
Università di Pisa
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Introduction

Nowadays in many machines one of the greatest computational resources is

their graphics coprocessors (GPUs), not just their primary CPUs. These de-

vices can achieve high throughput and energy efficiency and they are there-

fore well suited to be the offload engines for heavy parallel computations.

The early efforts to use GPUs as general-purpose processors (GPGPU) re-

quired reformulating computational problems in terms of graphics primi-

tives. This cumbersome translation was obviated by the advent of general-

purpose programming languages and APIs in the second half of the last

decade, allowing programmers to ignore the underlying graphical concepts

in favour of more common high-performance computing concepts.

In 2006, NVIDIA released CUDA (Compute Unified Device Architec-

ture), a platform designed to work with programming languages such as

C, C++ and Fortran which allows to use GPU resources for general pur-

pose application programming without requiring advanced skills in graphics

programming. Although CUDA is at the moment one of the most popu-

lar frameworks, its adoption has limited the programmers to execute their

programs only on NVIDIA GPUs.

This is unfortunately an undesirable scenario, as programmers who have

invested the effort to write a general-purpose application for a GPU should

not have to make an entirely separate programming effort to effectively

parallelize the application across GPU devices of different vendors. At the

same time, the large amount of hardware not necessarily having a GPU is

a resource that we would not like to left unused.

Exploiting this resources raises the issue of guaranteeing portability be-

tween different architectures. Although the portability of the functionality

of the applications must be ensured, our other main interest is performance

portability, a major challenge faced today by the heterogeneous high per-

formance programming community.

In this thesis we describe and implement a set of techniques that allow
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to execute CUDA programs on systems not necessarily having an NVIDIA

GPU, in particular targeting shared memory multi-core CPU architectures.

The accomplishment of this goal is achieved operating at the CUDA

source code level, analysing its abstract syntax and defining a set of trans-

formations on it. As result of this transformations, the output will be

standard C++ source code.

The choice of using C++ as destination language was done because of

the availability on a huge number of platforms, making portability less ex-

pensive. Also, taking into account that CUDA is a set of extensions of the C

language family (including C++), several similarities can be found between

them. This made easier the definition of a set of formal rules describing how

the CUDA syntax is transformed into C++ syntax preserving the several

key abstractions provided by CUDA the programming model as well as the

semantics of the program.

As a proof of concept of the correctness of the transformations presented

in this thesis, a prototype source-to-source translator has been implemented.

The implementation of this software relies on the use of robust and wide-

used frameworks. The Clang compiler front-end provided us the machinery

used by our software to accomplish the syntactic analysis and transforma-

tion of the code. In order to guarantee comparable performance on the

target system, the Intel Threading Building Blocks framework has been

used to parallelize the execution of the obtained code.

This software is therefore evaluated, analysing the achieved portability

in terms of manual effort still needed in order to run the transformed pro-

grams. Also, the performances of the execution of the translated programs

are evaluated, comparing the obtained results with standard applications

natively conceived to execute on the target system.
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Portability

This section describes the concept of portability, the main feature we want

to achieve in this thesis work.

In high-level computer programming, portability is the usability of the

same software in different environments. The portability prerequirement

is the abstraction between the application logic and the underlying system

interfaces.

Portability is a typical issue of parallel programming [11], since the in-

crease in number and the diversity of computing units within nodes intro-

duce a challenge for library and application developers, who need to adapt

their code to diverse target systems.

From a more abstract perspective, portability can be distinguished among

functional and non-functional.

With functional portability we mean the portability of the functionality

of the application, namely that the same results are computed on both

architectures.

Non-functional portability refers to those properties that do not directly

involve the result computed by the program, but rather to the way these

results are computed. Among these properties we can list security, fault

tolerance and power management. Also performance is a non functional

feature of applications. With performance portability we mean that a pro-

gram must preserve a comparable performance when executed on the target

system with respect to the performance of the original system.

Related Work

There exist several projects that translate from (or to) the CUDA program-

ming model.

The most relevant related work in this area is a source-to-source trans-

lator called MCUDA [24] which aims to execute CUDA kernels on CPUs.

There are similarities with our work, mainly related to the use of the same

approach in defining some transformations and the choice of implementing

source-to-source translation. However, the implementation of MCUDA re-

lies on the Cetus framework[19], a Java-based framework that provides a

class hierarchy that represents a program’s abstract syntax tree (AST).

Two other source-to-source translator that translate from CUDA were
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developed, both targeting OpenCL. The first one, again relying on Cetus,

is CUDAtoOpenCL [21]. The other work is CU2CL [20, 23]. Although the

targeted platform is different, the main similarity with our work is the fact

that CU2CL’s implementation relies on Clang.

Swan [16] is a tool made to ease the transition between OpenCL and

CUDA. However, Swan is not a source-to-source translator like the tools

mentioned above; instead it provides a higher-level library that abstracts

both the CUDA and OpenCL APIs.

Another project of interest is GPU Ocelot [12, 13], an open-source dy-

namic just-in-time compilation framework for GPU compute applications

targeting a range of GPU and non-GPU execution targets. Ocelot supports

CUDA applications and provides an implementation of the CUDA Runtime

API enabling seamless integration. NVIDIA’s virtual instruction set archi-

tecture is used as a device-agnostic program representation that captures

the data-parallel SIMT execution model of CUDA applications. Ocelot sup-

ports several backend execution targets – NVIDIA GPUs, AMD GPUs, and

a translator to LLVM for efficient execution of GPU kernels on multi-core

CPUs.

Document Organization

The thesis is organized as follows: in Chapter 1 are introduced the main

concepts behind the CUDA programming model, highlighting the syntactic

aspects relevant to this work. Chapter 2 describes the main ideas behind

the approach followed in this work, highlighting the techniques developed to

allow the translation from CUDA to C++ code. Chapter 3 describes Clang,

the tool on which this work relies to accomplish the syntactic analysis of

the source code. Chapter 4 gives an high-level description of the software

implemented as a proof of concept of the transformations described in this

thesis work. Chapter 5 describes the implementation details of the tools

created to accomplish the source-to-source translation. In Chapter 6 an

evaluation of the software is given. Lastly, Chapter 7 summarizes our work

and presents possible future extensions.



Chapter 1

CUDA

This chapter introduces the main concepts behind the CUDA programming

model. The first section briefly describes the CUDA programming model

while the second section highlights the syntactic aspects relevant to this

work.

A full description of the NVIDIA CUDA framework goes out of the scope

of this thesis. For more details please refer to the CUDA Programming

Guide [22].

5



CHAPTER 1. CUDA 6

1.1 Programming model

CUDA (Compute Unified Device Architecture) is a parallel computing

platform created by NVIDIA that allows software developers to use CUDA-

enabled graphics processing units (GPU) for general purpose processing.

The CUDA platform is designed to work with programming languages such

as C, C++ and Fortran providing a few simple extensions that enable ex-

pressing fine-grained and coarse-grained data parallelism. The CUDA API

model allows developers to exploit that parallelism by writing straightfor-

ward C code that will then run in thousands of parallel invocations, or

threads, on the GPU.

From an architectural perspective, because threads (and not data) are

mapped to the processor and executed, the style of execution of CUDA is

called Single-Instruction, Multiple-Thread (SIMT). SIMT is very similar to

Single-Instruction, Multiple-Data (SIMD). In SIMD, multiple data can be

processed by a single instruction. In SIMT instead, each thread executes

the same instruction, but possibly on different data.

Computations that are to be performed on the GPU are specified in the

code as explicit kernels. Prior to launching the kernel all the data required

for the computation must be transferred from the host (CPU) memory to

the GPU (global) memory. A kernel invocation will hand over the control

to the CPU, and the specified GPU code will be executed on this data.

Figure 1.1: Host-Device model.

1.1.1 Thread hierarchy

CUDA provides a thread hierarchy that facilitates the decomposition of an

application into a set of parallel tasks. When a CUDA kernel is launched,

a grid is allocated in the GPU context. A grid is an executing instance of a
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kernel and consists of a set of blocks. Each block defines an independent task

that executes in a task parallel way. Intercommunication among blocks is

not possible because the execution order for blocks is not defined at compile

time. A block can be split into a set of parallel threads. Threads in a block

cooperate in a data parallel way. Each thread executes the kernel once. The

kernel instructions are executed by each thread usually on a portion of the

input data dependent by the index of the thread and the block.

Figure 1.2: CUDA thread hierarchy.

1.1.2 Memory hierarchy

The CUDA memory hierarchy reflects the thread hierarchy described be-

fore. Each thread has access to a private register space on the chip for

storing single variables and constant size arrays. If the amount of registers

is exceeded, threads can access local memory for storing large data that does

not fit the register space. Local memory resides in global memory space and

has the same slow bandwidth for read and write operations. Global memory

is a virtual address space that can be mapped to device memory (memory

on the graphics card) or page-locked (pinned) host memory. Local memory

is allocated in global memory but accessed through different address spaces

and caches.
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All threads in a block have access to a shared memory, which is private

to the block, to cooperate on a computation. Local and shared memory

visibility is depicted in Figure 1.3.

Figure 1.3: Local and shared memory.

Global memory is visible to all threads. In the host side of a CUDA pro-

gram it is possible to access only the global memory, therefore, parameters

and data used by a kernel are initially located in the global memory. Global

memory can also be accessed through two read-only caches known as the

constant memory and texture memory for efficient access for each thread.

Global memory visibility is depicted in Figure 1.4.

Figure 1.4: Global memory.



CHAPTER 1. CUDA 9

1.1.3 Synchronization

Communications between threads in a block require the presence of a mech-

anism for synchronization. For example if thread A writes a value to shared

memory and a thread B wants to do something with this value, thread B

can’t start its work until the write from thread A is completed. Without

synchronization, a race condition is created where the correctness of the

execution results depends on the non-deterministic details of the hardware.

To address this issue, CUDA allows all the threads in a block to synchro-

nize by means of a barrier defined by the user in the kernel code. Global

synchronization of all threads can only be performed across separate kernel

launches. This also implies that an implicit synchronization happens every

time a kernel is entered or exited.
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1.2 Syntax

This section highlights the syntactical aspects of CUDA that are relevant

to this thesis work.

Kernels

CUDA allows the programmers to define functions known as kernels that,

when called, are executed in parallel by the CUDA threads.

A kernel is defined using the global declaration specifier. This key-

word indicates a function that runs on the device and is called from the host

code. To identify the call of a kernel from the host code, CUDA introduces

the triple angle brackets notation <<<...>>> also called “kernel launch”.

This execution configuration syntax takes two arguments, the number of

blocks per grid and the number of threads per block.

1 // Kernel definition

2 __global__ void vector_add(int* v1, int* v2, int* v3)

3 {

4 int i = threadIdx.x;

5 v3[i] = v1[i] + v2[i];

6 }

7

8 int main()

9 {

10 ...

11 // Kernel invocation with NT threads

12 vector_add <<<1, NT >>>(v1, v2, v3);

13 ...

14 }

Listing 1.1: A vector addition.

In the previous example (Listing 1.1), each of the NT threads that execute

vector add performs an addition. There is a limit to the number of threads

per block, since all threads of a block are expected to reside on the same

processor core and must share the limited memory resources of that core.

This limit depends from the compute capability1 of the device, and on

current GPUs a block may contain up to 1024 threads. However, a kernel

1The compute capability of a device identifies the features supported by the GPU

hardware and is used by applications at runtime to determine which hardware features

and/or instructions are available on the present GPU.
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can be executed by multiple equally-shaped thread blocks, so that the total

number of threads is equal to the number of threads per block times the

number of blocks. Line 4 shows how the ID of the thread is used to access

the data: one common usage for threadIdx (and blockIdx) is to determine

the area of data that a thread is to work on.

dim3 and built-in variables

Each thread that executes the kernel is given a unique thread ID, accessible

using the built-in threadIdx variable.

threadIdx is a 3-component vector defined by the data type dim3, so

that threads can be identified using (up to) a three-dimensional index, pro-

viding a natural way to invoke computation across the elements in a domain

such a vector, matrix or volume. The three dimensions of dim3 type vari-

ables can be accessed by the fields x, y and z.

In addition, blocks within the grid are organized into a one-dimensional,

two-dimensional, or three-dimensional way, and they can be accessed inside

the kernel through the built-in blockIdx variable.

The kernel launch parameters can be of type int or dim3, and their

values can be used inside the kernel code. The number of threads per block

may be accessed through the built-in blockDim variable. The number of

blocks per grid may be accessed through the built-in gridDim variable. Even

if an integer value is passed to the kernel launch configuration, inside the

kernel those two variables will be of type dim3, with any component left

unspecified initialized to 1 by default.

