
University of Pisa

Department of Civil and Industrial Engineering

Master Degree in Chemical Engineering

Master Thesis

Analogies between Internal Model Control
and Predictive Control algorithms

Supervisors:

Dr. Ing. Gabriele PANNOCCHIA

Dr. William P. HEATH

Prof. Ing. Claudio SCALI

Candidate:

Marina POLIGNANO

December 2015



” Volli, e volli sempre, e fortissimamente volli.”

Vittorio Alfieri



Contents

Contents i

List of Figures iv

List of Tables vi

Abbreviations vii

Symbols viii

Abstract x

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Internal Model Control 4
2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Continuous time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Tuning rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1.1 Model decomposition . . . . . . . . . . . . . . . . . . . . 5
2.2.1.2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Sensitivity functions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Discrete time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1.1 Model decomposition . . . . . . . . . . . . . . . . . . . . 11
2.3.1.2 Removal of ringing zeros . . . . . . . . . . . . . . . . . . 13
2.3.1.3 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Sensitivity functions . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Open loop unstable plants . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Optimal control and estimation 17
3.1 Controllability, stabilizability and observability for Linear Systems . . . 17
3.2 Linear quadratic regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Luenberger observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

i



3.4 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Linear Quadratic Gaussian control . . . . . . . . . . . . . . . . . . . . . . 23

3.5.1 Steady-state problem . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Model Predictive Control: offset-free design using disturbance models . 24

3.6.1 Disturbance model and observer . . . . . . . . . . . . . . . . . . . 25
3.6.1.1 Analogies between LQG and MPC . . . . . . . . . . . . 27

3.6.2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6.2.1 Steady-state optimization . . . . . . . . . . . . . . . . . . 28
3.6.2.2 Dynamic optimization . . . . . . . . . . . . . . . . . . . 29

4 Proposed Observer Based IMC structure 32
4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Open loop stable plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Algebraic equivalence of two different systems . . . . . . . . . . . 34
4.2.2 Introduction of a transformation block . . . . . . . . . . . . . . . . 35
4.2.3 Sensitivity functions . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.3.1 Observer block trasfer functions . . . . . . . . . . . . . . 36
4.2.3.2 CL transfer functions . . . . . . . . . . . . . . . . . . . . 38

4.3 Open loop unstable plants . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 IMC controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 CL transfer functions . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Applications: linear systems 45
5.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 First order plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Open loop stable plant . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.1.1 Nominal case . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.1.2 Non-nominal case: robustness analysis . . . . . . . . . . 47

5.2.2 Open loop unstable plants . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.2.1 Nominal case . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.2.2 Non-nominal case: robustness analysis . . . . . . . . . . 54

5.3 Second order plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.0.3 Nominal case . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.0.4 Robustness analysis . . . . . . . . . . . . . . . . . . . . . 61

5.4 Integrating plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.1 Definitions and problems of an integrating plant . . . . . . . . . . 65
5.4.2 Parametric analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.2.1 Parametric analysis for τ . . . . . . . . . . . . . . . . . . 67
5.4.2.2 Parametric analysis for λ . . . . . . . . . . . . . . . . . . 68

6 Applications: simulated industrial process 75
6.1 Process summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.1 Interactions and relative gain array . . . . . . . . . . . . . . . . . 78
6.2.2 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.3 Performance and comparison with IMC . . . . . . . . . . . . . . . 82

6.2.3.1 Reference tracking problem . . . . . . . . . . . . . . . . 82



6.2.3.2 Disturbance rejection problem . . . . . . . . . . . . . . . 83

7 Summary and conclusions 86
7.1 Other research possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A The Q parametrization 88
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.2 Augmented controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B Calculation of Sensitivity functions for DOB-IMC 90
B.1 Reference tracking problem . . . . . . . . . . . . . . . . . . . . . . . . . . 90
B.2 Disturbance rejection problem . . . . . . . . . . . . . . . . . . . . . . . . . 91

C Matlab codes 93
C.1 Open loop stable plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
C.2 Open loop unstable plants . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
C.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

C.3.1 Algebraic Equivalent System calculation . . . . . . . . . . . . . . 97

Bibliography 99

Ringraziamenti 101

Acknowledgements 103



List of Figures

2.1 Internal Model Control block diagram . . . . . . . . . . . . . . . . . . . . 5
2.2 Classic FB control block diagram . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 IMC sensitivity functions for continuous time system (2.3) . . . . . . . . 9
2.4 IMC response for a step-like input for continuous time system (2.3) . . . 10
2.5 IMC sensitivity functions for discrete-time system (2.11) . . . . . . . . . 15
2.6 IMC response for a step-like input for the discrete time system (2.11) . . 15

3.1 Linear Quadratic Gaussian Control . . . . . . . . . . . . . . . . . . . . . 23
3.2 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 DOB-IMC block diagram for open loop stable plants . . . . . . . . . . . 33
4.2 DOB-IMC block diagram for open loop stable plants, with the transfor-

mation block H 4.2a: step-like disturbance 4.2b: disturbance with a cer-
tain dynamics Pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 DOB-IMC, observer block . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 DOB-IMC Sensitivity functions for open loop stable plants . . . . . . . . 39
4.5 DOB-IMC block diagram for open loop unstable plants . . . . . . . . . . 40
4.6 DOB-IMC Sensitivity functions for open loop unstable plants, 4.6a: for a

step-like disturbance occurring on the output 4.6b: for an input distur-
bance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 First order OL stable system, nominal responses for different values of λ 47
5.2 First order OL stable system, closed loop transfer functions: 5.2a: com-

plementary sensitivity 5.2b: sensitivity . . . . . . . . . . . . . . . . . . . 48
5.3 First order OL stable system, Bode diagram of multiplicative uncertainty

lm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 First order OL stable system, Bode diagram for robust stability . . . . . . 50
5.5 First order OL stable system, Bode diagram for robust stability; detail of

the tangency point between l−1
m and T . . . . . . . . . . . . . . . . . . . . 50

5.6 First order OL stable system, comparison between nominal response,
and uncertain response (σ = 25%) . . . . . . . . . . . . . . . . . . . . . . 51

5.7 First order OL stable system, comparison (in nominal conditions) be-
tween IMC, MPC and DOB-IMC . . . . . . . . . . . . . . . . . . . . . . . 52

5.8 First order OL unstable system, nominal responses for different values
of λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.9 First order OL unstable system, closed loop transfer functions: 5.9a: com-
plementary sensitivity 5.9b: sensitivity . . . . . . . . . . . . . . . . . . . 55

iv



5.10 First order OL unstable system, robustness test: parametric analysis for
different values of the state feedback parameter R f b 5.10a shows response
for R f b = 0.1 5.10b shows resposes for the other values of R f btested . . . 56

5.12 First order OL unstable system, comparison between nominal an uncer-
tain response (σ = 25%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.11 First order OL unstable system, robustness test: parametric analysis for
different values of the filter constant . . . . . . . . . . . . . . . . . . . . . 57

5.13 First order OL unstable system, comparison (nominal case) between MPC
and DOB-IMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.14 First order OL unstable system, comparison between MPC and DOB-
IMC for different value of λ . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.15 Second order OL stable system, nominal response for different values of
λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.16 Second order OL stable system with inverse response, closed loop trans-
fer functions 5.16a: complementary sensitivity 5.16b: sensitivity . . . . . 61

5.17 Second order OL stable system with inverse response, Bode diagram for
robust stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.18 Second order OL stable system with inverse response, comparison be-
tween nominal response and uncertain response (σ = 25%) . . . . . . . . 63

5.19 Second order OL stable system with inverse response, comparison (nom-
inal case) between IMC, MPC and DOB-IMC . . . . . . . . . . . . . . . . 64

5.20 Integrating plant, time response for different choices of τ . . . . . . . . . 67
5.21 Integrating plant, zoom on time response for different choices of τ . . . 67
5.22 Integrating plant, closed loop transfer functions for different values of τ

5.22a: complementary sensitivity 5.22b: sensitivity . . . . . . . . . . . . 68
5.23 Integrating plant, time response for different choices of λ . . . . . . . . . 69
5.24 Integrating plant, closed loop transfer functions for different values of λ

5.22a: complementary sensitivity 5.22b: sensitivity . . . . . . . . . . . . 70
5.25 Integrating plant, comparison (nominal case) between IMC, MPC and

DOB-IMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.26 Integrating plant, detail of comparison between IMC, MPC and DOB-

IMC for the case of a change in set point . . . . . . . . . . . . . . . . . . 73
5.27 Integrating plant, comparison (nominal case) between IMC, MPC and

DOB-IMC, with an increased value for R f b, with a particular zoomed on
Figure 5.27b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 Shell oil fractionator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Shell oil fractionator with decentralized controllers . . . . . . . . . . . . 79
6.3 Time responses for different choices of λ1, λ2, λ3: 6.3a: y1, composition

of top draw 6.3b: y2, composition of side draw 6.3c: y3, bottoms reflux
temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Time response, comparison between DOB-IMC and IMC for a change in
set point of system 3 6.3a: y1, composition of top draw 6.3b: y2, compo-
sition of side draw 6.3c: y3, bottoms reflux temperature . . . . . . . . . . 84

6.5 Time response, comparison between DOB-IMC and IMC for an input
disturbance 6.5a: y1, composition of top draw 6.5b: y2, composition of
side draw 6.5c: y3, bottoms reflux temperature . . . . . . . . . . . . . . . 85



List of Tables

6.1 Classification of each variable with its role and symbol . . . . . . . . . . 77
6.2 Transfer functions for the MIMO process . . . . . . . . . . . . . . . . . . 77
6.3 Transfer functions of unmeasured disturbances . . . . . . . . . . . . . . . 77
6.4 Observers Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5 Tuning Parameters DOB-IMC for the multivariable system ”Shell oil frac-

tionator” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vi



Abbreviations

SISO Single Input Single Output

MIMO Multiple Input Multiple Output

OL Open Loop

CL Closed Loop

FB FeedBack

IMC Internal Model Control

PR Phisical Realizability

LQG Linear Quadratic Gaussian

MPC Model Predictive Control

s.t. subject to

DOB-IMC Disturbance Observer Based Internal Model Control

AE Algebraic Equivalent

iff if and only if

FOPTD First Order Plant with Time Delay

SOPTD Second Order Plant with Time Delay

RGA Relative Gain Array

vii



Symbols

R Set of real numbers

Rn Euclidean space of dimension n

Rn×n Matrix of dimension n× n

A Matrix of the states

B Matrix of the inputs

C Matrix of the outputs

C Classic FB controller (in Chapter 2)

F Stabilizing state feedback adopted in DOB-IMC

G Model

H Transformation matrix

J Cost function of optimal control problem.

K Solution of Discrete Algebraic Riccati Equation

K f Kalman filter

L Luenberger observer

N Horizon length

P Plant

Q IMC controller

Qobs Weighting matrix for the choice of the observer (for states)

Robs Weighting matrix for the choice of the observer (for inputs)

x Vector of system states

u Vector of system inputs

y Vector of system outputs

d Disturbance

viii



r Set point

e Prediction error

x̂ Vector of estimated states of system
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Internal Model Control (IMC) is a well-known control strategy provided with simple

tuning rules requiring a model in order to control a given single-input single-output

plant; furthermore, it allows an easy and straightforward closed-loop analysis. How-

ever, it has some limitations. For instance, it cannot be applied to open-loop unstable

plants, it does not cope easily with constraints, and disturbance rejection may be slug-

gish for disturbances other than output steps.

On the other hand, Model Predictive Control (MPC), that still requires the definition of

a model, has no limitation from the point of view of the nature of the plant, but it does

not give allows simple CL analysis.

IMC and MPC have many common features but, at the same time, they are also quite

different control strategies: the goal we want to achieve in this work is to find a com-

promise between them that should have advantages of both control structures.

In this work a Disturbance Observer Based Internal Model Control (DOB-IMC) structure is

proposed: it works with an augmented model, classical IMC controller design is left

unchanged, while the block standing for the model has been replaced by an observer

block, where predicted states are ”filtered” through a Luenberger observer, known to

deal better with dynamic disturbances rather than classic IMC deadbeat observer.
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Afterwards, this structure has been extended to open-loop unstable plants through ap-

plication of the Q parametrization, and to integrating plants as well.

The effectiveness of this control scheme has been validated through several simula-

tions: first, different kind of Single-Input Single-Output linear systems have been tested;

then, as a pratical application, the multivariable ”Shell oil fractionator” case study has

been simulated with unmeasured disturbance.
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Chapter 1

Introduction

1.1 Motivation

Internal Model Control (IMC) and Model Predictive Control (MPC) are two different

and well-known strategies in their field: indeed, literature is full of papers and books

describing these control structures, with their own features and properties.

Moreover, literature is also full of papers talking about their affinities and diversities:

in fact, at the same time there can be found several differences and analogies among

them: it is common to think that MPC comes out from IMC, but it is important to

identify what they commonly share and what they does not.

IMC is a solid control structure applicable to open-loop stable plants, since it gives

good responses and, at the same time, it lends itself to transparent and straightforward

closed-loop analysis, even in front of plant-model mismatches. One of the disadvan-

tages of IMC is that it is not that much versatile, since, for instance, it cannot be applied

to open-loop unstable plants, it does not deal well with saturated actuators, etc.

On the other side, MPC is much more versatile because it does not suffer from any

restriction due to the nature of the plant, it copes very well with constraints and always

gives an optimal response, since MPC control strategy minimizes a given cost function;

however, closed-loop analysis of a system controller through Model Predictive Control

is not easy and straightforward as it used to be in IMC.

In order to find ”analogies between Internal Model Control and Predictive Control Al-

gorithms”, attention must be focused on shared features that can be helpful in finding

a rearranged control structure which could be placed in the middle between these two.

Both of them requires a model in order to control a given plant: this is a very important

aspect in this work, since a lot of attention will be focused on how this two models

1



Chapter 1 Introduction

are built. Then, MPC requires the adoption of an observer for model dynamics: IMC

structure does not need it, though it can be seen like a particular situation in which

there is adopted a particular kind of observer.

