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Introduction

Even though it has been exacerbated in the current days by the widespread of
mobile computers, the energy problem is not a modern issue for computing. As
reported in [Wei55], one of the first modern computer, the ENIAC - a 27 tons
heavy and 167 m2 wide monster - used to consume 173kW. This amount of power
was so much for the time that, according to a common story, lights in Philadelphia
used to dim whenever it was on. Different computing technologies have succeeded
to the vacuum tubes used for ENIAC, but they all reached a point where their
power dissipation was too much to go on.

In the 70s, moving from the vacuum tubes to bipolar transistors allowed to
reach computing capabilities comparable to ENIAC’s ones just dissipating a hand-
ful of watts (INTEL 4004, 1971). The 80s technologies brought new challenges in
power dissipation and delivery. Often, super computers of the time needed liquid
cooling to maintain high performances.

In the 90s, the CMOS technology started to become appealing also thanks
to its interesting power behaviour: in fact, in such systems, power is dissipated
mainly at switching transitions, thanks to complementary gate design. In other
words, (theorically) energy is consumed only when the value of a gate changes
from 0 to 1 or viceversa.

Even though at the beginning this technology seemed to be too slow to be
adopted everywhere, advancements in technology and the interesting "green"
properties led to the universal adoption that we witness today. This notwith-
standing, eventually continuous CMOS scaling arrived to an end, together with
the continuous uniprocessor performance scaling foreseen by Moore’s Law. De-
creasing the feature size and the the threshold voltage (the voltage over which
current flows through a gate) brought to an increase in leakage current, that is
the amount of power that flows through a transistor even though it is supposed
to be off. As noted in a speech at Micro Keynote in 1999, this was making the
power per unit area (expressed in Watt/cm2) grow too much: the power density
of a nuclear reactor was not long to be reached (see Figure 1). In fact, CMOS
needs cooling mechanisms: while 200W spread over many square centimetres are
quite easy to cool, in case of microchips (with relatively small area), cooling was
going to become impossible. Heat is one of the biggest problems for computing,
as it affects durability (it has been estimated that a 10◦C increase in operational
temperature reduces the lifetime of a chip by half) and makes power provisioning
an issue.
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Figure 1: Power density trends as of 1999. Image by Fred Pollack, Intel.

From 2005 this triggered, as a response from CPUs manufacturers, a switch to
multi-core as an attempt to maintain Moore’s Law gain in terms of performance
while maintaining manageable heat and power.

Another solution provided by architects has been progressive specialization
of units; with the rise of heterogeneous computing, almost every device has spe-
cialized units, like accelerators and GPUs. Currently, even mobile phones are
equipped with multiple cores and GPUs. From the mobile perspective, batteries
growth in capacity does not keep pace with the increase in terms of power re-
quirements of the devices. Moreover, such devices often have to deal with very
power-hungry antennas, which are responsible (together with the now-trending
huge screens) for most of the battery drain.

But also in areas of IT where energy bills have been neglected for a long
time, power aware computing is becoming an area of importance, as testified by
initiatives like Green5001. Environmental concerns are not a minor problem: in
the 2006 the data centers placed in the US consumed an amount of energy of
61.4 Billions of KWhs [ENE07] [LSH10], equivalent to the one consumed by the
whole manifacturing industry. This corresponds to about 2% of the worldwide
greenhouse gas emission [BLO08]. However, with the world’s ever-growing need
for computational power and communication, it has been estimated that by 2020
the footprint will grow to reach the 3%.

1http://www.green500.org/

http://www.green500.org/
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Reaching the target of exascale computing (1018 floating point operations
per second) using current supercomputing technology will require, according to
[Mil10], several gigawatts of power, thus imposing the introduction of power man-
agement techniques.

In this work we address the problem of modelling energy consumption in het-
erogeneous architectures. CPU and GPU architectures have been developed with
different kinds of application in mind; this means that they are optimized for
different tasks and will have, depending on the computation, different energy
footprint. Deciding how a computation should be split among devices with dif-
ferent capabilities is crucial to minimize both energy consumption and completion
time. To perform this task, a model providing an estimation of the consumption
of different possible configurations is needed. This work represents a contribution
in the field of energy-aware parallel computing, with which we want to provide
a method to allow optimization of energy consumption in parallel application
developed according to a structured methodology, namely using a parallel de-
sign pattern, a skeleton or an implementation following a well-known parallel
exploitation pattern.

The main contributions of this work are:

• the proposal of an iterative process for developing energy models

• the individuation and characterization of the impact on power of different,
high-level explanatory variables for GPU architectures

• a model for CPU and GPU architectures (as well as an heuristic for the
latter), providing accurate energy predictions (with very high probability),
together with a practical example demonstrating how this model can be
used to save energy.

Outline
The work is organized as follows.

In Chapter 1, we give an overview of the background concepts needed to bet-
ter understand this work: we introduce heterogeneous system, with a particular
focus on the structure of GPU Architectures (and how they can be programmed).
We then move to introduce some basic concepts of structured parallel program-
ming and to explain how energy is dissipated in a computing environment.

In Chapter 2, we provide a quick primer on methods for energy saving used
in IT systems.

We move, in Chapter 3, to present an iterative process that can be used to
achieve a proper model for energy estimation.

The methodology proposed in Chapter 3 is then used in Chapter 4, were a
model and an heuristic for estimating energy consumption on GPU architectures
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is presented. Both the heuristic and the model are validated and their accuracy
in estimating energy consumption is assessed by means of proper computations.

Eventually, in Chapter 5 we present and validate a model for CPU energy
consumption estimation for data-parallel map computations.

In Chapter 6, we merge the two models and give an overview of potential
practical usages of the proposed models. The potential advantages of using the
presented model is demonstrated by co-scheduling an application on CPU/GPU
core mixes, with the aim of minimizing different energy measurement functions.



Chapter 1

Background

The aim of this chapter is to provide the basic concepts that will be later used
in the rest of this work. In the first part, we will describe the systems available
today, both in simple, mobile environments and in more complex, potentially dis-
tributed systems. We will characterize the different kinds of devices with which
we interact everyday, specially focusing on the now pervasive Graphic Processing
Units, stressing their architecture and thereafter briefly exposing how they can
be used for general purpose computation. A quick primer on structured par-
allel programming concepts, algorithmic skeletons/parallel design patterns and
behavioural skeletons is given for the convenience of the reader unfamiliar with
such concepts. Finally the sources of energy consumption in nowadays systems
will be analysed in depth in the last section of this chapter.

1.1 Heterogeneous Computing
Currently, almost every computing system is characterized by an high level of
parallelism: usually, every device is equipped with multiple cores and with some
highly specialized coprocessors. As performance of a single core are becoming
less and less satisfying, parallel programming is becoming ubiquitous. The in-
troduction of parallelism in commodity computing calls for urgent actions also
in terms of parallel applications, needed to exploit at their best currently avail-
able devices. A programmer developing an application should also consider the
different capabilities of the computing devices that can be targeted.

According to Flynn’s Taxonomy [Fly72], architectures can be characterized
depending on the way in which data and instructions flow through the processing
units, as it can be seen in Figure 1.1.

Single Instruction Stream Single Data Stream (SISD): is a classical
CPU architecture, in which in any given moment a single instruction stream is
in execution on a single data stream.

5
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Figure 1.1: A depiction of Flynn’s taxonomy.

Single Instruction Stream Multiple Data Stream (SIMD): is the model
exploited by Graphic Processing Units - higly specialized components tuned for
executing a fixed pipeline1 of instructions, initially with graphics purposes - by
vector units commonly embedded in modern CPUs and by array of processors.
It implements a data parallel form of parallelism at the firmware and assembler
level [Van14]. Data parallelism arises when data collections can be split and the
resulting partisions processed independently (see Section 1.3). In this case it
requires replicated workers to operate in the same manner (applying the same
function) on different chunks of data.

The most pervasive and evident advantage of such architectures is exposed by
vector units (VU), which allow programmers to achieve better completion time
in their computations while writing sequential code, being usually vectorization
a task carried on by the compiler. Consider the case of Intel’s KNC, one of the
most performing vector architectures available today. An operation in the form
for i = 1 to N do c[i] = a[i] + b[i], since there are no dependencies between
different iterations, can in principle be executed as:

c[0] = a[0] + b[0] | c[1] = a[1] + b[1] | . . . | c[N ] = a[N ] + b[N ]

where | denotes the parallel composition operator. In case of a vector processing
unit with KNC, with replicated workers accepting at every clock cycle either 8
double or 16 float, it will be rewritten by the compiler as

c[0 : 7] = a[0 : 7] + b[0 : 7]; c[8 : 15] = a[8 : 15] + b[8 : 15]; . . .

reducing completion time by applying the operator (addition, in the example) to
a number of operands in parallel. This requires to extend the processor’s ISA
with special SIMD instructions, normally targeting arithmetic operations. These
instructions will be executed in parallel by a set of identical data parallel workers,
as it can be seen in Figure 1.2. In this case the data parallel principle is applied
at a fine-grain level.

1a pipeline is the parallel analogous of a function composition



CHAPTER 1. BACKGROUND 7

Figure 1.2: A SIMD architecture. Instruction Unit is responsible for fetching
instructions (among which SIMD ones) and broadcasting/multicasting them to
the execution units. Data distribution might be centralized as well as managed
directly from execution units.

The same basic principle is applied for Graphics Processing Units (GPUs),
which exploit the advantages in terms of performance and energy of SIMD pro-
cessors with some trade-offs to increase programmability and alleviate perfor-
mance problems. GPUs have been classically used to implement a pipeline of
graphic operations, each stage being a data parallel implementation in the form
of a map. In a map the same function is applied to different portions of data.
Only recently, with the advent of GPGPU programming,these accelerators have
become fully programmable.

Multiple Instruction Stream, Single data stream (MISD): this quite
uncommon paradigm prescribes different cores operating on a unique stream of
data, using different instructions.

Multiple Instruction Stream, Multiple data stream (MIMD): this is
the parallel architecture paradigm. It comprises shared memory multiprocessors
as well as distributed memory multicomputers. Because of their inherently gen-
eral purpose nature they allow to implement any form of parallel computation,
without intrinsic limitations. In general, MIMD architectures can be seen as
composed by a set of processing units, connected through an interconnection sub-
system, through which communication, synchronization and data exchanges are
carried on. We defer to [Van14] for further reading.

Usually different kinds of parallel architectures are embedded in a heterogeneous
system: together with multiple cores, we usually find a GPU. In such systems,
tasks are offloaded to computing units with different capabilities, achieving ad-
vantages in terms of energy consumption as well as in terms of bare performance.
This can be achieved only at the cost of increased complexity for the programmer,
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despite the introduction of high-level tools, like NVIDIA Compute Unified Device
Architecture2 (CUDA). It is possible to visualize a common implementation of an
heterogeneous architecture in Figure 1.3, drawn from [CGM14].

Figure 1.3: Common, widespread heterogeneous architecture schema. CPU and
GPU subsystems are connected through a PCIexpress bus.

Following the approach commonly used in the world of GPU programming,
we will refer to the - possibly multiple - CPUs as the host(s) and to the GPU
as the device. Similarly, we consider a parallel application as composed of a host
part and device part, depending on where it is intended to run; each part can be
composed of different concurrent activities, all carrying on different part of the
computation and organized accordingly to the target device architecture.

GPUs and CPUs have been designed for very different kinds of computa-
tions: while CPUs are overly optimized in terms of latency, GPUs are through-
put-oriented devices. For this reasons, GPU are made to execute in parallel
computational intensive programs. While CPUs are composed of few cores, with
hardware support only for few execution flows, GPUs provide hardware paral-
lelism exploitation, but with a less complex control flow management: complex
mechanisms such as branch prediction do not exist in GPUs.

In a parallel, heterogeneous application, CPUs should be preferred for exe-
cuting the tasks with unpredictable or complex control flows, sequential portions
or in case the data to be processes is not big enough to justify the activation
of the device. On the other hand, significant improvements can be achieved by
exploiting GPU on data parallel, compute intensive tasks. The reason will be
clear in Section 1.2, where an overview of GPU architectures, together with the
CUDA programming model and its features, will be described.

1.2 GPU Architectures and CUDA
Graphic Processing Units follow the approach described in the SIMD paragraph
of Section 1.1, with the introduction of some additional complexity to achieve
better results in terms of programmability and flexibility.

As said before, first GPUs where at first dedicated parallel processors, meant
to execute a special kind of computation: they were highly optimized and tuned

2http://www.nvidia.com/object/cuda_home_new.html

http://www.nvidia.com/object/cuda_home_new.html
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to execute primitives to elaborate 2D and 3D images to be displayed to the users.
Their basic model was a pipeline of data parallel (map) functions, operating on
multiple dimensional arrays. As the main market for such devices was video-
gaming, the main concerns where:

• render complex images, with complex optical effects

• provide seamless motions

• and do it fast, to provide better user experience

This required a special class of hardware accelerators to be developed, giv-
ing the rise to the industry of GPU production. In the beginning [Lue08], the
hardware was built so that it resembled the graphics pipeline, shown in Figure
1.4.

Figure 1.4: Logical de-
piction of the graphics
pipeline

The stages of the pipeline were implemented in
hardware, and the programmer was only allowed to
specify parameters. With the growth of graphics re-
quirements, more stages have been added and pro-
grammability capabilities introduced in some of the
stages. Since the early 2000’s [McC10] programmers
received the capability to send, along with the data,
small programs (shaders) that operate on the data
while in the pipeline. In principle, shaders where
meant to use a screen position (x, y) and some ad-
ditional information [SK10] in order to calculate the
colour of the pixel in said position. Early adopter
noticed immediately that, since the arithmetic was
completely programmable, input and output colours
could actually represent any kind of data.

In the beginning of the era of General Purpose
GPU Programming (GPGPU), the only way to in-
teract with such devices was using OpenGL3 or Di-
rectX4, requiring data to be transformed (unnatu-
rally) in textures and programs to be rewritten in
shading languages. GPUs harness both task paral-
lelism and data parallelism. In a old GPU, the graph-
ics pipeline was used for task parallelism, while the
high number of parallel workers was used to process in parallel different portion
of the images. However, as shaders started becoming more and more complex,
maintaining the balance between different stages5 became increasingly complex,
leading architects to design unified shader architectures [OHL+08], available since
the issue of NVIDIA GeForce 8800. In this model, unified, programmable shaders

3https://en.wikipedia.org/wiki/OpenGL
4https://en.wikipedia.org/wiki/DirectX
5in any pipeline, the throughput depends on the performance of the slowest stage
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where provided: the hardware was equipped with fully programmable Streaming
Multiprocessors, transforming the hardware graphics pipeline in a fully software
abstraction. This was the first card supporting NVIDIA CUDA’s architecture,
meant to harness the general purpose computational power of GPUs. Since
CUDA and NVIDIA devices have been the main object off this work, in the
following we will mainly use CUDA jargon and refer, without loss of generality,
to NVIDIA GPUs.

1.2.1 GPU Architectures

Graphics Processing Units, since introduction of GeForce 8800 in 2007, started
following a trend allowing general purpose programmability. These co-processors
follow the Single Instruction, Multiple Threads model, a fashion of SIMD archi-
tectures with some trade-offs to enhance performances.

Figure 1.5: Depiction of an NVIDIA GPU architecture, taken from [GK10]

In normal SIMD, vector based machines, the ISA is extended with special
vector instructions, that can be generated either by the compiler through auto-
vectorization or by exploiting high-level, close to machine level special calls, called
intrinsics [GK10]. In the case of SIMT, instead, each thread is constituted of a
flow of scalar instructions, that are executed on simple processors in a SIMD
fashion. Several threads’ private scalar instructions are combined together to
build a SIMT instruction. This technique allows for higher programmability,
as the management of the vector instruction is automatically done in hardware
and does not impact on the way the programmer writes the code: threads may
cooperate in a data parallel computation or might operate differentially in a task-
parallel fashion [ND10]. Complex mechanisms, such as synchronization barriers,
atomic instructions and shared memory, are provided to increase programmability
of the machine; not only map computations, but also more complex parallel
structures (e.g. stencil, reduce etc.) can be implemented using the provided
capabilities. Latency due to the communication with the host memory can be
hidden overlapping it with computation, thanks to a dedicated coprocessor used
to transfer data from the host memory [CGM14].

Current GPU Architectures supporting CUDA are built around an array of
multiprocessors, called Streaming Multiprocessors (SMs), as it can be seen in
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Figure 1.6: Depiction of the structure of a Streaming Multiprocessor, from [NVIa]
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Figure 1.5. Horizontal scalability (and different capabilities for different market
segments) can be brought by changing the number of Streaming Multiprocessor
and the size and offered bandwidth of the memory.

Every SM is hardware multithreaded, supporting an elevated number (order
of thousands) of threads. Threads are scheduled in groups of 32, called warps.
In GPUs different warps are interleaved, to hide the latency of the long pipeline
(10-20 clock cycles for arithmetic operations, 400-800 for global memory access)
required by the operations. Switching threads has a negligible cost, as their
context is entirely hardware managed [LNOM08]. Every thread has its own in-
struction address counter and register state, and are thus free to advance on its
own and possibly to diverge even within a warp [NVI15].

As it can be seen in Figure 1.6, an SM is made of several components:

• Instruction Cache;

• Warp schedulers, responsible for the selection and execution of warps. A
new warp is selected every 2-4 clock cycles. It operates at half of the
processors’ clock rate [LNOM08];

• one or more Dispatch units, responsible of retrieving the selected threads
instructions. In Kepler architectures, more dispatch units are provided
for each warp scheduler, allowing more (independent) instructions to be
dispatched in a single cycle [NVI12];

• a Register File;

• load and store units (LD/ST);

• special function units (SFU);

• CUDA cores, corresponding to execution units;

• an interconnection network ;

• Shared Memory & L1 Cache, allowing communication between threads op-
erating in the same block;

• a read-only texture cache, that can be used to improve performances.

Active Warps (i.e. set of threads assigned to a SM) can be either in state
stalled, eligible or selected. When less than 32 CUDA cores are available for
execution or arguments of the current instruction of the warp are not yet available,
a warp is stalled; otherwise, it is eligible. Warps to be run are chosen according to
scheduling policies between the eligible ones, and in this case they pass to selected
state. Instructions of 32 scalar threads are combined in a single SIMT instruction,
executed concurrently on different workers. While warps can be executed in any
order, within a warp we have in-order processing of the instructions.
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Figure 1.7: Structure of a CUDA Core, drawn from [NVI09]

The workers executing the threads are called CUDA cores (visible in Figure
1.7). They have a fully-pipelined arithmetical-logical unit and a floating point
unit, accepting one instruction per clock cycle. Since a warp executes one com-
mon instruction at a time, as it happens for SIMD architectures, also threads
in GPUs are affected by the divergent branch problem, arising in case of data
dependent branches. Consider the following computation:

1 for i = 1 to N:
2 if a[i] < b[i] then c[i] = a[i] + b[i]
3 else c[i] = a[i] - b[i]

Listing 1.1:

Once compiled, the generated assembler will look like
1 LOOP:
2 LOAD a[i]
3 LOAD b[i]
4 IF (a[i] < b[i]) THEN
5 SUB a[i], b[i], c[i]
6 STORE c[i]
7 GOTO CONT
8 THEN:
9 ADD a[i], b[i], c[i]

10 STORE c[i]
11 CONT:
12 INCR i
13 IF (i < N) LOOP

Listing 1.2:

since we have a unified controller for the flow of the program, only a fraction of the
workers will be enabled to execute in any given moment. As an example, thread
0 could need to execute the then branch, while thread 1’s flow goes through the
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else one. Since they belong to the same warp, and the CUDA cores on which
they are scheduled will always receive the same instruction, one of the alternative
branches will be selected and the instructions contained in it executed by the
enabled cores, while the others will remain idle, waiting for the correct branch to
be selected. The final condition (i.e. the loop guard) is not data dependent, and
does not pose similar issues.

The condition in which the execution path of threads in the same warp di-
verges is called warp divergence, and is illustrated in Figure 1.8: in this condition,
threads that should execute the else branch stall until the then branch terminates
(and viceversa), hence degrading performances proportionally to the number of
conditional paths executed by the warp. However, being the warps narrower, the
performance penalty is not as high as with previous GPU architectures. Being
warp divergence completely hardware managed using a branch synchronization
stack [LNOM08], it does not impact on programmability: this issue could be
completely neglected by the programmer from the mere functional point of view.

Figure 1.8: Illustration depicting the execution path taken by different threads a
warp in case of warp divergence. Drawn from [CGM14]

Finally, some differences exist between different versions of architectures pro-
vided by NVIDIA:

Fermi

In the Fermi architecture, each of the SM is equiped with 32 CUDA Cores. It has
6 384-bit GDDR5 DRAM interfaces, supporting an high bandwidth for accessing
a total of 6GB of memory provided on board. It has an L2 (coherent) cache,
shared between all SMs, with a total size of 768KB. Every SM has 16 load and
store units, hence allowing source and destination address to be calculated for a
half warp every clock cycle.

Kepler

In this micro architecture every SM is equipped with 4 warp schedulers. For each
warp scheduler, two instruction fetcher are provided, allowing more instructions
to be fetched for each thread. Further, additional hardware parallelism is pro-
vided: the number of CUDA cores is increased to 192 per SM, 64 double precision
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units are provided and special function units become 32. The register file doubles
in size, allowing more threads to be executed concurrently. A SM can support up
to 2048 hardware threads in parallel. Also L1 and L2 cache sizes are increased.
Features supporting, dynamic parallelism are introduced, allowing GPU to dy-
namically launch new kernels. Finally, a technology named Hyper-Q has been
introduced; this technology adds more simultaneous hardware connections be-
tween the CPU and GPU, enabling CPU cores to simultaneously run more tasks
on the GPU, increasing its utilization and reducing CPU idle time. In this work
we used two different models (K20C and K40M) of this architecture.

1.2.2 CUDA

Compute Unified Device Architecture, commonly referred as CUDA, is a term
used to describe both a parallel computing platform and a set of APIs created
by NVIDIA to harness the computational power of General Purpose Graphics
Processing Units. It mainly allows to express data parallel computations, while
a limited support for task parallelism is also provided.

Using CUDA and the provided proprietary compiler, nvcc, the programmer is
allowed to specify the way a thread executes by using plain C (C++ and Fortran
are also supported), together with some proprietary functions for synchronization
and atomic operations. Computations are expressed in terms of kernels ; a kernel
is instantiated in multiple threads and different behaviours can be defined using
the thread identifier, which is provided by CUDA C, the version of ANSI C used
to write kernels. Threads instantiation, scheduling and termination is entirely
managed by the underlying system, alleviating the burden of programming GPUs.

A computation is typically structured in three phases:

1. Data transfer from Host memory to Device memory, using cudaMemcpy 6

2. Kernel call, triggering a computation on the GPU which operates on the
data previously transfer

3. Data collection, that is a transfer of the result from the Device global mem-
ory back to the host memory, using again cudaMemcpy

A computation running on the GPU is called grid. A grid is structured in
terms of blocks, which are composed of several threads, the main execution com-
ponent behaving as explained before. This is a two-level hierarchy, that should
be used carefully to optimize computations. A depiction of the hierarchy can be
seen in Figure 1.9

Threads

A thread belongs to a single block. They are assigned to a warp at creation
time, using their id (sequentially). Threads execute the kernel function, and

6or variations
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Figure 1.9: Grid’s organization in the CUDA programming model, from [CGM14].
A kernel can be launched and executed asynchronously from the host, specifying
the number of threads in a block and blocks in the grid.

can cooperate with other threads in the same block using global synchronization
barriers (__synchthreads()) and shared memory. Shared memory is analogous
to cache memory in CPUs from the performance viewpoint, except it can be
managed explicitly and allows communication within a block. Every thread in
the same grid shares the same global memory space. Threads can be optimized
in terms of performance by using shared memory, texture and constant memory
appropriately.

Blocks

Blocks represent a group of cooperating threads, organized in a 3-dimensional
space. Blocks are physically mapped into a SM ; once assigned, they will reside
on the same SM for their whole lifetime.

Grids

A grid is a CUDA computation running on the GPU, with a unique global memory
space. It is composed by a 2-dimensional array of blocks, that do not cooperate.
A grid runs on a unique device, even in case several GPUs are present in the same
heterogeneous architecture. In principle their execution is asynchronous with re-
spect to host code execution, unless a cudaDeviceSynchronize is executed or
the data collection is started: in this case the host process blocks, waiting for the
result to be collected. Several grids can be in execution in parallel on the same
device.

From a structured parallel programming point of view, CUDA is a classical par-
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allel programming paradigm. As such, it provides basic mechanisms allowing to
write parallel application, hence spanning concurrent activities, synchronization,
mapping and scheduling. However, CUDA does not comprises facilities for ex-
ploiting known and efficient forms of parallelism, nor any abstraction to clearly
separate business code from non-functional code.

We suggest the reader interested in CUDA to consult [CGM14, SK10, NVI15].

1.3 Structured Parallel Programming
Parallel computing is relative to the usage of two or more processing elements
in combination to solve a single problem [Dan14]. The task of parallelizing a
sequential application involves several NP-hard [Van14] problems, but during
the years researchers studying efficient implementation noticed that the ways to
implement efficient parallel computation tend to follow common patterns, called
parallelism forms or parallel paradigms.

Coding parts common to such patterns so that parallelism is efficiently ex-
ploited is a very difficult task, requiring a kind of knowledge well discerned from
the one necessary to code the application per se.

The need for separating business code from parallel exploitation code, lead to
the emergence of algorithmic skeletons and, later, of parallel design patterns, all
exploiting the same principle but produced by different research communities.

In both these approaches, the common parallel exploitation parallel is pro-
vided as a building block to the application programmer, which is consequently
freed from the burden of using low level tools to express his target parallel compu-
tation. In the following, we will refer mainly to the world of algorithmic skeletons.

