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Abstract 
Ninety percent of the eukaryotic genome is transcribed although only a small part 

corresponds to protein coding mRNAs, suggesting that a large proportion of transcribed 

RNAs do not code for proteins, hence classified as non-coding RNAs (ncRNAs). High-

throughput sequencing technology has allowed the identification and characterization of 

several classes of ncRNAs with key roles in various biological processes. Among 

ncRNAs, long ncRNAs (lncRNAs) are transcripts typically longer than 200 nucleotides 

that tend to be expressed at low levels and exhibit tissue-specific/cell-specific or stress 

responsive expression profiles. LncRNAs have been identified in animals and in plants 

as well, where they are involved in different regulatory pathways both in development 

and stress responses, even if the understanding of molecular basis of these mechanisms 

remains largely unexplored. 

My thesis project aims at identifying lncRNAs in Brachypodium distachyon (Bd), a 

wild grass belonging to the Pooideae and a model species for temperate cereals, such as 

wheat and barley. 

A whole-genome annotation and a detailed analysis of lncRNAs expression patterns 

have been performed for the first time in Brachypodium. Moreover the potential 

lncRNA targets were investigated to highlight new regulatory networks and cross-talk 

between different RNA molecules. 

Public and proprietary RNA-Seq data sets from 15 different experiments conducted in 

the reference inbred line Bd21 were analysed in this study. Public RNA-Seq data from 

different experiments, including several plant organs, were downloaded from the 

Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra). Proprietary RNA-Seq 

libraries were previously produced by the lab from three developmental leaf areas: 

proliferation, expansion and mature, grown in control and drought stress conditions. For 

each proprietary RNA-Seq sample, three biological replicates were produced. 

This dataset is characterized by a total of 705 millions reads, which were subjected to a 

quality analysis. Each experiment was aligned independently to the Bd21 reference 

genome (v.2.1) using the spliced read aligner TopHat2 and, successively, for each 

experiment the transcriptome was de novo assembled using Cufflinks. 

In order to identify Bd lncRNAs an in house bioinformatic pipeline was used. Briefly, 

this pipeline applies five filters based on the main lncRNA features: size selection, 
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Open Reading Frame filter, known protein domain filter, Coding Potential Calculator, 

filter of housekeeping lncRNAs and precursors of small RNAs.  Starting from the whole 

set of loci/isoforms (99141) de novo reconstructed, 2507 bona fide lncRNAs were 

identified. 

Bona fide lncRNAs differential expression analysis was taken into account for datasets 

with replicates, i.e. proprietary libraries from different developing areas of the third leaf. 

This analysis revealed that several lncRNAs are differentially expressed during leaf cell 

differentiation and during drought treatment. Some lncRNAs resulted more abundant in 

specific plant stages, tissues or organs. 

Moreover, a computational method developed to identify endogenous microRNA target 

mimic (eTM) allowed to investigate the link between lncRNAs and microRNAs 

through target mimicry, a regulatory mechanism for miRNA functions in plants in 

which the decoy RNAs bind to miRNAs via complementary sequences and therefore 

could interfere with the interaction between miRNAs and their authentic targets. 
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1 Introduction 

1.1 RNA world 
RNA plays a central role in the pathway from DNA to proteins, known as the “central 

dogma” of molecular biology. The classic view of the central dogma of biology states 

that “the coded genetic information hard-wired into DNA is transcribed into individual 

transportable cassettes, composed of messenger RNA (mRNA); each mRNA cassette 

contains the program for synthesis of a particular protein (or small number of proteins)” 

(Lodish et al., 2000). 

As a general rule, the classic view of central dogma of biology reflects how the 

sequence information is organized and transferred between information-carrying 

biopolymers (DNA, mRNA and proteins) in living organisms. However, many 

exceptions to this dogma are now known as a result of genomic studies performed 

during the last decade and supported by new sequencing technologies. 

Nowadays we know that up to 90% of eukaryotic genome is transcribed into both 

protein-coding and non protein-coding RNAs (ncRNAs). Until recently, discrimination 

between these two categories was relatively straightforward. Most transcripts were 

clearly identifiable as protein-coding messenger RNAs, which convey the genetic 

information from DNA to ribosome, and were readily distinguished from the small 

number of well characterized ncRNAs, with a completely different structure and, 

anyway, involved in protein biosynthesis, such as transfer, ribosomal and spliceosomal 

RNAs. 

Recently, genome-wide studies have revealed the existence of thousands of non-coding 

transcripts (Dinger et al., 2008). First of all, small regulatory RNAs (microRNAs and 

small interfering RNAs) were discovered and classified in different categories on the 

basis of length, function, biogenesis, structural features and protein binding partners 

(Farazi et al., 2008). Small RNAs were found to perform diverse biological functions by 

guiding sequence-specific gene silencing at transcriptional and/or post-transcriptional 

level, known as RNA interference (RNAi) (Farazi et al., 2008). Actually, a 

phenomenon of RNAi was reported for the first time in 1990, by Napoli et al. trying to 

deepen the colour of petunias. Overexpressing a key enzyme in flavonoid biosynthesis, 

they obtained white petunias, as result of the turning off of the gene (Napoli et al., 
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1990). Nowadays, RNAi is widely used for systematic analysis of gene function and is 

under investigation for its potential therapeutic applications (Haussecker, 2014). 

Attention is now shifting toward a novel class of ncRNAs, long non-coding RNAs 

(lncRNAs), increasingly recognized as functional regulatory component in eukaryotic 

gene regulation. They were discovered in 90s in humans (Brown et al., 1992) and only 

in 2007 in plants (Franco-Zorrilla et al., 2007). 

The FANTOM consortium pioneered the genome-wide discovery of lncRNAs in mouse 

in 2000s, based on cDNA sequencing (Maeda et al., 2006). ENCODE (Derrien et al., 

2012) and NONCODE (Xie et al., 2014) projects followed, especially thanks to RNA 

Sequencing (RNA-Seq) technology advent, allowing the annotation of novel human and 

mouse lncRNAs. In plants, the study of lncRNAs is still in its infancy, with a fine 

annotation only for rice (Zhou et al., 2009), maize (Li et al., 2014), cotton (Wang et al., 

2015), Populus (Chen et al., 2015; Shuai et al., 2014) and tomato (Zhu et al., 2015). 

 

1.2 Non-coding RNA 
The so called “dark matter” of the genome, i.e. non-coding genome, comprises a diverse 

group of transcripts: 

• “Housekeeping” ncRNAs (ribosomal RNAs, transfer RNAs, small nuclear 

RNAs and small nucleolar RNAs). 

• “Regulatory” ncRNAs: 

o Small regulatory RNAs, such as micro RNAs (miRNAs) and small 

interfering RNAs (siRNAs). 

o Long non-coding RNAs (lncRNAs) (Kim and Sung, 2012). 

Small regulatory RNAs (sRNAs) are tiny molecules of approximately 20-24 nucleotides 

in length. They act to fine-tuning gene expression through sequence complementary-

dependent mechanisms at both transcriptional and post-transcriptional level, binding 

complementary target mRNAs, inhibiting their translation and interacting with 

epigenetic DNA-methylation for RNA-directed DNA methylation (RdDM). 

sRNAs are generated via processing of longer double-stranded RNA (dsRNA) 

precursors by a key RNaseIII-like enzyme termed Dicer, evolutionary conserved in 

different taxa. 
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Depending on their biogenesis and functions, sRNAs are classified as micro RNAs and 

small interfering RNA (Finnegan and Matzke, 2003). 

 

siRNAs were first detected in plants in 1999 (Hamilton and Baulcombe, 1999). In 

general, siRNAs can be derived from all regions of perfect duplex RNAs and, at least in 

plants, they accumulate in both sense and antisense polarities. Perfect duplex RNAs can 

be synthetic RNAs, replicating viruses or even the result of the transcription of nuclear 

genes. 

In plants, siRNAs have a variety of functions that can be grouped in at least two broad 

categories: those that trigger changes in the chromatin state of elements from which 

they derive and those that derive from and defend against exogenous RNA sequences 

such as viruses or sense transgene transcripts (Bonnet et al., 2006). 

 

miRNAs originate from specific endogenous genes called MIR genes, preferentially 

localized within intergenic regions. They derive via Dicer cleavage of imperfect duplex 

stem-loop RNAs, ~70-200 nt in length. 

The biogenesis of plant miRNAs happens within specialized regions of the nucleus, 

called D-bodies, where RNA polymerase II mediate the production of a primary 

miRNA (pri-miRNA) transcript. The pri-miRNA is then processed into a shorter stem-

loop precursor-miRNA (pre-miRNA) formed by base-paring between self-

complementarity regions. Pre-miRNA is processed again, releasing a miRNA/miRNA* 

duplex, later exported to the cytoplasm, possibly by HASTY (HST), where the 

miRNA* is usually degraded and the mature miRNA is recruited by RNA-induced 

silencing complex (RISC) (Voinnet, 2009) (Figure 1.2). 

Both siRNAs and miRNAs are loaded into a RISC, and associated with a member of the 

Argonaute protein family, which has RNA-binding ability. 

Through this complex, siRNAs will then bind to the same messenger RNA from which 

they originate, and cleave the mRNA, silencing its expression. Whereas miRNAs will 

bind specifically to a target messenger RNA, and guide its cleavage (in most of the 

cases) or will repress its translation (Bonnet et al., 2006) (Figure 1.1, 1.2). 
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Plant miRNAs were discovered for the first time in Arabidopsis thaliana in 2002. Some 

plant miRNAs were found to be conserved in many plant genomes such as those of 

Oryza sativa, Zea mays and those of more ancient vascular plant genera such as ferns or 

even nonvascular plants such as mosses (Bonnet et al., 2006). Surprisingly, a miRNA 

family, 854, has been shown to be expressed in Arabidopsis thaliana, Caenorhabditis 

elegans, Mus musculus and Homo sapiens. Interestingly, across these diverse species, 

miRNA-854 targets the same mRNA, uridylate binding protein 1b (UBP1b), which 

normally encodes a member of a heterogeneous nuclear RNA binding protein-1 

(hnRBP-1) gene family. This indicates an evolutionary common origin of miRNA-854 

as a regulator of the basal eukaryotic transcription mechanism in both plants and 

animals for many hundreds of millions of years (Pogue et al., 2014). Nevertheless, also 

non-conserved miRNAs exist. It seems that plant genomes encode more non-conserved 

miRNA families than conserved miRNA families, such as those of Arabidopsis or those 

that control cotton fiber differentiation and elongation (Fahlgren et al., 2007; 

