m

p
le

ti
o
n
 t

im
e
 (

s)

Data transferred (Bytes)

MEV
AFIR
RAN
ATOM

Figure 3.16: Service provisioning time by data transfer sizes, scenario “Mixed”,
load 5-8

In the “Comp” scenario, the unavailability of single service solutions favours the
use of solutions that can handle the load of requests without flooding the network
or that can save time on each data transfer phase in the compositions. We can
see in Figure 3.13 that with low request load, AFIR manages to outperform MEV
exploiting the knowledge of the state of the connections between providers after

39

CHAPTER 3. SERVICE SELECTION AND COMPOSITION IN
OPPORTUNISTIC NETWORKS

each service is executed. This advantage is amplified by low data transfer sizes
that make possible to exchange data before the used contact may end. This is con-
firmed noting that with bigger data sizes, the difference between MEV and AFIR
decreases. When compared against RAN, MEV still manages to achieve up to
40% better performances. With an heavier load scenario (as seen in Figure 3.14),
both AFIR and RAN cannot handle the flow of requests given by the use of compo-
sitions, with average times 40 times greater than the ones achieved by MEV (note
the logarithmic scale on the y axis).
In the “Mixed” scenario, each policy has the opportunity to use any possible com-
position length to solve a request (apart from ATOM that uses only single service
executions). In this kind of scenario, MEV can exploit the wide range of choices
keeping into account the stability of the network. In Figure 3.15, we can see how
MEV outperforms the other policies even at low loads, saving near to 40% of
time in respect with AFIR and 75% with respect to RAN with low transfer data
sizes. With bigger data sizes, MEV outperforms ATOM with at least 35% shorter
times, exploiting the fact that ATOM isn’t aware of the computing capabilities of the
providers.
In Figure 3.16 we see the high load scenario, where the difference between MEV
and the other policies is even more remarkable, with AFIR and RAN suffering from
overloading the nodes, and ATOM being incapable of giving good performances
generating the least possible amount of requests between all policies, with MEV
achieving times near to 50% shorter (note again the logarithmic scale in the y
axis).
The under-performing of AFIR is caused by its choices of compositions for solving
requests. Without any guidance about the load state and the service execution
performance of each provider in the composition paths, AFIR is not able to exploit
the knowledge of the state of the network at each execution step. Also, without any
reference about the lengths of the chosen compositions, AFIR tends to saturate
the provider with service requests.

3.6 Summary

In this chapter we have presented a system able to select and compose service re-
quests in an opportunistic environment. We have defined a mathematical model to
evaluate alternatives known by the seeker where the request is generated. The
simulation results show that our system outperforms other policies in a varied
range of scenarios in terms of average resolution times of users’ requests. In par-
ticular, our solution is drastically better as the network becomes more and more

40

3.6. SUMMARY

congested, either due to load at service providers or congestion at the network
level. This is because our solution is able to detect those condition, spreads the
load more intelligently, and thus avoids creating bottlenecks in the service provi-
sioning process.

41

42

4

Service Provisioning In Mobile Environments
through Opportunistic Computing

4.1 Overview

In this chapter, we investigate how, upon a service request at a given device our
solution aims at identifying the composition that minimises the time required by
the seeker to obtain the results of the composed service (throughout referred to as
service provisioning time). Our solution takes into account the fact that nodes pro-
viding service components may be only intermittently connected with the seeker
and with each other, because of the nature of the underlying mobile environment.
To this end, we modify the stochastic model presented in the previous chapter in
order to find estimates of the service provisioning times for the available composi-
tion alternatives that accurately represent the influence of the devices mobility on
each specific request resolution process. This new approach is particularly impor-
tant for single component services, where the connection status between a seeker
and its chosen provider impacts the duration of all phases that compose the res-
olution process. The structure of the underlying system for the model is the same
described in Section 3.2, meaning that there is no additional requirements for the
devices that are part of the network.

As seen in the previous solution, nodes exchange, upon each encounter, infor-
mation about the sought and provided services, and their current load. Each node
also monitors data transfers to estimate the available bandwidth for communica-
tions, as well as time intervals between contact opportunities with other nodes.
Based on this information, each node builds a localised view of services available
in the network. Upon a service request, a seeker can thus identify the known avail-
able compositions, and estimate the time required by using each of them. To this
end, we develop an analytical model that estimates online the service provisioning
time when using each of the possible compositions.

43

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

We validate the model accuracy via trace-driven simulations using reference
mobility traces using TheOne [20], which is a reference simulation environment for
opportunistic networks. For greater flexibility, we also use synthetic mobility traces
to validate the model against varying service request loads, sizes of service input
and output parameters and length of the compositions used. We also highlight the
behaviour of the solution as a function of service availability. Results show that
the model used to estimate service provisioning time is accurate, as the maximum
estimation error is in the order of 15%. Then we compare the performances of
the system against other alternatives using real mobility traces. We show that it
can achieve up to 43% shorter average service provisioning times with respect to
the closest benchmark. Therefore, the proposed model is a viable practical tool to
implement efficient service provisioning between mobile nodes.

The chapter is organized as follows. The revised stochastic model is presented
in Section 4.2 and Section 4.3 for single and multiple component service execu-
tions respectively. In Section 4.4 we characterise the performance of the proposed
service provisioning approach. Finally, concluding remarks are reported in Section
4.5.

4.2 Modelling service provisioning time

This section introduces the stochastic model exploited to estimate the service pro-
visioning time. The basis of this model and its structure are taken from the model
in the previous chapter, but the formulation of all its parts is different in order to
better describe the relations between the phases recurring in the service provi-
sioning process and the evolution of the state of the network during the process
itself. Without loss of generality, we present the model by focusing on the provision-
ing time of a service requested by a chosen seeker. For the sake of explanation,
let us first assume that this service can be provided directly by a chosen provider
encountered by the seeker (i.e., the service composition is made of 1 service com-
ponent only). We then extend it to the general case of composed services. Note
that in the following, when required, we denote with h the index of the chosen
seeker, and j the index of the chosen provider. Most of the variables used in the
model refer to the pair (chosen seeker, chosen provider). When this dependence
is clear and straightforward, we omit to use the indices h, j with these variables,
to make the notation simpler. The service provisioning time in this case (hereafter
denoted with R) is made up of five consecutive phases, as follows:

• Contact of the service provider (W). This is the time needed by the seeker
to encounter the provider after the point in time when the service request is

44

4.2. MODELLING SERVICE PROVISIONING TIME

generated. It is determined by the inter-contact time between the seeker and
the provider. This value depends on their relative mobility.

• Data transfer (Input TimeB, Output Time θ). This is the time needed to transfer
the input parameters from the seeker to the provider and the output parameters
from the provider to the seeker (after the execution time is complete). In the
latter case, we also include in this phase the time required by the provider to
meet the seeker from the point in time when the service execution is complete.
Note that in an opportunistic network data transfers between two nodes may
be affected by connection disruptions, due to the nodes mobility, but also by
transfer from and to other nodes that use the same shared medium, or even
by other concurrent transfers between the seeker and the provider involving
other requests. This implies that, in general, both the duration of contact and
inter-contact times impact on the duration of these phases.

• Queue waiting time (DQ). Once onto the provider, actual execution may be
delayed due to previous pending requests. We model this as a FIFO queue at
the provider. The duration of this delay depends both on the frequency of the
request arrivals to the provider and on the time to process them.

• Service execution time (DS). This is the time to execute a service on the
provider. It depends on both its computational capabilities and on the type of
the service.

Each of these phases can be modelled as a separate random variable as we will
describe in the following of the section. Since they are sequential, we obtain for a
single component service the following expression:

Rsingle =W +B +DQ+DS + θ (4.1)

For the case of a service composition made of n components, the service provi-
sioning time can be expressed as follows:

Rcomp =W +B +

n∑
i=1

(DQi +DSi + θi) (4.2)

In (4.2), W and B refer to the time to meet the first provider in the composition
and transfer the input parameters to it, respectively. DQi and DSi are the length
of queuing at the i-th provider and executing the i-th component, respectively.
θi represents the time required by provider i to encounter provider i + 1 (or to
encounter the seeker, for provider n), and transfer to it the output parameters of
component i which become input parameters of component i+ 1 (or, for provider
n, to transfer the final output parameters to the seeker).

45

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

In the following of the section we explain how to estimate the expected time
taken by these phases. We discuss the derivation of B and θ last, as this requires
a number of steps. Through these estimates and using (4.1) and (4.2) each seeker
can estimate the expected service provisioning time of the available compositions,
and pick the best one. The components of (4.2) need some slight modifications
with respect to what we derive for the case of single service compositions, as
discussed in Section 3.2.

4.2.1 Contacting the service provider W

We introduce the random variables TC and TIC modelling, respectively, the con-
tact and inter-contact times between two nodes h and j. For each pair of nodes,
we assume that contact and inter-contact times between those nodes are inde-
pendent and identically distributed (i.i.d.). We also assume that contact and inter-
contact times of different pairs of nodes are independent of each other. Finally,
we assume that the variables TC and TIC follow exponential distributions with
rates δ and δ′. As shown by real trace analysis presented, for example, in [13, 39],
although controversial, exponential contact and inter-contact times is one of the
possibilities, and is a common assumption in the literature on opportunistic net-
working and computing (e.g. [26, 36]). Since a node cannot know beforehand the
values of δ and δ′, each node computes an estimate of these values by averag-
ing the values of contact and inter-contact times with other nodes collected during
opportunistic contacts.

The time for seeker h to contact the generic service provider j, is denoted by
the random variable W . This is equal to 0 if, at the time when the evaluation is
done, h and j are in contact, while it is equal to the residual inter-contact time TIC
otherwise (and, under our assumption, its expected value is equal to E[TIC] due
to the memoryless property of the exponential distribution). The expected value of
W is therefore:

E[W] =

{
1
δ′ if h and j are not connected
0 otherwise

(4.3)

4.2.2 Service execution time DS

The random variable DSsi,j for the time needed to execute service component si
on a provider j is influenced both by the device computational capabilities and
by the implementation of the requested service component. We assume each
provider keeps an estimate of the expected value of DSsi,j based on the previous

46

4.2. MODELLING SERVICE PROVISIONING TIME

local executions, and sends this value to encountered nodes. Similarly, providers
also keep an estimate of the second moment of DSsi,j and send it to other nodes
upon encounters. This is used in the estimation of the waiting time DQ, as ex-
plained next.

4.2.3 Queue waiting time DQ

We assume that the seeker locally generates requests addressed to the provider
according to a Poisson process with rate λ. Therefore, when the provider is en-
countered, in general a batch of requests may have been accumulated, whose
input parameters need to be transferred. To model this behaviour, we model the
service provider with a M [X]/G/1 queue. As shown in [37], this is exact when (i)

requests are generated according to a Poisson process, (ii) inter-contact times
are exponential, and (iii) all requests stored at the seeker are transferred to the
provider during a contact. Under our assumptions, hypothesis (iii) may not hold.
However, we still use the M [X]/G/1 model, and assess the approximation level
by validating the results obtained using this model against simulation in Section
3.5.2.