1.3.1 Algorithmic Skeletons

According to a well established definition, an algorithmic skeleton is a paramet-
ric, reusable and portable programming abstraction modelling a known, common
and efficient parallel pattern. They are provided as parallel building blocks, avail-
able to the application programmer. He/she only needs to instantiate them with
the proper business logic to efficiently exploit machine parallelism. Algorithmic
skeletons are provided to the application programmer as a "framework", either
as part of the language or as a library written in a host language. Adopting
algorithmic skeleton brings several advantages:

• simplified parallel application development and rapid prototyping;

• guaranteed correctness of the parallel application;

• framework-guaranteed portability;

• thanks to the reduced number of parallel exploitation patterns, the frame-
work is able to implement static and dynamic optimizations to the compu-
tation.
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The main disadvantages of this approach of parallel exploitation resides in
functional and performance portability across different architecture
(from a system programmer’s perspective) and in the imposed limits in the
form of parallelism to exploit, meaning that in case there’s no suitable skele-
ton in the framework to implement a particular form of parallelism, the applica-
tion programmer is forced to use a classical (e.g. MPI/CUDA) framework.

Being skeleton structures designed to execute in parallel a different functions,
they can be seen as higher order function, modelling parallel exploitation patterns.
The function taken as argument represents the business code of the application.
We can divide sources of parallelism exploitation in two main categories:

• stream parallelism, arising from computations relative to different, inde-
pendent data items appearing in input

• data parallelism, arising from the decomposition of a single task in several
subtasks

Let us define, abstractly, a stream as the following data type 7:
1 type ’a stream = EmptyStream | Stream of ’a * ’a stream ;;

Listing 1.3:

A pipeline, operating on the stream, is defined as:
1 let rec pipeline f g =
2 function
3 EmptyStream -> EmptyStream
4 | Stream(x, y) -> Stream ((g(f(x)), (pipeline f g y));;

Listing 1.4:

It basically represents a parallel composition: the parallel semantics of the pipeline
states that the two different functions f and g will be computed in parallel on
xi+1 and f(xi) for any i.

Another stream-parallel skeleton is the farm, modelled after the following
higher order function:

1 let rec farm f n:int=
2 function
3 EmptyStream -> EmptyStream
4 | Stream(x,y) -> Stream ((f x), (farm f y));;

Listing 1.5:

representing the case in which n replicated parallel agents apply the same function
over at most n different elements of the stream.

Data parallel skeletons exploit parallelism thanks to the fact that, it may be
the case that different portions of compound data structures (like arrays) can
be computed independently. A classical data parallel computation is the map,
defined as follows:

7Using Ocaml notation
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1 let map f x =
2 let len = Array.length x in
3 let res = Array.create(f x.(0)) in
4 for i = 0 to len -1 do
5 res.(i) <- (f x.(i))
6 done;;
7 res;;

Listing 1.6:

This map function receives an array x in input and returns an array res such
that res.(i) is equal to x.(i) for every i. The parallel semantics is such that
each element of the res vector is computed in parallel.

Other known data parallel skeletons are reduce and parallel prefix, for whose
description - and further informations about basic concepts and implementation
of algorithmic skeletons - we defer the reader to [Dan14].

From the implementation point of view, algorithmic skeletons can be provided
using either templates or macro data flow graphs. In the template approach, we
have a set of concurrent activities representing the nodes of a graph, while arcs
represent communication or data movements between the nodes. In the macro
data flow approach, instead, skeletons are compiled in terms of graphs, whose
instances (one per input data set) are evaluated using a distributed interpreter.

Different skeletons are associated with performance models, whose presence is
crucial for achieving good performances, as they i) allow to predict performances
before developing the application; ii) to evaluate them once deployed and iii) to
optimize the computation.

1.3.2 Behavioural skeletons

A behavioural skeleton [ACD+08] is the result of a co-design of a parallelism
exploitation pattern together with an autonomic manager, whose concerns are
granting non-functional features related to the parallelism exploitation pattern.
Since the autonomic manager is aware of the structure of the parallel computa-
tion, several adaptation schemas can be implemented. Such schemas may respond
to variation on the system, related either to endogenous or exogenous causes.

A behavioural skeleton responds to concerns like energy consumption, resource
under/over utilization by implementing an adaptation schema, that might change
the structure of the computation. It is implemented using the classic Monitor,
Analyze, Plan and Execute (MAPE) loop, to, respectively

• collect information through sensors/probes (monitor phase);

• take decisions regarding whether adaptation mechanisms should be adopted
are taken (analyse phase) exploiting some kind of abstract performance
model;

• devise strategies to implement decisions (plan phase);
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• implement strategy (execute phase)

The above loop is executed continuously to respond to changes in the computation
or in the system onto which it runs. Obviously, energy consumption and power
management concerns belong to the realm of problems targeted by behavioural
skeletons.

1.3.3 Algorithmic skeleton frameworks in heterogeneous sys-
tems

With the advent of heterogeneous architecture, it is even more crucial to have
implementations of algorithmic skeleton-based frameworks allowing to run on
different kinds of architecture. Skeleton libraries, together with tools like CUDA,
may allow to deliver good performances in heterogeneous architecture hiding the
complexity of targeting different systems. Here, we give a quick primer on the
existing (to the best of our knowledge) frameworks supporting structured parallel
programming on heterogeneous CPU/GPU architectures.

SkePu

SkePu 8 [DLK13] [EK10] is a skeleton programming framework, allowing to exe-
cute parallel application on both multicore and heterogeneous systems (compris-
ing one or more GPUs). It is provided as a library of C++ templates. The latest
version as of today (1.2) provides (among others) map, reduce, mapreduce, scan
and farm skeletons, most of which support hybrid execution on CPU and GPU.

Muesli

Muesli 9 [EK12] [MPAM13] is a template based skeleton programming framework,
based on OpenMP and CUDA. It can run on clusters as well as in multi-core and
in heterogeneous settings.

FastFlow

FastFlow 10 [ACD+13] [GGGV12] [ADKT11] is a high-level, pattern based paral-
lel programming environment, specially targeting stream parallelism and allowing
development in heterogeneous platforms. It is developed in collaboration by the
parallel computing groups of the Departments of Computer Science of the Uni-
versity of Pisa and University of Turin. The framework, that has been used to
develop part of the code used in this work, is organized in layers:

• the lowest level layer provides lock-free synchronization mechanisms;
8http://www.ida.liu.se/~chrke55/skepu/
9http://www.wi1.uni-muenster.de/pi/forschung/Skeletons/

10http://calvados.di.unipi.it/

http://www.ida.liu.se/~chrke55/skepu/
http://www.wi1.uni-muenster.de/pi/forschung/Skeletons/
http://calvados.di.unipi.it/
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• the middle layer provides communication mechanisms, including single pro-
ducer single consumer queues (SPSC) and multiple producer (MPSC) single
consumer queues;

• the top layer provides implementation in term of concurrent activity graphs
of streaming parallel patterns.

FastFlow is particularly efficient in case of fine-grained parallelism, mainly
thanks to the efficient queues implemented in the middle layer. The queues
are lock-free and wait-free, and their memory footprint is quite reduced. Com-
munication is carried on, in shared memory environments, within nanoseconds.
According to the website, a SPSC queue with asynchrony degree k requires only
144 + 64× k bytes, hence being very memory efficient.

The main constructs made available by the environment are farm, pipeline and
farm with feedback. Through these basic constructs it is possible to implement
also data-parallel computations without too much effort.

1.4 Energy consumption and metrics
Energy consumption (measured in Joules) is the fundamental metric that we
seek to minimize, as it relates to expenditure in data center and to battery life in
mobile environment. From a low level perspective, the energy consumption of a
program is the sum of the energy consumed by all the operations performed. As it
happens with the completion time, the energetic cost of performing an operation
depends on [CA12]:

• the complexity of the operation and of the processing unit on which it is
executed;

• the level of the memory hierarchy accessed;

• the cost of communication eventually involved in the performed operations.

In general, different operations will activate different resources and cause different
switches in values in the CMOS circuits exploited, thus the instantaneous power
P (t) (expressed inWatt, Joules/s) will change along the time line. Given a certain
computational environment and a computation, the total consumed energy will
be:

E =

∫ tend

tstart

P (t)dt (1.1)

where tstart represents the starting time of the computation and tend the time
at which it terminates. A chip power consumption changes depending on sev-
eral factors: the computation being executed as well as design choices of the
manufacturer, as explained in the following section.
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1.4.1 Power consumption in CMOS technology

In current chips, the consumed power P (t), is classically divided (as in [KM08]) in
2 main categories: static power, arising from the mere fact that the die is powered,
and dynamic power, which depends on the computation being executed.

Dynamic Power

Dynamic power is the main source of energy consumption; it can be calculated
from the following equation:

Pdynamic(t) = CV 2Af (1.2)

where:

• C, the aggregate load capacitance, mainly depends by the wire lengths used
by on-chip structures. This value can be reduced in several manners, as an
example by building smaller memories or multiple, less powerful processors
rather than a larger one on the same chip.

• V, the supply voltage is the most important component used to minimize
energy consumption. Architects managed to make this figure drop steadily
in the past years, because of its quadratic impact on overall power. This
value can be reduced further when the frequency is lowered [KGC99]. In
fact, this is the only manner to reduce V , as the propagation delay of a gate
is inversely proportional to V . This means that V cannot be decreased if f
isn’t, as it would lead to incorrect results.

• A, the activity factor is a fraction ∈ [0, 1] referring to how often wires
switch from 0 to 1 or from 1 to 0 in a computational environment. This
activity factor relates both to circuit design and to the program currently
being executed. In most wires, we often observe that A < 1, as they do not
continuously switch. A can be further reduced (for idle hardware units) by
using clock gating - a technique that places the clock signal in AND with a
control signal [WPW00].

• f, the clock frequency, has a linear impact on power. However, in principle,
decreasing only the frequency bears to increases in energy consumption,
as every operation will obviously require more time to reach completion.
Nonetheless this is an important leverage as it allows to reduce also V ,
impacting cubically on the instantaneous power consumed by a CMOS chip.

Dynamic power is the most studied component in literature, as it largely exceeds
static power consumption [KM08] [BAM98] [JM01] [KG97] [SD95].
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Figure 1.10: Example of an I-V curve for a semiconductor diode.

Static Power

Static power arises even when no active switching is present. In older technology,
it was a major problem, which was partially solved in early CMOS chips. How-
ever, it is nowadays coming back in form of leakage power consumption. It has
been estimated [KM08] that it currently represents roughly the 20-40% of power
dissipation in modern chip designs, a figure that is expected to increase [BS00]
as technology feature scales down.

CMOS static power arises mainly because of leakage currents (Ileak):

Pstatic = V Ileak (1.3)

Leakage current is mainly due to the analog nature of transistors; in fact, even
below the voltage threshold VT above which we consider the transistor to be in
on state, leakage currents still flow, as it can be seen in 1.10. The current flowing
through a transistor even though it is off is called sub-treshold leakage; however,
there are 5 more types of leakage consumption, for whose description we defer
the interested reader to [KM08].

In CMOS, the supply voltage Vdd of the chip is usually scaled down so that
the dynamic power consumption decreases. Since scaling down only Vdd would
lead to an increase in transistor’s delay, as it can be seen in 1.4, the only way to
maintain acceptable delays is diminishing VT accordingly.

Delay ∝ Vdd
(Vdd − VT )α

(1.4)

where α is a technology dependent factor: for current technologies it varies be-
tween 1.2 and 1.6 [S+90]. However, since sub-threshold leakage increases expo-
nentially with lower threshold voltage, it is becoming an always growing concern
for circuit designers.
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Other sources of power consumption

There are other sources of power dissipation (e.g. glitching power) in CMOS
technology. Using a common approach, we will neglect them and consider the
total power consumption as the sum of dynamic and static power, as shown in
[KA11]

P (t) = Pdynamic(t) + Pstatic (1.5)

1.4.2 Energy consumption of parallel applications

In the following, we will focus mainly on the energetic cost of the computing part
and related communications, thus neglecting other (possibly important) compo-
nents that sum up to the energetic bill, like disk accesses. Moreover, we will
describe primarily the costs incurred while operating on a parallel, but not dis-
tributed environment. The case of distributed systems (e.g. data centers), are
more difficult to model not just because of the surrounding infrastructure, but
also because such structures can seldom be dedicated to single computations. In
such scenarios, most of the energy optimization relies on work consolidation in
order to maximize performance per Watt [SKZ].

Modern days architectures are made of several computing devices, possibly
with different capabilities. Even on low-end computers, it is common to find
multiple CPUs and possibly a GPU. Such devices can be exploited concurrently
to carry on a single computation. We generalize the power cost of all these
different devices as a set of resources, and we model the overall power consumed
by a computing infrastructure as:

Ptotal(t) = Pinfr +
∑

i∈resources

Pi(t) (1.6)

where Pinfr represents the amount of power dissipated by everything constantly
turned on during all the computation, and consequently which is not distin-
guishable from the cost of turning on the computing infrastructure, as shown in
[MCC15].

As energy consumption of an application depends both on the resources used
to execute it and the completion time, we face a delicate trade-off from the en-
ergetic standpoint. In the parallel application world, in particular, there exists
a delicate balance between the amount of used resources and completion time
[CGM+10]: executing the computation on n CPUs will bear an increase in dy-
namic power (and thus energy) which will be proportional to n. However, in the
ideal case it will also bring execution time to 1

n
-th of the sequential time, with

consequent potential energetic advantages, also due to the amortization of the
static component of power. Hence, potential energetic advantages in parallelizing
an application depend on the speed-up of the application taken into consideration,
which is defined as:

sp(n) =
Tseq
T (n)

∈ (0, n] (1.7)
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where T (n) is the time required to execute the application on n processors and Tseq
is the time of the sequential execution. In the ideal case, we will have sp(n) = n.

However, speed-up has a upper bound given by the well-known Amdahl’s Law
[Amd67]:

sp(n) ≤ Tseq
F × Tseq + (1− F )× Tseq

(1.8)

where F is the fraction of work which is inherently sequential. This means that
the parallel execution time T (n) of the application on n processors is bounded as
follows:

T (n) ≥ F × Tseq + (1− F )× Tseq
n

If by E(n) we denote the energy spent in the system during the execution of
the parallel application with n processing units belonging to used_res, the set
of used computational resources, we will have

E(n) = Pinfr×T (n)+
∑

i∈used_res

(∫ tstart+T (n)

tstart

Pi(t)dt

)
+T (n)×

∑
i∈res\used_res

P i
static

(1.9)
Notice that equation 1.9, is still valid in machines where unused processors can be
turned off, as we can consider P i

static = 0 for every i ∈ turned_off_processors.
Assuming that i) the average power consumed by a processing unit is not

dependant on the starting time tstart; ii) that all used processing units require on
average the same amount of power P and that iii) the static power Pstatic is the
same for all N = |res| available computing resources, we can rewrite equation 1.9
as follows:

E(n) = Pinfr × T (n) + n× P × T (n) + (N − n)× Pstatic × T (n)

= Pinfr ×
Tseq
sp(n)

+ n× P × Tseq
sp(n)

+ (N − n)× Pstatic ×
Tseq
sp(n)

(1.10)

Hence, the minimum energy for a fixed n and a given computation is spent
when the speed up is n; a lower bound for the energy spent in a parallel application
is given in Equation 1.11:

E(n) =
Tseq
sp(n)

(
Pinfr + n× P + (N − n)× Pstatic

)
≥
[
F × Tseq + (1− F )× Tseq

n

] (
Pinfr + n× P + (N − n)× Pstatic

)
(1.11)

showing how important is achieving the maximum speedup (or, alternatively,
efficiency) for having good energetic performances. This maps intuitively to the
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fact that low efficiency (formally defined as ε(n) = sp(n)
n

) basically means "resource
underutilization", and thus energy waste.

Another important issue to be taken into consideration for energy efficiency is
the impact of communications. Memory hierarchies, ubiquitous in current com-
puting environments, often including remote, over the internet communication,
do constitute an important burden from the energetic standpoint. The expected
energy cost of data movement is directly proportional to the distance of com-
munication [CA12]: single chip communication is order of magnitudes less costly
than off-chip, external memory and network communication, as it can be seen in
Table 1.1.

Operation Energy Cost (J)
Floating Point operation 10.6× 10−12J
Register File operands supply 11 5.5× 10−12J
L1 Instruction cache access 3.6× 10−12J
L1 Data cache access 3.6× 10−12J
L2 cache access 18.5× 10−12J
L3 cache access 39.5× 10−12J
Memory access 168.5× 10−12J
Network 311.5× 10−12J

Table 1.1: Energetic cost of different operations, adapted from [KBB+08].

Let us now consider the case of a common, universally spread type of hetero-
geneous systems.

A system is called heterogeneous when it integrates two or more kinds of
processors, with different performance and power. Heterogeneous systems may be
implemented on the same chip or through different dies connected through some
kind of interconnection network (usually a bus). The availability of different types
of devices provides further space for energy optimization: since they will have
different power/performance trade-offs, scheduling a computation in the adequate
amount on the adequate set of processing units is crucial to minimize energy. In
the following, we will consider a relatively simple heterogeneous architecture, with
a set of n cores and 1 Graphic Processing Unit (GPU).

Despite consuming an elevated amount of power, GPUs are often used for
their ability, in highly parallel and computing intensive scenarios, to minimize
energy consumption because of their elevated performance/watt ratio.

Let us consider a computation, of which a fraction g ∈ [0, 1] is offloaded to
the GPU, using a total of m processing units, while 1− g is processed in parallel
on n of the N available cores. The total time to process the data will be the
maximum between the data transfer time plus the GPU computation time and
the time required to execute on n CPUs. Assuming the communication time Tcom
is dependent on the fraction of work offloaded to the GPU, we will have:

TCPU−GPU(n,m, g) = max{TCPU(n,m, 1− g), TGPU(m, g) + 2Tsend(g)} (1.12)
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and, extending eq. 1.9 the total energy spent will be:

E(n,m, g) =Pinfr × TCPU−GPU(n,m, g) +
N∑
i=1

(∫ tstart+TCPU−GPU (n,m,g)

tstart

P i
CPU(t)dt

)

+ TCPU−GPU(n,m, g)

∫ tstart+TCPU−GPU (n,m,g)

tstart

PGPU(t)dt

(1.13)

Applying again the assumptions used to achieve eq. 1.10 from eq. 1.9, con-
sidering that the task of moving data from the main memory to the GPU on-chip
resident memory is offloaded to a dedicated communication co-processor12 and
assuming that i) the GPU communication processor consumes on average a fixed
amount of power PGPU_coprocessor during transfers and that ii) the GPU consumes
on average a constant power during the computation, we can obtain the following
energy consumption terms, which together sum up to E(n,m, g) as of 1.13:

Einfr(n,m, g) = Pinfr × TCPU−GPU(n,m, g)

ECPU_active(n, g) = PCPU × n× TCPU(n, 1− g)

EGPU_active(m, g) = PGPU × TGPU(m, g)

EGPU_transfer(g) = PGPU_coprocessor × 2Tcom(g)

ECPU_idle(n,m, g) = U(2Tcom(g) + TGPU(m, g)− TCPU(n, 1− g))
×(2Tcom(g) + TGPU(m, g)− TCPU(n, 1− g))×N × PCPU

static

+(N − n)× PCPU
static × TCPU(n, 1− g)

EGPU_idle(n,m, g) = U(TCPU(n, 1− g)− 2Tcom(g)− TGPU(m, g))
×(TCPU(n, 1− g)− 2Tcom(g)− TGPU(m, g))PGPU

static

(1.14)
In 1.14, we used the following terminology:

• Einfr is the cost of maintaining active the infrastructure, and depends only
on the completion time.

• ECPU_active and EGPU_active are the energy costs of performing the compu-
tation respectively on the CPUs and on the GPU.

• EGPU_transfer is the cost of data movement from main memory to the GPU
dedicated memory.

• ECPU_idle is the cost of maintaining (N − n) CPUs idle plus the cost of a
possible unbalance between the set of CPUs and GPU (paid in case GPU

12Hence GPUs communications and computations can be performed asynchronously
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computation lasts more than CPUs one). To define it we used the unitary
step function U(x), whose value is 1 for positive values.

• EGPU_idle accounts for the energetic consumption paid when the GPU is
inactive.

ECPU_idle and EGPU_idle energy costs are due to unbalance between the com-
putations executed, respectively, on the set of cores and on the GPU. It can be
minimized by calculating a proper g such that the completion time is almost the
same. We understand immediately that for g = 0 and g = 1 a very high amount
of energy will be dissipated without performing any operation, hence suggesting
that at least a part of the computation (depending on its features and the hard-
ware’s one) should be carried on on each component. A better characterization
of TCPU−GPU(n, g) and a method to calculate g for some classes of computations
can be found in [SDK13], to which we defer the interested reader.

Notice that the results involving the Amdahl’s law still hold in this kind of
system; in fact, given a computation with a serial fraction of F , we will have

TCPU(n, g) ≥ F × Tseq +
(1− F )× (1− g)× Tseq

n

and
TGPU(m, g) ≥

g × (1− F )× TGPU(1)
m

Obviously, the serial fraction impacts also on energy, as, unless it can be
completely overlapped by communication with GPU, it would proportionally in-
crement EGPU_idle, regardless of g,m and n.

From an high-level perspective, with a given heterogeneous system, minimiz-
ing energy consumption means:

1. Reducing the completion time (and thus the performed operations), by
carefully optimizing the computation so that the processor’s ISA is used
at its best [KGC99]. Obviously, the choice of the right algorithm is of the
uttermost importance.

2. Dividing the computation carefully between devices with different capabil-
ities, minimizing completion time and/or optimizing energy.

3. Maximizing the speed-up of a parallel application, amortizing better the
fixed cost of the computing infrastructure and using the resources efficiently.

4. Increasing data locality, as accessing off-chip memory has a huge cost (see
Table 1.1); even worst, remote communications require activating anten-
nas and/or using a network infrastructure, increasing latency and energy
consequently.

5. Reducing the power needed to carry on a computation, by scaling frequency
and, consequently, allowing the supply voltage to be decreased.
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Reducing the completion time relates to the realm of optimizations and of
compilers. Of course carefully written assembly, as shown in [KGC99], may
brought better performances; however, not all operations have the same energetic
footprint, and thus more sophisticated transformations should be defined in the
compilers, allowing to substitute operations with less power hungry, equivalent
ones.

As shown previously in inequality 1.11, minimizing the sequential fraction
of an application, and trying to achieve the best possible speed-up (hence also
minimizing overheads) also bears significant advantages in terms of energy, as
overall the machine is used for less time.

The third point, related to communication, imposes yet another trade-off, as
sometimes it could be convenient to pay an additional energetic cost for commu-
nication (i.e.: to offload a part of the computation to a different processing unit)
to decrease completion time or to use a more energy-aware device, thus possibly
obtaining an energetic gain.

Most of the current methods for reducing energy consumption in modern ar-
chitectures rely on the latest of the above points. The cubic impact of frequency
scaling and voltage scaling is an enormously appealing leverage to achieve energy
efficiency: while decreasing the frequency bears (normally) a linear disadvantage
in terms of completion time, the instantaneous power of the computing devices
used decreases more than linearly. However, specially in the HPC world where
performance in term of time still has an higher consideration with respect to en-
ergy, frequency scaling is mainly used in situations where resources are not used at
their maximum efficiency. Several DVFS (Dynamc Voltage and Frequency Scal-
ing techniques exist, exploiting slack time in order to reduce power consumption
without degrading performance proportionally. We will discuss further DVFS
techniques in Section 2.1.

1.4.3 Metrics for combined energy and performance evalu-
ation

Which metric should be used to evaluate performance and power trade off de-
pends on the area of interest and the type of platform object of the study. In
environments like mobile platform (e.g. smartphones, laptops), pure energy,
(expressed in Joules) is considered to be the most important metric, as it relates
to battery lifetime and, consequently, to the device availability: in this case low
energy expenditure is a functional requirement.

More interesting are metrics combining performance and energy. The most
simple case is energy-per-instruction (EPI). It is a measure of the amount of
energy consumed by a micro-architecture for every instruction executed. It is
expressed in Joules/Instruction. It is ideal to assess power-efficiency in environ-
ment where throughput performance [GA06] is the main target. When operating
within a power budget, EPI must be as low as possible in order to deliver high
performances.
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Moving to an higher level of abstraction, one of the most commonly used
metrics is energy-delay product (EDP) [GH96]. As the name itself states, it is the
product of energy and execution time, and is thus expressed in Joule× seconds,
to combine the requirements of low energy and fast runtime. This metric can be
used to compare different architectures given an instruction mix or to evaluate
different (possibly parallel) applications. It improves (is lower) for approaches
holding energy constant but with a shorter runtime or maintaining the same
completion time while reducing energy usage.

EDP metrics has a catch: when comparing different systems, it fails in case
voltage scaling is allowed. Consider the case of two different systems, A and B
such that the energy consumed by A, EA is twice the energy consumed by B for
carrying on a computation with completion time TA = TB

2
. If A’s supply voltage

can drop by half, we will have E ′A = EA

4
= EB

2
and T ′A = 2TA = TB; this means

that A is better, but EDP fails to capture this condition. Moreover, since EDP
weights equally energy and power, it is sometimes replaced with energy-delay-
squared (ET 2) [MNP02]; in this case the delay has a square impact, accounting
for a more elevated concern about performance.

1.4.4 Measuring energy consumption

As with other kinds of monitoring, probes introduce differences in the behaviour
of the computation that is monitored. This is a well-known problem, often named
intrusion problem [Dan14] inserting probes to measure any given quantity requires
extra system or library calls, that spend time (and hence energy), require memory
and may in general affect the results of the measurement itself.

In the parallel applications world, the intrusion problem is even bigger, due
to the fact that the delay introduced by probes may make some bottlenecks
disappear.

