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PREFACE

This  work  has  been  done  in  the  framework  of  cooperation  existing  among  the 
department of Computer Science of the University of Pisa, Italy (Prof. Danelutto) and 
the IDA department of the Linköping University, Sweden (Prof. Kessler).
It  originated  with  the  main  goal  of  addressing  a  well  know  issue  related  to  GPU 
programming: the loss of performance due to data transfers between main memory 
and device memory.
All known solutions tackling this problem often require a considerable amount of hours 
of additional work for the application programmer to be designed and implemented. 
This is the main motivation that led to this master thesis, where we have extended the 
existing data-parallel skeleton library SkePU to offer a fully transparent solution which 
has been synthesized in just one more compile flag.
The result of this work has eventually contributed to the new release of SkePU itself  
(v1.2) which is  now both faster in executing data-parallel  computations,  and better 
optimized to support task-parallel computations on-top of it.
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1. INTRODUCTION

1.1 MOTIVATION

In  the  past  fifteen  years,  the  IT  industry  evolution  has  been  characterized  by  the 
introduction and growth of parallelism. This new approach is gradually substituting the 
serial  one  in  almost  every  area:  the  semi-conductor  industry,  since  2003,  proposes 
multicore  CPUs  to  keep  up  with  the  Moore's  law,  a  completely  new  generation  of 
manycore chips has been introduced mainly in the form of co-processor (e.g. Intel Xeon 
Phi)  and  the  old  Graphic  Processing  Unit  architecture  has  been  reviewed  to  support 
General Purpose computations (GPGPU) on thousand of cores simultaneously. But what 
may  seem  a  relatively  linear  evolution  on  the  hardware  side,  becomes  a  continuous 
challenge  for  programmers.  The  newborn  heterogeneous  systems  require  a  deep 
knowledge of all the composing architectures, of their related programming model, and of 
all the different ways they may interact with each other to squeeze out every last bit of  
performance they have to offer. This rightfully is an impossible task for the programmer 
which tends to specialize himself on a very small subset of those architectures.
Introduced  by  Murray  Cole  in  1989  [9],  algorithmic  skeletons constitute  a  high-level 
parallel programming model which abstracts both the computation and the coordination 
parts of the most recurring patterns of a structured parallel  application, providing the 
programmer with a generic sequential looking interface.
An algorithmic skeleton based parallel programming approach directly influences three 
software-related properties, strictly linked each other:

• Programmability. Exposing a sequential interface, the application programmer can 
use the skeleton as a more familiar sequential component and focus his efforts on 
the actual application logic.

• Portability.  Being  an  interface,  an  algorithmic  skeleton  masks  the  actual 
implementation  of  the  parallel  pattern  it  models.  As  a  consequence,  a  given 
algorithmic skeleton can be adopted in a platform-independent manner, provided 
that an implementation exists for each of the targeted platforms.

• Performance.  The  implementation  of  a  skeleton,  for  each  of  the  supported 
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platforms, can be tweaked to exploit at their best all the features of the underlying 
architecture.

As such, algorithmic skeletons may seem a perfect fit for the current IT scenario and, in 
fact, research groups all over the world are proposing several frameworks and libraries 
based on the algorithmic skeleton concept [8].  But,  as with any high-level abstraction, 
advantages  can't  come  without  tradeoffs:  as  the  programmability  improves  and  the 
portability  broadens,  it  gets  more  and  more  difficult  to  aim  at  the  best  possible 
performance.

1.2 THESIS TARGET

In this master thesis we consider SkePU, a data-parallel skeleton library targeting GPGPUs, 
which offers both a wide portability  and an easy-to-program sequential  interface.  We 
analyze  its  performance  on  CUDA-based  heterogeneous  systems  and  propose  an 
enhancement  which  addresses  the  latency  increase  that  occurs  when computation  is 
offloaded to an external device such as a GPU.
In particular, our target was to decrease, or even better to completely eliminate, the time 
spent on transferring data between system memory and NVIDIA GPUs memory before the 
computation can actually begin.  This  is,  in general,  the highest source of  overhead in 
heterogeneous systems, often leading to a decrease in performance even with respect to 
a  sequential,  CPU-only,  execution.  Depending  on  the  implementation,  the  application 
programmer may spend hours trying to optimize his code or completely discard the usage 
of a co-processor if the outcome isn't worth the effort.
Exploiting  the  skeleton  programming  approach,  we  propose  MultiStream,  a  generic 
optimization that adopts a pipeline pattern implemented on top of CUDA Streams. This 
gives  SkePU  the  possibility  to  overlap  data  transfers  with  kernel  executions  thus 
decreasing, and in some cases completely masking, the overhead due to the former. This 
solution  is  applied directly  to  every  skeleton implementation,  is  completely  backward 
compatible,  and has little  to no impact on the level  of  abstraction guaranteed to the 
application programmer.
On the results side,  MultiStream is able to increase the performance of every skeleton 
execution and its adoption is suggested with very few exceptions which depend, as will be 
shown,  on  specific  and  uncommon  conditions.  Moreover,  using  the  stream-parallel 
skeleton framework FastFlow [7], we show how SkePU and MultiStream can be efficiently 
used  to  compute  data-parallel  portions  of  code  nested  in  a  larger  stream-parallel 
application.
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1.3 THESIS OUTLINE

The rest of this paper is organized as follows:
• Chapter 2 describes CUDA, SkePU and all  the technical background required to 

understand the remainder of this master thesis.
• Chapter 3 provides an in-depth analysis of the problem and the description of the 

MultiStream design  and  implementation.  A  cost  model  is  derived  for  every 
skeleton implementation.

• Chapter 4 is reserved to the MultiStream performance analysis.
• Chapter  5  and  6  conclude  this  master  thesis  and  discusses  possible  future 

enhancement for MultiStream and SkePU.
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2. BACKGROUND

This  chapter  introduces  the  technical  background  that  may  help  the  reader  in 
understanding  the  contents  of  this  master  thesis.  First,  NVIDIA  CUDA  Architecture  is 
described to underline  advantages  and tradeoffs  relative  to GPGPU usage.  Afterward, 
SkePU  is  introduced  as  a  high-level  library  able  to  provide  a  skeleton  programming 
approach to GPGPU programming.

2.1 NVIDIA CUDA

2.1.1 A BRIEF HISTORY OF GPU COMPUTING

In  the early  1990s,  thanks to the growth in popularity  of  graphically  driven operative 
systems (e.g. Microsoft Windows), personal computers started to be equipped with 2D 
display accelerators which offered hardware-assisted bitmap operations.
In  1992,  Silicon  Graphics  released  the  OpenGL  library,  the  first  3D  application 
programming interface. The most popular were the first-person shooter games such as 
Doom or Quake, which ignited the spark that led to the creation of progressively more 
realistic  3D  environments  and,  consequently,  increasingly  more  powerful  graphics 
accelerators.
The first  attempts  to provide a general  purpose graphic  parallel  computing  started in 
2001,  with  the  introduction  of  programmable  vertex  and  pixel  shaders  by  GPU 
manufacturers. In those years, researchers cleverly tricked the graphic accelerators into 
performing arbitrary computations on generic numerical data by making them appear as 
operands required to standard graphic rendering. This approach was restrictive because 
applications had to be written with graphic-only programming languages and there was 
no method to debug any code upon incorrect results or failures.
In November 2006, with the release of the GeForce 8000 GPU series, NVIDIA introduced 
the first general-purpose processing GPU built with CUDA Architecture.
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2.1.2 CUDA ARCHITECTURE

CUDA Architecture, and GPGPUs in general, provide the application programmer with a 
high throughput co-processor best suited for massively parallel computations.
With respect to a traditional multicore CPU, graphics accelerators make a different use of 
their  chip  area.  In  particular,  features  such  as  out-of-order  instruction  execution, 
speculation or branch prediction are completely absent, interprocessor communications 
are bound to hardware restrictions and cache memory is one order of magnitude smaller. 
All of these limitations leave enough area to fit hundreds of  Streaming Multiprocessors  
(up to 384 on the Maxwell architecture released in 2015) which are, in turn, groups of 8 
execution units, called CUDA Cores.
On  GPU,  performance  is  achieved  through  the  SIMT  architecture  (Single-Instruction, 
Multiple-Thread) which enables a high degree of parallelism [1: 4.1]. It consists of a large 
number of threads sharing the same kernel which, compared to the CPU ones, have zero 
context-switching  overhead  and  are  suitable  to  operate  on  extremely  fine-grained 
datasets.
Threads are organized using a two-level hierarchy [Figure 1]. At the bottom level, they are 
grouped into Thread Blocks of 1, 2 or 3 dimensions. Let us call (x , y , z) the index of a 
specific thread inside given thread block and (D x , D y ,D z) the size of that thread block, 
the thread can be identified by threadIdx=x+ y D x+z D xD y . At the top level, thread 
blocks are organized into 1, 2 or 3 dimensional Grids and are identified by an ID blockIdx 
similar to the thread one.

Upon kernel execution, each multiprocessor gets a thread block enabling a first level of  
concurrency. Each multiprocessor decomposes the received thread block into groups of 
32 parallel threads called warps which are then managed by the CUDA cores, enabling a 
second level of concurrency. In particular, supposing that a given instruction, common to 
all the threads inside a warp, takes 1 clock cycle to be executed, it will take a total of 4  
clock cycles (WarpSize /CUDACoresPerSM ) to complete that instruction for the whole 
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warp. Threads inside a warp start at the same instruction address but they all have their 
own program counter and register state. This leaves branching and independent execution 
possible  although,  each  time  a  thread  follows  a  different  path  of  execution,  it  gets 
serialized and concurrency is partially lost.
For what concerns memory management, the CUDA Architecture is composed of different 
types of memory, each with their own advantages and drawbacks [1: 2.3]. We will focus 
our attention on the subset which is actually important to the remainder of this master 
thesis. [Figure 2] shows the hierarchy for the Kepler architecture. Each GPU generation 
introduces some changes, but these differences are negligible in our analysis.

• Constant memory is a 64 KB read-only portion of the device memory which can be 
cached in an 8 KB memory present in each SM. It enables warp level broadcast.

• Shared  memory  is  a  programmer  managed  portion  of  the  L1  cache  reserved 
available to each SM. Can only be shared among threads of the same thread block.

• L2 cache.  Both accesses to the device memory and system (host) memory pass 
through L2 cache.

• Global memory is roughly equivalent to the device memory (except for the portion 
reserved to constant, texture and local memories), it has the highest latency on 
device but provides up to 15 times higher bandwidth with respect to the PCIe 
interface that links the device L2 cache to the host memory. It is implemented with 
GDDR5 technology up to Maxwell architecture, Stacked DRAM will be introduced 
with Pascal in 2016.
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2.1.3 CUDA PARALLEL PROGRAMMING

The first  version of  CUDA was based of  ANSI  C.  With new releases,  it  has  eventually 
evolved to a more complete extension of C++11 (CUDA version 7 or greater) [1].
A CUDA application can be divided in two portions: one containing the host code and one 
reserved to the  device code. Both portions are compiled by the NVIDIA compiler  nvcc, 
which internally uses a conventional C/C++ compiler for the host code, and a proprietary 
compiler which translates the device code to an assembly language called PTX (Parallel 
Thread  Execution).  A  PTX  application  describes  the  execution  of  a  thread  inside  a 
Cooperative Thread Array (CTA), including possible communications and synchronizations 
required between threads in the same CTA. In other words, a CTA is the implementation 
of a thread block.
Upon execution, there's a first phase called install time which translates the PTX code to 
the GPU one. Subsequent executions of the same application, in the same session, will  
skip this step. The actual execution then starts on the host thread which is in charge to 
transfer  the required input  data to the GPU device  memory before invoking the GPU 
kernel code. If data are already on the GPU (e.g. as a result of a previous computation), 
only the kernel  code will  be transferred and executed. Upon completion,  output  data 
need to be transferred back to the host memory before they can actually be accessed.
As will be shown in the first part of Chapter 3, Host-to-Device (HtD) and Device-to-Host 
(DtH) memory transfers constitute one of the narrowest bottleneck in GPGPU because of  
the  limited  bandwidth  provided  by  the  PCIe  interface  that  connects  the  GPU  to  the 
hosting system.