Let us denote with L the number of requests in a batch received by the
provider. The expected value of the random variable DQ can be computed [37]
based on the first two moments of the service execution time DSsi,j (with ex-
pected value d, average service rate µ and second moment d(2)) and of the ran-
dom variable L (with expected value l and second moment l(2)). These values can
be estimated by monitoring the batches arriving to the provider and the executed
services. In addition, the provider estimates the rate λ of the request batches and
computes the average load ρ of the provider as λ∗l∗d. Starting from these values,
the expected value of DQ can be computed, as shown in [37], as:

E[DQ] =
λld(2)

2(1− ρ)
+

l(2)d

2l(1− ρ)
(4.4)

4.2.4 Data transfer time B and θ

Unlike most analytical models in opportunistic networks, we assume that the
throughput available to nodes during contact times is finite. Therefore, in our model
we need to take into account the possibility that data transfer may be interrupted
by disconnections, and therefore needs to be resumed at the next contact event. In
the following, we denote with V the average throughput experienced between the
chosen seeker and provider and assume it is estimated by the two nodes through a

47

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

Queue+Waiting
Time

Service
Execution

Download

TC203>k/V+k1/V+DS+DQ

TC203>k/V+s+TC203<k/V+k1/V+DS+DQ+

TC203<k/V+

t Upload

case+1

case+2

case+3

Figure 4.1: Accounted lengths of the first contact period

k

V-1

End of standard

transfer

k/V k/V+TICTIC t

Transferred

data

Connection

down

Connection

up

End of

transfer

Intercontact

period

Figure 4.2: Modelling Data Transfer

conventional smoothed average algorithm using the throughput samples obtained
during actual data transfers between them, we also denote with k and k′ the size
of respectively of the input and output data to be transferred of the requested ser-
vice (for more clarity in the following sections, we will refer as V to the average
throughput between each couple of nodes and we will refer as k and k′ to the size
of all input/output data transfers). Fig. 4.2 shows an illustrative example where one
disconnection occurs during the transfer of the input data of size k. In addition to
the time needed to actually transfer data between the nodes, we have to take into
account additional inter-contact times between consecutive contact events.

First of all, we analyse the case of data transfers in single service executions.
In this scenario we identified three cases to model depending on the time when
the first contact (that we refer as TC(0)) used to transfer data ends. In Fig. 4.1
we can see a representation (the continuous line represents the duration of the
first contact): the first case (case 1) is a scenario where all the phases of the
execution can be completed without any interruption. The second case (case 2)
has only the first data transfer (the one used to transfer the input data of size k
for the service execution) completing without interruptions, while there is at least

48

4.2. MODELLING SERVICE PROVISIONING TIME

one disconnection before the seeker completely receives the result of the service
execution of size k′. The last case (case 3) considers the presence of at least one
disconnection before the input data transfer phase is completed.

In the following we provide the expressions for B and θ in the three cases,
considering their formulations involving seeker h and provider j. Then, we model
the probabilities of the cases, i.e. p1, p2 and p3 = 1 − p1 − p2. Note that B is
the same in cases 1 and 2. The expected values of B and θ can be immediately
derived by applying the law of total probability:

E[B] = E[B|case1, 2] ∗ (p1 + p2) + E[B|case3] ∗ p3 (4.5)

E[θ] = E[θ|case1] ∗ p1 + E[θ|case2] ∗ p2 + E[θ|case3] ∗ p3 (4.6)

Analysis of case 1

In case 1, with no interruptions, the input and output transfer times for a request
from seeker h for a service provided by node j, depend on the throughput available
between the nodes V , the sizes of the input and output parameters (kdata, k′data
respectively, which value depends on the requested service) and the size of the
queued data that has to be transferred between h and j before the input and the
output data transfers can be started (respectively called kqueue and k′queue). The
value of kqueue can be directly observed by the seeker during the evaluation of
the alternatives, while k′queue is estimated as the average size of queued data in
j addressed to h at the end of service executions. Therefore, B and θ for case 1
can be modeled as follows:

B|case1 =
k

V
θ|case1 =

k′

V
(4.7)

Where k = kdata + kqueue and k′ = k′data + k′queue. These values of k
V and k′

V

can be called the net transfer time for B and θ, as they are the minimum estimated
data transfer times without the presence of any interruption.

Analysis of case 2

The second case (case 2) considers the scenario where the first data transfer can
be done during the contact, but the rest of the process cannot be completed in
time. The input time B is the same already analysed in (4.7).

49

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

TCR(0) TIC(0) TC(1) TIC(1) TC(2)

k'/V k'/V-TCR(0) k'/V-TCR(0)-TC(1) 0

EndhofhTransfer
Remaininghtimehneededh
tohcompletehthehtransfer

t

Contacth-hIntercontacthphases

Figure 4.3: Phases of an output transfer starting during a contact, with 2 discon-
nections afterwards

We analyse θ by considering the two possible cases: the case where the (first)
contact 1 ends while the transfer of output parameters is already ongoing (case
2A), and the case when the contact ends before the output data transfer has
started. In the first sub-case, the first contact can be used to start the output data
transfer, but the same contact is not long enough to complete the entire transfer
(otherwise it would fall in case 1). Otherwise, if the first contact ends before the
service execution is completed, θ may start during a contact period (case 2B) or
an inter-contact period (case 2C).

θ in case 2A can be expressed as in (4.8). The key characteristics of case
2A are that (i) θ starts during the first contact between the seeker and provider
(ii) then θ always includes the following inter-contact time (TIC(0) in (4.8), and
(iii) it then finally may include an additional number N2A ≥ 0 of inter-contact
times. An example of case 2A can be seen in Figure θ, where is represented an
output transfer phase with 2 disconnections. As shown in the following,N2A can be
characterised based on the number of contacts needed to transfer k′ bytes minus
the data already transferred during the first contact. Considering that θ is made
up of the net transfer time (k′/V) plus the additional inter-contact times needed to
complete the transfer, it can be expressed as follows:

θ|case2A =
k′

V
+ TIC(0) +

N2A∑
i=1

TIC(i) (4.8)

The characteristics of case 2B are that (i) θ starts during a contact time , and
(ii) it may include a number N2B of inter-contact times. As shown below, as we
assume that contact times are exponential and thus memoryless, N2B can be

1 Here first contact still refers to the contact between the seeker and provider at the be-
ginning of the input data transfer phase. It is not the first contact during which the output
data transfer starts.

50

4.2. MODELLING SERVICE PROVISIONING TIME

characterised based on the number of contacts needed to transfer k′ data (this
is why N2B is stochastically different from N2A). Therefore, θ in case 2B can be
expressed as follows:

θ|case2B =
k′

V
+

N2B∑
i=1

TIC(i) (4.9)

Finally, the characteristics of case 2C are that (i) θ starts during an inter contact
time, and (ii) it may then include an additional number N2C ≥ 0 of additional
inter-contact times. It is easy to see that, as we have assumed that contact times
are memoryless, N2C is stochastically equivalent to N2B . Therefore, by denoting
with TICR(0) the residual duration of the inter-contact time during which it starts,
θ in case 2C can be expressed as follows:

θ|case2C =
k′

V
+ TICR(0) +

N2B∑
i=1

TIC(i) (4.10)

To find the expected values for θ in this three sub-cases, we need to derive the
distributions of N2A and N2B .

Lemma 1. The probability that, in case 2A, θ includes N2A = n additional inter-
contact times (after the first one that it always includes) is as follows:

P{N2A = n} = e−δ
k+k′
V ∗

(δk
′

V)n+1

n+ 1!
∗ (1− ρ)µ
δ + µ(1− ρ)

(4.11)

Proof. We denote by TCR(0) the part of the first contact time between the seeker
and the provider, that is the initial part of θ. Therefore, the remaining transfer time is
k′/V −TCR(0). In order for N2A to be equal to n, the remaining transfer time must
be longer than n contact times but shorter than n+ 1 contact times. Therefore,

P{N2A = n} =

= P{
n∑
i=1

TC(i) <
k′

V
− TCR(0) <

n+1∑
i=1

TC(i)|TCR(0) <
k′

V
} (4.12)

Given that all contact periods TC(i) between h and j are independent and identi-
cally distributed exponential random variables, we can consider

∑n
i=1 TC(i) as an

Erlang variable SC,n with n components, each with rate δ.
Based on this result, we can thus condition on a specific duration of TCR(0)

and apply the law of total probability:

51

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

P{N2A = n} =

=

∫ k′
V

0

P{SC,n <
k′

V
− t < SC,n + TC(n+ 1)|

|TCR(0) = t} ∗ P{TCR(0) = t}dt =

=

∫ k′
V

0

∫ k′
V −t

0

(
1− FTC(n+1)

(
k′

V
− t− x

))
∗

fSC,n(x) ∗ fTCR(0)(t)dxdt =

Recalling that TC(n+ 1) is exponentially distributed, while SC,n follows an Erlang
distribution, we obtain

FTC(n+1)(t) = 1− e−δt (4.13)

and

fSC,n(t) =
δntn−1e−δt

(n− 1)!
(4.14)

Therefore, we obtain:

P{N2A = n} =

=

∫ k′
V

0

∫ k′
V −t

0

e−δ(
k′
V −t−x) ∗ δ

nxn−1e−δx

n− 1!
∗

∗ δe
−δ(t+ k

V) ∗ (1− ρ)µ
δ + µ(1− ρ)

dxdt =

= e−δ
k+k′
V ∗

(δk
′

V)n+1

n+ 1!
∗ (1− ρ)µ
δ + µ(1− ρ)

(4.15)

ut

Similarly, we obtain the following expression for N2B :

Lemma 2. The probability that, in cases 2B and 2C, θ includes N2B = n inter-
contact times is as follows:

P{N2B = n} = P{N2C = n} =

= P{
n∑
i=1

TC(i) <
k

V
<

n+1∑
i=1

TC(i)} = e−δ
k
V ∗

(δkV)n

n!
(4.16)

52

4.2. MODELLING SERVICE PROVISIONING TIME

Thanks to the results in Lemma 1 and Lemma 2, it is possible to find a closed
formula for the expected values of θ in all sub-cases:

Lemma 3. The expected value of θ case2A is equal to:

E[θ|case2A] = k′

V
+

1

δ′
+

1

δ′
∗ e−δ

k+k′
V ∗

∗ (eδ k
′
V ∗ (δ k

′

V
− 1) + 1) ∗ (1− ρ)µ

δ + µ(1− ρ)
(4.17)

Proof. This is straightforward by the formula for θ in case 2A seen in (4.8) and the
distribution of N2A, seen in (4.11). ut

Lemma 4. The expected value of θ|case2B is equal to:

E[θ|case2B] =
k′

V
+ E

[
N2B∑
i=1

TIC(i)

]
=
k′

V

(
1 +

δ

δ′

)
(4.18)

Proof. The proof is analogous to the one of Lemma 3. ut

Lemma 5. The expected value of θ|case2C is equal to:

E[θ|case2C] = k′

V
+ E[TIC(0)] + E

[
N2C∑
i=1

TIC(i)

]
=

1

δ′
+
k′

V

(
1 +

δ

δ′

)
(4.19)

Proof. This result directly follows from (4.18) with the addition of E[TIC(0)] (due
to the fact that inter-contact times are exponential, and therefore E[TICR(0)] =

E[TIC(0)]), that gives us the formula in the lemma. ut

To conclude the analysis of case 2 we need to derive the probabilities of the
three subcases, 2A 2B and 2C, conditioned to the fact that we are in case 22. The
probability of case 2A is provided in the following Lemma:

Lemma 6. The probability of the first contact lasting enough to complete the input
data transfer, but not enough to reach the beginning of the output data transfer, is:

p(Case2A) =
e−δ

k
V ∗ µ(1− ρ)