Tools for energy consumption monitoring can be categorized in three classes
[CAAB15b]:

I. External devices monitoring: with this approach, a monitoring device is
placed outside of the monitored node. Measurements do not interfere with
the experiment, but at the cost of less precision

II. Intranode monitoring: in this case monitoring is carried on with cus-
tomized tools on restricted platforms, as it requires to develop different tools
for different hardware. It can be carried on by using hardware performance
counters.

III. Other approaches to monitoring: this class of tools focuses on providing
API to access information provided by the hardware. The information is
elaborated starting from hardware performance counters, as well as from
application of analytical applied to workload metrics.
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EML: Energy Measurement Library

EML 13, acronym of Energy Measurement Library[CAB13], has been the elected
tool used to carry on the experiments described later in this work. Developed
by the HPC Group of Universidad de La Laguna (Tenerife), it is a portable
library, allowing to abstract the user from the tools used to measure the energy.
Currently, it allows to perform measurements on the following devices:

• Intel CPUs, from Sandy Bridge on, exploiting Intel’s Running Average
Power Limit interface;

• Recent NVIDIA Tesla and Quadro GPUs, using NVIDIA Management Li-
brary (NVML);

• Intel Xeon Phi Many Integrated Core co-processors;

• Schleifenbauer Power Distribution Units, through a socket API; it can be
used also in distributed environments.

It is provided under a GPLv2 licence, and is completely open source. The devel-
opment of this library is still in process, hence it is not yet mature and installing
it requires some notable efforts. It requires to have read privileges on some system
files, namely msr files under /dev/cpu/*/ on Linux Systems. Being the granular-
ity of the measurements almost completely user defined (with some limitations
due to the amount of samples needed to read significant values), it allows to auto-
tune computations depending on their energetic behaviour. Energy consumption
and time metrics are provided to the user using a unified interface, regardless of
the monitored devices or of the way in which the samples are collected.

Measurements can be collected in a instant fashion, that returns the instanta-
neous energy consumption as collected by the hardware, or in a interval manner.
This case, which was the kind of measurements exploited in this work, is useful
in order to retrieve energy aggregated metrics in a way that is totally similar
to time aggregated metrics. Hardware measurement of energy consumption can
be provided either instantaneously or depending on the interval. However, the
library abstracts from the way values are read and seamless derives the kind of
values required from the user.

Further, it provides a standard manner to read energy consumption, unify-
ing different approaches (notably, RAPL provides information about consumed
energy, while NVML only reports instant power consumption of the monitored
board). EML performs device discovery at runtime, and the user can perform
measurements on all or on a part of them using appropriate calls. The library,
according to [CAAB15b], works as follows:

1. at first, a discovery phase is executed, using emlInit(), in which available
devices are individuated, the memory needed to measure is allocated and
informations about the environment are made available to the user;

13http://hpc-ull.github.io/eml/

http://hpc-ull.github.io/eml/
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2. measurements are started using a call (emlStart()) to be placed before the
section of code to be monitored;

3. the sampling process is terminated by a call to emlStop();

4. data can be collected in a instantaneous manner (getting a dump of all
samples in JSON format) as well as in aggregated form using appropriate
calls, triggering an elaboration of the samples gathered by the library;

5. the used resources are freed through a call to emlShutdown().

According to [CAAB15a], the library has a small overhead, accounting for
about 2-4% - depending on the data size - when monitoring with NVML and
1.54% when monitoring with RAPL.



Chapter 2

Survey

In this chapter we will present some methods used in both CPU and GPU archi-
tectures to cope with the trade-offs between parallelism, energy and performance
achievements. We will present the widely adopted technique of Dynamic Fre-
quency and Voltage Scaling in 2.1. Even though this technique has not been used
in this work, its wide usage in energy-aware system mandates at least to present
a brief introduction to the technique and the main results achieved using it. In
Section 2.2 we will present some methods used to reduce energy consumption in
heterogeneous systems. Finally, we will move to briefly present some energy and
power models.

2.1 Dynamic Frequency and Voltage Scaling
Dynamic Frequency and Voltage Scaling (DVFS) is a well known technique al-
lowing to spare energy in computing systems. Starting from Equation 1.2, we
see that the dynamic power P consumed in a CMOS device is P ∝ V 2f . Even
with a small reduction in V , we gain the square in terms of power. Reducing the
voltage requires the frequency to be scaled accordingly to ensure the correctness
of the calculation, so performances are degraded linearly. We have a set - either
discrete or continuous - of pairs (V, f) that can be changed at different granular-
ity, affecting power and time. While the best results can be achieved when the
voltage can be selected arbitrarily, interestingly, [HQ03] shows that using 3 or 4
different DVFS levels is enough to reach close-to-optimal energy consumption.

The main idea behind DVFS is that we will have a slowdown in the process
execution, but with a disproportional impact on the required power, thus saving
energy. This can be done with the highest advantage in presence of slack time.
Slack time can be either due to bottlenecks (e.g. memory accesses), early ter-
mination of a task due within a deadline or underutilization of the computing
resources (e.g. a system without jobs running on it).

We show the principle in Figure 2.1, where we show the impact of different
configurations of (V, f) on time and energy. The red square shows the energy
when the computation is executing using a voltage V and a frequency f . Halving
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the frequency will halve the power, but double the completion time: the energy
of this configuration is the orange rectangle, whose area is the same of the red
square. Finally, the purple square shows the real benefits of DVFS: in case the
voltage is halved (and this is allowed only if the frequency is reduced), the power
is proportional to the fourth of the previous one and the energy consumption is
way smaller, as shown by the purple rectangle.

Dynamic voltage and frequency scaling grants energy saving by greatly reduc-
ing dynamic power consumption; the advantages of the technique terminate, as
reported in [ZBSF04], when the voltage is diminished below a certain threshold.
In this case the energy dissipated by leakage power increases, hence reducing the
awarded benefit. Another limitation of this technique [HVC+06] is how often the
(V, f) couple can be changed: usually, switching to a different frequency requires
several microseconds, as the digital circuits are stopped during the transition.

Time

P(V, f)

P(V, f/2)

P(V/2, f/2)

Energy for (V, f/2)

Energy for (V, f)

Energy for (V/2, f/2)

Power

Figure 2.1: Energy consumption and power consumption using different voltages
and frequencies.

The DVFS technique can be applied at several levels [KM08]:

• Hardware level, where DVFS is used at hardware level, using low utilization
factors of different components to reduce their consumption;

• System level, where the "idleness" of the whole system is used to drive
DVFS decisions;

• Program level, where single threaded programs could exploit instructions
with long latencies (e.g. memory accesses) to reduce the frequency until
their completion and parallel program can be tuned depending on the needs
of every node of the concurrent activity graph.

Another important way to distinguish different approaches to DVFS is the
moment in which the decision about scaling is taken: there exists static, compiler
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based approaches to this problem as well as reactive ones, based on the instanta-
neous behaviour of the system/program/component taken into consideration.

In the last years, gains in energy consumption due to DVFS have been steadily
decreasing: as explained in [LSH10], the progressive decrease in transistor feature
size and voltage required by today CPUs, severely impairs the potential to save
energy using DVFS.

2.1.1 Hardware level DVFS

In Razor [EKD+03], the fact that the so-called critical voltage is an upper esti-
mation of the one effectively required for correctness, is exploited to reduce power
consumption by lowering voltage below this threshold. In this device, the volt-
age is lowered until timing faults start arising; this approach has been tested on
modified ARM cores, showing a gain of about 64% in power demand.

While most of the conventional multiprocessors run on a single clock domain,
inGlobally Asynchronous Locally Synchronous systems (GALS) [MVF00], contain
several independent synchronous blocks, each one operating with its local clock
and communicating asynchronously with each other. A particular design in GALS
is the one called Multiple Clock Dynamic Voltage, in which every clock domain is
supplied with a different voltage. The voltage can be changed [IM02] in a dynamic
or application-dependant manner: since different application will require to use
different resources of the processor, an intelligent selection of the frequency of
different parts of the chip can give significant advantages without increasing the
delay. This can be done easily in such systems as different parts can be controlled
independently. As reported in [IM02], significant energy gains can be achieved
in such systems, since the increased delay (due to the overhead of synchronizing
different clock domains for communication) is alleviated by the greater reduction
in terms of power.

In [SMB+02], the authors present an architecture in which multiple clock do-
mains are individuated by exploiting boundaries already well defined in terms
of queues or between units with relatively small inter-function communication.
In the proposed architecture, visible in Figure 2.2 four subdomains are individ-
uated: the first frequency domain (F1) comprises the instruction cache, branch
prediction, rename and dispatch; F2 and F3 domains separate execution units of
different types (integer and floating point respectively); F4 comprises the load and
store unit, L2 cache and L1 data cache. The memory is in a separate, external,
frequency domain, named F0.
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Figure 2.2: A multiple clock domain processor block diagram, drawn from
[SMB+02]

As stated by the authors, choosing queues as the inter-domain synchronization
points has the advantage of hiding the synchronization cost when the queue is
not saturated or empty. Without voltage or frequency scaling the synchronization
mechanism causes a performance degradation of less than 4% in average, and an
increase of 1.5% in energy usage, using a baseline configuration with all domains
running at the same frequency. However, by selecting a voltage scaling causing a
5% degradation in terms of performance in all domains but F1, the authors show
that it is possible to achieve a 27% gain in terms of energy, while EDP improves
of 20% with respect to baseline.

In [SAD+02], the authors propose an adaptive, on-line algorithm namedAttack-
Decay for the aforementioned architecture, achieving significant improvements
from the point of view of energy and EDP. The algorithm uses informations about
the queue utilization factor to scale frequency aggressively in a domain (attack
phase) or to diminish it slowly (decay phase), in case no significant change in the
utilization factor has been detected. The reported energy per instruction saving
is 19.0%, while EDP gains the 16.7% with respect to the baseline processor.

[Mar00] proposes a microarchitecture-driven dynamic voltage scaling mecha-
nism. The typical computation exposes different phases: computational intensive
parts are followed by stalls while data is awaited. The author proposes to use
different voltages for the different phases, detected directly at the hardware level.
Simulations show a potential energy saving of 20%.
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2.1.2 System level DVFS

System level DVFS starts from the consideration that idle time basically repre-
sents an energy waste: hence it should be eliminated as much as possible (from a
system perspective), in order to maximize the performance per Watt. DVFS can
be applied at system level provided that the operating system has some mech-
anisms to individuate idle time and to change the frequency accordingly. This
mechanism can be applied, depending on the hardware, by exploiting the operat-
ing system’s knowledge about the tasks currently executing: while the processor
cannot detect whether an instruction currently in execution belongs to a compute
intensive task and an application is not aware of the whole system utilization,
the operating system has a global view of how resources are used. Consider the
case in which a computation terminates before its scheduling quantum is elapsed:
in this case, during all the remaining time, the processor would consume static
power without elaborating, therefore wasting energy, even if in a small amount. If
the voltage and frequency can be scaled on the used processor, we could achieve
significant performance benefits by simply tuning (V, f) such that the compu-
tation spans over all the quantum and, overall, energy is saved. The approach,
historically proposed first in [WWDS96], starts from the consideration that in
case frequency scaling causes the computation to terminate within the quantum,
no performance penalties are paid and energy is reduced. In the paper, they anal-
ysed several trace data taken from a number of workstations running on Unix.
Three scheduling algorithms are proposed:

• OPT starts by elaborating the entire trace of the UNIX scheduler, stretch-
ing the computations one by one until all idle times were filled. This algo-
rithm requires perfect future knowledge about the behaviour of the com-
putation; also, while energy is saved, the completion times are stretched
arbitrarily, without any consideration for the effective needs of the user.

• FUTURE needs only a small window into the future to predict the idle
time, and optimizes energy consumption only within the considered window.
The completion time of a computation is never stretched after the window:
the longer the window, the better the energy savings.

• PAST is a practical implementation of FUTURE, where a fixed window
into the past is analysed and, by assuming that the subsequent time period
of the same length will have a similar behaviour, changes the completion
time and (V, f) of the computation accordingly.

Using PAST on real environments, the authors show energy consumption
reduction in the order of 50% for conservative settings and 70% scaling voltage
aggressively. Approaches such as the one described before, however, fail to meet
the needs in terms of delay required by interactive workloads, as described in
[FRM01], where the authors deal with deadlines mainly due to users’ perception.
By understanding the interactions of the applications with the operating system
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kernel, it is possible to classify computations, hence assigning different priorities
depending on their class: as an example, user interactive tasks would be assigned
a deadline according to a normal user perception, choosing (V, f) accordingly.
The authors report energy savings up to 75% with respect to baseline execution
without their DVFS scheduler, not introducing perceivable delays for the user.

In [SKK11], a method for energy consumption reduction at the system level
exploiting memory access slack instead of system level slack is proposed. The
method is applied on high-end architecture, using Intel Core i7 and AMD Phe-
nom II processors in the testing phase. Spiliopoulos et al. exploit the non-
overlapping misses (last level cache misses) to individuate steady state intervals
(time portions during which the processor operates without having to wait for
data) and miss intervals. A governor is called periodically and uses the data
collected through performance counters to select the most appropriate (V, f) pair
for the next interval, according to different metrics. The decision is based on a
correlation between the ratio of executed and retired instructions against the dy-
namic power consumption detected. EDP can be reduced of 10% in CPU-bound
applications and up to 36% in memory-bound ones. One of the domain in which
DVFS is more used at system level is real-time systems: in this case, since a
deadline is already defined for each of the tasks, an appropriate operating fre-
quency can be selected by the scheduler, thanks to the a-priori knowledge of the
workload. In [YCK05], an energy-aware scheduler is proposed for real-time tasks
on multiprocessor architectures. All tasks are assumed to be ready to execute at
the beginning of the considered time frame; an appropriate assignment divides
the task in n (number of cores) subsets. The assignment is optimal when it con-
sumes the minimum energy between all tasks that are feasible (meaning that no
task misses its deadline). The authors show that the problem is NP-hard and
propose an approximated algorithm scheduling bigger (in terms of clock cycles)
tasks first. Their algorithm is able to schedule tasks achieving only a 36% degra-
dation over the optimal scheduling. For more information about real-time DVFS
scheduling algorithms, we defer the interested reader to [SR12], where fourteen
different RT-DVFS algorithms are compared from the performance and energetic
viewpoints.

In cloud computing infrastructures, consuming cities-worth power, often jobs
are scheduled using Virtual Machines (VM). A Virtual Machine is an abstraction
of a computing system, which is able to interpret or execute a certain language
using constructs offered by a different language. It allows to decouple from the
hardware; such mechanisms are often used in cloud computing where the job can
be scheduled on different machines, as they provide a desired view of the machine
to the user. For this reason, approaches aiming at scheduling virtual machines are
proposed in [VLWYH09]. For every scheduling loop in the cluster, the physical
processing units are at first set at the lowest available (V, f). VMs are sorted by
the requested operating frequency, so that those with higher operating frequency
can be scheduled first to processing units operating at a matching or higher fre-
quency with respect to the requested one. In case there’s no compute node able to
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satisfy the VM requirement, one is elected and its frequency raised. The authors
observe that this mechanism operates with the minimal power consumption at
each scheduling loop, hence energy is minimized.

2.1.3 Program level DVFS

Memory and CPU are different subsystems, operating in different clock domains.
When a computation is dominated by memory accesses (i.e. the processor often
stalls while waiting for data), the processing unit can be slowed down without
affecting performances.

In [CSP05], the authors propose an intra-process technique, exploiting mem-
ory access operations to understand whether the computation is memory bound,
hence slowing down the processor. Authors separate instruction latencies in two
categories: on-chip and off-chip. The completion time is divided depending on
which of the instruction causes it (assuming no out of ordering is available) in two
components: Ton−chip and Toff−chip. While the first component is affected by CPU
frequency scaling, the latter remains unchanged. Whenever Toff−chip � Ton−chip,
the frequency can be scaled down without affecting the performances significantly.
The decision is performed at runtime, since estimating the effective contributions
to time of the two classes of instruction is quite complicated. The authors pro-
pose an estimation of the optimal frequency to be used in a time slot by using a
regression model based on the number of executed instructions and the number of
memory accesses. The parameters of the models are updated dynamically during
the execution of the process. The achieved gain in terms of energy is 70% for
memory-bound operations (with a degradation in terms of time of the 12%) and
of 15 − 60% for CPU bound computations, degrading less than 20% completion
time.

Kimura [KSH+06] presents a mechanism for energy saving in load unbalanced
computations, represented as direct acyclic graphs. Their approach, operating
at run-time, visits the graph and selects for each of the node in the concurrent
activity graph an appropriate voltage and frequency. A parallel program encoun-
ters slack time when there’s a synchronization between task. In case one of the
task must wait for another, the shorter one’s frequency can be modified so that
no overhead is perceived from the outside, while power is saved. Suppose a cer-
tain task t1 needs to synchronize with task t2, and that the time for executing
the former is greater than the latter’s one (T1 > T2). The total slack time is
Tslack = T1 − T2. While t1 is on a critical path, t2 is not, hence its frequency can
be diminished without impairing performances. Specifically, the execution unit
responsible for carrying on t2 can be scaled down to a frequency f2 such that
f2 ≥ fmax × T2

T2+Tslack
. The combination with lowest voltage and frequency such

that the above inequality holds is the one bearing the maximum advantages from
an energetic standpoint. The slack time is calculated continuously on different
nodes of the graph. When a different gear is selected, the graph is updated, un-
til no changes are performed. The authors show that this method can diminish
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energy consumption of 16.8% in master-worker computations and up of 25% in
tree-based parallel programs.

A method fully exploiting the slack time due to memory access is presented
in [KBSSK13]. In the approach proposed by the authors, the program is written
so that the access phase and the computation phase are completely decoupled,
allowing to select for each one an appropriate (V, f) pair.

The program is expressed as a series of asynchronous tasks (a C/C++ func-
tion), each one divided in two fine grain phases: the former is the access one,
in which data is manually prefetched from the memory to the L1 cache, while
the latter performs the computation on the available data. In this way, most of
the cache misses will be transformed into cache hits in the execute phase, hence
reducing the slack time in the latter. The authors show that by tuning f at its
minimum in the access phase and at its maximum on the execute one, they are
able to decrease EDP by 25− 30%, without impairing performances.

2.2 Optimizing energy consumption in heteroge-
neous architectures

While GPUs have some energetic advantages over CPUs, as shown in [HXF09],
where the EDP of computations is compared with CPU executions, scheduling
compute-intensive tasks only to GPUs will not necessarily be the most convenient
approach to minimize energy.

While in homogeneous systems the optimal energy consumption can be achieved
by equally distributing workload between the processing units [Li08], in CPU-
GPU architecture finding the optimal energy consumption requires establishing
an amount of data to be processed by each set of device and a parallelism degree.

In [WR10], a power efficient work-distribution algorithm taking into consid-
eration all possible running levels (i.e. parallelism degree, frequency) of CPUs
and GPUs available in the system is proposed. The algorithm decides the grain
and schedules the computation to the different devices according to profiling in-
formations on the computations. The energy is minimized as long as a deadline
is not trespassed in terms of time.

An approach for holistic energy management of CPU-GPU computations is
presented in [MLC+12] by the name of GreenGPU. Depending on the workload
characteristics, the workload is divided between CPU and GPU in a first phase,
so that the unbalance in terms of time between the two is minimal. Once this
first split has been performed, the frequency of the GPU memory and cores
are dynamically throttled depending on their utilization, as it is done with the
frequency and voltage of the CPU. The authors claim to be able to save 20% on
average.
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2.3 Energy consumption models
Normally, to schedule a computation and to analyse its behaviour in terms of
time and energy, we need some way to understand its energy consumption. To
do so, several models have been developed to estimate power consumption. Here
we provide a quick primer on some notable ones.

A first approach based on the access rate of different components is proposed
in [IM03]. The authors propose an approach in which performance counters are
sampled in order to estimate the power of a computation in CPU architectures.

In [CY12], the problem of how to schedule efficiently computations on hetero-
geneous, multi-core architectures is targeted. The authors propose an energetic
model, in which through regression over four random benchmarks the energetic
footprint of a computation is calculated using as parameters fifteen different hard-
ware performance counters. The proposed model is in the form

Energy =β0 + β1 × Cycles+ β2 ×RetiredInstructions+
β3 × L1DCacheAccess+ β4 × L2CacheAccess

and the parameters are achieved by using ordinary least squares. The authors
show how the model is reliable in two different CPU architectures, achieving
an average error below 3%. The authors propose a static analysis and use the
developed model to schedule optimally a computation depending on the required
energy.

In [HK10], an integrated power and performance model for GPU architectures
is proposed. The authors address the problem by modelling the GPU power con-
sumption with a low-level model, in which the dynamic power is divided between
the memory and the streaming multiprocessor contribution. The two terms are
then calculated using the access rate to different units within the architecture and
for a certain computation. The achieved error in estimating the power is 9.18%
on average.

An energy model based on micro-benchmarking is proposed in [PLS10]. Through
careful monitoring of studied applications, the authors calculate the energy foot-
print of different computations and different types of memory accesses. The
evaluation is then performed using graphical applications, showing an average
error around 11% on average.



Chapter 3

Methodology

The aim of this chapter is to briefly present the motivation and the problem that
we wish to solve. An informal setting will be provided for stating the need for a
model capable of predicting energy consumption of structured, parallel compu-
tations on heterogeneous system, before explaining why an accurate, high level
model is needed to provide automatic means to optimize for energy consump-
tions. In the final part of this chapter, we present the iterative process followed
to develop the models used in this work.

3.1 Problem
An approach to minimize energy consumption is to use an appropriate behavioural
skeleton. From the knowledge of the computation structure, and of performance
and energy models, an autonomic manager can be used to minimize a given energy
metric, hence optimizing behind the curtains the overall cost of the computation.
This allows the programmer (following the usual approach of structured parallel
programming) to write efficient code performance-wise while minimizing energy
consumption. Without such a structure, writing code that is energy efficient,
performant and capable of running on heterogeneous architectures would require:

• careful code optimization, exploiting the machines’ ISA at their best;

• definition of a concurrent activity graph, where activities (previously care-
fully monitored by the developer) are split into different devices depending
on execution time and power consumption;

• testing of the overall defined parallel application;

• verifying the energy consumption of the computation.

This activity should be executed in a loop, as it can be seen in Figure 3.1, until
a satisfying result is observed in the verification phase. This loop can be very
costly, and it could be difficult to assess the energetic performance of the proposed
solution without a baseline model.

42
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Figure 3.1: Manual process for energy optimization of a parallel application.

Even neglecting the cost of performing such a procedure, without a precise
idea of the "ideal" behaviour of the computation, the programmer would have
no precise idea of the "goodness" of the achieved result. Using this kind of
static optimization it would be impossible to respond to degradations caused
by exogenous causes. Consider the case of a multiprogrammed machine, with a
GPU and some NUMA nodes. If an external process starts its execution while the
computation is performed (for example occupying the same NUMA node of the
executed computation) this could lead to an increase in completion time and to
additional energy expenditure, while other resources (GPU, other NUMA nodes)
are left idle, wasting energy dissipating leakage currents. The computation will
experience a degradation in terms of performance, while more energy than needed
will be dissipated both by the monitored application and by others racing with
it for resources. An autonomic manager could be able to recognize the situation
in which using a resource is more costly in terms of energy and time and perform
changes in the concurrent activity graph so that the computations’ and overall
system’s consumption is minimized.

An autonomic manager operates in terms of a loop, the well known MAPE
loop. This loop requires to insert probes in order to monitor the computation.
Then the behaviour is analysed in terms of a cost model before a suitable plan is
devised and executed.

Several low level models exist for predicting the energetic behaviour of com-
putations. However, to the best of our knowledge there are no high-level models
able to predict how a computation implemented in terms of a well-known parallel
programming pattern will behave on a heterogeneous system.

The aims of this work are:

• to develop and validate a methodology that can be used to predict power
(and consequently, energy) in structured parallel programming, heteroge-
neous environments;

• to show how, with such methodology, accurate enough models can be de-
veloped;
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Figure 3.2: Depiction of the procedure followed to develop the energy models
used in this work.

• to present some models for well-known parallelism exploitation patterns,
and show how they can be used to minimize energy consumption in hetero-
geneous systems.

In the following we will present the methodology used to develop the models
presented, respectively, in Chapter 4 and 5. From an high-level perspective, the
iterative process followed can be summarized with the block-diagrams of Figure
3.2. In the rest of this chapter, we will explain in detail the single steps.
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3.2 Model development

3.2.1 Preliminary observations

Before starting studying the model, the behaviour of the system as a whole should
be observed. This preliminary step is useful in order to understand whether there
are patterns that can be exploited to develop a model capable of predicting the
energy requests of a computation.

In this phase, the domain of interest should be reduced to a restricted part,
so that stronger assumptions can be done. We present here the main ones made
for developing our model: we will justify their validity later in Chapters 4 and 5,
where the energetic models for CPU and GPU computations will be presented.

The first assumption is about the repeatability of the behaviour. We can state
the assumption as follows:

The instantaneous power required during the execution of a certain computa-
tion C, with the same used resources and the same parameters, does not depend,
from a probabilistic point of view, from its starting time.

We also assume that computations implemented using the same parallel pat-
tern would exhibit similar curves from an energetic point of view, as they do with
time. We can state it as follows:

Given a parallel exploitation pattern, different computations implemented with
the pattern exhibit similar behaviours in terms of average power requirements
when the amount and type of resources assigned for the calculation change.

This assumption can be verified experimentally.
The last observation needed to develop our model was about the meaningful-

ness of an average case analysis. In fact, while average could fail to capture the
essence of the system, we show that with the tools we used and for the archi-
tecture analysed, the error introduced by average case studying is negligible for
large enough computations.

This can be proved as for our domain of interest (map computations), usually
the instantaneous power is constant at steady state, while transient states is
constant and gets amortized for large enough computations.

