
Autonomic Management of Performance in
FastFlow Stream Parallel Patterns

Samson Hailu Tesfay

Master of Science in Computer Science and Networking

University of Pisa and Sant'anna School of Advanced Studies

Supervisor: Professor Marco Danelutto

December 4, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79620135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements
I would like to thank my supervisor Prof. Marco Danelutto for his valuable
support and patience throughout the thesis. I would never have been able to
finish my dissertation without his guidance. I would like to thank my family:
my parents and to my brothers and sisters for supporting me spiritually
throughout my life.

Contents
1. Introduction...4

1.2 Thesis objectives...5
1.3 Structure of the Dissertation...5

2. Background...7
2.1 Stream Parallel computations...7
2.3 The FastFlow Algorithmic Skeleton Framework..9

2.3.1 FastFlow Skeletons and sequential concurrent activities......................................11
2.3 Related work...16
2.3.1 Autonomic Computing...16
2.3.2 Autonomic Management of Non-functional Concerns in Structured Parallel
Programming..19

3. Logical Design..31
3.1 High level view...31

3.1.2 General Overview of the Autonomic Behavior...32
3.2 Logical design of the Task Farm Behavioral Skeleton...33
3.3 Logical Design of the Pipeline Behavioral skeleton...34

4. Implementation..36
4.1 Autonomic Manager Implementations...36
4.2 Autonomic Controller Implementation...37

4.2.1 Mechanisms provided by lower level FastFlow(Layer 2)....................................37
4.2.2 Monitoring and execution mechanisms in the Task Farm Skeleton.....................37
4.2.3 Monitoring and Execution mechanisms in the pipeline skeleton pattern.............40

4.3 AM Policies..42
4.3.1 Policies for the Farm Behavioral skeleton..42
4.3.2 Policies for the Pipeline Behavioral skeleton...43

5. Experiments...45
5.1 Experimental Settings...45
5.2 Experiments on the Farm Behavioral Skeleton..45

5.2.2 Test cases:..46
5.3 Experiments on the Pipeline Behavioral Skeleton..48

5.4 Summary..53
6.Conclusions..54

6.1 Future Work..54
Bibliography..56
Appendix ..58

Chapter 1

Introduction

Over the past few decades, the computer industry has been focused on manufacturing of
single central processing units (CPU) with higher frequency and complexity to improve
performance. However, this progress has been slowing down due to energy-consumption and
heat-dissipation issues that have limited the increase of the clock frequency and the level of
productive activities that can be performed in each clock period within a single CPU [22].

The use of multiple, simpler processing elements, or cores has become the main focus of the
processor industry, as it was the only viable way to sustain the increase in processor
performance. By providing multiple cores, separate parts of the program can be executed in
parallel .

However, performance heavily relies on the ability of the program to fully utilize all the
cores. This requirement adds additional complexity on development of software applications,
making parallel programming mandatory. This led to the design of parallel abstractions
focusing on hiding details from the programmer. Parallel design patterns [23] and
Algorithmic skeletons introduce such abstractions.

Algorithmic skeletons, introduced by Cole in [19] are high level programming model for
parallel and distributed computing. Skeletons take advantage of common programming
patterns to hide the complexity of parallel and distributed applications. Skeletons take
advantage of common programming patterns to hide the complexity of parallel and
distributed applications. While algorithmic skeletons and parallel design patterns provide
implementation of well known implementation patters, usually non-functional features such
as such as performance, security, fault tolerance, and power management are handled by the
user.

Behavioral skeletons have been introduced in early 2000s with the aim of supporting
autonomic management of non functional features related to skeleton implementation. A
behavioral skeleton is the result of the co-design of a parallelism exploitation pattern and of
an autonomic manager, taking care of some non functional feature related to the parallelism
exploitation pattern implementation[11].

This thesis presents the implementation of a prototype behavioral skeleton for stream parallel
algorithmic skeletons in the FastFlow taking care of service time and efficiency.

1.2 Thesis objectives

The main objective of this thesis focuses on developing behavioral skeletons on top of
existing FastFlow algorithmic skeletons that are capable of taking care of non-functional
concerns. Though non-functional concerns in skeletal parallel programming include several
concerns such as performance, security, fault tolerance, and power management, this thesis
only focuses on performance, specifically optimizing service time and/or efficiency by
choosing the optimal parallelism degree. Among the skeletons provided by the FastFlow
algorithmic skeleton frame work only stream parallel skeletons for multi-core architectures
namely the pipeline and task farm skeletons are covered. In the case of task farm skeleton
optimal parallelism degree is achieved by increasing and decreasing the number of workers
in the task farm. Where as in the case of pipeline skeletons optimal parallelism degree is
achieved by merging pipeline stages and splitting previously merged stages.

 Reconfiguration mechanisms to increase and decrease number of workers in the task farm
skeleton are implemented. For the pipeline skeletons mechanisms that enable to merge
consecutive stages and split previously merged stages are introduced. In addition to the
reconfiguration, mechanisms that enable to monitor the internal state of the skeletons (i.e. to
query the service time of internal components), are also implemented.

Moreover an autonomic manager associated with each skeletons, controlling the parallelism
degrees is introduced based on simple hard codded policies is implemented. By choosing
optimal parallelism degree (i.e. number of workers in a farm and number of stages in
pipeline) the autonomic manager aims to improve the performance(service time/efficiency)
of the skeletons,

Experiments conducted to validate and asses the functionalities of the prototype behavioral
skeletons are presented and results achieved are discussed.

1.3 Structure of the Dissertation

The rest of this thesis is organized as follows:

• Chapter 2 provides a relevant background material for the thesis including stream
parallel computations and algorithmic skeletons. A short introduction to the FastFlow
algorithmic skeleton is provided. Then the chapter presents related work on autonomic
management non-functional concerns in structured parallel programming and behavioral
skeletons.

• Chapter 3 presents high-level view, and logical design of the prototype implemented
in this thesis.

• Chapter 4 presents a detailed discussion of the implementation of the prototype
behavioral skeleton on top of the existing stream parallel skeletons, including mechanisms

used and policies applied by the autonomic manager.

• Chapter 5 presents the experiments conducted on the prototype implementation of
pipeline and task farm behavioral skeletons, and results from the experiments are discussed.

• Chapter 6 discusses the conclusions of the thesis and future works are discussed.

Chapter 2

Background

This chapter explores relevant background material for the thesis, starting with a brief

discussion of Stream parallel computations in Section 2.1, followed by the discussion of

algorithmic skeletons in Section 2.2 . Then Section 2.2 provides a detailed description of the

FastFlow algorithmic skeleton frame work. Finally Section 2.3 presents related works

focusing on the concept of autonomic computing and Autonomic Management of Non-

functional Concerns in Structured Parallel Programming and introducing Behavioral

Skeletons.

2.1 Stream Parallel computations

Stream Parallelism is method for parallelizing the execution of a stream of tasks by

segmenting the task into a series of sequential or parallel stages. This method can be also

applied when there exists a total or partial order, respectively, in a computation preventing

the use of data or task parallelism. This might also come from the successive availability of

input data along time (e.g. data flowing from a device). Parallelism is achieved by running

each stage simultaneously on subsequent or independent data elements[18].

The following are some properties common to stream parallel computations from [13]

1. Large Streams of data: One of the fundamental properties of streaming

computations is that they operate on a large sequence of data items . Data streams

generally enter the program from some external source, and each data item is

processed for a limited time before being discarded

2. Independent Stream Filters: A streaming computation represents a sequence of

transformations on the data streams. The transformations (also referred as filters) are

generally independent and self-contained, without references to global variables or

other filters. A stream program is the composition of filters into a stream graph, in

which the outputs of some filters are connected to the inputs of others.

3. A stable computation pattern: The structure of the stream graph is generally

constant during the steady-state operation of a stream program. That is, a certain set

of filters are repeatedly applied in a regular, predictable order to produce an output

stream that is a given function of the input stream.

4. Occasional modification of stream structure: Even though each arrangement of

filters is executed for a long time, there are still dynamic modifications to the stream

graph that occur on occasion. For instance, if a wireless network interface is

experiencing high noise on an input channel, it might react by adding some filters to

clean up the signal.

2.2 Algorithmic skeletons

 An algorithmic skeleton is a is parametric, reusable and portable programming abstraction

modeling a known, common and efficient parallelism exploitation pattern. The concept was

first introduced by Cole In the late 80s and [19,20]. They simplify the task of parallel

programming by abstracting commonly-used patterns of parallel computation,

communication, and interaction while offering simplicity,portability, re-use, performance,

and optimization [21].

An algorithmic skeleton framework provides set of pre-defined patters encapsulating the

structure of a parallel computation that are provided to user as building blocks to be used to

write applications [11]. Each skeleton corresponded to a single parallelism exploitation

pattern.

Provided with an algorithmic skeleton, the programmer is not required to rewrite the code

related to parallelism exploitation, when writing parallel applications. He/she can structure

his parallel computation by instantiating the skeletons, rather than rewriting the parallelism

patterns from scratch.

By using an algorithmic skeleton framework, the programmer gains a range of benefits

including[11] simplification of parallel application development (as parallel programming

mainly consists of properly instantiating skeletons provided), portability on different target

architectures by only recompiling the parallel application on target architectures,

simplification of debugging (as only the sequential code has to be debugged).

In section 2.3 algorithmic skeletons provided by the FastFlow algorithmic skeleton are

briefly discussed.

2.3 The FastFlow Algorithmic Skeleton Framework

FastFlow is a C++ algorithmic skeleton framework targeting heterogeneous platforms. It

provides programmers a suitable parallel programming patterns which are compiled into

networks of parallel activities on target architectures. Conceptually it is designed as a stack

of five abstraction layers abstraction layers[16] as shown in Fig 2.1.

1. Hardware: At the bottom of the layer are platforms that are targeted by FastFlow

such as multi-core, many-core, and clusters of multi-core and many-core possibly

equipped with computing accelerators. Initially FastFlow was designed to target

multi-core shared memory architectures but has been extended to support distributed

Figure 2.1. FastFlow architecture layers

and GPGPU platforms.

GPGPUS are supported through CUDA and OpenCL, where kernel business code is

written in those languages . Distributed platforms are build on top of TCP/IP and

Infiniband protocols.[16]

2. Building blocks: At this layer the programming model is a hybrid shared-

memory/message-passing model; where processes (process containers) are sequential

and channels are true dependency between precesses. Processes stream data items to

channels and the data items act as synchronization tokens.

FastFlow channels define simple streaming networks whose tun-time support is

implemented through lock-free Single-Producer-Single-Consumer queues with non-

blocking push and pop operations [17]. The synchronization overhead of those

methods is minimal due to the absence of locks.

In addition FastFlow provides non-blocking, lock-free Single-Producer-Multiple-

Consumer(SPMC), Multiple-Producer-Single-Consumer(MPSC) and Multiple-

Producer-Multiple-Consumer(MPMC) queues which can be used to build arbitrary

streaming networks. These queues are built on top of the lock free Single Producer

Single Consumer queues and an arbiter thread:

Figure 2.2 shows the queues built on top of the SPSC queue

In addition processes and thread containers are implemented as C++ classes built on

top of POSIX threads/processes.

Figure 2.2 SCMP, MCSP and MCMP queues built on top of the SPSC queue

3. Core Patterns: this layer provides a general data-centric parallel programming model

with its run-time support, which is designed to be minimal and reduce to the

minimum typical sources of overheads in parallel programming. This level provides

two parallel skeletons: the task farm skeleton and the pipeline skeleton, which are

built using collection of threads/processes that communicate using queues.

4. High level patterns: this layer provides higher level parallel patterns build on top of

the Core Patterns including loop (i.e. parallel for), data parallel patterns (such as

map, stencil, stencil reduce), macro data-flow etc . Those patterns are built on top of

he Core Patterns.

5. Parallel Applications: On top of the lies the parallel applications. Parallel application

programmers can write efficient applications by directly exploiting the parallel

patterns of FastFlow provided at the “Core Patterns” and “High level patterns” layers.

This is done by defining sequential concurrent activities for sequential activities, and

instantiating the parallel patterns with those activities.

2.3.1 FastFlow Skeletons and sequential concurrent activities

2.3.1.1 Sequential concurrent activities

The ff_node sequential activity abstraction provides a way do define a sequential activity that

process data items appearing on a single input channel and that delivers the related results to

the single output channel. The ff_node is an abstract class where the user is supposed to

provide the sequential code by extending this class. This class provides a number of

methods, among those the following three methods have a particular importance.

1. virtual void* svc(void* task) = 0;

2. virtual int svc_init(){return 0}

3. virtual void svc_end(){}

The svc method is the one defining the behavior of the node while processing the input

stream data items. The svc_init method is invoked automatically by the FastFlow run

time support when concurrent activity represented by the node is started, while the

svc_end method is invoked right before termination. Both of them are only invoked once

during the lifetime of the node. The following code snippet shows the usage of a

FastFlow ff_node

class myNode : public ff_node {

public:

int svc_init(){

 //initialize the node

 return 0;

 }

void* svc(void*){

 //behavior of the sequential concurrent activity

 }

void svc_end(){

 //finalize the stage,

 }

};

2.3.1.2 Skeletons provided in FastFlow

FastFlow provides three types of skeletons, which are Stream-parallel skeletons, Data-

parallel skeletons and Data-flow skeletons [14].