δ + µ(1− ρ)
(4.20)

2 We derive the probabilities of cases 1, 2 and 3 later, in Section 4.2.5

53

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

Proof. This probability can be written as the probability that the first contact time
TC(0) is longer than the time for the transfer of the input parameters (k/V) plus
the queuing time at the provider (DQj) plus the service computation time (DS),
but not long enough to also include the transfer of the output parameters (θ). By
recalling that we are in case 2 and, therefore, TC(0) is not shorter than k/V (cap-
tured in case 3) and shorter than the total service provisioning time without any
disconnection (case 1), we can write:

p(Case2A) = P{ k
V

+DQj +DS < TC(0)|

| k
V
< TC(0) <

k

V
+DQj +DS +

k′

V
}

That, isolating the durations of DQj and DS becomes:

p(Case2A) =

∫ ∞
0

P{ k
V

+ x < TC(0)|

| k
V
< TC(0) <

k

V
+ x+

k′

V
∧DQj +DS = x} ∗ P{DQj +DS = x}dx =

=

∫ ∞
0

(1− FTC(0)(
k

V
+ x)) ∗ fDQj+DS(x)dx

Using the expression for the density of DQj +DS and the formula for the cumu-
lative probability of TC(0)

p(Case2A) =

∫ ∞
0

(1− (1− e−δ(kV +x))) ∗ (1− ρ)µe−µ(1−ρ)xdx =

= e−δ
k
V µ(1− ρ)

∫ ∞
0

e−x(δ+µ(1−ρ))dx =
e−δ

k
V ∗ µ(1− ρ)

δ + µ(1− ρ)

ut

The probabilities of sub-cases B and C are calculated using the complement of
the probability of case A "weighted" with the steady state probabilities of contact
and inter-contact phases. Specifically, Case 2B corresponds to the case where
the end of the service computation time falls in a contact time. For simplicity, we
assume that this occurs with a probability equal to the steady state probability that
a random point in time falls inside a contact. Analogously, case 2C occurs with the
steady state probability that a random point in time falls inside an inter-contact.
Therefore we obtain:

pcase2B = (1− pcase2A) ∗
E[TC]

E[TC] + E[TIC]
(4.21)

54

4.2. MODELLING SERVICE PROVISIONING TIME

pcase2C = (1− pcase2A) ∗
E[TIC]

E[TC] + E[TIC]
(4.22)

Using this probabilities we can find the expected value for θ|case2 through the law
of total probability.

Analysis of case 3

In the third and final case (case 3), we capture the scenario where the contact
cannot last long enough to complete the input data transfer, that may happen for
large inputs to transfer or short contact periods. In this case B still starts during a
contact periods, but, before the end of the time needed to transfer the input data
(k/V), a first inter-contact period (denoted as TIC(0)) happens. Then, after re-
suming the transmission, an additional number RNIC ≥ 0 of inter-contact periods
TIC(i) may occur. Therefore the formulation for B|case3 can be written as:

B|case3 =
k

V
+ TIC(0) +

RNIC∑
i=1

TIC(i) (4.23)

To find the expected value of B|case3, we need a formulation for P{RNIC = n}.
This is not the same to the one seen for P{N2A = n} in Lemma 1, given that the
elapsed time of the first contact period before the start of B is unknown. We can
then approximate the residual of the first contact with the entire contact duration,
obtaining the following lemma.

Lemma 7. If there is at least a connection interruption during the input data trans-
fer phase, the probability of having exactly n additional interruptions, other than
the first one, during the phase is equal to:

P{RNIC = n} =
e−δ

k
V

(
δ kV
)n+1

n+ 1!
(4.24)

Proof. The result is straightforward from the formulation of P{RNIC = n} once
we consider this probability as the probability of n contact periods

∑n
i=1 TC(i) to

be long enough to transfer the data that could not be transfered during the first
contact k

V − TC(0). ut

Thanks to Lemma 7, we can find the expected value of B|case3:

Lemma 8. The expected value of a data transfer phase that starts during a contact
period, but having at least one disconnection period, is equal to:

E[B|case3] = k

V

(
1 +

δ

δ′

)
+
e−

δk
V

δ′
(4.25)

55

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

Proof. Using Lemma 7, the expected value can be found using the law of total
probability. ut

To formulate θ|case3, likewise to what we have seen in cases 2B and 2C, we di-
vide the formulation into in two sub-cases 3A and 3B depending on the connection
state between the seeker and the provider at the start of the phase. I

In case3A the output data transfer phase starts during a contact and in case3B
during an inter-contact period, without any assumption on the number of discon-
nections occurring in the phase. So, θ|case3A can be formalized exactly as seen
in (4.9) and θ|case3B can be formulated as in (4.10).

For simplicity, in this case we don’t keep track in the analysis of the time evolu-
tion of the previous phases of service provisioning time with respect to the contact
and inter-contact processes. Therefore, we approximate pcase3A and pcase3B using
the steady state probabilities of contact and inter-contact phases:

pcase3A =
E[TC]

E[TC] + E[TIC]
(4.26)

pcase3B =
E[TIC]

E[TC] + E[TIC]
(4.27)

With the formulation of θ in the two sub-cases and their probability, we obtain the
following lemma:

Lemma 9. The expected value of θ|case3 is

E[θ|case3] = k′

V

(
1 +

δ

δ′

)
+

δ

δ′(δ′ + δ)
(4.28)

Proof. This immediately follows by using the results in Lemma 4 and Lemma 5 to
then apply the law of total probability. ut

4.2.5 Single service cases probabilities

Having derived all the components of the service provisioning time in all cases, we
now need to derive expressions for the probabilities of the three cases in which we
have divided the analysis.

Remember that case 1 is the case when the entire service provisioning time R
is shorter than the first contact time between seeker and provider. Therefore the
probability of case 1 is P{R < TC(0)}. The following lemma provides a closed
form for this probability.

56

4.2. MODELLING SERVICE PROVISIONING TIME

Lemma 10. The probability p1 = P{R < TC(0)} of a single-service request res-
olution process, involving a seeker j, a provider h and the execution of service si,
ending during the same contact event when the input data transfer phase started
can be approximated as:

p1 =
µ(1− ρ)e−δ k+k

′
V

δ + µ(1− ρ)
(4.29)

Proof. This is straightforward by recalling that, in case 1, R = k
V + DSsi,j +

DQ+ k′

V . We can condition on the value of DSsi,j+DQ and apply the law of total
probability. We obtain:

P{R < TC(0)} =

= P

{
k

V
+DSsi,j +DQ+

k′

V
< TC(0)

}
=

=

∫ ∞
0

(
1− FTC

(
k + k′

V
+ t

))
∗ fDSsi,j+DQ(t)dt (4.30)

that gives the formulation of p1. ut

We describe the value of the probability of the third case p3 before the sec-
ond because it allows us to achieve a simple formulation for the probability of the
second case. The value of p3 is the probability that the residual of the first con-
tact TCR(0) is shorter than the time k/V needed to transfer the input data without
interruptions.

Lemma 11. The probability of the first contact terminating before finishing a input
data transfer is:

p3 = P{TCR(0) <
k

V
} = FTC(0)

(
k

V

)
= 1− e− δkV (4.31)

Proof. This is straightforward, thanks to the assumption that contact times are
exponentially distributed. ut

The probability of the third case can be immediately evaluated as p2 = 1 −
p3 − p1. Its expression is provided in the following Lemma.

Lemma 12. The probability of the first contact terminating after a input data trans-
fer but before the end of output data transfer is:

p2 = 1− p3 − p1 = e−
δk
V − µ(1− ρ)e−δ k+k

′
V

δ + µ(1− ρ)
(4.32)

57

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

With the expected values of B and θ for all three cases and the probabilities of
the cases, we can evaluate the expected value of B and θ as shown in Sections
4.5 and 4.6.

4.2.6 Data transfer for service compositions

To complete the analysis, we now extend the derivation of the service provisioning
time to the case of service composition. As discussed before, the service execution
time is expressed by (4.2), i.e.:

Rcomp =W +B +

n∑
i=1

(DQi +DSi + θi)

where, W is the time needed to contact the first provider of the composition, B is
the first service input data transfer time, DQi is the queue waiting time before the
execution of the i− th service, that last for a period DSi, and finally θi is the time
needed to transfer the results of the i − th service execution to the next provider,
or, in the case of the final results, to the seeker.

For W , B, DSi and DQi we use the same formulation used in the single
service executions, as they have no differences.

For each i, θi clearly depends on the seeker-provider pair corresponding to
component i. Also in this case, to simplify the notation, without loss of general-
ity, we omit the indices of the specific pair, and provide the expression of θi for a
generic component i, that we simply refer as θ. In the formulation of θ, the first fac-
tor includes the time to encounter the next provider, and possibly the time needed
to transfer previously queued data (e.g., other input/output parameters) to be ex-
changed between these two nodes. For simplicity, we keep this factor as a model
parameter (called average transfer queue time TQ), and we assume that nodes
estimate its value by monitoring previous data transfers between the same nodes.
On the other hand, the second part is analogous to θ for single service composi-
tion in case 2B, i.e. when it starts at the beginning of contact3, and therefore can
be expressed as in (4.9). Therefore, θ becomes as follows:

θ = TQ+
k′

V
+

[
N2B∑
i=1

TIC(i)

]
(4.33)

Given that TQ is a non-random parameter, we can calculate the expected value
of θ, using again the results provided in Lemma 4, as:
3 More precisely, in case 2B, θ starts during a contact. However, the average values be-

come the same due to the assumption of contact times being exponentially distributed

58

4.3. CHOICE OF THE BEST ALTERNATIVE

E[θ] = TQ+
k′

V

(
1 +

δ

δ′

)
(4.34)

4.3 Choice of the best alternative

The model in Section 4.2 allows us to compute all possible service provisioning
times for all alternatives. To make this process more efficient, we use the Composi-
tion Graph (Fig. 3.4), weighting the edges of the graph according to the model (the
details on how this is done are presented in the following of the section). Thanks
to this weighed graph it is possible to use a standard shortest path algorithm to
find the alternative with the least estimated service provisioning time.

Referring to the formulations for the random variable R for a composition of
any length (4.2) or a single component composition (4.1), the expected value of R
is the sum of the expected values of its phases, so any weight on the graph must
be mapped to a set of phases of a composition.

Remember that any edge (si, nj)(sk, nh) in the Composition Graph means
that it is possible to compose services si (provided by node nj), and sk (provided
by node nh). For any such edge, its weight ω is the expected time between the end
of the execution of service si on node nj and the end of the execution of service sk
on node nh, both for single service execution and sequential compositions. Given
the definition of the phases described in Section 3.3, we can identify what are the
values of these weights.

We can identify three types of edges that need different types of weights:

• Starting edges: The edges outgoing from the start node, represented as
(start, nj)(sk, nh), must be weighted with the estimated time to wait for the
next contact with the provider, plus the time to transfer the input data for the
service provisioning, the queue waiting time and the service component exe-
cution time, obtaining ω((start, nj)(sk, nh)) = E[W +B +DQnh +DSsk,nh]

• Ending edges: The edges incoming to the end node, represented as (si, nj)(end, nh),
are only weighted with the estimated time E[θ] to transfer the output of the ser-
vice provisioning to the seeker. We have to consider that the formula is different
for single service service provisions and service compositions, so we identify
the case looking whether the type Isi (i.e., the input required by service com-
ponent si) matches the outputOstart of node start, which means that, actually,
node nj is the only provider. To underline the difference between the formula-
tions of θ in these two cases, we rename as θC output data transfer phases
that are part of a composition.

