
Facoltà di Ingegneria

corso di studi in Ingegneria Informatica

master thesis

Real-time kernel support for engine
control applications
Academic Year 2014-2015

Supervisor

Prof. Ing. Giorgio Buttazzo

correlator

Dott. Mauro Marinoni

candidate

Vincenzo Apuzzo - mat. 488443

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79619928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

If something can go wrong, it will
go wrong.

Murphy’s Law

Abstract

Engine control applications typically include computational activities consisting

of periodic tasks, activated by timers, and engine-triggered tasks, activated at

specific angular positions of the crankshaft. Such tasks are typically managed by

a OSEK-compliant real-time kernel using a fixed-priority scheduler, as specified

in the AUTOSAR standard adopted by most automotive industries. Recent the-

oretical results, however, have highlighted significant limitations of fixed-priority

scheduling in managing engine-triggered tasks that could be solved by a dynamic

scheduling policy.

This master thesis proposes a new kernel implementation within the ERIKA

Enterprise operating system, providing EDF scheduling for both periodic and

engine-triggered tasks. The proposed kernel has been conceived to have an API

similar to the AUTOSAR/OSEK standard one, limiting the effort needed to use

the new kernel with an existing legacy application.

A simulation framework is presented, showing a powerful environment for

studying the execution of tasks under the proposed kernel. Such framework is

based on Lauterbach Trace32 Cortex simulator and it was extended with custom

plugins for testing the proposed kernel.

Performance tests are designed and executed in order to evaluate the proposed

kernel in terms of run-time overhead and footprint, that represent the main

drawbacks of the earliest deadline first kernel with respect to the fixed-priority

scheduling.

The thesis is organized as follows: the first chapter is an introduction about

the engine control and related problems; then a related works and studies are

presented, moreover the theoretical model of the engine control is reported. The

second chapter shows the system architecture, with a description of the software

tools and hardware devices adopted. Chapter four describes the design of the

simulation framework with a special attention to the developed plugins, needed

for simulating the proposed kernel. Then the experimental environment and

result are shown and discussed.

Contents

1 Introduction 1

2 System architecture 14

2.1 Software system . 15

2.1.1 Erika . 15

2.1.2 RT-Druid . 16

2.1.3 Cortex simulator . 18

2.2 Hardware devices . 19

2.2.1 STM32 . 19

2.2.2 Lauterbach CombiProbe 21

3 Support for EDF scheduling for AVR tasks 22

3.1 Erika support for STM32 . 22

3.2 Support for AVR tasks in the Erika kernel 23

3.2.1 Deadline computation . 25

3.3 Support for OIL language . 33

3.3.1 Stack Resource Policy support 38

4 Simulation environment for EDF-based RTOS in Lauterbach

Trace32 41

4.1 Timer implementation . 42

4.2 Crankshaft simulator . 46

4.3 Simulation environment configuration 54

5 Experimental evaluation 57

5.1 Experimental environment . 57

ii

Contents

5.1.1 Run-time overhead . 58

5.1.2 Footprint . 62

5.2 Experimental results . 64

5.2.1 Run-time overhead . 64

5.2.2 Footprint . 65

6 Conclusion 68

Bibliografia 71

iii

List of Figures

1.1 Microcontrollers used in a car. 2

1.2 Overload condition. 3

1.3 AVR Task utilization. 3

1.4 Position and phase of paired cylinders. 4

1.5 Timing diagram for the injection. 5

1.6 Schedulability ratio as a function of U. 8

1.7 Tardiness as a function of the system load U. 8

1.8 Worst-case execution time of an AVR task as a function of the

speed at its activation. 10

1.9 Shaft angle as a function of time. 11

1.10 Activation period as a function of ω for different values of α

(rad{sec2) and ∆θ � 2π. 12

1.11 Possible deadline of an AVR job activated at speed ω. 13

2.1 System block diagram. 14

2.2 Rt-Druid code generator example. 17

2.3 STM32F4 Discovery. 19

2.4 CombiProbe Hardware. 21

3.1 Error of the FastSQRT algorithm. 27

3.2 Error of the FastSQRT. 27

3.3 Predefined quantization step values. 35

4.1 Simulator framework block diagram. 54

4.2 Trace32 PowerView configuration windows. 55

iv

List of Figures

5.1 Automatic source generator block diagram. 59

5.2 Maximum and average run-time overhead. 64

5.3 Footprint in bytes for different conformance classes of Erika. . . . 66

5.4 Footprint in bytes for EDf-AVR worst case and real case. 67

v

List of listing

3.1 Timer 2 initialization function . 23

3.2 Get time function for timer 2 . 23

3.3 FastSqrt algorithm implementation 26

3.4 Deadline computation using FastSQRT and RPM unit 30

3.5 Deadline computation using FastSQRT and rev/ticks unit 30

3.6 Deadline computation using lookup table and RPM unit 30

3.7 Deadline computation using lookup table and rev/ticks unit . . . 30

3.8 ActivateTaskAvr system call . 31

3.9 Data structures defined for the lookup table 32

3.10 Data structures defined for the fastSQRT 33

3.11 Array of index for AVR tasks . 33

3.12 AVR Task definition in the OIL file 34

3.13 Creation of the data structures 36

3.14 Computation of the lookup table elements 36

3.15 Found duplicate properties . 37

3.16 AvrTask class . 37

3.17 Priorities reconfiguration . 39

4.1 Timer registers struct for library development. 42

4.2 Timer simulator properties. 43

4.3 Initialization function for simulator plugin. 43

4.4 Simul callback structure definition. 44

4.5 Register callback function example. 44

4.6 Read and write register functions. 45

4.7 Timer behavior implementation. 45

4.8 Activation time function for the crankshaft simulator. 47

vi

List of listing

4.9 Angular speed function for the crankshaft simulator. 48

4.10 Function to update the acceleration for the crankshaft simulator. . 48

4.11 Function to convert values from second to tick. 49

4.12 Initialization function of the crankshaft simulator. 50

4.13 Behavior of the crankshaft simulator. 53

4.14 Trace32 PowerView configuration script. 54

5.1 Task set, with three periodic tasks and two AVR tasks, used for

computing the run-time overhead. 59

5.2 C source file of an application for the footprint evaluation. 62

5.3 PowerShell script to evaluate memory footprint. 63

vii

List of Tables

1.1 Typical ranges for the engine speed and acceleration 9

3.1 Percentage of error and footprint for the lookup table approach

under different values of ∆ω. 29

3.2 Run-time comparison of the FastSQRT and Lookup table ap-

proaches for computing the deadline of AVR tasks. 29

5.1 Times and memory consumption for the proposed simulation frame-

work. 62

5.2 Ratio between overhead values and the minimal deadline. 65

viii

Chapter 1

Introduction

The automotive industry is one of the world’s most important economic sec-

tors. It is characterized by high competitiveness which results in a particular

attention to innovation and in the continuous research of new solutions. Provid-

ing a vehicle with new features is a must in order to make it stand out from the

others.

The aspects which are considered when developing new car models are the ecolog-

ical impact, the performances of the vehicle, the safety and the costs. Often the

final product is the result of a balancing process between the provided features.

It is not only a matter of design of the look, there are also many constraints

coming from safety requirements and pollution restrictions.

The modern trend to deal with this challenging environment has been to include

the electronics components and software inside the vehicles. Nowadays vehicles

parts are handled and controlled by many microcontrollers (Fig. 1.1), and these

embedded systems are becoming an important part in the design of new cars.

The microntrollers in the vehicles provides some features, for instance car tem-

peratures with performance controls for air conditioning maintenance, braking

mechanisms, engine control and so on.

1

Chapter 1. Introduction

Figure 1.1: Microcontrollers used in a car.

In this scenario, the engine control, represents an important field of research,

in order to meet performance and dependability requirements, imposed by the

market. Generally engine control applications are characterized by two types of

tasks: the periodic tasks, activated at constant time intervals and the aperiodic

tasks, activated at specific crankshaft rotation angles. This kind of activation

involves many problems related to the angular velocity, in fact both the activation

rate and the computation time are proportional to the engine speed: the higher

the engine speed, the higher the activation rate and the lower the available

computation time.

This aspect can generate an overload condition (Fig. 1.2) on the engine control

unit (ECU) processor, in fact for high activation rate the system utilization

can increase beyond a limit, with disruptive effects on the controlled system,

introducing unbounded delays on the computational activities, or even leading

to a complete functionality loss.

2

Chapter 1. Introduction

Figure 1.2: Overload condition.

To prevent such problems, a common practice adopted in automotive ap-

plications, is to implement tasks in such way they adapt the computational

requirements and functionality to engine speed (Fig. 1.3). To do this, the task

functionality are implemented as a sequence of conditional if statements, each

execute a specific subset of function [1]. For this reason they are called Adaptive

Variable-Rate Task (AVR Task).

Figure 1.3: AVR Task utilization.

In engine control systems, the AVR Task are used to handle many operations,

such as the fuel injection, and they are characterized by an angular position, the

crankshaft absolutely position, and by an angular deadline, namely the angular

deviation within task must end.

In a four cylinder engine, the pistons are paired in phase opposition, hence when

a couple is in Top Dead Center (TDC) position, the other one is in Bottom Dead

Center (BDC), as shown in Fig. 1.4. These points represents, respectively, the

3

Chapter 1. Introduction

position of a piston in which it is faster from, and nearest to, the crankshaft. The

TDC is a typical reference point, in the controller activities, for the functions

that are rotation dependent. These functions include the control of the combus-

tion, the computation of time for injecting and the quantity of fuel to be injected.

Figure 1.4: Position and phase of paired cylinders.

The case study of fuel injection analyzed by Guzzella et el. [2] can be taken

like exhaustive example of a control process. The goal of a fuel injection sys-

tem is to determine the point in time and the quantity of fuel to be injected in

the cylinders, relative to the position of each piston, which is a function of the

angular position of the crankshaft. The Fig. 1.5 shows the timing diagram for

injection for two cycle.

4

Chapter 1. Introduction

Figure 1.5: Timing diagram for the injection.

a) Injection completed. In the ECU, this event is fixed. The start of injection

is set at the necessary crank angle, which is computed using the air mass

flow information obtained at an earlier crank angle.

b) Start of injection for the next cycle.

c) Measurements for the calculation of the duration of the injection are taken.

d) Calculation ended.

e) The injection with the most recent air mass information starts.

f) Injection pulse is finished.

Given these characteristics of the AVR Tasks, the classical real-time approaches

to schedulability analysis cannot be done, so several analysis methods have been

proposed by several authors.

Kim, Lakshmanan and Rajkumar [3] derived a preliminary schedulability result

under simple assumptions. In particular, they analyzed a task set with a single

AVR task under Fixed Priority algorithm, with the priority levels assigned by

the Rate Monotonic algorithm, moreover the period of the AVR task was always

smaller than the period of the other task, hence it runs always at the highest

priority level.

Pollex [4] presented a sufficient schedulability analysis under fixed priorities, as-

suming a constant angular velocity. The analysis is formulated using continuous

interval, hence it cannot be translated into a practical schedulability test, whose

5

Chapter 1. Introduction

complexity has not been evaluated.

The dynamic behavior of AVR task under fixed priorities has been analyzed by

Davis [5], who proposed a sufficient test based on the quantization of the instan-

taneous crankshaft rotation speed, which may introduce additional pessimism in

the analysis to guarantee the safety of the test.

A complete analysis of the interference of an AVR Task under fixed priorities

has been done by Biondi et al. [6]. He analyzed the interference using a search

approach in the speed domain, where the complexity is contained by deriving

a set of dominant speeds, which also avoid quantizing the instantaneous speed

considered in the analysis.

In previous papers the analysis has always been done under the fixed priority

scheduling, which is the de facto standard in industry and it is the scheduling

algorithm used in OSEK/AUTOSAR real time operating system, because it is

very easy to implement, it introduced less runtime overhead and it is more pre-

dictable in overload conditions.

On the other hand, as exhaustively analyzed by Buttazzo [7], where the behav-

ior of Fixed Priority (FP) and Earliest Deadline First (EDF) scheduling has

been compared under many different conditions such as runtime overhead and

overload condition, the real advantage of FP with respect to EDF is its simpler

implementation in commercial kernels that do not provide explicit support for

timing constraints, such as periods and deadlines. Other properties typically

claimed for FP, such as predictability during overload conditions, or better jitter

control, only apply for the highest priority task, and do not hold in general. On

the other hand, EDF allows a full processor utilization, which implies a more

efficient exploitation of computational resources and a much better responsive-

ness of aperiodic activities. For this reason Buttazzo and Gai et el. [8] proposed

an efficient implementation of the EDF scheduler, based on the implicit circular

timer’s overflow handler (ICTOH) to better represent the deadline in a circu-

lar time model. Moreover they proposed an integration in the OSEK standard,

adding few keywords in the standard OIL specification language, illustrating how

EDF can be easily integrated with existing operating systems.

The analysis of a mixed set of classical and AVR tasks under Earliest Deadline

First (EDF) scheduling has been addressed by Buttazzo, Bini, and Buttle [9],

6

Chapter 1. Introduction

but for AVR tasks related to independent rotation sources. They also provided

a design method that allows computing the set of switching speeds at which

modes have to be changed to keep the overall utilization below a desired bound.