Stream Parallel Skeletons

Stream parallel skeletons exploit parallelism in the computation of input streams, possibly

available at different times. Stream parallel skeletons in FastFlow consist of pipeline and task

farm skeletons.

Pipeline Skeleton
 A pipeline skeleton is used to model computations that can be expressed as stages. Normally

a pipeline parallel application can have two or more stages . Given a stream of inputs

xn , ... x2, x1 a pipeline with stages F1, F2, ... Fm computes the output stream

F1(... F2(F1(xn))), ... , F1(... F2(F1(x1)))

F
1 F

2
F

m

Each input passes through each stage in the same order of arrival, Fn processes the output

from Fn-1 while, Fn is processing on other inputs, hence the stages execute in parallel. The

latency of the pipeline is equal to the sum of the latencies of all the stages since a single

input have to go through all stages. That is:

Lpipe=∑
i=1

m

Li

and the service time of the pipeline is the service time of the latest stages. That is:

T pipeline (F1 , F2 , ... Fn)=max (T F1
,T F2

, ... ,T Fn
)

FastFlow's ff_pipeline class implements the pipeline pattern with fixed number of stages,

which is constructed from a fixed number of threads, each representing one stage, connected

by lock-free SPSC queues.

To create a pipeline of n stages in fast flow, one must first create an instance of ff_pipeline,

then instantiate n different ff_node objects and add them to the ff_pipeline by calling the

add_stage method.

In addition a variant of a pipeline skeleton namely “pipeline-with feed back” is available

where the output of the last stage is directed as the input of the first stage, forming a ring like

structure. Once after instantiating an ff_pipeline object the programmer can set this

functionality by calling the “wrap_around” method.

Task Farm Skeleton
The task farm also known as master-worker is a stream parallel paradigm based on the

replication of purely functional computation, with out the knowledge of internal structure of

the function itself.

An emitter component is used to schedule incoming tasks to the workers. The scheduling

policy can be either a static one, such as a round robin scheme or a dynamic one, where tasks

are scheduled to the workers on demand. In addition a collector component is used to collect

the out put of the workers. If necessary the collector can be implemented in a way that

reorders the results computed by the workers. The task farm can also exist without the

collector, where the workers consolidate the results in memory or write them to storage. An

other variant is where the workers send back the results to the emitter.

The following figure shows the structure of a task farm skeleton:

In FastFlow the ff_farm template class provides the implementation of the task farm

skeleton. The programmer should first create an instance of an ff_farm, then the functional

code of the workers, emitter, and collector should be implemented as sub type of the ff_node

class. And finally their instances can be added by calling their corresponding add_ methods.

The following code snippet shows the usage of the farm skeleton in Fast Flow:

#include <ff/farm.hpp>

class Emitter : public ff_node {

public:

void* svc(void* t){

 …

 }

};

class Worker : public ff_node {

public:

void* svc(void*){

E

W
1

W
n

CW
i

X
m
, … X

1
 F(X

m
), …F(X

1
)

 …

 }

};

class Collector : public ff_node {

public:

void* svc(void*){

 …

 }

};

int main(int argc, char *argv[]) {

 …

ff_farm farm;

farm.add_emitter();

std::vecot<ff_node*> workers;

 for(int i=0; i<nWorkers;++i)

workers.push_back(new Worker);

farm.add_workers(workers);

 …

}

Data parallel Skeletons:

Data parallel skeletons refer to the group of algorithmic skeletons on the computation of

different subtasks obtained by spiting a larger input task.

In data parallel applications, a larger input data is partitioned among the number of

concurrent resources, each computing the same function on the assigned data partition . Data

parallel skeletons may work on single elements coming from a stream input, but in general,

those skeletons doesn't consider stream parallelization by them selfs [11,14] . The main goal

of data-parallel skeletons is to minimize the completion time of a single task to be computed.

Data parallel skeletons in FastFlow are implemented on top of the Farm stream parallel

skeletons . FastFlow provides map, ParallelFor, stencil, ParallelForReduce and stencil

reduce. The ParallelFor skeleton is used to parallelize having an independent iterations, its

computation is similar to that of a map skeleton. The ParallelForReduce is used to perform

a parallel-for computation followed by a reduction operation by allowing the user to provide

a combiner function.

Data-flow parallel Skeletons

The data-flow programming model is a general approach to parallelization based upon data

dependencies among a program’s operations. The computations is expressed by the data-flow

graph, i.e. a DAG whose nodes are instructions and arcs are pure data dependencies[14].

When portions of code are used as graph's nodes, the graph is known as a macro data-flow

graph (MDF). The resulting MDF program is therefore represented as a graph whose nodes

are computational kernels and arcs are data dependencies.

FastFlow provides an MDF skeleton called ff_mdf implementing the macro data-flow

parallel pattern. The run-time of the FastFlow mdf pattern is responsible for scheduling

fireable instructions (i.e. those with all input data dependencies ready) and managing data

dependencies.

2.3 Related work

2.3.1 Autonomic Computing

The aim of Autonomic computing is to address the complexity of technology using

technology. The term was derived from the human autonomic nervous system. The

autonomic nervous system manages our heart rate and body temperature with no conscious

effort. In a similar way self managing autonomic capabilities anticipate IT system

requirements and resolve problems with minimal human intervention[7] .

The term Autonomic computing is emblematic of a vast hierarchy of natural self governing

systems, many of which consist of multiple interacting, self governing components that in

turn comprise a number of interacting , self governing components at the next level [8].

Self Management Properties:

IBM cites four aspects of self management, namely: self-configuration, self-healing, self-

optimization, and self protection.

Self Configurations: refers to an automated configuration of components and systems

following high-level policies. The rest of the system adjusts automatically and seamlessly.

Self Healing: refers to a setting where the system automatically detects, diagnoses, and

repairs localized software and hardware problems.

Self Optimization: refers to a setting where components and systems continually seek

opportunities to improve their own performance and efficiency.

Self-Protection: The system automatically defends against malicious attacks or cascading

failures using early warning to anticipate and prevent system wide failures.

Building Blocks of an Autonomic System:

An Autonomic system may consist of building blocks that can be composed together to from

self-managing systems. The building blocks include:

- Manageability Endpoints: are the components in the system that expose the state and

management operations for a resource in the system. The manageability interface for

monitoring and controlling a managed resource is organized into a sensor and an effector,

used to obtain data from the resource and perform operations on the resource respectively.

- Autonomic manager: is an implementations that automates some management functions

and externalizes this functions based on the behavior defined by the management interfaces.

It implements an intelligent control loop consisting of collecting details from the system

(known as monitoring), analyzing the details , planning a change and executing it.

- Knowledge Source: is an implementation of a repository that provides access to knowledge

according to the interfaces prescribed by the architecture by the architecture. It consists of

particular types of management data with syntax and semantics such as symptoms,

policies,requests for change, and change plans. It includes data such as topology information,

historical logs, metrics, symptoms, and policies.

Figure 2.3: shows the details of an autonomic manager [7]

The MAPE loop:

As shown in Figure1 an autonomic system executes a loop consisting of four parts known as

the MAPE loop, sharing a knowledge source.

- Monitor: during this phase metrics and topologies are collected, filtered and aggregated

from the managed resource.

- Analyze: in this phase mechanisms that correlate and model complex situations are

provided. These mechanisms allow the AM to learn about the system and predict future

situations.

- Plan: In the plan phase mechanisms that construct the actions needed to achieve goals and

objectives are provided using policy information.

- Execute : here mechanisms that control the execution plan with considerations for dynamic

updates are provided.

Figure 2.3: Functional details of an autonomic manager with MAPE (Monitor, Analyze, Plan,
Execute) loop

2.3.2 Autonomic Management of Non-functional Concerns

in Structured Parallel Programming

- In [1] non functional concern management is presented focusing on massively parallel and

distributed patterns (focuses on distributed systems and more specifically on grids).

To address the autonomic capability, the ideas from IBM's autonomic computing blue print

are adopted. In this case autonomic management of a component is provided by a dedicated

autonomic manager which takes care of all activities while interacting with the functional

core of the component.

 Functional and non-functional application concerns:

- The parallel patterns exploited to implement the application are considered as functional

concerns. Where as management issues related to the patterns, such as parallelism degree,

load balancing and adaptation of parallelism pattern to different target architectures, are

considered as the non-functional concerns.

Usually non-functional features are handled by the user (i.e. the application programmer).

But in an ideal programming scenario, functional concerns should be under the

user/application programmer control, while non-functional concerns should be handled by

the underlying system.

When users/application programmers are in charge of handling the non-functional concerns,

the programmer faces several difficulties, mainly:

+ Code tangling: usually the user (application programmer) has to mix functional

and non-functional code. This makes the programming task difficult (difficult to debug,

modularize …) and limits the re-usability of the code.

+Requires Wide knowledge: writing non-functional code becomes a burden for the

application programmer. This requires wide knowledge of techniques, unrelated to the

functional concerns. In addition knowledge of the target architecture, which is only available

at run time, might be required.

These problems can be mitigated by moving the non-functional concerns to the run time

support (RTS) or the compiler, where the user can provide the non-functional requirements

in the form of high level SLA (Service Level Agreements) .

Management of non-functional concerns

Non-functional concerns will be managed by an autonomic-manager (AM), which is an

independent activity taking care of all, or some specific non-functional features of the

application.

- The AM is characterized by three different dimensions:

i. The concern to be managed

ii. Autonomic policies to be implemented

iii. Degree of cooperation with other managers .

- The AM may concern either single goal or multiple goals. Moreover, the AM being multi-

concern or single-concern, it can be a simple AM or hierarchical one. When dealing with

more than one goal, the targeted concerns increase. In another dimension, when the AM is

hierarchical, it requires more coordination of control. Even when dealing with a single-

concern AM, the problem might be difficult, such as mapping of parallel activities to

available processors (which is an NP-hard problem). Such a problem gets even more difficult

when the AMs are supposed to coordinate with other AMs dealing with different concerns.

One way to reduce the complexities is to restrict the kinds of parallel computations, where

parallel/distributed computations implement well known parallelism patterns (eg:

algorithmic skeletons, Behavioral Skeletons).

Behavioral Skeletons:

A Behavioral skeleton consists of a well known parallelism pattern P along with an AM Mc

taking care of a concern on the the computation P. Behavioral Skeletons made it possible to

reduce the complexity of performance optimizations into tractable size.

Hierarchical management of a single non-functional concern with BS

 When an application is composed of an independent modules, hierarchal management of

non-functional concerns can be applied to achieve better results. Inside the hierarchy each

software module consists of an AM attached to it. Managers higher in the hierarchy take

more autonomous decisions and managers in lower levels of the hierarchy will behave in

accordance with the decisions taken in the higher level.

- Two main issues with hierarchal AM

i. A strategy is needed to allow the splitting of a contract C on the top level into subcontracts

c1, … , cm to be issued by the nested sub-managers.

ii. An AM should be able to act “passive” and “active” roles. In an “active” mode, the

manager automatically tries to issue the contract received (either directly from the user or

form a parent manager) by executing the MAPE (Manage, Analise, Plan, Execute) loop .

In “passive” mode, the manager has only to monitor its own execution and execute plans

from its parent manager.

A manager enters a passive mode when it can't satisfy the contract at hand, and there are no

locally available plans to recover the situation.

Once the two issues are addressed, the user provides the contract as an SLA. The contract is

divided into sub-contracts to the children managers in the hierarchy, and the top level

manager plays an “active” role.

Each manager in an “active” mode executes the MAPE loop. If an action can't be executed, a

contract violation is reported to the corresponding parent and the manager switches into a

passive mode, and waits to receive a new contract from it's parent. The problem of “active”

and “passive” roles can be solved by organizing the management of non-functional features

in two different parts:

- The passive AM implements the mechanisms for “monitoring” its own execution state and

executes commands form is parent manager in the hierarchy.

- The active part implements the autonomic policies, in a way the policies maintain the

contract received.

 Though the strategy of splitting the contracts (the SLA) is a more complex task, it can be

achieved by adopting domain specific heuristics associated with a well known parallelism

pattern.

In [2] the authors address issues of autonomic management in hierarchical component based

distributed systems. A high level view of behavioral skeletons is presented using the ORC

notation. In addition a simulation result is is discussed, showing a successful implementation

of hierarchical management when service time is autonomically optimized.

 Multi-concern management with BS

 When considering autonomic managers with multiple goal, more problems arise from

structuring of the autonomic management activities. In addition to hierarchal management,

there is the issue of how management of different non-functional concerns should be

coordinated among the AMs .

In [1] two different scenarios are presented:

1. Single AM taking care of the concerns c1, ... ,cm all together.

2. Multiple hierarchies of autonomic managers, each dealing with a different concern Ci,

along with a general super-AM orchestrating the multiple AMs.

In both scenarios the challenge lies in resolving conflicts coming from decisions taken when

considering different concerns.

Adopting hierarchical multi-concern AMs is easier due to the complete separation of

concerns.