2.1.4 EXAMPLE OF A SIMPLE CUDA APPLICATION

As an example, we consider the following code which performs the sum of two vectors:
01 // Device code part
02 __global__ void sum(float *v1, float *v2, float *vres){
03    // Each thread is responsible of the computation of one element
04    int i = blockIdx.x * blockDim.x + threadIdx.x;
05    vres[i] = v1[i] + v2[i];
06 }
07 
08 // Host code part
09 int main(){
10    float v1[N], v2[N], vres[N];
11    float *dev_v1, *dev_v2, *dev_vres;
12    
13    // Allocate memory on the GPU
14    cudaMalloc((void**)&dev_v1, N * sizeof(float)); 
15    cudaMalloc((void**)&dev_v2, N * sizeof(float));
16    cudaMalloc((void**)&dev_vres, N * sizeof(float));
17 
18    /* Populate vectors v1 and v2 */
19 
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20    // Copy the vectors on the device memory  
21    cudaMemcpy(dev_v1, v1, N * sizeof(float), cudaMemcpyHostToDevice);
22    cudaMemcpy(dev_v2, v2, N * sizeof(float), cudaMemcpyHostToDevice);
23 
24    // Define a thread block size and a grid size – OPTIMAL is a number
25    dim3 threadsPerBlock(OPTIMAL);
26    dim3 blocksPerGrid(N/threadsPerBlock);
27    
28    // Invoke the kernel
29    sum<<<blocksPerGrid, threadsPerBlock>>>(dev_v1, dev_v2, dev_vres);
30 
31    // Copy the result to the host memory
32    cudaMemcpy(vres, dev_vres, N * sizeof(float), cudaMemcpyDeviceToHost);
33 
34    
35    // Free device memory
36    cudaFree(dev_v1);
37    cudaFree(dev_v2);
38    cudaFree(dev_vres);
39 
40    /* Print the result */
41 
42    return 0;
43 }

The example shows that the application programmer has to take care of a lot of aspects:

• memory (de)allocation on the device

• copy of the vectors from the host memory to the device one and viceversa, when 
a result has been computed

• defining the thread block size and the grid size by fixing a value OPTIMAL.
The last point is crucial to achieve the best performance (e.g. having a few thread blocks  
with many threads may leave some of the stream multiprocessors idle) and is dependent 
of  both  the  specific  application  and  the  Compute  Capabilities  (i.e.  architecture  and 
features) of the targeted device.

2.2 SKEPU
SkePU is data-parallel  skeleton programming framework targeting heterogeneous GPU-
based systems (multicore CPU with one or more GPUs) [2]. It is developed and currently  
maintained by the group of  Professor Christoph Kessler  at  the IDA department of  the 
Linköping University, Sweden.
SkePU is provided as a C++ template library that exposes a unified interface to specify 
data-parallel computations expressed using algorithmic skeletons.
The  library  provides  multiple  implementations  of  each  skeleton  to  target  different 
architectures:  single  core  and  multicore  CPUs  are  supported  by  sequential  C++  and 
OpenMP respectively, whereas GPUs are supported using CUDA and OpenCL. To target a 
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specific  architecture  it  is  enough  to  define  a  macro  SKEPU_X where  X  is  the  target 
architecture (e.g.  #define SKEPU_CUDA).  It  is  also possible to let SkePU automatically 
select the expected best back-end for each skeleton call. The choice is dependent on the 
size of the operands used in the computation.
At the time of writing, SkePU comes in two different distributions [5]:

• stand-alone SkePU 1.2 which is the one adopted and described into this master 
thesis. It includes the MultiStream optimization, the result of our research.

• SkePU with StarPU integration, a C-based run-time system with generic scheduling 
falicities  for  heterogeneous  platforms.  StarPU  is  used  by  SkePU  to  provide 
asynchronous and hybrid (i.e. CPU+GPU) skeleton executions. Each skeleton call is 
translated  into  a  task  and  dynamically  scheduled  by  StarPU  following  a  user-
selected strategy among those available.

The  three  main  components  of  the  library  are  user  functions,  skeletons  and  smart 
containers (1D vector and 2D matrix).

2.2.1 USER FUNCTIONS

In order to define functions that can be used as skeleton parameters regardless of the 
target architecture, SkePU provides the application programmer with a macro language 
that  the compiler  preprocessor  expands  to the specific  implementation once a target 
architecture as been selected. Macro functions are based on a struct containing, in turn, 
member functions for CPU and CUDA, and strings for OpenCL [3: 3.1].
Let us consider the same application shown in the example of section 2.1.4. The function 
that  computes  the  sum  in  the  device  portion  of  the  code  can  be  written  as  a 
BINARY_FUNC that takes two operands a and b and sums them:
BINARY_FUNC(sum_f, float, a, b, return a+b);

This function expands to:
01 struct sum_f {
02    // OpenCL
03    skepu::FuncType ft;
04    std::string func_CL;
05    std::string funcName_CL;
06    std::string datatype_CL;
07    sum_f() {
08       ft = skepu::BINARY;
09       funcName_CL.append(“sum_f”);
10       datatype_CL.append(“float”);
11       func_CL.append(“float sum_f(float a, float b) { return a+b; }\n”);
12    }
13    // CPU
14    float CPU(float a, float b) { return a+b; }
15    // CUDA
16    __device__ float CU(float a, float b) { return a+b; }
17 };
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To get a list of the available macros for each of the SkePU supported skeleton, please refer  
to the SkePU documentation [5].

2.2.2 SKELETONS

SkePU  provides  six  data-parallel  skeletons:  Map,  Reduce,  MapReduce,  MapArray, 
MapOverlap (i.e. stencil) and Scan (i.e. parallel-prefix) [3: 3.1]. They are represented using 
C++ objects so, in order to use them, the application programmer has to instantiate the 
chosen skeleton with the user function to compute as parameter. Afterward, the skeleton 
function  can  be  called  passing  the  whole  containers  as  operands,  or  iterators  if  the 
computation as to be applied only on a subset of data.
Taking again into account the application of section 2.1.4 and applying the binary user  
function defined in section 2.2.1:
01 int main(){
02 
03    // Initialize three vectors
04    skepu::Vector<float> v1(1000);
05    skepu::Vector<float> v2(1000);
06    skepu::Vector<float> vres(1000);
07 
08    /* Populate vectors v1 and v2 */ 
09 
10    // Instantiate the Map skeleton and perform the sum_f user function
11    skepu::Map<sum_f> sum(new sum_f);
12    sum(v1, v2, vres);
13 
14    /* Print the result */
15    
16    return 0;
17 }

As we can see the code complexity is significantly reduced: SkePU run-time support will  
take care of the memory management, will determine the best skeleton implementation 
and tune its parameters to maximize the device resources utilization [3: 3.2].

A brief description of the available skeletons follows:
Map.  Given a function  f  and a vector (matrix)  v,  the Map skeleton computes a vector 
(matrix)  r  such that each element is r i=f (v i) . A  skepu::Map can be initialized with a 
user function that takes up to three variable operands and a constant one. The CUDA 
implementation of the latter exploits the constant memory described in section 2.1.2.

Reduce. Given an associative, cumulative binary operator   and a vector (matrix)  ⊕ v, the 
Reduce  skeleton  computes  a  scalar  result r=v1⊕v2⊕...⊕vn . A  reduce  policy  can  be 
specified to perform column-wise or row-wise reduction of a matrix.
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MapReduce.  Combines the Map and Reduce skeletons by taking two user functions as 
parameter upon initialization. The computation is performed in the same kernel to avoid 
synchronization resulting in a speedup.

MapArray.  Given a function  f,  a vector  A and another vector (matrix)  v,  the MapArray 
skeleton is a variant of the Map skeleton that computes a vector (matrix) r such that each 
element is r i=f (A ,v i). This means that, whereas in the Map skeleton the user function 
has access to the i-th element of each operand to compute r i , in the MapArray skeleton 
the first parameter passed to the user function is a pointer to the whole vector  A, thus
ri can be computed as a function of v i and any of the elements of vector A.

MapOverlap.  Another  variant  of  Map,  where the  i-th  element  of  the result  vector  is 
computed by taking as user function operands several  adjacent elements of the input 
vector.  A  constant  parameter  d  (compile  time  defined)  represents  the  radius  of  the 
neighborhood space of center  i of the input vector to be taken into account in the user 
function: r i=f (v(i−d ) , v(i−d+1) , ... , v(i+d−1) , v (i+d)) . The  MapOverlap  skeleton  can  also  be 
applied to matrices and is provided with four different adjacency patterns: column-wise, 
row-wise, cross-wise or square-wise. The CUDA implementation makes use of the shared 
memory described in section 2.1.2, thus the parameter d is limited by both the number of 
threads per block and the amount of shared memory provided by the targeted GPU.
Scan.  Given an associative binary operator , the Scan skeleton computes the prefix-⊕ ⊕ 
vector of the input operand: r i=v1⊕v2⊕...⊕v i .

The  MultiStream optimization discussed in  this  master  thesis  can be applied to  Map, 
MapReduce and MapArray skeletons.

2.2.3 SMART CONTAINERS

In order to support skeleton computations and optimize data transfers between host and 
device memories, SkePU provides two containers, Vector and Matrix, that can be used to 
organize data in 1 or 2 dimensions respectively [4]. Their interface is similar to their C++ 
STL  counterparts,  although  extended  with  some  member  functions  such  as 
randomize(min, max) to assign a random value between [min, max) to each element of 
the  vector  (matrix),  or  operator ~() which  can  be  used to  transpose  a  matrix  and 
provide the application programmer with column-wise access.
The implementation of the containers features two memory management optimizations.

Lazy  memory  copying delays  the  device  to  host  memory  data  transfer  until  this  is 
absolutely  required.  A  speculative  approach is  applied to all  the  data that  have been 
modified in the device memory by a skeleton computation: unless they are accessed by 
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the host thread (e.g. by reading the content of a vector element using the [] operator), 
there is no need to synchronize the copy residing in the host memory since these data 
could  be  an  intermediate  result  that  will  be  used  as  an  operand  of  a  new  skeleton 
computation. This way the overhead due to the Device-to-Host transfer for intermediate 
results can be completely avoided.
[Figure 3] shows the memory management behavior that the following code would have 
with or without lazy memory copying:
01 …
02 // Initialize one vector
03 skepu::Vector<float> v(4000);
04 
05 /* Populate vector v */
06 
07 // Instantiate two different skeletons and execute them
08 skepu::Map<Kernel_1> k1(new Kernel_1);
09 skepu::Map<Kernel_2> k2(new Kernel_2);
10 k1(v);
11 k2(v);
12 
13 // Print the result: the content of vector v is accessed by the host thread
14 std::cout << v << “\n”;
15 …
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Subset  transfers is  the  second  memory  management  optimization  that  consists  of 
splitting input and output data in all those cases where only a portion of them is required 
for  skeleton computations  (e.g.  when work  is  distributed across  multiple  GPUs).  Each 
subset is implemented as an additional device copy whose size is the one of the subset 
itself. Moreover it is coupled with a valid flag that tracks which portion has been modified 
and which one needs to be updated upon accessing.  To reduce the overhead due to 
tracking and limit memory usage, a maximum amount of subsets is imposed.
As will be shown, the implementation of the MultiStream solution had to deal with both 
of these two features to avoid conflicts.
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3. MULTISTREAM

MultiStream is an optimization that targets the loss of performance due to data transfers 
between host and device memories in a GPU-based heterogeneous system. It has been 
designed and developed as  a  new feature  for  the data-parallel  skeleton programming 
library  SkePU,  in  the  framework  of  cooperation  existing  among  the  department  of 
Computer Science of the University of Pisa, Italy (Prof. Danelutto) and the IDA department 
of the Linköping University, Sweden (Prof. Kessler).

3.1 PROBLEM STATEMENT

In  the early  stages  of  the present  work  we were investigating the feasibility  of  using  
GPGPU to perform the data-parallel portion of computations of all those applications that 
could be expressed with a nesting of task-parallel and data-parallel skeletons.
If we run a quick search on how to optimize an application that makes use of a CUDA 
enabled GPU, we will surely find this result [1: 5.1]:

It is worth to further divide the second point into:

• Optimize the usage of the device memory;

• Minimize data transfers between host and device.
Providing the application programmer with a parallel skeleton programming framework, 
such as SkePU, should reduce the list of strategies to the last point which entirely depends 
on the logic of the application itself.  The remaining advices should be handled by the  
implementation of each skeleton.
During  the  analysis  of  SkePU,  in  section  2.2,  it  has  been  shown  how  its  skeletons 
implementations take care of achieving the maximum performance in the device scope, 
and how optimizations like  lazy memory copying and  subset transfers  try to minimize 
communications between host and device. But would be these two optimizations enough 
in an application that continuously issues new tasks to the GPU from the CPU?

