
University of Pisa

and

Scuola Superiore Sant’Anna
Master Degree in Computer Science and Networking

Master Thesis

Processing-in-Memory
in the Exascale Computing and Big Data era:

 a Structured Approach

Candidate Supervisor

Francesco De Felice Marco Vanneschi

Academic Year 2014/2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79619529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To the memory of Prof. Giovanna Limongi,

hoping that, one day, I will come back to find you

in the high school of angels.

Acknowledgements

First and foremost I offer my sincerest gratitude to my supervisor, Prof. Marco Vanneschi,

whose expertise, invaluably-constructive criticism and friendly advice added considerably

to my graduate experience.

A special thank goes to all the professors of the Master degree program in Computer

Science and Networking; in particular, to Prof. Marco Danelutto for all the insightful

conversations we had, and to Prof. Paolo Ferragina for his precious advices about the

benchmark algorithm used in this Thesis.

Furthermore, I would like also to thank all my MCSN colleagues, in particular Luigi C.

for his true friendship and invaluable support.

I will never find enough words to thank all my family, in particular my parents Sergio

and Licia, whose unconditioned love and endless support gave me the necessary strength to

live and study far from home these years, and my brothers Luca and Marco, for their

precious mathematical hints and help for technical drawings.

Last but not least, all my sincere gratitude goes to Erika for tirelessly supporting me

during these years in Pisa (therefore, this work is mainly dedicated to you).

 Francesco De Felice

 Pisa, October 2015

Contents

1. Introduction..1

1.1 This work.. 2

1.1.1 Objectives...2

1.1.2 Methodology pursued...2

1.2 Thesis organization... 3

2. Processing-In-Memory (PIM): Overview...5

2.1 Introduction: motivations for Processing-In-Memory..5

2.2 PIM in the Exascale computing and Big Data era..6

2.3 From the first PIM generation to the second one (or Near Data Processing)....................8

2.3.1 First PIM generation...8

2.3.2 3D-stacked memory: the enabling technology for second PIM generation...........................10

2.3.3 Software model and software/hardware interface..13

2.3.4 PIM prototypes, applications and results...14

2.4 Final considerations.. 17

3. Abstract Machine Models for Processing-in-Memory..18

3.1 Background: reminder on structured parallel programs, abstract machine and cost

models... 18

3.2 General Abstract Machine Models for PIM architectures...21

3.2.1 Single-host PIM architecture..21

3.2.2 Multi-host PIM architecture...25

4. PIM Architectures and Low-Level Communication Latencies Cost Models............27

4.1 Background: reminder on interprocess, inter-unit communications and cache coherence

mechanisms... 27

4.2 PIM architectures specifications...33

4.2.1 Single-host PIM architecture..33

4.2.2 Multi-host PIM architecture...36

4.3 Inter-unit communication latencies cost models...37

4.3.1 Single-host PIM architecture..37

4.3.2 Multi-host PIM architecture...42

5. Energy Modelling of PIM Architectures..44

5.1 Estimating energy efficiency of a computational system..44

5.2 Basic system components energy costs and parameters definition.................................45

5.2.1 Assumptions and approximations...47

5.3 Energy Modelling of a single-host PIM architecture..49

5.3.1 Example 1: scatter collective communication..52

5.3.2 Example 2: multicast collective communication...54

5.3.3 Example 3: reduce collective operation...56

5.4 Energy Modelling of a multi-host PIM architecture...59

5.4.1 Example: producer-consumer pattern..62

5.5 Final considerations.. 63

6. Comparative Study and Evaluation of PIM Architectures with Parallel Program

Examples...64

6.1 Brief description of real-time analytics and sketching techniques..................................64

6.1.1 Count-Min (CM) Sketch algorithm..65

6.2 Analysis and comparison of CM Sketch parallel version variants over PIM..................68

6.2.1 Introduction and preliminary considerations...68

6.2.2 Sequential analysis...70

6.2.3 Parallel analysis with a single-host PIM architecture – CM Sketch Update.........................79

6.2.4 Parallel analysis with a single-host PIM architecture – CM Sketch Query...........................87

6.2.5 Parallel analysis with a multi-host PIM architecture – CM Sketch Update..........................93

6.2.6 Parallel analysis with a multi-host PIM architecture – CM Sketch Query............................96

6.3 Brief summary and conclusive parametric study..98

7. Conclusion and Future Works..104

7.1 Future works and open research problems..105

Bibliography..108

Chapter 1

Introduction

Over last decades, large-scale systems computations were characterized by a processing

model referred to as computing-centric, for which data lives on large-scale distributed file

systems and moves as needed to central computing engines across a deep storage

hierarchy. Programs executions were clearly dominated by arithmetic and/or logic

calculations and the final goal was to maximize the number of operations per unit of time.

The data explosion phenomenon in the Big Data era is leading to a shift in large-scale

applications processing paradigm, which is ever more data-centric and for which

computation should be logically moved to data and not the opposite. As a matter of fact,

the time spent for moving huge amount of data within a computational system clearly

dominates current large-scale applications executions and, even more, the resulting energy

cost is one of the major causes of energy efficiency degradation.

The Processing-in-Memory (PIM) technology is an architectural model that fully

embraces the data-centric paradigm by proposing a hardware solution that consists in

placing simple or more complex processing logic close to memory. In so doing, data can be

directly computed where they are stored and the latency to retrieve them is considerably

reduced. PIM solutions have been studied for the first time in the 90's by multiple research

groups with promising results; anyway, the widespread commercial adoption remained

elusive due to the technology limitations of that time and the costs required to produce

more complex chips with mixed logic [2].

Recently, the emergence of new enabling technologies, among all the 3D-stacked

memories that allow to effectively integrate processing logic with memory dies, and

current computing trends requirements have motivated a revival of interest for PIM

solutions.

As a matter of fact, both the Exascale Computing community, involved in the high-

performance scientific applications context, and the Big Data one, dealing with data

analytics applications, aim at improving performance and energy efficiency for their large-

scale data-intensive computations by minimizing data movement. Among the other

1

solutions, their interest for PIM is witnessed by different research works and recent

scientific papers.

1.1 This work

1.1.1 Objectives

The present Thesis lays its foundation in the aforementioned context and, on the basis of

the most recent results provided by the research world and reported in the supporting

literature, it exploits the structured approach proposed in the main reference [1] in order to

study PIM architectures from a methodological view point.

For this purpose, we lay emphasis on architectural aspects, structured parallel

computations, performance and energy cost models. In so doing, we are able to perform an

analytical experimentation and a performance, as well as energy, characterization of a

given parallel program executed over a target PIM architecture.

Anyway, it should be remarked that many open research problems exist and the PIM

technology itself is currently (October 2015) in the design phase. For this reason, different

issues, such as benchmarking a wider set of applications, practical experiments/simulations

and other methodological aspects, e.g. provide a formal characterization of the parallel

programs run-time support over PIM architecture, are demanded to future works.

1.1.2 Methodology pursued

Starting from all the notions, concepts, hardware design choices and variants, as well as the

energy/performance costs of specific hardware components retrieved from literature, we

develop Abstract Machine Models for the PIM architectures studied. In this way, we are

able to identify and capture all the relevant characteristics, features and parameters of the

target physical architecture and neglect the useless ones.

From the general abstract PIM models, we then fix some parameters values provided by

the literature, e.g. memory access time, memory capacity, interconnection network links

bandwidth, number of PIM cores per PIM processor, etc., and we derive important

architecture-dependent parameters, such as communication latencies for cache-to-cache

and memory blocks transfers. These parameters will be then exploited to express

performance cost models associated to the structured parallel program examples that we

use as benchmarks.

2

Furthermore, starting from some energy-related parameters provided by the literature

and associated to the PIM architecture's memory and interconnection network components,

we derive novel data movement-based energy cost models. In this way, we are able to

perform an energy characterization of a given parallel program, targeting a PIM

architecture, according to the amount of energy that it consumes to transfer data during

cache-to-cache cooperation and/or memory accesses (in terms of Joule per primary cache

block transferred). Even more, we are able to reason about the efficiency of a certain

communication pattern and/or a given parallel program mapping, and to compare different

solutions from the point of view of energy.

Exploiting all the concepts, techniques and cost models detailed so far, we are then able

to perform a formal and analytical analysis of parallel program examples, over PIM

architectures variants, taking into account both performance and data movement energy

consumption. For this purpose, we study different parallelization strategies for the well-

known Count-Min Sketch algorithm, widely exploited in real-time analytics applications.

Its characteristics, mainly in relation to the highly irregular data access pattern, seem to

make it a suitable benchmark for comparing its parallel version variants, and relative

program mappings, over PIM architectures.

Finally, we conclude with a parametric study in order to provide a quantitative yet

general idea of the PIM architecture potential when executing a structured parallel

program, and, hopefully, a starting point for further research.

1.2 Thesis organization
The Thesis is subdivided into seven chapters; the first one is the introduction we are

carrying out. The other chapters and related topics are the following:

• Chapter 2 reviews the supporting literature, highlighting the motivations, the

current computing trends, the enabling technologies, the practical applications, the

existing research works and proposals concerning Processing-in-Memory.

• Chapter 3 deals with Abstract Machine Models for PIM architectures, identifying

which aspects and parameters are relevant and should be taken into account in our

modelling and what has to be abstracted. Moreover, a brief reminder to structured

parallel computation concepts and performance cost models, in order to provide a

3

background to a not expert reader, is detailed as well.

• Chapter 4 illustrates specific PIM architectures examples which are parametrized

versions of the previous more general abstract models. In so doing, it identifies and

lays emphasis on the possible interactions among system components of interest,

e.g. cache-to-cache communications and memory accesses. For each one of them,

the relative communication latency is computed on the basis of the methodology

presented in [1] about pipelined inter-unit communications.

• Chapter 5 deals with data movement energy consumption in a PIM architecture. In

this section, structured parallel computing theory is widely exploited in order to

simplify the task of deriving novel data movement-based energy cost models for

structured parallel programs targeting PIM architectures. Performance cost models

from [1], in relationship to the presented parallel paradigms and collective

communication forms, are reported as well.

• Chapter 6 carries out a comparative study of PIM architectures in relationship to

parallel program variants, mappings, communication patterns and so on. After a

brief introduction of the Count-Min sketch algorithm, a formal analysis of its

parallel version variants, each one exploiting a different parallel pattern, is

performed by taking into account all the above listed alternatives. The chapter ends

with a concluding parametric study that provides a quantitative idea about PIM

architecture potential.

• Chapter 7 sums up all the salient features of this Thesis and it also shows possible

future works and open research problems.

4

Chapter 2

Processing-In-Memory (PIM): Overview

In this chapter the motivations, the current computational trends, the research work

proposals and the practical applications of Processing-In-Memory (PIM) are properly

detailed. In so doing, the following sections are not a comprehensive review of the

supporting literature but, instead, key points will be emphasized in order to provide a

general overview of PIM and a clear idea about the needs of PIM and its implications in

current parallel applications and architectures.

In the next chapters, more specific and technical details that derive from literature will

be detailed and properly referenced in the methodological treatment of PIM architectures.

2.1 Introduction: motivations for Processing-In-Memory
Over last decades, the traditional processing model adopted in large-scale systems was the

computing-centric one. The data explosion phenomenon and current trends toward the Big

Data era involving almost all the large-scale applications of practical interest, including the

scientific and engineering computing ones [15], are leading to a shift in the computing

paradigm which is ever more data-centric. This transition is due to the evolving nature of

large-scale processing, which is no longer dominated by computational aspects like

arithmetic/logic operations but, instead, by the movement of large volumes of data across

memory hierarchies and interconnection networks.

The cost of moving data has been recognized as one of the major causes of performance

degradations and energy consumption in current applications workloads, which are almost

all data-intensive [28]; they typically operate on massive amounts of diverse data

(structured, as the ones stored in relational databases, unstructured, such as text files, or

semi-structured, for example using the XML or JSON formats) characterized by high

inherent parallelism, with, often, irregular access patterns, limited locality and an intensive

use of I/O and/or Memory operations [10].

The data-centric model is based on the notion of moving computation to data and not

the opposite; generally speaking, the basic concept is to keep data in different memory

hierarchy levels with processing engines surrounding them and operating on them locally.

5

In so doing, data movements are minimized or avoided.

The transition of architectures and programs towards an execution model that minimizes

data movement has been recognized as a crucial step for the evolution of computational

systems and the overcoming of current computational challenges [26]. In this context, the

Processing-in-Memory technology lays its foundations as an architectural model which

seeks to minimize data movements by computing them at the most appropriate location of

the memory hierarchy (main memory or persistent storage). As detailed in the following

sections, the PIM concept is not new; it was a rich area of research in the '90s with

different architecture prototypes proposed, with promising results, but they never became

the mainstream technology. However, current computing trends, as detailed so far, as well

as the emergence of new enabling technologies (e.g. 3D-stacked memories) give enough

motivations to believe that PIM will be real this time.

The limitations of current computing technologies enforce this idea; as it happened with

the end of Dennard scaling, in which performance of a CPU with single core could no

longer be improved by simply increasing the transistor's switching frequency, also the

multi/many-core paradigm, in the Post-Dennard scaling, is running out of stream due to

the dark silicon phenomenon: only a small fraction of transistors is allowed to remain

active due to the limited power budget and the inability of decreasing power consumption

while shrinking transistors size (i.e. increasing transistors density and, therefore, the

number of on-chip cores).

In order to extend the effect of the Moore's law in the next years, new architectures

freed from the “pure” von Neumann model are needed and PIM solutions seem to be

promising candidates [2].

2.2 PIM in the Exascale computing and Big Data era
"Twins separated at birth": with this euphemism Daniel Reed, famous computational

scientist, defined the two main communities in large-scale computing, the data analytics

and the high-performance computing ones [44], by outlining how they are inherently tied,

although they have diverged, and are now going to reunite.

The first one focuses on big data, machine learning and data-driven computing;

nowadays they define the so called fourth-paradigm in scientific discovery, which

continuously seeks to extract information buried in massive heterogeneous datasets in

order to derive knowledge.

6

The second community is involved in the scientific and engineering computing areas,

such as: biology and biomedicine, nuclear and high-energy physics, health science,

chemistry, fluid dynamics and others [16]. For this half of the large-scale computing world,

the Exascale (1018 operations per second with a power budget of about 20 MW) is the next

step in the path of performance improvement that has continued for more than 50 years and

that, for the first time, considers power management as a first-class design challenge.

As detailed in [15], both communities have successfully built their scalable

infrastructures by relying on x86 hardware and a rich suite of (mostly) open source

software tools. However, the two ecosystems (hardware, software and algorithms used)

sharply differ in their targets and technical approaches. On one side, we have HPC clusters

based on high-performance x86 processors, augmented with accelerators in the form of

coprocessors (e.g. GPUs), high-speed low latency interconnects (e.g. Infiniband), Storage

Area Network (SAN), as a global persistent data storage, and low-latency SSD disks on

each node for local data storage. This hardware suite is mainly optimized for performance.

Atop the cluster's hardware, Linux OS provide system services, augmented with parallel

file systems (e.g. Lustre) and batch schedulers for parallel job management (e.g. SLURM).

Applications are typically developed in C/C++ with the support of external libraries and

tools such as MPI and OpenMP, to express inter-node and intra-node parallelism

respectively, CUDA or OpenCL for coprocessor exploitation.

On the other side, a rich ecosystem has emerged for data analytics too. Data analytics

clusters are typically based on commodity Ethernet networks and a large amount of local

storage, with horizontal scaling (or scale-out), energy efficiency, fast I/O, and capacity as

primary optimization criteria. Atop this hardware infrastructure, Apache Hadoop system

implements the MapReduce model for data analytics, relying on a distributed file system

(HDFS), for managing large number of files distributed across cluster's local storage, and

HBase, an open source implementation of Google's BigTable key-value store providing

tables that can serve as the input and output for Hadoop jobs. Atop Hadoop system, tools

(such as Pig) provide a high level model for writing the map and the reduce phases of the

MapReduce model. Together with streaming data (e.g. Storm) and graph (Giraph)

processing, the Hadoop suite is mainly designed for big data analysis. Moreover, data

analytics applications, differently from the HPC ones, often rely on high-level

programming languages such as Java or, as in the last in-memory analytics frameworks

7

(e.g. Spark), Scala.

Apart from the specific programming models and tools, that perhaps are the biggest

point of divergence, as the scientific discovery and innovation increasingly depends on

high performance computing and data analytics, the potential interoperability and scaling

convergence of these two ecosystems is crucial for the future evolution of large-scale

systems [15]. Consolidating HPC and Big Data workloads onto the same infrastructure by

exploring dual-use technologies would result in cost savings, although many technical

challenges exist; among all, minimizing cost associated to data movement, in terms of

performance improvements and energy savings, is a crucial aspect. As said previously, the

Big Data revolution involved also the scientific and engineering computing applications,

by making them ever more data-intensive. At the Exascale projections, the energy cost

associated to data movement will exceed the cost of floating-point operations, and memory

interfaces and interconnection network links are the main contributors [32]. New “data-

movement aware” architectures, as well as “data-location aware” algorithms, are therefore

needed, and are studied, in order to reduce these costs.

The processing in memory solution is one of them and it has been widely accepted as a

promising one by both the Big Data and the HPC/Exascale communities. As a matter of

fact, large number of research works and proposals prove what stated; as an example, [15,

16, 25, 26, 31] are related to the Exascale computing and [2, 5, 11, 15, 24, 29] to Big Data.

2.3 From the first PIM generation to the second one (or Near
Data Processing)

2.3.1 First PIM generation

In the '90s, multiple groups of researchers studied for the first time Processing-in-memory

solutions. Different examples of PIM architecture prototypes were developed, such as:

DIVA [13], IRAM [52], EXECUBE [51], FlexRAM [8] and others. Most of them were

characterized by multiple PIM chips with tight integration of DRAM memory arrays with

simple or more complex processing logic; such PIM chips were then connected to a

traditional host processor. A run-time system was then responsible for spawning and off-

loading tasks so that the computation was performed tightly close to where data reside.

As an example, the solution adopted by DIVA (Data-Intensive Architecture) is shown in

the following figure, with PIM chips that are physically grouped as conventional memory

chips, packed in a discrete PIM DIMM (Dual In-Line Memory Module) module.

8

A mechanism based on parcels exchange, very similar to the concept of active or

intelligent messages [30], was then responsible of coordinating computation in memory.

Each parcel incorporates the data memory address and the encoded operation/computation

that have to be applied to them.

 Figure 2.1: PIM DIMM module organization (taken from [13]).

All the PIM solutions studied in the past demonstrated performance gain and energy

efficiency in many applications. As an example, DIVA was designed in order to efficiently

execute irregular applications, such as sparse-matrix and pointer-based ones, obtaining a

good speed-up, lower memory access latency and increased parallelism [13].

The VIRAM processor [14], designed in the scope of the previously mentioned IRAM

(Intelligent RAM) project, combines vector processing logic with DRAM arrays by

allowing to effectively speed-up applications characterized by fine-grained data

parallelism.

Anyway, although PIM research yielded a number of promising results, widespread

commercial adoption was not pursued. The economies of building PIM chips with costlier

and/or suboptimal DRAM integration were not attractive to industry and, therefore,

Moore's law allowed to prefer the “pure” von Neumann machines with economic

affordability.

Nevertheless, in last few years a resurgence of interest in Processing-in-Memory, by

both research communities and industry, has been renewed [8]. Different forms of PIM

designs are now being proposed and can be differentiated according to the type and

complexity of the in-memory operations supported and the processing logic used, e.g.

fixed-function logic units, general-purpose energy-efficient cores, GPU cores, FPGAs, etc.

As widely detailed, the emergence of new enabling technologies, among all the 3D-stacked

9

memories that allow to effectively package processing logic with memory dies, as well as

the limitations of current commodity systems, used to accommodate modern Big Data or

any other Scale-Out workload in general [12], motivated the PIM revival. Therefore,

research in the area of PIM can be categorized into two eras or generations from the

implementation view point. As a matter of fact, the current/second PIM generation is also

referred to as Near Data Processing (NDP) or Near Data Computing (NDC) in many

scientific papers; this is due to the fact that now, at the physical/hardware level, the

majority of the solutions propose to implement logic units near the main memory dies by

leveraging the 3D-stacked memory organization.

A general overview of 3D-stacked memories, together with other aspects related to the

second PIM generation, will be exemplified in the following sections.

2.3.2 3D-stacked memory: the enabling technology for second PIM
generation

A 3D-stacked memory is an high-bandwidth, low-latency, limited-capacity and energy-

efficient main memory technology. Its general organization consists of a multiple number

of DRAM memory layers stacked on top of a single logic layer, which are all contained

within the same chip package.

The logic-layer contains an internal network that interconnects the interfaces required to

communicate with external devices and the memory interfaces/controllers. Other memory

support logic, e.g. ECC (Error Correction Code) logic, is placed on the base logic die as

well. Stacked memory layers are connected to the logic layer through the TSVs (Through

Silicon Vias) connections. TSVs are basically high-speed vertical buses that directly

connect memory banks/modules, at a certain memory stack layer, with the logic layer.

Moreover, a 3D-stacked memory can be logically split into different vertical memory

slices, with read/write memory accesses directed to each one of them handled by different

memory controllers. This implies that memory slices are independent one another and

parallelism can be exploited in accessing the single 3D-stacked memory. Latency and

energy benefits arise from the shorter, on-chip, vertical traversed distances, and the

reduced capacitance, compared to off-chip links with longer wires typical of 2D

organizations [6].

3D-stacked memories are therefore useful, and have been designed, for HPC systems

10

and high-end servers that accommodate workloads which typically exhibit little or no

locality with consequent high memory bandwidth demands [7]. A representative figure of a

3D-stacked memory organization is shown in the following, where the group of vertical

memory modules coloured in green represents a memory slice, MCs are Memory

Controllers, I/Os are the interfaces to the external system environment and the network that

interconnects them is the internal logic-layer network.

As of this writing, commercial products implementing the 3D-stacked memory model

are emerging and are getting ready for the market launch, such as the Hybrid Memory

Cube (HMC) by Micron, the High Bandwidth Memory (HBM) by Hynix/AMD and Wide

I/O by Samsung.

Figure 2.2: 3D-stacked memory organization (taken from [20]).

Wide I/O has been designed to provide energy-efficient high-bandwidth memory to mobile

SoCs (System on Chips), while the HBM has been explicitly designed for graphics; as a

matter of fact, both AMD and Nvidia are planning to adopt it for next generation GPUs,

e.g. Nvidia Pascal and AMD Radeon R9 Fury X [45].

Finally the HMC have been designed for high-end servers, Exascale systems and many-

core architectures. A notable example of a commercial chip product integrating 3D-stacked

memories, based on Micron's HMCs, is the new Xeon-Phi Knigths Landing by Intel

(2016).

Without loss of generality and according to most of the current research works on PIM,

we will mainly refer to HMC as 3D-stacked memory model for its design targets,

characteristics and facilities. For this reason, a brief but more detailed description of an

HMC and its peculiarities will be given in the following.

11

Micron's Hybrid Memory Cube (HMC)

The Micron's Hybrid Memory Cube (HMC) is a 3D-stacked memory technology which,

according to the last specifications released [42], consists of: 8 DRAM stacked memory

dies/layers + 1 logic-layer, 32 memory slices (called vaults in HMC terminology) and 32

memory controllers (or vault controllers) one for each memory slice, up to 4 interfaces

attached to external full-duplex short-range high-speed links, called SerDes

(Serializer/Deserializer) links, up to 8 GB memory capacity (256 MB for each vault),

maximum offered bandwidth of 320 GB/s (10 GB/s for each vault) and a crossbar logic-

layer internal network. Early results showed a reduced power, reduced footprint and an

increased 15x speed-up compared to traditional DDR3 DIMM technology [43].