In [3] the authors address the problem of multi-concern autonomic management with

independent hierarchical managers and discuss how it can be implemented in a typical use

case. The approach presented is based on five steps: coordination of the managers activities,

finding a common knowledge by which managers can interact, means of reaching consensus,

initialization of of the managers' hierarchy and devising a means of implementing the

management.

Coordination: When dealing with multiple autonomic managers taking care of different

concerns, there might a case where the decision taken by one autonomic manager is in

contradiction with the goal of another autonomic manager taking care of different concern.

To resolve such issue there must be a way of coordination between the different managers.

Two strategies are presented:

1. A super manager AM0 positioned on top of the hierarchy of managers AM1-AMm,

coordinating the decisions taken by these managers .

2. The managers AM1 - AMm reach agreement with each other before actuating decisions.

Shared knowledge: in order to agree on global application management, a common

knowledge is necessary across the different managers. An application graph whose nodes

represent the parallel activities and whose arcs represent communications can be used as a

common concept across these managers (the nodes and arcs are labeled with metadata1).

Reaching Consensus: before committing any decision consensus must be reached on the

resulting application graph, i.e. a consensus process must be established and implemented.

Consensus can be established as a two phase process: first the proposed reconfiguration is

communicated in the from of a new graph G' including metadata about new resources if any.

In the second phase, the manager proposing the change should wait for consensus results.

and based on these results, either commits the decision or abort it.

Initialization of the manager hierarchy: The user submits QoS contracts to the AMs

ordered according to the priority, such that, the decision of a manager dealing with a contract

of higher priority will have a higher precedence. The first contract QoS1 determines which

manager is responsible of establishing initial application implementation configuration.

Implementation of autonomic management: The autonomic management can be

implemented as a rule-based implementation as in [4], where the rules consist of

preconditions → actions . A classical MAPE rule is implemented by each manager. In the

monitor phase current values of variables used in the precondition parts are gathered. The

analyze and plan phases correspond to evaluating the preconditions and choosing the

corresponding actions respectively, according to the priorities. And the execute phase is

implemented as the execution of the actioned planned.

In order to deal with multiple concerns, each rule implemented by AMi in isolation is

transformed into two rules: where the first the rule consists of the proposed action as its

precondition and consensus request as its actions, while the second rule consists of the

responses from other managers as its precondition and actions consisting of either the

original plan or with adjusted plans.

Behavioral Skeletons in GCM

In [4],[5] behavioral skeletons for the Grid Component Model (GCM) are presented. In

1 Metadata of a node may represent mapping information, while metadata of an arc may represent features of
corresponding communication channel.

addition, results evaluating the overhead introduced by autonomic management activities are

presented in [4].

GCM is a hierarchical component model designed to support component based, autonomic

applications in grids. It was defined in the CoreGRID Network of Excellence as an

extension of Fractal with grid components. An open source implementation is also available

from the EU STREP project GridComp, as an embedded module in the ProActive middle

ware.

In the GCM, a component is composed of two major parts. The membrane: which is an

abstract entity that consists of the control behavior associated with a component.

The content, which includes either the code directly implementing functional component

behavior, or other composite components.

There are different mechanism for interactions between GCM components including, use-

provide ports, stream ports, data ports and event ports. In addition collective interactions are

also supported.

Components have two types of interfaces: functional and non-functional. The non-functional

interfaces consist of all the ports needed for a component management activity.

Each GCM component contains an Autonomic Manager (AM), interacting with other

components' managers through the non-functional interfaces. When the AM executes the

classical MAPE loop, the execution and monitoring are done by a component controller,

known as Autonomic Behavior Controller (ABC) .

Components consisting of only the ABC are called passive components and those with both

the ABC and AM are called active components.

Behavioral Skeletons

Though programmers are able to write their own AM and ABC in GCM, Behavioral

Skeletons abstract those tasks for the user/application programmer.

Behavioral Skeletons as algorithmic represent patterns of parallel computation, along with

sound self-management mechanisms,.

On one hand, as an algorithmic skeleton, a behavioral skeleton expose a description of its

functional behavior and establishes parametric orchestration schema of inner components.

On the other had it carries constraints that inner components are required with, and

encompass a number of pre-defined plans to come with self-management goal.

In [5] the authors introduced simple set of behavioral skeletons modeling functional

replication patterns consisting of a one to many stream server dispatching inputs to workers,

number off instances of workers and a many-to-one client stream interface collecting the

outputs from the workers. A possible instantiation of this behavioral skeleton can be a task

farm or a data parallel .

A behavioral skeleton with functional replication pattern (task farm or data parallel) can

equipped with a self optimizing policy since the number of workers can be dynamically

changed in a sound way. The QoS goal could be to keep a given limit of served requests in a

time frame. Then the AM checks whether the average time fulfills the given time limit and

react by adding/removing instances of workers.

 As the operations implemented by the ABC are more related to the membrane structure, the

ABC is implemented as a controller in the membrane. Where as with the AM contractually

specified QoS must be enforced. The AM has to decide whether a reconfiguration is needed,

an which plan would fulfill the contract. The AM accepts a QOS contract, which consists of

set of variables representing the measures to be evaluated, and set of mathematical

expressions over these variables. The constraints and goals that the AM should fulfill are

encoded in the mathematical expressions. Then the AM checks the validity of the QoS

provided and ,if broken, it executes the predefined reconfiguration plans.

LIBERO: a Light Weight Behavioral Skeleton

 LIBERO[6] is a prototype behavioral skeleton implemented in Java. It aims to address the

problem of multiple Autonomic Managers associated to the same parallel pattern , each

taking care of a different non-functional concern. Those managers coordinate themselves in

such a way that a global user provided contract can be satisfied.

The implementation of LIBERO relies on the existence of Java and RMI based runtime.

A single behavioral skeleton consists of an algorithmic skeleton (implementing a well known

parallelism pattern) along with multiple autonomic managers AMi, each taking care of a

distinct non-functional concern. The algorithmic skeleton also consists of an Autonomic

Controller AC to access its internal state (monitoring), and operate on its internal state

(execution). The AMs periodically execute the classical MAPE control loop.

Coordination among distinct AMs operating on a single algorithmic skeleton is implemented

by following a two-phase approach [3].Each action planed by an AM is validated by other

AMs in the same behavioral skeleton before being executed. This two-phase approach is

realized in such a way where an AM broadcasts its decision to the rest of the AMs, the other

managers evaluate the decision to check whether it is in accordance with the concern they

are dealing, then finally reply the result of their evaluation. This reply can be an

acknowledgement of the decision, an abortion indicating violation of their concern, or a

conditional acknowledgement indicating that the plan can executed given a condition is

satisfied.

The Autonomic Managers' behavior is expressed in JBoss rules which are compiled and

executed by the DROOLS middle-ware library at runtime. The consensus protocol is

embedded in the JBoss rules.

Experiments were conducted on farm and pipeline skeletons with autonomic controllers

taking care of performance and security, with similar amount of overheads observed in single

concern autonomic managers in GCM [4].

Autonomic Management in ASSIST

ASSIST [10] is a parallel and distributed programming environment. It provides the

programmer with a structured coordination language that can express parallel programs as an

arbitrary graph of software modules, connected by typed data streams. The modules, which

can be either sequential (can be written in C,C++, Fortran) or another parallel module

(called parmod).

In [9] the ASSIST programming environment is described as a suitable basis to capture all

the desired features of QoS control for the Grid.

Components and managers:

A single module or graph of modules can declared as a component. A component consists of

functional and non-functional ports.

Autonomic management is realized in a hierarchal structure.

- Mostly the Autonomic management features in ASSIST focus on performance related

issues and load balancing.

Each ASSIST module consists of an application manager (called Module Application

Manager: MAM) responsible for configuring and controlling the QoS2 associated with the

module.

Globally, at the component level, the configuration and control of the QoS is implemented by

a Component Application Manager (CAM).

Module Application Manager (MAM)

The main task of the Module Application Manager (MAM) is to ensure the contracts

provided by the application programmer as QoS. The performance contract can be set up the

parent Component Application Manager (CAM).

The ASSIST compiler is responsible for preparing QoS contracts for each parmod and

binding them to to the MAM.

The QoS contract consists of a goal and how it should be achieved. Specifically the goal

consists of

• Performance features: set of variables evaluated from static module properties,

monitored runtime information and performance evaluation.

• Performance model: set of relations between performance features, ranging from

simple analytical models to complex models derived though advanced mathematical

rechniiques.

• Performance goal: set of inequalities involving performance features.

• Deployment annotations: annotations elaborating the processes resource needs

including required hardware, software and other constraints.

• Adaptation policy: refers to a specific adaptation policy among the available ones.

Among the autonomic behaviors of the module application manager, the main one is load

balancing of module resources.

The MAPE loop life cycle of the Module application manager looks as follows :

- During the Monitor phase, the VPM's execution times between two consecutive

synchronization points are collected. The synchronization points are selected during the

2 QoS is the term referring to the contracts or SLA provided by the application programmer

compile time.

- In the Analyze phase the data collected is used to verify the performance goals. If those

goals are violated, possible causes are detected.

- At the Plan phase, if the performance goal is not satisfied, a plan to recover the situation is

devised. This consists a sequence of reconfiguration actions, each taking care of a specific

cause for the performance degradation. If no effective reconfiguration actions were found to

address the problem, an event (i.e. goal violation) is sent to the parent CAM (Component

Application Manager).

- At the Execute phase, the VP are redistributed among the VPMs depending on the previous

outcome, and resource upgrades are negotiated with the parent CAM(Component

Application Manager). The MAM may also receive an event from its parent CAM to apply

restructuring due to a global variation of performance degradation.

Component Application Manager (CAM):

Each Component Application manager handles control strategies at a global level for the

corresponding component. The CAM might receive requests for restructuring from its

MAMs during its monitor phase. In such a case it devices a solution by applying global

performance model.

In such a case, it individuates a solution at the analyze and plan phases. It does so by

applying a global performance model.

At the execute phase, the CAM may receive reconfiguration requests from its corresponding

parent.

The root manager (i.e. the Application Manager AM) is responsible for final decisions at the

global level.

Auto Tuning Parallel Programs

The idea of auto tuning is to automatically adapt the execution of a program to a given

software and hardware environment to optimize one or more non-functional objectives such

as exection time, energy consumption etc.

Unlike behavioral skeletons, in auto-tuning optimal parameters for specific objectives are

predicted at compile time.

In [15] the authors introduce a multi-objective auto-tunning framework consisting of

compiler and component featuring a multi-objective optimizer and a runtime system. The

multi-objective optimizer derives non-dominated solutions (known as the preto set) , each

expressing a trade-off between different conflicting objectives .

The so called pareto set is then made available, in a way where the compiler generates a set

of code versions per region, each corresponding to one specific solution. The runtime

system then selects a specific solution for each code region based on the context-specific

criteria.

In [16] the author presents an interview discussed with Prof. t. Fahringer focusing on the

difficulty in predicting the performance of parallel programs, and the popularity of auto-

tuning.

Chapter 3

Logical Design

This chapter introduces the logical design of the Autonomic managers implemented in this

thesis, for the task farm and pipeline algorithmic skeletons. Section 3.1 discusses the high

level view of the behavioral skeletons. Then sections 3.2 and 3.3 discuss the design of the

behavioral skeletons for the pipeline and task task farm patterns respectively.

 In this chapter and in the rest of the thesis the term Autonomic Controller (AC) is used to

refer to the mechanisms inside the skeletons that enable to collect internal execution metrics

and execute reconfiguration plans. In addition an Autonomic Manager (at some points

simply referred as AM) refers to the part of the component which is responsible to plan

reconfigurations based on some kind of policies. In general the term Behavioral Skeleton is

used to refer to an Algorithmic skeleton with an Autonomic controller and an Autonomic

Manager. In synthesis[1] :

Behavioral Skeleton= Algorithmic Skeleton +Autonomic Controller + Autonomic Manager .

3.1 High level view
The Autonomic manager is designed to work on top of the existing FastFlow

algorithmic skeletons . The Farm and Pipeline skeleton patterns are extended, to include

Autonomic Controllers. As described in the previous chapter the AC interface is part of the

behavioral skeleton . Their main goal is to read internal execution metrics and deliver them

to their associated manager. In addition once the delivered metrics are analyzed and

reconfiguration plans are prepared by the manager those plans are executed by the AC.

Figure 3.1 shows the high level logical design of a behavioral skeleton .

Behavioral Skeleton

Algorithmic Skeleton AC
Metrics

Autonomic Manager
 Commands

Figure 3.1: high level logical design of a behavioral skeleton

3.1.2 General Overview of the Autonomic Behavior

The existing framework consists of Algorithmic skeletons where parameters (specifically

number of stages in pipeline or number of workers in farm) are passed as an argument to the

skeletons and they are not changed during the life cycle of the parallel application

implemented through the skeletons.

In order to implement the autonomic behavior, the algorithmic skeletons are extended to

include an AC which can measure the execution metrics of the skeleton itself and deliver it to

the autonomic manager. At the same time it may execute reconfiguration commands planned

by the autonomic Manager.

In addition the Behavioral skeleton consists of an Autonomic Manager component which

executes the MAPE (Manage, Analyze, Plan, and Execute) loop [8] . During the MAPE loop

the AM first receives execution metrics from the AC, then analyzes the metrics and plans

reconfigurations based on the analysis of the metrics received plus some simple internal

polices and eventually it sends the reconfiguration execution plans to the AC of the

algorithmic skeleton.

