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Chapter 1 

Introduction

Over the past few decades, the computer industry has been focused on manufacturing of 
single central processing units (CPU) with higher frequency and complexity to improve 
performance. However, this progress has been slowing down due to energy-consumption and
heat-dissipation issues that have limited the increase of the clock frequency and the level of 
productive activities that can be performed in each clock period within a single CPU [22]. 

The use of multiple, simpler processing elements, or cores has become the main focus of the 
processor industry, as it was the only viable way to sustain the increase in processor 
performance. By providing multiple cores, separate parts of the program can be executed in 
parallel . 

However, performance heavily relies on the ability of the program to fully utilize all the 
cores. This requirement adds additional complexity on development of software applications,
making parallel programming mandatory. This led to the design of parallel abstractions 
focusing on hiding details from the programmer. Parallel design patterns [23] and 
Algorithmic skeletons introduce such abstractions. 

Algorithmic skeletons, introduced by Cole in [19] are high level programming model for 
parallel and distributed computing. Skeletons take advantage of common programming 
patterns to hide the complexity of parallel and distributed applications. Skeletons take 
advantage of common programming patterns to hide the complexity of parallel and 
distributed applications. While algorithmic skeletons and parallel design patterns provide 
implementation of well known implementation patters, usually non-functional features such 
as  such as performance, security, fault tolerance, and power management are handled by the 
user. 

Behavioral skeletons have been introduced in early 2000s with the aim of supporting 
autonomic management of non functional features  related to skeleton implementation. A 
behavioral skeleton is the result of the co-design of a parallelism exploitation pattern and of 
an autonomic manager, taking care of some non functional feature related to the parallelism 
exploitation pattern implementation[11]. 

This thesis presents the implementation of a prototype behavioral skeleton for stream parallel
algorithmic skeletons in the FastFlow taking care of service time and efficiency. 



1.2  Thesis objectives

The main objective of this thesis focuses on developing behavioral skeletons on top of 
existing FastFlow algorithmic skeletons that are capable of taking care of non-functional 
concerns. Though non-functional concerns in skeletal parallel programming include several 
concerns such  as performance, security, fault tolerance, and power management, this thesis 
only focuses on performance, specifically optimizing service time and/or efficiency by 
choosing the optimal parallelism degree. Among the skeletons provided by the FastFlow 
algorithmic skeleton frame work only stream parallel skeletons for multi-core architectures   
namely the pipeline and task farm skeletons are covered.  In the case of task farm skeleton 
optimal parallelism degree is achieved by increasing and decreasing the number of workers 
in the task farm. Where as in the case of pipeline skeletons optimal parallelism degree is 
achieved by merging pipeline stages and splitting previously merged stages.

 Reconfiguration mechanisms to increase and decrease number of workers in the task farm 
skeleton are implemented. For the pipeline skeletons mechanisms that enable to merge 
consecutive stages and split previously merged stages are introduced. In addition to the 
reconfiguration, mechanisms that enable to monitor the internal state of the skeletons (i.e. to 
query the service time of internal components), are also implemented.   

Moreover an autonomic manager associated with each skeletons,  controlling the parallelism 
degrees is introduced based on simple hard codded  policies is implemented. By choosing 
optimal parallelism degree (i.e. number of workers in a farm and number of stages in 
pipeline) the autonomic manager aims to improve the performance(service time/efficiency) 
of the skeletons,

Experiments conducted to validate and asses the functionalities of the prototype behavioral 
skeletons are presented and results achieved are discussed.

 

1.3 Structure of the Dissertation

The rest of this thesis is organized as  follows:

• Chapter 2 provides a relevant background material for the thesis including stream 
parallel computations and algorithmic skeletons. A short introduction to the FastFlow 
algorithmic skeleton is provided. Then the chapter presents related work on autonomic 
management non-functional concerns in structured parallel programming and behavioral 
skeletons.

• Chapter 3 presents high-level view, and logical design of the prototype implemented 
in this thesis.

• Chapter 4 presents a detailed discussion of the implementation of the prototype 
behavioral skeleton on top of the existing stream parallel skeletons, including mechanisms 



used and  policies applied by the autonomic manager. 

• Chapter 5 presents the experiments conducted on the prototype implementation of 
pipeline and task farm behavioral skeletons, and results from the experiments are discussed.

• Chapter 6 discusses the conclusions of the thesis and future works are discussed.



Chapter 2 

Background 

This chapter explores relevant background material for the thesis, starting with a brief 

discussion of Stream parallel computations in Section 2.1, followed by the discussion of 

algorithmic skeletons in Section 2.2 . Then Section 2.2 provides a detailed description of the 

FastFlow algorithmic skeleton frame work. Finally Section 2.3 presents related works 

focusing on the concept of autonomic computing and Autonomic Management of Non-

functional Concerns in Structured Parallel Programming and introducing Behavioral 

Skeletons. 

2.1 Stream Parallel computations

Stream Parallelism is method for parallelizing the execution  of a stream of tasks by 

segmenting the task into a series of sequential or parallel stages. This method can be also 

applied when there exists a total or partial order, respectively, in a computation preventing 

the use of data or task parallelism. This might also come from the successive availability of 

input data along time (e.g. data flowing from a device).  Parallelism is achieved by running 

each stage simultaneously on subsequent or independent data elements[18].

The following are some properties common to stream parallel computations from [13]

1. Large Streams of data:  One of the fundamental properties of streaming 

computations is that they operate on a large sequence of data items . Data streams 

generally enter the program from some external source, and each data item is 

processed for a limited time before being discarded

2. Independent Stream Filters: A streaming computation represents a sequence of 

transformations on the data streams. The transformations (also referred  as filters) are 

generally independent and self-contained, without references to global variables or 

other filters. A stream program is the composition of filters into a stream graph, in 



which the outputs of some filters are connected to the inputs of others.

3. A stable computation pattern: The structure of the stream graph is generally 

constant during the steady-state operation of a stream program. That is, a certain set 

of filters are repeatedly applied in a regular, predictable order to produce an output 

stream that is a given function of the input stream.

4. Occasional modification of stream structure: Even though each arrangement of 

filters is executed for a long time, there are still dynamic modifications to the stream 

graph that occur on occasion. For instance, if a wireless network interface is 

experiencing high noise on an input channel, it might react by adding some filters to 

clean up the signal.

2.2 Algorithmic skeletons

 An algorithmic skeleton is a is parametric, reusable and portable programming abstraction

modeling a known, common and efficient parallelism exploitation pattern. The concept was 

first introduced by Cole In the late 80s and [19,20]. They simplify the task of parallel 

programming by abstracting commonly-used patterns of parallel computation, 

communication, and interaction while offering simplicity,portability, re-use, performance, 

and optimization [21]. 

An algorithmic skeleton framework provides set of pre-defined patters encapsulating the 

structure of a parallel computation that are provided to user as building blocks to be used to 

write applications [11]. Each skeleton corresponded to a single parallelism exploitation 

pattern. 

Provided with an algorithmic skeleton, the programmer is not required to rewrite the code 

related to parallelism exploitation, when writing parallel applications. He/she can structure 

his parallel computation by instantiating the skeletons, rather than rewriting the parallelism 

patterns from scratch. 

By using an algorithmic skeleton framework, the programmer gains a range of benefits 

including[11] simplification of parallel application development (as parallel programming 

mainly consists of properly instantiating skeletons provided), portability on different target 

architectures by only recompiling the parallel application on target architectures, 

simplification of debugging (as only the sequential code has to be debugged).

In section 2.3 algorithmic skeletons provided by the FastFlow algorithmic skeleton are 



briefly discussed.

2.3 The FastFlow Algorithmic Skeleton Framework

FastFlow is a C++ algorithmic skeleton framework targeting heterogeneous platforms. It 

provides programmers a suitable parallel programming patterns which are compiled into 

networks of parallel activities on target architectures. Conceptually it is designed as a stack 

of five abstraction layers abstraction layers[16] as shown in Fig 2.1. 

1.  Hardware:  At the bottom of the layer are platforms that are targeted by FastFlow  

such as multi-core, many-core, and clusters of multi-core and many-core possibly 

equipped with computing accelerators. Initially FastFlow was designed to target 

multi-core shared memory architectures but has been extended to support distributed 

Figure 2.1.  FastFlow architecture layers



and GPGPU platforms.

GPGPUS are supported through CUDA and OpenCL, where kernel business code is 

written in those languages . Distributed platforms are build on top of TCP/IP and 

Infiniband protocols.[16] 

2. Building blocks: At this layer the programming model is a hybrid shared-

memory/message-passing model; where processes (process containers) are sequential

and channels are true dependency between precesses. Processes stream data items to 

channels and the data items act as synchronization tokens.

FastFlow channels define simple streaming networks whose tun-time support is 

implemented through lock-free Single-Producer-Single-Consumer queues with non-

blocking push and pop operations [17]. The synchronization overhead of those 

methods is minimal due to the absence of locks.

In addition FastFlow provides non-blocking, lock-free Single-Producer-Multiple-

Consumer(SPMC), Multiple-Producer-Single-Consumer(MPSC) and Multiple-

Producer-Multiple-Consumer(MPMC) queues which can be used to build arbitrary 

streaming networks. These queues are built  on top of the lock free Single Producer 

Single Consumer queues and an arbiter thread:

Figure 2.2 shows  the queues built on top of the SPSC queue 

In addition processes and thread containers are implemented as C++ classes built on 

top of POSIX threads/processes.

Figure 2.2 SCMP, MCSP and MCMP  queues built on top of the SPSC queue

3. Core Patterns: this layer provides a general data-centric parallel programming model 

with its run-time support, which is designed to be minimal and reduce to the 

minimum typical sources of overheads in parallel programming. This level provides 



two parallel skeletons: the task farm skeleton and the pipeline skeleton, which are 

built using collection of threads/processes that communicate using queues.

4. High level patterns: this layer provides higher level parallel patterns build on top of 

the Core Patterns including  loop (i.e. parallel for), data parallel patterns (such as 

map, stencil, stencil reduce), macro data-flow etc . Those patterns are built on top of 

he Core Patterns.

5. Parallel Applications: On top of the lies the parallel applications. Parallel application 

programmers can write efficient applications by directly exploiting the parallel 

patterns of FastFlow provided at the “Core Patterns” and “High level patterns” layers.

This is done by defining sequential concurrent activities for sequential activities, and 

instantiating the parallel patterns with those activities.

2.3.1 FastFlow Skeletons and sequential concurrent activities

2.3.1.1 Sequential concurrent activities

The ff_node sequential activity abstraction provides a way do define a sequential activity that

process data items appearing on a single input channel and that delivers the related results to 

the single output channel. The ff_node is an abstract class  where the user is supposed to 

provide the sequential code by extending this class. This class provides a number of 

methods, among those  the following three methods have a particular importance.

1. virtual void* svc(void* task) = 0;

2. virtual int svc_init(){return 0}

3. virtual void svc_end(){}

The svc method is the one defining the behavior of the node while processing the input 

stream data items. The svc_init method is invoked automatically by the FastFlow run 

time support when concurrent activity represented by the node is started, while the 

svc_end method is invoked right before termination. Both of them are only invoked once 

during the lifetime of the node. The following code snippet shows the usage of a 

FastFlow ff_node

class myNode : public ff_node {

public:



int svc_init(){

         //initialize the node

     return 0;

    }

void* svc(void*){

         //behavior of the sequential concurrent activity 

    }

void svc_end(){

         //finalize the stage, 

    }

};

2.3.1.2 Skeletons provided in FastFlow

FastFlow provides three types of skeletons, which are Stream-parallel skeletons, Data-

parallel skeletons and Data-flow skeletons [14].

Stream Parallel Skeletons

Stream parallel skeletons exploit parallelism in the computation of input streams, possibly 

available at different times. Stream parallel skeletons in FastFlow consist of pipeline and task

farm skeletons.

