
Università degli studi di Pisa

Dipartimento di informatica

Corso di Laurea in informatica

Laurea specialistica in infromatica

Multilevel Attributed Probabilistic P System
Implementation and Definition

Candidato:

Alessandro Bompadre
Matricola 264312

Relatori:

Prof. Roberto Barbuti
Dott. Pasquale Bove
Dott. Paolo Milazzo

Anno Accademico 2014-2015

Abstract

The aim of this thesis is to de�ne a model based on P Systems called Mul-
tilevel Attributed Probabilistic P Systems (MAPPS) as a tool for modelling
complex social structure of animal population. In the initial part are shown
earlier models that represent the basis for the creation of MAPPS and which
have been applied to social structures less complex than those handled in this
thesis. In a detailed central section this thesis provides a formal de�nition
of MAPPS, with semantics and simple examples. This thesis then presents
a case of study suitable for MAPPS formalism representing the social struc-
ture of Serengeti lions. In appendix it is shown a commentary to the code
developed to collect data and results of the proposed model. The software
is a General purpose engine capable of take in input models described with
the formalism of MAPP systems and models described with the formalism
of Attributed Probabilistic P Systems (APPS) producing a simulation and
giving in output results and log �les.

3

Acknowledgements

I wish to remind all those who helped me in the writing of this thesis with
suggestions, criticisms and comments: to them goes my gratitude, all per-
sons mentioned on this page have been instrumental in the drafting of this
thesis, but I want to clarify that any error or inaccuracy is due only to me.
I �rst thank professor Roberto Barbuti, doctor Paolo Milazzo without their
support and their wise guidance this thesis would not exist. I would like to
thank doctor Pasquale Bove for supporting me during all this time and for
his advice and all the evenings spent together on books. I would also like
to thank doctor Giovanni Pardini for his comments, suggestions and for so
many co�ee o�ered.

I would also like to thank the people dearest to me: my parents Rossana
and Severino, my sister Marzia, my friends Ugo and Francesco, my house-
mate Emanuele, and �nally my girlfriend Elena who was with me till the
end, to all of them and to my grandparents who watch over me from up
there, this work is dedicated.

5

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Published Material . 5

2 State of the art 7

3 Background 13

3.1 De�nition of multiset and related operations 13

3.2 Notions of P Systems . 14

3.2.1 Formal de�nition . 15

3.2.2 Some relevant extensions 18

3.2.3 MPP systems . 20

3.2.4 APP systems . 25

4 MAPP Systems 31

4.1 De�nition of MAPP systems 31

4.1.1 Formal de�nition . 32

4.2 Semantics, formal de�nition 36

4.3 MAPPS a simple example . 42

4.4 MAPPS another example: Predator / Prey 45

4.4.1 Sets . 45

4.4.2 Rules . 46

4.4.3 Functions . 48

5 Serengeti Lions 51

5.1 Informal description . 53

5.2 Formal description . 55

6 Experimental results 67

6.1 Data and results . 67

7 Final Conclusions 71

7

APPENDICES 72

A General purpose implementation 73

A.1 Overview . 73
A.1.1 Programming language used in the project 73

A.2 Commentary to code . 74
A.2.1 software engine . 74
A.2.2 input �les . 76
A.2.3 apply method . 78
A.2.4 Rating method . 79
A.2.5 Matrices of choice . 80
A.2.6 State updating . 82

A.3 Software engine extension . 83
A.3.1 class Membrane . 84
A.3.2 input �les . 85
A.3.3 class Membrane implementation 85
A.3.4 Membrane Attributes 86
A.3.5 Updating functions . 87
A.3.6 Membrane example . 88

Bibliography 89

Chapter 1

Introduction

1.1 Motivation

The animal social behaviour is the suite of interactions that occur between
two or more individual animals, usually of the same species, when they form
simple aggregations, cooperate in sexual or parental behaviour, engage in
disputes over territory and access to mates, or simply communicate across
space. The social interactions refer to particular forms of externalities, in
which the actions of a reference group a�ect an individual's preferences. The
reference group depends on the context and is typically an individual's fam-
ily, neighbors, relatives or peers. Ethology is the scienti�c and objective
study of animal behaviour and social interactions, usually with a focus on
behaviour under natural conditions, and viewing behaviour as an evolution-
arily adaptive trait.

Understanding ethology or animal behaviour can be important in animal
training. Considering the natural behaviours of di�erent species or breeds
enables the trainer to select the individuals best suited to perform the re-
quired task. It also enables the trainer to encourage the performance of
naturally occurring behaviours and also the discontinuance of undesirable
behaviours. Ethologists are typically interested in a behavioural process
rather than in a particular animal group, and often study one type of be-
haviour, such as aggression, in a number of unrelated animals.

Using mathematical models of animal social structures, it is possible to
systematically test and predict the e�ect of human interventions, such as
reintroduction of animal species in a speci�c environment [1]. These mod-
els are typically built in an iterative cycle of experiment and re�nement,
by multidisciplinary research teams that include biologists, ethologists and

1

2 CHAPTER 1. INTRODUCTION

computer scientists. Similarly, simulations produced by these models can
give guidance on how to preserve a certain state of the system. For example
researchers used this approach to investigate and better support the sustain-
ability of the soles stock in a given portion of Adriatic sea. [2]

The study of biological macroscopic models, through stochastic simulations,
is represented by a whole set of formalisms, methodologies and implemen-
tations, that allows to better understand the evolution and interaction of
animal population of one or more species in a well de�ned environment. For
a long time, ethologists, ecologists and social scientists have faced the chal-
lenge of how to handle the complexity of these systems, which have common
elements with many other theoretical and practical problems. Well known
biological phenomena, like chemical reactions or physical phenomena, par-
tially share solutions and methodologies with social modelling, mathematical
modelling and complex systems.

Many models used in the study of the social behavior of animals have born
and evolved within the �eld of study of systems biology (SB), a science that
studies living organisms. Traditionally, the study of biological systems has
involved the development of mathematical models, often based on di�eren-
tial equations, which permit the description and analysis of their behaviour.
The use of abstract models has many advantages such as, for example, it al-
lows the development of simulators which, in turn, may reduce the need for
laboratory experiments. However, as the complexity of the system increases,
mathematical models become more di�cult both in the speci�cation and in
the analysis [50]. Moreover, they may not be well-suited for modelling par-
ticular systems: for example, using di�erential equations for modelling the
variation in concentrations of reactants in a solution is su�ciently accurate
only when the number of reactants is high, whereas becomes less accurate
when their number is low. This is because the number of reactants is ab-
stracted as a continuous variable. A great e�ort to the modelling of biological
processes has been given by the use of modelling formalisms coming from
Computer Science. Many formalism developed for modelling and analysing
interactive and communicating systems have been applied to Biology [16], as
they allow for a �ner speci�cation of their behaviour than traditional models.

Among these, there are: the π-calculus [48, 19, 15, 21], automata-based
models [3, 43] and rewrite systems [33, 46] In particular, these formalisms
have the ability to overcome some of the limitations of traditional models:
for example, they allow to represent faithfully even systems comprising a
small number of components, and among which complex interactions take
place.

There are also formal models developed for the study of macro-biological phe-

1.2. CONTRIBUTIONS 3

nomena. For example, in [14, 17] the BlenX and LIME languages are used to
compositionally construct models of ecosystems, while in [42] PALPS mod-
els are encoded in PRISM language a probabilistic model checker. PALPS
(Process Algebra with Locations for Population Systems) is a process algebra
described as �the �rst process-algebraic framework developed speci�cally for
reasoning about ecological models� [39]. Another process algebra developed
for Modelling in Ecology with Location Attributes is called MELA [67]. It
is suitable for formally describing ecological systems, with focus on space
abstraction and environmental description.

In the tradition of automata and formal language theory, a interesting for-
malism, which will be discussed in this thesis later are P Systems, introduced
by P un [45, 46, 47]. P Systems introduce the idea of membrane computing
in the subject of natural computing. They represent a new computational
paradigm which allow solving NP-complete problem in polynomial time (but
in exponential space). They originated a very big mass of work and recently
they have been also applied to the description of biological systems (see [79]
for a complete list of references). The P Systems have been expanded and
modi�ed to be used in several case studies. The Attributed Probabilistic P
Systems (APP) were used to model social interactions in primates [11] and
Minimal Probabilistic P Systems were used to model the reproduction in
frogs [6]. In [25] a variant of P systems is used to model the dynamics of
some endangered species in the Pyrenees. In [5, 4] Spatial PSystems are
proposed and used to model the behaviour of shoals of �sh.

These extended versions of P systems have proved to be suitable formalisms
for the previous examples. What seems to be lacking yet is an extension of
these formalisms able to model social interactions of a species characterized
by a complex social structure, where the hierarchy is not linear, where several
groups interact each other sometimes cooperatively sometimes competitively
sometimes merging each other. The human society is not the only example
of complex social organization, we �nd other realities in nature too. For
example, the lions are the most socially inclined of all wild felids. A pride of
lions is characterized by a complex social structure composed of nomadic and
stable social units. Such a complex and �uid structure would become hard
to be represented without the aid of a formalism that can model interactions
between group of individuals. Therefore, in this thesis we aim to present a
formalism that meets this need.

1.2 Contributions

The continuous addition of new features to the standard models of P Systems
and their evolution suggests that ethology requires speci�c models to man-

4 CHAPTER 1. INTRODUCTION

age the complexity of the case studies handled. In this Thesis we show how
the study and modeling of a group of animals characterized by complex and
diverse social structures, such as the lions of the Serengeti, requires a further
evolution of P systems. Where rules are applied not only to terminal ele-
ments but also to membranes. We call this new model Multilevel Attributed
Probabilistic P Systems (MAPPS). The purpose of MAPPS is to provide a
more �exible tool than previous models, where the groups of individuals are
not statically de�ned at the outset, but may evolve, increase in number or
even disappear during the various stages of computation.

These groups can be seen both as speci�c groups of individuals, such as
families, as that area groupings, such as the members of a species present
in a speci�c area. They may also be used to identify di�erent species such
as a group of predators and a group of prey. In all these cases the groups
may change or individuals within it can move from one group to another.
For example, puppies can move out from their families when they grow up,
groups of predators can disperse groups of prey, groups of animals can move
from one area to another. This instability of the groups and the mobility
of its members need to be kept into account in our formalism if we want to
represent realistic models. MAPPS are designed to be suitable to describe
social interactions of a complex social structure. In this thesis we produce a
formal de�nition of MAPPS and its semantics.

In order to show a possible MAPPS application we propose a simulation
based on our model that takes as a case of study the lions of the Serengeti
and we produce the obtained results. As mentioned above, a pride of lions
is composed by a complex and �uid hierarchy, where a subgroup of a pride,
called court and formed only by females and cubs is permanently settled into
a location while another subgroup, formed by males, called coalition could
be nomadic for a long while. Social interactions between this two subgroups
of lions represent the reading key that allows us to understand the complex
dynamics of a pride. The need to model the interactions between groups
and not just between individuals is one of the reasons that led us to choose
the lions of the Serengeti as a case study to apply a model based on MAPPS.

Moreover, we have developed a simulator for MAPPS, it is actually a gen-
eral purpose engine written in C#. The engine can take in input a model in
MAPPS and return as output a log of the entire computation. The engine
can be applied to several models. The obtained results can be processed to
elaborate statistical surveys and make graphs

1.3. PUBLISHED MATERIAL 5

1.3 Published Material

The de�nition of APP systems presented in Section 2.2.3 has appeared in
[11] and presented to the fourth international symposium on Modelling and
Knowledge Management applications: Systems and Domains (MoKMaSD
2015). The published material is presented in this thesis in revised and
extended form.

6 CHAPTER 1. INTRODUCTION

Chapter 2

State of the art

The state of the art in the formal modelling of ecosystems consists of stud-
ies in which formal notations are used to model and simulate population
dynamics and ecosystems but also of some notable examples of formalisms
used over the years and which are part of the classical methods for modeling
macro-biological systems. Some of them have been de�ned with the speci�c
purpose of describing biochemical networks and activity of membranes in-
side cells. Moreover, some of them have been inspired by the π−calculus
process algebra of Milner [53], which is a standard foundational language for
concurrency theory.

Cellular automata (1940s)
Were created by von Neumann and Ulam in the 40's [2]. They are dis-
crete dynamic models that consist on a grid of cells with a �nite number
of states. A cellular automaton has an initial con�guration that changes at
each time step through a prede�ned rule that calculates the state of each
cell as a function of the state of its neighbors at the previous step. They
are specially suited for modeling complex phenomena in a scale-free manner
and have been used in biological studies for a long time [81]. Due to their
spatial features their main applications are related to molecular dynamics
and cellular population dynamics.

Applications: An application example of cellular automata applied to
macro-biological problems is DISPAS, Demersal �sh Stocks Probabilistic
Agent-based Simulator [26].It has been initially developed to investigate
and support the sustainability of the soles stock in a given portion of the
Adriatic sea where a wide study area is divided in hexagonal thanks to the
introduction of a model based on Cellular Automata paradigm (CA), an
idealization of a physical system in which space and time are discrete.

7

8 CHAPTER 2. STATE OF THE ART

Petri nets (1962)
Were created by Carl Adam Petri in the 60's for the modeling and analysis of
concurrent systems [59]. They are bipartite graphs with two types of nodes,
places and transitions, connected by directed arcs. Places hold tokens that
can be produced (respectively, consumed) when an input (respectively, out-
put) transition �res. The execution of a Petri net is non-deterministic and
specially suited for distributed systems with concurrent events.

Applications: Their application to biological processes began in 1993,
by the work of Reddy and coworkers, to overcome the limitations in quan-
titative analysis of metabolic pathways [60]. There are currently several
Petri net extensions (e.g.: coloured, timed, stochastic, continuous, hybrid,
hierarchical, functional), forming a very versatile framework for both qual-
itative and quantitative analysis. Due to this versatility, they have been
used in metabolic [118, 61, 63], gene regulatory [62, 66], and signaling net-
works [64, 44, 104, 65]. Also, they are suited for integrating di�erent types
of networks, such as gene regulatory and metabolic [120].

Lindenmayer systems (1968)
(or L Systems) are one of the oldest formalisms introduced and developed
in 1968 by Aristid Lindenmayer [68].

Applications: An L system is a formal grammar most famously used
to model the growth processes of plant development.

Boolean networks (1969)
In 1969 Kau�man introduced Boolean networks to model gene regulatory
networks [72]. They consist on networks of genes, modeled by boolean vari-
ables that represent active and inactive states. At each time step, the state
of each gene is determined by a logic rule which is a function of the state
of its regulators. The state of all genes forms a global state that changes
synchronously. For large network sizes (n nodes) it becomes impractical to
explore all possible states (2n).

Applications: This type of model can be used to �nd steady-states (called
attractors), and to analyze network robustness [100]. Boolean networks can
be inferred directly from experimental gene expression time-series data [95,
96]. They have also been applied in some studies to model signaling path-
ways [103, 122]. To cope with the inherent noise and the uncertainty in bio-
logical processes, stochastic extensions like Boolean networks with noise [97]

9

and Probabilistic Boolean networks [98] were introduced.

Process algebras (1980s)
A family of formal languages for modeling concurrent systems are process
algebras. They generally consist on a set of process primitives, operators
for sequential and parallel composition of processes, and communication
channels. The Calculus of Communicating Systems (CCS) was one of the
�rst process algebras, developed during the 80's by Robin Milner [54]. In
1992 Robin Milner developed a process algebra called π−calculus [55].

Applications: In [41, 40] a process algebra is proposed and used to model
population dynamics by taking spatial distribution of the individuals into
account. In [29] the Bio-PEPA process algebra is used to describe epidemi-
ological problems, again by including a notion of spatiality. Other relevant
biological applications of process algebras include:

Bio-calculus (1999) Nagasaki, Onami, Miyano and Kitano in [117] de-
�ne the Bio-calculus as an expression system designed to make a bridge
between biology and computer science.
Applications: It can be used to describe and simulate some molecular
interaction.

Applications of π−calculus (1992) More than a decade ago, Regev
and Shapiro published their pioneer work on the representation of signal-
ing pathways with π−calculus [48, 49]. Their idea is to describe metabolic
pathways as π−calculus processes and in [20] they showed how the stochas-
tic variant of the model (BioSpi), de�ned by Priami in [18], can be used
to represents both qualitative and quantitative aspects of the systems de-
scribed.

Beta binders (2005) Beta-binders is a language of processes with typed
interaction sites which has been introduced by Priami and Quaglia [21].
A year later, Degano, Prandi, Priami, Quaglia, enriched syntax and se-
mantics of Beta-binders to achieve a stochastic version of them, in order
to obtain quantitative measures on biological phenomena [22].

Brane Calculi (2005) More details of membrane interactions have been
considered by Cardelli in the de�nition of Brane Calculi [31, 32], which
are elegant formalisms for describing intricate biological processes involv-
ing membranes. Moreover, a re�nement of Brane Calculi have been intro-

10 CHAPTER 2. STATE OF THE ART

duced by Danos and Pradalier in [34].

SpacePi (2008) John, Ewald and Uhrmacher devolepd an extension of
π-calculus called SpacePi [113]. In this formalism π-processes are em-
bedded into a vector space and move individually. Only processes that
are su�ciently close can communicate. The SpacePi extends π-calculus
also in time, the operational semantics of SpacePi de�nes the interactions
between movement, communication, and time-triggered events.

Bio-PEPA (2008) Developed by Ciocchetta and Hillston [27, 28], Bio-
PEPA are a process algebra for the modelling and the analysis of bio-
chemical networks. Bio-Pepa is an extension of PEPA, a process algebra
originally de�ned for the performance analysis of computer systems.

BlenX (2008) Dematte, Priami, Romanel and Soyer used the Beta Work-
bench and its BlenX language to study the evolution of biological net-
works [23]. In 2009 Priami, Ballarini, Quaglia developed BlenX4Bio, an
high-level interface for BlenX [24].

Di�erential equations
Di�erential equations are mathematical equations that contain derivatives,
either ordinary derivatives or partial derivatives. They describe the rate
of change of continuous variables. They are typically used for modeling
dynamical systems in several areas.

Applications: Systems of non-linear ordinary di�erential equations (ODEs)
have been used in systems biology to describe the variation of the amount
of species in the modeled system as a function of time. They have been
applied to all kinds of biological pathways [86, 91, 112, 92]. With a fully de-
tailed kinetic model, one can perform time-course simulations, predict the
response to di�erent inputs and design system controllers. However, build-
ing ODE models requires insight into the reaction mechanisms to select the
appropriate rate laws, and experimental data to estimate the kinetic param-
eters. Other types of di�erential equations, such as stochastic di�erential
equations (SDEs) and partial di�erential equations (PDEs) can be used
respectively to account for stochastic e�ects and spatial distribution [116].
Piecewise-linear di�erential equations (PLDEs) have been used to integrate
discrete and continuous features in gene regulatory networks [99, 87].

11

Agent-based models(2000s)
This formalism describes the interactions among multiple autonomous agents.
They are similar in concept to cellular automata, except in this case, instead
of using a grid and synchronized time steps, the agents move freely within
the containing space. Likewise, they are used to study complex phenomena
and emergent dynamics using populations of agents with simple rules.

Applications: In ethology, Agent Based Model are used to study biologi-
cal reality as in the paper of Martha Robbins and Andrew m. Robbins [52],
which represents an excellent example of ABMs. The rules are related to
individual monkeys where each monkey is represented by an agent char-
acterized by a set of data such as age and gender. The sum of the states
of every individuals make up the next state of entire model. After each
iterative step, the system checks the status and decide whether to continue
with the next iteration or stop. In this model, as well as in many others,
the system does not produce a single simulation but a set of these that,
in the �nal output, will be analysed with statistical methods, such as the
classic Monte Carlo method [78].
Another example of ABMs applied to macro-biological problem is DIS-
PAS [2]. In the model, the behaviour of a single agent simulates the be-
haviour of a single �sh. By applying the entire model we can formally
specify the behaviour of the whole stock as a function of time. In addition,
we can easily reproduce the interactions with other species and the marine
environment representing them as probabilities of natural death.

