
Università degli Studi di Pisa

FACOLTÀ DI INGEGNERIA

Corso di Laurea Magistrale in Computer Engineering

Tesi di Laurea Magistrale

Design and Development of a solution for QoS support in the
FIWARE IoT architecture

Candidato:

Lorenzo Trisolini
Relatori:

Prof. Ing. Enzo Mingozzi

Prof. Ing. Giuseppe Anastasi

Anno Accademico 2014/2015

Chapter 1

Abstract

Now-days Internet of things (IoT) is changing the Internet vision. IoT architectures

are employed in our daily lives in many applications and in a ubiquitous way. Tech-

nological advancements together with cloud computing paradigms are bootstrap in

this process. In this context, the FIWARE platform, developed by the European FI-

PPP project, aims to be a key player in this new internet vision, offering the means

to build new applications that can benefit from high IoT service availability. De-

spite the QoS it has been identified as a key non-functional requirement to enable

many IoT-related applications, the FIWARE IoT platform doesn’t provide QoS nego-

tiation and resource allocation functionalities. In this work we propose a solution

for QoS support in the FIWARE IoT architecture. We start analyzing the different

component of the FIWARE platform. Then we choose the RTTA heuristic algorithm

to solve the problem of QoS-aware service selection and we modify it to obtain a

larger set of service selection solutions. Finally, once we establish a deployment us-

ing a meaningful set of FIWARE IoT modules, we design and develop a QoS support

in FIWARE, using the modified RTTA heuristic algorithm. At last, we show through

simulations that the set of solutions of the new RTTA algorithm is larger than the

original one and we validate the integration of our solution in FIWARE through a

use case scenario.

3

4 CHAPTER 1. ABSTRACT

Contents

1 Abstract 3

2 Introduction 7

3 FIWARE 11

3.1 FIWARE platform . 11

3.2 FIWARE structure . 13

3.3 FIWARE IoT Services Enablement . 15

3.4 IoT concepts . 16

3.5 Things as NGSI context entities . 18

3.6 IoT chapter Architecture deployment . 20

3.7 IoT Backend . 24

3.7.1 IoT Agent . 26

3.7.2 IoT Broker . 29

3.7.3 IoT Discovery . 35

3.8 IoT Edge . 40

3.8.1 Gateway Logic . 41

3.8.2 IoT Protocol Adapter . 41

3.8.3 IoT Data Handling . 42

4 State of the Art 43

4.1 Existing QoS algorithms and Models . 43

5

6 CONTENTS

4.2 Real Time Thing Allocation algorithm 45

4.2.1 Problem Formulation . 45

4.2.2 RTTA Algorithm . 46

5 Design QoS solution in FIWARE IoT Architecture 49

5.1 NGSI Information model . 49

5.1.1 NGSI-9 operations . 50

5.1.2 NGSI-10 operations . 54

5.1.3 Data Structure definition . 60

5.2 Design of the FIWARE IoT QoS support 65

5.2.1 QoS model design . 65

5.2.2 Allocation phase . 74

5.2.3 Dispatching phase . 80

5.2.4 IoT Agent LWM2M/CoAP . 86

5.2.5 Development specification . 92

5.2.6 Implementation details . 99

5.2.7 RTTA with multi-service allocation policy 100

6 Tests results 105

6.1 Validation test . 105

6.2 RTTA test . 108

7 Conclusions 117

8 Acknowledgements 119

Chapter 2

Introduction

Internet of things (IoT) is a new Internet concept that tries to connect everything

that can be connected to the Internet, where everything refers to people, cars,

televisions, smart cameras, microwaves, sensors, and basically anything that has

Internet-connection capability. A recent study by Cisco predicts that IoT is pro-

jected to create $14 trillion net-profit value, a combination of increased revenues

and lowered costs, to private sector from 2012 to 2022 [1]. IoT is not seen as

an individual stand-alone system, but as a globally integrated infrastructure with

many applications and services [2]. Now-days Internet of Things (IoT) architectures

are composed by thousands of smart things or objects connected to the Internet.

These objects are exploited as remote sensing and/or actuating components of a

large distributed computing infrastructure. Remote sensing plays a key role in the

acquisition of data about and from everything without needing of physical field vis-

its and in real-time manner. In this scenario new applications has been conceived,

that is machine-to-machine (M2M) applications, i.e., IoT applications exploiting di-

rect interactions between things in order to monitor and control themselves and the

surrounding environment with no or minimum intervention, are expected to play a

major role, given their huge impact on many real-world application domains includ-

ing industrial, healthcare, transportation, social and environment[3]. Technological

advancements are bootstrap in this process; examples of systems made of inter-

7

8 CHAPTER 2. INTRODUCTION

connected physical objects are already employed in our daily lives: house climate

control systems, alarm and intrusion detection systems, smart metering systems are

only few examples of how communication capabilities of smart objects are exploited

to provide empowered services to end users. Another bootstrap factor, in this pro-

cess, is the cloud computing paradigm. It is being extended to accommodate the

characteristics of the IoT architectures, thus introducing the so called Thing as a

Service model[4]. It permits the deployment of a distributed IoT service infrastruc-

ture that shares globally sensing and/or actuating resources through the Internet.

It also represents a shift from a set of vertical systems working in isolation to a hor-

izontal platform integrating different physical objects from heterogeneous environ-

ments. Smart things are exposed through a service-oriented unified interface which

allows applications to access things transparently regardless the physical layer tech-

nology and the location. Unlike conventional way of collecting and processing sen-

sory data, Thing as a Service model now enables decentralization of data sensing

and collection, sharing of information and resources, remote access to global sensed

information and its analytics and elastic provisioning of resources. An interesting

platform that offers services meaningful in this context is FIWARE (where FI stands

for Future Internet). FIWARE platform is supported by the Future Internet Public-

Private Partnership (FI-PPP) project of the European Union. It is a project that

aims to design an open platform that makes sophisticated and innovative Internet

application easy to build. It lowers the costs and complexity of serving globally a

large number of users and handling data at a large scale. It assembles a set of

"building blocks" that can create complex applications. These blocks called Generic

Enablers (GE) are already available and ready to use. The GEs are organized in var-

ious technical chapters: Cloud Hosting, Data/Context Management, Architecture

of Applications/Services Ecosystem and Delivery Framework, Interface to Network

and Devices, Security, Advanced Middleware and Web-based User Interface and

lastly Internet of Things Services Enablement. Our work has been focused on the

last chapter. This set of GEs represents the bridge where future Internet services

9

interface and leverage on the ubiquity of heterogeneous, resources-constrained de-

vices in the IoT environment [5]. These software components allows the integration

of different IoT systems providing an abstraction level for the applications that can

benefit from high IoT service availability. In each system, different smart things of-

fer similar services with common functionalities but different QoS and costs. QoS is

of particular importance since it has been identified as a key non-functional require-

ment to enable many IoT-related application scenarios. For example, Security and

emergency content in smart city and home environments often has strict real-time

requirements. As an example, latency (besides dependability) is a critical factor for

applications such as real-time sensor monitoring in personal health-care or public

safety systems. Other applications like, e.g, road traffic management applications

for urban mobility, though less sensitive to delay bounds, may nevertheless benefit

from receiving some form of real-time treatment, at least for a subset of their pro-

vided services. Moreover applications involving streaming of multimedia context

like video surveillance that consumes high bandwidth will require full support from

the platform not only to guarantee an acceptable level of service but also to avoid

saturation and waste of network resources [6]. In this context efficient management

of resources will be required to perform a proper selection of things matching ap-

plications requests, whilst guaranteeing to meet the respective QoS requirements.

On the other hand, smart things are constrained devices in terms of computation,

storage and energy. Furthermore, the IoT context is continuously changing because

of intermittent availability of things. Therefore, service selection approaches are

needed to address unique features when allocating things to application requests.

After the analysis, from scratch, of the FIWARE architecture and the available

GEs, our work it has been focused on the IoT chapter. We have studied a meaningful

deployment of the IoT GEs to build a FIWARE Instance platform. In this phase we

have analyzed each GE offered in the IoT chapter of FIWARE library to understand

what functions they offer and what are the interfaces that they use to communicate

each other, analizing the protocol used for the communication and the management

10 CHAPTER 2. INTRODUCTION

of things data. Moreover, we had to modify some IoT software components because,

we have used a deployment for which they weren’t implemented to. So they are

being adapted to communicate each other. Although FIWARE project aims to be a

player in the IoT context, it doesn’t include a support for the QoS. As we have seen,

QoS is a key non-functional requirement to enable many IoT scenarios. So, once

the deployment has been established and the communication between IoT compo-

nents has been tested, we have used this FIWARE IoT platform instance to design

and develop a QoS support in the IoT architecture. The development of the QoS

solution has been developed in two phases. In the first one, we have analyzed the

heuristics proposed to solve the problem of an efficient allocation of the service

requests towards the things. We have choosed the heuristic proposed in [3], in-

troducing a modification in the algorithm that extends the set of solutions of the

selection problem, at the cost of a delay in the execution of the service requests.

In the second one, stemming from the information model used in FIWARE, we have

design a QoS model, introducing new operations that allow a negotiation phase in

which a IoT application can negotiate a service level agreement specifying some

QoS requirements. To this aim, we have implemented a wrapper for the main soft-

ware component that, in our deployment, manages the services requests towards

the things and its data.

Chapter 3

FIWARE

3.1 FIWARE platform

FIWARE is a software platform that provides enhanced OpenStack-based cloud host-

ing capabilities plus a rich library of components bringing a number of added-value

functions offered “as a Service”. These library components provide open standard

APIs that make the development of Future Internet applications much easier. The

platform aims to increase the global competitiveness of the European ICT economy

by introducing an innovative infrastructure for cost-effective creation and delivery

of versatile digital services. The FIWARE goal is to make sure that an open platform

alternative to existing proprietary platform (e.g. , Google or Amazon) will exist,

around which a sustainable open innovation-driven ecosystem can be created. The

FIWARE stakeholders can be Telecom Industries that can play the role of a Software

Provider. They can accelerate the development of standards based on FIWARE re-

sults. They also may play the role of Application/Service Providers, developing new

services and applications for large Usage Areas where telecom-based communica-

tion, security and availability levels as well as support to roaming users are required.

Other stakeholders are IT Industries that play the role of Software Providers and/or

Application/Service Providers.

11

12 CHAPTER 3. FIWARE

Figure 3.1: FIWARE Architecture

3.2. FIWARE STRUCTURE 13

3.2 FIWARE structure

FIWARE is based upon elements called "Generic Enablers". They are the building

blocks of the platform, made up of a set of components which together support

a concrete set of functions and provides a concrete set of APIs and interoperable

interfaces that are in compliance with open specifications publish for that GE. GE

Open Specifications contain all information required in order to build compliant

products which can work as an alternative implementations of GEs developed in

FIWARE project. GE Open Specifications typically include:

• Description of the scope, behaviour and intended use of GE;

• Terminology, definitions and abbreviations to clarify the meanings of the spec-

ification;

• Signature (Restful interface) and behaviour of operations linked to APIs that

the GE should export;

• Description of protocols that support interoperability with other GE or third

party products.

The various components are organized in a rich library, the FIWARE Catalogue,

where it can be found also the reference implementation of each component allow-

ing the developers to put into effect functionalities such as the connection to the

Internet of Things or Big Data analysis, making the implementation much easier.

The GEs can be combined in different ways to create a particular type of product or

service. The types of products/services are:

• FIWARE Compliant Platform Product : A product which implements, totally or

in part, a FIWARE GE or composition of FIWARE GEs (therefore, implements a

number of FIWARE Services). Different FIWARE compliant Platform Products

may exist implementing the same FIWARE GE or composition of FIWARE GEs;

14 CHAPTER 3. FIWARE

• FIWARE Instance: The result of the integration of a number of FIWARE com-

pliant Platform Products. It comprises a number of FIWARE GEs and supports

a number of FIWARE Services. Provision of Infrastructure as a Service (IaaS)

or Context/Data Management Services are examples of services that a partic-

ular FIWARE Instance may support, implemented combining a concrete set of

Platform Products. FIWARE Instances are built integrating a concrete set of

FIWARE compliant Platform Products;

• Future Internet Application: An application that is based on APIs defined as

part of GE Open Specifications. It should be portable across different FIWARE

Instances that implement the GEs the application relies on.

In the overall value chain envisioned around FIWARE, it can be identified different

roles, classified in:

• GE Provider, that is any implementer of a GEs;

• Instance Provider, that is any company or organization which deploys and op-

erates a platform Instance and establishes some sort of business model around

that particular Instance. Note that FIWARE Instances may not consist only of

the integration of FIWARE compliant Platform Products but their integration

with other products which allow the FIWARE Instance Provider to gain differ-

entiation on the market (e.g. integration with own Operating Support Systems

or with other products supporting services that are complementary to those

provided by FIWARE GEs) or to enable monetization of its operation (e.g., in-

tegration with own Billing or Advertising systems);

• Application/Service Provider, any company or organization which develops Fu-

ture Internet applications and/or services based on GE APIs and deploys those

applications/services on top of platform Instances.