Performance optimization revolves around three basic strategies:
- Maximize parallel execution to achieve maximum utilization;
- Optimize memory usage to achieve maximum memory throughput;
- Optimize instruction usage to achieve maximum instruction throughput.
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3.1.1 BEST-CASE SCENARIO ANALYSIS – NO MULTISTREAM

The following example could model one of the typical behaviors of an application working 
on a stream of data produced on the host side. The for-loop is used to create new tasks 
that will be sent to the GPU for computation. The user function takes the result of the  
previous skeleton execution and reuses it as operand, coupled with the task produced on 
the host in the i-th iteration. The result is stored overwriting the vres vector.
01 …
02 skepu::Vector<float> task(1000);
03 skepu::Vector<float> vres(1000, 0);
04 skepu::Map<foo_f> foo(new foo_f);
05 for(uint i = 0; i < N; i++){ // N = number of tasks
06    
07    /* Populate the vector “task” */
08    
09    // Use task as second operand for the skeleton
10    foo(vres, task, vres);
11 }
12 …

At steady state,  the workflow of  this  application can be summarized in  the following 
points:

a) Production of a new task by the host thread
b) Synchronous Host-to-Device transfer of vector task
c) Execution of the foo skeleton on GPU and release of the host thread
d) New iteration of the for-loop

It  is  worth  to  notice  that  between  point  (c)  and  (d)  SkePU's  lazy  memory  copying 
mechanism has prevented the useless Device-to-Host memory transfer of the vres vector. 
However  we  can  still  identify  two  sources  of  inefficiency:  the  keyword  synchronous 
implies that the CPU has to wait for the Host-to-Device copy before issuing the kernel 
execution and start the production of a new task; the Host-to-Device transfer itself tends 
to be a bottleneck if we consider sufficiently large transfers over the limited bandwidth of 
the PCIe interface with respect to the potential throughput of a GPU device.
Let us now try to calculate the GPGPU portion of the completion time of this application.
We will adopt the following conventions:

T comp
(CM 1) completion time without MultiStream;

Ts kernel service time;
THtD ,T DtH communication times required to perform a Host-to-Device  or  Device-to-

Host transfer, respectively.
The cost model has to leave out the time required to produce a task by the host:

T comp
(CM 1)

(N )=T HtD(vres)+N∗[THtD(task )+Ts]+T DtH (vres)
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Assuming N sufficiently large and T HtD(vres)≈THtD(task)≈THtD , we obtain:

T comp
(CM 1)

(N )=N∗(T HtD+Ts) or, normalizing for one task:

(1a) T comp
(CM 1)

=T HtD+Ts .

Considering the set of applications that operates on a stream of data produced on the 
host side, the application we have just analyzed exemplifies a best case scenario: for each 
task, we only send one operand to the GPU and wait for a kernel execution. The result is  
gathered from the host once we have exhausted all the tasks.

3.1.2 GENERAL WORST-CASE SCENARIO

To better understand the benefits that the MultiStream optimization brings to SkePU, we 
need to analyze the cost of each of the supported skeletons in their worst-case scenario of 
utilization. In particular, we need to take into account the possibility of passing multiple 
operands  to  the  skeleton  responsible  of  computing  each  task,  and  we  also  have  to 
consider the case in which each produced result is immediately needed on the host side 
for access or further computation.
The general  workflow for the worst-case scenario can be summarized in the following 
steps:

a) Production of a new task by the host thread
b) Synchronous Host-to-Device transfer of one or more operands
c) Execution of the proper skeleton on the GPU
d) Synchronous Device-to-Host transfer of the computed result
e) Jump to point (a)

The GPGPU portion of this computation is represented by points (b, c, d).
In the following sections, we will define a cost model taking into account the actually used 
skeleton. In section 3.5, we will then make the same analysis with the addition of the 
MultiStream optimization which, as we will see, enables asynchronous operations over 
multiple CUDA Streams in order to overlap communication times and service times.

3.1.3 SMART CONTAINERS REPRESENTATION IN CUDA
Before moving to the cost model analysis of each skeleton, it is worth to spend a few 
words on how SkePU's smart containers are represented in CUDA. What follows is to be 
intended as  a  simplified  version  of  the actual  implementation  which  is  spread across 
multiple pages of code and isn't required for the remainder of this master thesis.
Both  the Vector  and the Matrix  smart  containers  are  represented in  CUDA as  a  one-
dimension data-structure.
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In particular
skepu::Vector<T> vect(N);

would translate to something like
T *host_vect, *dev_vect;
/* Allocate N*sizeof(T) bytes on the host memory pointed by *host_vect */
/* Allocate N*sizeof(T) bytes on the device memory pointed by *dev_vect */

The Matrix smart container follows the same schema
skepu::Matrix<T> vect(N, M);

would translate to something like
T *host_vect, *dev_vect;
/* Allocate N*M*sizeof(T) bytes on the host memory pointed by *host_vect */
/* Allocate N*M*sizeof(T) bytes on the device memory pointed by *dev_vect */

This common representation gives us the possibility to threat both smart containers as 
the same entity, thus every analysis that follows will be valid for both of them.

3.1.3 MAP COST MODEL – NO MULTISTREAM

As  explained  in  section  2.2.2,  the  skepu::Map skeleton  can  take  up  to  three  input 
operands to produces one output. The cost of the GPGPU computation for one task can 

be written as  T comp
(CM 1)

=kTHtD+Ts+TDtH with 1≤k≤3 input operands that are actually 

transferred from the host memory to the device one.
As will be shown in section 3.2, the usage of page-locked memory can let us make the 

following assumption: T comm
(CM 1)

(N )≈T HtD≈T DtH . This assumption will  always be valid in 

the  remainder  of  this  master  thesis  since  the  usage  of  page-locked is  mandatory  for 
MultiStream. Moreover, if we consider that in the Map skeleton both the operands and 
the output  are of  the same length  N  and of  the same type,  we can approximate the 
previous equation to:

(2a) T comp
(CM 1)

=(k+1)T comm(N )+Ts .

3.1.4 MAPREDUCE COST MODEL – NO MULTISTREAM

The  skepu::MapReduce skeleton provides  the same behavior  of  the  skepu::Map one 
with respect to the input operands. Its implementation requires that the last part of the 
reduce is performed by the CPU. Calling Z the length of the output we obtain:

(3a) T comp
(CM 1)

=kT comm(N)+Tsmap+Tsreduce+T comm(Z) .

Considering a sufficiently large N, the Device-to-Host transfer cost can be omitted, thus:

T comp
(CM 1)

=kT comm(N)+Tsmap+Tsreduce .
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We won't use this last equation in the MultiStream analysis because, as will be shown, N 
will be divided by the number of streams used and Z will be multiplied instead.

3.1.5 MAPARRAY COST MODEL – NO MULTISTREAM

The skepu::MapArray skeleton accepts two input operands of different size. The first, of 
length V, is entirely accessible by all threads. The second, of length N, is partitioned across 
the threads becoming the object of the Map. The output has the same length of the  
second component. The cost model can be written as:

(4a) T comp
(CM 1)

=T comm(V )+2T comm(N )+Ts .

3.2 PAGE-LOCKED MEMORY

In this section, it will be shown how, in certain systems, the communication times THtD

and T DtH can  be  slightly  optimized  through  the  usage  of  page-locked  memory.  This 
optimization  will  not  affect  the  cost  models  equations  we've  found,  but  only  the 
communication time values since the bandwidth may increase.
All  the  operative  systems that  supports  CUDA make  use  of  pageable (i.e.  virtualized) 
memory.  Virtual  memory  segments  are  partitioned  in  pages  which  can  be  relocated, 
without changing their virtual address, from the main system memory (e.g. RAM) to a 
secondary storage device (e.g. hard disk) and viceversa. When a specific page is required 
by a process running on the host, the memory management unit (MMU) of the CPU is  
responsible of translating the virtual memory address to the physical one. If the page has 
been swapped to disk, the MMU signals a page fault  to the virtual  memory manager 
(VMM)  of  the  operative  system  which  will  load  the  copy  on  the  disk  into  the  main 
memory and then resume the computation.
CUDA  capable  devices  aren't  equipped  with  an  IOMMU  (so  far),  thus  they  need  to 
perform Direct Memory Access (DMA) using physical addresses. To be accessed directly,  
the interested pages have to reside in physical memory and marked by the VMM as locked 
(i.e. ineligible for eviction) [8: 3.8].

3.2.1 ASYNCHRONOUS OPERATIONS

The access to data residing on the host memory by the GPU can follow two possible paths  
[Figure 4]:

• if the memory is pageable, data have to be copied first to a page-locked buffer by 
the CPU (synchronous copy)

• if  the memory is already page-locked using a specific CUDA memory allocation 
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function, the GPU can directly fetch the required data through DMA. The CPU only 
needs to initialize the DMA controller with the amount of data to transfer and the 
memory  address  to  use.  After  that,  it  is  free  to  perform  other  operations 
(asynchronous copy).

To directly allocate page-locked memory, CUDA provides the cudaHostAlloc() function. 
The data transfer can then be issued by the cudaMemcpyAsync() function.

3.2.2 PERFORMANCE EVALUATION

The advantage of using page-locked memory isn't limited to the possibility of performing 
asynchronous  transfers:  by  freeing  the  CPU from copying  pageable  memory  to  page-
locked buffers we also increase the data transfer rates in all  those systems where the  
bandwidth to perform a copy in the main memory is lower than the PCIe interface one.
To  evaluate  how  the  benefits  of  page-locked memory  usage  differ  between different 
system, we have measured the bandwidth (GB/s) of a 64MB data transfer performed on 
two heterogeneous GPU-based machines:

A. 2 x AMD Opteron 6176 2.3 GHz CPUs with NVIDIA Tesla C2050 GPU
B. Intel Core i5-3210M 2.5 GHz CPU with NVIDIA GeForce GT630M GPU

As we can see in [Figure 5], the increase in bandwidth on the system with the more recent  
Intel Core i5 CPU is almost negligible with respect to the two times benefit measured in 
system (A).
The  implementation  of  the  SkePU  smart  containers  already  provides  the  application 
programmer with the possibility of using page-locked memory (pinned in CUDA's jargon) 
by defining the macro USE_PINNED_MEMORY.
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3.2.3 LIMITS OF PAGE-LOCKED MEMORY AND MULTISTREAM

The usage of page-locked memory is mandatory for the implementation of MultiStream.
It should be noted that this requirement also limits the possibility to use MultiStream in 
very specific and relatively uncommon scenarios, namely in all those applications where 
the data-structures that need to be page-locked require nearly the same capacity as the 
physical  memory present  in the targeted system. In  these cases the operating system 
would be left  with insufficient physical  memory to guarantee system stability and the 
efficient execution of the other running applications.

3.3 CUDA STREAMS

Before entering the details of MultiStream design, we need to define what a stream is in 
the CUDA parallel  programming environment and how different generations of  CUDA-
enabled devices schedule the work submitted to them by the hosting system.
A  stream in CUDA represents a queue of operations guaranteed to be executed on the 
device in the same order of issuing adopted in the host code.

3.3.1 SINGLE STREAM

When operations do not explicitly specify a stream, they are  enqueued in the so-called 
default stream. The default stream is a synchronized stream: no operation inside its queue 
can start until all the other streams on the device have completed their execution.
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Let us consider the following CUDA host code:
01 …
02 /* Allocate and populate a vector v of N floats */
03 /* Allocate a vector dev_v of N floats on the GPU */
04 
05 cudaMemcpy(dev_v, v, N * sizeof(float), cudaMemcpyHostToDevice);
06 cuda_foo<<<1, N>>>(dev_v);
07 host_foo();
08 cudaMemcpy(v, dev_v, N * sizeof(float), cudaMemcpyDeviceToHost);
09 …

All the operations are issued sequentially to the GPU and are  enqueued in the default 
stream.  In  particular,  cudaMemcpy is  a  blocking  operation  (section  3.2.1)  whereas 
cuda_foo is  the  kernel  invocation  which  exhibits  an  asynchronous  behavior:  after  its 
execution starts on the device, the CPU is free to perform  host_foo().  This behavior 
easily enables overlapping between CUDA kernel and CPU executions.
CUDA provides the programmer with the possibility of using non-default streams. Let us 
change the previous code to make use of a programmer-defined stream:
01 …
02 // Initialize and create CUDA stream cs
03 cudaStream_t cs;
04 cudaStreamCreate(&cs);
05 
06 //Initialize and allocate a page-locked data-structure for our data of size 
N
07 float *host_v;
08 cudaHostAlloc((void**)&host_v, N * sizeof(float), cudaHostAllocDefault);
09 
10 /* Populate host_v */
11 
12 /* Allocate a vector dev_v of N floats on the GPU */
13 
14 cudaMemcpyAsync(dev_v, host_v, N*sizeof(float), cudaMemcpyHostToDevice, cs);
15 cuda_foo<<<1, N, sharedMemSize, cs>>>(dev_v);
16 host_foo();
17 cudaMemcpyAsync(host_v, dev_v, N*sizeof(float), cudaMemcpyDeviceToHost, cs);
18 cudaStreamDestroy(cs);
19 …

In addition to the stream management functions and parameters, we can notice two main 
differences in this example:

• the memory  on  the  host  is  allocated  as  page-locked with the  cudaHostAlloc 
function;

• the cudaMemcpyAsync function, after enqueing the data transfer on the cs stream, 
immediately returns the control to the CPU.

Even  though  the  code-complexity  is  significantly  increased,  the  scheduling  of  the 
operations on the GPU is exactly the same as the one in the default-stream example.
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3.3.2 MULTIPLE STREAMS AND SCHEDULING

To  analyze  the  behavior  of  the  schedulers  present  in  different  generations  of  CUDA-
enabled devices, we need to consider a computation that makes use of multiple streams 
and take into account the following property:
Operations queued in different CUDA streams may be interleaved.
In particular:

• devices with compute capability 2.0 or greater may execute kernels concurrently if 
they operate on disjoint datasets and enough resources are available on the GPU;

• devices with compute capability 1.1 are equipped with one kernel engine and one 
copy  engine.  In  this  case  both  Host-to-Device  and Device-to-Host  transfers  are 
performed sequentially by the only available copy engine;

• devices with compute capability 2.0 or greater have one kernel engine and two 
copy engines. In this case one copy engine will  take care of the Host-to-Device 
transfers whereas the other will be used for the Device-to-Host transfers, enabling 
concurrency between the two operations.