Rule-based modeling (2000s)
This category consists of the formalisms of non-deterministic parallel com-
puting systems, also called Rewriting System [71]. A String Rewriting
System (SRS), uses the free monoid structure of strings (words) on an al-
phabet which extends a relationship R for all strings in the alphabet which
contains respectively the left and right side of certain rules as sub-strings.
Formally an SRS is a tuple (Σ , R), where Σ is an alphabet, usually lim-
ited, and R is a binary relation between some strings in the alphabet, called
rewriting rule. This formalism comprises a recent approach to the problem
of multi-state components in biological models. In rule-based formalisms
the species are de�ned in a structured manner and support multiple states.
The reaction rules are de�ned as transformations of classes of species, avoid-
ing the need for specifying one reaction per each possible state of a species.
This high-level speci�cation is then automatically transformed into a bio-
chemical network with the set of species and reactions generated by the
speci�cation. The main advantage of the rule-based approach is that it can
avoid the combinatorial explosion problem in the generation and simulation
of the complete reaction network by performing stochastic simulations that

12 CHAPTER 2. STATE OF THE ART

only instantiate the species and reactions as they become available [73, 74]
or by the generation of coarse-grained ODE systems [127] . Spatial simula-
tion has been addressed recently by the inclusion of geometric information
as part of the structure of the species [115].

Applications: This kind of formalism is implemented in BioNetGen [119]
which generates an ODE model or a stochastic simulation from the ruled-
based speci�cation. It has been applied in the modeling of di�erent sig-
naling pathways [105, 123, 124, 126]. A similar rule-based formalism used
for this kind of pathways is the k−language, where the species are de-
�ned by agents that have a structured interface for interaction with other
agents [35, 36, 127]. The possible interactions are de�ned by a set of rules,
which can be visualized by a contact map. BIOCHAM implements a rule-
based approach for model speci�cation which is complemented with a tem-
poral logic language for the veri�cation of the properties the biological
models [121].

P Systems (1998)
The P Systems [45, 46, 47] are another example of rule-based system for-
malisms that have proved to be easily adaptable to the study of macro-
biological problems. We will focus on its developments on the section Back-
ground.

k−calculus (2004)
This is an interesting example of rule-based model created by Danos and
Laneve [33]. k−calculus is a pioneering formalism in the description of
biological systemss. It is a formal language for protein interactions, it is
enriched with an intuitive visual notation and it has been encoded into
the π−calculus. The k−calculus idealizes protein-protein interactions, es-
sentially as a particular restricted kind of graph−rewriting operating on
graphs with sites. A formal protein is a node with a �xed number of sites,
and a complex (i.e. a bundle of proteins connected together by low energy
bounds) is a connected graph built over such nodes, in which connections
are established between sites. The k−calculus has been recently extended
to model also membranes [37].

Chapter 3

Background

3.1 De�nition of multiset and related operations

In this section we present some of key concepts about multiset theory that
will be used frequently during the discussion of the next topics: a multiset
is an extension of the concept of a set. While a set can contain only one
occurrence of any given element, a multiset may contain multiple occurrences
of the same element. Note that by this de�nition, a set is also classi�ed as
a multiset. In a multiset the multiplicity of an element is the number of
instances of the element in a speci�c multiset.

De�nition 3.1 (multiset). Given a set S = {s1, . . . , sk}, a multiset is a set
of pairs w = {(s1, n1), . . . , (sk, nk)} where ∀i ∈ {1, k} ni ∈ N.

- We represent a multiset w as {|w1, . . . , wn|} where wj ∈ S and for each
si ∈ S there are exactly ni elements of w1, . . . , wn that are instance of
si. The set S is called support of w;

- We denote with |w|si the value of ni;

- We denote with |w| the size (number of elements) of the multiset w, and
with − and + the di�erence and the union of multisets, respectively;

For the sake of simplicity we will often use strings to represent multisets. A
character of a string represents an element of a multiset. For our purposes
the strings aaab, abaa, aaba are equivalent and describe the same multiset
{|a, a, a, b|}. We will also abbreviate multiset representations by using apices
to denote repetitions. For example we will represent aaab as a3b. This way
to describe multisets is useful when we use the operator + to append a string
to another to describe the union over multisets. In this way, to represent the
union of two multiset, we use aab + ab = aabab. Given a set S of elements,
S∗ denotes the universe of all multisets having S as support.

13

14 CHAPTER 3. BACKGROUND

3.2 Notions of P Systems

Figure 3.1: Membrane structure of a P System

The P Systems [46] are a form of rewriting systems originally de�ned as a
bio-inspired model of computaton that have proved to be easily adaptable
to the study of macro-biological problems. P Systems are an abstract model
of parallel and distributed computing, which is inspired by molecular mem-
branes and cellular compartments.

A P system consists of a hierarchy of membranes that do not intersect
each other. The highest level membrane is called skin membrane whereas
a membrane that does not contain any other membrane is called elementary
membrane. See Figure 1 for an example of membrane structure. Membranes
are seen as the demarcation lines between regions. Each membrane is asso-
ciated with a single region. The space around the skin membranes is called
the outer region or environment. Because of this one-to-one correspondence
the terms membrane and region are used as synonyms sometimes.

Each region is associated with a multiset of objects, described by symbols
in a given alphabet and with a set of evolution rules. According to P un
de�nition, multisets of objects in a region represent chemicals in the solution
inside the cell compartment, while the rules correspond to the possible chem-
ical reactions within the same compartment. The objects evolve according
to the evolution rules, that can consume and produce some of them, or send
some of them to internal membranes or to the upper one. The produced
objects can not be created in a membrane that is not immediately contained
or that does not contain directly the membrane in which the rules have been
applied. Moreover, an evolution rule can cause a membrane to be dissolved

3.2. NOTIONS OF P SYSTEMS 15

with the e�ect of releasing its contents to the outer membrane.

Evolution rules are applied with maximal parallelism. A maximal multi-
set of rules is chosen during each step and for any of these rules its reactant
are consumed and new items are produced where required. The choice of
the maximal multiset of rules is non-deterministic The computing process
starts from an initial con�guration, with a number of objects arranged within
hierarchy of membranes. The system evolves by maximal parallel steps by
taking into account that rules associated with the membrane act only on
objects present in the same membrane.

A computation halts when there are no evolutionary rules that can be ap-
plied to the state reached by the system. The output of the system has been
de�ned in several ways, for example we can consider as output the multiset
present in a membrane when the computation stops, or the sequence of ob-
jects sent to the environment.

3.2.1 Formal de�nition of a P Systems

A P System has a tree-structure in which the skin membrane is the root
and the membranes containing no other membranes are the leaves. The only
change to the structure that may happen is the removal of some node of the
tree (apart from the root) caused by evolution rules. A membrane structure
can be represented graphically as a Venn diagram. P Systems as follows are
formally de�ned as follow.

De�nition 3.2 (P system). A P System Π is given by

Π = (V, µ, w1, . . . , wn, (R1, ρ1), . . . , (Rn, ρn))

where:

- V is an alphabet whose elements are called objects;

- µ ⊂ IN× IN is a membrane structure, such that (i, j) ∈ µ denotes that
the membrane labeled by j is contained in the membrane labeled by i;

- wi with 1 ≤ i ≤ n are strings from V ∗ representing multisets over V
associated with the membranes 1, 2, . . . , n of µ;

- Ri with 1 ≤ i ≤ n are �nite sets of evolution rules associated with
the membranes 1, 2, . . . , n of µ; An evolution rule is a pair (u, v),
denoted u → v, where u is a string over V and v is a string over
(V × {here, out}) ∪ (V × {inj |1 ≤ j ≤ n}) ∪ {δ} and δ is a special
symbol not in V .

16 CHAPTER 3. BACKGROUND

- ρi is a partial order relation over Ri, specifying a priority relation
between rules: (r1, r2) ∈ ρ1 i� r1 > r2 (i.e. r1 has a higher priority
than r2).

Example computation

Figure 3.2: graphical representation of a P system

The image shown in �gure 3.2 depicts the initial state of a P system with two
membranes. Because of their hierarchical nature, P systems are often de-
picted graphically as Venn diagrams. The outermost membrane, is the skin
membrane of this P system and contains three rules. The out tag represents
that the target of products is out of the membrane. The innermost mem-
brane, contains the multiset of symbols ac and four rules. In this initial state
no rules outside of the most internal membrane are applicable: there are no
symbols outside of that membrane. However, during evolution of the system,
as objects are passed between membranes, the rules in other membranes will
become active. This simple example does not have practical applications
and serves only to provide an idea of the functioning of the computation of
a P system.

Computation

Because of the non-deterministic nature of P systems, there are many di�er-
ent paths of computation a single P system is capable of, leading to di�erent
results. The following is one possible path of computation for the considered
P system.

Step 1
From the initial con�guration only the the most internal membrane has

3.2. NOTIONS OF P SYSTEMS 17

inside the following elements: ac. Object c is assigned to c→ cc, while a is
assigned to a→ ab.

Figure 3.3: after step 1 of computation

Step 2
As we can see in �gure 3.3, the most internal membrane now contains: abcc.
Objects bc are assigned to bc→ cout, while c is assigned to c→ cc, and a is
assigned to a → bout. We remark that the choice of rules to be applied is
non-deterministic.

Hence the application of the second rule a → bout in place of to the �rst
rule a → ab is non-deterministic due to the non-deterministic choice. The
system could just as well have continued applying the �rst rule (and at
the same time doubling the c particles) inde�nitely. Since the out target
has been encountered twice, in the second rule and in the fourth rule, the
multiset of products bc is sent to membrane 1.

Figure 3.4: after step 2 of computation

18 CHAPTER 3. BACKGROUND

Step 3
At this step, as shown in �gure 3.4 we can see that the most internal
membrane contains cc while the skin membrane contains bc. Notice the
maximally parallel behaviour of rule application leading to the same rule
being applied twice during one step. Each c in membrane 2 is assigned to
c→ cc, while bc in the skin membrane is assigned to bc→ cout. In �gure 3.5

Figure 3.5: after step 3 of computationm

is shown the state after three steps. Notice that c is sent out of membrane
1, to the environment. In many cases the elements sent out of the skin
membrane are seen as the output of the systems.

Notice that from now on the only rule applicable is c → cc. We can not
have other values sent out of the membrane 1 and of membrane 2.

3.2.2 Some relevant extensions

In this chapter we show some of the developments proposed by the sci-
enti�c community to show some formalisms from which we took inspiration
for the formulation of our paradigm. The P Systems are backed up by a
very active community of researchers that has developed di�erent versions
and extensions to face di�erent problems, both from the theoretical point
of view and to respond to speci�c applications. Some, research teams have
successfully used this type of solutions to face problems of animal species
modelling. We will see in the examples below how the scholars introduced
new elements in P Systems, such as explicit use of space or the introduction
of probabilistic choices of maximal multiset of rules.

Dynamical Probabilistic P systems (DPPS)
are a variant of P Systems where each rule is associated with a constant

3.2. NOTIONS OF P SYSTEMS 19

and rules are chosen according to a probability that is obtained at each
computational step normalizing associated constants[69].
The origianl paradigm of P Systems proposed by P un provides a non-
deterministic choice of rules. According to the P un de�nition[45], a rule
cannot be selected if one of higher priority can be selected, that means that
the non-determinism comes down to choosing between rules with equal pri-
ority. In DPPS we have a more sophisticated attempt to implement the
non-determinism, in a probabilistic way, assigning to the rules a probabilis-
tic rating.

Stochastic P systems
The Stochastic P Systems[56] are models derived from P Systems that im-
plement a probabilistic choice of rules by using the Stochastic Simulation
Algorithm (SSA), an algorithm of stochastic simulation of biochemical sys-
tems introduced by Gillespie in 1976. We see for instance, a similar imple-
mentation proposed in the article[58], in this example is shown as time has
a fundamental importance in the algorithm of Gillespie. In SSA rules have
a time duration, so we can know what is the next rule to be applied and
how much time elapses between the application of a rule and another. This
method may be useful for asynchronous systems or in general in all those
systems in which it is important to know the duration of a given event
in relation to others. The Stochastic P systems were implemented using
the spatially explicit programming language MGS[57]. Examples of imple-
mentations include Lotka-Volterra models. auto-catalytic systems, and life
cycle of Semliki Forest virus.

Spatial P systems
Spatial P systems are an extension of P systems where objects and mem-
branes are included in a two-dimensional grid. They are characterized by
the distinction between ordinary objects and mutually exclusive objects,
with the requirement that each cell of the grid can contain any number
of ordinary objects, and only one mutually exclusive object. In this work,
what is emphasized is the concept of space, which is made explicit, and
enriches the model. Space management and some features that belong the
model increase the computational complexity in code of execution algo-
rithm. It is possible to maintain low the computational cost by applying
restrictions to the parameters of the system, retaining almost intact the
expressiveness.

Multi environment Probabilistic Functional Extended P system
Monica Campbell and Angels Colomer present a rich model extension pro-
posal in their paper. In this work several critical aspects of ecosystems
modelling are faced such as: the introduction of a graph structure rep-
resenting interconnected multi-habitats, the attribution of a probabilistic
function to certain rules which work on the same set of reactants and the

20 CHAPTER 3. BACKGROUND

enrichment of membranes de�nition with speci�c attributes. This extension
of P Systems is used in two cases studies: a study about European bearded
vulture (Gypaetus barbatus) and one about zebra mussel in Ribarroja re-
serve.

3.2.3 Minimal Probabilistic P Systems

The variant of P systems de�ned below includes a minimal set of features
useful for modelling population dynamics. This formalism together with
that presented in the next section are the basis for what we propose in this
thesis. For this reason we recallo here the formal de�nition of these two
models. The �rst variant we consider are Minimal Probabilistic P Systems
MPP systems are form of �at P systems[9], namely P systems consisting of a
single membrane, since a membrane structure is not useful for the purposes
of this formalism. The key ingredients that taken in account are:

- evolution rules with functional rates.

- probabilistic maximal parallelism

- rule promoters.

The aim of this variant of P systems is to make modelling of populations
easier, by avoiding in the modelling formalism unnecessary functionalities.
In models of population dynamics, evolution rules are used to describe events
such as reproduction, death, growth, and so on. In general there may be
several rules describing one of these events and which can possibly applied,
alternatively, to the same individuals. For instance, the same female individ-
ual may be involved in one of di�erent reproduction rules, one rule for each
possible kind of male it can mate with. Some of these rules may be more
likely to be applied than others since the events they describe are more likely
than others. (For instance, some females may have a sexual preference for
some speci�c kind of males.) Associating rates with rules allows to choose
rules in a probabilistic way, where probabilities are proportional to the rates.
Moreover, by allowing rates to be functions, rather than constant values, the
probability of applying a rule can depend on the current state of the system
(for instance on the size of the population, or on the number of individu-
als of a speci�c kind). Probabilistic choice of rules have been considered in
many formalisms for modelling biological systems [12, 8, 70, 13, 58, 10, ?].
In MPP systems probabilities of rules are used in conjunction with maximal
parallelism.

3.2. NOTIONS OF P SYSTEMS 21

Populations often evolve by stages (e.g. reproduction, selection, etc...) in
which (almost) all of the individuals are involved. By combining maximal
parallelism with probabilistic choice of reactions the systems allow the whole
population to evolve in a coherent way and, at the same time, each individ-
ual to follow its own fate.
Finally, since in each stage of the evolution of a population di�erent kinds
of event may happen, it is necessary a way to enable di�erent sets of rules
depending on the current stage. For instance, during a reproduction stage
only reproduction rules should be enabled, whereas during a selection stage
only death/survival rules should be enabled. In order to obtain this result
rule promoters are exploited, that can be used to enable/disable a set of
rules by simply including/removing an object from the state of the system.

De�nition 3.3 (MPP system). A Minimal Probabilistic P system is a tuple
〈A,w0, R〉 where:

- A is a possibily in�nite alphabet of objects.

- w0 ∈ A∗ is a multiset describing the initial state of the system;

- R is a �nite set of evolution rules having the form

u
f−→ v |pr

where u, v, pr ∈ A∗ are multisets (often denoted without brackets) of
reactants, products and promoters, respectively, and f : A∗ 7→ IR≥0 is
a rate function.

A state (or con�guration) of a MPP system is a multiset of objects in V ∗.
By de�nition, the initial state is w0. We denote a generic state of the system
as w, with |w| the size (number of objects) of the multiset w, and with |w|a
the number of instances of object a contained in multiset w.
The evolution of a MPP system is given by a sequence of probabilistic max-
imally parallel steps. In each step a maximal multiset of evolution rule
instances is selected and applied as described by the following semantic rules.

22 CHAPTER 3. BACKGROUND

(rule application)

ri : u
k−→ v |pr∈ R u ⊆ w′ pr ⊆ w

K = {k′|u′ k
′
−→ v′ |pr′∈ R, u′ ⊆ w′, pr′ ⊆ w}

p = k∑
k′∈K

k′

(w′, w′)
ri, p−−−→(R,w) (w′ − u,w′ + v)

(single rule sequence)
(w′, w′)

ri, p−−−→(R,w) (w′′, w′′)

(w′, w′)
[ri], p−−−→

+

(R,w) (w′′, w′′)

(multiple rules sequence)

(w′, w′)
ri, pi−−−→(R,w) (w′′, w′′)

(w′′, w′′)
r, p−−→

+

(R,w) (w′′′, w′′′)

(w′, w′)
r@[ri], pi·p−−−−−−−→

+

(R,w) (w′′′, w′′′)

(step rule)
(w, ∅) r, p−−→

+

(R(w),w) (w′, w′) (w′, w′)9(R(w),w)

w
r, p
=⇒R w′ + w′

Where [ri] denotes the sequence composed by the single element ri, and
@ denotes the concatenation of sequences.

Given a system state, w, the (step rule) describes the evolution in a new

state by the
r, p
=⇒R relation, where p is the probability of the transition, and r

is the sequence of applied rules. (step rule) uses as a premise the transition

(w, ∅) r, p−−→
+

(R(w),w) (w′, w′) where R(w) is the set of applicable rules in the
state w, with their rates. The rates of the rules in R(w) are normalized with
respect to all the applicable rules in w, as de�ned as follows. Given a set of
rules R we have:

K(w) = {k′ | u′ k
′
−→ v′ |pr′∈ R, u′ ⊆ w, pr′ ⊆ w},

R(w) = {u p−→ v |pr | u
k−→ v |pr∈ R, u ⊆ w, pr ⊆ w, p = k∑

k′∈K(w)

k′ }

In the transition (w′,∅)
r, p+

−−−→(R,w) (w′, w′), r is a sequence representing the
multiset of rules to be applies to w. (step rule) has also (w′, w′)9(R(w),w) as a
premise in order to ensure that r corresponds to a maximal multiset of rules.

3.2. NOTIONS OF P SYSTEMS 23

The transition relation
r, p+

−−−→(R,w) is de�ned by rules (single rule sequence)

and (multiple rule sequence) on the basis of transition relation
ri, p−−−→(R,w). A

transition (w′, w′)
ri, p−−−→(R,w) (w′−u,w′+v) corresponds to the application of

a single rule. When a rule is selected, its application consists in removing its
reactants from w′ and adding its products to w′. The w′ multiset will collect

all products of all applied rules. Transition realtion
r, p
=⇒R is de�ned on the

basis of two other transition relations:
r, p−−→(R,w) and

r, p−−→
+

(R,w). The former
describes the application of a single rule as the latter describes a sequence
of rule applications.

Note that each rule is applied with respect to the rates of the rules
computed in the initial state w. This rates can change only if some rules
cannot be applied to the remaining objects in w′. Note also that it is su�cient
that the promoters are present in the initial state w, pr ⊆ w. Once objects
in w′ are such that no further rule in R(w) can be applied to them, the (step
rule) returns the new state of the system w′ + w′ (where w′ are the unused
objects and w′ are the new products).

Intuitively, the semantic de�nition states that all the rules to be applied
are selected in a probabilistic way from the set of applicable rules, their
reactant are removed for the available reactants, w′, and their product are
added to a suspended multiset w′. When no further rule can be applied to
w′ the new state, which is composed be the unused objects in w′ plus the
suspended products in w′, is produced.

Finally we give the probability of a transition between two states by
means of the following rule:

(state transition probability)

PR = {(r, p)| w r, p
=⇒R w

′} p =
∑

(r,p)∈PR
p

w
p

=⇒R w′

There are di�erent sequences of rules that go from w to w′. In
r, p
=⇒R these

sequences correspond to di�erent transitions. In
p

=⇒R these sequences are
grouped in a single transition with probability equal to the sum of the prob-
abilities of single sequences. This leads to have a correct distribution of
probability for a state w (the sum of its outgoing transition is 1) because

the probabilities in
r, p
=⇒R were obtained through a normalization and in

p
=⇒R

these probabilities are grouped by summing the probabilities of those that
lead to some next state.

