
University of Pisa
&

Scuola Superiore Sant’Anna
Master Degree in Computer Science and Networking

Master Thesis

Optimization of Parallel Computations on
Heterogeneous GPU-Based Systems

Candidate Supervisor
Claudio Parisi Marco Danelutto

 Co-supervisor
 Christoph Kessler

Academic Year 2014/2015

PREFACE

This work has been done in the framework of cooperation existing among the
department of Computer Science of the University of Pisa, Italy (Prof. Danelutto) and
the IDA department of the Linköping University, Sweden (Prof. Kessler).
It originated with the main goal of addressing a well know issue related to GPU
programming: the loss of performance due to data transfers between main memory
and device memory.
All known solutions tackling this problem often require a considerable amount of hours
of additional work for the application programmer to be designed and implemented.
This is the main motivation that led to this master thesis, where we have extended the
existing data-parallel skeleton library SkePU to offer a fully transparent solution which
has been synthesized in just one more compile flag.
The result of this work has eventually contributed to the new release of SkePU itself
(v1.2) which is now both faster in executing data-parallel computations, and better
optimized to support task-parallel computations on-top of it.

ACKNOWLEDGMENTS

My deepest gratitude goes to both my supervisors: Professor Marco Danelutto and
Professor Christoph Kessler. The former to present me with the opportunity of a master
thesis abroad and for the endless afternoons spent in video-conference analyzing my
work and suggesting further ways to progress. The latter for actually making that
opportunity a reality, giving me a warm hospitality in his team and following every step
of my work providing plenty of ideas and, most of all, knowledge.
A special thanks goes to Antonella Mercurio, both for being my mother and for the
financial support of my entire period abroad: without her I couldn't have achieved any
of this.
Last but not least, thank you to my love Alessia, my “brother” Mike, Cesira, RHF, Patrik,
Carlo and Davide: you simply are the best part of my life.

CONTENTS

1. Introduction...1
1.1 Motivation...1
1.2 Thesis Target...2
1.3 Thesis Outline..3

2. Background..4
2.1 NVIDIA CUDA...4

2.1.1 A Brief History of GPU Computing..4
2.1.2 CUDA Architecture..5
2.1.3 CUDA Parallel Programming..7
2.1.4 Example of a Simple CUDA Application...7

2.2 SkePU..8
2.2.1 User Functions...9
2.2.2 Skeletons...10
2.2.3 Smart Containers...11

3. MultiStream...14
3.1 Problem Statement...14

3.1.1 Best-Case Scenario Analysis – No MultiStream..15
3.1.2 General Worst-Case Scenario..16
3.1.3 Smart Containers Representation in CUDA...16
3.1.3 Map Cost Model – No MultiStream..17
3.1.4 MapReduce Cost Model – No MultiStream..17
3.1.5 MapArray Cost Model – No MultiStream...18

3.2 Page-Locked Memory..18
3.2.1 Asynchronous Operations...18
3.2.2 Performance Evaluation..19
3.2.3 Limits of Page-Locked Memory and MultiStream...20

3.3 CUDA Streams...20
3.3.1 Single Stream...20
3.3.2 Multiple Streams and Scheduling...22

3.4 MultiStream Design and Implementation...24
3.4.1 Design..24
3.4.2 Best-Case Scenario Analysis – With MultiStream...25
3.4.3 Implementation...26
3.4.4 Map Cost Model – With MultiStream...32
3.4.5 MapReduce Cost Model – With MultiStream...32
3.4.6 MapArray Cost Model – With MultiStream..32

3.5 Final Remarks..33

4. MultiStream Testing..34
4.1 Testing Platforms and Measuring Methods...34
4.2 MultiStream Overhead..35
4.3 SkePU Skeletons Benchmarks..35

4.3.1 Map Performance Measurement..36
4.3.2 MapReduce Performance Measurement..36
4.3.3 MapArray Performance Measurement...37
4.3.4 Synthetic Benchmarks Conclusions...37

4.4 Standalone MultiStream Performance..37
4.4.1 NevMap Benchmark Overview...38
4.4.2 Complete MultiStream Performance..39

4.5 Real Stream-Parallel Use-case Benchmark..40
4.5.1 FastFlow...40
4.5.2 Greyscale...40
4.5.3 Measured Performance Vs Cost Model...41
4.5.4 Speedup Vs Operand Size..42

4.6 Final Remarks..43
5. Improvements and Future Work...44
6. Conclusions..46
Bibliography...47
Appendix A..49
Appendix B...55

1

1. INTRODUCTION

1.1 MOTIVATION

In the past fifteen years, the IT industry evolution has been characterized by the
introduction and growth of parallelism. This new approach is gradually substituting the
serial one in almost every area: the semi-conductor industry, since 2003, proposes
multicore CPUs to keep up with the Moore's law, a completely new generation of
manycore chips has been introduced mainly in the form of co-processor (e.g. Intel Xeon
Phi) and the old Graphic Processing Unit architecture has been reviewed to support
General Purpose computations (GPGPU) on thousand of cores simultaneously. But what
may seem a relatively linear evolution on the hardware side, becomes a continuous
challenge for programmers. The newborn heterogeneous systems require a deep
knowledge of all the composing architectures, of their related programming model, and of
all the different ways they may interact with each other to squeeze out every last bit of
performance they have to offer. This rightfully is an impossible task for the programmer
which tends to specialize himself on a very small subset of those architectures.
Introduced by Murray Cole in 1989 [9], algorithmic skeletons constitute a high-level
parallel programming model which abstracts both the computation and the coordination
parts of the most recurring patterns of a structured parallel application, providing the
programmer with a generic sequential looking interface.
An algorithmic skeleton based parallel programming approach directly influences three
software-related properties, strictly linked each other:

• Programmability. Exposing a sequential interface, the application programmer can
use the skeleton as a more familiar sequential component and focus his efforts on
the actual application logic.

• Portability. Being an interface, an algorithmic skeleton masks the actual
implementation of the parallel pattern it models. As a consequence, a given
algorithmic skeleton can be adopted in a platform-independent manner, provided
that an implementation exists for each of the targeted platforms.

• Performance. The implementation of a skeleton, for each of the supported

2

platforms, can be tweaked to exploit at their best all the features of the underlying
architecture.

As such, algorithmic skeletons may seem a perfect fit for the current IT scenario and, in
fact, research groups all over the world are proposing several frameworks and libraries
based on the algorithmic skeleton concept [8]. But, as with any high-level abstraction,
advantages can't come without tradeoffs: as the programmability improves and the
portability broadens, it gets more and more difficult to aim at the best possible
performance.

1.2 THESIS TARGET

In this master thesis we consider SkePU, a data-parallel skeleton library targeting GPGPUs,
which offers both a wide portability and an easy-to-program sequential interface. We
analyze its performance on CUDA-based heterogeneous systems and propose an
enhancement which addresses the latency increase that occurs when computation is
offloaded to an external device such as a GPU.
In particular, our target was to decrease, or even better to completely eliminate, the time
spent on transferring data between system memory and NVIDIA GPUs memory before the
computation can actually begin. This is, in general, the highest source of overhead in
heterogeneous systems, often leading to a decrease in performance even with respect to
a sequential, CPU-only, execution. Depending on the implementation, the application
programmer may spend hours trying to optimize his code or completely discard the usage
of a co-processor if the outcome isn't worth the effort.
Exploiting the skeleton programming approach, we propose MultiStream, a generic
optimization that adopts a pipeline pattern implemented on top of CUDA Streams. This
gives SkePU the possibility to overlap data transfers with kernel executions thus
decreasing, and in some cases completely masking, the overhead due to the former. This
solution is applied directly to every skeleton implementation, is completely backward
compatible, and has little to no impact on the level of abstraction guaranteed to the
application programmer.
On the results side, MultiStream is able to increase the performance of every skeleton
execution and its adoption is suggested with very few exceptions which depend, as will be
shown, on specific and uncommon conditions. Moreover, using the stream-parallel
skeleton framework FastFlow [7], we show how SkePU and MultiStream can be efficiently
used to compute data-parallel portions of code nested in a larger stream-parallel
application.

3

1.3 THESIS OUTLINE

The rest of this paper is organized as follows:
• Chapter 2 describes CUDA, SkePU and all the technical background required to

understand the remainder of this master thesis.
• Chapter 3 provides an in-depth analysis of the problem and the description of the

MultiStream design and implementation. A cost model is derived for every
skeleton implementation.

• Chapter 4 is reserved to the MultiStream performance analysis.
• Chapter 5 and 6 conclude this master thesis and discusses possible future

enhancement for MultiStream and SkePU.

4

2. BACKGROUND

This chapter introduces the technical background that may help the reader in
understanding the contents of this master thesis. First, NVIDIA CUDA Architecture is
described to underline advantages and tradeoffs relative to GPGPU usage. Afterward,
SkePU is introduced as a high-level library able to provide a skeleton programming
approach to GPGPU programming.

2.1 NVIDIA CUDA

2.1.1 A BRIEF HISTORY OF GPU COMPUTING

In the early 1990s, thanks to the growth in popularity of graphically driven operative
systems (e.g. Microsoft Windows), personal computers started to be equipped with 2D
display accelerators which offered hardware-assisted bitmap operations.
In 1992, Silicon Graphics released the OpenGL library, the first 3D application
programming interface. The most popular were the first-person shooter games such as
Doom or Quake, which ignited the spark that led to the creation of progressively more
realistic 3D environments and, consequently, increasingly more powerful graphics
accelerators.
The first attempts to provide a general purpose graphic parallel computing started in
2001, with the introduction of programmable vertex and pixel shaders by GPU
manufacturers. In those years, researchers cleverly tricked the graphic accelerators into
performing arbitrary computations on generic numerical data by making them appear as
operands required to standard graphic rendering. This approach was restrictive because
applications had to be written with graphic-only programming languages and there was
no method to debug any code upon incorrect results or failures.
In November 2006, with the release of the GeForce 8000 GPU series, NVIDIA introduced
the first general-purpose processing GPU built with CUDA Architecture.

5

2.1.2 CUDA ARCHITECTURE

CUDA Architecture, and GPGPUs in general, provide the application programmer with a
high throughput co-processor best suited for massively parallel computations.
With respect to a traditional multicore CPU, graphics accelerators make a different use of
their chip area. In particular, features such as out-of-order instruction execution,
speculation or branch prediction are completely absent, interprocessor communications
are bound to hardware restrictions and cache memory is one order of magnitude smaller.
All of these limitations leave enough area to fit hundreds of Streaming Multiprocessors
(up to 384 on the Maxwell architecture released in 2015) which are, in turn, groups of 8
execution units, called CUDA Cores.
On GPU, performance is achieved through the SIMT architecture (Single-Instruction,
Multiple-Thread) which enables a high degree of parallelism [1: 4.1]. It consists of a large
number of threads sharing the same kernel which, compared to the CPU ones, have zero
context-switching overhead and are suitable to operate on extremely fine-grained
datasets.
Threads are organized using a two-level hierarchy [Figure 1]. At the bottom level, they are
grouped into Thread Blocks of 1, 2 or 3 dimensions. Let us call (x , y , z) the index of a
specific thread inside given thread block and (D x , D y ,D z) the size of that thread block,
the thread can be identified by threadIdx=x+ y D x+z D xD y . At the top level, thread
blocks are organized into 1, 2 or 3 dimensional Grids and are identified by an ID blockIdx
similar to the thread one.

Upon kernel execution, each multiprocessor gets a thread block enabling a first level of
concurrency. Each multiprocessor decomposes the received thread block into groups of
32 parallel threads called warps which are then managed by the CUDA cores, enabling a
second level of concurrency. In particular, supposing that a given instruction, common to
all the threads inside a warp, takes 1 clock cycle to be executed, it will take a total of 4
clock cycles (WarpSize /CUDACoresPerSM) to complete that instruction for the whole

6

warp. Threads inside a warp start at the same instruction address but they all have their
own program counter and register state. This leaves branching and independent execution
possible although, each time a thread follows a different path of execution, it gets
serialized and concurrency is partially lost.
For what concerns memory management, the CUDA Architecture is composed of different
types of memory, each with their own advantages and drawbacks [1: 2.3]. We will focus
our attention on the subset which is actually important to the remainder of this master
thesis. [Figure 2] shows the hierarchy for the Kepler architecture. Each GPU generation
introduces some changes, but these differences are negligible in our analysis.

• Constant memory is a 64 KB read-only portion of the device memory which can be
cached in an 8 KB memory present in each SM. It enables warp level broadcast.

• Shared memory is a programmer managed portion of the L1 cache reserved
available to each SM. Can only be shared among threads of the same thread block.

• L2 cache. Both accesses to the device memory and system (host) memory pass
through L2 cache.

• Global memory is roughly equivalent to the device memory (except for the portion
reserved to constant, texture and local memories), it has the highest latency on
device but provides up to 15 times higher bandwidth with respect to the PCIe
interface that links the device L2 cache to the host memory. It is implemented with
GDDR5 technology up to Maxwell architecture, Stacked DRAM will be introduced
with Pascal in 2016.