Although the results produced in the previous papers represents important mile-

stones for the analysis of engine control systems, the task models used for the

analysis are not always able to capture features that are currently adopted by

the automotive industry in the implementation of AVR tasks. For example, in

some work [9], tasks are considered to be linked to independent rotation sources,

while in reality all the angular tasks related to engine control are linked to the

same rotation speed and may be triggered at different rotation angles. A typi-

cal engine control application includes both classical periodic tasks (with period

ranging from a few milliseconds up to 100 ms) and a number of angular tasks

activated every single, half, and quarter engine revolution (given the range of

values in which the engine speed can vary, typically from 500 to 6500 rpm, the

interarrival time of an AVR task varies from 9 to 120 ms with a single activation

per cycle). The assumption of independency clearly simplifies the analysis, but

introduces an additional source of pessimism, considering situations that cannot

actually occur when tasks are related to the same rotation source. The EDF

schedulability of AVR tasks linked to a common rotation source has been ana-

lyzed by Biondi and Buttazzo [10], but their test is only sufficient, since derived

from a utilization upper bound. Recently, Guo and Baruah [11] studied the

EDF scheduling of AVR tasks proposing a speedup factor analysis and sufficient

schedulability tests.

An exact feasibility analysis under EDF scheduling for engine control applica-

tions including classic periodic tasks and an AVR task and extensive experiments

performed by Biondi, Buttazzo and Simoncelli et al. [12] confirmed that for this

type of applications, fixed priorities scheduling is not the best choice, due to the

large range in which the interarrival time of an AVR task can vary. Under FP

scheduling, this means that there are several engine speeds at which any fixed

priority assignment is far from being optimal, significantly penalizing the system

schedulability (Fig. 1.6).

On the other hand, as shown in Fig. 1.7, under FP, the AVR tardiness is kept

equal to zero even for U=1.5, because the overload does not affect the AVR task

7

Chapter 1. Introduction

Figure 1.6: Schedulability ratio as a function of U.

(always scheduled at the highest priority), but only the lower priority tasks (the

tardiness of the lowest priority task is indicated by the FP-LP curve). Other-

wise, under EDF, the AVR tardiness increases with the overload, reaching a value

higher than 60 times the deadline for utilizations greater than 1.4. This happens

because EDF tends to automatically distribute the exceeding workload to all the

tasks, hence the lowest priority task (EDF-LP curve) is not so penalized as in

the case of FP scheduling.

Figure 1.7: Tardiness as a function of the system load U.

The higher schedulability provided by EDF is the main reason that convinced

8

Chapter 1. Introduction

to develop an efficient support for AVR tasks in a real-time kernel with an EDF

scheduler. The kernel selected is ERIKA Enterprise [13], because offers EDF

scheduling with an OSEK-like API and a static configuration of the kernel, as

mandated by OSEK. However, the native EDF support in ERIKA does not

include some features needed to manage engine-triggered tasks.

In this work, the engine is considered as a rotation source that triggers the

execution of the AVR tasks at specific angles, in particular it is characterized by

the following parameters:

θ the current rotation angle of the crankshaft;

ω the current angular speed of the crankshaft;

α the current angular acceleration of the crankshaft.

The speed ω and the acceleration α are assumed to be limited within a range

[ωmin, ωmax] and [α�, α�]; in Table 1.1 are reported typical realistic value of such

parameters. The software composing an engine control application is modeled

Parameter min max
ω (RPM) 500 6500
α (RPM/s) �97.2 � 102 97.2 � 102

Table 1.1: Typical ranges for the engine speed and acceleration

as a set of n real-time preemptive task Γ � tτ1, τ2, ..., τnu. Each task can be a

standard periodic task, or an AVR task, activated at specific crankshaft angles.

Both periodic and AVR tasks are characterized by a worst-case execution time

(WCET) Ci, an interarrival time (or period) Ti, and a relative deadline Di.

However, while for regular periodic tasks such parameters are fixed, for angular

tasks they depend on the engine rotation speed ω. An AVR task is characterized

by an angular period Θi and an angular phase Φi, so that it is activated at the

following angles:

θi � Φi � kΘi, for k � 0, 1, 2, ...

All angular phases Φi are relative to a reference crankshaft position called Top

Dead Center (TDC) corresponding to the angle for which at least one piston is at

the highest position in its cylinder, by convention the TDC position is assumed to

be at θ � 0. An angular task is also characterized by a relative angular deadline

9

Chapter 1. Introduction

∆i expressed as a fraction of the angular period.

The AVR tasks are typically implemented as a set Mi of Mi execution modes.

Each mode m has a different WCET Cm
i and operates in a predetermined range

of engine speeds (ωm�1
i , ωmi], where ωMi�1

i � ωmin and ω1
i � ωmax. Hence, the

set of modes of a AVR task can be expressed as

Mi � tpCm
i , ω

m
i q,m � 1, 2, . . . ,Miu

We assume that the computation time of a generic AVR task can be expressed

as a non-increasing step function Ci of the instantaneous speed ω at its release,

that is,

Cipωq P tC1
i , . . . , C

Mi
i u.

An example of Cpωq function is illustrated in Figure 1.8. The worst case analysis

Figure 1.8: Worst-case execution time of an AVR task as a function of the speed at its activation.

performed in [9] shows the case in which the rotation speed ωi can change over

the time, but its acceleration is limited by a maximum value α�i . Let t0 the

activation time of a generic AVR task, when the crankshaft rotation angle is

equal to θ0 and its rotation speed is ω0, the next angle at which the task is

triggered again is equal to

θ1 � θ0 � ∆θ

where ∆θ is the angular period.

If the crankshaft rotation speed is constant and equal to ω0, the rotation angle

10

Chapter 1. Introduction

θptq will increase linearly as a function of a time as

θptq � θ0 � ω0pt� t0q

Therefor, the activation angle θ1 will be reached at time

t1 � t0 � ∆θ

ω0

obtaining an activation period equal to

Tipω0q � t1 � t0 � ∆θ

ω0

.

However, if α is not equal to zero, the activation period will be shorter than

Tipω0q, like is depicted in Figure 1.9. To compute the shortest period T 1
i pω0q it

Figure 1.9: Shaft angle as a function of time.

was assumed that ωptq can increase at most with a maximum acceleration α�,

therefore by the kinematics equation is obtained the following expression:

ωptq � ω0 � α�pt� t0q

and the angle θptq will increase as

θptq � θ0 �
» t

t0

ωptqdt � θ0 � ω0pt� t0q � α�

2
pt� t0q2

11

Chapter 1. Introduction

and the value θ1 will be reached at time t11 such that

∆θ � ω0pt11 � t0q � α�

2
pt11 � t0q2

Hence the shortest activation period can be computed as T 1
i � t11 � t0 and it is

such that:

ωT 1
i �

α�

2
pT 1

i q2 � ∆θ

Discarding the negative solution of the equation above, the following formulation

of an AVR activation period is found:

T 1
i pω, α�q �

?
ω2 � 2∆θα� � ω

α�

Figure 1.10 illustrates the activation period T 1
1 as a function of ω for different

values of α (rad{sec2) and ∆θ � 2π. This analysis underline that the relative

Figure 1.10: Activation period as a function of ω for different values of α (rad{sec2) and ∆θ � 2π.

deadline of an AVR task is a variable parameter, which is a function of engine

state at the release of a job and the future evolution of the rotation source in

terms of acceleration. This feature cause to be useless the exact computation of

the relative deadline, in fact, all possible values T pωq P rT pω, α�q, T pω, α�qs can

be interarrival times to the next job (Fig. 1.11). Besides the identified issue,

it is anyhow possible to achieve a safe schedule assigning each job the earliest

possible deadline among those compatible with the speed at its activation, that

is, the one derived assuming the maximum acceleration α� from the task release

12

Chapter 1. Introduction

Figure 1.11: Possible deadline of an AVR job activated at speed ω.

on. Using this approximation, the relative deadline of an AVR task released at

the instantaneous speed ω results

Dipωq �
?
ω2 � 2∆iα� � ω

α�
. (1.1)

This thesis describes the support implementation to manage the AVR tasks

under EDF scheduling in the ERIKA kernel, keeping the standard OSEK API,

hence providing the possibility of making a simple integration with existing

OSEK applications. To achieve this goal I added some new keywords to OIL

configuration language to manage the specific AVR parameters and the new

kernel APIs. To test the implemented kernel I used both a hardware device, in

particular the STM32F4 microcontroller, and an Cortex instruction set simulator

provided by Lauterbach Trace32. In both case I had to implement the necessary

plugins; for the microcontroller I implemented the Erika EDF support, whereas

for the instruction set simulator I implemented a circular timer, for EDF sup-

port, and a rotation source simulator to generate an external interrupt for AVR

tasks activation. In order to efficiently implement the relative deadline formula

had to be an exhaustive study of a computation time.

13

Chapter 2

System architecture

This chapter explains both software environments and the hardware devices adopted

for developing the kernel support for the AVR tasks.

Figure 2.1: System block diagram.

14

Chapter 2. System architecture

2.1 Software system

2.1.1 Erika

Erika Enterprise [13] is a free of charge open-source OSEK/VDX Hard Real

Time Operating System (RTOS), certified as OSEK-compliant, that support a

large set of microcontrollers and multi-core platforms. An important feature

of this kernel is that allows achieving high predictable timing behavior with

a very small run-time overhead and a memory footprint in the order of few

kilobytes. Erika supports two typologies of kernel: the OSEK standard [14],

with its conformance classes, and other non-standard conformance classes.

The OSEK standard conformance classes are:

• BCC1: supports only basic tasks, which are tasks that release the processor

only if they terminate, the RTOS switches to a higher-priority task or an

interrupt occurs which causes an interrupt service routine. Moreover the

BCC1 supports only one task per priority without multiple requesting of

task activation.

• BCC2: extends the BCC1 with the support for multiple requesting of task

activation and more than one task per priority.

• ECC1: like BCC1, with the support for the extended tasks, which are dis-

tinguished from basic tasks by being allowed to use the operating system

call WaitEvent, which may result in a waiting state that allows the pro-

cessor to be released and to be reassigned to a lower-priority task without

the need to terminate the running extended task.

• ECC2: extends the ECC1 with more than one task per priority and sup-

ports multiple requesting of task activation only for the basic tasks.

The non-standard conformance classes are the following:

• FP, a minimal implementation of the fixed-priorities scheduling with pre-

emption thresholds [15];

• EDF, that implement the Earliest Deadline First algorithm and the Stack

Resource Policy (SRP);

15

Chapter 2. System architecture

• FRSH, implementing the IRIS [16] scheduling algorithm for resource reser-

vation.

• HR, offering a two-level hierarchical scheduling framework through the M-

BROE algorithm [17].

The EDF conformance class is obviously the baseline for the development of the

support for the AVR tasks, in fact, in the other OSEK standard conformance

classes there is no support to deadline-based scheduling. The implementation

relies on a circular timer [8] for managing the internal time representation. The

Implicit Circular Timer’s Overflow Handler (ICTOH) allows an efficient repre-

sentation of the absolute deadline with 32-bit variables, containing the runtime

overhead and footprint, and provided an infinite system lifetime.

In Erika implementation, the access to mutual exclusive resources is regulated

by the the SRPT algorithm, which combine the SRP protocol with Preemption

Thresholds to reduce the number of preemptions (and hence reduce the switch

context overhead) and save stack space.

Moreover Erika provided a mechanism to handle the interrupt, specified by the

OSEK/VDX standard, that are divided in two type:

• Type 1, which not use an operating system service. After the ISR is fin-

ished, processing continues exactly at the instruction where the interrupt

has occurred, i.e. I/O operations.

• Type 2 that calls the scheduler at the end of the service routine, hence this

type of routine can be used to interact with kernel object (i.e. to active a

task).

2.1.2 RT-Druid

As specified in OSEK/VDX standard, all the RTOS objects, like tasks, alarms

and semaphores, are static, this means that all RTOS configuration are predefined

at compile time and cannot be changed at run time. This static approach is

necessary in order to reduce both footprint and run-time overhead, obtaining a

customized RTOS image that is optimized for a specific application-dependent

kernel configuration.

16

Chapter 2. System architecture

In Erika, the objects composing a particular application are specified in the

OSEK Implementation Language (OIL) and stored in a proper configuration

file. The Erika development environment also includes RT-Druid[18], which is

a tool in charge to processing the OIL configuration file to generate the proper

Erika code for the requested kernel configuration.

RT-Druid is provided as a plugun of Eclipse IDE, and its main feature is analyze

the OIL file and generate three files:

• Makefile, in which are defined the Erika options and the compilation rules

and hierarchy;

• eecfg.c, in which are defined all the RTOS objects and the data structures;

• eecfg.h, in which are defined the Erika options and the system configuration

constants.

Figure 2.2: Rt-Druid code generator example.

Moreover RT-druid provided other important features for real-time system de-

velopment:

• Scheduling analyzer module: used to perform a worst case timing anal-

ysis in according to the selected kernel;

17

Chapter 2. System architecture

• Scheduling analyzer module: for those systems where the evaluation

of the worst case response time of the threads needs to be supplemented

by simulations of average as well as critical runs highlighting the expected

time behavior of the system.

• Trace viewer/analyzer: providing support for estimating the execution

time attributes of software components. A graphical front-end is able to

display the timing properties of the system, letting the user understand the

run-time application behavior and enabling useful back-annotation that

will help in a better system characterization. Input can be taken from a

simulated trace and from real execution on the target microcontroller.

