
University of Pisa

Department of Computer Science

Master Programme in Computer Science

Master Thesis

Spray:
programming with a persistent distributed heap

Candidate

Marco Grandi

Supervisors Examiner

Prof. Vincenzo Gervasi Prof. Francesco Romani

Prof. Antonio Cisternino

Academic Year 2014/2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79619523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

We introduce a programming paradigm for distributed applications based on
a persistent distributed heap. A proof-of-concept implementation is provided
as a JavaScript library, together with several examples that embody popular
patterns for web applications.

To those I love,
especially to my grandmother Rita,

my brother Leonardo,
and Carlotta.

Acknowledgements

This work would have been much harder, and surely longer, without the
contributions and help I received from many people.

I would especially like to thank my supervisors Vincenzo Gervasi and
Antonio Cisternino who encouraged me to investigate persistence and distri-
bution in programming languages. The conversations I had with them laid
the groundwork of my thesis and helped me during its development.

I believe that a valuable contribution to this work comes from Vincenzo
Gervasi, who gave me advice on how to write a scientific paper and suggested
I adopt a shallow approach to persistence.

I thank Andrea Canciani, who gave me his previous research proposal
about persistence. It was a good starting point for my study on the state-
of-the-art of persistence. I am also particularly grateful for the assistance
given by Simone Zenzaro, who helped me to understand the Abstract State
Machine method.

I would like to thank my friends who closely shared with me the time
spent working on the development of a thesis. I would especially thank
Daniele Virgilio, who supported me at the beginning of this work with several
hints about how to face a thesis, Marco Ponza, who proved one more time to
be a priceless adventure companion, Nicola Corti, who always made coffee
for me and whose laugh is contagious, and Alessandro Lenzi, who was an
amusing desk neighbour.

Thanks to the “Il Parcheggione” juggling group, especially the President
Cristiana, Federica, Massimo and Valentino, with whom I enjoy my free
time. Thanks to the “Food Bytes” community, with whom I enjoyed tasty
food and had a good time, and to “Geckosoft”, namely Fabio and Davide,
who supported me at the end of this work. I also greatly appreciate the
support of all the other friends I have in Pisa.

My family and all my Venetian friends deserve special credits for sup-
porting me through the entire development of this thesis.

Finally, I would like to express my gratitude to Carlotta, who has always
believed in me and accompanied me to the end of this path in my life.

Contents

Introduction 1

1 Problem 5
1.1 Persistence is not a concern of programming languages 6
1.2 How to deal with persistence 7
1.3 A change of perspective . 9
1.4 Goal: persistence and distribution provided as language feature 11
1.5 About a solution . 12

2 Background 15
2.1 Orthogonal Persistence . 15

2.1.1 PS-algol . 17
2.1.2 Napier88 . 18
2.1.3 Persistent Java . 18
2.1.4 Persistent Oberon . 21

2.2 Files and file system . 22
2.3 Serialization . 22
2.4 Databases . 24

2.4.1 Relational databases 24
2.4.2 Object-oriented databases 29
2.4.3 NoSQL databases . 30

2.5 From persistence to distribution 33
2.6 Distribution within programming languages 34
2.7 Distributed operating systems 37
2.8 Eventual consistency and conflict resolution 39

2.8.1 System model . 41
2.8.2 Strong Eventual Consistency 42
2.8.3 Conflict-free replicated data types 43
2.8.4 Remarks . 44

3 Spray programming 45
3.1 Description . 45
3.2 Design choices . 49

vii

Contents

3.2.1 Language level . 49
3.2.2 Unique identities . 50
3.2.3 Shallow persistence . 51
3.2.4 Eventual consistency 51

3.3 Specification . 51
3.4 Some properties . 75

4 SprayJS 77
4.1 Remarks about JavaScript . 77
4.2 Why JavaScript? . 78
4.3 Implementation . 79
4.4 Library . 80
4.5 Server . 86

5 Examples 87
5.1 Explicit communication and synchronization 87
5.2 Sharing among users . 90
5.3 Sharing among applications 93
5.4 Sharing among devices . 95

Conclusions 97
Further development . 98

References 100

viii

Introduction

“Instead of imagining that our main task is to instruct a computer
what to do, let us concentrate rather on explaining to human beings
what we want a computer to do.”

– Donald Knuth, Literate Programming

Persistence and distribution of state are two important aspects in modern
distributed applications. Although they may be considered two orthogonal
concepts, because persistence concerns the extent in time of state, while
distribution concerns its extent in space, they are in fact closely connected.

In distributed applications, these two aspects are combined in order to
let users access the application from different locations at different times. In
general, these applications preserve their state after being used and restore
it the next time they are accessed, without regard of locations. However,
the state of an application may change from one run to another due to other
users or applications that may interact with it.

A well-known example of distributed application is a webmail, which lets
users read their emails from various devices through a web browser. The
emails of a user are stored in servers and are retrieved by the application
when the user requires them. The set of emails of a given user forms the
most prominent part of the state of the webmail application for that user
and changes whenever a new email, which has been sent by another user, is
received.

The view that a user has of a distributed application as single logical
entity, regardless of the fact that is is accessed at different times from dif-
ferent locations, comes at a price for the programmer who has to develop
the application. The state of such application must be explicitly persisted
across executions and transmitted where it is required. The details concern-
ing these operations burden the programmer and distract him/her from the
business logic of the application.

We have observed that this scenario is common to almost all distributed
applications and also to other applications which are not commonly consid-
ered distributed, still transmit part of their state to remote servers in order
to preserve it. We believe that programmers need an abstraction which com-
bines persistence and distribution, simplifies the development of this kind of

1

Introduction

applications and removes from the programmer the explicit management of
aspects regarding how state is persisted and distributed.

Furthermore, we think that the programming language itself, in which
the application is written, should provide the needed abstraction, making
the problem interesting from a technological point of view as well as for the
field of programming languages.

Distributed applications have become popular thank to the Internet and
the Web, in particular. From the late 1990s, the Web has grown enormously
both in amount of pages and in number of users. There have been different
technological innovations that have changed the way users interact with web
pages and what a web page can do. Over the years, former plugins for web
browsers, such as the Java applet plugin (which were used for providing
interactive features to a web page) or Flash Player (which were used to
embed animation on a web page), have been partially or completely replaced
by other technologies.

The idea of having “web applications”, and therefore moving from static
web pages to more dynamic and interactive ones, has been one of the main
drivers in the development of the Web. The well-known term Ajax (that
stands for asynchronous JavaScript and XML) was coined1 to refer to a
group of technologies used to create asynchronous web applications. Gmail,
Google’s webmail application, was one of the first popular web application
developed using Ajax.

More recently, HTML5 has been introduced. It provides graphic, mul-
timedia and interactive capabilities allowing developers to write web appli-
cations without using plugins. It is adopted for developing the web version
of the applications provided by the so called apps ecosystems. An apps
ecosystem is a set of related applications developed by a company, for in-
stance Google or Microsoft. These ecosystems allow sharing information or
documents among their applications and user that use them.

A main characteristic of web applications is storing the state of an appli-
cation on the server side. The client side of the application, which runs on a
web browser, retrieves it from the servers when it is needed. Changes applied
to the state are transmitted back to the servers, where they are persisted.

Web applications are a common example of an application where the
most prominent part of the state is continuosly synchronized with the server,
but other kinds of application can have similar characteristics. For instance,
mobile applications may store a part of their state on remote storage, both
for backup purposes and for retrieving it from another device. The idea of
using remote storage for generic user applications has become popular thanks
to the so-called “cloud computing”,

A cloud service usually provide a storage solution where applications can
store their data. In some cases this storage is integrated with a number of

1http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/

2

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/

Introduction

applications in order to persist their data. Also desktop applications may
take advantage of the cloud storage and use it for storing their data. As an
example, on Mac OS X applications like iPhoto, Contacts and Notes may
use the iCloud storage to save their data. Besides these applications, also
photos taken with an iPhone may be saved on the iCloud storage, making
the service usable from both computers and phones.

The different types of applications just described emphasize how per-
sistence and distribution are correlated in (distributed) modern applications
and point out that these two aspects are, in a sense, transparent for the user.
However, they must be handled by the programmer during the development
of the application.

Languages used for developing these application do not support persis-
tence and distribution as features, and so the programmer must explicitly
manage them through suitable APIs and external systems. Persistence is
usually achieved adopting databases, while distribution is obtained using a
specific library providing primitives to communicate among the components
of the application, which are connect through a network. In such a scenario
the programmer has to deal with several issues, for instance how data is
stored into a database and how it is transmitted.

The purpose of our work is to introduce a programming paradigm for
distributed applications based on a persistent distributed heap. In our view,
this is the right abstraction needed to think about persistence and distribu-
tion of state in that kind of applications and to remove from the programmer
the management of the details related to these aspects.

In this thesis we present Spray, a programming paradigm based on a
persistent distributed heap. We describe how the persistent distributed heap
is organized and provide the specification of its operations. We also present
a proof-of-concept implementation in JavaScript and validate our paradigm
through examples written on top of our implementation. These examples
embody popular patterns for web applications.

Outline

The thesis is organized as follows:

Chapter 1, Problem discusses the problem we want to solve and its fea-
sibility, explaining how languages deal with persistence and why there
is a necessity to address this feature together with distribution.

Chapter 2, Background introduces the background for both persistence
and distribution, presenting approaches from scientific literature that
provide these features within a programming language or as external
systems.

3

Introduction

Chapter 3, Spray programming introduces the programming paradigm
based on a persistent distributed heap and present its specification in
the Abstract State Machine formalism.

Chapter 4, SprayJS describes the implementation of Spray in JavaScript,
motivates the choice of language and discusses some interesting details
about the implementation.

Chapter 5, Examples examines popular patterns for web applications and
describes their implementation in SprayJS in order to validate the
Spray programming paradigm.

Conclusions summarizes the contributions of this thesis, presents the con-
clusion of the work and points out some ideas and other aspects to
extend and improve the specification of Spray.

4

1

Problem

“As Wittgenstein observed, it is difficult to say, in advance, exactly
what characteristics are essential for a concept.”

– Henry Lieberman, Using Prototypical Objects to Implement Shared
Behavior in Object Oriented Systems

Programming languages are used to express programs, a sequence of
instructions meant to perform a specific task or solve a given problem with
a computer. A powerful programming language is not just a notation to
write programs but “also serves as a framework within which we organize
our ideas”[Abelson et al., 1996] as a result of the abstractions and features
it provides.

The choices made during the design and the evolution of a language im-
pact on its usage. Our focus is mainly on the key concepts of a language
rather than on its syntax. A programming language provides a set of basic
constructs and ways to combine them. On top of these, additional features
can be supported and some conventions can be enforced. All these aspects
affect in practice the expressivity of a language, thus coding and resource
usage can be more efficient in some languages compared to other. Of course,
every Turing-equivalent language has the same expressive power from a the-
oretical point of view. However, the ease with which computations can be
expressed can vary greatly.

One of the most important resources that a programmer has to deal
with is memory. All data manipulated during the execution of a program
is stored in memory. How it is stored and used depend on the particular
language take into account, but simplifying the management of the data
in memory is an important issue in language design. A feature that most
modern programming languages provide is garbage collection, a mechanism
that remove from the programmer the task of tracking which objects need
to be kept in memory and which ones can be destroyed.

A successful abstraction about data introduced in programming lan-
guages is the idea of “object”, first appeared in Simula 67[Dahl et al., 1968].

5

1. Problem

This had led to the well-known object-oriented programming paradigm where
the real world is modelled as a set of objects. The fundamental concepts of
object-oriented programming are encapsulation, inheritance and dynamic
methods binding. Encapsulation refer to the fact that an object contains
state in form of fields (as known as attributes) and code in form of methods.
Inheritance is meant to share behaviour among objects. Finally dynamic
methods binding allow to change behaviour depending on the actual object.
There are other characteristics about OOP, but they are not essential for
our discussion.

Our problem concerns the lifetime of objects in a object-oriented pro-
gramming language. A key aspect about object-oriented programming, im-
portant in our formalisation, is the fact that an object has an identity
[Khoshafian and Copeland, 1986]. Identity is what allows us to distinguish
two different object even if their state is equal. Such property is relevant
because object’s identity identifies the object during its entire lifetime.

1.1 Persistence is not a concern of programming
languages

Programming languages are described as formal languages with a proper syn-
tax and a description of the semantics. In classical textbook likes [Scott, 2009,
Gabbrielli and Martini, 2010] they are explained through the basic concepts
on top of which every languages are designed. These concepts are names,
bindings, scoping, lifetime and memory management.

A name is a symbolic identifier1 used to denote an entity. In the context
of programming languages, an entity can be any value, location in memory,
function or object. Bindings are associations name-entity. It is important
to distinguish between a name and the entity to which it refers. The period
of time between the creation and the destruction of an entity is called the
entity’s lifetime. Similarly, the period of time between the creation and
the destruction of a name-to-entity binding is the binding’s lifetime. These
lifetime need not necessarily coincide. Also, in some programming languages,
multiple names can be bound to the same entity.

The lifetime of an entity generally corresponds to the storage allocation
class where it is stored. We can distinguish two main kind of allocation strat-
egy: static and dynamic. The class of storage allocation usually languages
provide are:

static allocation, used for entities which lifetime lasts for the entire execu-
tion time of a program;

dynamic allocation, used for entities created dynamically at run time. Two
classes of dynamic allocation exists:

1In many programming languages, character sequences are used as names

6

1.2. How to deal with persistence

stack allocation, used to allocate entities when entering in a block,
procedure or function. These entities are later deallocated on
exit;

heap allocation, that can be used to allocate and deallocate entities
at arbitrary times.

Moreover we can distinguish memory management between manual and au-
tomatic. Static and stack allocations are managed automatically by the
runtime of the language, whereas heap allocation could be either manual or
automatic.

All these classifications concern management of data during the execution
of an instance of a program: process. A process can be defined informally
as “a running piece of code along with all the resources that the code can
affect or be affected by” [Tanenbaum, 2008]. The lifetime of an entity is
contained within the lifetime of the process which has instantiated it. In fact
all the resources that a process has acquired are returned to the operating
system when it is terminated. It follows that other systems, external to the
programming language, have to be taken into account if the programmer
wants to make data persistent.

Persistence is a characteristic of a system. We call persistent those sys-
tems in which entities can have a lifetime going beyond the process which
has created them. We also describe as persistent those entities with such a
lifetime. In classical introduction about programming languages persistence
is not taken into account. Furthermore, almost all programming languages in
common use today support and rely on external systems to save and retrieve
data.

In other words, the persistence state of an application is managed out-
side the language boundary. We think that persistence should be a matter
of programming languages. However, our interest about persistence is re-
stricted to object-oriented languages. In these languages, persistence forces
to guarantee object’s identity across executions.

1.2 How to deal with persistence

In most programming languages, especially in object-oriented ones in com-
mon use today, to achieve persistence programmers have to use external
system2. Here we want to briefly report what systems exist and what weak-
nesses they have compared to programming languages. For a more precise
description we refer to Chapter 2.

2 It is worth noting that some languages, part of which have also an historical impor-
tance such as COBOL, have been designed in order to support persistence. Conversely,
the C language have been designed not considering input/output, which have been left
out from the language and provided through a library. The success of this language have
led to assert the idea not supporting input/output in the definition of a language.

7

1. Problem

The problem of how to deal with persistence in programming languages
is not new and it has been addressed in the literature in the context of per-
sistent programming. The most ambitious approach in this area was the
one introduced under the name of Orthogonal Persistence. The concept of
this methodology is “to identify persistence as an orthogonal property of
data, independent of data type and the way in which data is manipulated”
[Atkinson et al., 1983]. However, programming languages supporting this
concept have been used to develop programs only in the academic environ-
ment. Other solutions to have persistent state are commonly in use today.

When the amount of data is huge, the common system used is a database
management system (DBMS). Data is save on databases, which are orga-
nized following a precise logical model. These systems are the most used
in commercial development because they provide a reliable way to man-
age data. The problem these systems raise is that the programmer has to
manage the different representation between the language and the database.
In the case of an object-oriented language and a relational database, the
problem is known as object-relational impedance mismatch. This problem
can be limited using middleware that provides an object-relational mapping
(ORM), but can not completely be eliminated. From a language prospective
an ORM simplifies the development of a program but does not guarantee
the object’s identity. An example of ORM is Java Persistence API (JPA),
an interface that describes the management of relational data in Java and
that is implemented in the Hibernate middleware.

Another form of persistent storage is represented by files. They are the
most common low-level solution to save and retrieve persistent state. Pro-
gramming languages expose APIs to deal with files and file system. A file is
generally intended as a sequence of bytes3 and the process of transforming an
object in a sequential representation suitable for being saved on a file is called
serialization. Serialization can be performed manually by the programmer,
who has to manage properly how data is converted from the language repre-
sentation to the sequential one. This process is executed through a sequence
of write operations on the file. The other option is to perform serialization
by means of automatic systems, generally related to the concept of reflec-
tion. Most modern programming languages, especially object-oriented ones,
provide a library with a serialization algorithm that keeps the programmer
away from the management of the representation.

Object-oriented programming languages generally identify an object by
its address in memory. This choice combined with an external system to
provide persistence does not guarantee long-term object’s identity. Indeed
when an object is saved outside the language boundary its address is not
commonly saved together. The exact address in memory where an object is

3Other organizations are possible as well, for instance in COBOL there is also the
indexed organizations that can be accessed directly through an index.

8

1.3. A change of perspective

stored depends heavily on a set of factors, including the operating system. As
a consequence what is understood as a unique object is instead represented
by two different objects in two distinct executions. To fix this problem we
have to include persistence in the definition of a programming language.

Orthogonal persistence has been introduced in 1983 [Atkinson et al., 1983]
and was an active research topic until the late 1990s. Its main purpose was
to add persistence as a programming language feature and therefore to yield
programming languages able to express persistent data. The principles of
this approach have not been changed across the years and the main goal of
the research was to produce a programming language that provides orthog-
onal persistence suitable to be used outside the academia. Although this
approach has not directly influenced any modern programming language, it
represents a good starting point to discuss persistence.

1.3 A change of perspective

Applications can be informally described as programs designed to perform
a task. As such, they are not directly related to an execution state or to
the resources being used. Instead, they tend to depend on some form of
persistent state. These characteristics are in contrast to the ones that a
process has, leading up to a greater effort for the programmer. It should be
noted that an application can have a state which makes the user perceive it
as “running” even though it has no active process in the operating system.

As an example, in Android, Google’s mobile operating system, the pro-
cess hosting an application can be killed, if memory is needed, after that an-
other one has taken the focus. The application can persist unsaved changes
before being paused. If the hosting process was killed and the application
takes back the focus, another instance is created. This instance received the
saved state, if it was persisted, and can restore it. As a result, the applica-
tion appears to the user in the same state as when it was paused, even if its
process was terminated.

Programming languages are usually designed to only express what hap-
pens within a single process4. In order to simplify writing applications, a
language should at least lets to express what happen to data across more
executions of the same program. This is possible in the languages introduced
in the literature about orthogonal persistence. These languages let to have
persistence of data across different executions of the same program and, is
some cases, also among programs. However, sharing of persistent data was
possible only within the boundary of the persistent programming system to
which the particular language belongs.

The increasing interest and spread of distributed systems and distributed
applications starting from the 1990s has brought out a new scenario not con-

4Of course there are exceptions, for example occam or Erlang.

9

1. Problem

sidered before: distributing data among different processes in execution on
different systems. Such situation was not taken into account in orthogonal
persistence but should be a main concern in programming languages ac-
cording to the omnipresence of such systems and applications nowadays. A
distributed system can concisely be described as “a software system in which
components located on networked computers communicate and coordinate
their actions by passing messages” [Coulouris et al., 2011]. An application
that runs in a distributed system is called distributed application.

A distributed application has more components that communicate with
each other and share the state. Such state needs to be made persistent, so
that changes are not lost when accessing again the same application. There
are two main possible architecture for a distributed application: client-server
and peer-to-peer. In a client-server architecture the persistent state is usually
provided by servers and it is requested by clients on demand. In a peer-to-
peer settings instead the state is split among peers, any of them can make a
request to another one.

The Web is certainly one of the most important distributed systems and
web applications are a classic example of application with a persistent dis-
tributed state. The structure of a web application is client-server and the
client-side is represented by the web browser. The state of such applica-
tions are completely saved on the server-side, but client-side replication of
some information is possible. As an example web session is implemented
in browsers using cookies, a technique to store in the browser a minimum
amount of data. It is worth noting that browsers provide an additional per-
sistence feature. In fact they restore the last session5 when launched or after
a crash. This feature may be easier to implement if persistence would be
provide by the language used to develop the browser.

Mobile applications are applications designed to run on smartphones,
tablet computers and other mobile devices. They have seen widespread
adoption in recent years and are another example where persistence and
distribution could be a relevant concern. Mobile devices are characterised
by limited resources and run on battery, although they provide additional
features, such as location detection and gyroscope, compared to traditional
computers. Limited resources availability adds constraints to the develop-
ment of such applications; as an example the number of processes in execu-
tion are typically limited to prevent running out of battery.

Nevertheless the operating system of these devices tries to give the il-
lusion of having multiple application running at the same time. When the
limited resources available are insufficient to keep all background processes
alive, the system select an application which is notified to terminate. This
application before terminating could save its state and must release acquired

5in this case with session we intend the list of open sites, rather than the state of each
of these

10

1.4. Goal: persistence and distribution provided as language feature

resources, then the related process are terminated. This makes the resources
available to the system, which can then give them to the new application.
The application to which the user is switching might be a new one or not.
If the application has preserved its status, the new application process is
started up and it restore the previous state. This makes it possible for the
application to appear in the same state as when its process was terminated.
This behaviour could evidently take advantage of persistence if it would be
provided by the language, removing from the programmers the effort to pre-
serve the application status.

A considerable number of mobile application are also the client-side of
a distributed system. Examples of such application are instant messaging,
note taking and archiving. Distribution is used both to share information and
for backup purposes due to the limited storage available on mobile devices.
This aspect of the application is completely developed by the programmer
because typically languages provide only communication primitives to send
and receive messages along a network.

Distribution is also a fundamental trait in “Cloud computing”, where
both computing resources and storage are shared by multiple users. A key
characteristic in the cloud is device and location independence, that enable
users to access the systems regardless of their location or what device they
use. Applications are accessed via the Internet and their state has to be
distributed to clients (both web browser or native app).

1.4 Goal: persistence and distribution provided as
language feature

In summary, most programming languages do not provide persistence as a
language feature to preserve data among execution or supply an abstraction
for masking send/receive primitives in order to transparently distribute data
between components of a distribute application.

On one hand there are languages that provide persistence as a feature,
such as those that enforce orthogonal persistence. On the other hand there
are languages that provide distribution through elementary send/receive
primitives, such as Erlang, but this kind of communication is typically limited
to the process boundaries6. However, there are not programming languages
that provide persistence and distribution together.

We restrict our problem to object-oriented languages because they have
a built-in concept of identity, as we have previously mentioned. This choice
is not limiting since most modern programming language are object-oriented
and tend to prefer supplying additional features and mechanisms to simplify
the development of a program at the cost of a small loss of performance. On

6Communication across a network is commonly provided through a set of APIs of a
library, and it is not taken into account in the language’s semantics.

11

1. Problem

the other hand identity lets us handle persistence and distribution at the
same time. These two concepts are indeed orthogonal, but a more extensive
concept of identity allows referring to the same object among executions and
from different locations.

1.5 About a solution

Persistence and distribution in our formalisation are discussed at the pro-
gramming language level, but other choices are possible. The most viable
alternative is to address these two aspects at the operating system level since
an operating system already provides persistence through its file system, so
the main concern is distribution. This approach was at the bottom of the
research about distributed operating systems. Unfortunately nowadays such
way to tackle the problem is not possible because of the commercial interests
behind modern operating systems.

The general trend in programming language development is instead to
port a language and its tools (compiler, runtime, virtual machine, etc. . .)
on a wide range of operating systems in order to promote its diffusion. Such
trend concerns not only open source projects but also property technologies;
as an example Microsoft has released .NET Core, a modular development
stack at the bottom of its .NET platform.

Adding persistence and distribution as a language features leads to an
obvious increase in the size of its runtime, which has to be modified in order
to provide these functionality. However, one might expect that programs
which do not use such features do not exhibit a notable loss in performance.
Moreover, there are some aspects that should be addressed in order to explain
the feasibility of a solution.

How to achieve persistence within the operating system boundary is not
a real issue since methodology from the orthogonal persistence approach can
be adopted. In an object-oriented language, the basic idea is to provide the
language with a object storage where all persistent objects are stored. As-
sumed that a particular language is modified in order not to use a memory
address as object’s identity, what mechanism should be used becomes a sig-
nificant issue. In such a scenario the identity of an object must be unique
among all processes that can refer to it. This problem becomes more difficult
if we consider a distributed environment, where the identity must be unique
among all processes located on different components.