7

2.1.3 CUDA PARALLEL PROGRAMMING

The first version of CUDA was based of ANSI C. With new releases, it has eventually
evolved to a more complete extension of C++11 (CUDA version 7 or greater) [1].
A CUDA application can be divided in two portions: one containing the host code and one
reserved to the device code. Both portions are compiled by the NVIDIA compiler nvcc,
which internally uses a conventional C/C++ compiler for the host code, and a proprietary
compiler which translates the device code to an assembly language called PTX (Parallel
Thread Execution). A PTX application describes the execution of a thread inside a
Cooperative Thread Array (CTA), including possible communications and synchronizations
required between threads in the same CTA. In other words, a CTA is the implementation
of a thread block.
Upon execution, there's a first phase called install time which translates the PTX code to
the GPU one. Subsequent executions of the same application, in the same session, will
skip this step. The actual execution then starts on the host thread which is in charge to
transfer the required input data to the GPU device memory before invoking the GPU
kernel code. If data are already on the GPU (e.g. as a result of a previous computation),
only the kernel code will be transferred and executed. Upon completion, output data
need to be transferred back to the host memory before they can actually be accessed.
As will be shown in the first part of Chapter 3, Host-to-Device (HtD) and Device-to-Host
(DtH) memory transfers constitute one of the narrowest bottleneck in GPGPU because of
the limited bandwidth provided by the PCIe interface that connects the GPU to the
hosting system.

2.1.4 EXAMPLE OF A SIMPLE CUDA APPLICATION

As an example, we consider the following code which performs the sum of two vectors:
01 // Device code part
02 __global__ void sum(float *v1, float *v2, float *vres){
03 // Each thread is responsible of the computation of one element
04 int i = blockIdx.x * blockDim.x + threadIdx.x;
05 vres[i] = v1[i] + v2[i];
06 }
07
08 // Host code part
09 int main(){
10 float v1[N], v2[N], vres[N];
11 float *dev_v1, *dev_v2, *dev_vres;
12
13 // Allocate memory on the GPU
14 cudaMalloc((void**)&dev_v1, N * sizeof(float));
15 cudaMalloc((void**)&dev_v2, N * sizeof(float));
16 cudaMalloc((void**)&dev_vres, N * sizeof(float));
17
18 /* Populate vectors v1 and v2 */
19

8

20 // Copy the vectors on the device memory
21 cudaMemcpy(dev_v1, v1, N * sizeof(float), cudaMemcpyHostToDevice);
22 cudaMemcpy(dev_v2, v2, N * sizeof(float), cudaMemcpyHostToDevice);
23
24 // Define a thread block size and a grid size – OPTIMAL is a number
25 dim3 threadsPerBlock(OPTIMAL);
26 dim3 blocksPerGrid(N/threadsPerBlock);
27
28 // Invoke the kernel
29 sum<<<blocksPerGrid, threadsPerBlock>>>(dev_v1, dev_v2, dev_vres);
30
31 // Copy the result to the host memory
32 cudaMemcpy(vres, dev_vres, N * sizeof(float), cudaMemcpyDeviceToHost);
33
34
35 // Free device memory
36 cudaFree(dev_v1);
37 cudaFree(dev_v2);
38 cudaFree(dev_vres);
39
40 /* Print the result */
41
42 return 0;
43 }

The example shows that the application programmer has to take care of a lot of aspects:

• memory (de)allocation on the device

• copy of the vectors from the host memory to the device one and viceversa, when
a result has been computed

• defining the thread block size and the grid size by fixing a value OPTIMAL.
The last point is crucial to achieve the best performance (e.g. having a few thread blocks
with many threads may leave some of the stream multiprocessors idle) and is dependent
of both the specific application and the Compute Capabilities (i.e. architecture and
features) of the targeted device.

2.2 SKEPU
SkePU is data-parallel skeleton programming framework targeting heterogeneous GPU-
based systems (multicore CPU with one or more GPUs) [2]. It is developed and currently
maintained by the group of Professor Christoph Kessler at the IDA department of the
Linköping University, Sweden.
SkePU is provided as a C++ template library that exposes a unified interface to specify
data-parallel computations expressed using algorithmic skeletons.
The library provides multiple implementations of each skeleton to target different
architectures: single core and multicore CPUs are supported by sequential C++ and
OpenMP respectively, whereas GPUs are supported using CUDA and OpenCL. To target a

9

specific architecture it is enough to define a macro SKEPU_X where X is the target
architecture (e.g. #define SKEPU_CUDA). It is also possible to let SkePU automatically
select the expected best back-end for each skeleton call. The choice is dependent on the
size of the operands used in the computation.
At the time of writing, SkePU comes in two different distributions [5]:

• stand-alone SkePU 1.2 which is the one adopted and described into this master
thesis. It includes the MultiStream optimization, the result of our research.

• SkePU with StarPU integration, a C-based run-time system with generic scheduling
falicities for heterogeneous platforms. StarPU is used by SkePU to provide
asynchronous and hybrid (i.e. CPU+GPU) skeleton executions. Each skeleton call is
translated into a task and dynamically scheduled by StarPU following a user-
selected strategy among those available.

The three main components of the library are user functions, skeletons and smart
containers (1D vector and 2D matrix).

2.2.1 USER FUNCTIONS

In order to define functions that can be used as skeleton parameters regardless of the
target architecture, SkePU provides the application programmer with a macro language
that the compiler preprocessor expands to the specific implementation once a target
architecture as been selected. Macro functions are based on a struct containing, in turn,
member functions for CPU and CUDA, and strings for OpenCL [3: 3.1].
Let us consider the same application shown in the example of section 2.1.4. The function
that computes the sum in the device portion of the code can be written as a
BINARY_FUNC that takes two operands a and b and sums them:
BINARY_FUNC(sum_f, float, a, b, return a+b);

This function expands to:
01 struct sum_f {
02 // OpenCL
03 skepu::FuncType ft;
04 std::string func_CL;
05 std::string funcName_CL;
06 std::string datatype_CL;
07 sum_f() {
08 ft = skepu::BINARY;
09 funcName_CL.append(“sum_f”);
10 datatype_CL.append(“float”);
11 func_CL.append(“float sum_f(float a, float b) { return a+b; }\n”);
12 }
13 // CPU
14 float CPU(float a, float b) { return a+b; }
15 // CUDA
16 __device__ float CU(float a, float b) { return a+b; }
17 };

10

To get a list of the available macros for each of the SkePU supported skeleton, please refer
to the SkePU documentation [5].

2.2.2 SKELETONS

SkePU provides six data-parallel skeletons: Map, Reduce, MapReduce, MapArray,
MapOverlap (i.e. stencil) and Scan (i.e. parallel-prefix) [3: 3.1]. They are represented using
C++ objects so, in order to use them, the application programmer has to instantiate the
chosen skeleton with the user function to compute as parameter. Afterward, the skeleton
function can be called passing the whole containers as operands, or iterators if the
computation as to be applied only on a subset of data.
Taking again into account the application of section 2.1.4 and applying the binary user
function defined in section 2.2.1:
01 int main(){
02
03 // Initialize three vectors
04 skepu::Vector<float> v1(1000);
05 skepu::Vector<float> v2(1000);
06 skepu::Vector<float> vres(1000);
07
08 /* Populate vectors v1 and v2 */
09
10 // Instantiate the Map skeleton and perform the sum_f user function
11 skepu::Map<sum_f> sum(new sum_f);
12 sum(v1, v2, vres);
13
14 /* Print the result */
15
16 return 0;
17 }

As we can see the code complexity is significantly reduced: SkePU run-time support will
take care of the memory management, will determine the best skeleton implementation
and tune its parameters to maximize the device resources utilization [3: 3.2].

A brief description of the available skeletons follows:
Map. Given a function f and a vector (matrix) v, the Map skeleton computes a vector
(matrix) r such that each element is r i=f (v i) . A skepu::Map can be initialized with a
user function that takes up to three variable operands and a constant one. The CUDA
implementation of the latter exploits the constant memory described in section 2.1.2.

Reduce. Given an associative, cumulative binary operator and a vector (matrix) ⊕ v, the
Reduce skeleton computes a scalar result r=v1⊕v2⊕...⊕vn . A reduce policy can be
specified to perform column-wise or row-wise reduction of a matrix.

11

MapReduce. Combines the Map and Reduce skeletons by taking two user functions as
parameter upon initialization. The computation is performed in the same kernel to avoid
synchronization resulting in a speedup.

MapArray. Given a function f, a vector A and another vector (matrix) v, the MapArray
skeleton is a variant of the Map skeleton that computes a vector (matrix) r such that each
element is r i=f (A ,v i). This means that, whereas in the Map skeleton the user function
has access to the i-th element of each operand to compute r i , in the MapArray skeleton
the first parameter passed to the user function is a pointer to the whole vector A, thus
ri can be computed as a function of v i and any of the elements of vector A.

MapOverlap. Another variant of Map, where the i-th element of the result vector is
computed by taking as user function operands several adjacent elements of the input
vector. A constant parameter d (compile time defined) represents the radius of the
neighborhood space of center i of the input vector to be taken into account in the user
function: r i=f (v(i−d) , v(i−d+1) , ... , v(i+d−1) , v (i+d)) . The MapOverlap skeleton can also be
applied to matrices and is provided with four different adjacency patterns: column-wise,
row-wise, cross-wise or square-wise. The CUDA implementation makes use of the shared
memory described in section 2.1.2, thus the parameter d is limited by both the number of
threads per block and the amount of shared memory provided by the targeted GPU.
Scan. Given an associative binary operator , the Scan skeleton computes the prefix-⊕ ⊕
vector of the input operand: r i=v1⊕v2⊕...⊕v i .

The MultiStream optimization discussed in this master thesis can be applied to Map,
MapReduce and MapArray skeletons.

2.2.3 SMART CONTAINERS

In order to support skeleton computations and optimize data transfers between host and
device memories, SkePU provides two containers, Vector and Matrix, that can be used to
organize data in 1 or 2 dimensions respectively [4]. Their interface is similar to their C++
STL counterparts, although extended with some member functions such as
randomize(min, max) to assign a random value between [min, max) to each element of
the vector (matrix), or operator ~() which can be used to transpose a matrix and
provide the application programmer with column-wise access.
The implementation of the containers features two memory management optimizations.

Lazy memory copying delays the device to host memory data transfer until this is
absolutely required. A speculative approach is applied to all the data that have been
modified in the device memory by a skeleton computation: unless they are accessed by

12

the host thread (e.g. by reading the content of a vector element using the [] operator),
there is no need to synchronize the copy residing in the host memory since these data
could be an intermediate result that will be used as an operand of a new skeleton
computation. This way the overhead due to the Device-to-Host transfer for intermediate
results can be completely avoided.
[Figure 3] shows the memory management behavior that the following code would have
with or without lazy memory copying:
01 …
02 // Initialize one vector
03 skepu::Vector<float> v(4000);
04
05 /* Populate vector v */
06
07 // Instantiate two different skeletons and execute them
08 skepu::Map<Kernel_1> k1(new Kernel_1);
09 skepu::Map<Kernel_2> k2(new Kernel_2);
10 k1(v);
11 k2(v);
12
13 // Print the result: the content of vector v is accessed by the host thread
14 std::cout << v << “\n”;
15 …

13

Subset transfers is the second memory management optimization that consists of
splitting input and output data in all those cases where only a portion of them is required
for skeleton computations (e.g. when work is distributed across multiple GPUs). Each
subset is implemented as an additional device copy whose size is the one of the subset
itself. Moreover it is coupled with a valid flag that tracks which portion has been modified
and which one needs to be updated upon accessing. To reduce the overhead due to
tracking and limit memory usage, a maximum amount of subsets is imposed.
As will be shown, the implementation of the MultiStream solution had to deal with both
of these two features to avoid conflicts.

14

3. MULTISTREAM

MultiStream is an optimization that targets the loss of performance due to data transfers
between host and device memories in a GPU-based heterogeneous system. It has been
designed and developed as a new feature for the data-parallel skeleton programming
library SkePU, in the framework of cooperation existing among the department of
Computer Science of the University of Pisa, Italy (Prof. Danelutto) and the IDA department
of the Linköping University, Sweden (Prof. Kessler).

3.1 PROBLEM STATEMENT

In the early stages of the present work we were investigating the feasibility of using
GPGPU to perform the data-parallel portion of computations of all those applications that
could be expressed with a nesting of task-parallel and data-parallel skeletons.
If we run a quick search on how to optimize an application that makes use of a CUDA
enabled GPU, we will surely find this result [1: 5.1]:

It is worth to further divide the second point into:

• Optimize the usage of the device memory;

• Minimize data transfers between host and device.
Providing the application programmer with a parallel skeleton programming framework,
such as SkePU, should reduce the list of strategies to the last point which entirely depends
on the logic of the application itself. The remaining advices should be handled by the
implementation of each skeleton.
During the analysis of SkePU, in section 2.2, it has been shown how its skeletons
implementations take care of achieving the maximum performance in the device scope,
and how optimizations like lazy memory copying and subset transfers try to minimize
communications between host and device. But would be these two optimizations enough
in an application that continuously issues new tasks to the GPU from the CPU?