In the following two examples, we will consider four different kernels, operating on four 
disjoint  datasets  and  allocated  in  four  different  CUDA  streams.  The  examples  are 
functionally equivalent.

Example 1 – Depth-first
01 …
02 /* Initialize and create four CUDA streams cs[i] */
03 /* Allocate and populate four page-locked datasets v[i] of size N */
04 
05 for(uint i=1; i<=4; i++){
06    cudaMemcpyAsync(dev_v[i], h_v[i], N * sizeof(float), 

cudaMemcpyHostToDevice, cs[i]);
07 
08    /* Execute Kernel i on stream i */
09 
10    cudaMemcpyAsync(h_v[i], dev_v[i], N * sizeof(float), 

cudaMemcpyDeviceToHost, cs[i]);
11 }
12 …

Example 2 – Breadth-first
01 …
02 /* Initialize and create four CUDA streams csi */
03 /* Allocate and populate four page-locked datasets vi of size N */
04 
05 cudaMemcpyAsync(dev_v1, h_v1, N*sizeof(float), cudaMemcpyHostToDevice, cs1);
06 cudaMemcpyAsync(dev_v2, h_v2, N*sizeof(float), cudaMemcpyHostToDevice, cs2);
07 cudaMemcpyAsync(dev_v3, h_v3, N*sizeof(float), cudaMemcpyHostToDevice, cs3);
08 cudaMemcpyAsync(dev_v4, h_v4, N*sizeof(float), cudaMemcpyHostToDevice, cs4);
09 cuda_foo1<<<1, N, sharedMemSize, cs1>>>(dev_v1);
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10 cuda_foo2<<<1, N, sharedMemSize, cs2>>>(dev_v2);
11 cuda_foo3<<<1, N, sharedMemSize, cs3>>>(dev_v3);
12 cuda_foo4<<<1, N, sharedMemSize, cs4>>>(dev_v4);
13 cudaMemcpyAsync(h_v1, dev_v1, N*sizeof(float), cudaMemcpyDeviceToHost, cs1);
14 cudaMemcpyAsync(h_v2, dev_v2, N*sizeof(float), cudaMemcpyDeviceToHost, cs2);
15 cudaMemcpyAsync(h_v3, dev_v3, N*sizeof(float), cudaMemcpyDeviceToHost, cs3);
16 cudaMemcpyAsync(h_v4, dev_v4, N*sizeof(float), cudaMemcpyDeviceToHost, cs4);
17 …

As we can see, the two examples only differ in the order with which the operations are  
issued to the GPU.

Let us make the following assumptions:
• Tsi=Ts ∀ i , all kernels have the same service time

• T comm=Ts ,  data transfers and kernels require the same time to be completed

• Ts=τ

The execution for both examples without CUDA stream usage would be sequential, with

T comp
(seq)

=12 τ .

Let us now analyze the scheduling behavior on devices with different compute capabilities 
taking into account the properties listed at the beginning of this section.
[Figure 6] shows that for devices with compute capability 1.1 the scheduling behavior of 
example 1 is the same of the sequential one. This is due to the presence of only one copy  
engine: the i-th+1 Host-to-Device transfer is scheduled immediately after the i-th Device-
to-Host transfer which, in turn, to start needs the i-th kernel execution to be completed. 
The breadth-first scheduling instead, enables concurrency of all the operations resulting in 

T comp
(ex 1)

(1.1)=6 τ .

The scheduling behavior of devices with compute capability 2.0 or greater is different: the 
depth-first  example  is  the  optimal  one  given  the  presence  of  two copy  engines.  The 
breadth-first approach, instead, could be partially inefficient because the scheduler tries 
to execute all the kernels in parallel when there are available resources (i.e. idle streaming 
multiprocessors).  In  this  case  the  scheduler  delays  the  completion  signal  of  kernels 
concurrently running until all of them are actually completed. This, in turn, delays all the 
Device-to-Host  transfers.  The  completion  time  in  the  worst-case  scenario  (i.e.  all  the 

different kernels run concurrently) becomes T comp
(ex 2)

(2.0)=9 τ .

As a further notice, it is important to specify that devices with compute capability 3.5 or 
greater introduce a scheduler that doesn't make any difference between the two code 
snippets: the result is in both cases the optimal one.
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3.4 MULTISTREAM DESIGN AND IMPLEMENTATION

MultiStream is an optimization that exploits the intrinsic data-parallelism of each task and 
distributes it among two phases. In the first phase, before being sent to the device for the  
skeleton execution, the task is partitioned in as many subsets as the number of available 
CUDA Streams. In the second phase, SkePU executes the chosen skeleton on each of the 
task subsets. The distribution of the task subsets among different streams enables the 
overlap of communications times and service times.

3.4.1 DESIGN

MultiStream is an implementation of the master/worker template [6: 8.4] operating on 
the host side where:

• the master is the host thread, which is responsible of partitioning the skeleton 
operands  into  n subsets  and  schedule  a  skeleton  execution  for  each  of  the  n 
different CUDA Streams;

• the workers are the set of n CUDA Streams. A sub-task is assigned to each worker 
which delegates the execution of the Map, MapReduce or MapArray skeleton on 
the device.

It is worth to notice that, even though the skeleton user function is the same for all the 
partitions, the kernel executions issued across different streams will still  be considered 
separated and eligible for concurrency.
In the selection of the best scheduling strategy, we had to take into account the broad 
range of SkePU's supported architectures, therefore we have adopted the breadth-first 
schema  seen  in  the  example  2  of  section  3.3.2.  The  breadth-first  strategy  should 
guarantee the optimal increase of  performance over all  the CUDA device generations, 
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including those with compute capability between 2.0 and 3.2. This assumption can be 
justified considering the fact that the SkePU run-time support will  determine the best 
possible amount of threads per block and blocks per grid for each kernel call, therefore 
the usage of the device resources should be maximized and the concurrency of different 
kernel executions avoided.

3.4.2 BEST-CASE SCENARIO ANALYSIS – WITH MULTISTREAM

We are now ready to redefine the cost model found in section 3.1.1.

We will use T comp
(CMn) to denote the cost model completion time with n streams.

In that case we were analyzing a best-case scenario where only one operand was required 
to issue a new task and the result was collected by the host side only when all the tasks 
were exhausted. The cost model equation we found was:

(1a) T comp
(CM 1)

=T HtD+Ts

with MultiStream, the Host-to-Device transfer and the kernel execution are overlapped, 
thus we can rewrite it as:

(1b) T comp
(CMn)

=
THtD

n
+
Ts
n

+max [(THtD−
THtD

n
) ,(Ts−

Ts
n

)] .

Let us, only for the sake of clarity, introduce the limit for n→∞ on (1b):

lim
n→∞

T comp
(GPGPU )

= lim
n→∞

T HtD

n
+
Ts
n

+max[(T HtD−
T HtD

n
),(Ts−

Ts
n

)]=max [T HtD ,Ts] .

In other words, we move from a case in which the completion time of a task is the sum of 
both the time needed to transfer the task on the device and the time needed to serve it,  
to a case in which it just is the maximum of these two timings. In the best-case scenario, if 
the kernel is sufficiently complex to match the amount of time spent in communication 
we may achieve an ideal two times speedup.
In a real application this is obviously impossible because we don't have infinite workers at 
our disposal. The maximum amount of CUDA Streams varies according to the compute 
capabilities of the target GPU:

Compute 
Capability

2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3

# Streams 16 4 32 16
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3.4.3 IMPLEMENTATION

In this section we discuss the MultiStream implementation in SkePU. We will adopt some 
pseudo-code and use different, explicit, variable names with respect to the ones used in 
the actual  implementation code, to make sure the discussion remains understandable. 
The reason behind this choice resides in the fact that MultiStream is fully integrated with 
the other SkePU features to ensure backward compatibility, and the usage of the actual 
code  would  require  an  in-depth  analysis  of  many  features  such  as  the  specific 
implementation  of  the  smart  containers,  the  mechanism  behind  the  selection  of  the 
amount  of  threads  to  be  used  for  a  given  kernel  call,  the  way  smart  containers  are 
organized to keep track of which are the actually changed elements after a computation, 
etc. All those mechanism are not the object of this master thesis and will be left out of the  
discussion.
We will present the implementation of the skepu::Map skeleton with binary user function 
(i.e. two input operands, one output). The implementation of the other user functions can 
be easily derived from this one and, for what concerns the other skeletons, we will make 
the necessary distinctions when we will analyze their cost model with the  MultiStream 
optimization taken into account.
The implementation of MultiStream can be divided in two main steps.
First  we had to  understand how SkePU handles  its  smart  containers  and find  all  the 
memory management functions used to transfer data in and out of the device memory. 
These functions don't operate on the smart containers directly, but on device_pointers 
which are used to map a specific portion of memory on the host to its correspondent copy 
on the device. The subset transfer optimization, described in section 2.2.4, can use up to 
10  device_pointers to partition each smart container. To implement MultiStream, we 
first had to properly modify all the memory management functions such that we could 
define which stream to use for a specific memory update.
In the second step, we implemented the master/worker template in each skeleton. We 
used one device_pointer for each partition of the operands and output. By doing so we 
increased the maximum amount of tracked  device_pointers for each smart container 
from 10 to 32 (maximum supported CUDA Streams) while maintaining the possibility for 
subset transfer to further divide each MultiStream partition if needed. To the increase in 
the amount of tracked partitions corresponds an increase in the overhead due to the 
smart containers usage. As will be shown in the implementation code, we adopted the 
breadth-first model to schedule the page-locked allocation and asynchronous transfer of 
each device_pointer to the proper CUDA Stream. The kernel is then invoked n times.
As an additional note which didn't require much effort, we added a function to initialize a 
specific amount of CUDA Streams to the class that manages the GPU initialization.
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skepu::Map skeleton implementation with Binary user function
Let  us  start  by  recalling  the  code  required  to  initialize  and  perform  a  skepu::Map 
skeleton:
01 BINARY_FUNC(foo_f, float, a, b, return a op b);
02 int main(){
03    // Initialize three vectors
04    skepu::Vector<float> v1(1000);
05    skepu::Vector<float> v2(1000);
06    skepu::Vector<float> vres(1000);
07    /* Populate vectors v1 and v2 */ 
08    // Instantiate the Map skeleton and perform the foo_f user function
09    skepu::Map<foo_f> foo(new foo_f);
10    foo(v1, v2, vres);
11    /* Print the result */  
12    return 0;
13 }

In the 1.2 Beta version of SkePU, to enable MultiStream, the application programmer had 
to  define  the  USE_PINNED_MEMORY and  USE_MULTISTREAM macros.  In  the  v1.2  official 
release the former is enough.
In section 2.2.1 we have seen how the  BINARY_FUNC macro expands, and section 3.1.3 
gave a general idea on the CUDA representation of the skepu::Vector.

Let us now analyze what happens when the skepu::Map is defined:
01 template <typename MapFunc>
02 Map<MapFunc>::Map(MapFunc* mapFunc){
03 …
04 #ifdef SKEPU_CUDA
05    cudaDeviceID = Environment<int>::getInstance()->bestCUDADevID;
06    backEnd.maxThreads = m_environment->m_devices_CU.at(0)->getMaxThreads();
07    backEnd.maxBlocks = m_environment->m_devices_CU.at(0)->getMaxBlocks();
08 #endif
09 …
10 }

The SkePU run-time support uses the Environment class to select and initialize the best 
(i.e. with higher CUDA compute capabilities) CUDA device available in the system. Then 
stores some useful information in the backEnd structure, that will be used to determine 
how  many  threads  per  block  and  blocks  per  grid  will  be  used  for  a  specific  kernel  
execution.

As far as  MultiStream is concerned, during the device initialization we check how many 
CUDA streams are supported, then we initialize and start them:
01 …
02 cudaStream_t m_streams[MAX_POSSIBLE_CUDA_STREAMS_PER_GPU]; // 32
03 …
04 Device_CU(unsigned int id){
05    m_deviceID = id;
06    cudaSetDevice(m_deviceID);
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07    initDeviceProps(id);
08 #ifdef USE_PINNED_MEMORY
09    for(unsigned int i=0; i<numConcurrKernelsSupported; i++)
10       cudaStreamCreate(&(m_streams[i]));
11 #endif
12 …
13 }
14 
15 void initDeviceProps(unsigned int device){
16    cudaGetDeviceProperties(&m_deviceProp, device);
17 …
18    numConcurrKernelsSupported = getMaxConcurKernelsSupported(m_deviceProp);
19 …
20 }

The  getMaxConcurKernelsSupported function checks the compute capabilities of the 
device and returns the value according to the table presented in section 3.4.2.