2.1.3 Cortex simulator

The Instruction Set simulator supports a large number of microcontrollers

and it is included in the Trace32 suite, distributed for free by Lauterbach GmbH,

the world’s larger producer of hardware assisted debug tools for microprocessors.

This simulator allows to execute real code collecting a large set of debug and

trace information without having any hardware devices, enabling the possibility

to build very powerful testing and development environment.

The main limitation of the Trace32 suite is that it only offers the instruction

set simulator for the CPU of a microcontroller and not the simulation of its pe-

ripherals devices (e.g. timers and interrupt controller). However, Trace32 offers

a full memory map of the microcontrollers and a standard interface, called Pe-

ripherals Simulation Model (PSM)[19], that allows developing custom simulated

peripherals. PSM is a software overlay for memory area occupied by peripheral

modules and it provides functions for the interaction between the cpu and the

other modules. Through the PSM a developer can implement a custom software

that reacts and access to specific registers located in physical memory of the

simulated microcontroller.

The simulator, every clock cycle, records all bit’s changes, both in cpu regis-

ters and in the physical memory, in this way Trace32 can collect all tracing and

statistical data such as function time computation. This mean that to run ap-

proximately six seconds of simulation are needed a significant amount of memory

18

Chapter 2. System architecture

(up to 25 GBs), meanwhile to store, only the trace data, are needed up to 4 GBs

of hard disk.

The simulator is managed through the Trace32 PowerView IDE, an universal

user interface for all microprocessor development tools from Lauterbach, which

offers intuitive, consistent and fast access to debug and trace information.

This IDE is fully user-adjustable through the PRACTICE scripting language,

that allows develop both interactive and automatic programs to set up the IDE

and simulator environment and to support the debugging process.

2.2 Hardware devices

2.2.1 STM32

The STM32 is a is a family of 32-bit microcontroller integrated circuits by

STMicroelectronics. In particular it has been used the Discovery Board, with the

STM32F407 microcontroller which have an 32-bit ARM Cortex-M4 CPU with

FPU up to 168HMz, 1 MB flash and 192 KB of RAM, including an ST-LINK/V2

embedded debug tool, two digital accelerometer and digital microphone, one

audio DAC with integrated class D speaker driver, leds and push buttons and

an USB OTG micro-AB connector.

Figure 2.3: STM32F4 Discovery.

The Erika kernel EDF scheduler implementation, as specified in 2.1.1, re-

quired a free runner timer, the Discovery board provided three kind of timers:

• General-purpose timer:

19

Chapter 2. System architecture

– 16-bit or 32-bit auto-reload counter in up, down or up/down mode.

– 16-bit programmable prescaler used to divide the counter clock fre-

quency.

– synchronization circuit to control the timer with external signals and

to interconnect several timers.

– interrupt/DMA generation on some event (e.g. counter overflow/un-

derflow, counter initialization, trigger event, Output compare)

– supports incremental encoder and hall-sensor circuitry for positioning

purpose

– trigger input for external clock or cycle-by-cycle current management

• Advanced-control timer,only in 16-bit version, that in addition to the gen-

eral purpose feature, provide:

– complementary outputs

– repetition counter to update the timer registers only after a given

number of cycles of the counter

– break input to put the timer’s output signals in reset state or in a

know state.

• Basic timer

– 16-bit auto-reload upcounter

– 16-bit prescaler

– synchronization circuit to trigger the Digital Analogic Converter

– interrupt/DMA generation on the counter overflow event.

The type chosen for the implementation is a 32-bit general purpose timer, in

this way with a clock frequency set to 168 MHz (hence the timer clock at 84

MHz by hardware constraints), the maximum difference between two different

tasks is 25,5 seconds, that is an acceptable value for the common automotive

applications.

20

Chapter 2. System architecture

2.2.2 Lauterbach CombiProbe

The CombiProbe (Fig. 2.4) is a hardware tool provided by Lauterbach for

debugging microcontroller applications. Moreover it provides particular con-

Figure 2.4: CombiProbe Hardware.

figuration commands for displaying and analyzing recorded trace information.

System information can be recorded into the trace memory of the CombiProbe

or it can be sent directly to the host, using the CombiProbe memory as a buffer.

The trace information can be analyzed with the Trace32 PowerView IDE. Ac-

tually the CombiProbe provides the standard JTAG and the JTAG support for

ARM cores including the Serial Wire Debug Port, it also provided the proper

cable adapters for supporting a widest range of microcontrollers. The STM32

does not provide a standard debug connector, hence a homemade cable has been

done to adapt the MIPI20 connector (that is the standard ARM debug connec-

tor) to the pins of the STM32. CombiProbe is connected to the host through an

ethernet cable and they communicate over the TCP/IP protocol.

21

Chapter 3

Support for EDF scheduling for

AVR tasks

This chapter reports the detailed explanation of the both extension on the

Erika is kernel and on RT-Druid tool for supporting the engine-triggered tasks.

Moreover there is a special focus on the implementation of the relative deadline

formula.

3.1 Erika support for STM32

To execute the EDF scheduler on the STM32F4 Discovery board it was nec-

essary to implement two functions to initialize and to read the free runner timer.

According to the Erika tree structure these two functions are implemented in the

ee mcu.h file included in the STM32F4 folder of the Erika repository. The added

functions are:

• Timer initialization function, shown in Lst.3.1, used to set the timer in

up mode with prescaler value set to zero. It is used once in the Erika

initialization section of the application main method.

• Get time function, shown in Lst.3.2, used to retrieve the timer counter

value. This function is used in the activation task method to compute the

absolute deadline, that it is compute by adding the counter value to the

relative deadline.

22

Chapter 3. Support for EDF scheduling for AVR tasks

In both functions, it was used the volatile type, in this way it is possible to

access directly to the registry address, avoiding a compiler optimization which

may compromise the correct register set up. The STM32F4 board provided

two 32-bit timers, whose selection is made by user setting a keyword in the

microcontroller section of the OIL file. The keyword is translated in a C macro

that distinguishes which version should be used.

#ifdef __EDF_USE_TIMER2__

__INLINE__ void __ALWAYS_INLINE__ EE_time_init(void){

volatile uint32_t* apb1enr = (uint32_t *)0x40023840;

volatile uint16_t* cr1 = (uint16_t *)0x40000000;

volatile uint32_t* arr = (uint32_t *)0x4000002C;

volatile uint16_t* psc = (uint16_t *)0x40000028;

*apb1enr |= 0x00000001;

*cr1 &= 0xFC8F;

*arr = 0xFFFFFFFF;

*psc = 0x0;

*cr1 |= 0x0001;

}

#endif

Listing 3.1: Timer 2 initialization function

#ifdef __EDF_USE_TIMER2__

__INLINE__ EE_TIME __ALWAYS_INLINE__ EE_hal_gettime(void)

{

volatile uint32_t* cnt = (uint32_t *)0x40000024;

return *cnt;

}

#endif

Listing 3.2: Get time function for timer 2

3.2 Support for AVR tasks in the Erika kernel

In the standard AUTOSAR/OSEK API the task activation is performed with

the following system call

ActivateTask (TaskType TaskID),

where TaskID represents the identifier of the task for which a job has to be

23

Chapter 3. Support for EDF scheduling for AVR tasks

activated. To keep the API OSEK-compliant, the same system call has been

held in the Erika EDF kernel. Such a call computes the absolute deadline for

each upcoming job by using the constant relative deadline.

As specified in the Equation 1.1, however, the relative deadline of an AVR task

depends on the current engine speed ω, hence determining the need for creating

a new system call to activate this kind of tasks:

ActivateTask (TaskType TaskID,SpeedType w),

where w represent the current engine speed at the time at which the task is

activated.

Regarding the SpeedType two measurement units are considered:

• revolutions/ticks (RPTicks), expressed by a floating point value.

• RPM, expressed by an integer value;

This choice was made considering that the notion of current engine speed, also

used to trigger the mode change in an AVR task, is typically maintained in the

engine control applications through some technique that can be summed in two

scenarios. The first one is a typical case of use of an estimation technique such

as an average speed in some time is intervals [5], in which the engine speed is

measured by using a temporal reference of the microcontroller, like an internal

timer, producing a floating point number. The second one, covers the situation in

which the engine speed is provided by an external device, know as Time Process-

ing Unit (TPU), commonly provided by microcontrollers designed for automotive

applications. An example is described in [20], where the microcontroller manu-

facturer provides a firmware library for the TPU returning the engine speed in

RPM as 32-bit integer value.

The new ActviteTask system call is in charge of computing the current rel-

ative deadline Dipωq expressed in Eq. 1.1, so obtaining the absolute deadline

di � t � Dipωq, where t is the current time at which ActviteTask is invoked.

Once the absolute deadline is computed, all the existing code in ERIKA for man-

aging task activations under the EDF conformance class can be reused. Hence,

it is obvious that the key challenge for supporting AVR tasks is to provide an

efficient implementation of Eq. 1.1 and manage the additional data structures

needed to store the AVR task parameters.

24

Chapter 3. Support for EDF scheduling for AVR tasks

3.2.1 Deadline computation

Considering the unnecessary run-time overhead at each task activation pro-

duced by the inefficient implementation originated by the use of the native square

root function available in the standard C mathematical library, two alternative

approaches are investigated and compared for implementing the deadline for-

mula:

1. The first approach, aspire to reduce the impact in term of footprint, uses

an iterative computation method to approximate the value of the square

root, but on the other hand the run-time overhead of the ActivationTask

system call is incremented (resulting in any case less than the standard C

square root);

2. The second approach, aspire to reduce the run-time overhead, uses a lookup

table to store a set of deadline values with a given speed step, but it signif-

icantly increases the footprint, which becomes dependent on the required

resolution and the number of AVR tasks.

Fast square root approach: The OSEK RTOSes are static, this mean that no

tasks can be created at run-time, hence all the tasks properties are well-know

at compile time. For this reason a part of the Eq. 1.1 can be pre-computed

at compile time, thus reducing the amount of computation needed at run-time.

Therefore, the following parameters are defined for each AVR task τ�i :

K
paq
i � 1

α�

and

K
pbq
i � 2∆iα

�

Using K
paq
i and K

pbq
i , the Eq 1.1 can be rewritten as

Dipωq � p
b
ω2 �K

pbq
i � ωqKpaq

i , (3.1)

thus avoiding one division and one multiplication at run-time.

To store this two parameters are needed two additional data structures

25

Chapter 3. Support for EDF scheduling for AVR tasks

TypeAVRParams K A MAX AVR TASKS;

TypeAVRParams K B MAX AVR TASKS;

where MAX AVR TASK represents the number of AVR tasks in the task set and

TypeAVRParams is a floating point data type.

The most critical part of Eq.3.1, in term of overhead time, is the computation of

the square root. Therefore it was implemented following the FastSQRT algorithm

[21], that provides a fast computation of an approximation of the square root

(Lst.3.3)

float fast_sqrt(float x){

float xhalf = 0.5f*x;

union

{

float x;

int i;

} u;

u.x = x;

u.i = 0x5f3759df - (u.i >> 1);

u.x=u.x*(1.5f-(u.x*u.x*xhalf));

return x*u.x*(1.5f-(u.x*u.x*xhalf));

}

Listing 3.3: FastSqrt algorithm implementation

Such an algorithm relies on the Newton is method for iteratively computing the

square root of a number, but improves on its original formulation by selecting an

initial value for the iteration that is able to considerably reduce the error with

only two iterations. The initial value for the iteration is computed by means

of a particular constant (called Magic Number) which as been formally studied

in [21].

A numerical study it was performed to evaluate the error of the deadline

computation by using the FastSQRT algorithm with the respect to the exact

square root function. Such a study was performed considering all the speeds in

a typical range for a production car engine, that is from 500 to 6500 RPM, and

implementing the functions using both integer and floating point values in ac-

cording with the measurement units of the engine speed considered in this work.

The results, reported in Fig. 3.1, shows that the FastSQRT algorithm present

an error always lower than 0.04%. In particular the error is lower for rev/tick

26

Chapter 3. Support for EDF scheduling for AVR tasks

because the values of the engine speed, expressed in this measurement unit, are

always less than one (e.g. 6500 RPM = 0.000001289 rev/ticks for a tick time

equals to 11.9ns) and the error function, defined as estimation values - exact

values, have an increasing oscillation trend (3.2); moreover it is always negative,

this means that the deadline computed by the FastSQRT is early in respect the

exact one, hence this feature adding an other kind of pessimism resulting that

the system is always in safe state.

Figure 3.1: Error of the FastSQRT algorithm.

Figure 3.2: Error of the FastSQRT.