3.2.2 Component separation

Starting from the knowledge of the system on which we are operating, the com-
ponents that are part of it - and that supposedly contribute to the energy cost of
the computation - should be individuated. This phase determines the abstraction
level of the model. For example, in the specific case of an heterogeneous system,
we could decide to consider the different devices as a whole as the single compo-
nents to be analysed (high level). In the opposite approach, we could decide to
divide the system in terms of the single units composing it. A lower abstraction
level could bear to more precise results. However, the problem could become too
complex to be solved, or, worst, could be difficult to use as too many parameters
have to be taken into consideration when predicting.
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Before individuating the components of interest, we should also consider the
precision of the measurement infrastructure. As an example, an instruction-based
analysis would be quite complicated using EML, given the operating sampling
frequency: while an average case study could be performed, it would necessarily
be affected by initialization costs and would require a complex setup. Even with
more elevated sampling frequency, the impact of measurements should be taken
into account: for microscopic variations, the impact of inserting probes might be
too high to achieve meaningful results.

In case the decomposition is unsatisfying (depending on the outcome of the
subsequent steps), a different one should be individuated.

In this work, we decided a decomposition based on the parallelism degree and
the features of the analysed workload; this means that the model is expressed in
terms of number of cores exploited (for the CPU part) and in number of blocks
and warps per block for the GPU part, plus a computation-dependent rescaling.

3.2.3 Experiment design and analysis

In our case, data cannot be merely observed: we don’t have a previously existing
set of energy measurements for the target system, designed with a certain parallel
exploitation pattern. Hence we should carefully design appropriate experiments,
exercising all the individuated components in planned conditions. Variations
between outcomes should be analysed to understand whether different parameters
should be taken into consideration.

When monitoring an application, since a computing system is a complex en-
vironment, we are used to have variation in time (and also in energy) due to
interference of non-predictable phenomenons. For this reason, the measurement
must be robust and take into account possible variation in the environment from
which the data is gathered.

During this work, we developed several experiments, that can be categorized
summarily as follows:

• architecture level experiments, targeting the energetic cost of communica-
tion, leakage power or the cost of activating different resources;

• high-level experiments, targeting the difference in power caused by different
parallelism degrees on different computations.

After the measurement of the experiments, we perform a sub-step, in which
the outcome is analysed. Outcomes from different execution of the same experi-
ment with same parameters are aggregated, cleaned (e.g. invalid behaviours are
eliminated) and summarized so that they can be treated better.

3.2.4 Model individuation

Given the analysis of the impact of the components previously individuated on
the measured quantity, in this phase we seek to find a "law" able to predict the
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behaviour of a system on the basis of the said parameters. We want this model to
be an analytical one, so that changes in the system behaviour can be represented
in a closed form. The usefulness of a model lies in the following three points:

• achieving a simple description/explanation of the data analysed, under-
standing the impact of each parameter on the measurements;

• given a functional relationship between a set of parameters and the measure
of interest, we can infer the energy consumption for parameters’ values that
were not studied directly;

• the behaviour of the measured quantity can be predicted.

The way to identify such models changes; we can proceed either by regression
or interpolation.

Interpolation

Interpolation [BM11] targets the problem of approximating an unknown func-
tion f(x) starting from the knowledge of the value assumed by such function
in a discrete set of n samples x1, x2, . . . , xn. We seek to find a function g(x)
such that g(xi) = f(xi), i = 1, 2, . . . , n. Interpolation is particularly useful to
understand which polynomial function approximates better the behaviour of the
studied function and in order to understand the behaviour of f outside of the
observed interval. From the definition of g(x), we understand immediately that
it could be that the function is overfitting the data we seek to model, hence
providing a less trustworthy model than the one achievable through regression.

Regression

With this kind of analysis we seek to find a mathematical description of a process
in terms of a set of associated variables. We want to achieve a mathematical
description of an observed phenomena between a response variable y and a set of
p explanatory variables x1, x2, . . . , xp. For this reason, the phenomena is observed
under a set of n p-dimensional vectors of parameters, achieving a set of points yi
(i.e. values that we observe and want to explain) [AL06]. Through this process,
we model every yi as β0 + β1x1 + β2x2 + . . . βpxp+ εi = ŷi+ εi, where ε represents
the difference between the predicted value (ŷi) and the measured one yi.

A regression model is linear when the derivative of y with respect to the βi
parameters do not depend on βi; for example, a model in the form y = β1

√
x+β0

will be considered linear. There exists different procedures to individuate the set
of parameters {βi} from the given data. We used ordinary least squares (OLS)
which returns a set of parameters {βi} such that [BM11]:

min
{βi}

√∑
i

ε2i
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A more complex type of regression is the polynomial regression [Wik15]. It is a
form of linear regression in which the relationship between the response variable
and at least one explanatory variable is expressed in terms of a n-th degree
polynomial function. It can be used to fit a non-linear relationship between the
value of the explanatory variable. Since the regression parameters only intervene
linearly in the function, it is still a linear regression.

The assumptions required to perform linear regressions are the following:

• errors for different cases are assumed to be independent;

• the random component ε is a random variable, with zero mean and variance
σ2; it is normally distributed.

In this work, we used mainly simple linear regression modelling techniques in
order to explain the energetic behaviour of computations.

3.2.5 Verification

The model is compared with actual data, hence analysing its effectiveness when
tested in a real environment. In this phase the error between the model and the
measurements (the aforementioned εi) should be analysed, possibly searching for
common patterns indicating missing parameters. Notice that, since our model
takes the computation as a parameter, we need to verify the behaviour for:

• the average case of a single computation, pre-determined;

• a single execution of a computation;

• a different computation.

Statistical tests, such as R2, the coefficient of determination, should be cal-
culated to understand the fitness of the data. Let ŷi be the i-th element in the
estimation vector; if y = 1

n

∑
i ŷi, corresponding to the average of the samples

{yi} for OLS, we will have:

R2 =

∑
i(ŷi − y)2∑
i(yi − y)2

= 1−
∑

i(yi − y)2∑
i(yi − ŷi)2

= 1− SSres
SStot

∈ [0, 1]

Where SSres is the residual sum of squares, that is the sum of the squares
of the difference between the sample value and the predicted value and SStot is
the total sum of squares, the sum of the squares of the difference of the sampled
value from the sampled average.

The closer R2 is to one, the better the function approximates the given data.
In case the error is too high, or the found model does not fit the data, either

the parameters used to characterize the system or the regression function should
be changed.
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As an example, by trying to separate only dynamic power from the static
one, the model would not be complex enough to explain the behaviour of any
computation; as such, a more detailed decomposition of the system should be
selected to try to find a more accurate model. Another error could be trying to
apply the same parameters to any computation, with different amount of memory
requests and different instructions, and hence energy cost.



Chapter 4

Energy model for map
computations on GPU

In this Chapter we apply the previously explained methodology to provide a
model and an heuristic for energy consumption prediction in GPU architectures.
We start in the first Section by carefully studying different components’ footprint
from the energetic standpoint. We than move to individuate the components for
our high-level model and to explain the experiments designed to exercise them.
In Section 4.4, we used regression to understand the nature of the impact of the
explanatory variables, as well as to effectively estimate the power consumption.
We used these insights to develop an heuristic based on a metric computation.
We finally move to validate the process as well as the model and the heuristic by
showing the accuracy of the predictors with different computations.

4.1 Preliminary observations
Behind the development of every model there are some assumptions about the
measure that we want to predict. In this subsection we will explain the assump-
tions made when developing the model for GPU computations. The analysis has
been carried on mainly in terms of power: this is because robust and accurate
time models already exist for parallel patterns; also, studying the power gave us
the possibility to analyse more stable behaviours. We used two different NVIDIA
Kepler boards. The first one is a K20C board, with 13 streaming multi-processors,
with 192 CUDA cores each. The other one is a K40M board, with 15 streaming
multi-processors and the same number of CUDA cores as the previous one. Both
devices are equipped with two DMA copy engines, supporting concurrent data
movements and execution. In both cases, the version of CUDA runtime used is
7.0. Let us start by the first observation that we made in Chapter 3.

Observation 1 The instantaneous power required during the execution of a cer-
tain computation C, with the same used resources and the same parameters, does
not depend, from a probabilistic point of view, from its starting time.

50



CHAPTER 4. GPU ENERGY MODEL 51

Observation 1 can be verified very easily in case the machine is load-free,
with the exception of the executed computation. We can see that, for a given
architecture, the behaviour almost totally overlaps between different executions,
started in different moments. For GPU architectures, we show in Figures 4.1, 4.2
the behaviour of the computation as of Listing 4.1, performed on two different
boards, a K20c and a K40m, both by NVIDIA. The x-axis reports the time, as
t − tstart, while in the y-axis we show the instantaneous power as detected by
EML.

1 template <typename T, unsigned int REPETITIONS >
2 __global__ void kernel(T* in_a , T* in_b , T* out_c , size_t size) {
3 unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x;
4 while(tid < size) {
5 out_c[tid] = 0;
6 for(int i = 0; i < REPETITIONS; i++) {
7 out_c[tid] += (in_a[tid] + in_b[tid]*i);
8 }
9 tid += blockDim.x * gridDim.x;

10 }
11 }

Listing 4.1: A simple CUDA C kernel; tid represents the thread identifier and is
used to decide which values of the output vectors should be calculated by every
thread.
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Figure 4.1: Detected power along the timeline of ten different executions of a
map computation, Nvidia K20

The behaviour almost completely overlaps in both cases, and exhibits a very
regular curve. This is because no other processes were running on the GPU while
the computation was in execution. Notice that the high stability can be explained
with the fact that several instructions are executed in the (wide) time between
samples, 0.016s. The power sampled in steady state varies at most of ±0, 1W for
the K40m board, hence having a negligible impact.
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Figure 4.2: Detected power along the timeline of ten different executions of a
map computation, Nvidia K40

The condition holds also in case of more irregular computations and for dif-
ferent levels of parallelism, as we show - respectively - in Figures 4.3 and 4.4.
The first is the instantaneous power for a combination of two functions: in the
former we compute a vector addition ci = ai + bi, while in the latter we apply
to vector c several trigonometric functions. The computation is executed on a
single warp and on a single GPU. The second plot shows the kernel of Listing
4.1 in execution with 32 warps and 13 streaming multiprocessors. In the parallel
case, we can notice a slightly higher difference between the instantaneous power
of different computations.
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Figure 4.3: Instantaneous power of an irregular computation, executed on a
Nvidia K40m board using 32 threads on a single streaming multiprocessor. Ten
executions, launched at 100 seconds of distance are shown.
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Figure 4.4: Instantaneous power of a regular computation executed over 32 warps
for each of the 13 streaming multiprocessors available.

For the parallel case, the steady state power has the distribution visible in
Figure 4.5. The histogram has on the x-axis the instantaneous power sampled at
steady state on ten different computations (with more than 2100 samples), from
the minimum detected value to the maximum one. Values are aggregated in 12
buckets of the same size. The plot shows the probability that a steady state power
lies in a certain bucket. The detected average is 144.668W , while the standard
deviation is 0.59. We can see that the 96% of the values lie within 1W from the
average.
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Figure 4.5: Distribution of steady state power for the computation of Listing 4.1
executed on 32 warps and 13 streaming multiprocessors.

For more realistic computation, as matrix addition, we can see that this con-
dition holds from Figures 4.6 and 4.7, where in the first case the version executing
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with only one warp on a block is visible, while in the latter we see an execution
spawned on 32 warps over each of 13 streaming multiprocessors.

Figure 4.6: Instantaneous power of 10 different executions of a Matrix Addition
(10240 × 10240) performed as a map computation on a single warp on a Nvidia
K40m board
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Figure 4.7: Instantaneous power of 10 different executions of a Matrix Addi-
tion (5120 × 5120) performed as a map computation on 32 warps for each of 13
allocated SM

The same holds for the case of matrix multiplication, visible in Figures 4.8 and
4.9 respectively, using the same resources of the matrix addition case previously
explained. We see that for real computations the instantaneous power oscillates
more, but has overall the same behaviour. In both cases, we observe the existence
of an initialization phase, in which power requirement grows as resources are
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recruited and execution launched on them. Another - rather obvious - observation
is that the power grows by increasing the parallelism degree.

Finally, a consideration on the two transient states that are visible in the plot.
The first one visible in the beginning, can be explained with the initializations
of the used resources. In all tested computations it does not exceed 0.2s: for
computations large enough it has a negligible cost.

The other transient state is observable in 4.9. It can be caused by the progres-
sive deactivation of resources: it can be seen in Figures 4.9 and 4.4. We observe
how the duration of this phase depends on the grain of the work assigned to each
of the parallel execution units: the coarser the grain, the more noticeable the un-
balance. As a matter of fact, when we operate with fine-grained parallelism (see
Figure 4.7), the deactivation cost is not observed as all resources are deactivated
almost simultaneously.
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Figure 4.8: Instantaneous power of 10 different executions of a Matrix Multiplica-
tion (1024×1024) performed as a map computation on a single warp on a Nvidia
K40m board
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Observation 2 Given a parallel exploitation pattern, different computations im-
plemented with the pattern exhibit similar behaviours in terms of average power
requirements when the amount and type of resources assigned for the calculation
change.

To show how Observation 2 holds, let us start by considering the analysis,
at the average case, of different map computation as computed on the GPU. We
have different kinds of resources, namely blocks and warps, that can be allocated
to the computation. We will consider them as a linear string of processing units.

Consider the curves depicted in Figure 4.10, representing the average power
(in time) achieved using two blocks and a different amount of warps to perform
different map computations.
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Figure 4.10: Consumed power with different map computations on 2 streaming
multiprocessors, varying the number of warps.

It is possible to see that the behaviour is quite similar between the three
considered computations. The same holds for different number of blocks: in
Figures 4.11 and 4.12 we show the average required power for the same three
computations considered before, varying the number of warps in each of the 4
and 8 blocks respectively.
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Figure 4.11: Consumed power with different map computations on 4 blocks,
varying the number of warps.
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Figure 4.12: Consumed power with different map computations on 8 blocks,
varying the number of warps.

The more irregular behaviour of the matrix multiplication computation is
easily explained by the fixed partitioning, done in terms of rows.

Notice that the curve is always similar and always exhibits a sub-linear be-
haviour. Since the maximum number of CUDA cores available for a block will be
no more than 192 on the analysed architecture, introducing more than 6 warps,
while reducing completion time, will not cause a proportional increase in power
consumption: from this point on, less resources are activated by increasing the
parallelism degree. Hence, also in case of computations exhibiting a perfect scal-
ability, we would expect power to follow a sub-linear growth.

For what regards the relationship between the different computations, we see
that the required power for vector addition is (almost) always higher than in
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the other two considered computations. Also, the power requirements of matrix
multiplication are always smaller with respect to the other two. This can be due
to different ratio of memory operations against calculation operations, causing
different requirements in power consumption.
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Figure 4.13: scalab8(w) against average consumed power for map computations.

To confirm the latest observation, we show how this behaviour is not related
to the computation’s scalability. In Figure 4.13 we show the average power for
executing the computation with w warps on the y axis, while on the x axis we
have scalabb(w) = TGPU (b,1)

TGPU (b,w)
, defined as the ratio between the execution time

using b blocks with 1 warp each and the execution time using the same number
of blocks with w warps each.

Finally, to validate further this observation, we wish to show how the same
profile in term of power holds also for the steady state instantaneous power and
on a different GPU board with respect to the one used to calculate the figures of
the above plots. We show it for a single computation, spawned on two blocks: in
Figure 4.16 we can see the instantaneous power in a portion of the steady state, as
detected during the execution of a vector addition procedure on a different number
of warps; a smaller number of warps obviously requires less power. However, the
growth in power given by the activation of an additional warp decreases when
the number of already activated warp increases. The sub-linear behaviour is
confirmed also by Figure 4.15. In this last Figure, we depict the average (in
time) of the power required to compute a vector addition using one block and
different number of warps, against the instantaneous power as detected in the
same time instant at steady state, in different executions of the same computation
launched with a different number of warps. In Figure 4.15 it is also possible to
observe that the average power and the steady state power approximately follow
the same function. As said before, if the computation lasts long enough the
transient state(s) get amortized.
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Figure 4.14: Distribution of total power for the computation of Listing 4.1 exe-
cuted on 32 warps and 13 streaming multiprocessors.

Consider again Figure 4.5 in comparison with Figure 4.14, where we show in-
stead the empirical distribution for the whole computation. The average becomes
142.29W with a standard deviation of 11.49. By considering a computation that
lasts 4 times more, we achieve an average power of 143.93W , way closer to the
steady state average. This is because of the impact of the transient phases: while
considering it will allow to have a more accurate information about energy con-
sumption, changing the size of the data processed this information would become
less and less reliable. Considering only the average in the instantaneous phase
provides estimations that are independent of the data (and will hold for bigger
computations), but the energy consumption will be overestimated.
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Figure 4.16: Instantaneous power requirements (at steady state) for a (huge)
vector addition map, performed with different number of warps on a single block
on a NvidiaK40m architecture.

If the map function is a sequential composition of functions with widely dif-
ferent instructions and hence energetic behaviour (as of the one depicted in 4.3),
the average power will not converge for longer computations to the steady state
one, making its study more complex.

As a final consideration, we consider the case of the reduce parallel pattern.
Reduce is a well known second order function, taking in input an associative
operator ⊗ and a collection A of size N . It calculates ⊗ over all the elements,
until a single result is collected. Hence:

reduce(A,⊗) = A[0]⊗ A[1]⊗ · · · ⊗ A[N ]

Usually this operation is performed in parallel using a tree structure: the collec-
tion is, at first, split between n workers in equal parts. The operator is applied
sequentially to each one of the elements, and the final result is calculated in log2(n)
steps by collection of the temporary values elaborated by each of the units. In
each of the step the number of processing units effectively used is halved, until the
root of such tree returns the result, eventually broadcasting it to all the workers
interested in it.

Consider the computation implemented in Listing 4.2. In this case the reduce
step is implemented in term of warps: at step i of the tree descend, every thread
j × 32 + x belonging to warpj applies the operator over its partial sum and the
one by thread (j + i)× 32 + x.
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1 template <typename T>
2 __global__ void reduce_sum(T* input , size_t size , T* out) {
3 unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x;
4 __shared__ T partialsum[maxWarps ][ warpSize ]; T tmp = 0;
5 while (tid < size) {
6 tmp += input[tid]
7 tid += blockDim.x * gridDim.x;
8 }
9 partialsum[threadIdx.x/warpSize ][ threadIdx.x%warpSize] = tmp;

10 __syncthreads ();
11 int i = (blockDim.x/warpSize)/2; // number of warp / 2
12 /** Reduce between warps: thread x%32 in warp z takes the value

of thread x%32 in warp z + i */
13 while (i != 0) {
14 if (threadIdx.x/32 < i) {
15 partialsum[threadIdx.x/warpSize ][ threadIdx.x%warpSize] =

partialsum[threadIdx.x/warpSize ][ threadIdx.x%warpSize] +
partialsum[threadIdx.x/warpSize +i][ threadIdx.x%

warpSize ];
16 }
17 __syncthreads ();
18 i/=2;
19 }
20 /** In this last step , a single warp exists. We reduce all

partial sums within it. No synchronization is needed. */
21 i=warpSize /2;
22 while(i != 0 && threadIdx.x/warpSize == 0) {
23 if(threadIdx.x%warpSize < i)
24 partialsum[threadIdx.x/warpSize ][ threadIdx.x%warpSize] +=

partialsum[threadIdx.x/warpSize ][ threadIdx.x%warpSize +
i];

25 i/=2;
26 } if(threadIdx.x == 0) atomicAdd(out , partialsum [0][0]);
27 }

Listing 4.2: reduce(+, input) implemented on the GPU. It is logarithmic in the
number of warps used within each block.

In Figure 4.17, we can see that the first step, in which the operator is applied
to all of the data assigned to the thread, is the most costly, making the cost of
computing the rest of the tree unobservable.
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Figure 4.17: Instantaneous power of a reduce computation with operator +,
executed using 32 warps and 1 block, performed on a Nvidia K40m board.

In this case, the overall power behaviour of the reduce computation will be
totally similar to the case of the map, as shown by the red curve in Figure
4.18. However, in case a more costly operator ⊗ is given to the reduce, the
instantaneous power exhibits the logarithmic steps, as depicted in 4.19 and the
behaviour at the average case changes accordingly: using the green curve in
Figure 4.18 we show the average power in time for performing a costly reduce
computation varying the number of warps.
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The curves are quite different, meaning that in this case a more complex
characterization (taking into account the weight of the used operator) should be
performed.
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Figure 4.19: Reduce performed with 32 warps on a single block with a more
costly (in terms of time) operator ⊗. We can see that the number of steps are
log2(32) + 1 = 6.

In this case the average in time will not converge to the steady state instan-
taneous power, hence making the study of such parallel pattern more complex.
However, we advocate that, by knowing the behaviour of the overall computation,
an approach similar to the one followed in this work could be applied to other
parallel patterns.

Summary

In conclusion, we have seen that the same computation with the same parallelism
degree has the same power at steady state, independently of the time in which it
is executed and of the size of the problem. This allows to neglect the amount of
data fetched to the device for the computation and consider only the computation
for the sake of estimating steady state power. We have also seen that compu-
tations implemented according to similar parallel exploitation patterns behave
similarly in terms of power as well as they do in terms of time, hence validating
a study based on structured parallel programming with the aim of saving energy
in heterogeneous architectures. Finally, we have seen that the average case study
for map computation is a valid approach, as the average power converges to the
steady state one.
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4.2 Component Separation
As previously stated in Chapter 3, the proposed model is based on the parallelism
degree and on some informations about the workload. In the following, we will
give a justification for this choice.

GPUs are organized in two levels. The first level is the number of streaming
multiprocessors ; the real execution is carried on by threads, scheduled on CUDA
cores. A streaming multiprocessor might execute more than one block. However,
a block is always resident in a unique SM. Since threads are hardware managed
and have negligible switching cost, the huge latency of the CUDA cores long
pipeline is usually amortized by operating on more threads than available CUDA
cores on a streaming multiprocessor. Threads are always scheduled, on the stud-
ied architectures, in batches of 32 (called warps), with consecutive identifiers.

For this reason, we have a sort of "two-level" parallelism degrees: we can
establish a parallelism degree and decide where execution units should be used.
CUDA allows to address this two level organization by defining programs in
terms of threads and blocks. Hence it is natural to define a model that exploits
this low-level knowledge given to the programmer in order to study the energy
consumption of the system. Hence we seek to estimate power consumption in
terms of blocks and warps scheduled in each block.

4.2.1 Warps

We show in Figure 4.20 that the impact in terms of power consumption of
scheduling threads rather than warps is negligible. In the Figure 4.20 it is
possible to see the instantaneous power consumption for the computation as of
Listing 4.1. Different data lines correspond, respectively, to executions with 8, 16
and 32 threads, over the same amount of data.
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The area below each of the lines represents the consumed energy: we show in
Table 4.1, the behaviour in terms of energy, time and average power for the above
configurations. We can see from the data that operating in terms of single threads
rather than in terms of warps does not affect significantly power consumption,
while a considerable amount of energy is wasted.

Threads Energy(J) Time (s) Avg. Power(W)
1 6631.48 98.49 67.33
8 833.92 12.31 67.75
16 418.51 6.17 67.83
32 211.69 3.12 67.85

Table 4.1: Energy, Time and Power for using different amounts of threads within
a warp

We can appreciate better the small difference in power caused by the acti-
vation of threads within a warp if we compare it with the difference caused by
activation of different warps. In Figure 4.21 we show the instantaneous power
for the computation of Listing 4.3, starting with 2, 4, 6 and 8 warps within the
same block. The kernel is designed to cause a progressive deactivation of the
warps. We can see a number of steps, corresponding to the moments in which
warps get deactivated. We can also observe (starting from the bottom) how the
same amount of warps causes the computation to require approximately the same
instantaneous power.

1 template <typename T, unsigned int r>
2 __global__ void kernel(T *in_a ,T *in_b , T *out_c , size_t size) {
3 unsigned long tid = threadIdx.x + blockIdx.x * blockDim.x;
4 unsigned int warpId = tid/warpSize;
5 while(tid < size) {
6 out_c[tid] = 0;
7 for(int i = 0; i < (1+ warpId)*r; i++) {
8 out_c[tid] += (in_a[tid] + in_b[tid]*i);
9 }

10 tid += blockDim.x * gridDim.x;
11 }
12 }

Listing 4.3: Computation causing progressive warp deactivation.
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We can compare Figure 4.21 with Figure 4.22, where the 32 threads within
a warp are deactivated progressively using the same computation of Listing 4.3,
with a number of iterations proportional to the thread identifier. We can see that
there’s no noticeable difference in power.

For this reason we decided to use the number of warps as parameter rather
than the number of threads. Despite the fact that CUDA does not provide an
abstraction to program directly in terms of warps, their number can be easily
calculated as dthreads/warpSizee and given the small difference in power con-
sumption, the energy estimation will remain reliable.

We also wish to show that making this consideration in terms of scheduled
warps, rather than used CUDA cores makes sense. On the GPU used to gener-
ate Figure 4.21 every SM has only 192 CUDA Cores: this means that at most
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instructions belonging to 6 warps are served in a given clock cycle. However, we
see that the power changes also in case of the purple curve, where 8 warps are
activated.

We can see that this holds also for the maximum number of warps allowed as
of today by CUDA (32) within a single block, in Figure 4.23.
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Figure 4.23: Power profile for the deactivation of 32 warps

4.2.2 Blocks

While not properly computing nodes, streaming multiprocessors are equipped
with the part that manages the control flow of the computation and dedicated
memories. These parts, responsible of data movement and of instruction control,
according to [Kec11] pose about 20-40x energy overhead. This cost dwarves the
one of calculation, that for current CPUs is about 1.2nJ .