3.3. FIWARE IOT SERVICES ENABLEMENT 15

Figure 3.2: examples of FI-WARE Instances

3.3 FIWARE IoT Services Enablement

Among all FIWARE modules, we have focused our study on Internet of Things chap-

ter that provides the Generic Enablers to allow Things to become available, search-

able, accessible, and usable context resources fostering FIWARE-based Applications

interaction with real-life objects. Before go through this chapter, we introduce some

real-scenarios:

• Scenario 1. 7:25 AM, starting the car, David’s car device asks for activation

regarding traffic and pollution applications. David chooses traffic application

and the car device sends a signal to the closer gateway that the vehicle is

active and in the traffic. The gateway, based on the planned route home-office

defined in the car device, diffuses to the gateways network that a new actuator

is alive and the expected time instant when it will roam from the first area

(gateway 1) to the second area (gateway 2);

16 CHAPTER 3. FIWARE

• Scenario 2. Sensor measurement sharing during the journey to David’s office,

the car device receives a short message from gateway 7 to activate weather

data collection to draw snow storm progress on the city map. As David is

driving, the car device launched a request to the profile database to validate

David choices. Based on the latest information, from yesterday 10:00 AM,

David has no objection to communicate weather information. Immediately, the

car device begins to send temperature, windscreen activity, humidity level;

• Scenario 3. Tomorrow, David wants to go sooner to his office because the home

clock screen advertises that weather forecast was too optimistic today and that

bad weather will come during the night. The picture, based on 357 climate sen-

sors, shows clearly that the snow storm will arrive around 7:30 AM. When he

begins to cook his dinner, his home gateway informs the city eco-management

application that a new consumption cycle is planned in this district. All cities

till around 100 km from his home are sending information. The 357 sensors

indicate clearly that air pressure is falling quickly and some mobile sensors

in this area are providing real-time temperature indications. Night would be

very cold and a snow storm is now forecast for tomorrow evening.

3.4 IoT concepts

In the IoT technical chapter are defined various concepts representing a series of

related actors playing in the IoT context as we can see in the figure 3.3.

They can be divided in different interface abstraction levels:

• Device Level, an hardware unit having the capability to either perform a mea-

surement or an actuation. Device-level data is the raw data provided by the

device. Management functionality like sensor calibration, firmware updates,

and battery status monitoring is also taking place on the device level. In this

level it is included also the IoT gateway, that is a device that additionally to or

3.4. IOT CONCEPTS 17

Figure 3.3: Concepts defined in the IoT technical chapter

instead of sensing/actuating provides inter-networking and protocol conver-

sion functionalities between devices and IoT backend. It is usually located at

proximity of the devices to be connected. An example of an IoT gateway is a

home gateway that may represent an aggregation point for all the sensors/ac-

tuators inside a smart home;

• IoT Resource level, an IoT resource is a computational element providing ac-

cess to sensor/actuator devices. An information model for the description of

IoT resources can include context data like location, accuracy, status informa-

tion, etc. IoT resource level data consists not only of the measured data, but

also context information like the data type, a time stamp, accuracy of mea-

surement, and the sensor by which the measurement has been performed;

• Thing level, A thing can be any object, person, or place in the real world.

Things are represented as virtual things having an entity ID, a type and several

18 CHAPTER 3. FIWARE

attributes. Sensors can be modelled as virtual things, but other real-world

things like rooms, persons, etc. can be modelled as virtual things as well. So

thing level data consists of descriptions of things and their attributes, while

information on how the data has been obtained might be contained as meta

data (Usually not provided by typical gateways).

It can be identified also an application level, in which there are the following

elements:

• Management service, It is the feature of the IoT resource providing program-

matic access to readable and/or writeable data belonging to the functioning of

the device;

• Application service, It is the feature of the IoT resource providing program-

matic access to readable or writeable data in connection with the thing which

is associated with the device hosting the resource. The application service ex-

changes application data with another device (including IoT gateway) and/or

the IoT backend;

• Event, An event can be defined as an activity that happens, occurs in a device,

gateway, IoT backend or is created by a software component inside the IoT

service enablement.

3.5 Things as NGSI context entities

All informations about Things and/or IoT resources are managed through the OMA

NGSI standard, that describes these objects as Context Entities. The OMA NGSI

(Next Generation Service Interface) Context Management standard provides the

NGSI-9 and NGSI-10 interfaces to manage and exchange Context Information about

Context Entities. A Context Entity is any entity which has a state. Values of at-

tributes of defined entities becomes the Context Information that applications have

to be aware of in order to support context-awareness. Context Information is any

3.5. THINGS AS NGSI CONTEXT ENTITIES 19

Figure 3.4: NGSI vision

volatile or persistent information, which describes a state of a Context Entity. An

example of NGSI use case can be visualized in the figure 3.4.

Of course, Context Entities could be users, devices, places, buildings, therefore

“things” as defined before. Context Information related to things can be measured

by sensors, and combined with other context information manually set by humans,

derived from interactions with the user, operations on handsets or terminals, in-

ferred from other information, or requested from databases. Adoption of OMA NGSI

enables the management of configuration of, and the data associated to, arbitrary

physical objects in the real world, that are Devices and Things. It enables this at

a level of abstraction that allows getting rid of the complexity of managing connec-

tions with gateways and devices. Updates on the state and configuration of those

physical objects will come as updates on the Context Information (i.e., updates on

attributes of Context Entities representing those physical objects) and Configuration

(i.e., updates on information about available Context Entities). The purpose of the

20 CHAPTER 3. FIWARE

NGSI-9 interface is to exchange information about the availability of Context Infor-

mation and Context Entities, while NGSI-10 is designed for exchanging the Context

Information itself [7].

3.6 IoT chapter Architecture deployment

IoT chapter Architecture deployment varies from simple scenarios in which few de-

vices are connected using standard IoT communication protocols to more complex

scenarios distributed across a large number IoT networks connecting IoT Gateways

and IoT nodes and providing advanced composition and discovery functions. IoT

GEs are spread over two different domains:

• IoT Backend : It comprises the set of functions, logical resources and services

hosted in a Cloud datacenter. Up north, it is connected to the data chapter

ContextBroker, so IoT resources are translated into NGSI Context Entities.

South-wise the IoT Backend is connected to the IoT edge elements, that is all

the physical IoT infrastructure;

• IoT Edge: It is made of all on-field IoT infrastructure elements needed to con-

nect physical devices to FIWARE Applications. Typically, it comprises: IoT

end-nodes, IoT gateways and IoT networks. The IoT Edge and its related APIs

will facilitate the integration of new types of gateways and devices, which are

under definition in many innovative research projects.

What we have said before, can be figured out in the figure 3.5. From a functional

point of view, IoT Backed GEs perform the following functions:

• Provision of Things as NGSI Context entities: This means to create an NGSI

Context Entity for each IoT resource. This function is typically carried out by

the Backend Device Management GE. The GE in charge of this function plays

the role of Context Producer for all Entity attributes related to IoT resources

3.6. IOT CHAPTER ARCHITECTURE DEPLOYMENT 21

Figure 3.5: FIWARE IoT architecture

22 CHAPTER 3. FIWARE

sensing/observations. On the other hand, it registers itself as Context Provider

for those Entity Attributes related to actuation capabilities;

• IoT Southbound protocol adaptation: The variety of communication protocols

for IoT devices and/or gateways is extremely high today. FIWARE provides an

easy way to extend a number of supported communication protocols regard-

less they are based on open or proprietary specifications. This function (in the

backend) is carried out by the Backend Device Manager GE so it handles the

translation of IoT southbound protocols (sensing and actuation) into/from the

OMA NGSI protocol;

• IoT Edge management : Some configuration, operation and monitoring func-

tions regarding IoT Edge elements (Connectivity/Networks, Gateways, End-

nodes) might be controlled from the Backend Device Management GE and

thus exposing a convenient API to IoT integrators in addition to the NGSI API

for ContextBroker interconnection;

• IoT Devices composition and discovery: This function is provided by the IoT

Broker GE in combination with the IoT Discovery GE.

On the other hand, IoT Edge GEs implement the following functionalities [7]:

• IoT Southbound protocol adaptation: This functionality means to translate spe-

cific protocols into NGSI within a gateway device so that native NGSI entities

might be pushed directly to the backend enablers (typically the IoT Broker

or directly the Data chapter ContextBroker). This function is provided by the

Protocol Adaptor GE. Current supported technologies are Zigbee and RFID

tags;

• Complex (NGSI) Event Processing: Although there is one specific GE in the

Cloud for this functionality (Data Chapter CEP GE), for some scenarios it might

be useful to reduce the network traffic exchanged between the IoT edge ele-

ments and the Cloud infrastructure. It is provided by the Data Handling GE

3.6. IOT CHAPTER ARCHITECTURE DEPLOYMENT 23

within a Gateway device. Data Handling GE consumes, processes and delivers

NGSI events so it is typically used together with the Protocol Adapter in the

same gateway device;

• Gateway Logic: This function handles a gateway-to-gateway API (currently

under definition) and the IoT Edge configuration API at the gateway level (cur-

rently under definition too). For the IoT Edge configuration of gateways exist-

ing protocols such as OMA-LWM2M management interfaces, OMA-DM or BBF

TR.69 are to be considered. It will be provided by the Device Management GE;

• IoT end-nodes Configuration: Some IP-capable nodes will not traverse gate-

ways and therefore they might be operated and monitored directly. In this

specific case the management interfaces of OMA-LWM2M are expected to be

considered due to the constraint nature of IoT-end nodes;

• IoT Networks Configuration: In complex scenarios such as smart-cities, IoT-

end nodes are not expected to be connected over a unique connectivity net-

work. On the other hand, several IP alternatives are expected to co-exist,

namely: cellular (2G, 3G, 4G and soon 5G), meshed-radio networks (6Low-

PAN/IEEE.802.15.4), IP/BLE, LPWA, etc. It is important to note that this con-

trol plane is not the IoT devices or end-nodes control plane, but a different

one that may include also interaction with network APIs. This function will

be implemented at the IoT Edge module in the Backend Management GE, the

Gateway Logic module at Gateways and in a similar module at IoT-end nodes;

A key design statement is that the IoT context is continuously changing in-

fact IoT Gateways are not permanently connected to the Backend. Besides,

IoT Gateways can be constrained devices in some scenarios. Therefore, it is

required, in the gateway domain, a light-weight implementation of some GEs.

24 CHAPTER 3. FIWARE

Figure 3.6: IoT Backend GEs

3.7 IoT Backend

The IoT Backend includes that GEs that are executed in a cloud platform and even-

tually communicate with the Data Context-Broker. They are the IoT Device Manage-

ment, the IoT Discovery and the IoT Broker (figure 3.6).

Starting from the right we have the IoT Device Management, that connects de-

vices and/or gateways (they may use different standard or proprietary communica-

tion protocols and API) to FIWARE platform. Moreover, it manages NGSI Context

Entities, in-fact it handles, on the northbound side,the connection to an instance of

the Data chapter ContextBroker to create one Context Entity per physical connected

device (for most cases application developers, will only interact with the NGSI En-

tities). Lastly, it provides an IoT Edge Manager module, that give the possibility to

IoT integrators to configure, operate and monitor IoT end-nodes, IoT Gateways and

IoT networks.

The Device Management GE is composed by a set of components that are the IoT

Agent modules, the IoT Agent Manager module and the IoT Edge Manager module

(figure 3.7).

The IoT Agent Manager is an optional module that interface with all the IoT

Agents installed in a datacenter throughout their Administration/Configuration API.

3.7. IOT BACKEND 25

Figure 3.7: Device Management GE

26 CHAPTER 3. FIWARE

This will enable a single point to launch, configure, operate and monitor all IoT

Agents in a FIWARE Ecosystem

3.7.1 IoT Agent

As we have said before the Device Management GE is composed by IoT Agents that

are software modules handling South IoT Specific protocols and North OMA NGSI

interaction. The minimum configuration of Device Management GE includes at least

one IoT Agent. The functions of this component are:

• It handles the creation of an NGSI Context Entity in a ContextBroker (at its

northbound) per each one of the connected IoT Devices;

• It acts as Context Producer for those attributes related to sensing capabilities

or observations;

• It provides an Administration/Configuration API.

Among all, the IoT Agent that we have analyzed is the LWM2M/CoAP IoT Agent.

This IoT Agent connects Lightweight M2M Clients (devices), communicating over

CoAP, to the NGSI Context Broker in the Data Chapter. The main interactions with

the agent (without entering in low-level details) are:

• Device Provisioning;

• Service creation;

• Device Registration;

• Device lazy observation;

• Device active observation;

• Device command.

3.7. IOT BACKEND 27

Figure 3.8: Device Provisioning

Figure 3.9: Service Provisioning

Device Provisioning In order for the system to recognize the device and do the

appropriate mapping to NGSI context elements, one of two things must happen: ei-

ther the device is provisioned in advance into the system, or a service is provisioned

in the system and the device assigned to it. In the former case, the Device Id will be

used to identify the device, using it as the Endpoint name in LWM2M. The follow-

ing pieces of data can be specified in provisioning: device Id, security informations,

NGSI entity mappings and types of attributes provided (figure 3.8).

Service creation For those cases where the devices are not specified individually,

services can be provisioned as a whole. A service is identified by a pair of (resource,

APIKey) attributes, and can contain roughly the same kind of information as the de-

vice provisioning requests. The specified resource corresponds to a LWM2M server

endpoint where the clients will send their requests. Each time a device arrives to the

specified endpoint, it will be assigned to the proper service based on the endpoint

(figure 3.9).