Lookup Table approach: The second approach considered in this work for comput-

ing the deadline of AVR tasks relies on an off-line pre-computation of Equation

27

Chapter 3. Support for EDF scheduling for AVR tasks

1.1 for the whole range of engine speeds. The values of Equation 1.1 are com-

puted off-line by using a quantization step ∆ω and stored as constants in an

array whose elements are denoted as Wj, j � 0, 1, . . . ,
Q
ωmax�ωmin

∆ω

U
, so obtaining

a lookup table. At run-time, a weighted average is then used to estimate the

value of the deadline. More specifically, suppose to have a current engine speed

ω and let Y � ω�ωmin

∆ω
. An index j for the look table is computed as j � tY u and

the value Dpωq is obtained as

Dpωq � qWj � lWj�1

q � l
, (3.2)

where q and l represent the weights of the weighted average and their definition

depends of the measurement unit used to represent the engine speed ω. When

the speed is represented in RPM (as an integer value) we defined q � ∆ω � l

and l � pω � ωminq � j∆ω, leading to q � l � ∆ω, where l can be computed by

means of a modulo operation. In this way, if ∆ω is defined as a power of two, the

value of Dpωq can be efficiently computed without involving any floating point

operation implementing the ratio as a bit shift operation. On the other hand,

when the speed ω is represented in revolutions/ticks (as a floating value), differ-

ent formulations for q and l can be defined to optimize the computation. In fact,

defining q � 1 � l and l � Y � j, we obtain q � l � 1, so avoiding the division

in Equation 3.2. In addition, the value of l can be computed by a truncation

operation by a casting to an integer value. Under this conditions, the value of

∆ω results crucial for determining the precision and the additional footprint im-

posed by this approach. Table 3.1 reports a numerical evaluation of both error

and footprint for different values of ∆ω. Since deadlines in ERIKA are repre-

sented in ticks, each element of the lookup table can be represented as a 32-bit

integer value leading to a cost of 4 bytes each, independently from the measure-

ment units specified. Overall, although a considerably small footprint is required

for achieving a good precision (e.g. with ∆ω � 256RPM), the main drawback of

this approach is that (considering that in the general case of AVR tasks having

all different angular deadlines) a lookup table has to be generated for each tasks,

so limiting the scaling for high number of tasks on memory-constrained platforms.

28

Chapter 3. Support for EDF scheduling for AVR tasks

∆ω (RPM) AVG err (%) MAX err (%) Footprint (bytes)

32 0.002 0.013 752
64 0.009 0.05 376
128 0.036 0.2 188
256 0.145 0.79 96
512 0.58 2.99 48
1024 2.36 10.493 24

Table 3.1: Percentage of error and footprint for the lookup table approach under different values of ∆ω.

RPM
FastSQRT Lookup Table SQRT

MAX
2.23 µs
188 cycles

0.3 µs
26 cycles

5.42 µs
456 cycles

AVG
2.08 µs
176 cycles

0.25 µs
22 cycles

5.09 µs
428 cycles

revolutions/ticks
FastSQRT Lookup Table SQRT

MAX
1.69 µs
143 cycles

1.9 µs
164 cycles

5.21 µs
438 cycles

AVG
1.51 µs
127 cycles

1.55 µs
131 cycles

4.89 µs
411 cycles

Table 3.2: Run-time comparison of the FastSQRT and Lookup table approaches for computing the deadline
of AVR tasks.

Moreover, a comparative study it was performed on the time overhead for

both approaches, together with one of using the SQRT function of the standard

C library. The experiments results, obtained on a STM32F4 microcontroller

running at 168Mhz with FPU enabled and reported in the Table 3.2, shows a

significant improvement of the FastSQRT on the standard SQRT function, halv-

ing the run-time in case of representation in RPM and being one-third in case of

using revolution/ticks. This time difference can be better understood by analyz-

ing the implementation of the functions. If the RPM is used as representation

of the engine speed (Lst.3.4), the measurement unit of the computed deadline

is minute, hence an other multiplication is necessary to convert minute in tick

(the system constant value RATIO represent the scalar conversion factor); on

the other hand, in the case where it is used the rev/ticks unit (Lst.3.5), the

deadline is already expressed in tick, hence it is enough to return the computed

29

Chapter 3. Support for EDF scheduling for AVR tasks

value without any conversions.

__INLINE__ EE_TYPERELDLINE __ALWAYS_INLINE__ computeAvrDeadline(EE_TID t,

SpeedType omega){

float dl;

dl = ((fast_sqrt ((omega*omega)+(EE_th_deltatimesalpha[EE_th_avrindex[t

]]))-omega)*EE_th_alphamaxinverse[EE_th_avrindex[t]]);

return dl * RATIO;

}

Listing 3.4: Deadline computation using FastSQRT and RPM unit

__INLINE__ EE_TYPERELDLINE __ALWAYS_INLINE__ computeAvrDeadline(EE_TID t,

SpeedType omega){

return ((fast_sqrt ((omega*omega)+(EE_th_deltatimesalpha[EE_th_avrindex[t

]]))-omega)*EE_th_alphamaxinverse[EE_th_avrindex[t]]);

}

Listing 3.5: Deadline computation using FastSQRT and rev/ticks unit

Moreover, observing Table 3.2, the lookup table approach resulted very efficient

for the RPM case (Lst.3.6), where no floating point operations are involved,

while resulted comparable to the FastSQRT in case of speed representation in

revolutions/tick (Lst.3.7), due to the floating point operation.

__INLINE__ EE_TYPERELDLINE __ALWAYS_INLINE__ computeAvrDeadline(EE_TID t,

SpeedType omega){

int index;

int alpha;

int beta;

int base =(1 << STEP);

index=(omega -OMEGA_MIN) >> STEP;

beta=(omega -OMEGA_MIN) % base;

alpha=base -beta;

return (alpha *(*(EE_tab_address+EE_th_avrindex[t]))[index])+(beta *(*(

EE_tab_address+EE_th_avrindex[t]))[index +1]) >> STEP;

}

Listing 3.6: Deadline computation using lookup table and RPM unit

__INLINE__ EE_TYPERELDLINE __ALWAYS_INLINE__ computeAvrDeadline(EE_TID t,

SpeedType omega){

float beta;

30

Chapter 3. Support for EDF scheduling for AVR tasks

int index;

float alpha;

beta = ((omega -OMEGA_MIN)/STEP);

index=(int)beta;

beta=beta -index;

alpha = 1-beta;

return ((alpha * (*(EE_tab_address+EE_th_avrindex[t]))[index]) +(beta *

(*(EE_tab_address+EE_th_avrindex[t]))[index +1]));

}

Listing 3.7: Deadline computation using lookup table and rev/ticks unit

From the above analysis, it is impossible to determine which solution is the best

since it is depend on which measurement unit is adopted and which constraints

are critical for the application (the timing constraints or the footprint), hence it

was decided to implement both versions. The choice of which one to use can be

made or explicitly by the users or automatically by RT-Druid, in both case new

keywords are added to the standard OIL language for supporting this features.

Some features of the C language are used for improving the kernel performances.

For instance, the functions were implemented as inline, to speed up the execution

of the task activation function, avoiding a function call. Moreover, each function

is defined inside the preprocessor statement #ifdef. The latter design solution

allows to achieve two important goals:

• In according with the kernel configuration, only one function is defined at

compile time, in this way the footprint does not increase.

• The same function signature (function name and input arguments) can be

used for all methods for computing the deadline.

With this approach, the new system call for activating AVR tasks is implemented

in very simple way. In fat, the activate task function takes as input arguments

the task id and the engine speed, computes the relative deadline and calls the

common Erika activation task function (Lst.3.8). In this way, the existing code

can be reused.

void EE_edf_ActivateTask_AVR(EE_TID t,SpeedType omega){

EE_TYPERELDLINE dline=computeAvrDeadline(t,omega);

EE_edf_ActivateTask_Dline(t,dline);

}

31

Chapter 3. Support for EDF scheduling for AVR tasks

Listing 3.8: ActivateTaskAvr system call

To support the AVR tasks, new data structures were defined, depending on the

chosen method. The data structures defined when the lookup table method is

selected are shown in Lst.3.9

• An array of integers, for each distinct task, to represent the lookup table,

whose dimension depends on quantization step;

• An array of address, which contains the lookup tables address;

• The system’s constant to compute the deadline (e.g. quantization step).

...

const EE_TYPERELDLINE EE_th_lookuptable0 [25] = {

3772843 ,

2887725 ,

...

};

...

const EE_TYPERELDLINE *EE_tab_address [2]={

EE_th_lookuptable0 ,

EE_th_lookuptable1

};

...

Listing 3.9: Data structures defined for the lookup table

The array of address is needed because, as shown in the fragment code 3.7 and

3.6, to access the lookup table are used its address. The data structures defined

when the FastSQRT method is selected are shown in Lst.3.10):

• An array of floating points, represent the precomputed value of 2∆α�, with

dimension equals to the number of distinct task;

• An array of floating points, represent the value of 1
α�

, with dimension equals

to the number of distinct task.

32

Chapter 3. Support for EDF scheduling for AVR tasks

...

const float EE_th_deltatimesalpha [2] = {

0.00000000000002294082 ,

0.00000000000002039184

};

...

const float EE_th_alphamaxinverse [2] = {

43590420917822.470000 ,

43590420917822.470000

};

...

Listing 3.10: Data structures defined for the fastSQRT

In any case, an array of 8-bit integer was defined to allow accessing the AVR

data structures (Lst.3.11).

const uint8_t EE_th_avrindex[EE_MAX_TASK] = {

0, /* thread Task_AVR1 */

-1, /* thread Task_Periodic */

1 /* thread Task_AVR2 */

};

Listing 3.11: Array of index for AVR tasks

3.3 Support for OIL language

AUTOSAR/OSEK RTOSes, and so on Erika, are configured at compile time

through a specific language named OIL. RT-Druid, as illustrated in 2.1.2, is a

Java tool, provided together with Erika, to configure the Erika kernel starting

form an OIL file.

To support and configure the kernel, some new keyword were added to the stan-

dard OIL in order to support the definition of the AVR tasks, standard OIL

specifications used for the tasks has been extended by adding a special construct,

called AVR TASK, which contain the following field:

• ALPHA MAX, containing the maximum angular acceleration for the rotation

source triggering the AVR task;

33

Chapter 3. Support for EDF scheduling for AVR tasks

• ANG DEADLINE, containing the angular deadline ∆ of the task.

An example of use is shown in the Lst.3.12, where it was used the rev{ms2 to

represent the maximum acceleration and degrees to represent the angular dead-

line, moreover other different measurement units are available for representing

the values of such fields.

TASK sampleAvrTask{

AVR_TASK=TRUE{

ALPHA_MAX = 0.000162 RPms2;

ANG_DEADLINE = 180 degrees;

};

...

};

Listing 3.12: AVR Task definition in the OIL file

Since the kernel implementation is able to handle the speed representation both

in RPM and in rev/tick, an OIL field named SPEED TYPE, is provided in the

kernel section for selecting among these two options, this field can assume only

two values:

• RPM: the kernel is configured, as default option, for using the lookup tables

to compute AVR task deadlines with a default quantization step equals to

256 RPM.

• RPTICK: in this case the FastSQRT is used as default option.

Moreover, an additional kernel configuration OIL struct is added for enforcing

the use of the FastSQRT algorithm or lookup tables with different quantization

steps ∆ω. To avoid any user error in selecting the proper quantization step, this

field has been configured with some predefined quantization values to guarantee

the proper behavior of the lookup tables for both speed representations. So, all

the predefined quantization values are in the powers of two. In this way the IDE

shows only the available values, as show in Fig. 3.3.

34

Chapter 3. Support for EDF scheduling for AVR tasks

Figure 3.3: Predefined quantization step values.

The RT-Druid tool has been modified to support the extended specification.

In particular, the EDF scheduler package has been modified by adding new

features to properly configure the options and the system calls of such a kernel.

Hence, supposed that the EDF scheduler has been selected, in the OIL file, the

first step of RT-Druid is to check the definition of the SPEED TYPE and TABLE

fields, and define the proper macro in the Makefile and in the eecfg.h file. RT-

Druid provides default values for these fields, in this way there are four possible

scenarios for configuring the kernel:

1. No fields are defined: RT-Druid automatically configures the kernel for

using the FastSQRT algorithm and the rev{tick as angular speed represen-

tation.

2. SpeedType field defined: if RPM is selected, the tool set at TRUE the

value of the TABLE field and set the quantization step equals to 256 RPM,

otherwise, if RPTICK is selected the TABLE field is set to FALSE, for using

the FastSQRT algorithm;

3. Table field defined: if TRUE is selected the kernel is configured to use the

RPM for representing the angular speed, otherwise, the kernel is configured

for using rev{tick measurement unit;

4. Both field are defined: in this case the user can customize the kernel se-

lecting among the possible combinations.

Subsequently RT-Druid checks if at least one AVR task is specified, and, in

this case, defines the macro EDF AVR , in the Makefile and in the eecfg.h file.

35

Chapter 3. Support for EDF scheduling for AVR tasks

With this macro the compiler includes the files that defines the activation task

function for the AVR tasks. If no AVR task is defined, SPEED TYPE and TABLE

fields are ignored. For each AVR task, the tool extracts the values specified in

the ANG DEADLINE and ALPHA MAX fields and check if their measurement units

are correct, reporting an error state if they are not. These values are used by

RT-Druid to generate the proper data structures in according with the kernel

configuration, therefore if FastSQRT is selected, such values are used to precom-

pute the parameters K
paq
i and K

pbq
i , of the Eq. 3.1, and to fill the data structures

EE th deltatimesalpha and EE th alphamaxinverse, in eecfg.c file, with their

corresponding values. The Lst.3.13 shows a fragment of the RT-Druid code for

reading the OIL fields and for creating the data structures.

...