For this reason, we decided to consider the blocks as parameter of our model
for GPU architectures. In Figure 4.24, we see the instantaneous power for 8
warps, executing (red line) on a single SM or across 8 (1 warp per block, green
line). We see that using different blocks impacts both on power (that will be
higher) and on the completion time, that will be slightly smaller when using
more blocks.

CUDA does not guarantee that different blocks will be spanned over different
SMs: we are not able to know in advance (unless we schedule the maximum num-
ber of threads manageable by a single SM) where will a single block be executed.
However thE larger difference in power that we can observe in Figure 4.24, sug-
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Figure 4.24: Instantaneous power for warps (activated on different SMs) progres-
sively deactivated

gests that different SM are allocated to different blocks. While we are not able
to demonstrate exactly the way in which blocks are allocated, the huge differ-
ence in power between the green and red first steps (even though the operation
is the same and on the same amount of data) suggests that more resources are
allocated. Being the number of CUDA cores effectively used exactly the same,
the difference in power can be safely attributed to the usage of 7 more SMs.

4.2.3 Computation

However, knowing which processing units are used to carry on a computation is
not enough to predict their behaviour in terms of power. First of all, different
operations will require different amount of energy; as reported in [PLS10], differ-
ent operations will have widely different energetic requirements and latencies. In
Figure 4.25 we see the difference (both in terms of power and of completion time)
between different operations, operating on the same amount of data of the same
data type, carried on with the same amount of resources.
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Figure 4.25: Instantaneous power for 1 warp performing two different operations
on the same amount of data and exploiting the same data access pattern.

The green line (mul) represents the instantaneous power for executing List-
ing 4.3, while the red line shows the instantaneous power when we replace
in_b[tid]*i with in_b[tid]/(i+1) (div). We see that the latter operation
is less costly in terms of power consumption, hence variation in power require-
ments due to different operations should be taken into account when developing
the model. To understand better the nature of our model, we also show the case
in which more warps are used to perform the said computations in Figure 4.26.
We can see that not only the power is different at the beginning, but the difference
in power caused by warps deactivation is also different for the two computations,
indicating that the function performed has a multiplicative effect in terms of the
required power for a given parallelism degree.
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Figure 4.26: Instantaneous power for progressively deactivating warps (6 in the
beginning) performing different operations. Div line is time normalized (factor
of 0.5) to better show the difference in instantaneous power.
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4.3 Experiment design and analysis
We divide the experiments designed in this phase in two categories: architectural
experiments and high level experiments. As said before, in the first part we
target a specific part/usage scenario of the targeted system, in order to collect
meaningful information about energy consumption in these cases. We choose
architectural experiments to target core parts, like communication or leakage
power that are useful for better understanding high level behaviour. The second
case addresses the behaviour of the system as a whole, as it would be used in a
normal situation.

We perform the experiment design and analysis in a loop. The main aim of
the analysis, in this case, is to check whether the achieved results are reliable
and no "odd" behaviours were detected. After this first phase, we summarize
the data, by using the average between different experiment and their variance
to characterize the features of a specific analysed component.

4.3.1 Architectural experiments

Leakage Power estimation

The first experiment targets the leakage power. This is the amount of power
consumed by a device even though no operation is currently performed on it. In
order to perform this experiment, the analysed component should be completely
load free. With the used monitoring library, it is not possible to ensure this
condition: in fact, the library reads a specific register available on the GPU
with a specific sampling frequency; this will always cause an overhead in the
measurement. However, since it is not possible for us to exclude this component
from the behaviour of the system, we characterize leakage power as the consumed
power when no computation is going on and the monitor is active.

To detect the leakage power of a GPU device, a continuous sample on it is
executed using a thread spawned on the CPU. The thread performs continuous
samples of the device power consumption at fixed intervals. The process termi-
nates when the detected power converges. The CPU code for the experiment can
be seen in Listing 4.4.

1 do {
2 previousPower = power;
3 emlStart ();
4 sleep(sleep_seconds);
5 emlStop(data);
6 emlDataGetConsumed(data[0], &consumed);
7 emlDataGetElapsed(data[0], &time);
8 power = consumed / time;
9 } while (fabs(power - previousPower) > 0.001);

Listing 4.4: Leakage power monitor for GPU; code executed on the host part.
sleep_seconds is the duration of the sample
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The value required for convergence is equal to the maximum variation that
can be detected using the library, which has a precision of 10−3W . As it can be
seen in Figure 4.27, the detected power in the interval, while starting with a very
high value, converges rapidly to a common value, independent of the sampling
interval. We consider this value the static power consumed by the device.
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Figure 4.27: Power consumption detected at different iterations of Listing 4.4,
changing the interval length

Difference in resource activation

Through the kernel of Listing 4.3, we address the difference in power and time
caused by the activation of different resources. In this section we do not depict
the results, as they have been used and explained before in this Chapter when
the choice of the model parameters has been justified and in the preliminary
observations part.

"Empty" computation energy consumption

This kind of experiment is a sort of extension of the previous one. However, while
in the other we were targeting mainly the instantaneous power behaviour, through
this experiment we wish to have a depiction of the behaviour at the average
case. To do so, we defined two different computation, that will be later used as
baseline for the model. The aim of this experiment is finding a computation with
the "minimal" energy consumption, given a certain parallel exploitation pattern.
The first case that we address is a sort of implementation of the sleep function
on a GPU architecture. The code is visible in Listing 4.5.
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1 template <typename T>
2 __global__ void sleepComputation(T *A, size_t N) {
3 unsigned long tid = threadIdx.x + blockIdx.x * blockDim.x;
4 clock_t start_clock = clock64 ();
5 clock_t clock_offset = 0;
6 while (clock_offset < N)
7 clock_offset = clock64 () - start_clock;
8 A[tid] = clock_offset;
9 }

Listing 4.5: Sleep kernel. The clock offset is saved in global memory so that the
compiler does not optimize away the kernel code.

Since we expect any map computation to have a similar form (e.g. iterating
over a set of data parallel tasks and perform something on them until completion),
this is the computation with the minimal energy footprint that we were able
to obtain reflecting the effective behaviour of the architecture. We analyse the
average required power from the outside, that is the time average.

In Figure 4.28, we show the average power required for executing the kernel,
varying the number of warps activated within a single block. The same data is
plotted using

√
#warps in the x-axis in 4.29. The curve is very similar varying

the number of blocks between 2 and 13.
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ber of warps.
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Figure 4.29: Average power for sleep computation, against the square root of the
number of warps

The second computation that we defined for analysing the minimal footprint
of the computation is a sort of empty map, in which every worker performs a fixed
number of nop operations. The average power consumption for this computation
can be seen in Figure 4.30 against the number of warps and in 4.31 against the
square root of the number of blocks. The behaviour is slightly more irregular
with respect to the previous case.
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Figure 4.31: Average power for empty computation against √warps

We will discuss further the outcome of this experiment in Section 4.4.

4.3.2 Communication costs

This experiment addresses the costs of data motion, from an energetic and per-
formance standpoint. What we want to understand is in what form we can model
the time to transfer data from the host memory and the device memory, and what
is the cost of activating the GPU structures (copy engine and memory) designated
to perform said operation. We individuated two experiments, to understand the
impact of using pinned memory and unpinned memory. For the first case the
allocation must be performed using a special instruction provided by the CUDA
runtime, namely cudaMallocHost. The memory allocated through this call is
page locked, meaning that the page cannot be switched to virtual memory. To
perform transfers in case the page used is not pinned, the runtime [CGM14]:

• copies the data from host non-pinned memory to host pinned memory;

• starts transferring the data from pinned host memory to the GPU local
DRAM.

In case the data to be transferred already resides in pinned memory, the transfer
is performed at much higher bandwidth; the amount of page-locked memory is
limited, as an exceeding amount of it would cause performance degradation.

To understand the energetic cost of data motion, we need to address i) the
time used to send data, depending on the granularity of the transfer, depending
on the type of host memory used and ii) the power of the copy engine and DRAM
activation.
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The code of the experiment is shown in Listing 4.6 for the case of non-page
locked memory. A chunk of 1GB (TOTALSIZE) is transferred; the chunk size
(grain) is given as input parameter. The program is compiled with -O0 flag,
avoiding optimizations. The experiment is repeated several times, to have better
estimations.

1 emlStart ();
2 cudaEventRecord(start , 0);
3 for(unsigned long i = 0; i < TOTALSIZE; i+= grain) {
4 cudaMemcpy (& dev_input[i], &input[i], sizeof(char) * grain ,

cudaMemcpyHostToDevice);
5 }
6 /*Force synchronization , avoid optimizations */
7 input[rand()%TOTALSIZE] = ’c’;
8 cudaEventRecord(stop , 0);
9 cudaEventSynchronize(stop);

10 emlStop(HostToDevice);
11 //empty kernel , returns immediately.
12 kernel <<<1, 1>>>(dev_input , dev_output);
13 emlStart ();
14 cudaEventRecord(start , 0);
15 for(unsigned long i = 0; i < TOTALSIZE; i+=grain) {
16 cudaMemcpy (& output[i], &dev_output[i], sizeof(char)*grain ,

cudaMemcpyDeviceToHost);
17 }
18 cudaEventRecord(stop , 0);
19 cudaEventSynchronize(stop);
20 emlStop(DevicetoHost);

Listing 4.6: Code used to monitor the energy (power × time) of data motion
between host and device memory, and viceversa.

Host to device transfer, non-pinned memory

At high level, we see that the cost of moving data depends on the number of
calls to the cudaMemcpy runtime function, as we can see in Figure 4.32. The
Figure shows the average time required to perform the movement of 1GB of
data, depending on the size of the transferred chunk. We see that for smaller
chunks, the time will increase, as will do energy, that can be seen in 4.34.
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Figure 4.33: Average energy time for transferring 1GB of data from non-pinned
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Figure 4.34: Average power time for transferring 1GB of data from non-pinned
memory from host to device.

The profile of the instantaneous power for the case of transfers of 1024, 2048
and 4096 bytes can be seen in Figure 4.35. Once again we can observe an ini-
tialization phase, followed by a steady state characterized by frequent oscillations
in power requirement. Intuitively, the amount of variation does not depend on
the chunk size, hence it does not depend on the number of calls and could be
caused by the behaviour of the bus. However the maximum instantaneous power
consumption grows. When the chunk size grows, we can always observe a growth
in the peak power consumption. As an example, when transferring 10GB (the
maximum available memory on the device) in a unique chunk, we observe a peak
power of 70.22W , which is the maximum power consumption of data transfers.

 62.2

 62.4

 62.6

 62.8

 63

 63.2

 63.4

 63.6

 63.8

 64

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7  7.5  8  8.5

Po
w

er
 (W

)

Time (s)

Instantaneous power consumed for communication on Nvidia K40, depending on chunk size

1024 2048 4096

Figure 4.35: Instantaneous power consumption for transferring 1GB using differ-
ent chunk sizes.



CHAPTER 4. GPU ENERGY MODEL 78

In our opinion, the reason for this behaviour lies in the fact that resources are
exploited for longer, and consequently enter their steady state. On the other hand,
when we have a sequence of consecutive transfer, resources will be deactivated
and re-activated very rapidly, making almost impossible to reach the steady state.
However, the average power does not grow as much as the instantaneous power
maximum, as for bigger chunks the transient state will have an higher impact.

Host to device transfer, pinned memory

When we consider the case of pinned memory, as we would expect the time and
energy requirements are smaller. Consider 4.37 and 4.36. We can see that in both
cases the required time and energy is smaller. This is because less movements of
data are performed in the host memory, hence allowing to perform faster copies.
In fact, the difference in average power consumption with respect to non pinned
memory is negligible, as it can be seen in Figure 4.38.
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Figure 4.37: Average energy cost of transfer from host to device, with pinned
memory
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Figure 4.38: Average power during data transfers from host to device, with pinned
memory.

For what regards the instantaneous power, we see a more regular behaviour
in 4.39, with less oscillations in all the cases. Also in this case, however, the
maximum power grows proportional to the chunk size.
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Device to host transfer, non-pinned memory

In this case we experience a degradation with respect to the communication per-
formed in the opposite direction. In Figure 4.40 we can see the difference in time
between transfers from device to host memory (in red) and in the opposite direc-
tion (green). In this case and also in the case of Figure 4.41, we see that moving
memory from the device to the host is much more costly from time and energy
standpoint. For what regards the average power, we see that it is comparable
from figure 4.42.
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Figure 4.41: Comparison of the energy required to transfer 1GB of data (with
different chunks) from device to host and viceversa.
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Figure 4.42: Average power consumption during transfers of data from host to
device memory and viceversa

Device to host transfer, pinned memory

In case of pinned memory transfers, the difference between host and device trans-
fers are quite smaller. In fact, they are so small they could even be attributed
to small variations in the system. In Figures 4.43, 4.44 and 4.45 we can see that
in this case there’s a small difference in resources utilization with respect to the
case of non-pinned memory.
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Figure 4.43: Comparison of time required to transfer 1GB of pinned data from
host to device and viceversa, depending on chunk size.
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Figure 4.44: Comparison of energy consumed to transfer 1GB of pinned data
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Other communication mechanisms

While the cost of data motion can be partially alleviated by using cudaStreams,
that allows, in architecture with at least two copy engines, to execute kernels
in parallel with data movement, we will neglect this mechanism for the moment
being, as its analysis is more complex. Another mechanism to avoid explicit
copying is zero-copy memory. Through a specific call - cudaHostAlloc [CGM14]-
the memory can be allocated in host memory, but is also placed in the device
address space, thanks to Nvidia Unified Virtual Addressing. This allows to have
identical pointers for memory allocated with cudaHostAlloc. The data used by
the threads is still moved through the PCI express, but this happens behind the
curtains. With this mechanism, the kernel performance might suffer a great deal
of degradation, as data is resident in host memory and is migrated to the device
using data locality principles.

Another mechanism, easing further the process of accelerating applications
with CUDA is Unified Memory [Har13]. Unified memory is a mechanism built
on top of Unified Virtual Addressing. In this case, the run-time automatically
migrates data from the host to the device resident DRAM and viceversa, without
explicit transfers coded by the programmer. The vision proposed by Nvidia with
Unified Memory is depicted in Figure 4.46.
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Figure 4.46: Programmer’s vision of the new CUDA Unified Memory. Image from
[LZCH14]

We performed experiments using zero-copy and managed memory, to under-
stand the performance and energy degradation of these mechanisms. To do so,
Listing 4.7 has been taken as baseline. In the case of zero-copy memory, instead,
we only monitored an appropriately synchronized kernel execution, where data
was allocated previously using the appropriate call. The same has been done for
the case of managed memory.

1 template <typename TYPE >
2 __global__ void kernel(TYPE *in_a ,TYPE *in_b , TYPE *out_c , size_t

size) {
3 unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x;
4 while(tid < size) {
5 out_c[tid] += in_a[tid] + (in_b[tid]);
6 tid += blockDim.x * gridDim.x;
7 }
8 }
9

10

11 int main() {
12 ...
13 // allocate pinned host memory
14 cudaMallocHost (&a, size*sizeof(float));
15 cudaMallocHost (&b, size*sizeof(float));
16 cudaMallocHost (&c, size*sizeof(float));
17 // allocate device memory
18 cudaMalloc (&dev_a , size*sizeof(float));
19 cudaMalloc (&dev_b , size*sizeof(float));
20 cudaMalloc (&dev_c , size*sizeof(float));
21 // initialization
22 ...
23 emlStart (); //start monitoring
24 cudaMemcpy(dev_a ,a,size*sizeof(float),cudaMemcpyHostToDevice);
25 cudaMemcpy(dev_b ,b,size*sizeof(float),cudaMemcpyHostToDevice);
26 kernel <float ><<<blocks ,threads >>>(dev_a , dev_b , dev_c , size);
27 cudaMemcpy(c,dev_c ,size*sizeof(float),cudaMemcpyDeviceToHost);
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28 emlStop(computation); //end monitoring
29 ...
30 }

Listing 4.7: Kernel and monitoring code for the baseline computation, with
explicitly managed communication

From the plot in 4.47, we can see the difference from the baseline for different
number of warps within a single block, using zero-copy and managed memory.
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Conclusions

The cost of communication can be quite high and provides a huge optimiza-
tion space: sending more data all together is essential to save energy and time.
We have seen how different memory mechanisms and communication directions
mainly have an impact in terms of the time, while power remains almost con-
stant. This provides an insight on how the communication is performed: the
resources used are probably the same, and with similar utilization factors. The
main difference would thus be in how efficiently such resources are used.

Finally, we tested different, more high-level communication mechanisms. We
can see that the degradation in terms of energy consumption and time using
managed memory mechanisms is small enough to consider the feasibility of this
approach when programming parallel heterogeneous architectures. On the other
hand, using zero-copy memory could be quite advantageous in terms of time for
high parallelism degree and elevated (spatial) data locality.

The availability of this kind of mechanism would be of great advantage for
real implementation of an energy-aware behavioural skeleton operating on a het-
erogeneous system.

4.3.3 High-level experiments

In the high-level experiments, rather than targeting a single component of the
system, we want to target its behaviour as a whole. Since we are mainly interested
in how map computations behave, we should test if there’s a common pattern
considering:

1. different data types;

2. different data structures;

3. different map functions.

The experiments are performed by calling a kernel, surrounded by proper
calls to the monitoring library. We ensure that the kernel is finished by using
either cudaDeviceSynchronize() or surrounding the kernel with proper CUDA
events calls. Every execution of the program is preceded by a period of about 60
seconds, during which the GPU is left idle. This allows to avoid effects of previous
computations to affect new measurements. In fact, we can see experimentally that
by calling kernels continuously, the average consumed energy grows.

For practical purposes, most of the results shown have been performed making
the data size on which the kernel operates parametric in the number of workers.
This is because with huge problems, testing with a small parallelism degree would
require a huge, impractical time. On the other hand, if we decrease the size, it
could be that using the device at its full power would return less trustworthy
results, as the monitoring interval would be too small.
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4.4 Model Individuation
We describe the cost of offloading a map computation from the host to a GPU
coprocessor as made of two parts: the former is the communication cost (involving
both energy and time), while the latter is the cost of performing the actual
computation. The model implicitly assumes that the computation can be carried
on on the device, hence we don’t need high precision and the problem is small
enough for its data to fit completely in the device memory. Another implicit
assumption of our model is that CUDA cores and streaming multiprocessors can
be used as a 2D array of resources. We neglect the three-dimensional abstraction
proposed in CUDA and just see the streaming multi-processors (addressed in
terms of blocks) as a linear array of processors, each one comprising another
linear string of CUDA processors. For the CUDA cores, we also consider the
fact that threads are hardware managed, and can hence be scheduled in a higher
number with respect to the effective number of physical resources without too
much overhead.

4.4.1 Estimating power consumption using regression

Regression using samples taken over all values

To understand power consumption, we start by modelling a kernel with very
regular behaviour, both in terms of power, energy and time. This is the sleep
kernel, explained in Section 4.3.1. Such computation will constitute the baseline
over which we build our model. Once again, fixed a certain number of blocks, the
power grows sub-linearly in the number of warps assigned for each one.

If we want to understand the appropriate function to model the behaviour,
we can use polynomial regression, fixing the degree of the polynomial function to
two. We will achieve a regression function in the form y = β2x

2 + β1x
1 + β0 in

case β2, coefficient of the 2nd-degree term of the model, is small enough, we can
move back to a simple linear regression.

What we seek to model is the power of a given computation C, depending on
the number of blocks and warps. The number of blocks b and of warps for each of
them w ∈ [1, 32] are hence the explanatory variables, while the response variable
is PC(b, w). We try to find an estimator in the form P̂C(b, w) that gives a good
approximation of the consumed power given a certain parallelism degree.

Using:

• least squares to find a polynomial regression function for the sleep kernel,

• a fixed number of blocks and

• using the square root of the number of warps as explanatory variable

we obtain P̂sleep(1, w) = −3.1696× 10−4×w+0.3738×
√
w+57.4374. With this

predictor, RSS (residual sum of squares) is 5.1243× 10−2, while the total sum of
squares is ∼ 11, 0918× 104.
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The coefficient of determination R2 is hence 0.999999538, thus the model
fits the data almost completely. In case we force β2 to be zero, R2 becomes
0.9999995273. Neglecting the second degree component of the polynomial regres-
sion function does not affect the precision of the estimation appreciably. The
same applies for different number of blocks, varying from 1 to 13 (the number of
physical streaming multi-processors).

If instead of the square root we use the logarithm, the residual sum of squares
almost doubles with respect to the previous case. While R2 will remain close to
one, we will have a bigger error, so we excluded the logarithm. Finally, by using
warps linearly, we achieve a residual sum of squares equal to 1.3579×10−1, which
grows in the number of used blocks. This justifies, together with the intuition,
that the growth in average power consumption depends on the square root of
the number of warps used within a block. Using regression, we estimate power
consumption of a computation C as follows:

P̂C(b, w) = βC0 (b) + βC1 (b)×
√
w

In Figure 4.48, we show the error in estimating power consumption with re-
gression for the sleep computation. The error will be defined as:

εC(b, w) =
P̂C(b, w)− PC(b, w)

PC(b, w)

this error formulation will be used for the rest of this work. When we show an
empirical frequency, we use the method proposed in [Gal02]: we plot an histogram
of the values assumed by the random variable on the sampled values. To do so, we
divide the space between the minimum and maximum value into a fixed number
k of disjunct intervals [b0, b1), [b1, b2), . . . , [bk−1, bk). For each interval we count
the number of elements of the sample within it and divide it by the total number
of samples.
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√
w, against the N(0, σ) (green) distribution required to perform regression

modelling. The average error in the empirical case is −0.51%, the standard
deviation is ∼ 0.0072.
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We want to show that regression can be used to model successfully also more
complex computations: consider the case of a vector addition, executed entirely
on the GPU. The vector addition is written so that every thread accesses coalesced
(i.e. with consecutive locations within a warp) memory.

In Figure 4.49 we show the effective average power (calculated over 5 execu-
tions) varying the number of warps within 4 blocks, against the regression model;
in Figure 4.50, instead, we show the distribution of the error for linear regression
on said computation.
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Figure 4.50: Distribution of the error with linear regression against N(0, σ).

The low error achieved with this approach demonstrates that:

• the explanatory variables chosen do relate to the power

• this approach can be used with success across different computations
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Regresssion with sub-sampling

It is not necessary to have a precise estimation to test the average power of the
computation for any value of w and any value of b.

In fact, the regression parameters can be estimated even with less samples. If
we sub-sample the power considering only the case for w = 1, 6, 12, 18, 24, 30, we
achieve the error profile visible in Figure 4.51. The difference between estimated
power and effective does not exceed 2% in absolute value in above the 91% of the
cases.
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Figure 4.51: Error profile sampling the power only for some values of w for each
block.

In the case in which we only consider 3 samples per block (w = 1, 18, 30, we
achieve a maximum error of 3.38%, a minimum of −3.21% and an average of
−0.25%. The probability that the error is less than 2% in absolute value is above
0.85.

Estimating the regression parameters

Until now the regression parameters used where function of the number of blocks
used in the computation. Power was predicted as P̂C(b, w) = β0(b) + β1(b)

√
w,

where the values of β where dependant on the block. We want to find a way
to estimate the regression parameters without need to calculate them for any
possible value of b. More formally, we wish to find a function β̃(b) allowing
to estimate the parameters used to estimate power. To do so, it is possible to
perform a sort of "second order" regression.

In Table 4.2 we show the values of β1(b) obtained for different number of
blocks in the sleep computation. The values of β1(b) (sampled over all values of
w) for said computation are visible in Figure 4.52 (in red), against the regression
function (in green). We see that they almost completely overlap, hence allowing
to estimate the value of the regression parameter without having to analyse all
of the blocks.
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Blocks b β1(b)
1 0.3715
2 0.6870
3 1.0340
4 1.3725
5 1.7195
6 2.0568
7 2.4074
8 2.7522
9 3.1070
10 3.4508
11 3.7878
12 4.1219
13 4.4831

Table 4.2: Regression parameters for estimating the power depending on the
square root of the warps, depending on the number of blocks.
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Figure 4.52: β1(b) varying the number of blocks. The green line is the linear
interpolation performed over β1(b) using b as explanatory variable. β1(b) ≈
0.005 + 0.34× b

Consider again the vector addition computation. Also in this case β1(b) has
a linear behaviour. By interpolation, we can estimate β̃vector_add1 (b) = 1.15854b+
1.72193. By using this approximation, we achieve the error profile visible in
Figure 4.53. We can see that the probability that the error in absolute value is
less than 2% exceeds the 85%.
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Figure 4.53: Error frequency for vector addition with approximated βvector_add1 (b).

If instead we use β̃vector_add1 (b), achieved in the case where we consider only
3 samples for block, we achieve an error below 4% in absolute value, with an
average of −0.28%.

Similar error profiles are achievable by sampling less values of βvector_add1 . As
an example, by calculating the regression only for b ∈ 1, 2, 6, 10, 13 we achieve a
maximum error of 4.51%, a minimum of −3.37% and an average of −0.43%. The
probability that the error is between −2% and +2% exceeds the 77%, while we
reach 90% for error whose absolute value is less than 2.5%.

If instead we perform the regression only on b equal to 1 and to 13, we have
a maximum error in power estimation of the 3.89% and a minimum of −4.53%,
with the 61% of errors not exceeding 2% in absolute value, and more than the
73% not exceeding 2.5%.

For calculating the previous figures, we were still assuming to be able to calcu-
late βvector_add0 precisely. Despite being the behaviour of this regression parameter
less regular than in the previous case, we can use a similar approach on it. We
show it for both the considered computation in Figures 4.54 and 4.55.
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Figure 4.55: Regression parameter β0(b) varying b for vector add

If we estimate also β0(b) by regression on vector addition computation, the
error increases notably: we have only the 70% of the error in [−2.5%, 2.5%]. The
maximum error is 4.32% and the minimum is −4.61%; the average is −1.29%. In
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this case, however, estimating with less values of b affects the error less: for b in
{1, 2, 6, 10, 13} we have a very similar behaviour, with 68% of estimations with
less than 2.5% difference from the sample. If, instead, we model β0(b) through
regression sampling the values only with b equal to 1 and 13, we reach 59%
of errors within the absolute value of 2.5%, a maximum error of 3.89% and a
minimum of −5.16%. We see that in this case the degradation due to estimation
of β0 with less knowledge is less impairing on the precision of the model.