Device Registration Every device in LWM2M must be registered to the LWM2M

server before starting any interaction. In this registration the LWM2M client has

to indicate the following information to the server: Endpoint name(Device Id) and

supported objects (a list of links for every OMA LWM2M object that can be accessed

by the server). The LWM2M server uses this information to assign the device to a

28 CHAPTER 3. FIWARE

Figure 3.10: DeviceRegistration

Figure 3.11: Device lazy observation

service (or to retrieve the device information in case it has been individually pro-

visioned). Based on the service or device information, the server will decide what

attributes of the objects provisioned by the device are active, lazy or commands and

it will register itself in the Context Broker as the Context Provider of those in the

two last categories (lazy and commands). For those attributes defined as active, the

server will emit an Observe request (figure 3.10).

Device lazy observation For those attributes of the devices that marked as lazy,

the updates and reads operations of Context Entities in the Context Broker GE will

be mapped to Read and Write operations from the Device Management Interface in

LWM2M (figure 3.11).

3.7. IOT BACKEND 29

Figure 3.12: Device active observation

Figure 3.13: Device command

Device active observation For those attributes of the devices marked as active, a

Observe operation is issued from the server upon registration, expecting subsequent

measures to be issued as Notify responses to the Observe message (figure 3.12).

Device command Commands are issued as changes in a particular value in the

Context Entity, and are mapped to Execute operations from the server to the client.

The status of the execution is maintained in a special attribute in the Context Entity,

that is updated with any upcoming information to the server (figure 3.13).

3.7.2 IoT Broker

The IoT Broker GE is an IoT Backend enabler. It is foreseen to run on a machine in

a datacenter, where it serves as a middle-ware. Instead of having to deal with the

30 CHAPTER 3. FIWARE

technical details of existing FIWARE IoT installations, application developers only

need to set up their application to communicate with the IoT Broker in order to re-

trieve the data they need. The main interface exposed is the FIWARE NGSI. This

API has been developed by the FIWARE community as a binding of the OMA NGSI

Context Management standard, in particular the interfaces used are OMA NGSI-

9/10. The IoT Broker GE retrieves information from IoT Gateways and Devices via

the FIWARE NGSI protocol, while the same protocol is can be used by applications

to retrieve information from the IoT Broker GE. The two FIWARE NGSI context

management interfaces distinguish between two types of information. The first type

is called context information and consists of attribute values and associated meta-

data. This kind of information is exchanged using the operations defined in OMA

NGSI-10. The second type of information is context availability information, i.e.,

information on where context information can be retrieved by OMA NGSI-10 oper-

ations. This kind of information is exchanged using the operations defined in OMA

NGSI-9. In the figure 3.14 are shown the internal components of the IoT Broker.

As we can see, It represents the point of contact for accessing information about

things. Applications can access this information using the NGSI-10 interface ex-

posed. In-fact it interacts potentially with a large number of Gateways, other Back-

end instances, Devices, and of course data consumers. Furthermore, it typically

interacts with at least one instance of the IoT Discovery GE. The latter is where the

IoT Broker GE retrieves information about where context information is available in

the IoT installation. In the FIWARE architecture, the role of the data consumer is

played by the Context Broker GE. The IoT Broker GE communicates with the Con-

text Broker GE via the Northbound Interface. The Southbound interface is used to

communicate with the IoT Agents, which are providing data. The role of IoT Agent

can be played by either the Backend Device Management GE (IoT Backend), or by

the Gateway Data Handling GE (IoT Edge). In case of advanced usage IoT Broker

keeps certain kinds of states as represented by the two repositories, the Subscrip-

tion Storage and the Registration Repository, as depicted in the figure 3.14. Firstly,

3.7. IOT BACKEND 31

Figure 3.14: IoT Broker GE - internal

32 CHAPTER 3. FIWARE

it needs to keep track of existing subscriptions. This includes both subscriptions

received from applications and subscription issued to IoT Agents by the IoT Broker.

Secondly, it includes a repository of context registrations, that are, informations

about where certain context information can be retrieved. The operations, exposed

by the IoT Broker, for exchanging context informations are described in the NGSI

context management interface:

• The first kind of operation is a Query. When an application invokes the query,

it expects to receive context information as the response;

• The second kind of operation is a Subscription. When an application sub-

scribes to certain context information, it just receives a subscription Id as

response. Context information is then sent to the application in the form of

notifications. Depending on the kind of subscription, context information can

be sent whenever attribute values change or simply at fixed time intervals (in

these cases the IoT Broker receives a Notification message) or whenever an

attribute, requested in a previous subscription, is now available (instead in

this case the IoT Broker receives a Availability Notification message);

• Finally, there is a mode of information exchange defined in the NGSI context

interface where information updates are sent asynchronously, called Update,

by the IoT Agents. When the IoT Broker receives such updates, it forwards the

information to Context Broker GE that is responsible for further processing

and/or storing such updates.

Query Queries are one-time requests for information. They are realized by the

queryContext operation of OMA NGSI-10. In reaction to a query, the IoT Broker

determines the set of IoT Agents that can provide the requested information. This

will be done by sending a discoverContextAvailability request to the IoT Discovery

GE. After this step, the IoT Broker queries the identified IoT Agents, it aggregates

the results and it forwards them to the GE or application that has issued the query.

3.7. IOT BACKEND 33

Figure 3.15: IoT Broker - Query

Figure 3.16: IoT Broker - Subscription

In the figure 3.15 are represented the query operations.

Subscription Subscriptions are requests for information updates the issuer wishes

to receive, under certain conditions to be specified in the request message. Also in

these interactions, like in Query operation, the role of the IoT Discovery GE is to

provide the relevant information sources, such as the IoT Agents. In the figure 3.16

are depicted the main subscription interactions.

Update In general, updates received by the IoT Broker GE are forwarded to the

IoT Discovery GE. Before forwarding, the IoT Broker discovers the Thing-level en-

34 CHAPTER 3. FIWARE

Figure 3.17: IoT Broker - Update

Figure 3.18: IoT Broker - Notification

tities associated to the Device-level entities about which it has received an update.

For that reason the IoT Broker contacts the IoT Discovery GE using a discoverCon-

textAvailability request. In the figure 3.17 are depicted the main update interac-

tions.

Notification Notifications are the counterpart of subscriptions. A notification is

sent whenever the condition that has been specified in the subscription is satisfied

(figure 3.18).

3.7. IOT BACKEND 35

Figure 3.19: IoT Broker - Availability Notification

Availability Notification When a new IoT Agent having informations that are rel-

evant for an existing subscription becomes available, the IoT Broker is notified about

this through the availability notification, so that it can then make a subscription to

the new IoT Agent (figure 3.19).

3.7.3 IoT Discovery

The IoT-Discovery GE is the part of the Backend tier of the IoT Architecture which

is responsible for context source availability management. The underlying data

model of this GE is based on the OMA NGSI-9 Context Management Information

Model. This model relies on the concept of context entities, which are generic en-

tities whose state is described by the means of values of attributes and associated

meta-data. In the context of IoT, context entities and context entity attributes can

be used to model IoT resources and the variables they measure. The IoT Discov-

ery GE is responsible for the context availability registrations from IoT Agents, thus

making it the access point for information about entities and their attributes. In

particular, the context availability information is forwarded from IoT Agents that

expose the FIWARE NGSI-9/10 interfaces. The role of IoT Agents can be played by

either the Data Handling GE in IoT Gateways, or the Backend Device Management

36 CHAPTER 3. FIWARE

GE. Using the FIWARE NGSI-9 interface, that the IoT Discovery GE provides, appli-

cations and services will be able to register, discover and subscribe to updates on

context availability information. In the figure 3.20, we can see the main components

of the IoT Discovery GE, that are the Configuration Manager and the Configuration

Repository.

The Configuration Manager component consists of a context information registry

in which context provider applications can be registered. In addition, components

interacting with the Configuration Manager can perform discovery operations on

that context registration information or subscribe to changes on it. The Configura-

tion Repository stores information on the availability of context information and can

be accessed through the Configuration Management. When a NGSI-9 client sends a

discoverContextAvailabilityRequest operation in order to find out where the desired

context information can be found, the Configuration Manager returns zero or more

ContextRegistration instances that match the client’s request. IoT-Discovery has a

series of interfaces for interacting with applications, users, and other GEs within the

FIWARE architecture. For example, the GE communicates with the Context Broker

GE via the Northbound Interface and with the IoT Agents on the Southbound Inter-

face. The role of IoT Agent can be played by either the Backend Device Management

GE, or by the Gateway Data Handling GE. There is also an interface (NGSI-9) be-

tween the IoT Broker GE and the IoT Discovery GE. In the context of NGSI commu-

nication, IoT Discovery plays the role of the server, and any other actor, interacting

with it, play the role of the client.

The operations implemented by the IoT Discovery are:

• Registration;

• Registration Update;

• Discovery;

• Subscription;

3.7. IOT BACKEND 37

Figure 3.20: IoT Discovery

38 CHAPTER 3. FIWARE

• Notification.

In the following diagrams all IoT Agents, GEs, and applications, interacting with

the IoT Discovery, are abstracted using the term "NGSI-9 Client".

Registration In order for things informations to be available at the Backend, IoT

Agents need to register their information to the IoT-Discovery GE. This is done via

the registerContext operation (figure 3.21).

Figure 3.21: IoT Discovery - Registration

Registration Update A context provider can update a registration by using the

registration Id that is returned from the previous registration response (figure 3.22).

3.7. IOT BACKEND 39

Figure 3.22: IoT Discovery - Registration Update

Discovery The entities that typically play the "NGSI-9 Client" role in this case are

the IoT Broker GE (when the requested context availability information to process

NGSI-10 query/updates) or any other NGSI application that wants to know the con-

text availability associated with a given entity/attribute (figure 3.23).

Figure 3.23: IoT Discovery - Discovery

Subscription The entities that potentially could play the "NGSI-9 Client" role are

any application (i.e. a Subscriber App) that needs to be aware of changes in context

availability information (figure 3.24).

40 CHAPTER 3. FIWARE

Figure 3.24: IoT Discovery - Subscription

Notification The entities that potentially could play the "NGSI-9 Client" role are

IoT Agents, while "Subscriber Application" are applications subscribed to context

availability information changes (figure 3.25).

Figure 3.25: IoT Discovery - Notification

3.8 IoT Edge

The IoT Edge includes that GEs that are executed in the IoT Gateways that commu-

nicate with the IoT Backend which runs in the cloud. They are the Gateway Logic,

the Protocol Adapter and the Data Handling (figure 3.26).

3.8. IOT EDGE 41

Figure 3.26: FIWARE IoT edge

3.8.1 Gateway Logic

The Gateway Logic GE will handle the IoT Edge management API and functions

plus the gateway-to-gateway API. For the first (Edge Management) it needs the cor-

respondent function/module to be activated and configured in the Backend Device

Management GE. As we have said before, all these functions are under definition.

3.8.2 IoT Protocol Adapter

The Protocol Adapter GE deals with the incoming and outgoing traffic and messages

between the IoT Gateway and registered devices. There may be multiple instances

of Protocol Adapter GEs capable of serving not fully IoT compliant devices, i.e. de-

vices that do not support ETSI M2M. These devices can be IP-based devices, that

communicates using the IP stack (IPv4 or IPv6), or "legacy devices", meaning de-

vices communicating using non-IP based protocols, for instance ZigBee, or Z-Wave.

The Protocol Adapter GE receives these device specific protocols and translates

them to a uniform internal API. The exposed API handles capabilities to read and

write to the resources, as well as IoT specific management and configuration ser-

vices such as resource discovery. In particular, the ZigBee Protocol Adapter pro-

42 CHAPTER 3. FIWARE

vides a communication into a ZigBee PAN(s) (Personal Area Network). It supports a

mechanism whereby a gateway can interact with individual ZigBee nodes.

3.8.3 IoT Data Handling

The Data Handling GE addresses the need of filtering, aggregating and merging

real-time data from different sources. A lot of applications expect to receive value-

added data that are relevant to their needs, and this can be easily achieved in a de-

coupled manner thanks to the Complex Event Processing technology (CEP). Events

are published by Event Producers and subscribed to by Event Consumers. Typi-

cal applications that require Data Handling GE are sensor network applications,

RFID readings, supply chains, scheduling and control of fabrication lines, air traffic,

smart buildings, home automation, and so on. The CEP Engine component of the

Data Handling GE typically processes input data, in order to generate a smaller set

of output data, which avoids upper level software overloading and network flooding.

Chapter 4

State of the Art

4.1 Existing QoS algorithms and Models

QoS-aware selection problem has been widely studied in recent years and it has

been applied in traditional platforms and using different frameworks. In the litera-

ture it can be found many approaches with which the problem has been addressed.

In the [8], it is proposed an adaptive method of selecting services based on the

hardness of QoS constraints. The basic idea is to sample services that represent

a specific quality-value range. Then it is calculated the utility of candidate ser-

vices in a QoS sub-range and it is sampled the highest utility service. This process

of sampling services and evaluating their utility value is repeated until it makes a

composite service that has the highest level of global utility for a task. In the [10]

we can read about an adaption mechanism that allows a service broker, offering a

composite service, to bind at runtime each task of the composite service to a corre-

sponding concrete implementation, selecting it from a set of candidates which differ

from one another in terms of QoS parameters. The proposed policy is a load-aware

per-request approach which aims to combine the relative benefits of the well known

per-request and per-flow approaches. It exploits the multiple available implementa-

tions of each abstract task, and realizes a runtime probabilistic binding. Instead, in

the [11] the authors address the selection problem, providing a service broker, with

43

44 CHAPTER 4. STATE OF THE ART

a forward-looking admission control policy based on Markov Decision Processes.