Figure 2.3: An example of a HMC directly connected to a host processor (taken from [43]).

Apart from numbers, one of the most important peculiarity of the HMC is the chaining

one: in addition to the direct connection with a host processor, as shown in the figure

above, HMCs can be connected (or chained) one another with point-to-point links and, in

so doing, they realize a limited-degree interconnection network [1_Sec.18], where

switching units are represented by HMC interfaces. In other words, each HMC interface

unit in the logic-layer has switching capabilities for pass-through messages (i.e. directed to

another HMC) and, moreover, routing capabilities for incoming packets that have to be

directed to the correct internal vault. The chaining facility allow to realize network of 3D-

stacked memories, or memory networks [19], which could be exploited in single- or multi-

processor architectures. Different topologies can be defined, such as rings, 2D-meshes,

daisy-chains, etc. An example is shown in the figure below.

12

Figure 2.4: A multi-processor system with a 2D-mesh memory network (taken from [20]).

Another important and relevant characteristic of a HMC is its flexibility in customizing

logic-layer components. Different examples, both from the research and the commercial

world, exist; for instance authors in [50] propose a logic-layer network variant, called

Mesh-of-Trees, characterized by logarithmic latency but a more scalable solution respect to

the crossbar one. The above mentioned Xeon Phi Knigths Landing chip integrates 3D-

stacked memories, called MCDRAM (multi-channel DRAM), which are basically HMCs

with customized external interfaces.

Last but not least, the possibility of adding new components, by exploiting the available

rooms in the logic layer [27], is probably the most relevant HMC aspect from the point of

view of this work because it de-facto enables processing-in-memory opportunities. In this

way, the intra-stack bandwidth can actually be exploited by PIM processors, thus

increasing benefits already provided by high-bandwidth 3D memories. Therefore, as

confirmed by [5, 8, 11, 16, 18] and other PIM research works, it seems that HMC are the

best target for future and feasible processing-in-memory solutions.

2.3.3 Software model and software/hardware interface

According to the current research works, the software model of PIM architectures is still

unclear and should be deeper researched. Obviously, the software/hardware interface will

depend on the complexity of the operations intended to be performed in memory and the

kind of processing logic used to support them, e.g. energy-efficient general-purpose cores

[5, 11, 24, 29], GPU cores [6], programmable or fixed-functions logic units [34], etc.

An interesting PIM taxonomy is provided in [3], where logic in memory is categorized

according to the operation supported, the visibility to the software level and the

13

programming abstractions adopted. According to this taxonomy, PIM solutions can be

divided into three main classes: non-compute PIM, fixed-function PIM and programmable

PIM. The first class is related to PIM solutions that are fully transparent to the software

level, for example many of the primitive processing-in-memory functionalities already

provided by the HMC logic-layer, such as memory control or error detection, correction

and repair, fall into this class.

The second class consists of a fixed set of software-visible operations that could be

performed in memory; some potential examples include: data reductions, atomics, memory

layout transformations (e.g. matrix transpose, convolutions, etc.), fixed-width vector

operations, etc. These operations could be potentially exploited by program using

abstractions like assembler intrinsics or library calls.

The third class consists of fully-programmable logic in memory solutions providing

expressiveness and flexibility along with a series of associated overheads, in terms of

energy, area and complexity, that derive from the integration of fully capable PIM

processors in memory.

The programming model can potentially resemble existing multi-core architectures

models, including standard threading and tasking models exposed via PIM-augmented

APIs or pragmas typical of OpenMP. Furthermore, standards for heterogeneous computing,

such as OpenCL, may be enhanced in order to provide task- and data-parallel programming

models targeting PIM architectures [4].

Other higher-level abstractions based on C++ template formalism have been proposed

in [9]; while in [27], the adoption of PGAS (Partitioned Global Address Space)

programming languages providing explicit formalisms that are able to enforce the concept

of data-locality are recommended.

Anyway, as said at the beginning of this section, these PIM related aspects are still an

open research problem and deserve a deeper investigation in the future.

2.3.4 PIM prototypes, applications and results

As previously anticipated, PIM solutions have been experimented, through simulations, in

both Exascale and Big Data domains with performance and energy improvements. As an

example, different research works, such as [11, 24], concentrate on simulations performed

14

over in-memory1 MapReduce workloads executed on a single cluster node which consists

of a host processor and multiple HMCs, each one enriched with a few number of general-

purpose, ARM-like and only L1 cache (Data+Instructions) PIM cores. Two architectures of

interest have been compared in [11]: the first one, let us call it the baseline architecture, in

which only the host cores have been used for the whole executions of MapReduce

applications, and the second one, let us call it the PIM architecture, in which PIM cores (of

the same number of the host ones) have been used for executing Map phases, that are often

memory bandwidth constrained, and local reductions only; the final centralized reduction

has been executed by the host. The obtained results show that the more memory-intensive

is the MapReduce workload the greater is the achieved speed-up (at most 15x). Moreover,

a 18x reduction in system energy consumption has been achieved as well thanks to the data

movement reduction typical of PIM architectures.

In the area of in-memory computing, PIM has been examined also in [34] where authors

focused on the Join database operation execution, which is time and power consuming due

to the high number of memory accesses. In fact, differently from the previous case, the

Join workload is characterized by irregular memory access patterns and, for large datasets,

it requires cross HMCs communications. By using a programmable logic unit (e.g. a

micro-controller) within each HMC vault, results obtained from the in-memory Join

execution showed a performance improvement of at most 5.6x, and energy reduction of at

most 14.9x, with respect to the execution over a traditional CPU processor.

Better results have been achieved by authors of [21] that experimented PIM in the area

of real-time analytics by performing in-memory bitcount operations over large bitmaps, in

the range of 8 KB - 4 MB, achieving about 100x speed-up.

An interesting Exascale workload characterization, together with PIM architecture

solution support, has been proposed in [31], where authors highlight how some scientific

applications are not memory-limited/bounded at small scale but they become memory-

limited at Exascale because of data-size increase (again the Big Data phenomenon comes

back). Results show that PIM solutions are able to speed-up examined Exascale workloads

of at most 4.2x and convert them to compute/CPU-limited.

1 The in-memory computing term is used to indicate current computing trends in data
analytics frameworks, such as Spark or Redis, or contemporary databases, such as Oracle
Database In-Memory, in which input datasets are pinned in memory before being
computed/queried. In this way the I/O performance bottleneck is substantially reduced but,
anyway, the cost of moving data from main memory into CPU caches remains [33].

15

In [22], the executions of Fast Fourier Transform (FFT) and matrix transposition

algorithms, recurring in scientific computing applications, have been off-loaded to a PIM

configurable accelerator layers stacked on-top of given 3D-stacked memories.

Experimental results show an energy reduction of 179x for the FFT and 96x for the matrix

transposition algorithm executions.

Finally, in the Exascale computing domain, the IBM Research's Active Memory Cube

(AMC) will be briefly described in the following sub-section as a promising and current

PIM architecture prototype example.

IBM Research's Active Memory Cube (AMC)

The Active Memory Cube (AMC), proposed in [16] by IBM Research, is a PIM

architecture prototype that leverages Micron's HMCs by integrating in the logic-layer 32

energy-efficient processing elements, called processing lanes, in order to speed-up

Exascale applications and, at the same time, lowering power consumption.

An AMC processing lane has been designed with characteristics of a general-purpose

core but tuned to be area- and power-efficient in order to meet Exascale requirements. As

an example, the absence of caches and the virtual address space shared with the host

processor, commonly indicated as Unified Memory View (UMV) [5], are evidences of this

trade-off.

The computation part of each processing lane in the AMC is composed of four

computation slices. Each slice includes a memory-access pipeline (also called the

load/store pipeline) and an arithmetic pipeline.

The instruction set architecture (ISA) includes vector instructions; an instruction in the

ISA specifies all the operations that must be executed simultaneously in all the lane's

pipelines. In this way parallelism can be exploited at different levels such that AMC

enabled nodes are comparable to GPU-accelerated architectures [46].

The AMC software model consists of classical C/C++ or FORTRAN programs

annotated with AMC-enhanced OpenMP 4.0 directives. These directives allow the

compiler to identify code sections that should be executed by AMC lanes and data regions

accessed during the execution on an AMC lane.

Experiments conducted via simulations demonstrated benefits mainly in terms of energy

efficiency, which is comparable to, or better than, the one achieved with notable Nvidia's

GPUs [46].

16

2.4 Final considerations
In this chapter a limited review of the supporting literature related to PIM subjects has

been presented, by highlighting how this promising architectural solution is involved in

current computing contexts, trends, goals and requirements.

Many open research problems remain in this field, such as the one related to PIM

programming model and abstractions, the complexity of PIM logic units and how they

should be exploited (e.g. acceleration of parts of a sequential application vs execution of a

real parallel application), Operating System related aspects (e.g. memory management),

cache coherence, and others. Moreover, the role of the host processor has still to be well

understood since, till now, it has been intended (or proposed) to be used to: control PIM

core executions [5], accommodate OS services to manage system resources [25], allow to

restart the computation of a PIM core if some problem arises (i.e. enact fault-tolerance)

[11], execute CPU-intensive code or, more in general, code that benefits from multi-level

cache hierarchies of host cores [6].

Actually, this last point deserves an important reasoning in that the given architecture

(host processor and HMCs with PIM cores) can be exploited in the most flexible way

according to the characteristics of the application that has to be executed; if compute-

intensive and/or cache friendly then the host can actually be exploited, with PIM cores

switched-off for energy efficiency reasons [29]. Conversely, if it is memory-intensive, then

PIM cores are the best candidates to execute it.

In conclusion, it is important to stress the fact that PIM solutions are good candidates to

reduce energy and increase performance of (Exascale and/or Big Data) applications with

the following characteristics: little or no locality [18], short data tenancy in the processor

[16], irregular or fine-grained streaming access patterns with no prefetching exploitation

[17]. In few words, PIM solutions are appealing in contexts in which caches are poorly or

not exploited at all.

17

Chapter 3

Abstract Machine Models for Processing-in-Memory

In this chapter, all the concepts, notions and issues about Processing-in-Memory, learnt

previously and referring to the supporting literature, will be exploited in order to derive

abstract models for PIM architectures.

More specifically, in order to take into account all the main fundamental aspects that

characterize a target PIM system and neglect/abstract the minor or the useless ones, we will

exploit a well-known formalism in Computer Science: the Abstract Machine Model or

abstract architecture.

A brief reminder to structured parallel computation concepts and performance cost

models, in relation to the abstract architecture, will be reported as well in order to illustrate

and elucidate the methodology of study pursued in this Thesis that, in turn, has been

inherited and it is widely detailed in [1].

3.1 Background: reminder on structured parallel programs,
abstract machine and cost models

Let us briefly remind preliminary yet important concepts that characterize our structured

approach of study in order to provide a background for a not expert reader.

An important peculiarity of our methodology is to conceive a computational system as

organized/structured by vertical independent levels. Thus, a key concept is the following

one:

• parallel applications are developed through high-level and architecture independent

programming paradigms;

• the impact of the underlying architecture is captured by some parameters, in

relationship to the process execution and cooperation mechanisms, used to express

the performance cost model associated to the parallel application. Notable

examples of architecture dependent parameters are the interprocess communication

latency, indicated as Lcom, and the process mean calculation time, indicated as Tcalc.

18

A performance cost model is a simple yet significant analytical formulation that allows to

estimate and predict typical performance parameters, like parallelism degree, processing

bandwidth, completion time, etc., that characterize the performance evaluation of a given

parallel program.

In order to take into account all the relevant issues and the cost model definition, we

exploit an Abstract Machine Model (AMM) or abstract architecture. An AMM is a

simplified view of several and different physical architectures which is able to describe the

essential performance properties and to abstract all the useless ones. Moreover, these

models are typically intended as a useful “communication bridge” between application

developers and hardware architects during a co-design process [25].

A key concept of the AMM exploitation, in relationship to the cost models, is the

following one:

• The specificity of individual concrete architectures is expressed by the value of

some key parameters of the cost model, e.g. communication latency and process

calculation time.

In this way, not only the application developers are able to focus on the aspects of the

target architecture that are relevant to structure their algorithms, in order to maximize

performance and energy efficiency [25], but the parallel compiler is also able to “see” the

AMM and optimize parallel applications by applying the associated cost models.

Structured Parallel Computations

Another important aspect of our methodology of study is related to the parallel program we

will deal with; as a matter of fact, we will exploit structured parallel program examples,

i.e. programs made up of a limited set of parallel paradigms, in order to reduce the

parallelization complexity, enhance cost models effectiveness and the performance

predictability.

As detailed in [1, 47] and here reported, the parallel paradigms, or parallelism forms, are

schemes of parallel computations with the following important features:

1. they restrict the parallel computation structure to a limited set of predefined

19

patterns;

2. they have a precise semantics;

3. they are characterized by a specific cost model;

4. they can be composed each other to form different and more complex parallel

computations.

Exploiting this approach, the parallel programmer is free from low-level details and can

reason only on computational aspects having an abstract high-level view of the parallel

application and, furthermore, the availability of a set of parallel paradigms as useful

building-blocks for develop it.

A notable and widely recurrent parallel pattern is the so-called farm paradigm which

consists of the functional replication of a sequential stateless computation, such that

distinct input stream items can be processed, in parallel, by different, independent and

identical functional modules, called workers. The following figure illustrates a graphical

representation of the farm paradigm logical organization: an input data scheduling module

called emitter, n workers and a data collecting module called collector.

Figure 3.1. The farm parallel paradigm.

As it can be observed in the figure, every parallel paradigm is characterized by a well-

defined logical structure; in particular, in the farm case, the data distribution, the parallel

functional computation and the data collection stages are clearly distinguished.

20

3.2 General Abstract Machine Models for PIM architectures
Let us now consider Abstract Machine Models for PIM architecture by explicitly

distinguishing the two possible architectural organization variants: the single-host and the

multi-host PIM architecture.

3.2.1 Single-host PIM architecture

The following figure represents the abstract model of a PIM architecture, e.g. it could be

part of a single cluster node in a cluster of workstations, which contains a single

many/multi-core processor, called host, different high-bandwidth 3D-stacked memories,

indicated as 3D Memory Units (3DMUs), and the interconnection networks.

Figure 3.2. The general Abstract Machine Model for a single-host PIM architecture.

Let us study every system component singularly by considering only the details that are

relevant at this level of abstraction:

• Host Processor

A multi or many-core processor, according to the computational context in which it

is exploited, each one characterized by a cache hierarchy of at least two levels and

by a certain clock-cycle latency τ (which is the inverse of the clock frequency f).

We will indicate with Phost-PE the number of cores, or simply Processing Elements

(PEs). Moreover, we will assume that each host PE has some local I/O units and/or

co-processors, dedicated to interprocessor communications (i.e. they are not

21

peripheral devices controllers) and/or to the execution of specific run-time support

functionalities, and an interface unit W, which stands for “Wrapping” unit, that

plays several important architectural roles, such as interfacing the host core with

the external interconnection network (i.e. the host processor's on-chip network).

A graphical representation of a host core is shown in the following picture:

Figure 3.3. The internal structure of a host core (taken from [1]).

• Interconnection Networks

In figure 3.2 we can distinguish two kind of interconnection networks: the Host-to-

3DMUs one, simply indicated as interconnection network, that, as the name

suggests, connects the host processor to the 3DMUs with average distance dnet.

Instead, the 3DMU-to-3DMU network, also referred as memory network, is used to

interconnect all the 3D memories within the system and it is characterized by an

average distance indicated as dmem-net. It is interesting to note that different variants

are admissible; as an example, the two networks can actually coincide if we use

HMC-like 3D memories, as we will assume in the following, and the chaining

facility is exploited realizing, for instance, a daisy-chain topology. If this is the

case, then we have: dnet ~ dmem-net .

• 3D Memory Units

Each 3DMU is an high-bandwidth 3D-stacked memory that consists of a logic layer

at the bottom side of the stack, containing, among the other logic, a PIM processor,

and different memory layers. The total number of 3DMU in a given system is

indicated with N3DMU. The description of a 3DMU with an underlying PIM

processor, i.e. a PIM-enabled 3DMU, deserves a wider and more accurate detailing

and, therefore, is postponed to the following sub-section.

22

In figure 3.2, some components are missing but they are anyway present in every system

that, for instance, constitutes a single node of a cluster of workstations. As an example, in

addition to the high-bandwidth 3D memories, that constitute the primary level of a main

memory hierarchy, larger capacity and lower bandwidth secondary-level memory

technology, e.g. standard DRAM or the new NVRAM (Non-Volatile RAM), could be

present as well. Thus, 3D memories behave as large caches for slower levels of the

memory hierarchy. This would require proper low-level mechanisms that manage this

“multi-level cached” memory system [25].

Furthermore, a Network Interface Card (NIC) is obviously present and it could be

directly integrated in the host processor chip package, as for the new Xeon Phi Knigths

Landing processor, or it could be a discrete system component. In this last case, it can be

reached through a typical PCI-express bus or by more efficient interconnection (as in the

case of Infiniband technologies).

PIM-enabled 3D Memory Unit

The abstract model for a PIM-enabled 3DMU is shown in the following figure:

Figure 3.4. Abstract modelling of a PIM-enabled 3DMU.

23

As it can be observed, each 3DMU consists of a set of vertical memory slices, each one

modelled as a memory macro-module, with m interleaved memory modules, and the

accesses to it are managed by an underlying memory interface/controller unit IM. Each

memory module, within a given memory slice, is located in a different memory layer of the

stack and, through the TSV (Through-Silicon Via) vertical connection, it is directly

connected to the relative IM in the logic layer. Thus, the maximum interleaved memory

bandwidth for every memory slice is m/τM, where τM is the memory access time.

The unit IM is internally characterized by an associative cache component used to buffer

the most recently accessed information, thus realizing a caching in memory, and by a

Memory Request Queue (MRQ), containing outstanding memory access requests that can

be served according to a non-FIFO strategy in order to exploit caching in memory of

previously referred blocks.

Each unit IM is then connected to an internal logic-layer network that could be a

crossbar, as in the case of HMC memories, or a limited-degree interconnection such as a

generalized fat tree (similar to the logarithmic Mesh-Of-Trees network proposed in [50]).

In particular, with these specific solutions, possible contentions in the on-chip logic-layer

network are minimized [1].

In addition to the memory interfaces and to the PIM processor (if, as in our case, a PIM-

enabled 3DMU is exploited) the logic-layer internal network is also connected to a set of

units I3DMU that interface the 3DMU to the external system components. As an example, if

the 3DMU is an HMC-like memory, as we will assume in the next chapter, then each I3DMU

is a SerDes (Serializer/Deserializer) interface that allows to connect the 3DMU to a host

processor, or to another 3DMU, through a SerDes link. Therefore, each I3DMU has routing

capabilities for incoming messages, directed to a certain memory slice, and switching

capabilities for pass-through messages, that have to be forwarded to a directly connected

3DMU.

Let us now study the PIM logic embedded in the logic layer of a 3D memory unit. As a

matter of fact, we will assume that the PIM processing logic is a PIM processor with Ppim-PE

energy-efficient, e.g. ARM-like, cores/PEs. According to the information provided by the

literature, Ppim-PE is at most 16 with current semiconductor chip fabrication widths and

thermal constraints (although, according to [23], they are not so stringent).

As for other research works, each PIM core is characterized by a one-level cache

24

hierarchy and by the same ISA (Instruction Set Architecture) of the host processor.

Moreover, we will assume that the internal PIM core structure, apart from the secondary-

level cache C2, is the same of the host PE (shown in figure 3.3), and that the clock latency

is τ as for the host cores (anyway, we could have cases for which τhost ≠ τpim and, more

realistically, τhost < τpim).

Finally, in the following, we will indicate the total number of PIM cores in the whole

system with Npim; the same definition applies for Nhost that, in the single-host architecture

case, coincides with Phost-PE. Furthermore, we will use Ppim to indicate the total number of

PIM processors in the system; it goes without saying that Ppim = N3DMU if all the 3DMUs are

PIM-enabled, otherwise Ppim < N3DMU.

3.2.2 Multi-host PIM architecture

The following picture represents the abstract architecture of a PIM system that contains

different host processors.

Figure 3.5. The general Abstract Machine Model for a multi-host PIM architecture.

The definition of previously presented key parameters, such as Npim, Nhost, Ppim-PE. Phost-PE,

Nhost, etc., applies also to this case. Furthermore, we will use Phost to indicate the total

number of host processors in the system (obviously, in the single-host case Phost = 1).

Anyway, in this PIM architectural variant, we should distinguish different single-host

logical sub-systems, each one with its own dnet, i.e. average distance host-to-3DMUs

network, and dmem-net-local, i.e. average distance 3DMU-to-3DMU local network (it is not

shown in the picture above but it can be logically thought as a sub-network of the 3DMU-

to-3DMU global network; obviously, in a concrete implementation they are distinct, as we

25

will see in Chapter 4).

Finally, we can define dmem-net-global as the average distance of 3DMU-to-3DMU global

network (i.e. the one shown in the picture above).

In the following chapter, all the parameters defined in this section will be exploited, and

their values fixed, in the presentation of parametrized abstract architecture models closer

to concrete PIM systems.

26

Chapter 4

PIM Architectures and Low-Level Communication
Latencies Cost Models

In this section, parametrized versions of the abstract machine models for PIM architectures

presented in the previous chapter will be described. Therefore, we will fix some

architectural parameter values, with the ones provided by the literature, e.g. memory access

time, memory capacity, interconnection network links bandwidth, number of PIM cores per

PIM processor, etc., and we will derive important architecture-dependent parameters, such

as communication latencies for cache-to-cache and memory blocks transfers, that we will

use for expressing cost models of parallel program examples reported in Chapter 6.

A brief reminder of interprocess cooperation, low-level pipelined communications and

cache coherence mechanisms will be reported as well.

4.1 Background: reminder on interprocess, inter-unit
communications and cache coherence mechanisms

In this section we will briefly remind, always referring to [1], some important aspects

related to interprocess communications, pipelined communications among system

units/components, whose latencies are relevant to express key parameters for the

interprocess cooperation cost models, and cache-coherence mechanisms, tied to the parallel

program communications run-time support.

Base latency of inter-unit pipelined communications

As detailed in [1], parallel architectures frequently exploit forms of system-wide pipelined

communication. Notable examples are the high-performance interconnection networks, e.g.

Infiniband, exploiting the wormhole flow-control strategy, where data packets are

decomposed into smaller units of few bytes, called flits, that, in turn, are transmitted

following the same path in a streaming pipelined fashion.

Thus, let us consider the whole PIM system at hand as a network of processing units,

such as host/PIM cores, interface and switching units, memory modules, caches, etc., and

links, and let us assume we want to compute the latency of a communication among two

27

units in the system, e.g. a Last-Level cache (LLC) unit of a given host core requesting a

cache block to a 3D Memory Unit (which is a sub-system of units) after a LLC fault, then

we should first of all recognize the communication path among the two cooperating units.

The path is characterized by its distance d, which in general is an average measure, defined

as the (average) number of processing units, or, equivalently, the number of links,

belonging to the path. Let us indicate with s the length of the data stream that has to be

transmitted, consisting of the number of sub-stream elements following the same path, e.g.

it could be the number of flits of a data stream packet. Moreover, with Thop = τ + Ttr we

indicate the hop latency, i.e. the latency of a “hop” in the path consisting of a pair (unit,

output link), where τ is the single unit processing latency and Ttr is the output-link

transmission latency (as a matter of fact, we will use the clock latency τ as the reference

time unit for measuring all the latencies and service times that follow in this and in the next

chapters).