Example computation

The �gure 3.6 shown the initial state of a MPP system with only one mem-
brane. Because of their �at nature, MPP systems are always depicted graph-

24 CHAPTER 3. BACKGROUND

Figure 3.6: initial state Minimal Probabilistic P Systems

ically with only one membrane. The skin membrane is the container for all
the elements of an MPP system. In this example, it contains four applicable
rules. The out tag represents that the target of products is out of the skin
membrane. This simple example does not have practical applications and
serves only to provide an idea of the functioning of the computation of an
MPP system.

Computation

Because of the probabilistic nature of MPP systems, there are many di�erent
paths of computation a single MPP system is capable of, leading to di�erent
results. The following is one possible path of computation for the considered
MPP system.

Step 1
From the initial con�guration the skin membrane has inside the following

elements: ac. The element a is assigned to a
1→ ab|c, the only rule appli-

cable to the reagent a as the promoter b of rule a
7→ bout|b is not present,

while c is assigned to c
1→ cout.

Figure 3.7: after step 1 of computation

3.2. NOTIONS OF P SYSTEMS 25

Step 2
At this step, as shown in �gure 3.7, the skin membrane has inside the
following elements: abcc. Both promoters b and c are presents, so both
the �rst and the second rules can be applied. Notice that the probabilistic
choice of the rules provides a probability of 1/8 to be chosen to the �rst rule,

while the rule a
7→ bout|b has a probability of 7/8 to be chosen. Assuming

that the probabilistic choice assigns a to the second rule, bc to bc
1→ cout

and c to c
1→ cc. Products c and b are sent out of membrane.

Figure 3.8: after step 2 of computation

Step 3
As we can see in �gure 3.8, there are no more a elements the only applicable
rules are the third and the fourth, with same probabilities. Assuming that

c is assigned to c
1→ cc and bc is assigned to bc

1→ cout. The product c is

sent out of the membrane. From now on, the only applicable rule is c
1→ cc

and the number of c elements doubles step by step. Figure 3.9 show the
state after three steps of computation.

Figure 3.9: after step 3 of computation

3.2.4 Attributed Probabilistic P Systems

In the previous section, we have seen how the elements of MPP systems are
seen as individuals of populations or as control elements. Control elements

26 CHAPTER 3. BACKGROUND

are used as promoters to model the subsets of active rules at various stages
of computation. In MPP systems, we can model simple attributes of indi-
viduals adding symbols to the alphabet. For example we have an alphabet
consisting of {a, b} that could represent two individual belonging to di�erent
species. If we want to specify the sex of each element we need to increase
the number of symbols {am, af, bm, bf}.

When an attribute, as in this case the sex, can only have two possible values,
such as male or female, it is easy to replace an element of the alphabet with
two new elements, as in this case am and af. But if we want to insert an
attribute such as age where possible attribute values are not only two, we
may have to add a very large, possibly in�nite, number of elements of the
alphabet.

With the need to associate attributes to the elements, such as age, sex and
strength, it is necessary to use a di�erent model from MPP systems. The
formulation of APP Systems is a natural consequence of this need. In this
formalism we add attributes to enrich the model. The attributes of objects
consumed by the rules greatly in�uence the functions of the rating associated
with each rule generating a probabilistic system that is much more �exible
and concise. Here we see in detail the APP Systems.

De�nition 3.4 (APP system). An Attributed Probabilistic P system, aP ,
is a tuple 〈A, arity,Da1 , . . . , Dan , w0, R〉 where:

- A is an ordered �nite alphabet of symbols, {a1, . . . , an};

- arity : A → IN is a function which for each ai ∈ A gives the arity of
Dai ;

- each Dai is a set of tuples, Dai = I1 × . . .× Iarity(ai), where each Ij is
a (possibly in�nite) set of unstructured values; the set Dai is called the
set of attributes of ai;

- w0 is a multiset of values in Σ = {〈ai, di〉 | ai ∈ A, di ∈ Dai} describing
the initial state of the system, where Σ is called the set of objects of
P . In the following we will write w0 ∈ Σ∗.

- given a set of variables V , R is a �nite set of evolution rules having
the form

uV
f−→ vV |prV

where uV, prV ∈ Σ∗V are multisets (often denoted without brackets) of
objects and variables denoting reactants and promoters, respectively;

3.2. NOTIONS OF P SYSTEMS 27

vV ∈ Σ∗EV is a multiset of objects and expressions with variables de-
noting products; and f : Σ∗ 7→ IR≥0 is a weight function. Precisely:

ΣV = {(ai, di) | ai ∈ A, di ∈ DV
ai} ΣEV = {(ai, ei) | ai ∈ A, ei ∈ EV

ai}

where DV
ai = (V ∪ I1)× . . .× (V ∪ Iarity(ai)); and E

V
ai = Exp(V, I1)×

. . .×Exp(V, Iarity(ai)), with Exp(V, I) denoting the set of well-typed ex-
pressions built from operators, variables V , and values of I. Moreover,
we have V ars(vV) ⊆ V ars(uV) ∪ V ars(prV), where V ars(t) denotes
the set of variables occurring in t. Rules without variables are called
ground rules.

In what follows we will denote an (attributed) object 〈a, d〉 as a(d). A state
(or con�guration) of an APP system is a multiset of objects in Σ∗. By de�-
nition, the initial state is w0, and we denote a generic state as w.
The evolution of an APP system is a sequence of probabilistic maximally
parallel steps. We formally de�ne the semantics of APP systems as a transi-
tion relation in the style of [7]. In each step a maximal multiset of evolution
rule instances is selected and applied as described by the following semantic
rules:

(rule application)

ri = u
k−→ v ∈ R u ⊆ w′

K = {|k′|u′ k
′

−→ v′ ∈ R, u′ ⊆ w′|} p = k/
∑
k′∈K k

′

(w′, w′)
ri, p−−−→R (w′ − u,w′ + v)

(single rule sequence)
(w′, w′)

ri, p−−−→R (w′′, w′′)

(w′, w′)
[ri], p−−−−→

+

R (w′′, w′′)

(multiple rules sequence)
(w′, w′)

ri, pi−−−→R (w′′, w′′) (w′′, w′′)
r, p−−→

+

R (w′′′, w′′′)

(w′, w′)
r@[ri], pi·p−−−−−−−→

+

R (w′′′, w′′′)

(step rule)
(w, ∅) r, p−−→

+

R(w) (w′, w′) (w′, w′)9R(w)

w
r, p
=⇒R w′ + w′

where [ri] denotes the sequence composed of the single element ri, and @
denotes the concatenation of sequences. The semantics of APP systems
is similar to that of the MPP systems. What di�ers is the presence of
variables and attributes. Given a system state, w, the (step rule) describes

the evolution in a new state by the
r, p
=⇒R relation, where p is the probability

of the transition, and r is the sequence of applied ground rules. (step rule)

uses as a premise the transition (w, ∅) r, p−−→
+

R(w) (w′, w′) where R(w) is the
set of applicable ground rules in the state w, with their weights, namely:

R(w) =

{
uVσ

f(w)−−−→ vVσ

∣∣∣∣ uV
f−→ vV |prV

∈ R, ∃σ. uVσ ⊆ w ∧ prVσ ⊆ w
}

28 CHAPTER 3. BACKGROUND

where (i) σ : V → flat(Da1) ∪ . . . ∪ flat(Dan), with flat(Dai) = I1 ∪ . . . ∪
Iarity(ai), for all ai ∈ A; (ii) uVσ (uV ∈ Σ∗V) is the well-typed multiset ob-
tained by substituting values for variables in uV according to σ; and (iii) vVσ
(vV ∈ Σ∗EV) is the well-typed multiset obtained by evaluating the expressions

in vV under the substitution σ. Transition relation
r, p−−→

+

R is the transitive

closure of
r, p−−→R.

A transition (w′, w′)
ri, p−−−→R (w′−u,w′+v) corresponds to the application

of a single rule. When a rule is selected, its application consists in removing
its reactants from w′ and adding its products to w′. The w′ multiset will
collect all products of all applied rules. Note that R(w) takes into account
that each rule is applied with respect to the weights of the rules computed
in the initial state w. Moreover, R(w) contains only the ground rules the
promoters of which are present in the initial state w (prVσ ⊆ w). Once
objects in w′ are such that no further rule in R(w) can be applied to them,
by (step rule) the new system state is w′ + w′ (where w′ are the unused
objects and w′ are the new products).

Intuitively, the semantic de�nition states that all the rules to be applied
are selected in a probabilistic way from the set of applicable rules, their
reactant are removed for the available reactants, w′, and their product are
added to a suspended multiset w′. When no further rule can be applied to
w′ the new state, which is composed be the unused objects in w′ plus the
suspended products in w′, is produced. Finally we give the probability of a
transition between two states by means of the following rule:

(state transition prob.)

PR = {(r, p)| w r, p
=⇒R w

′} p =
∑

(r,p)∈PR
p

w
p

=⇒R w′

As in the case of MPP systems we have that the sum of probabilities of

transitions for a given state is one since the probabilities in
r, p
=⇒R were ob-

tained through a normalization and in
p

=⇒R these probabilities are grouped
by summing the probabilities of those that lead to the next state.

Example computation

The image shown in in �gure 3.10 depicts the initial state of a APP system
with only one membrane. Because of their �at nature, APP systems are al-
ways depicted graphically with only one membrane that is the container for
all the elements of an APP system. The skin membrane contains four appli-
cable rules. The out tag represents that the target of products is out of the
skin membrane. This simple example does not have practical applications
and serves only to provide an idea of the functioning of the computation of
a APP system

3.2. NOTIONS OF P SYSTEMS 29

Figure 3.10: initial state Attributed Probabilistic P Systems

Computation

Because of the probabilistic nature of APP systems, there are many di�erent
paths of computation a single APP system is capable of, leading to di�erent
results. The following is one possible path of computation for the considered
APP system.

Step 1
From the initial con�guration the skin membrane has inside the following
elements: a(1,3)a(1,5)c(3,2). The absence of promoter b prevents the applica-
tion of the rule a(j,k) → a(j+1,k−1)a(j−1,k+1)|b(i,l). The elements a(1,3) and
a(1,5) are assigned to a(j,k) → b(j,k)|c(i,l), the element c(3,2) is assigned to
c(j,k) → c(j,k,out). Notice the maximally parallel behaviour of rule applica-
tion leading to the same rule being applied twice during one step.

Figure 3.11: after step 1 of computation

Step 2
As we can see in �gure 3.11, the skin membrane has inside the following
elements: a2,2a0,2b1,5. The absence of promoter c prevents the application
of the rule aj,k → bj,k|ci,l. The elements a0,2 and a2,2 are assigned to
aj,k → aj+1,k−1aj−1,k+1, while b1,5 is assigned to bj,k → cj,k.

30 CHAPTER 3. BACKGROUND

Figure 3.12: after step 2 of computation

Step 3
In �gure 3.12, the skin membrane has inside the following elements: b2,2b0,2c1,5.
The elements b2,2 and b0,2 are assigned to bj,k → cj,k, the element c1,5 is
assigned to cj,k → cj,k,out.

Figure 3.13: after step 3 of computation

Step 4

In �gure 3.13 we can see the state after three steps. The computation halts
with the output of c2,2 and c0,2 from the skin membrane.

Chapter 4

Multilevel Attributed

Probabilistic P Systems

In this chapter we propose a new formalism aimed at representing social
interactions between groups of individuals. We intend to use membranes to
represent groups of individuals grouped by their age, sex, spatial position or
other characteristics of social nature. To this end we decide not to use Flat
P systems, used in the case of APP systems., and we use the hierarchical
membranes structure of the original paradigm of P un.

We intend to study interactions between groups, then we must also rede-
�ne the semantics of rules to ensure that they can operate not only on the
usual elements, but also on the membranes, to have the opportunity to cre-
ate them, destroy them and change them.

4.1 De�nition of MAPP systems

We intend to extend APP systems adding attributes to the membranes. As
already happens for objects, these attributes are used and modi�ed by the
rules. Some of these attributes are updated by update functions. For exam-
ple an update function can calculate the number of elements in a membrane
and update the value of a membrane attribute that serves as a counter.

We present a variant of P systems called Multilevel Attributed Probabilistic P
Systems (MAPP systems). MAPP systems are an extension of APP systems
where we include the following additional features:

- an ordered �nite set of membranes Γ. The membranes are sorted de-
pending on which one can incorporate the others. The �rst one, named

31

32 CHAPTER 4. MAPP SYSTEMS

Env can contain all the others but itself, and so on, the last in order
cannot contain other membranes but only simple objects.

- a set of domains DΓ that de�nes the types of the attributes associated
with membranes.

- A set of rules is associated to each membrane. Each rule is composed by
a multiset of reagents and promoters, a multiset of products, a multiset
of the promoters and a rating function. Reagents and products are
multisets of both membranes and objects. Variables can be uses to
represent attribute values in an abstract way. The multiset of reagents
cannot be empty. A rating function takes as input the attributes of
both promoters and reagents and returns as output a positive number
used as weight of the rule.

- a set of update functions U in one to one correspondence with the at-
tributes of the membranes.Each function takes as input all membrane's
attributes, the inner state of the membrane and returns as an output
a new value for its corresponding attribute.

- Finally, the computational step is no longer parallel, a membrane to
be able to calculate its new internal state must wait until all the states
of contained membranes have been calculated. We de�ne a recursive
computation of the membranes that rises from the inner to the outer
membrane which describes the environment of the system. In the next
section we show in detail this formalism that incorporates features of
APP such as probabilistic elements and promoters.

4.1.1 Formal de�nition

De�nition 4.1 (MAPPS). A Multilevel Attributed Probabilistic P System
is a tuple 〈Γ,Σ, arity,DΣ, DΓ, ω0, R, U〉
that consists of the following elements:

- Γ = {Env}∪{γ1, .., γn} is an ordered �nite alphabet of symbols, repre-
senting membranes of our system. Membranes γ1, .., γn are assumed to
be ordered and the order in�uences the containment of one membrane
into another. In particular, a membrane γi can be contained (nested)
into another membrane γj only if j < i. The Env (enviroment) ele-
ment is called skin membrane, it cannot be contained by any element
of Γ while it can contain any element of Γ.

4.1. DEFINITION OF MAPP SYSTEMS 33

- Σ = {σ1, .., σm} ∪ {ε} is an ordered �nite alphabet of symbols, repre-
senting standard objects.
The special symbol ε represents no objects and will be used to de�ne the
inner state of an empty membrane.

- arity: Σ ∪ Γ → N is a function which for each ai ∈ Σ ∪ Γ gives the
lenght of the tuple Dai that describes the attributes of ai.

- DΓ = {Dγ1 , . . . , Dγn} Ordered set of domains, in correspondence with
elements of set {γ1, .., γn}. Notice that Env has no attributes therefore
does not exist a DEnv.
EachDγi is a set of tuples, Dγi = Iγi,1 × · · · × Iγi,arity(γi), where each
Iγi,j is a (possibly in�nite) set of values for the j-th attribute of γi. The
sequence Dγi is called the set of attributes of γi.

- DΣ = {Dσ1 , . . . , Dσm} Ordered set of domains, in correspondence with
elements of set Σ.
Each Dσi is a set of tuples, Dσi = Iσi,1 × · · · × Iσi,arity(σi), where each
Iσi,j is a (possibly in�nite) set of values for the j-th attribute of σi. The
sequence Dσi is called the set of attributes of σi.

- The initial state ω0 = (Env, s) is the state of the system at the begin-
ning of the computation. The state of a generic membrane γi ∈ Γi,j is a
multiset over Si={〈γj , d, s〉|j > i, γj ∈ Γ, d ∈ DΓj , s ∈ S∗j }∪{〈σ, d〉|σ ∈
Σ, d ∈ DΣj} ∪ {ε} with i, j ∈ {0, . . . , n}. The state s is the state of
membrane Env and it is a multiset over S0. It represents membranes
and objects contained in the internal state of Env.

- The set R = {Rγ1 , . . . , Rγn} is an ordered set of sets of evolution rules,
in corrispondence with the elements of Γ. For each element γi ∈ Γ
there is an associated set of rules Rγi∈R. Evolution rules are de�ned
in def. 4.2

- The set U = {Uγ1 , . . . , Uγn} is an ordered set of sets of functions (
called update functions) in correspondence with elements of Γ. Each
set of functions Uγi is composed by arity(γi) functions.
Uγi = {Uγi,1, . . . , Uγi,arity(γi)} The generic function Uγi,j belonging to
Uγi is typed as:

34 CHAPTER 4. MAPP SYSTEMS

Uγi,j : S∗i ×DΓi → DΓi,j

The generic internal state of a membrane γi is a multiset over the set:

Si={〈γj , d, s〉|j > i, γj ∈ Γ, d ∈ DΓj , s ∈ S∗j } ∪ {〈σ, d〉|σ ∈ Σ, d ∈ DΣj} ∪ {ε}
with i, j ∈ {0, . . . , n}
The generic element of the internal state of membrane γi is part of the re-
sulting union of three sets.
An element of �rst set is a tuple 〈γj , d, s〉 and describes a membrane with
its attributes and its internal state, with the restriction j > i.
An element of second set is formed by the terminal symbols belonging to Σ
with an instance of its attributes.
The last set consists of the singlet ε that is used to represent the absence of
elements within a membrane.

With this de�nition of internal state we de�ne the generic state of the system
ω = (Env, s) composed by a couple consisting of the symbol Env represent-
ing the skin membrane, and its internal state s.

Each individual set of functions Uγi consists of a number of functions equiv-
alent to the number of attributes of the membrane associated with it, then
|Uγi | = arity(γi). If from the set of update functions of the i-th membrane
we consider the j-th update function this will take as input one internal state
of level i and one istantiation of the attribute domain of the membrane Γi
and will give as output one value of type DΓi,j . For example from the j-th
set of values Iγi,j from DΓi = {Iγi,1 × · · · × Iγi,j × · · · × Iγi,arity(γi)}.

In rules de�nition are present variables and expressions, as in the formal-
ism, membranes and objects are attributed and the evolution rules concur
to change attributes values. Variables and expressions are used to write rules
applicable for di�erent values of attributes

Given a set of variables V we de�ne:

S∗Vj = V ∪ {∅}
DV

Γj
= (V ∪ Iγj ,1)× · · · × (V ∪ Iγj ,arity(γj))

DV
Σl

= (V ∪ Iσl,1)× · · · × (V ∪ Iσl,arity(σl))

EVΓj = Exp(V ∪ IΓj(1))× · · · × Exp(V ∪ IΓj(arity(γj)))

EVΣl = Exp(V ∪ Iσl,1)× · · · × Exp(V ∪ Iσl,arity(σl))

where Exp(V ∪ Ij) denotes the set of well-typed expressions built from op-
erators, variables V , and values of Ij . Exp(V ∪ Sj) denotes a well typed ex-

4.1. DEFINITION OF MAPP SYSTEMS 35

pression built on strings operator �+�, variables V and elements and strings
of set SVj .

De�nition 4.2. Given a set of variables V , an evolution rule associated with
membrane γi of a MAPPS has the form:

uV
f→ vV |prV

where:

- uV ∈ ({〈γj , dj , s〉| j > i, γi ∈ Γ, dj ∈ DV
Γj
, s ∈ S∗Vj } ∪ {〈σl, dl〉|σl ∈

Σ, dl ∈ DV
Σl
})+ is a non empty multiset of objects each one with its

own attributes made explicit by values or by variables.

- prV ∈ ({〈γj , dj , s〉|γi ∈ Γ, s ∈ S∗Vj , dj ∈ DV
Γj
, j > i} ∪ {〈σl, dl〉|σl ∈

Σ, dl ∈ DV
Σl
})∗ is a possibly empty multiset of objects with its own

attributes explicited by values or by variables.

- vV ∈(({ 〈γj , dj , s〉|γi ∈ Γ, dj ∈ EVΓj , s ∈ ES
∗V
j , j > i} ∪ {〈σl, dl〉|σl ∈

Σ, dl ∈ EVΣl} × {out,_}) ∪ ({〈γk, dk, s〉|γi ∈ Γ, s ∈ S∗k , dk ∈ EVΓk , k >
j} ∪ {〈σl, dl〉|σl ∈ Σ, dl ∈ EVΣl} × {in(〈γj , d, s〉}))∗ where: j > i,
V ars(vV) ⊆ V ars(uV) ∪ V ars(prV) and |〈σ, d〉| + |〈γ, d, s〉| ≤ 1 with
〈σ, d〉, 〈γ, d, s〉 ∈ vV

- f is a rate function typed as:
f : S+

j × S∗j → R≥0

where Sj is the state of membrane γj as de�ned in def. 4.1. The do-
main is composed by reagent (S+

j) and the promoters (S∗j), the output
is a positive real number (the weight of the rules).