In order to communicate the execution metrics from the AC to the AM and reconfiguration

plans from the AM to the AC communication channels are needed. Logically, two

communication channels are needed. One the “Metrics-Channel”, which is used to send the

execution metrics from the AC to the AM. Another is the “Command-channel”, which is

used to communicate reconfiguration plans from the AM to the AC.

3.2 Logical design of the Task Farm Behavioral Skeleton

 A task farm processes a stream of tasks {x0, … ,xm} producing a stream of results {f(x0),

… ,f(xm)}. The computation of f(xi) is independent of the computation of of f(xj) for any i≠j

and the items of the input stream are available at different times[4]. A stream of tasks is

absorbed by a server E (known as the emitter) then tasks are sent to workers (one task per

worker) is computed)by one instance of worker W) and eventually the result is sent to a

collector component C which collects them and deliver to the results to the output stream.

To implement the autonomic behavior on the existing task farm skeleton of FastFlow the

following components are added:

- The Autonomic controller: as described above this is added as part of the skeleton to

collect execution metrics and execute reconfiguration plans. This can be added to the emitter

component of the skeleton and to periodically collect the execution metrics as it schedules

tasks to the workers .

- The Autonomic Manager: is added as a separate thread . It reads the metrics sent from the

AC via the , and decides if reconfigurations are needed. The metrics in this case refer to the

service time of the emitter thread and of the workers, while reconfiguration plans can be

either addition or removal of a worker based on the metrics if needed. It then communicates

the reconfiguration plans to the AC component of the farm through the “Commands

Channel”.

Reconfigurations commands in the task farm behavioral skeleton are increasing (activating

more) and decreasing (deactivating) of workers. Figure 3.2 shows the design of the task farm

behavioral skeleton:

...EAC

W
0

W
n

CAM
Command

Metrics

Figure 3.2 Logical Design of the task farm behavioral skeleton

The Autonomic Controller:

The AC for the task farm behavioral skeleton can added in the emitter component of the

task farm so that, as the emitter schedules tasks to the workers, it can periodically read the

service times of the active workers and its own inter-departure time. Moreover it can

execute reconfiguration plans by activating and deactivating workers.

3.3 Logical Design of the Pipeline Behavioral skeleton

The pipeline skeleton, as described in section 2.3.1, is typically used to model

computations expressed in stages (usually consisting of two or more stages) [11] .

Given input tasks : {x0, … ,xm}, the pipeline stages: S1, … ,Sn computes

Sn (. . . S2 (S1 (xm)) . . .), . . . , Sn (. . . S2 (S1 (x0)) . . .)

- The Autonomic Controller:

 Unlike to the task farm, the AC of the pipeline skeleton is added as an additional stage at

the end of all the other (functional) stages of the pipeline to collect the metrics, which in

this case are the service times of each pipeline stages and send them to the Autonomic

Manager. Since the service times of the stages can be measured after each stage has at least

executed once the AC can be added as an additional stage in the pipeline, so that it can

query the execution time of each stage. It then communicates the metrics to the AM

through the “Metrics channel”, and execute reconfiguration plans provided by the AM

through the “Commands channel”, if necessary. The AC is contained inside the pipeline

skeleton itself, thus it can access the mechanisms of the skeleton when collecting metrics

and implement reconfiguration plans by merging/splitting stages.

- The Autonomic Manager: is added as a separate thread and, as mentioned above, executes

the MAPE loop. It then communicates the reconfiguration plans to the AC component of

the pipeline through the “Commands Channel”.

Reconfiguration commands in the pipeline behavioral skeleton refer to the merging of

consecutive stages and splitting of previously merged stages. The metrics gathered by the

AC refer to the service times of the all stages in the pipeline.

The following figure shows the logical design of the pipeline behavioral skeleton:

Figure 3.3 Logical design of the pipeline behavioral skeleton

S1 Si SnS2
AC

AM

Commands

Metrics

Chapter 4

 Implementation

This chapter discusses how the existing algorithmic skeletons in FastFlow were extended

into a behavioral skeleton[1] . Section 4.1 discusses how the autonomic manager was

implemented and how it plans reconfigurations. In section 4.2 implementation of the

autonomic controllers inside the skeletons is discussed, mainly focusing on the monitoring

and execution of reconfiguration mechanisms. Finally section 4.3 discusses the autonomic

manager policies implemented .

4.1 Autonomic Manager Implementations

As of the logical design discussed in chapter three, the autonomic manager for a skeleton

was supposed to be implemented as a separate thread communicating with the skeletons via

dedicated communication channels. However, to simplify the implementation and avoid

overheads, each skeleton was implemented to contain an instance object of the autonomic

manager, so that the communication is simply done via method calls on the contained

instance of the autonomic manager object. In other words the autonomic manager was

implemented to execute in the same thread with the autonomic controller.

The autonomic manager is implemented as a simple C++ class consisting of monitor,

analyze, plan and execute methods.

The monitor method receives the metrics collected by the corresponding skeleton and sets

the metrics variables so that they can be analyzed. The analyze method of the manager

analyzes the metrics received, if necessary. Then the plan method of the manager decides

whether reconfigurations are needed, and if so, what type of reconfigurations has to be

implemented, based on the policies available to manage the corresponding skeleton. The

policies are further discussed later in section 4.3 .

 Finally the execute method of the manager sends out the planned reconfiguration

commands to the AC , if there are any, so that the reconfigurations can be executed.

4.2 Autonomic Controller Implementation

Autonomic Controllers are implemented as an extension of FastFlow Farm and

Pipeline skeletons adding facilities to query the internal state of the skeletons (monitoring

mechanisms) and allow modification of internal states.

The monitoring and execution capablities (modification of internal states) are specific to the

type of the underlying skeletons (i.e. Farm or Pipeline skeletons).

4.2.1 Mechanisms provided by lower level FastFlow(Layer 2)

Freezing threads :

 FastFlow provides lower level mechanisms to freeze an executing node and thaw

previously frozen nodes. In order to freeze an executing node in FastFlow, the freeze()

method can be used to tell the node that it, should go to sleep (and not terminate) when an

“End of Stream (EOS)”, value is received. Then in order to actually freeze the node the call

to the freeze() method should be followed by sending an end of stream (EOS) value on

the node input channel. Alternatively the “GO_OUT” value could also be sent to the node to

freeze it. While the EOS is propagated to other nodes, the GO_OUT value is consumed by

the node and is not propagated to the output channel.

Thawing a frozen thread:

 Once an ff_node has been put to sleep by calling the freeze() method and sending an

end of stream value, it can be thawed back by calling the thaw() method, which takes a

boolean value indicating whether the node should be frozen or destroyed upon the arrival of

an end of steam value.

4.2.2 Monitoring and execution mechanisms in the Task Farm Skeleton

The Farm skeleton skeleton represents functional replication, and it is also

known as master worker. It consists of an Emitter E where incoming tasks are initially

processed, a vector of workers W and an optional Collector C where results are aggregated

and delivered to the output stream . As stream of incoming tasks arrive they are absorbed by

the emitter E and each of the the task is scheduled to one of workers to be computed. The

results from the workers my finally be aggregated by a Collector C, in some specific way

and sent to the output stream. Alternatively a Farm might exist with out a collector. In this

case all the results are consolidated in memory or written to a storage directly by workers

producing them.

In FastFlow the farm skeleton consists of a default load balancer to do the task scheduling

where tasks can be scheduled either in a round robin or on demand way. The emitter E is

also contained in the loadbalancer.

Each time an incoming task arrives to the emitter from input stream or it is generated by the

E (eg: reading from disk), the load balancer schedules the task to one of the workers

according to the policy of the loadbalancer.

In order to implement Autonomic Controller capabilities in the farm skeleton the default

load balancer was extended. The extended load balancer (load balancer with controller)

initially starts with only some of the workers activated, and then proceeds by activating or

deactivating one worker at a time according to reconfiguration commands from the

autonomic manager.

 The extended load balancer (load balancer with controller) keeps as a state the average

service time of all the workers, the average service time of the emitter (as a simple moving

average), initial active workers, and current active_workers. The initial active workers

represent the number of workers to activate when the farm starts, if it is less than the total

number of workers allocated during the instantiation of the the farm, then the rest of the

workers stay frozen. The active_workers state represents how many of the instantiated

workers are actively working and how many of them are frozen.

During the monitoring phase, the load balancer queries for the service time of each worker,

and computes the average service time of the farm accordingly.

According to [2] the service time of a task farm with nw workers is given by

T farm(nw)=∑
i=1

nw

Tw i /nw
2

where Twi is the service time of worker i .

Since the average service time of a single worker is

∑
i=1

nw

Twi /nw

 We can simply express the service time as

T farm(nw)=Tw /nw (1)

Where

Tw=∑
i=1

nw

Twi /nw

In addition to the service time of the farm, the average inter-departure time of the emitter is

measured as a simple moving average . After the values have been queried, the controller

then sends the values to the autonomic manager, so that the manager can analyze them and

prepare a reconfiguration plans.

The actuator mechanisms that are required in this case are one that increases the number of

active workers and another that decreases the number of active workers.

In order to decrease the total number of workers some of the active workers has to be

frozen. Hence, in order to decrease the number of workers in the farm skeleton,first we

should ensure that the total number of active workers is more than one, then last active

worker is frozen by calling the freeze() method, and sending it an end of stream (EOS)

value. Once this is done the load balancer should wait until that worker consumes the end of

stream signal and goes to sleep. Then the number of active workers is set to be one less than

the previous.

On the other hand in order to increase the number of active workers it is simply a matter of

activating the last worker frozen previously, which is done by calling the thaw() method of

the load balancer passing the index of the last worker frozen .

4.2.3 Monitoring and Execution mechanisms in the pipeline

skeleton pattern

The pipeline skeleton is composed of sequence of two or more consecutive stages

computed one after another, where the input produced by the preceding stage is consumed

and processed and the output is delivered as the input to the next stage, and so on.

In the case of a pipeline skeleton, the service time efficiency are optimized by merging and

splitting pipeline stages. Specifically, merging stages avoids using extra resources if they do

not contribute to improve the service time and splitting previously merged stages to

minimize service time (i.e. by using resources if they contribute to improve the service

time).

First in order to make the threads (i.e. the nodes) capable of merging with other threads

there must be a mechanism to freeze the pipeline only starting from the specific stages that

we want to merge. Hence a node that was capable of being frozen with out the need to

freeze the entire pipeline had to be implemented. As described in section 4.2.1, in order to

deactivate a thread in FastFlow first we must call the freeze() method and then send an end

of stream value . This means that, if we want to merge a stage somewhere in the pipeline,

we must devise a way to send an end of stream to that stage only, without sending it

through the input channels. This was implemented by extending the FastFlow node to

contain an extra channel in addition to the input and output channels. In this way we can put

and end of stream value in the extra channel. In addition if we want the stage to be

deactivated as soon as we put the end of stream signal in it, the way it reads its inputs has to

be changed. For this reason the pop() method which reads tasks from the input stream had

to be modified in such a way that it should first check if the extra channel is not empty. If it

is not, then the input stream must be read from the extra channel, otherwise it is read from

the standard input channel as usual.

Once this is done, another extension of the ff_node, which represents an already merged

nodes has to be implemented. The merged node consists of references to two nodes each

with merging capabilities. The input buffer of the first node becomes the input buffer of the

merged node and the output buffer of the of the second node becomes the output buffer of

the merged node. In the initialization method i.e. the svc_init method, the initialization of

the first node is called while in the ending method svc_end the ending method of the second

node is called. In every FastFlow node the sequential code is provided in the svc() method.

For the merged node in the svc first the sequential code of the first node is called passing

the input parameter of the merged node as its input parameter keeping its output in a state

variable . Next the sequential code of the second node is called with the output from the

first node as its input parameter. This way the two stages which were being executed in a

pipeline parallel before getting merged are now executed sequentially. In order to make the

merged node capable of being split back in to two stages, getter methods are used to obtain

the two merged nodes separately.

In order to implement the Autonomic Controller capabilities, the pipeline skeleton of the

FastFlow frame work must also be extended.

The execution mechanisms in the pipeline skeleton with controller are the merging and

splitting methods . The merging method takes an index of the pipeline stage as an input

parameter and tries to merge it with the next stage. In this case the merging can be

accomplished only if the index passed as an input is different from the first stage and the

last stage. This is because, FastFlow enables the stream of tasks to be generated from an

inner node and if this is the case , the first stage can not be frozen since it will not have an

input buffer, which means we cannot send an end of stream signal to freeze it. While for the

last stage, it can only be merged with the stage preceding it, and the merge method only

assumes a pipeline stage is being merged with the next one.

Merging and splitting of consecutive stages:

 In FastFlow the pipeline skeleton stores a reference to each of the stages inside a vector

called nodes_list. In order to merge consecutive stages after freezing them, the reference

pointing to the first node is replaced by the reference of the merged node, and then the

second node is removed from the vector (since its functional code is already contained

inside the merged node). Then if the already merged stage needs to be split back to two

stages, the merged node is replaced by the first node, and the second node is inserted back

next to the first node. This is done by accessing the internal nodes stored inside the merged

node.