Rajagopalan et al., 2006; Zhang et al., 2006). The non-conserved plant miRNAs 

presumably emerged and dissipated in short evolutionary time scales (Sunkar and 

Jagadeeswaran, 2008).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Small interfering RNAs (siRNAs). 
Long double-stranded RNAs (dsRNAs) from 
diverse origins (viruses, transpososons, 
transgenes, etc.) are converted into 21 nt long 
siRNAs by DICER enzymes. These small RNAs 
are then loaded into RISC and associated with 
AGO4 or another Argonaute protein. The 
complex will then bind to the same messenger 
RNA from which they originate, and cleave the 
mRNA, silencing its expression. Small 
interfering RNAs can also bind to the mRNA 
and initiate the transformation of single-stranded 
RNA (ssRNA) into dsRNA, thus amplifying 
siRNA production. RDR, RNA-dependent RNA 
polymerase. (Bonnet et al., 2006) 
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Figure 1.2 Plant microRNA (miRNA) biogenesis. MicroRNA genes are 
transcribed from their own locus by pol-II. The hairpin-like secondary 
structure is further processed by DICER in several steps to produce 
miRNA:miRNA* duplexes. The duplexes are then methylated by HEN1, 
before being exported to the cytoplasm, possibly by HASTY. Here the 
duplex is unwound and the miRNA is associated with AGO1. This 
complex, known as RISC, will bind specifically to a target messenger 
RNA, and guide its cleavage (in most of the cases) or will repress its 
translation. DCL, Dicer-like; HYL, HYPONASTIC LEAVES. (Bonnet et 
al., 2006). 
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1.3 Long non-coding RNAs 
Small RNAs have been largely studied and are well known for their important roles in 

transcriptional and post-transcriptional regulation. Whereas, only recently, lncRNAs 

have been identified and characterized in several animal and plant species. In plants, 

first studies were conducted in Arabidopsis thaliana and published around 2011, 

whereas the fine annotation of lncRNAs in other plant spices, such as maize and rice, 

was reported only in 2014 and 2015 (Ding, et al., 2012a; Liu et al., 2012; Lin Li et al., 

2014; Zhou et al., 2009; H. Wang et al., 2014a; M. Wang et al., 2015; B. Zhu et al., 

2015; Derrien et al., 2012; Iyer et al., 2015). The long time employed in lncRNA study 

in plant kingdom is understandable if we think about the limited availability of 

sequenced and annotated genomes (Phytozome v.10.3 http://phytozome.jgi.doe.gov/). 

 

LncRNAs are non-coding RNAs longer than 200 nucleotides that, unlike sRNAs, are 

able to act as regulatory RNA without being processed. 

Initial studies about lncRNAs were conducted in animals and, in 90s, Xist (X-inactive 

specific transcript) was the first identified lncRNA (Brown et al., 1992). 

Xist, a lncRNA of 17kb in mouse or 19kb in human, is one of the earliest examples that 

lncRNAs regulate gene transcription by modifying the chromatin status. In female 

mammals, one of the two copies of the X chromosome (Xi) is inactivated to maintain 

the same dosage of gene products as males. Xist, is a major effector in X chromosome 

silencing (Zhang et al., 2013b). It is specifically transcribed from and coats the Xi in 

somatic cells. Xist was recently shown to directly interact with Ezh2, the catalytic 

subunit of the Polycomb repressive complex 2 (PRC2), through a Repeat A motif, 

resulting in recruitment of PRC2 to the chromosome. PRC2 spreads across and silences 

genes along the Xi through catalysing the repressive trimethylation of lysine 27 on 

histone H3 (H3K27). During this process, Xist seems to alter the three-dimensional 

architecture of Xi to facilitate repositioning of active genes into the repressive 

compartment (Bergmann and Spector, 2014). 

Another important lncRNA characterized in animals is MALAT1, originally identified 

amongst several genes up-regulated in metastatic non-small cell lung cancer (Ji et al., 

2003). Recent studies identified mis-expression and mutations of MALAT1 in several 
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other cancers, rendering MALAT1 a tumor marker with potential as a prognostic or 

therapeutic target (Gutschner et al., 2013). 

The advent of RNA-Seq technology has largely stimulated lncRNAs annotation, in fact, 

the GENCODE consortium within the framework of the ENCODE project recently 

reported 9277 manually annotated genes producing 14880 transcripts (Derrien et al., 

2012). A even more recent study about lncRNAs in human transcriptome revealed 

58648 lncRNAs if which 79% were previously unannotated (Iyer et al., 2015). 

Despite the large number of lncRNAs identified, there is a strong imbalance between 

the number of lncRNAs identified and those that have been functionally annotated, such 

as Xist, MALAT1, Air, KCNQ1ot1, HOTAIR, Frigidair, HOTTIP, PANDA, 

COOLAIR, COLDAIR, TERRA, DHFR-Minor and few others (Ma et al., 2012). 

 

Compared with human and animals, the study of lncRNAs in plants is still in its 

infancy. 

In 2007 the first lncRNA in plants was discovered, Induced by Phosphate Starvation 1 

(IPS1), involved in phosphate uptake through target mimicry. IPS1 is a noncleavable 

lncRNA that forms a nonproductive interaction with the partially complementary miR-

399, preventing it from cleaving its target, PHO2 RNA, which negatively affects shoot 

Pi content and Pi remobilization (Franco-Zorrilla et al., 2007) (Figure 1.3C). 

After that work, there are only few other examples of functionally characterized 

lncRNAs, such as COOLAIR, COLDAIR and LDMAR (Swiezewski et al., 2009; Heo 

and Sung, 2011; Ding et al., 2012a). 

COOLAIR (cold induced antisense intragenic RNA) is a group of capped, 

polyadenylated and alternatively spliced lncRNAs. This group comprises cold induced 

antisense transcripts covering the entire Flowering Locus C (FLC), a master repressor 

of flowering in Arabidopsis. They react to cold earlier than Vernalization insensitive 3 

(VIN3), the earliest factor in the polycomb silencing mechanism. COOLAIR is believed 

to negatively regulate FLC sense transcription in a polycomb-independent manner 

(Figure 1.3 A). 

However, COOLAIR only transiently suppresses the FLC, and polycomb machinery is 

indispensable for the construction of epigenetic memory of FLC inactivation. It has 
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been demonstrated that COOLAIR suppresses FLC through transcription interference, 

in particular promoter interference. 

COLDAIR is another class of lncRNA derived from FLC locus. Unlike COOLAIR, 

COLDAIR is a sense transcript approximately 1100 nucleotides long with 5’ cap but no 

polyA tail, these features could lead one to think that these lncRNAs are transcribed by 

RNA polymerase V and IV. Nevertheless, COLDAIR is transcribed by RNA 

polymerase II like many other lncRNAs in mammals. The COLDAIR expression is 

induced by cold exposure. COLDAIR specifically interact with CLF (Curly Leaf), a key 

component of PRC2 complex. Hence, it is very likely that COLDAIR negatively 

modulates FLC via a polycomb-dependent model (Figure 1.3 B). COLDAIR may play a 

role in the recruitment of PRC2 to FLC chromatin to trigger the epigenetic memory 

establishment of FLC silencing by vernalization (Zhang et al., 2013b). 

LDMAR is a lncRNA that controls Photo-Sensitive Male Sterility (PSMS) in rice. 

Originated from an elite japonica rice variety Nongken 58N (NK58N), Nongken 58S 

(NK58S) was a spontaneous mutant exhibiting PSMS, i.e. its pollen becomes 

completely sterile when grown under long-day conditions, whereas the pollens are 

viable under short-day growth conditions. The PSMS in NK58N is caused by a C-to-G 

mutation in the LDMAR gene (Ding et al., 2012a). Probably, the C-to-G mutation 

altered the secondary structure of LDMAR in NK58S, and the structural alteration 

brought DNA methylation in the promoter region, which suppressed the LDMAR 

expression, and the insufficient LDMAR eventually led to the sterility of NK 58S under 

long-days (Figure 1.3 D). Later, Psi-LDMAR, a siRNA derived from the sense strand of 

LDMAR promoter region was also found to be responsible for the regulation of DNA 

methylation in this region (Ding et al., 2012b). 
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In addition to the lncRNAs described above, a few other lncRNAs from plant were also 

characterized, as reported in Table 1.1. 

Figure 1.3 Schematic representation of four types of lncRNA regulation mechanism in plants. (A) COOLAIR 
regulates FLC in a transcription interference model. Top: FLC is transcribed by RNA Polymerase II before 
prolonged cold exposure; Middle: early cold treatment induced the expression of COOLAIR, which interferes with 
the RNA polymerase II binding to the FLC promoter, thus transiently suppresses the FLC expression; Bottom: after 
longer cold exposure, VIN3 recruits PRC2 complex to deposit H3K27me3 modification on FLC loci; (B) 
COLDAIR regulates FLC in a PRC2 associated histone modification model. Top: COLDAIR is induced by cold 
treatment. Middle: COLDAIR recruit PRC2 complex to the FLC loci; Bottom: PRC2 complex deposit H3K27me3 
on the FLC loci; (C) ISP1 regulates PHO2 in a target mimicry model. Top: under normal growth condition, miR399 
specifically binds to PHO2 and degrades PHO2 mRNA; Bottom: ISP1 competitively binds with miR399 to arrest its 
degradation function on PHO2; (D) LDMAR regulates the transcription of itself by a DNA methylation model. In 
NK58N, LDMAR is normally expressed. In NK58S, the C-to-G mutation altered the secondary structure of 
LDMAR and leads to the promoter DNA methylation, which reduced the LDMAR expression responsible for PSMS 
in NK58S. (Zhang et al., 2013b) 
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Except this few examples of functionally characterized lncRNAs, other studies focused 

only on annotation of these molecules, in Arabidopsis (6480 lincRNAs and, more 

recently, 37238 lncNATs) (Liu, Wang, and Chua, 2015; H. Wang et al., 2014a), in rice 

(7142 lncNATs originating small RNAs) (Zhou et al., 2009), in maize (20163 putative 

lncRNAs, of which 1704 high-confidence lncRNAs) (Li et al., 2014), in cotton (50566 

lincRNA and 5826 lncNAT transcripts) (Wang et al., 2015), in Populus (P. trichocarpa 

2542 lincRNAs; P. tomentosa 1377 lncRNAs) (Chen et al., 2015; Shuai et al., 2014) 

and tomato (3679 lncRNAs) (Zhu et al., 2015). Recently, in rice, new lncRNAs have 

been identified, as competing endogenous RNAs (ceRNAs), which sequester miR160 or 

miR164 in a type of target mimicry, and one lncRNA, XLOC_057324, demonstrated to 

play a role in panicle development and fertility (Zhang et al., 2014). 

 

LncRNAs are generally transcribed by RNA polymerase II, so they are always capped, 

polyadenylated and frequently spliced (Ulitsky and Bartel, 2013). 

However many novel lncRNAs have been found to be transcribed by RNA polymerase 

III, which was previously thought to only transcribe housekeeping RNAs like tRNA and 

5S RNA (Zhang et al., 2013b). 

Some lncRNAs are generated by plant-specific polymerase V, capped at the 5’ end and 

lacking apparent poly(A) tails. These lncRNAs function as a scaffold for the RdDM 

pathway (Kim and Sung, 2012). 