Furthermore, Q parametrization has been here investigated, principally for two reasons:

the first is that this parametrization gives instructions about stabilizing any controller

provided with a stable transfer function, and second because IMC can be considered

as a particular example of application of this parametrization; it has been very useful

for the extension of the theory here devoloped for open-loop stable plants to open-loop

unstable plants.

Here there will be explained the development and the features of a single-input single-

output control structure which has most of elements belonging IMC, but with some

innovations brought by MPC and Linear Quadratic Gaussian (LQG) control strategy.

All the implementations here have been done in dicrete-time domain, principally in

state space, even if mostly of the analisys will be still explained using Laplace transform

in continuous time, for a matter of clearness and simplicity.

1.2 Literature review

Finding an interface between these two control structures has become a quite popular

task, so literature is provided with a lot of previous works trying to find similarities

between them.

Among the huge amount of papers and books, there can be remembered Morari and

Zafiriou [13] which developed an IMC version for open-loop unstable plants; Scali et al.

[18, 19] developed an analytical design for Linear Quadratic Optimal Control provided

with optimal ISE controller and filter; Amobrose and Heath, [2], worked on an IMC for

Input-Constrained Multivariable Processes, following anti-windup instructions given

by Zheng in [22]; Youla et al. in [21] and Kučera in [10] developed a parametrization of

all stabilizing controllers, that, even if is not directly linked to IMC, has been one of the

key point of this dissertation project.

All these precedent works have been here taken into account to develop a Disturbance

Observer Based Internal Model Control structure.

2



Chapter 1 Introduction

1.3 Thesis overview

This disseration is made up of 7 chapters:

• In the current Chapter, the aim of this project has been discussed, together with

a brief description of the principal features and problems of the control strategies

here investigated.

Moreover, there are also some examples of common features of the two structures

and a literature review, where some of the principal references here adopted are

listed.

• In Chapter 2 Internal Model Control has been analyzed in depth: first, it has been

developed in continuous time through Laplace Transform, and then the entire

discussion has been turned into a discrete-time context. Sensitivity functions have

been furthermore implemented.

• In Chapter 3 there is a quick summary of notes about optimal control: in partic-

ular, we can first find a list of basic definitions, then there is the optimal control

problem expressed in terms of minimization of a cost function J, and then some

typical strategies of resolution of the optimal control problem are listed, such as

Receding Horizon or H∞ control. Finally LQG and MPC control structure have

been described.

• Chapter 4 is the heart of the theory of this thesis, since proposed Disturbance

Observer-Based IMC structure is here presented, provided with two different

configurations: open-loop stable plants and open-loop unstable plants frame-

work, namely an extension of the open-loop configuration to which Q parametriza-

tion has been applied; sensitivity functions for these ”new” structures have been

derived as well.

• In Chapter 5, DOB-IMC has been tested on several linear systems, each of them

exhibits a specific feature; moreover, robustness has been here tested adopting

the Robust Stability criterion suggested by [13], where possible. Plants analyzed

are: first order with time delay both stable and unstable processes, a second order

stable process provided with time delay and inverse response, and an integrating

plant.

• In Chapter 6 we pass from theoretical applications to a more practical one: in

fact, DOB-IMC has been here applied to a well-known case study, the Shell Oil

Fractionator, developed following instructions given by [12]

• Chapter 7 is the chapter of Conclusions, when results are pointed out and sum-

marized, giving furthermore new possible research directions.

3



Chapter 2

Internal Model Control

The starting-point of this dissertation project is Internal Model Control structure: in fact,

the criterion adopted in this work is to begin looking at the IMC structure, modifying

it little by little, in order to obtain a new control scheme that can be compared to the

optimal ones, that are LQG and MPC (described in 3); so, it is really important to de-

scribe in a detailed way Internal Model Control, in order to well understand features

and properties belonging to this control structure.

2.1 Structure

Figure 2.1 shows Internal Model Control structure: it is basically made up of

• a Controller, Q(s), whose tuning rules will be widely delineated in Section 2.2.1

and 2.3.1;

• a Plant, P(s);

• a Model, G(s).

This control structure is basically based on the inversion of the model G(s): this implies

that the more G(s) is close to real structure of the plant P(s), the better results can be

achieved, and the more robust is the output y(s).

2.2 Continuous time

First, a continuous time version of IMC has been developed following instructions

given by [13] ; then, the entire structure has been converted in discrete-time in Sec-

tion 2.3 : so, a brief decription of both schemes has been provided.

4



Chapter 2 Internal Model Control

FIGURE 2.1: Internal Model Control block diagram

2.2.1 Tuning rules

IMC controller Q is based on the inversion of the model G; this implies that both plant

and model need to be OL stable and, furthermore, that the model needs the be decom-

posed into Minimum Phase and Non-Minimum Phase part:

G(s) = Gnmp(s)Gmp(s) (2.1)

The non-minimum part system of G(s) includes non-invertible terms, that are terms

that would make the controller Q(s) unstable: these system parts are, specifically

• Time delays, Gtd(s) = e−θs;

• Zeros ∈ RHP, Gpz(s) =
−αs + 1
αs + 1

with α > 0;

2.2.1.1 Model decomposition

The decomposition of the model is made up of steps: as an example, consider a second

order orocess with time delay (SOPTD) , namely

G(s) = e−θs −αs + 1
(τ1s + 1)(τ2s + 1)

(2.2)

with α > 0, τ1 > 0, τ2 > 0

1. Factorization

G =

(
1

(τ1s + 1)(τ2s + 1)

)
(−αs + 1) e−θs

5



Chapter 2 Internal Model Control

2. Building of the All-Pass filter

G =
αs + 1

(τ1s + 1)(τ2s + 1)︸ ︷︷ ︸
MinimumPhase

−αs + 1
αs + 1

e−θs︸ ︷︷ ︸
Non−MinimumPhase

The decompositions for model G are

Gmp =

(
αs + 1

(τ1s + 1)(τ2s + 1)

)

Gnmp =

(
−αs + 1
αs + 1

e−θs
)

In numerical terms, let be

P(s) = G(s) =
−3s + 1

(5s + 1) (2s + 1)
e−2s (2.3)

so, steps are

1. Factorization

G =
1

(5s + 1) (2s + 1)
(
(−3s + 1)e−2s)

)
2. All-Pass Filter

G =
3s + 1

(5s + 1) (2s + 1)︸ ︷︷ ︸
MP

e−2s−3s + 1
3s + 1︸ ︷︷ ︸

NMP

thus, the non-minimum and minimum part of the model are

Gmp =
3s + 1

(5s + 1) (2s + 1)

Gnmp = e−2s−3s + 1
3s + 1

6



Chapter 2 Internal Model Control

2.2.1.2 Controller

Let X be the Input to the control loop, that could be a Reference signal, r whether

a disturbance d; the nominal controller is built as follows (please see [13] for further

informations):

Qnom = f (G, X) = (GmpXmp)
−1{G−1

nmpXnmp}∗

• Xmp is the Minimum Phase of the input X;

• The terms in curly braces {. . . }∗ stands for the elimination of unstable terms;

• For Minimum Phase Models, i.e. G = Gmp, we have Qnom = G−1
mp = G−1

m ;

• For step input, we have Qnom = G−1
mp.

Remark: For the aim of this thesis, Reference Signal will always be a step input; thus,

the algorithm adopted in this discussion is, in a simpler way

Qnom = G−1
mp

In case of inputs provided with their own dynamics, X needs to be decomposed in the

same way as seen for G in Section 2.2.1.1.

Since Qnom requires a model inversion, it is sometimes necessary to implement a Filter

for the Physical Realizability of the controller , making sure that

npoles ≥ nzeros (2.4)

Moreover, together with the filter, the only tuning parameter, λ appears in the structure.

IMC filter structure is different, depending on the type of the plant

• type-1 filter,

F(s) =
1

(λs + 1)n (2.5)

for step-like inputs;

• type-2 filter,

F(s) =
(nλs + 1)
(λs + 1)n (2.6)

for ramp-like inputs.
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Chapter 2 Internal Model Control

We deal only with step-like inputs, so filter (2.6) will be not taken into account.

λ acts as a sort of detuning, i.e. the higher is λ the smoother is the response, but, as a

consequence, it becomes also more and more sluggish.

Final expression for the controller is

Q = QnomF

For the model (2.3), it has been assumed to be λ = 10; thus, final expression for the

controller is

Q =
(5s + 1) (2s + 1)
(3s + 1) (10s + 1)

Referring to the classical feedback control scheme ( see Figure 2.2 ), the controller takes

the form

C =
Q

1− PQ

FIGURE 2.2: Classic FB control block diagram

where C is the controller of a typical FB structure.

2.2.2 Sensitivity functions

Sensitivity functions are obtained considering the two contributions to the final output

y, respectively yr for the tracking problem and yd for the disturbance problem, accord-

ing to the Superposition principle; then, expression for the output y can be so written:

y =
PQ

1 + Q (P− G)
r +

1− GQ
1 + Q (P− G)

d = yr(s) + yd(s) (2.7)

So, calling S= sensitivy and T= complementary sensitivity

S =
1− GQ

1 + Q (P− G)
(2.8a)
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FIGURE 2.3: IMC sensitivity functions for continuous time system (2.3)

T =
PQ

1 + Q (P− G)
(2.8b)

In the nominal case, namely P = G, S and T are reduced to

S = 1− GQ (2.9a)

T = GQ (2.9b)

This implies linear expressions between inputs and outputs. In Figure 2.3 there are

Bode diagrams for (2.3), for which T and S are described by (2.9b) and (2.9a), since

we are considering the nominal case; responses for step inputs are shown Figure 2.4:

we can see response for a step-like change in set point (blue line), and response for a

step-like disturbance (red line).

2.3 Discrete time

IMC is commonly described in continuous time, but for the aim of this project, it needed

to be turned into a discrete-time IMC, since MPC and LQG will be here implemented in

discrete-time domain: this conversion needs some preliminary steps, such as:

1. Sample time choice, Ts: it can be taken, following an empirical rule, as

Ts = 0.1÷ 0.2 min(τ, θ)

As a rule, sampling interval must be multiple of constant delay; in this work, Ts

has been usually taken equal to 1.
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FIGURE 2.4: IMC response for a step-like input for continuous time system (2.3)

2. Conversion from Laplace transform to z-transform, through Matlab command

c2d;

3. Passage from z-transform to state-space model, when necessary1 (ss command).

A model in state space is represented by the following equations:

 xk+1 = Axk + Buk

yk = Cxk + Duk

(2.10)

with A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n, D ∈ Rp×p. When working with strictly

proper plants (this is the case), D = 0; otherwise, if npoles = nzeros, D 6= 0. Fur-

thermore, here a SISO system has been described, where p = 1.

Converting model (2.3) with a sample time of Ts = 0.1min (τ1, θ) = 0.5s, model in z

transform becomes

G(z) = z−4 −0.072886 (z− 1.289)
(z− 0.9048) (z− 0.7788)

(2.11)

Converting G(z) in a state-space model, we obtain the following set of matrices:

1MPC is completely developed in state-space variables. In IMC instead, there is the first part, i.e. the
tuning, in z-transform domain; once the model is decomposed as seen in Section 2.2.1.1, control loop will
be solved using state-space

10



Chapter 2 Internal Model Control

A =



0 1.135 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0.7788 1

0 0 0 0 0 0.9048


, B =



0

0

0

0

0

0.5



C =
[
0.1655 −0.1458 0 0 0

]
, D = 0

2.3.1 Tuning

Similarly to Section 2.2.1.1, IMC controller in discrete time needs model decomposition;

so, again

G(z) = Gnmp(z)Gmp(z)

where Gnmp contains:

• Zeros outside the unit circle, i.e. |z| > 1 (the corresponding for positive zeros in

continuous domain);

• Zeros whose value is close to the point (-1,0); they may cause ringing, a phe-

nomenon because of which the control output y shows ripple around the steady-

state value.

• Time delays, i.e. z−k.

2.3.1.1 Model decomposition

In order to explain the decomposition process steps, I assume the model to be a Second

Order Process with Time Delay (SOPTD), namely

G(z) = z−k z− a1

(z− p1)(z− p2)

with |a1| > 1 ; in other words, G(z) has a zero outside the unit circle.

G(z) could be splitted adopting the following instructions, taken from [4]:

11



Chapter 2 Internal Model Control

1. Factorization of all the zeros outside the unit circle, time-delays and ringing zeros;

G(z) =
1

(z− p1)(z− p2)
z−k(z− a1)

2. Building the All-Pass Filter

G(z) =
z− 1

a1

(z− p1)(z− p2)
z−k (z− a1)(

z− 1
a1

)
3. Normalization of the function, making sure that Gnmp(1) = 1 and Gmp(1) = G(1)

G(z) =

(
z− 1

a1

)
(1− a1)

(z− p1)(z− p2)

(
1− 1

a1

)
︸ ︷︷ ︸

MinimumPhase

z−k
(z− a1)

(
1− 1

a1

)
(

z− 1
a1

)
(1− a1)︸ ︷︷ ︸

Non−MinimumPhase

finally,

Gmp(z) =

(
z− 1

a1

)
(1− a1)

(z− p1)(z− p2)

(
1− 1

a1

)

Gnmp(z) = z−k
(z− a1)

(
1− 1

a1

)
(

z− 1
a1

)
(1− a1)

As in continuous time, an example will make these concepts clearer.