Performance optimization revolves around three basic strategies:
- Maximize parallel execution to achieve maximum utilization;
- Optimize memory usage to achieve maximum memory throughput;
- Optimize instruction usage to achieve maximum instruction throughput.

15

3.1.1 BEST-CASE SCENARIO ANALYSIS – NO MULTISTREAM

The following example could model one of the typical behaviors of an application working
on a stream of data produced on the host side. The for-loop is used to create new tasks
that will be sent to the GPU for computation. The user function takes the result of the
previous skeleton execution and reuses it as operand, coupled with the task produced on
the host in the i-th iteration. The result is stored overwriting the vres vector.
01 …
02 skepu::Vector<float> task(1000);
03 skepu::Vector<float> vres(1000, 0);
04 skepu::Map<foo_f> foo(new foo_f);
05 for(uint i = 0; i < N; i++){ // N = number of tasks
06
07 /* Populate the vector “task” */
08
09 // Use task as second operand for the skeleton
10 foo(vres, task, vres);
11 }
12 …

At steady state, the workflow of this application can be summarized in the following
points:

a) Production of a new task by the host thread
b) Synchronous Host-to-Device transfer of vector task
c) Execution of the foo skeleton on GPU and release of the host thread
d) New iteration of the for-loop

It is worth to notice that between point (c) and (d) SkePU's lazy memory copying
mechanism has prevented the useless Device-to-Host memory transfer of the vres vector.
However we can still identify two sources of inefficiency: the keyword synchronous
implies that the CPU has to wait for the Host-to-Device copy before issuing the kernel
execution and start the production of a new task; the Host-to-Device transfer itself tends
to be a bottleneck if we consider sufficiently large transfers over the limited bandwidth of
the PCIe interface with respect to the potential throughput of a GPU device.
Let us now try to calculate the GPGPU portion of the completion time of this application.
We will adopt the following conventions:

T comp
(CM 1) completion time without MultiStream;

Ts kernel service time;
THtD ,T DtH communication times required to perform a Host-to-Device or Device-to-

Host transfer, respectively.
The cost model has to leave out the time required to produce a task by the host:

T comp
(CM 1)

(N)=T HtD(vres)+N∗[THtD(task)+Ts]+T DtH (vres)

16

Assuming N sufficiently large and T HtD(vres)≈THtD(task)≈THtD , we obtain:

T comp
(CM 1)

(N)=N∗(T HtD+Ts) or, normalizing for one task:

(1a) T comp
(CM 1)

=T HtD+Ts .

Considering the set of applications that operates on a stream of data produced on the
host side, the application we have just analyzed exemplifies a best case scenario: for each
task, we only send one operand to the GPU and wait for a kernel execution. The result is
gathered from the host once we have exhausted all the tasks.

3.1.2 GENERAL WORST-CASE SCENARIO

To better understand the benefits that the MultiStream optimization brings to SkePU, we
need to analyze the cost of each of the supported skeletons in their worst-case scenario of
utilization. In particular, we need to take into account the possibility of passing multiple
operands to the skeleton responsible of computing each task, and we also have to
consider the case in which each produced result is immediately needed on the host side
for access or further computation.
The general workflow for the worst-case scenario can be summarized in the following
steps:

a) Production of a new task by the host thread
b) Synchronous Host-to-Device transfer of one or more operands
c) Execution of the proper skeleton on the GPU
d) Synchronous Device-to-Host transfer of the computed result
e) Jump to point (a)

The GPGPU portion of this computation is represented by points (b, c, d).
In the following sections, we will define a cost model taking into account the actually used
skeleton. In section 3.5, we will then make the same analysis with the addition of the
MultiStream optimization which, as we will see, enables asynchronous operations over
multiple CUDA Streams in order to overlap communication times and service times.

3.1.3 SMART CONTAINERS REPRESENTATION IN CUDA
Before moving to the cost model analysis of each skeleton, it is worth to spend a few
words on how SkePU's smart containers are represented in CUDA. What follows is to be
intended as a simplified version of the actual implementation which is spread across
multiple pages of code and isn't required for the remainder of this master thesis.
Both the Vector and the Matrix smart containers are represented in CUDA as a one-
dimension data-structure.

17

In particular
skepu::Vector<T> vect(N);

would translate to something like
T *host_vect, *dev_vect;
/* Allocate N*sizeof(T) bytes on the host memory pointed by *host_vect */
/* Allocate N*sizeof(T) bytes on the device memory pointed by *dev_vect */

The Matrix smart container follows the same schema
skepu::Matrix<T> vect(N, M);

would translate to something like
T *host_vect, *dev_vect;
/* Allocate N*M*sizeof(T) bytes on the host memory pointed by *host_vect */
/* Allocate N*M*sizeof(T) bytes on the device memory pointed by *dev_vect */

This common representation gives us the possibility to threat both smart containers as
the same entity, thus every analysis that follows will be valid for both of them.

3.1.3 MAP COST MODEL – NO MULTISTREAM

As explained in section 2.2.2, the skepu::Map skeleton can take up to three input
operands to produces one output. The cost of the GPGPU computation for one task can

be written as T comp
(CM 1)

=kTHtD+Ts+TDtH with 1≤k≤3 input operands that are actually

transferred from the host memory to the device one.
As will be shown in section 3.2, the usage of page-locked memory can let us make the

following assumption: T comm
(CM 1)

(N)≈T HtD≈T DtH . This assumption will always be valid in

the remainder of this master thesis since the usage of page-locked is mandatory for
MultiStream. Moreover, if we consider that in the Map skeleton both the operands and
the output are of the same length N and of the same type, we can approximate the
previous equation to:

(2a) T comp
(CM 1)

=(k+1)T comm(N)+Ts .

3.1.4 MAPREDUCE COST MODEL – NO MULTISTREAM

The skepu::MapReduce skeleton provides the same behavior of the skepu::Map one
with respect to the input operands. Its implementation requires that the last part of the
reduce is performed by the CPU. Calling Z the length of the output we obtain:

(3a) T comp
(CM 1)

=kT comm(N)+Tsmap+Tsreduce+T comm(Z) .

Considering a sufficiently large N, the Device-to-Host transfer cost can be omitted, thus:

T comp
(CM 1)

=kT comm(N)+Tsmap+Tsreduce .

18

We won't use this last equation in the MultiStream analysis because, as will be shown, N
will be divided by the number of streams used and Z will be multiplied instead.

3.1.5 MAPARRAY COST MODEL – NO MULTISTREAM

The skepu::MapArray skeleton accepts two input operands of different size. The first, of
length V, is entirely accessible by all threads. The second, of length N, is partitioned across
the threads becoming the object of the Map. The output has the same length of the
second component. The cost model can be written as:

(4a) T comp
(CM 1)

=T comm(V)+2T comm(N)+Ts .

3.2 PAGE-LOCKED MEMORY

In this section, it will be shown how, in certain systems, the communication times THtD

and T DtH can be slightly optimized through the usage of page-locked memory. This
optimization will not affect the cost models equations we've found, but only the
communication time values since the bandwidth may increase.
All the operative systems that supports CUDA make use of pageable (i.e. virtualized)
memory. Virtual memory segments are partitioned in pages which can be relocated,
without changing their virtual address, from the main system memory (e.g. RAM) to a
secondary storage device (e.g. hard disk) and viceversa. When a specific page is required
by a process running on the host, the memory management unit (MMU) of the CPU is
responsible of translating the virtual memory address to the physical one. If the page has
been swapped to disk, the MMU signals a page fault to the virtual memory manager
(VMM) of the operative system which will load the copy on the disk into the main
memory and then resume the computation.
CUDA capable devices aren't equipped with an IOMMU (so far), thus they need to
perform Direct Memory Access (DMA) using physical addresses. To be accessed directly,
the interested pages have to reside in physical memory and marked by the VMM as locked
(i.e. ineligible for eviction) [8: 3.8].

3.2.1 ASYNCHRONOUS OPERATIONS

The access to data residing on the host memory by the GPU can follow two possible paths
[Figure 4]:

• if the memory is pageable, data have to be copied first to a page-locked buffer by
the CPU (synchronous copy)

• if the memory is already page-locked using a specific CUDA memory allocation

19

function, the GPU can directly fetch the required data through DMA. The CPU only
needs to initialize the DMA controller with the amount of data to transfer and the
memory address to use. After that, it is free to perform other operations
(asynchronous copy).

To directly allocate page-locked memory, CUDA provides the cudaHostAlloc() function.
The data transfer can then be issued by the cudaMemcpyAsync() function.

3.2.2 PERFORMANCE EVALUATION

The advantage of using page-locked memory isn't limited to the possibility of performing
asynchronous transfers: by freeing the CPU from copying pageable memory to page-
locked buffers we also increase the data transfer rates in all those systems where the
bandwidth to perform a copy in the main memory is lower than the PCIe interface one.
To evaluate how the benefits of page-locked memory usage differ between different
system, we have measured the bandwidth (GB/s) of a 64MB data transfer performed on
two heterogeneous GPU-based machines:

A. 2 x AMD Opteron 6176 2.3 GHz CPUs with NVIDIA Tesla C2050 GPU
B. Intel Core i5-3210M 2.5 GHz CPU with NVIDIA GeForce GT630M GPU

As we can see in [Figure 5], the increase in bandwidth on the system with the more recent
Intel Core i5 CPU is almost negligible with respect to the two times benefit measured in
system (A).
The implementation of the SkePU smart containers already provides the application
programmer with the possibility of using page-locked memory (pinned in CUDA's jargon)
by defining the macro USE_PINNED_MEMORY.

20

3.2.3 LIMITS OF PAGE-LOCKED MEMORY AND MULTISTREAM

The usage of page-locked memory is mandatory for the implementation of MultiStream.
It should be noted that this requirement also limits the possibility to use MultiStream in
very specific and relatively uncommon scenarios, namely in all those applications where
the data-structures that need to be page-locked require nearly the same capacity as the
physical memory present in the targeted system. In these cases the operating system
would be left with insufficient physical memory to guarantee system stability and the
efficient execution of the other running applications.

3.3 CUDA STREAMS

Before entering the details of MultiStream design, we need to define what a stream is in
the CUDA parallel programming environment and how different generations of CUDA-
enabled devices schedule the work submitted to them by the hosting system.
A stream in CUDA represents a queue of operations guaranteed to be executed on the
device in the same order of issuing adopted in the host code.

3.3.1 SINGLE STREAM

When operations do not explicitly specify a stream, they are enqueued in the so-called
default stream. The default stream is a synchronized stream: no operation inside its queue
can start until all the other streams on the device have completed their execution.

21

Let us consider the following CUDA host code:
01 …
02 /* Allocate and populate a vector v of N floats */
03 /* Allocate a vector dev_v of N floats on the GPU */
04
05 cudaMemcpy(dev_v, v, N * sizeof(float), cudaMemcpyHostToDevice);
06 cuda_foo<<<1, N>>>(dev_v);
07 host_foo();
08 cudaMemcpy(v, dev_v, N * sizeof(float), cudaMemcpyDeviceToHost);
09 …

All the operations are issued sequentially to the GPU and are enqueued in the default
stream. In particular, cudaMemcpy is a blocking operation (section 3.2.1) whereas
cuda_foo is the kernel invocation which exhibits an asynchronous behavior: after its
execution starts on the device, the CPU is free to perform host_foo(). This behavior
easily enables overlapping between CUDA kernel and CPU executions.
CUDA provides the programmer with the possibility of using non-default streams. Let us
change the previous code to make use of a programmer-defined stream:
01 …
02 // Initialize and create CUDA stream cs
03 cudaStream_t cs;
04 cudaStreamCreate(&cs);
05
06 //Initialize and allocate a page-locked data-structure for our data of size
N
07 float *host_v;
08 cudaHostAlloc((void**)&host_v, N * sizeof(float), cudaHostAllocDefault);
09
10 /* Populate host_v */
11
12 /* Allocate a vector dev_v of N floats on the GPU */
13
14 cudaMemcpyAsync(dev_v, host_v, N*sizeof(float), cudaMemcpyHostToDevice, cs);
15 cuda_foo<<<1, N, sharedMemSize, cs>>>(dev_v);
16 host_foo();
17 cudaMemcpyAsync(host_v, dev_v, N*sizeof(float), cudaMemcpyDeviceToHost, cs);
18 cudaStreamDestroy(cs);
19 …

In addition to the stream management functions and parameters, we can notice two main
differences in this example:

• the memory on the host is allocated as page-locked with the cudaHostAlloc
function;

• the cudaMemcpyAsync function, after enqueing the data transfer on the cs stream,
immediately returns the control to the CPU.

Even though the code-complexity is significantly increased, the scheduling of the
operations on the GPU is exactly the same as the one in the default-stream example.

22

3.3.2 MULTIPLE STREAMS AND SCHEDULING

To analyze the behavior of the schedulers present in different generations of CUDA-
enabled devices, we need to consider a computation that makes use of multiple streams
and take into account the following property:
Operations queued in different CUDA streams may be interleaved.
In particular:

• devices with compute capability 2.0 or greater may execute kernels concurrently if
they operate on disjoint datasets and enough resources are available on the GPU;

• devices with compute capability 1.1 are equipped with one kernel engine and one
copy engine. In this case both Host-to-Device and Device-to-Host transfers are
performed sequentially by the only available copy engine;

• devices with compute capability 2.0 or greater have one kernel engine and two
copy engines. In this case one copy engine will take care of the Host-to-Device
transfers whereas the other will be used for the Device-to-Host transfers, enabling
concurrency between the two operations.