These features are important to choose the approach for lncRNAs identification, for 

example using RNA-Seq poly(A) libraries. 

Table 1.1 Summary of the reported lncRNA genes in plants. (Zhang et al., 2013b) 
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On the basis of their genomic origins, lncRNAs can be classified into: 

• Long intergenic ncRNAs (lincRNAs) 

• Intronic ncRNAs (incRNAs) 

• Natural antisense transcripts (NATs), referred to the antisense transcripts of 

protein-coding transcripts. NATs are broadly grouped into two categories based 

on whether they act in cis or in trans. The so-called cis-NATs are transcribed 

from the same loci as sense transcripts and therefore have perfect match with the 

sense transcripts. On the contrary, trans-NATs are transcribed from different 

genomic loci and usually display only partial complementarity with the sense 

transcript (Zhang et al., 2013b; Rinn and Chang, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Anatomy of lncRNA loci. lncRNAs are often defined by their 
location relative to nearby protein coding genes. Antisense lncRNAs are 
lncRNAs that initiate inside of a protein coding gene and transcribe in the 
opposite direction that overlaps coding exons. Intronic lncRNAs are lncRNAs 
that initiate inside of an intron of a protein coding gene in either direction and 
terminates without overlapping exons. Intergenic lncRNAs are lncRNAs with 
separate transcriptional units from protein coding genes. (Rinn and Chang, 2012) 
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Compared with protein-coding genes and even small noncoding RNAs, most lncRNAs 

lack strong sequence conservation between species and they do not contain 

evolutionarily conserved long ORF. They are usually expressed at low levels, 

developmentally regulated and often exhibit tissue-specific and cell type-specific 

patterns. A significant proportion of lncRNAs are located exclusively in the nucleus 

with a few exceptions that are localized in cytosolic fractions (Wang et al., 2015). 

 

From the recent literature it’s emerging that lncRNAs are potent regulators involved in 

several biological processes in eukaryotic cells. The greatest part of information about 

lncRNA function derives from animal world, in which the study of lncRNAs began and 

developed rapidly, especially thanks to the availability of sequenced genomes and the 

growing importance that lncRNAs have been found to have in many diseases (Brown et 

al., 1992; Dong et al., 2014; Engreitz et al., 2013; Gao et al., 2015; Li et al., 2015; Shi 

et al., 2015; Yao et al., 2015). 

In particular, it has been shown that lncRNAs can regulate gene expression at different 

levels: transcriptional, post-transcriptional and post-translational (Liu et al., 2015). At 

transcriptional level, they can regulate the polymerase II transcription machinery in 

many ways (Figure 1.5), e.g. they can regulate the DNA-binding activity of 

transcription factor (TF) or can regulate mediator complex formation (Lai et al., 2013). 

There is also a class of animal lncRNAs called “enhancer” RNAs, that are transcribed 

from the enhancer domains and/or transcription factor binding sites of genes, and they 

may regulate transcription activities of their flanking genes by recruiting transcription 

activators/repressors and/or controlling chromatin topology. One mode of action, 

typical of plant lncRNAs instead, is to trigger the formation of a stable RNA–DNA 

triplex so as to control TF binding specificity on promoter regions (Liu et al., 2015) 

(Figure 1.5). 

Furthermore, many lncRNAs have been shown to play a role in modifying chromatin 

marks and some can directly interact with chromatin modifiers, promoting or repressing 

transcription activity (Wang et al., 2011). 

In plants, lncRNAs activity is also correlated to small RNAs. Double-stranded RNAs 

could be processed into 21- to 24-nt small RNAs, which may initiate post-

transcriptional or transcriptional gene silencing. LncRNAs and mRNAs can form 
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double-stranded RNA duplexes with natural antisense transcripts to carry out their 

functions (Figure 1.6 A). 

Concerning post-transcriptional regulation, a considerable number of repeat-containing 

lncRNAs (RC-lncRNA), originated from genes overlapping with transposable elements 

or repeat, can generate small RNAs which, in turn, can participate in post transcriptional 

gene silencing (PTGS) and/or RdDM pathways (Liu et al., 2012). LncRNAs can also 

interact with another class of regulatory RNAs, microRNAs, through the so called target 

mimicry (Figure 1.6 B). It is a regulatory mechanism for miRNA functions in plants in 

which the decoy RNAs bind to miRNAs via partially complementary sequences and 

therefore block the interaction between miRNAs and their authentic targets. In this way, 

lncRNAs can act as sponges of miRNAs (Franco-Zorrilla et al., 2007; Wu et al., 2013). 

In post-translational regulation, lncRNAs are able to regulate protein-protein 

interaction, interacting with RNA-binding proteins (RBPs) (Wang et al., 2014b) (Figure 

1.6 C). For instance, Arabidopsis genome encodes many genes encoding RBPs, which 

can potentially associate with lncRNAs to execute their functions, such as the regulation 

of ABA signalling pathway (Liu, Wang, and Chua, 2015). Also protein subcellular 

location can be regulated by lncRNAs (Figure 1.6 F). A case of a plant lncRNA altering 

the subcellular localization of a protein was reported some years ago, in M. truncatula, 

where the endo40 RNA encodes only a short open reading frame and it colocalizes with 

RNA-Binding Protein 1 (MtRBP1). During nodule development, MtRBP1 together with 

enod40 translocates from nuclear speckles to the cytosol in root cells, whereas in the 

cells without expressed enod40, MtRBP1 is retained in the nucleus (Campalans et al., 

2004). Recent studies found that several lncRNAs act as scaffolds (Figure 1.6 E), which 

have the capacity to bind some protein partners, serving as adaptors to form the 

functional protein complexes, e.g. TERRA and HOTAIR (Ma et al., 2012). 
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Figure 1.5 Schematic diagram of lncRNAs in transcriptional regulation. 
LncRNAs (red) can regulate transcription machinery and chromatin 
modification on promoter regions, and transcription-factor-binding 
affinity on enhancer regions in the nucleus. LncRNAs can also regulate 
RNA-DNA hybridization and chromatin topological structures. TF, 
transcription factors. (Liu, Wang, and Chua, 2015) 

Figure 1.6 Schematic diagram of lncRNAs in post-transcriptional and post-translational 
regulation. (a) LncRNA (red) can form double-stranded RNA duplexes by complementary 
sequence to its targeted RNA. (b) lncRNA as a target mimic to down-regulate miRNA 
activity. RISC, RNA-induced silencing complex. (c) lncRNA regulates protein-protein 
interaction. (d) lncRNA changes protein structure to expose/protect specific amino acid for 
modification. (e) lncRNA as a scaffold to regulate assembly of protein complex subunits. (f) 
lncRNA guides RNA-binding protein relocation. (Liu, Wang, and Chua, 2015) 
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1.3.1 LncRNAs identification: genomics approaches 

Over the years, different approaches in lncRNA study have been used, from microarrays 

onward to RNA-Seq. The identification of lncRNAs relies on the detection of 

transcription from genomic regions that are not annotated as protein coding (Fatica and 

Bozzoni, 2014). 

Although traditional microarrays are incapable of identifying novel lncRNAs and are 

not able to distinguish different splicing variants, in past years, they were the first 

choice in many applications. In particular, since the identification of several lncRNA 

loci as part of the ENCODE project, the completeness of microarrays for human 

lncRNAs has been drastically improved. However, microarray is not sensitive enough 

to detect RNA transcripts with low-expression level. Thus the use of microarray to 

identify lncRNAs is limited due to the low expression level of many lncRNAs (Lee and 

Kikyo, 2012; Ma et al., 2012). 

As variation of traditional microarrays, DNA tiling arrays contain overlapping 

oligonucleotides that cover an entire length of a defined DNA region. A major 

advantage of using tiling arrays is their capacity to identify novel lncRNAs in a selected 

DNA region without prior knowledge of their precise locations within the region. This 

methodology allows the analysis of global transcription from specific genomic regions 

and was initially used for both identification and expression analysis of lncRNAs 

(Fatica and Bozzoni, 2014). Interesting discoveries have been achieved by employing 

tilling arrays. For instance, Rinn et al. (2007) focused on lncRNAs expressed in the 

region of the human HOX genes and compared skin fibroblasts isolated from different 

anatomical regions of the body. They printed 400000 probes of 50 bases in length with 

each probe overlapping the next one by 45 bases to cover all four human HOX gene 

clusters. Polyadenylated RNAs prepared from fibroblasts were then hybridized to the 

tiling arrays, resulting in the discovery of the lncRNA HOTAIR transcribed from an 

intergenic region within the HOXC cluster (Rinn et al., 2007). A similar HOX tiling 

array was used to identify lncRNAs specifically expressed in metastatic breast 

carcinoma (Gupta et al., 2010). 

 

SAGE (serial analysis of gene expression) technology is based on the generation of 

short sequence tags of unbiased cDNA sequence by restriction enzymes. SAGE tags are 
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concatenated before cloning and sequencing. This methodology allows both the 

quantification of transcripts throughout the transcriptome and the identification of new 

transcripts and it has been used and proved to be an efficient approach in studying 

lncRNAs. For example, Gibb et al. compiled 272 human SAGE libraries. By passing 

over 24 million tags they were able to generate lncRNA expression profiles in human 

normal and cancer tissues (Gibb et al., 2011). Lee et al. also used SAGE to identify 

potential lncRNA candidates in male germ cell (Lee et al., 2012). However, SAGE is 

much more expensive than microarray, therefore is not widely employed in large-scale 

studies (Fatica and Bozzoni, 2014; Ma et al., 2012). 

 

CAGE (cap analysis of gene expression) is a technique similar to SAGE, however, 

unlike it, CAGE sequence tags are not unbiased but originate from the 5’ end of a 

transcript. Therefore CAGE can be used to locate an exact transcription start site in the 

genome, in addition to quantifying expression level (Kawaji et al., 2006). 

For instance, CAGE tags were used for experimental validation of the annotated start 

sites and expression level of lncRNAs in GENCODE project (Derrien et al., 2012). 

 

To date, with the development of next generation sequencing (NGS) technology, the 

most widely used methodology to study lncRNAs is certainly RNA-Seq. Sequencing of 

transcriptomes by RNA-Seq is one of the most powerful methodologies for de novo 

discovery and expression analyses of lncRNAs. In this method, total RNA is converted 

to a cDNA library that is directly sequenced by high-throughput sequencing 

instruments. There are several types of sequencing technologies but Illumina platforms 

are currently the most commonly used for RNA-Seq experiments. A single sequencing 

run produces billions of reads that are subsequently aligned to a reference genome. 

The basic workflow for lncRNA identification using RNA-Seq is shown in Figure 1.7 

(Fatica and Bozzoni, 2014; Ma et al., 2012). 
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Compared to traditional microarray technology, RNA-Seq has many advantages in 

studying gene expression. It is more sensitive in detecting less-abundant transcripts, and 

identifying novel alternative splicing isoforms and novel ncRNA transcripts.  