Figure 4.1 pipeline stages before and after merging

4.3 AM Policies

- The Autonomic Manager policies are implemented as precondition → action rules

expressed in plain C++ code. As discussed in chapter 3 each skeleton consists of a

corresponding manager, and the policies depend on the type of the manager, that is either a

farm manager or a pipeline manager.

4.3.1 Policies for the Farm Behavioral skeleton

Once the metrics indicating the internal state of the Farm skeletons are received from the

skeleton , a policy is applied to decide whether to add more (i.e. activate more workers),

remove workers or to keep them as they are .

The idea behind the policy of the task farm skeleton is to keep the farm service time

approximately equal to the inter-departure time of the emitter. In other words, if the inter-

departure time of the emitter is higher than the service time of the task farm, then this means

that all the worker in the farm are not utilized, as the utilization factor of the farm is:

f g:h i

f g h i

ρfarm=T farm/T pemitter

where Tfarm is the farm service time and TPemitter the inter-departure time from the emitter. [12]

Instead if the inter-departure time of the emitter is less than the service time of the farm, the

task farm would become a bottleneck.

By balancing the inter-departure of the emitter and service time of the farm, the policy

allows to keep optimal number of workers active, even if the behavior of the incoming

stream of tasks is dynamic.

Given the farm service time and Emitter inter-departure time, the precondition part of the

rule checks if the farm service time is approximately equal to the inter-departure time of the

emitter.

The following pseudo-code shows the precondition→action rules implemented by the farm

Autonomic Manager:

if TE > c*Tf then

 action = decreaseWorker

else if c*TE < Tf then

action = IncreaseWorker

else

action = do_nothing

the constant c indicates a parameter that decides the how much difference should be

tolerated.

4.3.2 Policies for the Pipeline Behavioral skeleton

The metrics in the pipeline refer to the service times of each pipeline stage. The service time

of a pipeline parallel skeleton composed of n stages is given as:

T pipeline (s1 , s2 , ...sn)=max(T s1
,T s2

, ... ,T sn
)

where Tsi is the service time of the ith stage

That is, the service time of the slowest stage (which represents the bottleneck of the whole

computation) is the service time of the pipeline [11].

Given this the manager tries to balance the stages by merging and splitting the pipeline

stages. Initially, the pipeline consists of stages computing a sequential concurrent activities3

and the possible action is merging consecutive stages if the sum of their service times is not

more than the slowest stage, as this would not change the service time as the service time of

the pipeline(even after merging consecutive stages, the service time of the pipeline is the

service time of the slowest stage).

Later, the behavior of the pipeline might change due to the behavior of the incoming tasks,

possibly altering the service times of the stages. In this case if the bottleneck stage becomes

the one that was merged previously, that stage has to be split back into two parallel stages,

so that the service time of the pipeline could be improved.

The following pseudo code shows the precondition → action rules implemented by the

pipeline skeleton's autonomic manager.

BS bottleneck_stage←
If BS is merged_node then
 split(bottleneck_stage)
end

foreach stage Si in the pipeline
 if servicetime(Si)+servicetime(Si+1) > servicetime(BS) then

merge(Si,Si+1)
 end
end

3 Taking into account that there is no skeleton nesting

Chapter 5

Experiments
This chapter discusses experiments made to validate and asses the prototype
implementations discussed in the previous chapter. The goal of the experiments is to verify
the functionality of the behavioral skeletons, and to figure out the overheads introduced by
the implementation of the autonomic manager.
First the experimental settings are presented in Section 5.1. then Sections 5.2 and 5.3 present
the experiments conducted on the task farm and pipeline behavioral skeletons respectively.
Then the results are finally summarized in section 5.4.

5.1 Experimental Settings
The experiments were carried out on a 24 core machine with an Ubuntu operating system
version 14.04.2 LTS and a kernel version 3.16.0-30-generic. Table 5.1 shows detailed
platform on which the experiments were carried.

Processor CPU Cores Frequency L1 Cache L2 Cache L3 Cache Main Memory

AMD 6176 Opteron
Processor

24 800 MHz 64 KB 512 KB 5118 KB 32 GB

Table 5.1 Platform used in the experiments

All the test cases have been compiled to native binaries on the platform using g++ version
4.9 . To avoid interference from other users exclusive access to the machine was obtained to
conduct the experiments.

All the experimental results for each test case presented are relative to the average of the
values obtained in 10 different experiments (runs), in all cases the maximum and minimum
(outliers) values were ignored to avoid random errors [15]

5.2 Experiments on the Farm Behavioral Skeleton
Application: Farm Image processing

To test the behavior of the farm behavioral skeleton a simple image processing application
was used, where the emitter stage reads image files from the storage, the workers process the
images, and the collector writes the processed images back to storage. [14]
In order to come up with tasks whose processing varies over time, the workers execute
different processing based on the annotations of the incoming image files. The processing of
image files that are annotated takes significantly larger computing than those that are not
annotated.

Input Dataset:
The image input datasets have been obtained from the web (from
http://www.emt.tugraz.at/~pinz/data/GRAZ_02/) and some of them were duplicated to
prepare enough amount of data for the test. Then some of them were properly annotated such

http://www.emt.tugraz.at/~pinz/data/GRAZ_02/

that their processing requires a different amount of time.

Measurements:
For the experiment that verifies the behavior of the task farm skeleton, the program was
executed 20 times, among those tests 16 of the tests used a maximum of 15 workers, while
the rest used 14,16 and 17 workers. Then the test results that used 15 workers were taken .
From the test results, the average of the times where reconfigurations are executed were
taken by removing the outliers .

5.2.2 Test cases:

Two types of test cases where prepared:

 Test case1:

 In the first test case lighter tasks are processed first, followed by the heavier ones, and then
followed by lighter tasks. The task farm was started with total of 22 workers, and with two
initial active workers.

The following graph shows the results of the first test case:

Figure 5.1 Results of test case 1 for the farm behavioral skeleton

The graph shows that the task farm was started with only two active workers. Since the
processing time of the lighter tasks takes less processing time than the inter arrival time from
the emitter which reads files from disk storage, not more than one worker is required, hence
the autonomic manager reduces the number of active workers to one. At the 400th
millisecond, the heavier tasks start arriving, and the number of active workers start growing,
until the 1st second. Eventually, the lighter tasks start arriving at the 2nd second, and the
autonomic manager reacts by deactivating workers. The rate that the number of workers are
decreased is different that that of the rate that the number of workers are increased. The main
reason comes from the fact that even though the average service time of the workers is
reduced by the arrival of lighter tasks, some of the workers have not yet completed
processing the heavy tasks, this affects the average service time of the workers.

Test Case 2:

In the second test case, the heavy tasks were generated first, followed by the lighter tasks,
and then heavier tasks. Similarly to the first test case, the autonomic manager reacts by
increasing the number of active workers when heavy tasks are processed, while decreasing
them when lighter tasks arrive.
The graph in Figure 5.2 shows the results of the second test case:

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

16

Number of Workers in a farm

Wall clock Time (milli seconds)

N
u

m
b

e
r

o
f w

o
rk

e
rs

Figure 5.2:Results for the second test case , showing number of active workers during the
execution of the test case.

As one can see from the figure above, the task farm was started with only two active
workers. the autonomic manager starts activating more workers as the heavy tasks arrive and
deactivating workers when lighter tasks arrive. . In this test case, the light tasks are being
processed from the 500th millisecond till the 3500th millisecond, but the rate where the
number of active workers drops is slow until the 300th millisecond. This is because some of
the workers are still processing heavy tasks, affecting the average worker service time.

5.3 Experiments on the Pipeline Behavioral Skeleton
To verify the functionality of the behavioral skeleton a similar image processing application
was prepared. The application has five stages. The first stage reads image files from disk,
the next three stages do different types of image processing, and the fifth stage writes the
processed files back to disk. In a similar way to the experiment for the task farm, the images
were annotated and the second stage of the pipeline does two different types of processing
based on the annotation. The processing of annotated images in the second stage takes much
longer than the processing of unannotated ones . Hence when heavy tasks (i.e. annotated
images) arrive in the second stage, its service time becomes higher (even higher than the
following two stages), where as when the lighter ones arrive the stage is the service time
drops down.

 To test the reaction of the autonomic manager, unannotated images were processed first
making the service time of the second stage much less than the other stages, and then
followed by annotated ones. In this case, the autonomic manager is supposed to react by
merging the second stage with the third one. When heavier tasks arrive later, the second
stage, which is formed by the merging of the second and third becomes a bottle neck and

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

16

Wall Clock Time (milliseconds)

N
u

m
b

e
r

o
f a

ct
iv

e
 w

o
rk

e
rs

hence the autonomic manager is supposed to react by splitting back (i.e. undoing the merge
operation performed before) .

 Since the first and the last stages work on read/write operations, their service times vary
over time due to external factors such as disk locality. To avoid an unexpected behaviors
(merging and splitting operations which greatly vary on each test run), the autonomic
manager was modified to ignore both the first and the fifth stages of the pipeline.

The graph in Figure 5.3 shows the results obtained for the test case

Figure 5.3: number of pipeline stages during the execution of the pipeline behavioral
skeleton

As one can observe from the graph in Figure 5.3 the pipeline was started with 5 stages. Then
the manager reacts by merging of the second stage with the third one (at the 100th
millisecond), as sum of the service times of the second and third stages is less than service
time of the (see Figures 5.4 and 5.5). Since the autonomic manager is executed as an
additional last stage on the pipeline, a merge reconfiguration is not executed until all the
stages process at least one tasks (all the stages has to execute once so that their service times
can be measured by the last stage). In addition, to perform the merge operation a freezing
signal must be sent to the second stage and the autonomic controller should wait until the
freeze signal is consumed by that stage. For those reasons the merging of the stages is not
performed until the 100th millisecond. Later when heavy tasks arrive, the second stage, which
was formed by merging of the second and third staged is split. This can be seen at the 1650th
millisecond of the graph in Figure 5.2.

The following graphs show the service times of the three stages. Figure 5.4 shows the service
times of the three stages while processing light tasks, before the second and third stages were
merged. Figure 5.5 shows the service times of the stages while processing light tasks after
the second and third stages were merged. ,afteri.e when the second stage is processing light
(Figure 5.1) , and and later heavy tasks (Figure 5.2)

0

1

2

3

4

5

6

Number of Stages in Pipeline

W
a

ll
cl

o
ck

 ti
m

e
 (

in
 m

ill
is

e
co

n
d

s)

Figure 5.4: service times of the three stages in the pipeline when the second stage is
processing lighter tasks (before merging)

Figure 5.5: Service times of the stages when lighter tasks are processed by the second stage
(after the second and third stages are merged)

Stage 2

Stage 3

Stage 4

0 10 20 30 40 50 60

servicetime (milliseconds)

Stage2(merged with stage3)

Stage 4

0 10 20 30 40 50 60service time (milliseconds)

Figure 5.6 Service times of the pipeline stages when the second stage is processing heavy
tasks. (stages 2 and 3 merged)

Figure 5.7: service time of the stages when processing annotated images (after stages 2 & 3
has been split).

As shown in the graphs above, the service time of the second stage was very low as
compared to the other two stages when processing the lighter tasks in stage two (Figure 5.4.
Then the autonomic manager reacts by merging it with the third stage, since the service time
of the merged stages is still lower than the service time of the fourth stage, which is the
bottleneck of the pipeline at the moment(Figure 5.5). Later when the second stage starts
processing heavy tasks, the merged stages become a bottleneck, since the service time of the
second stage is now higher (Figure 5.6) the autonomic manager then reacts by splitting the
merged node to balance the service times, resulting slightly balanced stages (Figure 5.7).

Stage2 (merged with stage3)

Stage 4

0 10 20 30 40 50 60

Service Time in milliSeconds

Stage 2

Stage 3

Stage 4

0 10 20 30 40 50 60

Service time in Milliseconds

5.4 Summary

The experiments show that the autonomic manager reacts as expected for both the task farm
and pipeline behavioral skeletons when tasks with different behaviors are processed. For the
task farm behavioral skeleton, the increase and decrease workers operations are executed in
response to the service times of the workers. Similarly for the pipeline merging and splitting
of stages is done in response to the service times of the stages and the bottleneck stage.

To measure how fast the Autonomic Controller reacts to do a single reconfiguration the
reconfigurations on each test for the farm behavioral skeleton were measured. The
measurements were carried out by calling to the “gettimeofday” function inside the
reconfiguration methods, specifically, the “gettimeofday” function is called at the beginning
and end of the reconfiguration methods and the difference was computed.
d and the result shows that to do a reconfiguration it only takes few microseconds interval
(specifically 0.143 milliseconds). While for the pipeline skeleton, it took slightly longer, the
average merge/split operations took few milliseconds (specifically 5.156 millisecond on
average). This could be due to the implementations of the merge/split operations, which wait
for all the stages (except the ones prior to the stage to be merged/split) to freeze after sending
a freeze signal.

Chapter 6

Conclusions
This thesis presented the implementation of a prototype behavioral skeleton for stream

parallel patterns in the FastFlow algorithmic skeleton framework. Design and

implementation of the prototypes was discussed.