In the following two examples, we will consider four different kernels, operating on four
disjoint datasets and allocated in four different CUDA streams. The examples are
functionally equivalent.

Example 1 – Depth-first
01 …
02 /* Initialize and create four CUDA streams cs[i] */
03 /* Allocate and populate four page-locked datasets v[i] of size N */
04
05 for(uint i=1; i<=4; i++){
06 cudaMemcpyAsync(dev_v[i], h_v[i], N * sizeof(float),

cudaMemcpyHostToDevice, cs[i]);
07
08 /* Execute Kernel i on stream i */
09
10 cudaMemcpyAsync(h_v[i], dev_v[i], N * sizeof(float),

cudaMemcpyDeviceToHost, cs[i]);
11 }
12 …

Example 2 – Breadth-first
01 …
02 /* Initialize and create four CUDA streams csi */
03 /* Allocate and populate four page-locked datasets vi of size N */
04
05 cudaMemcpyAsync(dev_v1, h_v1, N*sizeof(float), cudaMemcpyHostToDevice, cs1);
06 cudaMemcpyAsync(dev_v2, h_v2, N*sizeof(float), cudaMemcpyHostToDevice, cs2);
07 cudaMemcpyAsync(dev_v3, h_v3, N*sizeof(float), cudaMemcpyHostToDevice, cs3);
08 cudaMemcpyAsync(dev_v4, h_v4, N*sizeof(float), cudaMemcpyHostToDevice, cs4);
09 cuda_foo1<<<1, N, sharedMemSize, cs1>>>(dev_v1);

23

10 cuda_foo2<<<1, N, sharedMemSize, cs2>>>(dev_v2);
11 cuda_foo3<<<1, N, sharedMemSize, cs3>>>(dev_v3);
12 cuda_foo4<<<1, N, sharedMemSize, cs4>>>(dev_v4);
13 cudaMemcpyAsync(h_v1, dev_v1, N*sizeof(float), cudaMemcpyDeviceToHost, cs1);
14 cudaMemcpyAsync(h_v2, dev_v2, N*sizeof(float), cudaMemcpyDeviceToHost, cs2);
15 cudaMemcpyAsync(h_v3, dev_v3, N*sizeof(float), cudaMemcpyDeviceToHost, cs3);
16 cudaMemcpyAsync(h_v4, dev_v4, N*sizeof(float), cudaMemcpyDeviceToHost, cs4);
17 …

As we can see, the two examples only differ in the order with which the operations are
issued to the GPU.

Let us make the following assumptions:
• Tsi=Ts ∀ i , all kernels have the same service time

• T comm=Ts , data transfers and kernels require the same time to be completed

• Ts=τ

The execution for both examples without CUDA stream usage would be sequential, with

T comp
(seq)

=12 τ .

Let us now analyze the scheduling behavior on devices with different compute capabilities
taking into account the properties listed at the beginning of this section.
[Figure 6] shows that for devices with compute capability 1.1 the scheduling behavior of
example 1 is the same of the sequential one. This is due to the presence of only one copy
engine: the i-th+1 Host-to-Device transfer is scheduled immediately after the i-th Device-
to-Host transfer which, in turn, to start needs the i-th kernel execution to be completed.
The breadth-first scheduling instead, enables concurrency of all the operations resulting in

T comp
(ex 1)

(1.1)=6 τ .

The scheduling behavior of devices with compute capability 2.0 or greater is different: the
depth-first example is the optimal one given the presence of two copy engines. The
breadth-first approach, instead, could be partially inefficient because the scheduler tries
to execute all the kernels in parallel when there are available resources (i.e. idle streaming
multiprocessors). In this case the scheduler delays the completion signal of kernels
concurrently running until all of them are actually completed. This, in turn, delays all the
Device-to-Host transfers. The completion time in the worst-case scenario (i.e. all the

different kernels run concurrently) becomes T comp
(ex 2)

(2.0)=9 τ .

As a further notice, it is important to specify that devices with compute capability 3.5 or
greater introduce a scheduler that doesn't make any difference between the two code
snippets: the result is in both cases the optimal one.

24

3.4 MULTISTREAM DESIGN AND IMPLEMENTATION

MultiStream is an optimization that exploits the intrinsic data-parallelism of each task and
distributes it among two phases. In the first phase, before being sent to the device for the
skeleton execution, the task is partitioned in as many subsets as the number of available
CUDA Streams. In the second phase, SkePU executes the chosen skeleton on each of the
task subsets. The distribution of the task subsets among different streams enables the
overlap of communications times and service times.

3.4.1 DESIGN

MultiStream is an implementation of the master/worker template [6: 8.4] operating on
the host side where:

• the master is the host thread, which is responsible of partitioning the skeleton
operands into n subsets and schedule a skeleton execution for each of the n
different CUDA Streams;

• the workers are the set of n CUDA Streams. A sub-task is assigned to each worker
which delegates the execution of the Map, MapReduce or MapArray skeleton on
the device.

It is worth to notice that, even though the skeleton user function is the same for all the
partitions, the kernel executions issued across different streams will still be considered
separated and eligible for concurrency.
In the selection of the best scheduling strategy, we had to take into account the broad
range of SkePU's supported architectures, therefore we have adopted the breadth-first
schema seen in the example 2 of section 3.3.2. The breadth-first strategy should
guarantee the optimal increase of performance over all the CUDA device generations,

25

including those with compute capability between 2.0 and 3.2. This assumption can be
justified considering the fact that the SkePU run-time support will determine the best
possible amount of threads per block and blocks per grid for each kernel call, therefore
the usage of the device resources should be maximized and the concurrency of different
kernel executions avoided.

3.4.2 BEST-CASE SCENARIO ANALYSIS – WITH MULTISTREAM

We are now ready to redefine the cost model found in section 3.1.1.

We will use T comp
(CMn) to denote the cost model completion time with n streams.

In that case we were analyzing a best-case scenario where only one operand was required
to issue a new task and the result was collected by the host side only when all the tasks
were exhausted. The cost model equation we found was:

(1a) T comp
(CM 1)

=T HtD+Ts

with MultiStream, the Host-to-Device transfer and the kernel execution are overlapped,
thus we can rewrite it as:

(1b) T comp
(CMn)

=
THtD

n
+
Ts
n

+max [(THtD−
THtD

n
) ,(Ts−

Ts
n

)] .

Let us, only for the sake of clarity, introduce the limit for n→∞ on (1b):

lim
n→∞

T comp
(GPGPU)

= lim
n→∞

T HtD

n
+
Ts
n

+max[(T HtD−
T HtD

n
),(Ts−

Ts
n

)]=max [T HtD ,Ts] .

In other words, we move from a case in which the completion time of a task is the sum of
both the time needed to transfer the task on the device and the time needed to serve it,
to a case in which it just is the maximum of these two timings. In the best-case scenario, if
the kernel is sufficiently complex to match the amount of time spent in communication
we may achieve an ideal two times speedup.
In a real application this is obviously impossible because we don't have infinite workers at
our disposal. The maximum amount of CUDA Streams varies according to the compute
capabilities of the target GPU:

Compute
Capability

2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3

Streams 16 4 32 16

26

3.4.3 IMPLEMENTATION

In this section we discuss the MultiStream implementation in SkePU. We will adopt some
pseudo-code and use different, explicit, variable names with respect to the ones used in
the actual implementation code, to make sure the discussion remains understandable.
The reason behind this choice resides in the fact that MultiStream is fully integrated with
the other SkePU features to ensure backward compatibility, and the usage of the actual
code would require an in-depth analysis of many features such as the specific
implementation of the smart containers, the mechanism behind the selection of the
amount of threads to be used for a given kernel call, the way smart containers are
organized to keep track of which are the actually changed elements after a computation,
etc. All those mechanism are not the object of this master thesis and will be left out of the
discussion.
We will present the implementation of the skepu::Map skeleton with binary user function
(i.e. two input operands, one output). The implementation of the other user functions can
be easily derived from this one and, for what concerns the other skeletons, we will make
the necessary distinctions when we will analyze their cost model with the MultiStream
optimization taken into account.
The implementation of MultiStream can be divided in two main steps.
First we had to understand how SkePU handles its smart containers and find all the
memory management functions used to transfer data in and out of the device memory.
These functions don't operate on the smart containers directly, but on device_pointers
which are used to map a specific portion of memory on the host to its correspondent copy
on the device. The subset transfer optimization, described in section 2.2.4, can use up to
10 device_pointers to partition each smart container. To implement MultiStream, we
first had to properly modify all the memory management functions such that we could
define which stream to use for a specific memory update.
In the second step, we implemented the master/worker template in each skeleton. We
used one device_pointer for each partition of the operands and output. By doing so we
increased the maximum amount of tracked device_pointers for each smart container
from 10 to 32 (maximum supported CUDA Streams) while maintaining the possibility for
subset transfer to further divide each MultiStream partition if needed. To the increase in
the amount of tracked partitions corresponds an increase in the overhead due to the
smart containers usage. As will be shown in the implementation code, we adopted the
breadth-first model to schedule the page-locked allocation and asynchronous transfer of
each device_pointer to the proper CUDA Stream. The kernel is then invoked n times.
As an additional note which didn't require much effort, we added a function to initialize a
specific amount of CUDA Streams to the class that manages the GPU initialization.

27

skepu::Map skeleton implementation with Binary user function
Let us start by recalling the code required to initialize and perform a skepu::Map
skeleton:
01 BINARY_FUNC(foo_f, float, a, b, return a op b);
02 int main(){
03 // Initialize three vectors
04 skepu::Vector<float> v1(1000);
05 skepu::Vector<float> v2(1000);
06 skepu::Vector<float> vres(1000);
07 /* Populate vectors v1 and v2 */
08 // Instantiate the Map skeleton and perform the foo_f user function
09 skepu::Map<foo_f> foo(new foo_f);
10 foo(v1, v2, vres);
11 /* Print the result */
12 return 0;
13 }

In the 1.2 Beta version of SkePU, to enable MultiStream, the application programmer had
to define the USE_PINNED_MEMORY and USE_MULTISTREAM macros. In the v1.2 official
release the former is enough.
In section 2.2.1 we have seen how the BINARY_FUNC macro expands, and section 3.1.3
gave a general idea on the CUDA representation of the skepu::Vector.

Let us now analyze what happens when the skepu::Map is defined:
01 template <typename MapFunc>
02 Map<MapFunc>::Map(MapFunc* mapFunc){
03 …
04 #ifdef SKEPU_CUDA
05 cudaDeviceID = Environment<int>::getInstance()->bestCUDADevID;
06 backEnd.maxThreads = m_environment->m_devices_CU.at(0)->getMaxThreads();
07 backEnd.maxBlocks = m_environment->m_devices_CU.at(0)->getMaxBlocks();
08 #endif
09 …
10 }

The SkePU run-time support uses the Environment class to select and initialize the best
(i.e. with higher CUDA compute capabilities) CUDA device available in the system. Then
stores some useful information in the backEnd structure, that will be used to determine
how many threads per block and blocks per grid will be used for a specific kernel
execution.

As far as MultiStream is concerned, during the device initialization we check how many
CUDA streams are supported, then we initialize and start them:
01 …
02 cudaStream_t m_streams[MAX_POSSIBLE_CUDA_STREAMS_PER_GPU]; // 32
03 …
04 Device_CU(unsigned int id){
05 m_deviceID = id;
06 cudaSetDevice(m_deviceID);

28

07 initDeviceProps(id);
08 #ifdef USE_PINNED_MEMORY
09 for(unsigned int i=0; i<numConcurrKernelsSupported; i++)
10 cudaStreamCreate(&(m_streams[i]));
11 #endif
12 …
13 }
14
15 void initDeviceProps(unsigned int device){
16 cudaGetDeviceProperties(&m_deviceProp, device);
17 …
18 numConcurrKernelsSupported = getMaxConcurKernelsSupported(m_deviceProp);
19 …
20 }

The getMaxConcurKernelsSupported function checks the compute capabilities of the
device and returns the value according to the table presented in section 3.4.2.

We can now analyze what happens when the skeleton is executed foo(v1, v2, vres):
01 template <typename MapFunc>
02 template <typename T>
03 void Map<MapFunc>::CU(Vector<T>& in1, Vector<T>& in2, Vector<T>& output){
04 CU(in1.begin(), in1.end(), in2.begin(), in2.end(), output.begin());
05 }

As we can see, another function CU is called. The same call is made when the Matrix smart
container is used. The CU function is not reported: it only acts as a selector of behavior. It
checks for the USE_PINNED_MEMORY macro definition and calls the mapMultiStream_CU
function. The parameters the CU function takes are references to the first and last element
of the input operands and the start of the output smart container. Through these
parameters, SkePU defines iterators that are used to access the two smart containers. The
copies on the device memory can be accessed and modified using the device_pointer
class. This class provides different memory management functions. We will describe the
functions that have been modified or extended to implement MultiStream.