This mechanism allows the broker to decide whether to accept or reject a new po-

tential user in such a way to maximize its gain while guaranteeing non-functional

QoS requirements to its already admitted users. Another work based on a broker

is [13], where authors propose a QoS broker for web service composition that aims

at finding the best combination in order to maximize the end-user satisfaction. The

proposed approach is based on a utility function that takes into account only end-

users without analyzing constraints from server providers. The server providers

constrained are take in account in the [14], where the authors propose a QoS-aware

adaptive load balancing strategy. Finally, in [15] the authors present a heuristic

that aims at finding the optimal allocation that minimizes the overall response time.

The proposed solution, however, provides only probabilistic guarantees that cannot

support hard real-time applications. The [10], [11], [15] are solutions proposed in

the field of SOA and Web Service architectures but they are not suited for IoT de-

ployments, as IoT systems are composed of service providers characterized by con-

strained capabilities with limited battery capacity [3]. From the our study we have

identified, the [9], the [12] and the [3] as works proposing a QoS aware scheduling

designed for service oriented IoT platforms. In the [9] the authors propose a solu-

tion based on the Wukong middleware. It is used to map the abstraction of a smart

application onto physical smart devices and actuators. The work is focused on the

design of a QoS oriented mapping algorithm for applications with a set of QoS at-

tributes. Wukong find the best mapping solution according to the requirement, after

developers specify how each attribute contributes to the overall QoS. In the [12] a

multi-layered scheduling model is proposed to evaluate the optimal allocation that

meets the QoS requirements of the applications. Different solutions are deployed at

different layers to manage different systems resources, such as network resources

and IoT services. However, the proposed approach cannot be used for online IoT-

service selection, since it is mainly suited for offline provisioning and planning [3].

An online IoT-service selection solution is designed in the [3] where it is formulated

4.2. REAL TIME THING ALLOCATION ALGORITHM 45

a QoS-aware selection problem for IoT cloud platforms, whose solution minimizes

the energy consumption so as to maximize the lifetime of battery powered devices,

whilst guaranteeing the fulfilment of real-time QoS requirements. An heuristic algo-

rithm, called Real Time Thing Allocation algorithm (RTTA), is implemented to solve

the problem that is formalized as an Integer Linear Problem and that results to be

an instance of the Agent Bottleneck Generalized Assignment Problem (ABGAP)[16].

At the end of the analysis of all previous works, we have concluded that the [3] is the

only one that offers an heuristic that can be directly integrated in the FIWARE IoT

platform. In-fact, it has been already integrated in the BETaaS platform, designed

for the development and execution of M2M applications in the IoT context.

4.2 Real Time Thing Allocation algorithm

4.2.1 Problem Formulation

As it is described in the [3], the problem is formulated on a given system of n things,

each exposing a subset of IoT services and a set of k requests for service invoca-

tion. Each service j is assumed to be invoked periodically with period pj . Thing i

is assumed to be a constrained device capable of satisfying only one service invo-

cation at time. Moreover, a thing may be battery-powered. Let bi, be the battery

capacity on a thing i. Each invocation of a service j on a thing i has a fixed exe-

cution time tij , including both communication and computation times, and a fixed

energy cost cij , representing the overall amount of energy needed to accomplish the

invocation of service j on thing i. The cost of execution of a service on a thing has

a different impact depending on the initial battery level of the thing. In order to

make a fair comparison among costs, they consider costs of execution over a com-

mon (hyper-)period h and normalized with respect to the available energy bi. The

hyper-period h is computed as the least common multiple among all request period

pj; the normalized energy cost fij of executing service j on thing i is given by:

fij = h
pj

cij
bi

46 CHAPTER 4. STATE OF THE ART

Not all services can be invoked on any thing, but the same service can be invoked

on multiple equivalent things. Equivalence among things is based on context infor-

mation associated to thing services, which we assume is provided by mij as follows

mij =

1 if service j can be invoked on thing i

0 otherwise

They assume that each service request can be executed by at least one thing.

The utilization uij of allocating requests of service j on thing i is defined as

uij =

tij
pi

if mij = 1

+∞ otherwise

The thing allocation problem is then to allocate the k requests to the n things so

as to minimize the maximum (normalized) energy cost among things over a hyper-

period h, whilst guaranteeing that all service invocations are completely executed

before their implicit deadline. As we have seen, the problem is an Integer Linear

Problem that results to be an instance of the Agent Bottleneck Generalized Assign-

ment Problem (ABGAP) [3].

4.2.2 RTTA Algorithm

The proposed heuristic, named Real Time Thing Allocation algorithm (RTTA), is

a novel greedy polynomial-time heuristic algorithm to solve the ABGAP. The RTTA

pseudo-code can be viewed in the [3]. The input to RTTA are: the number of things n,

the number of requests k, the normalized energy cost matrix F = fij , the utilization

matrix U = uij , a precision threshold ε, and, finally, an optional priority matrix P

= pij . The latter is used to steer the thing allocation procedure Feas described in

detail in [3]. The output is: a boolean isFeasable, which takes the True value if

at least one allocation exists, the allocation vector y that maps service requests to

things, and the corresponding residual battery vector z. As explained in the [3], the

rationale behind RTTA is to iteratively search for the first feasible allocation that

4.2. REAL TIME THING ALLOCATION ALGORITHM 47

guarantees the highest minimum level of residual battery for all things. To this aim,

RTTA leverages the procedure Feas that, given a threshold θ, finds an allocation so

that the residual battery on each thing after service invocation is no lower than θ.

On every iteration, the threshold θ is decreased until a feasible solution is found

with an acceptable precision level measured by ε. More specifically, a binary search

strategy is used to reduce the time needed to execute the overall procedure. The

core of the RTTA algorithm is the procedure Feas. The pseudo-code of the Feas

algorithm is reported in [3]. The allocation is based on the values of a priority matrix

P passed as input. In particular, element pij of P is a measure of the desirability

of allocating request j to thing i. All requests are then considered iteratively for

allocation. At each step, the next request to allocate, say j, is the one having the

maximum difference between the largest and the second largest pij (for all things i

such that deadline constraint is met). Request j is then allocated to the thing i for

which pij is a maximum. If a service request for which no feasible assignment is

found, i.e., any possible allocation to a thing implies its residual battery level goes

below θ, the algorithm returns isFeasable equal to False.

48 CHAPTER 4. STATE OF THE ART

Chapter 5

Design QoS solution in FIWARE

IoT Architecture

Before to get in deep with the design aspects, we introduce the main NGSI opera-

tions and data structures considered to implement our FIWARE QoS solution.

5.1 NGSI Information model

The basic element of the NGSI Information model is the Context Entity. There are

two types of Context Entities: the Context Element, used to represent the state of

a resource (i.e. battery level, coordinates) and the Context Registration Element,

used to reach information on a resource, in particular where they can be reached.

The Context Entity is composed by attributes, used to represent the informations

about a resource. In the our model, a Context Entity represents the abstract view of

a thing. The attributes represent the resources offered by a thing (i.e temperature,

pressure measurements). To each attribute are associated metadata, that represent

parameters about a thing service (i.e. latency, energy cost). The metadata are used

to differentiate equivalent services in terms of QoS and costs. In the following we

present the main operations and data structures used by the NGSI-9/10 standard

for the context management.

49

50 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

5.1.1 NGSI-9 operations

registerContext This operation allows registering and updating of registered Con-

text Entities, their attribute names and availability. The ProvidingEntity URI is used

to identify the entity that provides the values of context attributes for registered

Context Entities.

• Input Message: registerContextRequest

Element name Element type Optional Description

ContextRegistrationList ContextRegistration

[1..unbounded]

No List of ContextRegistration

structures.

Duration xsd:duration Yes Desired availability period.

RegistrationId xsd:string Yes Registration identifier used

to update previous registra-

tions.

• Output message: registerContextResponse

Element name Element type Optional Description

Duration xsd:duration Yes Confirmed availability pe-

riod.

RegistrationId xsd:string No Registration identifier that

could be used to update this

registration.

ErrorCode StatusCode Yes Error reported by the opera-

tion.

5.1. NGSI INFORMATION MODEL 51

discoverContextAvailability This operation allows the synchronous discovery of

the potential set Context Entities, types of Context Entities and related Context In-

formation that can be provided. This is only checked against the registrations issued

in the register operation, not against the real source of the Context Information. In

other terms, the discovery operation provides an aggregated list of Context Regis-

tration.

• Input Message: discoverContextAvailabilityRequest

Element name Element type Optional Description

EntityId EntityId

[1..un-

bounded]

No List of Modifier to identify the

Context Entity(ies) to discover.

AttributeList xsd:string

[0..un-

bounded]

Yes List of attributes or group of at-

tributes to discover.

Restriction Restriction Yes Restriction on the attributes and

meta-data of the Context Informa-

tion.

• Output message: discoverContextAvailabilityResponse

Element name Element type Optional Description

ContextRegistration

ResponseList

ContextRegistrationResponse

[0..unbounded]

Yes List of Context Reg-

istration responses.

ErrorCode StatusCode Yes Error codes for gen-

eral operation er-

rors.

52 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

subscribeContextAvailability This operation allows the asynchronous discovery

of the potential set Context Entities, types of Context Entities and related Context

Information that can be provided. This does not guarantee that Context Information

about a Context Entity within this set is currently available. In other terms, this

operation allows to subscribe to the notification on the availability of an aggregated

list of Context Registrations.

• Input message: subscribeContextAvailabilityRequest

Element name Element type Optional Description

EntityId EntityId

[1..un-

bounded]

No List of identifiers or name patterns of

the Context Entity(ies) to discover.

AttributeList xsd:string

[0..un-

bounded]

Yes List of attributes or group of at-

tributes to be discovered.

Reference xsd:anyURI No The interface reference for the notify-

ContextAvailability operation.

Duration xsd:duration Yes Requested duration of the subscrip-

tion.

Restriction Restriction Yes Restriction on the attributes and

meta-data of the Context Information.

SubscriptionId xsd:string Yes Used in the notification message and

subsequent requests.

5.1. NGSI INFORMATION MODEL 53

• Output message: subscribeContextAvailabilityResponse

Element name Element type Optional Description

SubscriptionId xsd:string No The identifier of the subscription.

Duration xsd:duration Yes Negotiated duration of the sub-

scription.

ErrorCode StatusCode Yes Error reported by the operation.

notifyContextAvailability This operation allows receiving the notification about

the potential set of Context Registrations subscribed to by the subscriber that im-

plements the notification interface.

• Input message: notifyContextAvailabilityRequest

Element name Element type Optional Description

SubscriptionId xsd:string No The identifier of

the subscription

to which the no-

tification belongs

to.

ContextRegistrationResponse

List

ContextRegistration

Response [1..un-

bounded]

Yes List of Context Reg-

istration responses.

ErrorCode StatusCode Yes Error codes for gen-

eral operation er-

rors.

54 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

• Output message: notifyContextAvailabilityResponse

Element name Element type Optional Description

ResponseCode StatusCode No Status codes for general

operation errors.

5.1.2 NGSI-10 operations

queryContext This operation allows for the synchronous retrieval of Context In-

formation. The requestor of queryContext operation shall specify a list of entity

identifiers. Such identifiers may represent unique entities or entity identifier pat-

terns. An entity identifier patterns shall be represented as regular expressions. The

requestor of this operation may also specify the list of attributes to be retrieved by

this operation. The entity identifiers may include type attributes to specify the type

of target entities. It is assumed that the requestor is aware of possible entity types

and attributes through Context Entity Discovery operations or by other means. The

requestor of this operation may specify restrictions on the returned Context Infor-

mation. Restrictions are based on the values of attributes and meta-data of the

Context Information.

5.1. NGSI INFORMATION MODEL 55

• Input message: queryContextRequest

Element name Element type Optional Description

EntityIdList EntityId

[1...un-

bounded]

No List of identifiers of the Context

Entity(ies) for which the Context

Information is requested. Identi-

fiers can contain patterns repre-

sented as regular expressions.

AttributeList xsd:string

[0...un-

bounded]

Yes List of ContextAttributes and/or

AttributeDomains that are

queried.

Restriction Restriction Yes Restriction on the result set of the

query. Restrictions are based on

the values of attributes and meta-

data of the Context Information.

• Output message: queryContextResponse

Element name Element type Optional Description

ContextResponseList ContextElementResponse

[0...unbounded]

Yes List of Context In-

formation, related at-

tributes (or group of

attributes) and meta-

data.

ErrorCode StatusCode Yes Error codes for gen-

eral operation errors.

56 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

subscribeContext This operation allows the asynchronous retrieval of Context

Information. It is used for subscription to Context Information. The subscription

triggers the notifications about the matching ContextEntities based on the defined

NotifyCondition information passed in the subscribeContextRequest operation. In

the subscribeContextResponse operation a subscription id is returned, which is used

for notifications and in update and unsubscribe operations. The subscription dura-

tion is negotiated during the subscription request/response operation.

• Input message: subscribeContextRequest

Element name Element type Optional Description

EntityIdList EntityId

[1...un-

bounded]

No List of identifiers of the Context Entity(ies)

for which the Context Information is re-

quested. Identifier can contain patterns

represented as regular expressions.

AttributeList xsd:string

[0...un-

bounded]

Yes List of ContextAttributes and/or Attribute-

Domains to which the requestor wants to

subscribe.