As an example, the kernel on Listing 1.2 adds two matrices m1 and m2

of size N ×N and stores the result into matrix m3:

1 // Kernel definition

2 __global__ void matrix_add(int m1[N][N], int m2[N][N], int

m3[N][N])

3 {

4 int i = blockIdx.x * blockDim.x + threadIdx.x;

5 int j = blockIdx.y * blockDim.y + threadIdx.y;

6 if (i < N && j < N)

7 m3[i][j] = m1[i][j] + m2[i][j];

8 }

9

10 int main()

11 {

12 ...
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13 // Kernel invocation

14 dim3 threadsPerBlock (16, 16);

15 dim3 blocksPerGrid(N / threadsPerBlock.x, N /

threadsPerBlock.y);

16 matrix_add <<<blocksPerGrid ,threadsPerBlock >>>(m1, m2, m3);

17 ...

18 }

Listing 1.2: A matrix addition.

It is possible to observe the usage of the block IDs in order to access the

matrices correctly (Line 4–5). Also, the kernel launch configuration (Line

16) takes now two dim3 arguments.

shared and syncthreads

The shared qualifier declares a variable that resides in the shared mem-

ory space of a block. It has lifetime of a block and is only accessible from all

the threads within the block. Being on-chip, shared memory is much faster

than global memory. Any opportunity to replace global memory accesses

by shared memory accesses should therefore be exploited as illustrated by

the following example.

1 __global__ void stencil_1d(int *in, int *out)

2 {

3 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS ];

4 int global_id = threadIdx.x + blockIdx.x * blockDim.x;

5 int local_id = threadIdx.x + RADIUS;

6

7 //Read input elements into shared memory

8 temp[local_id] = in[global_id ];

9 if(threadIdx.x < RADIUS) {

10 temp[local_id - RADIUS] = in[global_id - RADIUS ];

11 temp[local_id + BLOCK_SIZE ]= in[global_id + BLOCK_SIZE ];

12 }

13

14 // Synchronize (ensure all the data is available)

15 __syncthreads ();

16

17 // Apply the stencil

18 int result = 0;

19 for(int offset = -RADIUS; offset <= RADIUS; offset ++)

20 result += temp[local_id + offset ];

21
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22 // Store the result

23 out[global_id] = result;

24 }

Listing 1.3: A stencil example.

At Line 3 of Listing 1.3 the temp array is declared with the shared key-

word, in order to cache data in shared memory. Threads within a block can

cooperate by sharing data through some shared memory and by synchroniz-

ing their execution to coordinate memory accesses. More precisely, one can

specify synchronization points in the kernel by calling the syncthreads()

intrinsic function (Line 15). syncthreads() acts as a barrier at which all

threads in the block must wait before any is allowed to proceed.

Memory management APIs

The CUDA programming model assumes a system composed of a host and a

device, each with their own separate memory. Kernels operate out of device

memory, so the runtime provides functions to allocate, deallocate, and copy

device memory, as well as transfer data between host memory and device

memory.

Device memory is typically allocated using cudaMalloc() and freed us-

ing cudaFree() and data transfer between host memory and device memory

are typically done using cudaMemcpy(). Listing 1.4 shows the vector addi-

tion code sample including the memory management in the host code:

1 // Device code

2 __global__ void vector_add2(int* v1, int* v2,int* v3, int N)

3 {

4 int i = blockDim.x * blockIdx.x + threadIdx.x;

5 if (i < N)

6 v3[i] = v1[i] + v2[i];

7 }

8

9 // Host code

10 int main()

11 {

12 int N = ...;

13 size_t size = N * sizeof(int);

14

15 // Allocate input vectors h_A and h_B in host memory

16 int* h_A = (float*) malloc(size);

17 int* h_B = (float*) malloc(size);
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18

19 // Initialize input vectors

20 ...

21

22 // Allocate vectors in device memory

23 int* d_A;

24 cudaMalloc (&d_A , size);

25 int* d_B;

26 cudaMalloc (&d_B , size);

27 int* d_C;

28 cudaMalloc (&d_C , size);

29

30 // Copy vectors from host memory to device memory

31 cudaMemcpy(d_A , h_A , size , cudaMemcpyHostToDevice);

32 cudaMemcpy(d_B , h_B , size , cudaMemcpyHostToDevice);

33

34 // Invoke kernel

35 int threadsPerBlock = 256;

36 int blocksPerGrid = (N + threadsPerBlock - 1) /

threadsPerBlock;

37 vector_add2 <<<blocksPerGrid , threadsPerBlock >>>(d_A , d_B ,

d_C , N);

38

39 // Copy result from device memory to host memory

40 // h_C contains the result in host memory

41 cudaMemcpy(h_C , d_C , size , cudaMemcpyDeviceToHost);

42

43 // Free device memory

44 cudaFree(d_A);

45 cudaFree(d_B);

46 cudaFree(d_C);

47

48 // Free host memory

49 ...

50 }

Listing 1.4: Vector addition showing the memory management.

First of all, the vectors need to be allocated (Line 24, 26 and 28). Then the

vectors are copied from host memory to device memory (Line 31–32). After

the kernel execution the result of the computation is copied from device

memory to host memory (Line 41) and finally the device memory is freed

(Line 44-46).
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Summary

In the first section of this chapter we gave a brief overview of the CUDA

programming model, in particular highlighting its thread and memory hi-

erarchy.

In the second section, the CUDA syntax is described, underlining an

useful subset for our work.



Chapter 2

Translating CUDA

This chapter describes the main ideas behind the source-to-source approach

followed in this thesis work, highlighting the techniques developed to allow

the translation from CUDA to C++ code.

The first section discusses the reasons behind the choice of doing a

source-to-source translation.

The second section formalizes the mapping of the CUDA programming

model, showing the set of transformations applied to the CUDA program-

ming constructs in order to obtain C++ code.

16
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2.1 Source-to-source translation

To accomplish the transformation of the CUDA programs, the chosen ap-

proach is the development of a tool capable of translating the source code

in regular C++ language.

A source-to-source translator (or a transcompiler) is a type of com-

piler that takes the source code of a program written in a certain pro-

gramming language as its input and produces the equivalent source code

in another programming language. The main difference with a traditional

compiler is that a source-to-source compiler translates between program-

ming languages that operate at approximately the same level of abstrac-

tion. Instead, a traditional compiler, usually translates from a higher level

programming language to a lower level one, typically the assembly language.

Although finding a way to compile CUDA code directly in x86 assembly

(or other low-level languages) is of course a valid approach [13], applying a

source-to-source translation is a more useful solution, for a set of different

reasons.

As stated before, the aim of this work is to run CUDA code on a broad

set of architectures, and not to be bound to a specific one. Moreover, being

CUDA a relatively small set of extensions of the C/C++ language, it is

reasonable and feasible to obtain in output C++ source code.

Targeting a high-level language provides several advantages. The most

prominent ones are the possibility to perform further optimizations way

more easily as well as simplifying the debugging of the code.

Also, from the implementation side of the problem, this choice reveals

to be far-sighted, since the use of Clang is a good fit in this sense, for the

reasons explained in Chapter 3.

2.1.1 Abstract Syntax Trees

An Abstract Syntax Tree (hereafter referred to as AST) is a tree rep-

resentation of the abstract syntactic structure of source code written in

a programming language. Each node of the tree denotes a construct oc-

curring in the source code. Abstract syntax trees differ from parse trees

(concrete syntax trees) because superficial distinctions of form, unimpor-

tant for translation, do not appear on them. ASTs do not show the whole

syntactic clutter, but represent the parsed string in a structured way, dis-

carding all information that may be important for parsing the string, but
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is not needed for analysing it.

For example, in Figure 2.1 is shown an AST for the code in Listing 2.1:

1 while( x < 10 )

2 {

3 x = x + 1;

4 }

Listing 2.1: A while loop.

Figure 2.1: An example of AST for the code in Listing 2.1.

Figure 2.1 shows how every detail appearing in the real syntax such as

grouping parenthesis or semicolons does not appear in the tree structure.

Taking into account this definition, it seems clear that ASTs are the

perfect representation in order to achieve source-to-source translation. In

fact, relying on ASTs allows to manipolate the CUDA programming con-

structs more easily, not having to consider all the stylistic technicalities of

the language.

Again, Clang revealed to be the right tool to perform this task, since its

ASTs showed to be a very good fit for representing the syntax, as explained

in detail in Section 3.2 of Chapter 3.

2.2 Mapping

Mapping the CUDA programming model to a CPU architecture means that

all the several key abstractions provided by CUDA, such as hierarchical

memory, threads, blocks and barrier synchronization, has to be matched

with the corresponding entities available on the target system, in order to

be able to execute the resulting program on a CPU architecture.
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Even if the model seems quite easy to handle, as described in Chapter

1, the mapping of the computations is not straightforward at all. As shown

in the rest of this section, several issues and limitations that arise mainly

due to architectural differences has to be considered.

The conceptually simplest implementation would be spawning a CPU

thread for every CUDA thread specified in the programming model. How-

ever, this approach will be quite inefficient. First of all the benefits deriving

from having thread locality would be mitigated. Also, an approach like this,

will incur in an extremely large amount of scheduling overhead. Again, this

is due to the big difference in the hardware, having usually a number of

cores in a GPU architecture way larger than the one in a multi-core x86

CPU.

Therefore, a mapping that maintains the locality expressed in the pro-

gramming model should be found, with the constraint of not modifying the

operating system or the architecture of destination. This also means that

somehow the execution of the CUDA threads must be managed in the code

in an explicit way.

The approach presented on this work relies on a set of considerations on

the nature of the CUDA programming model. First of all, CUDA blocks

execution is asynchronous. Taking also into account that each CPU thread

should be scheduled to a single core for locality, it appears quite clear that

there is a correspondence that can be exploited. This first consideration

also implies that the former CUDA threads cannot be treated any more

as concurrent entities. Analysing also the fact that the ordering semantics

imposed by a potential barrier synchronization point has to be maintained,

the proposed approach is to serialize the execution of the CUDA threads,

changing the nature of the kernel functions from a per-thread code specifi-

cation to a per-block one.

The proposed approach is summarized in Table 2.1:

GPU CPU

block (asynchronous) CPU thread

GPU thread (synchronized with barriers) sequential, unrolled loop

Table 2.1: Mapping CUDA concepts to C++.

In the next sections, it will be presented through some examples how this

goal is accomplished describing how the programming constructs of CUDA
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are transformed in C++. After each example, one or more formal rules are

defined to describe the applied transformation.

2.2.1 Kernel translation

The transformation of the CUDA kernel source code is the main aspect that

has to be managed in order to achieve portability on CPUs.

As stated in the previous section, the idea behind this is the serialization

of the execution behaviour of the CUDA threads.

For example, Listing 2.2 shows again the kernel for the vector addition

shown in Chapter 1.

1 __global__ void vector_add(int* v1, int* v2, int* v3)

2 {

3 ...

4 v3[threadIdx.x] = v1[threadIdx.x] + v2[threadIdx.x];

5 ...

6 }

Listing 2.2: Vector addition kernel.

To make the CPU able to execute this kernel, it appears clear that its

behaviour has to be handled with respect to the value of the threadIdx

variable, since in a C++ representation this is not a built-in variable any

more. To address this issue, the execution of the former CUDA threads is

serialized wrapping the body of the kernel function in a loop. This loop

enumerates the values of the previously implicit threadIdx variable. List-

ing 2.3 shows the kernel function after this transformation.

1 void vector_add(int* v1 , int* v2 , int* v3 , dim3 blockIdx ,

dim3 blockDim)

2 {

3 dim3 threadIdx;

4 ...

5

6 for(threadIdx.x = 0; threadIdx.x < blockDim.x; threadIdx.x

++){

7 v3[threadIdx.x] = v1[threadIdx.x] + v2[threadIdx.x];

8 }

9 ...

10 }

Listing 2.3: Translated vector addition kernel.
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Analysing the obtained code, it is possible to notice that the main dif-

ference is the for loop shown at Line 6. This loop explicitly serializes the

execution of the CUDA threads, executing the content of the kernel (the

sum at Line 7) as many times as the number of CUDA threads in the block.

As stated above, threadIdx is not a built-in variable any more, so now,

as shown at Line 3, it has to be explicitly declared. Notice at Line 1 how

the global keyword is simply removed, since we are moving to a C++

function. Lastly, again at Line 1, the other previously implicit variables

blockIdx and blockDim has to be provided to the function, adding them

to the parameter list.

To change the nature of the kernel function to a per-block specifica-

tion, an iterative structure that wraps the body of the function was intro-

duced. Taking into account that we are operating with three-dimensional

data types, this iterative wrapping will be, in the general case, constituted

by three nested loops, iterating on the values of the three components:

1 ...