Multiset vV is a possibly empty multiset of pairs consisting of one object with
its own attributes explicited by value or functions which can take as input at-
tributes both from uV and prV and a �ag from the set {in(〈γi, d, s〉), out,_}
where 〈γi, d, s〉 ∈ uV . For the pairs �agged by �out� or �_� the membranes
of the multiset vV have an index that is greater than i, where γi is the mem-
brane that owns the rule. Otherwise for the pair �agged by in(〈γj>i, d, s〉)
the membranes have an index that is greater than j.

36 CHAPTER 4. MAPP SYSTEMS

4.2 Semantics, formal de�nition

We de�ne the semantics of MAPP systems using inference rules. We have
seen that the system elements can be membranes or objects. A membrane
is identi�ed by a tuple 〈γi, d, s〉. An object is identi�ed by a tuple 〈σ, d〉. In
what follows , especially in the examples, for greater readability, we could
denote an (attributed) object 〈σ, d〉 as σ(d). We represent the structure of
the internal state of Env as a tree where each node is a membrane, its chil-
dren are the membranes contained in its internal state. The computing of
internal state of each membrane is not in parallel, as in regular P System,
but sequentially in the order induced a postorder traversal of the tree. One
by one the states of the membranes are computed back to the root of the
tree represented by Env that concludes the complete computation of the
new state of the MAPPS.

The computation of the new state of a membrane is managed by the single
internal step rule, A single internal step consists of the following operations:
- Get the objects sent out by inner membranes

- Choose a maximal multiset of rules considering internal membranes as
reactants ready to be used. Then apply in parallel the chosen multiset of
rules to the current state of the membrane.

- Apply the update functions on the inner state and attributes of the mem-
brane to recalculate the value of its attributes

After these three steps, the membrane has a new internal state and set
of attributes. Here below we describe, one by one, the inference rules that
describe the computative process of the entire system.

In the �rst three inference rules we describe the internal computative step of
a single membrane. In order to achieve our purpose, we de�ne three multiset:
w′ that indicates the multiset of objects ready to be used by rules, w′ the
multiset of products created by the rules application and wout the multiset
of products created by rules with �out� �ag.

The evolution of the internal state of a generic membrane γj is a sequence of
probabilistic maximally parallel steps. We formally de�ne the semantics of
that computation as a transition relation in the style of [7]. The transition

relation is
ri,p−→R where R is the multiset of applied rules,ri is a generic rule

belonging to R and pis the probability that ri can be applied. In each step
a maximal multiset of evolution rule instances is selected and applied as de-
scribed by the following semantic rules, in this rules are not present variables

4.2. SEMANTICS, FORMAL DEFINITION 37

and promoters because we are working on applied rules where variables are
instantiated and the presence of promoters has already been veri�ed:

(single rule application)

ri=u
k−→v(_)+v(out)∈R u⊆w′ K={| k′|u′ k

′
−→v′∈R,u′⊆w′ |} p=k/

∑
k′∈K k′

(w′,w′,wout)
ri,p−→R(w′−u,w′+v(_),wout+v(out))

single rule application - the rule application describes the application of a
single rule that is associated with a probability p. The rule is applied start-
ing from an internal state (w′, w, wout). The multiset v(_) subtracts reagents

from w′ and adds products to w. The multiset v(out) subtracts reagents from
w′ but adds products to wout to be sent outside the membrane. The prob-
ability p is evaluated by normalizing the weight of the rule ri compared to
the weights of all the applicable rules of the set Rγj to reageants in w′.

(single rule applicationwith in flag)

ri = u
k−→ v(_) + v(out) + σin(γj) ∈ Ru ⊆ w′ 〈γj , d, s〉 ∈ w′

w′γj = {|〈γj , d′, s′〉 ∈ w′|d′ ∈ DΓj
, s′ ∈ Sj |}

K = {| k′|u′ k′−→ v′ ∈ R, u′ ⊆ w′ |} p = k/
∑
k′∈K

k′ ·
|w′|〈γj ,d,s〉
|w′γj |

(w′,w′,wout)
ri,p−→R(w′−u−{|〈γj ,σ,s〉〈γj ,σ,s+{|σ|}〉|},w′+v(_)+{|σ|},wout+v(out))

single rule application with in �ag - describes rules where products
are sent into another membrane. The target membrane must be among the
reagents. The rule de�nition ensures us that it is not possible to send into a
membrane another membrane of higher or of the same level

These two single rule applications are similar to those of APP systems with
the di�erence that these sets of rules are applied inside a membrane j, then
Rγj is the set of rules related to the j-th element of the set Γ. K is the set
of weights associated to all the applicable rules. The probability is given by
the weight k of a single rule divided by the sum of all the applicable weights

in K multiplied by
|w′|〈γj,d,s〉
|w′
γj
| . Where |w'|〈γj ,d,s〉 is the number of membranes

〈γj , d, s〉 present in w′ while |w′γj | is the number of elements in w′γj

(single rule sequence rule)

(w′,w′,w′
out)

ri,p−→R(w′′,w′′,w′′
out)

(w′,w′,w′
out)

[ri],p
+

−→ R(w′′,w′′,w′′
out)

single rule sequence rule - describes the application of a sequence of rules
composed by a single rule. The sequence is associated with the probability
of the single rule. The set of rules of our interest is limited to those visible
within a membrane of the type corresponding to the j-th element of Γ. The

38 CHAPTER 4. MAPP SYSTEMS

rule, conditioned by the respective probability, makes a transition from (w′,
w′, w′out) to (w′′, w′′, w′′out).

In the next two inference rules, it is present the transition relation
r,p+

−→R

where the sequence r represents the multiset of the instances of rules.
(multiple rules sequence)

(w′,w′,w′
o)
ri,pi−→R(w′′,w′′,w′′

o) (w′′,w′′,w′′
o)
r,p+−→R(w′′′,w′′′,w′′′

o)

(w′,w′,w′
o)
r@[ri],pi.p

+

−→ R(w′′′,w′′′,w′′′
o)

multiple rules sequence - describes the application of a sequence of rules
using as basic case the (single rule sequence), the probability of the sequence
is the product of the individual probabilities of the rules of the sequence. Our
multiple rules sequence is an update of an APP Systems rule, Also here the
set of rules is limited to Rγj In our de�nition [ri] denotes the sequence com-
posed of the single element ri, and @ denotes the concatenation of sequences.

(singlemembrane internal step rule)

(s,∅,∅)
r,p+−→R(s)d

(w′,w′,w′
out) (w′,w′,w′

out)9Rγj (s)d
_

〈γj ,d,s,o〉
r,p−→Rγj

〈γj ,d,w′+w′,w′
out〉

single membrane internal step rule Given a membrane internal state,
s, the (single membrane internal step rule) describes the evolution in a new

membrane internal state by the
r, p→ Rγj relation, where p is the probability

of the transition, and r is the sequence of applied rules. (single membrane

internal step rule) invokes (s,∅,∅)
r, p−−→

+

R(s)d
(w′, w′, wout) where R(s)d is

the set of applicable rules in the state s and with membrane attribute d,
with their weights, namely:

R(s)d =

{
uλ

f(s)−−→ vλ

∣∣∣∣ u f−→ v |pr∈ Rγj , ∃λ. uλ ⊆ s ∧ prλ ⊆ s
}

where (i) λ : V → flat(Da1) ∪ . . . ∪ flat(Dan), with flat(Dai) = Ia1 ∪ . . . ∪
Iaarity(ai)

, for all ai ∈ Γ ∪Σ; (ii) uVλ, prVλ and dVλ are well-typed multiset
obtained by substituting values for variables in uV, prV and dV according
to λ; and (iii) vVλ is the well-typed multiset obtained by evaluating the ex-
pressions in vV under the substitution λ.
A transition (w′, w′, wout)

ri, p−−−→R (w′ − u,w′ + v, wout + vout) corresponds to
the application of a single rule. When a rule is selected, its application con-
sists in removing its reactants from w′ and adding its products to w′ or wout
according to the �ags of the products. The two multiset w′ and wout will
collect all products of all applied rules. Note that R(s) takes into account
that each rule is applied with respect to the weights of the rules computed

4.2. SEMANTICS, FORMAL DEFINITION 39

in the initial state s. Moreover, R(s) contains only the rules the promoters
of which are present in the initial state s (prVλ ⊆ s). Once objects in w′ are
such that no further rule in R(s) can be applied to them, by (single mem-
brane step rule) the new membrane is (γj , d, w

′+w′,wout) (where w′ are the
unused objects and w′ are the new products).

(update)

∀i∈{1...arity(γj)} Uγj,i(d,s)=d
′
i

〈γj ,d,s,o〉
update(d,s)j−→ 〈γj ,(d′1,...,d′arity(γj)

),s,o〉

update - The update rule is a feature not present in APP systems, here we
obtain a new domain of attributes d′ from previous attributes and state of
γj , thanks to a set of functions that change the value of each attribute

(getting on rule)

s′=s−]〈γ,d,s,o〉∈s〈γ,d,s,o〉+]〈γ,d,s,o〉∈s〈γ,d,s,∅〉+]〈γ,d,s,o〉∈so

〈γj ,d,s,o〉
gettingon(γ)−→ 〈γj ,d,s′,o〉

getting on rule - The (getting on rule) applied on a target membrane
searches all membranes in its internal state, then, for each membrane found,
keeps the elements present in o and adds them to internal state (s) of tar-
get membrane. Moreover this rule makes o empty for each internal mem-
brane. The new state of target membrane s′ is obtained subtracting the
union of all internal membranes [−](γ,d,s,o)∈s (γ, d, s, o)], adding the union

of all membranes where o has been emptied [+](γ,d,s,o)∈s (γ, d, s,∅)]and
adding the union of all elements taken from the o multiset of internal mem-
branes [+](γ,d,s,o)∈s o].

(singlemembrane steprule)

〈γj , d, s,∅〉
gettingon(γj)−→ 〈γj , d, s′,∅〉

〈γj , d, s′,∅〉
r,p−→RΓj

〈γj , d, s′′, o〉

〈γj , d, s′′, o〉
update(d,s′′)j−→ 〈γj , d′, s′′, o〉

〈γj ,d,s,∅〉
r,p,update(d,s′)j

=⇒ 〈γj ,d′,s′′,o〉

single membrane step rule - describes a composition of the getting on
rules ,an internal computational step and a following application of update
functions.
These three steps are performed in the correct order in a membrane element.
At the end of this transition the object membrane will have a new internal
state, updated attribute values and a new multiset of elements o. The mem-
brane is now ready for the computational step at upper level.

40 CHAPTER 4. MAPP SYSTEMS

(recursivemembrane computational step rules)

(1)

σ∈Σ d∈DΣ

〈σ,d〉V1〈σ,d〉

(2)

s = x1.x2. . . . xl ∀i, 1 < i < l, xi
pi
V xi

s = x1.x2. . . . xm 〈γj, d, s, o〉
r,p,update(d,s′)j

=⇒ 〈γj, d∗, s∗, o∗〉

〈γj ,d,s′,o′〉
p·
∏
i∈{1...l} pi
V 〈γj ,d∗,s∗,o∗〉

(3)

s = x1.x2. . . . xl ∀i, 1 < i < l, xi
pi
V xi s = x1.x2. . . . xm

〈γj,∅, s,∅〉
gettingon(γj)−→ 〈γj,∅, s′,∅〉

〈γj,∅, s′,∅〉
r,p−→RΓj

〈γj,∅, s∗, o〉

(Env,s)
p·
∏
i∈{1...l} pi
V (Env,s∗)

where

xi ∈ {〈γk, d, s, o〉|k > i, γk ∈ Γ, d ∈ DΓk , s ∈ S∗k , o ∈ S∗k} ∪ {〈σk, d〉|σk ∈
Σ, d ∈ DΣk}

recursive membrane computational step rules - The three recursive
membrane computational step rules are applied to all elements of the sys-
tems: membranes represented by 〈γ, d, s, o〉, objects represented by 〈σ, d〉,
Env represented by (Env, s). The rule (1) tell us that the terminal elements
are unaltered by this transformation. The (1) represents the basic rule of the
recursion. The rule (2) is applied to membranes. The rule (2) is recursively
called to each elements (xi) of internal state (s) of the membrane to obtain a
new state s and then the single membrane step rule is applied over the tuple
〈γj , d, s, o〉 to obtain 〈γj , d∗, s∗, o∗〉. The rule (3) describes the application
of the rule to Env to obtain a new step of entire system. Instead to apply
a full single membrane step rule to Env, the rule (3) applies to Env only
the gettingon and the single membrane internal step rule. The update rules
is not required because Env has not attributes. In Both the rules (2) and
(3) the states s and s are represented by sequence of xi elements. Each xi
can be a membrane represented by a tuple 〈γk, d, s〉 or a terminal element
represented by 〈σk, d〉.

4.2. SEMANTICS, FORMAL DEFINITION 41

In the description of these rules we use the following sets , operator and
conventions:

Rγn(s) = {uV φ
f(s)→ vV φ | uV

f→ vV |prV ∈ Rγn()∃φ.uV ⊆ s ∧ prV φ ⊆ s}

where φ : V → flat(Da1 ∪ · · · ∪ flat(Dan), with flat(Dai) = Ia1 ∪ · · · ∪
Iarity(ai), for all ai ∈ A; uV φ(uV ∈ Σ∗V) is the well-typed multiset obtained
by substituting values for variables in uV according to φ; and (vV ∈ Σ∗EV)

The probability that a membrane 〈γj , d, s〉 makes a transition to 〈γj , d, s∗〉 is
p = p ·

∏
pi∀i = {1 . . . l} If the membrane contains no other membrane but

only objects pi = 1 then p = p. Where p is a probability given by the normal-
ization of weight k and hence the sum of all alternative transitions is 1. If the
membrane contains only membranes which contain only objects, the proba-
bility is p = p′ ·

∏
p′i where p

′
i are the probability p of internal membranes

, and pisagainobtainedbynormalizationofruleweights.Theprobabilitiesp'i
are indipendent each others. Therefore p′ ·

∏
p′i is a product of probabilities

that is a probability itself. We can continue in this way leveling up from the
innermost membrane to Env and say that (Env, s) makes a transition to
(Env, s∗) with probability p′′ = p′′ ·

∏
p′′i where p′′i is still a probability.

42 CHAPTER 4. MAPP SYSTEMS

4.3 MAPPS a simple example

Figure 4.1: graphical representation of a P system

The image shown in �gure 4.1 depicts the initial state of a MAPP system
with two membranes. The outermost membrane, is the Env of this MAPP
system and contains two rules. The innermost membrane, contains the mul-
tiset of symbols a(1)c(3) and four rules. Membrane A as an attribute and
its value is 2. There is only one update function present in A. The out tag
represents that the target of products is out of the membrane. The in tag
represents that the target of products is an internal membrane. In this ini-
tial state only the rules of the most internal membrane are applicable: there
are no symbols outside of that membrane. However, during the evolution
of the system, as objects are passed between membranes, the rules in other
membranes will become active. This simple example does not have practi-
cal applications and serves only to provide an idea of the functioning of the
computation of a MAPP system. The initial state of a MAPP system is
represented as below:

MAPPS = 〈Γ,Σ, arity,DΓ, DΣ, w0, R, U〉
where :
Γ = {A}
Σ = {a, b, c, d}
DΓ = {DA}
DΣ = {Da, Db, Dc, Dd}
ω0 = (Env, {|(A, (2), a(1)b(3))|})
R = {REnv, RA}

4.3. MAPPS A SIMPLE EXAMPLE 43

U = {UA}
Computation

Because of the probabilistic nature of MAPP systems, there are many dif-
ferent paths of computation a single MAPP system is capable of, leading to
di�erent results. The following is one possible path of computation for the
considered MAPP system.

Step 1
From the initial con�guration the most internal membrane has inside the

following elements: a(1)b(3). Object b(3) is assigned to b(j)
j+k→ b(j,out), c(j),

while a(1) is not assigned to any rule because the only one that takes a(j)

as reactant requires c(i) as promoter. At the and of the rule application,
the update functions are applied. In this simple example the only update
function is 1 + |s|a(v)

that sum 1 to the number of elements a present into
membrane A, and set D(A,1) = 2.

Figure 4.2: after step 1 of computation

Step 2
As we can see in �gure 4.2, the most internal membrane now contains:

a(1)c(3) while the Env contains b(3). Object a(1) is assigned to a(j)
i+j→

a(j+1), b(j−1)|c(i), while c(3) is assigned to c(j)
j+k→ c(j,out), In Env, b(3) is

assigned to b(j)
1→. We remark that the choice of rules to be applied is

probabilistic. In this case however only one rule can be applied for each
present reactant. At the end of the rules application, update functions are
applied, D(A,1) = 2.

Step 3
At this step, as shown in �gure 4.3 we can see that the most internal mem-
brane contains a(2)b(0) while the Env contains c(3). The reactant a(2) is not

44 CHAPTER 4. MAPP SYSTEMS

Figure 4.3: after step 2 of computation

assigned to any rules because the only one that takes a(j) as reactant re-

quires c(i) as promoter. The reactant b(0) is assigned to b(j)
j+k→ b(j,out), c(j).

In Env, c(3) is assigned toAi,sc(j)
1→ c(i,in(A(i,s′)))

. At the and of the rules
application, update functions are applied, D(A,1) = 2.

Figure 4.4: after step 3 of computationm

In �gure 4.4 is shown the state after three steps. Notice that these few
steps are intended as simple examples of computation, but the computation
continues to proceed with the next steps.

4.4. MAPPS ANOTHER EXAMPLE: PREDATOR / PREY 45

4.4 MAPPS another example: Predator / Prey

This brief example is made to demonstrate the functioning of MAPP Sys-
tems on a classical case study of population dynamics: the predator/prey
interaction. A predator is an organism that eats another organism. The
prey is the organism which the predator eats. Some examples of predator
and prey are lion and zebra, bear and �sh, and fox and rabbit. In the follow-
ing three subsections we show, the sets, the rules and the update functions
of a predator/prey model, written with our formalism.

4.4.1 Sets

- Γ ∪ {Env} = {Env,Loc, Predators}
is the set of symbols of alphabet of membranes. It Includes Env, the
external environment, Loc, the locations reachable by groups of preda-
tors, and Predators, a group of predators that hunt in packs.

- DΓ = {DLoc, DPredators}
is the set of domains of membranes as de�ned below.

� DLoc = {fecundity} where fecundity ∈ N is an attribute used
to indicate the quantity of food for preys produced in a certain
location.

� DPredators = {members, supplies} where members ∈ N and sup-
plies ∈ N. members represents the number of elements within a
group, and supplies the number of supplies collected by a pack.

- Σ = {m, p, f, r, summer,winter, spring, autumn} is the set of objects.
Includes m,which is a member of the pack of predators, p representing
a prey, f representing the food, r that is the source from which the food
is spawned and four control elements, named summer, spring autumn
and winter representing the cycle of the seasons. The use of a source
from which the food is spawned prevents the situation in which prey
eat all the food and there is no more possibility to reproduce it. The
food reproducing speed is related to the fecundity of a location.

46 CHAPTER 4. MAPP SYSTEMS

- DΣ = {Dm, Dp, Df , Dr, Dsummer, Dspring, Dwinter, Dautumn}
is the set of domains of objects as de�ned below.

� Dm = {ε}
� Dp = {ε}
� Df = {ε}
� Dr = {ε}
� Dsummer = {month} where month ∈ N Months are used to allow

more iterations within the same season, so that prey reproduce
themselves more than once.

� Dspring = {month} where month ∈ N Months are used to allow
more iterations within the same season, so that food increases
more than once.

� Dwinter = {month} where month ∈ N Months are used to al-
low more iterations within the same season, so that predators
reproduce themselves more than once.

� Dautumn = {month} where month ∈ N Months are used to allow
more iterations within the same season, so that predators hunt
more than once.