Reference xsd:anyURI No URI that identifies the interface where the

notifyContext operation shall be invoked.

Duration xsd:duration Yes Requested duration of the subscription.

Restriction Restriction Yes Restriction on the attributes and meta-

data of the Context Information.

NotifyConditions NotifyCondition

[0...un-

bounded]

Yes Conditions when to send the notifications.

Throttling xsd:duration Yes Proposed minimum interval between noti-

fications.

5.1. NGSI INFORMATION MODEL 57

• Output message: subscribeContextResponse

Element name Element type Optional Description

SubscribeResponse SubscribeResponse Yes Response to the sub-

scribeContextRequest.

SubscribeError SubscribeError Yes The error reported by

the receiver of the re-

quest.

notifyContextRequest This operation allows receiving the notification about the

Context Information subscribed to by the subscriber that implements the notifica-

tion interface.

• Input message: notifyContextRequest

Element name Element type Optional Description

SubscriptionId xsd:string No The identifier of the

subscription to which

the notification be-

longs to.

Originator xsd:anyURI No The original re-

questor of the sub-

scription which

caused this notifica-

tion.

ContextResponseList ContextElementResponse

[0...unbounded]

Yes List of Context In-

formation, related at-

tributes (or group of

attributes) and meta-

data.

58 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

• Output message: notifyContextResponse

Element name Element type Optional Description

ResponseCode StatusCode No The response message re-

ported by the receiver of the

request.

updateContext This operation allows updating a set of Context Information, re-

lated attributes and metadata. For each ContextElement of the list of Context Ele-

ments received in the updateContextRequest, if an empty Context Value is provided,

the operation behaviour shall be:

1. if the UpdateAction is set to “update” or “append”, the receiver shall reject

the related changes requested for the specific ContextElement and report an

error in the response;

2. If the UpdateAction is set to “delete”, the receiver shall ignore the ContextValue

parameter, perform the related changes requested (delete) and report a suc-

cess in the response.

5.1. NGSI INFORMATION MODEL 59

• Input message: updateContextRequest

Element name Element type Optional Description

ContextElementList ContextElement

[1...unbounded]

No List of Context Elements con-

taining only the subset of Con-

text Information (related at-

tributes (or context domain)

and metadata) to be modified.

UpdateAction UpdateActionType No Indicates the type of action that

is performed within the update

operation.

• Output message: updateContextResponse

Element name Element type Optional Description

ErrorCode StatusCode Yes Error codes.

ContextResponseList ContextElementResponse

[0...unbounded]

Yes List of response con-

taining the indication

of the Context Element

and the related status-

Code.

60 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

5.1.3 Data Structure definition

ContextElement structure In the Context Element are stored context values.

It is used in the ContextElementList parameter of the updateContext Request op-

eration and the ContextElement field of the ContextElement Response structure.

ContextAttribute element is used to store values about a thing, such as battery level

and position in terms of latitude and longitude. Metadata can be stored in Metadata

field of the ContextAttribute element or in the DomainMetadata element.

Element name Element type Optional Description

EntityId EntityId No Identifies the Context Entity for

which the Context Information is

provided.

AttributeDomainName xsd:string Yes Name of the attribute domain

that logically groups together set

of Context Information attributes.

Examples of attribute domain are:

device info (battery level, screen

size, ...), location info (position,

civil address, ...).

ContextAttribute ContextAttribute

[0...unbounded]

Yes List of Context Information at-

tributes. Note: In case of the

attributeDomainName is specified

all contextAttribute have to be-

long to the same attributeDomain-

Name.

DomainMetadata ContextMetadata

[0..unbounded]

Yes Metadata common to all at-

tributes of the logical domain

(related to the AttributeDomain).

5.1. NGSI INFORMATION MODEL 61

ContextRegistration structure Context Registration structure is used in the Con-

textRegistrationList parameter of registerContext operation and the ContextRegis-

tration field of the ContextRegistration response structure. This structure can be

used either to register/update the information about Providing Application or to

register/update the availability of ContextEntities and their related attributes.

Element name Element type Optional Description

EntityIdList EntityId [1...unbounded] Yes List of identifiers for

the Context Entities

being registered.

ContextRegistration

AttributeList

ContextRegistrationAttribute

[0...unbounded]

Yes List of ContextAt-

tributes and/or At-

tributeDomains which

are made available

through this registra-

tion.

RegistrationMetadata ContextMetadata [0...un-

bounded]

Yes Metadata characteriz-

ing this registration.

ProvidingApplication xsd:anyURI No URI identifying the ap-

plication that provides

the values of the con-

text attributes for the

target Context Enti-

ties.

62 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

EntityId structure ContextEntities are identified using an entity identifier. The

optional entity type may be needed when the EntityId doesn’t contain type informa-

tion or when the EntityId is only unique per entity type.

Element name Element type Optional XML Type Description

ID xsd:string No element Identifier of the Context En-

tity(ies). This value may be a

string following the anyURI

restrictions or a pattern rep-

resented.

Type xsd:anyURI Yes attribute Indicates the type of Con-

text Entity(ies) for which the

Context Information is re-

quested. If EntityId unique-

ness is only guaranteed in

combination with Type, then

Type shall be present.

IsPattern xsd:Boolean Yes attribute Indicates whether the Enti-

tyId is a pattern or an id. If

this attribute is omitted, it

shall be treated as false.

5.1. NGSI INFORMATION MODEL 63

ContextAttribute structure A context attribute represents atomic Context Infor-

mation. An attribute is defined as a set of information, namely a name, a type, a

value and a set of associated metadata.

Element name Element type Optional Description

Name xsd:string No Name of the Context Infor-

mation attribute.

Type xsd:anyURI Yes Indicates the type of the

value field.

ContextValue xsd:any No The actual value of the Con-

text Information attribute.

Metadata ContextMetadata

[0..unbounded]

Yes Metadata about the Context

Information attribute.

ContextRegistrationAttribute structure Equal to the previous element except

for the ContextValue. This element is part of the ContextRegistration structure so it

is used to expose the services offered by a resource.

Element name Element type Optional Description

Name xsd:string No Name of the ContextAttribute

and/or AttributeDomain.

Type xsd:string Yes Indicates the type of the Contex-

tAttribute value.

isDomain xsd:boolean No Indicates if this structure refers to

a ContexAttribute or a Attribute-

Domain.

Metadata ContextMetadata

[0..unbounded]

Yes Metadata about the Context Infor-

mation attribute.

64 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

ContextMetadata structure It is used to represent any type of metadata.

Element name Element type Optional Description

Name xsd:string No Name of metadata.

Type xsd:anyURI Yes Indicates the type of the value field.

Value xsd:any No The actual value of the metadata.

Restriction structure It is used to express constrains to reduce the search space

of the Context management component. It is used in the queryContext request, dis-

coverContextAvailability request and subscribeContextAvailability request. There

are two kind of restrictions:

• AttributeExpression, that filters the result set based on expressions on the

values of the context attributes.

• Scope, that compared to AttributeExpression, a-priori limit the set of context

sources that are needed for serving the request.

Element name Element type Optional Description

AttributeExpression xsd:string No Name of metadata String containing an

XPath restriction.

Scope OperationScope

[0..unbounded]

Yes List of scope definition.

OperationScope structure

Element name Element type Optional Description

ScopeType xsd:string No Name of the scope type.

ScopeValue xsd:any Yes Contains the scope value for the

defined scope type.

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 65

5.2 Design of the FIWARE IoT QoS support

Given the set of IoT GEs, we have addressed the problem to identify a meaningful

deployment of these software components. The IoT GEs selected are: IoT Discovery,

IoT Broker and Device Management, of which we use the IoT Agent- LightWeightM2M

over CoAP component (that works as adapter to communicate with LWM2M/CoAP

devices). Moreover, the IoT Broker has been wrapped in the new implemented mod-

ule called QoSBroker. The deployment is depicted in the figure 5.1.

We can see as the deployment configuration can be split in two side. The lower

one in which there are IoT Agent and devices that communicate using the LightWeight

M2M protocol. The main function of the IoT Agent component is mapping between

the LWM2M protocol and the NGSI protocol. In-fact it is evident as, all the other

GEs in the upper side, exchange context information using the NGSI-9/10 protocol.

5.2.1 QoS model design

The QoS model has been built starting from the data structures defined in the NGSI-

9/10 information model. In a QoS context, a client application should negotiate a

SLA if it wants to use a specific service with a guaranteed QoS level. In our model we

provide two phases, Allocation and Dispatching. In the first one, the client forwards

a service request specifing a series of restrictions and a QoS level. For example,

an application can subscribe a temperature measurements service, specifing a ge-

ographical scope and a maximum response time but especially a rate with which

it wishes to receive data. The previous parameters represent the content of the

Service Agreement Offer that the client sends to the instance of the QoSBroker to

establish a SLA for a particular service. Naturally, the offer must be compliant to a

template that provides sections in which it can be specified the QoS requirements

and features of the required service. These will be used to identify a single/group of

things that can satisfy the request respecting the parameters request.

A Service Agreement can be establish for the following NGSI-10 operations:

66 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

Figure 5.1: FIWARE IoT Deployment

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 67

• queryContext ;

• updateContext ;

• subscribeContext.

The Dispatching, represent the phase in which a service request, for which a SLA

has been established, is carried out. The SLA is uniquely identified through the id

generated in the Allocation phase. FIWARE IoT platform doesn’t provide an Allo-

cation phase of the resources, so we have created a new operation, called Service

Agreement, through which a client can specified a SLA for a specific service, by

means of the QoSBroker. This operation is carried out through a specific template

built using data structures taken from the NGSI information model. In the follow-

ing we describe the Service Agreement operation along with the data structures

through which a SLA can be established.

ServiceAgreement operation This operation allows the creation of a service level

agreement. The input for this operation is the ServiceAgreementRequest element,

composed by a list of ServiceDefinition elements. This structure provides a list

of EntityId through which discover a set of Context Entities. In our model they

represent the abstraction of a thing. Each Context Entity is composed by a list of

attributes that are the list of resources exposed by a thing. The discovery of the

Context Entities can be carried out in three way:

• using the Context Entity type and the id of the Context Entity expressed as

regular expression;

• using only the type of the Context Entity;

• using both the Context Entity type and the id of the Context Entity.

In the tables below, we present the data structures used in the Service Agree-

ment operation.

68 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

ServiceAgreement Request

Element name Element type Optional Description

ServiceDefinition List serviceDefinition

[0...unbounded]

No Element containing the QoS re-

quirements and features of the re-

quired service.

ServiceDefinition structure Data structure that distinguishes a particular SLA.

It provides the list of required services along with the parameters that define the

QoS level.

Element name Element type Optional Description

operationType xsd:string No Type of operation (queryContext, up-

dateContext, subscribeContext).

EntityIdList EntityId [1...un-

bounded]

No List of Modifier to identify the Context

Entity(ies) to discover.

AttributeList xsd:string

[1...unbounded]

No List of attributes to discover.

Restriction Restriction No Restriction NGSI element to specify

QoS requirements and features of the

required service.

Restriction structure We use this NGSI element to specify the QoS requirements

(maximum response time and maximum request rate) of the required service. It is

also used to filter the thing based on geographical scope, that can be describe as

a specific point (latitude and longitude) or a circular area (center latitude, center

longitude and radius). In particular, we have defined new OperationScope (NGSI

information model) elements. One for the QoS parameters and two for the geo-

graphical scopes. Scope structure taken from NGSI information model:

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 69

Element name Element type Optional Description

Scope OperationScope

[0..unbounded]

No List of scope definition.

Here we can figure out the OperationScope structure.

Element name Element type Optional Description

ScopeType xsd:string No Name of the scope type.

ScopeValue xsd:any No scope value for the defined scope

type.

The new scopeTypes are:

• Circle: scope type used to specify a circular geographical scope for the selec-

tion of the things;

• Point: scope type used to specify things in a particular point of interest;

• QoS: scope type to specify QoS parameters in a Service Agreement Request.

For the Circle scope type, the structure is:

Element name Element type Optional Description

centerLatitude xsd:float No Latitude of the center point of the

circular area.

centerLongitude xsd:float No Longitude of the center point of

the circular area.

radius xsd:float No Radius of the circular area.

70 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

Instead for the Point scope type, the structure is:

Element name Element type Optional Description

Longitude xsd:float No Longitude of the thing that pro-

vides the service.

Latitude xsd:float No Latitude of the thing that provides

the service.

Finally, the QoS scope value described using the following structure:

Element name Element type Optional Description

maxResponseTime xsd:float No maximum response time of the re-

quired service.

maxRequestRate xsd:float No minimum inter-request time be-

tween two different requests for

the same service.

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 71

To clarify what we have said until now, we present an example of Service Agree-

ment Request.