String a=currTask.getString(EDF_TASK_AVR_OIL_ANG_DEADLINE);

double ang=currTask.getDouble(EDF_TASK_AVR_ANG_DEADLINE_REVOLUTION_DOUBLE);

double alphaMax=currTask.getDouble(EDF_TASK_AVR_ALPHA_MAX_RPMTICK2_DOUBLE);

float k_a = 2*ang*alphaMax;

float k_b = (1/ alphaMax);

sbAngDLThread.append(preavr + postavr + indent2 + String.format("%.20f",k_a));

sbInverseAlphaMax.append(preavr + postavr + indent2 + String.format("%f", k_b));

...

Listing 3.13: Creation of the data structures

On the other hand, if the kernel is configured to create the lookup tables, the

ANG DEADLINE and ALPHA MAX fields of each task are used to compute the values

of the corresponding lookup table. A lookup table is filled considering that the

k-th element of the table is equals to

Dpωkq k � 0, 1, ..., kmax

where the function Dp�q is the Eq. 1.1, ωk � ωk�1 � ∆ω, ω0 � ωmin, kmax is the

index for which ωkmax�1�∆ω ¥ ωmax and ∆ω is the quantization step. The Java

code for filling the lookup table is shows in Lst.3.14

...

for(int omega=omega_min;omega <= omega_max+step;omega=omega+step){

int dl=(int)Math.ceil ((((Math.sqrt((omega*omega)+2* alpha*angDL))-omega)/

alpha));

36

Chapter 3. Support for EDF scheduling for AVR tasks

buffer.append(pre+dl+post);

pre=" ,\n";

}

...

Listing 3.14: Computation of the lookup table elements

The main drawback of this approach is that the footprint may considerably

increase, since for each task, in according with the selected kernel configuration,

or a lookup table or an element in both array is created. On the other hand,

considering that some AVR tasks might have the same angular deadline and

same angular acceleration (e.g. the scenario in which two or more tasks are

triggered by the same rotation source), a special java class has been added to

RT-Druid package, for recognizing this type of tasks, and for creating only one

data structure for all of them. The Lst.3.15 shows the part of the java code for

recognizing if a task with the same angular properties has already been processed.

...

boolean found=false;

for (int i = 0; i < taskSet.size(); i++) {

if(taskSet.elementAt(i).checkParam(currentTask)){

currentTask.index=taskSet.elementAt(i).getIndex ();

currentTask.duplicate=true;

found=true;

taskSet.add(currentTask);

break;

}

}

if(! found){

currentTask.index=avr_index;

avr_index ++;

taskSet.add(currentTask);

}

...

Listing 3.15: Found duplicate properties

The taskSet object is an array of AvrTask objects, a special data type created

for storing some task information such as the angular properties. The Lst.3.16

shows the implementation of the AvrTask class.

public class AvrTask{

37

Chapter 3. Support for EDF scheduling for AVR tasks

private String oil_ang_deadline;

private String oil_alpha_max;

private double alpha_max;

private double ang_dl;

private String task_name;

private int index;

private boolean duplicate;

public AvrTask(String ang_deadline ,String alpha_max ,String name){

this.oil_alpha_max=alpha_max;

this.oil_ang_deadline=ang_deadline;

this.task_name=name;

this.duplicate=false;

}

public AvrTask(String name){

this.task_name=name;

}

public boolean checkParam(AvrTAsk t){

return (this.oil_ang_deadline.equals(t.oil_ang_deadline) && this

.oil_alpha_max.equals(t.oil_alpha_max));

}

}

Listing 3.16: AvrTask class

3.3.1 Stack Resource Policy support

Erika kernel provides the SRP protocol for accessing shared resources when

using EDF. This is a priority-based protocol that assigns each task a prior-

ity level. These priorities are assigned in the OIL file through the PRIORITY

field. This field is used for filling two operating system data structures, namely

EE th ready prio and EE th dispatch prio. With this approach, the respon-

sibility to set the proper priorities, is assigned to the user, so it might be wrong

assignments causing a malfunction of EDF, for instance a task with a longest

deadline may be activated before a task with a shortest deadline even if no shared

resources are defined.

To avoid this behavior, a new OIL keyword, TASK PRIORITY ASSIGNMENT, has

been added in the kernel configuration section. This field can be set with two

values:

• MANUAL: priorities set by the user.

38

Chapter 3. Support for EDF scheduling for AVR tasks

• DEADLINE MONOTONIC: priorities redefined following the deadline monotonic

priority assignment policy. With this approach the priority is inversely

proportional to the relative deadline length (the higher priority task is the

task with the early deadline).

PRIORITY is a required field, so exploiting this feature, the RT-Druid was mod-

ified to redefine the priorities values for reusing the existing code to create the

data structures. In this way RT-Druid is able to handle two scenarios under

DEADLINE MONOTONIC kernel configuration:

1. No resource defined: all task priorities are set to zero, in this way the

proper behavior of EDF is guaranteed.

2. One or more resources defined: RT-Druid analyzed the relative deadline

of each task; for the AVR tasks, it computes the worst case deadline, cor-

responding to the case of maximum angular speed; tasks are sorted by

deadline and the proper priority is assigned to each task.

Arrays.sort(taskDL_sorted);

for(int i=0;i<tasksDL.size();i++){

int prio=-1;

for(int j=0;j<taskDL_sorted.length;j++){

if(taskDL_sorted[taskDL_sorted.length -1-j]== taskDL[i]){

prio=j;

break;

}

}

prio= 1 << prio;

ISimpleGenRes currTask=tasks.get(i);

currTask.removeAProperty(ISimpleGenResKeywords.TASK_READY_PRIORITY);

currTask.setProperty(ISimpleGenResKeywords.TASK_READY_PRIORITY ,""+prio);

}

Listing 3.17: Priorities reconfiguration

The listing 3.17 implements the operations for assigning the proper priority to

the each tasks. The taskDL array contains the task relative deadline without

any order (in the order as they are defined in the OIL file). The taskDL sorted

array contains, through the java static method Arrays.sort(int[]), the task

relative deadlines into ascending numerical order (the earliest one is the first

39

Chapter 3. Support for EDF scheduling for AVR tasks

element of the array, hence the last element of the array represent the lower

priority task). In this way the priorities are represented by the position in

the array. The outer for loop scans the taskDL array and the inner one

scans backwards the sorted array, for finding the counterpart element and store

the corresponding index j. This index is used to set the proper bit in the

bitmask that represent the priority level value. The last instruction set the

ISimpleGenResKeywords.TASK READY PRIORITY, an RT-Druid internal property.

In this way the existing RT-Druid code, for creating the system data structures

relative to the SRP protocol, can be reused.

40

Chapter 4

Simulation environment for

EDF-based RTOS in Lauterbach

Trace32

A simulation framework has been used for testing the kernel support devel-

oped and for studying the execution of tasks under this kernel. The framework

is based on the Lauterbach Trace32 PowerView IDE.

Such a IDE provides only the instruction set simulator, hence, the framework

has been extended with two custom plugins to support the execution of both

periodic and engine-triggered tasks with the proposed kernel for Erika.

• Free running timer, used by the EDF kernel to handle the time represen-

tation in the system;

• Crankshaft simulator, used to generate interrupts related to the rotation

of a crankshaft, hence generating the activation of the AVR tasks.

The Peripherals Simulation Model (PSM) allows to write a custom software

that reacts and accesses to the microcontroller registers. Moreover, it provides

functions for interacting with the simulated processor and other modules of the

Trace32 simulator.

The custom plugins are developed in C language and compiled as dynamic

linked libraries that can be loaded into Trace32 PowerView by using PRACTICE

41

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

commands. Moreover two files, simul.c and simul.h, provided by Lauterbach,

implement the API functions for communicating with the PSM.

4.1 Timer implementation

The free running timer module simulates a 32-bit timer available in the

STM32F4 MCU, using the PSM interface for reacting to specific registers of

the microcontroller that are used for configuring the timer and reading its value.

The value of such a timer is the temporal reference for the kernel needed to define

absolute tasks deadlines and it is configured with the resolution specified in the

TICK TIME field in the OIL configuration file.

For the timer implementation, the first step was to define a struct for repre-

senting the timer registers (Lst.4.1). The PSM provides a special variable type,

called simulWord32, to represent a 32-bit memory area. In this way, the timer

registers can be accessed as a simple variables.

#define TIMER2_BASE 0x40000000

#define TIMER5_BASE 0x40000C00

#define CR1_OFFSET 0x00

#define CNT_OFFSET 0x24

#define PSC_OFFSET 0x28

#define ARR_OFFSET 0x2C

typedef struct

{

simulWord32 CR1; /* Address offset: 0x00 */

simulWord32 CNT; /* Address offset: 0x24 */

simulWord32 PSC; /* Address offset: 0x28 */

simulWord32 ARR; /* Address offset: 0x2C */

} TIM_Register;

Listing 4.1: Timer registers struct for library development.

The STM32F4 MCU provides two 32-bit timers and the struct definition is the

same for both of them. The TIMER2 BASE and TIMER5 BASE macros represent

the base address of each timer.

The Lst.4.2 defines a particular structure used for describing the timer proper-

ties, in particular it is used for accessing to the timer registers. Moreover, the

bustype, reset, work, intport and chport variables are used by the PSM

42

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

to allow the communication between the modules; regs represents the timer

register struct and the freqDivider represents the frequency divider. This last

variable is needed because the update frequency of the timer is always less than

processor frequency (also in case the timer prescaler value is set to zero).

typedef struct {

simulWord32 startaddress;

int bustype , reset , work , intport , chport;

TIM_Register regs;

simulTime ctimestamp;

int freqDivider;

void * ptimer;

} Timer;

Listing 4.2: Timer simulator properties.

When the dynamic linked library is loaded from the Trace32 PowerView, the

PSM executes the SIMUL Init function. Such a function must be used to initial-

ize the timer simulation structure and to register the callback functions for the

timer registers.

int SIMULAPI SIMUL_Init(simulProcessor processor , simulCallbackStruct * cbs) {

Timer* timer;

int i;

char tim5[] = "timer5";

strcpy(cbs ->x.init.modelname , __DATE__ " Timer Model");

timer = (Timer*) SIMUL_Alloc(processor , sizeof(Timer));

timer ->freqDivider = 2;

timer ->bustype = 0;

timer ->intport = -2;

timer ->startaddress = TIMER2_BASE;

if(cbs ->x.init.argc == 2)

{

if(strcmp (cbs ->x.init.argp ,tim5) == 0)

timer ->startaddress = TIMER5_BASE;

}

Regs_Init(processor , timer);

SIMUL_RegisterResetCallback(processor , TIMER_Reset , (simulPtr) timer);

timer ->ptimer = SIMUL_RegisterTimerCallback(processor , IntReqTimer , (

simulPtr) timer);

TIMER_Reset(processor , cbs , timer);

SIMUL_Printf(processor , "%s \n", "Timer library loaded");

return SIMUL_INIT_OK;

Listing 4.3: Initialization function for simulator plugin.

43

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

The initialization function (Lst.4.3) has two input parameters:

typedef struct

{

int type;

simulTime time;

union {

simulParamCallbackStruct init;

simulParamCallbackStruct command;

simulBusCallbackStruct bus;

simulBusCallbackStruct32 bus32;

simulBusCallbackStruct64 bus64;

simulPortCallbackStruct port;

simulPortCallbackStruct32 port32;

simulPortCallbackStruct64 port64;

simulTerminalCallbackStruct terminal;

} x;

}

simulCallbackStruct;

Listing 4.4: Simul callback structure definition.

• simulProcessor processor, that represents the simulated processor, it

can be used to retrieve some information such as the clock frequency;

• simulCallbackStruct * cbs that contains information about the simu-

lation (for instance the time elapsed from the beginning of the simulation)

and information about the simulated system status, (Lst.4.4).

For instance the initialization function uses the simulCallbackStruct for

setting the simulated model name. Moreover, the simulCallbackStruct con-

tains a char array that store the potential parameters specified in the library

load command. In this way the user can select the proper timer.

The Regs Init function is used to set the register callbacks. These callbacks

are called when the simulator tries to access to memory address specified in the

callback register function (Lst.4.5).

static void Regs_Init(simulProcessor processor , Timer * timer)

{

simulWord from , to;

int i;

for (i = 0; i < NUM_OF_REGS; i++)

44

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

{

from = timer ->startaddress + regs_offset[i];

to = from + 3;

SIMUL_RegisterBusWriteCallback(processor , writeFunc[i], (

simulPtr) timer , timer ->bustype , &from , &to);

SIMUL_RegisterBusReadCallback(processor , readFunc[i], (simulPtr)

timer , timer ->bustype , &from , &to);

}

}

Listing 4.5: Register callback function example.

The callback functions take the memory addresses range as input arguments (the

variable from and to), in this way the the plugin detects when the simulator tries

to access in that range.

The writeFunc and readFunc arrays contain the functions for handling memory

accesses (Lst.4.6).

static int SIMULAPI CNT_Read(simulProcessor processor , simulCallbackStruct * cbs

, simulPtr private)

{

Timer * timer = (Timer*) private;

SIMUL_ExtractWord(processor , &timer ->regs.CNT , 32, &cbs ->x.bus.address ,

cbs ->x.bus.width , &cbs ->x.bus.data);

return SIMUL_MEMORY_OK;

}

static int SIMULAPI CNT_Write(simulProcessor processor , simulCallbackStruct *

cbs , simulPtr private) {

Timer * timer = (Timer*) private;

SIMUL_InsertWord(processor , &timer ->regs.CNT , 32, &cbs ->x.bus.address ,

cbs ->x.bus.width , &cbs ->x.bus.data);

return SIMUL_MEMORY_OK;

}

Listing 4.6: Read and write register functions.