For the pipeline skeleton the implementation an autonomic manager that chooses the

parallelism degree (i.e. number of pipeline stages) was provided . The autonomic manager

works by merging consecutive stages to avoid using extra resources if they do not contribute

to the service time, and splitting previously merged stages to improve service time (i.e. by

using resources if they contribute to the service time).

For the task farm skeleton an autonomic manager which was able to choose an optimal

parallelism degree (by activating and deactivating the number of workers) based the behavior

of tasks and execution of the internal components of the skeleton was implemented.

 Experiments conducted on the implementations show that the behavioral skeletons were

capable to manage performance by choosing the correct parallelism degree for the skeletons

at run time. In addition the experiments showed that reconfigurations can be actuated with

the introduction of little overheads.

6.1 Future Work

Further work is needed to address some of limitations including:

• One of the major limitations of this thesis is that it doesn't consider the nesting of

skeletons. No hierarchy of nesting is assumed during the implementation and the

experiments. Those prototypes can be extended (modified to take in to consideration

the hierarchical nesting of skeletons)

• The prototype Behavioral Skeletons were implemented on hard coded policies. But a

better implementation can be provided in a way where the user can provide some

specific contracts which the skeletons must achieve. Then the policies will be set of

rules which should take actions when the contracts provided by the user are not

fulfilled.

• Only stream parallel skeletons (i.e. farm and pipeline) were covered in this thesis.

Other skeletons such as data-parallel skeletons can be extended to include such

autonomic behaviors.

• The implementations only focused on skeletons targeting multi-core architectures.

The FastFlow skeletal frame work also targets heterogeneous and distributed

architectures. Thus behavioral skeletons could be extended so that they can be

applied on different architectures.

Bibliography
[1] M. Aldinucci, M. Danelutto, P. Kilpatrick: Autonomic management of non-functional
concerns in distributed and parallel application programming, IPDPS, 2009:1-12
[2] M. Aldinucci, M. Danelutto, P. Kilpatrick: Towards Hierarchical Management of
Autonomic Components: A case study. PDP 2009:3-10
[3] M. Aldinucci, M. Danelutto, P.Kilpatrick: Autonomic management of multiple non-
functional concerns in Behavioral skeletons. CoRR abs/0909.1517 (2009)
[4] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Kilpatrick, P. Dazzi, D.
Laforenza, N. Tonellotto: Behavioral Skeletons in GCM: Autonomic Management of Grid
Components . PDP 2008: 54 – 63
[5] M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi, D. Laforenza, N. Tonellotto:
Behavioural Skeletons for Component Autonomic Management on Grids. CoreGRID
Workshop – Making Grids Work 2007: 3-15
[6]M. Aldinucci, M. Danelutto, P. Kilpatrick, V. Xhagjika: Libero: A framework for
Autonomic Management of Multiple Non-functional Concerns. Euro-Par Workshops 2010:
273- 245
[7] IBM corp. An architectural Blueprint for Autonomic Computing, 2006
[8] J. O Kephart, D. M. Chess. The Vision of Autonomic Computing. IEEE Computer, 36(1):
41-50, 2003
[9] M. Aldinucci, M. Danelluto, M. Vanneschi : Autonomic QoS in ASSIST Grid-aware
components. PDP 2006: 221 – 30
[10] Vanneschi, M. (2002). "The programming model of ASSIST, an environment for
parallel and distributed portable applications". Parallel Computing 28 (12): 1709–1732.
[11] M. Danelluto “Distributed Systems: Paradigms and Models”. Teaching material: June
2013
[12] M. Vanneschi “High Performance Computing, parallel processing models and
architectures” . Pisa University Press 2014
[13] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language for streaming
applications. In Proc. of the 11th Intl. Conference on Compiler Construction (CC), pages
179–196, London, UK, 2002. Springer
[14] M. Torquati : Parallel Programming Using FastFlow, Tutorial on FastFlow
programming, September 2015
[15] H Jordan, P Thoman, J Durillo, S Pellegrini, P Gschwandtner, T Fahringer, and H
Moritsh: A Multi-objective Auto-tuning Framework for Parallel Codes. International
Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2012
1-12
[16] M. Torquati, M. Aldinucci, M. Danelutto (2015):The FastFlow website:
http://calvados.di.unipi.it/dokuwiki/doku.php/ffnamespace:architecture
[17] M. Torquati (2010). Single-producer/single-consumer queue on shared cache
multi-core systems. Technical Report TR-10-20, Universit`a di Pisa, Dipartimento di
Informatica, Italy.
[18] Aldinucci, M., Torquati, M., and Meneghin, M. (2009). FastFlow: Efficient paral-
lel streaming applications on multi-core. Technical Report TR-09-12, Universit`a di Pisa,
Dipartimento di Informatica, Italy.
[19]M Cole : Algorithmic skeletons: A structured approach to the management of parallel
computation. PhD Thesis, University of Edinburgh, Computer Science Dpt, Edinburgh 1988.
[20] M Cole: Algorithmic Skeletons: Structured Management of Parallel Computation.
Research Monographs in Parallel and Distributed Computing, Pitman/MIT Press: London,

http://calvados.di.unipi.it/dokuwiki/doku.php/ffnamespace:architecture

1989.
[21] M Leyton: Advanced Features for Algorithmic skeleton Programming. PhD Thesis,
University of Nice – Sophia Antipolis, 2008
[22] K Asanovic, R Bodik, J Demmel,T Keaveny,,K Keutzer, J Kubiatowicz, N Morgan, D
Patterson, K Sen, J Wawrzynek, D Wessel, and K Yelick,. A view of the parallel computing
landscape. Communications of the ACM (2009), 52:56–67.
[23] T Mattson, B Sanders, and Massingill: Patterns for parallel programming. Addison-
Wesley professional, 2005

Appendix A

Implementation source Code

#ifndef AM_HPP_
#define AM_HPP_

#include <ff/Command.hpp>
5 #include <iostream>

#include <vector>

namespace ff{

10 class ff_AM_farm{
public:

ff_AM_farm():farmCom(DO_NOTHING),workersSvcTime(0.0),
emitterSvcTime(0.0){}

15

void monitor(std::vector< double > svcTimes){
workersSvcTime = svcTimes[0];
emitterSvcTime = svcTimes[1];

20 svcTimes.clear();

}

25 void analyze(){
// do nothing in the case of farm

}

30

void plan1(){
if(emitterSvcTime < workersSvcTime && ((workersSvcTime/emitterSv

cTime) > 3)){
farmCom = ADD;

}
35

else if(emitterSvcTime > workersSvcTime && ((emitterSvcTime/work
ersSvcTime) > 3))

farmCom = REMOVE;
else

farmCom = DO_NOTHING;
40

if(workersSvcTime == 0 || emitterSvcTime == 0) // this happens i
f most of the workers hasn’t finished at least one task

farmCom = DO_NOTHING;
#if defined debug_
if(farmCom == ADD)

45 std::cout << " ADD" << std::endl ;
else if(farmCom == REMOVE)

std::cout << " REMOVE" << std::endl;
else

std::cout << " DO_NOTHING" << std::endl;
50 #endif

}

farmCommand execute(){
55 farmCommand com= farmCom;

this−>farmCom = DO_NOTHING;
return com;

}

60 farmCommand MAPE(std::vector< double > svcTimes){
monitor(svcTimes);
analyze();
plan1();
return execute();

65 }
private:

farmCommand farmCom;

double workersSvcTime;
70 double emitterSvcTime;

};

75 class ff_AM_pipe{

Page 1/3AM.hpp

venerdÃ¬ novembre 27, 2015 1/22

public:

ff_AM_pipe():commandList(* new std::vector<pipeCommand*>()), serviceTimes
(NULL), maxIndex(0),all_stages_executed(false){

80 }

void monitor(std::vector< double > * st){
this−>serviceTimes = st;
std::cout << " servicetimes" << std::endl;

85 for(size_t i=0; i<serviceTimes−>size(); ++i)
std::cout << (*st)[i] << " \t";

std::cout << std::endl;
}

90

int analyze(){

95 int maxIndex = 0;
all_stages_executed = true ;
for(size_t i=0; i < serviceTimes−>size(); i++){

if((*serviceTimes)[i] > (*serviceTimes)[maxIndex])
maxIndex = i;

100 if((*serviceTimes)[i]== 0)all_stages_executed = false ;

}

this−>maxIndex = maxIndex;
105 //std::cout << "maxIndex = " << this−>maxIndex << std::endl;

return maxIndex;
}

110 void plan(){
std::vector<pipeCommand*> cmdList;

//try to split the stage with the highest service time
commandList.push_back(new pipeCommand(pipeCommand::SPLIT,maxInde

x+1));
115

for(int i=serviceTimes−>size()−1; i >1 ; i−−){

if(((*serviceTimes)[i−1] + (*serviceTimes)[i]) <= (*serv
iceTimes)[maxIndex]){

120 if((*serviceTimes)[i−1]>0 && (*serviceTimes)[i]>
0){

commandList.push_back(new pipeCommand(pi
peCommand::MERGE,i)); //to be fixed (make index i rather thatn i−1)

(*serviceTimes)[i−1] +=(*serviceTimes)[i
];

return;
125 }

}

130

}

135

}

std::vector<pipeCommand*>& execute(){
140 return commandList;

}

145 std::vector<pipeCommand*>& MAPE(std::vector< double > * st){
 monitor(st);
 analyze();

Page 2/3AM.hpp

2/22 venerdÃ¬ novembre 27, 2015

 plan();
 return execute();

150 }

private:
155

//list of service times of the pipeline stages
std::vector< double > *serviceTimes;

//list of commands generated by the autonomic manager
160 std::vector<pipeCommand*> &commandList;

//the index of the stage with the highest service time (this is the serv
ice time of the pipeline)

int maxIndex;
bool all_stages_executed;

165

};

170 }

#endif /* AM_HPP_ */

Page 3/3AM.hpp

venerdÃ¬ novembre 27, 2015 3/22

/*
 * Command.hpp
 *
 * Author: nosmas

5 */

#ifndef COMMAND_HPP_
#define COMMAND_HPP_

10 #include <iostream>

namespace ff{

15 /*class Command{
public:

virtual void execute() = 0;
Command(){}
virtual ~Command(){}

20 };*/

class pipeCommand{
public:

25 enum CommandType{MERGE,SPLIT};

pipeCommand(CommandType ct, int index): cmdType(ct), index(index){}
pipeCommand(): cmdType(SPLIT), index(−1){}

30

void setCmdType(CommandType cmdType) {
this−>cmdType = cmdType;

}
35

void setIndex(int index) {
this−>index = index;

}

40 CommandType getCmdType() const {
return cmdType;

}

int getIndex() const {
45 return index;

}

void print(){
std::cout<< " Command: " ;

50 switch(cmdType){
case MERGE:

std::cout << " Merge ";
break;

default :
55 std::cout << " Split";

}
std::cout << " index =" << index;
std::cout << std::endl;

}
60

private:
//ff_pipeWithMerge *pipe;
CommandType cmdType;
int index;

65 };

//
////////////////////

enum farmCommand{ADD,REMOVE,DO_NOTHING};
70

}
#endif /* COMMAND_HPP_ */

Page 1/1Command.hpp

4/22 venerdÃ¬ novembre 27, 2015

/*
 * lb_withControler.hpp
 *
 *

5 * Author: nosmas
 */

#ifndef LB_WITHCONTROLER_HPP_
#define LB_WITHCONTROLER_HPP_

10

#define FF_BOUNDED_BUFFER true

#include <ff/lb.hpp>
#include <vector>

15 #include <iostream>
#include <stddef.h>
#include <assert.h>
#include <ff/Command.hpp>
#include <ff/AM.hpp>

20 #include <ff/SMA.hpp>

namespace ff{

25 class ff_loadbalancerWithControler: public ff_loadbalancer{
public:

/*
 * Constructor

30 * */
ff_loadbalancerWithControler(size_t max_num_workers):ff_loadbalancer(max

_num_workers),reconf_times(new std::vector< double >) {

nextWorker = 0;
35 initial_active_workers=2;

first= true ;
activeWorkers=ff_loadbalancer::getNWorkers();
inter_departure_time = new SMA(4);
autonomicManager = new ff_AM_farm();

40

}
/*
 * Schedule Task: Executes the plan (increase/decrease workers) after sc

heduling the task
 * */

45 virtual bool schedule_task(void * task, unsigned int retry=(unsigned)−1,
 unsigned int ticks=0) {

if(!ff_loadbalancer::schedule_task(task,retry,ticks))
return false ;

50

gettimeofday(&now, NULL);
if(!first){

//std::cout<< diffmsec(now ,prev_call_to
_sched) << ")))))" <<std::endl;

55 inter_departure_time−>add(diffmsec(now ,
prev_call_to_sched));

} else{
first = false ;

}
prev_call_to_sched = now;

60

nextWorker= (nextWorker+1) % activeWorkers ;
if(nextWorker == 0){

farmCommand com =autonomicManager−>MAPE(monitor());
execute(com);

65 }

return true ;

}
70

Page 1/4lb_withControler.hpp

venerdÃ¬ novembre 27, 2015 5/22

std::vector< double > monitor(){
75 double workersSvcTime=0, emitterSvcTime=0;

 std::vector< double > result;
for(size_t i=0; i<activeWorkers; i++){

workersSvcTime += (workers[i]−>svcffTime
()/activeWorkers);