59

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

• Intermediate edges: These edges (si, nj)(sk, nh) are only between two providers,
so they are part of a composition. Their weight, similarly to the starting edges,
is the sum of the estimated time E[θC] to transfer data between the providers,
the estimated queue waiting time E[DQnh] on the second provider and the
estimated service execution time E[DSsk,nh] for service sk.

The resulting definition of the weights ω((si, nj)(sk, nh)) is thus as follows:

E[W +B +DQnh +DSsk,nh]

if si = start.
E[θ]

if sk = end∧Isi = Ostart.
E[θC]

if sk = end∧Isi 6= Ostart.
E[θC +DQnh+DSsk,nh]

otherwise.

4.4 Performance Evaluation

In this section we analyse the behaviour of our system in different simulated sce-
narios. We first validate the model presented in Section 3.3 by comparing the es-
timated service provisioning times with the values obtained in simulations. Specif-
ically, in simulations seekers decide which service composition to use based on
the estimates provided by the model for each possible alternative. For the selected
composition, we compare the estimate of the model with the actual service pro-
visioning time experienced in simulation. In the following we also use the PMTR
and Haggle real mobility traces [24] [32] to simulate a real world scenario in or-
der to also evaluate the performances of our system against other policies for the
selection of providers.

Simulations are based on TheOne simulation environment, which is a de-facto
standard for opportunistic networking [20]. For nodes mobility we used the Ran-
domWayPoint model, modified as discussed in [25] in order to avoid problems
related to the initial transient phase of the mobility process.4.

In the validation simulations, the main parameters are described in Table 4.1.
The total simulation time is 400000s of which the first 10000s are used to let nodes

4 Note that, although in general other mobility models are considered more realistic, RWP
is still a valid option when users form a unique social community moving in a common
area [4]

60

4.4. PERFORMANCE EVALUATION

Table 4.1: Default simulation parameters

Simulation runs 5
Number of nodes 30
Simulation space 500m× 500m
Total simulation time 400000s
Mobility warm-up period 10000s
Statistics warm-up period 360000s
Request generation phase duration 390000s
Connectivity range 90m
Transmission speed 2Mbps
Density of each service 25%
Input type range i ∈ [0, 7]
Requests output type range o ∈ [1, 8], o > i

collect knowledge of their average contact and inter-contact times. After this warm-
up period service requests are generated and sent to the system, statistics are col-
lected only for service requests generated during the last 40000 seconds of simu-
lation, to make sure that the system is in a stable state. As previously described,
each service is identified by the type of its input/output which is represented by
an integer. In our simulation an input type i is selected in the range [0,7], while
output type o in the range [1,8], with the constraint that i must be less than o to
avoid cyclic compositions. We tested the performance of the proposed approach
analysing both the entire service provisioning time and the duration of the phases
described in Section 3.3. We will not show the results for the queue waiting time
and the service execution time, given the space constraints and also because the
accuracy of the model relies for those phases on the standard formulas for the
M [X]/G/1 system.

We consider two scenarios for simulations: in the first one, requests are evalu-
ated and solved using single service executions (we will call this scenario “Single”),
while in the other one, the requests are solved by using at least two service compo-
nents (scenario “Comp”). For both scenarios we have run two sets of simulations
in which we vary the rate of request generation at seekers. In the “5-8” scenario, a
new request is generated after a time interval in the range [5,8]s after the previous
one, selected according to a uniform distribution. Each request is then assigned
to a randomly chosen node, also following a uniform distribution, that acts as a
seeker. The “20-40” scenario is similar to “5-8”, but the intervals between request
generations are chosen between 20 and 40 seconds.

61

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

 0

 500

 1000

 1500

 2000

 2500

40k 80k 160k 320k 640k 1280k 2560k

A
v
e
ra

g
e
 s

e
rv

ic
e
 p

ro
v
is

io
n
in

g
 t

im
e
 (

s)

Data transferred

5-8 Comp Est
5-8 Comp Sim
5-8 Single Est
5-8 Single Sim

Figure 4.4: Service provisioning time, heavy load

Simulations are repeated increasing the amount of data that must be trans-
ferred between nodes as input and output parameters from 40 KBytes up to 2560
KBytes for the “5-8” scenario, while for the “20-40” scenario the data to be trans-
mitted goes from 40 KBytes up to 5120 KBytes 5. In each simulation, the input
and output data sizes are the same for all services and requests. All the results
shown are the average results of 5 independent simulation runs executed for each
scenario, with 95% confidence intervals.

The first batch of results is about the average service provisioning time, eval-
uated changing the amount of data transferred between nodes, for both single
service executions and longer compositions, with different rates of request gener-
ation.

In Fig. 4.4, we can see the average service provisioning time both for simulation
(5-8 Comp Sim and 5-8 Single Sim) and for the estimates provided by the model
(5-8 Comp Est and 5-8 Single Est).

The results show that for single services estimates are near or within the range
of the confidence intervals of simulated service provisioning times. Results, when
compositions are used, have a much larger variance, as expected, and are clearly

5 This difference is due to the occurrences of overflowing in the nodes’ output buffers
caused by the limitations of the simulator when high amount of data is transferred on a
high load scenario.

62

4.4. PERFORMANCE EVALUATION

 0

 500

 1000

 1500

 2000

 2500

40k 80k 160k 320k 640k 1280k 2560k 5120k

A
v
e
ra

g
e
 s

e
rv

ic
e
 p

ro
v
is

io
n
in

g
 t

im
e
 (

s)

Data transferred

20-40 Comp Est
20-40 Comp Sim
20-40 Single Est
20-40 Single Sim

Figure 4.5: Service provisioning time, light load

more difficult to correctly model, due to the additional complexity brought by com-
position. Nevertheless, it is clear that the model estimates follow well the trend of
the simulation results. The difference between the “Single” and “Comp” cases can
be explained by realising that the amount of services executed in “Comp” is almost
double than in “Single” and that we have at least one more data transfer between
nodes for each request, so in the case of compositions, the network must handle
a far heavier bandwidth usage and each provider must endure a higher load of
requests.

In Fig. 4.5, we show the results for the "20-40" scenario. With a lower genera-
tion rate, the network is in general less loaded. The effect is particularly evident in
the case of compositions. Average completion times are reduced by about 500s,
and the maximum difference between estimated and real values is 13% for the
case of compositions and 11% for the case of single service execution. Also in this
case we observe a sub-linear increase of the service provisioning time with the
size of the service parameters.

In Fig. 4.6 and 4.7 we show the results for the upload phases. We can see how
in the two cases we obtain good estimates. We observe a higher overestimate be-
tween the model and the simulation results for the "Comp" case, in particular when
the load increases (scenario "5-8") and for higher sizes of the parameters. The
maximum difference between estimated and real values is around 25%. However,

63

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

 0

 50

 100

 150

 200

 250

 300

 350

40k 80k 160k 320k 640k 1280k 2560k

A
v
e
ra

g
e
 u

p
lo

a
d

 d
a
ta

 t
ra

n
sf

e
r

ti
m

e
 (

s)

Data transferred

5-8 Comp Est
5-8 Comp Sim
5-8 Single Est
5-8 Single Sim

Figure 4.6: Average upload transfer time, heavy load

due to the relative short duration of this phase with respect to the total completion
time, this overestimate does not dramatically impact on the overall estimates. In
general, transfer times increase significantly with the size of the parameters, which
is expected. Note that as the size increases, it becomes more and more likely that
a single contact is not sufficient to complete the transfer. This results in a higher
probability that also inter-contact times must be factored in the upload time.

In Fig. 4.8 and 4.9 we show the results for the download phases. The first as-
pect that can be noticed is that for every scenario our model gives and estimate
that is very close to the average simulated times with a maximum error in the order
of 10%. In this case, we do not observe a very steep increase of the curves for
large parameter sizes (as we did in Fig. 4.6 and 4.7), while the download times
are larger than upload times for small parameter sizes. This is because the down-
load phase typically always includes at least an initial (residual) inter-contact time,
because the seeker and provider are most of the time not in contact when service
execution is over.

In general, the results show a good adherence between the estimates and the
simulated times with a maximum error in the estimates of 10% of the simulated
times for all the scenarios studied.

Based on the above results, we can conclude that the model is able to closely
follow the real values of service completion time, and therefore can be reliably

64

4.4. PERFORMANCE EVALUATION

 0

 50

 100

 150

 200

 250

 300

 350

40k 80k 160k 320k 640k 1280k 2560k 5120k

A
v
e
ra

g
e
 u

p
lo

a
d

 d
a
ta

 t
ra

n
sf

e
r

ti
m

e
 (

s)

Data transferred

20-40 Comp Est
20-40 Comp Sim
20-40 Single Est
20-40 Single Sim

Figure 4.7: Average upload transfer time, light load

Table 4.2: Real traces simulation parameters

Parameters PMTR Haggle
Number of nodes 43 55
Total simulation time 500000s 250000s
Mobility warm-up period 50000s 50000s
Statistics warm-up period 200000s 100000s
Statistics collection period 100000s 50000s
Request generation phase duration 450000s 200000s
Density of each service 75% 50%
Average component execution time 75s 75s
Request inter-generation time [40,80]s [40,80]s

used to select which provider or composition of providers to use upon a service
request. In addition, using the proposed approach we obtain a graceful degrada-
tion of service provisioning time as (i) the request load increases, and (ii) the size
of the input/output parameters to be exchanged between nodes increases.

We then compared its performances of our system against other policies for
service provider selection in scenarios where devices follow a real mobility trace.
We used the results of the PMTR [24] and Haggle [32] experiments: real connec-
tion traces between mobile bluetooth enabled devices. For the PMTR traces we

65

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

40k 80k 160k 320k 640k 1280k 2560k

A
v
e
ra

g
e
 d

o
w

n
lo

a
d

 d
a
ta

 t
ra

n
sf

e
r

ti
m

e
 (

s)

Data transferred

5-8 Comp Est
5-8 Comp Sim
5-8 Single Est
5-8 Single Sim

Figure 4.8: Average download transfer time, heavy load

cut the inactivity periods due to nights and weekends, while we left the Haggle
traces as in the original experiments.

The parameters of the PMTR simulation scenario are listed in Table 4.2. The
length of the simulation run has been extended to 500000s, the number of nodes
with at least 10 contacts with other nodes in the PMTR traces is 43. Given that
nodes become active at different points of the trace, the mobility warm-up period
has been extended to 50000s after which the requests are generated. Statistics
are collected for solved requests generated between the 200000s and 300000s
marks. Nodes provider the same set of services as in the validation experiments,
but the services are provided by 75% of the providers. Each service on each
provider has an average execution time of 75 seconds. Service requests have
a [40-80] inter-generation rate. For the Haggle traces, as in Table 4.2, simulations
span for 250000s, while the analyzed requests are generated between the 100000
and 150000s marks. Services are provided by 50% of the 55 nodes.