In order to have unique identifiers, any of which represents the identity of
an object, we may adopt a central registry. However, this solution implies to
introduce in the system a single point of failure that can potentially block it.
Our choice is to use as object’s identity a randomly generated identifier. This
decision could lead to cases where the same identifier it is shared between
two or more objects, in other words a form of hash collision is possible.

12

1.5. About a solution

Given that this is a technical problem, we put it into the background of
our approach and move forward in the investigation of a possible solution.
However, using random identifier implies that object creation is a local action
and allows each components to go along with its computation independently.

A group of related applications developed using a language that provide
persistence and distribution looks like a distributed system. As a conse-
quence the conditions of the CAP Theorem [Brewer, 2000, Gilbert and Lynch, 2002]
are met. Such theorem states that it is impossible for a distributed system
to simultaneously provide all three of the following guarantees:

• Consistency

• Availability

• Partition-tolerance

In our formalisation, consistency means that all applications that are ma-
nipulating the same object see the same state. In other words distributed
objects are atomic and there must exist a total order on all operations on
an object such that each operation looks as if it were completed at a single
instant. Availability implies that each application can modify a distributed
object and will receive a response about whether it succeeded or failed. Fi-
nally partition-tolerance stands for the fact that an application can continue
its execution even if another one that use the same objects failed or messages
that refer to objects it manipulated are lost.

If we wanted to provide all three guarantees, we would certainly add to
the language’s runtime a synchronisation mechanism in order to achieve con-
sistency. In doing so, we are implicitly assuming that the underline network
is reliable. Although there are reliable protocol for host-to-host communica-
tion, like TCP, connection errors are still possible and disconnection should
take into account. As an example a device which use a mobile telecom-
munications technology as Internet access may have disconnections due to
reception problems. As a consequence, a short disconnection of only one
application causes the temporary blocking of the whole system because syn-
chronisation among all components is not possible.

In our view the most desirable properties of such a system are that each
application can apply local modification as soon as it is required and not
be blocked due to other applications failure or message losses. In other
words the solution has to provide availability and partition-tolerance, while
the consistency requirement can be relaxed. Eventual consistency is chosen
instead as consistency model so that stale state is possible in an application.

13

1. Problem

14

2

Background

“The tools we use have a profound (and devious!) influence on our
thinking habits, and, therefore, on our thinking abilities.”

– Edsger Dijkstra, How do we tell truths that might hurt?

How to persist and distribute data is an important issue during the de-
velopment of an application or a complex system. These two aspects are in
general managed separately by different mechanisms or systems. Although
our presentation mainly concerns about well-known systems that are cur-
rently in use, other methods introduced in the literature are described.

In the following we will discuss both persistence and distribution. First,
we present methods to persist data, either in the languages or through an
external system. Since our interest is in programmer perspective, we also
report examples when they are meaningful.

Later we address distribution and systems that provide it. Also in this
case, we report examples of languages that treat distribution as a core fea-
ture. Thereafter we summarise the concept of distributed operating system
and recall some important aspect develop in this research area.

Finally we describe eventual consistency, introduce the problem of con-
flicting states that can occur in distributed system and report a formal frame-
work developed for automatic conflict resolution, namely conflict-free repli-
cated data types.

2.1 Orthogonal Persistence

Orthogonal Persistence [Atkinson et al., 1983] is a language-independent method-
ology for providing persistence as a language concept. In programming lan-
guage design, “orthogonality means that features can be used in any combi-
nation, the combinations all make sense, and the meaning of a given feature
is consistent” [Scott, 2009]. Orthogonal Persistence applies this idea to the
persistence of data, which is seen as orthogonal property, independent of
data type and the way in which data is manipulated.

15

2. Background

Atkinson and Morrison in [Atkinson et al., 1996a] recognised the follow-
ing principles of Orthogonal Persistence:

• Persistence Independence
The persistence of data is independent of how the program manipulates
the data. That is, the programmer does not have to, indeed cannot,
program to control the movement of data between long term and short
term store. This is performed automatically by the system.

• Data Type Orthogonality
All data object should be allowed the full range of persistence irrespec-
tive of their type. That is, there are no special cases where objects of
a specific type are not allowed to be persistent.

• Persistence Identification
The choice of how to identify and provide persistent object is orthog-
onal to the universe of discourse of the system.

It is worth reporting the footnote regarding the principle of persistence iden-
tification written by Morrison in [Dearle et al., 2009]. He stated that the
experience showed that the only mechanism for implementation was persis-
tence by reachability, also known as transitive persistence. Such mechanism
consist of choosing an element as root of persistence: the root as long as all
elements it transitively point out are preserved.

One of the primary motivations for Orthogonal Persistence in [Atkinson et al., 1983]
was the conceptual difference between short term and long term data. Short
term data is manipulated by the programming language facilities within the
program execution, while long term data is required to survive to process
termination. For long term data, Atkinson and Morrison direct they at-
tention to database management system (DBMS). They highlight how data
is defined using a type system within a programming language while it is
described according to a data model, when it is stored in a database1. Fur-
thermore, they point out that the difficulties of understanding and managing
the mapping between these two representation frequently distract the pro-
grammer.

Orthogonal Persistence was introduced to provide integration between
programming languages and DBMS. In a more general prospective it leads to
the research in orthogonally persistent object systems where different aspects
related to persistence was investigated, such as persistent stores, concurrency
and transactions. A broad review about this research area is reported in
[Atkinson et al., 1996a]. Moreover, Orthogonal Persistence principles have
been used as criteria for evaluating systems that provide persistence. As an
example [Takasaka, 2005] is a survey regarding persistence approaches for

1The set of conceptual and technological differences between these two models is known
as impedance mismatch.

16

2.1. Orthogonal Persistence

object-oriented programming languages that adopts Orthogonal Persistence
principles among its criteria for the assessment.

In the next sections we report some languages that comply with the three
principles introduced at the beginning of this section in order to show how
persistence can be provided in a language.

2.1.1 PS-algol

PS-algol [Atkinson et al., 1982, Atkinson et al., 1983] is a persistent pro-
gramming language implemented as a functional extension of S-algol2. It
was the first language to provide orthogonal persistence, which provided
persistence by reachability for all data type supported by the language.
The functions added to S-algol to support persistence are: open.database,
close.database, commit and abort. These procedures point out how per-
sistence in PS-algol was understood: the integration of a database in the
language.

The procedure open.database, as well as close.database, required to spec-
ify a database name, which is in general is a path down a tree of directories.
The directory mechanism for databases was implemented to avoid depen-
dence on particular operating system features. Different programs could
open the same database in order to operate on the same persistent data3.
In [Atkinson et al., 1983] some examples illustrate how small program can
be composed to put up a complete system. PS-algol also provided a set of
procedures to manipulate tables, that are associative stores4. The success-
ful opening of a database returned a pointer to a table which is the root of
persistence: preserved data is identified by transitive closure of reachability
from the table.

structure person(string name, phone; pntr addr)
structure address(int no; string street, town)
let db = open.Database("addr.db", "write")
if db is error.record
do { write "Can’t open database"; abort }

let table = s.lookup("addr.table", db)
let p = person("al", 3250,

address(76, "North St", "St Andrews"))
s.enter("al", table, p)
commit

Listing 2.1 A program that adds a new person to a database.

2S-algol is a programming language that stands somewhere between ALGOL W and
ALGOL 68.

3Although many database may be open for reading, only one may be open for writing.
4As key was possible to use an integer or string value.

17

2. Background

In listing 2.1 an example from [Dearle et al., 2009] is shown to give a
flavour of the language. The code fragment show how to add an element to
a database: the procedure s.enter store the person p in the table table with
the key "al". After that, the change made to the database are committed.

As mentioned in [Atkinson et al., 1983], “the programmer never explicitly
organizes data movement but that it occurs automatically when data is used”.
The paper also states that “a reduction by a factor of about three in the
length of the source code” was achieved compared to programs written in
Pascal with explicit database calls.

2.1.2 Napier88

The Napier88 system [Morrison et al., 2000] was designed as an integrated
persistent programming system. It consist of the Napier88 language and its
persistent environment. As described in [Morrison et al., 2000], it “was in-
tended as, or turned out to be, a testbed for experiments” as an example in
type systems for data modelling, concurrency control and transactions and
object stores5. As far as persistence is concerned, Napier88 provided a prede-
fined procedure in the language to access the persistent store. Each program
may access its persistent environment using that procedure. It is worth to
point out that “each persistent store is organised as a graph of object but the
topology of the graphs may vary from store to store” [Morrison et al., 2000].

In the listing 2.2 is shown an example from [Dearle et al., 1989]. The
code fragment creates an environment called new, places a vector in it and
finally creates a binding to the new environment in the root environment,
making it persistent. The PS procedure returns the root of the persistent
store. The names e and avector persist; they are reachable from the root
of persistence.

let new = environment()
in new let avector = vector @ 1 of [1,2,3,4,5]
in PS() let e = new

Listing 2.2 A program that adds a vector in an environment and makes it
persistent.

2.1.3 Persistent Java

Java [Arnold and Gosling, 1996, Gosling et al., 1996] is a well-known object-
oriented programming language, in common use today. It has a strong type
system and automatic memory management. Its first implementation was re-
leased in 1995 and quickly achieved considerable prominence. Researches in
persistent programming was interested in Java as well due to the language’s

5For further references look at [Morrison et al., 2000].

18

2.1. Orthogonal Persistence

features and its mainstream use. Several persistence mechanism have been
implemented to provide support for persistence in Java, here we report only
three implementation6 that adhere to the principles of Orthogonal Persis-
tence but differ for how persistence is provided. Other mechanisms are dis-
cussed elsewhere: [Moss and Hosking, 1996] describe a range of approaches
for adding persistence to Java whereas [Jordan, 2004] present a comparative
study among different reference implementations.

One of the most prominent implementation of orthogonally persistent
Java was developed in the Forest Project [Sun Microsystems, Inc., 2000],
a collaborative research project among Sun Microsystem, where Java was
originally developed, and the research group of Atkinson at the University
of Glasgow. The implementation was called PJama7 [Atkinson et al., 1996a,
Atkinson et al., 1996b, Jordan, 1996, Jordan and Atkinson, 1998, Atkinson and Jordan, 1999]
and provided persistence without any change to the Java language, its stan-
dard libraries or compiler. Persistence was achieved by exposing an addi-
tional API, predominantly methods of the class PJavaStore, and modify-
ing the Java virtual machine (JVM)8 The API allowed the programmer to
associate objects with strings in a persistent map in order to make them
persistent. The associated object was recorded as root of persistence and
every object transitively reachable from it were preserved. The virtual ma-
chine was extended by adding an object cache and the management of the
movement to and from the object store integrated in the system.

In the listings 2.3 and 2.4 two examples from [Atkinson et al., 1996a] are
shown. In the former program an object is associated in the store to the
string sp1.

public class SaveSpag {
public static void main (String[] args) {
Spaghetti sp1 = new Spaghetti(27);
Spaghetti sp2 = new Spaghetti(5);
sp1.add("Pesto");
sp1.add("Pepper");
sp2.add("Quattro Fromaggio");9

try {
PJavaStore pjs = PJavaStore.getStore();
pjs.newPRoot("Spag1", sp1);

} catch (PJSException e) { ... }
}

}

6Previously reported in [Dearle et al., 2009].
7 It was formerly known as PJava, but then that name was reserved for Personal Java,

as reported in [Jordan and Atkinson, 1998].
8The implementation could not make all type persistent, as an example Thread. More

details in [Atkinson et al., 1996b, Atkinson and Jordan, 1999].
9sic.

19

2. Background

Listing 2.3 A program that persists an object in the store.

The latter program shows instead how to retrieve the persisted object
from the store and use it.

public class SaveShow {
public static void main (String[] args) {
try {
PJavaStore pjs = PJavaStore.getStore();
Spaghetti sp = (Spaghetti) pjs.getPRoot("Spag1");
sp.display();
pjs.newPRoot("Spag1", sp1);

} catch (PJSException e) { ... }
}

}

Listing 2.4 A program that retrieves an object form the store and uses it.

An interesting fact about the history of Pjama regards the Java key-
word transient. This keyword “suggests that the designers gave some
thought to persistence” [Jordan and Atkinson, 1998]. As can been seen in
the first version of the Java language [Gosling et al., 1996], the keyword
was defined as reserved field modifier but no related services was provided.
Only a hint was reported: “Variables may be marked transient to in-
dicate that they are not part of the persistent state of an object”. The
lacking of a semantic meaning of the keyword allowed the researches to
use it in order to specify the behaviour of a static variable,as described in
[Atkinson et al., 1996b, Jordan and Atkinson, 1998]. Unfortunately, in Java
1.1 the semantics of transient was provided along with the support for
object serialization10 in a manner incompatible with PJama11. Further-
more, the project was concluded in September 2000 with the publication of
[Atkinson and Jordan, 2000].

The second variant of Persistent Java that we want to discuss is the
one implemented on the Grasshopper operating system [Dearle et al., 1996].
Grasshopper was an operating system that provided support for Orthogonal
Persistence so no modifications to Java were needed in order to add per-
sistence. It was sufficient to instantiate “the entire Java machine within a
persistent address space” [Dearle et al., 2009]. Although this solution does
not strictly comply with our request to address the problem at a language
level, it is interesting because show that other approaches are possible.

The third and last implementation of Persistent Java is ANU-OPJ [Marquez et al., 2000],
that stands for Australian National University Orthogonal Persistence for

10Serialization is the mechanism that Java provides for persistence and distribution
11More details can be found in [Jordan and Atkinson, 1998].

20

2.1. Orthogonal Persistence

Java. The design of this approach was driven by three features: complete
transparency of persistence, support for both intra and inter application con-
currency and the preservation of Java portability. Complete transparency
was achieved by interpreting the third principle of Orthogonal Persistence
more fully to mean that the roots of persistence should also be defined implic-
itly. Thus class variables12 was made implicit root of persistence, making
persistence truly transparent. Portability was preserved by using a cus-
tomised class loader that semantically extended programs at class loading
time, making the approach compatible with standard compilers and virtual
machine. The portability of the storage layer was guarantee as well, pro-
viding a clean interface between the Java runtime and the underlying store.
Unfortunately, ANU-OPJ could not uniformly perform byte code transfor-
mation on some system classes, similarly to PJama.

2.1.4 Persistent Oberon

Persistent Oberon [Bläser, 2006, Bläser, 2007] is a persistent language de-
rived from Active Oberon13. It is based on a modular object-oriented pro-
gramming model, which combines the notion of object with the the concept
of modules. It offers persistence as a naturally inbuilt concept: the “lan-
guage does not need any artificial programming interfaces or commands to
use persistence” [Bläser, 2007].

In Orthogonal Persistence the fundamental concern is to avoid distin-
guish between transient and persistent data because such distinction lead
to problems: an external system is needed, the mapping between the lan-
guage and the system has to be managed and sometimes also the movement
of data. Although there are languages that comply with Orthogonal Per-
sistence principles, in [Bläser, 2007] is stated that “regrettably none of them
fulfils this goal of language-instituitionalized persistence”. Bläser claims that
special program functions and explicit interfaces are required in these lan-
guage. His interpretation of persistence identification is similar to the one
adopted in ANU-OPJ. Furthermore, “Persistent roots have to be handled
entirely differently in comparison to the transient ones”. These statement
can be confirmed by the listing previously reported.

Persistent Oberon have been designed in order to overcame these prob-
lems, but in a manner different from the one chosen in ANU-OPJ. The
module, besides being a static compilation and deployment unit, is the root
of persistence and it is designed to live infinitely long in the system. All
transitively reachable object in a module are preserved.

12 Fields of a class declared with static modifier.
13Active Oberon is the object-oriented descendant of Oberon.

21

2. Background

2.2 Files and file system

Files are an abstraction mechanism provided by the file system, which is
one part of the operating system, that allow storing information on the
underlying storage devices. From a programmer perspective, files are the
most common low-level form of persistent storage, as they are resources
which are preserved across process and system restart.

A file is an unstructured sequence of bytes and does not enforce any
particular organisation of data, but it only provide very simple operations:

• sequential operations: read/write a block of bytes from the current
position of seek to a position in the byte sequence;

• map operations: map a contiguous block of bytes from the file in
memory; all of the access to the memory range conceptually happen
on the file.

In general, programming languages provide a set of API to have access to
the underlying file system and manage files. To be more specific, they allow
to travel along the tree of directories, retrieve files by path and open/close
them, other than doing explicit operation on files. How and when data is
stored on a file and retrieved from it is completely up to the programmer,
although some programming languages provide serialization mechanisms as
a standard method to preserve language entities on a file.

It should be noted that files can also be used as a technique for inter-
process communication (IPC) if the same file is opened my multiple pro-
cesses. They can use it to communicate to each other, effectively letting
data through the process barrier.

2.3 Serialization

Serialization14 is the process of transforming data structures or object state
into a linear stream of byte. The reverse operation of recreating the data
structure or object from the serialized representation is called deserialization.

Serialization is commonly used to store objects on files so that they can
be retrieved later and to perform inter-process communication. To be more
precise, it can be used to transform data in a format which is suitable for
communication, in order to distribute it among components of a system, and
to implement remote procedure call (RPC). Thus, serialization is a mecha-
nism valuable for persistence and distribution of data.

We can distinguish two kind of serialization based on the output format of
the process: binary or text-based. The former it is in general more efficient

14In general the term serialize is considered to be synonymous with marshal, although
in some context their meanings are slightly different.

22

2.3. Serialization

in terms of memory space and time, whereas the latter is more portable
and human readable. Example of well-known text-based serialization format
are eXtensible Markup Language (XML) [Bray et al., 2008] and JavaScript
Object Notation (JSON) [ECMA, 2013, Bray, 2014].

Serialization and deserialization must be coded explicitly by the pro-
grammer if the language’s runtime does not support type introspection, for
instance in C. Furthermore, the above-mentioned cases introduce interest-
ing challenges: data consistency has to be ensured (for example the object
graph should not contain dangling references), new type might need to be
introduced at runtime and has to be ensured that a program can operate
as expected on the deserialized objects (for example that they satisfy a cer-
tain interfaces). Because of these issues, serialization usually require some
support from the runtime.

Languages that provide introspection and dynamic loading15 usually offer
automatic serialization as part of the standard library, for instance in Java
[Oracle Corporation, 2005], or as an external library. In some cases addi-
tional annotations [Hericko et al., 2003, Cisternino et al., 2005, Tansey and Eli, 2008]
are required in order to identify data to serialize or to change serialization
format.

Languages that provide automatic serialization, in the programmer prospec-
tive, reduce in some way the effort required to implement persistence and
distribution, but do not eliminate the explicit management necessary to store
and retrieve data from files or to send and receive data through networks. In
listings 2.5 and 2.6 two Java examples from [Oracle Corporation, 2005] are
shown. The first one show how to serialize data on a file whereas the second
one how to deserialize it.

FileOutputStream f = new FileOutputStream("tmp");
ObjectOutput s = new ObjectOutputStream(f);
s.writeObject("Today");
s.writeObject(new Date());
s.flush();

Listing 2.5 A program that serialize today’s date to a file.

In listing 2.6 is possible to see that explicit casting operations are required
in order to recreating objects of the appropriate types. This additional steps
are necessary due to the strong type system of Java, but in general the test
of data type is indispensable to avoid runtime error and manage properly
incorrect situations.

FileInputStream in = new FileInputStream("tmp");
ObjectInputStream s = new ObjectInputStream(in);

15More precisely, dynamic class loading in the context of object-oriented programming
languages.

23

2. Background

String today = (String)s.readObject();
Date date = (Date)s.readObject();

Listing 2.6 A program that deserialize a string and date from a file.

It is worth noting that serialization, similarly to what happened in Or-
thogonal Persistence, acts on the entire transitive closure of the object to
serialize. However, in this context the output stream of the process must
be loaded or saved (sent or received) in a single operation. Furthermore,
this technique cause the creation of a new copy of the data: in an object-
oriented settings, “This breaks referential integrity since there is no way
of matching the identity of objects from different save/load operations”
[Dearle et al., 2009].

2.4 Databases

Databases are organised collection of data, which is arranged according to a
data model in order to be easy to manage. The software that provides ac-
cess to databases to users or other applications is the database management
system (BDMS). It is designed to allow the definition, creation, querying,
update, and administration of databases.

Databases have traditionally been designed for structured data, but over
the years support for semi-structured (for instance XML an JSON) and un-
structured (for example text, audio and video) data have been provided too.
They offer higher level operations and, in general, more advanced features
when compared to files, but the details depend on the particular data model
adopted and the implementation characteristics.

In the next sections we briefly report different database models and high-
light the main features that each one has. Our primary interest is how pro-
gramming languages interact with databases.

2.4.1 Relational databases

Relational databases organise data according to the relational model intro-
duced in [Codd, 1970]. In this model data is represented in terms of tuples,
that are grouped into relations. Each tuple in a relation is univocally identi-
fies by its primary key: a set of attributes of the tuple. A primary key can be
used as foreign key in tuples of other relations resulting in conceptual links
between tuples. This information is used to recombine data from different
relations into a single collection.

Relational DBMSs (RDBMS) support transactions [Gray, 1981], which
consist of a sequence of operations on a database that are executed in a reli-
able way ensuring ACID16 properties [Härder and Reuter, 1983]. They have

16ACID stands for Atomicity, Consistency, Isolation and Durability.

24

2.4. Databases

SQL (Structured Query Language) as standard interface for data definition,
data modification and query operations. SQL is indeed a special-purpose
programming language that has to be used within a general-purpose pro-
gramming language in order to define the interaction between an application
and the database where data is preserved. This situation lead to the problem
of how to use SQL from another programming language.

Embedded SQL is an approach to combine programming language with
SQL that consist in adding SQL statements inline to program source code
of the host language. This method required an additional step compared to
the traditional compilation process: a dedicated preprocessor replaces SQL
statements with host-language calls to a code library before the actual com-
pilation. Despite this approach lets to validate SQL statements and apply
other mechanisms at compilation time, it lacks the possibility to dynamic
build SQL statements at runtime17.

The most common method to interact with databases from a host lan-
guage is through a set of APIs provided by an abstraction library. Examples
are Open Database Connectivity (ODBC) and Java Database Connectivity
(JDBC). These libraries offer APIs to connect to databases, define, execute
and retrieve the result of SQL statements and allows the management of
transactions. In this approach, SQL statements are expressed as strings
in the host language and are validated at runtime: any error conditions are
raised at runtime and should be properly managed. Moreover, programs that
interact heavily with databases have to perform much string manipulation.

Several companies have taken another approach to build RDBMS. This
approach consists in extending SQL with other programming language con-
structs in order to produce a general-purpose programming language that
embed SQL by design. An example is PL/SQL, a procedural extension for
SQL developed by Oracle Corporation for its relational database.

These three approaches are different from each other for how SQL is
integrated in the host language but none of them reduce the amount of work
that the programmer has to do to manipulate persistent data, which need
to be explicitly retrieved and stored in the database. Furthermore, until
now our discussion has concerned programming languages in general but
has not discussed the specific problems that arise when the host language is
object-oriented.

The conceptual and technical difficulties that arise when a relational
database is used from a object-oriented programming language are referred
to as object-relational impedance mismatch. The fact that an object en-
capsulates its state and behaviour (methods), whereas a tuple regards only
state, is the fundamental aspect that distinguish between object-oriented
paradigm and relational model. To overcome this problem in general only

17An example of embedded SQL is SQLJ, an outdated approach to combine Java and
SQL.

25

2. Background

state is preserved into databases, so encapsulation is violated18. Further-
more, relational databases do not support inheritance and polymorphism,
other important object-oriented concepts. On the other hand, the concept
of transaction and the related properties are not supported out of the box in
a object-oriented language. From a technical prospective, the main problem
are the differences between data types of relational databases and data types
of language’s type systems. Another obstacle is the different method to link
information: relational databases use foreign keys to identify other tuples
and join operations to reconstruct data, while object-oriented languages use
direct references (pointer) to other objects19. Further information about this
impedance mismatch can be found in [Ireland et al., 2009].

In order to free the programmer of the task of explicitly managing the
mapping between two different type systems (the one of the database chosen
for preserving data and the one enforced by the programming language used
to develop an application) the technique of object-relational mapping (ORM)
has been proposed. A mapping depend most on the specific language it
targets, so a general treatment of the argument is out of our scope. What is
interesting for us is the possibility that an object-relational mapping allow:
using language features to program the interaction with a database.