<?xml version="1.0" encoding="UTF−8"?>

<serviceAgreementRequest>

<serviceDefinition>

<operationType>queryContext</operationType>

<entityIdList>

<entityId type="environment" isPattern="true">

<id>.*</id>

</entityId>

</entityIdList>

<attributeList>

<attribute>temperature</attribute>

</attributeList>

<restriction>

<scope>

<operationScope>

<scopeType>Point</scopeType>

<scopeValue>

<latitude>30</latitude>

<longitude>43.656998</longitude>

</scopeValue>

</operationScope>

<operationScope>

<scopeType>QoS</scopeType>

<scopeValue>

<maxResponseTime>15</maxResponseTime>

<maxRequestRate>15</maxRequestRate>

</scopeValue>

</operationScope>

</scope>

</restriction>

</serviceDefinition>

</serviceAgreementRequest>

72 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

In our model we use the ContextRegistration element, not only to represent the

reachability information about a thing, but also to represent the services that are

exposed by a thing (that is the abstraction of a physical device). So each attribute,

in the ContextRegistration, matches a thing service. A series of parameters are

associated to each service to characterize it from a QoS point of view. The param-

eters are: latency, that is compared with the maximum response time value of a

service request and energy cost, that gives a measurement of how much the execu-

tion of the service reduces the thing battery level. A ContextRegistration structure,

representing the information about a thing, is created in the IoT Discovery when

it receives a registerContext message from the IoT Agent. In-fact the IoT Agent

component carries out a registerContext operation every time a new device estab-

lishes a connection to it. As we will see in the next section, the data to build a

ContextRegistration element are taken from the information provided in the Device

Provisioning to the IoT Agent. In the following we show an example of ContextReg-

istration element used to describe the information about a thing.

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 73

<?xml version="1.0" encoding="UTF−8"?>

<contextRegistration>

<entityIdList>

<entityId type="temperature" isPattern="false">

<id>sensor_1 :environment</id>

</entityId>

</entityIdList>

<contextRegistrationAttributeList>

<contextRegistrationAttribute>

<name>temperature</name>

<type>temperature</type>

<isDomain>false </isDomain>

<metadata>

<contextMetadata>

<name>latency</name>

<type>float </type>

<value>2</value>

</contextMetadata>

<contextMetadata>

<name>energyCost</name>

<type>float </type>

<value>0.07</value>

</contextMetadata>

</metadata>

</contextRegistrationAttribute>

</contextRegistrationAttributeList>

<providingApplication>http : / / localhost :4041/ngsi10</providingApplication>

</contextRegistration>

The ContextElement is used to store the value of the battery level and the coordi-

nates of a thing. These values are received by the IoT Agent through asynchronous

updates coming from the devices. As specified in the next section, every time the

IoT Agent receives a notify message from a device, it carries out an updateContext

74 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

operation that forwards to the QoSBroker which stores the updated values in its

own repository. In this way a new ContextElement is created or, if the values were

relative to an existing ContextElement structure, an update is carried out. Here we

can see an example of ContextElement.

<?xml version="1.0" encoding="UTF−8"?>

<contextElement>

<entityId type="temperature" isPattern="false">

<id>sensor_1 :environment</id>

</entityId>

<contextAttributeList>

<contextAttribute>

<name>battery</name>

<type>float </type>

<contextValue>80.0</contextValue>

</contextAttribute>

<contextAttribute>

<name>coords</name>

<type>coords</type>

<contextValue>"45.0,56.1"</contextValue>

</contextAttribute>

</contextAttributeList>

</contextElement>

5.2.2 Allocation phase

In the sequence diagram of the figure 5.2 is depicted the allocation phase in which

can be established a SLA for a specific service request. This operation is carried out

by means of a Service Agreement Request.

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 75

Figure 5.2: Allocation phase sequence diagram

76 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

As we can see in the previous figure, the negotiation starts with an service agree-

ment offer sent by the client application. In the offer are expressed the required ser-

vices (i.e. temperature measurements), the type of operation (i.e. queryContext),

the QoS parameters (i.e. maximum response time and maximum request rate) and

the geographical requirements. The QoSBroker starts a discovery procedure using

a regular expression as entityId, specifying an attribute list (names of the required

services) and the restrictions taken from the agreement offer (except for the QoS re-

strictions, that are used in the execution of the service selection algorithm). The IoT

Discovery replies with the discoveryContextAvailabilityResponse that is processed

by the QoSBroker. If the response is “ContextElement not found”, the allocation

phase terminates immediately because no reservation is possible. In this case the

service request is rejected. If the response is a "ContextRegistrationResponseList"

the allocation phase can take place. For every ContextRegistrationResponse ele-

ment the corresponding ContextElement is retrieved from the internal QoSBroker

repository, to peak the the battery level and the coordinates values relative to each

thing. Infact the previous values are used to represent the abstration of a device,

that is Thing. This structure is composed by the battery level, the coordinates and

the list of services offered by a device. This information together with the QoS

restrictions (specified in the service agreement request) are used in the heuristic

algorithm to compute an allocation schema that will represents the SLA of that ser-

vice request. If a feasible allocation is not found, the service request is rejected.

Otherwise, it means that a reservation is possible, so a transactionId is sent to the

user. The transactionId uniquely identifies the SLA. It is used to uniquely identifies

the Context Entity in which the allocation schema is stored (it will be the id of the

entityId of the Context Entity). The transactionId is composed by the pre-position

“QoS” to distinguish it, from any other entityId. The allocation schema is stored in

the internal repository of the QoSBroker using a ContextRegistration element, as

explain below:

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 77

ContextRegistration structure It is used to store the allocation schema. It rep-

resents the mapping between services guaranteed in the SLA and the things to

which the services are allocated. The pointer to the things is the entityId of those

Context Entities through they are described. We have used the same fields of the

NGSI ContextRegistration structure but in our model they have a different meaning.

Element name Element type Optional Description

EntityIdList EntityId [1..un-

bound]

No TransactionId to uniquely

identify the SLA.

ContextRegistrationAttrbute

List

ContextRegistration

Attribute [0...un-

bounded]

No List of attributes that

represent the services

granted in the SLA.

RegistrationMetadata ContextMetadata

[0...unbounded]

Yes Metadata characterizing

the SLA.

78 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

ContextRegistrationAttribute structure This element is used to describe the

association between a service and the entityId that uniquely identifies a Contex-

tRegistration element. It represents the thing that offers that service. A service

can be associated to more than one things, in order to distribute the load on the

resources available.

Element name Element type Optional Description

Name xsd:string No Name of the ContextAttribute

that represents the service

guaranteed in the SLA.

Type xsd:string Yes Indicates the type of the Con-

textAttribute value.

isDomain xsd:boolean Yes Indicates if this structure

refers to a ContexAttribute or

a AttributeDomain.

metadata ContextMetadata

[0..unbounded]

No Metadata with entityId of the

context entity that offer the

attribute(service) and name of

that attribute.

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 79

For the sake of simplicity, we present an example of allocation schema:

<?xml version="1.0" encoding="UTF−8"?>

<registerContextRequest>

<contextRegistrationList>

<contextRegistration>

<entityIdList>

<entityId type="allocation " isPattern="false">

<id>QoS_jshifhjsi898yhdjhd</id> (transactionID)

</entityId>

</entityIdList>

<contextRegistrationAttributeList>

<contextRegistrationAttribute>

<name>temperature</name>

<type>temperature</type>

<isDomain>false </isDomain>

<metadata>

<contextMetadata>

<name>equivalentEnt_1</name>

<type>string</type>

<value>tempSens_1,temp_1</value>

</contextMetadata>

</metadata>

</contextRegistrationAttribute>

</contextRegistrationAttributeList>

<providingApplication></providingApplication>

</contextRegistration>

</contextRegistrationList>

<duration></duration>

<registrationId></registrationId>

</registerContextRequest>

80 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

The transactionId is used in the Dispatching phase when the service, granted by

the SLA, is requested by the application. It is used to find out the corresponding

allocation schema containing the reserved things. Each service correspond to a

attribute of the context entity created in the Allocation phase. Each attribute has

a list of metadata elements. Each metadata element points to a real Context Entity

that describe the thing that offers a particular service. The pointer is represented

by the entityId of the Context Entity stored in the IoT Discovery.

5.2.3 Dispatching phase

In the Dispatching phase the client application forwards the request for that ser-

vices for which it was established a SLA in the previous phase. It carries out the

request using the transactionId returned by the QoSBroker. In the following, we

present the descriptions of the Dispatching for the NGSI operations take in consid-

eration: queryContext, updateContext and subscribeContext.

Query Context In the Dispatching phase (figure 5.3), the user sends a queryCon-

textRequest using the transactionId as entityId. It can be sent also a query with

a standard entityId related to a normal Context Entity stored in the IoT Discovery

(this case represents a best-effort service). The entityId uniquely identifies the al-

location schema associated to the SLA. To each attribute is associated (through the

ContextMetadata element) the list of pointers to the equivalent entities. At last, for

each attribute, a discoveryContextAvailability operation is executed, using as en-

tityId the one in the metadata element of the allocation list. If the discovery fails

for that entity, the next entityId in the list is taken. The queryContextRequest in the

next phase is the normal one as designed in FIWARE, using the entityIds of concrete

entities. It is forwarded a queryContext for each attribute in the allocation mapping.

Update Context In the Dispatching phase (figure 5.4), the user sends a update-

ContextRequest using the transactionId as entityId. It can be sent also an update

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 81

Figure 5.3: Query Context sequence diagram

82 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

Figure 5.4: Update Context sequence diagram

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 83

standard entityId related to a normal Context Entity stored in the IoT Discovery

(this case represents a best-effort service). The entityId uniquely identifies the al-

location schema associated to the SLA. To each attribute is associated (through the

ContextMetadata element) the list of pointers to the equivalent entities. At last, for

each attribute, a discoveryContextAvailability operation is executed, using as enti-

tyId the one in the metadata element of the allocation list. If the discovery fails for

that entity, the next entityId in the list is taken. The updateContextRequest in the

next phase is the normal one as designed in FIWARE, using the entityIds of con-

crete entities. It is forwarded a updateContext for each attribute in the allocation

mapping.

Subscribe Context In the Dispatching phase (figure 5.5), the user sends a sub-

scribeContextRequest using the transactionId as entityId. It can be sent also a

subscribe standard entityId related to a normal Context Entity stored in the IoT Dis-

covery (this case represents a best-effort service). The entityId uniquely identifies

the allocation schema associated to the SLA. To each attribute is associated (through

the ContextMetadata element) the list of pointers to the equivalent entities. At last,

for each attribute, a discoveryContextAvailability operation is executed, using as

entityId the one in the metadata element of the allocation list. If the discovery/sub-

scribeContextAvailability fails for that entity, the next entityId in the list is taken.

The next subscribeContextRequest is like the normal one (as designed in FIWARE),

using the entityIds of the concrete entities.

The subscribeContext operation provides also the notification phase. As we can

see in the figure 5.6, there are two types of notifications. The first one is the normal

one in which a new device value is notified to the client application. The second one

is used to notify the availability of a new device to the QoSBroker.

84 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

Figure 5.5: Subscribe Context sequence diagram

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 85

Figure 5.6: Notification and Availability notification sequence diagrams

86 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

5.2.4 IoT Agent LWM2M/CoAP

As we have said before we have chosen the IoT Agent LWM2M/CoAP version that

works as protocol adapter for LWM2M devices. The LWM2M protocol is targeted in

particular at constrained devices, e.g. devices with low-power micro-controllers. It

provides a light and compact secure communication interface along with an efficient

data model, which together enables device management and service enablement for

M2M devices. CoAP is used as underlying transfer protocol. LWM2M defines a sim-

ple resource model where each piece of information made available by the LWM2M

Client (a device that support LWM2M protocol) is a Resource. The Resources are

further logically organized into Object. The LWM2M Client can have any number of

Resources, each of which belongs to an object [17].

Figure 5.7: LWM2M Object model

In the starting phase, we have addressed the problem to test the communication

between the IoT Agent, the IoT Discovery and the IoT Broker. The IoT Agent has

been designed to communicate only with the Data Context Broker GE belonging to

the Data FIWARE technical chapter. To this aim, we had to analyze the implemen-

tation of the IoT Agent to understand in which way set the communication with the

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 87

IoT Discovery and the IoT Broker. So we have modified the configuration file and

the implementation of the IoT Agent in order to spread the exchange of informa-

tion towards two GEs instead of only one. Now the IoT Agent carries out NGSI-9

operations with the IoT Discovery to register new devices and it carries out NGSI-

10 operations with the IoT Broker. In the next phase, once the communication has

been tested, we have put into communication the IoT Agent with our broker imple-

mentation, the QoSBroker (that wrap the FIWARE IoT Broker). In the next section

we present a brief description of the operations to manage LWM2M devices, using

the QoSBroker. We also describe the changes we have applied in the IoT Agent to

enrich available informations about a device.

Device Provisioning The IoT Agent offers a provisioning API where devices can

be pre-registered, so all the information about service and subservice mapping, at-

tribute configuration and mapping NGSI-LWM2M attributes can be specified in a

per device way. For each attribute are specified metadata that gives additional in-

formation about a thing resource. It can be also specified general metadata relative

to an entire device. This operation allows to provide a new device in the IoT Agent’s

device registry. It takes a device in JSON format as payload. The information pro-

vided are also used in registerContext operation to register the availability of a new

context entity and its attributes to the discovery module.

Figure 5.8: Device Provisioning

88 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

The Device Provisioning Operation is based on a device model, that specify the

fields used to build the mapping between LWM2M information model and NGSI

information model.

Attribute Definition

name Device Id that will be used to identify the device.

service Name of the service the device belongs to.

service path Name of the sub-service the device belongs to.

entity name Name of the Context Entity representing the de-

vice.

entity type Type of the Context Entity.

time-zone Time zone of the sensor if it has any.

attributes List of active attributes of the device.

lazy List of active lazy attributes of the device.

commands List of active commands of the device.

internal attributes List of internal attributes with free format for spe-

cific IoT Agent configuration.