Pipeline Skeleton 
 A pipeline skeleton is used to model computations that can be expressed as stages. Normally

a pipeline parallel application can have two or more stages . Given a stream of inputs

xn , ... x2, x1 a pipeline with stages F1, F2, ... Fm computes the output stream

F1(... F2(F1(xn))), ... , F1(... F2(F1(x1)))

F
1 F

2
F

m



Each input passes through each stage in the same order of arrival, Fn processes the output 

from   Fn-1 while, Fn is processing on other inputs, hence the stages execute in parallel. The 

latency of the pipeline is equal to the sum of the latencies of all the stages since a single 

input have to go through all stages. That is:

Lpipe=∑
i=1

m

Li

and the service time of the pipeline is the service time of the latest stages. That is:

T pipeline (F1 , F2 , ... Fn)=max (T F1
,T F2

, ... ,T Fn
)

FastFlow's ff_pipeline class implements the pipeline pattern with fixed number of stages, 

which is constructed from a fixed number of threads, each representing one stage, connected 

by lock-free SPSC queues.

To create a pipeline of n stages in fast flow, one must first create an instance of ff_pipeline, 

then instantiate n different ff_node objects and add them to the ff_pipeline by calling  the 

add_stage method.

In addition a variant of a pipeline skeleton namely “pipeline-with feed back” is available 

where the output of the last stage is directed as the input of the first stage, forming a ring like

structure. Once after instantiating an ff_pipeline object the programmer can set this 

functionality by calling the “wrap_around” method. 

Task Farm Skeleton
The task farm also known as master-worker is a stream parallel paradigm based on the 

replication of purely functional computation, with out the knowledge of internal structure of 

the function itself.

An emitter component is used to schedule incoming tasks to the workers. The scheduling 

policy can be either a static one, such as a round robin scheme or a dynamic one, where tasks

are scheduled to the workers on demand. In addition a collector component is used to collect 

the out put of the workers. If necessary the collector can be implemented in a way that 

reorders the results computed by the workers. The task farm can also exist without the 

collector, where the workers consolidate the results in memory or write them to storage. An 

other variant is where the workers send back the results to the emitter.

The following figure shows the structure of a task farm skeleton:



 

In FastFlow the ff_farm template class provides the implementation of the task farm 

skeleton. The programmer should first create an instance of an ff_farm,  then the functional 

code of the workers, emitter, and collector should be implemented as sub type of the ff_node 

class. And finally their instances can be added by calling their corresponding add_ methods. 

The following code snippet shows the usage of the farm skeleton in Fast Flow: 

#include <ff/farm.hpp>

class Emitter : public ff_node {

public:

void* svc(void* t){

         … 

    }

};

class Worker : public ff_node {

public:

void* svc(void*){
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         … 

    }

};

class Collector : public ff_node {

public:

void* svc(void*){

         … 

    }

};

int main(int argc, char *argv[]) {

 … 

ff_farm farm;

farm.add_emitter();

std::vecot<ff_node*> workers;

 for(int i=0; i<nWorkers;++i)

workers.push_back(new Worker);

farm.add_workers(workers);

 … 

}

Data parallel Skeletons:

Data parallel skeletons refer to the group of algorithmic skeletons on the computation of 

different subtasks obtained by spiting a larger input task.

In data parallel applications, a larger input data is partitioned among the number of 

concurrent resources, each computing the same function on the assigned data partition . Data 

parallel skeletons may work on single elements coming from a stream input, but in general, 

those skeletons doesn't consider stream parallelization by them selfs [11,14] . The main goal 

of data-parallel skeletons is to minimize the completion time of a single task to be computed.

Data parallel skeletons in FastFlow are implemented on top of the Farm stream parallel 

skeletons . FastFlow provides map, ParallelFor, stencil, ParallelForReduce and stencil 



reduce. The ParallelFor skeleton is used to parallelize having an independent iterations, its 

computation is similar to that of a map skeleton. The  ParallelForReduce  is used to perform 

a parallel-for computation followed by a reduction operation by allowing the user to provide 

a combiner function.

Data-flow parallel Skeletons

The data-flow programming model is a general approach to parallelization based upon data 

dependencies among a program’s operations. The computations is expressed by the data-flow

graph, i.e. a DAG whose nodes are instructions and arcs are pure data dependencies[14]. 

When portions of code are used as graph's nodes, the graph is known as a macro data-flow 

graph (MDF).  The resulting MDF program is therefore represented as a graph whose nodes 

are computational kernels and arcs are data dependencies.

FastFlow provides an MDF skeleton called ff_mdf implementing the macro data-flow 

parallel pattern. The run-time of the FastFlow mdf pattern is responsible for scheduling 

fireable instructions (i.e. those with all input data dependencies ready) and managing data 

dependencies.

2.3 Related work

2.3.1 Autonomic Computing 

The aim of Autonomic computing is to address the complexity of technology using 

technology. The term was derived from the human autonomic nervous system. The 

autonomic nervous system manages our heart rate and body temperature with no conscious 

effort. In a similar way self managing autonomic capabilities anticipate IT system 

requirements and resolve problems with minimal human intervention[7] . 

The term Autonomic computing is emblematic of a vast hierarchy of natural self governing 

systems, many of which consist of multiple interacting, self governing components that in 

turn comprise a number of interacting , self governing components at the next level [8].

Self Management Properties:

IBM cites four aspects of self management, namely: self-configuration, self-healing, self-

optimization, and self protection.

Self Configurations: refers to an automated configuration of components and systems 



following high-level policies. The rest of the system adjusts automatically and seamlessly.

Self Healing: refers to a setting where the system automatically detects, diagnoses, and 

repairs localized software and hardware problems.

Self Optimization: refers to a setting where components and systems continually seek 

opportunities to improve their own performance and efficiency.

Self-Protection: The system automatically defends against malicious attacks or cascading 

failures using early warning to anticipate and prevent system wide failures.

Building Blocks of an Autonomic System:

An Autonomic system may consist of building blocks that can be composed together  to from

self-managing systems. The building blocks include:

- Manageability Endpoints: are the components in the system that expose the state and 

management operations for a resource in the system. The manageability interface for 

monitoring and controlling a managed resource is organized into a sensor and an effector, 

used to obtain data from the resource and perform operations on the resource respectively.

- Autonomic manager: is an implementations that automates some management functions 

and externalizes this functions based on the behavior defined by the management interfaces. 

It implements an intelligent control loop consisting of collecting details from the system 

(known as monitoring), analyzing the details , planning a change and executing it.

- Knowledge Source: is an implementation of a repository that provides access to knowledge 

according to the interfaces prescribed by the architecture by the architecture. It consists of 

particular types of management data with syntax and semantics such as symptoms, 

policies,requests for change, and change plans. It includes data such as topology information,

historical logs, metrics, symptoms, and policies.

Figure 2.3: shows the details of an autonomic manager [7]



 

The MAPE loop:

As shown in Figure1 an autonomic system executes a loop consisting of four parts known as 

the MAPE loop, sharing a knowledge source.

- Monitor: during this phase metrics and topologies are collected, filtered and aggregated 

from the managed resource.

- Analyze: in this phase mechanisms that correlate and model complex situations are 

provided. These mechanisms allow the AM to learn about the system and predict future 

situations.

- Plan: In the plan phase mechanisms that construct the actions needed to achieve goals and 

objectives are provided using policy information.

- Execute : here mechanisms that control the execution plan  with considerations for dynamic

updates are provided.

Figure 2.3: Functional details of an autonomic manager with MAPE (Monitor, Analyze, Plan, 
Execute) loop



2.3.2 Autonomic Management of Non-functional Concerns 

in Structured Parallel Programming

- In [1] non functional concern management is presented focusing on massively parallel and 

distributed patterns (focuses on distributed systems and more specifically on grids).

To address the autonomic capability, the ideas from IBM's autonomic computing blue print 

are adopted. In this case autonomic management of a component is provided by a dedicated 

autonomic manager which takes care of all activities while interacting with the functional 

core of the component.

 Functional and non-functional application concerns:

- The parallel patterns exploited to implement the application are considered as functional 

concerns. Where as management issues related to the patterns, such as parallelism degree, 

load balancing and adaptation of parallelism pattern to different target architectures, are 

considered as the non-functional concerns.

Usually non-functional features are handled by the user (i.e. the application programmer). 

But in an ideal programming scenario, functional concerns should be under the 

user/application programmer control, while non-functional concerns should be handled by 

the underlying system.

When users/application programmers are in charge of handling the non-functional concerns, 

the programmer faces several difficulties, mainly:

+ Code tangling: usually the user (application programmer) has to mix functional 

and non-functional code. This makes the programming task difficult (difficult to debug, 

modularize …) and limits the re-usability of the code.

+Requires Wide knowledge: writing non-functional code  becomes a burden for the 

application programmer. This requires wide knowledge of techniques, unrelated to the 

functional concerns. In addition knowledge of the target architecture, which is only available

at run time, might be required.

These problems can be mitigated by moving the non-functional concerns to the run time 

support (RTS) or the compiler, where the user can provide the  non-functional requirements 

in the form of high level SLA (Service Level Agreements) .

Management of non-functional concerns



Non-functional concerns will be managed by an autonomic-manager (AM), which is an 

independent activity taking care of all, or some specific non-functional features of the 

application.

- The AM is characterized by three different dimensions:

i. The concern to be managed

ii. Autonomic policies to be implemented

iii. Degree of cooperation with other managers .

- The AM may concern either single goal or multiple goals. Moreover, the AM being multi-

concern or single-concern, it can be a simple AM or hierarchical one. When dealing with 

more than one goal, the targeted concerns increase. In another dimension, when the AM is 

hierarchical, it requires more coordination of control. Even when dealing with a single-

concern AM, the problem might be difficult, such as mapping of parallel activities to 

available processors (which is an NP-hard problem). Such a problem gets even more difficult

when the AMs are supposed to coordinate with other AMs dealing with different concerns.

One way to reduce the complexities is to restrict the kinds of parallel computations, where 

parallel/distributed computations implement well known parallelism patterns (eg: 

algorithmic skeletons, Behavioral Skeletons).

Behavioral Skeletons:

A Behavioral skeleton consists of a well known parallelism pattern P along with an AM  Mc 

taking care of a concern on the  the computation P.  Behavioral Skeletons made it possible to

reduce the complexity of performance optimizations into tractable size.

Hierarchical management of a single non-functional concern with BS

  When an application is composed of an independent modules, hierarchal management of 

non-functional concerns can be applied to achieve better results. Inside the hierarchy each 

software module consists of an AM attached to it. Managers higher in the hierarchy take 

more autonomous decisions and managers in lower levels of the hierarchy will behave in 

accordance with the decisions taken in the higher level.

- Two main issues with hierarchal AM

i. A strategy is needed to allow the splitting of a contract C on the top level into subcontracts 



c1, … , cm to be issued by the nested sub-managers.

ii. An AM should be able to act “passive” and “active” roles. In an “active” mode, the 

manager automatically tries to issue the contract received (either directly from the user or 

form a parent manager) by executing the MAPE (Manage, Analise, Plan, Execute) loop .

In “passive” mode, the manager has only to monitor its own execution and execute plans 

from its parent manager.

A manager enters a passive  mode when it can't satisfy the contract at hand, and there are no 

locally available plans to recover the situation.

Once the two issues are addressed, the user provides the contract as an SLA. The contract is 

divided into sub-contracts to the children managers in the hierarchy, and the top level 

manager plays an “active” role. 

Each manager in an “active” mode executes the MAPE loop. If an action can't be executed, a

contract violation is reported to the corresponding parent and the manager switches into a 

passive mode, and waits to receive a new contract from it's parent. The problem of “active” 

and “passive” roles can be solved by organizing the management of non-functional features 

in two different parts:

- The passive AM implements the mechanisms for “monitoring” its own execution state and 

executes commands form is parent manager in the hierarchy.

- The active part implements the autonomic policies, in a way the policies maintain the 

contract received.

 Though the strategy of splitting the contracts (the SLA) is a more complex task, it can be 

achieved by adopting  domain specific heuristics  associated with a well known parallelism 

pattern.

In [2] the authors address  issues of autonomic management in hierarchical component based

distributed systems. A high level view of behavioral skeletons is presented using the ORC 

notation. In addition a simulation result is is discussed, showing a successful implementation

of  hierarchical management when service time is autonomically optimized.