Lst.4.7 shows the core of the plugin. This function, called every clock cycle,

implements the timer behavior. For testing the proposed kernel, only the free

runner timer in up mode has been implemented.

int SIMULAPI IntReqTimer(simulProcessor processor , simulCallbackStruct *cbs ,

simulPtr private) {

static int divider = 0;

45

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

Timer * timer = (Timer*) private;

simulWord data;

if (divider == timer ->freqDivider - 1)

{

if (timer ->regs.CR1 & 0x1)

{

timer ->regs.CNT++;

}

}

divider = (divider + 1) % timer ->freqDivider;

return SIMUL_TIMER_OK;

}

Listing 4.7: Timer behavior implementation.

Before updating the counter value (timer->regs.CNT++;), the function checks

if the timer has been activated by the software using the timer->regs.CR1 vari-

able.

4.2 Crankshaft simulator

The main goal of the crankshaft simulator is to generate an interrupt signal,

at a specific angular position, for AVR task activation. The signal is sent to the

simulated Nested Vector Interrupt Controller (provided by Lauterbach) through

a simulated internal bus. The time instants at which such angular events occur

are directly dependent on the speed trend of the engine. Hence, the model of

the crankshaft requires some physical laws to be implemented in order to update

the activation time and the angular speed at each cycle:

ActivationT ime �
?
ω2 � 2 � α � θ � ω

α
(4.1)

AnugularSpeed �
?
ω2 � 2 � α � θ (4.2)

where the variables represent:

ω : the angular speed at the current time instant t ;

θ : the crankshaft angular displacement from the time instant t, after which

the time elapsed from t and the new angular speed must be computed;

46

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

α : the angular acceleration that is assumed to be constant for the angular

displacement θ.

Both equations have been implemented using the standard C mathematical li-

brary, and the listings are shown in the Lst.4.8 and Lst.4.9.

float getActivaionTime(float _omega){

float first ,second;

float time;

if(alphaCurr ==0){

time=theta / _omega;

return time;

}

first= _omega * _omega +2* alphaCurr*theta;

if(first <0){

time = theta/omegaMinus;

return time;

}

second=sqrt(first);

if(second >omegaPlus){

time = theta/omegaPlus;

return time;

}

time = (second - _omega)/alphaCurr;

return time;

}

Listing 4.8: Activation time function for the crankshaft simulator.

The first if condition of the Lst.4.8 covers the case in which the angular accel-

eration is equal to zero. This is the case of the uniform circular motion and the

Eq.4.1 becomes:

ActivationtT ime � θ

ω
.

The other two if cover two cases:

• The ω is too low and the angular acceleration is less than zero. This case

represents the scenario of uniform motion with the minimum angular speed;

• On the other hand, a saturation value is used to represent an uniform

motion with the maximum angular speed.

47

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

float getOmega(float _omega){ // omega = rad/s

float first ,second;

first= _omega * _omega +2* alphaCurr*theta;

if(first <0)

return omegaMinus;

second=sqrt(first);

if(second >omegaPlus)

return omegaPlus;

return second;

}

Listing 4.9: Angular speed function for the crankshaft simulator.

The above consideration are also used for implementing the function to compute

the angular velocity (Lst.4.9).

The saturation values are defined as:

static const double omegaMinus=52.359; // rad/s 500 RPM

static const double omegaPlus=680.678; // rad/s 6500 RPM

The interrupt signal rate depends also from the acceleration. The function

in charge to update the acceleration is shown in Lst.4.10.

void updateAcceleration(simulProcessor processor){

simulTime now;

double timeElapsed;

SIMUL_GetTime(processor ,&now);

timeElapsed= (now - lastUpdate)/(double)1000000000000; // porto il tempo

da picosecondi a secondi

alphaCurr=RandomDouble(alphaCurr +(jerkMinus*timeElapsed),alphaCurr +(

jerkPlus*timeElapsed));

if(alphaCurr >alphaPlus)

alphaCurr=alphaPlus;

else if(alphaCurr <alphaMinus)

alphaCurr=alphaMinus;

SIMUL_GetTime(processor ,& lastUpdate);

}

Listing 4.10: Function to update the acceleration for the crankshaft simulator.

The new acceleration value is generated by the RandomDouble(double a,

double b) function that generates a random value in the specified range, fol-

lowing the uniform distribution. To obtain a realistic acceleration evolution, the

jerks values, jerkMinus and jerkPlus are taken in the account. Moreover the

48

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

timeElapsed (time between two updates) is needed to compute the delta of the

acceleration. Then a saturation to alphaPlus and alphaMinus is performed.

Moreover, the values of the physical law are expressed in seconds but the

simulator is a discrete-time system. Hence, special functions have been created

to convert the time measurement units from seconds to processor ticks.

float getOmegaInTick(float omega){

return (omega /(((float)1000000000*2*3.141592) /11.9));

}

float getActivaionTimeTick(float _omega){

float time;

float ret;

time=getActivaionTime(_omega);

ret = (1000000000* time)/5.95;

return floor(ret);

}

Listing 4.11: Function to convert values from second to tick.

An important issue in the update acceleration function, is to set JerkMinus,

JerkPlus, AlphaMinus, AlphaPlus in order to obtain velocity and acceleration

realistic profiles.

The simulator can be configured to use two different ways for generating the

interrupt signals:

• File, which loads a predetermined speed pattern from a file;

• Random Speed Pattern, which generates a random speed evolution, given

a set of configurations parameters (for instance maximum and minimum

acceleration).

The initialization function (Lst.4.12) checks the input arguments; some possibil-

ities are allowed:

• No input argument: the simulator forces the acceleration parameters to

default values to achieve the most realistic speed trend:

– alphaPlus = 50

– alphaMinus = -50

– jerkPlus = 120

49

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

– jerkMinus = -120

• One input argument: the simulator assumes that the input argument is the

file name that contains the angular speed profile; in this case the simulator

fills two arrays representing the activation time (the time instant, expressed

in ticks, for generating interrupt signal) and the angular speed.

• Four input arguments: these values represents the angular acceleration and

angular jerk bounds. These values are used to generate, at run time, the

speed profile.

• Five input arguments: the first four values represents the acceleration prop-

erties, as the previous case; the last argument represents the seed for ran-

dom number generator initialization.

int SIMULAPI SIMUL_Init(simulProcessor processor ,simulCallbackStruct * cbs){

InterruptStruct* is;

int i=0;

int inputFile;

char pdata [256];

int ret;

char** tokens;

char* tok;

const char delim [2]=";";

double actTime;

char* filename;

int seed;

interruptNum =0;

dinamic =1;

switch(cbs ->x.init.argc -1){

case 0:

SIMUL_Printf(processor ,"%s","externalInterrupt: no input argument");

SIMUL_Printf(processor ,"default parameter:");

SIMUL_Printf(processor ,"jerkMinus =-120");

SIMUL_Printf(processor ,"jerkPlus =120");

SIMUL_Printf(processor ,"alphaMinus =-50");

SIMUL_Printf(processor ,"alphaPlus =50");

SIMUL_Printf(processor ,"");

SIMUL_Printf(processor ,"");

SIMUL_Printf(processor ,"");

jerkMinus =-120;

jerkPlus =120;

alphaMinus =-50;

alphaPlus =50;

alphaCurr=RandomDouble(alphaMinus ,alphaPlus);

50

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

omegaCurrent=getOmega (0);

omega [0]= getOmegaInTick(omegaCurrent);

activationTime [0]= getActivaionTimeTick(omegaCurrent);

break;

case 5:

seed=atof(cbs ->x.init.argp [5]);

RandomInitialise(seed ,9337);

case 4:

jerkMinus=atof(cbs ->x.init.argp [1]);

jerkPlus=atof(cbs ->x.init.argp [2]);

alphaMinus=atof(cbs ->x.init.argp [3]);

alphaPlus=atof(cbs ->x.init.argp [4]);

SIMUL_Printf(processor ,"insert parameter: ");

SIMUL_Printf(processor ,"jerkMinus =%f",jerkMinus);

SIMUL_Printf(processor ,"jerkPlus =%f",jerkPlus);

SIMUL_Printf(processor ,"alphaMinus =%f",alphaMinus);

SIMUL_Printf(processor ,"alphaPlus =%f",alphaPlus);

SIMUL_Printf(processor ,"");

SIMUL_Printf(processor ,"");

SIMUL_Printf(processor ,"");

alphaCurr=RandomDouble(alphaMinus ,alphaPlus);

omegaCurrent=RandomDouble(omegaMinus ,omegaPlus);

omega [0]= getOmegaInTick(omegaCurrent);

activationTime [0]= getActivaionTimeTick(omegaCurrent);

break;

case 1:

filename =(char*) malloc ((strlen(cbs ->x.init.argp [1]) -1) * sizeof(char));

memcpy(filename ,&(cbs ->x.init.argp [1]) [1],(strlen(cbs ->x.init.argp [1]) -2));

filename [(strlen(cbs ->x.init.argp [1]) -2)]=’\0’;

SIMUL_Printf(processor ,"%s",filename);

inputFile=SIMUL_OpenFile(processor ,filename ,SIMUL_FILE_READ);

if(inputFile ==NULL){

SIMUL_Warning(processor , "inputFile not found");

return SIMUL_INIT_FAIL;

break;

}

dinamic =0;

ret=SIMUL_ReadlineFile(processor ,inputFile ,pdata ,sizeof(pdata));

ret=SIMUL_ReadlineFile(processor ,inputFile ,pdata ,sizeof(pdata));

ret=SIMUL_ReadlineFile(processor ,inputFile ,pdata ,sizeof(pdata));

i=0;

while(ret !=0){

tok=strtok(pdata ,delim);

omega[i]= getOmegaInTick(atof(tok));

tok = strtok(NULL , delim);

tok = strtok(NULL , delim);

tok = strtok(NULL , delim);

actTime=atof(tok)*1000000000.0;

activationTime[i]=(int)(actTime /((double)5.95));

SIMUL_Printf(processor ,"%.20f;%f",omega[i],actTime);

51

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

i=i+1;

ret=SIMUL_ReadlineFile(processor ,inputFile ,pdata ,sizeof(pdata));

}

interruptNum=i-1;

break;

default:

SIMUL_Warning(processor ,"Usage parameters: [<filename >] [jerkMinus

jerkPlus alphaMinus alphaPlus]");

return SIMUL_INIT_FAIL;

break;

}

strcpy(cbs ->x.init.modelname , __DATE__ "External Interrupt");

is = (InterruptStruct *) SIMUL_Alloc(processor , sizeof(InterruptStruct));

is->bustype = 0;

is->intport = -2;

Regs_Init(processor , is);

SIMUL_RegisterResetCallback(processor , TIMER_Reset , (simulPtr) is);

is->is_pointer = SIMUL_RegisterTimerCallback(processor , IntReqTimer ,(simulPtr)

is);

SIMUL_RegisterBreakCallback(processor ,(void*) exitCallBack ,is);

TIMER_Reset(processor , cbs , is);

SIMUL_Printf(processor ,"%s","externalInterrupt library loaded");

if(dinamic ==1){

SIMUL_Printf(processor ,"omega(rad/s) ; alpha(rad/s^2) ; activation time(s) ;

time elapsed(s)");

SIMUL_Printf(processor ,"%.20f;%f;%f,%f",omega[0],alphaCurr ,getActivaionTime(

omegaCurrent),getActivaionTime(omegaCurrent));

}

else

SIMUL_Printf(processor ,"%s","File loaded");

return SIMUL_INIT_OK;

}

Listing 4.12: Initialization function of the crankshaft simulator.

In the case of dynamic speed trend the initialization function computes:

• alphaCurr: initial angular acceleration value, generated as a random value

between alphaMinus and alphaPlus;

• omegaCurr: initial angular velocity value, generated as a random value

between omegaMinus and omegaPlus;

• activationTime: first time instant, expressed in ticks for generating an

interrupt signal.

52

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

Moreover, the initialization function sets the callback function for a special reg-

ister. This register is used to store the current speed value, when an interrupt

signal is generated, thus simulating the presence of a TPU[20].

The IntReqTimer function (Lst.4.13) implements the behavior of the simu-

lator.

int SIMULAPI IntReqTimer(simulProcessor processor , simulCallbackStruct *cbs ,

simulPtr private){

static int angInterrupt =0;

InterruptStruct * is = (InterruptStruct *) private;

simulWord data;

simulWord temp;

static double countTick =0;

temp =0;

if(countTick == activationTime[currentExp]){

is->omegaRegs.OMEGA_REG=omega[currentExp];

is->regs.PR=1;

temp =1;

SIMUL_SetPort(processor ,118,1,& temp);

}

currentExp=currentExp +1;

if(dinamic ==1){

updateAcceleration(processor);

omegaCurrent = getOmega(omegaCurrent);

omega[currentExp]= getOmegaInTick(omegaCurrent);

activationTime[currentExp]= activationTime[currentExp -1]+

getActivaionTimeTick(omegaCurrent);

}

else{

if(currentExp == interruptNum){

SIMUL_Printf(processor ,"End of simulation");

SIMUL_Stop(processor);

}

}

}

countTick=countTick +1;

return SIMUL_TIMER_OK;

}

Listing 4.13: Behavior of the crankshaft simulator.