The latency L(s) spent for transmitting a stream of length s over a path of distance d,

exploiting a pipelined (i.e. inter-unit pipeline-effect) communication, is equal to:

 L(s) = (2s + d – 3) Thop

The correctness of the above formula is graphically proved by the following picture, where

it has been assumed s = 5 and d = 4:

Figure 4.1: A pipelined communication scheme for transmitting a data stream of length s = 5 over a path of

distance d = 4 (taken from [1]).

The above formula refers to the single-buffering communication protocol, as named in [1].

Actually, it can be substantially improved, as stated again in [1], by using a double-

28

buffering inter-unit cooperation scheme with a resulting communication latency equal to:

L(s) = (s + d – 2) Thop

It should be noted that, in general, Thop can vary. More specifically, for an inter-unit on-chip

communication Ttr ~ 0 and Thop = τ; instead, when two units in different chips are involved,

then Ttr > 0 and Thop > τ. If this is the case then, according to the pipeline scheme properties,

the maximum Thop has to be used in the above latency formula, in that Thop represents the

“hop” service time.

In the following sections, the presented latency formula will be extensively used to

calculate all the communication latencies among PIM system components of interest.

Interprocess communications

In the examples of Chapter 6 we will consider structured parallel programs that consist of a

collection of communicating processes exploiting a message-passing, or local

environment, cooperation model. This kind of communication mechanism is characterized

by an explicit exchange of values, among the involved processes, that do not share any

variable, at least at the process level. Anyway, if the target architecture is a shared-memory

one, as in the case of PIM, then the run-time support, i.e. the implementation, of the

message-passing communication mechanisms can imply variable and/or data structure

sharing according to the implementation adopted.

The following figure shows an example of two cooperating processes, e.g. according a

producer-consumer communication pattern:

Figure 4.2: A point-to-point communication scheme between two processes that cooperate according to the

message-passing model (taken from [1]).

29

As can be observed, every process works with its local variable (represented in the figure

as squares of different colours). When a communication takes place, each process has its

own primitive to communicate over a given logical channel with asynchrony degree k, i.e.

send and receive procedures for sender and receiver processes respectively. The

asynchrony degree of a channel establishes the number k ≥ 0 of send primitives that can be

executed by the sender process without being blocked due to the missing receive primitives

executions by the receiver process; thus, the case k = 0 corresponds to the synchronous

communication.

The semantic of an interprocess cooperation that exploits a local-environment is such

that, when the communication terminates, the target variable of the receiver process

contains the message value sent by the sender process (in other words the message value is

copied into the target variable).

Different implementations exist, more or less optimized according to the number of

message copies required; in our case, we will assume a zero-copy communication, meaning

that the number of message copies is reduced to the minimum, i.e. one. This solution is

implemented in the most advanced message-passing libraries for which the send-receive

primitives are executed in user space; thus, no degrading kernel space is involved.

The communication latency cost Lcom of a zero-copy interprocess communication can be

expressed as:

Lcom (L) = Tsend (L) + Treceive = 2Tsetup + L Ttransm

with:

• Tsend (L) = Tsetup + L Ttransm

• Treceive = Tsetup

where L is the message length (in general measured in words), Tsetup is the latency of all

run-time support actions except the message copy (i.e. sender-receiver synchronization,

low-level scheduling, etc.), and Ttransm is the latency for copying one word of the message.

As a matter of fact, it can be noted that Ttransm impacts only on the send latency in that,

according to the zero-copy implementation semantic, the send primitive run-time support is

responsible of copying the message value into the target variable.

30

It is interesting to note that the PIM models presented in Chapter 3 are all-cache

architectures, meaning that each information is transferred into the primary cache before

being used and, in general, the data transfer units are actually cache blocks. Moreover, we

will assume that, for the host PEs, characterized by a cache hierarchy of at least two levels,

every C1-block fault that is also a C2-block fault (and a C3-block fault if C3 is present)

will be handled on a C1-block basis. In other words, in order to minimize memory and

network congestion, C2 (or C3 if any) requests only one C1-block at a time to the memory.

Thus, it could be convenient to rewrite the above Lcom formula in function of the primary

cache block of size σ1, i.e. :

Lcom(L/σ1) = Tsend (L/σ1) + Treceive = 2Tsetup + L/σ1 Ttransm(σ1)

where Ttransm(σ1) is the latency needed for transmitting a primary cache block of size σ1, e.g.

in a cache-to-cache communication or memory block transfer, and L/σ1 is the message

length measured in terms of C1-block units.

Last but not least, we will adopt the I/O-based RDY/ACK communication model

proposed in [1]. Theoretically, the send-receive RDY/ACK implementation for an

asynchronous channel with k = 1 is of the kind:

send(msg):: receive(vtg)::

wait_until(ACK); wait_until(RDY);

copy msg into vtg; use vtg;

notify(RDY); // set RDY = 1 notify(ACK); // set ACK = 1

where wait_until and notify are sender-receiver low-level synchronization primitives, msg

and vtg are symbols referring to the message value and to the target variable respectively,

ACK (standing for acknowledge) and RDY (standing for ready) are binary boolean

variables with the following meaning:

• RDY = = 1 → new message value present (at the beginning RDY is initialized to 0,

is set to 1 by the send implementation, with the notify primitive, and it is set again

to 0 at the end of the receive execution);

• ACK = = 0 → previous message received (at the beginning ACK is initialized to 1,

31

is set to 0 by the send implementation, after msg has been copied into vtg, and it is

set again to 1 by the receive execution with the notify primitive).

Moreover, as said before, we will adopt the I/O-based RDY/ACK communication model,

meaning that synchronizations, i.e. RDY and ACK notifications, are performed by means

of asynchronous interprocessor communications, involving I/O mechanisms and interrupt

management. In this way, sender-receiver synchronization is greatly simplified and it is

more efficient with respect to the one that exploits a retry-based solution over shared

synchronization variables (for an extensive explanation of the RDY/ACK solutions we

refer to [1_Sec.23]).

Cache coherence mechanisms

Cache coherence (CC) mechanisms in PIM architectures are still an open research

problem, as confirmed by [3]. For this reason, among all the coherence

approaches/solutions detailed in [1], we will choose, for our PIM system models, the one

that minimizes data movement, coherence traffic and contentions, i.e. the automatic

directory-based CC protocol with the home-flush and local/self-invalidation optimizations.

According to the chosen solution, the directory partition is maintained in primary cache

for PIM cores and in secondary cache for host cores. Therefore, cache controllers of C1

and C2, for PIM and host PEs respectively, will be used to implement the CC protocol.

Moreover, the home-flush and local/self-invalidation optimizations can be exemplified

by a simple yet significant example: a producer process P sends a message value msg, of

size σ1, to a consumer process C. According to what said before, if a RDY/ACK

communication model is exploited, then P and C behave as follows:

P:: …; copy msg into vtg; notify(RDY); …

C:: …; …; wait_until(ACK); use vtg; …

where “copy msg into vtg” implies one or more STORE assembler instructions, performed

by P, over a shared primary cache block b (i.e. the one that will contain msg and, therefore,

the same that will be read as vtg). Let us indicate the last one of them as STOREP b.

Moreover, the “use vtg” action implies one or more LOAD assembler instructions,

performed by C, over the same shared block b. Let us indicate with LOADC b the first one

32

of them. Assuming that b is used no more by P after STOREP b and that b is shared by P

and C only, then, in a basic-invalidation solution, LOADC b would generate a fault with a

cache-to-cache block transfer between the nodes used to allocate P and C, i.e. PEP and PEC

respectively (more precisely, by their cache controllers in charge of implementing the CC

protocol). Moreover, if there was a STOREC b by the C process, then this would result in

an invalidation request, i.e. explicit communication, from PEC to PEP and, on the reverse

side, an invalidation reply/acknowledge from PEP to PEC. This fact is a source of possible

contentions over cache controllers of processing modules with more than one symmetric,

i.e. point-to-point, communication channel, e.g. the emitter of a farm parallel pattern,

presented in Chapter 3, with every workeri that is home-node of the respective vtgi blocks.

Conversely, if the home-flush and local/self-invalidation optimizations are exploited,

and PEC is the home-node of b (i.e. the cache controller of the PEC cache is in charge of

maintaining the directory partition for b and other blocks), then STOREP b causes a C2C

transfer between PEP and PEC caches (home-flush) and the local invalidation, i.e.

deallocation, of b in PEP cache. In this way, no fault is generated by LOADC b and no

invalidation is needed in case of a STOREC b execution by C.

In conclusion, the home-flush and local/self-invalidation optimizations minimize

possible contentions, and, if the data are useful for the home node computation, then they

also minimizes the block reading latency (for an extensive explanation of the home-flush

solution and other cache coherence solutions we refer to [1_Sec.20]).

4.2 PIM architectures specifications
Let us now consider parametrized versions of the abstract PIM architectures presented in

previous chapter by explicitly distinguishing, again, the two possible variants: the single-

host and the multi-host PIM architectures.

The two models detailed in the following sub-sections, with their respective parameters,

will be then reused for successive base communication latencies cost models and, in

Chapter 6, for the conclusive analysis of parallel program examples targeting PIM systems.

4.2.1 Single-host PIM architecture

The following figure represents a PIM architecture with a typical “halo”- like organization,

consisting of a host processor, four PIM-enabled 3DMUs and two interconnections: a

Host-to-3DMUs direct connection and a 3DMU-to-3DMU ring memory network.

33

Figure 4.3: A single-host PIM architecture with a “halo”- like organization.

Let us study every system component in detail in order to provide precise architectural

specifications:

• Host Processor

A many-core processor with: Phost-PE = 64 cores, each one with private, inclusive,

on-demand two-level caching, where C1 has a capacity of 32 KB with primary

cache block size σ1 = 32 Bytes and C2 is large 512 KB with σ2 = 64 Bytes, a two-

dimensional mesh interconnect, with ten switch nodes for every dimension (10-ary

2-cube), four MINF (Memory Interface) units, directly attached to the four 3DMUs

by dedicated bidirectional links, and two I/O-INF (I/O-interface) units.

Figure 4.4: The host processor's internal structure.

34

The general organization of the host processor is graphically shown in the picture

above; as it can be noted, the switch units at the extreme sides, coloured in black,

are used only for MINF and I/O-INF connections. Therefore, the 64 host PEs, not

shown in the figure, are attached to the internal switch units (the one left in white).

Last but not least, the clock frequency f of every core is equal to 1 GHz (therefore,

the clock latency τ = 1 nsec) and, furthermore, every PE/core is characterized by an

internal communication co-processor KP, in addition to the main processor IP,

dedicated/specialized to the execution of run-time support functionalities, in

particular the send primitive. In this way, in a stream-based application, if the time

spent to send a stream element is comparable to the time needed to compute the

successive item, then it can be overlapped. To do this, when IP has to execute the

send primitive over an asynchronous channel, it delegates this task to KP and

continues its execution by computing the successive stream element.

Equivalently, if KP is not present, we can exploit a solution, detailed in [48], with a

communication thread acting as KP, provided that the architecture of every PE/core

is multithreaded.

• PIM processor

A multi-core processor with Ppim-PE = 16 cores, each one with private, on-demand

primary cache C1 with capacity 32 KB, a bidirectional crossbar interconnect, a

single MINF unit that is directly connected to the logic-layer network of the PIM-

enabled 3DMU in which the PIM processor resides. As for the host PEs, each PIM

core has a clock frequency f = 1 GHz and a local communication co-processor KP

(if feasible, otherwise, as said before, a communication thread).

• Interconnection Networks

The data exchange over the interconnection networks exploit a wormhole flow-

control strategy, with a size per flit of 4 Byte, and a packet switching minimal

(deterministic or adaptive) routing. All the inter-chip links have a transmission

latency of Ttr = τ, thus Thop = 2τ, instead, intra-chip links have Ttr ~ 0 and, therefore,

Thop = τ. Moreover, the inter-unit cooperation scheme is the double-buffering one.

The external interconnection networks, i.e. the ones shown in figure 4.3, are made

35

up of Ser/Des-like links, with 80 GB/sec sustainable bandwidth (i.e. for Ttr = τ, as

previously listed, then 20 flits at a time can be transmitted).

• 3D Memory Units

Without loss of generality, we will assume HMC-like 3DMUs; thus, the maximum

offered bandwidth, the memory capacity, the links adopted (i.e. Ser/Des links) and

other related aspects refer to what reported in the last HMC specification [42].

Therefore, each 3DMU has a capacity of 8 GB, 8 memory layers, one logic-layer

and 32 memory-slices, each one with a capacity of 256 MB.

Every memory slice has m = 8 interleaved memory modules, each one located in a

different memory layer of the stack. Every memory module provides a bandwidth

of one flit per access time τM; thus, considering all the m modules, the maximum

offered bandwidth is σ1/τM. Taking τM ~ 3τ and, as previously listed, for σ1 equal to

32 Bytes, the maximum offered bandwidth per memory slice is about 10 GB/sec;

instead, if we consider the whole 3DMU (32 memory slices), then it is 320 GB/sec.

These performance values are compliant to what reported in the last HMC

specifications [42].

Finally, the logic-layer of each 3DMU is characterized by four interfaces I3DMU, that

allow to interconnect the 3DMU with external devices, e.g. host processor and/or

other 3DMUs, etc. The logic-layer internal interconnect is a bidirectional crossbar.

Summarizing, we have: Phost-PE = Nhost = 64, Ppim-PE = 16, N3DMU = Ppim = 4, Npim = 64 and,

obviously, Phost = 1 (where, from Chapter 3, Nhost and Npim are, respectively, the total number

of host cores and PIM cores in the system, Ppim is the total number of PIM processors,

coinciding with the total number of 3DMUs, i.e. N3DMU, in that they are all PIM-enabled,

and Phost is the total number of host processors, here merely one).

4.2.2 Multi-host PIM architecture

The following figure represents a multi-host PIM architecture with four single-host logical

sub-systems, each one with the same organization of the previous single-host PIM model.

Anyway, it should be noted that, in this case, we can distinguish three interconnections;

in addition to the direct connection Host-to-3DMUs and the ring local memory network of

36

each single-host sub-system, a global ring memory network of 16 3DMUs is also present.

Figure 4.5: A multi-host PIM architecture.

Every system component has the same characteristics of the single-host PIM architecture;

thus, we refer to the previous section for the specific description.

The only difference, in addition to the quadrupled number of 3DMUs, host and PIM

processors, is that every host is a multi-core processor with Phost-PE = 16 PEs and it is

characterized by an internal two-dimensional mesh of six nodes per dimension (i.e. 6-ary

2-cube).

Summarizing, we have: Phost-PE = 16, Ppim-PE = 16, N3DMU = Ppim = 16, Nhost = 64, Npim = 256

and Phost = 4.

4.3 Inter-unit communication latencies cost models
In the following sections, cost models associated to the inter-unit base communication

latencies will be evaluated. In so doing, we will take into account only the cooperation that

takes place between units of interest, i.e. cache-to-cache communications and memory

blocks transfers, and we will exploit the architecture specification listed in previous

sections (i.e. section 4.2.1 for the single-host PIM architecture, and section 4.2.2 for the

multi-host one).

Notice that, the following numerical results have to be intended in no way as precise

reference values; they are just used for acquiring a general knowledge of order of

magnitudes, for comparing alternative solutions and for exemplifying the concrete

application of low-level communication latencies cost models.

4.3.1 Single-host PIM architecture

As said before, data exchange over interconnection networks exploit a low-level/firmware

packet switching protocol. Every packet is transmitted as a stream of flits, of which the first

37

is the packet header, and the remaining are value flits. The header flit contains all the

useful routing information, notably: source unit id, destination unit id, packet length,

message type (e.g. read request, read reply, write request, etc.); instead, the value flits

contain data that have to be exchanged, e.g. a primary cache block of size σ1, and, in case

of a read or a write request message, the physical address of the referenced information.

Assuming that a physical address is represented by 8 Bytes, i.e. it fits into 2 value flits,

and, as listed before, knowing that a primary cache block is of size σ1 = 32 Byte, i.e. 8 flits,

then we are interested in evaluating the following base inter-unit communication latencies

(notice that in the following sub-sections we will use σ1 = 8 for computing base

communication latencies).

Memory block reading base latency

Exploiting the pipelined communication latency formula of section 4.1, the latency for a

C1-block transfer from memory is given by:

 Lread-C1(σ1) = Lread-C1-req + Lread-C1-reply(σ1)

with:

• Lread-C1-req = (sreq + d – 2) Thop

• Lread-C1-reply(σ1) = (sreply + d – 2) Thop + τM = (σ1 + d – 1) Thop + τM

where τM is the memory access time, sreq = 3 (header + physical block address), d is the

distance of the traversed path and sreply is the response message length, i.e. sreply = 1 + σ1

(header + C1 requested block).

Distinguishing according to the kind of PE that performs the read request, i.e. PIM or

host PE, we have the following base latency costs:

• PIM core - memory block reading (within the same 3DMU in which it resides)

In this case, a PIM core performs a read request of a C1-block to a memory slice of

the PIM-enabled 3DMU in which it is located. Thus, the following path of system

units is traversed by the request and reply messages: C1, W, PIM-net-int (PIM

processor internal network), MINF, ll-net-int (logic-layer internal network), IM, M

38

(i.e. destination memory slice).

Therefore, d = 5 + dPIM-net-int + dll-net-int = 7, with dPIM-net-int = dll-net-int = 1 since the related

networks are crossbars, and Thop = τ wit Ttr ~ 0 always (i.e. all intra-chip

communications). Finally, we have:

Lread-C1-PIM (σ1) = Lread-C1-req + Lread-C1-reply(σ1) = 25τ

• Host core - memory block reading

The internal organization of the host processor, described and represented in section

4.2, can be logically thought as a NUMA one, in which each MINF is logically

associated to a subset of host cores. Therefore, the whole 2D-mesh network (i.e. a

10-ary 2-cube network) can be logically split into four sub-meshes (5-ary 2-cube)

such that, with good approximation, the large majority of accesses by a PE, located

in a certain sub-network j, will be directed to MINFj, with j = 1…4, without

crossing other sub-meshes.

The average sub-mesh distance traversed is dhost-net-int = 5 since, for a k-ary n-cube

network, with k > n, the average distance is about: n/2 n√N (in our case N = 25

and n = 2).

The traversed path by request and reply messages will be: C1, C2, W, host-net-int,

MINF, I3DMU, ll-net-int, IM, M.

Thus, d = 7 + dhost-net-int + dll-net-int = 13, with dll-net-int = 1 since the logic-layer network

is a crossbar, and Thop = 2τ in that Ttr = τ (intra-chip communications are involved

and, therefore, we must take the maximum Thop).

Finally, we have:

Lread-C1-host (σ1) = Lread-C1-req + Lread-C1-reply(σ1) = 71τ

As it can be observed, the base latency for a memory block reading performed by a host

core within the given single-host PIM architecture, whose specifications are reported in

section 4.2.1, is about three-fold (3x) the one needed by a PIM core.

Obviously, the same obtained base latency values are valid for synchronous memory

block writing operations. Conversely, in the case of an asynchronous memory write, only

the write request latency must be considered (i.e. Lwrite-C1-req(σ1) = (sreq + d – 2) Thop + τM with

sreq = 3 + σ1, i.e. header + physical address + primary cache block).

39

Cache-to-Cache (C2C) block transfer base latency

In automatic cache-coherence architectures, proper low-level/firmware mechanisms should

be provided for cache block transfers between the involved nodes (i.e. the ones for which

caches must be coherent). Such mechanisms are also indicated as cache-to-cache (C2C)

communications.

As we have seen in section 4.1, a C2C block transfer can occur after a LOAD with fault

or after a STORE in the home-flush optimization (a proper assembler annotation is inserted

by the compiler if the STORE implies a flush of the referred block).

Therefore, let us evaluate the C2C communication latency that take place between two

nodes, the home and the requestor ones (assuming that they are distinct), after a LOAD

with fault; obviously, the same result value is valid for a synchronous block flush operation

(otherwise, if the flush is asynchronous, we consider only the latency for a cache block

transfer request, with sreq = 3 + σ1). Two main situations can be distinguished in the

execution of a LOAD with fault of the referred block b:

1) the block b is in the home node cache → b is transferred from the home node to the

requestor via C2C;

2) the block b is not allocated in the home node cache → the home node reads b from

the main memory, with a base latency equal to Lread-C1(σ1), and sends it to the

requestor node.

It goes without saying that the base latency associated to case 2) is the same of 1) with the

addition of Lread-C1(σ1).

The general latency formula for a C2C block transfer is very similar to the one used for

memory block transfer, except the fact that, in the first case, we do not consider any

memory access time τM. Thus:

 LC2C (σ1) = LC2C-req + LC2C-reply(σ1)

with:

• LC2C-req = (sreq + d – 2) Thop

• LC2C-reply(σ1) = (sreply + d – 2) Thop = (σ1 + d – 1) Thop

40

Therefore, let us evaluate the C1-block transfer base latency of a C2C communication

between two distinct PEs by distinguishing the following cases:

1) PIM-to-PIM cores local C2C block transfer (i.e. within the same PIM processor)

The request message, with sreq = 3 (header + physical address), travels the path:

C1source, Wsource, PIM-net-int (PIM processor internal network), Wdest, C1dest.

Thus d = 4 + dPIM-net-int = 5, Thop = τ because of Ttr ~ 0 always.

Finally, we have:

LC2C-PIM-local (σ1) = LC2C-req + LC2C-reply(σ1) = 18τ

2) PIM-to-PIM cores remote C2C block transfer (i.e. different PIM processors)

In this case, the path is: C1source, Wsource, PIM-net-int, MINFsource, ll-net-int, I3DMU,

memory-net, I3DMU, ll-net-int, MINFdest, PIM-net-int, Wdest, C1dest.

Thus d = 8 + 2dPIM-net-int + 2dll-net-int + dmem-net = 13 and Thop = 2τ.

Notice that dmem-net = 1 since the 3DMU-to-3DMU memory network is a ring with 4

3DMU nodes (the average distance of a ring network topology is calculated as N/4,

where N indicates the number of nodes).

Finally, we have:

LC2C-PIM-remote(σ1) = LC2C-req + LC2C-reply(σ1) = 68τ

3) host-to-host cores C2C block transfer

When at least one host PE is involved, then we should also consider the secondary

cache C2 in the traversed path. Therefore, the request and reply messages cross the

following path of units: C1source, C2source, Wsource, host-net-int (host processor internal

network), Wdest, C2dest,C1dest.

Thus, d = 6 + dhost-net-int = 14, where, this time, dhost-net-int = 8 in that we have to

consider the whole sub-mesh whose switch nodes are connected to the host cores

(i.e. it is a 8-ary 2-cube network, the one represented in figure 4.4 with internal

nodes left in white).

Obviously, Thop = τ because of Ttr ~ 0 always (intra-chip communication).

Therefore, we have:

41

LC2C-host(σ1) = LC2C-req + LC2C-reply(σ1) = 36τ

4) host-to-PIM cores C2C block transfer

In this case, the path is (assuming that the source is a PIM core): C1 source, Wsource,

PIM-net-int, MINFsource, ll-net-int, I3DMU, MINFdest, host-net-int, Wdest, C2dest,C1dest.

Thus d = 8 + dPIM-net-int + dll-net-int + dhost-net-int = 18 and Thop = 2τ.