 Multi-concern management with BS

 When considering autonomic managers with multiple goal, more problems arise from 

structuring of the autonomic management activities. In addition to hierarchal management, 

there is the issue of how management of different non-functional concerns should be 

coordinated among the AMs .

In [1] two different scenarios are presented:

1. Single AM taking care of the concerns c1, ... ,cm all together.

2. Multiple hierarchies of autonomic managers, each dealing with a different concern Ci, 

along with a general super-AM orchestrating the multiple AMs.

In both scenarios the challenge lies in resolving conflicts coming from decisions taken when 

considering different concerns.

Adopting hierarchical multi-concern AMs is easier due to the complete separation of 

concerns. 

In [3] the authors address the problem of multi-concern autonomic management with 

independent hierarchical managers and discuss how it can be implemented in a typical use 

case. The approach presented is based on five steps: coordination of the managers activities, 

finding a common knowledge by which managers can interact, means of reaching consensus,

initialization of  of the managers' hierarchy and devising a means of implementing the 

management.

Coordination: When dealing with multiple autonomic managers taking care of different 

concerns, there might a case where the decision taken by one autonomic manager is in 

contradiction with the goal of another autonomic manager taking care of different concern. 

To resolve such issue there must be a way of coordination between the different managers. 

Two strategies are presented:  

1. A super manager AM0 positioned on top of the hierarchy of managers AM1-AMm, 

coordinating the decisions taken by these managers .

2. The managers AM1 - AMm reach agreement with each other before actuating decisions.

Shared knowledge: in order to agree on global application management, a common 

knowledge is necessary across the different managers. An application graph whose nodes 



represent the parallel activities and whose arcs represent communications can be used as a 

common concept across these managers (the nodes and arcs are labeled with metadata1). 

Reaching Consensus:  before committing any decision consensus must be reached on the 

resulting application graph, i.e. a consensus process must be established and implemented. 

Consensus can be established as a two phase process: first the proposed reconfiguration is 

communicated in the from of a new graph G' including metadata about new resources if any.

In the second phase, the manager proposing the change should wait for consensus results. 

and based on these results, either commits the decision or abort it.

Initialization of the manager hierarchy: The user submits QoS contracts to the AMs 

ordered according to the priority, such that, the decision of a manager dealing with a contract

of higher priority will have a higher precedence. The first contract QoS1 determines which 

manager is responsible of establishing initial application implementation configuration.

Implementation of autonomic management:  The autonomic management can be 

implemented as a rule-based implementation as in [4], where the rules consist of 

preconditions → actions . A classical MAPE rule is implemented by each manager. In the 

monitor phase current values of variables used in the precondition parts are gathered. The 

analyze and plan phases correspond to evaluating the preconditions and choosing the 

corresponding actions respectively, according to the priorities. And the execute phase is 

implemented as the execution of the actioned planned. 

In order to deal with multiple concerns, each rule implemented by AMi in isolation is 

transformed into two rules: where the first the rule consists of the  proposed action as its 

precondition and  consensus request as its actions, while the second rule consists of the 

responses from other managers as its precondition and actions consisting of either the 

original plan or with adjusted plans.

Behavioral Skeletons in GCM

In [4],[5] behavioral skeletons for the Grid Component  Model (GCM) are presented. In 

1 Metadata of a node may represent mapping information, while metadata of an arc may represent features of
corresponding communication channel.



addition, results evaluating the overhead introduced by autonomic management activities are 

presented in [4].

GCM is a hierarchical component model designed to support component based, autonomic 

applications in grids. It was defined in the CoreGRID  Network of Excellence as an 

extension of Fractal with grid components. An open source  implementation is also available 

from the EU STREP project GridComp, as an embedded module in the ProActive middle 

ware.

In the GCM, a component is composed of two major parts. The membrane:  which is an 

abstract entity that consists of the control behavior associated with a component.

The content, which includes either the code directly implementing functional component 

behavior, or other composite components. 

There are different mechanism for interactions between GCM components including, use-

provide ports, stream ports, data ports and event ports. In addition collective interactions are 

also supported.

Components have two types of interfaces: functional and non-functional. The non-functional 

interfaces consist of all the ports needed for a component management activity. 

Each GCM component contains an Autonomic Manager (AM), interacting with other 

components' managers through the non-functional interfaces. When the AM executes the 

classical MAPE loop, the execution and monitoring are done by a component controller, 

known as Autonomic Behavior Controller (ABC) .

Components consisting of only the ABC are called passive components and those with both 

the ABC and AM are called active components. 

Behavioral Skeletons

Though programmers are able to write their own AM and ABC in GCM, Behavioral 

Skeletons abstract those tasks for the user/application programmer. 

Behavioral Skeletons as algorithmic represent patterns of parallel computation, along with 

sound self-management mechanisms,.

On one hand, as an algorithmic skeleton, a behavioral skeleton expose a description of its 

functional behavior and establishes parametric orchestration schema of inner components. 

On the other had it carries constraints that inner components are required with, and 

encompass a number of pre-defined plans to come with self-management goal.



In [5] the authors introduced simple set of behavioral skeletons modeling functional 

replication patterns consisting of a one to many stream server dispatching inputs to workers, 

number off instances of workers and a many-to-one client stream interface collecting the 

outputs from the workers. A possible instantiation of this behavioral skeleton can be a task 

farm or a  data parallel . 

A behavioral skeleton with functional replication pattern (task farm or data parallel) can 

equipped with a self optimizing policy since the number of workers can be dynamically 

changed in a sound way. The QoS goal could be to keep a given limit of served requests in a 

time frame. Then the AM checks whether the average time fulfills the given time limit and 

react by adding/removing instances of workers.

 As the operations implemented by the ABC are more related to the membrane structure, the 

ABC is implemented as a controller in the membrane. Where as with the AM contractually 

specified QoS must be enforced. The AM has to decide whether a reconfiguration is needed, 

an which plan would fulfill the contract.  The AM accepts a QOS contract, which consists of 

set of variables representing the measures to be evaluated, and set of mathematical 

expressions over these variables. The constraints and goals that the AM should fulfill are 

encoded in the mathematical expressions. Then the AM checks the validity of the QoS 

provided and ,if broken, it executes the predefined reconfiguration plans.  

LIBERO: a Light Weight Behavioral Skeleton

 LIBERO[6] is a prototype behavioral skeleton implemented in Java. It aims to address the 

problem of multiple Autonomic Managers associated to the same parallel pattern , each 

taking care of a different non-functional concern. Those managers coordinate themselves in 

such a way that a global user provided contract can be satisfied. 

The implementation of LIBERO relies on the existence of Java and RMI based runtime.

A single behavioral skeleton consists of an algorithmic skeleton (implementing a well known

parallelism pattern) along with multiple autonomic managers AMi, each  taking care of a 

distinct non-functional concern. The algorithmic skeleton also consists of an Autonomic 



Controller AC to access its internal state (monitoring), and operate on its internal state 

(execution). The AMs periodically execute the classical MAPE control loop.

Coordination among distinct AMs operating on a single algorithmic skeleton is implemented 

by following a two-phase approach [3].Each action planed by an AM is validated by other 

AMs in the same behavioral skeleton before being executed. This two-phase approach is 

realized in such a way where an AM broadcasts its decision to the rest of the AMs, the other 

managers evaluate the decision to check whether it is in accordance with the concern they 

are dealing, then finally reply the result of their evaluation. This reply can be an 

acknowledgement of the decision, an abortion indicating violation of their concern, or a 

conditional acknowledgement indicating that the plan can executed given a condition is 

satisfied.

The Autonomic Managers' behavior is expressed in JBoss rules which are compiled and 

executed by the DROOLS middle-ware library at runtime. The consensus protocol is 

embedded in the JBoss rules.

Experiments were conducted on farm and pipeline skeletons with autonomic controllers 

taking care of performance and security, with similar amount of overheads observed in single

concern autonomic managers in GCM [4].  

Autonomic Management in ASSIST

ASSIST [10] is a parallel and distributed programming environment. It provides the 

programmer with a structured coordination language that can express parallel programs as an

arbitrary graph of software modules, connected by typed data streams. The modules, which 

can be either sequential (can be written in C,C++, Fortran) or  another parallel module 

(called parmod).

In [9] the ASSIST programming environment is described as a suitable basis to capture all 

the desired features of QoS control for the Grid.

Components and managers:

A single module or graph of modules can declared as a component. A component consists of 



functional and non-functional ports. 

Autonomic management is realized in a hierarchal structure.

- Mostly the Autonomic management features in ASSIST focus on performance related 

issues and load balancing.

Each ASSIST module consists of an application manager (called Module Application 

Manager: MAM) responsible for configuring and controlling the QoS2 associated with the 

module.  

Globally, at the component level, the configuration and control of the QoS is implemented by

a Component Application Manager (CAM).

Module Application Manager (MAM)

The main task of the Module Application Manager (MAM) is to ensure the contracts 

provided by the application programmer as QoS. The performance contract can be set up the 

parent Component Application Manager (CAM).

The ASSIST compiler is responsible for preparing QoS contracts for each parmod and 

binding them to to the MAM. 

The QoS contract  consists of a goal and how it should be achieved. Specifically  the goal 

consists of 

• Performance features:  set of variables evaluated from static module properties, 

monitored runtime information and performance evaluation.

• Performance model:  set of relations between performance features, ranging from 

simple analytical models to complex models derived though advanced mathematical 

rechniiques.

• Performance goal: set of inequalities involving performance features.

• Deployment annotations: annotations elaborating the processes resource needs 

including required hardware, software and other constraints. 

• Adaptation policy: refers to a specific adaptation policy among the available ones. 

Among the  autonomic behaviors of the module application manager, the main one is load 

balancing of module resources. 

The MAPE loop life cycle of the Module application manager looks as follows :

- During the Monitor phase, the VPM's execution times between two consecutive 

synchronization points are collected. The synchronization points are selected during the 

2 QoS is the term referring to the contracts or SLA provided by the application programmer



compile time.

- In the Analyze phase the data collected is used to verify the performance goals. If those 

goals are violated, possible causes are detected.

- At the Plan phase, if the performance goal is not satisfied,  a plan to recover the situation is 

devised. This consists a sequence of reconfiguration actions, each taking care of a specific 

cause for the performance degradation. If no effective reconfiguration actions were found to 

address the problem, an event (i.e. goal violation) is sent to the parent CAM (Component 

Application Manager).

- At the Execute phase, the VP are redistributed among the VPMs depending on the previous 

outcome, and resource upgrades are negotiated with the parent CAM(Component 

Application Manager). The MAM may also receive an event from its parent CAM to apply 

restructuring due to a global variation of performance degradation.

Component Application Manager (CAM):

Each Component Application manager handles control strategies at a global level for the 

corresponding component. The CAM might receive requests for restructuring from its 

MAMs during its monitor phase. In such a case it devices a solution by applying global 

performance model. 

In such a case, it individuates a solution at the analyze and plan phases. It does so by 

applying a global performance model.

At the execute phase,  the CAM may receive reconfiguration requests from its corresponding

parent.

The root manager (i.e. the Application Manager AM) is responsible for final decisions at the 

global level.

Auto Tuning Parallel Programs

The idea of auto tuning is to automatically adapt the execution of a program to a given 

software and hardware environment to optimize one or more non-functional objectives such 

as exection time, energy consumption etc. 

Unlike behavioral skeletons, in auto-tuning optimal parameters for specific objectives are 

predicted at compile time.

In [15] the authors introduce a multi-objective auto-tunning framework consisting of  

compiler and component featuring a multi-objective optimizer and a runtime system. The 

multi-objective optimizer derives non-dominated solutions (known as the preto set) , each 



expressing a trade-off between different conflicting objectives .

The so called pareto set is then made available, in a way where the compiler generates a set 

of code versions per region, each corresponding to one specific solution.  The runtime 

system then selects a specific solution for each code region based on the context-specific 

criteria.

In [16]  the author presents an interview discussed with Prof. t. Fahringer focusing on the 

difficulty in predicting the performance of parallel programs, and the popularity of auto-

tuning. 