Finally, if we estimate β0(b) and β1(b) only using this second-order regression
over b = 1, 13 and w = 1, 18, 30, we get the error profile visible in Figure 4.56.
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Figure 4.56: Error profile for regression model calculated sampling only 6 values.

While this error profile is in general worst than in more sampled cases, the
maximum error (calculated over more than 2200 samples of power) barely exceeds
5% in absolute value.

Conclusions

The regression approach can be used safely whenever the number of calculations
is enough to amortize the samples needed to estimate power consumption. The
high precision achieved, and the elevated values of R2 suggest that this way of
modelling power consumption as a function of the parallelism degree is robust
and can be applied safely for the targeted architecture and for map computations
executed on it, regardless of the function applied to the elements.

The cost for preparing this model is not extremely high, as we only need to
execute the computation with 6 different parameters (b, w) to estimate power with
less than 5% error with high probability. More precise models can be achieved
by measuring the power for more values of (b, w) on the computation. Possibly,
rather than picking at random the execution parameters, we could decide to use
complex algorithms (like Simulated Annealing [RN05]) to find a global optimum,
building a power model in the meanwhile.
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4.4.2 Heuristic model for estimating power consumption

Since we saw from the preliminary observations that, the power requirements of
computations designed according to the same parallel pattern exhibit overall a
similar power profile, we could think of using one of such computation as a metric,
in order to "guess" how another one will behave.

The idea is to take a very stable, regular computation and monitor it carefully.
Then, from its behaviour and the ratio between the figures achieved with other
computation, we can try to estimate the values for other computations.

As a meter, we decided to use the sleep computation. The features of this
computation are interesting, as it is very regular and we were not able to achieve
similar results with other, more meaningful ones.

For modelling the power of this computation, we use an estimation drawn
from the regression model, explained in the previous section. The power of the
sleep computation can be expressed as follows:

Psleep(b, w) = Pbase + Pb × b+ (Pw + P ′w × b)×
√
w (4.1)

The P parameters are expressed in Watt and depend on the architecture
on which the computation is executed. The estimation of Pw and P ′w is pro-
vided through linear regression. In particular, we will have Pw = 0.005W and
P ′w = 0.3438W . These two parameters (in the regression part they summed
up to βsleep1 (b)) represent the cost in terms of power caused by the activation
of additional warps. In particular, P ′w is multiplied by b, so that it reflects the
incremented cost of spawning w × b warps.

The Pbase represents a "minimal" power required to carry on a computation.
It is comprehensive of the leakage power (estimated as explained in Section 4.3)
and of the cost of actively using the board. Pb is meant to represents the cost of
activating a streaming multiprocessor. Pbase and Pb are calculated with regression
over the detected values Psleep(b, 1), using b as explanatory variable. Hence they
do not sum up to b, and give an upper estimation on the cost of the sleep function.
We justify this choice with:

• for real computations C, PC(b, 1) > Psleep(b, 1), because the warps will be
used more;

• the curve described by Psleep(b, 1) is more regular;

• we verified experimentally that these two parameters were more robust for
evaluating the heuristics explained in the following.

A first heuristic

The first idea could be to "measure" any computation C against the baseline,
by using a metric in the form m(C) = PC(b,w)

Psleep(b,w)
. However, this metric is not

reliable as it is not "stable" across different (b, w) computations: hence, despite
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Figure 4.57: Distribution of γvector_add(b, w) for vector addition. Nvidia K20

the similar curve, a simple model estimating PC(b, w) as Psleep(b, w)×m(C) would
be unreliable.

Another approach could be to evaluate the ratio between the increment with
respect to baseline of the two computations. The ratio of this approach is that the
base cost will be almost the same for any computation and being the increment
parametric we would experience difference in the ratio between the metre and the
measure because of a different "ammortization" of the base cost. For this reason,
we defined γ as follows:

γC(b, w) =
PC(b, w)− Pbase
Psleep(b, w)− Pbase

For γvector_add we have an average of 2.98 over the whole computation. The
variance is 0.58. We can see the distribution of the values of γvector_add(b, w) in
4.57. The average value of the metric will be referred as γvector_add and is be
defined as follows:

γC = E[γC(b, w)] =
1

#blocks×#warps
×

#blocks∑
b=1

#warps∑
w=1

γC(b, w)

Despite the high concentration of values around the average, that would made
us expect this metric to be quite precise in a high number of cases, in the tail the
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high difference with respect to the average calculated value will lead to elevated
errors. In fact, if we try to estimate Pvector_add(b, w) as Psleep(b, w) × γvector_add,
we achieve an average error of 8.05%, a maximum of 30.02% and a minimum of
−3.40%, meaning that we almost always overestimate (significantly) the power.
Since the value of γvector_add(b, w) changes significantly in w with fixed b, using a
"local" measure for each b we verified experimentally that calculating γC locally
to a block does not increase the precision of the predictor.

A more precise heuristic

Let us now evaluate a different metric used to predict the power. We define
αC(b, w) for a certain computation C as:

αC(b, w) =
PC(b, w)− Psleep(b, 0)
Psleep(b, w)− Psleep(b, 0)

(4.2)

αC(b, w) represents the ratio of the increment in power, due to an increase in
the number of warps and blocks, between the analysed computation and the
computation taken as a metre. It can be rewritten as follows:

αC(b, w) =
PC(b, w)− (Pbase + Pb × b)

Pw + P ′w × b×
√
w

We show the empirical distribution of values of αvector_add(b, w) in Figure 4.58.
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Figure 4.58: Distribution of the values of αvector_add(b, w).

Once again the values are in great part (more than the 87%) concentrated
within ±1 from the average (∼ 3.39). The average, indicated by αC is defined
similarly to the case of γC .
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Because of this concentration, we expect that:

• β0(b) + βC1 (b) to be similar to βsleep1 × αC ;

• even in case the exact value of αC is not known, we can just select a random
combination of (b, c) , sample the power for C and the value will be a good
approximation of the real average;

• when the number of samples grow, the precision of the estimation will grow.

We can hence estimate the power of a certain computation C as follows:

P̂C(b, w) = Pbase + (Pw + P ′w × b)× αC ×
√
w (4.3)

Even though it would be more logical to model P̂C(b, w) taking into consid-
eration the additional term Pb × b, we see experimentally that this brings to an
overestimation of the power, overall leading to worst results. We thought of two
possible explanations for this behaviour:

• being the control logic very simple in all tested computations, the cost
of activating an additional streaming multi processor per se (i.e. without
considering the CUDA cores) is not as high as we would expect, or

• part of the constant cost of activating an additional streaming multiproces-
sor gets captured by αC .

This issue should be investigated further. We use the heuristic proposed
above as we verified experimentally that it bears to better results in the majority
of cases.

By using Equation for estimating the power consumption of vector add com-
putation, we achieve a maximum error (defined as P̂vector_add(b,w)−Pvector_add(b,w)

Pvector_add(b,w)
) of

the 9.36%, a minimum of the −7.43% and an average of −1.67%. If we consider
the absolute value of the error, the minimum is 0.02% and the average is 3.43%.
The distribution (calculated over 5 samples for each valid value of b and w) of
the error can be seen in Figure 4.59.
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In Figure 4.60a we show (in red) the detected average power for vector addit-
tion, varying the number of warps in a single block. The blue line is the "ideal"
model, using the parameters estimated using ordinary least squares. The green
line represents the estimation of power achieved with the approximation using
αC within a single block.

The same figures are plotted for 2, 4, 6, 8, 12 blocks in Figures 4.60b, 4.61a,
4.61b, 4.62a, 4.62b, respectively.

Conclusions

The heuristic proposed above and denoted by the greek letter αC provides quite
precise estimations in terms of power, even though it does not require as much
samples as in the regression cases. While of course the error will be higher
with respect to plain regression method, as explained in previous section, we will
show in Section 4.5.2 that the intuition according to which a random sample is
enough to provide a good estimation holds. This validates this approach in case
of heterogeneous systems, where a rapid estimation of the consumed power for
a computation should be provided in order to decide the parallelism degree and
the grain to be scheduled to the GPU coprocessor.



CHAPTER 4. GPU ENERGY MODEL 100

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33

Po
w

er
 (W

)

Warps

Average power and estimation using two differnt models for vector addition. 1 block. Nvidia K20C

Average power Power estimated using Alpha Power estimated with regression

(a) 1 block.

 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33

Po
w

er
 (W

)

Warps

Average power and estimation using two differnt models for vector addition. 2 blocks. Nvidia K20C

Average power Power estimated using Alpha Power estimated with regression

(b) 2 blocks.

Figure 4.60: Effective power against regression against heuristic
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Figure 4.61: Effective power against regression against heuristic
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Figure 4.62: Effective power against regression against heuristic

4.4.3 Computation energetic model

As we know, the energy expended for a computation can be expressed as E =
T×P , where T is the execution time and P is the average power consumed during
the execution time by the device(s) on which the computation is carried on.

For this reason, we need a precise way to estimate the time to carry on a certain
computation. Given a parallel exploitation patter, there are already stable cost
model providing good approximations of the ideal completion time.

Consider the case in which the function f taken as parameter by the higher-
order map function has an execution time equal , in average, to Tf . If each
worker is given a partition of g elements to work on, the completion time for a
map computation is [Van14]:

Tmap = g × Tf
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to which the scatter (a concurrent activity responsible of dividing the data struc-
ture between the various workers) and gather (a concurrent activity responsible
of recomposing the calculated results into a single data structure) time should be
summed. In case we are in a shared memory environment, however, the cost of
such components could be neglected.

The grain assigned to each worker will depend on the size of the data structure
on which the map is applied. Suppose that the size is N , and that the number
of execution units is n. In this case, the amount of work assigned to each worker
will be ∼ N/n; hence the map computation will have an execution time of:

Tmap(n) =

⌈
N

n

⌉
Tf

In practice this will hold only if Tf has a very low variance. Assuming the
size of the data structure is big enough and that the variance is low, we will have

Tmap(n) =
Tmap(1)

n

Since on a GPU device the scheduling unit is a warp, up to 32 applications of
f (the warp size for current day GPU architectures) will be executed in parallel
by the workers, without additional latency with respect to using a single thread.
Scheduling threads in batches of 32 is hence the most convenient alternative. We
will have, within a single block, an ideal cost model in the form:

Tmap(1, w) =

⌈
N

w × warp_size

⌉
× Tf

However, the threads that can be scheduled do not map 1 : 1 to execution units
in all possible considerations. If we are using a single streaming multi-processor
on a Kepler architecture, for example, only up to 6 warps will be executed in
parallel, as there are 192 CUDA Cores. Even though scheduling more warps is in
general advantageous, thanks to the long latency of the execution units pipeline,
the map completion time in terms of warps depends, after more than 6 warps are
executed, on the specific computation. In practice, we can see that, empirically,
until 8 warps scalability is almost perfect. This holds as long as the function f
taken into consideration does not uses double data types; in this case, in fact,
the amount of units available to perform such operations is way smaller than the
number of CUDA cores. For these aforementioned scenarios, we will have:

Tmap(1, w) =

⌈
N

w × warp_size

⌉
× Tf w = 1, 2 . . . 8

For w greater than 8, the specific application should be studied: however the
time almost always diminishes, even though not proportionally to the number of
warps activated. We show the scalability for 3 different computations in Figure
4.63. Here scalability is defined in terms of the number of warps. In the case
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of matrix multiplication, the scalability does not perfectly follow the ideal case,
since there’s unbalancing.
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Figure 4.63: Scalability for three different computation, against the ideal.

Let us now consider the case in which multiple blocks (and streaming multi-
processors) are exploited to carry on the computation. In this case, resources are
duplicated, hence:

Tmap(b, w) =

⌈
N

b× w × warp_size

⌉
× Tf w = 1, 2...8

Since the behaviour within a block is replicated, in case the introduction of
more blocks does not causes further unbalance, we can also write

Tmap(b, w) =
Tmap(1, w)

b

We can see experimental that this model holds as long as the blocks are
mapped one to one on streaming multiprocessors. In Figure 4.64a we see on the
y-axis Tmap(1, 1)/(Tmap(b, 1), depending on b, while in Figure 4.64b we see the
same figures but calculated in the case of 6 warps. The machine from which the
numbers have been drawn is an Nvidia K20C, with 13 streaming multiprocessors.
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Figure 4.64: Scalability varying the number of blocks and maintaining a fixed
number of warps. The execution with 1 blocks and a fixed amount of warps is
taken as baseline.

From this model of the execution time for a map computation, we can now es-
timate power for a given parallelism degree and a certain computation C applying
f over N elements as:

EC(b, w) = P̂C(b, w)× Tmap(b, w)

4.4.4 Communication model

Before offloading a computation to the GPU, another metric that should be con-
sidered is the cost of transferring the data from the host memory to the device
one. This comprises a cost in terms of time and of energy.

From Section 4.3.2, we see that the average power used to perform a transfer
is almost constant and is independent - in the device - of the type of memory used
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and of the direction of the communications. For this reason, we can estimate the
power consumed during communication as a constant value, Pcomm. This figure
is architecture dependent and can be estimated by performing appropriate mea-
surements on the targeted architecture. In case of Nvidia K20c can be estimated
as 54.3W .

For what regards the time spent in communication, we see that its value
depends on the number of effective transfers (calls to cudaMemcpy as well as on
the amount of data moved. For this reason, we propose a model in the form:

Tsend(k) = Tsetup + k × Ttrasm

where k is the amount of bytes sent to the device. From the outcomes of the
experiments of Section 4.3.2, it is clear that we need to calculate Tsend, Tsetup
and Ttrasm at least for three scenarios: the case with non-pinned host memory,
dividing between transmission from host to device and viceversa and the case
with pinned memory, that can be safely modelled using the same parameters in
both directions, as their difference is negligible.

We will denote the different cost in terms of sending the data as THDsend(k),
TDHsend(k), T Psend for the transmission of data in case, respectively, of non-pinned
memory from host to device, from device to host and of movement of pinned
data.

If we fix the amount of data transferred (1GB in the carried on experiment)
and take as explanatory variable for linear regression the number of calls to
cudaMemcpy performed, we achieve a regression function in the form β0 + β1 ×
#calls. Modelling the function linear can be validated by intuition by observing
4.65. By dividing β0 for the amount of moved data, we can find out the cost in
time to transfer a single byte or a PCIExpress TLP (Transaction Layer Packet),
in case its size is known in advance.

In case of host to device transfer with non-pinned memory, we achieve β0 =
0.87s (a small overestimation of the effective cost for transferring 1GB, 0.77s)
and β1 = 9.65 × 10−6s. In the case the transfer is performed in the opposite
direction (device to host), these figures increase: in the first case, β0 will become
2.21s and β1 = 1.50× 10−5. Finally, for the case of pinned memory we will have
β1 = 1.31× 10−5 and β0 = 0.49s. The final values are summarized in Table 4.3.

type of memory Tsetup(s) Ttrasm(s/bytes)
host to device, non-pinned 9.65× 10−6 8.16× 10−9

device to host, non-pinned 1.50× 10−5 2.05× 10−9

pinned 1.31× 10−5 4, 52× 10−10

Table 4.3: Parameters for estimating communication costs in Nvidia K20c, de-
pending on the type of memory used.

Overall, the maximum error in percentage for host, non-pinned memory is
7.46%, which corresponds to an error in estimation of 0.07s, hence a negligible
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amount. Consider that, if we estimate with this model the cost of transferring
1 GB in a single send, we have an error of ∼ 30%, which however represents an
upper-estimation of barely 0.2s.

4.4.5 Comprehensive map energetic cost model

From the host perspective, offloading a map computation is composed of two
communication phases: the former is used to send data from the host memory to
the device, while the latter is used to retrieve the result. Notice that the amount
of data moved in the first case and in the second case might be different: as an
example, if we do not change the input parameters copying them back to host
memory is useless.

We will denote the amount of data to be sent from the host to the device with
g, while the data retrieved after the calculation will be denoted with h. As usual,
the parallelism degree is expressed in terms of blocks b and warps w.

The complete energetic model will be:

Emap(b, w, g, h) = Tsend(g)× Pcomm + Tmap(b, w)× P̂C(b, w) + Tsend(h)× Pcomm

The impact in terms of energy and time of the case in which the communi-
cation is overlapped with the calculation (achievable using CUDA Streams) has
not been investigated.
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4.5 Validation

4.5.1 Regression model validation

To prove the reliability of the regression approach, we will only consider the
overall energy estimation for three target computations. All of the computations
have been executed 5 times for every combination of parameters (b, w). The
estimation has been performed using only six values, as described in Section
4.4.1. All experiments have been executed on a Nvidia K20c GPU, except the
matrix multiplication one which was performed on a Nvidia K40m.

Vector Add

For this computation, we already described the error in estimating power through
regression. We consider the case in which the "second-order" regression is per-
formed only over b = 1, 13 and w = 1, 18, 30. We saw that the error is minimal
when we consider only power (the error distribution for this case is visible in
4.56). However, when we multiply it by th estimated time to achieve an energy
prediction, the error is much bigger. In Figure 4.66, we see for every warp and
every block (represented as different lines) the detected error.

We estimate energy with Êvector_add(b, w), defined as follows:

Êvector_add(b, w) = Tmap(1, 1)/(b× w)× P̂C(b, w)
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Figure 4.66: Error (in absolute value) for energy estimation. Warps between 1
and 12, different blocks. Vector add.
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Notice that the lines showing the highest error (3, 4, 5, 6 blocks) have lower
energy footprints, hence the overestimation in terms of Joules is not dramatic.
For example, for b = 4, w = 12 (the highest error), we underestimated energy
consumption of barely 1.68J .

Since we consider the model in terms of time to be reliable only until 8 warps,
this result is better than expected.

After 12 warps, even though the power estimation remains consistent, we see
a drop in the precision of energy estimation. This is due to the fact that the
computation does not scale perfectly once the number of physical resources is
surpassed.

If instead we consider the case in which Tmap(1, w) is known, the scalabil-
ity varying the number of blocks is almost perfect. In this case energy can be
estimated as:

Êmap(b, w) =
Tmap(1, w)

b
× P̂C(b, w)

and we achieve the error profile visible in Figure 4.67.
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Figure 4.67: Error (in absolute value) for vector add computation, with different
blocks.

The most important information that can be drawn from the above Figures is
the fact that, in case time is estimated correctly (that happens, with our model,
when the partitions assigned to each worker are balanced or the time for a given
number of warps is already known for a certain parameter b), the error barely
exceeds 6% in absolute value.
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Matrix Add

We used the usual model described above for vector addition to estimate energy
consumption in the case of a matrix addition computation. In Figure 4.68 we
can see the error for executions using different number of warps and different
number of blocks. Power is calculated using the regression predictor, while time
is achieved by dividing T (1, 1) for b× w.
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Figure 4.68: Error (in absolute value) for energy estimation, using different blocks.
Warps between 1 and 12. Matrix add.

The error is not high because the scalability of the computation is pretty good
even if the mapping between threads and CUDA cores is not one to one. We can
see that in case the number of worker divides the size of the matrix, we have
a lower error, meaning an increased precision in time estimation due to better
partitioning.

If we estimate T (b, w) assuming that we know the value for T (1, w) and predict
energy consumption accordingly, we achieve the error profile visible in Figure 4.69.

We can see that the maximum error never exceeds the 15%. If we limit the
number of warps to be less than 12, we have a maximum error which barely
reaches 5%, against the 8% of the case in which we were estimating time starting
only from T (1, 1). The error is very low also for higher number of threads.
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Figure 4.69: Error (in absolute value) for energy estimation, using different blocks.
Matrix add.

Matrix Multiplication

The matrix multiplication operation (whose code is presented in Listing 4.8) is
implemented in terms of a map. The matrix given in input is partitioned in terms
of rows. The threads within a warp operate in parallel on a tile with fixed size,
given as a template parameter.

In this case, it was not possible to give an amount of data proportional to the
number of workers: for this reason, we have unbalance in the computation and
this case is more difficult to treat.

1 template <typename T, unsigned int TILE >
2 __global__ void matrix_mul(T *a, T *b, T *c, size_t N) {
3 /** Initialization of destination matrix */
4 int rowJump = (blockDim.x * gridDim.x)/32; // rowJump also

represents the total number of warps spawned in the grid.
5 int tid = threadIdx.x + blockIdx.x * blockDim.x;
6 int rowId = tid /32; // identifier of the warp --> of the initial

row.
7 for(int jext = tid %32; jext < N; jext+=TILE) {
8 for (int kext = 0; kext < N; kext+=TILE) {
9 rowId = tid /32;

10 while(rowId < N) {
11 register T cij =0; register T cij1 =0; register T cij2 =0;
12 register T cij3 =0; register T cij4 =0; register T cij5 =0;
13 register T cij6 =0; register T cij7 =0;
14 __shared__ T aValues [32][ TILE];
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15 for(int f=0; f < TILE; f+=32) { // preload data in l1
16 aValues[threadIdx.x/32][ threadIdx.x%32+f]=a[rowId*N+f];}
17 //no synch needed , since we access data only from our warp.
18 for(int kk = 0; kk < TILE; kk++) {
19 int k = kk+kext;
20 int aik = aValues[threadIdx.x/32][k%TILE];
21 /** Corresponds to a nested subloop on j */
22 cij += aik*b[k*N+jj];
23 cij1 += aik*b[k*N+jj+32];
24 cij2 += aik*b[k*N+jj+64];
25 cij3 += aik*b[k*N+jj+96];
26 cij4 += aik*b[k*N+jj +128];
27 cij5 += aik*b[k*N+jj +160];
28 cij6 += aik*b[k*N+jj +192];
29 cij7 += aik*b[k*N+jj +224];
30 }
31 c[rowId*N+jj]+= cij; c[rowId*N+jj +32]+= cij1;
32 c[rowId*N+jj +64]+= cij2; c[rowId*N+jj +96]+= cij3;
33 c[rowId*N+jj +128]+= cij4; c[rowId*N+jj +160]+= cij5;
34 c[rowId*N+jj +192]+= cij6; c[rowId*N+jj +224]+= cij7;
35 rowId += rowJump;
36 }
37 }
38 }
39 }

Listing 4.8: A simple map matrix multiplication, with additional management of
L1 memory (__shared__)

The tests were performed by calling the kernel using a huge matrix 16384 ×
16384. However, the results are not satisfactory, since the fixed partitioning in
terms of rows is too subject to unbalance. The highest the number of blocks, the
worst the result, as it becomes more and more difficult to schedule an amount of
warps proportional to the size of the matrix. In Figure 4.70, we see the error in
energy estimation for 1 block, varying the number of warps between 1 and 12.

Despite the unsatisfying results in energy prediction, the estimation in terms
of power is always reliable, as it can be seen in Figure 4.71, where we plot the error
in estimating the average power against N(0, σ2). We see that the error profile
closely remembers the gaussian, hence validating the regression-based approach
for estimating power. The main problem with this computation is the fact that
the partitioning in terms of rows is too subject to unbalance. We need a high-
dimensional matrix to be able to measure reliably times on the GPU. On the
other hand, even one row more in a partition will cause a huge difference in terms
of time, making the timing difficult to be estimated empirically.
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If we consider a different version (less optimized) of matrix multiplication,
in which data is partitioned in terms of threads (using an approach similar to
virtual processor) as the one of Listing 4.9, we see a better behaviour in terms of
scalability, which reflects on a overall more precise energy prediction.

1 template <typename T>
2 __global__ void matrix_mul_simple(T*a, T*b, T*c, size_t N) {
3 unsigned long threadId = threadIdx.x + blockIdx.x * blockDim.x;
4 while(threadId < N*N) {
5 unsigned int i = threadId / N;
6 unsigned int j = threadId % N;
7 register T cij = 0;
8 for(int k = 0; k < N; k++) {
9 cij += a[i*N+k]*b[k*N+j];

10 }
11 c[i*N+j] = cij;
12 threadId += blockDim.x * gridDim.x;
13 }
14 }

Listing 4.9: Simple, less optimized kernel for matrix multiplication

In this case the partitioning is performed in terms of single elements, rather
than on rows. Threads within the same warp access the same location of matrix
A, while their access is coalesced with respect to B. Threads with the same id
within different warps reuse the elements of B for their calculation. Every thread
calculates a (set of) distinct elements of C. We will have less unbalance in the
computation and we will have more precise timings. We tested the computation
by executing the matrix multiplication kernel 10 times with different parallelism
degree on an Nvidia K40m.
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The error in power estimation for this computation, on more than 2000 sam-
ples, is distributed as visible in Figure 4.72. The estimation is achieved by using
only the usual 6 samples.

The error is only 1.85% in average, while the minimum is −11.85% and the
maximum the 7.95%. More than the 85% of the estimations have below 5%
error. If we consider the energy (whose error profile is visible in Figure 4.73), we
maintain a very high precision. We can see that the model starts increasing the
difference between the estimation and the effective values for elevated number of
warps.
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Figure 4.73: Error in estimating energy for matrix multiplication using regression

This validates the approach for the Kepler architectures, as we used a different
board with overall similar features.

4.5.2 Heuristic validation

For evaluating the heuristic, we consider the probability of "guessing" the right
power starting from a single sample of a computation. To evaluate this situation,
we select uniformly at random a pair (b, w), we sample PC(b, w) and calculate
αC(b, w) for this pair. Then we try to predict the consumed power for another
random pair (b′, w′) as P̂C(b, w). This process has been performed selecting uni-
formly at random 500 quadruples of parameters (b, w, b′, w′).