Therefore, we have:

LC2C-host-pim(σ1) = LC2C-req + LC2C-reply (σ1) = 88τ

In conclusion, it is interesting to stress the great advantage of C2C communications when

they are performed on-chip.

4.3.2 Multi-host PIM architecture

As said before, a multi-host PIM architecture is actually composed of many single-host

logical sub-systems, each one with the same organization of the previous single-host PIM

model. Thus, the base latencies of all the communications that take place within a certain

single-host logical sub-system are, in principle, the same of the previous case. Actually, we

should evaluate again the local communication latencies that involve the host processor in

that the internal interconnect is now a 6-ary 2-cube one; therefore: Lread-C1-host-local (σ1) = 63τ,

LC2C-host-local(σ1) = 28τ and LC2C-host-pim-local(σ1) = 72τ.

Let us now briefly evaluate all the communication latencies, to which we are interested

in, that involve the global memory network (i.e. a ring with 16 nodes) and that, therefore,

depend on dmem-net-global = 4.

• Host core – remote memory block reading

When a host PE has to read (or write synchronously) a primary cache block from a

remote 3DMU (i.e. of a different single-host logical sub-system), then the base

access latency is: Lread-C1-host-remote (σ1) = 87τ, with d = 11 and Thop = 2τ.

• PIM-to-PIM cores remote system C2C block transfer

For a C2C communication among two PIM PEs in different single-host logical sub-

systems we have: LC2C-pim-remote-system(σ1) = 80τ, with d = 16 and Thop = 2τ.

42

• host-to-PIM cores remote system C2C block transfer

For a C2C communication among a host PE and a PIM PE in different single-host

logical sub-systems we have: LC2C-pim-host-remote-system(σ1) = 104τ, with a total path

distance d = 22 and Thop = 2τ.

• host-to-host cores remote C2C block transfer

For a C2C communication among two host cores in different host processors we

have: LC2C-host-remote(σ1) = 120τ, with a total path distance d = 26 and Thop = 2τ.

Summarizing, it is interesting to stress the fact that the host-to-host remote C2C

communications, that involve two host cores in different host processors, are the costliest

ones.

43

Chapter 5

Energy Modelling of PIM Architectures

In this section an energy modelling of PIM architectures presented in previous chapters

will be derived. In so doing, we will concentrate on energy costs associated to data

movement to/from memories and across interconnection networks since, as widely

detailed, they take on a first-class importance in current computational trends and the

minimization of them is crucial for the achievement of current and future computational

goals. Structured parallel computing theory will be then widely exploited in order to ease

the task of deriving data movement-based energy cost models for parallel programs

targeting PIM architectures.

5.1 Estimating energy efficiency of a computational system
Measuring or estimating power/energy consumption of a computational system is one of

the most important issues in large-scale computing infrastructure for enhancing energy

efficiency and constructing an energy management policy. For this reason, different

power/energy models have been and are now extensively studied. Anyway, deriving an

energy model of a parallel program executed over a computational system is not a simple

task; different parameters and factors are involved and heterogeneous aspects should be

considered. These aspects are related not only to the usage and to the energy efficiency of

particular physical components that make up the system, e.g. GPUs or energy-efficient

processors, but also, and mainly, to the parallel program characteristics and how the

program efficiently exploits the target architecture in terms of communications and “pure”

computation data movements. As a matter of fact, the given parallel program could be

characterized by: an irregular access pattern that does not allow to exploit caches

effectively, a large amount of data transfer deriving from communications, additional data

movements related to the inter-process cooperation run-time support, e.g. cache coherence

traffic associated to shared data modifications, etc.

Different works trying to derive an energy modelling of a computational system exist

and most of them focus mainly on multi/many-core processors; as an example, in [37] an

high-level characterization based on the Energy-Per-Instruction (EPI) of the Xeon Phi

44

processor is detailed, whereas in [36], a simple power model for a multi-core server system

is proposed by taking into account only four parameters: operating frequency, number of

active cores, number of cache accesses and number of last-level cache misses (accounting

for main memory power consumption associated to cache blocks transfers).

As estimated in [32], the memory subsystem (memory chip, interfaces and links)

consumes approximately 35% of the total system power budget and it is anticipated to

consume more than 60% in future Exascale systems. Although 3D-stacked memories are

able to provide less energy consumption per bit compared to current DDR4 DRAMs, off-

chip memory accesses still cause high energy overhead [29]. For this reason, a data

movement quantitative estimate should be taken into account when expressing algorithmic

or energy complexity of a large-scale parallel computation, besides designing parallel

applications that communicate as little as possible [15].

In the following sections a data movement-based analytical energy model will be

derived for PIM architectures presented in previous chapters, i.e. single-host and multi-host

PIM systems, and it will be used in relationship with different structured parallel program's

cooperation mechanisms, such as: collective communications (e.g. scatter, multicast)

and/or collective operations (e.g. reduce), and related mappings (i.e. over PIM or host PEs

or both). Obviously, it is not an exact method that is able to precisely quantify the amount

of data transferred, nor the exact number of communications that take place and the related

energy consumption; anyway, it is able to provide a general idea of how good, or bad, is

the energy efficiency of a given structured parallel program mapping, in relation to another

one, by taking into account only (an order of magnitude of) the cache blocks transferred

among system components.

5.2 Basic system components energy costs and parameters
definition

Without loss of generality and as already specified in previous chapters, we will assume

that the 3D-stacked memories of PIM architectures studied are HMC-like memories;

therefore, memory networks are realized through HMCs chaining and point-to-point

connections are realized by means of SerDes links, both for Host-to-3DMU and 3DMU-to-

3DMU connections. As said before, we are interested in evaluating energy consumption of

L1-cache block transfers, each one of size σ1 = 32 Bytes.

Thus, the following energy consumption costs have been retrieved from the supporting

45

literature, in particular [6, 35], and are below expressed in terms of energy per primary

level cache block transfer (Joule-per-σ1):

• SerDes (Serializer/Deserializer) link energy per C1-block

Energy consumed to send a primary cache block over a SerDes link (used to realize

the main point-to-point interconnections):

Elink (σ1) ~ 0.26 nJ/σ1

• HMC's SerDes physical interfaces energy per C1-block

Energy consumed by SerDes physical interfaces in the logic-layer of a HMC:

E3DMU-INF (σ1) ~ 1.28 nJ/σ1

• HMC logic-layer components energy per C1-block

Energy consumed by the internal logic-layer logic except physical interfaces

previously accounted for:

Elogic(σ1) ~ 0.46 nJ/σ1

• 3D-stacked memory layers energy per C1-block

Energy consumed by the DRAM layers logic of the 3D-stacked memory:

Ememory-layers(σ1) ~ 0.95 nJ/σ1

Therefore, for the whole HMC logic-layer we can derive the following energy cost:

 Elogic-layer (σ1) ~ Elogic(σ1) + E3DMU-INF (σ1) = 1.74 nJ/σ1

Moreover, it could be convenient for subsequent energy modelling to define the energy

consumed for a single “hop” step when data are transferred across 3DMUs networks. The

single “hop” step consists of the subsystem pair (3DMU logic-layer, output link), thus we

can define:

 Ehop (σ1) ~ Elogic-layer (σ1) + Elink (σ1) = 2 nJ/σ1

as the hop energy paid for switching a primary cache block within a 3DMUs network.

In addition to the previous parameters, the following ones will be also useful when

46

deriving energy consumption modelling of specific parallel program mappings, collective

communications and/or operations. Let nw, or simply n, the number of worker modules (i.e.

functional modules) of a given parallel program and nps the number of service modules

(e.g. scatter, gather, multicast, etc.), if any, such that nΣ = nw + nps is the total number of

parallel program's processing modules, then it is possible to define:

• npim = n as the number of PIM PEs used to allocate the whole set of worker

modules, if a PIM cores mapping of functional processing modules is chosen, such

that npim ≤ Npim (where Npim is the total number of PIM cores considering the whole

architecture);

• nhost = n as the number of host PEs exploited if, instead, a host cores mapping is

preferred, such that nhost ≤ Nhost (where Nhost is the total number of host cores

considering the whole architecture).

Service modules mapping is variable, i.e. it is possible to have a configuration in which a

scatter is mapped over a host core while workers are mapped over PIM cores, and therefore

it will be treated case-by-case; what has to be remarked is the fact that the following

constraint must always be respected in order to guarantee an exclusive-mapping (one

process per processor) and to avoid a performance degrading multiprogrammed execution:

nΣ ≤ Npim + Nhost.

We define also ppim, such that ppim ≤ Ppim, as the number of PIM processors exploited in the

parallel computation, i.e. for which at least one PIM core is used to host a process.

Moreover, from Chapter 3, we have: Ppim-PE defined as the total number of PEs/cores of a

single PIM processor, such that Ppim-PE = Npim /Ppim, whereas Ppim is the total number of PIM

processors. In the same way, we define phost, such that phost ≤ Phost, as the number of host

processors exploited in the parallel computation and, again, Phost-PE is the total number of

PEs/cores of a single host processor, such that Phost-PE = Nhost /Phost, and Phost is the total

number of host processors.

5.2.1 Assumptions and approximations

As previously anticipated, estimating energy consumption of a parallel application mapped

47

over a PIM architecture, or a computational system in general, is a complex task because

of the large number of architectural and application-related variants that are involved. As a

matter of fact, for a sequential application it is possible to derive well-approximated data

movement-based energy costs by simply taking into account the number of last-level cache

(LLC) faults, indicated as Nfault-LLC, for which a cache blocks transfer from the main

memory is required [29]. On the contrary, a parallel application involves not only the

number of LLC faults of every processing modules, but also data movement associated to

inter-process communications; furthermore, according to the specific implementation of

the inter-process cooperation run-time support mechanisms, notably processor

synchronization and cache coherence, a variable amount of data transfer could be required

too.

What discussed so far implies an approximate energy estimation approach based on

some assumptions, the most meaningful of which are:

• the energy cost models derived in the following sections will estimate data transfer

energy consumption by taking into account only the number of cache blocks

transferred after a LLC fault and during an inter-process communication. Therefore,

data movement associated to all the inter-process cooperation run-time support

actions except the message copy, e.g. sender-receiver synchronizations, low-level

scheduling, etc., will be neglected. Although this introduces an error in the

estimates, the I/O-based RDY/ACK solution and the home-flush cache-coherence

technique, chosen for our system models, are able to minimize data movements

associated to inter-process communications run-time support and, therefore, the

error of energy consumption estimates;

• as previously anticipated, we avoid to treat the case of a mixed workers set

mapping, i.e. exploiting both PIM and host cores for functional modules allocation,

in that it is not meaningful from the performance point of view, at least when a

structured parallel program with functional replication is executed. As a matter of

fact, a PIM architecture provides such a great flexibility that it could be effectively

exploited according to the characteristics of the parallel application: if it is

compute-intensive and/or cache-friendly then an host core mapping can be

48

exploited; conversely, if it is memory-intensive then a PIM cores mapping could be

preferred. A similar reasoning can be performed by taking into account the energy

consumption associated to data transfer. Therefore, when a structured parallel

program with functional replication is executed, every worker has the same

computational limitations of the others and, as such, a PIM or host cores mapping

should be chosen. Conversely, if functional partitioning/decomposition is exploited

and a given functional module is memory-intensive or, at the same way, if a given

application contains a memory-intensive part that has to be accelerated, then a

mixed mapping can be exploited as well. Anyway, in the following we will treat

only structured parallel program characterized by functional replication which

feature, among other things, a greater or equal bandwidth (with respect to

functional partitioning) [1];

• when we want to estimate the Nfault-LLC parameter, then we will consider only the

number of faults for which a non-null probability of cache blocks transfer exists. As

a matter of fact, if a data-structure is used by the program in a “write-only” mode

and if the cache unit is designed with the write-only optimization then, in case of a

cache fault verification, the block is directly allocated and written in cache without

any transfer from the main memory.

• Data transfers associated to cache writing operations management (e.g. Write-Back

or Write-Through) and cache replacement algorithms (e.g. LRU) are not considered

in that they are architecture-dependent and not predictable respectively.

5.3 Energy Modelling of a single-host PIM architecture
Let us consider an abstract machine model for a single-host PIM architecture, as the one

proposed in Chapter 3 and reported in the following figure, such that the relevant

parameters that will be considered in the following energy cost models are the average

distance of the Host-to-3DMUs network dnet and the average distance of the 3DMU-to-

3DMU interconnection dmem-net.

49

Figure 3.1: The general Abstract Machine Model for a single-host PIM architecture.

Therefore, it is possible to define the following energy costs per primary cache block

transfer:

• PIM intra-stack memory access

In this case we evaluate energy consumption cost for an internal cache block

transfer between the memory stack and an underlying PIM core cache; therefore,

only constant costs related to the internal logic-layer's logic and memory layers

have to be considered:

Epim-mem-acc(σ1) ~ Elogic(σ1) + Ememory-layers(σ1) = 1.41 nJ/σ1

• Host memory access

Here we should take into account the hop energy costs of the Host-to-3DMU

interconnection traversal and the final off-chip memory access energy cost:

Ehost-mem-acc(σ1) ~ Ehop(σ1) dnet + Ememory-layers(σ1)

In the case of a direct connection, as the one we had in the single-host PIM

architecture of Chapter 4, then dnet = 1 and Ehost-mem-acc(σ1) ~ 2.95 nJ/σ1. Therefore it

is interesting to note that, as confirmed by [34], the energy consumption paid for an

external memory access is 2x more than an internal one. Nevertheless, it should be

noted that it is a best-case result in that Ehost-mem-acc(σ1) depends on dnet (that is equal

to the minimum, i.e. 1, in the above estimate) while Epim-mem-acc(σ1) remains constant.

50

• PIM-to-PIM external C2C communication

In this case we evaluate energy consumption cost for an external C2C block

transfer between PIM cores in different PIM processors. Therefore, we have:

Epim-to-pim(σ1) ~ Ehop(σ1) (dmem-net - 1 + δunitary-dist) + Elogic-layer(σ1)

where (dmem-net - 1 + δunitary-dist) is the average traversed distance across the memory

network, considering the remote PIM core's 3DMU as the destination node

“embedded” in the network itself and for which only Elogic-layer(σ1) has to be

accounted for. The parameter δunitary-dist is a binary indicator variable such that it is 1

if dmem-net = 1 and 0 otherwise; in this way the multiplication by 0 is avoided in case

of a unitary average distance.

• Host-to-PIM external C2C communication

In this case we evaluate energy consumption cost for an external C2C block

transfer between a PIM core and a host core. Thus, we have simply:

Ehost-to-pim(σ1) ~ Ehop(σ1) dnet

that is equal to the previous Ehost-mem-acc(σ1) without considering the final memory

access energy cost.

Finally, let us denote by E1, E2, E3 and E4 the energy costs per primary cache block listed

above, and by Σ1, Σ2, Σ3 and Σ4 the total number of cache block transferred for every case,

then the total amount of energy consumed by a parallel program mapped over a single-host

PIM architecture, considering data movement costs only, is given by:

Edata-mov = ∑
j=1

4

E j Σ j (1)

The above formula will be extensively used in the final examples and in the next chapter in

order to derive energy costs of parallel programs variants and related mechanisms.

Introduction and preconditions to the examples

It is worth noting that, for everyone of the following examples, a performance modelling

will be included as well in order to enhance the subsequent analysis in terms of energy-

performance trade-off. In particular, we will be interested in the following metrics for

51

performance evaluation of stream-based parallel applications: the mean service time Ts of a

given processing module or a parallel computation as a whole, defined as the average time

interval between the beginning of the executions over two consecutive input stream items,

or, equivalently, its inverse B = 1/Ts called processing bandwidth or throughput, and the

latency L defined as the mean time needed by a processing module or a parallel

computation to process a single input stream item (more details about performance cost

models of structured parallel programs can be found in [1]).

As said before, we will assume to work with stream-based structured parallel

computations, such that every processing module is typically characterized by the recurrent

loop phases: receive – compute – send, and C2C communications will be largely exploited

in order to involve main memory only when strictly needed. For this reason, we will

assume that, in a typical producer to consumer interaction, the exchanged message, of

length L bytes, is able to fit in primary cache when at least a PIM PE is involved in the

communication (otherwise in secondary cache if only host PEs are involved). In this way,

an amount of at most 3L/σ1 cache blocks transfer is avoided (2L/σ1 are paid by the producer

module to read the message from “its” memory and write/send the message to the

“consumer” memory, and L/σ1 are paid by the consumer to read the received message).

Therefore, in the following single-host case examples only a PIM cores mapping of

functional modules will be assumed, when collective cooperation are studied, owing to the

previous assumption; as a matter of fact, the host cores mapping is not meaningful since no

energy is consumed for communications thanks to the on-chip C2C exploitation.

Obviously, this is not more valid when more than one host processor is involved in the

computation (i.e. multi-host case).

Finally, the general architecture specifications and related parameters can be found in

Chapters 3 and 4. The same is valid for multi-host PIM architecture examples at the end of

this chapter.

5.3.1 Example 1: scatter collective communication

Let us assume to have a data structure A of size M Bytes that has to be scattered to a set of

n processing modules, i.e. split into partitions of g = M/n bytes, or M/nσ1 blocks, and sent

to the destination modules, then two main solutions can be studied: a centralized solution

and a tree-structured solution.

52

Centralized Scatter

In this case, the implementation consists of n sequential point-to-point communications,

each one directed to a different target module, executed by a centralized and distinct

process. As previously assumed, a PIM cores mapping with npim = n is exploited; therefore,

the following two cases can be distinguished according to the scatter module mapping.

PIM mapping

Assuming that the data structure has to be read from the local memory stack by the scatter

module and that M/σ1 is the total number of blocks required to transfer A, then the total

energy consumption cost, using (1), is:

Escatter-pim ~ Epim-mem-acc(σ1) M/σ1 + Epim-to-pim(σ1) cext M/nσ1

where the cext (which stands for external communications) parameter is defined as:

cext = {
0 if n≤Ppim−PE−1

n−(P pim−PE−1) if n≥Ppim−PE

and indicates the number of data structure partitions that have to be sent externally from

the 3DMU stack of the PIM processor into which the scatter module is mapped.

Notice that in the above formula it is assumed that the functional modules PIM cores

mapping seeks to fill first the PIM processor in which the scatter module is mapped, thus

supporting internal C2C communications with energy and performance benefits (i.e. the

case n ≤ Ppim-PE – 1). Instead, if the number of workers does not fit into a single PIM

processor with a scatter module already allocated (i.e. the case expressed by the n ≥ Ppim-PE

condition), then cores of other/s PIM processor/s have to be involved.

Host mapping

In this case the data structure has to be read from a given 3DMU and then scattered to n

distinct modules mapped over PIM cores. Therefore:

Escatter-host ~ Ehost-mem-acc(σ1) M/σ1 + Ehost-to-pim(σ1) M/σ1

Comparison

With reference to the single-host architecture specifications of Chapter 4, for which dnet = 1,

dmem-net = 1, Npim = 64, Ppim = 4 and Ppim-PE = 16, and assuming that n = npim = 63, such that

53

ppim = 4 processors are involved in the computation, then the energy consumption costs are:

Escatter-pim ~ 4.26 M/σ1 nJ and Escatter-host ~ 4.95 M/σ1 nJ. Therefore, in the worst case, the two

energy costs are comparable.

If instead, for n = npim = Ppim-PE - 1, only one PIM processor is involved (i.e. ppim = 1) and

internal C2C communications can be exploited at all, then Escatter-pim ~ 1.41 M/σ1 nJ while

Escatter-host does not change.

In conclusion, when a PIM PE is used to allocate the scatter module of a parallel

computation, whose functional modules are mapped over PIM cores only, then, in the best

case, an energy efficiency of 3.5x is obtained with respect to a host PE mapping.

Performance

When a centralized sequential solution is exploited, then service time and latency of the

scatter module coincide and are linear in n:

Tscatter = Lscatter = n Tsend(g) = n Tsetup + M Ttransm

Tree-structured Scatter

If a tree-structured scheme is exploited, then the data structure scattering is directly

performed in parallel by the n functional modules. Anyway, apart from performance, the

energy costs are the same since still cext M/nσ1 blocks have to be sent involving inter-stack

off-chip communications.

Performance

When a tree-structured parallel scheme is exploited, then service time has a modest

improvement and is equal to the tree-root service time:

Tscatter = Lscatter = 2 Tsend(M/2) = 2 Tsetup + M Ttransm

On the contrary, latency is sensibly improved and it is now logarithmic in n.

5.3.2 Example 2: multicast collective communication

As in the previous case, let us assume to have a data structure A of size M Bytes that has to

be sent to a set of n processing modules with a multicast communication, then two main

solutions can be studied: a centralized solution and a tree-structured solution.

54

Centralized Multicast

In this case, the implementation consists of n sequential point-to-point communications

executed by a centralized and distinct module. The following two cases can be

distinguished according to the multicast module mapping.

PIM mapping

Again, assuming that the data structure has to be read from the local memory stack by the

multicast module, and that M/σ1 is the total number of blocks required to transfer a copy of

A to everyone of the n target modules, then the total energy consumption cost is:

Emulticast-pim ~ Epim-mem-acc(σ1) M/σ1 + Epim-to-pim(σ1) cext M/σ1

where cext counts the number of data structure copies that have to be sent externally from

the 3DMU to which the PIM processor hosting the multicast module belongs. The

considerations made for the centralized scatter solution about PIM workers mapping policy

can be applied in this case too.

Host mapping

In this case, the data structure has to be read from a given 3DMU and then sent in multicast

to n distinct modules mapped over PIM cores. Therefore:

Emulticast-host ~ Ehost-mem-acc(σ1) M/σ1 + Ehost-to-pim(σ1) n M/σ1

Performance

When a centralized sequential solution is exploited, then service time and latency of the

multicast module coincide and are proportional to n:

Tmulticast = Lmulticast = n Tsend (M) = n (Tsetup + M Ttransm)

Tree-structured Multicast

If a tree-structured scheme is exploited, with a worker-mapped implementation (i.e. every

worker is a node of the logical multicast tree), then different multicast communication

patterns can be recognized according to the chosen tree visit strategy (e.g. depth-first).

Anyway, when the workers set is mapped over PIM cores, then in the best case at least one

external communication per PIM processor involved in the computation (in total ppim - 1) is

needed. Therefore, the total energy costs, considering also the data structure reading from

55

main memory by the root worker, can be evaluated as:

Etree-multicast-pim ~ Epim-mem-acc(σ1) M/σ1 + Epim-to-pim(σ1) (ppim - 1) M/σ1

Performance

As for the scatter case, when a tree-structured parallel solution is exploited, then service

time is equal to:

Tmulticast = 2 Tsend (M) = 2 (Tsetup + M Ttransm)

Again, latency is sharply improved and it is now logarithmic in n.

Comparison

Let us refer again to the single-host architecture specifications of Chapter 4 (reported also

in the previous scatter case comparison), and assuming n = 63 as in the scatter case, then

Emulticast-pim ~ 180.93 M/σ1 nJ and Emulticast-host ~ 128.95 M/σ1 nJ. Thus, in the worst case, the

host PE multicast module mapping is about 1.4x more efficient than the PIM core

mapping. With the same specifications, the tree-structured multicast is able to efficiently

consume Etree-multicast-pim ~ 12.63 M/σ1 nJ, which is a notable improvement.

Conversely, if only one PIM processor is involved and internal C2C can be exploited at all,

e.g. for n = Ppim-PE – 1 = 15, then Emulticast-pim = Etree-multicast-pim ~ 1.41 M/σ1 nJ and Emulticast-host ~

32.95 M/σ1 nJ, with PIM PE multicast module mapping and tree-structured solution which

are 23.4x more efficient than the host PE mapping.