As an example, we consider the Java language and two different ORM
specifications that have been developed for it. The first and older one is
Java Data Objects (JDO). It is both an object-relational mapping and a
transparent object persistence standard, because it allows to used other data
storage like XML files. For the programmer, a drawback of this specification
is that the relationship between object and persistent data is specified in the
external XML metafiles. The source code does not contain any information
about persistent data, expect for API calls needed to store and retrieve data,
but the specification must be defined in any case. JDO also provide a query
language to abstract over the underlying storage technology: JDO Query
Language (JDOQL).

The second and more recent ORM specification developed is Java Per-
sistence Api (JPA) [Oracle Corporation, 2013]. In contrast to JDO, it is
only a object-relational mapping but it eliminates the require of an XML
mapping definition and allow to use annotations. As JDO, also JPA provide
a query language: Java Persistence Query Languages (JPQL) that resem-
bles to SQL but operates on JPA objects. JPA offers many annotations
but only few are necessary, the other ones are optional and are needed to
specify further details. Listings 2.7, 2.8 and 2.9 are examples taken from
[Oracle Corporation, 2013]. In the first one a class Employee is defined and
the @Entity annotation is used to specify that the class is a JPA entity and

18If a RDBMS also provide the functionality to store procedures, in any case state and
code are stored separately.

19In other words RDBMS represent data in a tabular format, whereas object-oriented
languages represent it as an interconnected graph of objects.

26

2.4. Databases

therefore a database table. The @Id annotation is used instead to specify
fields whose database columns correspond to a primary key.

@Entity
public class Employee {
@Id long empId;
String empName;
...

}

Listing 2.7 JPA: define an entity class with a simple primary key.

The second example just shows how to define a transient field that will
not preserved into the database using the @Transient annotation.

@Entity
public class Employee {
@Id int id;
@Transient User currentUser;
...

}

Listing 2.8 JPA: specify a not persistent field.

In the third and last example a method retrieves information from the
database and then stores a new object into it, using the dedicated API.
The interaction with the database is not direct, but is mediated by an
EntityManager instance that is associated with a persistent context. The
EntityManager API allow to manage the entity instance lifecycle. In this
case the method find is used to retrieve a customer using its primary key,
whereas persist lets to store and manage an order object. The EntityManager
instance manages the persisted object, so future modification to the object
will be tracked and the database will be updated.

@PersistenceContext EntityManager em;

public void enterOrder(int custID, Order newOrder) {
Customer cust = em.find(Customer.class, custID);
cust.getOrders().add(newOrder);
newOrder.setCustomer(cust);
em.persist(newOrder);

}

Listing 2.9 JPA: use of EntityManager for persisting an object.

Another interesting approach of using language features to interact with
databases is the one introduced in .NET Framework 3.5, that is Language In-
tegrated Query (LINQ) [Torgersen, 2006, Torgersen, 2007, Microsoft Corporation, 2013].

27

2. Background

LINQ is a framework that adds native data querying capabilities to .NET
languages and is meant to provide a uniform method for querying of data
across different data source. It can be used not only for data storage such
as databases and XML files, but also for in-memory collections.

This approach is a mix of two of the three methods described before to
interact with databases from a language: it combines embedded SQL and
dedicated APIs. On one hand, LINQ indeed can be understood as a sub-
language that extends the language by the addition of query expressions.
Furthermore, it looks very similar to SQL because many standard query
operators have the same name and semantic of SQL statements or clauses.
On the other hand, specific APIs are provided to create databases, insert
objects into a database and to commit changes made.

Listing 2.10 shows a LINQ query in C# for retrieving customers from
a database20. The result of the query is then accessed with the foreach
statement, which let to iterate over the customers.

Northwnd db = new Northwnd(@"c:\northwnd.mdf");

IQueryable<Customer> custQuery =
from cust in db.Customers
where cust.City == "London"
select cust;

foreach (Customer c in custQuery) {
...

}

Listing 2.10 LINQ: query in C#.

In the previous example, the so call “LINQ to SQL” framework is used. It
consist of a “LINQ provider that implements the query operators by trans-
lating expression tree to SQL and sending them to a relational database”
[Torgersen, 2006] and a full object-relational mapping for C#. Further de-
tails can be found in [Kulkarni et al., 2007]. It is worth noting that query
like this one can be static type checked and optimised, but it is also possible
to define query dynamically at runtime.

Listing 2.11 shows instead how to create a new customer and add it to
the database using the dedicated API of LINQ.

Northwnd db = new Northwnd(@"c:\northwnd.mdf");

Customer cust = new Customer();
cust.CompanyName = "SomeCompany";

20Northwnd inherits from System.Data.Linq.DataContext, that represents the main en-
try point for the LINQ to SQL framework.

28

2.4. Databases

cust.City = "London";
cust.CustomerID = "98128";
cust.PostalCode = "55555";
cust.Phone = "555-555-5555";
db.Customers.InsertOnSubmit(cust);

db.SubmitChanges();

Listing 2.11 LINQ: persist an object in C#.

LINQ to SQL uses annotations of class definition in order to specify the
details of the underlying database, like the JPA specification.

2.4.2 Object-oriented databases

Object-oriented databases adopt as data model the one proposed by the
object-oriented paradigm and embrace its concepts. Thus, data is repre-
sented as objects into the database in the same way it is described in the pro-
gramming language that manipulates it. This type of databases appeared in
the mid 1980s [Maier et al., 1985, Derrett et al., 1985, Dittrich, 1986] as re-
sponse to two shortcomings of the relational ones, as described in [Maier, 1989].
The first issue was that relational databases were not the most suitable so-
lution for a certain kind of applications, for example computer-aided design
(CAD). The second problem was the already mentioned object-relational
impedance mismatch.

The fundamental features of an object-oriented database, together with
other optional ones, have been described in “The Object-Oriented Database
System Manifesto” [Atkinson et al., 1989]. Among these, a very important
characteristics that an object-oriented database must have is the support of
object identity, as it is also noted in [Dearle et al., 2009]. The paper states
that identity “is perhaps the biggest differentiating feature between an OODB
and a relational DB”. This statement should be understood as conceptual
difference: the relational model requires a primary key that unique identifies
each tuple whereas objects have uniquely identities formed when they are
created. Other issues related to object-oriented databases are discussed in
the same paper.

There is no general method to retrieve objects from an object-oriented
database and different approaches have been adopted. They can be grouped
in two classes: ad-hoc and declarative methods. Among the former type we
can mention ZODB [Zope Foundation, 2015], an object database for Python
with a dictionary at the root. It allows to retrieve all the objects stored or a
specific one which is bound to an identifier in the dictionary. The declarative
approach instead has been influenced by SQL; examples are Object Query
Language (OQL) and the query languages related to JDO and JPA already
mentioned. Examples of queries of these and other similar query languages

29

2. Background

can be found in [Takasaka, 2005] and [Cook and Rosenberger, 2005]. The
latter also described an approach in which APIs are used to express query,
called “native query”.

Nowadays object-oriented database may be included in the broad defini-
tion of NoSQL databases, as noted in [Cattell, 2010].

2.4.3 NoSQL databases

NoSQL is commonly interpreted as “Not Only SQL” and it is used to indi-
cate databases that may also support SQL-like query languages. However,
in our view this term is referred to databases that adopt a non relational
model, as in [Leavitt, 2010, Cattell, 2010, Huang and Luo, 2013]. Under the
umbrella of NoSQL databases different data models are grouped, includ-
ing key-value stores, document-oriented stores, column-oriented stores and
graph databases. Compared with relational model, where it is mandatory to
define a database schema before actually storing data, these models usually
relax the requirement and allow to define the structure of data along with
the data itself (for example in key-value stores) or to add a new attribute at
any time (as in column-oriented stores).

There is no precise definition of what is a NoSQL database, due to the
variety of approaches that are classified as NoSQL. Therefore, only a loose
description of what are its main characteristics is usually given. According
to [Cattell, 2010], NoSQL databases generally have six features:

• the ability of horizontally scale (scale out) “simple operations” through-
put over many servers,

• the ability to replicate and to partition (shard) data over many servers,

• a simple call level interface or protocol,

• a weaker concurrency model than the ACID transactions of most RDBMS,

• use distributed indexes and RAM for data storage efficiently,

• the ability to dynamically add new attributes to data records.

The ability to scale out21 is probably the core feature that a NoSQL database
should have, since this kind of technological change has been triggered by the
growing amount of data and number of users that companies such as Google
and Amazon have to manage. This aspect is mentioned in [Leavitt, 2010,
Cattell, 2010, Pokorný, 2011, Strauch, 2012, Huang and Luo, 2013] and some
of these papers also identify Google’s BigTable [Chang et al., 2006] and Ama-
zon’s Dynamo [DeCandia et al., 2007] as the earliest influential systems for
the following NoSQL databases.

The “simple operations” to which Cattell refers are key lookups, reads and
writes of one record or a small number of records. This kind of workload

21To scale out means to add more nodes to a system.

30

2.4. Databases

is traditionally called online transaction processing (OLTP) and it is the
one for which NoSQL databases are most often considered22, as also noted
in [Stonebraker, 2010]. Operations like complex queries or joins are not
common in this context and, in some cases, not even possible.

Replicating and partitioning data over many servers are techniques use-
ful for horizontal scaling. In particular horizontal partitioning, also known
as sharding, is a valuable method because it can improve both read and
write performance. NoSQL systems usually adopt a shared nothing archi-
tecture23 in which each node is independent and self-sufficient, on top of
which automatic sharding may be provided. This is the capability of the
system of taking on the responsibility of allocating data to shard (partition)
and ensuring that data access goes to the right shard24. Shared nothing and
automatic sharding are also emphasises in [Stonebraker, 2010] as a way to
improve OLTP performance.

The adoption of a weaker concurrency model was pioneered by Dynamo
that uses eventual consistency as consistency model in order to achieve
higher availability and scalability. The same approach was proposed in
[Pritchett, 2008] with the name of BASE, acronym for “Basically Available,
Soft state, Eventually consistent”, as an alternative to ACID. The idea is to
relax the consistency requirement to promote availability. As a reason for
that is often cited Brewer’s CAP theorem, which we mentioned in Section
1.5. The same Brewer stated in [Brewer, 2012] that his theorem has led to
a wide variety of novel distributed systems and that the NoSQL movement
has applied it as an argument against traditional databases. Nevertheless,
there are some NoSQL databases that provide ACID transactions.

In the following we briefly describe the data models adopted in NoSQL
databases, mostly according to the classification presented in [Cattell, 2010].
Other categorisations of NoSQL databases have been proposed as described
in [Strauch, 2012]. For each model, we outline the common aspects regarding
data representation, data organisation and the interface provided. Further
details and a description of existing databases can be found in [Cattell, 2010,
Pokorný, 2011, Strauch, 2012, Huang and Luo, 2013]. The data models are:

• Key-value: The key-value data model is the simplest one and can be
understood as a map or dictionary of data. Data is stored as value
and an index is used to find it, based on a programmer-defined key.
The type of a key depend on the particular system, but in some cases
complex types can be used (for instance in Project Voldemort25). A
value can be a string or blob, so a serialization algorithm must be

22This workload is common in modern web applications.
23This term first appeared in [Stonebraker, 1986] and such architecture has been used

also in some RDBMS.
24One form of automatic sharding is consistent hashing.
25http://www.project-voldemort.com/voldemort/

31

http://www.project-voldemort.com/voldemort/

2. Background

used to transform data into a text or binary format. As an example,
JSON is a text format usually supported. There are only few systems
(like Redis) that also support more complex structures as value26. A
characteristic common to all databases that adopt this data model is
that values are opaque and can not be directly modified. We mean that
to modify a value (as an example a JSON) the only possible way is to
retrieve the value with the proper key, modify a part of it and then
store the modified value with the same key. The interface provided
to the programmer are in general API calls to insert values with a
specified key, retrieve value by key and to delete key-value pair. Most
of the system support only one index and does not support joins and
aggregate operations, that must be properly coded by the programmer.
Some system store keys in order and allow to retrieve ranges of them.

• Document-oriented: The document-oriented data model organises data
in documents. A document in this context is a semi-structured data
and let to store nested structures, lists of values and scalar values.
Typical document formats are JSON and XML. In contrast to the
key-value model, in this model documents are transparent and it is
possible to search by attributes. It is worth noting that there is no
strict schema documents have to conform to and attributes are sim-
ply names. Documents are organised in what we can call “collections”,
but the terminology is not standard and depends on the particular
system. A collection is just a group of documents and it is the abstrac-
tion provided to the programmer to put together related documents27.
Databases adopting this model provide a mechanism to query collec-
tion with the possibility to use multiple attributes value constraints.
This query interface in some cases is string-based and similar to SQL
but with some limitations; in other cases it is offered through spe-
cific calls. These system generally support secondary indices to speed
up specific queries and provide an update operation to modify single
attributes.

• BigTable-inspired: This data model represents data as multidimen-
sional values, which are identified by a key. The terms commonly used
are rows and columns: a row is what we have called multidimensional
value whereas a column is an attribute of such value. Rows are or-
ganised in tables and columns are arranged in groups. This model is
inspired by the one adopted in Google’s BigTable [Chang et al., 2006]28

and has been named differently by various authors. For instance, in

26In Redis a value can also be a list of strings or a set of strings.
27Some system store different collections on different nodes, but this detail depend on

the implementation.
28In this paper it is simply stated that “a table in Bigtable is a sparse, distributed,

persistent multidimensional sorted map”.

32

2.5. From persistence to distribution

[Cattell, 2010] it is called “extensible record” but unfortunately this
term tends to cause confusion with the concept of records in relational
databases. In [Strauch, 2012] it is instead called “column-oriented”, but
the author underlines the his view is less puristic than the precise mean-
ing, which refers to a model where data is stored by column, and sub-
sumes model that integrate column and row orientation. The same pa-
per also reports “wide columnar” and “entity-attribute-value” as names
used by other authors. Finally, in [Sadalage and Fowler, 2012] this
model is called “column-family” due to his notion of grouping29. Data
is structured in order to be (first) partitioned horizontally, rows are
split through sharding on the key, and (then) vertically, columns are
organised in “column groups” that are treated separately. The column
groups must be predefined, but new attributes (columns) can be de-
fined at any time. Databases that adopt this data model generally
provide an interface to insert and retrieve rows, insert, update and
delete columns of a particular row and in some cases also MapReduce
[Dean and Ghemawat, 2004] operations. A few systems offer this in-
terface through a query language.

2.5 From persistence to distribution

In the previous sections we have reported various idea, and related imple-
mentations, to provide persistence in programming languages, either as a
language concept or using an external system. However, we have focused
only on one aspect of our problem and did not address the other: distribu-
tion.

Distribution is the movement of entities (data, objects, components, ser-
vices, etc) between parts of a system and the coordination among them.
This definition is on purpose general in order to include more system that at
a certain abstraction level have similar characteristics: from multithreaded
programs to distributed systems. All these systems are arranged in subparts
representing autonomous computational entities that cooperate to perform
a specific task or solve a given problem. They also provide a communication
mechanism without which the distribution would not be possible.

There are two main classes of communication mechanisms: message pass-
ing and shared memory. The former consists in sending and receiving mes-
sages, whereas the latter involves writing and reading a shared memory30.
Which mechanism a system implements depends on it characteristics; it is
common to have a shared memory in multicore processors whereas in a dis-
tributed system the communication is made through messages. However, in

29In BigTable a group is called column family.
30In this case we have used well-known terms, but it would be more correct refer to

these mechanism as entities passing and shared space to be more general.

33

2. Background

general it is possible to build a shared memory abstraction on top of mes-
sage passing system and vice versa. Thus, the choice of which mechanism a
system provides can be done during its design.

An important property related to distribution is transparency, as pointed
out in [Tanenbaum, 1993, Schwarzkopf et al., 2013]. We can talk about
transparency in relation to both the movement of entities and the coor-
dination of the parts.

On one hand, in systems adopting a message passing technique it is
possible to have naming transparency if subparts are identified by (unique)
names, rather than worry about their relative locations. Moreover, there are
systems providing automatic dispatch: the subpart to which send a message
is selected by the system. Such automated coordination represents another
type of transparency for the user of the system. Finally, it also possible to
have communication transparency if non-local actions are executed in the
same manner of the local one.

On the other hand, shared memory abstraction provides a natural com-
munication transparency due to the fact that the communication is implicit
when a modification is made to the shared memory. In these system, much
of the effort of the user concerns the coordination and the synchronisation
of the subparts, although some systems provide mechanisms to automatise
these aspects.

The most general kind of transparency is distribution transparency, which
refers to the ability of a system to appear as a whole, even though it is di-
vided into subparts. As an example, most modern databases are distributed
system, especially NoSQL ones, and have this property: users interact with
the system as it were one logical system. As we have mentioned in Section
2.4, the distribution of a database among different nodes is a useful tech-
nique to improve availability, reliability and performance. Despite the fact
that such property is valuable, it is not achievable or even desirable in all
systems.

In the following we briefly report on a few systems that provide distribu-
tion, taking into account only data. Also in this case we adopt a program-
ming language prospective, so our interest is in how distribution is offered
in languages.

2.6 Distribution within programming languages

Programming languages have initially been designed to write sequential pro-
grams that would be run on a single processing unit. Although starting from
the 1980s a certain number of concurrent programming languages have been
proposed and the widespread adoption of multicore processors since early
2000s, well-known and widely used languages have provided only sequential
programming until recently.

34

2.6. Distribution within programming languages

The most well-known example of this is C, that was defined as a sequen-
tial programming language until the C11 standard revision. Before that, to
take advantage of the multithreaded underlying machine and develop a con-
current program an external library that provides threading primitives had
to be used. [Boehm, 2005] shows which are the limitation of the approach
initially taken in C, that was replaced in C11 with the introduction of a
detailed memory model and the support for multiple threads.

We can recognise a similar situation in how distribution within an operat-
ing system or across a network is made in programming languages. Although
concurrent programming languages provide different unit of executions and
a communication mechanism to organise the structure of a program, the
interaction is usually limited to the execution boundaries, traditionally the
process. Communication between two processes are made through an inter-
process communication (IPC) mechanism, which can be used within the
operating system or across the network. Indeed, almost all programming
languages which have IPC mechanisms, provide them through a library that
adds a distribution layer on top of the existing language. Examples of this
are networking libraries that provide socket abstraction or libraries that im-
plement the message passing interface (MPI).

The choice of providing communication and distribution in an object-
oriented language through a library has some disadvantages. Among these,
the most problematic is the fact that the process of transformation from the
internal representation of an object to a linear one suitable to be transmitted
causes the loss of the identity of the object. What is transferred is indeed a
value without identity: the semantic information related to the value is not
transmitted. This problem is similar to the one that usually happens when
an object is persisted.

Our research of languages that have been designed considering distri-
bution mechanism has led the following results: Emerald, Orca, Obliq and
Distributed Oz. Although all these languages have been proposed before
2000 and so designed in a different scenario compared with actual one, they
represent interesting solution to the problem of how integrate distribution
into a language.

Emerald [Black et al., 1986, Black et al., 1987, Jul et al., 1988] is an object-
based programming language for the implementation of distributed applica-
tions in local area network (LAN) of independent nodes. Like Smalltalk-
80, Emerald considers all entities to be object. Unlike Smalltalk-80, it is
a strongly typed language and has no classes or inheritance. Objects can
either be passive (data) or active (contains a process). The language has
an explicit notion of object location31 and mobility, so an object can be
moved from a location to another. In [Jul et al., 1988] this kind of mobility
is called fine-grained and it is proposed as an alternative to process mobil-

31At any given time, an object is on a single processor, called its location.

35

2. Background

ity. Another interesting characteristic of Emerald is that each object has
an identity, which distinguishes it form all other object within the network.
In details, to “each remotely accessible object is assigned a unique object id
(OID)” and “each node has an object table that stores pointers to the lo-
cal object descriptors for all remotely accessible object” [Black et al., 1987].
Moreover, object invocation is location independent (or transparent, as we
have called it in the previous section), is in the responsibility of the system
to locate the target of the invocation.

Orca [Bal et al., 1990, Bal et al., 1992] is a procedural parallel program-
ming language intended for implementing parallel applications on distributed
systems. It supports a communication model based on shared data, but this
sharing data is logical rather than physical since distributed systems lack
shared memory. The parallelism is based on sequential processes and the lan-
guage provides an explicit fork primitives for spawning a new child process
and passing parameters to it. Sharing of data happens on process creation,
but has to be specified in the declaration of the child process (shared param-
eters). The language imposes a limitation on shared data: only user-defined
abstract data types can be shared. As far as the implementation is con-
cerned, in a prototype implementation of Orca shared data is replicated on
all processors and a ordered broadcast protocol is used for updating copies.

Obliq [Cardelli, 1994, Cardelli, 1995] is a lexically-scoped interpreted lan-
guage that supports distributed object-oriented computation. The lexical
scoping in this context, due to the distributed characteristic of the language,
assume an additional meaning compared to the classical one: “it ensures
that computations have precise meaning even when they migrate over the
network: a meaning that is determined by the binding location and network
site of identifiers, and not by execution sites” [Cardelli, 1995]. Obliq is based
on objects and Cardelli described it as an embedding-based language, such
name indicates that all methods on an object, as well as its value fields, are
embedded in the object itself (he further specify at least in principle) rather
than being located in other object or classes. The explanation of this choice
is that the self-contained nature of the object is well suited to network ap-
plications. The distributed semantic of the language is based on the notions
of sites, locations, values and threads. Sites are address spaces and contain
locations, and locations contain values. Threads are virtual sequential pro-
cessors. Values include basic values, object, arrays and closures. A values
may contain embedded locations, as example an object value has embedded
locations for its fields. Values may be transmitted over the network: values
containing no embedded locations are copied, whereas values containing em-
bedded locations are copied up to the point where these locations appears;
local references to locations are replaced by network references. Thus, send-
ing an object causes the creation of network references for its fields32. In

32We can think to the identity of an object as the combination of the locations of

36

2.7. Distributed operating systems

Obliq every object is bound to a unique site (the one where it has been cre-
ated) and does not move. However, objects can be cloned to different sites
and, furthermore, this operation can be combined to aliasing to achieve mi-
gration: cloning provides state duplication and aliasing redirects operations
to the clones. More migrations of the same object cause the creation of a
chain of indirection. To avoid this problem and allow the creation of the
initial network reference to an object on another site, the language considers
an external process that acts as name server, which store the association
between strings (names) and network references.

Distributed Oz [Haridi et al., 1997, Roy et al., 1997] is an extension of
Oz, a concurrent language with first-class procedures, with two concepts:
mobility control and asynchronous ordered communication. It is in some
sense inspired by Obliq, from which takes the distinction between values
and locations. The language distinguishes between variables, records33, pro-
cedures, cells and ports. All stateless entities, namely records, procedures
and variables34, are replicated (copied to a site). Instead, cells and ports
are stateful entities and are subject to the mobility control, in other words
the ability to migrate between sites or to remain stationary at one sites, ac-
cording to the programmer’s intention. In both the above-mentioned papers,
cells are mobile and ports are stationary. A cell is a pair representing the
mutable binding of a name to a variable that, in addition to an state-update
operation, provides an exchange operation which causes the state to move
automatically to the site invoking it. On the other hand, a port is a pair of
an identifier and a stream and provide two operations: send, which append
the entry to the stream in an asynchronous ordered manner, and locales,
which causes the port’s state to move automatically to the site invoking it.

2.7 Distributed operating systems

A distributed operating system is an operating system over a collection of in-
dependent, autonomous, communicating computers that appear to the users
of the system as a single computer [Tanenbaum, 1993, Tanenbaum, 1995].

Thus, a distributed operating system is a layer of software that man-
ages the underlying hardware and provides an environment in which a user
can execute programs in a convenient manner, as a traditional (centralised)
operating system. However, it also create the illusion in the minds of the
users that the entire network of computer is a single system, rather than a
collection of distinct machines35.

its fields, even though in the implementation, as point out in [Cardelli, 1995], network
references are generated for objects and not for each of their embedded locations.

33Under the name of record, in [Haridi et al., 1997], is grouped together common data
types (records, number, strings, etc).

34Oz variables are single-assignment variables or more appropriately logic variables.
35Some authors refer to this property as the single-system image, as noted in

37

2. Background

In Section 2.2 we have mentioned files as a mechanism, provided by the
file system, to persist data. In a distributed operating system such solution
could allow to have both persistence and distribution, due to the character-
istics of the operating system. Indeed, a distributed operating system has a
file system that must look the same from every computer in the collection.
Furthermore, as specified in [Tanenbaum, 1995], every file should be visible
at every location (according to protection and security constraints).

As an example, in this environment a process can save data on a file that
can later be read from another process to retrieve the information. These
processes can run on different computers but any of them use the file as if it
were local to the computer where the process run; it is in the responsibility
of the system to ensure that processes can have access to the file (by moving
or replicating it on the other computer, for instance). However, this kind of
distribution is made at the file system level.