2 for(threadIdx.z=0; threadIdx.z < blockDim.z; threadIdx.z++){

3 for(threadIdx.y=0; threadIdx.y < blockDim.y; threadIdx.y

++){

4 for(threadIdx.x=0; threadIdx.x < blockDim.x; threadIdx.x

++){

5 // Kernel body

6 ...

7 }

8 }

9 }

10 ...

Listing 2.4: The complete iterative wrapping in the three-dimensional

scenario.

The behaviour shown in the previous examples is now formalized, giv-

ing generic rules for this type of transformation. Taken a generic kernel

function, its translation is defined as follows:

Rule 1. The global keyword is removed.

global void kernel(. . .){. . .} −→ void kernel(. . .){. . .}

Rule 2. The dim3 blockIdx and dim3 blockDim formal parameters are

added to the parameter list P1, . . . , Pn.
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void kernel(P1 , . . . , Pn){. . .}
↓

void kernel(P1 , . . . , Pn, dim3 blockIdx, dim3 blockDim){. . .}

Rule 3. The body of the kernel is wrapped by the three nested loops, as

shown in Listing 2.4.

void kernel(. . .)

{
Stmt1

. . .

Stmtn

}

−→

void kernel(. . .)

{
ITERATIVE WRAPPING{

Stmt1

. . .

Stmtn

}
}

Rule 4. The dim3 threadIdx; variable declaration is inserted at the be-

ginning of the body of the function.

void kernel(. . .)

{
. . .

}
−→

void kernel(. . .)

{
dim3 threadIdx;

. . .

}

2.2.2 Ensuring synchronization

So far, the translation is correct, and the semantics of the output code is

the same of the input one. Unfortunately is not that simple, and more

problems arise when an explicit synchronization between CUDA threads

has to be taken into account.

For example, Listing 2.5 shows again the stencil kernel shown in Chap-

ter 1.

1 __global__ void stencil_1d(int *in, int *out)

2 {

3 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS ];

4 int global_id = threadIdx.x + blockIdx.x * blockDim.x;

5 int local_id = threadIdx.x + RADIUS;

6

7 //Read input elements into shared memory

8 temp[local_id] = in[global_id ];
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9 if(threadIdx.x < RADIUS) {

10 temp[local_id - RADIUS] = in[global_id - RADIUS ];

11 temp[local_id + BLOCK_SIZE ]=in[global_id + BLOCK_SIZE ];

12 }

13

14 // Synchronize (ensure all the data is available)

15 __syncthreads ();

16

17 // Apply the stencil

18 int result = 0;

19 for(int offset = -RADIUS; offset <= RADIUS; offset ++)

20 result += temp[local_id + offset ];

21

22 // Store the result

23 out[global_id] = result;

24 }

Listing 2.5: A stencil kernel example.

At Lines 8–12 the input elements into the shared memory are read. After

the initialization, a synchronization of the CUDA threads is needed (Line

15) because, being threads executed in parallel, it has to be ensured that

all the data is available at this moment. Once the threads are synchronized

the stencil operation can be applied, that consists in a simple for loop (Line

19–20), and the calculated result is stored in the output array (Line 23).

It appears clear that even in the translated version, wrapping the content

of the kernel inside the nested for loops, does not guarantee that the data

needed from a certain thread will be available.

To solve this issue, the proposed solution is just to close the for loops

when a synchronization call is encountered, and to open another set of

nested loops right after it. This works because of the fact that the values

of all the thread IDs are iterated, so closing and reopening the iterative

wrapping implicitly emulates the behaviour of the synchronization among

the CUDA threads.

The translated output is reported on Listing 2.6:

1 void stencil_1d(int *in , int *out , dim3 blockDim , dim3

blockIdx)

2 {

3 dim3 threadIdx;

4 for(threadIdx.z=0; threadIdx.z < blockDim.z; threadIdx.z

++){
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5 for(threadIdx.y=0; threadIdx.y < blockDim.y; threadIdx.y

++){

6 for(threadIdx.x=0; threadIdx.x < blockDim.x; threadIdx

.x++){

7 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS ];

8 int global_id=threadIdx.x + blockIdx.x * blockDim.x;

9 int local_id = threadIdx.x + RADIUS;

10 //Read input elements into shared memory

11 temp[local_id] = in[global_id ];

12 if(threadIdx.x < RADIUS) {

13 temp[local_id - RADIUS] = in[global_id - RADIUS ];

14 temp[local_id + BLOCK_SIZE] = in[global_id +

BLOCK_SIZE ];

15 }

16 }

17 }

18 }

19 // Implicit synchronization

20 for(threadIdx.z=0; threadIdx.z < blockDim.z; threadIdx.z

++){

21 for(threadIdx.y=0; threadIdx.y < blockDim.y; threadIdx.y

++){

22 for(threadIdx.x=0; threadIdx.x < blockDim.x; threadIdx

.x++){

23 //Apply the stencil

24 int result = 0;

25 for(int offset= -RADIUS; offset <= RADIUS;offset ++)

26 result += temp[local_id + offset ];

27

28 //Store the result

29 out[global_id] = result;

30 }

31 }

32 }

33 }

Listing 2.6

Lines 16–22 show how the synchronization call is substituted by the

closing and reopening of the iterative wrapping.

To formalize the behaviour shown in the previous example, a new rule

that describes this transformation is introduced:

Rule 5. Every syncthreads() statement is removed. At its place, is

inserted the closure of the iterative wrapping and another wrapping is sud-
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denly after reopened.

void kernel(. . .)

{
ITERATIVE WRAPPING{

. . .

syncthreads();

. . .

}
}

−→

void kernel(. . .)

{
ITERATIVE WRAPPING{

. . .

}
ITERATIVE WRAPPING{

. . .

}
}

2.2.3 Emulating thread-local memory

There is another issue introduced by the presence of synchronization. As

said in Section 1.1.2, every variable declared without the shared attribute is

visible only locally by the thread. So, in this case, closing and reopening the

iterative wrapping will cause the loss of the values associated to every vari-

able for that specific thread (ID). This happens because on every iteration

the previous value is overwritten before using it.

To address this issue, the adopted technique is to augment the dimen-

sionality of those variables, and to access them by thread ID inside the for

loops:

1 void stencil_1d(int *in , int *out , dim3 blockDim , dim3

blockIdx)

2 {

3 dim3 threadIdx; int tid;

4 int temp[BLOCK_SIZE + 2 * RADIUS ];

5 int global_id[];

6 int local_id[];

7 for(threadIdx.z=0; threadIdx.z < blockDim.z; threadIdx.z

++){

8 for(threadIdx.y=0; threadIdx.y < blockDim.y; threadIdx.y

++){

9 for(threadIdx.x=0; threadIdx.x < blockDim.x; threadIdx

.x++){

10 tid = threadIdx.x + threadIdx.y*blockDim.x +

threadIdx.z*blockDim.y;

11 global_id[tid] = threadIdx.x+blockIdx.x*blockDim.x;

12 local_id[tid] = threadIdx.x + RADIUS;

13
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14 //Read input elements into shared memory

15 temp[local_id[tid]] = in[global_id[tid]];

16 if(threadIdx.x < RADIUS) {

17 temp[local_id[tid] - RADIUS] = in[global_id[tid] -

RADIUS ];

18 temp[local_id[tid] + BLOCK_SIZE] = in[global_id

[tid] + BLOCK_SIZE ];

19 }

20 }

21 }

22 }

23 // Implicit synchronization

24 for(threadIdx.z=0; threadIdx.z < blockDim.z; threadIdx.z

++){

25 for(threadIdx.y=0; threadIdx.y < blockDim.y; threadIdx.y

++){

26 for(threadIdx.x=0; threadIdx.x < blockDim.x; threadIdx

.x++){

27 tid = threadIdx.x + threadIdx.y*blockDim.x +

threadIdx.z*blockDim.y;

28 //Apply the stencil

29 int result = 0;

30 for(int offset= -RADIUS;offset <= RADIUS; offset ++)

31 result += temp[local_id[tid] + offset ];

32

33 //Store the result

34 out[global_id[tid]] = result;

35 }

36 }

37 }

38 }

Listing 2.7: Translated stencil kernel.

Analysing Listing 2.7 is possible to observe first of all that all the vari-

ables having as scope the entire kernel body are declared now outside the

iterative wrapping (Lines 4–6). The shared attribute is simply removed

from the declarations (Line 4). The thread-local variables global id and

local id are now declared as arrays (Lines 5–6) and their size will corre-

spond to the size of the block, that is the number of threads, since a private

value for every thread ID needs to be stored. In case an initialization is

found, the declaration and the initialization are split, leaving the latter in

the original position (Lines 11–12).
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The tid index used to access this dimensionality-augmented variables

is calculated remembering that once again three dimensional data types

are used. In order to have the correct index for every loop iteration, a

linearisation is defined as follows:

tid = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.y;

This is inserted at the beginning of the content of every iterative wrap-

ping (Lines 10 and 27).

Again, the formal rules that define the transformations shown in the

previous example are introduced:

Rule 6. Every declaration T var; of variables having as scope the entire

kernel body are moved at the beginning of the body. Initializations are not

moved.

void kernel(. . .)

{
ITERATIVE WRAPPING{

T var1;

. . .

T vari;

. . .

T varj = expr;

. . .

}
}

−→

void kernel(. . .)

{
T var1;

T vari;

T varj;

ITERATIVE WRAPPING{
. . .

. . .

varj = expr;

. . .

}
}

Rule 7. For every declaration having the shared keyword, the keyword

is removed.

shared T var −→ T var

Rule 8. The tid variable is declared at the beginning of the body, and its

initialization added at the beginning of each iterative wrapping.
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void kernel(. . .)

{
. . .

ITERATIVE WRAPPING{
. . .

}
. . .

}

−→

void kernel(. . .)

{
int tid;

. . .

ITERATIVE WRAPPING{
tid = . . .;

. . .

}
. . .

}

Rule 9. The dimensionality of the formerly thread-local variables is aug-

mented in their declaration.

T var; −→ T var[];

Rule 10. At each reference var to a variable which dimensionality was

augmented in the declaration, is added an access by the value of tid.

var −→ var[tid]

Operating this last transformations, the kernel function is pure C++

syntax, with the same semantics of the CUDA version, and thus executable

on different architectures.

2.2.4 Host translation

This section describes how the kernel invocation on the host side of the

CUDA source is transformed, in order to iterate through the block indexes

and call the translated kernel function once for every block.

Memory management instructions are temporarily ignored, since they

are interesting more from an implementation point of view (as described in

Chapters 4 and 5). Thus the mapping of the host code resides mainly in

handling the kernel calls.

In Listing 2.8 is shown a basic example of a kernel call.

1 int main(){ ...

2 kernel <<<blocksPerGrid , threadsPerBlock >>>(...);

3 ... }

Listing 2.8: Kernel invocation example.
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It is clear that the kernel execution configuration, identified by the triple

angle bracket notation, is the main aspect that has to be managed in order

to perform the translation.

The corresponding translation is shown in Listing 2.9:

1 int main()

2 {

3 ...

4 for(i=0; i < blocksPerGrid; i++)

5 kernel (..., threadsPerBlock , i);

6 ...

7 }

Listing 2.9: Translated kernel invocation.

By doing this transformation, the semantics of the host code is preserved,

since the kernel function is executed for every block. The new function call

shows two new parameters, threadPerBlock and the i index of the for loop

(Line 5). This is coherent with the formal parameters added to the kernel

definition in the previous section (blockdim and blockIdx).

Again, remembering that also blocksPerGrid is a three-dimensional

variable, in the general scenario, the wrapping of the kernel invocation is

constituted of three nested loops, each one iterating on the value of one of

the three components. This is shown in Listing 2.10.

1 int main()

2 {

3 ...

4 for(z=0; z < blocksPerGrid.z; z++){

5 for(y=0; y < blocksPerGrid.y; y++){

6 for(x=0; x < blocksPerGrid.x; x++){

7 kernel (..., threadsPerBlock , dim3(x,y,z));

8 }

9 }

10 }

11 ...

12 }

Listing 2.10: Translated kernel invocation in the three-dimensional scenario.

The last argument in the kernel call (Line 7), corresponding to the

blockIdx parameter in the kernel definition, is now a variable of type dim3,

constructed at each kernel invocation with the values of the three indexes.
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It is worth pointing out that this transformation for the kernel call re-

sults now in a serialization also of the blocks execution. According to the

programming model of CUDA, since blocks execute independently, the main

idea behind achieving block parallelism relies on the fact that concurrent

CPU threads will execute the kernel function. This is done in practice rely-

ing on the Intel Thread Building Blocks (TBB) template library, substitut-

ing the three for loops wrapping the kernel invocation with a parallel for

pattern. This substitution goes beyond the topic of this chapter, since does

not involves abstract syntax transformations of the CUDA input code, and

will be discussed in detail in Chapters 4 and 5.