4.4.2 Rules

REnv = {
autummonth<3 → autummonth++

autummonth=3 → wintermonth=0

wintermonth<3 → wintermonth++

wintermonth=3 → springmonth=0

springmonth<3 → springmonth++

springmonth=3 → summermonth=0

summermonth<3 → summermonth++

summermonth=3 → autummonth=0

Predators, Locfecundity
fecundity→ Loc, Predatorsin(Loc)|winter

}

- In Env the seasons pass cyclically. Every four months, the season
changes and the system pass from autumn to winter, from winter to
spring, from spring to summer, from summer to autumn and so on

- During winter, predators move from environment (Env) to a location
(Loc) according to the value of attribute fecundity of Loc.

4.4. MAPPS ANOTHER EXAMPLE: PREDATOR / PREY 47

RLoc = {
autummonth<4 → autummonth++

autummonth=4 → wintermonth=0

wintermonth<4 → wintermonth++

wintermonth=4 → springmonth=0

springmonth<4 → springmonth++

springmonth=4 → summermonth=0

summermonth<4 → summermonth++

summermonth=4 → autummonth=0

Predators→ Predatorsout|winter

Predatorsmembers−supplies>0, prey → Predatorssupplies++|autumn
Predatorsmembers−supplies>0, prey → Predatorssupplies++|autumn

r → r, f |spring, Locfecundity>0

r → r, f, f |spring, Locfecundity>1

r → r, f, f, f |spring, Locfecundity>2

r → r, f, f, f, f |spring, Locfecundity>3

p, f → p|summer
p, f → p, p|summer
p, f, f → p, p, p|summer
p, f, f → p, p, p, p|summer

}

- In Loc the seasons pass cyclically. Every four months, the season
changes and the system pass from autumn to winter, from winter to
spring, from spring to summer, from summer to autumn and so on

- During winter, predators move from a location (Loc) to environment
(Env), from there they will choose a new location.

- During autumn, the groups of predators eat the prey. Each eaten prey
increases the number of supplies stored by the groups

- During spring, food grows according to the attribute fecundity of Loc.

- During summer the number of preys grows according to the quantity
of food they eat.

RPredators = {
autummonth<4 → autummonth++

autummonth=4 → wintermonth=0

wintermonth<4 → wintermonth++

48 CHAPTER 4. MAPP SYSTEMS

wintermonth=4 → springmonth=0

springmonth<4 → springmonth++

springmonth=4 → summermonth=0

summermonth<4 → summermonth++

summermonth=4 → autummonth=0

m→ m,m,m|Predators(supplies/members)>0,75, winter
m→ m,m|Predators(supplies/members)>0,5, winter
m→ m|Predators(supplies/members)>0,25, winter
m→ _|Predators(supplies/members)=0, winter

}

- In Predators the seasons pass cyclically. Every four months, the season
changes and the system pass from autumn to winter, from winter to
spring, from spring to summer, from summer to autumn and so on

- During the winter, predators number grows according to the stored
supplies.

4.4.3 Functions

UEnv = {ε}
ULoc = {ε}
UPredators = {

U(Predators,members)(s, d) = |s|m
}

The only nonempty set of update functions is of membrane Predators, where
the attribute members is updated based on how many elements of type m
are present within the membrane.

4.4. MAPPS ANOTHER EXAMPLE: PREDATOR / PREY 49

Example computation

Figure 4.5: Initial state predator/prey

ω0 = (Env, {|
(Loc, (2), {|f, f, f, f, f, f, p, p, p, r, r, summer0,

(Predators, (3, 0), {|m,m,m, summer0|})|}),
(Loc, (0), {|summero, r|}),
(Loc, (3), {|summero|}),
(Loc, (4), {|f, f, f, f, p, p, p, r, r, summer0,

(Predators, (2, 0), {|m,m, summer0|})|}),
|})

The image shown in �gure 4.5 depicts the initial state of the system. The
outermost membrane, is the Env and contains four Loc. The innermost
membranes are Predator. According to the rules, the presence of pro-
moter summer(0) allows the application only of those rules with summer
as promoter. In each membrane the promoter summer(0) is associated
with summermonth<4 → summermonth++ In Loc(2) p, f are associated to
p, f → p|summer, p, f, f are associated to p, f, f → p, p, p|summer and p, f →
p, p|summer. In Loc(4) p, f are associated to p, f → p|summer and p, f, f are
associated to p, f, f → p, p, p|summer. The number of m within each mem-
brane Predators has not changed, then the update function leaves unaltered
the values of members.

Figure 4.6: after step 1

50 CHAPTER 4. MAPP SYSTEMS

The image shown in �gure 4.6 depicts the state of the system after one step.
According to the rules, the presence of promoter summer(1) allows the appli-
cation only of those rules with summer as promoter. In each membrane the
promoter summer(1) is associated with summermonth<4 → summermonth++

In Loc(2) p, f are associated to p, f → p, p|summer and p, f, f are associated to
p, f, f → p, p, p|summer . In Loc(4) p, f are associated to p, f → p, p|summer.
The number of m within each membrane Predators has not changed, then
the update function leaves unaltered the values of members.

Figure 4.7: after step 2

The image shown in �gure 4.6 depicts the state of the system after two
steps. These few steps will only give an idea of how the system evolves,
following the rules of the example. The system evolves according to the
rules of evolution, where the rules that modify the promoters simulate the
seasons and membranes predators are used as reactants while the promoters
winter or autumn are present.

Chapter 5

A case of study: Serengeti

lions.

Lion is the only feline that is truly social, living in prides and coalitions,
the size and dynamics of which are determined by an intricate balance of
evolutionary costs and bene�ts. Why social behaviour, lacking in other cats,
become so important in this species? Is it a necessary adaptation for hunting
large prey such as wildebeest? Does it facilitate the defence of young cubs?
Has it arisen from the imperatives of competing for territory? As details of
leonine sociality have emerged, mostly over the past 40 years, many of the
key revelations have come from a continuous study of lions within a single
ecosystem: the Serengeti.

As we can read in [138, 139, 140, 141], Serengeti National Park encom-
passes 5,700 square miles of grassy plains and woodlands near the northern
border of Tanzania. The park had its origin as a smaller game reserve under
the British colonial government in the 1920s and was established formally in
1951. The greater ecosystem, within which vast herds of wildebeest, zebra,
and gazelle migrate seasonally, following the rains, includes several game re-
serves (designated for hunting) along the park's western edge, other lands
under mixed management regimes (including the Ngorongoro Conservation
Area) along the east, and a trans-boundary extension (the Masai Mara Na-
tional Reserve) in Kenya. In addition to the migratory herds, there are
populations of mice, reedbuck, waterbuck, eland, impalas, bu�alo, warthogs,
and other herbivores living less peripatetic lives. Nowhere else in Africa sup-
ports quite such a concentrated abundance of hoofed meat, amid such open
landscape, and therefore the Serengeti is an important place for lions and an
ideal site for lion researchers.

For this animals, life is hard and precarious, and casualties are numerous, for
them as well as for their prey, life spans tend to be short, more often termi-

51

52 CHAPTER 5. SERENGETI LIONS

nating abruptly than in a graceful decline. An adult male lion, if he is lucky
and durable, might attain the advanced age of 12 in the wild. Adult females
can live longer, even to 19. A tipical case of mortality in Serengeti is caused
by Masai farmers and shepherds who identify which the lions a source of
danger to their herds and their crops[133]. Life expectancy at birth is much
lower, for any lion, if we consider the high mortality among cubs, half of
which die before age two. But surviving to adulthood is no guarantee of a
peaceful demise. Continual risk of death, even more than the ability to cause
it, is what shapes the social behaviour of this ferocious but ever jeopardized
animal.

Male lions, not strictly belonging to any pride, instead form coalitions with
other males and exert controlling interest over a pride, fathering the cubs
and becoming resident, loosely associated with the pride[129]. They also
play an important role in helping to kill prey, especially with larger and
more dangerous animals, such as cape bu�alos or hippos, thereby contribut-
ing something besides sperm and protection to the life of the pride as we can
see in [132].

Usually lion coalitions make a challenge for controlling rights to a pride.
In this situation the roars play an important role, serve to indicate totheir
opponents their numerical strength. In some cases, con�icts between lions
�nish before beginning when a group of lions realizes to be inferior to the
other for size [136]. If a coalition of males took over, it would kill the young
of their rivals to bring the females quickly back into aestrum. Mostly li-
ons die because they kill each other. The number one among the causes of
death for lions, in an undisturbed environment, are other lions. At least 25
percent of cub loss is due to infanticide by incoming males. Females too,
given the chance, will sometimes kill cubs from neighbouring prides. They
will even kill another adult female, if she unwisely wanders into their am-
bit. Resources are limited, prides are territorial, a lot of bite wounds visible
on lions, re�ecting the competitive struggle for food, territory, reproductive
success, sheer survival.

It is not just the need for joint e�ort in making and defending kills, that
drives lionesses to live in prides[137]. It's also the need to protect o�spring
and retain those premium territories. Although pride size varies widely, from
just one adult female to as many as 18. Prides in the middle range succeed
best at protecting their cubs and maintaining their territorial tenure. Prides
that are too small tend to lose cubs. Periods of oestrus for the adult females
often are synchronized especially if an episode of male infanticide has killed
o� all their young and reset their clocks. In this case that cubs of di�er-
ent mothers are born at about the same time. This allows the formation
of créches, lion nursing groups in which females suckle and protect not just

5.1. INFORMAL DESCRIPTION 53

their own cubs but others too. Such cooperative mothering, e�cient in it-
self, is further encouraged by the fact that the females of a pride are related
as mothers, daughters, sisters and aunts, sharing a genetic interest in one
another's reproductive success. But prides that are too large do poorly also,
because of excessive within-pride competition. A pride of two to six adult
females seems to be optimal on the plains[135].

Male coalition size is governed by similar logic. Coalitions are formed, typ-
ically, among young males who have outgrown the natal pride and gone o�
together to cope with adulthood. One pair of brothers may team with an-
other pair, their half-siblings or cousins, or even with unrelated individuals
that turn up, solitary, nomadic, and needing partnership.
Too many of such males together are roving posse, each hungry for food and
for chances to mate may be the prodrome of an internal con�ict. But a lone
male, or a coalition that is too small just a pair, will su�er disadvantages also.

As we can see in this little preamble, life is very hard for a lion, but more
interesting for a realization of a model based on MAPPS. Because of the
many challenges, life for pride proves to be really complex. We tried to put
the total amount of problems faced by lions during their lifetime into this
model, and we formalized MAPP Systems as main tool that would help us
in this purpose. Here below we present a formal de�nition of our model for
Serengeti lions, taken as example because in Serengeti live the most studied
and known pride of lions.

5.1 Serengeti lions - Informal description

1. Environment: the place of simulation, where are contained the hunting
territories controlled by prides

2. Hunting ground: Locations where there is a pride and may be subjected
to invasion by coalitions of stranger males

3. Pride: the largest social organization of lions consisting of several fe-
males with their cubs, young members and a small number of males

4. Court: group of females kindred with each other by matrilineality, and
their young or cubs

5. Coalition: group of males kindred with each other, which are part of a
pride or wander in search of a pride to take over

6. Family: a female with cubs under 18 months

54 CHAPTER 5. SERENGETI LIONS

7. Subcourt: a family of cubs between 18 months and 4 years, di�ers
from the family, because, in the case of a takeover of pride, cubs are
not killed by the new males

8. Subcoalition: a group of male cubs between 18 months and 4 years
within the pride, di�ers from the family, because, in the case of a
pride's takeover, cubs are not killed by new males

Objects of simulation are:

male: age, health female: age, health cube: resources: health, casualty

In addition, we provided a collection of control objects, to manage the events
and seasonal cycles of lions' life.

The simulation of a year of life of the lions is as follows:

1. a �nite number of hunting iterations under favourable conditions:
In each iteration the pride seeks to acquire prey, individual survival is
tested as a function of the preys captured, during the phases of hunting
a shortage of prey can cause divisions

2. take over:
At this phase a coalition of nomadic males tries to chase away the
breakfast resident and replace it, if they succeed all the little lions are
killed to make the females fertile again and available.

3. A mating season:
Where the lions of the coalition within the pride mate with all adult
females who haven't sons under the age of 18 months

4. a �nite number of hunting iterations under adverse conditions:
Even in this phase, the pride seeks to acquire prey, individual survival
is tested as a function of the captured prey, so in this case the shortage
of food is greater, and this favours internal divisions

5. Births and ageing:
At the end of the season of adversities and with the beginning of the
abundance's season, new cubs born and new families are formed within
cohorts and each lion goes through the ageing rule

In our simulation we also manage events like:

1. creation of coalitions formed by peripatetic males unrelated

2. Expulsion of members from pride

3. Expulsion of members from location

4. Casualties during hunting phase

5.2. FORMAL DESCRIPTION 55

We could add complexity to the system implementing many other fea-
tures, but we have tried to capture only the most important events, leaving
out what would occur either on too speci�c conditions or on sporadic events
or what would be of little interest for the simulation.

Figure 5.1: initial state ω2

As we see in the picture above, our model is composed by eight mem-
branes and �ve elements, as shown by arrows, our items can pass from a
membrane to another, the male, for example, a lion can leave its coalition,
goes to pride membrane, and, from there, enters the court, in order to mate
with the lionesses of that court. A male in the environment can also join
a coalition in order to �nd allies with the aim of trying a take over in the
future. Also a membrane can move from a parent membrane to another, for
instance, a coalition of males, can enter in a pride, �ght with the resident
coalition and stay there, driving out the loser coalition. A membrane could
also change in another one, copying its state, a Family for example, when it
grows enough, turns into court.

5.2 Serengeti lions - Formal de�nition

P is the tuple: { Θ,Γ,Σ, ω0, R}, where :

1. Σ is a �nite alphabet of symbols {m,f,c,r,s,winter,spring,autumn,summer}
representing elements present inside the membranes. They respectively
stand for male, female, cub, resources, sources and seasons, season are
used as control elements

56 CHAPTER 5. SERENGETI LIONS

2. Γ is a �nite alphabet of symbols { E,L,P,Cr,Cl,Scr,Scl,F } representing
possible type of membranes:

(a) E : Environment

(b) L : Location

(c) P : Pride

(d) Cr: Court

(e) Cl: Coalition

(f) Scr: SubCourt

(g) Scl: SubCoalition

(h) F : Family

3. Θ represents membranes' order:

(a) L ⊂ E
(b) P ⊂ L
(c) Cr ⊂ P
(d) Cl ⊂ Cr
(e) Scr ⊂ Cl
(f) Scl ⊂ Scr
(g) F ⊂ Scl

4. ω0 is a tuple of values in Σ,Γ = {. . . } which describes initial state of a
system, where Σ is the set of elements that we can �nd in a membrane
of P and Γ is the set of membrane of P.

5.2. FORMAL DESCRIPTION 57

5. DΓ = { DΓE , DΓL , DΓP , DΓCr , DΓCl , DΓScr,DΓScl
,DΓF
} Ordered set of

domains, in a one-to-one correspondence with elements of set Γ.

(a) DΓE = {geneticcode, privation}
Genetic code indicates the most suitable lion which can survive as
a peripatetic, Privation indicates a percentage of weakness that
can a�ect lions health

(b) DΓL = {geneticcode}
Genetic code indicates the most suitable lion which can survive
in a speci�c location.

(c) DΓP = {Health, Strength,Requirements, Coalitions}
Health indicates the total amount of health property taken from
every member of a Pride, Strength indicates the total amount of
Strength property taken from every members of a Pride, Require-
ments indicates total food requirements for a pride, Coalitions
indicates the number of coalitions present in a Pride.

(d) DΓCr = {Health, Strength,Requirements}
Health indicates the total amount of Health property taken from
every members of a Court, Strength indicates the total amount
of Strength property taken from every members of a Court, Re-
quirements indicates total food requirements for a pride.

(e) DΓCl = {Health, Strength,Requirements,Resident}
Health indicates the total amount of Health property taken from
every members of a Coalition, Strength indicates the total amount
of Strength property taken from every members of a Coalition, Re-
quirements indicates total food requirements for a pride. Resident
indicates if a Coalition is resident or not.

(f) DΓScr = {Health, Strength,Requirements}
Health indicates the total amount of Health property taken from
every members of a SubCourt, Strength indicates the total amount
of Strength property taken from every members of a SubCourt,
Requirements indicates total food requirements for a pride.

(g) DΓScl = {Health, Strength,Requirements}
Health indicates the total amount of Health property taken from
every members of a SubCoalition, Strength indicates the total
amount of Strength property taken from every members of a Sub-
Coalition, Requirements indicates total food requirements for a
pride.

(h) DΓF = {Health, Cubs,Age}
Health indicates the total amount of Health property taken from
every members of a Family, Cubs indicates the total number of
Cubs within the Family, Age indicates the age of the cubs, all
cubs have the same age.

58 CHAPTER 5. SERENGETI LIONS

6. DΣ = { DΣm , DΣf , DΣc , DΣr} Ordered set of domains, in a one-to-one
correspondence with elements of set Σ.

(a) DΣm = {Age, Strength,Geneticcode, resident}
Age indicates how a Lion is old, Strength indicates the percentage
of success for a lion to defeat other lions, according to strength
of opponents, Genetic code indicates if a lion is suitable for the
location in which on lives, resident is a �ag, we need it to know if
a male is resident into a pride or if it is just arrived after a take
over, in the second case he will kill the cubs of a female.

(b) DΣf = {Age, Strength,Geneticcode, Secondarygeneticcode, }
Age indicates how a lioness is old, Strength indicates the per-
centage of success for a lioness to defeat other lions, according to
strength of opponents, Genetic code indicates if a lioness is suit-
able for the location in where she lives while secondary genetic
code indicates the genetic code of the male, if she is pregnant, it
is empty otherwise.

(c) DΣc = {Geneticcode, Sex}
Cubs don't need an age, it is recorded in the attributes of Family,
Genetic Code will be useful once they will became adult, sex is
necessary to produce a male or a female from a cub.

(d) DΣr = {Rating,Amount}
Rating indicates how fast a resource grow up, Amount indicates
how much food requirements can satisfy.

(e) DΣs = {ε}
this item has no attributes it is necessary only to produce new
resources.

(f) DΣspring = {duration}
duration indicates how many iterations this control item waits
before than expire.

(g) DΣsummer = {duration}
duration indicates how many iterations this control item waits
before than expire.

(h) DΣautumn = {duration}
duration indicates how many iterations this control item waits
before than expire.

(i) DΣwinter = {duration}
duration indicates how many iterations this control item waits
before than expire.

7. The system evolves within a cycle of four seasons:

In each season we can see a di�erent set of rule for each membrane:

5.2. FORMAL DESCRIPTION 59

(a) Season 1:
During season 1, new lions born; families are created; a coalition,
stationing in the same location of a Pride, where there is only
a coalition, can enter inside; in the same season lions provide to
collect food, during the hunt some lion could die.

(b) Season 2
During season 2, there could be a take over; a Subcolation too old
to be considered a cub could be expelled from pride, Coalition or
Subcoalition present in a location could be expelled.

(c) Season 3
This is the mating season, males leave their membranes and, from
Pride membrane enter in court membrane, where mate with fe-
males; this season takes eight iterations, to allow this shifting of
lions and their return to their pride

(d) Season 4
Winter has come, this is the harder season for lions, in this sea-
son, who survive get older otherwise dies, we use this season to
simulate ageing, families old enough become subcourts, other fam-
ilies become subcoalitions, subcoalition get stronger and become
coalition, ready to try an internal take over in the next season;.

8. The set of rules R is divided in subsets by membranes: (E, L, P, Cr,
Cl, Scr, Scl, F) to make reading easier we decided to divide them even
further according to the seasons.