Another possibility to have (implicit) distribution is that the collection of
computers shares a single virtual address space. However, this solution was
not immediately examined. As described in [Tanenbaum, 1995], in the early
days of distributed computing, everyone implicitly assumed that programs
on machines with no physically shared memory obviously ran in different
address spaces and communicated by message passing. A shared memory
model, also known as distributed shared memory, was proposed in [Li, 1986]
(and later also described in [Li and Hudak, 1989]). It operates as a paging
system across machine boundaries.

The system proposed by Li is well described in [Tanenbaum, 1995]: “in
essence, this design is similar to traditional virtual memory system: when a
process touches a nonresident page, a trap occurs and the operating system
fetch the pages and maps it in. The difference here is that instead of getting
the page from the disk, the operating system gets it from another processor
over the network. To the user processes, however, the system looks very
much like a traditional multiprocessor, with multiple processes free to read
and write the shared memory at will.”

Unfortunately, despite being easy to program, this system exhibits poor
performance for many applications. Various approaches to make distributed
shared memory more efficient have been attempted, as an example one of
them does not share the entire address space, “only a selected portion of it,
namely just those variables or data structures that need to be used by more
than one process” [Tanenbaum, 1995].

Is out of our scope to report the different aspects and issues that regards
distributed operating systems. For a complete treatment of the subject we
refer to [Tanenbaum, 1995], which describes communication and synchroni-
sation among other things.

We have instead recalled a few ideas, developed in the research area of

[Tanenbaum, 1993, Tanenbaum, 1995].

38

2.8. Eventual consistency and conflict resolution

distributed operating systems, that in our opinion are interesting also nowa-
days and should be investigated. Indeed, this research topic had the most
successful period in the 1980s, while most recently the interest about this ar-
gument has been only moderate. However, we are not the only one interested
in distributed operating system, as an example [Schwarzkopf et al., 2013] ar-
gues that the distributed OS concept is worth a revisit.

This paper discusses distributed operating system in the context of data
centers, but reports considerations valuable both in general and in our spe-
cific scenario. First of all, it indicates three motivations of the original lack
of success of distributed OS, namely:

• the cost of transparency, that in some cases turned out to be a hin-
drance to deterministic performance or led to poor performance;

• the compute/communication speed dichotomy, because clock speed in-
creased more rapidly than communication speeds causing the high time
cost of remote operations;

• the conflation of micro-kernels and distributed system, because many
distributed OS research project chose a micro-kernel as a central design
component that put them at a further disadvantage in the competi-
tive arena of 1990s desktop computing, as they also inherited many
perceived drawbacks of the micro-kernel approach (for instance in per-
formance).

Then, it mentions some key conditions that have recently changed, as exam-
ple that I/O is faster than computation, data center applications necessitate
distribution and transparency is in demand. We can understand this last
condition in the general scenario of distributed applications, recalled in Sec-
tion 1.3, and affirm that the programmer need to be liberated from knowing
the details of distributed coordination. Finally, the authors motivate why
the time is right to reconsider the distributed OS concept and outline, among
the others things, the possibility to have automated decisions and the op-
portunities for new abstraction.

The paper also discusses some key concept and challenges. Most no-
tably, in our view, it states that might be worthy to investigate the concept
of unified naming and distributed shared memory. Furthermore, it men-
tions weaker consistency models for higher availability, which have recently
received much attention, and suggests to support them at the operating
system level.

2.8 Eventual consistency and conflict resolution

Replication is a technique used in distributed systems to guarantee con-
sistent performance and high availability, particularly in those system that
operate on a worldwide scale [Vogels, 2008]. However, those systems try to

39

2. Background

make replication as much transparent as possible and to appear to the user
as a whole: that requires maintaining the shared state consistent through
replicas.

The CAP theorem concerns distributed systems, as already mentioned in
Section 1.5, and can be concisely expressed as the fact that strong consistency
(C) conflicts with availability (A) and partition-tolerance (P), or by the oft-
used “two out of three” concept. However, this concept can be misleading as
explained in [Brewer, 2012].

There are essentially three reasons why the “two out of three” concept can
be misleading. First, because partition are rare, there is little reason to forfeit
C or A when the system is not partitioned. Second, the choice between C
and A occur many times within the same system at very fine granularity (for
instance the choice can depend on the operation). Finally, all three properties
are more continuous than binary. The author then explains that if there is a
partition a decision must be made: consistency or availability. Furthermore,
he affirms that in practice latency and partition are deeply related and when
a timeout takes place during a communication, the partition decision must
be done: cancel the operation or proceed with it. In a pragmatic view, a
partition is a time bound on communication.

Distributed systems usually favour availability over consistency and adopt
weaker consistency models. The most widespread model used is probably
eventual consistency, a weaker form of consistency in which replicas even-
tually reach the same final state if clients stop submitting updates. In this
model there may be replicas with stale state but, in the absence of updates,
at a some point in the future that will be recovered. Examples of system
that adopt this model are Amazon’s Dynamo and other NoSQL databases.

In [Brewer, 2012] is also discussed the issue of partition recovery. It con-
cerns how conflicting states, reached during the partition, should be merged.
A similar problem exists when an update is executed locally at some replica
and then sent asynchronously to the other replicas. In this situation con-
current updates may conflict, which means that a combination of updates
(which may be individually correct) taken together can violate some invari-
ant. To resolve conflicts, a consensus and a roll-back may be required. Since
conflict resolution is hard, many system adopt ad-hoc approaches that can
result error-prone.

The closest approach to a general framework for automatic state conver-
gence is using commutative operations. This idea has been adopted in the de-
velopment of conflict-free replicated data types (CRDT) [Shapiro et al., 2011c,
Shapiro et al., 2011a, Shapiro et al., 2011b], a class of data structures that
provably converge to a correct common state.

[Shapiro et al., 2011c] reports the formalisation of eventual consistency,
the definition of the theoretically-sound approach proposed by Shapiro and
colleagues, namely Strong Eventual Consistency (SEC), and the definition
of CRDT. In the following we outline this work.

40

2.8. Eventual consistency and conflict resolution

2.8.1 System model

Shapiro and colleagues consider a system of processes interconnected by an
asynchronous network. The network can partition and recover. They assume
a finite set Π = {p0, . . . , pn−1} of non-byzantine processes36. Processes in
Π may crash silently; a crash replicas may remain crashed forever, or may
recover with its memory intact. A non-crashed process is said correct.

A process may store objects. Here an object is a mutable, replicated data
type that has an identity, a content (called its payload), and initial state and
an interface consisting of operations. Two object having the same identity
but located in different processes are called replicas of one another. With
no loss of generality, the authors consider a single object with one replica at
each process and, for simplicity, they assume a fully connected graph.

The environment consist of unspecified clients that query and modify
object state by calling operations in its interface, against a replica of their
choice called source replica. A query executes locally. An update has two
phase: first, the client calls the operation at the source, then the update
is transmitted asynchronously to all replicas. Two styles of replication are
possible: state-based and operation-based (op-based for short).

In state-based (or passive) replication, an update occurs entirely at the
source, then propagates by transmitting the modified payload between repli-
cas. In contrast, in operation-based (or active) replication, the system trans-
mits operations. [Shapiro et al., 2011c] describes in details both styles, here
we consider only the operation-based replication because the payload trans-
mitted in this approach is generally smaller than in the other approach and
should be preferred to reduce bandwidth usage37. Nevertheless, some result
about state-based replication will be mentioned.

An op-based object is a tuple (S , s0, q , t , u,P), where S is the state do-
main and s0 is the initial state. The replica at process pi has state si ∈ S .
A client of the object may read the state of the object via query method q
and modify it via update method. However, in the op-based view an update
is split into a pair (t , u), where t is a side-effect-free prepare-update method
(for instance, it may compute result) and u is an effect-update method. The
prepare-update executes at the single replica where the operation is invoked
and it is followed immediately by effect-update method (to ensure causality
between successive update).

The effect-update method executes at all replicas (said downstream).
The source replica delivers the effect-update to downstream replicas using a
communication protocol specified by the delivery relation P . That is, effect-
update method u is enabled only if the precondition is satisfied. The delivery
of u at replica i may be delayed, until P(si , u) is true.

36All processes observe the same symptom if a fault occurs.
37The op-based approach is adopted in most popular collaborative software such as

Google Docs, Google’s collaborative word processor.

41

2. Background

A method whose precondition is satisfied is said enabled (for instance, a
non-null precondition may be necessary in some cases). It is assumed that
an enabled method executes as soon as it is invoked. Method execution at
replica i will be noted f ki (a), where f is either q , t or u, and a denotes
the arguments. The ordinal of execution f at replica i is noted as Ki(f),
i.e., Ki(f

k
j (a)) = k for i = j , and is undefined otherwise. The states of a

replica are numbered sequentially increasing with each method execution. A
transition is noted sk−1i • f kj (a) = ski .

State equivalence s ≡ s ′ is defined if all queries return the same result
for s and s ′. Both queries and prepare-update methods are side-effect-free,
i.e., s • q ≡ s • t ≡ s.

Definition 1 (Casual History (op-based)). An object’s causal history
C = {c0, . . . , cn−1} (where ci goes through a sequence of states c0i , . . . , c

k
i , . . .)

is defined as follows. Initially, c0i = �, for all i . If the k th method execution
at i is:

• a query q or a prepare-update t , the casual history does not change,
i.e., cki = ck−1i ;

• an effect-update uk
i (a), then cki = ck−1i ∪ {uk

i (a)}.

An update is said delivered at a replica when the update is included
in the replica’s casual history. Update (t , u) happenedbefore (t ′, u ′) iff the
former is delivered when the latter executes: (t , u) → (t ′, u ′) ⇔ u ∈ ck−1i ,
where t ′ executes at pj and k = Kj (t

′). Updates are concurrent if neither
happened-before the other: u ‖ u ′

def
= u 6→ u ′ ∧ u ′ 6→ u.

A similar formalisation exists for state-based object; here we recall only
that they have a method m (merge) that is used by a replica to merge its
local state with the one received from a remote replica.

2.8.2 Strong Eventual Consistency

Eventual Consistency is formally defined as:

Definition 2 (Eventual Consistency (EC)).
Eventual delivery: An update delivered at some correct replica is eventu-
ally delivered to all correct replicas: ∀i , j : f ∈ ci ⇒ ♦f ∈ cj .
Convergence: Correct replicas that have delivered the same updates even-
tually reach equivalent state: ∀i , j : �ci = cj ⇒ ♦�si ≡ sj .
Termination: All method executions terminate.

To avoid using roll-back and consensus, typically adopted in EC system,
the authors require a stronger condition:

Definition 3 (Strong Eventual Consistency (SEC)). An object is Strongly
Eventually Consistent if it is Eventually Consistent and:

42

2.8. Eventual consistency and conflict resolution

Strong Convergence: Correct replicas that have delivered the same updates
have equivalent state: ∀i , j : ci = cj ⇒ si ≡ sj .

The intuition is to have replicas with the same (casual) history ensure
having the same state, roughly speaking, without other mechanism.

Given that, the problem is finding a sufficient condition for objects in
both state-based and op-based style.

2.8.3 Conflict-free replicated data types

To have conflict-free objects, the idea is to leverage simple mathematical
properties that ensure absence of conflict. For example, in the case of op-
based objects, we need the commutativity property for update operations.

Nevertheless, for op-based replication an additional assumption is made:
an underlying reliable causally-ordered broadcast communication protocol,
i.e., one that delivers every message to every recipient exactly once and in
an order consistent with happened-before. Given this, it follows that two
updates that are related by happened-before execute at all replicas in the
same sequential order: (t , u) → (t ′, u ′) ⇒ ∀i ,Ki(u) < Ki(u

′). However,
concurrent updates may be delivered in any order. A sufficient condition
for convergence of an op-based object is that all its concurrent operations
commute.

Definition 4 (Commutativity). Updates (t , u) and (t ′, u ′) commute, if
and only if for any reachable replica state s where both u and u ′ are enabled,
u (respectively u ′) remains enabled in state s • u ′ (respectively s • u), and
s • u • u ′ ≡ s • u ′ • u.

An object satisfying this condition is called a Commutative Replicated
Data Type (CmRDT).

However, the delivery precondition P may delay the delivery of an effect-
update to some replicas. Therefore, for liveness, it must be proved that
delivery is eventually enabled. For that reason the scope of the precondition
is restricted to the ones for which causally-ordered broadcast is sufficient.

Theorem 1 (Commutative Replicated Data Type (CmRDT)). As-
suming causal delivery of updates and method termination, any op-based ob-
ject that satisfies the commutativity property for all concurrent updates, and
whose delivery precondition is satisfied by casual delivery, is SEC.

The proof is presented in [Shapiro et al., 2011b].
As far as state-based objects are concerned, a similar result is presented

in [Shapiro et al., 2011c]. In this case the sufficient condition for strong con-
verge is that a state-based object is a monotonic join semilattice. In other

43

2. Background

words, the set of states, equipped with partial order ≤, forms a join semi-
lattice38, merge computes the least upper bound of two states and updates
monotonically advance upwards according to ≤. An object satisfying this
condition is called Convergent Replicated Data Type (CvRDT).

Shapiro and colleagues have also proven that CmRDT and CvRDT are
equivalent; in [Shapiro et al., 2011c] two results are presented proving that
SEC op-based object can be emulated by a SEC state-based object and vice
versa.

An example of CRDT is the PN-Set (Positive-Negative Set), in which
to each element is associated a counter, initially at 0. Adding an element
increments the associated counter, and removing an element decrements it.
The element is considered in the set if its counter is strictly positive. How-
ever, due to the fact the a CRDT Counter can go positive or negative, it
may happen that adding an element whose counter is already negative has
no (visible) effect. This construction is a CRDT because it combines two
CRDTs, a Set and a Counter.

This and other basic CRDTs can be found, together with other references,
in [Shapiro et al., 2011a].

2.8.4 Remarks

CRDTs can be a valuable class of data structures to use in a distributed
eventually consist system, and should be used when possible because they
favour availability and ensure that state converges automatically.

Nevertheless, there are cases where a data structure can not be designed
to be a CRDT. Indeed, from a technical point of view, CRDTs allow only
locally verifiable invariants. To maintain a global invariant synchronisation
is required39.

38A join-semilattice is a partially ordered set that has a least upper bound for any finite
subset.

39It is possible to enforce a local invariant that implies the global invariant, but this
solution may be too strong.

44

3

Spray programming

“A possible first step in the research program is 1700 doctoral theses
called ‘A Correspondence between x and Church’s λ-notation.’”

– Peter J. Landin, The Next 700 Programming Languages

This chapter presents our solution to the problem of providing persistence
and distribution as programming language features, as proposed in Section
1.4. Our approach is to make a part of the heap persistent and distributed.
We not introduce a new programming language that supports this idea,
instead we augmented a programming language with a paradigm that deals
with both persistence and distribution, that we call Spray programming. It
has been designed to be implemented in existing programming languages
extending them.

Firstly, we outline the context in which our solution can be applied and
an informal description of it. Then, we discuss some design choices made
in the early stages of development along with their motivations. Finally we
present the specification of Spray using the Abstract State Machine (ASM)
formalism.

3.1 Description

We consider a distributed system and a set of applications developed on top
of it. Each of these applications can have zero or more processes that run
on different devices, at different times and execute the specific application.
We do not assume any particular architecture for the distributed system
and related applications. We just consider processes interconnected by an
asynchronous network that communicate exchanging messages. Moreover,
we imagine a group of users that make use of one or more applications.

As an example, we can consider the World Wide Web (or simply the
Web) and web applications. It is quite common to think at the same web
app running on different web browsers, which are used by various users. The

45

3. Spray programming

state of each instance of the application depends on the particular user and
other aspects related to the device.

A web application runs in a web browser but its code and data is stored
on one or more servers. After having downloaded the client-side applica-
tion’s code, the browser sends request to the server to retrieve the data
needed or to check for updates. Local changes of the application’s state are
also transmitted to update the remote copy of the state. This behaviour
is typical of modern web application and must be coded explicitly by the
programmer, together with other parts of the program. However, the task
of keeping up-to-date the state of an application distracts from the business
logic. This scenario gets more difficult if we consider that information may
be shared among different applications of the same user or multiple users of
one application.

Interesting examples of web applications are the ones in Google’s or Mi-
crosoft’s apps ecosystem. These ecosystems provide different types of web
applications, including an email client, a time-management tool (calendar),
a contact management tool, an office suite and a storage service . Some level
of integration among the various applications is usually offered to the user
which can access data of one application from another one. For instance, it
is possible to see the list of contacts when writing a new mail.

Users of these ecosystem can also share documents, notes or events. A
shared object represents a part of a web application that is shared among
more users and allows them to interact. The kind of interaction depend on
the specific application, for example a web-based word processor may provide
collaborative editing of shared documents.

Moreover, the already mentioned app ecosystems usually have a mobile
version of most of the web applications they provide. Thus, our consider-
ations are not limited to web application but could be extended to mobile
applications as well.

We now outline the basic traits of the applications we consider, of which
web applications are a proper example. First, these application require the
programmer to explicitly manage the back and forth of data between the
local process and the remote ones, just to keep up-to-date the state of an
application. Then, data is not only transmitted, but it is also stored both
in the local device’s memory and in remote storages to preserve the applica-
tion’s state beyond the execution of a single process. Pure web applications
represent an extreme case, where all data is stored remotely.

If it is possible to store data locally; the programmer has the additional
task to save and retrieve data from the local storage. In this scenario, the
programmer has to deal with both the persistence and the transmission of
data. Finally, since data is distributed among various processes, which can
execute the same application or different ones, sharing of data should be
considered.

We think that if persistence and distribution are provided as language

46

3.1. Description

features, the programmer will be released from the burden of saving and
transmitting data, together with the task of transform data in a format
suitable for these operations. The runtime of the language may take care of
these operations, while the programmer may focus on the business logic.

The main idea of Spray is to have a part of the heap which lifetime is
detached from the process’s lifetime. It models a memory that is persisted
and distributed among more processes. This idea may be understood as a
combination of Orthogonal Persistence (Section 2.1) and distributed shared
memory (Section 2.7). Nevertheless, in the following discussion, we will refer
to state when we talk about persistence and distribution, not simply data. In
this context, a “state” is data together with the related semantic information
given by the language and the programmer. The state of an application
consists of the states of all its objects.

As already stated, we restrict our interest to object-oriented program-
ming languages. This choice is not limiting, from a technological point
of view, because most modern programming languages support the object-
oriented paradigm and most of the application we consider, such as web
and mobile applications, are written in object-oriented or object-based1 lan-
guages. On the other hand, objects are a general abstraction to model a
problem and its solution, and have the notion of identity. An identifier iden-
tifies an object during its lifetime and so may be used to refer to the object at
different times and from various places. In other words, the same object can
be pointed by different processes of the same application on the same device
as well as by different processes of various application on distinct devices.

As far as the persistent and distributed memory is concerned, it is ob-
vious that a flat organisation is not the right choice. Indeed, this solution
implemented without other additional mechanisms may allow all processes
to get access to the whole memory. This kind of approach is not desirable
because the entire state of the memory is shared, whereas we want to let
the programmer express which states are shared and which instead are not.
In Spray the idea is to arrange part of the heap in a context of persistence
called scope.

A scope is a special object that defines an environment and a memory.
The scope’s memory stores objects, which are referred by their identity, while
the environment contains binding between local names and stored objects.
Although the definition of scope in programming languages regards the visi-
bility of a name binding, the part of a program where that binding is valid, in
our discussion a scope determines the part of an execution where a name or
an object is visible and therefore may be used. Instead of lexical scoping, we
adopt dynamic scoping controlled by the programmer, who explicitly opens
or closes a scope.

It is possible to store a scope inside another one since a scope is an

1Languages that support only some aspects of the object-oriented paradigm.

47

3. Spray programming

object. This leads to the possibility of storing nested scopes and retrieve
them when necessary. However, there is a different between storing scopes
and other objects: storing the same generic objects in different scopes at
different times means to save a different version of it, whereas storing a
scope means simply to store its identity in order to be able to retrieve it
later. Thus, scopes can be used to obtain objects versioning, but not scope
versioning.

The scope just described is called “single” scope. It is commonly what
a programmer needs in the development of an application. As an example,
the scope related to the application is used to store all the objects that
the application manipulates. However, in some cases the programmer may
want to express that an object is accessible only in a certain condition. For
instance, he or she wants that a particular object of the application can
be reachable only on a specific device. What he or she needs is method to
express that an object is visible only if both the application and the device
scopes are open. In order to let the programmer does this, Spray provides a
special kind of scope called allOf.

This particular scope is obtained by viewing a set of scopes as one scope.
As a single scope, it has a memory and an environment too. The aim of an
allOf scope is to have a distinct scope that is open only if all the scopes that
define it are open. The definition of this kind of scope is implicit, as well
as its opening and closing. Furthermore, names and objects contained in an
allOf scope should be visible in each scope that determines it.

If we do not take into account allOf scopes, Spray memory is conceptually
organised as a hierarchy and the root scope is the top-most scope of such
structure, from which all other scopes and objects can be retrieved.

Before moving forward to other aspects of Spray, it is worth noting that
the description given for scopes is quite concrete, since a scope is explained
as a container. Another possible and more abstract definition describes a
scope as a label. Objects contained in a scope are simply objects with that
label and names bound to an object are just decorations of the labelling.
Nevertheless, we not delve deeper into this point of view here2.

A unique feature of Spray, compared to other approaches to persistence,
is the possibility of split an object among more scopes and recombine it
when all those scopes are open again. The idea is not to persist the entire
sub-graph reachable form an object, but to save just the first level replacing
other object references with their identities. In other words, Spray adopts
a shallow technique to persistence. This characteristic also allows to assign
different objects to the same field of an object and to resolve which one is
referred relying on what are the open scopes of a process at a certain time.

Spray memory is distributed among more processes and so there is the

2Formalising Spray according to this view may be an interesting investigation for fur-
ther work.

48

3.2. Design choices

problem of keeping up-to-date the memory’s state in all processes. Taken
into consideration that such system is a distributed system and so the CAP
Theorem is applicable, we have chosen to favour availability over consistency.
Thus, Spray adopts an eventual consistency model where each process has
a replica of (a subparts of) the persistent storage and will eventually be
notified of an update. This choice allows each process to apply a change
locally without synchronization, and then send it to all other replicas.

Updates of persistent distributed objects are propagated to the program-
mer by the well-known observer pattern. The programmer specifies for which
objects or fields of an object she/he wants to be notified and the runtime will
take care of notifying him. Spray adopts a publish-subscribe pattern where
callbacks are registered for events related to persistent objects or scopes.
These callbacks are invoked later when the related event occurs on the local
storage.

On top of the core of Spray programming, we assume a layer which has
the task of retrieving scopes with a specific semantic meaning and binds
them to predefined names. We can imagine various scopes with a precise
intent, such as the scope of the current month, but we require at least three
of them: user’s scope, application’s scope and device’s scope. These scopes
are special, and therefore essential, because they are related to a part of the
system. For instance, an application’s scope should be used to persist states
of the application so that it is accessible to all the processes that constitute
that particular application, no matter where and when they are running.
In contrast, a device’s scope is local to the device and can not be accessed
elsewhere else. Only the processes running on that device may have access
to its scope.

We recognise in these three scopes the fundamental traits of the modern
applications mentioned before and believe that they are essential to express
different kind of sharing, including sharing states related to a user on dif-
ferent devices or among various applications, as well as sharing states of an
application between two or more users.

3.2 Design choices

In this section we explain more in details the fundamental choices made
during the design of Spray programming.

3.2.1 Language level

Spray is designed to be integrated in a programming language and extends
its runtime. This decision has been made to provide the programmer with an
abstraction to manage persistence and distribution together, i.e., the scope.

Integrating scopes with other parts of the language avoids mismatches
between the internal data representation and the external one suitable to

49

3. Spray programming

be persisted and distributed. It also shifts the task of translating a rep-
resentation into another one from the programmer to the runtime. This
transformation must be hidden to the programmer.

Furthermore, this approach allows to extend how objects are manipulated
internally, yet maintaining the same interface for the programmer. In other
words, transient and persistent objects can be used in the same way by
the programmer while the runtime takes care of applying the additional
operations needed for persistent objects.

In Spray we presuppose to be able to uniquely identify each object, no
matter in which scopes it is persisted. Nevertheless, objects in programming
languages are traditionally identified by their memory addresses and so their
identity is guaranteed to be unique only within the process boundaries. Since
we act at the language level, we required that objects have an identity unique
among different processes running on distinct devices.

This can be obtained in traditional class-based programming languages
without modifying the language itself by adding an additional preprocessing
step that extends each class with a field for object’s identity. In a similar
way, methods for manipulating persistent distributed objects may be added
or expanded in the output program3.

3.2.2 Unique identities

The uniqueness of the object’s identity in a distributed system such Spray
is not a trivial property. We have to prove that this requirement is feasible.
Furthermore, Spray demands that a new identity should be obtained without
a central coordination that could result in a single point of failure.