RNA-Seq is able to detect transcripts that are missing or incomplete in the reference 

genome and allows for accurate quantification of expression levels, making it an ideal 

approach for lncRNA discovery. With an ultra sequencing depth RNA-Seq can be used 

to discover rare transcripts that are expressed in just a few cells within a tissue (Ma et 

al., 2012; Zhu and Wang, 2012).  

 

There is also a method, chromatin immunoprecipitation (ChIP), that uses chromatin 

signatures, to study actively transcribed genes including lncRNAs. When combined 

with DNA sequencing (that is ChIP-Seq), this method can infer the genomic 

distribution of either proteins or histone modifications (Fatica and Bozzoni, 2014; Ma et 

al., 2012). Analysis of loci with specific histone modifications that characterize active 

transcription such as H3K4me3 (the marker of active promoters) and H3K36me3 (the 

marker of transcribed region), allowed an indirect identification of many unknown 

lncRNAs, For example, Guttman et al. identified 1600 large multiexonic lncRNAs that 

are regulated by key transcription factors such as p53 and NFkB (Guttman et al., 2009). 

Figure 1.7 Workflow of lncRNA identification from RNA-Seq. (Ma et al., 2012) 
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In plant genomes, initial analyses for lncRNA identification were based on the 

bioinformatics search for RNAs with poor coding capacity in cDNA databases. Through 

this approach, some lncRNAs were identified in Arabidopsis and Medicago truncatula 

(Ben Amor et al., 2009; Hirsch et al., 2006; Wen et al., 2007). 

Also the analysis of expressed sequence tag (EST) databases helped in some lncRNAs 

identification, such as in wheat affected by Puccinia striiformis, suggesting their 

participation in pathogen-defense responses (Zhang et al., 2013a). 

Just as in animal world, so in plants, tilling array provided a reach source for lncRNA 

discovery, for example in rice and Arabidopsis (Li et al., 2006; Matsui et al., 2010; 

Rehrauer et al., 2010). 

Nevertheless, the greatest contribution in plant lncRNA study derives from RNA-Seq, 

especially for the annotation of these molecules (Liu, Wang, and Chua, 2015; H. Wang 

et al., 2014a; Zhou et al., 2009; Li et al., 2014; Wang et al., 2015; Zhu et al., 2015;  

Zhang et al., 2014). 

 

2 Research objectives 
The present project aims at performing, for the first time, a whole-genome annotation 

and a detailed analysis of lncRNAs in Brachypodium distachyon (Bd), a wild grass 

belonging to the Pooideae and an important model species for temperate cereals, such 

as wheat and barley. 

The project takes advantages of public and proprietary RNA-Seq data sets from 15 

different experiments conducted in the reference inbred line Bd21. Public RNA-Seq 

libraries consist of different plant tissues (see Table 3.1). Proprietary RNA-Seq libraries 

were previously produced in our lab from three developmental leaf areas: proliferation, 

expansion and mature, grown in control and drought stress conditions, considering three 

biological replicates for each sample. 

The application of a modified in silico pipeline, described in Li et al. (2014), to the 

dataset provided a comprehensive systematic annotation of Bd lncRNAs. 
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For those libraries with biological replicates, a differential expression analysis was 

performed, with the aim of finding developmental, tissue-specific and cell specific 

lncRNAs. 

Moreover the potential lncRNA target are investigated to highlight new regulatory 

networks and cross-talk between different RNA molecules. For instance, the algorithm 

developed by Wu et al. (2013) allow to investigate the link between lncRNAs and 

microRNAs through target mimicry, which is, as described above, a regulatory 

mechanism for miRNA functions in plants in which the decoy RNAs bind to miRNAs 

via complementary sequences and therefore block the interaction between miRNAs and 

their authentic targets. 

 

3 Materials and methods 

3.1 RNA-Seq libraries 
A total of 15 RNA-Seq libraries generated from the reference inbred line Bd21, both 

public and proprietary data, were selected. Public RNA-Seq data were downloaded 

from the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra). These samples 

were produced for the “Conserved Poaceae Specific Genes project” by Davidson et al. 

(2012) and comprise nine different plant tissue/organs grown in the greenhouse under 

long-day conditions (14-16 h light). As reported in Table 3.1, these libraries are 

poly(A+) selected, single end (SE), generated with Illumina technology. 

Proprietary libraries originated from a drought stress experiment conducted in January 

2011 in Milano (Italy), in which Brachypodium distachyon inbred line 21 was grown 

under control and severe drought stress conditions, according to the protocol described 

in Verelst et al. (2013). In particular, plants were grown into a growth chamber, with 

controlled conditions of light, temperature and humidity. Control plants were 

maintained at 1.82 g of water per g dry soil, while stressed plants were dried down to 

0.45 g water/g dry soil (severe drought stress). 

All the samples were collected from the third leaf, about 24 hours after the emergence 

and each leaf was divided in 3 developmental zones: proliferation, expansion and 

mature zone. 
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RNA-Seq libraries were generated from each developmental zone for a total of 18 

samples: three types of leaf cells (proliferation cells, expansion cells and mature cells) 

grown in control and drought condition, considering three biological replicates. For the 

analyses of the present thesis work, the biological replicates were merged in a single 

file, making a total of 6 libraries (proliferation, expansion, and mature cells in control 

and stress conditions). 

As reported in Table 3.1, these libraries are poly(A+) selected, single end (SE), 

generated with Illumina technology.  
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Samples SRA 
accession 

Raw 
reads 

Reads 
length Experiment Project References 

Leaves 20 
DAS 

SRR349785 
SRR352143 56673394 35 SE Poly (A) 

RNA-Seq 

Conserved 
Poaceae Specific 

Genes Project 

Davidson et 
al., 2012 

Emerging 
inflorescence SRR349787 23137165 35 SE Poly (A) 

RNA-Seq 

Conserved 
Poaceae Specific 

Genes Project 

Davidson et 
al., 2012 

Early 
inflorescence SRR349786 17601221 35 SE Poly (A) 

RNA-Seq 

Conserved 
Poaceae Specific 

Genes Project 

Davidson et 
al., 2012 

Anther SRR352140 26059840 35 SE Poly (A) 
RNA-Seq 

Conserved 
Poaceae Specific 

Genes Project 

Davidson et 
al., 2012 

Pistil SRR352137 17712829 35 SE Poly (A) 
RNA-Seq 

Conserved 
Poaceae Specific 

Genes Project 

Davidson et 
al., 2012 

Seed 5 DAP SRR352139 25922555 35 SE Poly (A) 
RNA-Seq 

Conserved 
Poaceae Specific 

Genes Project 

Davidson et 
al., 2012 

Seed 10 DAP SRR352141 25766517 35 SE Poly (A) 
RNA-Seq 

Conserved 
Poaceae Specific 

Genes Project 

Davidson et 
al., 2012 

Embryo 25 
DAP 

SRR352138 
SRR352144 48681058 35 SE Poly (A) 

RNA-Seq 

Conserved 
Poaceae Specific 

Genes Project 

Davidson et 
al., 2012 

Endosperm 25 
DAP SRR352142 27365511 35 SE Poly (A) 

RNA-Seq 

Conserved 
Poaceae Specific 

Genes Project 

Davidson et 
al., 2012 

#3 leaf 
Proliferation 

ctrl (Pc) 
- 76248037 50 SE Poly (A) 

RNA-Seq - 
Bertolini et 

al. 
Unpublished 

#3 leaf 
Proliferation 
stress (Ps) 

- 82616294 50 SE Poly (A) 
RNA-Seq - 

Bertolini et 
al. 

Unpublished 
#3 leaf 

Expansion ctrl 
(Ec) 

- 77830217 50 SE Poly (A) 
RNA-Seq - 

Bertolini et 
al. 

Unpublished 
#3 leaf 

Expansion 
stress (Es) 

- 72602295 50 SE Poly (A) 
RNA-Seq - 

Bertolini et 
al. 

Unpublished 

#3 leaf Mature 
ctrl - 58589296 50 SE Poly (A) 

RNA-Seq - 
Bertolini et 

al. 
Unpublished 

#3 leaf Mature 
stress - 68671998 50 SE Poly (A) 

RNA-Seq - 
Bertolini et 

al. 
Unpublished 

 

Table 3.1 Summary of the main characteristics of the public (first 9) and the proprietary (last 6) libraries. 
DAS = Days after sowing; DAP = Days after pollination. 
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3.2 Bioinformatic analysis 
First, a quality check of all the samples was assessed using FastQC tool (Andrews, 

2015), than the mRNA reads were trimmed using ERNE-FILTER (v.1.3) (Del Fabbro et 

al., 2013). For libraries containing adapter contaminants, Cutadapt (v.1.2.1) (Martin, 

2011) was applied. ERNE-FILTER was used to remove low quality bases from the ends 

of the reads. Due to the different characteristics of public and proprietary libraries, 

different parameters of ERNE-FILTER were applied for the two data sets: a minimum 

PHRED score of 30 and a minimum read length of 35 bp. 

After the quality and trimming filters, each experiment was aligned independently to the 

reference Bd21 genome (v.2.1), using a method of two mapping iterations, with the 

spliced read aligner TopHat2 version 2.0.9 (Trapnell et al., 2012). This method was first 

proposed by Cabili et al. (2011) and it was used also in the lncRNA identification in 

maize (Li et al., 2014). This approach allows maximizing the mapping efficiency by 

using the spliced site information derived from the first mapping iteration in all the 

samples. 

Hence, after the first alignment, each experiment was re-aligned for a second time using 

the pooled splice sites file, considering the following parameters: 

• Maximum number of mismatches = 0 

• Minimum intron length = 10 

• Maximum intron length = 500000 

• Library type = fr-firststrand 

Successively, for each experiment the transcriptome was de novo assembled using 

Cufflinks version 2.0.9 (Trapnell et al., 2010). 

All the transcripts, assembled with Cufflinks, were then merged with Cuffmerge to 

remove all the redundant transcripts and obtain only unique sequences. Finally, Gffread 

was used to generate a multi FASTA file. This FASTA file, containing both novel 

transcripts and previously annotated transcripts, was used to identify bona fide 

lncRNAs. 
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3.3 LncRNAs identification 
To identify lncRNAs a modified bioinformatic pipeline “LncRNA_Finder”, described 

in Li et al. (2014), was used. 

Particularly this pipeline applies five filters on the basis of the main lncRNA 

characteristics: 

• Size selection: minimum lncRNA length was set at 200 nucleotides. 

• Open Reading Frame (ORF) filter: maximum potential ORF length was kept as 

default at 100. 

• Known protein domain filter: transcripts were aligned to a protein database of all 

Angiosperms downloaded from Plaza v.2.5 (http://plaza.psb.ugent.be/), the e-

value parameter was set at 0.001. 

• Coding Potential Calculator (CPC): this parameter was used to evaluate the 

quality, completeness and homology of ORFs. 