(a) Season 1

i. RE = {
spring → summer
Cl, Lcoalitions<2 → Clin(L), L

60 CHAPTER 5. SERENGETI LIONS

}
During Season1, coalitions move from environment to loca-
tions where number of coalitions is less than 2 to. In each
membrane we have an element usually used as promoter, that
changes from spring to summer.

ii. RL = {
spring → summer
P, r → P, r
Phealth, ramount → Phealth+=amount

Phealth, ramount → Phealth+=amount, win(P)

P, r → P, r, win(P)

Cl, Pcoalitions<2 → Clin(P)

}
During Season1, a Pride hunts a resource, there are four rules
that managed this event and which represent the possibility
of capturing the food, or not, and the possibility that during
the hunt there would be casualties, or injuries. The object w
represent a possible casualty into a pride. The element w will
enter into an internal membrane that could be a coalition or
a court or a subcourt and there consumed by rules. In the
same season a Coalition move into a pride where number of
coalitions is less than 2.

iii. RP = {
spring → summer
w,Cl→ win(Cl), cl
w,Cr → win(Cr), cl
w, Scl→ win(Scl), cl
w, Scr → win(Scr), cl
}
During Season1, a wound received by Pride goes into a coali-
tion, a subcoalition, a subcourt or into a court.

iv. RCr = {
spring → summer
fcode,code2,strength,age → Fhealth,age=0,litter=2({f, ccode=mix(codef , code

2
f), ccode=mix(codef , code

2
f)})

fcode,code2,strength,age → Fhealth,age=0,litter=3({f, ccode=mix(codef , code
2
f), ccode=mix(codef , code

2
f),

ccode=mix(codef , code
2
f)})

fcode,code2,strength,age → Fhealth,age=0,litter=4({f, ccode=mix(codef , code
2
f), ccode=mix(codef , code

2
f),

ccode=mix(codef , code
2
f),ccode=mix(codef , code

2
f)})

fcode,code2,strength,age → Fhealth,age=0,litter=6({f, ccode=mix(codef , code
2
f), ccode=mix(codef , code

2
f),

ccode=mix(codef , code
2
f), ccode=mix(codef , code

2
f), ccode=mix(codef , code

2
f)ccode=mix(codef , code

2
f)})

Scl→ Sclout;
}

5.2. FORMAL DESCRIPTION 61

During Season1, a pregnant female, who copied in code2 the
genetic code of a male, generates a Family, four di�erent rules
concur to decide whether the number of cubs in the family
will be 2, 3, 4 or 6, in this season a subcoalition, generated
from a Family, goes out from the court to the Pride.

v. RCl = {
spring → summer
w,m→ m
w,m→ _
}
During Season1, in each membrane we have an element usu-
ally used as promoter, that changes from spring to summer.
An element w, produced during the hunt, can be assigned to
w,m→ _ producing the death of a male.

vi. RScr = {
spring → summer
w, f → f
w, f → _
c→ f
}
During Season1, in each membrane we have an element usu-
ally used as promoter, that changes from spring to summer.
An element w, produced during the hunt, can be assigned to
w,m→ _ producing the death of a female.

vii. RScl = {
spring → summer
w,m→ m
w,m→ _
c→ m
}
During Season1, in each membrane we have an element usu-
ally used as promoter, that changes from spring to summer.
An element w, produced during the hunt, can be assigned to
w,m→ _ producing the death of a male.

viii. RF = {
spring → summer
During Season1, in each membrane we have an element usu-
ally used as promoter, that changes from spring to summer.

(b) Season 2

i. RE = {
summer → autumn
m→ min(Cl)|Cl
}

62 CHAPTER 5. SERENGETI LIONS

During Season 2, in each membrane we have an element usu-
ally used as promoter, that changes from summer to autumn.

ii. RL = {
summer → autumn
Cl→ Clout
}
During Season 2, a Coalition exits from location to environ-
ment.

iii. RP = {
summer → autumn

Clstrenght, Clstrenght′
strenght/(strenght+strenght′)→ Clresident=true, Clout

Clstrenght, Clstrenght′
strenght′/(strenght+strenght′)→ Clresident=true, Clout

}
During Season 2, two coalition �ght and one is expelled from
pride who won becomes resident.

iv. RCr = {
summer → autumn
w, f → f
w, f →
}
During Season 2, a wound kill a female or is consumed.

v. RCl = {
w,m→ m
w,m→
summer → autumn
}
During Season 2, a wound kill a male or is consumed.

vi. RScr = {
summer → autumn
w, f →
}
During Season 2, a wound kill a female

vii. RScl = {
summer → autumn
w, c→
}
During Season 2, a wound kill a male

viii. RF = {
summer → autumn

(c) Season 3

i. RE = {

5.2. FORMAL DESCRIPTION 63

autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

L,Cl→ ClL, L
}
During Season 3, in each membrane we have an element usu-
ally used as promoter, that changes from autumn to winter,
if duration > 8 else duration is increased by one.

ii. RL = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

}
During Season 3, in each membrane we have an element usu-
ally used as promoter, that changes from autumn to winter,
if duration > 8 else duration is increased by one.

iii. RP = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

m,Cr
duration (mod 2)=0→ min(Cr),Cr

m,Cl
duration (mod 2)=1→ min(Cl),Cl

}
During Season 3, males exit from coalition and enter into
court to mate with females.

iv. RCr = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

m
duration (mod 2)=1→ mout

f
strengthm→ fcode2=codem |m

f → f |m
F → f |mresident=false

}
During Season 3, males exit from court to pride, after that
they mated with females, if males are not resident (the coali-
tion was set as resident but not males are inside) a Family
produces a female.

v. RCl = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

m
duration (mod 2)=0→ mout

}

vi. RScr = {

64 CHAPTER 5. SERENGETI LIONS

autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

}
During Season 3, in each membrane we have an element usu-
ally used as promoter, that changes from autumn to winter,
if duration > 8 else duration is increased by one.

vii. RScl = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

c→ m;
}
During Season 3, a cube become a male.

viii. RF = {
autumnduration>8 → winter
autumnduration≤8 → autumnduration+1

(d) Season 4

i. RE = {
winter → spring
}
During Season 4, in each membrane we have an element usu-
ally used as promoter, that changes from winter to spring.

ii. RL = {
winter → spring
}
During Season 4, in each membrane we have an element usu-
ally used as promoter, that changes from winter to spring.

iii. RP = {
winter → spring
Scl→ Sclage+1

mresident
φ(age)→ mresident=resident′ , age+ 1|Clresident′

m
φ(age)→ _

}
During Season 4, a male ages or dies according to the rules
and a subcoalition ages.Value of resident attribute of males
is set with the value of resident of Coalition, so males that
was not resident in Season 3 become resident.

iv. RCr = {
winter → spring
Scr → Scrage+1

F → Fage+1

5.2. FORMAL DESCRIPTION 65

Fage>3 → Cl
Fage>3 → Cr

f
φ(age)→ fage+1

f
φ(age)→ _

}
During Season 4, a female ages or dies according to the rules
and a subcourt ages.

v. RCl = {
winter → spring

m
φ(age)→ mage+1

m
φ(age)→ _

}
During Season 4, a male ages or dies according to the rules.

vi. RScr = {
winter → spring

f
φ(age)→ fage+1

f
φ(age)→ _

}
During Season 4, a female ages or dies according to the rules.

vii. RScl = {
winter → spring

mage
φ(age)→ mage+1

mage
φ(age)→ _

}
During Season 4, a male ages or dies according to the rules.

viii. RF = {
winter → spring

fage
φ(age)→ fage+1

fage
φ(age)→ _

c
φ(age)→ _|Fage

c
φ(age)→ c|Fage

}
During Season 4, a female ages or dies according to the rules,
a cubs dies or survives according to the rules.

where φ(age) : is a function that return 1 if age < 10, 0 if age =
16, 0, 5 if age ≥ 10 , 0, 5 if age ≤ 3

9. The set of update functions U is divided in subsets by membranes:
(E,L,P,Cr,Cl,Scr,Scl,F)

66 CHAPTER 5. SERENGETI LIONS

(a) UE = {
Empty
}

(b) UL = {
φCoalitions = arity(Cl) ∈ L
}
this function calculates the number of Coalitions into a location.

(c) UP = {
φCoalitions = arity(Cl) ∈ P
φStrength = StrengthCr + StrengthCl + Σ∀Scl∈wPStrengthscl
}
this functions calculate the number of Coalitions into a Pride and
the strength of a Pride.

(d) UCr = {
φStrength : Σ∀f∈wCrlStrengthf + Σ∀Scr∈wCrStrengthScr
}
this function calculates the strength of a Court.

(e) UCl = {
φStrength : Σ∀m∈wClStrengthm
}
this function calculates the strength of a Coalition.

(f) UScr = {
φStrength : Σ∀f∈wScrStrengthf
}
this function calculates the strength of a subCourt.

(g) UScl = {
φStrength : Σ∀m∈wSclStrengthm
}
this function calculates the strength of a subCoalition.

(h) UF = {
φCubs : arity(Cubs) ∈ wF
} this function calculates the number of cubs into a Family.

Chapter 6

Experimental results

We studied the dynamics of the MAPP model described before by running
simulations. In particular, we implemented a MAPP systems interpreter
in C# that allows attributed objects and evolution rules to be represented
as instantiations of speci�c C# classes. Once a MAPP systems model is
speci�ed, the interpreter simulates it by performing a number of iterations
to be given as a parameter. At each iteration, a maximally parallel step
is performed according to the MAPP systems semantics. The result of a
simulation is the sequence of con�gurations reached by the interpreter at
each iteration. In order to show easy readable measurements, we processed
the simulation results and produced graphical representations by using the
statistical framework R.

6.1 Data and results

From our model we can observe that, once we reach a certain level of com-
plexity, which includes a great number of elements and iterations, the system
reaches a certain stability. Where the number of elements of pride in one
location does not grow and the coalition within is strong enough to no su�er
take over from foreign coalitions.

In �gure 6.1 we can see a Pride that starts with only one male and one
female and a subcourt of three young females. At time t12 young females
grow and become adult, so the number of young females decreases up to 0
and the number of adult females increases to 3, while an adult female die.
The pride grows as females reproduce and, between time t25 and time t58,
the number of cubs increases. At time t83 we can see 5 females, 2 young
females 1 male and 4 cubs. At time t84 three old females die because of their
old age, three young females become adult, and a family changes in one
subCoalition. At time t85 10 new cubs born and at time t96 a subCoalition
evolves in coalition, ready for an inner take over. Graph shows the evolution

67

68 CHAPTER 6. EXPERIMENTAL RESULTS

of pride within a number of 120 iterations, that signi�es 10 years because
every 12 iterations our system pass through all seasons. It is important to
note that most of the signi�cant changes taking place in seven years. During
this time, females become pregnant, families grow and mutate into cohorts
or coalitions, lions begin to die. This example shows a period of only ten
years to describe what happens from the beginning of the birth of a pride,
and it gives a comprehensive idea of the dynamics of a pride. Longer simula-
tions show that it reaches a situation where the deaths reduce the population
growth and leads to a substantial stability of the system.

Figure 6.1

6.1. DATA AND RESULTS 69

In �gure 6.2 we can see a Pride starting with only one family composed by
an adult female ad three cubs, six young females and two coalitions each one
consisting of one male. At time t12 we see the e�ect of a take over, a family
dies with its cubs. The young females become adult and one new family
with four cubs born. At time t25 we see another two families born and we
arrive to have twelve cubs. The older ones four grew up and become young
female, forming a subcourt at time t59 while at time t72 four young female
become adults, four cubs become young males, forming a subpride and four
cubs become young females. At t85 the lone adult male dies, young females
become adult, and young males become adult. At time t88 four females die.
At time t95 six new cubs born.

Figure 6.2

70 CHAPTER 6. EXPERIMENTAL RESULTS

These are just two examples of what we can produce as output, using our
model and our software, we wanted to propose a comprehensive and at the
same time easy to read overview of the social dynamics of Serengeti lions.
Changing certain settings may o�er di�erent solutions, such as the di�culty
in �nding food, or the rate of death or birth of lions, the di�erent life ex-
pectancy between males and females, all of these are parameters that can
a�ect results.

This model can be used to predict what happens in a pride when a coalition
outside is introduced in the same environment. Lions adult residents su�-
ciently strong can stand up to any foreign coalitions and bring their own cubs
to reach the age of maturity, unlike a weak coalition is unable to maintain
control of the pride and makes it liable to take over.

Chapter 7

Final Conclusions

We proposed an extension of Attributed Probabilistic P systems (APP sys-
tems), called Multilevel Attributed Probabilistic P systems (MAPP sys-
tems), in which membranes are annotated with attributes and are consumed
by the rules as elements. MAPP systems are intended to be used to model
the dynamics of complex social behaviours in groups of animals. In this con-
text, attributes can be used to represent characteristics of the population,
such as the number of member, position, and so on. Apart from attributing
membrane, the feature that mainly makes a di�erence between MAPP sys-
tems and other proposals is the use of membrane as items consumed by the
application of rules. This feature is particularly suitable for the modelling
of populations where groups are, and sometimes merge with others or even
change in di�erent group. We used MAPP systems for modelling the social
behaviours of some species of Lions. In particular, as an application we de-
veloped a model to compare behaviours in di�erent group of Lions. Such a
kind of social systems is usually approached by means of agent-based models
that are often poorly documented and ambiguous. On the contrary, since
both the syntax and the semantics of MAPP systems are formally de�ned,
the model based on MAPP systems is unambiguous. The model has been
inspired by the behaviours of lions of Serengeti. We plan to adapt our gen-
eral model to the modelling of the behaviour of particular groups of lions by
changing the values of the parameters.

71

72 CHAPTER 7. FINAL CONCLUSIONS

Appendix A

General purpose

implementation

Our work includes an implementation part, it is a a software engine that takes
as input an encoded formal de�nition of our models including an instance
of the initial state of the system and gives as output a log �le where are
stored information of what happens during each iteration. Firstly this code
was an ad-hoc code, written to produce statistical data for a model based
on APP systems describing social Interactions in primates[11]. Later, the
code has become a general purpose engine with the aim to receive, roughly,
every kind of possible model based on APP systems.Finally, by adding some
extensions, the code has been expanded in order to accept model based on
MAPP systems.

A.1 Overview

A.1.1 Programming language used in the project

At the design stage, we choose to use C# as programming language. C# is a
type-safe object-oriented language that enables developers to build a variety
of secure and robust applications that run on the .NET Framework. The
code editor used is Microsoft Visual Studio 2010 professional. The main as-
pect of C# considered useful for our purposes was the re�ection functionality.

The Re�ection is one of the features of .NET Framework that has a sig-
ni�cant importance in the development of our application. It is basically a
way to extract and manipulate the information of an object at runtime. from
the metadata of an application, These metadata contain all the information
inherent the types of objects used by an application.

Basically we produce a parser that takes as input a little number of classes

73

74 APPENDIX A. GENERAL PURPOSE IMPLEMENTATION

representing rules and elements of our model. These classes are written in
a pseudocode based on C# by users and enriched by software with some
simple and automatically reproducible controls and additions. The need to
read the code, written into a �le by users, to produce objects at runtime, �ts
perfectly with the re�ection feature and the strong type checking of C#.

A.2 Commentary to code

A.2.1 software engine

From the beginning we divided the code in order to keep well separated the
part relating to APP Engine from those which were speci�c classes related a
particular model. For this reason the main part of the code is composed by
few �les brie�y explained below, while the classes related a particular model
are stored in a few number of input �les:

Rule.cs
This is the class for a generic rule. Each rule written by users inherits from
this class.

Item.cs
This is the generic class of an element, Each element written by users in-
herits from this class.

List.cs
This is a class created to manage a list of objects (reactants or promoters)
is primarily used to save and change the status of the system. We use three
lists: one called currenState that represent the current state of system, one
called dynamicState, that is initially a copy of currentState from where we
delete consumed objects and one called producedItems in which we add new
objects produced by rules. At the end of a computational step, we append
the list called producedItems to that one called dynamicState, then we copy
the result to currentState, so at the beginning of every step dynamicState
is a perfect copy of currentState.

clsGlobalDefs.cs
This class contains all global variables, they represent system parameters
used in the simulation, such as the number of individuals present in the
initial state, the maximum distance into which two individuals �ght each
other, and so on. Parameters are global values used by the rules and are
what we usually change to characterize our simulations. Changing param-
eter we produce di�erent models where, for instance, males should be more
aggressive, the hierarchy should stable or not, females go into heat simulta-

A.2. COMMENTARY TO CODE 75

neously or alternately and so on. Parameters are the way in which we tune
the rules for di�erent versions of our models. With di�erent parameters,
we can simulate di�erent type of population with di�erent behaviours. In
this class there are also some global variables used by the engine, like input
and the output �le path, number of iterations, output string etc.

Figure A.1: Flow chart of our engine

Program.cs
This is the core of this program, the engine itself, is responsible for ini-
tializing the values in clsGlobalDefs, initialize elements and rules initialize
lists, to launch the various computational steps and generate output. As
we can see in the �ow chart in Figure A.1, our engine, receives from parser
a code, written in pseudocode and ready to be used, dynamically. Thanks
to re�ection feature, the engine updates the list of rules, the list of objects
and global values, including currentState, dynamicState and producedItems,
then it starts computational step. During computational step, it choices
in a probabilistic manner the multiset of rules to be applied. The engine
applies sequentially the multiset of chosen rules, emulating the parallelism
of the APP Models, it updates the state and �nally it runs the new step.
At the end it produce log �les and outputs. Eventually the user can de�ne
functions for particular kind of calculation.

76 APPENDIX A. GENERAL PURPOSE IMPLEMENTATION

A.2.2 input �les

Input �les are written in a pseudocode based on C# the users don't need a
deep knowledge of this language because it is very similar to a great number
of common imperative languages. The number of input �les is four: rules.cs,
classes.cs, environment.cs and parameters.cs. They compose that part of
code written by user to implement a particular model.

- The �le classes.cs contains classes de�ning promoters and reactant
similar of our rules, below is shown an example of a simple promoter.

public class Season : item
{
public int durat ion ;

public override void pr in t ()
{
Console . Write ("Duration : "+this . durat ion+" ") ;
}

public string t o s t r i n g ()
{
return "Duration : "+this . durat ion+" " ;
}
public override void p r i n t f ()
{
GlobalDefs . Text += "Duration : "+this . durat ion+" " ;
}
}

Where the variable duration of type int is an attribute of object Sea-
son. We de�ne the class item including three virtual method: print(),
printf(), and tostring(), to constrain users to write three output meth-
ods used to obtain outputs from their model.

- In the �le environment.cs we store the initial state of environment. For
instance, we can see below a code example.

public class environment : item
{
private stat ic int _Summer = 1 ;
private stat ic int _Autumn = 0 ;
private stat ic int _Winter = 0 ;
private stat ic int _Spring = 0 ;
}

A.2. COMMENTARY TO CODE 77

In the example above is shown a simple initial state representing the fol-
lowing w0 = {Summer} where Autumn, Summer, Winter and Spring
are control items, usually used like promoter that are used to simulate
the changing of seasons.

- The �le rules.cs include all rule classes written by users. Essentially,
what a user need to write into the �le rules.cs is just a little class for
each rule, with very few information like in the example below.

public class [ruleName] : Rule
{
public [ruleName] ()
{
Type1 = Winter ;
Type2 = Male ;

}
public override int r a t i ng (int i , int j)
{
int month = a . month + 1 ;
i f (month < 4)
return 1 ;
else

return 0 ;
}
public override void apply (int i , int j)
{
int month = a . month + 1 ;
Winter o = new Winter (month) ;
Console . WriteLine ("userMessage ")) ;
GlobalDefs . producedItems . add (o) ;

}
}

Where, [ruleName] stands for a simple name, chosen by the user as
an identi�er for rule class. As we can see, the commands Type1
= Winter; and Type2 = Male; are not C# commands, This syntax
has been simpli�ed to make it easier to write rules for users. Ac-
tually the command "Type1 = Winter;" corresponds to the command
this.Type1 = typeof(Winter); Type1 and Type2 are two variable that
we use to set the types (in the formalism the symbols of the alphabet)
of the reactants of our rules. Once these variables are set, our parser
provides to make some little control like to control if at least one object
for each type is present in our current state. The i-th occurrence of
an object of type Type1 is always referred by variable a while the �rst

78 APPENDIX A. GENERAL PURPOSE IMPLEMENTATION

occurrence of an object of type Type2 is always referred by variable b.
The word userMessage into the method WriteLine is just an exam-
ple of what a user can write as output. GlobalDefs is the static class
that contains the global variables. In GlobalDefs are present three lists,
currentState, dynamicState and producedItems. The list producedItems
is a list of reactants and promoters representing the products of our
rule.

- The input �le parameters.cs is another important input �le, here a user
can write all the usable parameters by our system. for instance, here
below we can see a simple example.

public class parameters : item
{
private stat ic int _i t e r a t i on s = 48 ;
}

The variable _iterations stands for the number of computational steps
performed by our application, this is a crucial parameter that we have
to set, by default the value of this parameter is 10; the character _
before the word iterations, is used by our parser to know when the
name of a variable starts, in this way it can recognize the string placed
between static and _ as the name of the type, the string placed between
_ and = as the name of a variable, and the string between = and ; as
the vale of a variable.