Take (2.11) as model: the steps for decomposing G(z) are

1. Factorization

G(z) =
(

−0.072866
(z− 0.9048) (z− 0.7788)

)(
z−4 (z− 1.289)

)
2. Building the All-Pass Filter

G(z) =

 −0.072866
(

z− 1
1.289

)
(z− 0.9048) (z− 0.7788)


z−4 (z− 1.289)(

z− 1
1.289

)


12



Chapter 2 Internal Model Control

3. Normalization for the adjustment of gains

G(z) =
−0.072866

(
z− 1

1.289

)
(1− 1.289)

(z− 0.9048) (z− 0.7788)
(

1− 1
1.289

)
︸ ︷︷ ︸

MP

z−4
(z− 1.289)

(
1− 1

1.289

)
(

z− 1
1.289

)
(1− 1.289)︸ ︷︷ ︸

NMP

and, finally

Gmp = 0.0939
(z− 0.7759)

(z− 0.9084) (z− 0.7788)

Gnmp = −0.77591z−4 (z− 1.289)
(z− 0.7759)

2.3.1.2 Removal of ringing zeros

Once the Minimum Phase model is built, it is necessary to eliminate all those zeros in

Gmp(z) which may give ringing in the output.

Ringing could be avoided replacing these zeros with zeros in the origin (which, in the

controller, will become poles in the origin).

So, if P is the number of ”ringing zeros” in the minimum phase part of G(z), the ex-

pression for Gmp(z) becomes

Gmod
mp (z) = Gmp(z) · zP ∏P

j=1(1− φj)

∏P
j=1(z− φj)

with φj as ringing zeros.

2.3.1.3 Controller

The design of a discrete-time IMC controller is exactly the same as the one done in

continuos time (see Section 2.2.1.2; as in Laplace transform, Q still needs a filter for

the PR; the discrete-time filter constant α is related to λ in (2.5) through the following

expression:

α = e−
Ts
λ

and the expression of type-1 filter in z-transform is the following:

13



Chapter 2 Internal Model Control

F(z) =
(1− α)z−1

1− αz−1 =
(1− α)

(z− α)
(2.12)

and it makes Q(z) Physically Realizable; furthermore, as said in continuos time, λ is

also a detuning parameters, since it manages to attenuate the effect of control input uk.

In the example with (2.11) as model, IMC phisically realizable controller is

Q(z) = 10
(z− 0.9084) (z− 0.7788)

z− 0.7759
(1− α)

(z− α)

keeping λ = 10 as it was in continuous time, α is 0.9512.

2.3.2 Sensitivity functions

T and S are exactly the same as in continuous time, previously described (Sec 2.2.2):

their expressions are:

S =
1− GQ

1 + Q (P− G)
(2.13a)

T =
PQ

1 + Q (P− G)
(2.13b)

In the nominal case P = G, S and T are reduced, simply, to

S = 1− GQ (2.14a)

T = GQ (2.14b)

Trends of sensitivites for system (2.11) are shown in Figure 2.5, while response for step-

like set point change (blue line) and disturbance (red line) are shown in Figure 2.6.

2.4 Open loop unstable plants

Internal Model Control is a control structure developed on purpose for OL Stable Plants:

in fact, for its own features, it is not able to stabilize the closed-loop sistem in the case

of unstable plants.

Several attemps to determine an IMC structure for OL Unstable system have been tried:

among them, it is remarkable the example of tuning given by Morari and Zafiriou in

[13], who followed instruction given by Youla et al. in [21].
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FIGURE 2.5: IMC sensitivity functions for discrete-time system (2.11)
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FIGURE 2.6: IMC response for a step-like input for the discrete time system (2.11)

Consider a plant with k poles pi ∈ RHP: define the allpass

bp(s) =
k

∏
i=1

−s + pi

s + pH
i

(2.15)

Theorem 1. Assume, in the nominal case, that P = G has k unstable poles at p1, . . . pk ∈
RHP and l poles in the origin. Assume, furthermore, that there exists Q0 that stabilizes

P. Then, all controllers which stabilize P are parametrized by

Q = Q0 + b2
ps2lQ1 (2.16)

with Q1 as whatever stable transfer function.
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Chapter 2 Internal Model Control

This result uses same principles adopted in Chapter 4 for the development of a DOB-

IMC for unstable plants, but it is still quite close to IMC configuration. The one we

adopted, instead, is on purpose closer to optimal control structures like LQG and MPC.
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Chapter 3

Optimal control and estimation

Another important part of control theory that needs to be investigated, as it is very

important for the final aim of this work, is optimal control field.

3.1 Controllability, stabilizability and observability for Linear

Systems

Given a linear system

xk+1 = Axk + Buk

yk = Cxk

(3.1)

Definition 1. (3.1) is controllable if and only if, given any initial x0, it is possible to make

xk reach the origin in n steps.

From the previous sentence it can be derived that a linear system (3.1) is said to be

controllable if and only if the matrix

R(A, B) =
[

B AB . . . An−1B
]

has full rank.

R(A, B) is called controllability matrix.

(Hautus Lemma) A linear system (3.1) is controllable if and only if the matrix

[
λI − A B

]
has full rank for any λ eigenvalue of A.
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Chapter 3 Optimal control and estimation

If a system is not controllable, then there exists a transormation matrix T such that

Ã = T−1AT =

[
A11 A12

0 A22

]
, B̃ = T−1B

[
B1

0

]
(3.2)

Defining x̃ =

[
x(1)

x(2)

]
the vector of the states for system (3.2), states x(1) ∈ Rr and x(2) ∈

Rn−r evolve with the following dynamics:

x(1)k+1 = A11x(1)k + B1uk + A12x(2)

x(2)k+1 = A22x(2)k

(3.3)

It can be immediately noticed that state x(2) is not directly controlled by uk.

Definition 2. A lynear system (3.2) is stabilizable if

1. |λ (A22)| < 1

2. rank (R (A11, B1)) = n

Using Hautus Lemma, a linear system (3.1) is stabilizable if and only if the matrix

[
λI − A B

]
has full rank for any |λ (A)| ≥ 1. A matrix whose eigenvalue all stand inside the unit

circle is called Hurwitz.

Definition 3. System (3.1) is observable if, for any t1 > 0, the initial state x0 can be

determined from the time history of the input u(t) and the output y(t) in the time

vector [0, t1]. Observability matrix, O(A, C) is defined as follows:

O(A, C) =


C

CA
...

CAn−1

 (3.4)

and the linear system is observable iff O(A, C) has full column rank.
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Chapter 3 Optimal control and estimation

3.2 Linear quadratic regulator

Consider linear system described by (3.1): we need to be find a control strategy provid-

ing a sequence of control inputs that can be defined optimal.

In linear optimal control, control strategy is obtained solving an optimization problem:

when the problem is quadratic, we have the Linear quadratic regulation (LQR) problem,

which consists of minimizing the following unconstrained cost function:

J (x, u) =
1
2

N−1

∑
k=0

[
xT

k Qxk + uT
k Ruk

]
+

1
2

xT
N PxN (3.5)

subject to

xk+1 = Axk + Buk (3.6)

where u = (u0, . . . uk)
T is a vector of control inputs at different time steps (with 0 < k <

N− 1), R is symmetric and positive definite, Q and P are symmetric and positive semidefinite;

N is a finite number called horizon; furthermore, in LQR problems it is always assumed

that the system is stabilizable.

LQR minimization problem is solved using a dynamic programming, developed by

Bellman [3] and gives an optimal control law, that is

uk = −K0xk (3.7)

which minimizes cost function J.

The dynamics of the Closed Loop system evolves according to the following equation:

xk+1 = (A− BK0) xk (3.8)

hance, CL system is stable if and only if

|λ (A− BK0)| < 1 (3.9)

It is important to notice that this approach, called receding horizon, solves, at each sam-

pling time, an optimization problem over a finite horizon, but it actually applies only

the first element of u. It is possible to demonstrate that, following this method, there is

no warranty that (3.9) is satisfied.
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This aspect led to take into account turning (3.5) into (3.10), where the horizon is not

anymore a finite value, but it goes to infinity, N → ∞:

J (x, u) =
1
2

∞

∑
k=0

[
xT

k Qxk + uT
k Ruk

]
(3.10)

subject to

xk+1 = Axk + Buk (3.11)

Assuming that linear system (3.1) is both stabilizable and controllable, and that Q and

R are positive definite, eq (3.10) gives as solution

uk = −Kxk (3.12)

with

K =
(

R + B′ΠB
)−1 B′ΠA (3.13)

where Π is the solution to the Discrete Algebraic Riccati Equation (DARE):

Π = Q + A′ΠA− A′ΠB
(

R + B′ΠB
)−1 B′ΠA (3.14)

This approach provides CL stability for any value of Q and R.

3.3 Luenberger observer

State estimation problem will be shortly introduced the before talking about observers.

For each sampling k, together with the state xk, there is an estimation of the state, x̂k,

which evolves as a ”copy” of the Plant, with the following dynamics:

x̂k+1 = Ax̂k + Buk (3.15)

The role of the observer in this copy is to ”correct” the estimation equation with a

feedback based on the prediction error:

epred = yk − Cx̂k (3.16)
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where yk is the measured output and Cx̂k the estimated one.

Dynamics evolution of the estimated states together with the observer evolve as fol-

lows:

x̂k+1 = Ax̂k + Buk + L (yk − Cx̂k) (3.17)

with L ∈ Rn×p is the observer gain.

The difference between the actual state and its estimation is called estimation error, ε:

εk = xk − x̂k (3.18)

whose nominal dynamics is

εk+1 = Axk + Buk − Ax̂k − Buk + L (yk − Cx̂k) = (A− LC) εk (3.19)

from which, it is evident that, given any initial value ε0 for k −→ ∞, εk goes to zero if

and only if matrix (A− LC) is Hurwitz.

An observer chosen such that (A− LC) is Hurwitz is called Luenberger observer, while

an observer such that the eigenvalues of (A− LC) are all equal to zero is called deadbeat

observer.

Internal Model Control can actually be considered as a control structure adopting a

deadbeat observer, if we consider model G as a system that evolves as a copy of the

original plant P.

Observer could be chosen in different ways, like using pole placement technique, with

which the observer gain L could be chosen by arbitrary assignment of the poles of the

dynamic matrix A− LC.

3.4 Kalman filter

Pole placement technique is not always the best option: indeed, its action could be too

much aggressive since it places poles too far away from the original system, i.e. from

the eigenvalues of matrix A, making the system ”unnatural”.

A useful way to find an observer definable optimal was suggested by Kalman in [8].

The system is in the form

xk+1 = Axk + Buk + wk

yk = Cxk + vk

(3.20)

with wk and vk are white noises with Q and R as covariances;
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1. choosing a large Q means large process noise (wk) and leads to estimated states

able to respond fast to changes in the measured output;

2. choosing a large R means large output noise (vk) and leads to estimated states

that respond carefully,i.e. slowly, to unexpected changes in the measured output.

Kalman filter K f articulates the calculations of the estimation in two different steps: as

first step, x̂ is updated according to the estimation dynamics (3.15), then the estimation

passes through Kalman filter.

Steps can be summarized as follows:

1. Time update x̂k|k−1 = Ax̂k−1|k−1 + Buk−1

P−k = APk−1AT + Q
(3.21a)

2. Measurement update


K fk = P−k CT (CPk−1CT + R

)−1

x̂k|k = x̂k|k−1 + K fk

(
yk − Cx̂k|k−1

)
Pk = P−k − K fk CP−k

(3.21b)

where P−k is the covariance of the estimated state at time update and Pk is the

covariance of the estimated state at measurement update.

After few measurements, the Kalman filter does not change anymore going ahead with

the iterations; it converges to the Steady-State Kalman filter.

Adopting this observer, dynamics of the estimation error are

εk+1 =
(

A− AK f C
)

εk (3.22)

Relation between Kalman filter and Luenberger Observer is

L = AK f (3.23)
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3.5 Linear Quadratic Gaussian control

Linear Quadratic Gaussian control (LQG) gave birth to MPC, since it is its uncon-

strained version, and is very useful in order to better understand how these optimal

stategies work.

Putting all the elements mentioned and explained in the previous sections together

leads to LQG control scheme: there is a stabilizing state feedback, K, and an observer,

L; an example of LQG block diagram is shown in Figure 3.1

FIGURE 3.1: Linear Quadratic Gaussian Control

This structure is the basic one, it will be well explained and enlarged in following sec-

tions, to explain how it manages to follow the reference signal, rk, and to remove the

effect of disturbances[17].

3.5.1 Steady-state problem

To make LQG reach the Reference Signal and to remove offsets when disturbances

occur, it is necessary to introduce a block which calculates steady-state values for each

sample time, called targets; steady-state system is

xss = Axss + Buss

yss = Cxss

(3.24)

from which

[
xss

uss

] [
I − A −B

C 0

]−1

︸ ︷︷ ︸
M

[
0

yss

]
= M

[
0

yss

]
(3.25)
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with yss equal to the reference signal rk at Ts. Thus, in the controller block in Figure 3.1

it is included both state feedback K and target calculation matrix M .

Adopting deviation variables, that are

x̃k = x̂k − xss (3.26a)

ũk = uk − uss (3.26b)

we can re-define the optimal control law (3.10)

J (x̃, ũ) =
1
2

∞

∑
k=0

[
x̃T

k Qx̃k + ũT
k Rũk

]
(3.27)

which has as solution

ũk = Kx̃k (3.28)

thus

uk = K (x̂k − xss) + uss (3.29)

(3.29) guarantees the output perfectly follows set point and it does not exhibit any offset

left.

3.6 Model Predictive Control: offset-free design using distur-

bance models

Finally, what is missing in this framework is Model Predictive Control (MPC): it took

birth by the end of 70s, and it is nowadays the most widespread advanced control

strategy adopted in industrial processes.

Here it is described a SISO version of a Linear MPC which is the configuration that can

be better compared to IMC and LQG to find analogies and differences.

MPC structure is shown in Figure 3.2: it is made up of several blocks, each of those will

be briefly examined in the following pages.
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FIGURE 3.2: Model Predictive Control

3.6.1 Disturbance model and observer

In order to achieve offset-free performance, model we are working here with MPC is a

augmented, developed as follows:


x̂k+1|k = Ax̂k|k + Buk + Bdd̂k|k

d̂k+1|k = d̂k|k

ŷk = Cx̂k + Cdd̂k|k

(3.30)

This system can be re-written in a more compact way, i.e.