Universally unique identifier (UUID), which is described in [Leach et al., 2005,
International Telecommunication Union, 2012], represents a solution to this
problem. An UUID is “an identifier that is unique across both space and
time, with respect to the space of all UUIDs” [Leach et al., 2005], and has a
fixed sized (128 bits). There are five versions of UUIDs that differ from each
other for how an identifier is generated.

Although an UUID generator does not guarantee uniqueness due to the
fixed sized and because generating the same identifier is possible, and so
having a form of hash collision, in practice an UUID is reasonably unique
and UUIDs have been used. For example, Java provides an UUID class in
the standard library from its fifth version.

Microsoft has adopted the UUID standard as globally unique identifier
(GUID). GUIDs are used in Microsoft’s COM (Component Object Model) to
internally identify the classes and interfaces of objects. Furthermore, COM
is the basis for DCOM (Distributed COM), a technology for communication
among software components distributed across networked computers.

3This may be implemented by making each class a subclass of the persistent distributed
class, where are defined fields and methods for persistent distributed objects.

50

3.3. Specification

3.2.3 Shallow persistence

Spray adopts a shallow mechanism to achieve persistence that we call shallow
persistence. This approach is in contrast with the one adopted by the systems
reported in chapter 2, called “persistence by reachability” in the Orthogonal
Persistence methodology.

Persistence by reachability means that a root object is persisted together
with all the sub-graph it refers. We call this solution deep persistence to
distinguish it from the one adopted in Spray, which instead preserves only
the state of the root object. As already noted, references to other objects
are replaced by their identities, while those objects are not preserved.

It is clear the shallow persistence is a more general solution compared to
its deeper version. Indeed, with shallow persistence we may preserved all the
sub-graph of an object by doing a recursive visit of the graph (cycles must
be properly handled). In addition, shallow persistence lets to split an object
in more parts that can be persisted in different scopes. However, the ability
of persisting an entire object in parts required a look-up for the internal
referred objects when the object is retrieved from a scope.

3.2.4 Eventual consistency

Spray adopts eventual consistency as consistency model. This choice has
been made for two reasons. The former is that we are more concerned about
availability than consistency. We do not want to impose any synchronization
mechanism for every operations on a persistent object that a process can do.
We would rather perform operations locally and then send them to the other
processes of the system. This decision also imporves the user experience.

The latter motivation is that we will have the possibility in the future to
extend Spray in order to manage offline operations. It may be also possible
to notify the programmer when a partition is detached in order to allow
him/her to disable some operations of the application4.

An eventual consistency model introduces the issue of conflicts resolution
for concurrent operations on the application’s state. Spray avoids ad-hoc
approaches for conflicts and advises against solutions where the responsibility
of resolving conflicts is left to the programmer.

3.3 Specification

We now present the specification of Spray programming using the Abstract
State Machine formalism [Börger and Stärk, 2003]. We chose it as formalism
to describe the meaning of the operations because it comes with an intrin-
sic notion of state, which is essential for our treatment since an object has a

4As reported in [Brewer, 2012], some systems delay risky operations during partition-
ing.

51

3. Spray programming

related state5. We are not strictly interested in the final result of a computa-
tion but in how a state evolves. Furthermore, in ASM it is possible to express
mathematical structures useful to describe data structures abstracting from
implementation details.

We consider a system of processes where each process has a replica of
part of the whole persistent distributed heap. Furthermore, we assume that
each process has it own heap memory and local storage. The purpose of
this specification is to describe how objects persisted on the local storage
are replicated on the heap memory, that can be understood as a working
memory.

Each ASM rule is introduced together with its description in natural
language. We use framed boxes as graphic notation to specify the set to
which an ASM rule belongs:

Dotted frames are used for internal rules, which define the internal parts
of Spray and are not exposed;

Dashed frames are used for extension rules, which extend some parts of
the language to augment with Spray ;

Solid frames are used for interface rules, which define the interface exposed
to the programmer.

We denote domains by words beginning with a capital letter, i.e., Dom.
Elements of a domain are denoted by lowercase words, i.e., elem ∈ Dom.
Functions are denoted by words in italics and have a number of parameters
depending on their arity. Rules are denoted by uppercase words. Specific
value of a domain are denoted using a sans serif font.

Uid is the domain of unique identifiers. An unique identifier is the iden-
tity of an object and it is used to refer to it. FieldNames is the domain of
field names of objects. Boolean is the obvious domain of boolean value, with
true and false as elements.

We have two functions to represent the heap memory and the local stor-
age: heap and local , respectively. Furthermore, we have an enumeration of
the possible operations, denoted in verbatim.

The creation of a new object yields a new identifier that is the object’s
identity; allocates, but does not initialise, the memory for its fields and return
the identifier. After that, the fields of the object can be initialised.

CreateObject(fields) =
let o = new (UId) in

fields(o) := fields
result := o

5This state is represented by the values of its fields.

52

3.3. Specification

Scopes are a special kind of objects and are handled differently. The
creation of a new scope requires to specify in which scopes persist the new
one. A scope is an object, and therefore has its identity, with an environment
and a memory, represented respectively by env ∈ FieldNames and mem ∈
FieldNames. Besides this, it is bound up with the underlying local storage,
which is organised in scopes. For that reason, after the scope creation,
the new scope must be stored on the local storage and persisted on all the
scopes of the set passed as parameter. From these scopes it will be possible
to retrieve the newly created scope later.

The Store and Persist rules are defined later in this section. The for-
mer rule performs an operation on the local storage, while the latter persists
an object into a scope. We assume that the set of scopes passed as parameter
is not empty, otherwise an error occurs. How to deal with this error situation
it is left to the implementation.

CreateScope(scopes) =
let scp = CreateObject({env,mem}) in

Store(createScope, scp)
forall s in scopes do

Persist(scp, s)
result := scp

Scopes created with the previous rule are the so called “single” scopes.
On the other hand, allOf scopes are not explicitly created; they are derived
from the set of open scopes at a certain time.

It must be possible for the programmer to express an allOf scope. This
is the purpose of the following functions, which returns the unique identifier
of the allOf scope defined by the set of scopes passed as parameter. If the
specified set is a singleton, and so has only one element, this function returns
the identifiers of that scope. In a similar way, if the identifier of an allOf
scope is in the set, it is replaced by the identifiers of the scopes defining it6.

allOf (scopes)

The set of single open scopes at each time is given by the set of scopes
that are reachable from the local root scope and are open. The set of allOf
open scopes are implicitly defined and so not included (they are all the
possible combinations of two or more scopes in the open ones). We assume
the existence of the internal ScopesFrom function which returns all the scopes
reachable from a given scope.

6This precaution is needed to limit the possible combinations and to not have allOf
scopes defined by other allOf scopes.

53

3. Spray programming

openScopes = {s ∈ ScopesFrom(root) | isOpen(s)}

Internally, we have a function that returns the set of all open scopes:
both single and allOf.

allOpenScopes = openScopes ∪ {allOf (set) | set ∈ P(OpenScopes)}

The following function returns the scope containing the object passed as
argument, where it was persisted before or from where it was loaded in the
heap. This function is not defined for transient objects, persistent objects
that are not loaded in the heap and scopes.

scope(obj)

Spray requires to extend some procedures of the language to augment.
The first one to consider is the procedure to get the value of a field of a
specified object. If that object is not persistent (it has not been persisted
in any scope before), then GetField returns the value of the object’s field.
On the other hand, if the object is persistent, the scope containing it must
be open to return the value of the field.

In both cases, we have to manage properly the situation in which the
value is an unique identifier for a persistent object that is not loaded (and
so it has no associated scope). If there is an open scope that contains it, the
procedure loads it and returns the identifier. In all the other cases (the value
is a primitive value, the value is an identifier for a transient object or for a
persistent object already loaded), the procedure simply returns the value.

We assume that obj is a generic object and not a scope, for which related
procedures are reported in the following. In addition, for this rule there are
two conditions that must be handled in the implementation. The first one is
when the scope is closed, and so the object is unreachable, while the other
one is when there is no open scope that contains it.

GetField(obj ,field) =
if isPersistent(obj) then
if scope(obj) 6= undef and isOpen(scope(obj)) then
let v = heap(obj ,field) in
if isPersistent(v) and scope(v) = undef then
if ∃s ∈ allOpenScopes : v ∈ objectOf (s) then

Load(v)
result := v

else
result := v

54

3.3. Specification

else
let v = heap(obj ,field) in
if isPersistent(v) and scope(v) = undef then
if ∃s ∈ allOpenScopes : v ∈ objectOf (s) then

Load(v)
result := v

else
result := v

In a similar way, also the language procedure to set a field must be
extended. Also in this case, if the object is transient, SetField just updates
the location of the object’s field. Instead, if the object is persistent, the
scope containing it must be open. In this case, the field in the heap memory
is update with the value as well as in the underlying storage for all the
open scopes that contains the specified object. After that, all the callbacks
registered for a change event of the object or the particular field are invoked.

As for the GetField procedure, we assume that obj is a generic object.
For this rule, there is the case when the associated scope is closed that must
be properly handled: the procedure has not effect but the implementation
can decide to manage this situation as an error. Moreover, we want to
underline that this procedure does not return anything. If in the language
chosen to be extended with Spray the assignment returns a value, this rule
can be extended in order to return that value.

The INVOKE rule invokes the callbacks associated with an object or a
particular field of an object.

SetField(obj ,field , val) =
if isPersistent(obj) then
if scope(obj) 6= undef and isOpen(scope(obj)) then
let old = heap(obj ,field) then

heap(obj ,field) := val
forall s in allOpenScopes with obj ∈ Objects(s) do

Store(updateField, s, obj ,field , val)
seq
if callbacks(change, obj) 6= undef then
forall c in callbacks(change, obj) do

Invoke(c, obj ,field , old , heap(obj ,field))
if callbacks(change, obj ,field) 6= undef then
forall c in callbacks(change, obj ,field) do

Invoke(c, obj ,field , old , heap(obj ,field))
else

heap(obj ,field) := val

55

3. Spray programming

The procedure that loads an object from a scope in the local storage to
the heap copies the value of its fields from the scope to the memory and sets
the specified scope as the one associated with the object. Each value stored
must be resolved in the current environment defined by all the open scopes.
This is made by the function resolveValue, that takes a value and the set of
open scopes and return another value. If the input value is a primitive value,
it is returned. Otherwise, the stored value must be resolved in the current
environment and an identifier for an object is returned. After having loaded
the object in the heap, all the callbacks registered for the load event of the
object.

LoadFrom(obj , scp) =
scope(obj) := s
forall f in fields(obj) do
let x = storage(scp,mem, obj ,field) in
let v = resolveValue(x , allOpenScopes) in

heap(obj ,field) := v
seq
forall cb in callbacks(load , obj) do

Invoke(cb, obj)

In Spray the loading of objects from the local storage to the heap is
lazy. An object is loaded only when it is required by the programmer with
particular procedures, like GetField. In some cases, as in GetField, the
scope from which the object must be loaded is not specified, so it is chosen
among the open ones. Load chooses in a non-deterministic way a scope
from the open ones that contains the object whose identity is passed as a
parameter. Then it load the object in the heap from the chosen scope.

Load(obj) =
choose s in allOpenScopes with obj ∈ objectsOf (s) do

LoadFrom(obj , s)

A scope is open if its environment and memory are defined in the heap,
and therefore they are accessible. In other words, they have been previously
loaded from the storage to the heap by the Open procedure.

isOpen(scp) ≡
heap(scp, env) 6= undef and heap(scp,mem) 6= undef

Opening a scope means to load its environment and memory from the
local storage to the heap. This operation has no effect if the scope is already

56

3.3. Specification

open or it is an allOf scope. In the latter case, the operation does nothing
because the opening of this kind of scopes is implicit and is performed when
a single scope is opened.

Open copies the environment and the memory of the specified scope from
the local storage to the heap and notifies the underlying storage. The same
operations are performed for all the allOf scopes that are implicitly opened,
which are defined by the union of a subset of the open scopes with the one
passed as argument.

This predicate returns true if the scope is actually opened or it is already
open, false otherwise.

Open(scp) =
if not isOpen(scp) and not isAllOf (scp) then

heap(scp, env) := storage(scp, env)
heap(scp,mem) := storage(scp,mem)
Store(getNotified, scp)
forall set in P(OpenScopes) with set 6= {} do
let a = allOf ({scp} ∪ set) in

heap(a, env) := storage(a, env)
heap(a,mem) := storage(a,mem)
Store(getNotified, a)

result := true
else
if isOpen(scp) then
result := true

else
result := false

Closing a scope is the opposite of opening it: its environment and memory
are removed form the heap and no more accessible. As for the open rule, it
is not possible to close an allOf scope, since that operation is implicit and
it is performed when one of the single scopes that define it is closed.

To actually close a scope, the close operation has to be performed as many
times as the open operation has been performed. The function isClosable
guarantees this conditions. If a scope can be closed, the rule unloads its
objects, environment and memory. These operations are performed as well
as for all the allOf scopes which have the specified scope as member of their
defining set.

This rule returns true if the scope is actually closed or it is already closed,
false otherwise.

Close(scp) =
if isClosable(scp) and not isAllOf (scp) then

57

3. Spray programming

forall set in P(OpenScopes) with scp ∈ set do
let a = allOf (set) in

UnloadFrom(scp)
heap(a, env) := undef
heap(a,mem) := undef

UnloadFrom(scp)
heap(scp, env) := undef
heap(scp,mem) := undef
result := true

else
if not isOpen(scp) then
result := true

else
result := false

The UnloadFrom rule sets to undefined the scope function for all the
objects loaded from the specified scope and unloads these objects.

UnloadFrom(scp) =
forall o in objectOf (scp) with scope(o) = scp do

scope(o) := undef
forall f in fields(o) do

heap(o, f) := undef

Internally, we have two procedures to handle the persistence of an object
inside a scope. Lock ensures that an object will not be removed from a
scope, whereas Unlock discharges this guarantee and so it will eventually
be removed.

Lock(obj , scp)
Unlock(obj , scp)

The purpose of Persist is to make a transient object persistent by saving
its state in a scope on the underlying storage. This rule is also used to persist
in the specified scope an object already persisted in another scope. This
operation has no effect if the object passed as parameter has already been
persisted in the scope passed as argument.

The rule first locks the object in the specified scope and then notifies
the local storage of the operation, distinguishing between scope objects and
generic objects because the are stored differently7. In addition, if the spec-
ified scope is open, it adds the object to the scope’s memory, set it as the

7An object may be persisted in different scopes and in each of them there is a possible

58

3.3. Specification

containing scope (only if it is not already set8) and invokes the callbacks
associated with this operation, based on the type of the object.

The case when the object passed as parameter is persistent but is not
loaded in the heap, and so it has no associated scope, should be managed
properly. The problem is that the object has no state and so it may not be
persisted. How to deal with this special case is left to the implementation.

Persist(obj , scp) =
if obj 6∈ storage(scp,mem) and
(not isPersistent(obj) or scope(obj) 6= undef) then

Lock(obj , scp)
if isScope(obj) then

Store(addScope, scp, obj)
else

Store(addObject, scp, obj)
if isOpen(scp) then

heap(scp,mem) := heap(scp,mem) ∪ {obj}
if scope(obj) = undef then

scope(obj) := scp
seq
if isScope(obj) and callbacks(addScope, scp) 6= undef then
forall c in callbacks(addScope, scp) do

Invoke(c, scp, obj)
if not isScope(obj) and callbacks(addObject , scp) 6= undef
then
forall c in callbacks(addObject , scp) do

Invoke(c, scp, obj)

An object that has been persisted in a scope may be released later. This
is performed by the Release rule. It is possible to release an object from a
specified scope only if the object is in the scope’s memory and it is releasable.
The function isReleasable returns true only if no other processes refer to the
object passed as parameter. If these conditions are matched, the object is
unloaded from the heap, if its associated scope is the one specified, and is
unlocked from that scope. It will eventually be deleted from it in the storage.

Release(obj , scp) =
if obj ∈ storage(scp,mem) and isReleasable(obj , scp) then
if scope(obj) = scp then

different version of its state, whereas a scope is invariant with respect to the scopes where
it is persisted.

8This is the case of a transient object that has never been persisted before.

59

3. Spray programming

scope(obj) := undef
forall f in fields(o) do

heap(o, f) := undef
Unlock(obj , scp)

The following rules regard scopes. Before describing them, we explain
why there are different versions of some of them with a different semantics.
The first reason is that there are two type of scope: single and allOf. Spray
provides methods whose semantics regard both a single scope and all the
allOf scopes that have the single scope as member of theirs defining set.
The rules with this semantics have All as prefix.

The other reason is that some operations load the objects of the scope
in the heap, but some of them may have been already loaded from other
scopes and therefore another state of those objects is already in the heap.
Spray leaves the decision to reload from another scope the state of an already
loaded object or keep the current state in the heap to the programmer. In
other words, there is a version of some operation that loads an object only
if it is not already loaded and another one that loads the object in any case.
This latter version shadows the already loaded state of the object, which
in any case is persisted in other scopes and may be made available again if
the last scope is closed9. The rules where the loading is performed anyway
have Mask as suffix in order to point out that already loaded objects will
be masked.

Names returns the set of names defined in the environment of the scope
passed as argument, if it is open10. The empty set is returned otherwise.

Names(scp) =
if isOpen(scp) then
result := keys(heap(scp, env))

else
result:= {}

AllNames returns the set of names defined in the environment of the
scope passed as argument, if it is open and an allOf scope. However, if
the scope is open and it is a single scope, this rule returns the union of
the set of names of the scope’s environment with all the set of names of
the environments of allOf scopes which have the specified single scope as
member of theirs defining set. If the scope is close, the rule returns the
empty set.

9This is similar to what happens in variable shadowing when a name within a certain
scope shadows a name in an outer scope.

10It may be that different names are bound to the same object.

60

3.3. Specification

AllNames(scp) =
if isOpen(scp) then
if isAllOf (scp) then
result := keys(heap(scp, env))

else
result := keys(heap(scp, env)) ∪
{k ∈ keys(heap(allOf (set), env)) | set ∈ P(OpenScopes) ∧
scp ∈ set}

else
result:= {}

A name may be bound to an object in a scope using the Bind rule. To
bind a name, the scope must be open and must contain the object passed as
parameter. If these conditions are matched, the rule binds the name to the
object in the scope’s environment and stores this binding on the local storage,
distinguishing the creation of a new binding from the update of an existing
one. After that, the callbacks registered for the event that has occurred
on the specific scope are invoked, distinguishing between new binding and
changed ones.

Bind(name, obj , scp) =
if isOpen(scp) and obj ∈ heap(scp,mem) then
let old = heap(scp, env)[name] in

heap(scp, env)[name] := obj
if name 6∈ keys(heap(scp, env)) then

Store(addBind, scp,name, obj)
seq
if callbacks(addName, scp) 6= undef then
forall c ∈ callbacks(addName, scp) do

Invoke(cb, scp,name,undef , obj)
else

Store(updateBind, scp,name, obj)
seq
if callbacks(updateName, scp) 6= undef then
forall c ∈ callbacks(updateName, scp) do

Invoke(cb, scp,name, old , obj)

In some cases the programmer wants only to define a name in a scope’s
environment, without binding it to a specific object. For this reason, in
Spray there is a particular object, with its unique identifier, which has not
state or behaviour: the NULL object.

61

3. Spray programming

NULL ∈ Uid

The Resolve rule resolves a name in the environment of the scope passed
as parameter. In order to resolve the name, the scope must be open and its
environment must contain that name. If the name is bound to an object, this
object is returned. Furthermore, if this object is not already loaded in the
heap, it is loaded from the specified scope. However, if it is already loaded
(its associated scope is defined), the object returned has a state that may
differ from the one stored in the scope passed as parameter.

This rule avoids possible problems that can arise from the replacement
of the state of an object in the heap. The decision of how to deal with the
cases in which the scope is closed or its environment has not the required
name is left to the implementation.

Resolve(name, scp) =
if isOpen(scp) then
if name ∈ keys(heap(scp, env)) then
let o = heap(scp, env)[name] in
if not isScope(o) and scope(o) = undef then

LoadFrom(o, scp)
result := o

The ResolveMask rule is similar to the previous one, but it loads the
object in any case.

ResolveMask(name, scp) =
if isOpen(scp) then
if name ∈ keys(heap(scp, env)) then
let o = heap(scp, env)[name] in
if not isScope(o) then

LoadFrom(o, scp)
result := o

The AllResolve rule resolves a name in the environment of the scope
passed as parameter. However, if the name is not defined in that environment
(and therefore it can not be resolved locally to the scope) and the scope is
a single scope, the name is resolved in one of the environments of the allOf
scopes whose defining set has the single scope as member. The choice of
the scope in which to resolve the name is made in a non-deterministic way
among the ones whose environment has that name. The object bound to the
name is loaded if it has not been previously loaded from another scope.

62

3.3. Specification

AllResolve(name, scp) =
if isOpen(scp) then
if name ∈ keys(heap(scp, env)) then
let o = heap(scp, env)[name] in
if not isScope(o) and scope(o) = undef then

LoadFrom(o, scp)
result := o

if name 6∈ keys(heap(scp, env)) and not isAllOf (scp) then
let scopes = {allOf (set) | set ∈ P(OpenScopes) ∧ scp ∈
set} in
if ∃s ∈ scopes : name ∈ keys(heap(s, env)) then
choose a in scopes with name ∈ keys(heap(a, env)) do
let o = heap(a, env)[name] in
if not isScope(o) and scope(o) = undef then

LoadFrom(o, a)
result := o

The following rule is similar to the previous one, but it loads the object
in any case.

AllResolveMask(name, scp) =
if isOpen(scp) then
if name ∈ keys(heap(scp, env)) then
let o = heap(scp, env)[name] in
if not isScope(o) then

LoadFrom(o, scp)
result := o

if name 6∈ keys(heap(scp, env)) and not isAllOf (scp) then
let scopes = {allOf (set) | set ∈ P(OpenScopes) ∧ scp ∈
set} in
if ∃s ∈ scopes : name ∈ keys(heap(s, env)) then
choose a in scopes with name ∈ keys(heap(a, env)) do
let o = heap(a, env)[name] in
if not isScope(o) then

LoadFrom(o, a)
result := o

The internal function objectOf return the set of generic objects (not
scope) that a scope contains.

objectsOf (scp) = {o ∈ heap(scp,mem) | not isScope(o)}

63

3. Spray programming

The following rule returns the set of generic object (not scope) that are
contained in the scope passed as parameter, if it is open. This rule also
loads the objects from the scope that are not already loaded in the heap. An
empty set is returned if the scope is closed.

Objects(scp) =
if isOpen(scp) then
let objs = objectsOf (scp) in
forall o in objs do
if scope(o) = undef then

LoadFrom(o, scp)
result := objs

else
result := {}

The ObjectsMask rule returns the set of generic object of the specified
scope, if it is open. However, it loads all the objects from the scope to the
heap.

ObjectsMask(scp) =
if isOpen(scp) then
let objs = objectsOf (scp) in
forall o in objs do
if scope(o) 6= scp then

LoadFrom(o, scp)
result := objs

else
result := {}

AllObjects returns the set of generic object of the specified scope, if it
is open and an allOf scope. However, if the scope is open and it is a single
scope, this rule returns the union of the set of objects of the specified scope
with all the set of generic objects of allOf scopes whose defining set has the
single scope as member. Objects not already loaded in the heap are loaded
by this rule from the scope that contains them. As for the previous rules, if
the scope is closed, an empty set is returned.

AllObjects(scp) =
if isOpen(scp) then
if isAllOf (scp) then
let objs = objectsOf (scp) in
forall o in objs do
if scope(o) = undef then

64

3.3. Specification

LoadFrom(o, scp)
result := objs

else
let objs = objectsOf (scp)∪{o ∈ objectsOf (allOf (set)) | set ∈
P(OpenScopes) ∧ scp ∈ set} in
forall o in objs do
if scope(o) = undef then

LoadFrom(o, scp)
result := objs

else
result := {}

The AllObjectsMask rule is similar to the previous one, but it loads
all the objects from the scope to the heap.

AllObjectsMask(scp) =
if isOpen(scp) then
if isAllOf (scp) then
let objs = objectsOf (scp) in
forall o in objs do
if scope(o) 6= scp then

LoadFrom(o, scp)
result := objs

else
let objs = objectsOf (scp)∪{o ∈ objectsOf (allOf (set)) | set ∈
P(OpenScopes) ∧ scp ∈ set} in
forall o in objs do
if scope(o) 6= scp then

LoadFrom(o, scp)
result := objs

else
result := {}

The Contains predicate returns true if the specified scope is open and it
contains the object passed as parameter. False is returned otherwise.