• Filter of housekeeping RNAs and precursors of small RNAs: since putative 

lncRNAs may contain precursors of housekeeping RNAs and small RNAs, 

filtered transcripts were compared to housekeeping RNAs, from Pfam databases 

(http://pfam.xfam.org/), and to public and proprietary small RNAs databases, 19 

libraries from http://mpss.udel.edu/ and 8 libraries from Bertolini et al. (2013) 

from different tissue and cell types. The number of mismatches in the alignment 

with small RNA was kept as default at 0. 

 

After each filter an output file, that can ben checked, is obtained. 

At the end, putative lncRNAs with sequence similarity with small RNAs were classified 

as pre-lncRNAs, whereas transcripts that do not have similarity with any class of non-

coding RNAs were defined as High Confidence lncRNAs (HC-lncRNAs). 

 

3.4 Expression profiles and differential expression analysis 
Considering the wide variety of libraries present in this study, it is interesting to see 

how lncRNAs expression changes across different stages, tissues, organs or conditions. 

For this purpose, for all the libraries, even those with no replicates (that cannot be the 

subject of differential expression analysis), lncRNAs expression was expressed in 
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Reads Per Kilobase per Million mapped reads (RPKM), calculated using the CPM 

function of edgeR, a Bioconductor package (Robinson et al., 2010). 

Proprietary libraries, from different developing areas of the third growing leaf, were 

used to conduct a differential expression analysis. The R package DESeq2, based on the 

negative binomial distribution, which makes possible the evaluation of the raw variance 

of data from experimental design with small numbers of biological replicates, was 

applied (Love et al., 2014). 

To identify differentially expressed loci between drought and control conditions in the 

same developing zone and during leaf development in the proliferating and expansion 

conditions, a series of pairwise comparisons were set up, as reported in Table 3.2. 

 

 

 

 

 

 

 

 

3.5 Interaction with microRNAs (target mimicry) 
One of the most interesting biological function of lncRNAs, recently reported in plants 

(Franco-Zorrilla et al., 2007; Wu et al., 2013), is the action as endogenous target 

mimics (eTMs) of miRNAs, or target mimicry, via partially complementary sequences, 

blocking the interaction between miRNAs and their authentic targets (Wu et al., 2013). 

To identify HC-lncRNAs with potential target mimicry properties, the computational 

method described in Wu et al. (2013) was used. Briefly, a base-pairing interaction 

between Bd miRNAs and the annotated lncRNAs was predicted, based on: (1) bulges 

were only permitted at the 5’ end 9th to 12th positions of miRNA sequence; (2) the 

bulge in eTMs should be composed of only three nucleotides; (3) perfect nucleotide 

pairing was required at the 5’ end from second to eighth positions of miRNA sequence; 

(4) except for the central bulge, the total mismatches and G/U pairs allowed was set to 

3. 

 

 Comparison 

Drought stress 
Ps vs Pc 

Es vs Ec 

Leaf development 
Pc vs Ec 

Ps vs Es 

Table 3.2 List of pairwise comparison performed during 
the differential expression analysis. (P) proliferation, (E) 
expansion, (C) control and (S) drought stress conditions.	
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3.6 RNA extraction and reverse transcription 
To validate the identified HC-lncRNAs, it is important to conduct a Real-Time PCR of 

some putative lncRNAs. Therefore, cDNA of some of the datasets is needed. 

So, RNA from proliferation and expansion zone, both in control and stress conditions, 

was extracted with the Plant/Fungi Total RNA Purification Kit (Norgen Biotek 

Corporation). The samples were flash-frozen in liquid nitrogen and conserved in a  

-80°C freezer. They were then grinded rapidly with mortar and pestle, using liquid 

nitrogen to ensure that the integrity of the RNA was not compromised. For the 

extraction, a maximum of 50 mg of starting material was needed. Briefly, the process 

involves a column with a resin that can bind RNA specifically, then washed with a 

provided wash solution and eluted with 80 µl of DEPC water. 

The purified RNA samples were then retrotranscribed, starting from 1 µg of material, 

using iScript™ cDNA Synthesis Kit (Bio-Rad), following the manufactures' protocol. 

 

3.7 LncRNA validation using Real-Time PCR 
To validate the expression patterns of lncRNAs, Real-Time PCR experiments will be 

conducted in the near future. 10 lncRNAs have been selected among the up-regulated 

and down-regulated lncRNAs in control and stress condition between Pc/Ec and Ps/Es, 

as result of the differential expression analysis (Table 3.3). 

Primers have also already been designed with Primer3 version 4.0.0 (Table 3.4).  
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LncRNA Length log2FoldChange Expression 

TCONS_00090190 358 -2.391265344 CTRL_down 

TCONS_00089035 486 -2.255784059 CTRL_down 

TCONS_00088496 2371 -3.057039273 CTRL_down 

TCONS_00081033 1199 -2.894632964 CTRL_down 

TCONS_00020495 358 -3.217483298 CTRL_down 

TCONS_00089348 301 3.139134476 CTRL_up 

TCONS_00086597 533 3.323773011 CTRL_up 

TCONS_00030330 1749 2.971583098 CTRL_up 

TCONS_00009992 1457 3.656548937 CTRL_up 

TCONS_00019564 1512 -4.318542051 STRESS_down 

Table 3.3 List of lncRNAs selected for Real-Time PCR validation. log2FoldChange indicates 
lncRNAs expression values generated with DESeq2.	
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Primers Sequence (5’-3’) Length (nt) Tm (°C) LncRNA 

Forward GGAACCAGAGAAGAAGAGGAGG 22 59.50 
TCONS_00090190 

Reverse ATAGACAGGGAAGAGCTTGGAC 22 59.23 

Forward AGTGGTAGAGTGGAGTGGAGT 21 59.57 
TCONS_00089035 

Reverse GCGTCGTATATGTTGTCAGCG 21 59.81 

Forward TGGATCGGTGTAGAATCGACC 21 59.32 
TCONS_00088496 

Reverse TGATCTCCTACCAATCTGCGG 21 59.31 

Forward CAAGCACTGAGGAATCTGACG 21 59.00 
TCONS_00081033 

Reverse TGAGGAGTGTATGCCAACTCG 21 59.80 

Forward ATCCAGTGACCTACAGCTGC 20 59.46 
TCONS_00020495 

Reverse GGACCACGCATGTCACTAGT 20 59.75 

Forward CCTACGCAACCCAAGCTATCT 21 59.86 

TCONS_00089348 
Reverse CAACCGACCCAGTATAAACGC 21 59.34 

Forward CATTGACACTGTCCTGGGTTTC 22 59.45 
TCONS_00086597 

Reverse TACCCTAAAAGATACTCCGGCC 22 59.03 

Forward GGGGTTCTTAGTCTTCGGGTT 21 59.37 
TCONS_00030330 

Reverse TCCTCGGTTATTCACAGCTCC 21 59.52 

Forward GCCATCCCATACTTCCTAGCC 21 60.00 
TCONS_00009992 

Reverse CAAACAATCCACCCGCTTCTC 21 59.80 

Forward CCGTTGTTTTGGTAGCTGCAA 21 59.93 
TCONS_00019564 

Reverse CAAGGATTTGTCGGTGCGTAC 21 59.87 

Table 3.4 List of primers generated for the Real-Time PCR experiment.	
  



	
   31 

4 Results 

4.1 Experimental data set 
Initial dataset for lncRNAs identification in Brachypodium distachyon was created 

selecting a total of 15 RNA-Seq libraries generated from the reference inbred line Bd21. 

Nine libraries were public and produced for the “Conserved Poaceae Specific Genes 

project” by Davidson et al. (2012), originating from nine different plant tissues/organs: 

leaves, early and emerging inflorescence, anther, pistil, seeds 5 and 10 days after 

pollination, embryo and endosperm. These libraries were downloaded from the 

Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra). 

Six proprietary libraries originated from a drought stress experiment conducted on 

Brachypodium distachyon in January 2011 in Milano (Italy). RNA-Seq libraries were 

generated from three developmental zones of the third leaf collected about 24 hours 

after the emergence: proliferation, expansion and mature zone. A total of 18 samples 

were available: three types of leaf cells (proliferation cells, expansion cells and mature 

cells) grown in control and drought condition, considering three biological replicates. 

For the analyses of the present thesis work, the biological replicates were merged in a 

single file, making a total of 6 libraries (proliferation, expansion, and mature cells in 

control and stress conditions). 

The libraries are poly(A+) selected, single end (SE), generated with Illumina 

technology, making a total of 705478227 reads. 

 

4.2 Quality check 
Each library was subject to quality control that allows measuring the quality based on 

ten metrics: (1) Per base sequence quality; (2) Per sequence quality scores; (3) Per base 

sequence content; (4) Per base GC content; (5) Per sequence GC content; (6) Per base N 

content; (7) Sequence length distribution; (8) Sequence duplication levels; (9) 

Overrapresented sequences; (10) Kmer content. Some examples are reported in Figure 

4.1. 

Public and proprietary libraries had 35 and 50 bp long reads, respectively. Both had an 

average PHRED score of 30. The GC content was around 50% for all the libraries. Only 

in some libraries (SRR349786, SRR349787, SRR352137, SRR352138, SRR352142, 
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SRR352143 and Mature ctrl) overrepresented sequences were found, referred to adapter 

contaminants. 

Despite the high quality of the raw libraries, a quality trimming step was performed to 

remove the few Ns and the low quality nucleotide in the reads, as well as the 

sequencing adapters present in the sequence reads, with the aim to obtain a better 

alignment to the reference genome. Quality of trimmed reads was assessed, showing an 

improved quality in terms of PHRED (Q) scores: public and proprietary libraries had Q 

score greater than 30 and 33, respectively (Figure 4.2). Statistic of reads trimming is 

shown in Table 4.1. 
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A B 

D C 

Figure 4.1 Visual output from FastQC of the library SRR352137. A Per base sequence quality plot. X-axis 
shows the base positions in the reads, Y-axis shows quality score (Q score). B Per sequence quality scores. Mean 
sequence quality are shown on x-axis. C Per sequence GC content. D Per base N content.	
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Samples SRA accession Raw reads Reads trimmed % reads 
trimmed 

Leaves 20 DAS SRR349785 
SRR352143 

56673394 53118138 93.73 

Emerging inflorescence SRR349787 23137165 21880389 95.29 

Early inflorescence SRR349786 17601221 16771555 94.57 

Anther SRR352140 26059840 23226658 89.13 

Pistil SRR352137 17712829 16739912 94.51 

Seed 5 DAP SRR352139 25922555 22737023 87.71 

Seed 10 DAP SRR352141 25766517 24540576 95.24 

Embryo 25 DAP SRR352138 
SRR352144 

48681058 44986617 92.41 

Endosperm 25 DAP SRR352142 27365511 24533458 89.65 

#3 leaf Proliferation ctrl 
(Pc) 

- 76248037 70970362 93.08 

#3 leaf Proliferation 
stress (Ps) 

- 82616294 77234409 93.49 

#3 leaf Expansion ctrl 
(Ec) 

- 77830217 71996832 92.50 

#3 leaf Expansion stress 
(Es) 

- 72602295 67857125 93.46 

#3 leaf Mature ctrl - 58589296 54766323 93.47 

#3 leaf Mature stress - 68671998 63660599 92.70 

 Total 705478227 650613914 92.22 

 

 

  

Table 4.1 Statistic of trimmed reads in each library.	
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A B 

C D 

Figure 4.2 Visual output from FastQC of the trimmed library Ps. A Per base sequence quality plot. X-axis shows 
the base positions in the reads, Y-axis shows quality score (Q score). B Per sequence quality scores. Mean 
sequence quality are shown on x-axis.	
  C Per sequence GC content. D Per base N content.	
  