We compared the average simulated service provisioning time of our own pol-
icy (that we call MEV, Minimum expected value) against the Random policy (called
RAN) that selects a random path in the Composition Graph as the chosen com-
position of services and providers, the Atomic policy (ATO) that selects randomly
a single component solution from the composition graph, and at last, in order to
have a comparison with an approximation of the approach used by Serendipity

66

4.4. PERFORMANCE EVALUATION

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

40k 80k 160k 320k 640k 1280k 2560k 5120k

A
v
e
ra

g
e
 d

o
w

n
lo

a
d

 d
a
ta

 t
ra

n
sf

e
r

ti
m

e
 (

s)

Data transferred

20-40 Comp Est
20-40 Comp Sim
20-40 Single Est
20-40 Single Sim

Figure 4.9: Average download transfer time, light load

[34] where there is an optimization on the presence of a connection between the
parties involved in the resolution process, we used the Always First policy (AFIR)
that randomly selects the first provider that can be used to further a composition
process between the available ones that are connected with the process repeating
at the end of each service execution phase. Differently to Serendipity, tasks cannot
be divided into independent sub-tasks and the local resources cannot be used, but
AFIR also does not transfer data back to the seeker at each composition step but
permits direct communications between providers.

We executed 5 simulation runs for the 40KB and 1280KB data transfer scenar-
ios. In Fig. 4.10 we can see the results of the simulations for PMTR traces, with
MEV achieving 21% and 43% shorter average provisioning times (in the 40KB and
1280KB scenarios respectively) than the closest policy (AFIR). It can be noted that
the average provisioning times decrease with bigger data transfers, that is due to a
lesser completion rate for the generated requests for all the policies given that the
low number of contact opportunities in the PMTR traces means that more nodes
are unable to complete requested data transfer before the end of the simulation
run. In Fig. 4.12 we can see the results for the Haggle traces, with the MEV policy
having slightly better average service provisioning times when compared to AFIR
(4% and 7% shorter), while other policies fare much worse. ATO and AFIR have
higher completion rates given that in the Haggle scenario, contacts are sparse

67

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

10K

20K

30K

40K

50K

60K

70K

AFIR RAN ATO MEV

A
v
e
ra

g
e
 P

ro
v
is

io
n
in

g
 T

im
e
 (

s)

Used Policy

40KB
1280KB

Figure 4.10: PMTR average provisioning time against other policies

and the examined window is earlier in the simulation, causing the system to have
partial information about the network to build the statistics.

4.5 Summary

In this chapter we have presented an approach to select and compose service
requests in an opportunistic environment. We have defined a mathematical model
by which seekers can estimate the expected service provisioning time using differ-
ent available compositions, and thus select the best one. The model is based only
on local knowledge that nodes collect by exchanging a few information between
each other during contacts. We have also presented performance evaluation re-
sults to (i) validate the accuracy of the estimates provided by the model, upon
which selections are performed and (ii) characterise the behaviour of a system
that adopts the proposed approach (iii). Simulation results show that the model
is quite accurate. Specifically, the maximum error between the estimated service
provisioning time and that observed in simulation is 13%. Moreover, results also
show that using our approach seekers spread the load of service provisioning
across the available providers, thus avoiding to saturate resources.

68

4.5. SUMMARY

AFIR RAN ATO MEV

A
v
e
ra

g
e
 C

o
m

p
le

ti
o
n
 R

a
te

 (
%

)

Used Policy

40K
1280K

Figure 4.11: PMTR average completion rates against other policies

10K

20K

30K

40K

50K

60K

70K

80K

AFIR RAN ATO MEV

A
v
e
ra

g
e
 C

o
m

p
le

ti
o
n
 R

a
te

 (
%

)

Used Policy

40KB
1280KB

Figure 4.12: Haggle average provisioning time against other policies

69

CHAPTER 4. SERVICE PROVISIONING IN MOBILE ENVIRONMENTS
THROUGH OPPORTUNISTIC COMPUTING

10

20

30

40

50

60

70

80

90

100

AFIR RAN ATO MEV

A
v
e
ra

g
e
 C

o
m

p
le

ti
o
n
 R

a
te

 (
%

)

Used Policy

40K
1280K

Figure 4.13: Haggle average completion rates against other policies

70

5

Offloading Service Provisioning on Mobile Devices
in Mobile Cloud Computing Environments

5.1 Introduction

Mobile Edge computing is considered a very promising area in the cloud comput-
ing domain [12]. A popular approach to introducing mobile devices in the cloud
computing paradigm consists in moving the execution of services from mobile
users’ devices to the cloud. This approach is motivated by the fact that executing
services on the cloud, instead of locally on users’ devices, saves mobile devices
resources, and service execution times can be shortened thanks to the inherent
scalability of cloud service provisioning platforms. The core assumption at the ba-
sis of this approach is that mobile devices are constantly connected to the Internet
through an extremely high capacity wireless network, such that it is easy to move
data back and forth between the mobile devices and the remote cloud platform.
In this view, the capacity leap expected from 4G cellular networks (LTE-A) [6] is
supposed to fully support this cloud computing paradigm.

Unfortunately, recent forecasts challenge the practical applicability of this ap-
proach. While 4G cellular networks will definitely provide much higher capacity
compared to 3G, it is also expected that the data traffic generated by mobile users
will increase much faster. For example, CISCO [6] foresees that mobile traffic de-
mand will increase by at least ten times between 2014 and 2019, while cellular
capacity will grow only by a factor of 1.4 in the same time frame. This challenges
the possibility to support very frequent and possibly large data transfers required
by this type of cloud computing solutions. In cases where the cellular network is
congested, it would be too slow (or even impossible) to reach remote cloud ser-
vices, thus making this approach technically unfeasible. In addition, this might also
result in significant economic losses for cloud service providers, as it has been re-
cently shown that there is a direct impact on the provider revenues of even small

71

CHAPTER 5. OFFLOADING SERVICE PROVISIONING ON MOBILE DEVICES
IN MOBILE CLOUD COMPUTING ENVIRONMENTS

additional delays (in the order of hundreds of milliseconds) in accessing remote
cloud services [22]. Another possible scheme for mobile computing proposed in
the literature is Mobile Edge Computing that traditionally consists in providing ser-
vices directly at the edges of the infrastructure, i.e. on cellular base stations (eN-
odeB in the LTE terminology) [2]. This would not solve the aforementioned prob-
lem, as typically the bandwidth bottleneck would be in the cellular access network,
and therefore even data transfer between mobile devices and eNodeBs might be
problematic. To counteract the mismatch between mobile data traffic demand and
cellular capacity, a promising mutation of this concept takes into account the in-
troduction traffic offloading [28]. In one of the typical offloading scenarios, nodes
receive data through direct device-to-device (D2D) communications with other mo-
bile nodes, instead of through the cellular network. Opportunistic networking so-
lutions are typically used [27], whereby mobile nodes exploit direct data transfer
opportunities enabled by various wireless technologies (such as WiFi or Bluetooth
in ad hoc mode) when they come close enough to be in each other’s direct trans-
mission range.

In this chapter, we exploit a conceptually similar approach to offload traffic
related to service provisioning to mobile users. Specifically, we explore another
concept for mobile edge computing, applicable when services can also be pro-
vided locally between mobile devices, by exchanging the related data between
them during opportunistic contacts. Service provisioning between mobile devices
through opportunistic contacts has been investigated in the literature as the oppor-
tunistic computing paradigm [23]. In opportunistic computing, mobile nodes form
mobile clouds at the edges of the global Internet infrastructure, through which lo-
cal service provisioning is supported. While exploiting opportunistic computing,
our solutions goes one step beyond. In our solution, nodes requiring a service
(hereafter referred to as seekers) evaluate whether it is more efficient to execute
the service on a remote cloud, or on a locally available mobile node (not nec-
essarily in contact with the seeker when the service request is generated). This
approach is able to exploit both remote cloud platforms, when the cellular network
is not congested, and local service provisioning, otherwise. As such, it takes the
best of the conventional mobile edge computing approach and pure opportunistic
computing paradigms. This approach is appealing also because of the resources
already available on modern mobile personal devices. For example, high compu-
tational capability, ample storage and sensors, can be exposed to other users as
services that can be accessed by other devices through direct contacts [12]. While
it is clearly unreasonable to assume that any cloud service could also be provided
locally, it is sensible to assume that a reduced set of services might be provided by

72

5.2. HYBRID MOBILE EDGE COMPUTING SOLUTION FOR SERVICE
PROVISIONING

other mobile nodes in local proximity. Note that in some cases, this might indeed
even preferable. For example, when services consist in elaboration of data locally
available on mobile users, it might be more appropriate for privacy reasons that
data stay on the device of their owners.

Together with the specification of the algorithms to realise this mobile edge
computing approach, in this chapter we present simulation results showing that
our solution is capable of offering better service provisioning time than a system
where only the remote cloud is used. We also explore the effects on service provi-
sioning performances of user service preferences and cellular network congestion.
We show that the proposed system is able to autonomously adapt to the level of
congestion of the cellular network, avoiding to contribute to its saturation, and still
preserving low service provisioning times to the users, even in cases where the
cellular network is highly congested or users have strong preferences on certain
services.

This chapter is organized as follows. The structure and behaviour of the pro-
posed system is presented in section 5.2. Performance evaluation results are pre-
sented and discussed in section 5.3. Finally, concluding remarks are reported in
section 5.4.

5.2 Hybrid mobile edge computing solution for service
provisioning

In this section we present the characteristics of our solution that enables the es-
tablishment of a local mobile cloud to support the execution of services available
both on the cloud and on mobile devices in the area. The main components of
the system can be seen in figure 5.1: the local mobile cloud, which is made up of
mobile devices that can communicate with each other through wireless interfaces
and that can request and provide services (pictured in the figure as S1, S2, S3, S4)
to the other nodes; the eNodeB, which grants connectivity at the edge of the in-
frastructure to the local mobile cloud; the remote cloud, which hosts services the
mobile nodes can access through the eNodeB.

At the high level, when a request for a service is generated at a mobile node
(seeker), our algorithm decides whether this request should be served by the
global cloud platform, or by some other mobile node nearby. We explain the details
of the algorithm in the following subsections. Specifically we describe the system
structure and behaviour by analysing the decision process involved in deciding
how to solve a service request (subsection 5.2.1), the data that must be collected

73

CHAPTER 5. OFFLOADING SERVICE PROVISIONING ON MOBILE DEVICES
IN MOBILE CLOUD COMPUTING ENVIRONMENTS

S1

S2

S3

S4
N1

N2

N3

N4

S1

S1

S2

S4

S3

S2

LTE eNodeB

Remote Cloud

Local Mobile Cloud

Figure 5.1: Actors of the systems

in order to take the decision (subsection 5.2.2) and the model used to determine
how to resolve a request (subsection 5.2.3).

5.2.1 Resolution process

The resolution process is shown in figure 5.2 and starts with the service request
generation, when a mobile node (seeker) runs an application that generates a re-
quest for a service. The seeker sends a message (eNodeB inquiry) to the eNodeB
asking for information about the state of the LTE available data rates in upload
and download, and an estimate of the time needed to execute the service on the
remote cloud. 1 The eNodeB, at the reception of the message, observes the band-
width occupation and sends this data as a response (eNodeB response) to the
seeker, including the estimate on the service execution time on the remote cloud
(remote knowledge collection).

Request
Generation

Remote Knowledge
Collection

Seeker

eNodeB

Local Knowledge
Collection

Evaluation
Request

Assignment

eNodeB
inquiry

eNodeB
response

Figure 5.2: Request resolution process

At the reception of the response, the seeker estimates the total service provi-
sioning time of the request using the remote cloud service. The seeker also uses
1 Note that the size of this traffic is minimal, and therefore can be considered negligible

from the cellular network congestion standpoint.