[
x̂k+1|k

d̂k+1|k

]
=

[
A Bd

0 1

] [
x̂k|k−1

d̂k|k−1

]
+

[
B

0

]
uk

yk =
[
C Cd

] [x̂k|k−1

d̂k|k−1

] (3.31)

Here d̂k is an additional state working as a disturbance model, thanks to which it is

possible to remove any offset.

In the framework of this augmented model , state estimation dynamics with observer,

seen in (3.17), becomes

[
x̂k|k

d̂k|k

]
=

[
x̂k|k−1

d̂k|k−1

]
+

[
Lx

Ld

]
ek (3.32)
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Where Lx and Ld make an augmented observer 1.

L =

[
Lx

Ld

]
(3.33)

Even ek is an augmented version for the prediction error:

ek = yk −
[
C Cd

] [x̂k|k−1

d̂k|k−1

]
(3.34)

Putting together (3.31) and (3.34), expression obtained is the one for the so-called Kalman

predictor step:

[
x̂k+1|k

d̂k+1|k

]
=

[
A Bd

0 1

] [
x̂k|k−1

d̂k|k−1

]
+

[
B

0

]
uk +

[
L1

L2

]
ek

yk =
[
C Cd

] [x̂k|k−1

d̂k|k−1

] (3.35)

Matrices Bd and Cd could have different values; a common choice for them and for the

observer is ( [15] )2

Bd = 0, Cd = 1

Lx = 0, Ld = 1

This model allows to choose how the disturbance model works by choice of matrices

Bd and Cd under the only condition that (3.31) has to be detectable; detectability can be

checked as follows ( See [17])

Lemma 1. Augmented system (3.31) is detectable if and only if the pair [A, C]is de-

tectable, and if

rank

[
I − A −Bd

C Cd

]
= n + nd (3.36)

with nd as dimension of the disturbance.

1observers are optimal, chosen as taught by Kalman, and shown in Section 3.4
2For unstable systems, such as control of levels, these matrices requires other values to work
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Corollary 1. The dimension of the disturbance has to be such that the augmented system

is detectable is equal or less than the dimension of the measured ouput: calling ny =

dim(y),

nd ≤ ny

Remark: Since the system investigated is a single input-single output, dimension ny is

necessarily equal to 1, and so is nd.

3.6.1.1 Analogies between LQG and MPC

In Section 3.5 Linear Quadratic Gaussian Control has been investigated, but once an-

alyzed this augmented model, it can be observed that model adopted for LQG can be

considered as a particular sub-category of this augmented model, with

Bd = 0, Cd = 1

Furthermore, LQG could be implemented even choosing different values for Bd and Cd:

in other words, an augmented model can be adopted in LQG, but the expression of the

targets calculation matrix changes: in fact, steady-state dynamics with an augmented

model is the following:


xss = Axss + Buss + Bdd̂k

dss = d̂k

yss = Cxss + Cdd̂k

(3.37)

from which

[
xss

uss

] [
I − A −B

C 0

]−1

︸ ︷︷ ︸
M

[
Bdd̂k

yss − Cdd̂k

]
= M

[
Bdd̂k

yss − Cdd̂k

]
(3.38)
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3.6.2 Controller

Figure 3.2 shows that MPC strategy is made up of two separate blocks:

1. Steady-State Optimization, which calculates optimal values of states and inputs;

2. Dynamics Optimization, which generates a sequence of optimal inputs for a time

window made up of N elements ( N= Prediction Horizon ).

According to the Receding Horizon Control (RHC) strategy, only the first element of

this sequence of inputs is sent to the Plant: hence, for each sampling time, both blocks

repeat their calculations.

3.6.2.1 Steady-state optimization

This block calculates optimal steady-state values,i.e. the targets, for states, xss, input uss

and output, yss.

The optimal steady-state control problem is so defined:

min
xss,uss,yss

(yss − rk)
2 = min

xss,uss,yss

(
y2

ss + r2
k − 2yssrk

)
(3.39)

subject to:

umin ≤ uss ≤ umax (3.40a)

xss = Axss + Buss + Bdd̂k|k (3.40b)

yss = Cxss + Cdd̂k|k (3.40c)

The problem can be written in a compact form:

min
z

(zTHsz + zT f ) (3.41)

subject to:

• Equality Constraints

Aeqz = beq (3.42)
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• Inequality Constraints

Ainz ≤ bind̂k|k (3.43)

with the above matrices and vectors so defined:

z =


xs

us

ys

 , Hs =


0n×n 0 0

0 0 0

0 0 1

 , f =


0n×n

0

−rk



Aeq =

[
A− I B 0

C 0 −I

]
, beq =

[
−Bd

−Cd

]

Ain =

[
0 1 0

0 −1 0

]
, bin =

[
umax

−umin

]

Remark: rk and d̂k|k could change for each sampling, so vector f (and so the solution of

the optimal stady-state problem) must be computed online.

3.6.2.2 Dynamic optimization

As said before, the role of this block is to calculate, for each sample time, a sequence of

optimal control inputs, even if only the first of these inputs is to the plant P.

Given the following Deviation Variables:

x̃j = x̂k+j|k − xss

ũj = uk+j|k − uss

(3.44)

and the Prediction Horizon N, dynamics optimal control problem is defined as:

min
x̃j,ũj

N−1

∑
j=0

(
x̃T

j Qx̃j + ũT
j Rũj

)
+ x̃T

N Px̃N =

min
x̃j,ũj

N−1

∑
j=0

(
x̃T

j Qx̃j + Rũ2
j

)
+ x̃T

N Px̃N

s.t.
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x̃j+1 = Ax̃j + Bũj (3.45)

umin − uss ≤ ũj ≤ umax − uss (3.46)

With Q = CTC, R as a scalar value, and P obtained as solution of the Discrete Algebraic

Riccati Equation (DARE).

We can write all this in a compact way as

min
zd

(zd
T Hdzd + zd

Tq) (3.47)

s.t.

Dzd = e (3.48)

Gzd ≤ h (3.49)

with

zd =



x̃0

ũ0

x̃1

ũ1
...
...

x̃N


, Hd =



Q 0 . . . . . . . . . 0

0 R 0 0
... 0 Q

. . .
...

...
. . . R

. . .
...

...
. . . . . .

...

0 . . . . . . . . . . . . P


, q =



0

0
...
...
...

0



D =



I 0 0 . . . . . . 0

−A −B I 0 0
... 0 −A −B

...
...

. . . . . . . . .
...

...
. . . . . .

...

0 . . . . . . −A −B I


, e =



x̂k|k − xs

0
...
...
...

0


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G =



0 1 0 . . . . . . . . . . . . . . . 0

0 −1 0
. . . . . .

...
...

. . . . . . 0 1
. . .

...
...

. . . 0 −1
. . . . . .

...
...

. . . . . . . . . 0 1 0

0 . . . . . . . . . . . . . . . 0 −1 0


, h =



(umax − uss)

− (umin − uss)
...
...

(umax − uss)

− (umin − uss)


The solution to the quadratic problem calculates at each sampling Ts the vector zd, thus

the control input a time 0 as deviation variable, ũ0, from which the final expression of

desired input uk

uk = ũ0 + uss (3.50)

And uk so obtained is optimal.
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Chapter 4

Proposed Observer Based IMC

structure

In this chapter a Disturbance Observer Based Internal Model Control (DOB-IMC) is

proposed, and its features and properties are delineated.

As first step, there is the presentation of the proposed structure for OL stable plants;

afterwards, the structure has been extended to OL unstable plants, according to in-

structions given by [7, 10, 21].

4.1 Model

The model is represented by the following equations, taken from the MPC control

scheme (the so-called Kalman Predictor Step):

[
x̂k+1|k

d̂k+1|k

]
=

[
A Bd

0 1

] [
x̂k|k−1

d̂k|k−1

]
+

[
B

0

]
uk +

[
L1

L2

](
yk −

[
C Cd

] [x̂k

d̂k

])

ŷk =
[
C Cd

] [x̂k

d̂k

] (4.1)

Hence, instead of the usual model, an augmented one is taken into account, where d̂k

is introduced as additional state.

Furthermore, conventional IMC deadbeat observer is replaced by a Luenberger ob-

server, in order to overcome the poorness of performance that Internal Model Control

normally achieves with the occurrence of a disturbance on control input uk.
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4.2 Open loop stable plants

The modified structure initially proposed for open loop stable plants is shown in Fig-

ure 4.1:

FIGURE 4.1: DOB-IMC block diagram for open loop stable plants

As it can be easily seen from the picture, the block standing for the model in the orig-

inal IMC scheme is replaced by an observer block; moreover, the feedback branch in

this structure is represented by d̂k, which is supposed to replace the conventional IMC

return difference between measured output and estimated one, namely d̃k = yk − Cx̂k.

In this framework controller design is left unchanged and its tuning perfectly follows

the tuning istructions given in Chapter 2.

Remark: In order to make this structure work, it is necessary that what is fed back to the

controller is exactly the same quantity as it used to be in classical IMC, that is

d̂k = d̃k

This is true only if the equations of the model shown in (4.1) collapse to the ones de-

scribing (2.10), that is the conventional model adopted in IMC; this happens only under

certain specific conditions, i.e.

Bd = 0, Cd = 1 (4.2a)

Lx = 0, Ld = 1 (4.2b)

However, we want to obtain stability independently from the choices of both the ob-

server and the matrices, so the next step consists of working on a system capable to

turn the observer output into the classical return difference d̃k.
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4.2.1 Algebraic equivalence of two different systems

To make structure in Figure 4.1 work, system (4.1) needs to be turned into an alge-

braically equivalent one, having B̃d and C̃d described by (4.2a) with different observers

than those in (4.2b).

L̃x and L̃d are evaluated used the following corollary, taken from [16]

Corollary 1. Given two systems in the form (4.1), defined by matrices

i. (A, B, C, Bd, Cd, Lx, Ld)

ii. (A, B, C, B̃d, C̃d, L̃x, L̃d);

assuming that

• The pair (A, B) is stabilizable, the pair (A, C) is detectable, and

rank

[
A− I Bd

C Cd

]
= n + nd

where n = dim(A) and nd = dim(d̂k).

• The matrix

[
A Bd

0 1

]
−
[

Lx

Ld

] [
C Cd

]
is strictly Hurwitz.

these two systems are Algebrically Equivalent (AE) if there exists H12 ∈ Rnd×n and

H22 ∈ Rnd×nd (invertible) satisfying:

[
A− I B̃d

C C̃d

] [
H12

H22

]
=

[
Bd

Cd

]
(4.3)

and such that L̃x = Lx + H12Ld and L̃d = H22Ld.

Once these new values are known, it is sufficient to replace system (i) with (ii) to make

the control structure work.

In this way, in this way, augmented system can be obtained with the matrices and the

observers chosen arbitarily; for instance, it is possible to choose (see [14, 20] for further

details):

• Lx set through pole placement technique or, better, defined as a Kalman filter, Ld =

1;

• Bd = Lx, Cd = 1− CLx
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4.2.2 Introduction of a transformation block

Since we do not want to change Bd, Cd into B̃d and C̃d, it is necessary to modify structure

of Figure 4.1 into something new, capable to turn the observer output d̂k into the desired

feedback d̃k; so, an additional block H is added to the control scheme, thanks to which

I have

d̃k = Hd̂k

where , in the OL stable case, H is equal to H22 calculated in (4.3). The adjustment is

shown in Figure 4.2a, which can be more generally represented by Figure 4.2b, where

the disturbance enters with its own dynamics, Pd.

(A)

(B)

FIGURE 4.2: DOB-IMC block diagram for open loop stable plants, with the transfor-
mation block H

4.2a: step-like disturbance
4.2b: disturbance with a certain dynamics Pd
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4.2.3 Sensitivity functions

Sensitivity functions are useful and powerful instruments thanks to which it is possi-

ble to verify if response is well-shaped and to analyze robustness of control schemes;

sometimes finding these functions is easy, such as with classical FB o IMC structure. On

the contrary, finding CL transfer functions for this block diagram is not immediate and

straightforward, since it needs some preliminary information, such as the knowledge

of the observer transfer function.

4.2.3.1 Observer block trasfer functions

To define CL transfer functions T and S for the Observer-Based IMC, it is necessary to

derive, first, the transfer function for the observer block: this can be obtained considering

that che observer block has, as it is easy to see in Figure 4.3:

FIGURE 4.3: DOB-IMC, observer block

• two inputs, uk and yk;

• two outputs, x̂k and d̂k

so, basically, there is the need to build several transfer functions.

Equations for the observer block are:

[
x̂k+1|k

d̂k+1|k

]
=

[
A Bd

0 1

] [
x̂k|k−1

d̂k|k−1

]
+

[
B

0

]
uk +

[
L1

L2

](
yk −

[
C Cd

] [x̂k

d̂k

])

ŷk =
[
C Cd

] [x̂k

d̂k

] (4.4)

with

L =

[
L1

L2

]
=

[
A Bd

0 1

] [
Łx

Łd

]
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For a matter of simplicty and shortness, some terms are grouped:

x̂a
k =

[
x̂k|k−1

d̂k|k−1

]

Ā =

[
A Bd

0 1

]
, B̄ =

[
B

0

]
, C̄ =

[
C Cd

]
, L̄ = ĀL

so it can be written (4.4) in a more compact way

x̂a
k+1|k = (Ā− L̄C̄) x̂a

k|k−1 + B̄uk + L̄yk (4.5)

while the equations for estimated states and disturbance kept separated are

x̂k+1|k =
([

A Bd

]
− L1C̄

)
x̂a

k|k−1 + Buk + L1yk (4.6a)

d̂k+1|k =
([

0 I
]
− L2C̄

)
x̂a

k|k−1 + L2yk (4.6b)

Considering a generic system G described through state-space variables with (A, B, C, D),

its transfer function is

G(z) = C (zI − A)−1 B + D (4.7)

(4.7) can be also written as

G(z) =

[
A B

C D

]
(4.8)

in the rest of this section, we will adopt this notation for the description of transfer

functions.