Summary

In the first section of this chapter we discussed the reasons behind the

choice of doing a source-to-source approach, highlighting the portability

advantages and describing the AST representation.

In the second section, we formalized the set of transformations to apply

to the CUDA programming constructs in order to obtain the equivalent

C++ version. First we introduced the concept of wrapping the kernel con-

tent in an iterative structure. Then, we shown how closing and reopening

such iterations can ensure synchronization. Finally, we discussed how to

emulate the former thread-local variables and how to transform the kernel

invocation.



Chapter 3

Clang

This chapter describes Clang, the tool we used for the syntactic analysis of

the source code.

After a brief overview of the framework in the first section, the sec-

ond section focuses more on Clang’s Abstract Syntax Trees, giving a basic

description of the nodes and how the Clang ASTs are structured and rep-

resented. The third section lists the Clang libraries used in our implemen-

tation.

A full description of Clang and its ASTs goes beyond the topic of this

thesis work. For more details it is possible to consult the user manual [3] or

the official documentation [2].

31
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3.1 Description

Clang is a compiler front-end for the C language family, including C++,

Objective-C and Objective-C++. It is written in modern C++ and it is part

of the LLVM compiler framework. The LLVM Project [6] is a collection

of modular and reusable compiler and toolchain technologies. The LLVM

Core libraries provide code generation support for many architectures, along

with a target-independent optimizer. Clang uses LLVM as its back-end and

is part of the LLVM release cycle. Clang is open-source and developed by

Apple but other companies such as Microsoft and Google are involved.

Instead of being a monolithic compiler binary like gcc, Clang has a

library-based and modular design [14], which makes it more flexible and easy

to embed into other applications. It supports different uses such as code

refactoring, static analysis and code generation, and offers fast compilation

and low memory consumption. Nevertheless, the libraries may be used

independently from the driver to create other source-level tools.

Among the various dialects of the C language family supported, Clang

now allows to parse also CUDA C/C++ syntax. This is a fundamental

feature for this work, since it relieves us from modifying Clang’s parsing

engine in order to make it able to handle CUDA code. It also allows to

benefit from the advantages of the Clang’s AST representation, as explained

in the next section.

3.2 Clang’s AST

As stated in Chapter 2, Clang’s ASTs are a good fit for the syntactic rep-

resentation. This is due to the fact that they resemble more the written

C++ code. In a certain sense, Clang’s ASTs are “less abstract” than the

ASTs produced by other compilers. For example, parenthesis expressions

and compile time constants are available in an unreduced form in the AST.

This makes Clang’s AST a good fit for refactoring tools.

Listing 3.1 shows a simple example of a while loop.

1 int main(){

2 int x;

3 while( x < 10 ) { x = x + 1; }

4 }

Listing 3.1
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A simple way to transform Clang AST into a textual representation is by

using the Clang compiler itself with the command

clang -Xclang -ast-dump -fsyntax-only <input file>

Listing 3.2 shows the AST produced by Clang for the code shown in

Listing 3.1.

1 TranslationUnitDecl 0x89d0820 <invalid sloc > <invalid sloc >

2 ... omitting Clang internal declarations ...

3 ‘-FunctionDecl 0x89d1240 <while.cpp:1:1, line :7:1> line :1:5

main ’int (void)’

4 ‘-CompoundStmt 0x8a14c98 <col:11, line :7:1>

5 |-DeclStmt 0x89d13f8 <line :2:1, col:6>

6 | ‘-VarDecl 0x89d1398 <col:1, col:5> col:5 used x ’int ’

7 ‘-WhileStmt 0x8a14c78 <line :3:1, line :6:1>

8 |-<<<NULL >>>

9 |-BinaryOperator 0x89d1470 <line :3:8, col:12> ’_Bool ’

’<’

10 | |-ImplicitCastExpr 0x89d1458 <col:8> ’int ’ <

LValueToRValue >

11 | | ‘-DeclRefExpr 0x89d1410 <col:8> ’int ’ lvalue Var 0

x89d1398 ’x’ ’int ’

12 | ‘-IntegerLiteral 0x89d1438 <col:12> ’int ’ 10

13 ‘-CompoundStmt 0x8a14c58 <line :4:1, line :6:1>

14 ‘-BinaryOperator 0x8a14c30 <line :5:2, col:10> ’int ’

lvalue ’=’

15 |-DeclRefExpr 0x89d1498 <col:2> ’int ’ lvalue Var 0

x89d1398 ’x’ ’int ’

16 ‘-BinaryOperator 0x89d1520 <col:6, col:10> ’int ’

’+’

17 |-ImplicitCastExpr 0x89d1508 <col:6> ’int ’ <

LValueToRValue >

18 | ‘-DeclRefExpr 0x89d14c0 <col:6> ’int ’ lvalue

Var 0x89d1398 ’x’ ’int ’

19 ‘-IntegerLiteral 0x89d14e8 <col:10> ’int ’ 1

Listing 3.2: AST dump produced by Clang for the code shown in Listing 3.1

The nodes of the Clang AST are organized in multiple class hierarchies,

which do not share a common base class.

The basic nodes of the Clang AST are Decl (i.e. a declaration), Stmt

(i.e. a statement), Expr1 (i.e. an expression) and Type (i.e. a type). These

1Note that expressions (Expr) are also statements (Stmt) in Clang’s AST node hier-

archy.
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basic nodes are the base classes for rather large class hierarchies. There are

also a multitude of nodes in the AST that are not part of a larger hierarchy,

and are only reachable from specific other nodes, like CXXBaseSpecifier.

A full specification of the Clang AST node hierarchy is available in [5].

The main entry point into the Clang AST are the translation units

(i.e. a preprocessed input file with all its headers). In Listing 3.2 this is

identified by the TranslationUnitDecl node (Line 1), that can contain

function declarations, type declarations or declarations of global variables.

Once started from the TranslationUnitDecl node, the full AST is re-

cursively traversed through the class RecursiveASTVisitor.

Line 3 of Listing 3.2 shows for example a FunctionDecl node, which

corresponds to the declaration of the main function on Line 1 of Listing 3.1.

On Line 4 it is possible to observe a CompoundStmt node, corresponding to

the presence of a statement block surrounded by curly braces, containing a

DeclStmt node (Lines 5–6), which refers to the declaration of the x vari-

able, and a WhileStmt node (Line 7). It is possible to observe that every

node, in addition to its name, carries a set of additional informations: an

unambiguous address and the source code location(s) referring to the node.

If the node represents a declaration (i.e. Line 6), the name of the declared

entity is reported, as well as its type and a field indicating whether is used

or not. If it is a function declaration, also the type of the parameters is re-

ported. If the node represents an operator (i.e. the BinaryOperator node

in Line 9), the return type and the name of the operator are listed. If the

node represents a Literal (IntegerLiteral node, Line 12) the type and the

value are shown.

In order to obtain a Clang AST from a CUDA program, the CUDA run-

time libraries have to be included when the input file is parsed by Clang.

Listing 3.3 shows a snippet of code containing some CUDA reserved key-

words (in red).

1 __global__ void kernel (){

2 __shared__ int some_array [10];

3 }

4

5 int main(){

6 kernel <<<1, 1>>>();

7 }

Listing 3.3
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The obtained Clang AST is showed below in Listing 3.4, where the addresses

and the source locations are hidden for readability.

1 |-FunctionDecl 0x95eac58 [...] used kernel ’void (void)’

2 | |-CompoundStmt [...]

3 | | ‘-DeclStmt [...]

4 | | ‘-VarDecl [...] some_array ’int [10]’ static

5 | | ‘-CUDASharedAttr [...]

6 | ‘-CUDAGlobalAttr [...]

7 ‘-FunctionDecl [...] main ’int (void)’

8 ‘-CompoundStmt [...]

9 ‘-CUDAKernelCallExpr [...] ’void ’

10 |-ImplicitCastExpr [...] ’void (*)(void)’ <

FunctionToPointerDecay >

11 | ‘-DeclRefExpr [...] ’void (void)’ lvalue Function 0

x95eac58 ’kernel ’ ’void (void)’

12 ‘-CallExpr [...] ’cudaError_t ’:’enum cudaError ’

13 |-ImplicitCastExpr [...] ’cudaError_t (*)(dim3 , dim3

, size_t , cudaStream_t)’ <FunctionToPointerDecay >

14 | ‘-DeclRefExpr [...] ’cudaError_t (dim3 , dim3 ,

size_t , cudaStream_t)’ lvalue Function [...] ’

cudaConfigureCall ’ ’cudaError_t (dim3 , dim3 ,

size_t , cudaStream_t)’

15 ...

Listing 3.4: Simplified Clang AST dump for the code in Listing 3.3

It is possible to observe in the Listing above that Clang treats the CUDA

specific syntax adding specialised nodes to the hierarchy, but always match-

ing them with the corresponding nodes of the regular C++ syntax. This is a

clear symptom of the CUDA nature of being an extension of C++. For ex-

ample, the kernel declaration results in a normal function declaration, hav-

ing in addition the CUDAGlobalAttr node. The same happens for the decla-

ration of a shared variable, simply identified by the node CUDASharedAttr

(Lines 3–5). The kernel call is identified by the CUDAKernelCallExpr node,

which is just a subclass of a normal CallExpr in the node hierarchy.

It is worth pointing out that Clang’s AST are immutable, meaning that

their correctness is not guaranteed after any operation on its nodes, like

reordering, insertion of removal. This property impacts the design of the

solution presented in this thesis, as explained in detail in Section 4.1 of

Chapter 4.
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3.3 Clang libraries

This section briefly describes the libraries provided by Clang used in this

work. Again, a full description is out of the scope of this thesis. For a

complete overview please refer to [1].

libbasic

This library provides fundamental features such as diagnostics and file sys-

tem caching for input source files. It also contains the SourceLocation

class, which encodes the concept of a location in the source code. Tech-

nically, a source location is simply an offset into the manager’s view of

the input source, which is all input buffers (including macro expansions)

concatenated in an effectively arbitrary order.

liblex

This library provides lexing and preprocessing features. The Lexer class

provides a simple interface that turns a text buffer into a stream of to-

kens. This is exploited in the Preprocessor class, in order to compute the

source location just past the end of a certain token. The Preprocessor also

handles pragmas and macro expansion.

libast

libast provides classes to represent the C AST (the node class hierarchy

shown in the previous section), the C type system, builtin functions, and

various helpers for analyzing and manipulating the AST (visitors, pretty

printers, etc). In particular, it contains the ASTConsumer class, an abstract

interface that should be implemented by clients that read ASTs. This ab-

straction layer allows the client to be independent of the AST producer

(e.g. parser vs AST dump file reader, etc). This library also contains the

ASTContext class, which bundles all the informations about the AST for a

translation unit. This class allows traversal of the whole translation unit

starting from the getTranslationUnitDecl method.

librewrite

This library provides editing of text buffers, important for code rewriting

transformation. The Rewriter class is the main interface to the rewrite
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buffers. Its primary job is to dispatch high-level requests such as text in-

sertions or removals to the low-level RewriteBuffers that are involved.

libtooling

LibTooling is a library to support writing standalone tools based on Clang.

Tools built with LibTooling, like Clang plugins, run front-end actions over

code. For a standalone tool to run Clang, it first needs to figure out what

command line arguments to use for a specified file. To that end there

is the CommonOptionsParser class that takes the responsibility to parse

command-line parameters.

Summary

In the first section of this chapter we gave a brief description of the Clang

compiler front-end, while in the second section we focused on the description

of its ASTs. We shown how a Clang AST is represented and in particular

how it represents CUDA syntax. In the last section we gave an overview of

the libraries provided by Clang.



Chapter 4

Prototype design

This chapter gives an high-level description of the software implemented as

a proof of concept of the transformations described in this thesis work. The

first section gives a high level overview of the software, while the second and

the third section describe in more detail the Augmenter and the Translator,

the two main components of the software.

38
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4.1 Overview

The overall translation process goes through a set of two steps and involves

three files, as shown in Figure 4.1.

Figure 4.1: Translation process overview.

The CUDA source code files are given in input to the first component,

the Augmenter, which applies a set of preliminary transformations, mainly

related to the emulation of thread-local memory, as described in more detail

in Section 4.2. The Augmenter writes as output a temporary file containing

this preliminary changes to the CUDA code.