Chapter  3

Logical Design

This chapter introduces the logical design of the Autonomic managers implemented in this 

thesis, for the task farm and pipeline algorithmic skeletons. Section 3.1 discusses the high 

level view of the behavioral skeletons. Then sections  3.2 and 3.3 discuss the design of the 

behavioral skeletons for the pipeline and task task farm patterns respectively.

 In this chapter and in the rest of the thesis the term Autonomic Controller (AC) is used to 

refer to the mechanisms inside the skeletons that enable to collect internal execution metrics 

and execute reconfiguration plans. In addition an Autonomic Manager (at some points 

simply referred as AM) refers to the part of the component which is responsible to plan 

reconfigurations based on some kind of policies.  In general the term Behavioral Skeleton is 

used to refer to an Algorithmic skeleton with an Autonomic controller and an Autonomic 

Manager. In synthesis[1] : 

Behavioral Skeleton= Algorithmic Skeleton +Autonomic Controller + Autonomic Manager . 

3.1 High level view
The Autonomic manager is designed to work on top of the  existing FastFlow 

algorithmic skeletons . The Farm and Pipeline skeleton patterns are extended, to include 

Autonomic Controllers. As described in the previous chapter the AC interface is part of the 

behavioral skeleton . Their main goal is to read internal execution metrics and deliver them 

to their associated manager. In addition once the delivered metrics are analyzed and 

reconfiguration plans are prepared by the manager those plans are executed by the AC. 

Figure 3.1 shows the high level logical design of a behavioral skeleton .
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Figure 3.1:  high level logical design of a behavioral skeleton

3.1.2 General Overview of the Autonomic Behavior

The existing framework consists of Algorithmic skeletons where parameters (specifically 

number of stages in pipeline or number of workers in farm) are passed as an argument to the 

skeletons and they are not changed during the life cycle of the parallel application 

implemented through the skeletons. 

In order to implement the autonomic behavior, the algorithmic skeletons are extended to 

include an AC which can measure the execution metrics of the skeleton itself and deliver it to

the autonomic manager. At the same time it may execute reconfiguration commands planned 

by the autonomic Manager.

In addition the Behavioral skeleton consists of an Autonomic Manager component which 

executes the MAPE (Manage, Analyze, Plan, and Execute) loop [8] . During the MAPE loop 

the AM first  receives execution metrics from the AC, then analyzes the metrics and plans 

reconfigurations based on the analysis of the metrics received plus some simple internal 

polices and eventually it sends the reconfiguration execution plans to the AC of the 

algorithmic skeleton.

In order to communicate the execution metrics from the AC to the AM and reconfiguration 

plans from the AM to the AC communication channels are needed. Logically, two 

communication channels are needed. One the “Metrics-Channel”, which is used to send the 

execution metrics from the AC to the AM. Another is the “Command-channel”, which is 

used to communicate reconfiguration plans from the AM to the AC.



3.2 Logical design of the Task Farm Behavioral Skeleton

 A task farm processes a stream of tasks {x0, … ,xm} producing a stream of results  {f(x0), 

… ,f(xm)}. The computation of f(xi)  is independent of the computation of of f(xj) for any i≠j  

and the items of the input stream are  available at different times[4]. A stream of tasks is 

absorbed by a server  E (known as the emitter) then tasks are sent to workers (one task per 

worker) is computed )by one instance of worker W) and eventually the result is sent to a 

collector component C which collects them and deliver to the results to the output stream.

To implement the autonomic behavior on the existing task farm skeleton of FastFlow the 

following components are added:

- The Autonomic  controller: as described above this is added as part of the skeleton to 

collect execution metrics and execute reconfiguration plans. This can be added to the emitter 

component of the skeleton and to periodically collect the execution metrics as it schedules 

tasks to the workers .  

- The Autonomic Manager: is added as a separate thread . It reads the metrics sent from the 

AC via the , and decides if reconfigurations are needed. The metrics in this case refer to the 

service time of the emitter thread and of the workers, while reconfiguration plans  can be 

either addition or removal of a worker based on the metrics if needed. It then communicates 

the reconfiguration plans to the AC component of the farm through the “Commands 

Channel”.

Reconfigurations commands in the task farm behavioral skeleton are increasing (activating 

more) and decreasing (deactivating) of workers. Figure 3.2 shows the design of the task farm

behavioral skeleton:
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Figure 3.2 Logical Design of the task farm behavioral skeleton

The Autonomic Controller:

The AC for the task farm behavioral skeleton can added in the emitter component of the 

task farm so that, as the emitter schedules tasks to the workers, it can periodically read the 

service times of the active workers and its own inter-departure time. Moreover it can 

execute reconfiguration plans by activating and deactivating workers.

3.3 Logical Design of the Pipeline Behavioral skeleton

The pipeline skeleton, as described in section 2.3.1, is typically used to model 

computations expressed in stages (usually consisting of two or more stages) [11] . 

Given input tasks : {x0, … ,xm}, the pipeline stages:   S1, … ,Sn  computes 

Sn (. . . S2 ( S1 ( xm )) . . .), . . . , Sn (. . . S2 ( S1 (x0)) . . .)

- The Autonomic Controller:

 Unlike  to the task farm, the AC of the pipeline skeleton is added as an additional  stage at 

the end of all the other (functional) stages of the pipeline to collect the metrics, which in 

this case are the service times of each pipeline stages and send them to the Autonomic 

Manager. Since the service times of the stages can be measured after each stage has at least

executed once the AC can be added as an additional stage in the pipeline, so that it can 

query the execution time of each stage. It then communicates the metrics to the AM 

through the “Metrics channel”, and execute reconfiguration plans provided by the AM 

through the “Commands channel”, if necessary. The AC is contained inside the pipeline 



skeleton itself, thus it can access the mechanisms of the skeleton when collecting metrics 

and implement reconfiguration plans by merging/splitting stages.

- The Autonomic Manager: is added as a separate thread and, as mentioned above, executes

the MAPE loop. It then communicates the reconfiguration plans to the AC component of 

the pipeline through the “Commands Channel”. 

Reconfiguration commands in the pipeline behavioral skeleton refer to the merging of 

consecutive stages and splitting of previously merged stages. The metrics gathered by the 

AC refer to the service times of the all stages in the pipeline. 

The following figure shows the logical design of the pipeline behavioral skeleton:

 

Figure 3.3 Logical design of the pipeline behavioral skeleton
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Chapter 4

 Implementation

This chapter discusses how the existing algorithmic skeletons in FastFlow were extended 

into a behavioral skeleton[1] . Section 4.1 discusses how the autonomic manager was 

implemented and how it plans reconfigurations. In section 4.2 implementation of the 

autonomic controllers inside the skeletons is discussed, mainly focusing on the monitoring 

and execution of reconfiguration mechanisms. Finally section 4.3  discusses the autonomic 

manager policies implemented .

4.1 Autonomic Manager Implementations

As of the logical design discussed in chapter three, the autonomic manager for a skeleton 

was supposed to be implemented as a separate thread communicating with the skeletons via 

dedicated communication channels. However, to simplify the implementation and avoid 

overheads, each skeleton was implemented to contain an instance object of the autonomic 

manager, so that the communication is simply done via method calls on the contained 

instance of the autonomic manager object. In other words the autonomic manager was 

implemented to execute in the same thread with the autonomic controller.

The autonomic manager is implemented as a simple C++ class consisting of monitor, 

analyze, plan and execute methods. 

The monitor method receives the metrics collected by the corresponding skeleton and sets 

the metrics variables so that they can be analyzed. The analyze method of the manager 

analyzes the metrics received, if necessary. Then the plan method of the manager decides 

whether reconfigurations are needed, and if so, what type of reconfigurations has to be 

implemented, based on the policies available to manage the corresponding skeleton. The 

policies are further discussed later in section 4.3 .

 Finally the execute method of the manager sends out  the planned reconfiguration 



commands to the AC , if there are any, so that the reconfigurations can be executed. 

4.2 Autonomic Controller Implementation

Autonomic Controllers are implemented as an extension of FastFlow Farm and 

Pipeline skeletons adding facilities to query the internal state of the skeletons (monitoring 

mechanisms) and allow modification of internal states. 

The monitoring and execution capablities (modification of internal states) are specific to the 

type of the underlying skeletons (i.e. Farm or Pipeline skeletons).

4.2.1 Mechanisms provided by lower level FastFlow(Layer 2)

Freezing threads :

 FastFlow provides lower level mechanisms to freeze an executing node and thaw 

previously frozen nodes. In order to freeze an executing node in FastFlow, the freeze() 

method can be used to tell the node that it, should go to sleep (and not terminate) when an 

“End of Stream (EOS)”, value is received. Then in order to actually freeze the node the call 

to the freeze() method should be followed by sending an end of stream (EOS) value on 

the node input channel. Alternatively the “GO_OUT” value could also be sent to the node to 

freeze it. While the EOS is propagated to other nodes, the GO_OUT value is consumed by 

the node and is not propagated to the output channel.

Thawing a frozen thread:

 Once an ff_node has been put to sleep by calling the freeze() method and sending an 

end of stream value, it can be thawed back by calling the thaw() method, which takes a 

boolean value indicating whether the node should be frozen or destroyed upon the arrival of 

an end of steam value. 

4.2.2 Monitoring and execution mechanisms in the Task Farm Skeleton

The Farm skeleton skeleton represents functional replication, and it is also 



known as master worker. It consists of an Emitter E where incoming tasks are initially 

processed, a vector of workers W and an optional Collector C where results are aggregated 

and delivered to the output stream . As stream of incoming tasks arrive they are absorbed by 

the emitter E and each  of the the task is scheduled to one of workers to be computed. The 

results from the workers my finally be aggregated by a Collector C, in some specific way 

and sent to the output stream. Alternatively a Farm might exist with out a collector. In this 

case all the results are consolidated in memory or written to a storage directly by workers 

producing them.

In FastFlow the farm skeleton consists of a default load balancer to do the task scheduling 

where tasks can be scheduled either in a round robin or on demand way. The emitter E is 

also contained in the loadbalancer.

Each time an incoming task arrives to the emitter from input stream or it is generated by the 

E (eg: reading from disk), the load balancer schedules the task to one of the workers 

according to the policy of the loadbalancer. 

In order to implement  Autonomic Controller capabilities in the farm skeleton the default 

load balancer was extended. The extended load  balancer (load balancer with controller)  

initially starts with only some of the workers activated, and then proceeds by activating  or 

deactivating  one worker at a time according to reconfiguration commands from the 

autonomic manager.

 The extended load balancer (load balancer with controller) keeps as a state the average 

service time of all the workers, the average service time of the emitter (as a simple moving 

average ), initial active workers, and current active_workers. The initial active workers 

represent the number of workers to activate when the farm starts, if it is less than the total 

number of workers allocated during the instantiation of the the farm, then the rest of the 

workers stay frozen. The  active_workers state represents how many of the instantiated 

workers are actively working and how many of them are frozen.  

During the monitoring phase, the load balancer queries for the service time of each worker, 

and computes the average service time of the farm accordingly. 

According to [2] the service time of a task farm with nw workers is given by 



T farm(nw)=∑
i=1

nw

Tw i /nw
2

where Twi is the service time of worker i .

Since the average service time of a single worker is 

∑
i=1

nw

Twi /nw

 We can simply express the service time as 

T farm(nw)=Tw /nw               (1)

Where 

Tw=∑
i=1

nw

Twi /nw  

In addition to the service time of the farm, the average inter-departure time of the emitter is 

measured as a simple moving average . After the values have been queried, the  controller 

then sends  the values to the autonomic manager, so that the manager can analyze them and 

prepare a reconfiguration plans.

The actuator mechanisms that are required in this case are one that increases the number of 

active workers and another that decreases the number of active workers.

In order to decrease the total number of workers some of the active workers has to be 

frozen. Hence, in order to decrease the number of workers in the farm skeleton,first we 

should ensure that the total number of active workers is more than one, then last active 

worker is frozen by calling the freeze() method, and sending it an end of stream (EOS) 

value. Once this is done the load balancer should wait until that worker consumes the end of

stream signal and goes to sleep. Then the number of active workers is set to be one less than 



the previous.