	
   36 

4.3 Alignment to the reference genome 
Each library was independently mapped against Bd21 reference genome version 2.1, 

downloaded from Phytozome v.10.3 (http://phytozome.jgi.doe.gov/), using TopHat2 

(Trapnell et al., 2012). This aligner program was designed to map reads from RNA-Seq 

experiments to a reference genome, allowing to identify exon-exon splice junctions. It is 

built on the ultrafast unspliced short read mapping program Bowtie, based on the exon-

first approach (Langmead et al., 2009). Briefly, TopHat first maps reads to the genome, 

identifying potential exons using Bowtie. All reads that do not map to the genome are 

set aside as “Initially Unmapped Reads” (IUM reads). In this way TopHat builds a 

database of possible splice junctions and then maps the IUM reads against the junctions 

with a seed-and-extend strategy (Figure 4.3). This approach allows revealing new 

alternative spliced transcripts and isoforms and increase the overall percentage of 

mapped reads (Trapnell et al., 2009). 

To optimize the alignment, the Bd21 annotation file of genes and exons (GFF3), version 

2.1, available from Phytozome v.10.3 (http://phytozome.jgi.doe.gov/) was used. This 

new annotation file contains an improved annotation with a greater number of annotated 

genes and exons. 

To maximize the use of splice site information derived from all samples, two iterations 

method first proposed by Cabili et al. (2011) was used. Therefore, after the first 

alignment, each experiment was re-aligned to the reference genome providing the sorted 

and non-redundant pooled splice sites file to the program. 

Statistics of two iterations reads alignment are shown in Table 4.2. On average, the 96% 

of the reads was mapped to the reference genome. 
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Figure 4.3 The TopHat pipeline. RNA-Seq reads are mapped against 
the whole reference genome, and those reads that do not map are set 
aside. An initial consensus of mapped regions is computed by Maq. 
Sequences flanking potential donor/acceptor splice sites within 
neighboring regions are joined to form potential splice junctions. The 
IUM reads are indexed and aligned to these splice junction sequences. 
(Trapnell et al., 2009) 
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Samples SRA 
accession 

Reads 
trimmed 

Mapped 
reads 

% mapped  
reads 

Unmapped 
reads 

% unmapped 
reads 

Leaves 20 
DAS 

SRR349785 
SRR352143 53118138 51605492 97.2 1512646 2.8 

Emerging 
inflorescence SRR349787 21880389 21315167 97.4 565222 2.6 

Early 
inflorescence SRR349786 16771555 16191851 96.5 579704 3.5 

Anther SRR352140 23226658 22380996 96.4 845662 3.6 

Pistil SRR352137 16739912 15759963 94.1 979949 5.9 

Seed 5 DAP SRR352139 22737023 22094542 97.2 642481 2.8 

Seed 10 DAP SRR352141 24540576 21938177 89.4 2602399 10.6 

Embryo 25 
DAP 

SRR352138 
SRR352144 44986617 42581740 94.7 2404877 5.3 

Endosperm 25 
DAP SRR352142 24533458 23314366 95.0 1219092 5.0 

#3 leaf 
Proliferation 

ctrl (Pc) 
- 70970362 68887254 97.1 2083108 2.9 

#3 leaf 
Proliferation 
stress (Ps) 

- 77234409 75050280 97.2 2184129 2.8 

#3 leaf 
Expansion ctrl 

(Ec) 
- 71996832 70274662 97.6 1722170 2.4 

#3 leaf 
Expansion 
stress (Es) 

- 67857125 65991118 97.3 1866007 2.7 

#3 leaf Mature 
ctrl - 54766323 53460628 97.6 1305695 2.4 

#3 leaf Mature 
stress - 63660599 62116512 97.6 1544087 2.4 

 Total 650613914 632962748 97.3 22057228 3.4 

 

 

 

 

 

 

 

Table 4.2 Statistic of reads alignment to the reference genome. The number of aligned reads is referred to 
the second alignment, with the sorted and non-redundant pooled splice sites file.	
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Successively, for each experiment the transcriptome was de novo assembled. The 

redundant transcripts were removed to select only unique sequences, obtaining a whole 

set of 99141 loci/isoforms. 

 

4.4 Identified lncRNAs 
From the 15 libraries analysed, a whole set of 99141 loci/isoforms was obtained. 

Among these loci/isoforms, known transcripts were discarded, obtaining 6590 new 

transcripts (Figure 4.5). 

To distinguish lncRNA candidates, five sequential stringent filters to the 6590 

transcripts were employed, according to the modified bioinformatic pipeline described 

by Li et al. (2014). First, transcripts shorter than 200 nucleotides and with ORFs longer 

than 100 amino acids were discarded and 3874 transcripts were retained (Figure 4.5). 

Transcripts passing this selection were aligned to protein database of all Angiosperms, 

downloaded from Plaza v.2.5 (http://plaza.psb.ugent.be/) to eliminate transcripts 

encoding protein. Next, the CPC was used to assess the protein-coding potential in 

order to eliminate other possible coding transcripts, and 2516 transcripts were obtained 

(Figure 4.5). After employing these criteria, the 2516 transcripts were considered as 

putative lncRNAs. Since putative lncRNAs may contain precursors of housekeeping 

RNAs and small RNAs, filtered transcripts were compared to a database of 

housekeeping RNAs and to a small RNAs databases (for details see the Materials and 

methods). Thus, putative lncRNAs with sequence similarity with small RNAs were 

classified as pre-lncRNAs, whereas the 2507 transcripts that do not have similarity with 

any class of non-coding RNAs were defined as High Confidence Bd lncRNAs (HC-

lncRNAs) (Figure 4.5). 
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Then the main features of identified HC-lncRNAs were examined, considering average 

length, %GC, number of exons and genome distribution (Figure 4.6). 

Similarly to lncRNAs of other plants, such as tomato and maize (Li et al., 2014; Zhu et 

al., 2015), the greatest part of HC-lncRNAs (~70%) are shorter than 1000 nucleotides, 

with a median length of 300 nucleotides (Figure 4.6 A). Whereas, Bd lncRNAs are 

shorter than rice and human lncRNA transcripts (Derrien et al., 2012; Zhang et al., 

Figure 4.5 Detailed schematic diagram of the bioinformatic pipeline, described in Li et al. (2014), for 
identification of Bd lncRNAs. New transcripts were filtered with five criteria for identification of lncRNAs. 
(1) length ≥200 nucleotides and ORF ≤100 amino acids; (2) not encoding known protein domains; (3) little 
coding potential; (4) not housekeeping ncRNAs; and (5) not small RNA precursors. 
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2014). In accordance with previous studies, which have shown that both plant and 

animal lncRNAs are shorter and harbour fewer exons than protein-coding genes (Ding 

et al., 2012a; Li et al., 2014; Zhu et al., 2015), most of the genes encoding Bd lncRNAs 

only contained one exon (Figure 4.6 B). 

A Circular plot clearly showed that Bd lncRNAs were pervasively transcribed across all 

the genome (Figure 4.6 D), similarly to the distribution observed in S. lycopersicum 

(Zhu et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

C D 

Figure 4.6 The main features of identified lncRNAs. A Bd lncRNAs length distribution. B Number of exons in 
Bd lncRNAs. C %GC in Bd lncRNAs. D Bd lncRNAs genome distribution; lncRNAs (magenta), miRNAs 
(yellow), coding genes (light blue).	
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4.5 LncRNAs expression analysis 
Considering all different samples within the dataset, we were able to study the lncRNAs 

expression levels across developing stages, conditions, tissues and organs. An heat map 

was created, representing the HC-lncRNAs expression in Reads Per Kilobase per 

Million mapped reads (RPKM) (Figure 4.7). We observed that Bd lncRNAs are 

expressed in each sample and some of them have a uniform expression. Some lncRNAs 

appear to be specifically expressed in different stages of leaf development or 

reproductive organs, particularly in anthers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 HC-lncRNAs abundance in 15 different Bd stages/conditions/tissues/organs. Expression 
in Reads Per Kilobase per Million mapped reads (RPKM). AV means average from 2 or 3 biological 
replicates.	
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To assess whether lncRNA expression changes during leaf development in control and 

drought stress conditions, between proliferation and expansion zone, a differential 

expression analysis was performed. Two classes of comparisons were performed: 

 

 

 

 

 

 

 

 

• During drought stress, evaluating the expression profile of the same cell type in 

different growing conditions (Ps vs Pc, Es vs Ec). 

• During leaf development, comparing the expression profiles of different cell 

types in the same growing conditions (Pc vs Ec, Ps vs Es). 

Based on p-value < 0.05, in the first comparison, we retrieved a low number of 

differentially expressed lncRNAs in drought and control conditions, both in 

proliferation and expansion cells, with low fold change and no differentially expressed 

lncRNA in common between the two developing areas (Figure 4.8 A). On the other 

hand, the second comparison addressed many differentially expressed lncRNAs during 

leaf development in the same growing conditions, especially in drought stress (Figure 

4.8 B), even if the values of fold change were still quite low, between -3 and 3. In 

particular, as we can see from the Venn diagram, 49 lncRNAs were differentially 

expressed from proliferation to expansion state in control conditions (31 up-regulated 

and 18 down-regulated), whereas 101 lncRNAs were differentially expressed from 

proliferation to expansion in drought stress conditions (72 up-regulated and 29 down-

regulated). 89 were the lncRNAs differentially regulated during leaf development, 

independently from growing conditions (64 up-regulated and 25 down-regulated). 

It seems clear that lncRNA expression profile is drastically influenced by leaf 

development, both in control and stress conditions. Whereas, drought treatment does not 

induce a drastic change in lncRNA expression profile. 