5.3.3 Example 3: reduce collective operation

Given a computation that performs the sum of the vector columns of a given integers

matrix A[R][M] and puts the result in a vector B[M], i.e. :

B = ∑
j=0

M−1

A j

then, it can be equivalently re-written as:

B = reduce (A j , +) with j = 0 … M – 1

where Aj is the j-th matrix column, + is the associative operator involved (i.e. a sum), and

reduce is the well-known summary operation.

Let us assume that the given matrix A has been previously scattered by blocks of

columns to the n workers and that, after a local reduce over the received partition, each

56

worker takes part to the global reduce by communicating its partial results vector of size R;

then three main solutions can be studied: a centralized solution, a tree-structured solution

and a tree + centralized solution.

Centralized Reduce

In this case, the implementation consists of n point-to-point communications from every

worker to a centralized and distinct module that performs the global reduce locally over the

n received partial results vectors. Again, a PIM cores mapping is assumed with npim = n.

Two cases can thus be distinguished according to the centralized module mapping.

PIM mapping

When a PIM PE mapping is exploited, then the total energy consumption cost is:

Ecentralized-reduce-pim ~ Epim-to-pim(σ1) cext R/σ1

assuming, again, that the centralized module is always allocated in a PIM processor that is

used first when the workers set mapping has to be performed. Moreover, this time the

parameter cext indicates the number of partial results vectors that are received from external

PIM processors (with respect to the one in which the centralized module is allocated).

Host mapping

In this case we have simply:

Ecentralized-reduce-host ~ Ehost-to-pim(σ1) n R/σ1

in that all the n workers mapped over PIM cores send their partial results vectors to the

centralized module.

Performance

When a centralized solution is exploited then the global reduce latency is equal to:

Treduce = (TG + Tsend) n

where TG is the calculation time of the associative operator/function adopted.

The above time could be potentially masked in stream-based parallel computation, by

exploiting the so called pipeline-effect, provided that the n proportionality and TG + Tsend

time allow it.

57

Tree-structured Reduce

In this case, the global reduce is performed in parallel, following a tree-structured scheme,

by all the workers. Since they are mapped over PIM cores, then some communications are

performed intra-stack, i.e. considering the tree levels close to the leaves, while other

involve inter-stack communications, i.e. moving towards the tree root. Thus, if we consider

all the ppim PIM processors involved in the global reduce as leaves of another logical binary

tree, then it is easy to convince ourself that the total number of external communications is

equal to the number of internal nodes in the tree, i.e. (ppim - 1). Therefore, the energy cost

can be evaluated as:

Etree-reduce-pim ~ Epim-to-pim(σ1) (ppim - 1) R/σ1

Performance

When a tree-structured solution is exploited then the global reduce latency is equal to:

Treduce = (TG + Tsend) log2 n

Tree-structured + Centralized Reduce

A notable reduce variant discussed in the supporting literature, in particular in [21], and

that seems to take advantages from PIM architectures is the tree-structured + centralized

reduce, also indicated as in-memory reduction trees.

In this solution there is not a single but different reduction trees, as far as the number of

PIM processors is concerned, such that workers belonging to everyone of them work in

parallel exploiting C2C intra-stack communications only. At the end, all the final results,

one for every tree, are collected by a centralized module mapped over a host core such that

the final reduce can be performed.

Therefore, the energy cost associated to this solution is equal to:

Etree+centralized ~ Ehost-to-pim(σ1) ppim R/σ1

Performance

When a tree-structured + centralized solution is exploited then the global reduce latency is

equal to:

Treduce = (TG + Tsend) log2 (n/ppim) + (TG + Tsend) ppim

As for the centralized solution, the time related to the centralized reduce phase could be

58

potentially masked in a stream-based parallel computation.

Even more so, this time it depends on ppim and not to n; we can confirm that, in general, the

condition ppim << n is always true in large-scale applications and architectures.

Comparison

Let us refer again to the single-host architecture specifications of Chapter 4 (reported also

in previous comparisons), and assuming n = 63, then the following results can be achieved:

Ecentralized-reduce-pim ~ 179.52 M/σ1 nJ and Ecentralized-reduce-host ~ 126 M/σ1 nJ.

The tree-structured solution achieves an energy cost equal to Etree-reduce-pim ~ 11.22 M/σ1 nJ,

while the tree-structured + centralized solution achieves Etree+centralized ~ 8 M/σ1 nJ. The latter

is 1.4x better than the former solution and sharply better than the centralized solutions.

In conclusion, the better energy-performance trade-off can be achieved with the tree +

centralized reduce solution; even more, if the centralized phase latency can be masked and,

furthermore, ppim > 2 and dnet ≤ dmem-net (most common cases), then it is the best solution

taking into account both energy and performance improvements.

5.4 Energy Modelling of a multi-host PIM architecture
Using the same approach of the single-host case, let us consider an abstract machine model

for a multi-host PIM architecture, as the one proposed in Chapter 3 and reported in the

following figure, such that relevant parameters that will be considered in the following are

the average distance of the Host-to-3DMUs network dnet and the average distances of the

3DMU-to-3DMU local interconnection dmem-net-local and global interconnection dmem-net-global.

Figure 3.2: The general Abstract Machine Model for a multi-host PIM architecture.

In the multi-host case, different energy costs per primary cache block transfer can be

59

inherited from the previous single-host energy costs study; as a matter of fact, the only

difference resides in the fact that now a local and a global memory network average

distance has to be considered. As a consequence, every energy cost model that in the

single-host case depends on dmem-net now has to be studied for both dmem-net-local (i.e. dmem-net)

and dmem-net-global. At the same way, for every kind of communication between system

components that involves the global memory network a new energy cost model has to be

derived as well.

Therefore, we can proceed as follows:

• PIM intra-stack memory access

The same of the single-host case, i.e. :

Epim-mem-acc(σ1) ~ Elogic(σ1) + Ememory-layers(σ1) = 1.41 nJ/σ1

• Host memory access (local and remote)

When the memory access is local, then we have the same cost of the single-host

case memory access, i.e. :

Ehost-mem-acc-local(σ1) ~ Ehost-mem-acc(σ1)

in that the global 3DMU-to-3DMU network is not involved.

On the contrary, in the case of a remote memory access then the energy cost per

cache block is:

Ehost-mem-acc-remote(σ1) ~ Ehop(σ1) (dnet + dmem-net-global - 1) + Ememory-layers(σ1)

where dnet is the average number of hops that has to be performed in order to reach

the global memory network while, instead, dmem-net-global - 1 is the average number of

steps to reach the destination 3DMU through the global memory network. Notice

that a single unit step has been subtracted since the source 3DMU in the global

memory network, which is also the destination 3DMU in the Host-to-3DMUs

interconnection, has to be considered only one time.

• PIM-to-PIM external C2C communication (local and remote)

When the external C2C block transfer is local (i.e. same logical single-host

subsystem), then we have the same cost of the single-host C2C block transfer

between PIM PEs in different PIM processors, i.e. :

60

Epim-to-pim-local(σ1) ~ Epim-to-pim(σ1)

On the contrary, in the case of a remote C2C block transfer the energy cost can be

evaluated as:

Epim-to-pim-remote(σ1) ~ Ehop(σ1) (dmem-net-global - 1 + δunitary-dist) + Elogic-layer(σ1)

where (dmem-net-global - 1 + δunitary-dist) is the average traversed distance across the global

memory network and, again, δunitary-dist is a binary indicator variable such that it is 1

if dmem-net-global = 1 and 0 otherwise. It is interesting to note that the above formula is

correct if the source PIM processor belongs to a 3DMU that, in turn, belongs to the

global 3DMU-to-3DMU interconnection network. On the contrary, if the source

3DMU has to reach the global memory network by traversing first the local one,

then the term Ehop(σ1) (dmem-net-local - 1 + δunitary-dist) has to be added in the above

formula too. The same reasoning is valid for the destination 3DMU.

• Host-to-PIM external C2C communication (local and remote)

Again, when the external C2C block transfer is local then:

Ehost-to-pim-local(σ1) ~ Ehost-to-pim(σ1)

On the contrary, if the external C2C block transfer, between a PIM and a host PE, is

remote then:

Ehost-to-pim-remote(σ1) ~ Ehop(σ1) (dnet + dmem-net-global - 1)

which is equal to the previous Ehost-mem-acc-remote(σ1) without considering the final

memory access energy cost.

• Host-to-Host external C2C communication

Obviously, this kind of interaction occurs only in a multi-host PIM architecture and,

for this reason, a new cost model has to be derived. Anyway, it is very similar to the

previous one except that now also the destination 3DMU in the global memory

network, which is also the source 3DMU in the Host-to-3DMUs interconnection,

has to be considered only one time.

Therefore, the energy cost model for a Host-to-Host C2C communication is:

Ehost-to-host(σ1) ~ Ehop(σ1) (2dnet + dmem-net-global - 2)

where 2dnet is due to the fact that this time two Host-to-3DMUs networks are

involved. Moreover, the condition dmem-net-global ≥ 2, which is always true for a large

61

network, has to be satisfied in order to avoid wrong results.

Again, let us denote by E1, E2, E3, E4 and E5 the energy costs per primary cache block listed

above, and with Σ1, Σ2, Σ3, Σ4 and Σ5 the total number of cache block transferred for every

case. Remembering the fact that for E2, E3, E4 we must take into account both local and

remote energy communication costs, then the total amount of energy consumed by a

parallel program mapped over a multi-host PIM architecture is given by:

Edata-mov = ∑
j=1

5

E j Σ j (2)

5.4.1 Example: producer-consumer pattern

Let us assume to have a data structure A of size M Bytes that has to be sent from a

producer to a consumer module. Then, according to the mapping of the two processes,

three interesting variants can be studied: host mapping in different host processors, PIM

mapping in different PIM processors belonging to the same and to different single-host

sub-systems.

PIM mapping

Assuming that the producer process maintains the data structure in its L1-cache, then the

energy costs obtained using (2) are:

• Same single-host subsystem (local case)

In this case, a local inter-stack communication is exploited; therefore:

Eprod-cons-pim-local ~ Epim-to-pim-local(σ1) M/σ1

• Different single-host subsystems (remote case)

This time, a remote inter-stack communication is performed; thus:

Eprod-cons-pim-remote ~ Epim-to-pim-remote(σ1) M/σ1

Host mapping

In this case a C2C communication is performed among two different host processors with

an energy cost evaluated as:

62

Eprod-cons-host ~ Ehost-to-host(σ1) M/σ1

Comparison

With reference to the multi-host architecture specifications of Chapter 4, for which dnet = 1,

dmem-net-local = 1, dmem-net-remote = 4, then the energy consumption costs are:

• Eprod-cons-pim-local ~ 3.74 M/σ1 nJ

• Eprod-cons-pim-remote ~ 7.74 M/σ1 nJ

• Eprod-cons-pim-host ~ 8 M/σ1 nJ

In conclusion, the above results show how, in a multi-host environment, computation

locality into the same single-host logical sub-system has to be exploited; in this way, the

energy consumption per communication is halved with respect to a host-to-host and a PIM-

to-PIM remote cooperation case.

5.5 Final considerations
In this chapter, a simple yet formal study of energy related concepts in relationship to PIM

architectures has been performed.

Results show how communications minimization and communications locality, intra-

stack or within a single-host logical subsystem, play an important role in the energy

efficiency of a PIM system. Therefore, the parallel program characteristics, in terms of data

access and communication patterns, and the program mapping choice are determinant in

order to minimize data movements and the associated energy consumption.

In the next chapter, the presented cost models will be extensively used in order to derive

the energy efficiency of real application examples mapped over PIM architectures.

63

Chapter 6

Comparative Study and Evaluation of PIM Architectures
with Parallel Program Examples

In this chapter a comparative study of PIM systems in relationship to structured parallel

program variants, mappings, communication patterns and other related aspects will be

carried out. In so doing, different parallel versions of the well-known Count-Min Sketch

algorithm, largely used in real-time analytics applications, will be proposed in order to

enhance the final results evaluation. The Count-Min Sketch algorithm characteristics,

mainly in relation to the irregular data access pattern, seem to make it a suitable benchmark

for PIM architectures comparison. Therefore, the final goal of this chapter is neither to find

the killer application for Processing-in-Memory nor to aim at the best parallelization of the

proposed algorithm; the real objective is to analytically provide an evaluation of how good

or bad a PIM system acts when executing a memory-intensive application.

In the following sections, the Count-Min Sketch algorithm, its property and the

application context in which it applies will be briefly described. Then, a formal analysis of

its parallel versions targeting PIM architectures will be performed, for both the single and

multi-host variants, exploiting an analytical approach based on energy and performance

cost models. Thus, we will use all the numeric results obtained in previous chapters such

that, in the light of the current state of the art about PIM technologies, they can be

considered correct with good approximation.

Finally, a concluding parametric study will be carried out in order to summarize the

obtained results and provide an idea of the PIM architectures potential.

6.1 Brief description of real-time analytics and sketching
techniques

The term “Big Data analytics” refers to the process of examining a huge amount of data in

order to discover hidden data patterns, unknown data correlations, extract knowledge and

to provide useful business information.

In many modern web and Big Data applications data arrives in a streaming fashion and

needs to be processed on the fly. Therefore, unlike traditional off-line or batch analytics,

64

e.g. exploiting MapReduce processing, on-line or real-time analytics should be able to

detect events and trends as they happen due to the stringent latency/time constraints. To

meet these requirements, real-time analytics applications store the entire or the large

majority of the dataset in main memory, rather than traditional secondary storage media, so

that data can be quickly accessed and queried. Moreover, this kind of applications are

typically characterized by abundant parallelism and a huge amount of data streaming with

low locality, making on-chip caches ineffective and, nonetheless, offering opportunity for

PIM acceleration [21].

As reported in [53], it is very common in modern analytics application to answer to

statistical queries about a given set of items; common queries could be related to the

membership of a given item to the set (set-membership query), to the total number of

different items seen so far (cardinality or size estimation query), or how much frequently a

given item occurred (frequency estimation query).

When the cardinality of the given set is small, then no storage problem arises and

specialized data-structures, allowing to maintain the set of items in memory for real-time

updates and queries, exist. However, when it becomes large (i.e. there are many distinct

items) then the set storage becomes problematic in that it is linear in n, where n is the set

cardinality.

To tackle this problem, sketch data structures and algorithms have been developed and

proposed. A sketch is an approximate data structure which represents a summary of a given

dataset and is used, by a related sketch algorithm, to deliver approximated query results.

Sketch algorithms are characterized by three aspects that make them attractive: constant

time updates of the data, sub-linear storage space for the sketch data structure, and at worst

linear querying time. Obviously, all these desirable properties can be achieved at the cost

of introducing errors into the reported results.

Among the existent sketch-based techniques, the popular Count-Min Sketch algorithm

will be briefly introduced in the following sub-section and then widely exploited for

subsequent analysis.

6.1.1 Count-Min (CM) Sketch algorithm

The Count-Min, or CM, Sketch algorithm, proposed by G. Cormode and S. Muthukrishnan

in [41], is one of the most popular sketch-based algorithm that has found wide applications

from IP traffic monitoring, machine learning, distributed computing, signal processing and

65

beyond [40].

In its common usage, the CM sketch provides an efficient and approximated solution to

the Count Tracking problem: given a set with a large number of items and a frequency

estimate associated to each one of them, when a query for item x arrives, the answer to the

query is the current frequency of x. A simple example could be a popular website, e.g.

Google, which wants to keep track of statistics on the search queries; more specifically, it

could be interested in maintaining the top-K list of frequent search queries or the list of

queries with a frequency higher than some predetermined threshold (the so-called Heavy-

Hitters list).

Let us formally define now the scenario into which the CM sketch is involved, as

detailed in [39, 41], with the following preliminary set-up:

• At[1, n] is a vector of n items whose state changes with time t. Thus, its current state

at a given time t' is defined as At' = [a1(t'), a2(t'),…, ai(t'),…, an(t')].

• The updates of an individual entry of At at time t consists of a pair (it, ct) of

numbers, such that:

▪ At+1[it] = At[it] + ct , with ct value that could be strictly positive in some cases

(cash register case), unitary (i.e. equal to 1) or also negative (turnstile case);

▪ At+1[i'] = At[i'], if i' ≠ it .

• At any time t, a query arrives and asks for computing some simple or more

complex function over At; in the basic case a point query, denoted by query(i), asks

for the approximation of At [i].

Goal: achieve sub-linear space in n, fast update and query but with answers that need to be

inevitably (ε, δ)-approximated, meaning that the error in the returned frequency estimate

for a given item i is within a factor of ε with probability δ.

Data Structure: a Count-Min sketch data structure with parameters ε and δ is represented

by:

• a two-dimensional array of counters CM[d, w] with d = ⌈ ln
1
δ
⌉ rows, which

stands for depth, and w = ⌈
e
ε
⌉ columns, which stands for width;

• a set of different hash functions h1,…, hd: {1,…, n} → {1,…, w}, chosen uniformly

66

at random from a pairwise independent family, hence: P(hi(x) = hj(x)) = 1/w, where

each i-th hash function is of the form hi(x) = ((ax + b) mod p) mod w) with p prime.

The sketch data structure can accurately summarize arbitrary set of streaming items with

compact and fixed memory footprint that in some cases and applications could fit in cache,

i.e. order of kilobytes to some megabyte, while in others in main memory, i.e. orders of

mega to some gigabyte [40].

Update and Point Query: every item i has one estimator/counter for each row, i.e. :

CM [1, h1(i)],…, CM [d, hd(i)]

When an update (it, ct) arrives, this means that item it has to be updated by a quantity of ct;

therefore, each counter of i is incremented by ct. Formally:

update(it, ct): for j =1,…,d do CM [j, hj(it)] += ct

The following figure graphically summarizes what discussed so far about the update

procedure.

Figure 6.1: Schematic of CM sketch update procedure (taken from [40]).

When, instead, a point query for item i arrives, then an estimate Â [i] equal to the

minimum among all the counters values of i is returned. Formally:

query(i): return Â [i] = min {CM [j, hj(it)], for j =1,…,d}

It should be noted that the returned estimate is different with respect to the real frequency

value of item i, i.e. A[i], as stated in the following theorem from [41]:

Theorem: The estimate for item i, with i = 1,…, n, is such that:

• Â [i]≥ A [i]
• and, with probability of at least 1- δ, it is: Â [i]≤ A [i]+ε‖A‖1

67

(with ‖A‖1=∑
j=1

n

| A [j]|)

Time and Space Costs: queries and updates take O(d) = O(ln
1
δ
) time, whereas space

occupancy is O(dw) = O(
e
ε

ln
1
δ
) and, therefore, sub-linear in n.

6.2 Analysis and comparison of CM Sketch parallel version
variants over PIM

6.2.1 Introduction and preliminary considerations

In the following sections, a formal analysis of different parallel versions of the CM sketch

algorithm targeting PIM architectures will be performed, by explicitly distinguishing the

update and query procedures. In so doing, we will consider the following cases.

• single and multi-host PIM target architectures;

• host and PIM cores mapping of functional processing modules;

• performance and energy costs evaluation for every parallel program variant studied.

Therefore, the architectures specifications presented in Chapter 3 and 4, as well as the

cache block transfer base latencies at the end of Chapter 4, and the energy and performance

cost models of Chapter 5 will be extensively exploited.

Before starting with the formal analysis, the following preliminary considerations are

due:

• the goal for every parallel version variant, i.e. a stream-based parallel application, is

to maximize the offered bandwidth that the parallel application, executed over a

given PIM architecture and exploiting a given mapping, is able to achieve.

Thus, when evaluating the optimal parallelism degree nopt, i.e. the optimal number

of functional modules of a given parallel program, the general formula adopted will

be:

nopt = ⌈
T S

T DD

⌉

where Ts is the mean service time of the sequential module and and TDD is the mean

time needed to perform the distribution of the input data according to a certain

scheme.

68

To be thorough, if we would have been interested to the requested bandwidth, then:

nopt = ⌈
T S

T A

⌉

where TA is the mean inter-arrival time among consecutive input stream elements.

• The strategy adopted for parallelizing the Count-Min sketch algorithm is similar to

the one proposed in [38]. At initialization time, the sketch data structure, that

represents the state of the computation, and the set of d hash functions are defined

and replicated in every worker of the workers set.

In the update/ingestion phase, a data distribution module (e.g. a scatter or an emitter

module), or the same workers according to the communication scheme adopted,

assigns disjoint parts of the input stream to each worker that, in turn, updates its

local sketch. Obviously, this strategy introduces an error since sketches/states are

not coherent one another; anyway, this problem will be solved at query time, as

detailed in section 6.2.4.

Once input data stream has been analysed and sketches have been constructed, they

can be asked to answer point queries. Therefore, when a query for an item x arrives,

it is sent in multicast to every worker that, in turn, queries its local sketch to

compute its partial results. Local results are then collected from each workers,

according to a distributed and/or centralized reduce scheme, and the final global

estimate for item x is returned (i.e. multicast+map+reduce structured computation).

It should be clear that, with the above parallelization strategy, only the ingestion

phase can be speeded up since the query processing phase is characterized by work

replication across participating functional modules; thus, in the best case, the

parallel query procedure bandwidth will be equal to the sequential one (in

compliance with what did in [38]). For this reason, the optimal parallelism degree

nopt will be computed in the update phase and reused in the querying one.

• The values chosen for the setting parameters of the sketch data structure are:

▪ d = 40

▪ w = 220

with very low values of ε and δ and a CM sketch size of about 168 MB (with 4 byte

69

integer counters). The large value for d has been chosen because the service time of

the sequential computation is proportional to it; therefore, for a low value of d, the

computation would have been too fine-grained and not interesting to be studied,

due to the resulting low nopt value.

Again, we should remark that in no way we aim at finding the best CM sketch

settings in order to solve a given problem. Our goal is only to evaluate how a PIM

architecture acts when executing a memory-intensive parallel program, hopefully

with interesting nopt values for our purposes.

• The following study has been realized by taking into account base communication

latencies and, therefore, neglecting possible contentions that could happen when

executing a parallel program in a parallel architecture. Examples of contentions

could be related to the concurrent accesses to a certain memory macro-module, to

the conflicts on the network switch units and links, to the cache coherence protocol

interactions on the home nodes cache controllers and so on.

Anyway, the chosen architectural settings, mainly in relation to the crossbar internal

interconnections as well as the high bandwidth links and interface units, the used

parallel program communication forms, i.e. only symmetric (point-to-point)

channels, and the implementation exploited for the run-time support mechanisms,

e.g. the I/O-based RDY/ACK communications solution and the home-flush cache

coherence technique, are such that possible contentions are minimized.

6.2.2 Sequential analysis

Let us consider a sequential processing module Q that implements the Count-Min sketch

algorithm update and query procedures. The Q module encapsulates a CM sketch data

structure, represented by a two-dimensional array of integer counters CM [D][W], receives

an integer type item x from a given input stream channel with asynchrony degree k > 0,

and, in the update procedure case, it updates the counters of x with unitary increments (i.e.

ct = +1); in the query procedure case, it simply returns the estimate for x.

Therefore, the Q computation can be described with the following pseudo-code:

Q:: int C[D][W], x, m; channel_in input_stream(k);

70

update(x)::

while (true) do {

receive(input_stream, x);

for j = 1…D - 1: CM[j][hj(x)] ++;

}

query(x)::

while (true) do {

receive(input_stream, x);

m = max_int;

for j = 0…D - 1: m = MIN(m, CM[j][hj(x)]);

}

where max_int is a constant equal to the maximum admissible value for an integer type,

whereas MIN is a function that returns the minimum among the two numbers passed in

input.