We have modified the previous model adding the possibility to specify metadata

for the attribute field lazy. The aim is to register in the IoT Discovery, enriched

device informations. In this way the QoSBroker, in the discovery phase, can retrieve

parameters about the services exposed by a thing (i.e. latency, energy cost). In the

following we can see an example of device provisioning request in which the field

metadata, contains the parameters like cost or latency, relative to a thing service.

In the following we can see an example of device provisioning request.

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 89

{

"name": "sensor_1" ,

"entity_type " : "environment" ,

" attributes " : [

{

"name": "battery " ,

"type " : " f loat " ,

}

] ,

" lazy " : [

{

"name": "temperature" ,

"type " : " f loat " ,

"metadata" : [

{

"name": " latency " ,

"type " : " f loat " ,

"value " : "3"

},

{

"name": "energy_cost " ,

"type " : " f loat " ,

"value " : "0.12"

}

]

}

] ,

"commands" : [

{

"name": "power" ,

"type " : " string "

}

] ,

" internal_attributes " : {

90 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

"lwm2mResourceMapping" : {

"battery" : {

"objectType " : 7392,

"objectInstance " : 0,

"objectResource " : 1

},

"temperature" : {

"objectType " : 7392,

"objectInstance " : 0,

"objectResource " : 2

},

"power" : {

"objectType " : 7392,

"objectInstance " : 0,

"objectResource " : 3

}

}

}

}

Device Registration Operation to connect a device to the IoT Agent (figure 5.9).

In this phase, it is done the mapping between the LWM2M resources and NGSI

attributes provided in the device provisioning operation. The registerContext oper-

ation notify to the IoT Discovery the availability of a new context entity.

Device Active Observation For that attributes registered as active in the device

provisioning, the IoT Agent receives asynchronous notify messages by the LWM2M

devices (figure 5.10). The IoT Agent sends an updateContext to the QoSBroker

to update the attribute value in the relative context entity element, that store the

informations of the device. A ContextElement is created inside the QoSBroker. It

represents a structure to store the updated values relative to a particular device.

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 91

Figure 5.9: Device Registration

Figure 5.10: Device Active Observation

Device Unregistration Operation to disconnect a device from the IoT Agent. The

latter send a registerContext to the IoT Discover with a duration of one second.

Figure 5.11: Device Active Observation

92 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

5.2.5 Development specification

In this section, we get in deep in the implementation details of the QoSBroker. This

module is built as a wrapper for the IoT Broker, to extend its functionalities in order

to guarantee a QoS support in the FIWARE IoT platform. The main components of

the QoSBroker are:

• RestController, module that intercepts the restful calls to execute a series of

operations coming from the client side

• QoSBrokerCore, module to manage NGSI-10 operations and service agree-

ment request. It represents the core of the QoSBroker module, because it

manages the allocation and dispatching phases;

• QoSManager, module that computes the incoming service agreement request

and computes the set of inputs of the allocation algorithm;

• QoSMonitor, module that manages the asynchronous updates sent by the IoT

Agent for that device attributes registered as active in the Device Provisioning

operation. It stores or update the Context Elements that keep trace of the

battery levels and/or coordinates of the devices. These values togheter with

the informations in the ContextRegistration structures are used to build the

thing data;

• QoSCalculator, module that executes the service allocation heuristic;

• QoSCouchDB, module to manages the repositories relative to the IoT context

in which the QoSBroker works;

• IoT Broker, instance of the FIWARE IoT Broker.

The figure 5.12 shows all the interactions between the modules described in

the previous list. It is evident how the QoSBroker represents an extension of the

FIWARE IoT Broker. The presence of this new module is transparent for the other

FIWARE modules, that are the IoT Discovery and the IoT Agent.

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 93

Figure 5.12: QoSBroker details

94 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

In the following we will analyze the interactions between all modules, for the

operations that allow to realize a QoS solution in FIWARE.

Figure 5.13: Device Active Observation

Device Active Observation After the notify coming from the device, the IoT Agent

carries out an updateContext that is intercepted by the RestController component of

the QoSBroker. The RestController replies the updateContext message to the QoS-

BrokerCore, that sends the update values to the QoSMonitor. It creates or updates

the ContextElement structures in the repository. Finally, the RestController replies

with an updateContext Response to the IoT Agent. All the operations are depicted

in the figure 5.13.

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 95

Figure 5.14: Allocation phase

96 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

Allocation phase The operations of the Allocation phase are depicted in the fig-

ure 5.14. As we can see, the client application invokes a createAgreement opera-

tion through which specifies a service agreement offer. The offer contains the type

of operation, the QoS requirements and a geographical scope. The RestController

intercepts the operation call. After the validation of the service agreement request,

the RestController re-sends the createAgreemnt message to the QoSBrokerCore.

This component carries out a discovery procedure to take all the informations (Con-

textRegistration and ContextElement structures), that are used to build the list of

things object. The thing object represents the abstraction of a physical device. The

negotiation procedure proceeds if the required services are offered by at least one

thing for each service. The list of things object are sent to the QoSMonitor to up-

date the repositories that keep track of the available things and of the equivalent

things for each service. In the end, the QoSBrokerCore calls the createAgreement

function of the QoSManager. This component computes the input parameters of the

QoSCalculator for the heuristic algorithm, given the list of things objects, the list

of equivalent things for each service and the list of service requests (containing the

QoS requests parameters). The last operation is the computeAllocation that implies

the execution of the service selection algorithm implemented by the QoSCalculator

module. If a feasible allocation is found, a new allocation schema is stored in the

repository and the transactionId is sent to the client application through the Ser-

viceAgreementResponse structure. Otherwise, in case a feasible allocation is not

found, a service allocation failed message is sent to the client.

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 97

Figure 5.15: Query Context

98 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

Query Context In the figure 5.15 we can see the operations carry out in the

queryContext Dispatching phase. There are two types of query context operation.

The first one is carried out using a normal entityId, so it is sent to the IoT Broker

and executed as a normal NGSI query context as originally implemented in the FI-

WARE platform. The second one is carried out using a transactionId as parameter.

It is forwarded to the QoSBrokerCore component by the RestController. The QoS-

BrokerCore component queries the QoSCalculator module to retrieve the allocation

schema associated to the transactionId. In the allocation schema for each granted

service is associated a list of thing ids that represent the globally unique identi-

fiers of the ContextRegistration structures associated to the devices. The Weighted

Round Robin Policy component implements the policy mechanism to choose the next

id of the list taken from the allocation schema. Once for each service in the SLA,

an id is retrieved, the QoSBrokerCore carries out a discovery phase querying the

IoT Discovery. This operation permits to retrieves the ContextRegistration struc-

tures associated to each thing id. Thanks to the ContextRegistration informations,

the QoSBrokerCore can forward a series of query context towards the IoT Broker

that will query the IoT Agent connected to the devices that expose the services read

in the SLA. Finally, a queryContextResponse message, containing the values read

through the queryContext, is sent to the client application.

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 99

5.2.6 Implementation details

In the following section is presented the list of data structures used to implement

the FIWARE QoS support. The transactionId uniquely identifies a service agreement

request and an allocation schema (if a feasible allocation is found). A transactionId

is generated as an hash string every time a new service request is forwarded by

the upper layer. The list of attributes in the ServiceAgreementRequest represent

the list of required services. Each required service is expressed as a string that

uniquely identify a service exposed by the IoT architecture. The informations of the

ServiceAgreementRequest are parsed and a Request object is created. The fields of

this object are OperationType (queryContext, updateContext, ..), QoS scope value

(object containing the fields "maxResponseTime" and "maxRequestRate" that is the

requested period pj of a service), Restriction (NGSI object), EntityIdList (list of enti-

tyIds used to discover the ContextRegistration elements associated to the available

things), list of string representing the required services (list created from the list

of attributes in the ServiceAgreementRequest). Each Request object is uniquely

identified through a transactionId. For each ContextAttribute in the ContextReg-

istrationResponse that matches a required service name, a ServiceFeatures object

is created. This object has the fields latency (tij) and energy cost (cij). For each

ContextElement (taken from the QoSMonitor repository) associated with a Contex-

tRegistrationResponse a Thing object is created. The fields of this object are bat-

tery level, coordinates (values taken from the ContextElement stored in QoSMonitor

repository) and a map to associate each service to an object ServiceFeatures. Each

Thing is uniquely identified by an id (that is the id in the entityId structure of the

ContextRegistration that represent the device). Every ContextRegistrationResponse

element has a list of ContextAttribute (list of services exposed by a thing). In our

model this feature is represented in the Thing object as a map of ServicesFeatures

objects having the service name as key. The service name is considered globally

unique. The list of Thing objects is stored in a repository in which each thing is

uniquely identified through its id. It is also stored the list of equivalent things id

100 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

associated to each required service. After this phase the QoSBroker invokes the

createAgreement function of the QoSManager passing as paramenters the trans-

actionId and Request object relative to the last service agreement request. The

QoSManager, in the createAgreement function, reads the list of previous Request

objects (they were created in the previous service requests in which a feasible al-

location was found), the map of Thing objects and the map of equivalent things for

each service. Then, the QoSManager calls the QoSCalculator function, that imple-

ment the heuristic algorithm. The QoSCalculator returns a reservation object that

contains the result of the service selection algorithm. If the allocation is feasible the

last Request object, computed in the last service request, and the allocation schema

are stored in a repository by the QoSManager.

5.2.7 RTTA with multi-service allocation policy

In the [3], the authors present a service allocation algorithm for which a service is

allocated only to one specific thing. To enlarge the set of solutions of the problem,

we have modified the previous algorithm introducing the possibility to distribute the

allocation of a service to multiple things instead of only one. The service requests

can be spread over multiple things following a round robin policy. Taking in consid-

eration the constrains of the original algorithm [3] about the battery level and the

utilization, the distribution of the service requests permits to decrease the service

execution energy cost but implies a delay of the deadline associated to each task

relative to a request. The result is that the set of solutions of the allocation problem

is greater, because the split factor represents a divider factor for the energy cost

and the load of the execution of a service on a thing. In the following we present

the new Feas procedure based on the Feas algorithm described in [3]. The inputs

are the same of the original Feas procedure except for Φ. It represents the list of

factors h
pj

associated to each service request. These coefficients are factorized to

compute the list of possible split factors of a service request on multiple things.

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 101

Algorithm 1 RTTA with multi-selection allocation policy

1: procedure Feas()

2: Algorithm RTTA with multi-thing allocation policy

3: Input: n, k, P, F, U, Φ, θ

4: Output: z, y, isFeasible

5: N← {1...n}; K← {1...k}; ν ← k(21/k − 1)

6: isFeas← True

7: for i ← 1 to n do ci ← 0

8: for i ← 1 to n do zi ← 1

9: while isFeas = True and K 6= O do

10: d∗ ← −∞

11: for each j ∈ K do

12: Sj ← Factorization(ϕj)

13: sp ← 1

14: while Sj 6= O do

15: F
sp
j ← {i ∈ N : ci + (uij/sp) < ν, zi − (fij/sp) > θ}

16: if
∑
c
sp
ij < sp then

17: Sj ← Sj \ {sp}

18: if Sj = O then

19: isFeas← False

20: else

21: sp ← Sj(0)

22: continue

23: i’← arg max
{
pij :< i, c

sp
ij >∈ F

sp
j

}
24: if

∑
c
sp
ij − c

sp
ij < sp then

25: d∗ ← +∞

26: W sp ← ComputeAllocation(F
sp
j , sp)

27: for each < i,w
sp
ij >∈W sp do

28: yj ←< i,w
sp
ij >

29: zi ← zi − (fij/sp) ∗ w
sp
ij

30: ci ← ci + (uij/sp) ∗ w
sp
ij

31: K ← K \ {j}

32: break

102 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

33: else

34: d← getDiffMaxAndMax2(F
sp
j , sp)

35: if d > d∗ then

36: d← d∗

37: j∗ ← j

38: W sp ← ComputeAllocation(F
sp
j , sp)

39: for each < i,w
sp
ij >∈Wij do

40: I∗ ←< i,w
sp
ij >

41: break

42: if d∗ = +∞ break

43: if isFeas = True then

44: for each < i,w
sp
ij >∈ I∗ do

45: yj∗ ←< i,w
sp
ij >

46: zi ← zi − (fij/sp) ∗ w
sp
ij

47: ci ← ci + (uij/sp) ∗ w
sp
ij

48: K ← K \ {j∗}

49: else

50: return

The new Feas procedure performs the splitting of a service to multiple things,

only if the allocation of a service to only one thing fails. Then a list of split factors,

computed factorizing the coefficient h
pj

, give the list of factors each one representing

the number of things on which a service request can be spread. The algorithm starts

an iteration over the list of split factors until a feasible allocation is found. In other

terms, in case of distribution of a service request, the allocation of a service is

spread on multiple things starting from the thing with maximum priority. In this

case, things must respect more relaxed constraints, being the utilization uij and the

normalized energy cost fij divided by a split factor (line 15 of the Feas procedure

5.2. DESIGN OF THE FIWARE IOT QOS SUPPORT 103

pseudo-code). The maximum load of a thing is computed as c
sp
ij factor that represents

the number of times a service can be assigned to a specific thing respecting the

constraints about utilization and energy cost in an hyperperiod.