74

5.2. HYBRID MOBILE EDGE COMPUTING SOLUTION FOR SERVICE
PROVISIONING

a local knowledge base containing previously collected data (local knowledge col-
lection) on the other providers in the mobile cloud, like statistics on the mobility of
the providers, the state of their computation queue and the offered services. The
information in the local knowledge base is refreshed whenever two modes are in
direct contact.

Thanks to the knowledge base, the seeker can evaluate the expected service
provisioning time for all the known mobile providers that can be used to solve the
request. These expected times are compared to the estimated service provisioning
time of using the remote cloud service (evaluation).

If the seeker selects the remote cloud solution, it immediately starts sending
the service request using the LTE infrastructure. Instead, if the selected provider
is in the local mobile cloud and the seeker is currently not in contact with it, it waits
the next contact with the selected provider in order to start sending the request. In
this period of time further contacts between the seeker and other mobile providers
may happen, triggering new information exchanges, a possible re-evaluation of the
most suitable provider, and therefore a change in the service execution plan.

5.2.2 Data collection

The information, required to decide how to serve a request, consists in the upload
and download data rates in using the LTE infrastructure and the average execution
time of the service that is requested. This data is obtained by the seeker through
the eNodeB response message that is created by the eNodeB. The eNodeB col-
lects the average execution times of the services requested by the nodes and
stores them in a database. It estimates the upload and download data rates based
on the current traffic generated by mobile users in the cell.

As will be more clear from the following section, the information required about
the other mobile provider is: (i) the average duration of contact and intercontact
times with the seeker, (ii) the average data rate in the communications with the
seeker, (iii) the service list of the provider, (iv) the provider queue statistics, like
the average load, the average request arrival rate and the average service time,
(v) the average queue of data to transfer from the provider to the seeker. This infor-
mation is collected by each node by monitoring contacts with other nodes (for what
concerns contact, intercontact times and average data rate), and by exchanging
the other statistics during direct contacts.

75

CHAPTER 5. OFFLOADING SERVICE PROVISIONING ON MOBILE DEVICES
IN MOBILE CLOUD COMPUTING ENVIRONMENTS

5.2.3 Evaluation of service provisioning alternatives

The seeker uses two models to evaluate respectively the expected service provi-
sioning time for each provider in the local mobile cloud that can solve the request
and the expected service provisioning time using the remote cloud.

The first model is based on the model for opportunistic computing described
in 4.2. For a given provider, this model gives a closed form expression for the
expected value of the random variable representing the service provisioning time
Rmobile, characterizing it as the sum of five successive periods of time that can be
also formulated as random variables:

1. Contact of the service provider (W). The time needed by the seeker to en-
counter the provider after the point in time when the evaluation is performed. If
the seeker is already in contact with the provider, the value is zero, otherwise
it is the expected duration of the intercontact period.

2. Data transfer (Input time B, Output time θ). The time needed to transfer the
input parameters from the seeker to the provider and the output parameters
from the provider to the seeker (after the execution time is complete). These
values include possible additional delays due to disconnection periods when
the transfer is suspended as well as delays due to the presence of data from
previous requests that need to be transferred to (or from) the same provider.
The value for B is calculated as the time needed to transfer the data to the
provider without disconnection, plus the expected duration of all the intercon-
tact phases occurring before the end of the transfer. The expected value of
θ is analogous to B, but it must consider the state of the connection seeker-
provider at the end of the service execution: if θ starts during in intercontact
period, it must consider an added delay to begin the transfer, if it starts during
a contact it considers whether there could have been disconnections before
the phases to estimate its residual duration.

3. Queue waiting time (DQ). Once onto the provider, actual execution may be
delayed due to previous pending requests. To calculate the expected time of
the phase, the model regards the provider as a M [X]/M/1 queue and calcu-
lates the value using knowledge on the average load, service time and request
arrival rate.

4. Service execution time (DS). The time to execute the service on the provider.
It is calculated as the average previous executions on the provider of the re-
quested service.

The formulation of the expected service provisioning time using a given mobile
node becomes:

76

5.2. HYBRID MOBILE EDGE COMPUTING SOLUTION FOR SERVICE
PROVISIONING

E[Rmobile] = E[W +B +DQ+DS + θ]

For the remote cloud alternative, we can estimate of the service provisioning time
tremote using the information provided by the eNodeB in the eNodeB response and
data locally available to the seeker. The service provisioning time can be estimated
as the sum of the estimate of three delays: the time needed to upload data to the
eNodeB tupl, the time needed for the eNodeB to send data to the remote service
provider and wait for the result of the computation texec, and the time needed for
the seeker to download the output data of the service tdown. These estimates can
be formulated as:

1. LTE upload Time tupl. The time needed to transfer the service input data of
size kinput and possibly queued data of size klte queue from the seeker to the
eNodeB, using the upload link that has a data rate of Vupl. kinput is a prop-
erty of the service request generated and consequently known by the seeker.
klte queue is a value directly observable by the seeker at the moment of the
evaluation. With these values, the total estimated LTE upload time can be for-
mulated as:

tupl =
kinput + klte queue

Vupl

2. Remote cloud latency and service execution time texec. The time needed to
transfer the input data from the eNodeB to the remote cloud provider, the time
needed to execute the service, and the time needed to transfer the output
data back to the eNodeB. Given that the amount of time spent transferring
the data and executing the service is dependent on many factors that are out
of the control of the system, like the actual provider location, the bandwidth
available on the path to the provider, and the amount of resources dedicated
to service executions, we can estimate texec using the average of previous
actual values of the remote cloud latencies and service execution times for the
same requested service.

3. LTE download time tdown. Similarly to the upload time, it represents the time
needed to transfer the service output data, of size koutput which value is a
property of the request, from the eNodeB back to the seeker, using the down-
load link of data rate Vdown, whose value is provided in the eNodeB response.
tdown can be expressed as:

tdown =
koutput
Vdown

77

CHAPTER 5. OFFLOADING SERVICE PROVISIONING ON MOBILE DEVICES
IN MOBILE CLOUD COMPUTING ENVIRONMENTS

5.3 System evaluation

In this section we compare the performance of the hybrid solution explained in
Section 5.2 with one that only uses a global cloud platform. We show a compar-
ison of the average service provisioning times for both approaches in a range of
scenarios that differ for amount of data that are transferred as service input and
output for each request, and also for the amount of requests that are generated by
the devices. We also detail the behaviour of the hybrid approach by analysing the
fraction of requests that are solved using mobile providers in each scenario.

Table 5.1: Default simulation parameters

Simulation runs per scenario 10
Number of mobile nodes 30
Simulation space 500m× 500m
Total simulation time 400000s
Mobility warm-up period 10000s
Statistics warm-up period 10000s
Request generation phase duration 360000s
Wi-fi connectivity range 90m
LTE download transmission speed 300Mbps
LTE upload transmission speed 75Mbps
Wi-fi transmission speed 54Mbps
Density of each service 25%
Number of different services 15
Average mobile service execution time 10s
Average remote cloud service execution time 5s

Simulation were developed using TheOne, which is a reference simulation en-
vironment for opportunistic networking and computing [20]. The basic simulation
parameters used in this chapter are listed in Table 5.1. In these simulations, the
mobile devices move following RandomWayPoint mobility traces as specified in
[25]. We assume that mobility of nodes is confined within a single LTE cell, served
by a unique eNodeB. Each simulation run lasts 400000s. The request is associ-
ated with a node (seeker) chosen with uniform probability. The requested service
is picked among a set of 15 possible services either with uniform probability, or
with a Zipf probability with parameters α equal to 1 or 3, to test the system under
more or less skewed preferences towards specific services (the higher α, the more
preference is skewed towards a small set of very popular services). We vary the

78

5.3. SYSTEM EVALUATION

percentage of providers for each service between 10%, 25% and 50% of nodes,
to test the performance with higher or lower “service capacity” of the mobile cloud.
Simulated LTE data rates are 300Mbps for download and 75Mbps for upload based
on current estimates of the maximum 4G capacity [10], opportunistic transfers are
supposed to occur at the maximum capacity of 802.11g technology of 54Mbps.

We assume that a variable number of additional mobile devices generate traffic
in the same LTE cell. The number of additional devices is generated according
to a standard birth/death process. The total LTE capacity is shared between the
active devices (i.e., the seekers and providers, plus these additional ones), such
that the bandwidth available to the seekers and the providers changes over time
based on the number of other active mobile devices in the cell. The number of
additional nodes ranges in the intervals [0,20], [0,40], [0,80], [0,160], respectively,
corresponding to fewer or more background nodes possibly competing for the LTE
capacity. Transition rates to a new state are set for the previous ranges to 0.0025,
0.01, 0.04, 0.16 transitions per second both for birth events and death events.
We replicate each simulated scenario 10 times. In all runs, the events related
to the transition of the process defining the additional nodes activity are exactly
the same. This guarantees that the congestion on the LTE network due to the
additional nodes is the same when we vary the other simulation parameters.

The tests are repeated varying the rate of request generation by the system.
In “10-15” scenarios a new request is generated after a time interval in the range
[10,15]s after the previous one. This value is changed in the other scenarios to
“15-20” and “20-30”. For each of these values the tests are repeated changing the
amount of data that has to be transferred as input and output of the services, from
40MB to 80MB and 160MB. In each simulation, the input and output data sizes
are the same for all services and requests. All the results shown are the average
results of the 10 independent simulation runs executed for each scenario, with
95% confidence intervals.

5.3.1 Service provisioning time comparison

Hereafter, we analyse the performances of hybrid service provisioning with re-
spect to the previously described simulation parameters. Table 5.2 recaps the pa-
rameters values for the generated service requests used in the simulations (bold
indicates default values).

Figure 5.3 compares the average service provisioning times for the hybrid ap-
proach and for the pure LTE approach. Specifically, points in the x axis are in the
form XXM YY-ZZ where XX represents the size of input/output service parameters,

79

CHAPTER 5. OFFLOADING SERVICE PROVISIONING ON MOBILE DEVICES
IN MOBILE CLOUD COMPUTING ENVIRONMENTS

Table 5.2: Service provisioning parameters

Max. background nodes 20, 40, 80, 160
Percentage of providers 10%, 25%, 50%
Popularity of services uniform, Zipf α = 1, Zipf α = 3

while YY and ZZ are the extremes of the time interval between service requests
generations. Therefore, moving from left to right on the x axis we constantly in-
crease the network load.

We can see that the average service provisioning times are faster for the hy-
brid approach in all scenarios, even when the request load is at its lowest (40MB
20-30), the hybrid approach achieves an average that is about 10% lower than the
pure LTE approach. This difference in results grows as scenarios get heavier in
load, with the 40MB 15-20 and 40MB 10-15 scenarios having differences respec-
tively of about 18% and 32%.

This difference continues to grow as the traffic in the scenario grows, with the
pure LTE approach that is unable to avoid saturation from the 80MB scenarios and
is unable to complete the service requests for any seeker. The hybrid approach,
instead is able to keep service provisioning consistent without overloading the
infrastructure in all the analysed scenarios.

In Figures 5.5 and 5.6 we analyse the sensitivity with respect to the network
load. Each curve in the plots corresponds to a different maximum number of back-
ground nodes competing for LTE bandwidth. Figure 5.5 shows the average service
provisioning time, while Figure 5.6 shows the percentage of requests served by the
mobile cloud.