Architecture specifications

Let us report the main architecture parameters defined in Chapter 4, by distinguishing the

single and the multi-host case, in that they will be widely used in subsequent analysis.

• Single-host PIM architecture

The single-host architecture reported in the following figure is characterized by:

Figure 6.2: The single-host PIM architecture.

71

1. all the missing specifications defined in Chapter 4;

2. one host processor, i.e. Phost = 1, composed of Phost-PE = 64 PEs/cores and 4

MINFs. Each MINF is logically connected to a group of 16 PEs and is

physically connected to a given 3DMU through a high bandwidth SerDes link

(thus, dnet = 1). The internal interconnect is a two-dimensional mesh with an

average distance dhost-net-int = 8;

3. four 3D-stacked memories, each one with an underlying PIM processor such

that Ppim = N3DMU = 4. The 3DMUs are chained one another forming a ring

memory network that surrounds the host (“halo”-like organization). The 4-node

ring average distance is dmem-net = 1.

Each 3DMU has 32 memory slices and, in turn, each memory slice is composed

of 8 interleaved memory modules and has a capacity of 256 MB;

4. Each one of the four PIM processors is composed of Ppim-PE = 16 PIM PEs, one

MINF and a crossbar internal interconnection.

Each PIM PE is logically assigned to a single memory slice of the 3DMU in

which it is located. The same assignment is repeated for every host PE; as a

matter of fact, every host PE group, logically assigned to a given MINF, is

closer to a certain 3DMU with respect to the others. As said before, each 3DMU

has 32 memory slices of which 16 have been logically assigned to the

underlying PIM cores, whereas the other 16 memory slices are assigned to the

group of 16 host PEs (“closer” to the given 3DMU).

Therefore, the whole architecture has a logical NUMA organization due to the

one-PE-per-memory slice mapping;

5. cache coherence is automatic, directory-based, with home-flush and local

invalidation optimization mechanisms. Home nodes are chosen statically;

6. process run-time support is with exclusive-mapping, therefore the maximum

number of PEs that can be exploited is Npim = 64 and Nhost = 64 for PIM and host

cores respectively, and I/O-based RDY/ACK communications.

• Multi-host PIM architecture

The multi-host architecture reported in the following figure is characterized by:

72

Figure 6.3: The multi-host PIM architecture.

1. all the missing specifications detailed in Chapter 4;

2. Phost = 4 host processors, each one composed of Phost-PE = 16 PEs/cores and 4

MINFs. Each MINF is logically connected to a group of 4 PEs and is physically

connected to a given 3DMU through a high bandwidth SerDes link (thus, again

dnet = 1). The internal interconnect is a two-dimensional mesh with an average

distance dhost-net-int = 4;

3. each one of the four single-host logical sub-system has the same organization

and local parameters value of the previous case; global parameters can be

defined considering: the total number of 3DMU and PIM processors, i.e. Ppim =

N3DMU = 16, the total number of host and PIM PEs, i.e. Npim = 256 and Nhost = 64,

and the average distance of the global memory network, i.e. a ring with 16

nodes and dmem-net-global = 4;

4. The not mentioned parameters and further considerations are the same of the

previous single-host case.

Q analysis

Let us assume that our PIM architecture, both in the case of a single or multi-host,

constitutes a single node of a cluster of workstations; therefore, input stream items are

received from the external cluster network and are written in memory by an intelligent NIC

through the efficient RDMA (Remote Direct Memory Access) facility. In this case, the

intelligent NIC computation acts as an “external” producer process that cooperates with Q.

A RDY/ACK communication model among the NIC computation, i.e. basically a send

primitive, and Q can be implemented as well exploiting interrupts (NIC to Q's PE) and

Memory-Mapped I/Os (Q's PE to NIC) for sender-receiver synchronization.

Thus, every integer type item x is written in a target variable of size σ1 (padding is

properly added due to the low integer type size) and is read from memory by Q that starts

73

its computation.

The Q computation can be compiled using the D-RISC ([1]), i.e. RISC-like, assembler

formalism according to the logical scheme reported in the following.

We should highlight that the goal of this part is to evaluate the “pure” code calculation

time of Q when it is executed over a pipelined scalar CPU (i.e. over a PIM or host PE).

START: < receive x >

< compute x > // it could be < update x > or < query x >

< set_ack > // set ACK = 1

GOTO START

The receive-set_ack assembler code is provided in [1] and has a low calculation time, i.e.

Tsetup ~ 10 τ (notice that set_ack refers to the RDY/ACK cooperation model of section 4.1).

Let us compile the compute part, by distinguishing the update and query procedures, in

order to derive its calculation time:

< compute x >

< update x >

CLEAR Rj

LOOP: CALL Rhj, Rret

// input stream element value is in Rx from < receive x > and output is put in Rt

LOAD RCM, Rt, Rcm

INCR Rcm

STORE RCM, Rt, Rcm

ADD RCM,RD,RCM

INCR Rj

IF < Rj, RD, LOOP

< query x >

CLEAR Rj

MOV Rmax_int, Rm // Rm is set with max_int value in Rmax_int

LOOP: CALL Rhj, Rret

// input stream element value is in Rx from < receive x > and output is put in Rt

LOAD RCM, Rt, Rcm

74

IF > Rcm, Rm, SKIP

MOV Rcm, Rm // at end the estimate for x is in Rm

SKIP: INCR Rj

IF < Rj, RD, LOOP

The above code has been optimized, according to the methodology reported in [1]

concerning the pipelined-CPU compilation optimizations, and the resulting “pure” code

calculation times are:

• Tcalc-0-update = (Thj + 8τ) D = 920 τ

• Tcalc-0-query = (Thj + 6.6τ) D = 864 τ

with D = 40 and the calculation time for a single hash function Thj equal to 15 τ; as

suggested in [40], it has been calculated using a bitmasking operation in place of the more

time consuming mod w instruction exploiting the fact that w is a power of 2.

Let us now evaluate the number of LLC faults Nfault-LLC in order to derive the effective

internal calculation time of Q module. Although we could potentially define Nfault-LLC-host and

Nfault-LLC-PIM, with Nfault-LLC-host lower than Nfault-LLC-PIM due to the host PE multi-level cache

hierarchy and, therefore, the higher probability to exploit spatial and/or temporal locality,

we simply define Nfault-LLC because caches cannot be exploited at all with the given CM

sketch computation (thus: Nfault-LLC-host = Nfault-LLC-PIM = Nfault-LLC).

As a matter of fact, the CM sketch size is about 168 MB, thus much greater than any

cache capacity, and accesses are performed, one for every row, completely random with no

prefetching opportunities due to the too fine-grained computation (the mean time among

two consecutive row random accesses is very short) and to the difficulties to prefetch

effectively hashing data structures ([49]).

Therefore, the LLC fault number is equal to D and it occurs for every input stream item

(neglecting one fault for every input stream item reading access and instruction faults that

occur only for the first element).

The internal calculation time for Q can be evaluated as:

Tcalc = Tcalc-0 + Tfault = Tcalc-0 + Nfault-LLC Ttransf (σ1)

75

where Ttransf (σ1) is the latency needed to transfer a primary cache block from memory.

The above formula is very general and it can be used to evaluate the computational

characteristics of a given processing module; more specifically, we will classify a general

process computation as compute-intensive if Tcalc-0 >> Tfault and, on the contrary, as

memory-intensive if Tcalc-0 << Tfault . This classification can be applied to every structured

parallel application considering every single processing module of which it is made up.

Although this seems a complex task, we would be generally interested in evaluating

computational characteristics of functional modules. Moreover, if a parallel pattern with

functional replication is exploited (more probable case), then every processing module has

the same computational characteristics of the others, such that only a “one-for-all” module

evaluation is needed.

Once we know the computational characteristics of a single processing module, or

parallel application, we can then think to a host cores mapping, if it is compute-intensive,

or PIM cores mapping if, on the contrary, is memory-intensive.

Thus, applying what said so far to the Q computation, by distinguishing according to the

single and multi-host architectures, we can proceed as follows:

• Single-host PIM architecture

Let us assume to map the Q module over a certain host PE; then, from Chapter

4, we have Ttransf (σ1) = Lread-C1-host = 71τ. Thus, for Nfault-LLC = D = 40 :

▪ Tcalc-update = Tcalc-0-update + D Ttransf (σ1) = 920 τ + 2840 τ = 3760 τ

▪ Tcalc-query = Tcalc-0-query + D Ttransf (σ1) = 864 τ + 2840 τ = 3704 τ

therefore, for both phases, the time needed to retrieve data from memory is

more than three times greater with respect to the “pure” code computation time.

Let us try with a PIM mapping, for which Ttransf (σ1) = Lread-C1-PIM = 25 τ :

▪ Tcalc-update = Tcalc-0-update + D Ttransf (σ1) = 920 τ + 1000 τ = 1920 τ

76

▪ Tcalc-query = Tcalc-0-query + D Ttransf (σ1) = 864 τ + 1000 τ = 1864 τ

thus, for both phases, the time needed to transfer primary cache blocks from

memory is comparable to the “pure” code computation time.

Actually this result is not new since, as reported in [31], different scientific

computing kernels that are memory-intensive over a general processor

execution, become compute-intensive over a PIM execution (or compute and

memory activities are comparable as in our case).

• Multi-host PIM architecture

Let us assume to map the Q module over a certain host PE of a given single-

host logical sub-system.

From Chapter 4 we have: Ttransf (σ1) = Lread-C1-local-host = 63τ . Thus:

▪ Tcalc-update = Tcalc-0-update + D Ttransf (σ1) = 920 τ + 2520 τ = 3440 τ

▪ Tcalc-query = Tcalc-0-query + D Ttransf (σ1) = 864 τ + 2520 τ = 3384 τ

Instead with a PIM mapping, we have the same cost of the single-host case

with similar considerations.

Thus, we can conclude that the ideal service time of a single module Q, taking into account

all the variants detailed so far, is:

• Single-host PIM architecture

TQ-id-update = {
1920 τ PIM mapping

3760 τ host mapping

TQ-id-query = {
1864 τ PIM mapping

3704 τ host mapping

77

• Multi-host PIM architecture

TQ-id-update = {
1920 τ PIM mapping

3440 τ host mapping

TQ-id-query = {
1864 τ PIM mapping

3384 τ host mapping

Let us finally evaluate the energy costs of the Q sequential computation exploiting cost

models presented in Chapter 5.

Here we should distinguish two cases merely according to the kind of mapping chosen;

as a matter of fact, the Q allocation is performed considering only a single-host logical sub-

system when targeting a multi-host PIM architecture; thus, energy costs for the single and

multi-host variants coincide (for a sequential module allocation).

Therefore, we have:

• host mapping

In this case, the host PE accesses an external directly connected 3DMU, in which

the CM sketch is stored, consuming Ehost-mem-acc(σ1) ~ 2.95 nJ, with dnet = 1, for every

LLC fault; thus:

Eseq-host ~ Ehost-mem-acc(σ1) Nfault-LLC = 118 nJ

• PIM mapping

In this case, the PIM core accesses a local 3DMU memory slice, in which the CM

sketch is stored, consuming Epim-mem-acc(σ1) ~ 1.41 nJ for every LLC fault, thus:

Eseq-pim ~ Epim-mem-acc(σ1) Nfault-LLC = 56.4 nJ

Summarizing, we can conclude that, for every studied variant, when a PIM core mapping

is exploited for the sequential Q module allocation, then 50% reduction both in execution

time and energy consumption is achieved with respect to a host core allocation choice.

78

6.2.3 Parallel analysis with a single-host PIM architecture – CM Sketch
Update

As previously anticipated, the parallel strategy chosen for the CM sketch algorithm, both

for the update and query procedures, is characterized by the functional replication of the

sequential module Q. Thus, assuming that the optimal parallelism degree is given, the

energy and performance analysis related to the set of independent functional modules is

straightforward; what should be accurately studied is how to effectively distribute/partition

the input data stream in order to maximize the offered bandwidth.

In the following, different parallelization variants will be proposed for the update

procedure computation, each one characterized by a different input data partitioning

scheme and, consequently, a different parallelism degree resulting from the effectiveness of

the strategy adopted. As a matter of fact, we have previously shown that the optimal

parallelism degree nopt is inversely proportional to the mean time needed to perform the

input data distribution TDD.

Moreover, we will assume that each workeri node (namely the cache controller of the

PE in which it is mapped) is home node of the shared target variables blocks associated to

the channel DD-workeri, used to connect each worker to a data distribution module (if

any). In this way, contentions are minimized and the home-flush optimization provides

important benefits in that no other communications except the one for the pure message

copy are needed.

Centralized Scatter (map parallel pattern)

This solution is very similar to the one proposed in [38] and it consists of a centralized

sequential scatter module that implements a count-based sliding window in order to collect

a certain amount of input stream items and then scatter them to the set of workers (i.e. it is

basically a map parallel pattern with no data collecting module).

The count-based sliding-window implementation consists of M consecutive receive

primitives over the input stream elements which are then scattered into n partitions of M/n

items each. Notice that each item is written in a single target variable of size σ1 = 32 bytes

(padding is properly added due to the low integer type size), such that the size of the

sliding-window is Mσ1 Bytes and every partition is g = Mσ1/n Bytes, with M ≥ n.

79

Thus, according to what said so far, the maximum offered bandwidth can be achieved if

the following equality is satisfied:

 TDD =
T Q−id−update

n

such that n ≥ 1. Thus, we can solve it as follows:

M Treceive + Tscatter (n, M) =
T Q−id−update

n

M Tsetup + n Tsetup + M Ttransm(σ1) =
T Q−id−update

n

M =
T Q−id−update−n2 T setup

n(T setup+T transm(σ1))
(1)

since M ≥ n, then the following inequality is also valid:

n ≤
T Q−id−update−n2 T setup

n(T setup+T transm(σ1))

Therefore, we can solve it (second-degree inequality) and then, considering only the upper

integer part of the greater resulting root, we obtain:

n ≤ ⌈ √ T Q−id−update

2T setup+T transm(σ1)
⌉ (2)

from which nopt can be taken as:

nopt = ⌈ √ T Q−id−update

2T setup+T transm(σ1)
⌉

We can now substitute the resulting nopt value to the lower integer part of inequality (1),

such that M ≥ ⌊(1)⌋ , and find the minimum value of M which satisfies both M ≥ ⌊(1)⌋

80

and M ≥ n.

Before going on, it should be noted that the value of Ttransm(σ1) changes according to the

kind of mapping chosen for the workers set. Moreover, since input stream elements (one

per block) are read from memory (where they are written by the NIC as in the sequential

case), then a pipelined effect can be exploited when reading an input stream element from

memory and sending it via C2C to a target worker. Thus, we can define Ttransm(σ1) as the

maximum value among the memory reading latency and the C2C block transfer; formally:

Ttransm(σ1) = max(Lread-C1(σ1), LC2C (σ1))

where, again, Lread-C1(σ1) and LC2C(σ1) vary according to the chosen mapping variant.

Therefore, we should distinguish two cases, according to the host or PIM cores mapping,

in order to find the optimal parallelism degree value:

• PIM mapping (n = npim)

When a PIM mapping for functional modules is exploited, then we have to take

into account the fact that inter-stack communications with a larger latency can take

place when n ≥ Ppim-PE, assuming that the scatter module is mapped over a PIM core.

Thus, in this case the Ttransm(σ1) value is equal to:

Ttransm(σ1) = max(Lread-C1-PIM(σ1), LC2C-avg(σ1, ploc))

where LC2C-avg(σ1, ploc) is defined as:

LC2C-avg(σ1, ploc) = LC2C-PIM-local(σ1) ploc + LC2C-PIM-remote(σ1) (1 – ploc)

and, in turn, the probability of having an intra-stack/local communication is defined

as:

ploc = {
1 if n≤Ppim−PE−1

(P pim−PE−1)

n
if n≥Ppim−PE

81

As for the parameter cext in Chapter 5, here we are assuming that the workers set

mapping is performed starting from the PIM processor in which the scatter module

is mapped; this justifies the chosen extremes of the ploc definition.

As can be noted, the actual value of ploc depends on n, thus also LC2C-avg(σ1, ploc) and

Ttransm(σ1) depend on n. Consequently, an equation like n = f (n) has to be solved

iteratively.

From Chapter 4, the communication latencies costs that we need to evaluate

Ttransm(σ1) are: LC2C-PIM-local(σ1) = 18τ, LC2C-PIM-remote(σ1) = 68τ and Lread-C1-PIM(σ1) = 25τ.

Moreover, from above, we have also Tsetup ~ 10τ and TQ-id-update = 1920τ.

By iteratively substituting increasing values of n that satisfy inequality (2), it can be

found that the best value for n, i.e. nopt, is 7. The other parameters values exploited

are ploc = 1 and Ttransm(σ1) = max(Lread-C1-PIM(σ1), LC2C-PIM-local(σ1)) = Lread-C1-PIM(σ1) = 25τ.

Thus, substituting nopt to ⌊(1)⌋ we found that also M = 7 (since: M ≥ ⌊(1)⌋ = 5

but also M ≥ nopt = 7).

Indicating with Σ a general parallel version of the Count-Min Sketch algorithm, the

resulting service time and offered bandwidth of this parallel solution, exploiting a

PIM cores mapping, are:

▪ TΣ-id-update =
T Q−id−update

nopt

~ 274.3τ

▪ BΣ-id-update ~ 3.64 106 items/sec

From the point of view of energy consumption, the costs paid are:

▪ M Epim-mem-acc(σ1) = 9.87 nJ, for input stream elements memory reading;

▪ nopt Eseq-pim = 394.8 nJ, for functional modules computations;

▪ no inter-stack communication is involved (i.e. Escatter-pim ~ M Epim-mem-acc(σ1)).

Thus, we can conclude that the total energy consumption cost is Epar-pim = 404.67 nJ.

Obviously, with a host PE allocation of the scatter module both performance and

energy costs would be subjected to degradations due to the external/off-chip

communications.

82

• Host mapping (n = nhost)

When a host mapping for functional modules is exploited in a single-host PIM

architecture, then all the communications are performed via on-chip C2C.

Thus, the Ttransm(σ1) value in this case is equal to:

Ttransm(σ1) = max(Lread-C1-host(σ1), LC2C-host(σ1)) = Lread-C1-host(σ1) = 71τ

since, from Chapter 4, LC2C-host(σ1) = 36τ.

In this case, Ttransm(σ1) does not depend on n; hence, nopt can be directly derived

using the above equation from which we obtain nopt = 7 (with TQ-id-update = 3760τ).

Using now the same approach of the previous PIM mapping case, we can substitute

nopt to ⌊(1)⌋ and, again, we obtain M = 7.

Therefore, the resulting service time and offered bandwidth of this parallel solution,

exploiting a host cores mapping, are:

▪ TΣ-id-update =
T Q−id−update

nopt

~ 537.15τ

▪ BΣ-id-update ~ 1,86 106 items/sec

From the point of view of energy consumption, the costs paid are:

▪ M Ehost-mem-acc(σ1) = 20.65 nJ, for input stream elements memory reading;

▪ nopt Eseq-host = 826 nJ, for functional modules computations.

Thus, we can conclude that the total energy consumption cost is Epar-host = 846.65 nJ.

In conclusion, a PIM mapping of the parallel CM sketch update procedure, that exploits a

map parallel pattern with a sequential and centralized scatter, is able to provide, as for the

sequential case, about 50% reduction both in execution time (i.e. 2x speed-up and doubled

offered bandwidth) and energy consumption with respect to a host mapping.

Moreover, the optimal parallelism degree exploited by both mapping is nopt = 7. Obviously,

this is a best case in that, when a PIM mapping is exploited, then no inter-stack

communications are involved for nopt < Ppim-PE.

Anyway, in the following analysis we will study a solution for which nopt > Ppim-PE and,

83

therefore, inter-stack cooperation is mandatory.

Notice that we could also think to a tree-structured scatter solution mapped directly over

the workers set; anyway, as seen in Chapter 5, the tree scatter solution is able to provide a

small performance improvement and no energy benefits. Thus, it could be studied when we

are interested to the requested bandwidth and the sequential scatter solution results a

bottleneck.

Master-Worker parallel pattern

In this solution we will exploit the master-worker parallel pattern (or equivalently a farm

pattern with no collector module) with no sliding-window implementation.

Therefore, an input stream item is read from memory by the master module and is then

scheduled to a given worker according to a certain scheduling policy (e.g. round-robin, on-

demand, etc.).

In its general usage, this parallel pattern is used for state-less parallel computation.

Anyway as said above, in our case the coherency of the replicated sketch/state will be

solved at the querying time. The following figure shows a graphical representation of the

master-worker parallel pattern with an input stream channel.

Figure 6.4: Representation of the master-worker parallel patter.

Exploiting the same approach of the previous case, the maximum offered bandwidth can be

achieved when the following equality is satisfied:

 TDD =
T Q−id−update

n

84

Therefore, remembering that each item is inserted in a block of size σ1, we can proceed as
follows:

Treceive + Tmaster (1) =
T Q−id−update

n

Tsetup + Tsetup + Ttransm(σ1) =
T Q−id−update

n

we can now take nopt as:

nopt = ⌈
T Q−id−update

2T setup+T transm(σ1)
⌉ (3)

Let us distinguish again two cases according to the host or PIM cores mapping:

• PIM mapping (n = npim)

Again, assuming that also the master module is mapped over a PIM core, in this

case we should take into account possible inter-stack communications that can take

place for n ≥ Ppim-PE with probability (1 - ploc).

Thus, the Ttransm(σ1) value is again defined as:

Ttransm(σ1) = max(Lread-C1-PIM(σ1), LC2C-avg(σ1, ploc))

and it depends on n that, in turn, depends on Ttransm(σ1); the same equation n = f (n)

has to be solved again.

Therefore, exploiting an iterative method that assigns incremental values to n, such

that the following inequality is satisfied:

n ≤ ⌈
T Q−id−update

2 T setup+T transm(σ1)
⌉

the optimal parallelism degree obtained is nopt = 31. The other parameters values are

ploc = 15/31 and Ttransm(σ1) = max(Lread-C1-PIM(σ1), LC2C-avg(σ1, ploc)) = LC2C-avg(σ1, ploc) ~

43.8τ with LC2C-avg(σ1, ploc) = LC2C-PIM-local(σ1) ploc + LC2C-PIM-remote(σ1) (1 – ploc).

85

The resulting performance parameters for this parallel solution, exploiting a PIM

cores mapping, are:

▪ TΣ-id-update =
T Q−id−update

nopt

~ 61.94τ

▪ BΣ-id-update ~ 16.14 106 items/sec

From the point of view of energy consumption, the costs paid for a single input

stream item computation are:

▪ Epim-mem-acc(σ1) ~ 1.41 nJ, for reading the input stream element from memory;

▪ Eseq-pim = 56.4 nJ, for the computation of the worker that receives the item;

▪ (1 – ploc) Epim-to-pim(σ1) ~ 1.93 nJ, for sending the item to an external/off-stack

target worker with probability (1 – ploc).

In conclusion, the average energy consumed is Epar-pim = 59.74 nJ.

Again, with a host allocation of the master module both performance and energy

costs would be subjected to degradations due to the off-chip communications

among the master process and each worker in the workers set.