On the other hand in order to increase the number of active workers it is simply a matter of 

activating the last worker frozen previously, which is done by calling the thaw() method of 

the load balancer passing the index of the last worker frozen .

4.2.3 Monitoring and Execution mechanisms in the pipeline 

skeleton pattern

The pipeline skeleton is composed of sequence of two or more consecutive stages 

computed one after another, where the input produced by the preceding stage is consumed 

and processed and the output is delivered as the input to the next stage, and so on.

In the case of a pipeline skeleton, the service time  efficiency are optimized by merging and

splitting pipeline stages. Specifically, merging stages avoids using extra resources if they do

not contribute to improve the service time and splitting previously merged stages to 

minimize service time (i.e. by using resources if they contribute to improve the service 

time). 

 

First in order to make the threads (i.e. the nodes) capable of merging with other threads 

there must be a mechanism to freeze the pipeline only starting from the specific stages that 

we want to merge. Hence a node  that was capable of being frozen with out the need to 

freeze the entire pipeline had to be implemented. As described in section 4.2.1, in order to 

deactivate a thread in FastFlow first we must call the freeze() method and then send an end 

of stream value . This means that, if we want to merge a stage somewhere in the pipeline, 

we must devise a way to send an end of stream to that stage only, without sending it 

through the input channels. This was implemented by extending the FastFlow node to 

contain an extra channel in addition to the input and output channels. In this way we can put

and end of stream value in the extra channel. In addition if we want the stage to be 

deactivated as soon as we put the end of stream signal in it, the way it reads its inputs has to

be changed. For this reason the pop() method which reads tasks from the input stream had 

to be modified in such a way that it should first check if the extra channel is not empty. If it 

is not, then the input stream must be read from the extra channel, otherwise it is read from 

the standard input channel as usual. 



Once this is done, another extension of the ff_node, which represents an already merged 

nodes has to be implemented.  The merged node consists of references to two nodes each 

with merging capabilities. The input buffer of the first node becomes the input buffer of the 

merged node and the output buffer of the of the second node becomes the output buffer of 

the merged node. In the initialization method i.e. the svc_init method, the initialization of 

the first node is called while in the ending method svc_end the ending method of the second

node is called. In every FastFlow node the sequential code is  provided in the svc() method. 

For the merged node in the svc first the sequential code of the first node is called passing 

the input parameter of the merged node as its input parameter keeping its output in a state 

variable . Next the sequential code of the second node is called with the output from the 

first node as its input parameter. This way the two stages which were being executed in a 

pipeline parallel before getting merged are now executed sequentially. In order to make the 

merged node capable of being split back in to two stages, getter methods are used to obtain 

the two merged nodes separately.

In order to implement the Autonomic Controller capabilities, the pipeline skeleton of the 

FastFlow frame work must also be extended. 

The execution mechanisms in the pipeline skeleton with controller are the merging and 

splitting methods . The merging method takes an index of the pipeline stage  as an input 

parameter and tries to merge it with the next stage. In this case the merging can be 

accomplished only if the index passed as an input is different from the first stage and the 

last stage. This is because, FastFlow enables the stream of tasks to be generated from an 

inner node and if this is the case , the first stage can not be frozen since it will not have an 

input buffer, which means we cannot send an end of stream signal to freeze it. While for the

last stage, it can only be merged with the stage preceding it, and the merge method only 

assumes a pipeline stage is being merged with the next one. 

Merging and splitting of consecutive stages:

 In FastFlow the pipeline skeleton stores a reference to each of the stages inside a vector 

called nodes_list. In order to merge consecutive stages after freezing them, the reference 

pointing to the first node is replaced by the reference of the merged node, and then the 

second node is removed from the vector (since its functional code is already contained 

inside the merged node). Then if the already merged stage needs to be split back to two 

stages, the merged node is replaced by the first node, and the second node is inserted back 



next to the first node. This is done by accessing the internal nodes stored inside the merged 

node. 

Figure 4.1 pipeline stages before and after merging

4.3 AM Policies

- The Autonomic Manager policies are implemented as  precondition → action rules 

expressed in plain C++ code. As discussed in chapter 3 each skeleton consists of a 

corresponding manager, and the policies depend on the type of the manager, that is either a 

farm manager or a pipeline manager.

4.3.1 Policies for the Farm Behavioral skeleton

Once the metrics indicating the internal state of the Farm skeletons are received from the 

skeleton , a policy is applied to decide whether to add  more (i.e. activate more workers),  

remove workers or to keep them as they are . 

The idea behind the policy of the task farm skeleton is to keep the farm service time 

approximately equal to the inter-departure time of the emitter. In other words, if the inter-

departure time of the emitter is higher than the service time of the task farm, then this means

that all the worker in the farm are not utilized, as the utilization factor of the farm is:

f   g:h i

f g h i



ρfarm=T farm/T pemitter

where Tfarm is the farm service time and TPemitter the inter-departure time from the emitter. [12]

Instead if the inter-departure time of the emitter is less than the service time of the farm, the 

task farm would become a bottleneck.

By balancing the inter-departure of the emitter and service time of the farm, the policy 

allows to keep optimal number of workers active, even if the behavior of the incoming 

stream of tasks is dynamic. 

Given the farm service time and Emitter inter-departure time, the precondition part of the 

rule checks if the farm service time is approximately equal to the inter-departure time of the 

emitter.

The following pseudo-code shows the precondition→action  rules implemented by the  farm

Autonomic Manager:

if TE > c*Tf then

   action = decreaseWorker

else if c*TE < Tf then

action = IncreaseWorker

else 

action = do_nothing

the constant c indicates a parameter that decides the how much difference should be 

tolerated.



4.3.2 Policies for the Pipeline Behavioral skeleton

The metrics in the pipeline refer to the service times of each pipeline stage. The service time

of a pipeline parallel skeleton composed of  n stages is given as:

T pipeline (s1 , s2 , ...sn)=max(T s1
,T s2

, ... ,T sn
)

where Tsi   is the service time of the ith stage

That is, the service time of the slowest stage (which represents the bottleneck of the whole 

computation) is the service time of the pipeline  [11].

Given this the manager tries to balance the stages by merging and splitting the pipeline 

stages. Initially, the pipeline consists of stages computing a sequential concurrent activities3 

and the possible action is merging consecutive stages if the sum of their service times is not 

more than the slowest stage, as this would not change the service time as the service time of 

the pipeline(even after merging consecutive stages, the service time of the pipeline is the 

service time of the slowest stage).

Later, the behavior of the pipeline might change due to the behavior of the incoming tasks, 

possibly altering the service times of the stages. In this case if the bottleneck stage becomes 

the one that was merged previously, that stage has to be split back into two parallel stages, 

so that the service time of the pipeline could be improved.

The following pseudo code shows the precondition → action rules implemented by the 

pipeline skeleton's autonomic manager.

BS   bottleneck_stage←
If BS is merged_node then
      split(bottleneck_stage)
end

foreach stage Si in the pipeline
   if servicetime(Si)+servicetime(Si+1) > servicetime(BS) then

merge(Si,Si+1)
   end
end

3  Taking into account that there is no skeleton nesting



Chapter 5

Experiments
This chapter discusses experiments made to validate and asses the prototype 
implementations discussed in the previous chapter. The goal of the experiments is to verify 
the functionality of the behavioral skeletons, and to figure out the overheads introduced by 
the implementation of the autonomic manager. 
First the experimental settings are presented in Section 5.1. then  Sections 5.2 and 5.3 present
the experiments conducted on the task farm and pipeline behavioral skeletons respectively. 
Then the results are finally summarized in section 5.4.

5.1 Experimental Settings
The experiments were carried out on a 24 core machine with an Ubuntu  operating system 
version  14.04.2 LTS and a kernel version 3.16.0-30-generic. Table 5.1 shows detailed 
platform on which the experiments were carried.

Processor CPU Cores Frequency L1 Cache L2 Cache L3 Cache Main Memory

AMD 6176 Opteron 
Processor

24 800 MHz 64 KB 512 KB 5118 KB 32 GB

Table 5.1 Platform used in the experiments

All the test cases have been compiled to native binaries on the platform using g++ version 
4.9 . To avoid interference from other users exclusive access to the machine was obtained to 
conduct the experiments.  

All the experimental results for each test case presented are relative to the average of the 
values obtained in 10 different experiments (runs), in all cases the maximum and minimum 
(outliers) values were ignored to avoid random errors [15]

5.2 Experiments on the Farm Behavioral Skeleton
Application: Farm Image processing

To test the behavior of the farm behavioral skeleton a simple image processing application 
was used, where the emitter stage reads image files from the storage, the workers process the
images, and the collector writes the processed images back to storage.  [14]
In order to come up with tasks whose processing varies over time, the workers execute 
different processing based on the annotations of the incoming image files. The processing of 
image files that are annotated takes significantly larger computing than those that are not 
annotated. 

Input Dataset:
The image input datasets have been obtained from the web (from 
http://www.emt.tugraz.at/~pinz/data/GRAZ_02/) and some of them were duplicated to 
prepare enough amount of data for the test. Then some of them were properly annotated such

http://www.emt.tugraz.at/~pinz/data/GRAZ_02/


that their processing requires a different amount of time.

Measurements:
For the experiment that verifies the behavior of the task farm skeleton, the program was 
executed 20 times, among those tests 16 of the tests used a maximum of 15 workers, while 
the rest used 14,16 and 17 workers. Then the test results that used 15 workers were taken . 
From the test results, the average of the times where reconfigurations are executed were 
taken by removing the outliers . 

5.2.2 Test cases:

Two types of test cases where prepared:

 Test case1:

 In the first test case lighter tasks are processed first, followed by the heavier ones, and then 
followed by lighter tasks. The task farm was started with total of 22 workers, and with two 
initial active workers.

The following graph shows the results of the first test case: 



Figure 5.1 Results of test case 1 for the farm behavioral skeleton

The graph shows that the task farm was started with only two active workers. Since the 
processing time of the lighter tasks takes less processing time than the inter arrival time from
the emitter which reads files from disk storage, not more than one worker is required, hence 
the autonomic manager reduces the number of active workers to one. At the 400th 
millisecond, the heavier tasks start arriving, and the number of active workers start growing, 
until the 1st second. Eventually, the lighter tasks start arriving at the 2nd second, and the 
autonomic manager reacts by deactivating workers. The rate that the number of workers are 
decreased is different that that of the rate that the number of workers are increased. The main
reason comes from the fact that even though the average service time of the workers is 
reduced by the arrival of lighter tasks, some of the workers have not yet completed 
processing the heavy tasks, this affects the average service time of the workers.

Test Case 2: 

In the second test case, the heavy tasks were generated first, followed by the lighter tasks, 
and then heavier tasks. Similarly to the first test case, the autonomic manager reacts by 
increasing the number of active workers when heavy tasks are processed, while decreasing 
them when lighter tasks arrive. 
The graph in Figure 5.2 shows the results of the second test case:
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Figure 5.2:Results for the second test case , showing number of active workers during the
execution of the test case.

As one can see from the figure above, the task farm was started with only two active 
workers. the autonomic manager starts activating more workers as the heavy tasks arrive and
deactivating workers when lighter tasks arrive. . In this test case, the light tasks are being 
processed from the 500th millisecond till the 3500th millisecond, but the rate where the 
number of active workers drops is slow until the 300th millisecond. This is because some of 
the workers are still processing heavy tasks, affecting the average worker service time. 

5.3 Experiments on the Pipeline Behavioral Skeleton
To verify the functionality of the behavioral skeleton a similar image processing application 
was prepared. The application has five stages. The first stage reads image files from disk,  
the next three stages do different types of image processing, and the fifth stage writes the 
processed files back to disk. In a similar way to the experiment for the task farm, the images 
were annotated and the second stage of the pipeline does two different types of processing 
based on the annotation. The processing of annotated images in the second stage takes much 
longer than the processing of unannotated ones . Hence when heavy tasks (i.e. annotated 
images) arrive in the second stage, its service time becomes higher (even higher than the 
following two stages), where as when the lighter ones arrive the stage is the service time 
drops down.