A.2.3 apply method

Rule classes was implemented respecting the formal de�nition. The apply
method de�nition is used by the user to de�ne which new objects are cre-
ated and set the values of the attributes of each object. If a rule does not
produce any products, the apply method does not create any new objects .
This method provides the rule application. For example, if we have a rule
like this below:

ax, by → ke=f(x,y,z)|cz where f(x, y, z) = x+ y + z

the code for the corresponding apply method will be as follow

pub l i c ov e r r i d e void apply (i n t i , i n t j)
{
k o = new k () ;
o . e = a . x + b . y + c . z ;
GlobalDefs . producedItems . add (k) ;

A.2. COMMENTARY TO CODE 79

}

As said above, GlobalDefs is the static class that contains the global variables.
While producedItems is the list where we place new items produced by our
rules. We remark that a and b are the �rst and the second reactants used by
our rules, while c is always the �rst promoter of a rule,k is a type of a class
written by the users.

A.2.4 Rating method

The rating method is crucial for the implementation of probabilistic choice.
As the name suggests, it provides the rating function implementation, and
its application return a weight ∈ R+ this weight will be normalized to obtain
the probability of any rule to be picked up and placed in multiset of chosen
rules. Taking as an example an update function like that.

ax, by
f(x,y,z)→ k|cz where f(x, y, z) = x+ y + z

our code will be:

pub l i c ov e r r i d e i n t r a t i ng (i n t i , i n t j)
{
re turn a . x + b . y + c . z
}

eventually a rating could return a constant like here below:

pub l i c ov e r r i d e i n t r a t i ng (i n t i , i n t j)
{
re turn 1
}

or be more complex and o�er di�erent values as for instance:

pub l i c ov e r r i d e i n t r a t i ng (i n t i , i n t j)
{
switch (a . x + b . y + c . z)
{
case 10 :
r e turn 1 ;
break ;
case 5 :
r e turn 2 ;
break ;
d e f au l t :
r e turn 0 ;

80 APPENDIX A. GENERAL PURPOSE IMPLEMENTATION

break ;
}

A.2.5 Matrices of choice

The formalism provides, a mechanism for the probabilistic choice of rules.
We implemented this mechanism into our code. A probability value is ob-
tained by a weight received from the rating method, this weight is used by
our system to produce, at the beginning of each computational step, a set of
matrices as we can see in the graph in �gure A.2.

w0 = {a, a, b, b, c, d, e, e, e, }

rule0 : a, b,
2→ c

rule1 : d, e,
1→ d

rule2 : b, c,
3→ a

Figure A.2: matrices of choice

To each matrix we assign a score given by the sum of each value in their
elements. So for instance, from graph above we have: for (i) score = 8, for
(ii) score = 6, for (iii) score = 3 the total score is 17.

A.2. COMMENTARY TO CODE 81

The engine receives from a random function a number between 0 to 17 (
the total score), reads the score of each matrix to identify in which matrix
corresponds to the score then �nds the corresponding matrix row and col-
umn. For example if the number obtained from random function is 2 the
corresponding matrix matrix is the �rst matrix, the corresponding row is 0
and the corresponding column is 0. It means that we will take from dynam-
icState the �rst occurrence of b and the �rst occurrence of a. Figure A.3
shows a �ow chart that summarizes what has just been said.

Figure A.3: Flow chart of matrices of choice

The second reactant should be replaced by a promoter, it works in the same
way but, obviously, promoter cannot be consumed by the method apply. For
instance, if we have a rule like this: a → d|c and state would be like this
w0 = {a, b, b, c, d, e, e, e, }, then we can see the following matrix generated

82 APPENDIX A. GENERAL PURPOSE IMPLEMENTATION

Matrix score will be 2 and if we obtain, as random value, 1 then we will
obtain 0 as number of matrix, 0 as number of column and 0 as number of
row.

A.2.6 State updating

According to the requirements of formalism, we have three di�erent lists,
one representing current state, one representing the state that we change
little by little as we apply each rules, that we call dynamicState, and one
that stores every produced items. The way in which we manage and modify
these lists represents the way in which we emulate a sort of parallelism of
our rules application. As we are not able to apply all the rules at the same
time, as the formal model would like, we have to apply them sequentially,
but we want to avoid losing the parallelism. To give a concrete example, if
our state is:

w0 = {a, b, d} and we have two rules as the following:

Rule1 : a, b→ c

Rule2 : d,→ e|a

If we calculate these rules sequentially we obtain the following state w1 =
{c, d} while in a parallel computation of each rule we obtain w1 = {c, e}.
In a parallel computation, the item b is consumed by the �rst rule, but can
still be viewed as promoter by the second one. We need to remember what
we have in our current state while we are saving in somewhere our produced
items and in the meanwhile, we need to know which items we are consuming
during our rules application. In the currentState we store our items before
than we start our rules application, we don't modify this list until the end
of our computational step. The dynamicState is used to remember us which
items are consumed by our rules, to not use the same element twice. In
producedItems we store the products of our rules and this list is updated
as new rules are applied. For instance, if our initial state, as said above is
w0 = {a, b, d}, our list, at the beginning of our computational step looks like
here below.
Where in red we havecurrentState correspondig to w, in yellow dynamic-

A.3. SOFTWARE ENGINE EXTENSION 83

State corresponding to w′ and in green producedItems corresponding to w′ .
applying the Rule1 we delete a and b from dynamicState (w′).

Applying the Rule2 we can still see a in currentState and produce e deleting
d from dynamicState.

According to the formalism, this is the way in which we emulate parallelism
and the reason because we use three di�erent lists of items.

A.3 Software engine extension

In a second moment, during the development of the theory behind the
MAPPS, we began to transform our software engine in one suited to handle
multilevel models, such as the one presented in the case of study of Serengeti
Lions. Notice that the software has been extended keeping the �rm intention
of being able to accept both models: APP Systems and MAPP Systems. We
decided to create a new class that extends the software engine, we did not

84 APPENDIX A. GENERAL PURPOSE IMPLEMENTATION

modify old parts of the code, in this way the engine can work on models
expressed in both the formalisms.

A.3.1 class Membrane

Membrane is new class that inherits from class item, this class is meant to
reproduce a membrane of MAPP Systems that could be not only the mem-
brane in which are located elements but also an element itself. The mem-
brane class, contains member functions that initialize inner related rules.

The membrane class, contains member functions that initialize inner state
Lists. At this point, we �nd three internal lists that we already seen in
previous version of code as global lists: currentState, dynamicState and pro-
ducedItems they are used to produce the internal computational step of a
membrane. Global lists remain and are used as the lists of Environment
Membrane, while each membrane has its own lists with the addition of one
more list called ejectedItems ad used as a list where we put items ready to
be expelled by membrane.

MAPPS formalism requires to reproduce a new kind of rule like this be-
low.

a→ kout

in this case the apply of MAPPS model would be like this:

pub l i c ov e r r i d e void apply (i n t i , i n t j , m)
{
k o = new k () ;
m. e j e c t ed I t ems . add (o) ;
}

Where ejectedItems correspond to wo of our formalism. To understand
better how the computational step of a single membrane works, and how
we manage items stored in ejectedItems we can give a look to the following
graph.

As we can see in graph above, each membrane have four lists: ejecte-
dItems, producedItems, dynamicState and currentState. During a computa-
tional step, a membrane class loads the entire set of rules that can use, loads
the entire set of update function that needs, controls if in its currenState
there are one or more membranes and if there are, take all elements stored
in the ejectedItems list of each membrane, and append them in its own cur-
rentState, chooses the set of rules to be applied, applies the rules, updates
currentState, put in ejectedItems the elements to be ejected in parent mem-
brane, and update the attributes, according to the loaded set of functions.

A.3. SOFTWARE ENGINE EXTENSION 85

According to the MAPPS formalism, the method computationalStep of our
code, which implements the computational step within a single membrane,
implements a visit post-order of the entire tree of membranes, in this way,
before the computational step is performed in current membrane, we are
sure that is performed in the inner membranes. Gradually, the computa-
tional steps are being made in all the membranes, levelling up starting from
the bottom.

A.3.2 input �les

Even input �les are changed in this version of our general purpose engine.
While the previously mentioned input �les still remain, we need now an entire
set of new �les, for each membrane we need to read an update.cs �le and a
rules.cs �le, where are stored, respectively, as saw above, update functions
for our membrane and rules of our membrane. So, the user have to create,
for each membrane, a folder with the same name of the membrane, where are
located update.cs and rules.cs. We will discuss about update.cs �le later.

A.3.3 class Membrane implementation

Stepping back to the code we can see something new: the apply function
takes no more two variables as input, it takes three variables, the third one
is a variable of type membrane, used by us to refer to the membrane that call
this method. This because, the same rule should be used in many di�erent
membrane with the same type. So we need to know which one called this
method to access to its currentState. Here below we can see how it is made
a rule that belongs to the software engine for MAPP Systems.

86 APPENDIX A. GENERAL PURPOSE IMPLEMENTATION

pub l i c c l a s s [nameRule] : Rule
{
pub l i c [nameRule] ()
{
_cat = new Type [1] ;
Type1 = Female ;
cat [0] = Winter ;
}
pub l i c ov e r r i d e i n t r a t i ng (i n t i , i n t j , membrane m)
{
return 1 ;
}
pub l i c ov e r r i d e void apply (i n t i , i n t j , membrane m)
{
Female k = new(Female)
k . Age = k . Age + 1 ;
Console . WriteLine (" I add female to produced items ")) ;
m. producedItems . add (k) ;
}
}

As seen before, [nameRule] stands for the name of our rule, chosen by the
user. _cat is an array of promoters, the command _cat = newType[1]; sets
the number of promoters, in this case one. The command cat[0] = Winter;
set the type of the promoter. membranem, as said above, is necessary to
to access attributes and state of the membrane that call the apply or the
rating. producedItems, as we see, is no more a member of GlobalDefs, now
it is a member of m.

A.3.4 Membrane Attributes

In MAPPS model, and in MAPP implementation, we have frequently said
that membrane are attributed, contrary to what is seen in APP systems,
we also said that there are two way to change the value of a membrane at-
tributes: A membrane attribute should be modi�ed by a rule as below:

r : ax, By → Bx+y

this is made by our model, in the apply method as below

pub l i c ov e r r i d e void apply (i n t i , i n t j , membrana m)
{

A.3. SOFTWARE ENGINE EXTENSION 87

a . x += b . y ;
m. producedItems . add (a) ;
}

the second way is by an update function like this:

Malestrenght((strenght), s) = Σa∈S1

We will see in the section below ho we manage this kind of functions in
our code. It is important to understand that usually not all the attributes
are meant to be changed by rules and not all the attributes are meant to be
changed by updating functions. Often, we can see that our set of attributes
should be divided in two separated subset, one composed by those attributes
changed by updating function, and another one composed by that attributes
used only by inner rules when a membrane is used as promoter. In any case
the formalism tells us that for each attribute there is an update function,
even if in many cases it may be the identity function. In our code, we did
not implement a function for each attribute, we just proved a way to easy
access membrane attributes letting the users write necessary code to modify
them.

A.3.5 Updating functions

In general purpose code for MAPP Systems we need to implement functions
update. As we have already said, we have decided not to implement method
used as update functions, leaving users free access to the attributes of a
membrane and allowing them to write the code needed.

the list currentState is a member attribute that we can �nd in every mem-
brane, so it is easy to refer to it as m.currentState, but it is not so simple to
refer to other attributes created by users, because our code can know them
only at runtime. The re�ection feature comes in our help giving us an easy
solution. So for example if we need to access the attribute Strength of our
membrane, we can refer to it like using the variable attributes[”Strength”]
where attributes is a variable of type Dictionary accessed by string that con-
tains object (not items).
once we have gained access to any variable of our membranes due to the at-
tribute attributes we can easily modify their contents as here below, where
we take all the males present in the currentState of a Pride and calculate the
total strength of the pride itself

i n t s t r ength =0;

Li s t<object> cur r en tS ta t e ;

88 APPENDIX A. GENERAL PURPOSE IMPLEMENTATION

cu r r en tS ta t e=m. cu r r en tS ta t e . getTypeList (typeo f (Male)) ;

cu r r en tS ta t e . ForEach (de l e ga t e (ob j e c t element)
{
Male e = (Male) element ;
s t r ength += e . Strength ;
}) ;

a t t r i b u t e s [" Strength "] = st r ength ;

as we see above, we obtain from the method getTypeList of currentState
a list of object we launch a simple foreach statement in which we sum the
strengths of all male and then we assign to attribues[”Strength”] the result-
ing value.

A.3.6 Membrane example

We saw before, how was made a class inheriting from item class, now we can
see how is made a class inheriting from membrane.

pub l i c c l a s s Coa l i t i on : membrane
{
pub l i c i n t hea l th ;
pub l i c i n t s t r ength ;
pub l i c i n t requirement ;

pub l i c Coa l i t i on (){
Male o = new Male () ;
base . cu r r en tS ta t e . add (o) ;
base . dynamicState . add (o) ;

Summer e = new Summer () ;
base . cu r r en tS ta t e . add (e) ;
base . dynamicState . add (e) ;
}

}

As we see above, we just need to write which attributes we want in our
class. The items created in constructor method and added to currentState
and dynamicState are that ones used in the initial state of our system.

Bibliography

[1] Bustamante, Javier. "Use of simulation models to plan species reintro-
ductions: the case of the bearded vulture in southern Spain." Animal
Conservation 1.4 (1998): 229-238.

[2] Penna, P., Paoletti, N., Scarcella, G., Tesei, L., Marini, M., Merelli,
E.: Dispas: An agent-based tool for the management of shing e ort.
In: Software Engineering and Formal Methods, pp. 362-367. Springer
(2014)

[3] R. Alur, C. Belta, F. Ivan�ci´c, V. Kumar, M. Mintz, G. J. Pappas, H.
Rubin, and J. Schug. Hybrid Modeling and Simulation of Biomolecular
Networks. Lecture Notes in Computer Science, 2034:19�32, 2001.

[4] Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Simu-
lation of spatial P system models. Theoretical Computer Science 529,
11-45 (2014)

[5] Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.:
Spatial P systems. Natural Computing 10(1), 3-16 (2011)

[6] Barbuti, R., Bove, P., Milazzo, P., Pardini, G. (2015). Minimal prob-
abilistic P systems for modelling ecological systems. Theoretical Com-
puter Science.

[7] Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: An overview
on operational semantics in membrane computing. International Jour-
nal of Foundations of Computer Science 22(01), 119�131 (2011)

[8] Barbuti, R., Cataudella, S., Maggiolo-Schettini, A., Milazzo, P.,
Troina, A.: A probabilistic model for molecular systems. Fundamenta
Informaticae 67(1), 13�27 (2005)

[9] Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: A p systems
�at form preserving step-by-step behaviour. Fundamenta Informaticae
87(1), 1�34 (2008)

89

90 BIBLIOGRAPHY

[10] Barbuti, R., Caravagna, G., Maggiolo�Schettini, A., Milazzo, P., Par-
dini, G.: The calculus of looping sequences. In: Formal Methods for
Computational Systems Biology, Lecture Notes in Computer Science,
vol. 5016, pp. 387�423. Springer Berlin Heidelberg (2008)

[11] Barbuti, R., Bompadre, A., Bove, P., Milazzo, P., Pardini, G. At-
tributed Probabilistic P Systems and their Application to the Mod-
elling of Social Interactions in Primates. (2015)

[12] Madhu, M.: Probabilistic rewriting p systems. International Journal
of Foundations of Computer Science 14(1), 157�166 (2003)

[13] Barbuti, R. and Levi, F. and Milazzo, P. and Scatena, G., Maximally
parallel probabilistic semantics for multiset rewriting, Fundamenta In-
formaticae, 2011, pp. 1-17

[14] Ciobanu, G., Cornacel, L.: Probabilistic transitions for p systems.
Progress in Natural Science 17(4), 432�441 (2007)

[15] Jordán, F., Scotti, M., Priami, C.: Process algebra-based computa-
tional tools in ecological modelling. Ecological Complexity 8(4), 357-
363 (2011)

[16] M. Curti, P. Degano, C. Priami, and C. T. Baldari. Modelling bio-
chemical pathways through enhanced π-calculus. Theor. Comput. Sci.,
325(1):111�140, 2004.

[17] D. Prandi, C. Priami, and P. Quaglia. Process Calculi in a Biological
Context. Bulletin of the EATCS, 85:53�69, 2005.

[18] Kahramano gullar, O., Lynch, J.F., Priami, C.: Algorithmic systems
ecology: ex-periments on multiple interaction types and patches. In:
Information Technology and Open Source: Applications for Education,
Innovation, and Sustainability, pp. 154-171. Springer (2014)

[19] C. Priami. �Stochastic π�Calculus�. The Computer Journal, volume
38, number 7, pages 578�589, 1995.

[20] C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of
a stochastic name-passing calculus to representation and simulation
of molecular processes. Information Processing Letters, 80(1):25�31,
October 2001.

[21] C. Priami, A. Regev, W. Silvermann, and E. Shapiro. �Application of a
Stochastic Name�Passing Calculus to Representation and Simulation
of Molecular Processes�. Information Processing Letters, volume 80,
pages 25�31, 2001.

BIBLIOGRAPHY 91

[22] C. Priami and P. Quaglia. Beta Binders for Biological Interactions.
Lecture Notes in Computer Science, 3082:20�33, 2005.

[23] P. Degano, D. Prandi, C. Priami, P. Quaglia "Beta-binders for biolog-
ical quantitative experiments." Electronic Notes in Theoretical Com-
puter Science 164.3 (2006): 101-117.

[24] Dematte L, Priami C, Romanel A, Soyer O. Evolving BlenX programs
to simulate the evolution of biological networks. Theor Comput Sci.
2008;408(1):83�96.

[25] Priami C, Ballarini P, Quaglia P. Computational Methods in Systems
Biology. Springer, Berlin Heidelberg; 2009. BlenX4Bio-BlenX for Biol-
ogists; pp. 26�51.

[26] Cardona, Campbell, Colomer, M.A., Margalida, A., Palau, A., Pérez-
Hurtado, I., Pérez- Jiménez, M.J., Sanuy, D.: A computational model-
ing for real ecosystems based on P systems. Natural Computing 10(1),
39-53 (2011)

[27] Coria, C.A.N., Tesei, L., Scarcella, G., Russo, T., Merelli, E.: Sea-scale
agent-based simulator of solea solea in the adriatic sea. In: Software
Engineering and Formal Methods, pp. 259275. Springer (2014)

[28] Ciocchetta F, Hillston J. Bio-PEPA: an extension of the process algebra
PEPA for biochemical networks. Electron Notes Theor Comput Sci.
2008;194(3):103�117.

[29] Ciocchetta F, Hillston J. Bio-PEPA: a framework for the modelling
and analysis of biological systems. Theor Comput Sci. 2009;410(33-
34):3065�3084.

[30] Ciocchetta, F., Hillston, J.: Bio-pepa for epidemiological models. Elec-
tronic Notes in Theoretical Computer Science 261, 4369 (2010)

[31] L. Cardelli and A.D. Gordon. �Mobile Ambients�. Theoretical Com-
puter Science, volume 240, number 1, pages 177�213, 2000.

[32] L. Cardelli. �Brane Calculi. Interactions of Biological Membranes�.
CMSB'04, LNCS 3082, pages 257�280, Springer, 2005.

[33] Cardelli L. Computational Methods in Systems Biology. Springer,
Berlin Heidelberg; 2005. Brane calculi; pp. 257�278.

[34] V. Danos and C. Laneve. �Formal Molecular Biology�. Theoretical
Computer Science, volume 325, number 1, pages 69�110, 2004.

92 BIBLIOGRAPHY

[35] V. Danos and S. Pradalier. �Projective Brane Calculus�, Computa-
tional Methods in Systems Biology (CMSB'04), LNCS 3082, pages
134�148, Springer, 2005.

[36] Danos V, Feret J, Fontana W, Harmer R. CONCUR 2007 - Concur-
rency Theory. Vol. 4703. Springer, Berlin Heidelberg; 2007. Rule-Based
Modelling of Cellular Signalling; pp. 17�41.

[37] Danos V, Feret J, Fontana W, Harmer R, Krivine J. Rule-
based modelling and model perturbation. T Comput Syst Biol XI.
2009;5750:116�137.

[38] C. Laneve and F. Tarissan. A Simple Calculus for Proteins and Cells.
Workshop on Membrane Computing and Biological Inspired Process
Calculi (MeCBIC'06), to appear on ENTCS.

[39] Internal coarse-graining of molecular systems. Feret J, Danos V, Kriv-
ine J, Harmer R, Fontana W Proc Natl Acad Sci U S A. 2009 Apr 21;
106(16):6453-8.