• Host mapping (n = nhost)

When a host mapping for functional modules is exploited, then all the PE-to-PE

communications are performed via on-chip C2C; thus, Ttransm(σ1) is again equal to:

Ttransm(σ1) = max(Lread-C1-host(σ1), LC2C-host(σ1)) = Lread-C1-host(σ1) = 71τ

As it can be noted, in this case Ttransm(σ1) does not depend on n and we can find the

optimal value for the parallelism degree by simply solving the above equation (3)

and obtaining nopt = 42.

The resulting service time and offered bandwidth of this parallel solution,

exploiting a host cores mapping, are:

▪ TΣ-id-update =
T Q−id−update

nopt

~ 89.53τ

86

▪ BΣ-id-update ~ 11.16 106 items/sec

Energy consumption costs for a single input stream item computation are:

▪ Ehost-mem-acc(σ1) ~ 2.95 nJ, for input stream element memory reading;

▪ Eseq-host = 118 nJ, for the scheduled worker computation.

Thus, we can conclude that the total energy consumption cost is Epar-host = 120.95 nJ.

Comparison

In conclusion, a PIM mapping of the master-worker parallel pattern, computing the CM

sketch update procedure, is able to speed-up the computation execution time of about

1.44x with respect to the host mapping (i.e. about 31% of service time reduction and,

equivalently, about 44% of offered bandwidth increase). Moreover, the optimal parallelism

degree exploited by the PIM mapping (i.e. 31) is lower than the one exploited by the host

mapping (which is 42).

The performance gap is reduced with respect to the previous parallel solution because of

the degrading inter-stack communications that take place in the PIM mapping variant.

Anyway, a more fair comparison will be performed in section 6.2.5 for the multi-host case.

From the point of view of energy, the PIM mapping choice is still able to provide about

50% reduction of energy consumption.

6.2.4 Parallel analysis with a single-host PIM architecture – CM Sketch
Query

As previously said, when a query for an item x arrives, it is sent in multicast to every

functional module that, in turn, queries its local sketch to compute its partial results. All the

partial results from each worker are then collected exploiting a certain reduce scheme and

the final query result is returned.

Since this phase cannot be speeded up with respect to the sequential computation, due to

the work replication, we will use the best optimal parallelism degrees found in the previous

update procedure solutions; i.e. nopt-pim = 31 for the PIM mapping and nopt-host = 42 for the

host mapping variant.

Therefore, the parallel query procedure computation over an item x consists of the

following phases:

87

1. receive(x) and multicast(x): the item is read from memory by the data distribution

module, or by the root worker if a tree-structured multicast is exploited, and it is

sent in multicast to every worker in the workers set;

2. compute(x): every worker performs its computation, by querying its local sketch,

and then constructs a vector of size D containing all its partial results (i.e. all the D

counters values found computing the D hash functions over x);

3. reduce(+): every worker participates to the reduce collective operation exchanging

its partial results vector according to the reduction scheme adopted, and, at the end,

a global results vector is computed as the sum of all the partial results vectors;

4. calculation of the minimum: given the global results vector, then the minimum

among its entry values, which is actually the final result of the query, is returned.

The calculation of the minimum is performed in centralized manner according to

the reduction scheme exploited; i.e. if a centralized solution is exploited then the

centralized module calculates the minimum, otherwise, if a tree-structured solution

is exploited, then the tree root worker computes it.

As it can be noted, although this approach implies a computational overhead, i.e. global

reduce(+) computation, the coherence problem introduced by the adopted parallel strategy

for the update procedure is finally solved.

As previously said, the best that we can do is to achieve the sequential Q module

bandwidth and service time; thus, we should be able to overlap the multicast(x) and the

reduce(+) phases in order to obtain an offered bandwidth comparable to the sequential one.

First of all, let us define the following calculation times obtained exploiting the same

pipelined-CPU evaluation methodology (detailed in [1]) of the sequential case:

• Tsum-vector = 280τ is the time needed to perform the sum of two vectors of size D;

• Tmin = 250τ is the time needed to perform the calculation of the minimum among

88

the values of a vector of size D;

• Tw-PIM = 1840τ and Tw-host = 3680τ are the internal calculation time of every worker

mapped over a PIM or host PE respectively (without considering the computation

of the minimum that we had in the sequential case but considering the partial

results vector construction).

We can now study every phase in detail by distinguishing among the PIM and host cores

mapping of the workers set:

• PIM mapping (nopt = nopt-pim = 31)

Multicast

As seen in Chapter 5, to multicast an item of size σ1 we can exploit a centralized or

a tree-structured solution mapped over the same workers.

In the first case, we would have (if the multicast module is mapped over a PIM

core):

Treceive + Tmulticast (1) = Tsetup + n Tsend (1) = Tsetup + n (Tsetup + Ttransm(σ1)) = 1677.8τ

again with Ttransm(σ1) = max(Lread-C1-PIM(σ1), LC2C-avg(σ1, ploc)) = LC2C-avg(σ1, ploc) ~ 43.8τ,

ploc = 15/31 and Tsetup ~ 10τ. Thus, it can be potentially masked exploiting the

pipeline effect with the workers set stage (an equivalent host mapping of the

multicast module would not be masked since we would have Tmulticast (1) = 3048τ

due to the higher Ttransm(σ1) value which is equal to LC2C-host-pim(σ1) = 88τ).

Instead the tree-structured solution, has a service time equal to:

Treceive + Tmulticast (1) = Tsetup + 2 Tsend (1) = Tsetup + 2 (Tsetup + Ttransm(σ1)) = 166τ

with Ttransm(σ1) that, in the worst case, is equal to the external PIM-to-PIM

communication latency, i.e. LC2C-PIM-remote(σ1) = 68τ.

Also this solution can be masked but this time we exploit the communication

processor facility (or, equivalently, communication thread) of every PIM PE to

89

offload and overlap the two send latencies with the functional computation.

Although, in principle, both solutions can be exploited, we prefer the tree-

structured one for energy efficiency reasons.

As a matter of fact, from Chapter 5 we have:

▪ Emulticast-pim ~ Epim-mem-acc(σ1) + Epim-to-pim(σ1) cext = 61.25 nJ, with cext = 16;

▪ Etree-multicast-pim ~ Epim-mem-acc(σ1) + Epim-to-pim(σ1) (ppim – 1) = 5.15 nJ, with ppim = 2.

Reduce

Although the centralized reduce solution can be potentially masked with respect to

the tree-structured one, in our case it results a bottleneck; in fact:

Treduce = n(Tsum-vector + Tsend (D/σ1)) = n(Tsum-vector + Tsetup + D/σ1 Ttransm(σ1)) = 15779τ

with Ttransm(σ1) = LC2C-avg(σ1, ploc) ~ 43.8τ and ploc = 15/31. We have assumed a PIM

core mapping of the centralized reduce module because, with a host mapping, we

would have obtained even a larger value.

With a tree-structured solution, and the same parameters value of the centralized

one, we have:

Treduce = log2 n(Tsum-vector + Tsend (D/σ1)) ~ 1941.66τ

with Ttransm(σ1) =
n−ppim

n−1
LC2C-PIM-local +

ppim – 1

n−1
LC2C-PIM-remote(σ1) ~ 19.66τ, since

in the tree-structured scheme only ppim -1 out of n - 1 communications are external.

The energy consumption cost is: Etree-reduce-pim ~ Epim-to-pim(σ1) (ppim – 1) D/σ1 = 18.7 nJ.

Obviously, the above time has to be added to the workers set service time.

Finally, if a tree-structured + centralized solution is exploited, with independent

intra-stack reduction trees that work directly in memory and only at the end return

their final results (see Chapter 5), we would have:

Treduce = log2 (n/ppim)(Tsum-vector + Tsend-int (D/σ1)) + ppim(Tsum-vector + Tsend-ext (D/σ1))

90

where Tsend-int (D/σ1) refers to the internal communication among two PIM cores

within the same PIM processor, thus we have Ttransm(σ1) = LC2C-PIM-local (σ1) = 18τ,

whereas Tsend-ext (D/σ1) refers to the external communication among a PIM core and

the host core in which the centralized reduce module is mapped, i.e. Ttransm(σ1) =

LC2C-PIM-host(σ1) = 88τ.

Therefore, the first member is equal to 1520τ and it has to be added to the service

time of the workers set stage; the second member is equal to 1460τ and it could be

potentially masked.

If this solution is chosen, then the centralized reduce module has to compute also

the local minimum with an increment of its service time to 1710τ which, anyway,

does not constitute a bottleneck (as a matter of fact, if a tree-structured solution is

exploited, then the local minimum calculation is performed by the tree-root worker

with an increase of the reduce latency and, therefore, of the workers set service

time).

Energy consumption costs associated to the tree + centralized reduce solution are:

Etree+centralized ~ Ehost-to-pim(σ1) ppim D/σ1 = 20 nJ. Thus, it is a bit more than the tree-

structured solution but this is true only for ppim ≤ 2, i.e. rare case in a large-scale or

highly-parallel application.

In conclusion, the better energy-performance trade-off is provided by the tree-

structured + centralized solution and, therefore, it will be exploited for our parallel

solution of the query procedure.

The service time of each worker becomes Tw-PIM = 1840τ + 1520τ = 3360τ.

The resulting service time and offered bandwidth of this parallel solution,

exploiting a PIM cores mapping, are:

▪ TΣ-id-query = Tw-PIM = 3360τ

▪ BΣ-id-query ~ 297.62 103 items/sec

The time increase with respect to the sequential case is of about 1.8x times, i.e.

80% of increment and 44% degradation of the offered bandwidth.

The total energy consumption cost is:

Etree-multicast-pim + nopt-PIM Eseq-PIM + Etree+centralized = 1773.55 nJ

91

• Host mapping (nopt = nopt-host = 42)

Multicast

Let us adopt the same tree-structured multicast solution of the previous case with a

service time equal to:

Treceive + Tmulticast (1) = Tsetup + 2 Tsend (1) = Tsetup + 2 (Tsetup + Ttransm(σ1)) = 172τ

with Ttransm(σ1) = max(Lread-C1-host(σ1), LC2C-host(σ1)) = Lread-C1-host(σ1) = 71τ. Again it can

be overlapped with the functional computation exploiting a communication

processor or thread facility.

No energy costs are paid, except Ehost-mem-acc(σ1) for reading the input stream item

from memory, since on-chip C2C communications are exploited at all.

Reduce

Furthermore, we use an efficient tree-structured reduce for our parallel solution

with latency:

Treduce = log2 n(Tsum-vector + Tsend (D/σ1)) ~ 2534.39τ

and no energy consumption costs, thanks to the on-chip C2C communications.

The reduce latency time and the calculation of the minimum, performed by the tree-

root worker, have to be added to the service time of the workers set stage that

becomes equal to: Tw-host = 3680τ + 2534.39τ + 250τ = 6464.39τ.

The resulting service time and offered bandwidth of this parallel solution,

exploiting a host cores mapping, are:

▪ TΣ-id-query = Tw-host = 6464.39τ

▪ BΣ-id-query ~ 154.69 103 items/sec

The increasing in time with respect to the sequential case is of about 1.74x, i.e.

74% of increment and 42% degradation of the offered bandwidth (slightly less with

respect to PIM mapping case thanks to the on-chip communications exploitation).

The total energy consumption cost is:

92

Ehost-mem-acc(σ1) + nopt-host Eseq-host = 4958.95 nJ

Comparison

In conclusion, a PIM mapping of the query procedure parallel program, which consists of a

multicast + map + reduce structured computation, is able to provide a better offered

bandwidth and energy efficiency with respect to the host mapping exploitation.

In particular, the offered bandwidth is about 1.92x greater than the one achieved with the

host mapping and, even more, energy consumption is reduced of about 2.8 times exploiting

a PIM mapping (i.e. about 64% reduction).

Thus, positive results have been achieved with a PIM cores exploitation although, in the

host mapping case, efficient on-chip C2C communications can be adopted.

6.2.5 Parallel analysis with a multi-host PIM architecture – CM Sketch
Update

As previously detailed, the sequential service time cost does not change in the PIM
mapping case but it changes for the host mapping one due to the different architectural
specifications (see section 6.2.2). Thus, we have:

TQ-id-update = {
1920 τ PIM mapping

3440 τ host mapping

with a lower gap (i.e. about 1.8x time reduction with a PIM mapping exploitation) with

respect to the sequential execution over a single-host PIM architecture (i.e. were we had

about 2x time reduction on favour of PIM mapping).

Let us adopt again the master-worker parallel pattern in order to study the parallel update

procedure in the multi-host case; it is able to provide higher values for the optimal

parallelism degree with respect to the other experimented map pattern solution.

Exploiting the same approach of section 6.2.3, we can find the optimal parallelism

degree with the following equation:

nopt = ⌈
T Q−id−update

2 T setup+T transm(σ1)
⌉

93

We should now distinguish again different cases according to the kind of mapping that can

be exploited. Anyway, when a PIM mapping is exploited involving only a single-host

logical sub-system, then we obtain the same nopt-pim value (i.e. 31) and the same results of

section 6.2.3.

A formal study of the PIM mapping variant involving different single-host logical sub-

system should be performed for values of nopt-pim that are larger than the number of PIM

cores available in a single-host logical sub-system.

Therefore, we should now study only a host mapping of the functional modules that this

time involves more than one host (as a matter of fact the number of host processors is now

Phost = 4, each one with Phost-PE = 16 cores).

• Host mapping (n = nhost)

When a host mapping of the workers set is exploited in a multi-host PIM

architecture, then external/off-chip communications among host PEs with a larger

latency can take place for n ≥ Phost-PE, assuming that the master module is mapped

over a host core.

Thus, the Ttransm(σ1) value should be evaluated as:

Ttransm(σ1) = max(Lread-C1-host-local(σ1), LC2C-avg(σ1, qloc))

where LC2C-avg(σ1, qloc) is defined as:

LC2C-avg(σ1, qloc) = LC2C-host-local (σ1) qloc + LC2C-host-remote(σ1) (1 – qloc)

and, in turn, the probability of having an off-chip/external communication among

two PEs in different host processors is defined as:

qloc = {
1 if n≤Phost−PE−1

(Phost−PE−1)

n
if n≥Phost−PE

94

As for parameters cext in Chapter 5 and ploc in section 6.2.3, here we are assuming

that the workers set mapping is performed starting from the host processor in which

the master module is mapped; this justifies the chosen extremes above.

Again, the actual value of qloc depends on n and an equation like n = f (n) has to be

solved iteratively, such that the following inequality is satisfied:

n ≤ ⌈
T Q−id−update

2T setup+T transm(σ1)
⌉

The optimal parallelism degree found is nopt = 34 (thus the number of host

processors involved in the computation is phost = 3). The other parameters values are

qloc = 15/34, Ttransm(σ1) = max(Lread-C1-host-local(σ1), LC2C-avg(σ1, qloc)) = LC2C-avg(σ1, qloc) ~

79.42τ and, from Chapter 4, LC2C-host-remote(σ1) = 120τ and LC2C-host-local(σ1) = 28τ .

The resulting performance parameters are:

▪ TΣ-id-update =
T Q−id−update

nopt

~ 101.18τ

▪ BΣ-id-update ~ 9.88 106 items/sec

From the point of view of energy consumption, the costs paid for a single input

stream item computation are:

▪ Ehost-mem-acc(σ1) ~ 2.95 nJ, for reading the input stream element from memory;

▪ Eseq-host = 118 nJ, for the computation of the worker that receives the item;

▪ (1 – qloc) Ehost-to-host(σ1) ~ 4.47 nJ, for sending the item to an external/off-chip

target worker with probability (1 – qloc).

In conclusion, the average energy consumed is Epar-host = 125.42 nJ.

Comparison

To sum up, a PIM mapping of the master-worker pattern, that exploits a single-host

logical sub-system with performance and energy results available in 6.2.3, is able to

speed-up the computation execution time of about 1.6x with respect to a host

mapping that involves phost = 3 host processors (i.e. about 38% of service time

95

reduction and, equivalently, about 60% of offered bandwidth increase). Moreover,

the optimal parallelism degree exploited by the PIM mapping (i.e. 31) is slightly

lower than the one exploited by the host mapping (which is 34).

From the point of view of energy, the PIM mapping choice is still able to provide

more than 50% reduction of energy consumption.

6.2.6 Parallel analysis with a multi-host PIM architecture – CM Sketch
Query

Let us refer to section 6.2.4 for the explanation of the strategy adopted to parallelize the

query procedure and for all the parameters values, such as: Tsum-vector = 280τ and Tmin = 250τ,

except Tw-host that is equal to 3360τ due to the different architectural specifications.

As specified in the previous section, when a PIM mapping is exploited involving only a

single-host logical sub-system, then we obtain the same nopt-pim value (i.e. 31) and the same

results of section 6.2.4. Thus, in the following, we will study only the host mapping case

exploiting the nopt-host value found in the previous section (i.e. nopt-host = 34).

• Host mapping (nopt = nopt-host = 34 and phost = 3)

Multicast

Let us adopt the same tree-structured multicast solution of section 6.2.4 with a

service time equal to:

Treceive + Tmulticast (1) = Tsetup + 2 Tsend (1) = Tsetup + 2 (Tsetup + Ttransm(σ1)) = 290τ

with Ttransm(σ1) = max(Lread-C1-host-local (σ1), LC2C-host-remote (σ1)) = LC2C-host-remote (σ1) = 120 τ.

It can be overlapped with the functional computation exploiting the communication

processor facility (or communication thread) available for each host (and PIM) PE.

The total energy cost associated to the tree-structured multicast is:

▪ Etree-multicast-host ~ Ehost-mem-acc(σ1) + Ehost-to-host(σ1) (phost – 1) = 18.95 nJ

Reduce

Again, we use an efficient tree-structured reduce with latency:

96

Treduce = log2 n(Tsum-vector + Tsend (D/σ1)) ~ 2520.58τ

and Ttransm(σ1) =
n−phost

n−1
LC2C-host-local +

phost – 1

n−1
LC2C-host-remote(σ1) ~ 41.09 τ; again,

in the tree-structured scheme only phost - 1 out of n - 1 communications are external.

The energy consumption cost is Etree-reduce-host ~ Ehost-to-host(σ1) (phost – 1) D/σ1 = 80 nJ.

The reduce latency time and the calculation of the minimum, performed by the tree-

root worker, have to be added to the service time of the workers set stage that

becomes equal to: Tw-host = 3360τ + 2520.58τ + 250τ = 6130.58τ.

The resulting service time and offered bandwidth of this parallel solution,

exploiting a host cores mapping, are:

▪ TΣ-id-query = Tw-host = 6130.58τ

▪ BΣ-id-query ~ 163.11 103 items/sec

The increasing in time with respect to the sequential case is of about 1.8x.

The total energy consumption cost is:

Etree-multicast-host + nopt-host Eseq-host + Etree-reduce-host = 4110.95 nJ

Comparison

In conclusion, a PIM mapping of the query procedure parallel program, that exploits a

single-host logical sub-system with performance and energy results available in 6.2.4, is

able to provide a better offered bandwidth and energy efficiency with respect to the

multiple host mapping exploitation.

In particular, the offered bandwidth is about 1.8x greater than the one achieved with the

host mapping and energy consumption is reduced of about 2.32 times exploiting a PIM

mapping.

It should be noted that we achieved shorter performance and energy gap with respect to the

results of section 6.2.4 since the number of host cores exploited is lower (i.e. lower reduce

latency that impacts on the service time) as well as the service time of each worker

allocated over a host PE (due to the multi-host architecture specifications that are

characterized by a lower latency to transfer a cache block from memory after a LLC fault).

97

6.3 Brief summary and conclusive parametric study
In this chapter, Processing-in-Memory architecture variants have been evaluated and

compared in terms of how good or bad they act when executing structured parallel program

examples. In so doing, all the concepts, techniques, results and cost models presented in

previous chapters have been extensively used.

Results obtained show how a sequential or parallel memory-intensive application

benefits from an execution that exploits PIM cores underlying main memory units, from

the point of view of both energy and performance. In particular, when executing a stream-

based structured parallel application, as the one proposed in this chapter, that exploits a

PIM cores mapping for its functional modules, then the obtained results show that the

offered bandwidth is speeded up from 1.4x to 2x with respect to a host cores mapping. In

the same way, energy consumption is reduced from 50% to about 64% exploiting a PIM

cores execution.

Anyway, it should be remarked that in all the previous examples base memory access

and communication latencies have been considered, i.e. neglecting possible conflicts,

although the architectural specifications and run-time support choices are such that

different kinds of contentions are minimized. Thus, a deeper and more complex analysis

should be performed in order to evaluate the under-load latency values and provide more

accurate results.

In the following, a conclusive parametric study will be performed in order to provide a

general idea of the PIM architectures potential in relationship to structured parallel

programs executions.

Conclusive parametric study

Let us consider a functional module of a stream-based computation graph with internal

calculation time Tcalc defined as: Tcalc = Tcalc-0 + Tfault = Tcalc-0 + Nfault-LLC Ttransf (σ1).

Let us assume now that this functional module is executed over a PIM and a host core

of a given PIM architecture. Thus, the calculation time differs in the two executions with

non null probability, such that Tcalc-pim and Tcalc-host can be identified.

Assuming that the two calculation times coincide with the ideal service times of the

functional module, then their components can be compared as follows:

98

• Tcalc-0-pim ≥ Tcalc-0-host: in that it is highly probable that the host processor is

characterized by faster cores, with a greater switching frequency, powerful

functional units, superscalar CPUs, hardware multithreading, etc.

As a matter of fact, we have highlighted many times that a host cores mapping

should be preferred for compute-intensive parallel applications;

• Nfault-LLC-pim ≥ Nfault-LLC-pim: in that, as said in section 6.2.2, the host cores are

characterized by a multi-level cache hierarchy and, therefore, by a higher

probability to exploit spatial and/or temporal locality;

• Ttransf-pim(σ1) < Ttransf-host(σ1) at least as far as the base memory access latency is

concerned.

In a memory-intensive application, as the one studied in this chapter, it could be the case

that Nfault-LLC-pim ~ Nfault-LLC-host, let us use simply Nfault-LLC; even more, when the memory

activities are such that the “pure” calculation time is negligible, i.e. Tcalc-0 << Tfault, then the

following inequality holds: Tcalc-pim < Tcalc-host.

As said above, base access latencies are considered; thus, we emphasize this fact by

writing Tcalc-pim(RQ0) < Tcalc-0-host(RQ0), and equivalently Ttransf-pim(σ1, RQ0) < Ttransf-host(σ1, RQ0),

where RQ0 indicates that we used base latencies to evaluate cache blocks transfers from

memory and, by consequence, the internal calculation times (conversely, RQ would indicate

under-load latencies). It goes without saying that: Ttransf-pim(σ1, RQ0) = Lread-C1-pim(σ1), whereas

Ttransf-host(σ1, RQ0) = Lread-C1-host(σ1).

We can now parallelize our functional module exploiting a structured parallel paradigm

characterized by functional replication with independent workers, e.g. farm, map, master-

worker, and derive two different case studies according to the requested bandwidth

demanded to, or the offered bandwidth achieved by, our parallel application.

• Requested Bandwidth

Let TA the mean interarrival time, such that TA < Tcalc-pim(RQ0), TA < Tcalc-host (RQ0) and

the data distribution computation does not result a bottleneck i.e. TA > TDD.

Thus, the optimal parallelism degrees nopt-pim and nopt-host are equal to:

99

nopt-pim = ⌈
T calc−pim(RQ0

)

T A

⌉ nopt-host = ⌈
T calc−host (RQ0

)

T A

⌉

From the considerations above, we have that nopt-pim < nopt-host. Therefore, the same

requested bandwidth 1/TA can be achieved by both PIM and host mapping but with

different parallelism degrees.