We can now analyze what happens when the skeleton is executed foo(v1, v2, vres):
01 template <typename MapFunc>
02 template <typename T>
03 void Map<MapFunc>::CU(Vector<T>& in1, Vector<T>& in2, Vector<T>& output){
04    CU(in1.begin(), in1.end(), in2.begin(), in2.end(), output.begin());
05 }

As we can see, another function CU is called. The same call is made when the Matrix smart 
container is used. The CU function is not reported: it only acts as a selector of behavior. It 
checks for the  USE_PINNED_MEMORY macro definition and calls the  mapMultiStream_CU 
function. The parameters the CU function takes are references to the first and last element 
of  the  input  operands  and  the  start  of  the  output  smart  container.  Through  these 
parameters, SkePU defines iterators that are used to access the two smart containers. The 
copies on the device memory can be accessed and modified using the device_pointer 
class. This class provides different memory management functions. We will describe the 
functions that have been modified or extended to implement MultiStream.

Let us start from the  updateDeviceCU function in the Vector (Matrix) smart container 
class:
01 template <typename T>
02 typename Vector<T>::device_pointer Vector<T>::updateDevice_CU(T* start, 

size_type numElements, unsigned int deviceID, 
bool copy, unsigned int streamID){

03 …
04    /* Check for the presence of the specified range
05    * (i.e. [start, start+numElements] ) on the device
06    */
07 
08    /* If the range is not found, create a device_pointer<T> dev_pointer 
09     * with parameters (start, numElements) and allocate it
10    */
11 
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12    /* Else make sure that the data it contains are marked as invalid */
13 
14    // Performed in both cases
15    if(copy){
16       dev_pointer.copyData(dev_pointer, deviceID, streamID);
17    }
18 …
19 }

The device_pointer contains the addresses of both the copy on the host and the copy 
on the device memory.

The call to copyData is the one that issues the actual data transfer:
01 template <typename T>
02 void device_pointer<T>::copyData(device_pointer<T> data, unsigned int 

deviceID, size_t streamID){
03 …
04 #ifdef USE_PINNED_MEMORY
05    cudaMemcpyAsync(data.dev_start, data.host_start, data.size, 

cudaMemcpyHostToDevice, 
(m_devices_CU.at(deviceID)→m_streams[streamID]) );

06 …
07 }

We can finally analyze the mapMultiStream_CU function, which is the one implementing 
the master component of MultiStream. All the required details are provided as comments:
01 /*!
02 * Applies the Map skeleton to two ranges of elements specified by iterators.
03 * Result is saved to a separate output range.
04 * The calculations are performed by one host thread using one CUDA device
05 * as backend.
06 * HtD transfers and Kernel execution are partitioned across multiple CUDA
07 * Streams to achieve overlap.
08 *
09 * The skeleton must have been created with a binary user function.
10 *
11 * \param input1Begin An iterator to the first element in the first range.
12 * \param input1End An iterator to the last element of the first range.
13 * \param input2Begin An iterator to the first element in the second range.
14 * \param input2End An iterator to the last element of the second range.
15 * \param outputBegin An iterator to the first element of the output range.
16 * \param deviceID Integer specifying the which device to use.
17 */
18 template <typename MapFunc>
19 template <typename Input1Iterator, typename Input2Iterator, typename 

OutputIterator>
20 void Map<MapFunc>::mapMultiStream_CU(Input1Iterator input1Begin, 

Input1Iterator input1End, Input2Iterator input2Begin, 
Input2Iterator input2End, OutputIterator outputBegin,
unsigned int deviceID){

21 
22    // Set the device on which the skeleton will be performed
23    CHECK_CUDA_ERROR(cudaSetDevice(deviceID));
24 
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25    // Get the amount of CUDA Streams supported by the device
26    size_t numKernels = m_devices_CU.at(deviceID)→getNoConcurrentKernels();
27 
28    // Determine the size of the operands partitions
29    size_t n = input1End - input1Begin;
30    if(n < numKernels)
31       numKernels = n;
32    size_t numElemPerSlice = n / numKernels;
33    size_t rest = n % numKernels;
34 
35    // Declare three arrays containing the device_pointers to each operand
36    // partition
37    typename Input1Iterator::device_pointer in1_mem_p[numKernels];
38    typename Input2Iterator::device_pointer in2_mem_p[numKernels];
39    typename OutputIterator::device_pointer out_mem_p[numKernels];
40    
41    // First allocate CUDA memory without making any copy
42    size_t i, numElem;
43    for(i = 0; i < numKernels; ++i){
44       if(i == numKernels-1)
45          numElem = numElemPerSlice+rest;
46       else
47          numElem = numElemPerSlice;
48 
49       in1_mem_p[i] = 

updateDevice_CU((input1Begin+i*numElemPerSlice).getAddress(), 
numElem, deviceID, false, i);

50       in2_mem_p[i] = 
updateDevice_CU((input2Begin+i*numElemPerSlice).getAddress(), 

numElem, deviceID, false, i);
51       out_mem_p[i] = 

updateDevice_CU((outputBegin+i*numElemPerSlice).getAddress(), 
numElem, deviceID, false, i);

52    }
53 
54    // Breadth-first memory transfers and kernel executions
55    //First operand memory transfer
56    for(i = 0; i < numKernels; ++i){
57       if(i == numKernels-1)
58          numElem = numElemPerSlice+rest;
59       else
60          numElem = numElemPerSlice;
61       
62       in1_mem_p[i] = 

updateDevice_CU((input1Begin+i*numElemPerSlice).getAddress(), 
numElem, deviceID, true, i);

63    }
64    //Second operand memory transfer
65    for(i = 0; i < numKernels; ++i){
66       if(i == numKernels-1)
67          numElem = numElemPerSlice+rest;
68       else
69          numElem = numElemPerSlice;
70       
71       in2_mem_p[i] = 

updateDevice_CU((input2Begin+i*numElemPerSlice).getAddress(), 
numElem, deviceID, true, i);
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72    }
73 
74    //Kernel executions
75    for(i = 0; i < numKernels; ++i){
76       if(i == numKernels-1)
77          numElem = numElemPerSlice+rest;
78       else
79          numElem = numElemPerSlice;
80 
81       /* Find the best number of threads and blocks
82       
83       MapKernelBinary_CU<<<numBlocks, numThreads, 0, 

(m_devices_CU.at(deviceID)→m_streams[i])>>>
(*m_mapFunc, in1_mem_p[i]→getDeviceDataPointer(), 
in2_mem_p[i]→getDeviceDataPointer(), 
out_mem_p[i]→getDeviceDataPointer(), numElem);

84 
85       // Notify to the device_pointers of the output partitions that
86       // their data has been updated such that the copy on the host
87       // memory is marked as invalid 
88       out_mem_p[i]->changeDeviceData();
89    }
90 }

The presented code doesn't cover the Device-to-Host transfers. Their implementation is 
proposed as future work because requires an almost complete rewriting of  the smart 
containers functions that trigger the update of the host copy. As of SkePU version 1.2, the 
data  transfer  is  entirely  issued  to  m_streams[0],  thus  happens  sequentially.  The 
scheduling and overlapping behavior is presented in [Figure 7].

In the cost model analysis we will take this limitation into account and we will provide two 
different equations: one, ideal,  which includes a full  MultiStream implementation, and 
one, effective, which considers the lack of  overlapping of the Device-to-Host transfers 
operations.
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3.4.4 MAP COST MODEL – WITH MULTISTREAM

Let us recall the cost model for the skepu::Map skeleton we've found in section 3.1.3:

(2a) T comp
(CM 1)

=(k+1)T comm(N )+Ts with 1≤k≤3 input operands and  N the number 

of elements of each operand. 
Fixed n the number of available CUDA Streams on the device we get:

(2b) T comp
(id)

=min[(k+1)T comm(
N
n

) ,
Ts
n

]+max [kT comm(N ) ,Ts ]

(2c) T comp
(CMn)

=min[k Tcomm(
N
n

) ,
Ts
n

]+max[k T comm(N ), Ts]+T comm(N )

3.4.5 MAPREDUCE COST MODEL – WITH MULTISTREAM

Before getting into the cost model analysis, let us describe the main differences in the 
implementation of skepu::MapReduce with respect to skepu::Map.
The  map  phase  is  exactly  the  same  with  the  sole  exception  that  a  temporary 
device_pointer is used to store its result.
The reduce kernel is then executed for each stream: it  applies the reduce function to 
produce one element per block, then issues a Device-to-Host transfer to complete the 
reduce  on  the  host  side.  In  this  transfer,  MultiStream loses  some  performance:  the 
number of blocks and threads used to initialize the kernel execution is constant in the 
SkePU  Reduce  implementation.  This  means  that,  calling  Z the  number  of  blocks  per 
thread, we transfer nZ elements with MultiStream instead of Z only.

The cost model equation without MultiStream was:

(3a) T comp
(CM 1)

=kT comm(N)+Tsmap+Tsreduce+T comm(Z) .

With MultiStream we get T comp
(id)

=T comp
(eff ) since the final part of the reduce is computed on 

the host side, thus:

(3b) T comp
(CMn)

=min[k Tcomm(
N
n

) ,
Tsmap
n

]+max[k T comm(N ) , Tsmap ]+Tsreduce+nT comm(Z)

3.4.6 MAPARRAY COST MODEL – WITH MULTISTREAM

The implementation of the skepu::MapArray is similar to the one presented in section 
3.4.3, but we need to consider that the first operand can't be partitioned because it is  
entirely needed for the computation of each sub-task.
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The cost model equation found without MultiStream was:

(4a) T comp
(CM 1)

=T comm(V )+2T comm(N )+Ts , with V size of the first input.

With the MultiStream optimization it becomes:

(4b) T comp
(id)

=T comm(V )+min[2T comm(
N
n

) ,
Ts
n

]+max [T comm(N ) ,Ts ]

(4c) T comp
(CM)

=Tcomm(V )+min [T comm(
N
n

) ,
Ts
n

]+max [T comm(N ) ,Ts ]+T comm(N)

3.5 FINAL REMARKS

We have shown that MultiStream can potentially provide a significant speedup in a task 
computation by ideally reducing the sum of the time needed to transfer the task on the 
GPU and the time needed to execute the kernel, to the max between the two of them. 
MultiStream doesn't currently support the overlap of the Device-to-Host transfers which 
would further improve the performance, but with some changes to the smart containers 
is definitely possible to implement the complete optimization.
In  the  next  chapter,  we will  test  MultiStream and the calculated  cost  models  against 
various benchmarks to prove their correctness.
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4. MULTISTREAM TESTING

In this chapter, we discuss some experimental results aimed at assuring the functionality 
and performance of the MultiStream implementation. We will start by benchmarking the 
SkePU skeletons with and without MultiStream to check the correctness of the computed 
cost models. We will then introduce NevMap, a standalone CUDA implementation of the 
Map skeleton, built to show the full potential of MultiStream by enabling also the overlap 
of the Device-to-Host transfers. Finally, we will make a brief introduction to FastFlow, a 
stream-parallel programming framework, and we will use it to issue a stream of tasks to 
SkePU to show how MultiStream would perform in a real use-case scenario.

4.1 TESTING PLATFORMS AND MEASURING METHODS

For the sake of completeness, let us recall the specifics of the two heterogeneous GPU-
based systems we have used for testing.

System A System B

Name Titanic c7

CPU Dual AMD Opteron 6176
2.3 GHz 12 Cores

Intel Core i5-3210M
2.5 Ghz 2 Cores + HyperThreading

RAM 32 GB DDR2 6 GB DDR3

GPU NVIDIA Tesla C2050
56 SM – 3GB GDDR5

NVIDIA GeForce GT630M
12 SM – 1GB GDDR5 

Comp.Capability 2.0 (16 CUDA Streams) 2.0 (16 CUDA Streams)

The vast majority of the presented tests returns the same performance figures on both 
systems, therefore we will show the results from Titanic. The second system, c7, has been 
taken into account in section 3.2.2 when we measured the performance of page-locked 
memory with respect to the pageable one, and will be considered again in those tests in  
which a lower number of streaming multiprocessors is required to gather further details.



35

All tests are performed on a modified SkePU version that gives us the possibility to enable  
the page-locked optimization without necessarily using MultiStream. This guarantees that 
the THtD≈TDtH≈T comm relation  introduced  in  section  3.1.3  is  valid,  and  that  any 
measured speedup is due to the MultiStream optimization only.
The measured performances make use of two different probes:

• We use the sys/time class (gettimeofday) in the skeleton implementations to 
measure the overhead of setting up a computation with MultiStream. 

• CUDA  Events  are,  instead,  adopted  to  benchmark  the  operations  that  run 
asynchronously on the device, as suggested by NVIDIA.