This temporary file is therefore given in input to the second component,

the Translator, which has the task of implementing the main translation

process, as explained in Section 4.3. The produced output is then a C++

source code file, ready to be compiled and executed on a CPU.

Both Expander and Translator are Clang plugins, since they rely on

Clang’s parser in order to create the AST. Then they apply the changes ex-

ploiting the tools provided by the Clang libraries. The two plugins traverse

the trees in a recursive descent way through iterators on the nodes of the

tree.

Splitting the overall translation process in two components has been

necessary because the operations performed by the Augmenter involve the

displacement and the reordering of instructions of the input code. This is

also reflected on the structure of the AST of the program, since moving

instructions on the code means reordering the nodes of the tree. However,

modifying the structure of a Clang AST should be avoided, since Clang

ASTs are designed to be immutable, thus it is not possible to guarantee

their correctness after any node reconstructing. For this reason, the output

of the Augmenter is saved on a temporary file, and then parsed again by the

Translator. However, being this done at compile time, the delay introduced

is negligible.
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4.2 Augmenter

Figure 4.2 shows more in detail the Augmenter component.

Figure 4.2: An expanded view of the Augmenter component.

The content of the CUDA source code files is given to Clang’s main

driver. Clang handles the parsing and the AST generation as during normal

compilation.

Since the AST representation is obtained, the Augmenter starts recur-

sively the traversal of the tree. For every node encountered, it checks if

it is a declaration node (Decl Node Identification, Fig. 4.2). The declara-

tion nodes also having an attribute pointing out the allocation on shared

memory are discarded, and the attribute deleted. This deletion can be

considered already part of the Syntax Rewriting stage. Every declaration

found is therefore stored in a temporary data structure. In the Decl Node

Identification stage is checked also the presence of expressions that refer to

previously declared variables (i.e. the usage of a variable). In particular,

only the expressions referring to the declarations stored in the temporary

data structure and not having the “shared” attribute are considered.

The Syntax Rewriting phase shown in Fig. 4.2 is performed initially

on the declarations, augmenting their dimensionality (i.e. scalar variables

become arrays). Secondly, the nodes containing expressions referring to

declared variables, identified by the previous stage, are modified adding an

access by thread ID. This two operations were described in Section 2.2.3 of

Chapter 2. All the declaration statements in the temporary data structure

that have also an initialization part are split in two. The declarations are

moved at the beginning of the body of the CUDA kernel, in order to avoid
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their presence inside the iterative wrapping that will be applied by the

translator, as explained in Section 4.3. The initialization part is instead left

at the original location of the code.

The source code containing the changes applied by the Augmenter is

written in output on a temporary file, which will be given as input to the

second component, the Translator.

4.3 Translator

The Translator takes in input the temporary file containing the source code

produced by the Augmenter. As for the previous component, Clang handles

the parsing of the code and the generation of the AST like in a normal

compilation scenario.

Figure 4.3 shows the stages composing the Translator.

Figure 4.3: An expanded view of the Translator component.

The AST is traversed again in a recursive descent way. The Node Iden-

tification stage has a very similar behaviour of the Decl Node Identification

stage of the Augmenter depicted in Figure 4.2. However, the Translator has

now to take into account not only the declarations but also the expression

and statement nodes. The identified node is therefore passed to the Kernel

/ Host Dispatcher, which checks if the node belongs to the kernel part or the
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host part of the code. This is accomplished simply analysing if the func-

tion containing the node being processed is declared with the global

attribute.

The Kernel Rewriting stage performs the transformations described in

Section 2.2.1 and 2.2.2. First of all, for each declaration node processed,

any CUDA specific attribute such as global or shared is removed.

In particular, the declaration of the kernel function is rewritten adding

the block dimension and the block identifier to the formal parameter list.

The rewriting of the body of the kernel consists mainly in the insertion of

the iterative wrapping, namely the three nested for loops iterating among

the values of the identifier of the thread shown in Listing 2.4. Since the

augmenter moved all the declarations at the beginning of the kernel body,

the iterative wrapping starts exactly after the last declaration, and finishes

after the last statement of the body, inserting the brackets that close the

loops. Therefore, if a node corresponds to a syncthreads() expression,

the rewriter deletes this function call and inserts the brackets closing the

iterative wrapping, immediately opening another iterative wrapping.

The Host Rewriting stage performs two operations corresponding to the

transformation shown in Section 2.2.4. The first operation is related to the

transformation of the kernel function call. Both three-dimensional param-

eters representing the grid dimension and the blocks dimension, as well as

the triple angle bracket notation, are deleted. In particular the block di-

mension is now inserted as a regular argument of the function call. The

second operation consists in the insertion of the iterative wrapping of the

new function call, which will be described in Section 4.3.1.

The Host Rewriting stage is also in charge of the rewriting of the CUDA

API calls. As said in Section 1.2, the CUDA programming model assumes

a system composed of a host and a device, each with their own separate

memory. Kernels operate out of device memory, so the runtime provides

functions to allocate, deallocate, and copy device memory, as well as transfer

data between host memory and device memory. The most important func-

tions are the ones concerning memory management. In particular, the most

prominent three are considered: cudaMalloc, cudaFree and cudaMemcpy.

When these functions are encountered, they are replaced with the corre-

sponding C++ standard library functions, as shown in Table 4.1:

Although the translation of cudaMalloc and cudaFree is quite intuitive

and straightforward, the cudaMemcpy call could be simply ignored, since
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CUDA C++

cudaMalloc(devPtr, size) devPtr = (type) malloc(size)

cudaFree(devPtr) free(devPtr)

cudaMemcpy(dst, src, size, kind) memcpy(dst, src, size)

Table 4.1: Memory management API rewriting.

now the execution happens in an environment that does not distinguish

any more between host and device memory. Thus, it can be given as a

parameter to the kernel just the (former) host memory data. However,

since there is no guarantee that the kernel function left unmodified the

content of its parameters, this could lead to an incorrect behaviour, if this

data is used again after the kernel execution. For this reason, the memcpy

between the two memory areas is still needed.

4.3.1 Intel TBB parallelization

The Host Rewriting stage of the Translator, handles the wrapping of the

kernel function call, adding the three nested for loops iterating among the

values of the former grid dimension parameter, as described in Listing 2.10.

The index of those loops is also added to the arguments of the function call.

As previously anticipated at the end of Chapter 2, the main idea behind

achieving block parallelism relies on the fact that concurrent CPU threads

will execute the kernel function.

This section introduces how this is accomplished relying on the Intel

Thread Building Blocks (TBB) template library. TBB is a C++ tem-

plate library, developed by Intel, for writing software programs that take

advantage of multi-core processors. A full description of the TBB frame-

work goes out of the scope of this thesis work. For more informations please

refer to [4].

Among the various parallel patterns provided by TBB, the template

function tbb::parallel for showed to be the most straightforward way

to parallelize the execution of the kernel function.

When a function has to be applied to each element of an array, and it

is safe to process each element concurrently, a tbb::parallel for can be

used to implement this functionality, but with parallelism enabled.

For example, Listing 4.1 shows a function foo applied to each of the n
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elements of an array a.

1 for( size_t i=0; i!=n; ++i )

2 foo(a[i]);

Listing 4.1

The iteration space here is of type size t, and goes from 0 to n-1. The tem-

plate function tbb::parallel for breaks this iteration space into chunks,

and runs each chunk on a separate thread. tbb::parallel for takes four

parameters: first, last, step and function. Listing 4.2 illustrates how

the foo application is transformed:

1 parallel_for(size_t (0), n, size_t (1) , [=]( size_t i) {

2 foo(a[i]);

3 });

Listing 4.2: A parallel for usage example.

The [=] introduces a lambda expression. The expression creates a function

object that, when local variables like a and n are declared outside the lambda

expression, but used inside it, captures them as fields inside the function

object. The [=] specifies that capture is by value.

To show how tbb:parallel for is used, below is listed again the wrap-

ping of the kernel invocation (previously shown in Listing 2.10):

1 int main()

2 {

3 ...

4 for(z=0; z < blocksPerGrid.z; z++){

5 for(y=0; y < blocksPerGrid.y; y++){

6 for(x=0; x < blocksPerGrid.x; x++){

7 kernel (..., threadsPerBlock , dim3(x,y,z));

8 }

9 }

10 }

11 ...

12 }

Listing 4.3: Serial invocation of the kernel function.

In Listing 4.4 below, the for loops are replaced by a call to the function

tbb::parallel for, which divides up the iterations in to tasks and provides

them to the library’s task scheduler for parallel execution. The body of the

loop in the code stays the same (Line 5).
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1 ...

2 tbb:: parallel_for (0, (int)blocksPerGrid.z, 1, [=]( int z){

3 tbb:: parallel_for (0, (int)blocksPerGrid.y, 1, [=]( int y){

4 tbb:: parallel_for (0,(int)blocksPerGrid.x, 1, [=]( int x){

5 kernel (..., threadsPerBlock , dim3(x, y, z));

6 });

7 });

8 });

9 ...

Listing 4.4: Parallel invocation of the kernel function.

Applying this substitution, the execution of the kernel function is par-

allelized, since the block indexes are partitioned arbitrarily among concur-

rently executing CPU threads.

Summary

In this chapter we gave a description of the design of the software imple-

mented in this master thesis. After having briefly shown the overall process

in the first section, we highlighted the execution stages involved in the two

main components: the Augmenter and the Translator. In particular, in

the third section, we also shown how in the Translator stage CPU thread

parallelism is achieved through Intel TBB.



Chapter 5

Implementation

This chapter describes the implementation details of the tool created to

accomplish the source-to-source translation.

In the first section is presented a part of the code common to the two

tools, mainly concerning the creation of a Clang plugin.

The second and the third section show the implementation of the Aug-

menter and the Translator plugins.

46
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5.1 Clang machinery

This section describes some parts of the code that are necessary for the

creation of the two tools. Since they are identical for both tools, they are

reported only once. The first part in common consists in the main function,

shown in Listing 5.1.

1 int main(int argc , const char **argv) {

2 CommonOptionsParser op(argc , argv , MatcherSampleCategory);

3 ClangTool Tool(op.getCompilations (),op.getSourcePathList ());

4 return Tool.run(newFrontendActionFactory <MyFrontendAction >()

.get());

5 }

Listing 5.1: The main function of a Clang plugin.

At Line 2 there is the creation of a CommonOptionParser object named op,

which is a parser for options common to all command-line Clang tools. At

Line 3 is called the constructor for the ClangTool class. This is an utility

to run a FrontendAction over a set of files. This is done at Line 4, where

the run method of the ClangTool class is called. It takes as parameter an

ASTFrontendAction.

Listing 5.2 shows the definition of the MyFrontendAction class.

1 class MyFrontendAction : public ASTFrontendAction{

2 public:

3 MyFrontendAction (){}

4 void EndSourceFileAction () override {

5 TheRewriter.getEditBuffer(TheRewriter.getSourceMgr ().

getMainFileID ()).write(llvm::outs());

6 }

7

8 std:: unique_ptr <ASTConsumer > CreateASTConsumer(

CompilerInstance &CI , StringRef file) override {

9 TheRewriter.setSourceMgr(CI.getSourceManager (), CI.

getLangOpts ());

10 return llvm:: make_unique <my_ast_consumer >(&CI , &

TheRewriter);

11 }

12 private:

13 Rewriter TheRewriter;

14 };

Listing 5.2: The ASTFrontendAction class definition.
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Lines 4–6 define the callback at the end of processing an input file. Lines

8–11 show the creation of an ASTConsumer object. This is an abstract

interface that should be implemented by clients that read ASTs. The se-

mantics of the operations performed by the two tools are inside this class

definition, and they will be described in the next sections.

5.2 Augmenter

This section describes the implementation details of the Augmenter com-

ponent. This class takes care of augmenting the dimensionality of the local

CUDA thread variables and of the movement of the declarations in the right

locations.

1 std:: string initsupport;

2 std:: string nt;

3 std::set <std::string > KernelDecls;

4 std::vector <std::string > NewDecls;

5 SourceLocation kernelbodystart;

6

7 class dimensionality_augmenter : public ASTConsumer {

8 public:

9 dimensionality_augmenter(CompilerInstance *comp , Rewriter

* R) : ASTConsumer (), CI(comp), Rew(R) { }

10 virtual ~dimensionality_augmenter () { }

Listing 5.3: Preliminary part of the dimensionality augmenter class.

Listing 5.3 shows the preliminary part of the dimensionality augmenter

class. At Lines 1–5 are declared some global support variables that will be

needed in the following of the code. Line 7 shows the declaration of the

class, with the constructor at Line 9, containing the initialization of some

Clang-specific components, such as the Rewriter.