Using superposition principle

x̂(z) = fy,x(z)y(z) + fu,xu(z) (4.9a)

d̂(z) = fy,d(z)y(z) + fu,du(z) (4.9b)

with
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• fy,x as transfer function between y(z) and x̂(z)

fy,x =

 Ā− L̄C̄ L̄[
A Bd

]
− L1C L1


• fu,x as transfer function between u(z) and x̂(z)

fu,x =

 Ā− L̄C̄ B̄[
A Bd

]
− L1C B


• fy,d as transfer function between y(z) and d̂(z)

fy,d =

 Ā− L̄C̄ L̄[
0 I

]
− L2C L2


• fu,d as transfer function between u(z) and d̂(z)

fu,d =

 Ā− L̄C̄ B̄[
0 I

]
− L2C 0



4.2.3.2 CL transfer functions

As known, the output of a system y can be considered as a sum of two different contri-

butions, that are the reference tracking problem, represented by the the complementary

sensitivity function T, and the disturbance rejection problem, represented by the sensi-

tivity function S.

So, thanks to the Superposition principle, we can write

y(z) = T(z)r(z) + S(z)d(z)

and T(z) and S(z) are calculated separately.

The algebraic expression for complementary sensitivity T is

T =
PQ

1 + PQH22 fy,d + QH22 fu,d
(4.10)

while the equation for sensitivity, S, in the general case of disturbances occurring pro-

vided with a certain dynamics process Pd:
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FIGURE 4.4: DOB-IMC Sensitivity functions for open loop stable plants

S =
Pd (1 + QH22 fu,d)

1 + PQH22 fy,d + QH22 fu,d
(4.11)

Furthermore, there are particular situations:

• case Pd = 1, disturbance on the output

S =
(1 + QH22 fu,d)

1 + PQH22 fy,d + QH22 fu,d

• case Pd = P, input disturbance entering just before the plant

S =
P (1 + QH22 fu,d)

1 + PQH22 fy,d + QH22 fu,d

As an example, CL transfer functions for a nominal case P(s) = G(s) with model de-

fined as (2.3) are displayed in Figure 4.4.

These functions appear to be well-designed, since they clearly show that this control

structure works as it is supposed to, i.e. the complementary sensitivity rolls off to zero

at high frequency and is equal to 1 at low frequencies (it means perfect tracking of the

Reference Signal), while the sensitivity rolls off to zero at low frequency.

Further information about how to calculate CL transfer function for a stable configura-

tion of DOB-IMC can be found in Appendix B
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4.3 Open loop unstable plants

When the Plant P(z) is OL unstable, i.e. it has one or some unstable poles 1, control

scheme provided in Figure 4.2 is not able anymore to stabilize the process output: the

structure needs to be modified.

In order to do this, notes given by Q parametrization [7], have been very useful, which

states that provided that both plant P(z) and controller QIMC(z) are stable, the Parametriza-

tion of All Stabilizing Controllers needs:

• a Luenberger observer, whose gain is L;

• a stabilizing state feedback F, chosen making sure that

Ā = A + BF

is Hurwitz.

The observer already existed in structure in Figure 4.2, so there is only the need to add

the state feedback.

Control scheme adopted for Unstable Plants is shown in Figure 4.5

FIGURE 4.5: DOB-IMC block diagram for open loop unstable plants

In the OL stable systems structure, even though there are two outputs exiting from the

observer block, i.e. x̂k and d̂k, only the disturbance estimation d̂k is fed back to the

controller, provided the transformation discussed in Section 4.2.2; here, instead, vector

of states x̂k is a key point for the construction of the control input, since x̂k first passes

1An unstable pole in discrete time is a pole p1 such that |pi| > 1
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through H and then the resulting x̃k is sent to the stabilizing state feedback F, and the

exiting product Fx̃k is a part of the final control input expression, that is

uk = v(k) + Fx̃k

.

In this case, the structure of matrix H is H =

[
H11 H12

0 H22

]
, so the tranformation equa-

tion becomes:

[
x̃k

d̃k

]
= H

[
x̂k

d̂k

]
(4.12)

Control input exiting from the controller Q(z) is called vk : definining e f b = rk − d̃k,

vk = Qe f b

Remark: OL Stable Plant control structure could be considered as a particular case for

the general structure shown in Figure 4.5, where F is chosen to be zero.

4.3.1 IMC controller tuning

Let the unstable model be

G(z) = z−n z− a1

(z− b1) (z− b2)

where b1 is an unstable pole.

The state-space description for G(z) is

 xk+1 = Axk + Buk

yk = Cxk

(4.13)

The idea is that the IMC controller should keep working as it already used to do in

OL stable configuration, taking care of both tracking system and disturbance problem,

while F has, as only task, to make the output yp stable.

In order to do this, IMC controller has been tuned using a different model from (4.13),

since matrix A has an eigenvalue λ1 standing outside the unit circle: so , Q is built using
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Chapter 4 Proposed Observer Based IMC structure

the same tuning Rules descripted in Section 2.3.1, but the model to be inverted during

the decomposition is the pre-stabilized one, i.e.

 xp
k+1 = Âxp

k + Buk

yp
k = Cxp

k

(4.14)

where Â = A + BF is guaranteed stable as a requirement for the choice of F.

4.3.2 CL transfer functions

Transfer functions for the observer block are those defined in Section 4.2.3.1: expression

for the sensitivity functions is

Tunst =
PQ

1 + PQH22 fy,d + QH22 fu,d − PFH11 fy,x − FH11 fu,x − PFH12 fy,d − FH12 fu,d
(4.15)

while the sensitivity is, considering a disturbance with a certain dynamics Pd

Sunst =
Pd (1 + QH22 fu,d − FH11 fu,x − FH12 fu,d)

1 + PQH22 fy,d + QH22 fu,d − PFH11 fy,x − FH11 fu,x − PFH12 fy,d − FH12 fu,d
(4.16)

which becomes

• for disturbances on the output, i.e. Pd = 1

Sunst =
(1 + QH22 fu,d − FH11 fu,x − FH12 fu,d)

1 + PQH22 fy,d + QH22 fu,d − PFH11 fy,x − FH11 fu,x − PFH12 fy,d − FH12 fu,d

• for input disturbances, Pd = P

Sunst =
P (1 + QH22 fu,d − FH11 fu,x − FH12 fu,d)

1 + PQH22 fy,d + QH22 fu,d − PFH11 fy,x − FH11 fu,x − PFH12 fy,d − FH12 fu,d

For instance, considering a nominal case with model

G(s) = e−2s −2s + 1
(2s− 1) (5s + 1)

(4.17)
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Chapter 4 Proposed Observer Based IMC structure

Bode diagrams for Tunst and Sunst are shown in Figure 4.6: in Figure 4.6a there is an

output disturbance and in Figure 4.6b the disturbance occurs immediately before the

plant.
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FIGURE 4.6: DOB-IMC Sensitivity functions for open loop unstable plants,
4.6a: for a step-like disturbance occurring on the output

4.6b: for an input disturbance

From these pictures we can see that disturbances are amplified for high frequencies

and rejected at low frequencies, but in an industrial framework high frequencies are

not relevant.

For more information about how to obtain the expressions for CL transfer functions in

the Unstable configuration, go to Appendix B.

Remark: It is imporant to notice that
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Chapter 4 Proposed Observer Based IMC structure

T + S 6= 1

both in stable and unstable plants.

In Internal Model Control, sum between S and T is always equal to 1: this because

IMC has a one degree of freedom controller; this proposed Disturbance Observer Based

IMC, instead, has a two degree of freedom controller, since there is more than one tuning

parameter, that are:

• in the OL unstable configuration , λ, Robs and R f b;

• in the OL stable configuration, λ and Robs

where Robs and R f b are weighting matrices for the choice respectively of the observer L

and the stabilizing state feedback F.
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Chapter 5

Applications: linear systems

In this chapter DOB-IMC is applied to several kinds of Linear systems; these examples

have been chosen to show how this control structure works if applied to different kind

of plants and to compare results obtained with well-known control structures, such as

Internal Model Control and Model Predictive Control.

Furthermore, these systems have been tested from the robustness point of view as well,

in order to verify if this structure could afford some mismatches between Plant and

Model, which thing occurs very often in real systems; this is an important aspect, since

it is really hard to have a model which is the exact ”copy” of the Plant; some mismatches

might always been taken into account.

Remark: In the whole work, only stricly proper plants are simulated: this is consistent

with reality since most of the physical processes are strictly proper; furthermore, it has

been done in order to avoid alegraic loops, which would make both DOB-IMC and

IMC resolutions in dicrete time not able to give a stable response.

5.1 Procedure

This section briefly summarizes the operations needed to obtain all the elements re-

quired for the analysis.

Assuming P(s) to be the plant and G(s) the model, and once chosen a certain sample

time Ts, P(s) and G(s) are converted from Laplace transform into z-transform; then,

G(z), discrete-time expression for the model, is decomposed into Minimum and Non-

Minimum phase, respectively Pmp and Pnmp, according to Section 2.3.1.1.
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Chapter 5 Applications: linear systems

Afterwards, there is the inversion of the model, in order to build the ideal controller

Qid = P−1
mp and then the insertion of the filter, as a sort of ”detuning” for the control

input: final expression for the controller is

Q(s) =
Qid(z)

F(s)
= Qid(s)

1
(λs + 1)n (5.1)

in continuous time, and

Q(z) =
Qid(z)
F(z)

= Qid(z)
1− α

(z− α)n (5.2)

in discrete time, where 0 ≤ α ≤ 1: the greater are λ (or, equivalently, α) and n values,

the stronger is the detuning effect: as a result, high values of these parameters give

a sluggish output, but with stronger robustness property. It is important to achieve a

reasonable trade-off between fast response and robust performance.

Another element required is the observer, chosen accordingly to methods discussed in

Chapter 3.

When the system is open loop unstable, a stabilizing state feedback F is needed: this

has been here built as optimal, i.e. F is a steady-state Kalman filter1.

Once done all the preliminary steps, we can see and analyze responses.

Remark: Reading this section, it emerges immediately that every reasoning part refers

to continous time plants, in order to make analysis more immediate and easy to unde-

stand; this does not affect the results and the remarks done in the whole chapter.

5.2 First order plants

5.2.1 Open loop stable plant

Let the Plant be

P(s) =
1

5s + 1
e−θs (5.3)

namely a first-order lag plant with delay, and whose pole p = − 1
5 ∈ LHP.

Time delay belongs to the non-minimum phase part of the plant, so in the decomposi-

tion it is separated from the ”good” stuff, that is the minimum phase part, selected for

the building of the controller.2.
1This is the choice adopted for this work; nevertheless, F could be chosen in other ways, such as using

pole placement technique, here avoided because considered too much aggressive, since CL poles could be
placed too far away from A original eigenvalues

2This remark about time delays is explained only here, but it will be still valide for every plant provided
with delay here analyzed
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FIGURE 5.1: First order OL stable system, nominal responses for different values of λ

5.2.1.1 Nominal case

For the moment it is assumed not to have mismatches between plant and model, G(s) =

P(s).

Responses to the nominal case for a constant step input rk = 1 can be seen in Figure 5.8,

for different values of λ: as expected, response becomes sluggish for increasing values

of the filter time constant.

As further instrument for analysis, it is possible to study frequency response of CL

transfer functions, calculated as explained in Section 4.3.2; Bode diagram of sensitivity

functions is represented in Figure 5.2, that shows that complementary sensitivity T rolls

off faster for bigger values of the filter constant; on the opposite side, a growing filter

constant values determines a slower rolling off of the sensitivy; a fair trade-off between

these two opposite trends needs to be found.

In order to find a good value for λ, robustness analysis could be very helpful.

5.2.1.2 Non-nominal case: robustness analysis

When the model does not exactly represent the actual plant, i.e. P 6= G, it is possible to

express the mismatch between P and G in terms of multiplicative uncertainty lm, using

the following expression:

P = G (1 + lm) (5.4)

thus
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FIGURE 5.2: First order OL stable system, closed loop transfer functions:
5.2a: complementary sensitivity

5.2b: sensitivity

|lm| =
∣∣∣∣P− G

G

∣∣∣∣ ≤ l̄m (5.5)

where l̄m is the upper bound for lm.

The case to be considered now is to have (5.3) as model, with equal uncertainty σ = 25%

on each parameter, namely τ, K and θ: lm is obtained through Equation 5.5, and its Bode

diagram is shown in Figure 5.3:

So, generally, lm is low at low frequencies and it grows at higher frequencies. It can be

defined a set of plants Π such that

Π =
{

P :
∣∣∣(P− P̃

)
P̃−1

∣∣∣ ≤ l̄m (ω)
}

(5.6)
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The necessary and sufficient condition for Robust Stability is (see [13, 18, 19]

|T (iω)| ≤ l̄−1
m (ω) , ∀ω (5.7)

So, assuming a certain percentage of uncertainty, the trade-off could consist in find-

ing the lowest value of λ able to satisfy (5.7): translated into a Bode diagram frame-

work, this means that complementary sensitivity T plot needs to be at most tangent to

lm (ω)−1 Bode diagram.

For model 5.3, calling K, τ, θ plant parameters and K̃, τ̃, θ̃ model parameters, and fixing

σ = 25% as mismatch on every parameter, namely

K = K̃ (1 + σ) (5.8a)

τ = τ̃ (1 + σ) (5.8b)

θ = θ̃ (1 + σ) (5.8c)

the filter constant value satisfying (5.7) is λSR = 0.98, which corresponds to the red line

in Figure 5.4, with the tangency detail zoomed Figure 5.5; thus, it is possible to take any

λ ≥ λSR being sure to satisfy stability robustness condition.

As an example, Figure 5.4 shows nominal and uncertain output response for a filter

time constant equal to 3.

Figure 5.6 shows the difference between the nominal output (solid line) and the one

with uncertainty on all parameters (dashed line) for a given λ = 1: in this case, the
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situation is quite close to the robust stability limit (it has been made on purpose, in

order to show how the control structure works in the worst case scenario), but the

response could be made more robust by increasing λ value, keeping in mind that a

growing value for the filter constant makes the resulting output slower.
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FIGURE 5.6: First order OL stable system, comparison between nominal response, and
uncertain response (σ = 25%)

For each case here analyzed, tuning parameters have been set in the following way:

• observer parameters are equal in MPC and DOB-IMC;

• λ, tuning parameter for IMC controller, is the same for both IMC and DOB-IMC;

• in order to find some tuning parameters to work with, controllers have been de-

signed in such a way that the output response for every control strategy for a

change in set point is the same. Afterwards, disturbance rejection problem is an-

alyzed.