We will also adopt the following conventions:

T X
(1S) experienced time of performance index X without MultiStream

T X
(MS ) experienced time of performance index X with MultiStream

4.2 MULTISTREAM OVERHEAD

To evaluate the overhead of MultiStream, we have inserted probes in SkePU and taken 
measures with different values of adopted CUDA Streams, operand size, and number of 
operands. Given the complexity of the SkePU library, we weren't able to identify every 
source of overhead, but a large portion seems to be linearly dependent on the number 

and size of partitions involved in a skeleton computation. We will use TOH
(MS ) to denote 

the overhead we were able to actually measure and identify.

On Titanic TOH
(MS )

≈0.125ms for each smart container of 16 million float elements and 

each stream adopted in the computation of one task.
Another portion of the overhead seems to be directly proportional to the complexity of  
the function used for the skeleton computation. Since the user function entirely depends 
on the application logic, we couldn't define a generalized function to model it.

4.3 SKEPU SKELETONS BENCHMARKS

In this section,  we test  the implementation of  MultiStream for  each of  the supported 
skeletons. The benchmarking applications apply complex (synthetic) user functions such 

that Ts(1 S)≈T comm
(1S) (slightly lower, actually).

The performance measurements used to test the correctness of the cost models are taken 
using input operands of length N=16M with elements of float type.
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4.3.1 MAP PERFORMANCE MEASUREMENT

Let us recall the cost model of the  skepu::Map with  MultiStream found in section 3.4.4 
and include the overhead evaluated in section 4.2:

(2c) T comp
(CMn)

=min[k Tcomm
(1S)

(
N
n

) ,
Ts(1S )

n
]+max [k Tcomm

(1S)
(N ) , Ts(1S )

]+T comm
(1S)

(N)+TOH
(MS)

The measured performance indexes without MultiStream are:

T comp
(1S)

=55.4ms , Ts(1 S)=17.2ms , T comm
(1S)

(N)=19.1ms

With MultiStream instead: TOH
(MS )

=4ms , T comp
(MS )

=45.5ms , resulting in a 21.7% speedup.

Let us now substitute the retrieved data in (2c) knowing that k=1:

T comp
(CMn)

=min[
19.1
16

+
17.2
16

]+max [19.1,17.2]+19.1+4=43.3ms

The cost model seems to reliably approximate (95.2%) the effective performance.

4.3.2 MAPREDUCE PERFORMANCE MEASUREMENT

The  measured  performance  indexes  of  the  skepu::MapReduce skeleton  execution 
without MultiStream are:

T comp
(1S)

=55.6ms , Tsmap
(1 S)

=13ms , Tsreduce
(1 S)

=4.4ms , T comm
(1S)

(N)=19.1ms

With MultiStream instead: T comm
(1S)

(nZ)=1.2ms , TOH
(MS )

=6ms , T comp
(MS )

=52.3ms

The speedup in this case is the 6.3%.
Substituting in the cost model equation with k=2 we have:

(3b) T comp
(CMn)

=min[k Tcomm
(1S)

(
N
n

) ,
Tsmap

(1S )

n
]+max [k Tcomm

(1S)
(N ) , Tsmap

(1S )
]+Tsreduce

(1S)
+nT comm

(1S)
(Z )+TOH

(MS )

T comp
(CMn)

=min[2
19.1
16

,
13
16

]+max[2∗19.1 ,13]+4.4+1.2+6=50.6ms

The worse result with respect to the Map skeleton is caused by two main factors: 
• The overhead is the one expected from the usage of (k+1) smart containers. This is 

actually the case since we have to consider the two input operands (k) and the 
temporary data-structure that contains the output of the map phase.

• In section 3.4.5, we have seen that the parameters used by SkePU to initialize the 
Reduce  kernel  are  constant.  This  implies  that  for  each  one  of  the  n Reduce 
executions, we setup a new communication to perform the Device-to-Host transfer 
of the Z elements that will be used to complete the reduction phase on the host 
side, resulting in an additional source of overhead.

Also in this case, the cost model seems to correctly approximate (96.7%) the effectively 
measured performance.
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4.3.3 MAPARRAY PERFORMANCE MEASUREMENT

In this test we have used as first operand (i.e. the array fully accessible by each device 
thread) a vector of length V=192. This value ensures that the kernel service time is 
close to the communication time of the second operand. Even though V is small, the time 
required to transfer the vector is particularly high because we are actually paying the 
setup of the transfer instead of the transfer itself. 
The measured performance indexes without MultiStream are:

T comp
(1S)

=56.3ms , Ts(1 S)=18.1ms , T comm
(1S)

(V )=0.1ms , T comm
(1S)

(N)=19.1ms

With MultiStream instead: T comp
(MS )

=46.3ms , TOH
(MS )

=4ms

The achieved speedup is similar to the one experienced with the Map skeleton: 21.6%.
Substituting in the cost model equation found in section 3.4.6, we get:
(4c)

T comp
(CMn)

=T comm
(1S )

(V )+min [T comm
(1S)

(
N
n

) ,
Ts(1 S)

n
]+max[T comm

(1S)
(N ), Ts(1S)]+T comm

(1S )
(N )+TOH

(MS )

T comp
(CMn)

=0.1+min[
19.1
16

,
18.1
16

]+max[19.1,18 .1]+19.1+4=43.4ms

In this case the cost model approximation seems to be slightly different with respect to 
the experienced completion time (93.7%). We didn't have time to identify and include any 
additional source of overhead, but we still think that the cost model is sufficiently reliable 
for our purposes.

4.3.4 SYNTHETIC BENCHMARKS CONCLUSIONS

The  performed  synthetic  benchmarks  have  shown  that  the  SkePU  implementation  of 
MultiStream behaves as predicted by our cost models and is able to provide a significant 
speedup (>20%) in both the Map and MapArray cases.
The result obtained for the MapReduce case is less important but remains positive. We 
didn't  have  time  to  code  a  better  implementation  but  we  believe  that  further 
optimizations  are  possible.  In  particular,  it  should  be  investigated  the  possibility  of  
performing a single Reduce, using only one stream, after all the Map kernels executions 
have been completed.  This  way  only  one Device-to-Host  communication with a  small 
payload would be setup and performed.

4.4 STANDALONE MULTISTREAM PERFORMANCE

In  this  section  we  compare  SkePU  performance  against  NevMap,  a  standalone 
implementation  of  the  Map  skeleton  which  provides  the  complete  MultiStream 
functionality (i.e. also Device-to-Host transfers may be overlapped). The purpose of this 
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test  is  to  evaluate  the  potential  performance  improvement  that  SkePU  may  achieve 
provided a full MultiStream implementation.

4.4.1 NEVMAP BENCHMARK OVERVIEW

The programmable interface of  NevMap acts as an easy-to-use wrapper for CUDA. It is 
inspired  by  SkePU,  although  it  trades  off  many  of  the  facilities  that  make  SkePU 
programming model so high-level and portable, for a higher control over the behavior of 
the CUDA architecture. This obviously isn't in line with the principles of the skeleton based 
parallel programming approach, but it will serve our testing purposes.
A  detailed  description  of  NevMap,  along  with  the  full  source  code  can  be  found  in 
Appendix A.
Like in section 4.3, the benchmarking application applies a complex user functions such 

that Ts(1 S)≈T comm
(1S) . In particular, it is a two-input one-output function used to instantiate 

a  Map  skeleton  that  takes  two  operands  of  length N=16M . The  computation  is 
expressed by the following code:
01 FUNC_2i1o(foo, float, a, b, return /* complex function f(a,b) */;)
02 int main(void) {
03    float *in1, *in2, *out;
04    size_t numElements = 16000000;
05    cudaHostAlloc((void**) &in1, numElements * sizeof(float), 

cudaHostAllocDefault);
06    cudaHostAlloc((void**) &in2, numElements * sizeof(float), 

cudaHostAllocDefault);
07    cudaHostAlloc((void**) &out, numElements * sizeof(float), 

cudaHostAllocDefault);
08 
09    /* Populate the two input vectors */
10    
11    // Initialize the Device, CUDA Streams and Map skeleton
12    NevMap<float, foo> nevmap(in1, in2, out, new foo, numElements);
13    
14    // Transfer operands and execute the map using a Depth-first schedule
15    // The output is asynchronously sent to the host as soon as available
16    nevmap.transferExecuteDF();
17    /*
18    * Any operation on different data can be performed by the CPU here
19    */
20    // Explicitly make sure that the output is in the host memory
21    nevmap.synch();
22    return 0;
23 }

It  can  be  observed  that  this  code  resembles  the  one  of  a  typical  SkePU  application, 
although cudaHostAlloc has to be explicitly used to allocate page-locked memory since 
no smart containers are available, and we need to call the synch function to make sure 
that the device has finished computing the Map skeleton and the result has been fully 
transferred to the host memory.
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4.4.2 COMPLETE MULTISTREAM PERFORMANCE

Let us list the measured performance indexes. We will also compare them with our cost 
model to enforce its correctness with a different function and one more operand.
Without MultiStream we get:

T comp
(1S)

=77.5ms , Ts(1 S)=20.2ms , T comm
(1S)

(N)=19.1ms

With the partial MultiStream SkePU implementation: T comp
(MS )

=67.7ms , TOH
(MS )

=6ms

Taking into account its stand-alone implementation,  NevMap doesn't suffer any of the 
overheads  caused  by  the  management  of  smart  containers  or  by  the  other  SkePU 
features. Therefore, to be as precise as possible in our evaluation, we will need to use a 

derived completion  time T comp
(NevD )

=T comp
(Nev )

+TOH
(MS )

+D where T comp
(Nev ) is  the actual  NevMap 

completion time and D=T comp
(MS)

−T comp
(CMn).

Solving the (2c) cost model we get T comp
(CMn)

=64.6 (95.4%), thus D=3.1ms .

NevMap effective completion time is T comp
(Nev )

=47.4 from which we derive:

T comp
(NevD )

=56.5ms

[Figure 8] shows the benefit a full implementation of MultiStream would give to SkePU. 
The Device-to-Host transfers cut out a large portion of the potentially achievable speedup 
(up to 37%). We also plotted the actual  NevMap speedup which reaches the 63%. This 
value testifies how an increase in programmability and portability affects the potential  
performance achievable with a lower-level solution, but it also has to be seen as a target  
for further optimizations of the SkePU backend.

Figure 8: Potential MultiStream Speedup
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4.5 REAL STREAM-PARALLEL USE-CASE BENCHMARK

In  this  section  we  will  briefly  introduce  FastFlow,  a  stream-parallel  programming 
framework, which we use to issue a stream of tasks to SkePU. We will then show how 
SkePU performs with and without MultiStream using an application that computes the 
Luminance Greyscale algorithm of a stream of images.

4.5.1 FASTFLOW

FastFlow is a C++ stream-parallel programming framework developed and maintained by 
professor  Massimo  Torquati  (Pisa)  and  professor  Marco  Aldinucci  (Torino)  at  the 
Department of Computer Science of the University of Pisa and Torino, Italy.
FastFlow  is  designed  to  promote  skeleton  based  parallel  programming,  providing  the 
application  programmer  with  a  stack  of  layers  that  progressively  abstracts  out  the 
development of  parallel  applications [7].  Its  run-time support is  implemented through 
nonblocking lock and fence-free algorithms to guarantee an efficient exploitation of high 
frequency streaming and fine-grain parallelism. Sequential code can be reused to program 
the logic of high-level patterns (e.g. parallel-for, stencil-reduce, farm-with-feedback) and 
core  patterns  (farm,  pipeline,  loopback)  designed  to  easily  exploit  parallelism  out  of 
sequential applications. Moreover, application programmers are given the possibility to 
design  their  own  patterns  through  the  definition  of  a  graph  made  of  ff_nodes (i.e. 
processes) and  channels (i.e. units devoted to the synchronization and communication 
between ff_nodes).

4.5.2 GREYSCALE

In our case we use FastFlow to implement a four-stage pipeline that produces a stream of 
sRGB images on the host side and sends them to the device. The GPGPU portion of the 
application is implemented using SkePU which applies a pixel-by-pixel Map skeleton to 
convert the image from color to grey. The result is then transferred to the host for further 
computation.
The workflow of the application can be represented by [Figure 9]:
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• S1 is the first stage of the FastFlow pipeline, responsible of loading/generating the 
sRGB image, create a task out of it (it can be the image plus additional data, for 
example) and send a pointer of the task out to the next stage.

• S2 receives the task and demands the computation of Greyscale to SkePU. Since 
the copy on the host side is not accessed, the task can be sent to the next stage as 
soon as the skepu::Map function has returned (asynchronously).

• S3 is a dummy stage. It  has been included to explicitly show that the CPU can 
concurrently  process  any  other  function  on  the  task  data  as  long  as  they  are 
independent of the image sent to the device. Once the S3 computation is done, it  
sends the task on the next and final stage.

• GPGPU represents the skepu::Map computation on the device, which can happen 
in parallel with S3 on the host side.

• S4 is the final stage which collects the result of the GPGPU computation, any other 
result  that  S3  may  have  computed,  and  concludes  the  computation  (e.g.  by 
showing or storing the greyscale image).