In the following there are two procedures used in the new Feas algorithm. The

first one computes allocation for a given service, starting from the thing with the

maximum priority. So it computes the number of times it can be assigned a service

to the same thing, respecting the c
sp
ij factor (it guarantees that the utilization and

the energy cost constrains are respected). If the limit is reached and the allocation

is not terminated, the service assignment proceeds to the next maximum priority

thing. The second one computes the weighted difference between the thing with

maximum priority and next maximum priority thing.

Algorithm 2 ComputeAllocation

1: procedure ComputeAllocation()

2: Algorithm ComputeAllocation

3: Input: Fjsp , sp

4: Output: W sp

5: wcount
ij ← sp

6: while wcount
ij > 0 do

7: < i, c
sp
ij >← arg max

{
Pij :< i, c

sp
ij >∈ F

sp
j

}
8: if c

sp
ij < wcount

ij then

9: w
sp
ij = c

sp
ij

10: else

11: w
sp
ij = wcount

ij

12: W sp ←< i,w
sp
ij >

13: wcount
ij = wcount

ij − wsp
ij

104 CHAPTER 5. DESIGN QOS SOLUTION IN FIWARE IOT ARCHITECTURE

Algorithm 3 getDiffMaxAndMax2

1: procedure getDiffMaxAndMax2()

2: Algorithm getDiffMaxAndMax2

3: Input: Fjsp , P, sp

4: Output: d

5: i← 0

6: while i < 2 do

7: W sp ← ComputeAllocation(F
sp
j , sp)

8: for each < i,w
sp
ij >∈W sp do

9:
∑
pijw

sp
ij ←

∑
pijw

sp
ij + pijw

sp
ij

10:
∑
w

sp
ij ←

∑
w

sp
ij + w

sp
ij

11: if i = 0 then

12: Max←
∑
pijw

sp
ij /

∑
w

sp
ij

13: else

14: Max2 ←
∑
p
(2)
ij w

sp
ij /

∑
w

sp
ij

15: i← i+ 1

16: d←Max−Max2

Chapter 6

Tests results

The test phase has been carried out in two phases. In the first one we have validated

the QoS support (with multi service allocation) developed in the FIWARE IoT plat-

form, through a simple use case scenario. In the second one we have focused our

work on the new version of the RTTA algorithm. We have validate the RTTA algo-

rithm with multi service allocation, executing a series of simulations using different

scenarios. The results shows as the new version of the RTTA heuristic algorithm

implies a larger set of feasible allocations respect to the original one.

6.1 Validation test

The validation test is carried out using a simple use case scenario. In the scenario

are used four temperature sensors. The battery of each thing is at the maximum

level (50.710 mJ). In the table below we can see the main data about the sensors

used in the use case scenario.

deviceId battery level temperature

sensor1 100% latency: 0.03; energy cost: 0.15

sensor2 100% latency: 0.05; energy cost: 0.3

sensor3 100% latency: 0.04; energy cost: 0.2

sensor4 100% latency: 0.07; energy cost: 0.1

105

106 CHAPTER 6. TESTS RESULTS

Three client applications simulate the forwarding of three service agreement

requests to the QoSBroker, all for the temperature service, with three different

maximum request rates: 17 seconds, 2 seconds and 9 seconds. All these three

requests results in a feasible allocation schema (two schemas it has been obtaining

through the multi service selection). In the second phase starts the Dispatching

phase. Each client application (emulated through three different threads) forwards

a service request respecting the period specified in request sent in the Allocation

phase. In the graphic below, we can see how the load is distributed on different

things (represented using different colours). We have also emulated a load of the

system, introducing a random delay on the response time of the things. We can see

also that in two interval, because of the system load, the first client doesn’t receive

a response from the sensor3 and the sensor1.

6.1. VALIDATION TEST 107

Figure 6.1: Test timeline

108 CHAPTER 6. TESTS RESULTS

6.2 RTTA test

The second test is carried out on the new implementation of the RTTA heuristic (in

which a service can be allocated to multiple things). In the test each result is com-

pared with the one of the original RTTA version (described in [3]). The algorithm

is evaluated in different scenarios, each one characterized by a number of service

requests and available things. In each scenario the evaluation is carried out chang-

ing the average number of services exposed by each thing, expressed as a fraction

of the overall number of service requests. For each scenario, first of all, the ini-

tial battery levels, computational costs and periods (from which are computed the

list of coefficients h
pj

) are generated taking them from a uniform distribution with

parameters as reported in the table below.

Parameter Range

Period 10 – 100 s - step 10 s

Initial battery level 50 – 25 mJ - step 5 mJ

Execution cost 2*10−4 – 6*10−4 mW

Execution time 7 – 22.5 ms

The following average number of services exposed by each thing are considered

(expressed as a fraction of the overall number of service requests): 10%, 15%, 25%,

50%, 75% respectively. For each average number of services, one hundred of mij ’s,

i.e. context information about which services can be invoked on which things, are

also randomly generated so that the average number of services per thing charac-

terizing the scenario is fulfilled. Each matrix M generated in each iteration is used

to test both the single and multi service allocation algorithm version.

6.2. RTTA TEST 109

In-fact to evaluate the performance we consider, for each average number, the

number of feasible allocations between the original and the modified version of the

RTTA algorithm. The test scenarios are characterized by:

• 200 services and 30 things;

• 250 services and 30 things;

• 300 services and 35/40 things;

• 350 services and 45 things;

• 400 services and 35/40 things;

• 450 services and 45 things

In the previous scenarios, the used battery level distribution is composed by

the following values 30.426, 25.355, 20.284, 15.213, 10.142, 5.071 mJ . From the

results, depicted in the plots in the figure 6.2, we see as for each average number

(10%, 15%, 25%, 50%, 75%), the number of feasible allocations computed with the

new algorithm is greater than or equal to the number of feasible allocations obtained

executing the original version of the RTTA algorithm. The difference in the number

of feasible allocations is prominent especially for the average numbers 10% and

15%.

110 CHAPTER 6. TESTS RESULTS

(a) scenario 200 services, 30 things

(b) scenario 250 services, 30 things

(c) scenario 300 services, 35 things

6.2. RTTA TEST 111

(d) scenario 300 services, 40 things

(e) scenario 350 services, 45 things

(f) scenario 400 services, 35 things

112 CHAPTER 6. TESTS RESULTS

(g) scenario 400 services, 40 things

(h) scenario 450 services, 45 things

Figure 6.2: Feasible allocations plots over 100 iterations per Single/Multi service

selection approach and per average services number on a thing

Moreover, in the figure 6.3 we show, for the last scenario, the plots relative to

the energy cost behaviour (Single and Multi approach) for each average number, for

those iterations in which both single and multi approach result in a feasible alloca-

6.2. RTTA TEST 113

tion. We can see as the behaviour of the energy cost is more regular as the average

number of services on each thing increases. For sake of brevity, we present the

plots relative to one scenario being the behaviour for the other scenarios basically

the same.

(a) scenario average number 10

(b) scenario average number 15

114 CHAPTER 6. TESTS RESULTS

(c) scenario average number 25

(d) scenario average number 50

(e) scenario average number 75

Figure 6.3: Energy cost behaviour for each average number

6.2. RTTA TEST 115

Finally, we can see a summary of the scenarios result tests in the plot in figure

6.4. For each scenario, with a number of services and a number of things given as

inputs, and for each average number of services on a thing, we plot the average

difference computed over the iterations where both the single and the multi service

selection approach are feasible.

Figure 6.4: Average energy cost difference

From the previous chart, it is evident a bell behaviour in the average energy cost

difference relative to each scenario with different average number of services per

thing. For the first two average numbers, that are 10% and 15% there is a relative

low difference in the average energy cost. With these percentages the solution of

the service allocation problem is relative simple, so the gain between the single and

multi service selection approach is low. Instead for the last two average numbers,

that are 50% and 75% there is also a low difference but for another reason. In these

case the solution of the allocation problem is more complex so it is lost the energy

116 CHAPTER 6. TESTS RESULTS

cost gain between the multi and single service selection method. The maximum

average gain is for the average number 25%. It represents a boundary scenario for

which the gain between the single and multi service allocation method is maximum.

As future works, we foresee new test scenarios in which the energy cost matrix

and utilization matrix are computed in advance, in order to obtain only feasible

allocations. The objective of this new kind of test scenario is to obtain a better

comparison between the original RTTA version and the modified RTTA version with

multi service allocation.

Chapter 7

Conclusions

In this work we tackled the study of the FIWARE platform and the problem of QoS-

aware service selection applied to the FIWARE IoT architecture. First, we analyzed

all the platform components and then we focused our attention on the IoT modules.

We started studying the functioning of the IoT components and the communication

protocols they use. Once we have chosen a group of FIWARE IoT modules, we have

set up a deployment and tested it to understand what functions they offer. Once

a deployment has been established, it is started the second phase of our work in

which we have understood how implement a QoS solution in FIWARE IoT. To this

aim, we have studied the available solutions proposed for the QoS-aware service

selection in IoT cloud-based architectures. We have chosen the heuristic algorithm

proposed in [3] and we have modified it in order to expand the set of solutions com-

puted by the algorithm. Finally, we have integrated our solution in the FIWARE

IoT architecture. The integration of the QoS support has been validated through

a functional test. Instead, the new heuristic algorithm has been validated through

simulations that demonstrated that it guarantees a greater set of solutions respect

to the solution proposed in [3]. As future works, It is planned to extend the QoSBro-

ker including the support for a larger set of operations, not only the queryContext.

The QoSBroker could be extended to provides the subscribeContext operation. An-

other improvement concerns the heuristic algorithm that could be optimized trying

117

118 CHAPTER 7. CONCLUSIONS

to compute to compute the optimal allocation in one shoot instead of iterating and

stopping to the first feasible allocation. On the other side an extension can be devel-

oped on the discovery component. The actual implementation of the IoT Discovery

doesn’t analyze restrictions about the geographical scope used to filter the available

things.

Chapter 8

Acknowledgements

Ringrazio tutti coloro che mi hanno accompagnato in questo cammino universitario.

Un ringraziamento al Prof.Enzo Mingozzi, a Carlo Vallati e a Giacomo Tanganelli per

il loro aiuto e la loro disponibilità durante questi mesi di lavoro.

119

120 CHAPTER 8. ACKNOWLEDGEMENTS

Bibliography

[1] J. Bradley, J. Barbier, and D. Handler, "Embracing the Internet of Everything to

capture your share of $14.4 trillion," 2013.

[2] J. A. Stankovic, "Research directions for the Internet of Things," IEEE Internet

Things J., vol. 1, no. 1, pp. 3-9, Mar. 2014.

[3] G. Tanganelli, C. Vallati, E. Mingozzi, "Energy-Efficient QoS-aware Service Al-

location for the Cloud of Things," 2014 IEEE 6th International Conference on

Cloud Computing Technology and Science.

[4] E. Mingozzi, G. Tanganelli, C. Vallati, V. Di Gregorio, "An Open Framework for

Accessing Things as a Service" in Proc. of the 16th International Symposium on

Wireless Personal Multimedia Communications (WPMC 2013).

[5] E. Mingozzi, G. Tanganelli, C. Vallati, "A Framework for Quality of Service Sup-

port in Things-as-a-Service Oriented Architectures".

[6] FI-WARE basic guide, "http://www.slideshare.net/FI-WARE/fiware-basic-guide".

[7] FI-WARE wiki, "https://forge.fiware.org" Internet of Things (IoT) Services En-

ablement Architecture chapter.

[8] Jae-Hyun Cho, Han-Gyu Ko, In-Young Ko, "Adaptive Service Selection according

to the service density in multiple QoS aspects," IEEE Transactions on service

computing.

121

122 BIBLIOGRAPHY

[9] Shih-Yuan Yu, Chi-Sheng Shih, Jane Yung-jen Hsu, Zhenqiu Huang, Kwei Jay

Lin "QoS Oriented Sensor Selection in IoT System," 2014 IEEE International

Conference on Internet of Things (iThings 2014), Green Computing and Com-

munications (GreenCom 2014), and Cyber-Physical-Social Computing (CPSCom

2014).

[10] Valeria Cardellini, Valerio Di Valerio, Vincenzo Grassi, Stefano Iannucci,

Francesco Lo Presti, "QoS Driven Per-Request Load-Aware Service Selection

in Service Oriented Architectures," International Journal of Software and Inor-

matics, vol. 7.

[11] Marco Abundo, Valeria Cardellini, Francesco Lo Presti, " Admission Control

Policies for a Multi-class QoS-aware Service Oriented Architecture,".

[12] Ling Li, Shancang Li, Shanshan Zhao, "QoS-Aware Scheduling of Services-

Oriented Internet of Things," IEEE Transactions on industrial informatics, vol.

10, no. 2, May 2014.

[13] Yu, Tao, Yue Zhang, and Kwei-Jay Lin. "Efficient algorithms for Web services

selection with end-to-end QoS constraints." ACM Transactions on the Web. 2007.

[14] Boone, Bas, et al. "SALSA: QoS-aware load balancing for autonomous service

brokering."Journal of Systems and Software. 2010.

[15] Menascé, D. A., E. Casalicchio, and V. Dubey. "On optimal service selection in

service oriented architectures."Performance Evaluation 2010.

[16] Pentico, D. W. "Assignment problems: A golden anniversary survey."European

Journal of Operational Research. 2007.

[17] Guenter Klas, Friedhelm Rodermund, Zach Shelby, Sandeep Akhouri, Jan

Holler "Lightweight M2M: Enabling Device Management and Applications for

the Internet of Things," White Paper.