1 virtual bool HandleTopLevelDecl(DeclGroupRef DG) {

2 //Walk and rewrite declarations in group

3 for (DeclGroupRef :: iterator i = DG.begin(), e = DG.end();

i != e; ++i) {

4 // Handles globally defined functions

5 if (FunctionDecl *fd = dyn_cast <FunctionDecl >(*i)) {

6 if (fd ->hasAttr <CUDAGlobalAttr >()) {

7 // kernel function

8 RewriteKernelFunction(fd);

9 } else {
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10 if (Stmt *body=fd ->getBody ()) RewriteHostStmt(body);

11 }

12 }

13 }

14 return true;

15 }

Listing 5.4: The HandleTopLevelDecl method.

Listing 5.4 shows the first method of the class, HandleTopLevelDecl,

automatically called by the Clang parser to process every top-level declara-

tion, represented by the DG parameter of type DeclGroupRef (Line 1). This

declaration group is iterated, searching for function declarations (Line 5).

If a function is found, the presence of the global attribute is checked

(Line 6) and if the result is true, meaning that a kernel function was identi-

fied, the RewriteKernelFunction() private method shown below is called.

Otherwise, the RewriteHostStmt method (shown in Listing 5.8) is called

on the body of the function.

1 void RewriteKernelFunction(FunctionDecl* kf) {

2 if (Stmt *body = kf ->getBody ()){

3 kernelbodystart = PP->getLocForEndOfToken(body ->

getLocStart ());

4 replicate(body); //Call to the analysis of the variables

5 }

6 }

Listing 5.5: The RewriteKernelFunction method.

The RewriteKernelFunction method is shown in Listing 5.5. This

method simply checks the presence of the body of the function (Line 2). If

the function is not empty, the location of the kernel body is saved (Line 3)

in the kernelbodystart global variable (declared at Line 5 of Listing 5.3).

Therefore, the main method of this class, replicate, is called (Line 4).

1 void replicate(Stmt *s){

2 if (DeclStmt *ds = dyn_cast <DeclStmt >(s)){

3 DeclGroupRef DG = ds ->getDeclGroup ();

4 for (DeclGroupRef :: iterator i2=DG.begin(), e=DG.end(); i2

!=e; ++i2){

5 if(*i2){ //not null

6 if(VarDecl *vd = dyn_cast <VarDecl >(*i2)){

7 if (CUDASharedAttr *sharedAttr = vd ->getAttr <

CUDASharedAttr >()) {



CHAPTER 5. IMPLEMENTATION 50

8 SourceRange declrange = SourceRange(vd->

getTypeSpecStartLoc (), PP ->getLocForEndOfToken(vd ->

getLocEnd ()));

9 StringRef decl_text = Lexer :: getSourceText(

CharSourceRange(declrange , false), *SM, *LO);

10 NewDecls.push_back(decl_text.str()+";");

11 SourceRange fullrange = SourceRange(SM->

getExpansionLoc(vd->getLocStart ()), PP->

getLocForEndOfToken(PP ->getLocForEndOfToken(vd ->

getLocEnd ())));

12 CharSourceRange cs = CharSourceRange(fullrange ,false);

13 Rew ->RemoveText(cs);

14 } else { // augment

15 KernelDecls.insert(vd->getNameAsString ()); // Matching

set

16 NewDecls.push_back(vd->getType ().getAsString ()+" "+vd

->getNameAsString ()+"[numThreads ];");

17 if(vd ->hasInit ()){

18 Rew ->ReplaceText(SourceRange(vd ->getLocStart (), PP ->

getLocForEndOfToken(vd ->getLocEnd ())), vd ->

getNameAsString () + "[__ttid_] = " + getStmtText(

vd ->getInit ()) + ";");

19 } else {

20 Rew ->ReplaceText(SourceRange(vd ->getLocStart (), PP ->

getLocForEndOfToken(vd ->getLocEnd ())), "");

21 }

22 }

23 }

24 }

25 }

26 [...]

27 }

Listing 5.6: The first part of the replicate method.

Listing 5.6 shows the first part of the replicate method. A generic

statement s, is dynamically cast to a DeclStmt (Line 2) and then variable

declarations are searched (Line 6). For every VarDecl found, two behaviours

are possible regarding the presence or the absence of the shared at-

tribute (Line 7). If the attribute is found, the corresponding variable does

not need to have its dimensionality augmented. However, the attribute is

deleted, and declaration needs to be moved at the beginning of the kernel



CHAPTER 5. IMPLEMENTATION 51

body. In order to accomplish that, a SourceRange1 is created (Line 8),

representing the part of code of the declaration without the attribute. The

content of the range is therefore taken in textual representation (Line 9),

and inserted (Line 10) in the NewDecls global vector (declared on Line 4 of

Listing 5.3). Then, another range is calculated (Lines 11–12), this time rep-

resenting the declaration statement in its entirety (including the attribute).

Lastly, the Rewriter deletes the content of the range (Line 13).

If the shared attribute was not found (else branch, Line 14), it

means we are dealing with a declaration of a local variable, thus its dimen-

sionality needs to be augmented. First of all, at Line 15, the name of the

declared variable is inserted in the KernelDecls set (declared on Line 3

of Listing 5.3). The declaration is therefore saved in the NewDecls vector

as a string, adding the "[numThreads]" part at the end of it (Line 16).

If the variable is initialized (Line 17), only the initialization part is left

on this source location, adding the access by thread ID, represented by the

"[ ttid ]" string, after the variable name (Line 18). Otherwise, the entire

statement is deleted (Line 20).

1 void replicate(Stmt *s){

2 [...]

3 } else if(DeclRefExpr *dre = dyn_cast <DeclRefExpr >(s)){

4 if(KernelDecls.find(dre ->getNameInfo ().getAsString ()) !=

KernelDecls.end()){

5 Rew ->ReplaceText(SourceRange(dre ->getLocStart (), dre ->

getLocEnd ()), dre ->getNameInfo ().getAsString ()+"[

__ttid_]");

6 }

7 }

8

9 for (Stmt:: child_iterator s_ci = s->child_begin (), s_ce =

s->child_end (); s_ci != s_ce; ++s_ci) {

10 if(*s_ci) replicate (*s_ci);

11 }

Listing 5.7: The second part of the replicate method.

The second part of the replicate method is shown in Listing 5.7. The

generic statement s is cast to a DeclRefExpr (Line 3), which encodes the

information about how a declaration is referenced within an expression. If

the variable expression is found in the KernelDecls set (Line 4), it means

1A pair of two SourceLocations
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we are dealing with a variable which dimensionality was augmented. In

this case, similarly as the initializations in the previous case, an access by

thread identifier is added (Line 5) after the name of the variable. Finally,

an iterator is defined on the children of the statement s (Line 9). For every

child node found, the replicate method is recursively called on it (Line

10).

1 void RewriteHostStmt(Stmt *s) {

2 if (Expr *e = dyn_cast <Expr >(s)) {

3 if (clang:: CUDAKernelCallExpr *kce = dyn_cast <clang::

CUDAKernelCallExpr >(e)) {

4 CallExpr *kernelConfig = kce ->getConfig ();

5 Expr *block = kernelConfig ->getArg (1);

6 if(auto C = dyn_cast <CXXConstructExpr >( block)){

7 if(auto A = dyn_cast <DeclRefExpr >(C->getArg (0) ->

IgnoreImpCasts ())){

8 if(VarDecl *vd = dyn_cast <VarDecl >(A->getDecl ())){

9 if(CXXConstructExpr * cce = dyn_cast <

CXXConstructExpr >(vd->getInit ())){

10 nt = getStmtText(cce ->getArg (0)) + "*" +

getStmtText(cce ->getArg (1)) + "*" +

getStmtText(cce ->getArg (2));

11 }

12 }

13 }

14 }

15 }

16 } else {

17 for (Stmt:: child_iterator CI = s->child_begin (), CE = s

->child_end (); CI != CE; ++CI) {

18 if (*CI) RewriteHostStmt (*CI);

19 }

20 }

21 }

Listing 5.8: The RewriteHostStmt method.

Listing 5.8 shows the RewriteHostStmt method, called by

HandleTopLevelDecl in case the function declaration did not have the

global attribute, as previously described in Listing 5.4. The purpose

of this method, is the analysis of the kernel call statement in the main

function, in order to obtain the value of the parameter that identifies the

dimension of a block. For every generic statement s, this method applies a

set of casts, checking if we are dealing with an expression (Line 2), then a
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CUDA kernel call (Line 3). The call configuration, corresponding to the ar-

guments inside the triple angle brackets, is therefore taken (Line 4), and its

second argument is saved into the block variable (Line 5). More casts are

performed in order to obtain the corresponding DeclRefExpr (Lines 6–7)

and the declaration (Lines 8–9). At Line 10, the three values representing

the block dimension are stored in the nt global string (declared at Line 2 of

Listing 5.3). Again, an iterator is defined on the children of the statement

s (Line 17) and for every child node found, the RewriteHostStmt method

is recursively called on it (Line 19).

After the execution of the methods presented above, the transformations

concerning the movement of the declarations at the beginning of the ker-

nel body are stored in the temporary support structures globally declared

(Listing 5.3). To effectively apply this modifications to the source code,

the behaviour of the EndSourceFileAction method previously shown in

Listing 5.2 is extended.

1 class Replication : public ASTFrontendAction{

2 [...]

3 void EndSourceFileAction () override {

4 initsupport += "\ndim3 threadIdx ;\nint __ttid_ ;\n";

5 initsupport += "int numThreads = "+nt+";\n";

6 for(int i = 0; i < NewDecls.size(); i++){

7 initsupport += NewDecls[i] + "\n";

8 }

9 TheRewriter.InsertTextAfter(kernelbodystart ,initsupport);

10 [...]

11 };

Listing 5.9: The EndSourceFileAction method for the Replication class.

Listing 5.9 above shows the new EndSourceFileAction method of the

Replication class, the specific ASTFrontendAction for the Augmenter

component. The parts not shown of the class definition are identical to

the ones in Listing 5.2.

At Line 4 the declaration of the now explicit variable threadIdx is added

to the initsupport string, as well as the one of the tid index to access

the augmented variables. The declaration of the numThreads variable is

added at Line 5, initialized with the value previously saved in the nt string,

as explained in Listing 5.8. Also, all the declarations previously saved in

the NewDecls vector are inserted in the in the initsupport string. Finally,

the rewriter inserts the content of the string at the beginning of the body



CHAPTER 5. IMPLEMENTATION 54

of the kernel, identified by the kernelbodystart source location (saved in

the RewriteKernelFunction method shown in Listing 5.5).

5.3 Translator

This section describes the implementation of the Translator component.

1 class Translator : public ASTConsumer {

2 public:

3 Translator(CompilerInstance *comp , Rewriter *R) :

ASTConsumer (), CI(comp), Rew(R){ }

4 virtual ~Translator () { }

5

6 virtual bool HandleTopLevelDecl(DeclGroupRef DG) { [...] }

7

8 private:

9 std:: string TL_START1 = "for(threadIdx.z=0; threadIdx.z

< blockDim.z; threadIdx.z++){\n";

10 std:: string TL_START2 = "for(threadIdx.y=0; threadIdx.y

< blockDim.y; threadIdx.y++){\n";

11 std:: string TL_START3 = "for(threadIdx.x=0; threadIdx.x

< blockDim.x; threadIdx.x++){\n";

12 std:: string TL_START = TL_START1+TL_START2+TL_START3+"

__ttid_=threadIdx.x + threadIdx.y*blockDim.x +

threadIdx.z*blockDim.y;";

13 std:: string TL_END = "}}}";

Listing 5.10: Preliminary part of the Translator class.

Listing 5.10 describes the preliminary part of the Translator class. The

first method, HandleTopLevelDecl (Line 6) is identical to the one for the

Augmenter, shown in Listing 5.4 of the previous section. Lines 9–13 present

the declaration of the strings containing the iterative wrapping needed in the

following. The TL START string represents the opening of the three nested

loops, while TL END represents the closing.

1 void RewriteKernelFunction(FunctionDecl* kf) {

2 std:: string SStr;

3 llvm:: raw_string_ostream S(SStr);

4 S << kf ->getCallResultType ().getAsString () << " " << kf->

getNameAsString () << "(";

5 for( int j = 0; j < kf ->getNumParams (); j++){

6 S << kf ->getParamDecl(j)->getType ().getAsString () << " "

<< kf ->getParamDecl(j)->getQualifiedNameAsString ()
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<< ", ";

7 }

8 S << "dim3 gridDim , dim3 blockDim , dim3 blockIdx)";

9 SourceLocation start = SM ->getExpansionLoc(kf ->getLocStart

());

10 SourceLocation end = PP ->getLocForEndOfToken(SM ->

getExpansionLoc(kf->getParamDecl(kf->getNumParams () -1)

->getLocEnd ()));

11 SourceRange range(start , end);

12 Rew ->ReplaceText(start , Rew ->getRangeSize(range),S.str());

13 if (Stmt *body = kf ->getBody ()){

14 RewriteKernelBody(body , true);

15 }

16 }

Listing 5.11: The RewriteKernelFunction method.