Contains(obj , scp) ≡ isOpen(scp) and obj ∈ heap(scp,mem)

The purpose of the Fetch rule is to load the state of the specified object
from the scope passed as parameter. If the object is not a scope and it is
contained in the indicated scope, it is loaded from it. In the case of a scope
object the rule just returns it.

65

3. Spray programming

The decision on how to deal with the case of a not contained object is
left to the implementation.

Fetch(obj , scp) =
if isOpen(scp) and obj ∈ heap(scp,mem) then
if not isScope(obj) and scope(obj) 6= scp then

LoadFrom(obj , scp)
result := obj

The Scopes rule returns the set of scopes that are contained in the scope
passed as parameter, if it is open. The empty set is returned otherwise.

Scopes(scp) =
if isOpen(scp) then
result := {s ∈ heap(scp,mem) | isScope(s)}

else
result := {}

AllScopes returns the set of scopes contained in the scope passed as
parameter, if it is open and an allOf scope. However, if the scope is open
and it is a single scope, the rule returns the union of the set of scopes of the
specified scope with all the set of scopes of the allOf scope whose defining set
has the single scope as member. If the scope passed as parameter is closed,
the empty set is returned.

AllScopes(scp) =
if isOpen(scp) then
if isAllOf (scp) then
result := {s ∈ heap(scp,mem) | isScope(s)}

else
result := {s ∈ heap(scp,mem) | isScope(s)} ∪
{s ∈ heap(allOf (set),mem) | isScope(s) ∧ set ∈
P(OpenScopes) ∧ scp ∈ set}

else
result := {}

Spray adopts a publish-subscribe pattern to notify the programmer that
a persistent object (scope or not) has changed in the heap.

The are two version of the Subscribe rule. The former takes an event,
where event ∈ PersistentEvent , an object and a function to call if the event
on that particular object occurs. The latter, in addition, takes a field that
limits the calling of the function to the events that occur on the specified field
of the object. In any case, the function is added to the set of callbacks only

66

3.3. Specification

if the object passed as parameter is a scope or a generic persistent object.
For the latter version, it is also required that the field specified is one of the
object’s fields.

Subscribe(event , obj , cb) =
if isScope(obj) or isPersistent(obj) then

callbacks(event , obj) := callbacks(event , obj) ∪ {cb}

Subscribe(event , obj ,field , cb) =
if isScope(obj) or isPersistent(obj) then
if f ∈ fields(obj) then

callbacks(event , obj ,field) := callbacks(event , obj ,field)∪{cb}

The Unsubscribe and AllUnsubscribe rules are used to unsubscribe
functions related to the occurrence of an event on a particular object. As
for the previous rules, there are two versions of each: event of the specified
object and its restriction to a single field. Also in these rules, it is required
that the object passed as parameter is a scope or a generic persistent object.

Unsubscribe(event , obj , cb) =
if isScope(obj) or isPersistent(obj) then
if cb ∈ callbacks(event , obj) then

callbacks(event , obj) := callbacks(s, obj) \ {cb}

Unsubscribe(event , obj ,field , cb) =
if isScope(obj) or isPersistent(obj) then
if field ∈ fields(obj) and cb ∈ callbacks(event , obj ,field) then

callbacks(event , obj ,field) := callbacks(event , obj ,field) \ {cb}

UnsubscribeAll(event , obj) =
if isScope(obj) or isPersistent(obj) then

callbacks(event , obj ,field) := {}

UnsubscribeAll(event , obj ,field) =
if isScope(obj) or isPersistent(obj) then
if field ∈ fields(obj) then

callbacks(event , obj ,field) := {}

The Store internal rule is used to store on the local storage scopes
and objects, making them persistent. It also sends local changes to the
persistent distributed storage. The particular actions to perform depends on
the operation to execute, but in general they consist in updating the local

67

3. Spray programming

storage and transmitting the changes to the remote one.
Instead of explaining each action to perform for a given operation, we

describe only the actions that are different from the one performed on the
heap and put aside calls of the Send rule. This rule takes a type of operation
and its parameters, and transmits them to the persistent remote storage.

The creation of a scope in the local storage initialises its environment to
the empty map and its memory to the empty set. The operation of adding a
scope to another one stores the scope into the memory of the specified one.
Instead, adding an object to a scope requires to store both the object and
its current state into the memory of the specified scope.

The updating of an object’s field in the local storage concerns the partic-
ular state of that object in the specified scope. The value previously stored
for the indicated field is combined with the new one by the update function.
This function returns the new value, if at least one of them is a primitive
value. However, if the new value is a unique identifier and the old one rep-
resent a value to resolve in the environment defined by a set of open scopes,
this function combines them11.

Finally, a getNotified operation does not change the local storage, but
sends the request to the persistent remote storage to be notified of changes
to objects contained in the specified scope.

Store(op, data) =
if op = createScope then
let scp = data in

storage(scp, env) := {→}
storage(scp,mem) := {}
Send(createScope, scp)

if op = addBind then
let scp,name, obj = data in

storage(scp, env)[name] := obj
Send(addBind, scp,name, obj)

if op = updateBind then
let scp,name, obj = data in

storage(scp, env)[name] := obj
Send(updateBind, scp,name, obj)

if op = addScope then
let scp, s = data in

storage(scp,mem) := storage(scp,mem) ∪ {s}
Send(addScope, scp, s)

if op = addObject then
let scp, obj = data in

11In some sense, update and resolveValue are opposite function. The former combines
identifiers, whereas the latter resolve that composed value to return a single identifier.

68

3.3. Specification

storage(scp,mem) := storage(scp,mem) ∪ {obj}
forall f in fields(obj) then

storage(scp,mem, obj , f) := heap(obj , f)
Send(addObject, scp, obj , pack(obj))

if op = updateField then
let scp, obj ,field , old , val = data in
let old = storage(scp,mem, obj ,field) in

storage(scp,mem, obj ,field) := update(old , val)
Send(updateField, scp, obj ,field , val)

if op = getNotified then
let scp = data in

Send(getNotified, scp)

Besides the previous rule, there is the Receive rule that applies locally
operations received from the persistent remote storage. This rule updates
the local storage and, if the scope associated with the changed object is open,
also updates the heap memory and invokes all the callbacks registered for
that particular event. We assume a queue of messages from which this rule
removes the first one, calling the Dequeue rule. If the queue is empty, the
hasMessages location return false and the rule does not do nothing, until a
message arrives. When this happens, the specific operation is handled in the
proper way.

Except for setScope and setRoot, the other operations are the same
handled by the Store rule and perform the same action on the local storage.
Moreover, if the scope affected by the change is open or the scope that
contains the changed object is open, that change is also applied to the heap
and the registered callbacks for that specific event are invoked.

The addObject operation is the only operation, among the already dis-
cussed ones, that requires a further explanation. After having stored the
object into the local storage, if the scope to which the object has been added
is open, the callbacks related to this event are invoked. However, two cases
must be distinguished: if a version of the object is already loaded or not.
In this second case, the object is not loaded in the heap and the callbacks
for the addObject event are invoked. The programmer may decide to load
it using the Fetch operation. Also in the other case the received state of
the object is not loaded but the callbacks related to the addObjectLoaded
event are invoked instead. The loaded version of the object is passed as pa-
rameter to these callbacks as well as the scope to which it has been added.
The decision to load the state of the object from that scope is left to the
programmer.

Finally, the storeScope and storeRoot operations are similar because
both store into the local storage the environment and the memory of the
received scope. However, the latter is special because it concerns the root

69

3. Spray programming

scope and has to update the location containing it, from which it can be
later retrieve.

Receive =
if hasMessages then
let op, data = Dequeue(Messages) in
if op = addBind then
let scp,name, obj = data in

storage(scp, env)[name] := obj
if isOpen(scp) then

heap(scp, env)[name] := obj
if callbacks(addBind , scp) 6= undef then
forall c ∈ callbacks(addBind , scp) do

Invoke(cb, scp,name, obj)
if op = updateBind then
let scp,name, obj = data in

storage(scp, env)[name] := obj
if isOpen(scp) then
let old = heap(scp, env)[name] in

heap(scp, env)[name] := obj
if callbacks(updateBind , scp) 6= undef then
forall c ∈ callbacks(updateBind , scp) do

Invoke(cb, scp,name, old , obj)
if op = addScope then
let scp, s = data in

storage(scp,mem) := storage(scp,mem) ∪ {s}
if isOpen(scp) then

heap(scp,mem) := heap(scp,mem) ∪ {s}
if callbacks(addScope, scp) 6= undef then
forall c in callbacks(addScope, scp) do

Invoke(c, scp, s)
if op = addObject then
let scp, o, values = data in

storage(scp,mem) := storage(scp,mem) ∪ {o}
fields(o) := keys(values)
forall f in fields(o) do

storage(scp,mem, o, f) := values[f]
if isOpen(scp) then
if scope(o) = undef and
callbacks(addObject , scp) 6= undef then
forall c in callbacks(addObject , scp) do

Invoke(c, scp, o)
if scope(o) 6= undef and

70

3.3. Specification

callbacks(addObjectLoaded , scp) 6= undef then
forall c in callbacks(addObjectLoaded , scp) do

Invoke(c, scp, o)
if op = updateField then
let scp, obj ,field , val = data in
let oldstored = storage(scp,mem, obj ,field) in

storage(scp,mem, obj ,field) := update(oldstored , val)
if scope(obj) 6= undef and scope(obj) = scp and
isOpen(scp) then
let {new = storage(scp,mem, obj ,field),
old = heap(obj ,field)} in
let v = resolveValue(new ,AllOpenScopes) in

heap(obj ,field) := v
if callbacks(change, obj ,field) 6= undef then
forall c in callbacks(change, obj ,field) do

Invoke(c, obj ,field , old , v)
if callbacks(change, obj) 6= undef then
forall c in callbacks(change, obj) do

Invoke(c, obj ,field , old , v)
if op = storeScope then
let scp, renv , rmem = data in

storage(scp, env) := renv
storage(scp,mem) := rmem

if op = storeRoot then
let r , renv , rmem = data in

root := r
storage(r , env) := renv
storage(r ,mem) := rmem

The Init rule must be used to initialise Spray, and therefore it must
be called before any other rules that regards the persistent distributed heap.
This rule sends a request for the root specifying which scopes include, namely
the one of the application, the one of the device and the one of the user.
Then, it waits that the root is received to open it.

Init(appId , deviceId , userId) =
let {app = getScopeId(appId),
device = getScopeId(deviceId),
user = getScopeId(userId)} in

Send(getRoot, {app, device, user})
if root 6= undef then

Open(root)

71

3. Spray programming

The programmer can retrieve the root with the following rule.

Root = result := root

The Persistent rule manages the persistent storage and transmits the
updates among the replicas. We assume that the root scope exists and
there is a function (getRoot) that returns it. We also assume that received
messages are stored in a queue. If there are received messages, the first
one is removed from the queue, calling the Dequeue rule, and the related
operation is performed. In this case we suppose that Dequeue also returns
the sender of the message.

This rule uses two functions to store which replicas have a certain scope
and which scopes are stored in a particular replica, these are replicas and
scopes respectively. These functions are updated in the operations that con-
cerns scopes: explicitly in createScope and implicitly addScope, getRoot
and getNotified.

The createScope operation is the only one that transmits no messages
to the replicas. It creates an empty scope in the storage and initialises the
replicas function for that scope to the singleton set where the element is the
sender of the operation. It also adds the scope to the set of scopes replicated
in the sender. For the addBind, updateBind and addObject operations, the
change is applied to the local storage and sent to all the replicas where the
specified scope is replicated. In the same manner, an updateField operation
is applied to the specified object of a certain scope into the storage and send
to all the replicas having that scope. Here and in the following, an operation
is not transmitted to the replicas that had originally forwarded it.

An addScope operation requires to add a scope to the specified scope’s
memory into the storage, to send the operation to all the other replicas and
to send, using the SendScope rule, the added scope to all the replicas that
have not replicated it yet.

The getNotified operation specified that the sender opened the scope
passed as parameter. As a result, all the scopes contained in that scope must
be sent to it as well as all the allOf scopes it may open from this moment
on. First all the scopes contained in the specified one, that are not already
replicated in the sender, are transmitted to it. Then, the other allOf scopes
which may be opened due to the updated set of single scopes are transmitted
to the sender.

Finally, the getRoot operation handles the request for the root made by
a replica. Although the set of scopes replicated on the sender is initialised to
the singleton set containing the root, the sender is not added to the replicas
of the root. The reason why this is not done is that objects (scope or not)
added to the root would be transmitted to all the replicas. Instead, we want
that a replica’s root has only the scopes specified in the request. The root is
transmitted to the sender with a restricted environment and memory, using

72

3.3. Specification

the functions restrictEnv and restrictMem. These functions respectively
that take an environment and a memory and restrict it based on the set of
scopes passed as argument. These scopes are then transmitted as well as all
the possible allOf scopes given by the union of these ones with the root.

Persistent =
let root = getRoot() in
if hasMessages then
let op, data, sender = Dequeue(Messages) then
if op = createScope then
let scp = data in

storage(scp, env) := {}
storage(scp,mem) := {}
replicas(scp) := {sender}
scopes(sender) := scopes(sender) ∪ {scp}

if op = addBind then
let scp,name, obj = data in

storage(scp, env)[name] := obj
forall r in replicas(scp) \ {sender} do

SendToReplica(r , addBind, scp,name, obj)
if op = updateBind then
let scp,name, obj = data in

storage(scp, env)[name] := obj
forall r in replicas(scp) \ {sender} do

SendToReplica(r , updateBind, scp,name, obj)
if op = addScope then
let scp, s = data in

storage(scp,mem) := storage(scp,mem) ∪ {s}
forall r in replicas(scp) with s 6∈ scopes(r) do

SendScope(s, r)
forall r in replicas(scp) \ {sender} do

SendToReplica(r , addScope, scp, s)
if op = addObject then
let scp, o, values = data in

storage(scp,mem) := storage(scp,mem) ∪ {o}
fields(o) := keys(values)
forall f in fields(o) do

storage(scp,mem, o, f) := values[f]
forall r in replicas(scp) \ {sender} do

SendToReplica(r , addObject, scp, o, values)
if op = updateField then
let scp, obj ,field , val = data in
let old = storage(scp,mem, obj ,field) in

73

3. Spray programming

storage(scp,mem, obj ,field) := update(old , val)
forall r in replicas(s) \ {sender} do

SendToReplica(r , updateField, scp, obj ,field , val)
if op = getNotified then
let scp = data in
forall s in storage(scp,mem) with isScope(s) and
s 6∈ scopes(sender) do

SendScope(s, sender)
seq
let singles = {s ∈ scopes(sender) | not
isAllOf (s)} in
forall set ∈ P(singles) with set 6= {} do
let a = allOf (set) in
if a 6∈ scopes(sender) then

SendScope(s, sender)
if op = getRoot then
let scopes = data in
let {renv = restrictEnv(storage(root , env), scopes),
rmem = restrict(storageMem(root ,mem), scopes)} in

scopes(sender) := {root}
SendToReplica(sender , storeRoot, root , renv , rmem)
forall s in scopes do

SendScope(s, sender)
forall set ∈ P(scopes ∪ {root}) with set 6= {} do
let a = allOf (set) in

SendScope(s, sender)

The SendScope rule transmits the specified scope to a replica. More
in details, it adds the replicas to the set of replicas associated to a scope,
adds the scope to the set of scopes of that replica, sends the scope with
its environment and memory and each of its object, distinguishing between
scopes and generic objects.

SendScope(scp, replica) =
let {renv = storage(scp, env), rmem = storage(scp,mem)} in

replicas(scp) := replicas(scp) ∪ {replica}
scopes(replica) := scopes(replica) ∪ {scp}
SendToReplica(replica, storeScope, scp, renv , rmem)

74

3.4. Some properties

3.4 Some properties

In the following we state and prove some basic properties about Spray, start-
ing from the trivial ones.

Property 1. A scope is open or is closed.

Proof. The property follows from the rules that manipulate a scopes and it
is proved considering that a scope is open if its environment and its memory
are loaded in the heap. After being created, the scope’s environment and
memory are not initialised in the heap, thus the scope is closed. Open
changes the status of a scope from closed to open, whereas Close does the
vice versa. The other rules does not change the status of the scope.

Property 2. At a given time, there is only one version of the state of an
object in the heap or the object is not loaded in the heap.

Proof. The property is proved considering the scope function and the rules
that update it. A persistent object that is not loaded has no associated
scope, otherwise the function returns the scope where the object has been
persisted or from where it has been loaded. The rules that assign a scope
to the function are Persist, which updates scope only if it is undefined for
the specific object, and LoadFrom, which is performed only if the object
is not loaded in the heap. The UnloadFrom rule instead sets the function
to undefined.

Property 3. If a process executes a SetField rule assigning the value x to
a field of a given object (which is persisted in a scope) and no other processes
execute that rule for the same field of that object (in the specific scope), then
a consecutive GetField rule performed by the process returns the value x .

Proof. The property follows from the locality of the operation, assuming
that no other processes assign another value to the specific field of the given
object. This means that the Receive rule will not receive an operation for
the field of that object and as a consequence the value stored in the heap of
the considered process will not be modified.

Property 4. An allOf scope is open if and only if all the single scopes that
define it are open.

Proof. The property follows from the definition of the Open rule. It does
not open an allOf scope if it is passed as arguments. Instead, it opens the
allOf scopes defined by the union of a no-empty subset of the open scopes
with the one to open.

Property 5. If a process executes a SetField rule assigning the value x to
a field of a given object (which is persisted in a scope) and no other processes

75

3. Spray programming

execute that rule for the same field of that object (in the specific scope), then
this update will eventually arrive to other processes which have requested to
be notified for the scope containing the object.

Proof. The property follows from the definition of SetField, Store and
Persistent. SetField calls the Store rule specifying the operation to
perform and its arguments. Store calls the Send rule passing as parameters
the operation and its arguments. Send transmits the operation message
to the remote persistent storage12. Persistent receives the message and
forwards it to all the replicas (processes) associated with the scope specified
in the operation.

Property 6. If a process executes a SetField rule assigning the value x to
a field of a given object (which is persisted in a scope) and no other processes
execute that rule for the same field of that object (in the specific scope), then
a GetField rule performed on the same field of the object (in the specific
scope) by any process eventually returns the value x .

Proof. The property follows from the definition of Store, Persistent and
receive, assuming that no other processes assign another value to the spe-
cific field of the given object. The operation transmitted by the Store rule
is eventually received from the persistent remote store12. The Persistent
rule receives the updateField operation and forwards it to the other repli-
cas of the specified scope. It is worth noting that any later storeScope for
the indicated scope will contain the update. The message eventually arrives
to all the replicas. The Receive rule receives the update and then applies
it to the local store. At this point, if a replicas performs a GetField rule,
it returns the value of the field of the specific object (of the particular scope)
that was initially transmitted.

Property 7. A process does not receive operations regarding scopes it can
not reach and it can not open.

Proof. This property follows from the definition of Store and Persistent.
Store send a request to be notified of changes to a specific scope as con-
sequence of the opening of that scope. Persistent responds transmitting
back the scopes contained in the specified scope as well as the additional
allOf scopes that may be open. It also registers for which scopes a replica
want to be notified, and therefore it will not be notified for other scopes.

12We assume that the communication is reliable and no messages are lost.

76

4

SprayJS

“To the designer of programming languages, I say: unless you can
support the paradigms I use when I program, or at least support my
extending your language into one that does support my programming
methods, I don’t need your shiny new languages; . . . ”

– Robert W. Floyd, The Paradigms of Programming

In this chapter we describe the proof-of-concept implementation of Spray
in JavaScript, based on the specification of Section 3.3, called SprayJS.

Firstly, we provide a brief description of JavaScript and explain the rea-
sons why this language has been chosen. Then, we outline the general char-
acteristics of the implementation, which has been built in Node.js. Finally,
we describe separately both the client-side and the server-side of SprayJS.

4.1 Remarks about JavaScript

JavaScript is an object-oriented programming language. It was originally
designed to be a Web scripting language and it is widely used for client-side
scripting in web browsers. It is one of the most well-known implementation
of the ECMAScript language specification, a language standardized by Ecma
international. Here and in the following, we refer to the version 5.1 of the
standard [ECMA, 2011].

JavaScript is a dynamically typed programming language, its objects are
associative arrays and has functions as first-class citizens, more precisely
they are callable objects. It is a prototype-based object-oriented language
and does not use classes, compared to more traditional class-based languages
like Java. Inheritance is not obtained using classes, which describe behaviour,
but through prototypes, that are object themselves. Every object created
has an implicit reference to its prototype. Furthermore, a prototype may
have non-null implicit reference to its prototype, and so on; this is called
prototype chain. An object in JavaScript is a collection of properties1 with

1A function that is associated with an object via a property is a method.

77

4. SprayJS

zero or more attributes, which determine how each property can be used. If
a property is not found in the object, the prototype chain is visited until the
property with the specified name is found or undefined is return otherwise.

Other than objects and functions, JavaScript provides primitive values
of the following types: boolean, number, string, undefined and null. The un-
defined value is used when a variable has not been assigned a value, whereas
the null value represents the intentional absence of any object value.

An interesting aspect of JavaScript is its flexibility. It is possible to
dynamic add and remove properties to an object. This is also possible for
built-in objects, if not explicitly limited through the specific attributes.

4.2 Why JavaScript?

We have chosen JavaScript as language in which implement Spray because it
is a prototype-based language and is flexibile. Indeed, JavaScript allows to
extend built-in objects, adding to them properties, and dynamically attach
additional behaviour to properties, in a way that looks like an extension to
the runtime of the language for a programmer. These characteristics had
been essential to implement the core of SprayJS.

We have previously mentioned that JavaScript is most commonly used for
the client-side part of web pages. However, it is also possible to use it for the
server-side part. The most well-known platform that used JavaScript as lan-
guage is Node.js, that has contributed to spread JavaScript also as server-side
language for developing application. Node.js adopts an event-driven, non-
blocking I/O model that enables the development of servers in JavaScript,
without using threading2. As stated in [Node.js Foundation, 2015], this
model is “perfect for data-intensive real-time applications that run across
distributed devices”. The possibility to use JavaScript both on the client-
side and the server-side was a helpful consequence of our decision.

Its prototype-based nature is not a limitation but instead allows to sim-
ulate the class-based approach. Indeed, is quite common, especially for pro-
grammers with no experience in JavaScript and that are used to class-based
languages, to develop an application in JavaScript adopting a class-based
point of view. The basic idea is to add to a constructor’s prototype, which
is the first prototype of the chain, the methods to manipulate an object re-
turned by that particular constructor3 and to keep in the object only the
state.

From a technological point of view, JavaScript is the de facto language
for client-side web application. We have mentioned several time web appli-
cations as an example of application where the idea of Spray may be applied

2A Node.js process is single threaded by design, however it is possible to spawn child
processes and some external modules provide native threading.

3A constructor is a function that are invoked in a new expression.

78

4.3. Implementation

to simplify the development and take off from the programmer the explicit
management of aspects non strictly related to the logic of a program. As a
result, JavaScript lets us to test our idea in the scenario of web applications.

4.3 Implementation

The Spray specification is implemented in SprayJS as a client-server archi-
tecture, where the client-side is represented by a JavaScript library and the
server-side is a Node.js server.

The library is the most important part of SprayJS because it implements
the rules of the specification of Section 3.3 concerning the client-side and
provides the programmer with the interface of Spray. The server implements
the Persistent rule of the specification and embodies the persistent remote
storage.

In this section we describe the implementation details common to both
parts of SprayJS, while in the following sections we discuss each part sepa-
rately. Our main concern is about how objects are identified and transmitted
between a clients and the server.

We used UUIDs, which had been briefly discussed in Section 3.2.2, as
unique identifiers in the implementation. Among the different versions de-
scribed in the standard, we adopt the fourth version that generates UUIDs
from pseudo-random numbers. This version has been preferred to the other
ones because it does not require a namespace (versions 3 and 5) and is not
based on information regarding the underlying hardware (MAC address in
version 1), which are not available in JavaScript. In detail, we used an imple-
mentation of the RFC 4122 [Leach et al., 2005] available both as a Node.js
module and as a script for web browsers4.

The JSON format is used as representation for transmitting the opera-
tions presented in the specification. Most of these operations have arguments
that may be expressed as strings, for example the UUID of an object or the
name of a binding. The type of the value of an update operation depends
on the assigned value, nevertheless it is one among number, boolean, string
or UUID (which is expressed by an object with a property named UUID in
order to distinguish it from a generic string). In the context of the update
operation, arrays are handled as if they were general objects: the value of
the update is an UUID instead of the actual object.