The  Greyscale  algorithm  applies  three  functions  pixel-by-pixel,  to  each  of  the  RGB 
channels  of the image. We are assuming the images are in the sRGB colorspace [11], 
which means they are gamma compressed [12].
The first function applies a gamma expansion. The second one computes the new pixel 
value according to the BT.709 ITU-R recommendation which weights each color channel 
according  to  the  human  eye  perception.  The  third  function,  finally,  applies  a  gamma 
compression. This is the algorithm used, with little variations, by many image processors 
such as GIMP or Adobe Photoshop to automatically convert color images into greyscale 
ones. The complete source code of the application can be found in Appendix B.

4.5.3 MEASURED PERFORMANCE VS COST MODEL

In this section we compare the performance measurements taken on both Titanic and C7 
systems against out cost model. With the former system, the Greyscale algorithm takes 
less time to complete with respect to the time needed to transfer the image to and from 
the  device.  The  latter  system,  instead,  shows  the  opposite  behavior  giving  us  the 
possibility to test our cost model changing the predominant factor.
The measurements are taken for an image of 1920x1080px (i.e. vector length = 2M)

T comp
(1S) Ts(1 S) T comm

(1S) TOH
(MS ) T comp

(MS ) T comp
(CM) Approx%

Titanic 18.86ms 3.90ms 7.48ms 0.5ms 16.93ms 15.7ms 92.7%

C7 41.91ms 27.03ms 7.45ms 3.0ms 40.23ms 37.95ms 94.3%
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In both cases, the MultiStream cost model seems to reliably approximate the measured 
completion time, even though a better knowledge of the overhead's causes could make it 
more precise.

4.5.4 SPEEDUP VS OPERAND SIZE

The  last  test  we  present,  compares  the  speedup  obtained  by  running  the  Greyscale 
application with different image sizes. FastFlow is used to generate a stream of 60 images.
The  following  table  represents  the  collected  measurements  for  common  image 
resolutions, while [Figure 10] plots them (logarithmic X-axis):

The test shows that the achievable speedup with  MultiStream is input-size dependent. 
This  is  an expected result:  with MultiStream we pay  n times the cost of  setting up a 
computation on the device, moreover this cost is distributed among smaller tasks that are 
only partially overlapped (i.e. no Device-to-Host transfer overlap). As the size of a task 
decreases the effects of this cost becomes more evident.

Resolution 640x480 800x600 1024x768 1280x720 1600x900 1920x1080 2560x1440 3840x2160
Input Length 307200 480000 786432 921600 1440000 2073600 3686400 8294400
SkePU 1S 180 276 441.6 514.8 790.8 1131.6 1992 4470
SkePU MS 177.6 264 412.8 478.8 724.8 1024.8 1794 3996
Speedup 101.35% 104.55% 106.98% 107.52% 109.11% 110.42% 111.04% 111.86%

Figure 10: Speedup Vs Operand Size
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4.6 FINAL REMARKS

In this chapter we have tested  MultiStream and we have shown that it  can provide a 
significant speedup to the execution of all the SkePU skeletons it supports. We want to 
emphasize that all  the experiments we run, take into account the worst-case scenario, 
namely: the task is produced on the host, transferred to the device for the given skeleton 
computation  and  its  result  is  immediately  gathered  by  the  host.  This  means  that 
MultiStream has to be seen both as an optimization targeting the GPGPU computation 
per-se, and as a step forward in the usage of GPGPU to offload the processing of a stream 
of tasks from the CPU.
In the next two chapters, we will share some thoughts about possible improvements for  
both MultiStream and SkePU and we will conclude this master thesis discussion.
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5. IMPROVEMENTS AND FUTURE WORK

In this chapter we will describe what are, in our opinion, the possible ways to improve and 
extend our work.

Complete MultiStream's SkePU Implementation
Probably the most obvious improvement would be a complete implementation of the 
MultiStream optimization mechanism in SkePU. As we have seen in section 4.4.2, the lack 
of  Device-to-Host  transfer  overlapping  has  a  significant  impact  in  the  potentially 
achievable speedup. The implementation needs to extend all the functions that access or 
modify elements of the smart containers from the host side. These functions trigger the 
Device-to-Host data copy and are currently unable to distinguish different streams.

SkePU MapOverlap Support
MultiStream may  provide  a  speedup also  in  the  execution  of  the  MapOverlap/stencil 
skeleton.  In  this  case,  however,  some  data  will  need  to  be  replicated  during  the 
partitioning of the task to be computed. This operation will increase both the overhead 
and  the  memory  usage,  so  a  proper  cost  model  should  be  evaluated  to  analyze  the 
potential benefits.

MultiStream's SkePU Backend Optimization
We have shown that the smart container partitioning is one of the sources of overhead. 
This is  probably due to the increase of  device_pointers that need to be tracked for 
modification.  Since  MultiStream overlaps  a  big  portion  of  the  transfer  times  for 
sufficiently complex kernels, it could be possible to extend the auto-tuning SkePU feature 
to disable the  subset transfer optimization (which is limited to 10 subsets per operand) 
and perform the transfer of the whole smart container. This wouldn't require the usage of 
multiple device_pointers and may improve the overall performance.
On  the  same  line  of  thinking,  the  auto-tuning  SkePU  feature  could  be  extended  to 
determine the best amount of CUDA Streams to use with respect to the size of each task. 
In this way, for smaller task, the overhead of setting up multiple skeleton computations 
would be lower and MultiStream could be able to provide a more consistent speedup.
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It is worth to observe that our first two suggestions are the most natural extension to our  
work: they require a little bit of effort to determine the best possible implementation, but 
make use of all the notions and methods shown in this master thesis. If we had more time 
at our disposal, our work would have surely proceeded in those two directions. 
As far as the last suggestion is concerned, it surely requires more designing effort and the 
precise identification and quantification of each source of overhead to build a model able 
to distinguish which optimization is worth to be enabled and to which degree.
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6. CONCLUSIONS

In  this  master  thesis,  we  have  presented  MultiStream,  an  optimization  method  that 
targets parallel computations on heterogeneous GPU-based systems.
We have shown how, it is possible to partition the inherent data-parallelism of a given 
task among two layers. The first, coarse-grained, is MultiStream: an implementation of the 
master/worker template on the host side, that asynchronously delegates the execution of 
sub-tasks to the GPU exploiting page-locked memory and CUDA Streams. This enables the 
overlapping  of  GPU  kernel  executions  with  data  transfers  between  host  and  device 
memories  which,  in  turn,  significantly  decreases  the  completion  time of  a  given  task 
execution.
We have implemented MultiStream first on SkePU, a data-parallel skeleton programming 
library that provides the application programmer with a high-level, platform-independent, 
interface for the expression of data-parallel computations. We have seen how, even with a 
partial  implementation  that  omits  the  overlap  of  Device-to-Host  data  transfers, 
MultiStream  is  able  to  easily  achieve  a  notable  10%  speedup  on  all  the  supported 
skeletons (Map, MapReduce, MapArray). Moreover, we have built a cost model for each 
skeleton that predicts with good approximation (>92%) the expected speedup that derives 
from the usage of our solution.
To evaluate  the potential  performance improvement achievable  with  MultiStream,  we 
have  implemented  a  stand-alone  Map  skeleton  that  exploits  the  full  MultiStream 
optimization without adding any noticeable overhead. We have shown how the results 
can be extremely promising (>60% speedup) provided an optimal implementation of the 
backend supporting MultiStream.
In  conclusion,  this  master  thesis  can  be  intended  as  an  additional  promoter  of  the 
skeleton based parallel programming approach: with  MultiStream, we have proven that 
low-level optimizations that require the knowledge of complex and platform-dependent 
mechanisms, such as CUDA Streams, are not limited to the usage in ad-hoc hand-written 
CUDA code, but can be efficiently adopted in the implementation of algorithmic skeletons 
and transparently offered to the application programmer.
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APPENDIX A
This appendix contains the source code of NevMap, a stand-alone CUDA implementation 
of  the Map skeleton with two input operands and one output which support the full 
MultiStream optimization.
The level of abstraction isn't as high as the SkePU's one: page-locked memory allocation 
and synchronization between host and device memories has to be performed explicitly 
using the provided functions. The source code is abundantly commented.