Let us start from the updateDeviceCU function in the Vector (Matrix) smart container
class:
01 template <typename T>
02 typename Vector<T>::device_pointer Vector<T>::updateDevice_CU(T* start,

size_type numElements, unsigned int deviceID,
bool copy, unsigned int streamID){

03 …
04 /* Check for the presence of the specified range
05 * (i.e. [start, start+numElements]) on the device
06 */
07
08 /* If the range is not found, create a device_pointer<T> dev_pointer
09 * with parameters (start, numElements) and allocate it
10 */
11

29

12 /* Else make sure that the data it contains are marked as invalid */
13
14 // Performed in both cases
15 if(copy){
16 dev_pointer.copyData(dev_pointer, deviceID, streamID);
17 }
18 …
19 }

The device_pointer contains the addresses of both the copy on the host and the copy
on the device memory.

The call to copyData is the one that issues the actual data transfer:
01 template <typename T>
02 void device_pointer<T>::copyData(device_pointer<T> data, unsigned int

deviceID, size_t streamID){
03 …
04 #ifdef USE_PINNED_MEMORY
05 cudaMemcpyAsync(data.dev_start, data.host_start, data.size,

cudaMemcpyHostToDevice,
(m_devices_CU.at(deviceID)→m_streams[streamID]));

06 …
07 }

We can finally analyze the mapMultiStream_CU function, which is the one implementing
the master component of MultiStream. All the required details are provided as comments:
01 /*!
02 * Applies the Map skeleton to two ranges of elements specified by iterators.
03 * Result is saved to a separate output range.
04 * The calculations are performed by one host thread using one CUDA device
05 * as backend.
06 * HtD transfers and Kernel execution are partitioned across multiple CUDA
07 * Streams to achieve overlap.
08 *
09 * The skeleton must have been created with a binary user function.
10 *
11 * \param input1Begin An iterator to the first element in the first range.
12 * \param input1End An iterator to the last element of the first range.
13 * \param input2Begin An iterator to the first element in the second range.
14 * \param input2End An iterator to the last element of the second range.
15 * \param outputBegin An iterator to the first element of the output range.
16 * \param deviceID Integer specifying the which device to use.
17 */
18 template <typename MapFunc>
19 template <typename Input1Iterator, typename Input2Iterator, typename

OutputIterator>
20 void Map<MapFunc>::mapMultiStream_CU(Input1Iterator input1Begin,

Input1Iterator input1End, Input2Iterator input2Begin,
Input2Iterator input2End, OutputIterator outputBegin,
unsigned int deviceID){

21
22 // Set the device on which the skeleton will be performed
23 CHECK_CUDA_ERROR(cudaSetDevice(deviceID));
24

30

25 // Get the amount of CUDA Streams supported by the device
26 size_t numKernels = m_devices_CU.at(deviceID)→getNoConcurrentKernels();
27
28 // Determine the size of the operands partitions
29 size_t n = input1End - input1Begin;
30 if(n < numKernels)
31 numKernels = n;
32 size_t numElemPerSlice = n / numKernels;
33 size_t rest = n % numKernels;
34
35 // Declare three arrays containing the device_pointers to each operand
36 // partition
37 typename Input1Iterator::device_pointer in1_mem_p[numKernels];
38 typename Input2Iterator::device_pointer in2_mem_p[numKernels];
39 typename OutputIterator::device_pointer out_mem_p[numKernels];
40
41 // First allocate CUDA memory without making any copy
42 size_t i, numElem;
43 for(i = 0; i < numKernels; ++i){
44 if(i == numKernels-1)
45 numElem = numElemPerSlice+rest;
46 else
47 numElem = numElemPerSlice;
48
49 in1_mem_p[i] =

updateDevice_CU((input1Begin+i*numElemPerSlice).getAddress(),
numElem, deviceID, false, i);

50 in2_mem_p[i] =
updateDevice_CU((input2Begin+i*numElemPerSlice).getAddress(),

numElem, deviceID, false, i);
51 out_mem_p[i] =

updateDevice_CU((outputBegin+i*numElemPerSlice).getAddress(),
numElem, deviceID, false, i);

52 }
53
54 // Breadth-first memory transfers and kernel executions
55 //First operand memory transfer
56 for(i = 0; i < numKernels; ++i){
57 if(i == numKernels-1)
58 numElem = numElemPerSlice+rest;
59 else
60 numElem = numElemPerSlice;
61
62 in1_mem_p[i] =

updateDevice_CU((input1Begin+i*numElemPerSlice).getAddress(),
numElem, deviceID, true, i);

63 }
64 //Second operand memory transfer
65 for(i = 0; i < numKernels; ++i){
66 if(i == numKernels-1)
67 numElem = numElemPerSlice+rest;
68 else
69 numElem = numElemPerSlice;
70
71 in2_mem_p[i] =

updateDevice_CU((input2Begin+i*numElemPerSlice).getAddress(),
numElem, deviceID, true, i);

31

72 }
73
74 //Kernel executions
75 for(i = 0; i < numKernels; ++i){
76 if(i == numKernels-1)
77 numElem = numElemPerSlice+rest;
78 else
79 numElem = numElemPerSlice;
80
81 /* Find the best number of threads and blocks
82
83 MapKernelBinary_CU<<<numBlocks, numThreads, 0,

(m_devices_CU.at(deviceID)→m_streams[i])>>>
(*m_mapFunc, in1_mem_p[i]→getDeviceDataPointer(),
in2_mem_p[i]→getDeviceDataPointer(),
out_mem_p[i]→getDeviceDataPointer(), numElem);

84
85 // Notify to the device_pointers of the output partitions that
86 // their data has been updated such that the copy on the host
87 // memory is marked as invalid
88 out_mem_p[i]->changeDeviceData();
89 }
90 }

The presented code doesn't cover the Device-to-Host transfers. Their implementation is
proposed as future work because requires an almost complete rewriting of the smart
containers functions that trigger the update of the host copy. As of SkePU version 1.2, the
data transfer is entirely issued to m_streams[0], thus happens sequentially. The
scheduling and overlapping behavior is presented in [Figure 7].

In the cost model analysis we will take this limitation into account and we will provide two
different equations: one, ideal, which includes a full MultiStream implementation, and
one, effective, which considers the lack of overlapping of the Device-to-Host transfers
operations.

32

3.4.4 MAP COST MODEL – WITH MULTISTREAM

Let us recall the cost model for the skepu::Map skeleton we've found in section 3.1.3:

(2a) T comp
(CM 1)

=(k+1)T comm(N)+Ts with 1≤k≤3 input operands and N the number

of elements of each operand.
Fixed n the number of available CUDA Streams on the device we get:

(2b) T comp
(id)

=min[(k+1)T comm(
N
n

) ,
Ts
n

]+max [kT comm(N) ,Ts]

(2c) T comp
(CMn)

=min[k Tcomm(
N
n

) ,
Ts
n

]+max[k T comm(N), Ts]+T comm(N)

3.4.5 MAPREDUCE COST MODEL – WITH MULTISTREAM

Before getting into the cost model analysis, let us describe the main differences in the
implementation of skepu::MapReduce with respect to skepu::Map.
The map phase is exactly the same with the sole exception that a temporary
device_pointer is used to store its result.
The reduce kernel is then executed for each stream: it applies the reduce function to
produce one element per block, then issues a Device-to-Host transfer to complete the
reduce on the host side. In this transfer, MultiStream loses some performance: the
number of blocks and threads used to initialize the kernel execution is constant in the
SkePU Reduce implementation. This means that, calling Z the number of blocks per
thread, we transfer nZ elements with MultiStream instead of Z only.

The cost model equation without MultiStream was:

(3a) T comp
(CM 1)

=kT comm(N)+Tsmap+Tsreduce+T comm(Z) .

With MultiStream we get T comp
(id)

=T comp
(eff) since the final part of the reduce is computed on

the host side, thus:

(3b) T comp
(CMn)

=min[k Tcomm(
N
n

) ,
Tsmap
n

]+max[k T comm(N) , Tsmap]+Tsreduce+nT comm(Z)

3.4.6 MAPARRAY COST MODEL – WITH MULTISTREAM

The implementation of the skepu::MapArray is similar to the one presented in section
3.4.3, but we need to consider that the first operand can't be partitioned because it is
entirely needed for the computation of each sub-task.

33

The cost model equation found without MultiStream was:

(4a) T comp
(CM 1)

=T comm(V)+2T comm(N)+Ts , with V size of the first input.

With the MultiStream optimization it becomes:

(4b) T comp
(id)

=T comm(V)+min[2T comm(
N
n

) ,
Ts
n

]+max [T comm(N) ,Ts]

(4c) T comp
(CM)

=Tcomm(V)+min [T comm(
N
n

) ,
Ts
n

]+max [T comm(N) ,Ts]+T comm(N)

3.5 FINAL REMARKS

We have shown that MultiStream can potentially provide a significant speedup in a task
computation by ideally reducing the sum of the time needed to transfer the task on the
GPU and the time needed to execute the kernel, to the max between the two of them.
MultiStream doesn't currently support the overlap of the Device-to-Host transfers which
would further improve the performance, but with some changes to the smart containers
is definitely possible to implement the complete optimization.
In the next chapter, we will test MultiStream and the calculated cost models against
various benchmarks to prove their correctness.

34

4. MULTISTREAM TESTING

In this chapter, we discuss some experimental results aimed at assuring the functionality
and performance of the MultiStream implementation. We will start by benchmarking the
SkePU skeletons with and without MultiStream to check the correctness of the computed
cost models. We will then introduce NevMap, a standalone CUDA implementation of the
Map skeleton, built to show the full potential of MultiStream by enabling also the overlap
of the Device-to-Host transfers. Finally, we will make a brief introduction to FastFlow, a
stream-parallel programming framework, and we will use it to issue a stream of tasks to
SkePU to show how MultiStream would perform in a real use-case scenario.

4.1 TESTING PLATFORMS AND MEASURING METHODS

For the sake of completeness, let us recall the specifics of the two heterogeneous GPU-
based systems we have used for testing.

System A System B

Name Titanic c7

CPU Dual AMD Opteron 6176
2.3 GHz 12 Cores

Intel Core i5-3210M
2.5 Ghz 2 Cores + HyperThreading

RAM 32 GB DDR2 6 GB DDR3

GPU NVIDIA Tesla C2050
56 SM – 3GB GDDR5

NVIDIA GeForce GT630M
12 SM – 1GB GDDR5

Comp.Capability 2.0 (16 CUDA Streams) 2.0 (16 CUDA Streams)

The vast majority of the presented tests returns the same performance figures on both
systems, therefore we will show the results from Titanic. The second system, c7, has been
taken into account in section 3.2.2 when we measured the performance of page-locked
memory with respect to the pageable one, and will be considered again in those tests in
which a lower number of streaming multiprocessors is required to gather further details.

35

All tests are performed on a modified SkePU version that gives us the possibility to enable
the page-locked optimization without necessarily using MultiStream. This guarantees that
the THtD≈TDtH≈T comm relation introduced in section 3.1.3 is valid, and that any
measured speedup is due to the MultiStream optimization only.
The measured performances make use of two different probes:

• We use the sys/time class (gettimeofday) in the skeleton implementations to
measure the overhead of setting up a computation with MultiStream.

• CUDA Events are, instead, adopted to benchmark the operations that run
asynchronously on the device, as suggested by NVIDIA.

We will also adopt the following conventions:

T X
(1S) experienced time of performance index X without MultiStream

T X
(MS) experienced time of performance index X with MultiStream

4.2 MULTISTREAM OVERHEAD

To evaluate the overhead of MultiStream, we have inserted probes in SkePU and taken
measures with different values of adopted CUDA Streams, operand size, and number of
operands. Given the complexity of the SkePU library, we weren't able to identify every
source of overhead, but a large portion seems to be linearly dependent on the number

and size of partitions involved in a skeleton computation. We will use TOH
(MS) to denote

the overhead we were able to actually measure and identify.

On Titanic TOH
(MS)

≈0.125ms for each smart container of 16 million float elements and

each stream adopted in the computation of one task.
Another portion of the overhead seems to be directly proportional to the complexity of
the function used for the skeleton computation. Since the user function entirely depends
on the application logic, we couldn't define a generalized function to model it.

4.3 SKEPU SKELETONS BENCHMARKS

In this section, we test the implementation of MultiStream for each of the supported
skeletons. The benchmarking applications apply complex (synthetic) user functions such

that Ts(1 S)≈T comm
(1S) (slightly lower, actually).

The performance measurements used to test the correctness of the cost models are taken
using input operands of length N=16M with elements of float type.

36

4.3.1 MAP PERFORMANCE MEASUREMENT

Let us recall the cost model of the skepu::Map with MultiStream found in section 3.4.4
and include the overhead evaluated in section 4.2:

(2c) T comp
(CMn)

=min[k Tcomm
(1S)

(
N
n

) ,
Ts(1S)

n
]+max [k Tcomm

(1S)
(N) , Ts(1S)

]+T comm
(1S)

(N)+TOH
(MS)

The measured performance indexes without MultiStream are:

T comp
(1S)

=55.4ms , Ts(1 S)=17.2ms , T comm
(1S)

(N)=19.1ms

With MultiStream instead: TOH
(MS)

=4ms , T comp
(MS)

=45.5ms , resulting in a 21.7% speedup.