}
80 workersSvcTime /= activeWorkers;

emitterSvcTime = inter_departure_time−>avg();
result.push_back(workersSvcTime);
result.push_back(emitterSvcTime);

#if defined debug__
85 std::cout << " emitter service time = " << emitterSvcTim

e << std::endl;
std::cout << " workers service time = " << workersSvcTim

e << std::endl;
#endif

return result;
}

90

/*
 * setter method for initial workers

95 * @param i: the number of initial workers in the farm
 *
 * */
void setInitailWorkers(size_t i){

initial_active_workers=i;
100 }

/*
 * SVC method:
 * starts with initial_workers

105 * */

virtual int svc_init(){
activeWorkers=ff_loadbalancer::getNWorkers();
//deactivate all the workers

110 stop_all();
// then activate only some
ff_loadbalancer::thawWorkers(true , initial_active_workers);
activeWorkers=ff_loadbalancer::getnworkers();
gettimeofday(&startTime, NULL);

115 return ff_loadbalancer::svc_init();
}

virtual void * svc(void * task){
120

return ff_loadbalancer::svc(task);
}

125 void stop_all(){
size_t nw = ff_loadbalancer::getnworkers();

for(size_t i=0; i<nw ; ++i){
ff_loadbalancer::freeze(i);

130 ff_loadbalancer::ff_send_out_to(EOS,(int)i);
}

activeWorkers=ff_loadbalancer::getNWorkers();
135 }

/*
 * simply increases or decreases the number of workers according to the

command received
140 * */

bool execute(farmCommand farmCom){

if(farmCom == ADD){
145

return increaseWorker();
}

Page 2/4lb_withControler.hpp

6/22 venerdÃ¬ novembre 27, 2015

else if(farmCom == REMOVE){
return decreaseWorker();

150 }

return true ;
}

155

/*
 * decrease number of workers
 */
bool decreaseWorker(){

160 timeval reconf_start,reconf_end;

activeWorkers=getnworkers();

if(activeWorkers <= 1)
165

return false ;
gettimeofday(&reconf_start, NULL);

ff_loadbalancer::freeze(activeWorkers−1);
170 ff_loadbalancer::ff_send_out_to(EOS,activeWorkers−1);

ff_loadbalancer::wait_freezing(activeWorkers−1);
#if defined debug_

std::cout << " Deactivating worker " << activeWorkers−1 << std
::endl;

175 #endif
−−activeWorkers;

gettimeofday(&reconf_end, NULL);
reconf_times−>push_back(diffmsec(reconf_end,reconf_start));

180 gettimeofday(&now, NULL);
std::cout << diffmsec(now,startTime) << " \t" << activeWorkers <<

std::endl;

return true ;
}

185

/*
 * decrease the number of workers
 */
bool increaseWorker(){

190

timeval reconf_start,reconf_end;
activeWorkers=getnworkers();
gettimeofday(&reconf_start, NULL);
if(activeWorkers >= ff_loadbalancer::getNWorkers())

195 return false ;
#if defined debug_

std::cout << " activating Worker " << activeWorkers << std::endl;
#endif

ff_loadbalancer::thaw(activeWorkers, true);
200 activeWorkers++;

gettimeofday(&reconf_end, NULL);
reconf_times−>push_back(diffmsec(reconf_end,reconf_start));
gettimeofday(&now, NULL);
std::cout << diffmsec(now,startTime) << " \t" << activeWorkers <<

std::endl;
205

return true ;
}

/*
210 * compute the average reconf time

 */
double average_reconf_time(){

double sum = 0.0;

215 for(unsigned int i = 0; i< reconf_times−>size(); ++i){
sum += (*reconf_times)[i];

}

if(reconf_times−>size() == 0)
220 return −1.0;

return sum/reconf_times−>size();

Page 3/4lb_withControler.hpp

venerdÃ¬ novembre 27, 2015 7/22

}

225 private:
size_t activeWorkers;
bool first;
size_t initial_active_workers;
ff_AM_farm* autonomicManager;

230 size_t nextWorker;

SMA* inter_departure_time;
struct timeval prev_call_to_sched,now;
struct timeval startTime;

235 std::vector< double >* reconf_times;
};

240

}

245

250 #endif /* LB_WITHCONTROLER_HPP_ */

Page 4/4lb_withControler.hpp

8/22 venerdÃ¬ novembre 27, 2015

/*
 * managed_farm.hpp
 *
 * Author: nosmas

5 */

#ifndef MANAGED_FARM_HPP_
#define MANAGED_FARM_HPP_
#include <ff/farm.hpp>

10 #include <ff/lb_withControler.hpp>

namespace ff{

class ff_managed_farm: public ff_farm<ff_loadbalancerWithControler> {
15 public:

ff_managed_farm(size_t init_workers = 2, int buffSize=5):ff_farm<ff_load
balancerWithControler>(),initial_activeWorkers(init_workers){

 lb−>setInitailWorkers(initial_activeWorkers);

20 }

double getReconf_time(){
return lb−>average_reconf_time();

}
25

private:
 size_t initial_activeWorkers;

30 };

}

#endif /* MANAGED_FARM_HPP_ */

Page 1/1managed_farm.hpp

venerdÃ¬ novembre 27, 2015 9/22

/*
 * pipe_withMerge.hpp
 *
 * Created on: Mar 1, 2015

5 * Author: nosmas
 */

#include <ff/pipeline.hpp>
#include <iostream>

10 #include <vector>
#include <ff/Command.hpp>
#include <ff/AM.hpp>

15

namespace ff {

20

//
///////////////////////////////////

/*
25 *class ff_mnode:

 *represents a node which can be merged
 *
 * */

30 class ff_mnode: public ff_node {
protected:

/*
 * constructor
 * */

35 ff_mnode():ff_node(){
eosRecieved= false ;
extra_buffer= new FFBUFFER(1);
extra_buffer−>init();
splitted = false ;

40 }

public:

friend class ff_mergedNode;
45

/*
 *
 * */
void eosnotify(int id=−1) {

50 eosRecieved = true ;
//std::cout << " EOS Recieved in stage " << get_my_id() << std::

endl;
}

55

/*
 * checks if there are entries in the extra buffer before popping from t

he input
 * buffer

60 */
inline bool pop(void ** ptr){

if(!extra_buffer−>empty()){
return extra_buffer−>pop(ptr);

65 }
else

return ff_node::pop(ptr);
}

70

bool splitted;
/*

75 * put an EOS in the extra buffer so that the node can be frozen

Page 1/6pipe_withMerge.hpp

10/22 venerdÃ¬ novembre 27, 2015

 * */
virtual bool signal_freeze(){

if(get_in_buffer() == NULL)
return false ;

80 freeze();
return extra_buffer−>push(EOS);

}

85 /**
 * \brief Gets extra buffer
 *
 * It returns a pointer to the extra buffer.
 *

90 * \return A pointer to the extra buffer
 */
FFBUFFER* getExtraBuffer(){

return extra_buffer;
}

95

bool isEosRecieved() const {
return eosRecieved;

}

100 private:
FFBUFFER *extra_buffer;
bool eosRecieved;

};
105

//
/////////////////////////////

/*
 * class ff_mergedNode:

110 * Represents a node consisting of two merged stages
 * */
class ff_mergedNode: public ff_mnode {
public:

ff_mergedNode(ff_mnode * node_1, ff_node * node_2):ff_mnode(),svc_time(0
){

115

node1=node_1;
node2=node_2;

if(node2−>get_out_buffer() != NULL)
120 //set the output buffer of node2 as the output of the ne

w merged node
if(ff_node::set_output_buffer(node2−>get_out_buffer()) !

=0){
error(" ERROR: setting the output of the merged node!");
return;

}
125

if(node1−>get_in_buffer() != 0)
//set the input buffer of node1 as the input of the new

merged node
if(ff_node::set_input_buffer(node1−>get_in_buffer()) !=0

){
error(" ERROR: setting the input of the merged node!");

130 return;
}

ff_node::set_id(node1−>get_my_id());

135 }

void eosnotify(int id=−1) {
eosRecieved = true ;

140 }

inline bool pop(void ** ptr){
145 //return ff_mnode::pop(ptr);

if(!extra_buffer−>empty()){
return extra_buffer−>pop(ptr);

Page 2/6pipe_withMerge.hpp

venerdÃ¬ novembre 27, 2015 11/22

}
else

150 return ff_node::pop(ptr);
}

int svc_init(){
return node1−>svc_init();

155 return 0;
}

void svc_end(){
node2−>svc_end();

160 }

void * svc(void * task){
gettimeofday(&start, NULL);

165 void *t=node1−>svc(task);
t= node2−>svc(t);
gettimeofday(&end, NULL);
svc_time = diffmsec(end,start);
return t;

170 }

175 virtual double svcffTime(){
return svc_time;

}

virtual bool signal_freeze(){
180 if(get_in_buffer() == NULL)

return false ;
freeze();
return extra_buffer−>push(EOS);

}
185

ff_mnode * getNode1(){ return node1; }
ff_node * getNode2(){ return node2; }

private:
190 ff_mnode *node1;

ff_node *node2;
struct timeval start,end;
double svc_time;

195 };
//
///////////////////////////////

/*
 * class ff_pipeWithMerge:

200 * a pipe line whose stages can be merged and splitted back
 * */
class ff_pipeWithMerge: public ff_pipeline {
public:

/*
205 * simple constructor

 * */
ff_pipeWithMerge():ff_pipeline(){

manager= new ff_pipelineManager(this);
210 first= true ;

manager_added = false ;
}

215 int run_then_freeze(){

if (isfrozen()) {
thaw(true);
return 0;

220 }
if(!manager_added) add_manager();
if(!prepared) if(prepare() < 0) return −1;

freeze();

Page 3/6pipe_withMerge.hpp

12/22 venerdÃ¬ novembre 27, 2015

225

if (!barrier) barrier = new BARRIER_T;
const int nthreads = cardinality(barrier);

if (nthreads+1 > MAX_NUM_THREADS) {
230 error(" PIPE_WITH_MERGE, too many threads, increase MAX_NUM_THRE

ADS !\n");
return −1;

}
barrier−>barrierSetup(nthreads);

235 int startId = (get_my_id() > 0)? get_my_id():0;

for(unsigned int i=0; i < nodes_list.size(); ++i){
nodes_list[i]−>set_id(i+startId);

240 if(nodes_list[i]−>freeze_and_run(true) < 0){
error(" ERROR: PIPE_WITH_MERGE, (freezing and) running stag

e %d\n", i);
return −1;

}

245 }

return 0;
}

250

/*
 * merge or split stages according to the commands
 * */

255 bool execute(std::vector<pipeCommand*>&commandList){
while(!commandList.empty()){

pipeCommand *cmd = commandList.front();

if(cmd−>getCmdType() == pipeCommand::MERGE){
260

merge(cmd−>getIndex());

} else if(cmd−>getCmdType() == pipeCommand::SPLIT){
265 split(cmd−>getIndex());

}
commandList.erase(commandList.begin());

}
270

return true ;
}

275

std::vector < double >* monitor(){
std::vector < double >* serviceTimes = new std::vector< double >() ;
serviceTimes−>reserve(nodes_list.size());

280

for(unsigned int i=1; i < nodes_list.size()−2; ++i){

serviceTimes−>push_back(nodes_list[i]−>svcffTime());
285 }

return serviceTimes;
}

290

/*
 * Merges a pipeline stage with the next one, given the index of the fir

st stage to be merged
 *@param index is the id first one to be merged with its successor
 * */

295 int merge(unsigned int index){
struct timeval mStart;
struct timeval mEnd;
double mergeTime =0;

Page 4/6pipe_withMerge.hpp

venerdÃ¬ novembre 27, 2015 13/22

300

gettimeofday(&now, NULL);
mergeTime = diffmsec(now,start_time);

gettimeofday(&mStart, NULL);
305

//the last stage (nodes_list[size −1]) is the manager, nodes_lis
t[size−2] is the last stage, and both can’t be merged

if(index >= (nodes_list.size() − 2) || index == 0) return −1;

310 ff_mnode *firstNode= dynamic_cast <ff_mnode*>(ff_pipeline::nodes_l
ist[index]); // does dynamic_cast cause inefficiency?

if(firstNode == NULL) {
error(" ERROR: PIPE_WITH_MERGE, nodes of a pipeline must be of type ff_

mnode");
315 return −1;

}

if(!firstNode−>signal_freeze()){
error(" ERROR: PIPE_WITH_MERGE, Signaling freeze to the first node");

320 }
firstNode−>wait_freezing();

nodes_list[index]= new ff_mergedNode(firstNode,nodes_list[index+1
]);

325 nodes_list.erase(nodes_list.begin() + (index + 1));

nodes_list[index]−>freeze_and_run(true);

thaw(true);
330

gettimeofday(&mEnd, NULL);
//std::cout << "merged stage " << index << " with with *__ " <<

 index+1 << " at " << mergeTime << std::endl;

return 0;
335 }

340 bool split(unsigned int index){
struct timeval sStart,sEnd;
double split_time ;
gettimeofday(&sStart, NULL);