Vector Addition

For the case of vector addition, the heuristic is quite efficient. The profile in terms
of error in the power estimation can be seen in Figure 4.74. We see that the error
is tightly concentrated between −10 and +10%. In fact, more than the 85% of the
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Figure 4.74: Empiric error distribution in estimating power for vector addition,
against N(0, σ2)

cases return an error of less than 10%: this means that, with very high probability,
we are able to estimate power consumption of a computation using only a single
sample. The error variance σ2 is ∼ 0.0056. In the aforementioned Figure, we see
the empiric error distribution against a normal in the form N(0, σ2); the values
for our estimation are more concentrated near 0 than in the case of the Gaussian.

Let us now move to consider how this precision in terms of power prediction
maps into estimation of energy consumption. In this case, we estimate the time
for an execution with parameters (b′, w′) starting from the time sampled with
(b, w) as follows:

T̂map(b
′, w′) =

Tmap(b, w)× b× w
b′ × w′

meaning that we are considering perfect scalability in both cases. Of course this
condition will not hold for elevated number of warps.

Energy is estimated as:

Êmap(b
′, w′) = T̂map(b

′, w′)× P̂ (b′, w′)

For this estimation, we have a very elevated error, that reaches (in very un-
fortunate cases) up to 85% overestimation, even though this happens with a very
small probability. The error profile can be seen in 4.75. Even in this case we see
that, however, we estimate energy consumption in above the 45% of the cases
with less than 10% error.



CHAPTER 4. GPU ENERGY MODEL 117

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-49.90%

-42.81%

-35.73%

-28.64%

-21.55%

-14.46%

-7.38%
-0.29%

6.80%
13.88%

20.97%

28.06%

35.15%

42.23%

49.32%

56.41%

63.50%

70.58%

77.67%

84.76%

91.85%

Er
ro

r p
ro

ba
bi

lit
y

Error %

Error in estimating energy consumption of vector addition using only one sample. Heuristic method

Empirical error distribution
N(0, sigma)

Figure 4.75: Empiric error distribution in estimating energy for vector addition,
against N(0, σ2)

By comparison of Figures 4.74 and 4.75, it is clear that the error lies in a
wrong estimation of required time. If we limit the number of warps scheduled
to be at most 8, however, the estimation precision widely improves. Over 500
random estimations, we achieve the error distribution in energy estimation visible
in Figure 4.76. Again we have the 85% of the estimations giving less than 10%
of error in absolute value, and an error in [−5%, 5%] in above of the 52% of the
cases.
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Figure 4.76: Empiric error distribution in estimating energy for vector addition,
against N(0, σ2). The number of warps for this experiment has been limited
between 1 and 8
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Matrix Addition

We use the same modelling in terms of time and energy used for vector addition.
Of course P̂matrix_add(b, w) will be different, as it will be calculated with a different
value of α.

Also in this case the heuristic estimation of power is reliable: we can see in
Figure 4.77 the error profile in power estimation. With respect to the vector
addition case, the maximum error is higher (45.65% against 33.3%). However,
values are more concentrated near 0, as we have the 88.8% of the samples with
an error in [−0.1, 0.1]. In this case the distribution of the error resembles more a
gamma distribution than a normal one. However we mainly care about the fact
that, with very high probability, the power will be estimated correctly.
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Figure 4.77: Empiric error distribution in estimating power for matrix addition

Let us now move to consider the energy estimation. As usual, we will consider
at first the distribution of the error in energy estimation for all possible warps
(from 1 to 32, in Figure 4.75) and then limiting the number of warps to at most 8
(Figure 4.79). Thanks to the increased scalability (in the number of warps), with
this computation (as in the regression case) we achieve a better error profile with
respect to the vector addition case. Considering all available warps within each
block, the maximum error is 79%, against the error above 90% detected in the
previous case. We have 50% of samples having less than 10% error with respect
to the real value, while 71% of the values have less than 15% error.

In the case in which we reduce the number of warps, we enhance the energy
estimation as time can be predicted more precisely.
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Figure 4.78: Empiric error distribution in estimating energy consumption for
matrix addition, against N(0, σ2)
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Figure 4.79: Empiric error distribution in estimating energy consumption for
matrix addition, against N(0, σ2). Improved with warps between 1 and 8.
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Matrix Multiplication

In this case the heuristic has been validated on a Kepler architecture, but on a
different model. The experiments below refer to an Nvidia Kepler K40m, with
15 Streaming Multiprocessor with 192 CUDA cores each.

The parameters used for the heuristic have been estimated through regression
on the sleep computation, as it was done for the aforementioned K20c board in
Section . We did not considered the case of all the 15 SM active together, but
we show that even though this case was neglected, the heuristic is reliable even
if we consider this case. When the parameters are estimated, we can see similar
behaviour for the K20C but, of course, with different constants:

• Pbase, the base consumed power is in this case 66.5436W ;

• Pb is 0.1930W ;

• P ′w is 0.2679W ;

• Pw is 0.001W and we will consider it negligible.

By applying the usual heuristic process to the simple matrix multiplication
kernel, whose code is visible in Listing 4.9, we achieve the error profile visible in
Figure 4.80.
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Figure 4.80: Error distribution for the heuristic and matrix multiplication com-
putation. Nvidia K40M

The error is less than 10% in absolute value with a probability of over the 87%,
hence validating the usage of this heuristic on other Kepler architectures. When
we consider errors below 15%, we see that we have over 95% of the samples in this
range, hence validating that the heuristic is correct, works on different models
and can be reused across different devices and different map computations.
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We also provide the error distribution of the energy estimation done accord-
ingly to the heuristic and the map time model. It is visible in Figure 4.81. The
energy estimation is more precise than the power estimation, as it happened also
in other cases previously mentioned. The reason for this more accurate precision
can be found on the nature of the heuristic: in fact, it tends to overestimate the
power consumption; the time model - instead - underestimates the completion
time of the map.
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Figure 4.81: Error distribution for the estimation of energy consumption on ma-
trix multiplication, using the heuristic.

Once again, the probability that the energy estimation is wrong of at most the
15% is above 95%. This demonstrates that not only the heuristic and the time
model are accurate, but also that they work across different architectures. The
error profile for energy was achieved in this case by selecting at random between
all of the scheduling parameters available.

Conclusion

As a final consideration, we see experimentally that the error in energy estimation
depends on the "distance" between the parameters (b, w) and (b′, w′). For this
reason, we suppose that by increasing the number of samples, we can increase
the precision of the heuristic in estimating energy consumption. A weighted
average implementation, taking into account the distance between computations
for estimating both power and time could provide a better estimation and is left
for future works.

Observe that we have seen computations operating on different data struc-
tures, with different partitioning methods and different computational require-
ments. Also, we used two different devices of the same family to assess the
precision of the heuristic and of the model. We have seen that in all considered
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cases the power estimation is quite precise; a small loss of precision can be seen
whenever the partitioning is not precise: this corresponds to the idea that, in case
a different number of elements is given to a certain worker, it will deactivate early
and hence the consideration underlying this model do not hold anymore. How-
ever, we can estimate power also in this unfortunate situations with acceptable
loss of precision.

The estimation in terms of energy can be considered precise as long as the
number of warps utilized maps into the number of available physical CUDA cores.
After this point is reached, the accuracy of the prediction of time is lowered
considerably, hence making the energy predictor unreliable. For cases (like simple
matrix multiplication) in which the computation scales almost linearly in the
number of warps, the model predicts accurately for all the available parameters.



Chapter 5

Energy model for map
computations on CPU

In this Chapter we will briefly outile a very simple, approximated energy model
for data-parallel map computations on CPU architectures. In the first part, we
introduce some observations on the environment, pointing out the regularity of
the behaviour of the computation across the execution, the similarity between
executions of different computations exploiting the same parallel pattern and the
validity of the average case. We then move to give a short justification of the
choice of the explanatory variables for the model, achieved through regression
and presented in Section 5.4. We finally validate this approach for estimating
energy consumption.

5.1 Preliminary observations
As we did in Chapter 4, we wish to perform some assumptions about the measure
that we want to predict. In this section, we will (briefly) show how the assump-
tions done for GPUs also hold in case of CPU multi-core architectures. The tests
have been performed on a Intel Xeon E5-2650 processor, with 2 NUMA nodes
with 8 processing units each. We did not selected frequency and voltage manually
(see Section 2.1), leaving this task to the default Linux governor. For this reason,
we developed a frequency monitor to understand the impact on power due to
different frequencies. We observed experimentally that the frequency is automat-
ically scaled up to the maximum available fmax when a demanding computation
is executed. Even though studying how a parallel computation behaves in case
of different frequency selection is an interesting problem and could potentially
enrich our model, this further development is left for future work.
Let us now start by considering the first observation made in Chapter 3:

Observation 1 The instantaneous power required during the execution of a cer-
tain computation C, with the same used resources and the same parameters, does
not depend, from a probabilistic point of view, from its starting time.

123



CHAPTER 5. CPU ENERGY MODEL 124

As evident in Figure 5.1, were we show the intantaneous power for the ex-
ecution on a single worker of ten differnet execution of the computation as of
Listing 5.1, we don’t have an initialization phase as in the GPU case. This can
be explained with the fact that the core is already in use (even though not at
peak performance) when the computation is launched. We can see an irregular
behaviour, as there are spikes in power, due, in our opinion, to the execution of
operating system processes in the same NUMA node: measurements are provided
by EML in a socket-aggregated manner. Further, EML sampling is 0.001s, hence
small variations have a huge impact.

1 template <typename T, unsigned int repetitions >
2 inline void cpu_power(T *a, T * b, T * c) {
3 c[0] = 0;
4 for(int i = 0; i < repetitions; i++) {
5 c[0] += (a[0] + b[0] *i);
6 }
7 }
8 int main() {...
9 emlStart ();

10 for(int i = 0; i < vectorSize; i++) {
11 cpu_power <float , R>(&a[i], &b[i], &c[i]);
12 }
13 emlStop(computation); ...
14 }

Listing 5.1: code for the computation used to test the instantaneous power of a
NUMA node

Figure 5.1: Instantaneous power detected on a single NUMA node while carrying
on a sequential computation on it. 10 different executions are visible in the plot.

Since the spikes are distributed almost uniformly along the time line, and
there are no apparent regular patterns explaining their occurrence, we can safely
assume that they are caused by exogenous causes and hence can be neglected
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for the analysis of the power required by a computation. Notice that to verify
this condition we need a load-free (or almost so) machine; otherwise, the power
requirements of other applications will inevitably alter the readings. Despite this,
we can assume safely ideal conditions, as it is often done in the HPC world.

If, instead, we sample a program comprehensive of the computation of Listing
5.1 followed by a more complex map using some trigonometric functions, we see
a variation in power consumption, that can be seen in 5.2.
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Figure 5.2: Instantaneous power of an irregular computation, executed sequen-
tially on a Intel Xeon E5-2650 processor

We show the impact of parallelism on dynamic power in Figure 5.3, where
the power profile of two different executions of a vector addition performed as
a map computation on a CPU is visible. As in the GPU, we can see that the
instantaneous power profile overlaps. The noise caused by activation of other
processes is visible also here, but we did not show it. The experiment has been
performed by pinning the workers on the CPUs with identifiers from 1 to 4; hence
only the first NUMA node (0) has been used.
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Figure 5.3: Instantaneous power of different executions of vector addition com-
putation executed in parallel on 4 processing units , as detected on the NUMA
node on which the computation is executing.
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Figure 5.4: Instantaneous power of different executions of vector addition com-
putation executed in parallel on 4 processing units , as detected both on the node
on which the computation is executing and on the unused one.

For contrast, we show the profile of instantaneous power of different executions
of vector add of both NUMA node 0 NUMA node 1 in Figure 5.4.

We also show the difference in power caused by different parallelism degrees
in Figure 5.5, where a (part of) the instantaneous profile of the aforementioned
computation is plotted when the execution is performed with 1, 2 and 4 cores.
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Figure 5.5: Instantaneous power for vector add execution with different paral-
lelism degrees.

Observation 2 Given a parallel exploitation pattern, different computations im-
plemented with the pattern exhibit similar behaviours in terms of average power
requirements when the amount and type of resources assigned for the calculation
change.

In the case of a map computation, we can see that the average power grows
linearly in the number of processing units allocated to it. In Figure 5.6, we show
the average power varying the number of workes; the first computation (in red)
is a simple vector addition, the second one (green) calculates some trigonometric
functions over the elements of two different arrays and stores the results on the
result array, while the last one is a matrix addition in which the partitioning is
performed in terms of rows.
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Figure 5.6: Average power on Intel Xeon E5-2650 for different map computations
depending on the number of processing elements in use.
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In case of multiprocessor architectures, the fact that the power would grow
linearly in the number of units used is rather obvious: all units have exactly the
same structure and perform (if the computation is balanced) exactly the same
work. Hence we would expect the same resources to be exploited and the same
power to be consumed. This differs from the case of the GPU, where we have,
instead, different kinds of resources. As a final remark, a little step is visible
between 7 and 8 workers in all the computations taken into consideration. This
corresponds to the point in which the second NUMA node is activated.

Up to now we did not considered multi-threading. In Figure 5.7, we can see
the detected average power using the same machine also in multithreaded mode.
As it is possible to see, after the number of physical execution units is completely
used, the power reaches a plateau and remains (almost) constant. However, the
completion time will in general remain the same or decrease, hence making this
approach not convenient as energy consumption will increase.
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Figure 5.7: Average power for vector add using multithreading

As a final consideration, we wish to make an argument for the convergence
of the average in time of power to the steady state instantaneous power also for
this architecture. In fact:

• the instantaneous power behaviour is rather regular: the samples have al-
most a constant value;

• the spikes in power consumption caused by other processes can be consid-
ered an almost constantly distributed noise;

• the presence of (very small) initialization and de-initialization phases in
which power consumption is different from the steady state gets amortized
for long enough computations.

We also expect, for this architecture, that the average reflects better the steady
state power, as initialization and de-initialization phase (if present at all) have a
very little duration.
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5.2 Component Separation
As we have seen previously, the power consumed in a computation can be ex-
pressed as a function of:

• the parallelism degree;

• the computation.

As we said before, the parallelism degree impacts on power in a linear manner.
This is caused by the fact that a certain function f will have a certain average
time Tf and a certain average footprint in terms of energy Ef . We consider for
both cases the variance to be very small.

Consider the case in which this function is used sequentially on a certain
number N of elements. We will have Ef_seq ' N × Ef , as the same set of
instructions will be executed on N different elements [CA12]. Similarly, the time
will be Tf_seq ' N × Tf .

When we move to consider a parallel implementation in terms of a map, we
will have n identical workers operating over ∼ N

n
elements each. This will lead to

have:

Epar_f (n) ' n× N

n
× Ef

and
Tpar_f (n) '

N

n
× Tf

the average power for the parallel case will consequently be:

Ppar_f (n) =
Epar_f (n)

Tpar_f (n)
' n× Ef

Tf
= n× Pf

As a consequence it is quite clear that the components to be taken into ac-
count are both the computation f , which determines the power, and the number
of units n used to carry it on. In the above description we neglected the impact
of parallelism on energy and time: in fact, in general moving to a parallel im-
plementation will introduce additional overhead, with its own cost in terms of
energy and time. However, for computations scaling well enough we can assume
that what said above holds true. We also avoid to consider the case of different
NUMA nodes: while the impact in power consumption of using one more can be
noticed, it adds complexity to the model without giving much advantage.
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5.3 Experiment design and analysis

5.3.1 Monitoring power requirements

The used measurement library (EML, see Section 1.4.4) works by spawning an
independent thread, that continuously samples some hardware counters in order
to detect current power/energy consumption on the monitored device. Obviously,
this process has a footprint in terms of consumed energy.

We considered interesting for this work trying to understand the impact in
terms of power consumption of the measurement library: this is an overhead that
could theoretically be considered and, in case of practical implementation of an
energy aware behavioural skeleton, should be taken into account when measuring
the difference with respect to baseline.

In order to measure the footprint, we slightly modified the library source code,
so that it was possible to "pin" the monitoring thread to a certain core. This
allows to:

• monitor footprint of the library, by pinning the monitor to the same NUMA
node on which it performs measures;

• monitor leakage power without accounting for this further overhead, by
pinning the monitor on another NUMA node if available.

By the code of Listing 5.2, we estimated the measurement library energy
consumption library to be of about ∼ 0.77W .

5.3.2 Leakage power estimation

The logic for estimating leakage power consumption is the same as the one used
for GPU architectures. However, while in the GPU case the thread spawned by
the measurement library (EML) is resident on the CPU (hence the measured
values will only be affected by the sampling process), in the case of CPU we
need to avoid the overhead of the library. To do so, we measured consumption
of load-free NUMA node 0 pinning the monitor to NUMA node 1, and viceversa,
using the code of Listing 5.2.

1 // parameters: samplingInterval , cpuId , monitorCpuId
2 int main (...) {
3 ...
4 CPU_SET(cpuId , &cpuset);
5 EMLSetMonitorAffinity(monitorCpuId);
6 ...
7 unsigned float currentPower = 0;
8 unsigned float prevPower = 0;
9 do {

10 emlStart ();
11 sleep(samplingInterval);
12 emlStop(leakage);
13 emlDataGetElapsed(leakage [0], &elapsed);
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14 emlDataGetConsumed(leakage [0], &consumed);
15 prevPower = currentPower;
16 currentPower = consumed/elapsed;
17 } while(fabs(( prevPower - currentPower)) > 0.001);
18 ...
19 }

Listing 5.2: Code used to estimate leakage power on CPU. The sampling is
executed on cpuId with an interval of samplingInterval. The monitor is pinned
to monitorCpuId

Notice that in this case the samplingInterval must be appropriately long,
since the environment is more noisy. For very short sampling intervals, it could be
that convergence is not reached because of the operating system processes acti-
vation. We estimated leakage power consumption for the considered architecture
to be of about 18.87W .

5.3.3 High level experiments

In this case we defined some map computations. To do so, we used FastFlow,
a C++ parallel programming framework previously described in Chapter 1. The
computations test different map functions, different data structures and different
data types.

The execution of a map data-parallel computation, implemented using the
ff_farm skeleton as base, is surrounded by proper calls to the monitoring li-
brary. All tests have been performed calling single computations, executed with
a distance of 60 seconds one from the other, to give the possibility to the fre-
quency governor to scale down frequency again and start in similar conditions all
executions.

5.4 Model Individuation

5.4.1 Estimating power consumption through regression

Also in the case of CPU architectures, we wish to model the behaviour of the
power by using regression. Given a certain computation C, we try to find an
estimator P̂C(n), which depends on the parallelism degree and on the specific
power footprint of a computation to predict power expenditure.

As usual, we use ordinary least squares and try to find a law in the form:

P̂C(n) = β0 + β1 × n

In the considered architecture, β0 is comprehensive of:

• the leakage power of both NUMA nodes considered;

• the power consumed by the memory.
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By considering the three different computations used also in Section 5.1, we
have the coefficents of determination visible in Table 5.1. Since the values are
very close to one, this demonstrates the validity of estimating power through
regression.

Computation R2

Vector Add 0.998770994
Vector with atan 0.998882549
Matrix Add 0.998443599

Table 5.1: Coefficient of determination (R2) for the linear regression estimation
of three different estimations.

Let us consider also for this architecture what happens in case we use less
samples. Consider the case in which only the power sampled for 1 and 15 is
used as parameter to achieve the predictor. In this case the maximum error in
absolute value, for vector addition, moves from 1.16% (achieved when all samples
were available) to 1.88%, an error that is negligible. For the case of the function
previously denominated as atan, we have a maximum error in absolute value of
the 2.55% (against 2.10%). For matrix addition we have an increase in error of
the 0.61% against the baseline of 2.10%.

In Figure 5.8, we show the distribution of errors for estimating power con-
sumption using only two samples on the CPU. The empirical distribution has
been calculated over only 150 samples (10 for parallelism degree), explaining the
higher irregularity with respect to the GPU case.
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Similar error profiles can be achieved with the other two considered compu-
tations.

In this case, we did not developed a suitable heuristic for estimating power
consumption on the CPU. The reason is that, if the computation scalability is
close to the ideal and DVFS is not used, on the computations taken into account
the behaviour was easy to model for each computation and with a negligible
footprint. In fact, the very high sampling rate used by the library to monitor this
architecture, together with the little duration of the transient phases, suggests
that it is enough to sample power for a small interval in time in order to develop
an accurate power model.

The introduction of DVFS techniques, while in general giving another opti-
mization space, would complicate the model and could bear to the necessity of
introducing heuristics for estimating power also on this architecture.

5.4.2 Map energetic cost model

As we did in Section 4.4, we consider a simple, high-level model to estimate the
duration of a map computation. Consider the case in which a function f requiring
an average time of Tf is applied on a collection of N elements. We remember
that in this work, we assume time and energy requirements to have a very low
variance.

Since we assign (approximately) the same amount of work to each of the n
workers, we will estimate power depending on the parallelism degree as:

Tmap(n) =

⌈
N

n

⌉
× Tf '

Tmap(1)

n

Given the estimator P̂f (n) calculated as explained before, we estimate energy for
a map computation on CPU using n identical parallel workers as:

Emap(n) = P̂f (n)× Tmap(n)

5.5 Validation
Since we discussed before the errors and the coefficient of determination for the
power consumption estimation, we wish to show now how the above models allow
us to estimate energy.

We show the error profile in energy estimation for vector addition in Figure
5.9. Even though we do not see the regularity of the case of GPU and of the
power estimation, it is possible to see that the error is very small. This is thanks
to the fact that in this case not only the power estimation is precise, but also the
model used to predict time is very reliable. We always have an underestimation
of energy consumption. This is because we underestimate the completion time,
being scalability not perfect and the estimation of power is very precise, hence
not giving the margin that we had for the GPU.
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Figure 5.9: Error in energy estimation for vector addition.

In the case of the map computation computing the result by means of a
number of trigonometric operations, we have a slightly worst result. This is
probably due to the fact that the behaviour is more noisy. Similarly to the case
of vector addition, we see a distribution skewed towards zero. The error profile
is visible in Figure 5.10. We can observe that even though at worst case we will
have an error higher than 10% in absolute value, we have an error between −5%
and 0 with very high probability (above 88%).
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Figure 5.10: Error in energy estimation for map on vector with trigonometric
functions.



CHAPTER 5. CPU ENERGY MODEL 135

The low value of the error in estimating energy on the CPU validates the
approach followed in this work and makes this kind of model useful to estimate
the power consumption of CPU map computations with low variance. While the
power estimation is quite reliable, even in case of computations with scalability
less than ideal, the model predicting time introduces additional error whenever
the scalability is not nearly perfect.

This also provides an insight on the fact that low efficiency (in terms of time)
have a correspondence on waste of energy.



Chapter 6

Using the models

In this Chapter we re-adapt the comprehensive energy model for heterogeneous
architectures presented in Section 1.4 according to the observations and to the
models or heuristic presented in this work. In the first section, we will address
the problem of minimizing EDP. In the second one, we will provide some ideas
on how to use the developed models.

6.1 Minimizing EDP
A system that uses both CPU cores and GPU devices to minimize energy con-
sumption, as said before, needs a model to understand how to:

• divide the application between the different components

• execute the application within a single component

For this reason, we have developed in the previous Chapter proper analytical
functions estimating energy, time and power of computations. We here present
an aggregated energy model, taking into consideration both CPU and GPU. We
start from the generic energy consumption for heterogeneous systems explained
in Section 1.4, and in particular from Equations 1.14 and we rewrite it to take
into consideration the difference between blocks and warps. We remember that
the parameter n represents the number of CPU cores used to carry on the com-
putation, m the number of workers on the GPU side and g the portion of work
scheduled to the GPU: m should then be rewritten as (b, w), as we did before.
Let us assume to apply a function f with very small variance to all of the M
elements in the collection x over which the parallel map is executed. For the sake
of simplicity, we will consider M ′ = k ×M as the size of the data structure on
which we are operating. Further, we will assume to give in input to the GPU
g ×M elements and to have in return g ×M elements.

136
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We will achieve a specialization of the terms of Eq. 1.14 as follows:

Einfr(n, b, w, g) = Pinfr × TCPU−GPU(n, b, w, g)

ECPU_active(n, b, w, g) = P̂CPU(n)× n× TCPU(n, 1− g)

EGPU_active(b, w, g) = P̂GPU(b, w)× TGPU(b, w, g)

EGPU_transfer(g) = P̂GPU_coprocessor × 2Tsend(M
′ × g)

ECPU_idle(n, b, w, g) = U(2Tsend(M
′ × g) + TGPU(b, w, g)− TCPU(n, 1− g))

×(2Tsend(M ′ × g) + TGPU(b, w, g)− TCPU(n, 1− g))
×N × PCPU

static + (N − n)× PCPU
static × TCPU(n, 1− g)

EGPU_idle(n, b, w, g) = U(TCPU(n, 1− g)− 2Tsend(M
′ × g)− TGPU(b, w, g))

×(TCPU(n, 1− g)− 2Tsend(M
′ × g)− TGPU(b, w, g))

×PGPU
static

(6.1)
Where:

TCPU(n, k) =
M × k × TCPUf

n
n = 1 . . . N

and

TGPU(b, w, g) '
M × g × TGPUf

b× w × warp_size
b = 1 . . .#SM,w = 1 . . . 6

The total time for offloading the computation to the GPU is used will be:

Ttotal_GPU(b, w, g) ' 2× Tsend(M × g) + TGPU(b, w, g)

In order for Tsend (see Section 4.3.2) to be equal both in transfers from host
to device and from device to host, we need the memory to be pinned. From
now on, we will assume to use only pinned memory. Remember that Tsend(k) =
Tsetup + k × Ttrasm

Minimizing energy will hence require calculating the minimum of EC(n, b, w, g),
composed by the sum of all terms defined above in 6.1, depending on 4 parame-
ters.