It is interesting to note that service provisioning time increases gradually as the
traffic load increases. Specifically, in Figure 5.5 we do not have signs of saturation
such as an exponential increase of service provisioning time. From Figure 5.6, the
main reason is the fact that the percentage of requests served by the mobile cloud
increases as the cellular network becomes more and more congested. Interest-
ingly, from Figure 5.5 we see that service provisioning time does not vary much for
a varying number of background nodes, while (Figure 5.6) the fraction of service
requests served in the local cloud does increase quite significantly. Therefore, as
the LTE network becomes more and more congested, more services are provided
locally, and this limits the effect of higher congestion on the cellular network. Fi-
nally, note that in case of 20 maximum background nodes and high load, service
provisioning time is the highest (with respect to cases with greater numbers of

80

5.3. SYSTEM EVALUATION

0

100

200

300

400

500

600

700

800

900

1000

40M_20-30

40M_15-20

40M_10-15

80M_20-30

80M_15-20

80M_10-15

160M_20-30

160M_15-20

160M_10-15

A
v
e
ra

g
e
 s

e
rv

ic
e
 p

ro
v
is

io
n
in

g
 t

im
e
 (

s)

Hybrid
Pure LTE

Scenario

Figure 5.3: Service provisioning times, default service request parameters

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

40M_20-30

40M_15-20

40M_10-15

80M_20-30

80M_15-20

80M_10-15

160M_20-30

160M_15-20

160M_10-15

Fr
a
ct

io
n
 o

f
m

o
b
ile

 r
e
q
u
e
st

s

Fraction

Scenario

Figure 5.4: Fraction of requests

81

CHAPTER 5. OFFLOADING SERVICE PROVISIONING ON MOBILE DEVICES
IN MOBILE CLOUD COMPUTING ENVIRONMENTS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

40M 20-30

40M 10-15

80M 20-30

80M 10-15

160M 20-30

160M 10-15

S
e
rv

ic
e
 P

ro
v
is

io
n
in

g
 T

im
e
 (

s)
20 users
40 users
80 users
160 users

Figure 5.5: Service provisioning times - varying network load

 0

 20

 40

 60

 80

 100

40M 20-30

40M 10-15

80M 20-30

80M 10-15

160M 20-30

160M 10-15

Fr
a
ct

io
n
 o

f
to

ta
l
re

q
u
e
st

s
(%

)

20 users
40 users
80 users
160 users

Figure 5.6: % of requests served by the mobile cloud - varying network load

background nodes), which is unexpected. From more detailed analysis of the vari-
ous components of the delay, we found that this is due to the higher percentage of
requests served by the global cloud in this case. This creates, at seekers, longer
queues of messages to be sent to the eNodeB, and, in turn, this generates signif-
icant delay for seekers to get from the eNodeB the initial estimate of the service
provisioning time using the global cloud. With a higher background load, fewer
requests are selected to be served using the global cloud, which results in fewer

82

5.3. SYSTEM EVALUATION

messages queued for transmission towards the eNodeB. Paradoxically, seekers
receive the estimates for global service provisioning times quicker.

 0

 500

 1000

 1500

 2000

 2500

40M 20-30

40M 10-15

80M 20-30

80M 10-15

160M 20-30

160M 10-15

S
e
rv

ic
e
 P

ro
v
is

io
n
in

g
 T

im
e
 (

s)

uniform
Zipf α=1
Zipf α=3

Figure 5.7: Service provisioning time - varying service popularity - 10% providers

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

40M 20-30

40M 10-15

80M 20-30

80M 10-15

160M 20-30

160M 10-15

S
e
rv

ic
e
 P

ro
v
is

io
n
in

g
 T

im
e
 (

s)

uniform
Zipf α=1
Zipf α=3

Figure 5.8: Service provisioning time - varying service popularity - 25% providers

Figures 5.7, 5.8 and 5.9 show the service provisioning time for varying skew-
ness of service popularity and total service capacity in the mobile cloud. Again, it

83

CHAPTER 5. OFFLOADING SERVICE PROVISIONING ON MOBILE DEVICES
IN MOBILE CLOUD COMPUTING ENVIRONMENTS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

40M 20-30

40M 10-15

80M 20-30

80M 10-15

160M 20-30

160M 10-15

S
e
rv

ic
e
 P

ro
v
is

io
n
in

g
 T

im
e
 (

s)
uniform
Zipf α=1
Zipf α=3

Figure 5.9: Service provisioning time - varying popularities - 50% providers

is confirmed that hybrid service provisioning provides graceful degradation of per-
formance under significant loads. Specifically, signs of saturation appear only for a
very unfortunate combination of parameters, i.e. when (i) service capacity is very
low (10% of nodes are providers); (ii) network load is very high; and (iii) service
requests are very skewed towards specific services (Zipf popularity with α = 3).

5.3.2 Split of service executions in the hybrid approach

Figure 5.4 shows the fraction of requests served locally by mobile nodes in the
different scenarios. We can see first of all that the shape of the graph resembles
the one seen in figure 5.3, indicating a correlation. It is also notable that for the
scenario with the lowest load the hybrid approach still assigns about 20% of re-
quests to the local cloud. This indicates that local service provisioning might be
useful even in cases when the LTE network is not particularly congested (this is
the case, for example, when the seeker and provider are already in contact when
the service request is generated, and the size of the input/output parameters is
not that large). In the highest load scenario the ratio rises to an average of 65%,
This indicates that our solution avoids cellular saturation, and is still able to exploit
remote cloud execution when appropriate.

To further explore the behaviour of the system, we analysed the variation of
the fraction of requests solved through the mobile cloud during specific simulation
runs. To better understand this index, we plot it together with the fraction of ad-
ditional nodes generated by the birth/death process (the fraction being computed

84

5.4. SUMMARY

over the maximum number of nodes, i.e. 40). In Figure 5.10 we can see the results
for run number 2 of the 10 total simulation runs for each scenario.

The graphs show a correlation between fraction of additional nodes generating
traffic and the fraction of the requests assigned to mobile providers. Scenarios
with the 40MB requests (blue lines), corresponding to a light transfer size due to
service provisioning, have long periods of time where all requests are assigned to
the remote cloud, until the added traffic is heavy enough. Instead the scenario with
160MB requests (red lines) rarely has periods with no requests assigned to mobile
providers, and at the highest request generation rate (“10-15”) the ratio never goes
below 20%. This last result indicate that the system consistently assign requests
to mobile providers even during periods when the added traffic is negligible.

Based on the above results, we can conclude that the hybrid approach provides
significant advantages in achieving better average service provisioning times. This
is achieved also thanks to a dynamic detection of the status of the LTE network,
that allows the proposed solution to correctly estimate whether remote or local
service provisioning is more appropriate. This solution is thus able to avoid to
saturate the LTE network, and to guarantee service provisioning also when the
LTE network becomes congested.

5.4 Summary

In this chapter we presented a mobile edge computing solution that enables the
creation of local mobile cloud networks to offload service provisioning from the
remote cloud. We defined the behaviour of the system when a decision is to be
taken whether a service should be provided from the remote platform or through
some nearby mobile node, taking into account the state of the LTE network and of
the surrounding devices. We presented sets of simulations to show the advantages
in using this approach instead of relying exclusively on remote cloud services by
showing that seekers experience better average service provisioning times and
that the system is able to avoid congestion of the LTE network.

85

CHAPTER 5. OFFLOADING SERVICE PROVISIONING ON MOBILE DEVICES
IN MOBILE CLOUD COMPUTING ENVIRONMENTS

50000 100000 150000 200000 250000 300000 350000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction of requests solved by mobile providers (160/80/40MB data, "10−15" load)

Time

F
ra

ct
io

n
of

 m
ob

ile
 r

eq
ue

st
s

160M
80M
40M

50000 100000 150000 200000 250000 300000 350000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction of requests solved by mobile providers (160/80/40MB data, "20−30" load)

Time

F
ra

ct
io

n
of

 m
ob

ile
 r

eq
ue

st
s

160M
80M
40M

Figure 5.10: Share of requests

86

6

Conclusions

In this thesis we explored how the opportunistic computing paradigm can be used
to design collaborative mobile systems for service provisioning in pervasive envi-
ronments. We had multiple objectives that have been met and discussed: (i) the
objective of designing a system that would enable mobile devices to autonomously
share and access services, without assuming the presence of a network infras-
tructure. This system had also the objective to prioritize the performance for the
users in the service provisioning process, without implementing solution that would
create an overload on the mobile service providers that would have shared their
resources. (ii) The objective of creating a stochastic model that could be able to
precisely estimate the time needed to solve service requests in an Opportunis-
tic system, by only using statistics elaborated from information directly exchanged
between the devices and samples taken of the state of the network, the devices
mobility and the providers capability to solve service requests. (iii) At last, the ob-
jective of creating a service provisioning system for environments where a cellular
network infrastructure is present to enable for mobile devices access to services
on a remote cloud, while the Opportunistic Computing paradigm can be used to
improve the service provisioning performances and at the same time offloading
data traffic from the infrastructure to the mobile devices in order to avoid conges-
tion scenarios.

For objective (i), we have first identified a technique to collect context informa-
tion on the devices network to find available services on other devices and com-
pose them sequentially, if the case. These compositions are represented through
a directed acyclic graph that is weighed using a stochastic model, producing es-
timates of the time needed to complete data transfers and computations. The
weighed graph is used to find the alternative with the shortest estimated service

87

CHAPTER 6. CONCLUSIONS

provisioning time. We then tested the system though simulations, managing to
obtain better performances than other benchmark service allocation policies in
scenarios differing for amount of data to be transferred as input/output of the ser-
vices and generation rate of the service requests by the users. We show that this
holds true also in all service composition cases, i.e. either when services are en-
tirely available on individual devices, or when composition is the only possibility
to provide the required function, or in mixed cases. Improvement of our algorithm
with respect to the benchmark solutions can be as high as 50, 40, 75% in these
three cases.

For objective (ii) we proposed a modelling solution for the stochastic estima-
tion of disconnection events during the resolution process of single component
services, by finding the relation between the phases of the service provisioning
process and the evolution of the state of the connections between seekers and
providers, managing to accurately determine the average performance offered by
the opportunistic system. We extensively validated the resulting model by using
synthetic and real mobility traces to show the advantages in using context informa-
tion instead of using other benchmark policies. Results reveal that the model used
to estimate service provisioning time is accurate, as the maximum estimation error
is in the order of 15%. We then compare the service provisioning performances of
the system against the other alternatives using real mobility traces. We show that
it can achieve up to 43% shorter average service provisioning times with respect
to the closest benchmark policy.

At last, for objective (iii) we designed a hybrid mobile edge solution for service
provisioning, where mobile devices covered by a LTE cellular network infrastruc-
ture can autonomously form a mobile cloud of devices supporting the infrastructure
in orchestrating computing services, all accessible through the infrastructure itself
on a remote cloud, with also the added possibility of offloading them to other de-
vices in the area, alleviating the load of requests from the cellular infrastructure.
We showed in simulations that this type of system is capable of balancing pro-
visioning of computation services between remote cloud and mobile cloud, even
when the infrastructure is under heavy load, and rapidly redirect the flow of re-
quests as network activity changes, keeping performances acceptable even when
the network would become congested, and in the meantime obtaining a boost in
performances for the users. As a demonstration, results show that the average
service provisioning times are faster for the hybrid approach in all scenarios, even
when the request load is at its lowest in the range of the simulation parameter,
the hybrid approach achieves an average that is about 10% lower than the case
when services are requested only from a remote service provider. For scenarios

88

with heavier load the difference grows up until the LTE-only solution is not able to
handle it, saturating the LTE connection.