  

 Comparison 

Drought stress 
Ps vs Pc 

Es vs Ec 

Leaf development 
Pc vs Ec 

Ps vs Es 

Table 3.2 List of pairwise comparison performed during 
the differential expression analysis. (P) proliferation, (E) 
expansion, (C) control and (S) drought stress conditions.	
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Figure 4.8 Differentially Expressed (DE) HC lncRNAs during the drought treatment (A) and cell differentiation 
(B) with p-value < 0.05 and p-adj < 0.05. DE analysis was done using DESeq2 package. 
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lncRNAs log2FoldChange p-value 

TCONS_00015018 -0.391568158552012 0.00169553043101715 

TCONS_00043107 -0.625683331815137 1,16E-08 

TCONS_00027965 -0.826017424806412 2,85E-07 

 

 

 

 

 

 

 

  

lncRNAs log2FoldChange p-value 

TCONS_00060391 0.998810486372624 0.0049834190480159 

TCONS_00060390 0.813905722581128 0.0012339662696178 

TCONS_00031988 0.798653873405099 0.000250472119968534 

TCONS_00097102 0.652341793613137 0.00128858846016998 

TCONS_00036885 -0.582357738937515 0.000729379014777919 

TCONS_00026709 -0.792345171470535 0.00839529436403813 

TCONS_00059484 -0.800763011678796 0.00656536533458766 

TCONS_00039063 -0.948541558128087 0.00055381872010678 

Table 4.3 List of the 3 Brachypodium lncRNAs differentially expressed during the drought treatment in 
proliferation zone (Ps/Pc), with their expression levels and the p-value.	
  
	
  

Table 4.4 List of the 8 Brachypodium lncRNAs differentially expressed during the drought treatment in 
expansion zone (Es/Ec), with their expression levels and the p-value.	
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lncRNAs log2FoldChange p-value 

TCONS_00009992 3.656548937 0.00014596 

TCONS_00086597 3.323773011 0.002914647 

TCONS_00029729 3.222174 0.004100552 

TCONS_00089348 3.139134476 0.005321221 

TCONS_00085639 3.092605501 0.006158615 

TCONS_00033709 3.02135064 0.007628533 

TCONS_00030330 2.971583098 0.001142336 

TCONS_00025737 2.906163663 0.001327771 

TCONS_00032424 2.857482421 0.012231616 

TCONS_00006657 2.824649738 0.013417575 

TCONS_00056633 2.786979038 0.006392135 

TCONS_00093704 2.691365811 0.019101252 

TCONS_00086707 2.599974482 0.014078321 

TCONS_00047695 2.568953676 0.015343956 

TCONS_00041693 2.551672383 0.027224927 

TCONS_00049972 2.508940416 0.002823506 

TCONS_00078224 2.474158753 0.000782508 

TCONS_00022889 2.408415504 0.025041605 

TCONS_00034335 2.364881761 0.02640585 

TCONS_00066957 2.223538429 0.025227778 

TCONS_00067472 2.154397904 0.020800242 

TCONS_00023948 2.139301883 0.013097427 

TCONS_00091642 1.982484055 0.006617143 

TCONS_00018012 1.865517047 0.020079112 

TCONS_00002587 1.849697186 0.007367172 

TCONS_00014615 1.818744983 0.00714711 

TCONS_00026187 1.744962494 0.017015 

TCONS_00024424 1.497581996 0.002233536 

TCONS_00006953 1.348189905 0.009298903 

TCONS_00033579 1.151785414 0.000625769 

TCONS_00027455 0.933105045 0.029042562 

TCONS_00024075 -0.635140208 0.000498325 

TCONS_00036795 -0.867649303 0.007381457 

TCONS_00041304 -1.008052937 0.004634515 

TCONS_00007449 -1.340459316 0.004796425 

TCONS_00002033 -1.433879341 0.028108367 

TCONS_00083137 -1.584835553 1.76E-05 
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lncRNAs log2FoldChange p-value 

TCONS_00045386 -1.744410134 0.004934379 

TCONS_00068268 -2.212474045 0.008144458 

TCONS_00029851 -2.239311078 0.024782165 

TCONS_00089035 -2.255784059 0.024282922 

TCONS_00095877 -2.294363526 0.022446944 

TCONS_00069571 -2.313254181 0.00690456 

TCONS_00090190 -2.391265344 0.027142375 

TCONS_00081033 -2.894632964 0.011320595 

TCONS_00079290 -2.994032098 0.008433052 

TCONS_00088496 -3.057039273 0.002686827 

TCONS_00020495 -3.217483298 0.004194486 

TCONS_00095737 -3.229296607 8.81E-05 

  

Table 4.5 List of the 49 Brachypodium lncRNAs differentially expressed during cell differentiation from 
proliferation zone to expansion zone in control conditions (Pc/Ec), with their expression levels and the p-
value.	
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lncRNAs log2FoldChange p-value 

TCONS_00010022 4.061441166 0.000656853 

TCONS_00090462 3.940147872 0.001073887 

TCONS_00069261 3.867641484 0.001365797 

TCONS_00014199 3.801186541 0.001719713 

TCONS_00098571 3.784870551 0.001839522 

TCONS_00096683 3.774051483 0.001907477 

TCONS_00011006 3.470338808 0.005067086 

TCONS_00074624 3.470338808 0.005067086 

TCONS_00091956 3.367282686 0.006916952 

TCONS_00075163 3.307373065 0.008286416 

TCONS_00096507 3.252918913 0.000577381 

TCONS_00095053 3.215403956 0.010627474 

TCONS_00090463 3.212647205 0.002863824 

TCONS_00077606 3.111577863 0.013921259 

TCONS_00066117 3.106575601 0.014108483 

TCONS_00092902 3.085122706 0.004691338 

TCONS_00061918 3.048669908 0.016186633 

TCONS_00057658 3.041745887 0.016508948 

TCONS_00035378 3.027309118 0.017484996 

TCONS_00041986 2.99632893 0.006028321 

TCONS_00067205 2.912587622 0.022471083 

TCONS_00053243 2.907545157 0.022764093 

TCONS_00083270 2.903248963 0.0009035 

TCONS_00064998 288269803 0.024208076 

TCONS_00059612 2.877046177 0.010699745 

TCONS_00055078 2.876618204 0.003384124 

TCONS_00024261 2.868211591 0.025003062 

TCONS_00043395 2.854055767 0.010975499 

TCONS_00053581 2.85150193 0.010735636 

TCONS_00093117 2.819927488 0.012819446 

TCONS_00048070 2.60139605 0.010773407 

TCONS_00028837 2.533565899 0.02700719 

TCONS_00034780 2.515422215 0.028744521 

TCONS_00001781 2.505929779 0.030702203 

TCONS_00078722 2.487822687 0.015926272 

TCONS_00037644 2.469291459 0.007411618 

TCONS_00040049 2.459751902 0.016250629 
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lncRNAs log2FoldChange p-value 

TCONS_00045724 2.458783847 0.0041372 

TCONS_00058363 2.438918763 0.00950643 

TCONS_00020415 2.424007864 0.018633207 

TCONS_00017860 2.289544825 0.017072111 

TCONS_00050763 2.090988583 0.015524565 

TCONS_00034664 2.080038744 0.029257967 

TCONS_00006477 2.067507216 0.001404001 

TCONS_00058731 2.049844265 0.0247089 

TCONS_00093377 2.01135773 0.029539382 

TCONS_00024575 1.999054099 0.026940126 

TCONS_00007625 1.997480291 0.003379831 

TCONS_00031782 1.987362179 0.001817409 

TCONS_00036436 1.97297364 0.014681578 

TCONS_00036246 1.956736729 0.009139925 

TCONS_00079580 1.948932007 0.002386967 

TCONS_00051392 1.948004953 0.018594921 

TCONS_00005157 1.821767894 0.025673889 

TCONS_00077038 1.720655378 0.004312795 

TCONS_00096981 1.705713274 0.007928843 

TCONS_00051674 1.681277602 0.021309372 

TCONS_00064106 1.515343028 0.000537529 

TCONS_00085493 1.502855173 0.014197522 

TCONS_00077008 1.381654501 0.032681592 

TCONS_00025709 1.376851016 0.015729498 

TCONS_00027227 1.20199244 0.00517799 

TCONS_00015899 1.189341095 0.01277566 

TCONS_00053949 1.134139889 0.000723392 

TCONS_00024810 0.986449005 0.000418507 

TCONS_00072113 0.984204904 0.023467781 

TCONS_00031564 0.980892108 0.024308869 

TCONS_00072826 0.961556677 0.002137194 

TCONS_00082062 0.893562248 0.000308489 

TCONS_00046487 0.822703035 0.008742571 

TCONS_00054918 0.809850396 0.020455035 

TCONS_00020854 0.712465393 0.000552369 

TCONS_00097102 -0.527302567 0.011380596 

TCONS_00019452 -1.038388655 0.003521237 
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lncRNAs log2FoldChange p-value 

TCONS_00071785 -1.113682118 0.001209529 

TCONS_00054908 -1.156132672 0.021601069 

TCONS_00032690 -1.402635866 0.019907418 

TCONS_00000264 -1.470476666 0.022623468 

TCONS_00094461 -1.603950274 0.007549635 

TCONS_00027740 -1.740526527 0.00231951 

TCONS_00034147 -1.836396266 0.006552438 

TCONS_00056034 -2.168557034 0.00456031 

TCONS_00056069 -2.615128614 0.023184802 

TCONS_00005473 -2.703811919 0.018637201 

TCONS_00045188 -2.886530891 0.010092372 

TCONS_00055567 -2.917891081 0.022516386 

TCONS_00045290 -2.949193411 0.020907554 

TCONS_00081553 -3.071761806 0.015537071 

TCONS_00031062 -3.087103004 0.014953207 

TCONS_00062410 -3.105976014 0.014260342 

TCONS_00029713 -3.236335426 0.010142415 

TCONS_00008885 -3.242379641 0.009957766 

TCONS_00074339 -3.258080461 0.009662622 

TCONS_00069697 -3.526687326 0.004399436 

TCONS_00058251 -3.538129281 0.004244907 

TCONS_00073220 -3.565768162 0.003904556 

TCONS_00024842 -3.645533959 0.003005665 

TCONS_00098380 -3.680929291 0.002683127 

TCONS_00049444 -3.748925425 0.002138603 

TCONS_00070535 -4.13605239 0.000507366 

TCONS_00019564 -4.318542051 0.00024005 

 

  

Table 4.6 List of the 101 Brachypodium lncRNAs differentially expressed during cell differentiation from 
proliferation zone to expansion zone in drought stress conditions (Ps/Es), with their expression levels and 
the p-value.	
  
	
  



	
   51 

4.6 Predicted endogenous lncRNAs: target mimicry 
The computational method described in Wu et al. (2013) was used to identify HC-

lncRNAs with potential target mimicry properties, i.e. partially complementary 

sequences that can block the interaction between miRNAs and their authentic targets 

(Wu et al., 2013). 

14 eTMs were predicted, three of which were differentially expressed from proliferation 

to expansion in control and stress conditions: TCONS_00027114, up-regulated and 

targeting bdi-miR160, TCONS_00027740, down-regulated and targeting bdi-miR399 

and TCONS_00031062, down-regulated and targeting bdi-miR5198. 
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Figure 4.9 Predicted base-pairing interaction between Bd miRNAs and HC-
lncRNAs, according to the computational method described in Wu et al. (2013). In 
red Differentially Expressed (DE) HC-lncRNAs during the drought treatment and 
cell differentiation, with their p-value and p-adj. 
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5 Discussion 
With technical advances in studying the eukaryotic transcriptome, the increasing 

complexity of eukaryotic genome expression was revealed (Dinger et al., 2009). The 

existence of non-protein coding transcripts, including sRNAs and lncRNAs was 

discovered. sRNAs are relatively well characterized and their importance in 

transcriptional and post-transcriptional regulation of expression of other genes is well 

understood (Bonnet et al., 2006; Farazi et al., 2008; Finnegan and Matzke, 2003; 

Ghildiyal and Zamore, 2009; Zhang et al., 2006), whereas, lncRNAs have not been as 

comprehensively identified and well studied in many plant species. 