Listing 5.11 shows the RewriteKernelFunction method, called by the

HandleTopLevelDecl method in case a global attribute was found.

This method handles the transformation of the heading of the kernel func-

tion. A string is created, inserting the original returned type and the name

(Line 4), then all the original formal parameters (Lines 5–6). At Line 8,

are added to the parameter list the previously built-in variables gridDim,

blockDim and blockIdx. Then, the source range of the old heading is cal-

culated (Lines 9–11), and the new string is inserted at its place (Line 12).

If the body of the function is not empty (Line 13), the RewriteKernelBody

method is called (Line 14).

1 void RewriteKernelBody(Stmt *s, bool first){

2 if(first){ //We are entering the method for the first time

3 SourceLocation begin = s->getLocStart ();

4 if(CompoundStmt * cs = dyn_cast <CompoundStmt >(s)){

5 for(Stmt:: child_iterator i = cs ->body_begin (), e = cs

->body_end (); i!=e; ++i){

6 if(*i){

7 if(DeclStmt *vd = dyn_cast <DeclStmt >(*i)){

8 begin =PP->getLocForEndOfToken(vd->getLocEnd ());

9 }

10 else break;

11 }

12 }

13 }

14 Rew ->InsertTextAfter(begin , "\n"+TL_START+"\n");

15 Rew ->InsertTextBefore(s->getLocEnd (), "\n"+TL_END+"\n");
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16 first = false;

17 }

18

19 [...]

20

21 else if (CallExpr *ce = dyn_cast <CallExpr >(s)){

22 if(ce ->getDirectCallee ()->getNameAsString () == "

__syncthreads"){

23 // simply closing and reopening a thread loop

24 std:: string a = "\n"+TL_END+"\n//"+getStmtText(ce)+";\

n"+TL_START+"\n";

25 ReplaceStmtWithText(ce , a, *Rew);

26 }

27 } else {

28 for (Stmt:: child_iterator s_ci = s->child_begin (), s_ce

= s->child_end (); s_ci != s_ce; ++s_ci) {

29 if(*s_ci){

30 RewriteKernelBody (*s_ci , false);

31 }

32 }

33 }

34 }

Listing 5.12: The RewriteKernelBody method.

The RewriteKernelBody method is introduced in Listing 5.12. This

method defines the transformations performed in order to handle the syn-

chronization statements. Line 2 shows the check for the boolean parameter

first, needed to open the first iterative wrapping inside the kernel body.

This is accomplished iterating through all the statements encountered (Line

5), and updating the begin source location for each declaration found (Lines

7–8). After the last declaration, the iterative wrapping is introduced (Line

14). This behaviour is correct since the Augmenter stage moved all the

global declarations at the beginning of the kernel body. The iterative wrap-

ping is therefore closed at the end of the body (Line 15). In the general

scenario, the RewriteKernelBody method casts the statement s dynami-

cally, in order to search for syncthreads() calls (Lines 21–22). If such

a call is found, a string containing the closing and reopening of the itera-

tive wrapping is inserted (Lines 24–25). Finally, an iterator is defined on

the children of the statement s (Line 28). For every child node found, the

RewriteKernelBody method is recursively called on it (Line 30).
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1 void RewriteHostStmt(Stmt *s){

2 if (Expr *e = dyn_cast <Expr >(s)) {

3 std:: string str;

4 if (RewriteHostExpr(e, str)) ReplaceStmtWithText(e,

str , *Rew);

5 } else {

6 for (Stmt:: child_iterator CI = s->child_begin (), CE

= s->child_end (); CI != CE; ++CI) {

7 if (*CI) RewriteHostStmt (*CI);

8 }

9 }

10 }

Listing 5.13: The RewriteHostStmt method.

Listing 5.13 describes the RewriteHostStmt method. This method searches

for expressions (Line 2) and if it finds one calls the RewriteHostExpr,

method described in Listing 5.14, which modifies the str parameter, there-

fore passed to the ReplaceStmtWithText method which substitutes the

original epxression e with the new string. Then, an iterator is defined on

the children of the statement s (Line 6). For every child node found, the

RewriteHostStmt method is recursively called on it (Line 7).

1 bool RewriteHostExpr(Expr *e, std:: string &newExpr) {

2

3 SourceRange realRange(SM->getExpansionLoc(e->getLocStart

()), SM ->getExpansionLoc(e->getLocEnd ()));

4

5 // Rewriter used for rewriting subexpressions

6 Rewriter exprRewriter (*SM, *LO);

7

8 if (clang:: CUDAKernelCallExpr *kce = dyn_cast <clang::

CUDAKernelCallExpr >(e)) {

9 newExpr = RewriteCUDAKernelCall(kce);

10 return true;

11 } else if (CallExpr *ce = dyn_cast <CallExpr >(e)) {

12 if (ce->getDirectCallee ()->getNameAsString ().find("

cuda") == 0) { //CUDA API

13 return RewriteCUDACall(ce , newExpr);

14 }

15 }

16 bool ret = false;

17 //Do a DFS , recursing into children , then rewriting this

expression
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18 //if rewrite happened , replace text at old sourcerange

19 for (Stmt:: child_iterator CI = e->child_begin (), CE = e

->child_end (); CI != CE; ++CI) {

20 std:: string s;

21 Expr *child = (Expr *) *CI;

22 if (child && RewriteHostExpr(child , s)) {

23 // Perform "rewrite", which is just a simple

replace

24 ReplaceStmtWithText(child , s, exprRewriter);

25 ret = true;

26 }

27 }

28 newExpr = exprRewriter.getRewrittenText(realRange);

29 return ret;

30 }

Listing 5.14: The RewriteHostExpr method.

The RewriteHostExpr method is shown in Listing 5.14. After calculating

the range of the expression being analysed (Line 3), this method searches for

CUDA kernel invocations (Line 9), and if it finds one calls the RewriteCUDAKernelCall

method (Line 10). If a normal call expression is found, then it is checked

if the name of the called function begins with the string "cuda", mean-

ing a CUDA API was found, and then the method RewriteCUDACall is

called. Otherwise, the RewriteHostExpr is recursively called on the sub-

expressions, if any.

1 std:: string RewriteCUDAKernelCall(clang:: CUDAKernelCallExpr

*kernelCall) {

2 CallExpr *kernelConfig = kernelCall ->getConfig ();

3 Expr *grid = kernelConfig ->getArg (0);

4 Expr *block = kernelConfig ->getArg (1);

5 std:: string SStr;

6 std:: string tbb_wrap_before (

7 "tbb:: parallel_for (0, (int) " + getStmtText(grid) + ".

z, 1, [=]( int __z_){\n"

8 "tbb:: parallel_for (0, (int) " + getStmtText(grid) + ".

y, 1, [=]( int __y_){\n"

9 "tbb:: parallel_for (0, (int) " + getStmtText(grid) + ".

x, 1, [=]( int __x_){\n");

10 llvm:: raw_string_ostream S(SStr);

11 S << tbb_wrap_before;

12 S << getStmtText(kernelCall ->getCallee ()) << "(";

13 for(int i = 0; i < kernelCall ->getNumArgs (); i++){
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14 S << getStmtText(kernelCall ->getArg(i)) << ", ";

15 }

16 S << getStmtText(grid) << ", " << getStmtText(block) <<

", dim3(__x_ , __y_ , __z_));";

17 std:: string tbb_wrap_end ("\n});\n});\n});\n");

18 S << tbb_wrap_end;

19 return S.str();

20 }

Listing 5.15: The RewriteCUDAKernelCall method.

The RewriteCUDAKernelCall is shown in Listing 5.15. This method han-

dles the kernel invocation expression, applying the parallelization through

the

tbb::parallel for template function insertion described in Section 4.3.1

of Chapter 4. A new string for the whole kernel invocation is created,

adding the beginning of the wrapping (Line 12), the name of the function

(Line 13) and the formal parameters (Lines 14–15) including the dimension

of the gird, the dimension of the block and the index of the loop (Line 17).

Therefore the wrapping closure is inserted (Line 19) and the new string is

returned.

1 bool RewriteCUDACall(CallExpr *cudaCall , std:: string &

newExpr) {

2 std:: string funcName = cudaCall ->getDirectCallee ()->

getNameAsString ();

3 if(funcName == "cudaMemcpy"){

4 Expr *dst = cudaCall ->getArg (0);

5 Expr *src = cudaCall ->getArg (1);

6 Expr *count = cudaCall ->getArg (2);

7 std:: string newDst , newSrc , newCount;

8 RewriteHostExpr(dst , newDst);

9 RewriteHostExpr(src , newSrc);

10 RewriteHostExpr(count , newCount);

11 newExpr = "memcpy("+newDst+","+newSrc+","+newCount+");";

12 } else if(funcName == "cudaFree"){

13 std:: string newarg;

14 RewriteHostExpr(cudaCall ->getArg (0), newarg);

15 newExpr = "free(" + newarg + ");";

16 } else if(funcName == "cudaMalloc"){

17 std:: string newarg , newsize;

18 Expr *ptr = cudaCall ->getArg (0);

19 Expr *size = cudaCall ->getArg (1);

20 RewriteHostExpr(ptr , newarg);
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21 RewriteHostExpr(size , newsize);

22 if(CStyleCastExpr *CSCE = dyn_cast <CStyleCastExpr >(ptr))

{

23 if(UnaryOperator *UO=dyn_cast <UnaryOperator >(CSCE ->

getSubExpr ())){

24 std:: string newse;

25 RewriteHostExpr(UO->getSubExpr (), newse);

26 if (DeclRefExpr* sube=dyn_cast <DeclRefExpr >(UO ->

getSubExpr ())){

27 newExpr = sube ->getNameInfo ().getAsString () + " =

(" + sube ->getType ().getAsString () + ") malloc(

" + newsize + ");";

28 }

29 }

30 } else {

31 if(UnaryOperator *UO = dyn_cast <UnaryOperator >(ptr)){

32 std:: string newse;

33 RewriteHostExpr(UO->getSubExpr (), newse);

34 if (DeclRefExpr* sube=dyn_cast <DeclRefExpr >(UO ->

getSubExpr ())){

35 newExpr = sube ->getNameInfo ().getAsString () + " =

(" + sube ->getType ().getAsString () + ") malloc(

" + newsize + ");";

36 }

37 }

38 }

39 }

40 return true;

41 }

Listing 5.16: The RewriteCUDACall method.

Listing 5.16 shows the RewriteCUDACall method. This method handles

the CUDA APIs concerning the memory management, as described at the

end of Section 4.3 of Chapter 4. If a cudaMemcpy is found (Line 3), its

arguments are taken (Lines 4–6) and inserted in a memcpy call (Line 11). If

a cudaFree is found (Line 12), its argument is inserted in a free call (Line

15). If a cudaMalloc is found (Line 16), the first argument ptr representing

the pointer to the memory to be allocated is further analyzed. In order to

find any special case of explicit cast in cudaMalloc (i.e. cudaMalloc((void**)

var, size)) a CStyleCastExpr node is searched (Line 22) and eventually

ignored. Therefore, a malloc call is created (Lines 27 and 35).



CHAPTER 5. IMPLEMENTATION 61

Summary

In this chapter we provided a detailed description of the implementation

of the Augmenter and the Translator tools. In particular, in the first sec-

tion are highlighted the code parts related to the creation of a Clang plugin.

The second section shows the implementation of the Augmenter component,

exposing all the methods of the dimensionality augmenter class. Simi-

larly, in the third section is shown the implementation of the Translator

component.



Chapter 6

Benchmarks

This chapter evaluates the software presented in this thesis work.

The first section describes the applications used to test the software.

The second section assesses functional portability, calculating the man-

ual effort needed to run the output code.

The third section assesses the performance portability, showing the re-

sults achieved when executing the translated applications on a set of differ-

ent architectures.

62
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6.1 Test applications

In order to evaluate the software developed in this work, four test applica-

tions were used: Stencil, Vector Addition, SRAD and BFS. The first two are

synthetic applications used as a preliminary test. The last two applications

are taken from the the Rodinia Benchmark Suite [9, 10]. Each application

was only modified to add code to measure the run time of the program.