We use the stringify function5 to convert an object, representing an
operation, to a JSON string to send. Indeed, stringify takes an object and
returns a string in the JSON format representing all the sub-graph pointed
by the specified object. However, we can not use this approach for all the op-
erations to transmit. The addObject operation needs a more sophisticated

4 node-uuid: https://github.com/broofa/node-uuid
5More precisely, we use JSON.stringify, a method of the JSON object.

79

https://github.com/broofa/node-uuid

4. SprayJS

handling because Spray adopts a shallow approach, as described in Section
3.2.3. Only the first level of the graph is needed, while stringify evaluates
the entire graph. In order to limit the graph traversal to the first level, a
“shallow” copy of the original object is passed to the stringify function.
This shallow copy is obtained replacing any reference to an object with the
UUID of that object. If the original object is an array, a shallow copy of the
array is used: those elements that are objects are replaced with their UUID.
After being converted to a string, we can distinguish between an object and
an array because they have a different JSON representation. Furthermore,
the shallow copy of the object is also stored on the local storage.

The part of the server that implements the remote persistent storage
communicates with the client library using the WebSocket protocol, which
provides full-duplex communication channels and is described in RFC 6455
[Fette and Melnikov, 2011]. Considering that the specification refers to com-
munications in both direction, from a replica to the persistent storage and
vice versa, this protocol has been chosen because it provides full-duplex com-
munication. Furthermore, it facilitates the interaction between the server
and a client, compared to other solutions usually based on a polling tech-
nique6.

As far as the storage is concerned, considering that our purpose was to
provide a proof-of-concept implementation and not full implementation of
Spray, we implemented the local storage both in the library and in the server
as a JavaScript object, whose properties are the persisted scopes. This object
is kept in memory. A real implementation would of course use a long-term
storage solution to guarantee the persistence of persistent objects.

4.4 Library

The SprayJS library implements the client-side of the architecture and ex-
poses to the programmer the interface of the specification, let to program
using the abstraction of a persistent distributed heap.

The library was developed as a Node.js module and then transformed in a
script suitable for web browsers, using the Node.js module browserify7. This
module analyses all the modules requested by the one specified as argument
(performing a recursive walk of the require graph) and builds a bundle to
use in web browsers. Writing the library as a module allowed to simplify
the development and separate the different concerns of the implementation.
Indeed, it was developed as a set of sub-modules, each of which covers a
different aspect of the implementation. The main modules are:

6A well-known example is Ajax, where the client sends requests to the server in order
to receive updates.

7http://browserify.org/

80

http://browserify.org/

4.4. Library

• core: defines objects and functions that are fundamental for Spray and
exposes the subset of them that represent the interface;

• storage: provides objects representing a local storage;

• remote: provides functions to communicate with the remote persistent
storage;

• spray: provides the interface of SprayJS, which is constituted by the
objects and functions provided by the core module as well as other
functions derived from the basic ones;

• event: provides objects to implement the publish-subscribe pattern;

• domains: provides functions to retrieve the UUID of a given name that
belongs to a domain (applications, users or devices).

In the following we describe only the important details of the various mod-
ules, pointing out where they are implemented, rather than delineate each
module separately.

The first issue that we had to deal with was how to combine the identity
of an object in Spray, represented by an UUID, with its identity in the
language, represented by a reference (its address in memory). Taking into
account the flexibility of JavaScript and its design, we extended the Object
prototype, which is the last in the prototype chain of all objects, with a
function that returns the UUID of the object on which it is invoked. More
precisely, the getUUID function returns the value of the UUID property of
the object on which it is invoked, assigning a new generated UUID for that
property, before returning, if it is not defined. Furthermore, to avoid that
the programmer accidentally changes it, the writable attribute is set to false.

Listing 4.1 reports the code fragment that implements this core feature.
It is executed as soon as the application code is loaded in the browser.

Object.defineProperty(Object.prototype, 'getUUID', {
value: function () {
if (this.)
Object.defineProperty(this, 'UUID', {
value: uuidGen(),
enumerable: false,
writable: false

});
return this.UUID;

},
enumerable: false

});

Listing 4.1 Adding UUID to JavaScript objects.

81

4. SprayJS

Even though not all objects at runtime have an UUID, the subset of them
that are persisted have that property because they are loaded from the stor-
age with it or they are persisted for the first time, operation that adds to
them the UUID property.

Another issue that arises from the fact of having two identities8 is how to
retrieve the reference of an object, given its UUID. A mechanism to retrieve
it is needed when a field of an object is read for the first time and the UUID
stored in that field must be replaced with the reference of the associated
object. To avoid copy of persistent objects already loaded, we adopt an
index that has as entries the UUIDs of the already loaded persistent objects
and as values a reference to them. This index is implemented as a JavaScript
object in the core module.

As far as the error conditions described in the specification are concerned,
except where explicitly indicates, in the implementation we have chosen to
return undefined. This decision is justified by the fact of avoiding to the
programmer to deal with JavaScript’s exceptions.

In the core module are defined the two most important object of the
library: proxy and scope. The former is used as a moniker for regular objects,
while the latter represent a scope, as described in the specification.

A proxy object embodies the proxy pattern. Its responsibility is to control
the access to the real object. It loads the object form a particular scope in
the storage and sends to it the updates to the object’s fields. However, a
proxy does not point directly to the real object. In order to hide it from the
programmer and to memorise from which scope the object has been loaded
and what are the other open scopes that contain it, we use a middle object
called “target object”. The target object has a reference to the real object.
Figure 4.1 shows the object diagram of a proxy at runtime.

aProxy
_proxy
UUID

aTargetObject
ref
scope
openScopes

anObject

aScope
env
mem

Figure 4.1: Object diagram of a proxy.

The object diagram does not report the properties of the proxy and the
8We may think to references as transient identities which, at runtime, univocally iden-

tifies the UUID of the object.

82

4.4. Library

real objects because they depend on the actual object. The openScopes
property of a target object is not shown in the diagram, however it points
to an array containing the open scopes used as a stack.

Properties are added to a proxy object when it is created passing the
target object or when (a version of) the real object is loaded from a scope
that contains it. For each property of the real object, a getter-setter pair of
functions is added to the proxy object. These functions implement respec-
tively the GetField and the SetField rules of the specification in the case
of a persistent (distributed) object.

In the specification resolveValue and update are unspecified. They are
used respectively for resolving the value of a field in the set of open scopes
and for combining the old and the new values of a field.

In our proof-of-concept implementation, we used arrays as values for fields
that refers to other objects. An array contains the collection of UUIDs of
the objects assigned to the field. These arrays are stored in the local storage
and retrieved when an object is loaded in memory. Each field of the object
to load that has an array as value is resolved in the current environment:
the array is scanned backward and the proxy of the first UUID that is in one
of the open scopes, and so in the index, is assigned to the field in memory.
When that field is updated, the old value is replaced in the array by the
new one. If no UUID is loaded, because there is no reachable object in the
current environment, the field is left undefined and, when it is assigned, a
new UUID is added to the end of the array. In contrast, primitive values are
stored in the local storage as they are9.

A scope object is an object with an environment and a memory. Both
the properties refer to a JavaScript object that is used as associative array.
The environment object has as keys the names bound to an object and as
values the UUID of these objects. Instead, the memory object has as names
the UUIDs of the objects contained in the scope and as values a meta object
containing information regarding the actual object10. The state of the object,
previously persisted in the scope, is stored in the storage and loaded only
when needed.

In the specification we distinguished two kind of scopes: single and allOf.
In the implementation they are constructed by two different functions, but
both of them call the scope’s constructor as first operation and then add
another property to the (this) object. A single scope has as further property
an array that contains a reference to the allOf scopes having this scope as
member of their defining set. An allOf scope, instead, has as property an
array that refers to the single scopes from which it is defined.

In order to have inheritance, to both the prototypes of single and allOf

9This means that if a primitive value is assigned to a field that contains a reference to
another object, in the local storage, the associated array is replaced by the value.

10In particular it contains the type of the object.

83

4. SprayJS

scope are assigned, as prototype, the scope’s prototype. Thus, properties
not found on the prototype of single or allOf scope are looked up on the
prototype of scope. In such a way, functions common to both kind of scopes
are not replicated on each prototype.

In the core module, we defined three constructors: Scope, Singleton and
Set. They are used respectively for creating a generic scope, a single one and
a allOf one. As above-mentioned, the Scope function is called by both the
Singleton and Set constructors. If we interpret these constructors in terms
of a class-based view, they are the constructors of the relative classes. In
Figure 4.2 is shown the class diagram for scopes11, It presents how both the
Singleton and the Set classes are specialisation of the more general Scope
class, and the association that exists between them.

2..* 0..*

Scope

env
mem

Singleton

supersets

Set

singletons

Figure 4.2: Class diagram showing inheritance between scopes.

The implementation of the operations concerning scopes follows from
the specification. The only operation that is worth to mention is Persist
because it had required a slight extension. In the specification this rule
persist an object into a scope on the local storage and returns nothing; in
the implementation it returns the object persisted. Returning the object
is required to handle the first time that a regular object (not a scope) is
persisted. The function takes the object and return its proxy. This object
must be assigned to all the variables or fields that referred to the real object
before the operations.

JavaScript is a liberal language and does not provide access control to the
properties of an object. In order to avoid that the programmer manipulates
directly a scope, the library provides a ScopeMoniker object, instead of an
actual scope object. A ScopeMoniker is simply an object with one property
that is the UUID of the related scope. All the functions to manipulate
a ScopeMoniker are defined in the spray module and are exposed to the

11 This is an abuse of notation, since JavaScript is prototype-based and has no classes

84

4.4. Library

programmer. Internally, they retrieve the actual scope and perform the
specific operation.

Scopes adopts two structures described in [Shapiro et al., 2011a] to achieve
strong eventually consistency. The environment of a scope is designed as a
Grow-only Set (G-Set). Names can only be added to it. However, it is
possible to do a logical remove of a name binding it to the null object.

On the other hand, the memory of a scope embodies a PN-Set structure:
a set where to each element is associated a counter. The first time that an
object is added to the set (memory), its counter is initialised to 1. After
that, further adding of the object increments the counter, while a remove
decrements it. Objects counter is not strictly positive are not considered in
the set. However, in order to avoid a premature delete of an object used by
another execution of an application, we enforce a constraint: an instance of
an application may not perform on an object more persist than release.

There are two other details that we want to report on. The first one
concerns how the publish-subscribe pattern has been implemented in the
event module. Node.js provides an EventEmitter object that embodies this
pattern and it is used as base object for other objects provided in the API.
However, an EventEmitter has only one level of events: a function is added
for an event specified by a name and, when it occurs, the function is invoked.

In the specification of Spray we distinguished functions to call when an
event occurs to an object in general and functions to call when an event
occurs to a specified field of an object. In order to deal with both the cases
in an unique way, we implemented an EventEmitter object that has two
level of events. The first level of events is obligatory while the second one
is optional. The main event is used for denoting an occurring event and
the sub-event is applied to restrict the main one to a particular field. The
developed EventEmitter constructor is called, as first operation, for both
proxy and (generic) scope objects.

The second and last detail concerns the domains module, which contains
the function used to retrieve, from the server, the UUID associated with a
given name in a domain. Applications and users are identified by unique
names, whereas for devices we chose to use their IP addresses. This decision
has been made in order to identify univocally a device and works fine in a
static assigned network, like the one where we test the implementation. It
has also simplified the development. However, the problem of how identify
univocally a device is orthogonal to our goal and other solutions can be
applied. As an example, most operating systems provide a device unique
identifier, which can be retrieved through a specific API.

85

4. SprayJS

4.5 Server

The SprayJS server combines a HTTP server for web resources and a Web-
Socket server for the persistent distributed heap. It implements the remote
persistent storage and the name resolution service for three domains, namely
applications, users and devices.

As described in the specification, the remote persistent storage must keep
track of which replicas received operation messages should be forwarded to,
i.e., the server should forward a message to replicas after having received
it. The use of WebSockets, along with the assumption of online applica-
tion, facilitates the management of the communication, compared to other
solution for dynamic web application. As long as a WebSocket is open, the
related replicas will receive operation messages. When the WebSocket is
closed, the replica will be removed from the set of active replicas to which
send operations.

Besides transmitting operations to all replicas, the remote persistent stor-
age applies locally to its storage these operation and performs the additional
action in order to ensure consistency.

Distinct concurrent field update operations (or name binding operations)
are applied, and therefore stored in the persistent storage, as they arrive
to the server. This means that only the last update (or binding) wins,
whereas the other concurrent updates are lost. Adding a name to a scope’s
environment and adding/removing an object to a scope’s memory do not
require any particular action. For the former operation, if the name is not in
the scope’s environment, it is added to it, otherwise the operation is handled
as a binding update. The latter operation adds/removes one to the counter
of an object. In the implementation we assumed that each UUID generated
is practically unique, and we did not manage the case of clients adding two
distinct object identified by the same UUID to a scope.

86

5

Examples

“If you want to accomplish something in the world, idealism is not
enough—you need to choose a method that works to achieve the goal.
In other words, you need to be ‘pragmatic.’”

– Richard M. Stallman, Copyleft: Pragmatic Idealism

In this chapter we examine common patterns for web applications and
describe their implementation in SprayJS. Our purpose is to demonstrate
that these patterns can be expressed in Spray and the burden of how objects
are persisted and distributed is taken away from the programmer.

Firstly, we discuss the basic pattern for web applications that concerns
the communication and the relation with the evolution of the state. Then,
we take into account how the state of an application is shared, typically
among users. In this context, we emphasise the value of the three specific
classes of scope presented in the specification, namely application, user and
device, and how they are used to express sharing in SprayJS.

In the following, we do not consider the portion of a web application that
concerns the user interface, instead we focus only on the part that embodies
the logic of an application.

5.1 Explicit communication and synchronization

Web applications are client-server applications that run in web browsers
(client-side) and communicate with web servers (server-side). Although mod-
ern web browsers implement standards, such as WebStorage and IndexedDB,
that may be used to store data on the client-side, the most prominent part
of the state of an application is persisted on the server-side and transmitted
to a client when it is requested.

This characteristic of web applications allows the user to access them
from different locations (different web browsers on various devices) still main-
taining the same state. However, that trait comes at a price for the program-

87

5. Examples

mer that has also to deal with the explicit communication between the server
and the client, in addition to the main aspects of the application.

As in other client-server system, the common pattern that the program-
mer adopts for communication is the request-response messaging pattern:
the client sends a request and the server returns a response. We are inter-
ested in how this pattern is used within a web application, after that it has
been loaded by the web browser. The pattern is adopted to dynamically
load resources when necessary, usually in response to user actions.

More in details, web applications, especially the single page ones, use
JavaScript and specific technologies to retrieve data from the server in the
background, without reload the page or transfer the control to another page.
The most prominent technique currently used for these communication is
Ajax. The common architecture adopts in web applications is a three-tier
architecture, which is typically composed of a presentation tier, a domain
logic tier and a data storage tier. For the sake of example, we consider a
generic web application using Ajax and describe its flow of data.

Firstly the application makes an Ajax request to the server to obtain its
persistent state, which may depend on the user too. Then, the web server
receives this request and elaborates it. During this elaboration phase accesses
to the underlying database can occur, in order to retrieve the information
requested. Finally the server sends back the response and the client, after
having received it, can load the state and shows its representation to the
user. At this point, the user can interact with the application, through the
UI, and changes its state. Any modification to the most prominent part of the
application’s state must be transmitted to the server, in order to synchronize
the local version with the persistent remote one. The client sends an Ajax
request with the updates, which are applied by the server, and receives the
result as response.

The behaviour of a web application described until now follows the
request-response pattern. However, the situation get complicated when there
are more instances of the same application, maybe running on different loca-
tions, which have access to the same data. In this case, not only there is the
necessity of synchronization between a client and the server, but it is also re-
quired to synchronize all the current instances of the application. Due to the
characteristics of the HTTP protocol, which is stateless, and the fact that
only a client can start a communication, the transmission of the updates
from the server to the other instances of the application is an issue. The
typical solution for this problem, when Ajax is adopted, is polling: the client
periodically sends an asynchronous request to the server to check if there is
any update. A more suitable solution is the already mentioned WebSocket
protocol, used on top of HTTP, that provides a full-duplex communication.

The aspects of a web application that concern the communication be-
tween a client and the server and the synchronization among the different
instances of the application can be made transparent to the programmer

88

5.1. Explicit communication and synchronization

using Spray.
Here and in the following sections we use a note taking application as a

running example in order to demonstrate how to use SprayJS. A note is an
object which has a title, a body and an optional deadline. A user can create
a new note, which is added to the board containing the notes. The board
is an object that contains a reference to the user and an array for his/her
notes.

Listing 5.1 shows how to retrieve the board at the start of the applica-
tion1. In this listing and in the following, spray is the global object that
provides the interface of Spray. The key instruction is the resolve operation
at line number 15, which resolve a name and return the object bound to it,
i.e., the board object. After that, the drawBoard function implicitly loads
the note objects, which are referred to the board object. Compared to what
previously describe, in this example the most prominent part of the state,
which is the board object, is retrieved without explicit communication.

The lines before the resolve operation retrieve the three special scopes,
open them and resolve the name bound to the array containing the the users
of the application. Finally, the on function is used to add a callback for the
push event, a sub-event of change2.

1 function onInit() {
2 var aScope, uScope, dScope;
3
4 aScope = spray.scope('/$APP');
5 uScope = spray.scope('/$USER');
6 dScope = spray.scope('/$DEVICE');
7 aScope.open();
8 uScope.open();
9 dScope.open();
10
11 listOfUsers = aScope.resolve('users');
12 if (listOfUsers === undefined)
13 initialiseUsers(aScope);
14
15 board = aScope.resolve('board');
16 if (board === undefined)
17 initialiseBoard(aScope, uScope);
18
19 board.notes.on('change', 'push', drawNote);
20
21 drawBoard(board);

1The variables board and listOfUsers are global.
2The notes field of the board object is an array containing note objects. Adding a note

to the notes array is perform using the push method.

89

5. Examples

22 }

Listing 5.1 Retrieve the board.

The previous listing invokes the functions defined in Listing 5.2 and List-
ings 5.3 if respectively the names “users” and “board” are not bound to an
object. The former listing shows how to initialise the list of user, while the
latter shows how to initialise the board. The board object is created and is
persisted in the application scope, whereas the notes are persisted in the user
scope, because them belong to the user (any user has his/her own notes)

1 function initialiseUsers(appScope) {
2 listOfUsers = [];
3 spray.persist(listOfUsers, appScope);
4 aScope.bind('users', listOfUsers);
5 }

Listing 5.2 Initialise the list of users.

1 function initialiseBoard(appScope, userScope) {
2 var name, user;
3
4 name = userScope.resolve('user').name;
5 user = new User(name);
6 listOfUsers.push(user);
7 spray.deepPersist(user, appScope);
8 board = new Board(user);
9 spray.persist(board, appScope);
10 appScope.bind('board', board);
11 spray.persist(board.notes, userScope);
12 userScope.bind('notes', board.notes);
13 }

Listing 5.3 Initialise the board.

5.2 Sharing among users

Modern web applications allow a user to share pieces of their most prominent
part of the state with other users. We can refer to a shared state, from a pro-
grammer prospective, as a complex object which is accessed by more users.
On the other hand, we can adopt a conceptual point of view and call such
shared state “document” or “resource”. We use these terms interchangeably
to indicate data with its type and structure.

In order to share a resource, the user must specify who he/she wants to
share that resource with. At this point, the client sends a request to the

90

5.2. Sharing among users

server that indicates which object has to be shared and the list of users.
The server, after having received the request, insert the specified resource in
the list of user’s resources for each user in the message3. Then, if there are
instances of the application for any of the indicated users, the server should
notify them. This is another case of synchronization between the server and
a client.

A calendar application and a word processor application are two types
of web application that provide the possibility of sharing a resource. In the
former a user can share an event with other users. In the latter a user can
share a document with other users, who later edit it concurrently. With
these two examples, we also want to point out that the shared document
may have any size and may be arbitrary complex, as in the case of a word
document.

To illustrate how to share a document among users in SprayJS we con-
sider our note taking application. The user selects the note to share and with
whom shares it. Listing 5.4 shows how to share the note with the selected
users. The basic idea is to use the application scope to persist the object to
share among users. In details, the note is persisted in the application scope
and then it is added into the user’s shared notes array and into each of the
shared notes array of the specified users.

1 function shareNote(note, users) {
2 var aScope, i, len;
3
4 aScope = spray.scope('/$APP');
5 spray.persist(note, aScope);
6
7 board.user.shared.push(note);
8
9 len = users.length;
10 for (i = 0; i < len; i++)
11 users[i].shared.push(note);
12 }

Listing 5.4 Share a note.

Another interesting type of application to implement on top of SprayJS
is a game. A multiplayer game is inherently shared among the players. As
an example, we consider a simple game: Tic-Tac-Toe. Listing 5.5 shows
the initialisation of the application4. The game object contains the player,
the current match, if any, and the array of other pending matches. The
initialisation depend on the state of the game object. If there is a current

3If an Access Control List (ACL) is used, it must be updated: each user of the received
list is inserted into the list of permission attached to the specified object.

4The variables game and listOfPlayers are global.

91

5. Examples

match, it is restored and the player can continue. Otherwise the waiting
room where the player can start a new game is loaded.

1 function onInit() {
2 var aScope, uScope, allAU, name;
3
4 aScope = spray.scope('/$APP');
5 uScope = spray.scope('/$USER');
6 aScope.open();
7 uScope.open();
8 allAU = spray.allOf(aScope, uScope);
9
10 listOfPlayers = aScope.resolve('players');
11 if (players === undefined)
12 initialisePlayers(aScope);
13
14 game = allAU.resolve('game');
15 if (game === undefined)
16 initialiseGame(aScope, uScope, allAU);
17
18 if (game.current === null) {
19 game.current.grid.on('change', undefined, drawNote);
20 drawMatch(game.current);
21 }
22 else
23 drawWaitingRoom();
24 }

Listing 5.5 Play Tic-Tac-Toe.

Listings 5.6 and 5.7 show respectively how to initialise the list of players
and the game. In this case, we use the allOf scope defined by the set of the
application and user scopes to persist the game object.

1 function initialisePlayers(appScope) {
2 listOfPlayers = [];
3 spray.persist(listOfPlayers, appScope);
4 aScope.bind('players', listOfPlayers);
5 }

Listing 5.6 Initialise the list of players.

1 function initialiseGame(appScope, userScope, allOf) {
2 var name, player;
3
4 name = userScope.resolve('user').name;

92

5.3. Sharing among applications

5 player = new Player(name);
6 listOfPlayers.push(player);
7 spray.deepPersist(player, appScope);
8 game = new game(player);
9 spray.persist(game, allOf);
10 allOf.bind('game', game);
11 spray.persist(game.pending, appScope);
12 }

Listing 5.7 Initialise the game.

A match has two players. Each of them interacts with the 3 × 3 grid.
The grid object has been persisted in the application scope at the start of
the match and it is changed at any move: a player chooses a cell of the grid
and put his/her mark. The listing 5.5 shows how a move is performed5.

1 function move(row, column) {
2 var grid, mark;
3
4 grid = game.current.grid;
5 mark = game.current.mark;
6
7 grid[row][column] = mark;
8 game.current.mark = (mark + 1) % 2;
9 }

Listing 5.8 Make a move.

The mark field of the current match is used to switch the turn to the
other player, who will be notified of the change. Note that once the game
object is entrusted to Spray, normal game logic needs not be concerned with
communications to implement distribution and persistence.

5.3 Sharing among applications

Modern web app ecosystems allow an application to share pieces of their
most prominent state with other applications of the ecosystems. A resource
of an application may be shared with another one, which can use it later.

In these ecosystems a user has access to a set of different applications,
which may manipulate the same data. Information sharing is achieved with
an ad-hoc request to the server, which contains the data related to the user.
In other words, a web application requests both its data and the other data
needed, which logically belongs to another application.

5We assume that the UI does not allow the user to select a not empty cell.

93

5. Examples

As an example we can consider the Google app ecosystem, and in partic-
ular two application: Google Contacts and Gmail. The former is a contact
management application, while the latter is a web mail application. A user
manages its contacts with the first application: he/she can add a new con-
tact, changes an existing one and makes groups. Then, he/she can refer to
his/her list of contacts when writing a mail in Gmail. The Gmail application
does not show all the contacts in the list, instead it filters the contacts with
an associated email address. More in details, it shows only the name and
email addresses of a contact.