[40] A. Philippou, M. Toro, M. Antonaki, Simulation and Veri�cation for
a Process Calculus for Spatially-explicit Ecological Models, Scienti�c
Annals of Computer Science 21, 2011, pp. 1-42

[41] Philippou, A., Toro, M., Antonaki, M.: Simulation and veri�cation
in a process calculus for spatially-explicit ecological models. Sci. Ann.
Comp. Sci. 23(1), 119-167 (2013)

[42] Philippou, A., Toro, M.: Process ordering in a process calculus for
spatially-explicit ecological models. In: Software Engineering and For-
mal Methods, pp. 345-361. Springer (2014)

[43] M. Antonaki, A. Philippou, A process calculus for spatially-explicit
ecological models, Electronic Proceedings in Theoretical Computer Sci-
ence (EPTCS) 100, 2012, pp. 14-28

[44] H. Matsuno, A. Doi, M. Nagasaki, and S. Miyano. Hybrid Petri Net
Representation of Gene Regulatory Network. Paci�c Symposium on
Biocomputing, pages 341�352, 2000.

[45] Modelling and simulation of signal transductions in an apoptosis path-
way by using timed Petri nets. Li C, Ge QW, Nakata M, Matsuno H,
Miyano S J Biosci. 2007 Jan; 32(1):113-27.

[46] G. P un. �Computing with Membranes�. Journal of Computer and Sys-
tem Sciences, volume 61, number 1, pages 108�143, 2000.

[47] G. P un. Membrane Computing: An Introduction. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2002.

BIBLIOGRAPHY 93

[48] G. P un, G. Rozenberg. �A Guide to Membrane Computing�. Theo-
retical Computer Science, volume 287, number 1, pages 73�100, 2002.

[49] A. Regev, W. Silverman and E.Y. Shapiro. �Representation and Simu-
lation of Biochemical Processes Using the pi-calculus Process Algebra�.
Paci�c Symposium on Biocomputing, World Scienti�c Press, pages
459�470, 2001.

[50] A. Regev and E. Shapiro. �Cells as Computation�. Nature, volume 419,
page 343, 2002.

[51] A. Regev and E. Y. Shapiro. Cells as Computation. In CMSB '03:
Proceedings of the First International Workshop on Computational
Methods in Systems Biology, pages 1�3, London, UK, 2003. Springer-
Verlag.

[52] A. Regev, E.M. Panina, W. Silverman, L. Cardelli and E. Shapiro.
�BioAmbients: An Abstraction for Biological Compartments�. Theo-
retical Computer Science, volume 325, number 1, pages 141�167, 2004.

[53] Robbins, Martha M., and Andrew M. Robbins. "Simulation of the
population dynamics and social structure of the Virunga mountain
gorillas." American Journal of Primatology 63.4 (2004): 201-223.

[54] Milner R. �Communicating and Mobile Systems: the �Calculus�. Cam-
bridge University Press, 1999.

[55] Milner R. A calculus of communicating systems. Springer; 1980.

[56] Milner R, Parrow J, Walker D. A calculus of mobile processes. I. Inf
Comput. 1992;100(1):1�40.

[57] Bortolussi, L., Policriti, A.: Modeling biological systems in stochastic
concurrent constraint programming. Constraints 13(1-2), 66 90 (2008)

[58] Spicher, Antoine, Olivier Michel, and Jean-Louis Giavitto. "Spatial
Computing in MGS." UCNC. 2012.

[59] Spicher, A., Michel, O., Cieslak, M., Giavitto, J.L., Prusinkiewicz, P.:
Stochastic p systems and the simulation of biochemical processes with
dynamic compartments. BioSystems 91(3), 458�472 (2008), cited By
23

[60] Petri C. Kommunikation mit Automaten. Ph.D. thesis, Rheinisch-
Westfälisches Institut f. instrumentelle Mathematik an d. Univ; 1962.

[61] Reddy V, Mavrovouniotis M, Liebman M. Petri Net Representations in
Metabolic Pathways. In: Proceedings of the 1st International Confer-
ence on Intelligent Systems for Molecular Biology. AAAI/MIT Press,
Menlo Park, CA; 1993. pp. 328�336.

94 BIBLIOGRAPHY

[62] Topological analysis of metabolic networks based on Petri net theory.
Zevedei-Oancea I, Schuster S In Silico Biol. 2003; 3(3):323-45.

[63] Chaouiya C, Remy E, Ruet P, Thie�ry D. Qualitative modelling of
genetic networks: From logical regulatory graphs to standard petri
nets. Lect Notes Comput Sc. 2004;3099:137�156.

[64] Application of Petri net theory for modelling and validation of the
sucrose breakdown pathway in the potato tuber. Koch I, Junker BH,
Heiner M Bioinformatics. 2005 Apr 1; 21(7):1219-26.

[65] Application of Petri net based analysis techniques to signal transduc-
tion pathways. Sackmann A, Heiner M, Koch I BMC Bioinformatics.
2006 Nov 2; 7():482.

[66] Petri net-based method for the analysis of the dynamics of signal prop-
agation in signaling pathways. Hardy S, Robillard PN Bioinformatics.
2008 Jan 15; 24(2):209-17.

[67] Chaouiya C, Remy E, Thie�ry D. Petri net modelling of biological
regulatory networks. J Discrete Algorithms. 2008;6(2):165�177.

[68] Vissat, Ludovica Luisa, et al. "MELA: Modelling in Ecology with Lo-
cation Attributes.

[69] P. Prusinkiewicz, A Lindenmayer. �The Algorithmic Beauty of Plants�.
Springer, 1990.

[70] Pescini, Dario, et al. "Dynamical probabilistic P systems: De�ni-
tions and applications." Proceedings of the Third Brainstorming Week
on Membrane Computing, Sevilla (Spain), January 31st-February 4th
(2005): 275-288.

[71] Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical proba-
bilistic p systems. International Journal of Foundations of Computer
Science 17(1), 183�204 (2006)

[72] Book, Ronald V., and Friedrich Otto. String-rewriting systems.
Springer New York, 1993.

[73] Metabolic stability and epigenesis in randomly constructed genetic
nets. Kau�man SA J Theor Biol. 1969 Mar; 22(3):437-67.

[74] Simulation of large-scale rule-based models. Colvin J, Monine MI,
Faeder JR, Hlavacek WS, Von Ho� DD, Posner RG Bioinformatics.
2009 Apr 1; 25(7):910-7.

BIBLIOGRAPHY 95

[75] RuleMonkey: software for stochastic simulation of rule-based models.
Colvin J, Monine MI, Gutenkunst RN, Hlavacek WS, Von Ho� DD,
Posner RG BMC Bioinformatics. 2010 Jul 30; 11():404.

[76] Rule-based spatial modeling with di�using, geometrically constrained
molecules. Gruenert G, Ibrahim B, Lenser T, Lohel M, Hinze T, Dit-
trich P BMC Bioinformatics. 2010 Jun 7; 11():307.

[77] Dynamics of HIV infection: a cellular automata approach. Zorzenon
dos Santos RM, Coutinho S Phys Rev Lett. 2001 Oct 15;
87(16):168102.

[78] Dynamics of HIV infection studied with cellular automata and
conformon-P systems. Corne DW, Frisco P Biosystems. 2008 Mar;
91(3):531-44.

[79] Metropolis, Nicholas, and Stanislaw Ulam. "The monte carlo method."
Journal of the American statistical association 44.247 (1949): 335-341.

[80] The P Systems web page: http://psystems.disco.unimib.it/.

[81] Weimar J. Cellular automata approaches to enzymatic reaction net-
works. Cellular Automata. 2002;2493:294�303.

[82] Cellular automata approaches to biological modeling. Ermentrout GB,
Edelstein-Keshet L J Theor Biol. 1993 Jan 7; 160(1):97-133.

[83] Von Neumann J, Burks A. Theory of self-reproducing automata. Uni-
versity of Illinois Press; 1966.

[84] A cellular automaton model of cellular signal transduction. Wurthner
JU, Mukhopadhyay AK, Peimann CJ Comput Biol Med. 2000 Jan;
30(1):1-21.

[85] A three-dimensional model of myxobacterial aggregation by contact-
mediated interactions. Sozinova O, Jiang Y, Kaiser D, Alber M Proc
Natl Acad Sci U S A. 2005 Aug 9; 102(32):11308-12.

[86] Dynamic cellular automata: an alternative approach to cellular simu-
lation. Wishart DS, Yang R, Arndt D, Tang P, Cruz J In Silico Biol.
2005; 5(2):139-61

[87] Dynamic modeling of the central carbon metabolism of Escherichia
coli. Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss
M Biotechnol Bioeng. 2002 Jul 5; 79(1):53-73.

[88] Validation of qualitative models of genetic regulatory networks by
model checking: analysis of the nutritional stress response in Es-
cherichia coli. Batt G, Ropers D, de Jong H, Geiselmann J, Mateescu
R, Page M, Schneider D Bioinformatics. 2005 Jun; 21 Suppl 1():i19-28.

96 BIBLIOGRAPHY

[89] Hybrid dynamic modeling of Escherichia coli central metabolic net-
work combining Michaelis-Menten and approximate kinetic equations.
Costa RS, Machado D, Rocha I, Ferreira EC Biosystems. 2010 May;
100(2):150-7.

[90] Dynamic simulation of the human red blood cell metabolic network.
Jamshidi N, Edwards JS, Fahland T, Church GM, Palsson BO Bioin-
formatics. 2001 Mar; 17(3):286-7.

[91] Dynamic simulation and metabolic re-design of a branched pathway us-
ing linlog kinetics. Visser D, Heijnen JJ Metab Eng. 2003 Jul; 5(3):164-
76

[92] Sni�ers, buzzers, toggles and blinkers: dynamics of regulatory and
signaling pathways in the cell. Tyson JJ, Chen KC, Novak B Curr
Opin Cell Biol. 2003 Apr; 15(2):221-31.

[93] In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae:
II. Mathematical model. Rizzi M, Baltes M, Theobald U, Reuss M
Biotechnol Bioeng. 1997 Aug 20; 55(4):592-608.

[94] Horn F, Jackson R. General mass action kinetics. Arch Ration Mech
An. 1972;47(2):81�116.

[95] Savageau M, Voit E. Recasting nonlinear di�erential equations as S-
systems: a canonical nonlinear form. Math Biosci. 1987;87(1):83�115.

[96] Identi�cation of genetic networks from a small number of gene expres-
sion patterns under the Boolean network model. Akutsu T, Miyano S,
Kuhara S Pac Symp Biocomput. 1999; ():17-28.

[97] Genetic network inference: from co-expression clustering to reverse
engineering. D'haeseleer P, Liang S, Somogyi R Bioinformatics. 2000
Aug; 16(8):707-26.

[98] Inferring qualitative relations in genetic networks and metabolic path-
ways. Akutsu T, Miyano S, Kuhara S Bioinformatics. 2000 Aug;
16(8):727-34.

[99] Probabilistic Boolean Networks: a rule-based uncertainty model for
gene regulatory networks. Shmulevich I, Dougherty ER, Kim S, Zhang
W Bioinformatics. 2002 Feb; 18(2):261-74.

[100] Qualitative simulation of genetic regulatory networks using piecewise-
linear models. De Jong H, Gouzé JL, Hernandez C, Page M, Sari T,
Geiselmann J Bull Math Biol. 2004 Mar; 66(2):301-40.

BIBLIOGRAPHY 97

[101] The yeast cell-cycle network is robustly designed. Li F, Long T, Lu
Y, Ouyang Q, Tang C Proc Natl Acad Sci U S A. 2004 Apr 6;
101(14):4781-6.

[102] Approximative kinetic formats used in metabolic network modeling.
Heijnen JJ Biotechnol Bioeng. 2005 Sep 5; 91(5):534-45.

[103] Bringing metabolic networks to life: convenience rate law and ther-
modynamic constraints. Liebermeister W, Klipp E Theor Biol Med
Model. 2006 Dec 15; 3():41.

[104] Boolean network analysis of a neurotransmitter signaling pathway.
Gupta S, Bisht SS, Kukreti R, Jain S, Brahmachari SK J Theor Biol.
2007 Feb 7; 244(3):463-9.

[105] A structured approach for the engineering of biochemical network mod-
els, illustrated for signalling pathways. Breitling R, Gilbert D, Heiner
M, Orton R Brief Bioinform. 2008 Sep; 9(5):404-21.

[106] A network model of early events in epidermal growth factor recep-
tor signaling that accounts for combinatorial complexity. Blinov ML,
Faeder JR, Goldstein B, Hlavacek WS Biosystems. 2006 Feb-Mar; 83(2-
3):136-51

[107] Cellulat: an agent-based intracellular signalling model. González PP,
Cárdenas M, Camacho D, Franyuti A, Rosas O, Lagúnez-Otero J
Biosystems. 2003 Feb-Mar; 68(2-3):171-85.

[108] Identifying control mechanisms of granuloma formation during M. tu-
berculosis infection using an agent-based model. Segovia-Juarez JL,
Ganguli S, Kirschner D J Theor Biol. 2004 Dec 7; 231(3):357-76.

[109] Formal agent-based modelling of intracellular chemical interactions.
Pogson M, Smallwood R, Qwarnstrom E, Holcombe M Biosystems.
2006 Jul; 85(1):37-45.

[110] Development of a three-dimensional multiscale agent-based tumor
model: simulating gene-protein interaction pro�les, cell phenotypes
and multicellular patterns in brain cancer. Zhang L, Athale CA, Deis-
boeck TS J Theor Biol. 2007 Jan 7; 244(1):96-107.

[111] Introducing spatial information into predictive NF-kappaB modelling�
an agent-based approach. Pogson M, Holcombe M, Smallwood R,
Qwarnstrom E PLoS One. 2008 Jun 4; 3(6):e2367.

[112] Agent-based simulation of reactions in the crowded and structured
intracellular environment: In�uence of mobility and location of the
reactants. Klann MT, Lapin A, Reuss M BMC Syst Biol. 2011 May
14; 5():71.

98 BIBLIOGRAPHY

[113] Modeling gene expression with di�erential equations. Chen T, He HL,
Church GM Pac Symp Biocomput. 1999; ():29-40.

[114] John M, Ewald R, Uhrmacher A. A spatial extension to the π-Calculus.
Electron Notes Theor Comput Sci. 2008;194(3):133�148.

[115] A model of TLR4 signaling and tolerance using a qualitative, particle-
event-based method: introduction of spatially con�gured stochastic
reaction chambers (SCSRC). An G Math Biosci. 2009 Jan; 217(1):43-
52.

[116] Rule-based spatial modeling with di�using, geometrically constrained
molecules. Gruenert G, Ibrahim B, Lenser T, Lohel M, Hinze T, Dit-
trich P BMC Bioinformatics. 2010 Jun 7; 11():307.

[117] Stochastic approaches for modelling in vivo reactions. Turner TE,
Schnell S, Burrage K Comput Biol Chem. 2004 Jul; 28(3):165-78.

[118] Bio-calculus: Its Concept and Molecular Interaction. Nagasaki M, On-
ami S, Miyano S, Kitano H Genome Inform Ser Workshop Genome
Inform. 1999; 10():133-143.

[119] Pathway analysis in metabolic databases via di�erential metabolic dis-
play (DMD). Kü�ner R, Zimmer R, Lengauer T Bioinformatics. 2000
Sep; 16(9):825-36.

[120] BioNetGen: software for rule-based modeling of signal transduction
based on the interactions of molecular domains. Blinov ML, Faeder JR,
Goldstein B, Hlavacek WS Bioinformatics. 2004 Nov 22; 20(17):3289-
91.

[121] Qualitative modelling of regulated metabolic pathways: application to
the tryptophan biosynthesis in E.coli. Simão E, Remy E, Thie�ry D,
Chaouiya C Bioinformatics. 2005 Sep 1; 21 Suppl 2():ii190-6.

[122] BIOCHAM: an environment for modeling biological systems and for-
malizing experimental knowledge. Calzone L, Fages F, Soliman S Bioin-
formatics. 2006 Jul 15; 22(14):1805-7.

[123] A logical model provides insights into T cell receptor signaling. Saez-
Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U,
Arndt B, Haus UU, Weismantel R, Gilles ED, Klamt S, Schraven B
PLoS Comput Biol. 2007 Aug; 3(8):e163.

[124] Structure-based kinetic models of modular signaling protein function:
focus on Shp2. Barua D, Faeder JR, Haugh JM Biophys J. 2007 Apr
1; 92(7):2290-300.

BIBLIOGRAPHY 99

[125] Computational models of tandem SRC homology 2 domain interactions
and application to phosphoinositide 3-kinase. Barua D, Faeder JR,
Haugh JM J Biol Chem. 2008 Mar 21; 283(12):7338-45.

[126] Essential operating principles for tumor spheroid growth. Engelberg
JA, Ropella GE, Hunt CA BMC Syst Biol. 2008 Dec 23; 2():110.

[127] A bipolar clamp mechanism for activation of Jak-family protein tyro-
sine kinases. Barua D, Faeder JR, Haugh JM PLoS Comput Biol. 2009
Apr; 5(4):e1000364.

[128] Internal coarse-graining of molecular systems. Feret J, Danos V, Kriv-
ine J, Harmer R, Fontana W Proc Natl Acad Sci U S A. 2009 Apr 21;
106(16):6453-8.

[129] Towards a genome-scale kinetic model of cellular metabolism. Small-
bone K, Simeonidis E, Swainston N, Mendes P BMC Syst Biol. 2010
Jan 28; 4():6.

[130] Grinnell, Jon and Packer, Craig and Pusey, Anne. Cooperation in male
lions: kinship, reciprocity or mutualism. [Elsevier]. 95�105. (1995)

[131] Mosser, Anna and Packer, Craig. Group territoriality and the bene�ts
of sociality in the African lion, Panthera leo. [Elsevier]. 359�370. (2009)

[132] HEINSOHN, ROBERT. Group territoriality in two populations of
African lions. [Elsevier]. 1143�1147. (1997)

[133] Funston, PJ and Mills, MGL and Biggs, HC and Richardson, PRK.
Hunting by male lions ecological in�uences and socioecological implic-
tions. [Elsevier]. 1333�1345. (1998)

[134] Woodro�e, Rosie and Frank, Laurence G. Lethal control of African
lions (Panthera leo): local and regional population impacts. [Wiley On-
line Library]. 91�985. (2005)

[135] Bauer, H and De Iongh, HH and Di Silvestre, I. lion (panthera leo) so-
cial behaviour in the west and central african savannah belt. [Elsevier].
239�243. (2005)

[136] VanderWaal, Kimberly L and Mosser, Anna and Packer, Craig. Op-
timal group size, dispersal decisions and postdispersal relationships in
female African lions. [Elsevierr]. 949�954. (2009)

[137] Grinnell, Jon and McComb, Karen. Roaring and social communication
in African lions, the limitations imposed by listeners. [Elsevierr]. 93�
98. (2001)

100 BIBLIOGRAPHY

[138] Bygott, J David and Bertram, Brian CR and Hanby, Jeannette P.Male
lions in large coalitions gain reproductive advantages. [Nature Publish-
ing Group]. (1979)

[139] Brendel, Jason. Geography and Climate. (2007)

[140] Saundry, Peter Protected areas. [Encyclopedia of earth]. (2009)

[141] Sinclair, Anthony Ronald Entrican and Arcese, Peter. Serengeti II:
dynamics, management, and conservation of an ecosystem. [University
of Chicago Press]. (1995)

[142] Sinclair, Anthony Ronald Entrican. Serengeti past and present. [Uni-
versity of Chicago Press]. (1995)

	Introduction
	Motivation
	Contributions
	Published Material

	State of the art
	Background
	Definition of multiset and related operations
	Notions of P Systems
	Formal definition
	Some relevant extensions
	MPP systems
	APP systems

	MAPP Systems
	Definition of MAPP systems
	Formal definition

	Semantics, formal definition
	MAPPS a simple example
	MAPPS another example: Predator / Prey
	Sets
	Rules
	Functions

	Serengeti Lions
	Informal description
	Formal description

	Experimental results
	Data and results

	Final Conclusions
	APPENDICES
	General purpose implementation
	Overview
	Programming language used in the project

	Commentary to code
	software engine
	input files
	apply method
	Rating method
	Matrices of choice
	State updating

	Software engine extension
	class Membrane
	input files
	class Membrane implementation
	Membrane Attributes
	Updating functions
	Membrane example

	Bibliography