When we consider as metric the widely used EDP (see Section 1.4.4), time is of
the uttermost importance, impacting quadratically on the value of the metric. For
this reason, we should minimize it. Since EDP corresponds to Power × Time2
and power grows linearly in the number of processors on the CPU side, and
sublinearly on the GPU one, we can safely assume that this metric is minimized
for the maximum parallelism degree on both devices, assuming perfect scalability.
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If we denote by B the maximum number of streaming multiprocessors, andW
as the number of CUDA cores available in the architecture divided by the warp
size (i.e. 6 in Nvidia Kepler case), we will have a completion time of:

max{TGPU(B,W, g) + 2× Tsetup + 2×M ′ × g × Ttrasm), TCPU(N)}

which is minimized for:

TCPU(N, 1− g) = 2× (Tsetup + Ttrasm ×M ′ × g) + TGPU(B,W, g)

The grain minimizing time consumption g for a certain parallelism degree will
be:

g =
M × TCPUf × P − 2× Tsetup ×N × P

2×N × P × Ttrasm ×M ′ +M × TGPUf ×N +M × TCPUf × P
(6.2)

with P = B ×W × warp_size.
By minimizing the difference between the CPU and GPU execution, we also

minimize the terms ofEC(n, b, w, g) due to idle resources: ECPU_idle and EGPU_idle.
Consider the case for a matrix multiplication executed on an Nvidia K40m

and on a Xeon E5-2650, previously used. By using the above method, when we
partition a 9000 × 9000 float matrix in terms of rows between the devices, we
get g = 0.9080; if we schedule 828 rows to the 16 CPUs available and 8172 rows
to the GPU using the maximum parallelism degree, we achieve TCPU = 24.86s
and TGPU = 24.70, hence with a very small difference. Moreover, the energy
consumption as a whole is 4749.22J , of which only 8.52J are due to idle resources
(the host part). The EDP is consequently ∼ 117775.

In case the same computation is scheduled only on the CPU, we have an
energy consumption of 22225J , a completion time of 283.62s and an EDP value
of 630345. In the case only the GPU is used, we consume ∼ 5206J in ∼ 27.30s
with an EDP of ∼ 142127. We see that with respect to using only the CPU with
this method we achieve an EDP 5.63 times higher, while the version using only
the GPU has an EDP of 1.09 times the heterogeneous version.

6.2 Other considerations
In order to minimize energy we need to find an optimum depending on the values
of g, b, w and n. However, it is not granted that we have a global minimum, as
several configurations might return the same energy consumption for the same
computation. In Figure 6.1, we show the average power over 5 samples for vector
addition performed on GPU, changing the number of blocks and warps used to
carry on the computation.
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Power for vector addition, with different (b, w) parameters
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Figure 6.1: Power varying the number of blocks and of warps

The model can be simplified by removing some low interest cases:

• when a certain parallelism degree p on the GPU is desired, we can achieve
it by different configurations of (b, w). In this case, if w × warp_size is
less than the number of available CUDA cores for a single streaming mul-
tiprocessor for the given architecture, the configuration with the minimal
b should be preferred, as it provides the same completion time with less
power consumption (see again 6.1).

• for some parallelism degrees, the efficiency is low and the energy consump-
tion is hence too high: in these cases we consider both i) (too) unbalanced
partitions and ii) parallelism degrees not mapping to processing units one
to one

We will now provide considerations on the possible usage of the models in
some scenarios.
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6.2.1 Operating within a power budget

This can be done either to limit the temperature of the machine (affecting ddura-
bility) or in the scenario in which the supply power is limited. In this case, we
can use the model/the heuristics to select the configuration providing the best
performances within the budget.

We can neglect the power (almost constant) consumed by the infrastructure
(previously indicated with Pinfr) and just subtract it from the threshold. We
know that for both types of architectures the minimal power is expended for the
minimal parallelism degree. So we can execute a proper portion g′ of map tasks
on the GPU architecture with (1, 1) and by calculating αC and using the heuristic
P̂GPU
C (b, w) achieve the maximum parallelism degree available on this architec-

ture. We envision a similar heuristic to be developed also for CPU architectures;
this task is left for future work. However, in case we have more than 1 NUMA
node available on the architecture, we can launch a portion c′ and 2c′ of the map
tasks in parallel with the GPU execution on the CPU, with parallelism degree re-
spectively of 1 and 2. This would allow to estimate regression parameters, hence
permitting to schedule the computation with the amount of workers giving the
faster completion time while not overcoming the threshold.

Of course this method would work under the assumption that Pthreshold >
Pinfr + PGPU

C (1, 1) + PCPU
C (3). In fact, in order to carry on C on the CPU we

need at least Pinfr + PCPU
C (1), which is the cost of the infrastructure plus the

minimum power required to operate using a single core. On the other hand,
if we only use the GPU we need at least Pinfr + PGPU

C (1, 1) watts in order to
operate. Since the cost of infrastructure is assumed to be constant regardless
of the computation that is carried on and we need to sample the power at least
with two different parallelism degrees on the CPU in order to estimate power
consumption, this is the minimum value of the threshold allowing to use the
model.

6.2.2 Minimizing energy consumption

In case the function f of the map is expensive enough to be monitored when
operating on a single task, or can be successfully averaged to be analysed in an
aggregate manner it is possible to use the model to estimate the energy consump-
tion of any configuration of the computation. We can use the energy estimation
for different parallelism degrees on the CPU and different execution configurations
(b, w) on the GPU. While performing this estimation could be quite expensive
(there are more than 416 meaningful configurations on an Nvidia K20c), if we
filter out the low interest cases above mentioned we can reduce the estimation
to consider less than 1/4-th of the cases. This would allow to select the config-
uration (n, b, w) by using the two components configurations with the minimal
energetic cost. The grain should be calculated according to Eq. 6.2, trying to
reduce the difference between the two components parts as much as possible.
Equation 6.2 can be used replacing B with b, W with w and N with n for the
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selected configuration.
For any triple (n, b, w), the equation returns a single value of g minimizing the

difference between completion times. Hence, we will have a 3-dimensional table
with parameters (n, b, w) in which E[n][b][w] = (1−g)×ÊCPU(n)+g×ÊGPU(b, w).
These values represent the expected energy cost of executing a single function with
a certain parallelism degree on both device and host and with a certain grain. If
we multiply the values of such table for the total number of data-parallel tasks,
we can achieve as a result the estimation of energy consumption for the combined
CPU/GPU execution with a certain parallelism degree and the consequent grain.

Practical example of energy minimization using the heuristic

We analysed the matrix multiplication computation used in Section 4.5.2. The
implementation in the CPU divides the work in terms of rows (since the max-
imum parallelism degree is limited), while in the GPU we use the usual kernel
of Listing 4.9. However, we give the capability to the computation to perform
a split between the different devices in terms of rows, as it was done before in
Section 6.1.

The following samples are performed on the architecture in order to instantiate
the model for the considered computation:

1. The calculation of a row of the matrix on the CPU (NUMA Node 0) using
a single core;

2. the calculation of the two following rows of the matrix on the CPU (NUMA
Node 1) using two cores;

3. the calculation of the subsequent row of the matrix on the GPU (K40M)
using 1 warp and 1 streaming multiprocessor.

By sampling such values, we can calculate:

1. β0 and β1 for the CPU part, using ordinary least square: this allows to find
P̂CPU(n) = β0 + β1 × n;

2. TCPU(n) = TCPU(1)/n and by the product with P̂CPU(n) the energy ÊCPU(n)
required to process (on average) a single row on the CPU with parallelism
degree n;

3. α̃ used for the heuristic as it was done in Section 4.5.2: this allows to
calculate P̂GPU(b, w) for the computation;

4. TGPU(b, w) = TGPU(1, 1)/(b × w) and by multiplying it for P̂GPU(b, w) the
predicted energy for processing a single row on the GPU with a certain
number of blocks and warps
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We now want an energy estimation: hence we perform it on the basis of the
parameters (n, b, w), since the grain, given the model, depends only on these three
parameters. We can reduce the size and the complexity of calculating the table
by eliminating all the values for which b×w is the same, by simply removing the
(more energetic costly) case in which b is higher.

The values of (n, b, w) for which the average energy for calculating a row is
minimized is (1, 14, 32), with an average estimated consumption of 0.4896J per
row, followed by (2, 14, 32) with 0.4942J . For the former, the calculated grain
will be 0.9931, hence in the case of a 9000× 9000 computation, the GPU should
calculate 8939 of the rows, while the single core used on the CPU is responsible
for working over 61 rows.

By executing with these parameters, we achieve the values of Table 6.1.

Device Time Energy
CPU 25.79s 1035.15J
GPU 27.01s 3064.32J

Table 6.1: Energy and time for executing a 9000× 9000 matrix multiplication on
CPU/GPU cores mixes, using a single CPU core and 14 streaming multiprocessors
with 32 warps each

The total energy is not the sum of the two, due to the unbalance between
the two computations. In fact, we have TCPU_idle = 1.22s, hence ECPU_idle =
Pwaiting_CPU × TCPU_idle ' 38.95J . The total energy consumption for executing
the computation on CPU/GPU core mixes taking advantage of the model is thus
∼ 4147.92J .

We see that this result holds also if we use different parallelism degrees on the
side of the CPU. If we maintain the same grain and we increase the parallelism
degree on the CPU (so that the completion time decreases), we pay an additional
amount of energy due to the CPU thread waiting for the GPU part of the com-
putation to finish: this has been estimated to be a consumption of ∼ 40.1J/s. In
Table 6.2, it is possible to see the additional cost due to increase in the parallelism
degree on the CPU. In practice, almost for every different value of n we observe
an increased energy consumption.

CPU cores n TCPU (s) ECPU(J) Etot(J)
2 14.21 611.99 4231.946
4 6.86 333.066 4247.69
8 3.49 208.60 4280.06
16 1.92 147.06 4259.845

Table 6.2: Total energy for matrix multiplication using different parallelism de-
grees for the CPU offloaded part

Instead, if we use the value of g calculated in case of (2, 14, 32) we can see that
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the energy is 4320.02, and the total time is 27.98, hence partially validating the
method followed to search for a combination of (n, b, w, g) leading to decreased
energy consumption. However, before being applied this method would need a
more thorough evaluation with different parameters combination to evaluate its
validity.

To demonstrate the energy efficiency of the achieved result, we show in Figure
6.2 the ratio between different, meaningful configuration and the best energy
consumption result achieved (4147.95J).
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Figure 6.2: Ratio of energy consumed for meaningful configurations of matrix
multiplication over the best result suggested by the model

In the case the computation is executed with (2, 14, 32) (the second classified
configuration according to the heuristic), the energy consumption is the 4.17%
higher. Instead, if we use the EDP optimized case we consume 14% more Joules.
The difference is even higher when we use only the GPU using all resources
to carry on the computation (26% more energy) or only on the CPU with the
maximum parallelism degree (537% more energy).



Conclusion and future work

In this thesis we addressed the problem of estimating energy and power consump-
tion of data-parallel, map computations. The regular structure of this kind of
computation is suitable to support the design of effective models relative to the
energetic behaviour of a system. Given the presence of tested and well-established
models predicting the completion time of data-parallel map computation, we only
need to study the power requirements of a computation. However, since all re-
sources deployed on the job are similar and execute similar instructions, the power
requirements are regular.

With the achieved high-level map model, we demonstrated for a selected com-
putation the feasibility of an approach using the model to minimize energy con-
sumption. We were able to save the 14% of the energy consumed with the maxi-
mum parallelism degree on both devices, of the 26% on the version running only
on the GPU with the maximum parallelism degree and of the 537% with respect
to the CPU case. This shows that this model can be used successfully in or-
der to minimize energy consumption, as well as the fact that co-scheduling map
computations to CPU/GPU core mixes can bring significant advantages from the
energetic standpoint.

We started by giving an introduction on the basic concepts useful for this
thesis (Chapter 1) and by providing a small survey (Chapter 2) on the methods
for reducing energy consumption currently adopted by the it community.

We then moved (Chapter 3) to define an iterative process allowing to individ-
uate a model for energy consumption. This process has been validated by means
of actually modelling the power and time (and consequently energy) requirements
in different architectures. While the methodology developed resembles the CROP
model, used by data analysts, the small differences make its definition of interest.

We applied the methodology to develop regression-based models for the GPU
architecture (Chapter 4). Since energy is dissipated also when the computa-
tion is observed and when samples are taken to develop the regression model,
we proceeded by reducing progressively the samples, finding a way to estimate
the regression parameters without need to have too much information on the be-
haviour of the computation. Not only the regression model provided an useful way
to estimate power consumption, but it allowed us to have an insight on the way
different components affect power requirements. The model developed estimates
the energy consumption of a computation with an error below the 15% using only
six sampled values, hence with a very small computational and energetic foot-
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print. By using the modelling information, we developed a heuristic that allows
to predict GPU power consumption depending on the ratio between the sampled
power and the power of a computation used as a meter. This method predicts
energy consumption with less than 10% error with a probability exceeding 85%
and by using a single, random sample of the effective power consumption. This
heuristic is based only on the relationship of the computation with the metric
and on the parallelism degree. To the best of our knowledge, there are currently
no similar, high-level heuristics for GPU architectures.

We validated the possibility of using this heuristic on different devices of the
same family (Nvidia Kepler) applying the same methodology to different devices,
achieving similar error profiles both in energy and power prediction.

After validating with proper statistical analysis the reliability of the model
and the heuristic in predicting energy requirements, in Chapter 5 we faced the
problem of understanding the energetic requirements of CPU architectures. On
this subjects, much more work has been performed and there are already models
addressing accurate energy estimation in CPU architectures. We simply pre-
sented a technique based on regression that, at the cost of two samples, allows
to understand how much energy will be consumed by a map computation on a
multi-core environment.

Finally, Chapter 6 combines the results achieved in the previous part in order
to provide some insight and to depict some useful scenarios in which the models
could be fruitfully used.

Future works
Even though the provided models for GPU are very precise as far as power esti-
mation is concerned, we lack precision when we estimate the timing of the compu-
tations. This is an issue, as in general it could be convenient to use more threads
than effective execution units. A more sophisticated model should consider and
face this issue, allowing to harness at its best the computational power of Graph-
ics Processing Units. The case for more blocks than Streaming Multiprocessors
should similarly be studied. Another possible development is the provisioning,
starting from the same concepts used for GPUs, of a similarly precise heuristic
for estimating power in the CPU case. This would reduce the energetic footprint
used for the model.

We did not considered, in this work, the impact of other well-known parallel
programming patterns, like reduce. Its study would be of particular interest
as many computations require a combination of map and reduce higher order
functions. Other parallel patterns (like scan or parallel prefix ) should also be
taken into consideration.

Finally, from a more practical perspective, an interesting work could be the
development of a behavioural skeleton, supporting the co-scheduling of compu-
tations on both CPU and GPU and using the developed models and heuristics,
minimizing energy consumption.
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In questa sezione ovviamente non può mancare il simpaticissimo algoritmo
di Range Minimum Query, grazie al quale si può fare una ricerca su un array
(statico) in O(log(log(N))). Ricordando che il logaritmo di 1 Tera è 40, quindi con
circa un accesso al disco per elemento con una normale ricerca binaria andiamo
nell’ordine dei 0.2 secondi, prima di ammortizzare il tempo che ho utilizzato
per provare a capire la riduzione RMQ -> LCA -> RMQ usata ad Algorithms
Engineering, serviranno almeno quei 10 anni di esecuzione.

Menzione d’onore per diversi mostri trattati nel corso di SPQT. Incontrarvi è
stato un onore, dimenticarvi è stato automatico.
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usato dagli informatici di 5 continenti (ma grazie al teorema potrebbero essere
anche di piú), rimane uno dei più grandi misteri della triennale in informatica.

Theorem 1. Un linguaggio L è accettato da un ASFD se e solo se è l’unione di
alcune classi di equivalenza di una relazione invariante destra di indice finito.

Ovviamente il fatto che la sapessi dimostrare non ha nessuna correlazione col
fatto che io non abbia capito a cosa servisse.

L’RFIX e il circostante makefunrec (Listing 1) ha cambiato completamente
la mia vita. La totale non-comprensibilità del frammento di codice mostrato mi
ha causato incubi per mesi. E comunque nessuno mi convincerà mai che funzioni.

1 type eval = |Int of int | Bool of bool | Unbound | Funval of efun
2 and efun = expr * eval env
3 and makefunrec(i, el , (r:eval env)) =
4 let functional (rr: eval env) =
5 bind(r, i makefun(el, rr)) in
6 let rec rfix = function x -> functional rfix x
7 in makefun (el , rfix)

Listing 1: MakeFunRec: come trovare il punto fisso in pochi semplici passi e
vivere felici.

En passant, volevo anche ricordare al prof. Abate, autore del libro di Algebra
Lineare che romani (ed etruschi, mi dicono dalla regia) costruivano ponti senza
autovalori ed autovettori... e che quella introduzione mi ha fatto veramente paura.

Un grazie anche alla mia prima lezione di fisica, dove dopo aver abbassato un
secondo lo sguardo si è passati come per magia dalla nave che andava da Livorno
all’Elba sad avere degli integrali grandi circa mezza lavagna. Circa 3 anni dopo
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Dedicherei un momento speciale alla parte del mio cervello che mi gestisce i
sogni e i deliri. In particolare vorrei ricordare il fantastico sogno di una ricerca
interminabile della calcolatrice scientifica in un mondo completamente violaceo,
gli alieni che mi visitano spesso mentre dormo (e che puntualmente al mio risveglio
mi aspettano in qualche libro) e l’architettura degli elaboratori che mi ha fatto
immaginare PC e PO durante i sogni di varie notti di mezz’estate 2011.
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Il primo ringraziamento non può che andare al mio relatore, Marco Danelutto,
per la pazienza nel leggere interminabili papiri sia durante la tesi che durante il
progetto di SPM.

Ovviamente non posso che ringraziare i compagni d’armi Michele Carignani,
Cesare Bassu e Luca Atzori, con i quali ho condiviso buona parte del mio percorso
universitario, nonché questo ultimo periodo estremamente vario della mia vita e
la festa che faremo sabato (in Figura 2 una illustrazione da due sabati fa). Poveri
noi. In particolare vogliamo ricordare:

• Michele per il divertentissimo progetto di PAD: 3 mesi pieni per 6 CFU
sembra proprio che sia stato il caso;

• Cesare per gli attraversamenti pericolosi alla striscia di Gaza, lo studio della
summenzionata rfix e di tutto PR2, nonché per essere stato uno dei pochi
con il coraggio di rivolgermi la parola durante Analisi. È solo grazie a lui
se questo elenco puntato finisce così -> ;

• Luca per il progetto di SPM. Verrà ricordato principalmente in quanto in
grado di produrre, al costo di sole due ore/uomo (alle 04.30 del mattino),
la grammatica mostrata in Listing 2, aggiungendo "il Danelutto apprezzerà
senz’altro". Se poi si sia rivelato vero o meno rimarrà per sempre un mistero.

Figure 2: Due sabati fa. Divertimento
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1 A simple grammar that generates (some of) the string that could
be used to compile!

2

3 S’ -> make S
4 S -> all | mic -all | strassen -all | T | strassen -T
5 T -> mic -D | host -D
6 D -> double | float

Listing 2:

Seguendo l’esempio Atzoriano, si fornisce una sintetica quanto completamente
innecessaria grammatica dei ringraziamenti in Listing 3.

1 ACK -> Ringrazio Formal_Acks | Ringrazio Other_ACKS;
2 Formal_ACKS -> PROF per suggerimenti a vario titolo durante la

stesura della tesi;
3 PROF -> Giancarlo Bigi | Antonio Cisternino | Massimo Torquati;
4 Other_Acks -> Friends per REASONS | Family per REASONS;
5 REASONS -> l’aiuto o suggerimenti durante la stesura della tesi |

la compagnia | il delirio notturno | avvermi offerto una
birra quando ormai volevo tornare a casa | avermi salvato da
un investimento (da parte di un’auto) | la pazienza incessante
dimostrata | avermi mantenuto agli studi | aver sentito un

sacco di cavolate | i viaggi (mentali e non);
6

7 Friends -> GIRLFRIENDS | Antonella C. | Antonella N. | Claudia |
Bob | Raffo | Sasa’ | Giuseppe Doto | Francesco Tribenga
Quaranta | MV | Zoba | Lallotta | Billy , Samba , Papa etc |
Antonia Anna Rosa Maria etcetcetc | Stefania | Luca | Cesare
| Margherita | Daniele C. | Michele | Jacopo | Eleonora P. |
Marco G. | Roberto L. | Marco P. ... ;

8 GIRLFRIENDS -> Laura;

Listing 3: Grammatica dei ringraziamenti

Figure 3: A lavorare!

Si noti che il linguaggio dei ringraziamenti generati
dalla grammatica non risulta essere esaustivo e contem-
poraneamente contiene più ringraziamenti del dovuto,
esattamente come la grammatica del Makefile. Lo
sviluppo di una grammatica corretta è parte dei lavori
futuri. Per tale ragione abbandoneremo l’approccio for-
male per ringraziare, invece, una persona alla volta.

Iniziamo quindi dai colleghi, ringraziando Marco
Grandi (Figura 3) per essere stato un ineffabile com-
pagno di studio da Marzo ad oggi e soprattuto per
avermi ricordato in continuazione che ’sti terroni non
lavorano abbastanza. Gratzias meda fintzas a Roberto
Ladu, pro m’aer cussizadu de m’iscriere a custu cursu de Laurea.

Thanks to all of my C.S. and Networking colleagues, with whom I shared most
of my time at least in the first years of the degree and when I was able to get up
on time.
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(a) Eleonora impegnata in attività lecite.
Non spreca alcol.

(b) La Sili all’apice della sua eleganza

Figure 4: Individue informatiche.

Le ragazze di informatica sono troppe per essere nominate tutte. Ma come
dimenticare Margherita (visibile in tutta la sua grazia in Figura 4b), che ringrazio
aver portato costantemente "allegria", anche quando poteva non farlo, in un
dipartimento altrimenti triste e buio e Eleonora (Figura 4a), con la sua proverbiale
contesa con Marco Grandi riguardo allo spreco di alcool, le sue apparizioni in
perenne ritardo e il pigiama cucito sulla pelle.

Alle due viterbesi: tenete duro, il Piano Marshall 2 per la vostra provincia sta
arrivando, serviva giusto il tempo di laurearci.

Un grazie particolare a Tribenga e Doto (Figura 5) per le multiple ... fregature
(è pur sempre una tesi) raccattate in Spagna. Secondo me sarebbe il caso di
iniziare a frequentare il Nord Europa. Purtroppo a Doto non sono bastate e ha ben
deciso di fare un’erasmus a Madrid. Si ringrazia anticipatamente l’agenzia funebre
che ci riporterà le sue spoglie truffate a morte. Tribenga invece ha saggiamente
migrato verso il Nord Italia a seguire i dollaroni. Aspettiamo sue notizie da
allora, ma voci di corridoio dicono che sia diventato il capo dei broker milanesi.
Un grazie in anticipo perchè sento già che la prossima crisi sarà colpa tua.

Grazie ad Antonia Turi, venditrice seriale (una sera mi son distratto e mi son
trovato sul groppone un mutuo per una casa in Tibet), psicopatica, zitella (si fa
per dire) e convinta di essere la più bella di Pisa.

Come non menzionare le persone che hanno aiutato il mio fegato a soffrire
durante questi anni. Oltre ai precedenti Stefania (desparecida con le lasagne),
Antonella Nisi (e il suo superpotere), Antonella Catte (che non ha superpoteri,
ma ha un bel salotto presso p.za Sant’Omobono), Bob (con Claudia) e Claudia
(coi gatti e altro bestiame vario) , Sasà (mbriacone), Raffo (che conquista), MV
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Figure 5: Due persone sperdute.

(che risulta sempre misteriosa) e todos los otros1 hanno portato un contributo
cruciale nel farmi passare dei bei week-end etilici. Siccome questo documento
finirà su ETD e lì risiederà per tempo imperituro, la maggiore motivazione per
fare questa tesi è stata la mia volontà di danneggiarvi la reputazione. Alcuni dei
summenzionati individui sono visibili in Figura 6. Le altre persone che hanno
attraversato serate, giornate e occupazioni pisane sono innumerevoli. Mi sembra
che visto il numero enorme di persone ringraziate, vi potete accontentare della
grammatica (se ci siete) oppure consideratevi citati in qualche anfratto del mio
cervello.

Figure 6: Alcune persone molto serie

1spagnolo impeccabile.
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Tra le non-persone (orwellianamente parlando, per carenza di ortodossia), un
grazie a Lallotta (con la quale mi scuso, perché in questo momento mi attende al
Fibonacci a suo rischio e pericolo), Zoba, Matteo, Carmen, Francesco, Lucheddu
e Simona dell’oramai estinta Arbeschida.

Grazie alla piantina nell’angolo del Dipartimento, per essere una fonte di
ossigeno fondamentale, mentre aspetto di capire come si possa fare la fotosintesi.

Un enorme grazie a Laura (Figura 7) per aver sopportato tutti i miei deliri
per anni e anni. Non deve essere stato facile avere a che fare con tutti i miei
scleri: gli ultimi mesi ancora di meno. Senza la sua presenza e pazienza sarebbe
stato tutto molto più difficile. Grazie.

Figure 7: Una persona estremamente paziente. In primo piano una studentessa
di Giurisprudenza.

Ultimi, ma non perciò meno importanti i miei soci finanziatori e i miei co-
debitori: i miei genitori e i miei fratelli, i quali sono sempre stati presenti a livello
di bonifico i primi e a livello di prestito gli altri.

Meta-ringraziamenti

Si ringrazia Cesare per il prezioso aiuto nello scrivere i ringraziamenti, Luca per
essersi rotto ed essere diventato irrimediabilmente autistico ed infine i ringrazi-
amenti stessi per esserci sempre stati dandomi la possibilità di sfogarmi libera-
mente.
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