We reckon that these results are useful for showing how novel collaborative so-
lutions can be practical and effective for service provisioning, with multiple positive
effects: (i) creating service availability in the case remote services are not reach-
able, (ii) augmenting the service capacity and choice by composing resources on
multiple mobile provider with positive effects in performance and stability, (iii) sup-
porting existing cloud solutions avoiding infrastructure saturation scenarios, (iv)
achieving better performances even accounting for extraneous network activity.

89

90

References

1. S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya. Cloud-based augmentation
for mobile devices: Motivation, taxonomies, and open challenges. Communications
Surveys Tutorials, IEEE, 16(1):337–368, First 2014.

2. S. Barbarossa, S. Sardellitti, and P. Di Lorenzo. Communicating while computing: Dis-
tributed mobile cloud computing over 5g heterogeneous networks. Signal Processing
Magazine, IEEE, 31(6):45–55, Nov 2014.

3. D. Bianchini, V. De Antonellis, and M. Melchiori. An ontology-based architecture for
service discovery and advice system. In Database and Expert Systems Applications,
2005. Proceedings. Sixteenth International Workshop on, pages 551–556, Aug 2005.

4. Chiara Boldrini and Andrea Passarella. Hcmm: Modelling spatial and temporal prop-
erties of human mobility driven by users’ social relationships. Comput. Commun.,
33(9):1056–1074, June 2010.

5. Eleonora Borgia, Raffaele Bruno, Marco Conti, Davide Mascitti, and Andrea Passarella.
Mobile edge clouds for information-centric iot services. Accepted for the The twenty-
first IEEE Symposium on Computers and Communications, 27-30 June, 2016.

6. Cisco. Cisco visual networking index: Global mobile data traffic forecast update,
2014–2019, February 2015.

7. M. Conti, S. Giordano, M. May, and A. Passarella. From opportunistic networks to op-
portunistic computing. Communications Magazine, IEEE, 48(9):126–139, Sept 2010.

8. M. Conti, E. Marzini, D. Mascitti, A. Passarella, and L. Ricci. Service selection and com-
position in opportunistic networks. In Wireless Communications and Mobile Computing
Conference (IWCMC), 2013 9th International, pages 1565–1572, July 2013.

9. Marco Conti, Davide Mascitti, and Andrea Passarella. Euro-Par 2015: Parallel Pro-
cessing Workshops: Euro-Par 2015 International Workshops, Vienna, Austria, August
24-25, 2015, Revised Selected Papers, chapter Offloading Service Provisioning on
Mobile Devices in Mobile Cloud Computing Environments, pages 299–310. Springer
International Publishing, Cham, 2015.

10. Erik Dahlman, Stefan Parkvall, and Johan SkÃ¶ld. 4G LTE/LTE-Advanced for Mobile
Broadband. Academic Press, Oxford, 2011.

11. Lucia Del Prete and Licia Capra. Reliable discovery and selection of composite ser-
vices in mobile environments. In In Proc. of 12th IEEE EDOC, 2008.

91

References

12. Niroshinie Fernando, Seng W. Loke, and Wenny Rahayu. Mobile cloud computing: A
survey. Future Generation Computer Systems, 29(1):84 – 106, 2013. Including Spe-
cial section: AIRCC-NetCoM 2009 and Special section: Clouds and Service-Oriented
Architectures.

13. Wei Gao, Qinghua Li, Bo Zhao, and Guohong Cao. Multicasting in delay tolerant net-
works: A social network perspective. In Proceedings of the Tenth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc ’09, pages 299–
308, New York, NY, USA, 2009. ACM.

14. Christin Groba and Siobhán Clarke. Opportunistic service composition in dynamic ad
hoc environments. IEEE Transactions on Services Computing, 99(PrePrints):1, 2014.

15. Sara Hachem, Animesh Pathak, and Valerie Issarny. Service-oriented middleware for
large-scale mobile participatory sensing. Pervasive and Mobile Computing, 10, Part
A(0):66 – 82, 2014. Selected Papers from the Eleventh Annual {IEEE} International
Conference on Pervasive Computing and Communications (PerCom 2013).

16. Dijiang Huang, Xinwen Zhang, Myong Kang, and Jim Luo. Mobicloud: Building secure
cloud framework for mobile computing and communication. In Service Oriented System
Engineering (SOSE), 2010 Fifth IEEE International Symposium on, pages 27–34, June
2010.

17. Gonzalo Huerta-Canepa and Dongman Lee. A virtual cloud computing provider for
mobile devices. In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing
& Services: Social Networks and Beyond, MCS ’10, pages 6:1–6:5, New York, NY,
USA, 2010. ACM.

18. S. Kalasapur, M. Kumar, and B. Shirazi. Dynamic service composition in pervasive
computing. Parallel and Distributed Systems, IEEE Transactions on, 18(7):907–918,
July 2007.

19. John E. Kelly and Steve Hamm. Smart Machines: IBM’s Watson and the Era of Cogni-
tive Computing. Columbia Business School Publishing, 2013.

20. Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. The one simulator for dtn protocol
evaluation. In Proceedings of the 2Nd International Conference on Simulation Tools
and Techniques, Simutools ’09, pages 55:1–55:10, ICST, Brussels, Belgium, Belgium,
2009. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering).

21. Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava. A survey of com-
putation offloading for mobile systems. Mob. Netw. Appl., 18(1):129–140, February
2013.

22. Greg Linden. Marissa mayer at web 2.0.
23. Davide Mascitti, Marco Conti, Andrea Passarella, and Laura Ricci. Service provision-

ing through opportunistic computing in mobile clouds. Procedia Computer Science,
40(0):143 – 150, 2014. Fourth International Conference on Selected Topics in Mobile
and Wireless Networking (MoWNet’2014).

24. Paolo Meroni, Sabrina Gaito, Elena Pagani, and Gian Paolo Rossi.
CRAWDAD dataset unimi/pmtr (v. 2008-12-01). Downloaded from
http://crawdad.org/unimi/pmtr/20081201, December 2008.

25. W. Navidi and T. Camp. Stationary distributions for the random waypoint mobility model.
Mobile Computing, IEEE Transactions on, 3(1):99–108, Jan 2004.

26. A. Passarella, M. Kumar, M. Conti, and E. Borgia. Minimum-delay service provisioning
in opportunistic networks. Parallel and Distributed Systems, IEEE Transactions on,
22(8):1267–1275, Aug 2011.

92

27. L. Pelusi, A. Passarella, and M. Conti. Opportunistic networking: data forwarding in
disconnected mobile ad hoc networks. Communications Magazine, IEEE, 44(11):134–
141, November 2006.

28. F. Rebecchi, M. Dias de Amorim, V. Conan, A. Passarella, R. Bruno, and M. Conti.
Data offloading techniques in cellular networks: A survey. Communications Surveys
Tutorials, IEEE, 17(2):580–603, Secondquarter 2015.

29. U. Sadiq, M. Kumar, A. Passarella, and M. Conti. Service composition in opportunis-
tic networks: A load and mobility aware solution. Computers, IEEE Transactions on,
64(8):2308–2322, Aug 2015.

30. Z. Sanaei, S. Abolfazli, A. Gani, and M. Shiraz. Sami: Service-based arbitrated multi-
tier infrastructure for mobile cloud computing. In Communications in China Workshops
(ICCC), 2012 1st IEEE International Conference on, pages 14–19, Aug 2012.

31. Mahadev Satyanarayanan, P. Bahl, R Caceres, and N. Davies. The case for vm-based
cloudlets in mobile computing. Pervasive Computing, IEEE, 8(4):14–23, Oct 2009.

32. James Scott, Richard Gass, Jon Crowcroft, Pan Hui, Christophe Diot, and Augustin
Chaintreau. CRAWDAD dataset cambridge/haggle (v. 2009-05-29). Downloaded from
http://crawdad.org/cambridge/haggle/20090529, May 2009.

33. Cong Shi, Mostafa H. Ammar, Ellen W. Zegura, and Mayur Naik. Computing in cirrus
clouds: The challenge of intermittent connectivity. In Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, MCC ’12, pages 23–28, New York,
NY, USA, 2012. ACM.

34. Cong Shi, Vasileios Lakafosis, Mostafa H. Ammar, and Ellen W. Zegura. Serendipity:
Enabling remote computing among intermittently connected mobile devices. In Pro-
ceedings of the Thirteenth ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing, MobiHoc ’12, pages 145–154, New York, NY, USA, 2012. ACM.

35. T. Soyata, R. Muraleedharan, C. Funai, Minseok Kwon, and W. Heinzelman. Cloud-
vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architec-
ture. In Computers and Communications (ISCC), 2012 IEEE Symposium on, pages
000059–000066, July 2012.

36. Thrasyvoulos Spyropoulos, T. Turletti, and K. Obraczka. Routing in delay-tolerant net-
works comprising heterogeneous node populations. Mobile Computing, IEEE Transac-
tions on, 8(8):1132–1147, Aug 2009.

37. Hideaki Takagi. Vacation and Priority Systems, Part 1. Elsevier Science Publishers
B.V., 1991.

38. S.A. Tamhane, M. Kumar, A. Passarella, and M. Conti. Service composition in oppor-
tunistic networks. In Green Computing and Communications (GreenCom), 2012 IEEE
International Conference on, pages 285–292, Nov 2012.

39. P. Tournoux, J. Leguay, F. Benbadis, J. Whitbeck, V. Conan, and M. Dias de Amorim.
Density-aware routing in highly dynamic dtns: The rollernet case. Mobile Computing,
IEEE Transactions on, 10(12):1755–1768, Dec 2011.

40. Jianping Wang. Exploiting mobility prediction for dependable service composition in
wireless mobile ad hoc networks. IEEE Trans. Serv. Comput., 4(1):44–55, January
2011.

93

	Introduction
	Scenario
	Our Approach

	Thesis contribution
	Thesis Layout

	Related Work
	Service Composition
	Service Provisioning and Opportunistic Computing
	Edge Computing

	Service Selection and Composition in Opportunistic Networks
	Overview
	System Architecture
	Modelling service execution
	Assumptions
	Contacting the service provider W
	Data transfer times B and
	Queue waiting time DQ
	Service execution time DS

	Service Composition
	Modelling Service Compositions

	System Evaluation
	Composition Load Evaluation
	Results
	Data Transfer and Load System Evaluation

	Summary

	Service Provisioning In Mobile Environments through Opportunistic Computing
	Overview
	Modelling service provisioning time
	Contacting the service provider W
	Service execution time DS
	Queue waiting time DQ
	Data transfer time B and
	Single service cases probabilities
	Data transfer for service compositions

	Choice of the best alternative
	Performance Evaluation
	Summary

	Offloading Service Provisioning on Mobile Devices in Mobile Cloud Computing Environments
	Introduction
	Hybrid mobile edge computing solution for service provisioning
	Resolution process
	Data collection
	Evaluation of service provisioning alternatives

	System evaluation
	Service provisioning time comparison
	Split of service executions in the hybrid approach

	Summary

	Conclusions
	References