Coming back to the nominal case, once chosen a suitable value for the filter constant,

comparison between responses to already existing control schemes IMC and MPC in

time domain, are shown in Figure 5.7
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FIGURE 5.7: First order OL stable system, comparison (in nominal conditions) be-
tween IMC, MPC and DOB-IMC

with the following tuning parameters:

1. IMC: λ = 3, n = 1;

2. MPC:

• for the observer choice, Qobs = I and Robs = 1;

• for the quadratic optimization problem, Qopt = CTC and Ropt = 0.5;

• for the matrices of the augmented model 3.30, Bd = Lx and Cd = 1− LxC ;

3. DOB-IMC:

• for the IMC standard controller, λ = 3 , n = 1 ;
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• for the observer choice, Qobs = I and Robs = 0.5;

• for the matrices of the augmented model 3.30, Bd = Lx and Cd = 1− LxC ;

Figure 5.7a shows that, without any disturbance, there is actually no difference between

IMC and DOB-IMC, as desired; furthermore, as expected, DOB-IMC works exactly as

a classical IMC, since feedback branch d̃k is 0.

Figure 5.7b, instead, shows disturbance rejection problem: here we see that, differently

from Figure 5.7a, DOB-IMC and IMC exhibit quite different trends, since DOB-IMC

response set with these tuning parameters (solid line) is closer to MPC rather than

IMC.

This is a first validation of DOB-IMC, since it respects the expectation of faster re-

sponses in the case of input disturbances.

5.2.2 Open loop unstable plants

The Plant taken under exam now is

P(s) =
1

5s− 1
e−θs (5.9)

that has a pole p = 1
5 ∈ RHP

5.2.2.1 Nominal case

Nominal responses for a step input with different values λ are shown in Figure 5.8, and

their corresponding Bode diagrams represented in Figure 5.9: even in this case, results

perfectly mirror what was expected, the higher is λ, the slower yk settles down.

As for the OL stable case, a trade-off value between speed in the response and robust

performance, thus a good value for the tuning parameter λ needs to be found.
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FIGURE 5.8: First order OL unstable system, nominal responses for different values of
λ

5.2.2.2 Non-nominal case: robustness analysis

In this case robustness analysis modalities are different because for the OL Unstable

Plant control structure defining a multiplicative uncertainty appears quite difficult,

since feedback F acts stabilizing the state belonging to system G = (A, B, C, D), while

the IMC controller is based on the inversion of the pre-stabilized system, described by

(4.14).

So, once fixed an uncertainty value σ = 25% on each plant parameter, different values

for tuning parameters have been tested in order to decide which one is the best.

In this case, there is another factor to take into account, since there are not only IMC

controller and observer as control instruments, but there is also the stabilizing state

feedback F.

Keeping Q f b = CTC fixed, it is interesting to see how the system reacts to different

values of R f b: only for the moment, λ is kept equal to 1.

From Figure 5.10 emerges that, apart from R f b = 0.1 (case shown separately in Fig-

ure 5.10a), for which the corresponding output response is unstable, the choice of R f b

does not affect so much the performance; so, it is possible to choose the desired R f b

without loss of stability or robustness.

Consider now IMC controller tuning parameters: given a fixed value for R f b, namely

R f b = 0.53, responses for different values of λ need to be investigated: results of the

parametric Analysis are shown in Figure 5.11: since for 1 ≤ λ ≤ 5 time response does

3to keep continuity with the previous sections
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FIGURE 5.9: First order OL unstable system, closed loop transfer functions:
5.9a: complementary sensitivity

5.9b: sensitivity

not change that much, it is possible to assume , as previosly done, λ = 2.5: this choice

has been done in order to keep the same value used for an OL stable plant, and also for

having a λ that could be a good compromise between robustness and velocity ( λ = 5

already starts to exhibit a too much sluggish response).

A comparison between nominal and uncertain responses in a situation very close to

instability can be looked at in Figure 5.12: since, unfortunately, there is not a specific

limit value to test, the situation analyzed is the closest as possible to unstability, i.e.

R f b = 0.11 and λ = 1.
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FIGURE 5.10: First order OL unstable system, robustness test: parametric analysis for
different values of the state feedback parameter R f b

5.10a shows response for R f b = 0.1
5.10b shows resposes for the other values of R f btested
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FIGURE 5.12: First order OL unstable system, comparison between nominal an uncer-
tain response (σ = 25%)
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FIGURE 5.11: First order OL unstable system, robustness test: parametric analysis for
different values of the filter constant

In this case, time response obtained will be compared only to MPC, since classical In-

ternal Model Control does not manage to control OL unstable plants4.

Tuning parameters are:

1. DOB-IMC:

• for the IMC standard controller, λ = 2.5, n = 1;

• for the stabilizing state feedback F, Q f b = CTC, R f b = 0.5;

• for the observer choice, Qobs = I and Robs = 1;

• for the matrices of the augmented model 3.30, Bd = Lx and Cd = 1− LxC.

2. MPC:

• for the observer choice, Qobs = I and Robs = 1;

• for the quadratic optimization problem, Qopt = CTC and Ropt = 0.5;

• for the matrices of the augmented model 3.30, Bd = Lx and Cd = 1− LxC.

From the comparison of the two different control strategies so tuned, it is easy to ob-

serve that DOB-IMC in an OL Unstable configuration is able to achieve results very

close to those given by MPC.

4In literature there are some works presenting an IMC designed and tuned to control unstable plants:
see [13]. Nevertherteless, in this work this configurations has not been taken into account.
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FIGURE 5.13: First order OL unstable system, comparison (nominal case) between
MPC and DOB-IMC

Furthermore, we want to investigate how much the response is affected by different

values of λ: from Figure 5.14 it can be seen that, given a fixed value of R, even decreas-

ing λ the output does not become faster than MPC.
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FIGURE 5.14: First order OL unstable system, comparison between MPC and DOB-
IMC for different value of λ

5.3 Second order plants

The transfer function for the plant here analyzed is

P(s) = e−2s −2s + 1
(τ1s + 1) (τ2s + 1)

(5.10)

This is the Laplace function representing a Second Order Plant with Time Delay (SOPTD)

and inverse response as an effect of the positive zero for zi = 0.5 .

First, classical IMC controller needs to be tuned. The positive zero belongs of the Non-

Minimum part of the plant, so P needs to be decomposed in order to separate this term

from the part of the plant adopted for the tuning of QIMC, i.e. the Minimum one.

5.3.0.3 Nominal case

Nominal response for plant (5.10) in time domain with the usual values adopted for λ

can be seen in Figure 5.15:
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FIGURE 5.15: Second order OL stable system, nominal response for different values of
λ

and Bode diagrams of CL transfer functions are represented in Figure 5.16.

In time responses plot we can notice that an high λ gives a slow response but copes bet-

ter with the inverse response; Bode diagram for transfer functions show that controller

has been well designed, and that the rolling off frequency of S and T changes with filter

constant values.
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FIGURE 5.16: Second order OL stable system with inverse response, closed loop trans-
fer functions

5.16a: complementary sensitivity
5.16b: sensitivity

As usual, an optimal value of λ needs to be sought: robustness analysis will be helpful

in this field.

5.3.0.4 Robustness analysis

Consider an percentage of uncertainty σ = 25% on each parameter: in other words if

the model is

G = K̃e−θ̃s α̃s + 1
(τ̃1s + 1) (τ̃2s + 1)

(5.11)

61



Chapter 5 Applications: linear systems

And expressing plant parameters in terms of σ

K = K̃ (1 + σ) (5.12a)

α = α̃ (1 + σ) (5.12b)

τ1 = τ̃1 (1 + σ) (5.12c)

τ2 = τ̃2 (1 + σ) (5.12d)

θ = θ̃ (1 + σ) (5.12e)

expression for the actual plant P in terms of σ and model parameters is

P(s) = Ke−θs (αs + 1)
(τ1s + 1) (τ2s + 1)

(5.13)

As done for first order plants, a value of λ able to satisfy robust stability condition

needs to be found: Figure 5.17 reveals that (5.7) is satisfied by λ = 1.5 .
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FIGURE 5.17: Second order OL stable system with inverse response, Bode diagram for
robust stability

Comparison between nominal response and the one provided with uncertainty is pre-

sented in Figure 5.18
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FIGURE 5.18: Second order OL stable system with inverse response, comparison be-
tween nominal response and uncertain response (σ = 25%)

Once fixed a certain value for the filter time constant, it is possible to look at and sub-

sequently analyze DOB-IMC time responses, compared to classic IMC and MPC, rep-

resented in Figure 5.19

63



Chapter 5 Applications: linear systems

Time[s]
0 5 10 15 20 25 30

O
u
tp
u
t
a
n
d
R
ef
er
en
ce

-0.5

0

0.5

1

Time[s]
0 5 10 15 20 25 30

In
p
u
t

1

1.5

2

DOB-IMC

IMC

MPC

(A)

Time[s]
0 5 10 15 20 25 30

O
u
tp
u
t
an

d
R
ef
er
en

ce

-0.5

0

0.5

1

DOB-IMC

IMC

MPC

Time[s]
0 5 10 15 20 25 30

In
p
u
t

-1.5

-1

-0.5

0

0.5

(B)

FIGURE 5.19: Second order OL stable system with inverse response, comparison
(nominal case) between IMC, MPC and DOB-IMC

Tuning parameters for the three control scheme are the same as those for first order

plants, namely

1. IMC: λ = 3, n = 1;

2. MPC:

• for the observer, Qobs = I and Robs = 1;

• for the quadratic optimization problem, Qopt = CTC and Ropt = 0.5

• for the matrices of the augmented model 3.30, Bd = Lx and Cd = 1− LxC

3. DOB-IMC:
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• for the IMC standard controller, λ = 3 and n = 1;

• for the observer choice, Qobs = I and Robs = 0.5;

• for the matrices of the augmented model 3.30, Bd = Lx and Cd = 1− LxC

In Figure 5.19a, responses are very close one to each other; in Figure 5.19b instead,

trends of DOB-IMC and MPC are still equite close, while IMC, nevertheless has the

same λ as DOB-IMC,this time gives a slower response, for the reasons previously ex-

plained.

DOB-IMC response can be further made faster or even slower by respectively decreas-

ing or increasing the tuning parameter value.

5.4 Integrating plants

In this section there will be a short description of how this kind of plants could be

controlled adopting DOB-IMC strategy, which thing should not taken for granted, since

integrating dynamics are provided with some features that make it difficul to control

them with this control structure.

5.4.1 Definitions and problems of an integrating plant

In continuous time, an integrating Plant has a pole in the origin, namely pi = 0 : an

example of integrator in Laplace transform is shown in the following equation:

P(s) =
K
s

(5.14)

This type of plants cannot be implemented in DOB-IMC: in order to understand why

this implementation faces difficulties, it could be helpful converting P(s) from contin-

uous time to dicrete time.

In a discrete time context, integrator is a process with a pole pi = 1, at the border of

the stability region: an example of a discrete-time integrator is given by the following

equation:

P(z) =
K

z− 1
(5.15)

When using a state-state description for (5.15), with its relative set of matrices (A, B, C, D)

we see that matrix A has en eigenvalue in 1: this makes things difficult from a point
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of view of implementation, since transformation matrix described by (4.12) cannot be

computed because of its very high conditiong number, which makes its inversion im-

possible.

The solution adopted to overcome this problem is to represent the integrating plant

with a model slightly different from (5.14): namely, G should be modeled as a first

order model with an high lag:

G(s) =
Kτ

τs± 1
(5.16)

with τ � 1.

It is possible to adopt this approximation because the limit of G for high values of time

constant τ goes to the system gain K:

lim
τ→∞

G(t) = lim
τ→∞

K
τ

τ

(
s± 1

τ

) =
K
s

(5.17)

This way of acting naturally involves robustness problems, since representing the plant

with (5.16) clearly implies a plant/model mismatch.

The model can be chosen to be whether OL stable or unstable, and could be imple-

mented in both configurations analized in Chapter 4: after several trials (here omitted),

it seems that the configuration giving the best behaviour is stable or unstable model ap-

plied to the OL unstable scheme.

In order to analyze scheme behaviour in presence of integrating plants, several analysis

needs to be done.

5.4.2 Parametric analysis

Let the plant be despcripted by a pure integrator as defined in (5.14): it is assumed the

model to be

G(s) =
Kτ

τs + 1
(5.18)

The attempt is to control it through the OL unstable Configuration scheme of DOB-

IMC.
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5.4.2.1 Parametric analysis for τ

First thing to do consists of searching for a time constant value τ which good represents

the plant:
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FIGURE 5.20: Integrating plant, time response for different choices of τ

In Figure 5.20 there are time responses for different values of time constant (assuming,

for the moment, λ to be 1): it is evident that, for τ ≥ 10, there is no such a big difference

in the behaviour of time responses ; thus, it is assumed to be τ = 20, since zooming the

figure, whose zoom is shown in Figure 5.21, this is the lowest value for which y does

not exhibit underdamped response.
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FIGURE 5.21: Integrating plant, zoom on time response for different choices of τ

Transfer functions for different values of τ can be found in Figure 5.22: the higher is τ,

the faster both sensitivities roll off to zero, but difference between different values of

time constant is not very relevant.
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FIGURE 5.22: Integrating plant, closed loop transfer functions for different values of τ
5.22a: complementary sensitivity

5.22b: sensitivity

5.4.2.2 Parametric analysis for λ

Afterwards, a good value for λ needs to be sought: so, different filter constants have

been tested, and results are shown in Figure 5.23:
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FIGURE 5.23: Integrating plant, time response for different choices of λ

Looking at this pictures, it clearly emerges that the smaller is λ, the better is the result-

ing performance, since an high value for the filter constant determines a response more

fluctuating: this even because an integrating system needs to be kept under control, so

filter detuning action does not need to be too much excessive).