Let us now substitute the retrieved data in (2c) knowing that k=1:

T comp
(CMn)

=min[
19.1
16

+
17.2
16

]+max [19.1,17.2]+19.1+4=43.3ms

The cost model seems to reliably approximate (95.2%) the effective performance.

4.3.2 MAPREDUCE PERFORMANCE MEASUREMENT

The measured performance indexes of the skepu::MapReduce skeleton execution
without MultiStream are:

T comp
(1S)

=55.6ms , Tsmap
(1 S)

=13ms , Tsreduce
(1 S)

=4.4ms , T comm
(1S)

(N)=19.1ms

With MultiStream instead: T comm
(1S)

(nZ)=1.2ms , TOH
(MS)

=6ms , T comp
(MS)

=52.3ms

The speedup in this case is the 6.3%.
Substituting in the cost model equation with k=2 we have:

(3b) T comp
(CMn)

=min[k Tcomm
(1S)

(
N
n

) ,
Tsmap

(1S)

n
]+max [k Tcomm

(1S)
(N) , Tsmap

(1S)
]+Tsreduce

(1S)
+nT comm

(1S)
(Z)+TOH

(MS)

T comp
(CMn)

=min[2
19.1
16

,
13
16

]+max[2∗19.1 ,13]+4.4+1.2+6=50.6ms

The worse result with respect to the Map skeleton is caused by two main factors:
• The overhead is the one expected from the usage of (k+1) smart containers. This is

actually the case since we have to consider the two input operands (k) and the
temporary data-structure that contains the output of the map phase.

• In section 3.4.5, we have seen that the parameters used by SkePU to initialize the
Reduce kernel are constant. This implies that for each one of the n Reduce
executions, we setup a new communication to perform the Device-to-Host transfer
of the Z elements that will be used to complete the reduction phase on the host
side, resulting in an additional source of overhead.

Also in this case, the cost model seems to correctly approximate (96.7%) the effectively
measured performance.

37

4.3.3 MAPARRAY PERFORMANCE MEASUREMENT

In this test we have used as first operand (i.e. the array fully accessible by each device
thread) a vector of length V=192. This value ensures that the kernel service time is
close to the communication time of the second operand. Even though V is small, the time
required to transfer the vector is particularly high because we are actually paying the
setup of the transfer instead of the transfer itself.
The measured performance indexes without MultiStream are:

T comp
(1S)

=56.3ms , Ts(1 S)=18.1ms , T comm
(1S)

(V)=0.1ms , T comm
(1S)

(N)=19.1ms

With MultiStream instead: T comp
(MS)

=46.3ms , TOH
(MS)

=4ms

The achieved speedup is similar to the one experienced with the Map skeleton: 21.6%.
Substituting in the cost model equation found in section 3.4.6, we get:
(4c)

T comp
(CMn)

=T comm
(1S)

(V)+min [T comm
(1S)

(
N
n

) ,
Ts(1 S)

n
]+max[T comm

(1S)
(N), Ts(1S)]+T comm

(1S)
(N)+TOH

(MS)

T comp
(CMn)

=0.1+min[
19.1
16

,
18.1
16

]+max[19.1,18 .1]+19.1+4=43.4ms

In this case the cost model approximation seems to be slightly different with respect to
the experienced completion time (93.7%). We didn't have time to identify and include any
additional source of overhead, but we still think that the cost model is sufficiently reliable
for our purposes.

4.3.4 SYNTHETIC BENCHMARKS CONCLUSIONS

The performed synthetic benchmarks have shown that the SkePU implementation of
MultiStream behaves as predicted by our cost models and is able to provide a significant
speedup (>20%) in both the Map and MapArray cases.
The result obtained for the MapReduce case is less important but remains positive. We
didn't have time to code a better implementation but we believe that further
optimizations are possible. In particular, it should be investigated the possibility of
performing a single Reduce, using only one stream, after all the Map kernels executions
have been completed. This way only one Device-to-Host communication with a small
payload would be setup and performed.

4.4 STANDALONE MULTISTREAM PERFORMANCE

In this section we compare SkePU performance against NevMap, a standalone
implementation of the Map skeleton which provides the complete MultiStream
functionality (i.e. also Device-to-Host transfers may be overlapped). The purpose of this

38

test is to evaluate the potential performance improvement that SkePU may achieve
provided a full MultiStream implementation.

4.4.1 NEVMAP BENCHMARK OVERVIEW

The programmable interface of NevMap acts as an easy-to-use wrapper for CUDA. It is
inspired by SkePU, although it trades off many of the facilities that make SkePU
programming model so high-level and portable, for a higher control over the behavior of
the CUDA architecture. This obviously isn't in line with the principles of the skeleton based
parallel programming approach, but it will serve our testing purposes.
A detailed description of NevMap, along with the full source code can be found in
Appendix A.
Like in section 4.3, the benchmarking application applies a complex user functions such

that Ts(1 S)≈T comm
(1S) . In particular, it is a two-input one-output function used to instantiate

a Map skeleton that takes two operands of length N=16M . The computation is
expressed by the following code:
01 FUNC_2i1o(foo, float, a, b, return /* complex function f(a,b) */;)
02 int main(void) {
03 float *in1, *in2, *out;
04 size_t numElements = 16000000;
05 cudaHostAlloc((void**) &in1, numElements * sizeof(float),

cudaHostAllocDefault);
06 cudaHostAlloc((void**) &in2, numElements * sizeof(float),

cudaHostAllocDefault);
07 cudaHostAlloc((void**) &out, numElements * sizeof(float),

cudaHostAllocDefault);
08
09 /* Populate the two input vectors */
10
11 // Initialize the Device, CUDA Streams and Map skeleton
12 NevMap<float, foo> nevmap(in1, in2, out, new foo, numElements);
13
14 // Transfer operands and execute the map using a Depth-first schedule
15 // The output is asynchronously sent to the host as soon as available
16 nevmap.transferExecuteDF();
17 /*
18 * Any operation on different data can be performed by the CPU here
19 */
20 // Explicitly make sure that the output is in the host memory
21 nevmap.synch();
22 return 0;
23 }

It can be observed that this code resembles the one of a typical SkePU application,
although cudaHostAlloc has to be explicitly used to allocate page-locked memory since
no smart containers are available, and we need to call the synch function to make sure
that the device has finished computing the Map skeleton and the result has been fully
transferred to the host memory.

39

4.4.2 COMPLETE MULTISTREAM PERFORMANCE

Let us list the measured performance indexes. We will also compare them with our cost
model to enforce its correctness with a different function and one more operand.
Without MultiStream we get:

T comp
(1S)

=77.5ms , Ts(1 S)=20.2ms , T comm
(1S)

(N)=19.1ms

With the partial MultiStream SkePU implementation: T comp
(MS)

=67.7ms , TOH
(MS)

=6ms

Taking into account its stand-alone implementation, NevMap doesn't suffer any of the
overheads caused by the management of smart containers or by the other SkePU
features. Therefore, to be as precise as possible in our evaluation, we will need to use a

derived completion time T comp
(NevD)

=T comp
(Nev)

+TOH
(MS)

+D where T comp
(Nev) is the actual NevMap

completion time and D=T comp
(MS)

−T comp
(CMn).

Solving the (2c) cost model we get T comp
(CMn)

=64.6 (95.4%), thus D=3.1ms .

NevMap effective completion time is T comp
(Nev)

=47.4 from which we derive:

T comp
(NevD)

=56.5ms

[Figure 8] shows the benefit a full implementation of MultiStream would give to SkePU.
The Device-to-Host transfers cut out a large portion of the potentially achievable speedup
(up to 37%). We also plotted the actual NevMap speedup which reaches the 63%. This
value testifies how an increase in programmability and portability affects the potential
performance achievable with a lower-level solution, but it also has to be seen as a target
for further optimizations of the SkePU backend.

Figure 8: Potential MultiStream Speedup

SkePU 1S

SkePU MS

NevMap Derived

NevMap Effective

50.00% 75.00% 100.00% 125.00% 150.00% 175.00%

100.00%

114.48%

137.17%

163.50%

40

4.5 REAL STREAM-PARALLEL USE-CASE BENCHMARK

In this section we will briefly introduce FastFlow, a stream-parallel programming
framework, which we use to issue a stream of tasks to SkePU. We will then show how
SkePU performs with and without MultiStream using an application that computes the
Luminance Greyscale algorithm of a stream of images.

4.5.1 FASTFLOW

FastFlow is a C++ stream-parallel programming framework developed and maintained by
professor Massimo Torquati (Pisa) and professor Marco Aldinucci (Torino) at the
Department of Computer Science of the University of Pisa and Torino, Italy.
FastFlow is designed to promote skeleton based parallel programming, providing the
application programmer with a stack of layers that progressively abstracts out the
development of parallel applications [7]. Its run-time support is implemented through
nonblocking lock and fence-free algorithms to guarantee an efficient exploitation of high
frequency streaming and fine-grain parallelism. Sequential code can be reused to program
the logic of high-level patterns (e.g. parallel-for, stencil-reduce, farm-with-feedback) and
core patterns (farm, pipeline, loopback) designed to easily exploit parallelism out of
sequential applications. Moreover, application programmers are given the possibility to
design their own patterns through the definition of a graph made of ff_nodes (i.e.
processes) and channels (i.e. units devoted to the synchronization and communication
between ff_nodes).

4.5.2 GREYSCALE

In our case we use FastFlow to implement a four-stage pipeline that produces a stream of
sRGB images on the host side and sends them to the device. The GPGPU portion of the
application is implemented using SkePU which applies a pixel-by-pixel Map skeleton to
convert the image from color to grey. The result is then transferred to the host for further
computation.
The workflow of the application can be represented by [Figure 9]:

41

• S1 is the first stage of the FastFlow pipeline, responsible of loading/generating the
sRGB image, create a task out of it (it can be the image plus additional data, for
example) and send a pointer of the task out to the next stage.

• S2 receives the task and demands the computation of Greyscale to SkePU. Since
the copy on the host side is not accessed, the task can be sent to the next stage as
soon as the skepu::Map function has returned (asynchronously).

• S3 is a dummy stage. It has been included to explicitly show that the CPU can
concurrently process any other function on the task data as long as they are
independent of the image sent to the device. Once the S3 computation is done, it
sends the task on the next and final stage.

• GPGPU represents the skepu::Map computation on the device, which can happen
in parallel with S3 on the host side.

• S4 is the final stage which collects the result of the GPGPU computation, any other
result that S3 may have computed, and concludes the computation (e.g. by
showing or storing the greyscale image).

The Greyscale algorithm applies three functions pixel-by-pixel, to each of the RGB
channels of the image. We are assuming the images are in the sRGB colorspace [11],
which means they are gamma compressed [12].
The first function applies a gamma expansion. The second one computes the new pixel
value according to the BT.709 ITU-R recommendation which weights each color channel
according to the human eye perception. The third function, finally, applies a gamma
compression. This is the algorithm used, with little variations, by many image processors
such as GIMP or Adobe Photoshop to automatically convert color images into greyscale
ones. The complete source code of the application can be found in Appendix B.

4.5.3 MEASURED PERFORMANCE VS COST MODEL

In this section we compare the performance measurements taken on both Titanic and C7
systems against out cost model. With the former system, the Greyscale algorithm takes
less time to complete with respect to the time needed to transfer the image to and from
the device. The latter system, instead, shows the opposite behavior giving us the
possibility to test our cost model changing the predominant factor.
The measurements are taken for an image of 1920x1080px (i.e. vector length = 2M)

T comp
(1S) Ts(1 S) T comm

(1S) TOH
(MS) T comp

(MS) T comp
(CM) Approx%

Titanic 18.86ms 3.90ms 7.48ms 0.5ms 16.93ms 15.7ms 92.7%

C7 41.91ms 27.03ms 7.45ms 3.0ms 40.23ms 37.95ms 94.3%

42

In both cases, the MultiStream cost model seems to reliably approximate the measured
completion time, even though a better knowledge of the overhead's causes could make it
more precise.

4.5.4 SPEEDUP VS OPERAND SIZE

The last test we present, compares the speedup obtained by running the Greyscale
application with different image sizes. FastFlow is used to generate a stream of 60 images.
The following table represents the collected measurements for common image
resolutions, while [Figure 10] plots them (logarithmic X-axis):

The test shows that the achievable speedup with MultiStream is input-size dependent.
This is an expected result: with MultiStream we pay n times the cost of setting up a
computation on the device, moreover this cost is distributed among smaller tasks that are
only partially overlapped (i.e. no Device-to-Host transfer overlap). As the size of a task
decreases the effects of this cost becomes more evident.