 To test the reaction of the autonomic manager, unannotated images were processed first 
making the service time of the second stage much less than the other stages, and then 
followed by annotated ones. In this case, the autonomic manager is supposed to react by 
merging the second stage with the third one. When heavier tasks arrive later, the second 
stage, which is formed by the merging of the second and third becomes a bottle neck and 
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hence the autonomic manager is supposed to react by splitting back (i.e. undoing the merge 
operation performed before) .

 Since the first and the last stages work on read/write operations, their service times vary 
over time due to external factors such as disk locality. To avoid an unexpected behaviors  
(merging and splitting operations which greatly vary on each test run), the autonomic 
manager was modified to ignore both the first and the fifth stages of the pipeline. 

The graph in Figure 5.3 shows the results obtained for the test case





Figure 5.3: number of pipeline stages during the execution  of the pipeline behavioral
skeleton 

As one can observe from the graph in Figure 5.3 the pipeline was started with 5 stages. Then 
the manager reacts by merging of the second stage with the third one (at the 100th 
millisecond), as sum of the service times of the second and third stages is less than service 
time of the (see Figures 5.4 and 5.5). Since the autonomic manager is executed as an 
additional last stage on the pipeline, a merge reconfiguration is not executed until all the 
stages process at least one tasks (all the stages has to execute once so that their service times 
can be measured by the last stage). In addition, to perform the merge operation a freezing 
signal must be sent to the second stage and the autonomic controller should wait until the 
freeze signal is consumed by that stage. For those reasons the merging of the stages is not 
performed until the 100th millisecond. Later when heavy tasks arrive, the second stage, which
was formed by merging of the second and third staged is split. This can be seen at the 1650th 
millisecond of the graph in Figure 5.2.  

The following graphs show the service times of the three stages. Figure 5.4 shows the service
times of the three stages while processing light tasks, before the second and third stages were
merged. Figure 5.5 shows the service times of the stages while processing light tasks after 
the second and third stages were merged. ,afteri.e when the second stage is processing light 
(Figure 5.1) , and and later heavy tasks (Figure 5.2)
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Figure 5.4: service times of the three stages in the pipeline when the second stage is 
processing lighter tasks (before merging)

Figure 5.5: Service times of the stages when lighter tasks are processed by the second stage 
(after the second and third stages are merged)
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Figure 5.6 Service times of the pipeline stages when the second stage is processing heavy 
tasks. (stages 2 and 3 merged )

Figure 5.7: service time of the stages when processing annotated images (after stages 2 & 3 
has been split ). 

As shown in the graphs above, the service time of the second stage was very low as 
compared to the  other two stages when processing the lighter tasks in stage two (Figure 5.4. 
Then the autonomic manager reacts by merging it with the third stage, since the service time 
of the merged stages is still lower than the service time of the fourth stage, which is the 
bottleneck of the pipeline at the moment(Figure 5.5). Later when the second stage starts 
processing heavy tasks, the merged stages become a bottleneck, since the service time of the 
second stage is now higher (Figure 5.6) the autonomic manager then reacts by splitting the 
merged node to balance the service times, resulting slightly balanced stages (Figure 5.7).  
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5.4 Summary 

The experiments show that the autonomic manager reacts as expected for both the task farm 
and pipeline behavioral skeletons when tasks with different behaviors are processed. For the 
task farm behavioral skeleton, the increase and decrease workers operations are executed in 
response to the service times of the workers. Similarly for the pipeline merging and splitting 
of stages is done in response to the service times of the stages and the bottleneck stage.

To measure how fast the Autonomic Controller reacts to do a single reconfiguration the 
reconfigurations on each test for the farm behavioral skeleton were measured. The 
measurements were carried out by calling to the “gettimeofday” function inside the 
reconfiguration methods, specifically, the  “gettimeofday” function is called at the beginning 
and end of the reconfiguration methods and the difference was computed.
d and the result shows that to do a reconfiguration it only takes few microseconds interval 
(specifically 0.143 milliseconds). While for the pipeline skeleton, it took slightly longer, the 
average merge/split operations took few milliseconds (specifically 5.156 millisecond on 
average). This could be due to the implementations of the merge/split operations, which wait 
for all the stages (except the ones prior to the stage to be merged/split) to freeze after sending
a freeze signal.



Chapter 6

Conclusions
This thesis presented the implementation of a prototype behavioral skeleton for stream 

parallel patterns in the FastFlow algorithmic skeleton framework. Design and 

implementation of the prototypes was discussed.

For the pipeline skeleton the implementation an autonomic manager that chooses the 

parallelism degree (i.e. number of pipeline stages) was provided . The autonomic manager 

works by merging consecutive stages to avoid using extra resources if they do not contribute 

to the service time, and splitting previously merged stages to improve service time (i.e. by 

using resources if they contribute to the service time).

For the task farm skeleton an autonomic manager which was able to choose an optimal 

parallelism degree (by activating and deactivating the number of workers) based the behavior

of tasks and execution of the internal components of the skeleton was implemented. 

 Experiments conducted on the implementations show that the behavioral skeletons were 

capable to manage performance by choosing the correct parallelism degree for the skeletons 

at run time. In addition the experiments showed that reconfigurations can be actuated with 

the introduction of little overheads.

6.1 Future Work

Further work is needed to address some of limitations including:

• One of the major limitations of this thesis is that it doesn't consider the nesting of 

skeletons. No hierarchy of nesting is assumed during the implementation and the 

experiments. Those prototypes can be extended (modified to take in to consideration 

the hierarchical nesting of skeletons)

• The prototype Behavioral Skeletons were implemented on hard coded policies. But a 

better implementation can be provided in a way where the user can provide some 

specific contracts which the skeletons must achieve. Then the policies will be set of 

rules which should take actions when the contracts provided by the user are not 

fulfilled.



• Only stream parallel skeletons (i.e. farm and pipeline) were covered in this thesis. 

Other skeletons such as data-parallel skeletons can be extended to include such 

autonomic behaviors. 

• The implementations only focused on skeletons targeting multi-core architectures. 

The FastFlow skeletal frame work also targets heterogeneous and distributed 

architectures. Thus behavioral skeletons could be extended so that they can be 

applied on different architectures.
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Appendix A 

Implementation source Code



#ifndef AM_HPP_
#define AM_HPP_

#include <ff/Command.hpp>
5 #include <iostream>

#include <vector>

namespace ff{

10 class ff_AM_farm{
public:

ff_AM_farm():farmCom(DO_NOTHING),workersSvcTime(0.0),
emitterSvcTime(0.0){}

15

void  monitor(std::vector< double > svcTimes){
workersSvcTime = svcTimes[0];
emitterSvcTime = svcTimes[1];

20 svcTimes.clear();

}

25 void  analyze(){
// do nothing in the case of farm

}

30

void  plan1(){
if(emitterSvcTime < workersSvcTime && ((workersSvcTime/emitterSv

cTime) > 3)){
farmCom = ADD;

}
35

else if(emitterSvcTime > workersSvcTime && ((emitterSvcTime/work
ersSvcTime) > 3))

farmCom = REMOVE;
else

farmCom = DO_NOTHING;
40

if(workersSvcTime == 0 || emitterSvcTime == 0) // this happens i
f most of the workers hasn’t finished at least one task

farmCom = DO_NOTHING;
#if defined debug_
if(farmCom == ADD)

45 std::cout << " ADD" << std::endl ;
else if(farmCom == REMOVE)

std::cout << " REMOVE" << std::endl;
else

std::cout << " DO_NOTHING" << std::endl;
50 #endif

}

farmCommand execute(){
55 farmCommand com= farmCom;

this−>farmCom = DO_NOTHING;
return com;

}

60 farmCommand MAPE(std::vector< double > svcTimes){
monitor(svcTimes);
analyze();
plan1();
return execute();

65 }
private:

farmCommand farmCom;

double  workersSvcTime;
70 double  emitterSvcTime;

};

75 class ff_AM_pipe{
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public:

ff_AM_pipe():commandList(* new std::vector<pipeCommand*>()), serviceTimes
( NULL), maxIndex(0),all_stages_executed( false ){

80 }

void  monitor(std::vector< double > * st){
this−>serviceTimes = st;
std::cout << " servicetimes" << std::endl;

85 for(size_t i=0; i<serviceTimes−>size(); ++i)
std::cout << (*st)[i] << " \t";

std::cout << std::endl;
}

90

int  analyze(){

95 int  maxIndex = 0;
all_stages_executed = true ;
for(size_t i=0; i < serviceTimes−>size(); i++){

if((*serviceTimes)[i] > (*serviceTimes)[maxIndex])
maxIndex = i;

100 if((*serviceTimes)[i]== 0)all_stages_executed = false ;

}

this−>maxIndex = maxIndex;
105 //std::cout << "maxIndex = " << this−>maxIndex << std::endl;

return maxIndex;
}

110 void  plan(){
std::vector<pipeCommand*> cmdList;

//try to split the stage with the highest service time
commandList.push_back( new pipeCommand(pipeCommand::SPLIT,maxInde

x+1));
115

for( int  i=serviceTimes−>size()−1; i >1 ; i−−){

if(((*serviceTimes)[i−1] + (*serviceTimes)[i]) <= (*serv
iceTimes)[maxIndex]){

120 if((*serviceTimes)[i−1]>0 && (*serviceTimes)[i]>
0){

commandList.push_back( new pipeCommand(pi
peCommand::MERGE,i)); //to be fixed (make index i rather thatn i−1)

(*serviceTimes)[i−1] +=(*serviceTimes)[i
];

return;
125 }

}

130

}

135

}

std::vector<pipeCommand*>& execute(){
140 return commandList;

}

145 std::vector<pipeCommand*>& MAPE(std::vector< double > * st){
     monitor(st);
     analyze();
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     plan();
     return execute();

150 }

private:
155

//list of service times of the pipeline stages
std::vector< double > *serviceTimes;

//list of commands generated by the autonomic manager
160 std::vector<pipeCommand*> &commandList;

//the index of the stage with the highest service time (this is the serv
ice time of the pipeline)

int  maxIndex;
bool  all_stages_executed;

165

};

170 }

#endif /* AM_HPP_ */
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/*
 * Command.hpp
 *
 *  Author: nosmas

5  */

#ifndef COMMAND_HPP_
#define COMMAND_HPP_

10 #include <iostream>

namespace ff{

15 /*class Command{
public:

virtual void execute() = 0;
Command(){}
virtual ~Command(){}

20 };*/

class pipeCommand{
public:

25 enum CommandType{MERGE,SPLIT};

pipeCommand(CommandType ct, int  index): cmdType(ct), index(index){}
pipeCommand(): cmdType(SPLIT), index(−1){}

30

void  setCmdType(CommandType cmdType) {
this−>cmdType = cmdType;

}
35

void  setIndex( int  index) {
this−>index = index;

}

40 CommandType getCmdType() const {
return cmdType;

}

int  getIndex() const {
45 return index;

}

void  print(){
std::cout<< " Command: " ;

50 switch(cmdType){
case MERGE:

std::cout << " Merge ";
break;

default :
55 std::cout << " Split";

}
std::cout << " index =" << index;
std::cout << std::endl;

}
60

private:
//ff_pipeWithMerge *pipe;
CommandType cmdType;
int  index;

65 };

////////////////////////////////////////////////////////////////////////////////
////////////////////

enum farmCommand{ADD,REMOVE,DO_NOTHING};
70

}
#endif /* COMMAND_HPP_ */
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/*
 * lb_withControler.hpp
 *
 *

5  *      Author: nosmas
 */

#ifndef LB_WITHCONTROLER_HPP_
#define LB_WITHCONTROLER_HPP_

10

#define FF_BOUNDED_BUFFER true

#include <ff/lb.hpp>
#include <vector>

15 #include <iostream>
#include <stddef.h>
#include <assert.h>
#include <ff/Command.hpp>
#include <ff/AM.hpp>

20 #include <ff/SMA.hpp>

namespace ff{

25 class ff_loadbalancerWithControler: public ff_loadbalancer{
public:

/*
 * Constructor

30  * */
ff_loadbalancerWithControler(size_t max_num_workers):ff_loadbalancer(max

_num_workers),reconf_times( new std::vector< double >) {

nextWorker = 0;
35 initial_active_workers=2;

first= true ;
activeWorkers=ff_loadbalancer::getNWorkers();
inter_departure_time = new SMA(4);
autonomicManager = new ff_AM_farm();

40

}
/*
 * Schedule Task: Executes the plan (increase/decrease workers) after sc

heduling the task
 * */

45 virtual bool  schedule_task( void  * task, unsigned  int  retry=( unsigned )−1,
 unsigned  int  ticks=0) {

if(!ff_loadbalancer::schedule_task(task,retry,ticks))
return false ;

50

gettimeofday(&now, NULL);
if(!first){

//std::cout<< diffmsec(now ,prev_call_to
_sched) << ")))))" <<std::endl;

55 inter_departure_time−>add(diffmsec(now ,
prev_call_to_sched));

} else{
first = false ;

}
prev_call_to_sched = now;

60

nextWorker= (nextWorker+1) % activeWorkers ;
if(nextWorker == 0){

farmCommand com =autonomicManager−>MAPE(monitor());
execute(com);

65 }

return true ;

}
70
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std::vector< double > monitor(){
75 double  workersSvcTime=0, emitterSvcTime=0;

 std::vector< double > result;
for(size_t i=0; i<activeWorkers; i++){

workersSvcTime += (workers[i]−>svcffTime
()/activeWorkers);

}
80 workersSvcTime /= activeWorkers;

emitterSvcTime = inter_departure_time−>avg();
result.push_back(workersSvcTime);
result.push_back(emitterSvcTime);

#if defined debug__
85 std::cout << "  emitter service time = " << emitterSvcTim

e << std::endl;
std::cout << " workers service time = " << workersSvcTim

e << std::endl;
#endif

return result;
}

90

/*
 * setter method for initial workers

95  * @param i: the number of initial workers in the farm
 *
 * */
void  setInitailWorkers(size_t i){

initial_active_workers=i;
100 }

/*
 * SVC method:
 * starts with initial_workers

105  * */

virtual int  svc_init(){
activeWorkers=ff_loadbalancer::getNWorkers();
//deactivate all the workers

110 stop_all();
// then activate only some
ff_loadbalancer::thawWorkers( true , initial_active_workers);
activeWorkers=ff_loadbalancer::getnworkers();
gettimeofday(&startTime, NULL);

115 return ff_loadbalancer::svc_init();
}

virtual void * svc( void * task){
120

return ff_loadbalancer::svc(task);
}

125 void  stop_all(){
size_t nw = ff_loadbalancer::getnworkers();

for(size_t i=0; i<nw ; ++i){
ff_loadbalancer::freeze(i);

130 ff_loadbalancer::ff_send_out_to(EOS,( int )i);
}

activeWorkers=ff_loadbalancer::getNWorkers();
135 }

/*
 * simply increases or decreases the number of workers according to the 

command received
140  * */

bool  execute(farmCommand farmCom){

if(farmCom == ADD){
145

return increaseWorker();
}
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else if(farmCom == REMOVE){
return decreaseWorker();

150 }

return true ;
}

155

/*
 * decrease number of workers
 */
bool  decreaseWorker(){

160 timeval reconf_start,reconf_end;

activeWorkers=getnworkers();

if(activeWorkers <= 1)
165

return false ;
gettimeofday(&reconf_start, NULL);

ff_loadbalancer::freeze(activeWorkers−1);
170 ff_loadbalancer::ff_send_out_to(EOS,activeWorkers−1);

ff_loadbalancer::wait_freezing(activeWorkers−1);
#if defined debug_

std::cout << "  Deactivating worker " << activeWorkers−1 << std
::endl;

175 #endif
−−activeWorkers;

gettimeofday(&reconf_end, NULL);
reconf_times−>push_back(diffmsec(reconf_end,reconf_start));

180 gettimeofday(&now, NULL);
std::cout << diffmsec(now,startTime) << " \t" << activeWorkers << 

std::endl;

return true ;
}

185

/*
 * decrease the number of workers
 */
bool  increaseWorker(){

190

timeval reconf_start,reconf_end;
activeWorkers=getnworkers();
gettimeofday(&reconf_start, NULL);
if(activeWorkers >= ff_loadbalancer::getNWorkers())

195 return false ;
#if defined debug_

std::cout << " activating Worker " << activeWorkers << std::endl;
#endif

ff_loadbalancer::thaw(activeWorkers, true );
200 activeWorkers++;

gettimeofday(&reconf_end, NULL);
reconf_times−>push_back(diffmsec(reconf_end,reconf_start));
gettimeofday(&now, NULL);
std::cout << diffmsec(now,startTime) << " \t" << activeWorkers << 

std::endl;
205

return true ;
}

/*
210  * compute the average reconf time

 */
double  average_reconf_time(){

double  sum = 0.0;

215 for( unsigned  int  i = 0; i< reconf_times−>size(); ++i){
sum += (*reconf_times)[i];

}

if(reconf_times−>size() == 0)
220 return −1.0;

return sum/reconf_times−>size();

Page 3/4lb_withControler.hpp

venerdÃ¬ novembre 27, 2015 7/22



}

225 private:
size_t activeWorkers;
bool  first;
size_t initial_active_workers;
ff_AM_farm* autonomicManager;

230 size_t nextWorker;

SMA* inter_departure_time;
struct  timeval prev_call_to_sched,now;
struct  timeval startTime;

235 std::vector< double >* reconf_times;
};

240

}

245

250 #endif /* LB_WITHCONTROLER_HPP_ */
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/*
 * managed_farm.hpp
 *
 *     Author: nosmas

5  */

#ifndef MANAGED_FARM_HPP_
#define MANAGED_FARM_HPP_
#include <ff/farm.hpp>

10 #include <ff/lb_withControler.hpp>

namespace ff{

class ff_managed_farm: public ff_farm<ff_loadbalancerWithControler> {
15 public:

ff_managed_farm(size_t init_workers = 2, int  buffSize=5):ff_farm<ff_load
balancerWithControler>(),initial_activeWorkers(init_workers){

    lb−>setInitailWorkers(initial_activeWorkers);

20 }

double  getReconf_time(){
return lb−>average_reconf_time();

}
25

private:
    size_t initial_activeWorkers;

30 };

}

#endif /* MANAGED_FARM_HPP_ */
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/*
 * pipe_withMerge.hpp
 *
 *  Created on: Mar 1, 2015

5  *      Author: nosmas
 */

#include <ff/pipeline.hpp>
#include <iostream>

10 #include <vector>
#include <ff/Command.hpp>
#include <ff/AM.hpp>

15

namespace ff {

20

////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////

/*
25  *class ff_mnode:

 *represents a node which can be merged
 *
 * */

30 class ff_mnode: public ff_node {
protected:

/*
 * constructor
 * */

35 ff_mnode():ff_node(){
eosRecieved= false ;
extra_buffer= new FFBUFFER(1);
extra_buffer−>init();
splitted = false ;

40 }

public:

friend class ff_mergedNode;
45

/*
 *
 * */
void  eosnotify( int  id=−1) {

50 eosRecieved = true ;
//std::cout << " EOS Recieved in stage " << get_my_id() << std::

endl;
}

55

/*
 * checks if there are entries in the extra buffer before popping from t

he input
 * buffer

60  */
inline bool  pop( void ** ptr){

if(!extra_buffer−>empty()){
return extra_buffer−>pop(ptr);

65 }
else

return ff_node::pop(ptr);
}

70

bool  splitted;
/*

75  * put an EOS in the extra buffer so that the node can be frozen
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 * */
virtual bool  signal_freeze(){

if(get_in_buffer() == NULL)
return false ;

80 freeze();
return extra_buffer−>push(EOS);

}

85 /**
 * \brief Gets extra buffer
 *
 * It returns a pointer to the extra buffer.
 *

90  * \return A pointer to the extra buffer
 */
FFBUFFER* getExtraBuffer(){

return extra_buffer;
}

95

bool  isEosRecieved() const {
return eosRecieved;

}

100 private:
FFBUFFER *extra_buffer;
bool  eosRecieved;

};
105

////////////////////////////////////////////////////////////////////////////////
/////////////////////////////

/*
 * class ff_mergedNode:

110  * Represents a node consisting of two merged stages
 * */
class ff_mergedNode: public ff_mnode {
public:

ff_mergedNode(ff_mnode * node_1, ff_node * node_2):ff_mnode(),svc_time(0
){

115

node1=node_1;
node2=node_2;

if(node2−>get_out_buffer() != NULL)
120 //set the output buffer of node2 as the output of the ne

w merged node
if(ff_node::set_output_buffer(node2−>get_out_buffer()) !

=0){
error(" ERROR: setting the output of the merged node!");
return;

}
125

if(node1−>get_in_buffer() != 0)
//set the input buffer of node1 as the input of the new 

merged node
if(ff_node::set_input_buffer(node1−>get_in_buffer()) !=0

){
error(" ERROR: setting the input of the merged node!");

130 return;
}

ff_node::set_id(node1−>get_my_id());

135 }

void  eosnotify( int  id=−1) {
eosRecieved = true ;

140 }

inline bool  pop( void ** ptr){
145 //return ff_mnode::pop(ptr);

if(!extra_buffer−>empty()){
return extra_buffer−>pop(ptr);
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}
else

150 return ff_node::pop(ptr);
}

int  svc_init(){
return node1−>svc_init();

155 return 0;
}

void  svc_end(){
node2−>svc_end();

160 }

void  * svc( void * task){
gettimeofday(&start, NULL);

165 void  *t=node1−>svc(task);
t= node2−>svc(t);
gettimeofday(&end, NULL);
svc_time = diffmsec(end,start);
return t;

170 }

175 virtual double  svcffTime(){
return svc_time;

}

virtual bool  signal_freeze(){
180 if(get_in_buffer() == NULL)

return false ;
freeze();
return extra_buffer−>push(EOS);

}
185

ff_mnode * getNode1(){ return node1; }
ff_node * getNode2(){ return node2; }

private:
190 ff_mnode *node1;

ff_node *node2;
struct  timeval start,end;
double  svc_time;

195 };
////////////////////////////////////////////////////////////////////////////////
///////////////////////////////

/*
 * class ff_pipeWithMerge:

200  * a pipe line whose stages can be merged and splitted back
 * */
class ff_pipeWithMerge: public ff_pipeline {
public:

/*
205  * simple constructor

 * */
ff_pipeWithMerge():ff_pipeline(){

manager= new ff_pipelineManager( this);
210 first= true ;

manager_added = false ;
}

215 int  run_then_freeze(){

if (isfrozen()) {
thaw( true );
return 0;

220 }
if(!manager_added) add_manager();
if(!prepared) if(prepare() < 0) return −1;

freeze();
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225

if (!barrier)  barrier = new BARRIER_T;
const int  nthreads = cardinality(barrier);

if (nthreads+1 > MAX_NUM_THREADS) {
230 error(" PIPE_WITH_MERGE, too many threads, increase MAX_NUM_THRE

ADS !\n");
return −1;

}
barrier−>barrierSetup(nthreads);

235 int  startId = (get_my_id() > 0)? get_my_id():0;

for( unsigned  int  i=0; i < nodes_list.size(); ++i){
nodes_list[i]−>set_id(i+startId);

240 if(nodes_list[i]−>freeze_and_run( true ) < 0){
error(" ERROR: PIPE_WITH_MERGE, (freezing and) running stag

e %d\n", i);
return −1;

}

245 }

return 0;
}

250

/*
 * merge or split stages according to the commands
 * */

255 bool  execute(std::vector<pipeCommand*>&commandList){
while(!commandList.empty()){

pipeCommand *cmd = commandList.front();

if(cmd−>getCmdType() == pipeCommand::MERGE){
260

merge(cmd−>getIndex());

} else if(cmd−>getCmdType() == pipeCommand::SPLIT){
265 split(cmd−>getIndex());

}
commandList.erase(commandList.begin());