Figure 5.24 shows CL transfer functions for values of λ analyzed.
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FIGURE 5.24: Integrating plant, closed loop transfer functions for different values of λ
5.22a: complementary sensitivity

5.22b: sensitivity

Growing values of filter time constant determine a faster rolling off for T, but, on the

other hand, S reels off slower; furthermore, values different from 1 generate a peak at

mid frequencies.

For all there reasons, λ is assumed to be 1.

Once fixed model and controller tuning parameters, it could be interesting to look at the

comparison of performances between IMC, MPC and DOB-IMC; tuning parameters,

this time, are the following (R f b has been kept, for the moment, equal to 0.5 for a matter

of continuity with other sections):

1. IMC: λ = 1, n = 1;
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2. MPC:

• for the observer, Qobs = I and Robs = 1;

• for the quadratic optimization problem, Qopt = CTC and Ropt = 0.5

• for the matrices of the augmented model (3.30), Bd = Lx and Cd = 1− LxC

3. DOB-IMC:

• for the IMC standard controller, λ = 1;

• for the observer choice, Qobs = I and Robs = 1;

• for the stabilizing state feedback, Q f b = CTC and R f b = 0.5;

• for the matrices of the augmented model 3.30, Bd = Lx and Cd = 1− LxC

Figure 5.25 shows responses for, respectively, reference tracking problem and distur-

bance rejection: for the case of a change in the set point, represented in Figure 5.25a,

we see that DOB-IMC, designed with tuning parameters previously specified, leads to

underdamping in the output; this behaviour can be better noticed in Figure 5.26. In

Figure 5.25b, instead, a step disturbance dp =
1
s

occurs at the output: it is immediate to

notice that DOB-IMC response is worse than IMC and MPC, but we have to consider

that model (5.18), implemented in DOB-IMC, is different from the plant itself, while

both IMC and MPC have been implemented in nominal conditions, in which G = P.
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FIGURE 5.25: Integrating plant, comparison (nominal case) between IMC, MPC and
DOB-IMC
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FIGURE 5.26: Integrating plant, detail of comparison between IMC, MPC and DOB-
IMC for the case of a change in set point

In order to obtain a better response, different actions could be done: for instance, in-

creasing Ropt to 1 (keeping λ fixed); improvement in the result can be seen in Figure 5.27
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FIGURE 5.27: Integrating plant, comparison (nominal case) between IMC, MPC and
DOB-IMC, with an increased value for R f b, with a particular zoomed on Figure 5.27b

and the response is not underdamped anymore. The behaviour of this structure when

faced to a pure integrating plants is considered as a big result achieved, since DOB-IMC

initially structure is not thought for this kind of systems; however, since it is still slower

than IMC and MPC, development of DOB-IMC for integrating plant should be further

improved.
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Applications: simulated industrial

process

In this chapter DOB-IMC has been applied to a well-known case study, useful to see

how DOB-IMC copes with processes closer to reality, and not only with hypotetical

systems.

Case analyzed is the ”Shell heavy oil fractionator”, whose definition is taken from [12]:

it does not represent a real situation, but it is implemented to show and analyze how

DOB-IMC deals with multivariable systems.

6.1 Process summary

The distillation column works as a fractionator, as shown in Figure 6.1:

the feed enters the column at the bottom, in a gaseous form. There are three products

exiting the column, drawn off respectively at the top, side and bottom of the fraction-

ator: they can be seen on the right-hand side of the fractionator; furthermore, on the

left-hand side of the column there are three circulating reflux, again at the top, middle

and bottom of the column: they have the task to remove heat carried into the column

by the feed, giving it to other processes demanding for thermal duties, that could be,

for instance, other fractionator columns. Heat removal is made through heat exchang-

ers: the amount of heat removed by each reflux is defined as heat duty. Gains from heat

duties to temperatures are defined positive. Heat removed in the two top reflux de-

pends on the demand of the other processes: an higher duty corresponds to more heat

recirculated back into the fractionator (then, it also corresponds to a smaller amount of

heat given to other processes). Intermediate reflux duty is assumed to be a measured
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FIGURE 6.1: Shell oil fractionator

disturbance, so it can be controlled by means of a feedforward controller, while upper

reflux duty acts as an unmeasured disturbance, being thus object of interest in our imple-

mentation.

On the other hand, bottoms reflux duty is used as manipulated variable , so it can be used

to control the process: however, since it is used to generate steam sent other units, even

if bottoms reflux duty is a manipulated variable, our interest is to keep it the lowest

possible, for an evident economic advantage.

Top Draw and Side Draw are manipulated variables as well.

Controlled variables are the following:

• Composition of top end point flow;

• Composition of side end point flow;

• Bottoms reflux temperature.

Table 6.1 delineates and summarizes role and symbol of each variable taken into ac-

count.
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TABLE 6.1: Classification of each variable with its role and symbol

Variable Role Symbol

Top Draw Control Input u1

Side Draw Control Input u2

Bottoms Reflux Duty Control Input u3

Intermediate Reflux Duty Measured Disturbance dm

Upper Reflux Duty Unmeasured Disturbance du

Top End Point Controlled Output y1

Side End Point Controlled Output y2

Bottoms Reflux Temperature Controlled Output y3

Now, transfer functions of the process need to be defined. Tables 6.2 and 6.3 contains

information about transfer functions between inputs and outputs of the MIMO system

and of disturbances as well1.

TABLE 6.2: Transfer functions for the MIMO process

Variables u1 u2 u3

y1 4.05e−27s 1
50s + 1

1.77e−28s 1
60s + 1

5.88e−27s 1
50s + 1

y2 5.39e−18s 1
50s + 1

5.72e−28s 1
60s + 1

6.90e−15s 1
40s + 1

y3 4.38e−20s 1
33s + 1

4.42e−22s 1
44s + 1

7.20
1

40s + 1

TABLE 6.3: Transfer functions of unmeasured disturbances

Variables dm

y1 1.20e−27s 1
45s + 1

y2 1.52e−15s 1
25s + 1

y3 1.14
1

27s + 1

So, the MIMO transfer function of this multivariable system is

G =


4.05e−27s 1

50s + 1
1.77e−28s 1

60s + 1
5.88e−27s 1

50s + 1
5.39e−18s 1

50s + 1
5.72e−28s 1

60s + 1
6.90e−15s 1

40s + 1
4.38e−20s 1

33s + 1
4.42e−22s 1

44s + 1
7.20

1
40s + 1

 (6.1)

1We will not deal with measured disturbance, since they are kept under control through a feedforward
controller. Building this kind of additional controller goes beyond the aim of this work.

77



Chapter 6 Applications: simulated industrial process

All transfer functions are linear systems of first order provided with time delay.

A sample time Ts = 1 has been here chosen.

In the following pages there will be results of implementation of 3 × 3 ”Shell” case

controlled through DOB-IMC; results will be furthermore compared to those obtained

with classical IMC, in order to see if improvements in the resulting performance could

be achieved or not.

6.2 Simulation

The implementation of this case with three manipulated variables (MV) and three con-

trolled variables (CV) practically consists of building three different decentralized con-

trollers, having so three different responses, taking into account the fact the output yi

given by each system ”suffers” for interactions between itself and the others.

6.2.1 Interactions and relative gain array

First thing to do is choosing the best pairing between inputs with outputs, hence Rela-

tive Gain Array(RGA) , Λ has been evalued.

Elements of Λ are so defined:

λij =

(
yi/uj

)
ul 6=j=0(

yi/uj
)

yl 6=j=0

(6.2)

with

n

∑
i=1

λij = 1 (6.3a)

n

∑
j=1

λij = 1 (6.3b)

Referring to MIMO transfer function matrix (6.1), Λ can be obtained as

Λ = G ◦
(

G−1
)T

(6.4)

The resulting RGA for the process here analyzed is

Λ =


2.0757 −0.7289 −0.3468

3.4242 0.9343 −3.3585

−4.4999 0.7946 4.7056

 (6.5)

which suggests the following couplings:
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FIGURE 6.2: Shell oil fractionator with decentralized controllers

1. u1 → y1

2. u2 → y2

3. u3 → y3

So, the expression of outputs yi is

y1 = g11u1 + g12u2 + g13u3 (6.6a)

y2 = g21u1 + g22u2 + g23u3 (6.6b)

y3 = g31u1 + g32u2 + g33u3 (6.6c)

Figure 6.2 gives a complete framework of the case study here analyzed, provided with

decentralized controllers: blue controller stands for system 1, red controller stands for

system 2 and magenta line represents system 3.

Remark: Please note that Λ(1, 1) = 2.0757 and Λ(3, 3) = 4.7056, both > 1: they are sig-

nals of strong interactions between considered system and the others; Λ(2, 2), instead,

is quite close to 1, so interactions between system 2 and the others is weak.
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TABLE 6.4: Observers Parameters

System 1 2 3
Qobsi CT

11C11 CT
22C22 CT

33C33
Robsi 0.5 0.5 0.5

6.2.2 Tuning

Three differents DOB-IMC controllers needs to be designed, inteverting, respectively

g11 = G(1, 1) = 4.05e−27s 1
50s + 1

(6.7a)

g22 = G(2, 2) = 5.72e−28s 1
60s + 1

(6.7b)

g33 = G(3, 3) = 7.20
1

40s + 1
(6.7c)

this means that each control scheme has its own parameters to tune; furthermore, since

there are strong interactions between systems, the effect of the tuning of a single con-

troller does influence not only the behaviour of its system, but has also impact on the

other two.

Furthermore, IMC controllers have also been designed, in order to compare the two

control schemes.

Several tests for a correct tuning have been done in order to find a configuration able to

give good performances as results: as first choice, observer parameters Qobsi and Robsi

have been kept fixed, and λi has been changed: this decision is due to several reasons,

among which the most important is that changing λi seems to be more effective than

working on the observer parameters.

First thing done has been fixing relative values of λ1, λ2, λ3, tuning parameters of the

three IMC controllers: considering that Λ(1, 1), Λ(3, 3) >> Λ(2, 2), we have to think

that systems 1 and 3 needs to be detuned more than system 2, that does not interact

that much in the MIMO, so the first choice adopted is

λ1, λ3 >> λ2 (6.8)

In order to prove the goodness of this choice, once fixed observer values as shown

in Table 6.4, DOB-IMC has been tried with different combinations of λi, with results

shown in Figure 6.3, subdivided into three different pictures, one for each output

• λ1 = 5, λ2 = 100, λ3 = 100, represented by dotted line in Figure 6.3;
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FIGURE 6.3: Time responses for different choices of λ1, λ2, λ3:
6.3a: y1, composition of top draw
6.3b: y2, composition of side draw

6.3c: y3, bottoms reflux temperature
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• λ1 = 100, λ2 = 5, λ3 = 100 represented by solid line in Figure 6.3;

• λ1 = 100, λ2 = 100, λ3 = 5 represented by dashed line in Figure 6.3;

Solid line appears always to be the best situation among the three implemented. So,

6.8 appears now a justified choice; a similar analysis revealed that the relative value

between λ1 and λ3 has not much influence on responses.

So, tuning parameters here adopted are

TABLE 6.5: Tuning Parameters DOB-IMC for the multivariable system ”Shell oil frac-
tionator”

System 1 2 3

λ 100 8 100

Robs 1 0.1 0.1

6.2.3 Performance and comparison with IMC

Responses obtained with tuning parameters listed in Table 6.5 are now compared to

classic Internal Model Control; in order to have results the more comparable as possi-

ble, each IMC controller has the same values of λi that it used to have in DOB-IMC.

6.2.3.1 Reference tracking problem

Figure 6.4 is referred to the case in which there is a change in set point of system 3,

r3 = −0.5, which is desidered to be kept the lowest possible, while the others are

constant (here we fixed r1 = 0, r2 = 0).

Differently from the SISO case, here responses given by DOB-IMC are quite different

from those of IMC, even without disturbances occurring: this happens because inter-

actions between systems act themselves as disturbances for each control stucture. Here

we see that DOB-IMC responses are still quite fluctuating before settling down; never-

theless, some better performance, for instance that given by system 3, can be noticed.

There have been done simulations also in cases in which there are changes in Set Point

of system 1 and 2: obtained results have been here omitted because they does not

change that much compared to the case shown in Figure 6.4.
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6.2.3.2 Disturbance rejection problem

Figure 6.5 instead, shows responses when an unmeasured disturbance occurs (distur-

bance enters in Upper Reflux Duty, and it affects each system with a different dynamics.

See Table 6.3 for the list of dynamic disturbance occurring on each system).

Results show that DOB-IMC copes dyanamic disturbance better than IMC: response is

still fluctuating, but we can see here that there are less peaks and a faster disturbance

rejection.
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FIGURE 6.4: Time response, comparison between DOB-IMC and IMC for a change in
set point of system 3

6.3a: y1, composition of top draw
6.3b: y2, composition of side draw

6.3c: y3, bottoms reflux temperature
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FIGURE 6.5: Time response, comparison between DOB-IMC and IMC for an input
disturbance

6.5a: y1, composition of top draw
6.5b: y2, composition of side draw

6.5c: y3, bottoms reflux temperature
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Chapter 7

Summary and conclusions

Starting from conventional Internal Model Control (IMC) and looking at features of

Linear Quadratic Gaussian (LQG) control and Model Predictive Control (MPC), we

have here implemented a Disturbance Observer Based Internal Model Control (DOB-

IMC) in a discrete-time context, whose block diagram is clearly based on IMC one, but

has some features taken from optimal control.

For open loop stable plant, this control structure keeps design of classical IMC con-

troller Q unchanged, making sure that closed-loop analysis are still transparent and

easy to do; as additional control instrument, it uses a Luenberger observer instead of

default IMC deadbeat observer, with resulting improved performance when an input

disturbance occurs. Since observer needs the definition of some preliminary parame-

ters, its introduction implies an increased number of tuning parameters to fix.