The following figure summarizes what detailed so far:

Figure 6.5: Bandwidth graph in function of the parallelism degree n.

The ratio between nopt-host and nopt-pim is equal to the ratio between Tcalc-host(RQ0) and

Tcalc-pim(RQ0). It is interesting to note that, for our parallel application, i.e. a memory-

intensive one with no cache exploitation, if we take the limit for Nfault-LLC tending to

infinite of the ratio between Tcalc-host(RQ0) and Tcalc-pim(RQ0), then:

lim
N fault−LLC→∞

T calc−host (RQ 0
)

T calc−pim(RQ0
)

=
T transf −host (σ1, RQ 0

)

T transf −pim(σ1, RQ0
)

Thus, without considering conflicts and for very memory-intensive applications,

the ratio between nopt-host and nopt-pim is equal to the ratio between the base memory

access latencies Lread-C1-host(σ1) and Lread-C1-pim(σ1).

100

• Offered Bandwidth

Let TDD the mean time needed to distribute or schedule the input stream items, such

that it results a bottleneck, i.e. TA < TDD.

As we have seen in previous sections, the data distribution time changes with a

PIM or host cores mapping in that Ttransf (σ1) is different, according to the C2C

communication latencies, and depends on n when a multi-chip mapping is involved

(i.e. PIM cores mapping with more than one PIM processors and host cores

mapping with multiple host processors).

Thus, we should distinguish among TDD-pim and TDD-host as the time needed to

distribute data to nopt-pim and nopt-host functional modules respectively.

The optimal parallelism degrees nopt-pim and nopt-host are equal to:

nopt-pim = ⌈
T calc−pim(RQ0

)

T DD−pim

⌉ nopt-host = ⌈
T calc−host (RQ0

)

T DD−host

⌉

and should be derived exploiting an iterative method that assigns incremental

values to npim and nhost such that the following inequalities are satisfied:

npim ≤ ⌈
T calc− pim(RQ0

)

T DD−pim

⌉ nhost ≤ ⌈
T calc−host (RQ0

)

T DD−host

⌉

Deriving a comparison between nopt-pim and nopt-host is more difficult in this case;

therefore, we can reason as follows.

Let:

 α =
T calc−host(RQ0

)

T calc− pim(RQ0
)

then we can recognize different cases according to the possible values of the data

distribution times TDD-pim and TDD-host:

▪ if TDD-pim ~ TDD-host then this means that nopt-pim < nopt-host, and, in particular, we

101

can write: nopt-pim ~ nopt-host /α.

Thus, as for the requested bandwidth case, the same bandwidth 1/TDD can be

achieved by both mapping choices but the PIM cores allocation allows to

exploit an optimal parallelism degree which is α times lower than the one

obtained with a host mapping.

▪ if TDD-pim > TDD-host then this means that nopt-pim < nopt-host but the host mapping

achieves a larger bandwidth equal to 1/TDD-host.

More specifically, let:

β =
T DD−pim

T DD−host

then we can write: nopt-host = α β nopt-pim with β > 1 and also α > 1.

▪ if TDD-pim < TDD-host then this means that a PIM mapping is able to achieve a

larger bandwidth, equal to 1/TDD-pim, for nopt-pim > nopt-host /α.

More specifically, let γ = 1/β, then:

 nopt-pim =
γ
α

nopt-host

In conclusion, we distinguish again three different cases according to the

possible values of α and γ:

▪ γ > α → nopt-pim > nopt-host;

▪ γ ~ α → nopt-pim = nopt-host;

▪ γ < α → nopt-pim < nopt-host;

The validity of this parametric results can be proved directly with specific

numbers of previous sections examples.

102

Conclusion

Summing up, we can conclude with the following significant result:

• In the majority of cases, when a PIM cores mapping is exploited for allocating

independent workers of a memory-intensive structured parallel application,

characterized by functional replication, we are able to achieve the best or the same

bandwidth with a lower or equal parallelism degree with respect to a host core

mapping.

This result is very significant if we are interested in exploiting an exclusive mapping in

order to maximize the application bandwidth and minimize energy consumption in

relationship to the number of active cores exploited for the parallel computation.

103

Chapter 7

Conclusion and Future Works

The aim of this thesis was to study Processing-in-Memory architectures exploiting a

structured approach and a methodology able to capture all the useful details to derive a

performance and energy characterization of parallel programs executed over PIM systems.

For this purpose, we laid emphasis on architectural aspects, structured parallel

computations, performance and energy cost models. In so doing, we were able to perform

an analytical treatment of parallel program benchmarks, executed over target PIM

architectures, focusing on energy and performance aspects.

Thus, we started by collecting all the possible information, provided by the supporting

literature, that could be relevant for our interests; then, we applied our methodology

deriving Abstract Machine Models for PIM architectures. Exploiting the abstract model,

we studied two different kinds of PIM architecture variants: the single-host and the multi-

host one.

In order to lay the foundation for the subsequent quantitative analysis about parallel

program examples targeting PIM architectures, we started deriving numeric values for

communication latencies among system components. For this purpose, we exploited

parametrized versions of the abstract architectures previously described. Thus, we defined

specific network topologies, a specific number of PIM cores per PIM processor, as well as

the number of host cores per host processor, links bandwidth, cache blocks size, memory

and processor clock times, number of 3D memories, etc.; in so doing, we were able to

calculate base communication latencies for every inter-unit cooperation of interest.

Moreover, we defined novel energy cost models able to estimate the energy consumed

by a parallel program in terms of the amount of cache blocks transfers among system

components it requires. We proposed different examples and communication pattern

variants; among all, the reduce scheme with intra-stack or in-memory reduction trees,

taking advantages from the single-host PIM architecture organization, has been analytically

demonstrated to be the best solution among the one proposed, considering both energy and

performance factors.

Finally, a comparative study and an evaluation of PIM architectures with parallel

104

program examples has been carried out. For this purpose, we exploited parallel version

variants of the Count-Min Sketch algorithm working on a sketch data structure, not fitting

in cache, with a highly irregular data access pattern. Furthermore, in the analysis we

distinguished among single and multi-host PIM architecture alternatives.

Results show how, in a single-host PIM architecture, a PIM cores mapping of the

parallel application's functional modules is able, on average, to speed-up the computation

ranging from 1.4x, for medium-high parallelism, to 2x, for low parallelism degree, with

respect to the host cores mapping. The degradation is due to the inter-stack

communications that take place between PIM cores for higher values of the parallelism

degree. Instead, in the multi-host PIM architecture case, a PIM cores mapping of the

functional modules is able, on average, to speed-up the computation of about 1.6x for a

medium parallelism degree with respect to the host cores mapping. It is interesting to note

that, in all the above mentioned cases, the PIM cores mapping provides an higher

bandwidth always exploiting a lower parallelism degree. This factor is very significant if

we are interested in exploiting an exclusive mapping (at most one process per processor) in

order to maximize the parallel application bandwidth and minimize energy consumption in

relationship to the number of active cores.

As for the energy characterization, numerical results show that a PIM cores mapping is

able to reduce energy consumption of at least 50% to about 64% with respect to a host

mapping exploitation.

At the end of this work, we carried out a formal parametric study that quantitatively

provides an idea of PIM architectures benefits when executing stream-based and memory-

intensive structured parallel applications. Results show that a PIM cores mapping of the

parallel program's functional modules, with respect to a host cores one, is able to satisfy

the same requested bandwidth with a lower parallelism degree. Instead, in relationship to

the offered bandwidth, distinct cases have been distinguished with different and sometimes

opposite results. Anyway, in the majority of cases, the analytical model shows that a PIM

cores mapping is able to achieve, for a structured parallel application characterized by

functional replication with independent workers, the best or the same bandwidth with a

lower or equal parallelism degree.

7.1 Future works and open research problems
The materials presented in this work have been intended as starting point for further

105

research and future refinements. Among all the topics treated, two of them deserve a more

accurate and formal study:

• The run-time support of parallel programs targeting PIM architecture should be

formally and accurately studied in future works, also in relationship to the

advancements performed by the research world.

It should be remarked that literature information are missing about this aspect. For

this reason, although it is widely confirmed that PIM architectures provide benefits

to sequential and/or parallel applications that do not exploit caches effectively, at

least for the functional computation per se, a more detailed treatment should be

performed about the parallel program run-time support. As a matter of fact, it could

be the case that run-time support data structures are characterized by spatial and/or

temporal locality, such that the cache hierarchy exploitation still provide a great

advantage.

• A formal under-load analysis evaluating contention issues in PIM architectures and

in parallel program run-time supports should be carried out. In this way, all the

base communication latencies detailed in previous chapters can be refined by

taking into account possible conflicts that could happen when executing a parallel

program over a parallel architecture. The concluding parametric study, at the end of

Chapter 6, would mainly benefit from this kind of study in that the results, provided

by the exploitation of under-load communication latencies, would be even more

accurate.

In addition to the future improvements to this particular work, it is worth noting that there

are many open research problems and many challenges that should be faced before PIM

adoption can become reality.

Apart from the physical/hardware level issues, such as choosing kind and complexity of

the processing logic to be used for PIM exploitation, at the higher-levels of the system

structure, existing programming models and run-time systems should be adapted, or new

ones designed, and algorithms should be restructured in order to make them aware of the

data location.

106

Thus, a software-hardware co-design should be advocated in order to realize parallel

architectures, programming models and run-time systems that enforce the computation

locality concept which, in this new environment, results in distributing functional

computations into the memory hierarchy, closer to where data reside [2].

107

Bibliography

[1] M. Vanneschi, High Performance Computing. Parallel Processing Models and

Architectures, Pisa University Press, 2014.

[2] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair, and

S. Swanson, “Near-Data Processing: Insights from a Micro-46 Workshop”, IEEE

Micro, vol. 34, no. 4, pp. 36–42, Jul./Aug. 2014.

[3] G. H. Loh, N. Jayasena, M. H. Oskin, M. Nutter, D. Roberts, M. Meswani, D. P.

Zhang, M. Ignatowski, “A processing in memory taxonomy and a case for studying

fixed-function pim,” in 1st Workshop on Near-Data Processing (WoNDP), Dec. 2013.

[4] D. P. Zhang, N. Jayasena, A. Lyashevsky et al., “A new perspective on processing-

in-memory architecture design,” in Proceedings of the ACM SIGPLAN Workshop

on Memory Systems Performance and Correctness, ser. MSPC ’13. New York, NY,

USA: ACM, 2013, pp. 7:1–7:3.

[5] M. Islam, M. Scrbak, K. M. Kavi, “Improving Node-level MapReduce Performance

using Processing-in-Memory Technologies”, in Workshop on Unconventional High

Performance Computing, 2014.

[6] D. Zhang, N. Jayasena, A. Lyashevsky et al., “TOP-PIM: Throughput-oriented

programmable processing in memory,” in Proceedings of the 23rd International

Symposium on High-performance Parallel and Distributed Computing, ser. HPDC’

14. New York, NY, USA: ACM, 2014, pp. 85–98.

[7] G. H. Loh, “3D-Stacked Memory Architectures for Multi-Core Processors”, in

International Symposium on Computer Architecture, IEEE, 2008.

[8] J. Torrellas, “FlexRAM: Toward an Advanced Intelligent Memory System. A

Retrospective Paper”, in International Conference on Computer Design, IEEE, 2012.

108

[9] M. L. Chu, N. Jayasena, D. P. Zhang, M. Ignatowski, “High-level programming

model abstractions for processing in memory,” in Workshop on Near-Data

Processing (WoNDP), Dec 2013.

[10] P. Ranganathan, “From Microprocessors to Nanostores: Rethinking Data-Centric

Systems,” Computer, vol. 44, no. 1, 2011, pp. 39-48.

[11] S. H. Pugsley, J. Jestes, H. Zhang, et al., “NDC: Analyzing the Impact of 3D-

Stacked Memory+Logic Devices on MapReduce Workloads”, in International

Symposium on Performance Analysis of Systems and Software, 2014.

[12] M. Ferdman, A. Adileh, O. Kocberber, et al., “A Case for Specialized Processors for

Scale-Out Workloads”, in Micro, pp. 31-42. IEEE, 2014.

[13] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki,

J. Brockman, A. Srivastava, W. Athas, V. Freeh, J. Shin, J. Park, “Mapping Irregular

Applications to DIVA, a PIM-based Data-Intensive Architecture,” SC’99, November

1999.

[14] B. R. Gaeke, P. Husbands, H. J. Kym, X. S. Li, H.J. Moon, L. Oliker, K. A. Yelick,

and R. Biswas, “Memory-Intensive Benchmarks: IRAM vs. Cache-Based Machines”,

in Proceedings of the International Parallel and Distributed Processing Symposium

(IPDPS), Ft. Lauderdale, FL. April, 2002.

[15] D. A. Reed, J. Dongarra, “Exascale Computing and Big Data”, in Communications

of the ACM, Vol. 58 No. 7, Pages 56-68, July 2015.

[16] R. Nair, S. F. Antao, C. Bertolli, P. Bose, et al., “Active Memory Cube: A processing

in-memory architecture for exascale systems”, IBM J. Res. & Dev., vol. 59, No. 2/3,

Paper 17, March/May 2015.

109

[17] M. Gokhale, “Near Data Processing: are we there yet?”, in 2nd Workshop on Near

Data Processing (WoNDP), December 2014.

[18] E. Azarkhish, D. Rossi, I. Loi, L. Benini, “A Logic-base Interconnect for Supporting

Near Memory Computation in the Hybrid Memory Cube”, in 2nd Workshop on Near

Data Processing (WoNDP), December 2014.

[19] G. Kim, J. Kim, J. Ho Ahn, and Y. Kwon, “Memory Network: Enabling Technology

for Scalable Near-Data Computing” in 2nd Workshop on Near Data Processing

(WoNDP), December 2014.

[20] G. Kim et al., “Memory-centric system interconnect design with hybrid memory

cubes,” in PACT’13.

[21] Z. Guz, M. Awasthi, V. Balakrishnan, M. Ghosh, A. Shayesteh, and T. Suri

“Realtime-Analytics is the Killer Application for Processing-In-Memory”, 2nd

Workshop on Near Data Processing (WoNDP), December 2014.

[22] Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T. M. Low, L. Pileggi, J. C. Hoe,

and F. Franchetti, “3D-Stacked Memory-Side Acceleration: Accelerator and System

Design”, 2nd Workshop on Near Data Processing (WoNDP), December 2014.

[23] Y. Eckert, N. Jayasena, and G. Loh, “Thermal Feasibility of Die-Stacked Processing

in Memory”, 2nd Workshop on Near Data Processing (WoNDP), December 2014.

[24] S. Pughsley, J. Jestes, R. Balasubramonian, et al., “Comparing Implementations of

Near-Data Computing with In-Memory MapReduce Workloads” in Micro, IEEE

(Volume:34 , Issue: 4), Pag. 44 – 52, June 2014.

[25] J.A. Ang, R.F. Barrett, R.E. Benner, D. Burke, C. Chan, J. Cook, et al., “Abstract

Machine Models and Proxy Architectures for Exascale Computing”, in

Proceedings of the 1st International Workshop on Hardware-Software Co-design

110

http://www.cs.utah.edu/wondp/guz.pdf

for High Performance Computing (Co-HPC 2014), pp. 25-32, IEEE Press,

Piscataway, May 2014.

[26] R. Nair, J. Moreno, D. Joseph, “Augmenting Memory Capabilities for Exascale

Systems”, in NNSA ASC Conference, IBM Corporation, February 2014.

[27] P. M. Kogge, “PIM & Memory: The Need for a Revolution in Architecture”, in

ATPESC, July 13.

[28] A. Choudhary, J. G. Searle, “Big Data + Extreme-scale. Time to Compute →

Actionable Insights”, 2013.

[29] M. Scrbak, M. Islam, K. M. Kavi, M. Ignatowski, and N. Jayasena, “Processing-in

Memory: Exploring the Design Space”, 28th International Conference on the

Architecture of Computer Systems (ARCS-2015), March 2015.

[30] G. Almasi, “PGAS languages in the exascale era”, IBM Research.

[31] P. Balaprakash, D. Buntinas, A. Chan, A. Guha, et al., “Exascale Workload

Characterization and Architecture Implications”, in Performance Analysis of

Systems and Software (ISPASS), IEEE, April 2013.

[32] A. Gara, “Energy Efficiency Challenges for Exascale Computing”, IBM

Corporation, 2008.

[33] S. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos, “Beyond the Wall: Near-Data

Processing for Databases”, in Proceedings of the International Workshop on Data

Management on New Hardware (DAMON), 2015.

[34] N. S. Mirzadeh, O. Kocberber, B. Falsafi, B. Grot, “Sort vs. Hash Join Revisited for

Near-Memory Execution”, in 5th Workshop on Architectures and Systems for Big

Data (ASBD 2015), June 2015.

111

[35] L. Fiorin, E. Vermij, R. Jongerius, J. V. Lunteren, C. Hagleitner, “An energy

efficient custom architecture for the SKA1-Low central signal processor”, in

Proceedings of the 12th ACM International Conference on Computing Frontiers,

Article No. 5, 2015.

[36] M. Kim, Y. Ju, J. Chae and M. Park, “A Simple Model for Estimating Power

Consumption of a Multicore Server System”, in International Journal of

Multimedia and Ubiquitous Engineering, Vol.9, No.2, pp.153-160, 2014.

[37] Y. S. Shao and D. Brooks, “Energy Characterization and Instruction-Level Energy

Model of Intel’s Xeon Phi Processor”, in Proceedings of the 2013 International

Symposium on Low Power Electronics and Design, Pages 389-394, IEEE Press,

2013.

[38] D. Thomas, R. Bordawekar, C.C. Aggarwal, P.S. Yu, “On Efficient Query Processing

of Stream Counts on the Cell Processor”, in IEEE International Conference on Data

Engineering, 2009.

[39] P. Ferragina, et al., “Bloom Filters and Count-Min Sketches with some of their

applications”. http://www.di.unipi.it/~ferragin/Teach/Copie_Vecchie_Pagine/IR0607.html

[40] G. Gormode, S. Muthukrishnan, “Approximating Data with Count-Min Data

Structure”, 2011.

[41] G. Gormode, S. Muthukrishnan, “An improved data stream summary: the count-

min sketch and its applications”, in Journal of Algorithms, Volume 55 Issue 1, Pages

58-75, April 2005.

[42] Hybrid Memory Cube Consortium. Hybrid Memory Cube Specification 2.0.

November 2014.

112

http://www.di.unipi.it/~ferragin/Teach/Copie_Vecchie_Pagine/IR0607.html

[43] T. Farrel, “Hybrid Memory Cube (HMC)”, Micron Technology, May 2012.

[44] D. Reed, “Exascale Computing and Big Data: Time To Reunite”, June 2015.

http://cacm.acm.org/blogs/blog-cacm/188773-exascale-computing-and-big-data- time-to-reunite/fulltext

[45] J. Hruska, “Beyond DDR4: The differences between Wide I/O, HBM, and Hybrid

Memory Cube”, January 2015.

http://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-

io-hbm-and-hybrid-memory-cube

[46] P. F. Baumeister, H. Boettiger, J. R. Brunheroto, T. Hater, T. Maurer, A. Nobile, D.

Pleiter, “Accelerating LBM and LQCD Application Kernels by In-Memory

Processing”, in 30th International Conference, ISC High Performance 2015, pp 96-

112, July 2015.

[47] M. Danelutto, “Distributed System: Paradigms and Models”, Teaching material -

master degree in Computer Science and Networking, version September 2014.

[48] D. Buono, T. De Matteis, G. Mencagli, and M. Vanneschi. “Optimizing message-

passing on multicore architectures using hardware multi-threading.” In Parallel,

Distributed and Network-Based Processing (PDP), 22nd Euromicro International

Conference, pages 262-270, Feb 2014.

[49] J. Lee, H. Kim, R. Vuduc, “When Prefetching Works, When It Doesn’t, and Why”,

in ACM Transactions on Architecture and Code Optimization (TACO), Vol. 9, Issue

1, Article No. 2, March 2012.

[50] K. Kang , L. Benini , G. De Micheli, “A High-throughput and Low-Latency

Interconnection Network for Multi- Core Clusters with 3-D Stacked L2 Tightly

Coupled Data Memory”, in IEEE/IFIP 20th International Conference on VLSI and

System-on-Chip (VLSI-SoC), 2012.

[51] P.M. Kogge, “EXECUBE - A New Architecture for Scaleable MPPs”, in

113

http://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube
http://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-
http://cacm.acm.org/blogs/blog-cacm/188773-exascale-computing-and-big-data-time-to-reunite/fulltext
http://cacm.acm.org/blogs/blog-cacm/188773-exascale-computing-and-big-data-

International Conference on Parallel Processing, Vol. 1, 1994.

[52] C.E. Kozyrakis, S. Perissakis, D.A. Patterson, et al., "Scalable Processors in the

Billion Transistor Era: IRAM", in Computer 30 (9) pp. 75–78, 1997.

[53] B. Ellis, Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data,

Wiley, 2014.

114

	Introduction
	1.1 This work
	1.1.1 Objectives
	1.1.2 Methodology pursued

	1.2 Thesis organization

	Processing-In-Memory (PIM): Overview
	2.1 Introduction: motivations for Processing-In-Memory
	2.2 PIM in the Exascale computing and Big Data era
	2.3 From the first PIM generation to the second one (or Near Data Processing)
	2.3.1 First PIM generation
	2.3.2 3D-stacked memory: the enabling technology for second PIM generation
	2.3.3 Software model and software/hardware interface
	2.3.4 PIM prototypes, applications and results

	2.4 Final considerations

	Abstract Machine Models for Processing-in-Memory
	3.1 Background: reminder on structured parallel programs, abstract machine and cost models
	3.2 General Abstract Machine Models for PIM architectures
	3.2.1 Single-host PIM architecture
	3.2.2 Multi-host PIM architecture

	PIM Architectures and Low-Level Communication Latencies Cost Models
	4.1 Background: reminder on interprocess, inter-unit communications and cache coherence mechanisms
	4.2 PIM architectures specifications
	4.2.1 Single-host PIM architecture
	4.2.2 Multi-host PIM architecture

	4.3 Inter-unit communication latencies cost models
	4.3.1 Single-host PIM architecture
	4.3.2 Multi-host PIM architecture

	Energy Modelling of PIM Architectures
	5.1 Estimating energy efficiency of a computational system
	5.2 Basic system components energy costs and parameters definition
	5.2.1 Assumptions and approximations

	5.3 Energy Modelling of a single-host PIM architecture
	5.3.1 Example 1: scatter collective communication
	5.3.2 Example 2: multicast collective communication
	5.3.3 Example 3: reduce collective operation

	5.4 Energy Modelling of a multi-host PIM architecture
	5.4.1 Example: producer-consumer pattern

	5.5 Final considerations

	Comparative Study and Evaluation of PIM Architectures with Parallel Program Examples
	6.1 Brief description of real-time analytics and sketching techniques
	6.1.1 Count-Min (CM) Sketch algorithm

	6.2 Analysis and comparison of CM Sketch parallel version variants over PIM
	6.2.1 Introduction and preliminary considerations
	6.2.2 Sequential analysis
	6.2.3 Parallel analysis with a single-host PIM architecture – CM Sketch Update
	6.2.4 Parallel analysis with a single-host PIM architecture – CM Sketch Query
	6.2.5 Parallel analysis with a multi-host PIM architecture – CM Sketch Update
	6.2.6 Parallel analysis with a multi-host PIM architecture – CM Sketch Query

	6.3 Brief summary and conclusive parametric study

	Conclusion and Future Works
	7.1 Future works and open research problems

	Bibliography