345 if(index < 1)
return false ;

ff_mergedNode *casted_val= dynamic_cast <ff_mergedNode*>(ff_pipeli
ne::nodes_list[index]);

350 if(!casted_val)
return false ;

gettimeofday(&now, NULL);
split_time = diffmsec(now,start_time);

355

//std::cout << "\n \n split time = " << split_time <<std::endl;

ff_mnode * node1 = casted_val−>getNode1();

360 ff_node * node2 = casted_val−>getNode2();

if(!casted_val−>signal_freeze()){
error(" ERROR: PIPE_WITH_MERGE, Signaling freez

e to the merged node");
}

365

casted_val−>wait_freezing();

node1−>splitted = true ;
370 nodes_list[index] = node1; //casted_val−>getNode1();

Page 5/6pipe_withMerge.hpp

14/22 venerdÃ¬ novembre 27, 2015

nodes_list.insert(nodes_list.begin()+(index+1),node2);

thaw(true);
gettimeofday(&sEnd, NULL);

375 double elapsed_time = diffmsec(sEnd,sStart);

return true ;
}

380

private:
int add_manager(){

385 if(!manager_added){
gettimeofday(&start_time, NULL);
manager_added= true ;
return add_stage(manager);

}
390

return −1;
}

395 class ff_pipelineManager: public ff_mnode{
public:

ff_pipelineManager(ff_pipeWithMerge *p):ff_mnode(){
pipe=p;
autonomicManager = new ff_AM_pipe();

400 currentPhase = MONITOR;
}

void * svc(void * task){

405 std::vector<pipeCommand*>commandList =autonomicManager−>
MAPE(pipe−>monitor());

pipe−>execute(commandList);

410 return task;
}

enum phase{MONITOR,ANALYZE,PLAN,EXECUTE};

415

private:
ff_pipeWithMerge* pipe;
phase currentPhase;
ff_AM_pipe *autonomicManager;

420

};
/*end of inner class */

425

private:
ff_pipelineManager* manager;
bool first;
bool manager_added;

430 struct timeval start_time, now;

};

435

}

Page 6/6pipe_withMerge.hpp

venerdÃ¬ novembre 27, 2015 15/22

/*
 * ImageFarm.cpp
 *
 *

5 */
#include <cassert>
#include <iostream>
#include <string>
#include <algorithm>

10 #include <ctime>
#include <vector>
#include <sstream>
#include <fstream>

15

#include <Magick++.h>

#include <ff/pipeline.hpp>
#include <ff/farm.hpp>

20 #include <ff/managed_farm.hpp>

using namespace Magick;

using namespace ff;
25

struct Task {
 Task(Image *image, const std::string &name, double r=1.0, dou

ble s=0.5):
 image(image),name(name),radius(r),sigma(s) {};

30

 Image *image;
 std::string name;
 const double radius;
 const double sigma;

35 };

char * getOption(char **begin, char **end, const std::string &opt
ion) {

 char **itr = std::find(begin, end, option);
 if (itr != end && ++itr != end) return *itr;

40 return NULL;
}

45 class Read: public ff_node {
public:

Read(char **images, const long num_images, double r, dou
ble s):

 images((const char **)images),num_images(num_imag
es),radius(r),sigma(s) {}

50 void *svc(void *) {
 for(long i=0; i<num_images; ++i) {
 const std::string &filepath(images[i]);
 std::string filename;
 // get only the filename

55 int n=filepath.find_last_of(" /");
 if (n>0) filename = filepath.substr(n+1);
 else filename = filepath;

60

 Image *img = new Image;
 img−>read(filepath);
 Task *t = new Task(img, filename,radius,sigm

a);
 ff_send_out(t);

65 }
 return EOS;
 }

private:
70 const char **images;

const long num_images;
const double radius;
const double sigma;

Page 1/3ImageFarm.cpp

16/22 venerdÃ¬ novembre 27, 2015

};
75

class BlurEmboss: public ff_node{
public:

80 void * svc(void * tsk){
Task* in=(Task*)tsk;

 if(in−>name.find(" Emboss") != std::string::npos)
{
 in−>image−>blur(in−>radius, in−>sigma);

in−>image−>emboss(in−>radius, in−>sigma)
;

85 in−>image−>enhance();
} else{

in−>image−>comment(in−>name);;

90

return in;

95 }

};

100

class Writer: public ff_node{
public:

void * svc(void *tsk){
105 Task* in=(Task*)tsk;

 std::string outfile = " ./out/" + in−>name;
 in−>image−>write(outfile);
 std::cout << " image " << in−>name << " has been

written to disk\n";
 delete in−>image;

110 delete in;

return GO_ON;
}

private:
115

};

int main(int argc, char *argv[]) {

120 if (argc < 2) {
 std::cerr << " use: " << argv[0] <<
 " [−r radius=1.0] [−s sigma=.5] [−n Wrks=2] <image−file> [ima

ge−file]\n";
 return −1;
 }

125 double radius=1.0,sigma=0.5;
 int Wrks = 2;
 int start = 1;
 char *r = getOption(argv, argv+argc, " −r");
 char *s = getOption(argv, argv+argc, " −s");

130 char *n = getOption(argv, argv+argc, " −n");
 if (r) { radius = atof(r); start+=2; argc−=2; }
 if (s) { sigma = atof(s); start+=2; argc−=2; }
 if (n) { Wrks = atoi(n); start+=2; argc−=2; }

135 std::freopen(" ./out/output.tsv", " a", stdout);

 InitializeMagick(*argv);

 long num_images = argc−1;
140 assert(num_images >= 1);

 std::vector<ff_node*> workers;

 for(int i=0; i < Wrks;i++)
145 workers.push_back(new BlurEmboss);

 Read read(&argv[start], num_images, radius, sigma);
 Writer writer;

Page 2/3ImageFarm.cpp

venerdÃ¬ novembre 27, 2015 17/22

 ff_managed_farm farm;
150

 farm.add_emitter(&read);
 farm.add_workers(workers);
 farm.add_collector(&writer);

155

 if(farm.run_then_freeze()) {
 error(" running farm \n");
 return −1;
 }

160 farm.wait_freezing();
 std::cout <<" \n\n\n\n"<<std::endl;
 std::cerr << " average reconfiguration time = " << farm.getRec

onf_time() <<std::endl;

return 0;
165 }

Page 3/3ImageFarm.cpp

18/22 venerdÃ¬ novembre 27, 2015

/*
 * ImagePipe.cpp
 *
 */

5 #include <cassert>
#include <iostream>
#include <string>
#include <algorithm>
#include <ctime>

10

#include <Magick++.h>

//#include <ff/pipeline.hpp>
15 #include <ff/pipe_withMerge.hpp>

using namespace Magick;

using namespace ff;
20

struct Task {
 Task(Image *image, std::string &name, double r=1.0, double s

=0.5):
 image(image),name(name),radius(r),sigma(s) {};

25

 Image *image;
 std::string name;
 const double radius;
 const double sigma;

30

};

char * getOption(char **begin, char **end, const std::string &opt
ion) {

 char **itr = std::find(begin, end, option);
35 if (itr != end && ++itr != end) return *itr;

 return NULL;
}

40

class Read: public ff_mnode {
public:

Read(char **images, const long num_images, double r, dou
ble s):

 images((const char **)images),num_images(num_imag
es),radius(r),sigma(s),count(0) {}

45

 void *svc(void *tsk) {

 if(count < num_images){
 const std::string &filepath(images[coun

t]);
50 count++;

 std:
:string filename;

 // g
et only the filename

 int
n=filepath.find_last_of(" /");

55 if (
n>0) filename = filepath.substr(n+1);

 else
 filename = filepath;

 Imag
e *img = new Image;

60

 img−
>read(filepath);

 Task
 *t = new Task(img, filename,radius,sigma);

 retu

rn t;

Page 1/3ImagePipe.cpp

venerdÃ¬ novembre 27, 2015 19/22

65 }

 return EOS;
70 }

private:
const char **images;
const long num_images;

75 const double radius;
const double sigma;
int count;

};

80

class Enhance: public ff_mnode{
public:

void * svc(void * tsk){
85

Task* in = (Task*)tsk;

in−>image−>enhance();

90 return in;
}

};

95 class Blur: public ff_mnode{
public:

void * svc(void * tsk){
Task* in=(Task*)tsk;

100 in−>image−>emboss(in−>radius, in−>sigma);

return in;
}

private:
105

};

class Noise: public ff_mnode{
public:

110 void * svc(void * tsk){
Task* in=(Task*)tsk;
if(in−>name.find(" Noise") != std::string::npos){

in−>image−>addNoise(GaussianNoise);
}

115

else
in−>image−>comment(in−>name);

return in;
}

120

};

class Write: public ff_mnode{
125 public:

void * svc(void *tsk){

Task* in=(Task*)tsk;
 std::string outfile = " ./out/" + in−>name;

130 in−>image−>write(outfile);

 delete in−>image;

 return in;

135 }
private:

};

140 int main(int argc, char *argv[]) {
 if (argc < 2) {
 std::cerr << " use: " << argv[0] << " [−r radius=1.0] [−s sigma=.5] <

Page 2/3ImagePipe.cpp

20/22 venerdÃ¬ novembre 27, 2015

image−file> [image−file]\n";
 return −1;
 }

145 double radius=1.0,sigma=0.5;
 int start = 1;
 char *r = getOption(argv, argv+argc, " −r");
 char *s = getOption(argv, argv+argc, " −s");
 if (r) { radius = atof(r); start+=2; argc−=2; }

150 if (s) { sigma = atof(s); start+=2; argc−=2; }
 timeval start_time, end_time;
 gettimeofday(&start_time, NULL);

 InitializeMagick(*argv);
155

 long num_images = argc−1;
 assert(num_images >= 1);

160

 ff_pipeWithMerge pipe;

 Read read(&argv[start], num_images, radius, sigma);

165 Noise noise;
 Enhance enhance;
 Blur blur;

 Write write;
170 //std::freopen("./out/output.tsv", "a", stdout);

 pipe.add_stage(&read);
 pipe.add_stage(&noise);
 pipe.add_stage(&enhance);
 pipe.add_stage(&blur);

175 pipe.add_stage(&write);

 if(pipe.run_then_freeze()<0){
 error(" running pipeline \n");
 return −1;

180 }
 pipe.wait_freezing();

 gettimeofday(&end_time, NULL);
 double execution_time;

185 execution_time = diffmsec(end_time,start_time);
 std::cout << " Finished Executing took total of " << execution_time/

1000 << " seconds "<<std::endl;

 return 0;
}

Page 3/3ImagePipe.cpp

venerdÃ¬ novembre 27, 2015 21/22

Table of Contents
 1 AM.hpp.............. sheets 1 to 3 (3) pages 1− 3 174 lines
 2 Command.hpp......... sheets 4 to 4 (1) pages 4− 4 75 lines
 3 lb_withControler.hpp sheets 5 to 8 (4) pages 5− 8 251 lines

5 4 managed_farm.hpp.... sheets 9 to 9 (1) pages 9− 9 35 lines
 5 pipe_withMerge.hpp.. sheets 10 to 15 (6) pages 10− 15 438 lines
 6 ImageFarm.cpp....... sheets 16 to 18 (3) pages 16− 18 167 lines
 7 ImagePipe.cpp....... sheets 19 to 21 (3) pages 19− 21 190 lines

Page 1/1Table of Content

22/22 venerdÃ¬ novembre 27, 2015

	Autonomic Management of Performance in FastFlow Stream Parallel Patterns
	Acknowledgements
	Chapter 1
	Introduction
	1.2 Thesis objectives
	1.3 Structure of the Dissertation

	Chapter 2
	Background
	2.1 Stream Parallel computations
	2.3 The FastFlow Algorithmic Skeleton Framework
	2.3.1 FastFlow Skeletons and sequential concurrent activities

	2.3 Related work
	2.3.1 Autonomic Computing
	2.3.2 Autonomic Management of Non-functional Concerns in Structured Parallel Programming
	Behavioral Skeletons in GCM
	LIBERO: a Light Weight Behavioral Skeleton
	Autonomic Management in ASSIST
	Auto Tuning Parallel Programs

	Chapter 3
	Logical Design
	3.1 High level view
	3.1.2 General Overview of the Autonomic Behavior

	3.2 Logical design of the Task Farm Behavioral Skeleton
	3.3 Logical Design of the Pipeline Behavioral skeleton

	Chapter 4
	Implementation
	4.1 Autonomic Manager Implementations
	4.2 Autonomic Controller Implementation
	4.2.1 Mechanisms provided by lower level FastFlow(Layer 2)
	4.2.2 Monitoring and execution mechanisms in the Task Farm Skeleton
	4.2.3 Monitoring and Execution mechanisms in the pipeline skeleton pattern

	4.3 AM Policies
	4.3.1 Policies for the Farm Behavioral skeleton
	4.3.2 Policies for the Pipeline Behavioral skeleton

	Chapter 5
	Experiments
	5.1 Experimental Settings
	5.2 Experiments on the Farm Behavioral Skeleton
	5.2.2 Test cases:

	5.3 Experiments on the Pipeline Behavioral Skeleton
	5.4 Summary

	Chapter 6
	Conclusions
	6.1 Future Work

	Bibliography
	Appendix A
	Implementation source Code