This work focuses on the identification and characterization of a large set of long 

noncoding RNAs in the model species Brachypodium distachyon.  Providing detailed 

information about their genomic distribution and expression patterns across different 

tissues/organs and identifying potential link between lncRNAs and miRNAs, through 

target mimicry features. 

 

5.1 Bona fide lncRNAs 
In this study, a total of 2507 HC-lncRNAs was identified in Brachypodium distachyon. 

For this purpose, the starting set of loci/isoforms, de novo reconstructed, was subjected 

to a strict criteria bioinformatic pipeline, described in Li et al. (2014), which takes into 

account all the major characteristics of long noncoding RNAs described so far in 

previous studies (Ben Amor et al., 2009; Wang et al., 2015; Zhang et al., 2014; Zhu et 

al., 2015; Maeda et al., 2006; Derrien et al., 2012; Xie et al., 2014). The analysis 

generated a robust list of potential lncRNAs in Brachypodium, which will be useful for 

the scientific community. The large number of identified lncRNAs is comparable to 

other annotation studies carried out in several plant species (Zhou et al., 2009; Li et al., 

2014; Chen et al., 2015; Shuai et al., 2014; Zhu et al., 2015). Nevertheless, there are 

some potential limitations to the list of lncRNAs obtained that are worth noting. First, 

all the available RNA-Seq data were produced selecting polyadenylated transcripts, but 

it is possible that some lncRNAs lack polyadenylation (Di et al., 2014), so we have not 

been able to annotate them. Relatively strict criteria were also employed by requiring 

that the putative lncRNAs lack the ability to encode peptides of more than 100 amino 
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acids or only have a weak coding potential. In fact, there are examples of previously 

characterized lncRNAs from other species with the potential to encode peptides >100 

amino acids, such as HOTAIR, XIST and KCNQ1OT (Duret et al., 2006; Kanduri, 2011; 

Rinn et al., 2007). 

In summary, although some Bd lncRNAs might be excluded due to the sequencing 

limitations and strict criteria, a relatively reliable list of Bd lncRNAs is provided and 

will be useful for the research community. 

Concerning the characteristics of Bd lncRNAs annotated in this study, our results are in 

accordance with previous evidences made in different plant species (Li et al., 2014; 

Wang et al., 2015; Zhu et al., 2015). Length, percentage of GC and number of exons of 

HC-lncRNAs were exanimated. The length of the greatest part of HC-lncRNAs ranges 

from 200 to 1000 nucleotides. Also, as in other plant species, most of the genes 

encoding Bd lncRNAs only contained one exon (Chekanova, 2015). 

In contrast with the observations in maize plants (Li et al., 2014), where lncRNAs are 

concentrated in chromosomes 1 and 5, in Brachypodium distachyon we detected a 

pervasive transcription of lncRNAs in every chromosome, similarly to the results 

obtained in the species S. lycopersicum (Zhu et al., 2015). 

 

5.2 Expression patterns and differential expression analysis 
To highlight specific expression profiles among all the samples considered in this study, 

data counts were expressed in Reads Per Kilobase per Million mapped reads (RPKM). 

As can be seen from the heat map in Figure 4.7, Bd lncRNAs are expressed in all of 

these samples and some of them seem to have a uniform expression in each sample. In 

accordance with literature, the expression levels of lncRNAs are, generally, very low 

(RPKM between 0 and 80), nevertheless there are also some lncRNAs highly expressed 

in specific samples, leading to think that lncRNAs are specifically involved in the 

development of some tissues. For instance, some lncRNAs appear to be specifically 

highly expressed in the different stages of leaf development, with no appreciable 

difference between control and stress conditions. Interestingly, a high expression level 

of specific lncRNAs characterizes reproductive organs and, particularly, anthers. This 

observation reflects the results of a previous study in rice (Zhang et al., 2014), in which 

several lncRNAs have been found to be highly expressed in reproductive organs and, in 
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particular, in anthers, where they might play roles in germ cell development or meiosis. 

It would be interesting to investigate the role of reproductive organ-specific lncRNAs in 

Brachypodium too, in particular, as already done in rice, an interaction with miRNAs 

should be assessed, as many miRNAs have been reported to regulate reproduction in 

plants (Luo et al., 2013). 

 

To better investigate the modulation of lncRNAs during drought stress condition and 

leaf development, a differential expression analysis was conducted, taking advantage of 

the experimental design concerning proprietary RNA-Seq libraries, where three 

biological replicates were generated for each developmental zone (proliferation, 

expansion, mature) and growing conditions (control, drought stress). 

To further explore the modulation of lncRNAs during leaf differentiation and, in 

particular, between cell proliferation and cell expansion (the first two steps leading to 

differentiation), pairwise comparison between different cell type grown in control and 

drought stress conditions (hence Pc vs Ec and Ps vs Es) were investigated. Moreover, 

we were able to investigate the response of different cell type to drought stress (pairwise 

comparison: Ps vs Pc, Es vs Ec). Although previous studies have shown the modulation 

of lncRNAs in response to biotic and abiotic stresses in plants, such as Arabidopsis, 

wheat (Liu et al., 2012; Xin et al., 2011) and, recently, some drought-responsive 

lincRNAs have been characterized in Populus trichocarpa (Shuai et al., 2014); our 

results show a moderate modulation of lncRNAs in response to drought. Only a small 

number of differentially expressed lncRNAs between drought and control conditions 

was obtained but we cannot exclude that lncRNAs are involved in drought stress 

response, in fact, also the expression level of coding genes related to cell division in 

leaf’s proliferation zone is not so influenced by drought stress and only the genes 

related to cytokinin have high transcript levels in the expansion zone of drought-

stressed Brachypodium leaves (Verelst et al., 2013). Moreover we have to bear in mind 

that the expression levels of lncRNAs were observed only in specific plant cells and not 

in the entire plant system, hence we cannot appreciate the behaviour of these molecules 

in the global mechanism of response to drought stress. 

On the contrary, the number of differentially expressed Bd lncRNAs obtained during 

leaf development indicates a straightforward participation of lncRNAs in cell 
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differentiation, in particular 49 lncRNAs were differentially expressed from 

proliferation to expansion state in control conditions (31 up-regulated and 18 down-

regulated), whereas 101 lncRNAs were differentially expressed from proliferation to 

expansion in drought stress conditions (72 up-regulated and 29 down-regulated). 89 

were the lncRNAs differentially regulated during leaf development, independently from 

growing conditions (64 up-regulated and 25 down-regulated). The high number of 

lncRNAs differentially expressed in drought stress conditions may indicate a response 

of cell differentiation to the perturbation of normal physiological conditions, which 

would be interesting to deeply investigate in the future. In fact, cell cycle and cell 

differentiation regulation are of pivotal importance for plant growth and development 

and, even if the majority of molecular actors are well known, the role of non-coding 

genome in these processes is still unexplored. Moreover, recently, several studies in 

animal models revealed the importance of lncRNAs in cell proliferation in cancer 

conditions, such as MALAT1 (Dong et al., 2014; Gutschner et al., 2013; Ji et al., 2003). 

It isn’t hard to think that plant lncRNAs may have similar functions participating in the 

fine tuning of gene expression in several biological pathways. 

 

5.3 lncRNA-miRNA interaction 
Target mimicry is a newly identified miRNA regulation mechanism, first studied in 

Arabidopsis (Franco-Zorrilla et al., 2007). According to this mechanism, over-

expression of the decoy RNAs that bind to miRNAs, through partially complementary 

sequences, block the interaction between miRNAs and their authentic targets. In this 

way, lncRNAs increase the expression of the miRNA target. No target mimics have yet 

been identified in Brachypodium. 

In this study, potential target mimic lncRNAs for 14 miRNAs were identified. 

Intriguingly, the majority of lncRNAs involved in these interactions are differentially 

expressed during cell differentiation, both in physiological and drought conditions, 

indicating that lncRNAs might cooperate with miRNAs to regulate cell differentiation 

process. In particular, bdi-miR399 is targeted by a lncRNA down-regulated during leaf 

cell differentiation in stress conditions and a lncRNA up-regulated during leaf 

development in both control and stress conditions is a potential target mimic for bdi-

miR160. To date, miR399 family is known to play an important role in phosphate 
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homeostasis regulation in Arabidopsis (Franco-Zorrilla et al., 2007; Kuo and Chiou, 

2011), particularly, miR399 can guide the cleavage of PHO2 RNA, which negatively 

affects shoot Pi content and Pi remobilization. On the basis of the obtained results, it’s 

possible to speculate that, being phosphorous an essential nutrient for plant life, 

important in cell division and development of new tissues, the down-regulation of a 

decoy lncRNA for miRNA399, which positively regulate phosphorous homeostasis, is a 

possible mechanism involved in leaf development in stress conditions. 

The interaction between a Bd lncRNA and bdi-miR160 could be an even more 

interesting mechanism involved in leaf development. In fact, miRNA160 targets several 

mRNAs implicated in auxin responses (auxin response transcription factors, ARFs) (Liu 

et al., 2007; Mallory et al., 2005; Turner et al., 2013). The phytohormone auxin is a 

major regulator of plant growth and development, which are sustained by coordinated 

cellular behaviors: cell division, expansion and differentiation. Auxin has been seen to 

participate in every one of these processes (Perrot-Rechenmann, 2010). In this way, 

lncRNAs may become part of the network of molecular actors involved in leaf 

development in control and stress conditions, regulating auxin pathway through target 

mimicry. Certainly, this is an interesting issue worth to be broadened. 
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6 Conclusions 
In this study, from 15 RNA-Seq libraries of Brachypodium distachyon, 2507 lncRNAs 

have been identified, in different organs, tissues, conditions and leaf developmental 

stages. Of these, some have high expression levels in reproductive organs, such as 

anthers, indicating a possible involvement in reproduction. 

A differential expression analysis provided a list of lncRNAs down- and up-regulated in 

third leaf expansion and proliferation areas, during drought stress and/or leaf 

differentiation, showing a straightforward implication of lncRNAs in cell 

differentiation. 

In addition, an interaction network between lncRNAs and miRNAs was highlighted, 

giving clue to the interplay between lncRNAs and miRNAs through target mimicry. 

This study provides the first comprehensive annotation of lncRNAs in Brachypodium 

distachyon, which can be considered an important step for the research community, to 

strengthen future functional genomics studies in this interesting model species and its 

relative crop species. 
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