The instruction set simulator calls this function every clock cycle. The func-

tion compares the countTick variable, that represents the current cycle counter,

and the activationTime variable. If the values are equal, the function calls

SIMUL SetPort function for generating an interrupt signal and store the angular

53

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

speed value in a register. The interrupt signal, using the Nested Vector Interrupt

Controller, actives an Interrupt Service Routine of the Erika operating system,

running on the simulated processor. The ISR retrieves the angular speed value

from the register and calls the activate AVR task function. If a dynamic speed

computation is selected, the plugin updates the angular acceleration value and

computes the next angular speed and activation time values, on the other hand,

in case the speed profile is loaded from a file, the index of the activation time

and angular speed are incremented.

4.3 Simulation environment configuration

The timer and crankshaft simulators have been integrated with the Cortex

instruction set simulator. The resulting framework (Fig. 4.1) is able to collect

a full trace related to the execution of an application. Trace32 PowerView IDE

allows to analyze, explore, process and partially re-execute the trace data.

��������	

�
����

�����������	�

�����

��������

�����������

���������

���	���

����	�

�������

����

����������
�����

�����

� !

!��"#

#����������

$����%

Figure 4.1: Simulator framework block diagram.

The framework can be configured either manually, using graphic interfaces (Fig.

4.2), or automatically, using a set of scripts (Lst.4.14).

SYStem.Down

SIM.UNLOAD

54

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

SYStem.CPU STM32F407VG

vco.FREQUENCY 168.0 MHz

area

SYStem.UP

SIM.Load nvic.dll

SIM.Load timerSTM32.dll

SIM.Load interruptGenerator.dll

PER

trace.size 1073741823

D.load ..\ workspace_erika\edf_avrTask_test\Debug\c_mX.elf

List

enddo

Listing 4.14: Trace32 PowerView configuration script.

The scripts are written in PRACTICE language, a Lauterbach script lan-

guage. PRACTICE is a line-oriented test language which can be used to solve

all usual problems of digital measurement engineering. PRACTICE-II is an

enhanced version of this test language, first developed in 1984 for in-circuit em-

ulators.

Figure 4.2: Trace32 PowerView configuration windows.

Trace32 PowerView IDE is a script-based tool. This means that the envi-

ronment can be full customize using the scripts. At start up, Trace32 calls a

55

Chapter 4. Simulation environment for EDF-based RTOS in Lauterbach Trace32

default script for the basic configurations of the graphic interface (i.e., windows

size). Modifying this script, as shown in Lst.4.14, Trace32 automatically sets the

proper parameters for simulating the Cortex-M3 instruction set, sets the memory

map for the STM32 Discovery board and loads the custom library (nvic.dll,

timerSTM32.dll and interruptGenerator.dll). In this way, the simulation

environment is properly set at startup.

56

Chapter 5

Experimental evaluation

This chapter reports the experimental results aiming at evaluating the per-

formance of the proposed EDF kernel. Other Erika kernel conformance classes

(see section 2.1.1) were tested for comparison purposes.

Before showing the results, the test purposes and the environment settings

are described.

5.1 Experimental environment

In order to evaluate the performance of the proposed kernel we performed a

comparison with other three Erika kernel conformance classes:

• original EDF kernel conformance class;

• conformance class FP, that provides a minimal implementation of fixed-

priority scheduling;

• OSEK kernel, in particular the BCC2 conformance class, which provides

fixed-priority scheduling with stack sharing, more than one task per priority

level and multiple task activations.

The original EDF kernel version was selected because it is the baseline for the

proposed kernel; the conformance class FP is the most optimized kernel provided

by Erika Enterprise; the BCC2 OSEK kernel, instead, is the standard kernel type

adopted for engine control by automotive industries.

57

Chapter 5. Experimental evaluation

These comparative experiments want to prove that the proposed kernel draw-

backs, in terms of memory footprint and run-time overhead, is very restricted

with respect to the EDF and the fixed-priority based kernel.

5.1.1 Run-time overhead

This experiment has been conducted for measuring the resulting run-time

overhead of the ActivateTask system call. Such a system call computes the task

deadlines and manages the ready queue, resulting in the most time-consuming

kernel mechanism.

The overhead has been measured on a STM34F4 platform running at 168Mhz

with FPU enabled. The experiments compare the run-time overhead of proposed

kernel with the overhead of the original EDF kernel used as a baseline for this

work. The overhead has been measured as a function of the number of periodic

tasks, keeping the number of AVR tasks to two.

Aiming at testing the system in a condition where it is not overloaded, the

UUniFast algorithm [22] was used for creating a valid task sets. Given the

number of task and the total utilization, this algorithm generates task utilization

values, such that the generated utilization values are characterized by a uniform

distribution.

A Java tool has been developed for generating the software source codes.

Fig.5.1 shows the block diagram of such tool:

• OIL generator: it creates the OIL files for the selected task set;

• C generator: using the UUniFast algorithm, it creates the source code of

the selected task set;

• PRACTICE script generator: it creates a script for Lauterbach Trace32

PowerView, such that the test can be automatically performed;

• Compiler: the source files are compiled and the system image file is stored

in the Trace32 subdirectory;

• Simulator environment: it represents the Lauterbach Trace32 PowerView

block.

58

Chapter 5. Experimental evaluation

Figure 5.1: Automatic source generator block diagram.

Four task set classes were created by the Java tool. Each classes represents a

task set with a specific number of tasks (three, five, seven and ten periodic tasks

all with two AVR tasks). All tasks, independently of their classes, have the same

processor utilization (that is equal to 75%), and the computation time of each

task was computed by the UUniFast algorithm (Lst.5.1)

...

void TaskAvr1_AvrMode1 (){

float k=0;

float i=0;

for(i=0;i <53124;i++) //9820us

k++;

}

void TaskAvr1_AvrMode2 (){

float k=0;

float i=0;

for(i=0;i <24634;i++) //4556us

k++;

}

void TaskAvr1_AvrMode3 (){

float k=0;

float i=0;

for(i=0;i <18154;i++) //3359us

k++;

}

void TaskAvr1_AvrMode4 (){

float k=0;

float i=0;

for(i=0;i <10315;i++) //1909us

k++;

}

59

Chapter 5. Experimental evaluation

void TaskAvr1_AvrMode5 (){

float k=0;

float i=0;

for(i=0;i <8921;i++) //1650us

k++;

}

TASK(TaskAvr1){

float w=OMEGA_REG ->omega;

if(w <0.00000028462033271790){ //omega < 1435.0605 RPM

TaskAvr1_AvrMode1 ();

}

if(w >=0.00000028462033271790 && w <0.00000072053718299866){

TaskAvr1_AvrMode2 ();

}

if(w >=0.00000072053718299866 && w <0.00000106258696365356){

TaskAvr1_AvrMode3 ();

}

if(w >=0.00000106258696365356 && w <0.00000125689047088623){

TaskAvr1_AvrMode4 ();

}

if(w >=0.00000125689047088623 && w <0.00000128916669692993){

TaskAvr1_AvrMode5 ();

}

}

void TaskAvr2_AvrMode1 (){

float k=0;

float i=0;

for(i=0;i <25968;i++) //4800us

k++;

}

void TaskAvr2_AvrMode2 (){

float k=0;

float i=0;

for(i=0;i <25586;i++) //4730us

k++;

}

void TaskAvr2_AvrMode3 (){

float k=0;

float i=0;

for(i=0;i <14961;i++) //2769us

k++;

}

TASK(TaskAvr2){

float w=OMEGA_REG ->omega;

if(w <0.00000040474313011169){

TaskAvr2_AvrMode1 ();

}

if(w >=0.00000040474313011169 && w <0.00000072471891555786){

TaskAvr2_AvrMode2 ();

}

60

Chapter 5. Experimental evaluation

if(w >=0.00000072471891555786 && w <0.00000128916669692993){

TaskAvr2_AvrMode3 ();

}

}

TASK(taskPeriodic1){

float k=0;

float i=0;

for(i=0;i <11971;i++) //2214 us

k++;

}

TASK(taskPeriodic2){

float k=0;

float i=0;

for(i=0;i <77176;i++) //14269 us

k++;

}

TASK(taskPeriodic3){

float k=0;

float i=0;

for(i=0;i <69647;i++) //12877 us

k++;

}

...

Listing 5.1: Task set, with three periodic tasks and two AVR tasks, used for computing the run-time overhead.

The maximum angular acceleration is the same for both AVR tasks, meanwhile

the angular deadline is set at 180 degrees for the first task and 360 degrees for

the second one. The task sets were compiled using the GNU ARM compiler with

the execution time optimization (-O3) flag enabled.

Each task set has been executed for six seconds of simulated time, due the

limited sample buffer of the Trace32PowerView. Moreover a significant number

of samples was collected (considering that the activation time for an AVR task,

with angular period equals to 360 degrees, is usually bounded between 9 and 120

milliseconds).

The simulations are executed on a machine equipped with an Intel Core i7

4790k processor running at 4GHz with 32GBs of RAM and a 500GBs of SSD.

With this hardware setting the total time for obtaining the result from one

simulation is about three minutes (see Table.5.1).

61

Chapter 5. Experimental evaluation

Simulation Trace Processing RAM
time time time occupancy
(secs) (secs) (secs) (GBs)

1 19 16 4.1
3 48 40 12.3
6 96 92 25.2

Table 5.1: Times and memory consumption for the proposed simulation framework.

5.1.2 Footprint

This experiment aims at comparing the memory footprint of the proposed

kernel with the footprints of the OSEK BCC2, FP and original EDF kernels.

The experiment evaluates the footprint as a function of the number of AVR tasks

keeping the number of periodic tasks to two. This choice was made because the

OSEK BCC2, the original EDF and the FP kernels do not distinguish the AVR

tasks from the periodic ones, while the proposed kernel in this thesis is specially

conceived for handling AVR tasks.

Hence, the measured binaries contain only the kernel structures and they not

contain the function implementations or other specific application features, for

instance the C source files contain only the ActivateTask system call (Lst.5.2).

The results are obtained compiling the kernels for the STM32F4 platform using

the GNU ARM compiler with the size optimization (-Os) flag enabled.

In this experiment we used the proposed kernel configured for using the Fast-

SQRT algorithm for computing the deadlines of AVR tasks. Moreover to evaluate

the overhead trend all the AVR tasks have different angular parameters (angu-

lar deadline and maximum angular acceleration), in this way a different data

structure is created for each task.

#include "ee.h"

TASK(taskPeriodic1){}

TASK(taskPeriodic2){}

TASK(TaskAvr1){}

TASK(TaskAvr2){}

TASK(TaskAvr3){}

TASK(TaskAvr4){}

TASK(TaskAvr5){}

TASK(TaskAvr6){}

TASK(TaskAvr7){}

TASK(TaskAvr8){}

62

Chapter 5. Experimental evaluation

int main(void){

ActivateTask(taskPeriodic1);

ActivateTask(taskPeriodic2);

ActivateTask(TaskAvr1);

ActivateTask(TaskAvr2);

ActivateTask(TaskAvr3);

ActivateTask(TaskAvr4);

ActivateTask(TaskAvr5);

ActivateTask(TaskAvr6);

ActivateTask(TaskAvr7);

ActivateTask(TaskAvr8);

};

Listing 5.2: C source file of an application for the footprint evaluation.

The Lst.5.3 shows the Windows PowerShell batch script to evaluate the binary

size.

echo "EDF ,EDF+AVR ,FP ,OSEK"

$sizeEDF =(Get -Item ’.\ footprint \0_AVR\edf\Debug\c_mX.bin’).length

$sizeEDFAVR =(Get -Item ’.\ footprint \0_AVR\edfavr\Debug\c_mX.bin’).length

$sizeFP =(Get -Item ’.\ footprint \0_AVR\fp\Debug\c_mX.bin’).length

$sizeOSEK =(Get -Item ’.\ footprint \0_AVR\osek\Debug\c_mX.bin’).length

echo "$sizeEDF ,$sizeEDFAVR ,sizeFP ,$sizeOSEK"

$sizeEDF =(Get -Item ’.\ footprint \1_AVR\edf\Debug\c_mX.bin’).length

$sizeEDFAVR =(Get -Item ’.\ footprint \1_AVR\edfavr\Debug\c_mX.bin’).length

$sizeFP =(Get -Item ’.\ footprint \1_AVR\fp\Debug\c_mX.bin’).length

$sizeOSEK =(Get -Item ’.\ footprint \1_AVR\osek\Debug\c_mX.bin’).length

echo "$sizeEDF ,$sizeEDFAVR ,$sizeFP ,$sizeOSEK"

$sizeEDF =(Get -Item ’.\ footprint \2_AVR\edf\Debug\c_mX.bin’).length

$sizeEDFAVR =(Get -Item ’.\ footprint \2_AVR\edfavr\Debug\c_mX.bin’).length

$sizeFP =(Get -Item ’.\ footprint \2_AVR\fp\Debug\c_mX.bin’).length

$sizeOSEK =(Get -Item ’.\ footprint \2_AVR\osek\Debug\c_mX.bin’).length

echo "$sizeEDF ,$sizeEDFAVR ,$sizeFP ,$sizeOSEK"

$sizeEDF =(Get -Item ’.\ footprint \3_AVR\edf\Debug\c_mX.bin’).length

$sizeEDFAVR =(Get -Item ’.\ footprint \3_AVR\edfavr\Debug\c_mX.bin’).length

$sizeFP =(Get -Item ’.\ footprint \3_AVR\fp\Debug\c_mX.bin’).length

$sizeOSEK =(Get -Item ’.\ footprint \3_AVR\osek\Debug\c_mX.bin’).length

echo "$sizeEDF ,$sizeEDFAVR ,$sizeFP ,$sizeOSEK"

....