For open-loop unstable plants, DOB-IMC adopts a stabilizing state feedback F1 which

makes resulting output y stable. Contrary to the state feedback of LQG, F does not

need calculation of steady-state variables to converge to the set point value and to re-

ject disturbances, as Q is not designed inverting the unstable plant, which would give

an unstable controller, but a pre-stabilized system, thanks to which DOB-IMC manages

to give an output that follows reference signal and rejects disturbances. It is also impor-

tant to underline that this structure introduces other tuning parameters, that are those

requested by F calculation.

Furthermore, these additional parameters to regulate turned conventional one degree-

of-freedom IMC regulator into a two degree-of-freedom controller, since λ here is not any-

more the only one tuning parameter. As a verify, we checked that the sum of sensitivity

and complementary sensitivity is not anymore equal to 1.

1from Q parametrization [10]
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A variant for integrating plant has been furthermore proposed, in which model does

not correspond to the plant, but it is a first order system with an high lag.

Finally, DOB-IMC has been tested to several types of linear systems in Chapter 5 and

to a multivariable system in Chapter 6, exhibiting stability and robustness, and even

performances closer to those given by MPC rather than IMC.

7.1 Other research possibilities

DOB-IMC has not been tested with saturations on actuators, so a constrained analysis

can be done. Furthermore, in this work the advantages of Model Predictive Control

have been ”imported” to Internal Model Control, but the final structure is still an IMC,

even if with improved performance and more tuning parameters; it could probably be

interesting ooking at the opposite direction, namely importing the features that make

IMC a very good instrument in control field to MPC.
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Appendix A

The Q parametrization

A.1 Introduction

In Chapter 4, DOB-IMC structure, initially developed for open-loop stable systems, has

been subsequently extended to OL unstable plants: in order to do this, as mentioned

before, concepts about Q parametrization (or, equally, Youla parametrization) have been

adopted, following instructions given by [7, 10, 21]. The name Q parametrization de-

rived from the fact that it can stabilize all feedback controller capable to stabilize a given

system.

It is important to underline that only basic notions about Q Parametrization have been

here used to make the output y converge; in fact, the whole theory could not be ap-

plied here, since we are working with an augmented model in order to reject any offset

related to disturbances, inserting thus an integrator to the normal system dynamics.

The insertion of this integrator means that augmented dynamics matrix

[
A Bd

0 I

]
(A.1)

has an eigenvalue in 1, making it not Hurwitz.

In this section, theory about Q parametrization will be briefly explained. For further

and detailed information, please see [7, 10, 21].
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A.2 Augmented controller

Consider linear system

xk+1 = Axk + Buk

yk = Cxk

(A.2)

A standard LQG controller is in the form

x̂k+1 = (A− ALC) x̂k + Buk + Lyk (A.3a)

uk = −Kx̂k (A.3b)

with (A− ALC) and (A− BK) are both Hurwitz.

Suppose, now, that control input uk is

uk = −Kx̂k + vk (A.4)

where vk = Wek: W is a stable transfer function and ek is the output estimation error,

ek = yk − Cx̂k (A.5)

Putting W equal to the standard IMC controller, we can rearrange (A.3) as follows

x̂k+1 = (A− ALC− BK) x̂k + Buk + Lyk (A.6a)

uk = −Kx̂k + vk = −Kx̂k + Wek (A.6b)

Where W is a stable transfer matrix chosen arbitrarily; if we choose W = Q, where

Q is IMC controller, control input (A.6b) is a sum of two contributions: LQG-like and

IMC-like control input; in other words, a stabilizing feedback on the states manages to

stabilize the output yk, keeping original QIMC design unchanged.
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Appendix B

Calculation of Sensitivity functions

for DOB-IMC

This appendix illustrates how to derive expressions for sensitivity functions for DOB-

IMC, already shown in Chapter 4, here investigated more in depth and explained step

by step.

B.1 Reference tracking problem

Note: z dependency will be dropped for a matter of simplicity. Assuming r = 1 and

dp = 0, yr = Pu, consequently u = P−1yr; replacing u value in (4.9), we have

x̂ =
(

fy,x + fu,xP−1) y

d̂ =
(

fy,d + fu,dP−1) y
(B.1)

in the most general case (OL unstable plants)

yr = Pu = P
(
Q
(
r− d̃

)
+ Fx̃

)
= P

(
Q
(
r− d̃

)
+ Fx̃

)
where x̃ and d̃ are obtained using the transformation matrix T; replacing in Equa-

tion (4.12) x and d values shown in (B.1), I have

[
x̃

d̃

]
= H

[(
fy,x + fu,xP−1)(
fy,d + fu,dP−1)

]
y =

[
H11 H12

0 H22

] [(
fy,x + fu,xP−1)(
fy,d + fu,dP−1)

]
y (B.2)
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after few algebraic steps, we obtain

y =
QP

1 + QPH22 fy,d + QH22 fu,d − PFH11 fy,x − FH11 fu,x − PFH12 fy,d − FH12 fu,d
r

• for OL unstable plants,

Tunst =
PQ

1 + PQH22 fy,d + QH22 fu,d − PFH11 fy,x − FH11 fu,x − PFH12 fy,d − FH12 fu,d

• for OL stable plants, F = 0, so the complementary sensitivity function is

Tst =
PQ

1 + PQH22 fy,d + QH22 fu,d

B.2 Disturbance rejection problem

In this case, r = 0, dp = 1; thus,

y = Pu + Pddp ⇒ u = P−1 (y− Pddp
)

from which

x̂ =
(

fy,x + fu,xP−1) (y− Pddp
)

d̂ =
(

fy,d + fu,dP−1) (y− Pddp
) (B.3)

so, x̃ and d̃ are given by the following expression:

[
x̃

d̃

]
=

[
H11 H12

0 H22

] [(
fy,x + fu,xP−1)(
fy,d + fu,dP−1)

]
y−

[
H11 H12

0 H22

] [
fu,x

fu,d

]
P−1Pddp (B.4)

Then, the output has the following expression (derived after some algebraic steps here

omitted)

yd =
Pd (1 + QH22 fu,d − FH11 fu,x − FH12 fu,d)

1 + PQH22 fy,d + QH22 fu,d − PFH11 fy,x − FH11 fu,x − PFH12 fy,d − FH12 fu,d
dp
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• for OL unstable plants,

Sunst =
Pd (1 + QH22 fu,d − FH11 fu,x − FH12 fu,d)

1 + PQH22 fy,d + QH22 fu,d − PFH11 fy,x − FH11 fu,x − PFH12 fy,d − FH12 fu,d

which

– for disturbances on the output, i.e. Pd = 1, becomes

Sunst =
(1 + QH22 fu,d − FH11 fu,x − FH12 fu,d)

1 + PQH22 fy,d + QH22 fu,d − PFH11 fy,x − FH11 fu,x − PFH12 fy,d − FH12 fu,d

– for internal disturbances, Pd = P

Sunst =
P (1 + QH22 fu,d − FH11 fu,x − FH12 fu,d)

1 + PQH22 fy,d + QH22 fu,d − PFH11 fy,x − FH11 fu,x − PFH12 fy,d − FH12 fu,d

• , for OL stable plants, as for H, some terms are missing:

Sst =
Pd (1 + QH22 fu,d)

1 + PQH22 fy,d + QH22 fu,d

– case Pd = 1

Sst =
(1 + QH22 fu,d)

1 + PQH22 fy,d + QH22 fu,d

– case Pd = P

Sst =
P (1 + QH22 fu,d)

1 + PQH22 fy,d + QH22 fu,d
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Matlab codes

C.1 Open loop stable plants

Once defined plant and model in continous time, they are both converted in dicrete

time domain, both in z transform and state space; state space description is made up

of a set of matrices (A, B, C, D). Then, model has been decomposed in minimum phase

part and non-minimum part; then, controller is built.

This part of code has been here omitted for its simplicity.

1 %-------------------------------------------------------

2 % Augmented Model & Observer

3 %-------------------------------------------------------

4

5 n states=size(A,1); % Number of states

6

7 %%% Standard IMC Matrices for the augumented model

8

9 Bdt=zeros(n states,1);

10 Cdt=1;

11

12 %%% Actual matrices and observer implemented

13

14 Qf=eye(n states); % Weighting matrix

15 Rf=1; % Weighting matrix

16 Lx=dlqr(A',C',Qf,Rf)'; % Kalman filter

17 Ld=1;

18

19 Bd=Lx;

20 Cd=1-C*Lx;

21
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22 %%% Function for conversion

23 % H22 is the transformation block needed for the calculation

24 % of the Alebgraic Equivalent system

25

26 [H22]=Convert Obs(A,C,n states,Bdt,Cdt,Lx,Ld,Bd,Cd);

27

28 %-------------------------------------------------------

29 %Generate Reference Signal

30 %-------------------------------------------------------

31 r=linspace(1,1,W);

32

33 %-------------------------------------------------------

34 %Solving Control Loop

35 %-------------------------------------------------------

36

37 for k=1:W

38

39 % Disturbance dynamics evolution

40 dpd=Cdd*xd+Ddd*dp;

41

42 % Measured outuput

43 yp(k)=Cp*xp+dpd;

44

45 % Estimated output

46 y=C*x+Cd*d;

47

48 % Prediction error

49 e pred=(yp(k)-y);

50

51 % Observer block

52 x=x+Lx*e pred;

53 d=d+Ld*e pred;

54

55 % Algebraic equivalent system calculation

56 dt=H22*d;

57

58 % Return difference

59 e fb=r(k)-dt;

60

61 % Control input

62 u(k)=Cq*xq+Dq*e fb;

63

64

65 % States Update

66 x=A*x+B*u(k)+Bd*d; % Model

67 xp=Ap*xp+Bp*u(k); % Plant

68 xq=Aq*xq+Bq*e fb; % Controller

69 xd=Add*xd+Bdd*dp; % Disturbance
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70 end

C.2 Open loop unstable plants

Here the building of the controller has been included, because it is based on the pre-

stabilized process.

1 n states=size(A,1);

2 %-----------------------------------------------------

3 % Augmented Model & Observer

4 %-----------------------------------------------------

5 %%% Standard IMC Matrices for the augmented model

6 Bdt=zeros(n states,1);

7 Cdt=1;

8

9 %%% Actual matrices and observer implemented

10 Qf=eye(n states); % Weighting matrix

11 Rf=1; % Weighting matrix

12 Lx=dlqr(A',C',Qf,Rf)'; % Kalman Filter

13 Ld=1;

14

15 Bd=Lx;

16 Cd=1-C*Lx;

17

18 %%% Matrix for the Algebraic Equivalent system

19 [H12,H22]=Convert Obs(A,C,n states,Bdt,Cdt,Lx,Ld,Bd,Cd);

20 H11=eye(n states);

21 H=[H11, H12; zeros(1,n states), H22];

22

23 %%% Stabilizing state feedback (from Q parametrization)

24 epsilon=10ˆ(-5);

25 Q=(C'*C)+epsilon*eye(n states);

26 R=1;

27 F=dlqr(A,-B,Q,R); % Kalman Filter

28

29 %%% Pre-stabilized model to be inverted in the controller

30

31 Ahat=A+B*F; Bhat=B; Chat=C; Dhat=D;

32 Ghat=ss(Ahat,Bhat,Chat,Dhat,Ts);

33 [numhat,denhat]=ss2tf(Ahat,Bhat,Chat,Dhat);

34 Ghatz=tf(numhat,denhat,Ts); Ghatz=zpk(Ghatz);

35 %--------------------------------------------------------------

36 % IMC controller design

37 %--------------------------------------------------------------
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38 %Decomposition into minimal phase and non-minimal phase

39 [Pnmp,Pmp,Ring]=decompose(Ghatz,Ts);

40

41 %Nominal Controller

42 [qid]=(Pmp)ˆ-1;

43

44 %Tuning Parameters

45 lambda=1;

46

47 %Controller Filtered

48 [Q,filter,alphan,n]=IMCfilterz(qid,lambda,Ts);

49 [numq,denq]=tfdata(Q,'v');

50 [Aq,Bq,Cq,Dq]=tf2ss(numq,denq);

51

52 W=200; % Number of samplings

53

54 %-------------------------------------------------------

55 %Ranks

56 %-------------------------------------------------------

57 n states=size(A,1);

58

59 %--------------------------------------------------

60 %Generate Reference Signal

61 %--------------------------------------------------

62 r=linspace(1,1,W);

63

64 %--------------------------------------------

65 %Solving Control Loop

66 %--------------------------------------------

67 for k=1:W

68

69 % Disturbance dynamics evolution

70 dpd=Cdd*xd+Ddd*dp;

71

72 % Measured output

73 yp(k)=Cp*xp+dpd;

74

75 % Estimated output

76 y=C*x+Cd*d;

77

78 % Prediction error

79 e pred=(yp(k)-y);

80

81 % Observer block

82 x=x+Lx*e pred;

83 d=d+Ld*e pred;

84

85 % Algebraic equivalent system
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86 x aug=H*[x;d];

87 xt=x aug(1:n states);

88 dt=x aug(n states+1);

89

90 % Return difference

91 e fb=r(k)-dt;

92

93 % Control input

94 v(k)=Cq*xq+Dq*e fb; % IMC controller

95 u lqg(k)=F*xt; % Optimal controller

96 u(k)=u lqg(k)+v(k); % Global control input

97

98 % States Update

99 x=A*x+B*u(k)+Bd*d; % Model

100 xp=Ap*xp+Bp*u(k); % Plant

101 xq=Aq*xq+Bq*e fb; % Controller

102 xd=Add*xd+Bdd*dp; % Disturbance

103

104 end

C.3 Functions

C.3.1 Algebraic Equivalent System calculation

1 function [H12,H22]=Convert Obs(A,C,n states,Bdt,Cdt,Lx,Ld,Bd,Cd)

2

3 I=eye(n states);

4 S=[A-I, Bdt; C, Cdt];

5 H=Sˆ(-1)*[Bd;Cd];

6 H12=H(1:n states);

7 H22=H(n states+1);

8
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