nevmap.h:
001 /*
002  * nevmap.h
003  *
004  * The current implementation supports asychronous HtD and DtH
005  * data transfers and overlapping between data transfers and
006  * kernel executions making use of CUDA Streams (if data are Pinned).
007  *
008  * There are two different possible usage:
009  *
010  * *** Breadth-First Scheduling (Compute Capability 1.1) ***
011  *    
012  * 1. Definition of the Map function (SkePU-like)
013  * 2. Allocation of the (in1, in2, out) datasets with
014  *    cudaHostAlloc() function
015  * 3. Work on the datasets (e.g. fill them with actual data)
016  * 4. Instantiation of a new NevMap passing the datasets,
017  *    the function and the size of the operands (all have to
018  *    be of the same size) as parameters
019  * 5. updateInX() to transfer both input to the device (non-blocking)
020  * 6. execute() of the Map Skeleton function (non-blocking)
021  * 7. updateOut() to retrieve the results on the Host side (non-blocking)
022  * 8. synch() to make sure output data are consistent before accessing
023  *    them on the Host side (blocking)
024  *
025  * *** Depth-First Scheduling (Compute Capability 2.0 or greater) ***
026  * Substitute points 5-6-7 of Breadth-First with a single call to the 
027  * transferExecuteDF() function (non-blocking)
028  *
029  * Between non-blocking operations other code can be concurrently
030  *  executed on the Host side provided it has no data dependencies with
031  * the one off-loaded for GPU execution (no check is made).
032  *
033  */
034 
035 #include "nevmap_kernel.h"
036 
037 #ifndef NEVMAP_H_
038 #define NEVMAP_H_
039 
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040 #define NSTREAMS 16
041 
042 /*!
043  * SkePU-like BinaryFunction macro with two input and one output
044  */
045 #define FUNC_2i1o(name, T, i1, i2, func)\
046 struct name {\
047    __device__ T CU(T i1, T i2){\
048       func\
049    }\
050 };
051 
052 /*!
053  * Map Skeleton implementation
054  */
055 template<typename T, typename MapFunc>
056 class NevMap {
057    size_t m_numElements;
058    size_t numElementsPerStream;
059    size_t numElementsPerStreamSize;
060    size_t rest;
061    size_t restSize;
062    cudaStream_t streams[NSTREAMS];
063    MapFunc *m_mapFunc;
064    T *h_in1, *h_in2, *h_out;
065    T *d_in1[NSTREAMS], *d_in2[NSTREAMS], *d_out[NSTREAMS];
066 
067 public:
068    NevMap(T *in1, T *in2, T *out, MapFunc *mapFunc, size_t numElements);
069    ~NevMap();
070    void setMapFunc(MapFunc *mapFunc);
071    void setIn1(T *in1);
072    void setIn2(T *in2);
073    void setOut(T *out);
074    void updateIn1();
075    void updateIn2();
076    void updateOut();
077    void updateOutAndSynch();
078    void synch();
079    void execute();
080    void execute(MapFunc *mapFunc);
081    void transferExecuteDF();
082 
083 private:
084    void deviceInit();
085 };
086 
087 /*!
088  * Map constructor
089  */
090 template<typename T, typename MapFunc>
091 NevMap<T, MapFunc>::NevMap(T *in1, T *in2, T *out, MapFunc *mapFunc,
092       size_t numElements) {
093    m_numElements = numElements;
094    setIn1(in1);
095    setIn2(in2);
096    setOut(out);
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097    setMapFunc(mapFunc);
098    deviceInit();
099 }
100 
101 /*!
102  * Map destructor
103  */
104 template<typename T, typename MapFunc>
105 NevMap<T, MapFunc>::~NevMap() {
106    //Free all Device allocated memory and destroy streams
107    for (int i = 0; i < NSTREAMS; i++) {
108       cudaFree(d_in1[i]);
109       cudaFree(d_in2[i]);
110       cudaFree(d_out[i]);
111       cudaStreamDestroy(streams[i]);
112    }
113 }
114 
115 /*!
116  * Set the map function to be computed
117  */
118 template<typename T, typename MapFunc>
119 void NevMap<T, MapFunc>::setMapFunc(MapFunc *mapFunc) {
120    m_mapFunc = mapFunc;
121 }
122 
123 /*!
124  * Set the first Input data.
125  * To actually transfer it to the Device
126  * a call to updateIn1() has to be made
127  */
128 template<typename T, typename MapFunc>
129 void NevMap<T, MapFunc>::setIn1(T *in1) {
130    h_in1 = in1;
131 }
132 
133 /*!
134  * Set the second Input data.
135  * To actually transfer it to the Device
136  * a call to updateIn2() has to be made
137  */
138 template<typename T, typename MapFunc>
139 void NevMap<T, MapFunc>::setIn2(T *in2) {
140    h_in2 = in2;
141 }
142 
143 /*!
144  * Set the Output data.
145  * After the function execution, call updateOut() to transfer
146  * results back to Host memory (non-blocking).
147  * A call to synch() is needed to ensure data consistency on 
148  * the Host side before using it.
149  */
150 template<typename T, typename MapFunc>
151 void NevMap<T, MapFunc>::setOut(T *out) {
152    h_out = out;
153 }
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154 
155 /*!
156  * Transfer Input1 data to Device Memory (HdT)
157  */
158 template<typename T, typename MapFunc>
159 void NevMap<T, MapFunc>::updateIn1() {
160    for (int i = 0; i < NSTREAMS - 1; i++) {
161       cudaMemcpyAsync(d_in1[i], &h_in1[i * numElementsPerStream],
162             numElementsPerStreamSize, cudaMemcpyHostToDevice, streams[i]);
163    }
164    cudaMemcpyAsync(d_in1[NSTREAMS - 1],
165          &h_in1[(NSTREAMS - 1) * numElementsPerStream],
166          numElementsPerStreamSize + restSize, cudaMemcpyHostToDevice,
167          streams[NSTREAMS - 1]);
168 }
169 
170 /*!
171  * Transfer Input2 data to Device Memory (HdT)
172  */
173 template<typename T, typename MapFunc>
174 void NevMap<T, MapFunc>::updateIn2() {
175    for (int i = 0; i < NSTREAMS - 1; i++) {
176       cudaMemcpyAsync(d_in2[i], &h_in2[i * numElementsPerStream],
177             numElementsPerStreamSize, cudaMemcpyHostToDevice, streams[i]);
178    }
179    cudaMemcpyAsync(d_in2[NSTREAMS - 1],
180          &h_in2[(NSTREAMS - 1) * numElementsPerStream],
181          numElementsPerStreamSize + restSize, cudaMemcpyHostToDevice,
182          streams[NSTREAMS - 1]);
183 }
184 
185 /*!
186  * Transfer Output data to Host Memory (DtH).
187  * Immediately return control to CPU.
188  * It should be followed by a call to synch() as soon as
189  * the Output data is needed on the Host side.
190  */
191 template<typename T, typename MapFunc>
192 void NevMap<T, MapFunc>::updateOut() {
193    for (int i = 0; i < NSTREAMS - 1; i++) {
194       cudaMemcpyAsync(&h_out[i * numElementsPerStream], d_out[i],
195             numElementsPerStreamSize, cudaMemcpyDeviceToHost, streams[i]);
196    }
197    cudaMemcpyAsync(&h_out[(NSTREAMS - 1) * numElementsPerStream],
198          d_out[NSTREAMS - 1], numElementsPerStreamSize + restSize,
199          cudaMemcpyHostToDevice, streams[NSTREAMS - 1]);
200 }
201 
202 /*!
203  * Transfer Output data to Host Memory (DtH) and Synch with CPU
204  */
205 template<typename T, typename MapFunc>
206 void NevMap<T, MapFunc>::updateOutAndSynch() {
207    updateOut();
208    synch();
209 }
210 
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211 /*!
212  * Execute the Map function
213  */
214 template<typename T, typename MapFunc>
215 void NevMap<T, MapFunc>::execute() {
216    for (int i = 0; i < NSTREAMS - 1; i++) {
217       kernel2i1o<<<24, 256, 0, streams[i]>>>(d_in1[i], d_in2[i], d_out[i],
218             numElementsPerStream, m_mapFunc);
219    }
220    kernel2i1o<<<24, 256, 0, streams[NSTREAMS - 1]>>>(d_in1[NSTREAMS - 1],
221          d_in2[NSTREAMS - 1], d_out[NSTREAMS - 1],
222          numElementsPerStream + rest, m_mapFunc);
223 }
224 
225 /*!
226  * Transfer and Execute Depth-First
227  */
228 template<typename T, typename MapFunc>
229 void NevMap<T, MapFunc>::transferExecuteDF() {
230    for (int i = 0; i < NSTREAMS - 1; i++) {
231       cudaMemcpyAsync(d_in1[i], &h_in1[i * numElementsPerStream],
232             numElementsPerStreamSize, cudaMemcpyHostToDevice, streams[i]);
233       cudaMemcpyAsync(d_in2[i], &h_in2[i * numElementsPerStream],
234             numElementsPerStreamSize, cudaMemcpyHostToDevice, streams[i]);
235       kernel2i1o<<<24, 256, 0, streams[i]>>>(d_in1[i], d_in2[i], d_out[i],
236             numElementsPerStream, m_mapFunc);
237       cudaMemcpyAsync(&h_out[i * numElementsPerStream], d_out[i],
238             numElementsPerStreamSize, cudaMemcpyDeviceToHost, streams[i]);
239    }
240    cudaMemcpyAsync(d_in1[NSTREAMS - 1],
241          &h_in1[(NSTREAMS - 1) * numElementsPerStream],
242          numElementsPerStreamSize + restSize, cudaMemcpyHostToDevice,
243          streams[NSTREAMS - 1]);
244    cudaMemcpyAsync(d_in2[NSTREAMS - 1],
245          &h_in2[(NSTREAMS - 1) * numElementsPerStream],
246          numElementsPerStreamSize + restSize, cudaMemcpyHostToDevice,
247          streams[NSTREAMS - 1]);
248    kernel2i1o<<<24, 256, 0, streams[NSTREAMS - 1]>>>(d_in1[NSTREAMS - 1],
249          d_in2[NSTREAMS - 1], d_out[NSTREAMS - 1],
250          numElementsPerStream + rest, m_mapFunc);
251    cudaMemcpyAsync(&h_out[(NSTREAMS - 1) * numElementsPerStream],
252          d_out[NSTREAMS - 1], numElementsPerStreamSize + restSize,
253          cudaMemcpyHostToDevice, streams[NSTREAMS - 1]);
254 }
255 
256 /*!
257  * Synchronizes CUDA Streams with the CPU execution
258  */
259 template<typename T, typename MapFunc>
260 void NevMap<T, MapFunc>::synch() {
261    for (int i = 0; i < NSTREAMS; i++) {
262       cudaStreamSynchronize(streams[i]);
263    }
264 }
265 
266 /*!
267  * Change the Map function and execute it
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268  */
269 template<typename T, typename MapFunc>
270 void NevMap<T, MapFunc>::execute(MapFunc *mapFunc) {
271    setMapFunc(mapFunc);
272    execute();
273 }
274 
275 /*!
276  * CUDA Device initialization
277  */
278 template<typename T, typename MapFunc>
279 void NevMap<T, MapFunc>::deviceInit() {
280    numElementsPerStream = m_numElements / NSTREAMS;
281    numElementsPerStreamSize = numElementsPerStream * sizeof(T);
282    rest = m_numElements % NSTREAMS;
283    restSize = rest * sizeof(T);
284 
285    /*
286     * Create CUDA Streams and allocate Device memory
287     */
288    for (int i = 0; i < NSTREAMS - 1; i++) {
289       cudaStreamCreate(&streams[i]);
290       cudaMalloc((void**) &d_in1[i], numElementsPerStreamSize);
291       cudaMalloc((void**) &d_in2[i], numElementsPerStreamSize);
292       cudaMalloc((void**) &d_out[i], numElementsPerStreamSize);
293    }
294    cudaStreamCreate(&streams[NSTREAMS - 1]);
295    cudaMalloc((void**) &d_in1[NSTREAMS - 1],
296          numElementsPerStreamSize + restSize);
297    cudaMalloc((void**) &d_in2[NSTREAMS - 1],
298          numElementsPerStreamSize + restSize);
299    cudaMalloc((void**) &d_out[NSTREAMS - 1],
300          numElementsPerStreamSize + restSize);
301 }
302 
303 #endif /* NEVMAP_H_ */

nevmap_kernel.h:
01 #ifndef NEVMAP_KERNEL_H_
02 #define NEVMAP_KERNEL_H_
03 
04 template<typename T, typename MapFunc>
05 __global__ void kernel2i1o(T *i1, T *i2, T *o, size_t numElements,

MapFunc mapFunc) {
06 
07    size_t index = blockIdx.x * blockDim.x + threadIdx.x;
08    size_t gridSize = blockDim.x * gridDim.x;
09 
10    while (index < numElements) {
11       o[index] = (*mapFunc).CU(i1[index], i2[index]);
12       index += gridSize;
13    }
14 }
15 
16 #endif /* NEVMAP_KERNEL_H_ */
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APPENDIX B
In this appendix the source code of the Greyscale application is presented. The functions 
to load or create each image, and to perform a computation on the skeleton output are 
left for implementation.

001 #include <iostream>
002 #include <ff/pipeline.hpp>
003 #include "math.h"
004 #include "skepu/vector.h"
005 #include "skepu/map.h"
006 
007 struct Pixel {
008    float r;
009    float g;
010    float b;
011 };
012 
013 // Map function: Ycom(Luma(Yexp(sRGB)))
014 UNARY_FUNC_CONSTANT(grey_f, Pixel, Pixel, px, lum,
015    
016    //Express color components as [0,1] values
017    px.r = px.r/255;
018    px.g = px.g/255;
019    px.b = px.b/255;
020 
021    //Apply gamma expansion to color components
022    if(px.r > 0.04045){
023       px.r = powf(((px.r + 0.055)/1.055), 2.4);
024    } else {
025       px.r = px.r/12.92;
026    }
027    if(px.g > 0.04045){
028       px.g = powf(((px.g + 0.055)/1.055), 2.4);
029    } else {
030       px.g = px.g/12.92;
031    }
032    if(px.b > 0.04045){
033       px.b = powf(((px.b + 0.055)/1.055), 2.4);
034    } else {
035       px.b = px.b/12.92;
036    }
037 
038    //Compute luminance
039    float y = px.r * lum.r + px.g * lum.g + px.b * lum.b;
040 
041    //Apply gamma compression to luminance and get back to range [0, 255]
042    if(y > 0.0031308){
043       y = powf((y * 1.055), (1/2.4)) - 0.055;
044    } else {
045       y = y * 12.92;
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046    }
047    y = rintf(y * 255);
048    
049    //Store luminance value to each component
050    px.r = y;
051    px.g = y;
052    px.b = y;
053    return px;
054 )
055 
056 using namespace ff;
057 typedef skepu::Vector<Pixel> sv_t;
058 const Pixel LUMA = {0.2126, 0.7152, 0.0722};
059 const uint NUM_IMAGES = 60;
060 const size_t SIZE = 1920*1080;
061 const uint SHADES = 255;
062 static skepu::Map<grey_f> RGBtoGrey (new grey_f);
063 
064 /*
065 * StageOne: Create the images to be processed
066 */
067 struct StageOne: ff_node {
068    void *svc(void *){
069 
070       //Set the LUMA (Pixel) constant for the skepu::Map
071       RGBtoGrey.setConstant(LUMA);
072       
073       /* Create tasks */
074       for(uint i = 0; i < NUM_IMAGES; i++){
075          void *t = new sv_t(SIZE);
076          sv_t *task = reinterpret_cast<sv_t *>(t);
077          
078          /* Create/Load the single image as a skepu::Vector of Pixel
079 
080          //Send task to the next stage
081          ff_send_out(task);   
082       }
083       return EOS;
084    }
085 };
086 
087 /*
088 * StageTwo: Use SkePU to convert images from RGB to Greyscale
089 * No access to the image data is made on this stage
090 */
091 struct StageTwo: ff_node {
092    void *svc(void *t){
093       sv_t *task = reinterpret_cast<sv_t *>(t);
094 
095       //Compute the Map
096       RGBtoGrey(*task);
097 
098       //Send task to the next stage
099       ff_send_out(task);
100       return GO_ON;
101    }
102 };
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103 
104 /*
105 * StageThree: CPU is free to work on different data w.r.t.
106 * what is being computed by the GPU.
107 *
108 * In this case, the task is just sent to the next stage
109 */
110 struct StageThree: ff_node {
111    void *svc(void *t){
112       sv_t *task = reinterpret_cast<sv_t *>(t);
113       
114       //Send task to the next stage
115       ff_send_out(task);
116       return GO_ON;
117    }
118 };
119 
120 /*
121 * StageFour: Access or modify the output of the GPGPU computation.
122 * It triggers the DtH data transfer, thus the time spent on this stage is
123 * T_DtH fully paid both with or without MultiStream
124 * (no DtH overlap support on SkePU)
125 */
126 struct StageFour: ff_node {
127    void *svc(void *t){
128 
129       sv_t *task = reinterpret_cast<sv_t *>(t);
130 
131       /* Access/Modify the output from the Host side */
132 
133       delete task;
134 
135       return GO_ON;
136    }
137 };
138 
139 int main(){
140 
141    //Initialize & Run FF_Pipeline
142    ff_pipeline pipe;
143    pipe.add_stage(new StageOne);
144    pipe.add_stage(new StageTwo);
145    pipe.add_stage(new StageThree);
146    pipe.add_stage(new StageFour);
147    if(pipe.run_and_wait_end()<0){
148       error("Error with FastFlow Pipeline");
149    }
150 
151    return 0;
152 }
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