In the following, the four applications are described in more detail.

Stencil1D

The first application is a one-dimensional stencil example, whose kernel is

similar to the one already reported in Listing 2.5 of Chapter 2. Given an

input array of integer elements, it calculates an output array of the same

length, whose elements contains the sum of input elements within a given

radius.

vectorAdd

The vector addition application example is taken from the official NVIDIA

CUDA SDK [7]. Is a very simple application that generates two random

vectors of floating point elements in host memory and copies them over to

the GPU’s global memory. The kernel performs the addition and stores

them in a third vector allocated in global memory. The resulting vector is

then copied back to host memory.

SRAD

The SRAD (Speckle Reducing Anisotropic Diffusion) application example

is a diffusion method for ultrasonic and radar imaging applications based on

partial differential equations (PDEs). It is used to remove locally correlated

noise, known as speckles, without destroying important image features.

SRAD consists of several pieces of work: image extraction, continuous

iterations over the image (preparation, reduction, statistics, two computa-

tions) and image compression. The sequential dependency between all of

these stages requires synchronization after each stage (because each stage

operates on the entire image). Each stage is a separate kernel (due to syn-

chronization requirements) that operates on data already present in GPU

memory. The code features efficient GPU reduction of sums. Some of
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the kernels use GPU shared memory for additional improvement in perfor-

mance.

BFS

The last application example is a GPU implementation of the breadth-first

search (BFS) algorithm which traverses all the connected components in a

graph. The code implements the algorithm given in [15], which uses level

synchronization. The visit traverses the graph in levels; once a level is

visited it is not visited again.

6.2 Functional portability

This section evaluates the functional portability of the software developed

in this thesis work. The chosen metrics to assess functional portability is

the translation coverage, that is the number of lines that need to be changed

manually to run the translated application on the target system. The test

applications vary in length from a couple of dozens of source lines of code

to more than five hundred.

Table 6.1 shows the translation coverage of the four test applications

kernels, reporting the number of total source lines of code, the number of

modifications needed and the percentage of the manually modified lines with

respect to the total number.

Application Source Lines Changed %

Stencil1D 29 0 0

vectorAdd 10 0 0

SRAD 261 0 0

BFS 76 2 2.63

Table 6.1: Automatic translation coverage - Kernel only.

It is possible to observe that the software accomplishes the translation

without any manual effort in all cases except from the BFS. This is due

to the fact that the kernel was defined in a separate header file, therefore

the software was not able to get the value of the block dimension from the

kernel invocation.

Table 6.2 describes instead the translation coverage of the three appli-

cations in their entirety, considering both kernel and host code.
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Application Source Lines Changed %

Stencil1D 74 0 0

vectorAdd 212 10 4.7

SRAD 563 0 0

BFS 306 10 3.27

Table 6.2: Automatic translation coverage.

Even extending the analysis to the host code, the software behaves quite

well. The vectorAdd application needed some manual effort in order to be

able to compile. This is due to the presence of a set of error checks wrapping

the CUDA API calls not handled by our software. The SRAD example,

instead, does not present this error checking in the code (in order to achieve

better performances), therefore the translation does not incur in this errors.

The BFS example needed manual effort also in the host code because of the

presence of some repeated semicolon characters in the translated version of

some API calls. In each case, only a few lines of host or kernel code had

to be manually modified, never exceeding the 5% of the total length of the

original source code. Of the manual changes, none are particularly difficult

to handle and automated support for these will be added in future work.

6.3 Performance portability

In this section, the performance portability is evaluated. In order to do that

the applications were compiled and run on a set of different systems:

• GPU: Tesla C2050, 14 Multiprocessors, 448 CUDA cores clocked at

1.15 GHz;

• GPU: Tesla K40c, 15 Multiprocessors, 2880 CUDA cores clocked at

745MHz;

• CPU: AMD Opteron Processor 6176, 24 cores, clocked at 2.3GHz;

• CPU: Intel Core i7-3632QM, 4 cores, clocked at 3.2GHz;

• CPU: 2×Intel Xeon E5-2650, 8 cores, clocked at 2.0GHz.

While running each application, the run time is taken to be the time

starting from the first data copy from the host to GPU device memory and
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ending after the last copy back to host memory is finished. Each code was

executed a total of ten times, and their run times were averaged.

Table 6.3 shows the average execution time of the applications on the

architectures cited in the list above.

Application Tesla C2050 Tesla K40 Opteron Intel i7 Xeon E5

Stencil1D 6.0ms 5.3ms 25.6ms 18.0ms 39ms

vectorAdd 27.3ms 27.9ms 58ms 33.3ms 72.2ms

SRAD 17.5ms 13.6ms 146ms 210ms 126ms

BFS 32.7ms 20.5ms 148ms 87.4ms 91.1ms

Table 6.3: Average run-time.

The Stencil1D and the vectorAdd examples present a similar behaviour

in terms of which CPU architecture executes faster: the Intel i7 outperforms

the other two CPU architectures since it exploits better the vectorization

and has a faster cache. In particular, the vectorAdd case for this architecture

has an average execution time almost identical to the GPU one, due to the

stream nature of the problem and the low reuse.

The SRAD example instead, benefits more from pure parallelism, and

the larger number of cores of the Opteron and Xeon architectures allow to

execute the translated application faster than the Intel i7.

In the BFS case, the Opteron architecture performs worst than the other

two, due to the smaller size of the cache.

Taking as baseline the execution on the Tesla K40c GPU, the fastest

GPU available in our experiments, this considerations are further summa-

rized on Table 6.4 and Figure 6.1, which show the slowdown of the translated

CPU version with respect to the CUDA version, calculated as the ratio be-

tween the CPU average execution time and the GPU average execution

time.

Application Opteron Intel i7 Xeon E5

Stencil1D 4.83 3.39 7.35

vectorAdd 2.07 1.19 2.58

SRAD 10.73 15.44 9.26

BFS 7.22 4.26 4.44

Table 6.4: Slowdown w.r.t. CUDA on different CPUs.
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Figure 6.1: Slowdown w.r.t. CUDA on different CPUs.

The first case, Stencil1D, shows an higher slowdown than the vectorAdd

case, due to the fact that it shows more locality and uses shared memory

in its implementation.

The SRAD example shows how the translated version spends, depending

on the CPU architecture used, from nine to fifteen times more than the GPU

version to execute. Although the larger number of cores on the GPU is the

main difference, this is due also to the fact that the CUDA version was

highly optimized, since it comes from a benchmark suite, involving heavy

use of shared memory.

A smaller slowdown is shown by the BFS example, where the CPU

versions spend from four to seven times more than the GPU version. Again,

the larger number of cores is the main difference, as well as the fact that

this algorithm is specifically conceived for a GPU architecture.

The Rodinia Benchmark Suite provides also a native CPU version for

the SRAD and the BFS examples, implemented with the OpenMP APIs

[8]. The OpenMP versions of the applications does not need any memcpy

instruction in their implementation. Therefore, any memcpy instruction is

removed also from the translated version obtained by our software, in order

to compare it with the native CPU implementation.

In Table 6.5 and Figure 6.2 is shown the slowdown of the translated

versions with respect to the native versions, compiled and run on each ar-
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chitecture. The slowdown is calculated as the ratio between the translated

application average execution time and the OpenMP implementation aver-

age execution time.

Application Opteron i7 Xeon

SRAD 1.81 2.17 2.81

BFS 0.74 0.89 1.08

Table 6.5: Slowdown w.r.t. native OpenMP implementation.

Figure 6.2: Slowdown w.r.t. native OpenMP implementation.

Again, the SRAD application shows how the translated version executes

in about the double of the time of the native implementation. Conversely,

the BFS case shows a speedup compared to the native OpenMP version.

Analyizing in more detail this implementation, it is possible to observe that

the parallelization is applied to one of the two for loops representing the

steps of the BFS visit. The translated version parallelizes instead both

loops.

Summary

In this chapter we evaluated the software implemented in this thesis work.

The first section gave a brief description of the applications used for the

benchmark. The second section presented the evaluation of the translation
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coverage of the software. We shown that applications can be successfully

translated with few or none manual effort. In the third section is pre-

sented the evaluation of the performances of the translated application.

We also showed that a good level of performance portability is achieved,

guaranteeing comparable performance taking into account the architectural

differences between the targeted architectures.



Chapter 7

Conclusion

7.1 Summary

GPU-based heterogeneous computing has seen significant growth and inter-

est in recent years, and there exist several approaches to provide a way of

programming this accelerator devices. Some approaches take the form of

a proprietary framework, like CUDA, providing ease of development on a

single family of devices.

When developing an accelerated application, performance and programma-

bility are the strengths of the CUDA framework that often sway the decision

that leads to its use. However, portability is also a significant considera-

tion, to provide a wider user-base for accelerated software and to reduce

the development cost required to access alternative (or future) devices that

may afford comparable or increased performance. Amongst this alternative

devices, the large amount of hardware not necessarily having a GPU is a

resource that should not be left unused. A broad range of applications have

been developed in CUDA that are currently “vendor-locked” to NVIDIA

platforms, with time-intensive manual translation to another programming

framework left as the only way to achieve portability.

In this thesis we presented an automated way to port CUDA applica-

tions on different architectures, in particular focusing on shared-memory

multi-core CPU architectures. The accomplishment of this goal is achieved

operating at the CUDA source code level, analysing its abstract syntax and

defining a set of transformations on it. As result of this transformations,

we produced regular C++ code in output.

As a proof of concept of the correctness of the transformations presented,

70
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a prototype source-to-source translator was implemented. By leveraging the

Clang compiler framework, we were able to take advantage of its powerful

source-level tools to perform the translation. As an early prototype, we

focused on a useful subset of the CUDA language. We therefore evaluated

this software, analysing if any further effort was needed after the translation

to preserve the functionality of the original CUDA program. This first set

of tests shown that in half of the cases no manual effort was required,

while in the other half very few manual modifications were needed. Lastly,

we evaluated the performance of the obtained applications, showing how

comparable performances between the architectures were guaranteed.

7.2 Future work

The work presented in this thesis may be extended in several ways. Since

the implementation was mainly oriented to present a functional prototype,

the extensions presented below were not implemented only for time reasons,

although the solution for these problems is conceptually already designed.

Extending CUDA support Although the preliminary results seem promis-

ing, a remarkable part of the CUDA syntax is not handled by the software

implemented in this work. For example constant memory and texture mem-

ory support, as well as the mapping of the CUDA atomic kernel instructions,

if handled, could bring major advantages to the translated applications, also

in terms of performances.

AST mutability As said in Chapters 3 and 4, Clang’s AST are im-

mutable. It could be useful implementing a correctness check of the ASTs

in order to avoid to parse again the code after the execution of operations

involving the reordering or the removal of the nodes.

Selective replication In the emulating thread-local memory phase of the

transformations, some local variables may have live ranges completely con-

tained within an iterative wrapping. In order to use less memory space, an

algorithm that creates arrays for local variables only when necessary should

be developed. The previously cited related work MCUDA [24] presents a

technique to accomplish this, called selective replication and based on live

variable analysis.
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Accurate declaration reordering At the moment multiple declarations

of variables with the same names in different scopes are not handled. There-

fore moving everything at the top of the body of the kernel, can incur in a

failure of the translation process. A possible solution could be the displace-

ment of the declarations at the beginning of the scope on which they are

declared, and not at the beginning of the body.

Run time kernel configuration If the number of the threads in a block

is given at run time, the translation process requires manual effort, since

we cannot know in the kernel the size of the dimensionality added to the

local-thread variables.

Fresh variable names A live-variable analysis should be implemented, in

order to avoid problems concerning the presence of variables in the original

code having the same name of the ones introduced by our software (such as

ttid ).

Preprocessor A preprocessing phase should be implemented, since com-

plex #include directives involving kernel functions are not handled. Again,

Clang can be exploited since it provides a set of libraries to handle the

preprocessing phase of the compilation.

Customizing CPU parallelization Additional techniques to parallelize

the execution of the translated applications could be easily implemented,

adding the possibility to chose on which framework to rely on. In the

translation phase, for example, the user could choose to insert OpenMP

compilation pragmas or rely on a Standard Library C++ thread pool.

Kernel invocation tuning Kernels having a semantics not dependent

from the value of the dimension of the grid, could be invoked with dif-

ferent parameters, in order to schedule more or less threads with respect

to the original number of blocks and bring performance advantages to the

translated application.

memcpy removal CUDA programming model necessitates that the data

used by a kernel has to be copied from host to device memory. However, an

analysis of the usage of this data after the kernel execution could guarantee
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that there is no need to make a copy between two memory areas in the

translated version, thus bringing considerable performance advantages.
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