Resolution 640x480 800x600 1024x768 1280x720 1600x900 1920x1080 2560x1440 3840x2160
Input Length 307200 480000 786432 921600 1440000 2073600 3686400 8294400
SkePU 1S 180 276 441.6 514.8 790.8 1131.6 1992 4470
SkePU MS 177.6 264 412.8 478.8 724.8 1024.8 1794 3996
Speedup 101.35% 104.55% 106.98% 107.52% 109.11% 110.42% 111.04% 111.86%

Figure 10: Speedup Vs Operand Size

300000 3000000
100.00%

102.00%

104.00%

106.00%

108.00%

110.00%

112.00%

114.00%

Resolution (log)

43

4.6 FINAL REMARKS

In this chapter we have tested MultiStream and we have shown that it can provide a
significant speedup to the execution of all the SkePU skeletons it supports. We want to
emphasize that all the experiments we run, take into account the worst-case scenario,
namely: the task is produced on the host, transferred to the device for the given skeleton
computation and its result is immediately gathered by the host. This means that
MultiStream has to be seen both as an optimization targeting the GPGPU computation
per-se, and as a step forward in the usage of GPGPU to offload the processing of a stream
of tasks from the CPU.
In the next two chapters, we will share some thoughts about possible improvements for
both MultiStream and SkePU and we will conclude this master thesis discussion.

44

5. IMPROVEMENTS AND FUTURE WORK

In this chapter we will describe what are, in our opinion, the possible ways to improve and
extend our work.

Complete MultiStream's SkePU Implementation
Probably the most obvious improvement would be a complete implementation of the
MultiStream optimization mechanism in SkePU. As we have seen in section 4.4.2, the lack
of Device-to-Host transfer overlapping has a significant impact in the potentially
achievable speedup. The implementation needs to extend all the functions that access or
modify elements of the smart containers from the host side. These functions trigger the
Device-to-Host data copy and are currently unable to distinguish different streams.

SkePU MapOverlap Support
MultiStream may provide a speedup also in the execution of the MapOverlap/stencil
skeleton. In this case, however, some data will need to be replicated during the
partitioning of the task to be computed. This operation will increase both the overhead
and the memory usage, so a proper cost model should be evaluated to analyze the
potential benefits.

MultiStream's SkePU Backend Optimization
We have shown that the smart container partitioning is one of the sources of overhead.
This is probably due to the increase of device_pointers that need to be tracked for
modification. Since MultiStream overlaps a big portion of the transfer times for
sufficiently complex kernels, it could be possible to extend the auto-tuning SkePU feature
to disable the subset transfer optimization (which is limited to 10 subsets per operand)
and perform the transfer of the whole smart container. This wouldn't require the usage of
multiple device_pointers and may improve the overall performance.
On the same line of thinking, the auto-tuning SkePU feature could be extended to
determine the best amount of CUDA Streams to use with respect to the size of each task.
In this way, for smaller task, the overhead of setting up multiple skeleton computations
would be lower and MultiStream could be able to provide a more consistent speedup.

45

It is worth to observe that our first two suggestions are the most natural extension to our
work: they require a little bit of effort to determine the best possible implementation, but
make use of all the notions and methods shown in this master thesis. If we had more time
at our disposal, our work would have surely proceeded in those two directions.
As far as the last suggestion is concerned, it surely requires more designing effort and the
precise identification and quantification of each source of overhead to build a model able
to distinguish which optimization is worth to be enabled and to which degree.

46

6. CONCLUSIONS

In this master thesis, we have presented MultiStream, an optimization method that
targets parallel computations on heterogeneous GPU-based systems.
We have shown how, it is possible to partition the inherent data-parallelism of a given
task among two layers. The first, coarse-grained, is MultiStream: an implementation of the
master/worker template on the host side, that asynchronously delegates the execution of
sub-tasks to the GPU exploiting page-locked memory and CUDA Streams. This enables the
overlapping of GPU kernel executions with data transfers between host and device
memories which, in turn, significantly decreases the completion time of a given task
execution.
We have implemented MultiStream first on SkePU, a data-parallel skeleton programming
library that provides the application programmer with a high-level, platform-independent,
interface for the expression of data-parallel computations. We have seen how, even with a
partial implementation that omits the overlap of Device-to-Host data transfers,
MultiStream is able to easily achieve a notable 10% speedup on all the supported
skeletons (Map, MapReduce, MapArray). Moreover, we have built a cost model for each
skeleton that predicts with good approximation (>92%) the expected speedup that derives
from the usage of our solution.
To evaluate the potential performance improvement achievable with MultiStream, we
have implemented a stand-alone Map skeleton that exploits the full MultiStream
optimization without adding any noticeable overhead. We have shown how the results
can be extremely promising (>60% speedup) provided an optimal implementation of the
backend supporting MultiStream.
In conclusion, this master thesis can be intended as an additional promoter of the
skeleton based parallel programming approach: with MultiStream, we have proven that
low-level optimizations that require the knowledge of complex and platform-dependent
mechanisms, such as CUDA Streams, are not limited to the usage in ad-hoc hand-written
CUDA code, but can be efficiently adopted in the implementation of algorithmic skeletons
and transparently offered to the application programmer.

47

BIBLIOGRAPHY

[1] NVIDIA CUDA C programming guide v7.0, March 2015. NVIDIA Corporation
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.htm

[2] Johan Enmyren, Christoph Kessler. SkePU: A Multi-Backend Skeleton Programming
Library for Multi-GPU Systems. Proc. 4th Int. Workshop on High-Level Parallel
Programming and Applications (HLPP-2010), Baltimore, USA, Sep. 2010. ACM.
http://www.ida.liu.se/~chrke55/skepu/SkePU-HLPP-2010.pdf

[3] Usman Dastgeer. Performance-Aware Component Composition for GPU-based Systems,
Chapter 3. PhD thesis, Linköping Studies in Science and Technology, Dissertation No.
1581, Linköping University, May 2014.
http://www.diva-portal.org/smash/record.jsf?pid=diva2:712422&dswid=-8407

[4] Usman Dastgeer, Christoph Kessler. Smart containers and skeleton programming for
GPU-based systems. International Journal of Parallel Programming, March 2015. DOI:
10.1007/s10766-015-0357-6.

[5] SkePU. Department for Computer and Information Science (IDA), Linköping University,
Sweden. http://www.ida.liu.se/labs/pelab/skepu/index.html

[6] Marco Danelutto. Distributed Systems: Paradigms and Models. Department of
Computer Science, University of Pisa, September 2014.
http://backus.di.unipi.it/~marcod/SPM1415/spmSept14.pdf

[7] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. FastFlow: high-level and
efficient streaming on multi-core in Programming Multi-core and Many-core
Computing Systems. S. Pllana and F. Xhafa, Wiley, 2014.
http://www.di.unipi.it/~aldinuc/paper_files/2011_FF_tutorial-draft.pdf

[8] Nicholas Wilt. The CUDA Handbook: A Comprehensive Guide to GPU Programming.
Addison-Wesley Professional, 2013.

[9] Murray Cole. Algorithmic Skeletons: structured management of parallel computation.
MIT Press, Cambdridge, MA, USA, 1989.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.htm
http://www.di.unipi.it/~aldinuc/paper_files/2011_FF_tutorial-draft.pdf
http://backus.di.unipi.it/~marcod/SPM1415/spmSept14.pdf
http://www.ida.liu.se/labs/pelab/skepu/index.html
http://www.diva-portal.org/smash/record.jsf?pid=diva2:712422&dswid=-8407
http://www.ida.liu.se/~chrke55/skepu/SkePU-HLPP-2010.pdf

48

[10] Horacio González-Vélez and Mario Leyton. A survey of algorithmic skeleton
frameworks: high-level structured parallel programming enablers in Software: Practice
and Experience volume 40:1135–1160, 2010.

[11] M. Stokes, M. Anderson, S. Chandrasekar and R. Motta. A Standard Default Color
Space for the Internet – sRGB, November 1996.
http://www.w3.org/Graphics/Color/sRGB

[12] Understanding Gamma Correction. Cambridge in Colour, 2015.
http://www.cambridgeincolour.com/tutorials/gamma-correction.htm

http://www.cambridgeincolour.com/tutorials/gamma-correction.htm
http://www.w3.org/Graphics/Color/sRGB

49

APPENDIX A
This appendix contains the source code of NevMap, a stand-alone CUDA implementation
of the Map skeleton with two input operands and one output which support the full
MultiStream optimization.
The level of abstraction isn't as high as the SkePU's one: page-locked memory allocation
and synchronization between host and device memories has to be performed explicitly
using the provided functions. The source code is abundantly commented.

nevmap.h:
001 /*
002 * nevmap.h
003 *
004 * The current implementation supports asychronous HtD and DtH
005 * data transfers and overlapping between data transfers and
006 * kernel executions making use of CUDA Streams (if data are Pinned).
007 *
008 * There are two different possible usage:
009 *
010 * *** Breadth-First Scheduling (Compute Capability 1.1) ***
011 *
012 * 1. Definition of the Map function (SkePU-like)
013 * 2. Allocation of the (in1, in2, out) datasets with
014 * cudaHostAlloc() function
015 * 3. Work on the datasets (e.g. fill them with actual data)
016 * 4. Instantiation of a new NevMap passing the datasets,
017 * the function and the size of the operands (all have to
018 * be of the same size) as parameters
019 * 5. updateInX() to transfer both input to the device (non-blocking)
020 * 6. execute() of the Map Skeleton function (non-blocking)
021 * 7. updateOut() to retrieve the results on the Host side (non-blocking)
022 * 8. synch() to make sure output data are consistent before accessing
023 * them on the Host side (blocking)
024 *
025 * *** Depth-First Scheduling (Compute Capability 2.0 or greater) ***
026 * Substitute points 5-6-7 of Breadth-First with a single call to the
027 * transferExecuteDF() function (non-blocking)
028 *
029 * Between non-blocking operations other code can be concurrently
030 * executed on the Host side provided it has no data dependencies with
031 * the one off-loaded for GPU execution (no check is made).
032 *
033 */
034
035 #include "nevmap_kernel.h"
036
037 #ifndef NEVMAP_H_
038 #define NEVMAP_H_
039

50

040 #define NSTREAMS 16
041
042 /*!
043 * SkePU-like BinaryFunction macro with two input and one output
044 */
045 #define FUNC_2i1o(name, T, i1, i2, func)\
046 struct name {\
047 __device__ T CU(T i1, T i2){\
048 func\
049 }\
050 };
051
052 /*!
053 * Map Skeleton implementation
054 */
055 template<typename T, typename MapFunc>
056 class NevMap {
057 size_t m_numElements;
058 size_t numElementsPerStream;
059 size_t numElementsPerStreamSize;
060 size_t rest;
061 size_t restSize;
062 cudaStream_t streams[NSTREAMS];
063 MapFunc *m_mapFunc;
064 T *h_in1, *h_in2, *h_out;
065 T *d_in1[NSTREAMS], *d_in2[NSTREAMS], *d_out[NSTREAMS];
066
067 public:
068 NevMap(T *in1, T *in2, T *out, MapFunc *mapFunc, size_t numElements);
069 ~NevMap();
070 void setMapFunc(MapFunc *mapFunc);
071 void setIn1(T *in1);
072 void setIn2(T *in2);
073 void setOut(T *out);
074 void updateIn1();
075 void updateIn2();
076 void updateOut();
077 void updateOutAndSynch();
078 void synch();
079 void execute();
080 void execute(MapFunc *mapFunc);
081 void transferExecuteDF();
082
083 private:
084 void deviceInit();
085 };
086
087 /*!
088 * Map constructor
089 */
090 template<typename T, typename MapFunc>
091 NevMap<T, MapFunc>::NevMap(T *in1, T *in2, T *out, MapFunc *mapFunc,
092 size_t numElements) {
093 m_numElements = numElements;
094 setIn1(in1);
095 setIn2(in2);
096 setOut(out);

51

097 setMapFunc(mapFunc);
098 deviceInit();
099 }
100
101 /*!
102 * Map destructor
103 */
104 template<typename T, typename MapFunc>
105 NevMap<T, MapFunc>::~NevMap() {
106 //Free all Device allocated memory and destroy streams
107 for (int i = 0; i < NSTREAMS; i++) {
108 cudaFree(d_in1[i]);
109 cudaFree(d_in2[i]);
110 cudaFree(d_out[i]);
111 cudaStreamDestroy(streams[i]);
112 }
113 }
114
115 /*!
116 * Set the map function to be computed
117 */
118 template<typename T, typename MapFunc>
119 void NevMap<T, MapFunc>::setMapFunc(MapFunc *mapFunc) {
120 m_mapFunc = mapFunc;
121 }
122
123 /*!
124 * Set the first Input data.
125 * To actually transfer it to the Device
126 * a call to updateIn1() has to be made
127 */
128 template<typename T, typename MapFunc>
129 void NevMap<T, MapFunc>::setIn1(T *in1) {
130 h_in1 = in1;
131 }
132
133 /*!
134 * Set the second Input data.
135 * To actually transfer it to the Device
136 * a call to updateIn2() has to be made
137 */
138 template<typename T, typename MapFunc>
139 void NevMap<T, MapFunc>::setIn2(T *in2) {
140 h_in2 = in2;
141 }
142
143 /*!
144 * Set the Output data.
145 * After the function execution, call updateOut() to transfer
146 * results back to Host memory (non-blocking).
147 * A call to synch() is needed to ensure data consistency on
148 * the Host side before using it.
149 */
150 template<typename T, typename MapFunc>
151 void NevMap<T, MapFunc>::setOut(T *out) {
152 h_out = out;
153 }