Listing 5.3: PowerShell script to evaluate memory footprint.

63

Chapter 5. Experimental evaluation

5.2 Experimental results

5.2.1 Run-time overhead

Fig.5.2 shows a bar plot representing the maximum and the average run-

time overhead (expressed in microseconds) for the ActivateTask system call

of the proposed kernel (referred to as EDF-AVR) under both the cases of ap-

plication of the FastSQRT algorithm and the lookup table, configured to use

their default SpeedType (RPM speed type for lookup table configuration and

rev/tick for the FstSQRT algorithm). Moreover, the original kernel (referred to

as EDF) run-time overhead has been computed for comparison purposes. The

Figure 5.2: Maximum and average run-time overhead.

result shows that the proposed kernel have an additional overhead ranging from a

few hundreds of nanoseconds to a maximum of 1.5 microseconds with respect to

the original EDF kernel. The maximum additional overhead corresponds to the

FastSQRT kernel configuration due to floating point operations. On the other

hand the overhead slowly increase, hence the system has a good scalability.

Moreover, consider now the case in which an AVR task having a minimum

deadline of 4 milliseconds (considering the Eq. 1.1 with ω � 6500RPM and

64

Chapter 5. Experimental evaluation

Number of tasks 3 5 7 10

EDF AVG 0.0065% 0.0068% 0.0069% 0.0072%

EDF MAX 0.0066% 0.0069% 0.0070% 0.0072%

EDF-AVR
(FastSQRT) 0.01% 0.0104% 0.0106% 0.0110%

AVG

EDF-AVR
(FastSQRT) 0.0102% 0.0105% 0.0109% 0.0112%

MAX

EDF-AVR
(Lookup table) 0.0073% 0.0075% 0.0079% 0.0080%

AVG

EDF-AVR
(Lookup table) 0.0074% 0.0076% 0.0079% 0.0080%

MAX

Table 5.2: Ratio between overhead values and the minimal deadline.

∆ � 180degrees). In this case the higher overhead value represents the 0.01%

of the available task time. Tbl 5.2 shows the ratio between overhead values and

the minimal deadline.

5.2.2 Footprint

Fig. 5.3 reports the footprint in bytes for OSEK BCC2, FP, EDF and EDF-

AVR kernels as a function of the number of AVR tasks, while keeping the number

of periodic tasks to two.

As can be observed from the graph, the OSEK BCC2 kernel shows the greater

footprint: this is because it contains a consistent number of data checks and

mechanisms required for being fully compliant with the OSEK standard.

The EDF-AVR kernel has the same footprint of original AVR when no AVR

tasks are present (as clearly expected) and requires around 180 additional bytes

for handling one AVR task with respect to EDF kernel (that requires around 40

additional bytes for handling one AVR tasks). This relevant footprint difference

is due to the implementation of the new ActivateTask system call. In fact,

65

Chapter 5. Experimental evaluation

0 2 4 6 8 10 12 14 16 18 20
3500

4000

4500

5000

5500

6000

Number of AVR tasks

F
o
ot

p
ri

n
t

(b
y
te

s)

OSEK BCC2
EDF-AVR

EDF
FP

Figure 5.3: Footprint in bytes for different conformance classes of Erika.

in the case of two AVR tasks the additional footprint for EDF-AVR kernel is

around 48 bytes with respect to the case with one AVR tasks.

FP kernel shows the lower footprint: this is because it is a minimal imple-

mentation of the fixed-priority scheduling.

Moreover, this experiment is performed using different angular parameters

(angular period and angular acceleration) for each task, this introduces a kind

of pessimism.

Fig. 5.4 shows the memory footprint of EDF-AVR kernel in case angular

period assumes four distinct values (that represents a common engine control

application). In this case, the footprint results to be reduced with respect to the

EDF-AVR with different angular parameters for each task.

66

Chapter 5. Experimental evaluation

0 2 4 6 8 10 12 14 16 18 20
3500

4000

4500

5000

Number of AVR tasks

F
o
ot

p
ri

n
t

(b
y
te

s)

EDF-AVR (wct)
EDF-AVR (real)

EDF

Figure 5.4: Footprint in bytes for EDf-AVR worst case and real case.

The additional footprint for handling an AVR task under this EDF-AVR

configuration is around 40 bytes as well as the EDF kernel.

67

Chapter 6

Conclusion

In this master thesis we studied the problem of design and implementation

of a real-time operating system for supporting engine control applications with

dynamic-priority scheduling. This work has been based on the ERIKA Enterprise

real-time operating system.

Being engine control applications typically managed by an AUTOSAR/OSEK

standard operating system (RTOS), the new kernel has been designed to have an

API with minimal differences with respect to the OSEK standard, thus limiting

the effort for adopting the proposed solution in existing engine control applica-

tions. The same design constraints have been considered for the RTOS config-

uration, providing minimal extensions to the OSEK Implementation Language

(OIL), which is the standard language for configuring an OSEK RTOS.

Typically engine control applications include computational activities consist-

ing of periodic tasks, activated by timers, and engine-triggered tasks, activated

at specific crankshaft position. The deadlines of such tasks depend on the en-

gine speed, hence two different approaches have been considered for the kernel

implementation depending on the representation of the engine speed available in

the system.

An approach is based on a fast algorithm for computing the square root func-

tion (FastSQRT), while the other one relies on lookup tables. Both approaches

have been discussed and compared in terms of precision, footprint, and run-time

overhead.

The deadline computation error of both approaches results less than 0.04%.

68

Chapter 6. Conclusion

Moreover, in the case of the FastSQRT approach the approximate deadline results

always less than the theoretical one. This means that the system is always in a

safe state (for instance if a job misses the approximate deadline there is a small

time margin before the job misses the theoretical one).

A comparison made with the existing EDF kernel included in ERIKA En-

terprise showed that the overhead introduced by the deadline computation is

bounded from a few hundreds of nanoseconds to a maximum of 1.5 microsec-

onds, depending on its configuration. In particular the lookup table approach

using RPM as engine speed representation introduces the minimum overhead.

The proposed kernel requires about 250 bytes of additional footprint with

respect to the existing EDF kernel and less than 500 bytes increment with respect

to a minimal implementation of fixed-priority scheduling to handle 10 AVR tasks.

Analysis of the results showed that the footprint also depends on the angular

parameters. In fact the additional footprint for adding a task with the same

angular parameters is comparable to the EDF additional footprint.

A simulation framework has also been developed for studying the execution of

tasks under the proposed kernel. Such a framework has been realized extending

the Lauterbach Trace32 suite with an engine crankshaft simulator, for generating

angular events, and a free runner timer, required by the Erika EDF implementa-

tion, to support the execution of the implemented EDF kernel. Thanks to this

framework it is possible to collect execution traces of real code without using

any hardware devices (microcontrollers, debugger, etc.)

The efforts needed to move an existing engine control application from an

OSEK RTOS to the proposed kernel are minimal. Few steps are needed for

moving an application, that are:

• select the mechanism for reading the engine speed (which is generally al-

ready present in such applications);

• replace all the occurrences of the ActivateTask system call used for acti-

vating the AVR tasks with the new version;

• set the angular parameters (angular deadline and maximum engine accel-

eration) in the OIL configuration file.

69

Chapter 6. Conclusion

Future works

A number of open issues must be explored to allow a full support to engine

control application. These issues suggest a variety of research directions.

One such direction would be to investigate the support for multi-core devices,

that are becoming an important point of reference for the automotive industries.

Such devices involve many other problems related to the scheduling policy for

handling multiple processors.

Moreover, other kind of dynamic scheduling can be taken in account also for

better handling shared resources.

70

Bibliography

[1] D. Buttle, ”Real-time in the prime-time.” Keynote speech given at the 24th

Euromicro Conference on real-Time Systems(ECRTS 2012), Pisa, Italy, July

12th 2012.

[2] L. Guzzella and C. H. Onder, ”Introduction to Modeling and Control of

Internal Combustion Engine System” 2th Edition.

[3] J. Kim, M. Lakshmanan and R. Rajkumar, ”Rhythmic tasks: A new task

modewl with continually varying periods for cyber-physical systems”, in

Proc. of the Third IEEE/ACM Int. Conference on Cyber-Physical Systems

(ICCPS 2012), Beijing, China, April 17-19 2012, pp. 28-38.

[4] V. Pollex, T. Feld, F. Slomka, U. Margull, R. Mader and G. Wirrer, ”Suf-

ficient real-time analysis fo an engine control unit with constant angular

velocities” in Proc. of the Design, Automation and Test Conference in Eu-

rope, Grenoble, France, March 18-22 2013.

[5] R. I. Davis, T. Feld, V. Pollex and F. Slomka, ”Schedulability tests for tasks

with variable rate-dependent behaviour under fixed priority scheduling”, in

Proc. 20th IEEE Real-Time and Embedded Technology and Applications

Symposium, Berlin, Germany, April 15-17 2014.

[6] A. Biondi, A. Melani, M. Marinoni, M. D. Natale and G. Buttazzo, ”Exact

interference of adaptive variable-rate tasks under fixed-priority scheduling”,

in Proceedings of the 26th Euromicro Conference on realt-Time systems

(ECRTS 2014), Madrid, Spain, July 8-11 2014.

71

Bibliography

[7] G. Buttazzo, ”Rate Monotonic vs. EDF: Judgment Day”, Real-Time Sys-

tem, Vol.28 pp. 1-22,2005.

[8] G. Buttazzo and P. Gai, ”Efficient EDF implementation for small embedded

system”, in Proc. of the 2nd Int Workshop on Operating Systems Platforms

for Embedded Real-Time applications (OSPERT 2006), Dresden, Germany,

July 2006.

[9] G. Buttazzo, E. Bini and D. Buttle, ”Rate-adaptive tasks: Model, analysis

and design issues”, in Proc. of the Int. Conference on Design, Automation

and Test in Europe (DATE 2014), Dresden, Germany, March 24-28, 2014.

[10] A. Biondi and G. Buttazzo, ”Engine Control: Task Modeling and Analysis”,

in Proceedings of the International Conference on Design, Automation and

Test in Europe (DATE 2015), Grenoble, France, March 2015.

[11] Z. Guo and S. Baruah, “Uniprocessor EDF scheduling of AVR task systems”,

in Proc. of the ACM/IEEE 6th International Conference on Cyber-Physical

Systems (ICCPS 2015), Seattle, USA, April 2015.

[12] A. Biondi, G. Buttazzo and S. Simoncelli, ”Feasibility Analysis of Engine

Control Tasks under EDF Scheduling”, In Proceedings of the 27th Euromi-

cro Conference on Real-Time Systems (ECRTS 15), Lund, Sweden, July

7-10, 2015.

[13] P. Gai, G. Lipari, L. Abeni, M. di Natale and E. Bini, “Architecture for

a portable open source real-time kernel environment,” in Proceedings of

the Second Real-Time Linux Workshop and Hand’s on Real-Time Linux

Tutorial, November 2000

[14] OSEK, OSEK/VDX Operating System Specification 2.2.1.

http://www.osek-vdx.org: OSEK Group,2003.

[15] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemption

threshold”, in Proc. of the 6th IEEE Int. Conference on Real-Time Comput-

ing Systems and Applications (RTCSA’99), Hong Kong, China, December

13-15, 1999.

72

Bibliography

[16] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo, “IRIS: A new reclaim-

ing algorithm for server-based real-time systems”, in Proc. of the IEEE Real-

Time and Embedded Technology and Applications Symposium, Toronto,

Canada, May 25-28 2004.

[17] A. Biondi, G. Buttazzo, and M. Bertogna, “Supporting component-based

development in partitioned multiprocessor real-time systems”, in Proceed-

ings of the 27th Euromicro Conference on Real-Time Systems(ECRTS 2015),

Lund, Sweden, July 8-10, 2015.

[18] ”RT-Druid A tool for architecture-level design of embedded systems”, white

paper, Evidence S.r.l. http://www.evidence.eu.com

[19] Trace32 instruction set simulator. [Online] Available: http://www2.

lauterbach.com/pdf/simulator_api.pdf

[20] Freescale semiconductor Application Note AN3769. Using the engine po-

sition (CRANK and CAM) eTPU function. [Online]. Available: http:

//cache.freescale.com/files/32bit/doc/app_note/AN3769.pdf

[21] C. Lomont, ”Fast inverse square root”, [Online], Available: http://www.

lomont.org/Math/Papers/2003/InvSqrt.pdf

[22] E. Bini and G. Buttazzo, “Measuring the performance of schedulability

tests”, Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, May 2005.

73