}
270

return true ;
}

275

std::vector < double >* monitor(){
std::vector < double >* serviceTimes = new std::vector< double >() ;
serviceTimes−>reserve(nodes_list.size());

280

for( unsigned  int  i=1; i < nodes_list.size()−2; ++i){

serviceTimes−>push_back(nodes_list[i]−>svcffTime());
285 }

return serviceTimes;
}

290

/*
 * Merges a pipeline stage with the next one, given the index of the fir

st stage to be merged
 *@param index is the id  first one to be merged with its successor
 * */

295 int  merge( unsigned  int  index){
struct  timeval mStart;
struct  timeval mEnd;
double  mergeTime =0;
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300

gettimeofday(&now, NULL);
mergeTime = diffmsec(now,start_time);

gettimeofday(&mStart, NULL);
305

//the last stage (nodes_list[size −1]) is the manager, nodes_lis
t[size−2] is the last stage, and both can’t be merged

if(index >= (nodes_list.size() − 2) || index == 0) return −1;

310 ff_mnode *firstNode= dynamic_cast <ff_mnode*>(ff_pipeline::nodes_l
ist[index]); // does dynamic_cast cause inefficiency?

if(firstNode == NULL) {
error(" ERROR: PIPE_WITH_MERGE, nodes of a pipeline must be of type ff_

mnode");
315 return −1;

}

if(!firstNode−>signal_freeze()){
error(" ERROR: PIPE_WITH_MERGE, Signaling freeze to the first node");

320 }
firstNode−>wait_freezing();

nodes_list[index]= new ff_mergedNode(firstNode,nodes_list[index+1
]);

325 nodes_list.erase(nodes_list.begin() + (index + 1));

nodes_list[index]−>freeze_and_run( true );

thaw( true );
330

gettimeofday(&mEnd, NULL);
//std::cout << "merged stage " << index << " with with *__  " <<

 index+1 << " at " << mergeTime << std::endl;

return 0;
335 }

340 bool  split( unsigned  int  index){
struct  timeval sStart,sEnd;
double  split_time ;
gettimeofday(&sStart, NULL);

345 if(index < 1)
return false ;

ff_mergedNode *casted_val= dynamic_cast <ff_mergedNode*>(ff_pipeli
ne::nodes_list[index]);

350 if(!casted_val)
return false ;

gettimeofday(&now, NULL);
split_time = diffmsec(now,start_time);

355

//std::cout << "\n \n split time = " << split_time <<std::endl;

ff_mnode * node1 = casted_val−>getNode1();

360 ff_node * node2 = casted_val−>getNode2();

if(!casted_val−>signal_freeze()){
error(" ERROR: PIPE_WITH_MERGE, Signaling freez

e to the merged node");
}

365

casted_val−>wait_freezing();

node1−>splitted = true ;
370 nodes_list[index] = node1; //casted_val−>getNode1();
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nodes_list.insert(nodes_list.begin()+(index+1),node2);

thaw( true );
gettimeofday(&sEnd, NULL);

375 double  elapsed_time = diffmsec(sEnd,sStart);

return true ;
}

380

private:
int  add_manager(){

385 if(!manager_added){
gettimeofday(&start_time, NULL);
manager_added= true ;
return add_stage(manager);

}
390

return −1;
}

395 class ff_pipelineManager: public ff_mnode{
public:

ff_pipelineManager(ff_pipeWithMerge *p):ff_mnode(){
pipe=p;
autonomicManager = new ff_AM_pipe();

400 currentPhase = MONITOR;
}

void  * svc( void  * task){

405 std::vector<pipeCommand*>commandList =autonomicManager−>
MAPE(pipe−>monitor());

pipe−>execute(commandList);

410 return task;
}

enum phase{MONITOR,ANALYZE,PLAN,EXECUTE};

415

private:
ff_pipeWithMerge* pipe;
phase currentPhase;
ff_AM_pipe *autonomicManager;

420

};
/*end of inner class */

425

private:
ff_pipelineManager* manager;
bool  first;
bool  manager_added;

430 struct  timeval start_time, now;

};

435

}
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/*
 * ImageFarm.cpp
 *
 * 

5  */
#include <cassert>
#include <iostream>
#include <string>
#include <algorithm>

10 #include <ctime>
#include <vector>
#include <sstream>
#include <fstream>

15

#include <Magick++.h>

#include <ff/pipeline.hpp>
#include <ff/farm.hpp>

20 #include <ff/managed_farm.hpp>

using namespace Magick;

using namespace ff;
25

struct  Task {
    Task(Image *image, const std::string &name, double  r=1.0, dou

ble  s=0.5):
        image(image),name(name),radius(r),sigma(s) {};

30

    Image             *image;
    std::string  name;
    const double        radius;
    const double        sigma;

35    };

char * getOption( char  **begin, char  **end, const std::string &opt
ion) {

    char  **itr = std::find(begin, end, option);
    if (itr != end && ++itr != end) return *itr;

40     return NULL;
}

45 class Read: public ff_node {
public:

Read( char  **images, const long  num_images, double  r, dou
ble  s):

        images(( const char **)images),num_images(num_imag
es),radius(r),sigma(s) {}

50     void  *svc( void  *) {
        for( long  i=0; i<num_images; ++i) {
            const std::string &filepath(images[i]);
            std::string filename;
            // get only the filename

55             int  n=filepath.find_last_of(" /");
            if (n>0) filename = filepath.substr(n+1);
            else     filename = filepath;

           
60

            Image *img = new Image;
            img−>read(filepath);
            Task *t = new Task(img, filename,radius,sigm

a);
            ff_send_out(t);

65         }
        return EOS;
    }

private:
70 const char  **images;

const long  num_images;
const double  radius;
const double  sigma;
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};
75

class BlurEmboss: public ff_node{
public:

80 void * svc( void * tsk){
Task* in=(Task*)tsk;

 if(in−>name.find(" Emboss") != std::string::npos)
{
 in−>image−>blur(in−>radius, in−>sigma);

in−>image−>emboss(in−>radius, in−>sigma)
;

85 in−>image−>enhance();
} else{

in−>image−>comment(in−>name);;

90

return in;

95 }

};

100

class Writer: public ff_node{
public:

void * svc( void *tsk){
105 Task* in=(Task*)tsk;

 std::string outfile = " ./out/" + in−>name;
    in−>image−>write(outfile);
    std::cout << " image " << in−>name << "  has been 

written to disk\n";
    delete in−>image;

110     delete in;

return GO_ON;
}

private:
115

};

int  main( int  argc, char  *argv[]) {

120 if (argc < 2) {
        std::cerr << " use: " << argv[0] <<
            "  [−r radius=1.0] [−s sigma=.5] [ −n Wrks=2] <image−file> [ima

ge−file]\n";
        return −1;
    }

125     double  radius=1.0,sigma=0.5;
    int  Wrks = 2;
    int  start = 1;
    char  *r = getOption(argv, argv+argc, " −r");
    char  *s = getOption(argv, argv+argc, " −s");

130     char  *n = getOption(argv, argv+argc, " −n");
    if (r) { radius    = atof(r); start+=2; argc−=2; }
    if (s) { sigma     = atof(s); start+=2; argc−=2; }
    if (n) { Wrks      = atoi(n); start+=2; argc−=2; }

135     std::freopen(" ./out/output.tsv", " a", stdout);

    InitializeMagick(*argv);

    long  num_images = argc−1;
140     assert(num_images >= 1);

    std::vector<ff_node*> workers;

    for( int  i=0; i < Wrks;i++)
145     workers.push_back( new BlurEmboss);

    Read read(&argv[start], num_images, radius, sigma);
    Writer writer;
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    ff_managed_farm farm;
150

    farm.add_emitter(&read);
    farm.add_workers(workers);
    farm.add_collector(&writer);

155

    if(farm.run_then_freeze()) {
    error(" running farm \n");
    return −1;
    }

160     farm.wait_freezing();
    std::cout <<" \n\n\n\n"<<std::endl;
    std::cerr << " average reconfiguration time = " << farm.getRec

onf_time() <<std::endl;

return 0;
165 }
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/*
 * ImagePipe.cpp
 *
 */

5 #include <cassert>
#include <iostream>
#include <string>
#include <algorithm>
#include <ctime>

10

#include <Magick++.h>

//#include <ff/pipeline.hpp>
15 #include <ff/pipe_withMerge.hpp>

using namespace Magick;

using namespace ff;
20

struct  Task {
    Task(Image *image,  std::string &name, double  r=1.0, double  s

=0.5):
        image(image),name(name),radius(r),sigma(s) {};

25

    Image             *image;
    std::string  name;
    const double        radius;
    const double        sigma;

30

};

char * getOption( char  **begin, char  **end, const std::string &opt
ion) {

    char  **itr = std::find(begin, end, option);
35     if (itr != end && ++itr != end) return *itr;

    return NULL;
}

40

class Read: public ff_mnode {
public:

Read( char  **images, const long  num_images, double  r, dou
ble  s):

        images(( const char **)images),num_images(num_imag
es),radius(r),sigma(s),count(0) {}

45

    void  *svc( void  *tsk) {

    if(count < num_images){
     const std::string &filepath(images[coun

t]);
50      count++;

                std:
:string filename;

                // g
et only the filename

                int  
n=filepath.find_last_of(" /");

55                 if (
n>0) filename = filepath.substr(n+1);

                else
     filename = filepath;

                Imag
e *img = new Image;

60

                img−
>read(filepath);

                Task
 *t = new Task(img, filename,radius,sigma);

               
                retu

rn t;
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65     }

        return EOS;
70     }

private:
const char  **images;
const long  num_images;

75 const double  radius;
const double  sigma;
int  count;

};

80

class Enhance: public ff_mnode{
public:

void * svc( void * tsk){
85

Task* in = (Task*)tsk;

in−>image−>enhance();

90 return in;
}

};

95 class Blur: public ff_mnode{
public:

void * svc( void * tsk){
Task* in=(Task*)tsk;

100 in−>image−>emboss(in−>radius, in−>sigma);

return in;
}

private:
105

};

class Noise: public ff_mnode{
public:

110 void * svc( void * tsk){
Task* in=(Task*)tsk;
if(in−>name.find(" Noise") != std::string::npos){

in−>image−>addNoise(GaussianNoise);
}

115

else
in−>image−>comment(in−>name);

return in;
}

120

};

class Write: public ff_mnode{
125 public:

void * svc( void *tsk){

Task* in=(Task*)tsk;
 std::string outfile = " ./out/" + in−>name;

130     in−>image−>write(outfile);
    
    delete in−>image;
   
    return in;

135 }
private:

};

140 int  main( int  argc, char  *argv[]) {
    if (argc < 2) {
        std::cerr << " use: " << argv[0] << "  [−r radius=1.0] [−s sigma=.5] <
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image−file> [image−file]\n";
        return −1;
    }

145     double  radius=1.0,sigma=0.5;
    int  start = 1;
    char  *r = getOption(argv, argv+argc, " −r");
       char  *s = getOption(argv, argv+argc, " −s");
       if (r) { radius = atof(r); start+=2; argc−=2; }

150        if (s) { sigma  = atof(s); start+=2; argc−=2; }
       timeval start_time, end_time;
       gettimeofday(&start_time, NULL);

       InitializeMagick(*argv);
155

       long  num_images = argc−1;
       assert(num_images >= 1);

      
160

       ff_pipeWithMerge pipe;

       Read read(&argv[start], num_images, radius, sigma);

165        Noise noise;
       Enhance enhance;
       Blur blur;

        Write write;
170        //std::freopen("./out/output.tsv", "a", stdout);

       pipe.add_stage(&read);
       pipe.add_stage(&noise);
       pipe.add_stage(&enhance);
       pipe.add_stage(&blur);

175        pipe.add_stage(&write);

       if(pipe.run_then_freeze()<0){
       error(" running pipeline \n");
       return −1;

180        }
       pipe.wait_freezing();

       gettimeofday(&end_time, NULL);
       double  execution_time;

185        execution_time = diffmsec(end_time,start_time);
       std::cout << " Finished Executing took total of " << execution_time/

1000 << "   seconds "<<std::endl;

    return 0;
}
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