52

154
155 /*!
156 * Transfer Input1 data to Device Memory (HdT)
157 */
158 template<typename T, typename MapFunc>
159 void NevMap<T, MapFunc>::updateIn1() {
160 for (int i = 0; i < NSTREAMS - 1; i++) {
161 cudaMemcpyAsync(d_in1[i], &h_in1[i * numElementsPerStream],
162 numElementsPerStreamSize, cudaMemcpyHostToDevice, streams[i]);
163 }
164 cudaMemcpyAsync(d_in1[NSTREAMS - 1],
165 &h_in1[(NSTREAMS - 1) * numElementsPerStream],
166 numElementsPerStreamSize + restSize, cudaMemcpyHostToDevice,
167 streams[NSTREAMS - 1]);
168 }
169
170 /*!
171 * Transfer Input2 data to Device Memory (HdT)
172 */
173 template<typename T, typename MapFunc>
174 void NevMap<T, MapFunc>::updateIn2() {
175 for (int i = 0; i < NSTREAMS - 1; i++) {
176 cudaMemcpyAsync(d_in2[i], &h_in2[i * numElementsPerStream],
177 numElementsPerStreamSize, cudaMemcpyHostToDevice, streams[i]);
178 }
179 cudaMemcpyAsync(d_in2[NSTREAMS - 1],
180 &h_in2[(NSTREAMS - 1) * numElementsPerStream],
181 numElementsPerStreamSize + restSize, cudaMemcpyHostToDevice,
182 streams[NSTREAMS - 1]);
183 }
184
185 /*!
186 * Transfer Output data to Host Memory (DtH).
187 * Immediately return control to CPU.
188 * It should be followed by a call to synch() as soon as
189 * the Output data is needed on the Host side.
190 */
191 template<typename T, typename MapFunc>
192 void NevMap<T, MapFunc>::updateOut() {
193 for (int i = 0; i < NSTREAMS - 1; i++) {
194 cudaMemcpyAsync(&h_out[i * numElementsPerStream], d_out[i],
195 numElementsPerStreamSize, cudaMemcpyDeviceToHost, streams[i]);
196 }
197 cudaMemcpyAsync(&h_out[(NSTREAMS - 1) * numElementsPerStream],
198 d_out[NSTREAMS - 1], numElementsPerStreamSize + restSize,
199 cudaMemcpyHostToDevice, streams[NSTREAMS - 1]);
200 }
201
202 /*!
203 * Transfer Output data to Host Memory (DtH) and Synch with CPU
204 */
205 template<typename T, typename MapFunc>
206 void NevMap<T, MapFunc>::updateOutAndSynch() {
207 updateOut();
208 synch();
209 }
210

53

211 /*!
212 * Execute the Map function
213 */
214 template<typename T, typename MapFunc>
215 void NevMap<T, MapFunc>::execute() {
216 for (int i = 0; i < NSTREAMS - 1; i++) {
217 kernel2i1o<<<24, 256, 0, streams[i]>>>(d_in1[i], d_in2[i], d_out[i],
218 numElementsPerStream, m_mapFunc);
219 }
220 kernel2i1o<<<24, 256, 0, streams[NSTREAMS - 1]>>>(d_in1[NSTREAMS - 1],
221 d_in2[NSTREAMS - 1], d_out[NSTREAMS - 1],
222 numElementsPerStream + rest, m_mapFunc);
223 }
224
225 /*!
226 * Transfer and Execute Depth-First
227 */
228 template<typename T, typename MapFunc>
229 void NevMap<T, MapFunc>::transferExecuteDF() {
230 for (int i = 0; i < NSTREAMS - 1; i++) {
231 cudaMemcpyAsync(d_in1[i], &h_in1[i * numElementsPerStream],
232 numElementsPerStreamSize, cudaMemcpyHostToDevice, streams[i]);
233 cudaMemcpyAsync(d_in2[i], &h_in2[i * numElementsPerStream],
234 numElementsPerStreamSize, cudaMemcpyHostToDevice, streams[i]);
235 kernel2i1o<<<24, 256, 0, streams[i]>>>(d_in1[i], d_in2[i], d_out[i],
236 numElementsPerStream, m_mapFunc);
237 cudaMemcpyAsync(&h_out[i * numElementsPerStream], d_out[i],
238 numElementsPerStreamSize, cudaMemcpyDeviceToHost, streams[i]);
239 }
240 cudaMemcpyAsync(d_in1[NSTREAMS - 1],
241 &h_in1[(NSTREAMS - 1) * numElementsPerStream],
242 numElementsPerStreamSize + restSize, cudaMemcpyHostToDevice,
243 streams[NSTREAMS - 1]);
244 cudaMemcpyAsync(d_in2[NSTREAMS - 1],
245 &h_in2[(NSTREAMS - 1) * numElementsPerStream],
246 numElementsPerStreamSize + restSize, cudaMemcpyHostToDevice,
247 streams[NSTREAMS - 1]);
248 kernel2i1o<<<24, 256, 0, streams[NSTREAMS - 1]>>>(d_in1[NSTREAMS - 1],
249 d_in2[NSTREAMS - 1], d_out[NSTREAMS - 1],
250 numElementsPerStream + rest, m_mapFunc);
251 cudaMemcpyAsync(&h_out[(NSTREAMS - 1) * numElementsPerStream],
252 d_out[NSTREAMS - 1], numElementsPerStreamSize + restSize,
253 cudaMemcpyHostToDevice, streams[NSTREAMS - 1]);
254 }
255
256 /*!
257 * Synchronizes CUDA Streams with the CPU execution
258 */
259 template<typename T, typename MapFunc>
260 void NevMap<T, MapFunc>::synch() {
261 for (int i = 0; i < NSTREAMS; i++) {
262 cudaStreamSynchronize(streams[i]);
263 }
264 }
265
266 /*!
267 * Change the Map function and execute it

54

268 */
269 template<typename T, typename MapFunc>
270 void NevMap<T, MapFunc>::execute(MapFunc *mapFunc) {
271 setMapFunc(mapFunc);
272 execute();
273 }
274
275 /*!
276 * CUDA Device initialization
277 */
278 template<typename T, typename MapFunc>
279 void NevMap<T, MapFunc>::deviceInit() {
280 numElementsPerStream = m_numElements / NSTREAMS;
281 numElementsPerStreamSize = numElementsPerStream * sizeof(T);
282 rest = m_numElements % NSTREAMS;
283 restSize = rest * sizeof(T);
284
285 /*
286 * Create CUDA Streams and allocate Device memory
287 */
288 for (int i = 0; i < NSTREAMS - 1; i++) {
289 cudaStreamCreate(&streams[i]);
290 cudaMalloc((void**) &d_in1[i], numElementsPerStreamSize);
291 cudaMalloc((void**) &d_in2[i], numElementsPerStreamSize);
292 cudaMalloc((void**) &d_out[i], numElementsPerStreamSize);
293 }
294 cudaStreamCreate(&streams[NSTREAMS - 1]);
295 cudaMalloc((void**) &d_in1[NSTREAMS - 1],
296 numElementsPerStreamSize + restSize);
297 cudaMalloc((void**) &d_in2[NSTREAMS - 1],
298 numElementsPerStreamSize + restSize);
299 cudaMalloc((void**) &d_out[NSTREAMS - 1],
300 numElementsPerStreamSize + restSize);
301 }
302
303 #endif /* NEVMAP_H_ */

nevmap_kernel.h:
01 #ifndef NEVMAP_KERNEL_H_
02 #define NEVMAP_KERNEL_H_
03
04 template<typename T, typename MapFunc>
05 __global__ void kernel2i1o(T *i1, T *i2, T *o, size_t numElements,

MapFunc mapFunc) {
06
07 size_t index = blockIdx.x * blockDim.x + threadIdx.x;
08 size_t gridSize = blockDim.x * gridDim.x;
09
10 while (index < numElements) {
11 o[index] = (*mapFunc).CU(i1[index], i2[index]);
12 index += gridSize;
13 }
14 }
15
16 #endif /* NEVMAP_KERNEL_H_ */

55

APPENDIX B
In this appendix the source code of the Greyscale application is presented. The functions
to load or create each image, and to perform a computation on the skeleton output are
left for implementation.

001 #include <iostream>
002 #include <ff/pipeline.hpp>
003 #include "math.h"
004 #include "skepu/vector.h"
005 #include "skepu/map.h"
006
007 struct Pixel {
008 float r;
009 float g;
010 float b;
011 };
012
013 // Map function: Ycom(Luma(Yexp(sRGB)))
014 UNARY_FUNC_CONSTANT(grey_f, Pixel, Pixel, px, lum,
015
016 //Express color components as [0,1] values
017 px.r = px.r/255;
018 px.g = px.g/255;
019 px.b = px.b/255;
020
021 //Apply gamma expansion to color components
022 if(px.r > 0.04045){
023 px.r = powf(((px.r + 0.055)/1.055), 2.4);
024 } else {
025 px.r = px.r/12.92;
026 }
027 if(px.g > 0.04045){
028 px.g = powf(((px.g + 0.055)/1.055), 2.4);
029 } else {
030 px.g = px.g/12.92;
031 }
032 if(px.b > 0.04045){
033 px.b = powf(((px.b + 0.055)/1.055), 2.4);
034 } else {
035 px.b = px.b/12.92;
036 }
037
038 //Compute luminance
039 float y = px.r * lum.r + px.g * lum.g + px.b * lum.b;
040
041 //Apply gamma compression to luminance and get back to range [0, 255]
042 if(y > 0.0031308){
043 y = powf((y * 1.055), (1/2.4)) - 0.055;
044 } else {
045 y = y * 12.92;

56

046 }
047 y = rintf(y * 255);
048
049 //Store luminance value to each component
050 px.r = y;
051 px.g = y;
052 px.b = y;
053 return px;
054)
055
056 using namespace ff;
057 typedef skepu::Vector<Pixel> sv_t;
058 const Pixel LUMA = {0.2126, 0.7152, 0.0722};
059 const uint NUM_IMAGES = 60;
060 const size_t SIZE = 1920*1080;
061 const uint SHADES = 255;
062 static skepu::Map<grey_f> RGBtoGrey (new grey_f);
063
064 /*
065 * StageOne: Create the images to be processed
066 */
067 struct StageOne: ff_node {
068 void *svc(void *){
069
070 //Set the LUMA (Pixel) constant for the skepu::Map
071 RGBtoGrey.setConstant(LUMA);
072
073 /* Create tasks */
074 for(uint i = 0; i < NUM_IMAGES; i++){
075 void *t = new sv_t(SIZE);
076 sv_t *task = reinterpret_cast<sv_t *>(t);
077
078 /* Create/Load the single image as a skepu::Vector of Pixel
079
080 //Send task to the next stage
081 ff_send_out(task);
082 }
083 return EOS;
084 }
085 };
086
087 /*
088 * StageTwo: Use SkePU to convert images from RGB to Greyscale
089 * No access to the image data is made on this stage
090 */
091 struct StageTwo: ff_node {
092 void *svc(void *t){
093 sv_t *task = reinterpret_cast<sv_t *>(t);
094
095 //Compute the Map
096 RGBtoGrey(*task);
097
098 //Send task to the next stage
099 ff_send_out(task);
100 return GO_ON;
101 }
102 };

57

103
104 /*
105 * StageThree: CPU is free to work on different data w.r.t.
106 * what is being computed by the GPU.
107 *
108 * In this case, the task is just sent to the next stage
109 */
110 struct StageThree: ff_node {
111 void *svc(void *t){
112 sv_t *task = reinterpret_cast<sv_t *>(t);
113
114 //Send task to the next stage
115 ff_send_out(task);
116 return GO_ON;
117 }
118 };
119
120 /*
121 * StageFour: Access or modify the output of the GPGPU computation.
122 * It triggers the DtH data transfer, thus the time spent on this stage is
123 * T_DtH fully paid both with or without MultiStream
124 * (no DtH overlap support on SkePU)
125 */
126 struct StageFour: ff_node {
127 void *svc(void *t){
128
129 sv_t *task = reinterpret_cast<sv_t *>(t);
130
131 /* Access/Modify the output from the Host side */
132
133 delete task;
134
135 return GO_ON;
136 }
137 };
138
139 int main(){
140
141 //Initialize & Run FF_Pipeline
142 ff_pipeline pipe;
143 pipe.add_stage(new StageOne);
144 pipe.add_stage(new StageTwo);
145 pipe.add_stage(new StageThree);
146 pipe.add_stage(new StageFour);
147 if(pipe.run_and_wait_end()<0){
148 error("Error with FastFlow Pipeline");
149 }
150
151 return 0;
152 }

	Optimization of Parallel Computations on
	Heterogeneous GPU-Based Systems
	Candidate Supervisor
	Claudio Parisi Marco Danelutto
	Co-supervisor
	Christoph Kessler
	Academic Year 2014/2015