In order to demonstrate how to share a resource between two applica-
tions in SprayJS, we consider the already mentioned note taking application
and an application showing a set of notes sort by their deadlines. The note
tacking application persists the user’s notes in his/her scope, as can be ob-
served in Listing 5.1. These notes may be retrieved later by the deadline
application, as is showed in Listing 5.96. This application does not show all
the notes, it presents only having a deadline.

function onInit() {
var aScope, uScope, allAU, notes;

aScope = spray.scope('/$APP');
uScope = spray.scope('/$USER');
aScope.open();
uScope.open();
allAU = spray.allOf(aScope, uScope);

board = allAU.resolve('board');
if (board === undefined) {
user = uScope.resolve('user')
notes = uScope.resolve('notes');
board = new ExpiringBoard(user, notes);
spray.persist(board, allAU);
allAU.bind('board', board);

}
if (board.notes === undefined)
board.notes.on('change', 'push', drawExpiringNote);

drawExpiringBoard(board);
}

Listing 5.9 Retrieve the user notes.

The deadline application just shows the notes. The entire application is
composed of the previous listing, the function that periodically removes the

6The board variable is global.

94

5.4. Sharing among devices

expired notes and the function that draw the interface.
The basic idea to share an object among applications is to persist it in

a scope reachable for all applications. As for the deadline example, the user
scope is the obvious choice when the resource concerns the user. On the
other hand, if an object is private of an application and can not be shared
with other ones, it will be persisted in the application scope.

5.4 Sharing among devices

Web applications are inherently shared among more devices, due to the fact
that an application can be accessed from different web browsers (running on
various devices) and its state can be retrieved from there, as described in
section 5.1.

In this section we do not want to demonstrate how to obtain sharing
among devices in SprayJS, considering that this aspect is characteristic of
web applications. Instead, our purpose is to analyse the customisation of an
application based on the device and how it can be expressed in Spray.

The term “customisation” is used in this context not to refer to the typical
modification of the graphical user interface based on the type of the device,
but instead to the organisation of the information based on a priority policy
that changes from a device to another one.

To the best of our knowledge, there is no web application providing cus-
tomisation based on the device. However, there is a widespread application
that exhibits this characteristic: Chrome, Google’s web browser. A user of
Chrome can save his/her bookmarks and retrieves them from both the desk-
top and the mobile version. From our point of view, both of the versions
are installation of the same application. However, on the desktop version
the desktop bookmarks are shown on top, while on the mobile version the
mobile bookmarks are displayed first.

In Spray the customisation based on the device can be expressed. In
the following, we extend our note taking application in order to have the
position of a note on the board depending on the device. Thus, a note has
not only a title, a body and an optional deadline, but also a position on the
board. Listing 5.10 shows the function that adds a note to the board’s note.
The note is persisted in the user scope, while its position is persisted in the
device scope.

function addNote(title, body, deadline) {
var pos, note, dScope, uScope;

pos = getNextPosition();
dScope = spray.scope('/$DEVICE');
spray.persist(pos, dScope);
note = new Note(title, body, deadline, pos);

95

5. Examples

uScope = spray.scope('/$USER');
spray.persist(note, uScope);
board.push(note);

}

Listing 5.10 Add a note to the board.

96

Conclusions

“A language that doesn’t affect the way you think about programming,
is not worth knowing.”

– Alan J.Perlis, Epigrams on Programming

In this thesis we have first formulated a problem concerning persistence
and distribution in programming languages, explaining why we believe to
be relevant. Then, we have presented the design of Spray, a persistence
distributed heap, and presented its specification using the ASM formalism.
Finally, we have sketched SprayJS, an implementation of Spray in JavaScript,
and used it to describe some popular patterns for web applications.

Our starting point has been the lack of an abstraction which combines
persistence and distribution in programming languages. Thus, we have ex-
amined how persistence and distribution have been provided in programming
languages in the literature and how they are provided in the current tech-
nologies commonly used. Moreover, we have considered the CAP Theorem
which concerns distributed systems and eventual consistency as an alterna-
tive consistency model.

To the best of our knowledge, there are no approaches that combine per-
sistence and distribution at a language level and, more in particular, address
these two aspects in the current scenario where the Internet is ubiquitous.

We have recognised that persistence by reachability is the only mecha-
nism used to identify persistent objects in all the studied approaches about
persistence. Furthermore, the same mechanism is adopted in the serializa-
tion techniques used in current technologies. In our work, we refer to this
mechanism as “deep persistence”, in contrast with the “shallow persistence”
approach that we have applied.

As far as the distribution is concerned, it is obvious that if the same data
is distributed and therefore replicated, the consistency among the replicas has
to be guaranteed. Taken into account the CAP Theorem, we chose to prefer
availability over consistency. As a result, we adopted a weak consistency
model: eventual consistency. However, to remove the resolution of conflicts
that happen due to concurrent updates, we have considered conflict-free
replicated data types (CRDT).

In the development of this thesis, we have focused only on object-oriented

97

Conclusions

programming languages. As already mentioned, this choice is not limiting
since most modern programming languages are object-oriented and provide
us with the object identity. We have had to deal with the problem of How
to have unique identifiers to use as identity. We chose to randomly generate
such identifiers, as other real systems do.

The result of this work is the Spray programming, a programming paradigm
for distributed application based on a persistent distributed heap. We de-
signed how this heap is organised. The main idea in Spray is to arrange the
persistent distributed heap in scopes. A “scope” is a special object that is
bound to the underlying persistent storage and has an environment and a
memory. In other words, a scope binds names to identifiers and contains the
state of objects.

The shallow persistence approach is a characteristic of Spray that we
believe is important to remark. The mechanism used to identify persistent
objects contributes to the novelty of our work. Shallow persistence lets to
split an object on multiple scopes. Furthermore, an object can be persisted
in more than one scope. Combining these two features we can have different
states of an object that may differ only in the value of a field, depending on
which scopes are open.

Using the ASM formalism, we presented the specification of Spray. It
consist of the specification of the operations on a scope, the extension for
dealing with generic objects that have been persisted, the operations on a
storage and the communication among storages.

We believe that the Spray programming paradigm can simplify the de-
velopment of applications concerning persistence and distribution. To this
purpose, we developed a proof-of-concept implementation of the specification
for web applications in JavaScript. That implementation is called SprayJS.
As already mentioned, JavaScript has been chosen because it is the lingua
franca of the Web, it is flexible enough to let to extend the language at run-
time and has the advantage that an object contains both fields and methods.

Finally, we have validated the Spray programming paradigm through
examples. We examined some popular patterns for web applications and
described their implementation in SprayJS. In these examples we have shown
how to use the different characteristics of our work.

Further development

The purpose of this thesis is the design and specification of the Spray pro-
gramming and its persistent distributed heap, our abstraction that combines
persistence and distribution. However, there are other aspects of our idea
that have not been considered in this work and may be taken into account
in a future work. Furthermore, there are some ideas that may be developed
starting from this thesis. Specifically:

98

Conclusions

• It would be possible to develop a fully functional implementation of
SprayJS that manages properly all the built-in objects of JavaScript.
Moreover, it would be possible to implement Spray in other languages
in order to develop also desktop and mobile application using such
paradigm.

• This work does not concern aspects related to security and access con-
trol. We would study how to transmit operations over a network en-
suring protection and how to provide access control for scope objects.

• We implemented Spray in a prototype-based language, however most
of the object-oriented programming languages are class-based. In these
languages the definition of the methods is in the class and it is separated
from the fields, which belong to the object. It would be possible to
implement Spray in a class-based language, dealing with the issues that
would arise. Moreover, there is the problem of the schema evolution
to consider.

• Our approach has the implicit purpose of hiding to the programmer
files, file systems, databases and explicit communication. Databases
are traditionally used to manage and querying huge volumes of data.
Relational databases are a particular class of databases that are quite
general as far as their use is concerned. To increase their performance,
queries are generally optimised before being executed and specific in-
dices can be created. In Spray instead, how objects are retrieved from
the persistent storage depend on their structures. In other words, there
is a shift from a generic approach that can optimise to a ad-hoc ap-
proach where the programmer has to design an object structure based
on his/her needs. We think that may be interesting comparing the
performance of these two different approaches.

• Finally, it would be possible to design a type system ensuring that
any type is a conflict-free replicated data type. Although CRDTs are
not a general approach, because not all types can be described as a
CRDT, a restricted type system supporting only CRDT may be useful
to improve and integrating the implementation of Spray.

99

Conclusions

100

Bibliography

[Abelson et al., 1996] Abelson, H., Sussman, G. J., and Sussman, J. (1996).
Structure and Interpretation of Computer Programs. MIT Press, Cam-
bridge, Massachusetts, second edition.

[Arnold and Gosling, 1996] Arnold, K. and Gosling, J. (1996). The Java
Programming Language. Addison-Wesley.

[Atkinson et al., 1983] Atkinson, M. P., Bailey, P. J., Chisholm, K., Cock-
shott, W. P., and Morrison, R. (1983). An Approach to Persistent Pro-
gramming. Comput. J., 26(4):360–365.

[Atkinson et al., 1989] Atkinson, M. P., Bancilhon, F., DeWitt, D. J., Dit-
trich, K. R., Maier, D., and Zdonik, S. B. (1989). The Object-Oriented
Database System Manifesto. In DOOD, pages 223–240.

[Atkinson et al., 1982] Atkinson, M. P., Chisholm, K., and Cockshott, P.
(1982). PS-algol: An Algol with a Persistent Heap. SIGPLAN Not.,
17(7):24–31.

[Atkinson et al., 1996a] Atkinson, M. P., Daynès, L., Jordan, M. J., Print-
ezis, T., and Spence, S. (1996a). An Orthogonally Persistent Java. SIG-
MOD Rec., 25(4):68–75.

[Atkinson and Jordan, 1999] Atkinson, M. P. and Jordan, M. J. (1999). Is-
sues Raised by Three Years of Developing Pjama: An Orthogonally Persis-
tent Platform for Java. In Database Theory - ICDT ’99, 7th International
Conference, Jerusalem, Israel, January 10-12, 1999, Proceedings., pages
1–30.

[Atkinson and Jordan, 2000] Atkinson, M. P. and Jordan, M. J. (2000). A
Review of the Rationale and Architectures of PJama - a Durable, Flex-
ible, Evolvable and Scalable Orthogonally Persistent Programming Plat-
form, volume 2000-90 of SMLI TR. Sun Microsystems Laboratories.

[Atkinson et al., 1996b] Atkinson, M. P., Jordan, M. J., Daynès, L., and
Spence, S. (1996b). Design Issues for Persistent Java: A type-safe, object-
oriented, orthogonally persistent system. In POS, pages 33–47.

101

Bibliography

[Bal et al., 1990] Bal, H. E., Kaashoek, M. F., and Tanenbaum, A. S. (1990).
Experience with Distributed Programming in ORCA. In 1990 Internation
Conference on Computer Languages, March 12-15 1990, New Orleans,
Louisiana, USA, pages 79–89.

[Bal et al., 1992] Bal, H. E., Kaashoek, M. F., and Tanenbaum, A. S. (1992).
Orca: A Language For Parallel Programming of Distributed Systems.
IEEE Trans. Software Eng., 18(3):190–205.

[Black et al., 1986] Black, A. P., Hutchinson, N. C., Jul, E., and Levy,
H. M. (1986). Object Structure in the Emerald System. In Conference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’86), Portland, Oregon, Proceedings., pages 78–86.

[Black et al., 1987] Black, A. P., Hutchinson, N. C., Jul, E., Levy, H. M.,
and Carter, L. (1987). Distribution and Abstract Types in Emerald. IEEE
Trans. Software Eng., 13(1):65–76.

[Bläser, 2006] Bläser, L. (2006). A Programming Language with Natu-
ral Persistence. In Companion to the 21st ACM SIGPLAN Symposium
on Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’06, pages 637–638, New York, NY, USA. ACM.

[Bläser, 2007] Bläser, L. (2007). Persistent Oberon: A Programming Lan-
guage with Integrated Persistence. In Programming Languages and Sys-
tems, 5th Asian Symposium, APLAS 2007, Singapore, November 29-
December 1, 2007, Proceedings, pages 71–85.

[Boehm, 2005] Boehm, H. (2005). Threads cannot be implemented as a
library. In Proceedings of the ACM SIGPLAN 2005 Conference on Pro-
gramming Language Design and Implementation, Chicago, IL, USA, June
12-15, 2005, pages 261–268.

[Börger and Stärk, 2003] Börger, E. and Stärk, R. F. (2003). Abstract State
Machines. A Method for High-Level System Design and Analysis. Springer.

[Bray, 2014] Bray, T. (2014). The JavaScript Object Notation (JSON) Data
Interchange Format. RFC 7159, Internet Engineering Task Force.

[Bray et al., 2008] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
and Yergeau, F. (2008). Extensible Markup Language (XML) 1.0 (Fifth
Edition). Technical report, World Wide Web Consortium.

[Brewer, 2000] Brewer, E. A. (2000). Towards Robust Distributed Systems
(abstract). In Proceedings of the Nineteenth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’00, pages 7–, New York, NY,
USA. ACM.

102

Bibliography

[Brewer, 2012] Brewer, E. A. (2012). Pushing the CAP: strategies for con-
sistency and availability. IEEE Computer, 45(2):23–29.

[Cardelli, 1994] Cardelli, L. (1994). Obliq: A language with Distributed
Scope. Technical report, Digital Equipment Corporation, Systems Re-
search Center.

[Cardelli, 1995] Cardelli, L. (1995). A Language with Distributed Scope. In
Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, San Francisco, California,
USA, January 23-25, 1995, pages 286–297.

[Cattell, 2010] Cattell, R. (2010). Scalable SQL and NoSQL data stores.
SIGMOD Record, 39(4):12–27.

[Chang et al., 2006] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wal-
lach, D. A., Burrows, M., Chandra, T., Fikes, A., and Gruber, R. (2006).
Bigtable: A Distributed Storage System for Structured Data. In 7th Sym-
posium on Operating Systems Design and Implementation (OSDI ’06),
November 6-8, Seattle, WA, USA, pages 205–218.

[Cisternino et al., 2005] Cisternino, A., Cazzola, W., and Colombo, D.
(2005). Metadata-Driven Library Design. In Proceedings of Library-
Centric Software Design Workshop, LCSD’05.

[Codd, 1970] Codd, E. F. (1970). A Relational Model of Data for Large
Shared Data Banks. Commun. ACM, 13(6):377–387.

[Cook and Rosenberger, 2005] Cook, W. R. and Rosenberger, C. (2005). Na-
tive Queries for Persistent Objects, A Design White Paper.

[Coulouris et al., 2011] Coulouris, G., Dollimore, J., Kindberg, T., and
Blair, G. (2011). Distributed Systems: Concepts and Design. Addison-
Wesley Publishing Company, USA, 5th edition.

[Dahl et al., 1968] Dahl, O.-J., Myhrhaug, B., and Nygaard, K. (1968).
Some Features of the SIMULA 67 Language. In Proceedings of the Second
Conference on Applications of Simulations, pages 29–31. Winter Simula-
tion Conference.

[Dean and Ghemawat, 2004] Dean, J. and Ghemawat, S. (2004). Mapre-
duce: Simplified data processing on large clusters. In 6th Symposium on
Operating System Design and Implementation (OSDI 2004), San Fran-
cisco, California, USA, December 6-8, 2004, pages 137–150.

103

Bibliography

[Dearle et al., 1989] Dearle, A., Connor, R. C. H., Brown, F., and Morrison,
R. (1989). Napier88 - A Database Programming Language? In Proceed-
ings of the Second International Workshop on Database Programming Lan-
guages, 4-8 June, 1989, Salishan Lodge, Gleneden Beach, Oregon, pages
179–195.

[Dearle et al., 1996] Dearle, A., Hulse, D., and Farkas, A. (1996). Operat-
ing System support for Java. In Proceedings of the First International
Workshop on Persistence and Java.

[Dearle et al., 2009] Dearle, A., Kirby, G. N. C., and Morrison, R. (2009).
Orthogonal Persistence Revisited. In Object Databases, Second Interna-
tional Conference, ICOODB 2009, Zurich, Switzerland, July 1-3, 2009.
Revised Papers, pages 1–22.

[DeCandia et al., 2007] DeCandia, G., Hastorun, D., Jampani, M., Kakula-
pati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P.,
and Vogels, W. (2007). Dynamo: Amazon’s highly available key-value
store. In Proceedings of the 21st ACM Symposium on Operating Systems
Principles 2007, SOSP 2007, Stevenson, Washington, USA, October 14-
17, 2007, pages 205–220.

[Derrett et al., 1985] Derrett, N., Kent, W., and Lyngbæk, P. (1985). Some
Aspects of Operations in an Object-Oriented Database. IEEE Database
Eng. Bull., 8(4):66–74.

[Dittrich, 1986] Dittrich, K. R. (1986). Object-oriented Database Systems
(Extended Abstract): The Notions and the Issues. In Proceedings on the
1986 International Workshop on Object-oriented Database Systems, OODS
’86, pages 2–4, Los Alamitos, CA, USA. IEEE Computer Society Press.

[ECMA, 2011] ECMA (2011). ECMA-262: ECMAScript Language Specifi-
cation. Ecma International.

[ECMA, 2013] ECMA (2013). ECMA-404: The JSON Data Interchange
Format. Ecma International.

[Fette and Melnikov, 2011] Fette, I. and Melnikov, A. (2011). The Web-
Socket Protocol. RFC 6455, Internet Engineering Task Force.

[Gabbrielli and Martini, 2010] Gabbrielli, M. and Martini, S. (2010). Pro-
gramming Languages: Principles and Paradigms. Undergraduate Topics
in Computer Science. Springer.

[Gilbert and Lynch, 2002] Gilbert, S. and Lynch, N. (2002). Brewer’s Con-
jecture and the Feasibility of Consistent, Available, Partition-Tolerant
Web Services. SIGACT News, 33(2):51–59.

104

Bibliography

[Gosling et al., 1996] Gosling, J., Joy, W. N., and Jr., G. L. S. (1996). The
Java Language Specification. Addison-Wesley.

[Gray, 1981] Gray, J. (1981). The Transaction Concept: Virtues and Lim-
itations (Invited Paper). In Very Large Data Bases, 7th International
Conference, September 9-11, 1981, Cannes, France, Proceedings, pages
144–154.

[Härder and Reuter, 1983] Härder, T. and Reuter, A. (1983). Princi-
ples of Transaction-Oriented Database Recovery. ACM Comput. Surv.,
15(4):287–317.

[Haridi et al., 1997] Haridi, S., Roy, P. V., and Smolka, G. (1997). An
overview of the design of Distributed Oz. In Proceedings of the 2nd Inter-
national Workshop on Parallel Symbolic Computation, PASCO 1997, July
20-22, 1997, Kihei, Hawaii, USA, pages 176–187.

[Hericko et al., 2003] Hericko, M., Juric, M. B., Rozman, I., Beloglavec, S.,
and Zivkovic, A. (2003). Object serialization analysis and comparison in
Java and .NET. SIGPLAN Notices, 38(8):44–54.

[Huang and Luo, 2013] Huang, Y. and Luo, T. (2013). NoSQL Database:
A Scalable, Availability, High Performance Storage for Big Data. In Per-
vasive Computing and the Networked World - Joint International Con-
ference, ICPCA/SWS 2013, Vina del Mar, Chile, December 5-7, 2013.
Revised Selected Papers, pages 172–183.

[International Telecommunication Union, 2012] International Telecommu-
nication Union (2012). Information technology - Procedures for the opera-
tion of object identifier registration authorities: Generation of universally
unique identifiers and their use in object identifiers. X. 667, Telecommu-
nication Standardization Sector of ITU.

[Ireland et al., 2009] Ireland, C., Bowers, D., Newton, M., and Waugh, K.
(2009). A Classification of Object-Relational Impedance Mismatch. In The
First International Conference on Advances in Databases, Knowledge, and
Data Applications, DBKDS 2009, Gosier, Guadeloupe, France, 1-6 March
2009, pages 36–43.

[Jordan, 1996] Jordan, M. (1996). Early Experiences with Persistent Java.

[Jordan and Atkinson, 1998] Jordan, M. and Atkinson, M. (1998). Orthog-
onal Persistence for Java - A Mid-term Report.

[Jordan, 2004] Jordan, M. J. (2004). A Comparative Study of Persistence
Mechanisms for the Java Platform. Technical report, Mountain View, CA,
USA.

105

Bibliography

[Jul et al., 1988] Jul, E., Levy, H. M., Hutchinson, N. C., and Black, A. P.
(1988). Fine-Grained Mobility in the Emerald System. ACM Trans. Com-
put. Syst., 6(1):109–133.

[Khoshafian and Copeland, 1986] Khoshafian, S. N. and Copeland, G. P.
(1986). Object Identity. In Conference Proceedings on Object-oriented
Programming Systems, Languages and Applications, OOPLSA ’86, pages
406–416, New York, NY, USA. ACM.

[Kulkarni et al., 2007] Kulkarni, D., Bolognese, L., Warren, M., Hejlsberg,
A., and George, K. (2007). LINQ to SQL: .NET Language-Integrated
Query for Relational Data. https://msdn.microsoft.com/en-in/
library/bb425822.aspx.

[Leach et al., 2005] Leach, P., Mealling, M., and Salz, R. (2005). A Uni-
versally Unique IDentifier (UUID) URN Namespace. RFC 4122, Internet
Engineering Task Force.

[Leavitt, 2010] Leavitt, N. (2010). Will nosql databases live up to their
promise? IEEE Computer, 43(2):12–14.

[Li, 1986] Li, K. (1986). Shared Virtual Memory on Loosely Coupled
Multiprocessors. PhD thesis, Yale University, New Haven, CT, USA.
AAI8728365.

[Li and Hudak, 1989] Li, K. and Hudak, P. (1989). Memory Coherence in
Shared Virtual Memory Systems. ACM Trans. Comput. Syst., 7(4):321–
359.

[Maier, 1989] Maier, D. (1989). Why Isn’t There an Object-Oriented Data
Model? In IFIP Congress, pages 793–798.

[Maier et al., 1985] Maier, D., Otis, A., and Purdy, A. (1985). Object-
Oriented Database Development at Servio Logic. IEEE Database Eng.
Bull., 8(4):58–65.

[Marquez et al., 2000] Marquez, A., Blackburn, S., Mercer, G., and Zigman,
J. N. (2000). Implementing Orthogonally Persistent Java. In Persistent
Object Systems, 9th International Workshop, POS-9, Lillehammer, Nor-
way, September 6-8, 2000, Revised Papers, pages 247–261.

[Microsoft Corporation, 2013] Microsoft Corporation (2013). LINQ
(Language-Integrated Query). https://msdn.microsoft.com/en-us/
library/bb397926.aspx. Accessed 15 May 2015.

[Morrison et al., 2000] Morrison, R., Connor, R. C., Cutts, Q. I., Kirby,
G. N., Munro, D. S., and Atkinson, M. P. (2000). The Napier88 Persistent
Programming Language and Environment.

106

https://msdn.microsoft.com/en-in/library/bb425822.aspx
https://msdn.microsoft.com/en-in/library/bb425822.aspx
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://msdn.microsoft.com/en-us/library/bb397926.aspx

Bibliography

[Moss and Hosking, 1996] Moss, J. E. B. and Hosking, A. L. (1996). Ap-
proaches to Adding Persistence to Java.

[Node.js Foundation, 2015] Node.js Foundation (2015). Node.js. https:
//nodejs.org. Accessed 1 Jul 2015.

[Oracle Corporation, 2005] Oracle Corporation (2005). Java Object Serial-
ization Specification (version 6.0). http://docs.oracle.com/javase/
8/docs/platform/serialization/spec/serialTOC.html. Accessed
11 May 2015.

[Oracle Corporation, 2013] Oracle Corporation (2013). JSR-338: Java Per-
sistence 2.1. https://jcp.org/en/jsr/detail?id=338.

[Pokorný, 2011] Pokorný, J. (2011). NoSQL Databases: a step to database
scalability in Web environment. In iiWAS’2011 - The 13th International
Conference on Information Integration and Web-based Applications and
Services, 5-7 December 2011, Ho Chi Minh City, Vietnam, pages 278–
283.

[Pritchett, 2008] Pritchett, D. (2008). BASE: an acid alternative. ACM
Queue, 6(3):48–55.

[Roy et al., 1997] Roy, P. V., Haridi, S., Brand, P., Smolka, G., Mehl, M.,
and Scheidhauer, R. (1997). Mobile Objects in Distributed Oz. ACM
Trans. Program. Lang. Syst., 19(5):804–851.

[Sadalage and Fowler, 2012] Sadalage, P. J. and Fowler, M. (2012). NoSQL
Distilled: A Brief Guide to the Emerging World of Polyglot Persistence.
Addison-Wesley Professional, 1st edition.

[Schwarzkopf et al., 2013] Schwarzkopf, M., Grosvenor, M. P., and Hand, S.
(2013). New wine in old skins: the case for distributed operating systems
in the data center. In Asia-Pacific Workshop on Systems, APSys ’13,
Singapore, Singapore, July 29-30, 2013, pages 9:1–9:7.

[Scott, 2009] Scott, M. L. (2009). Programming Language Pragmatics, Third
Edition. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd
edition.

[Shapiro et al., 2011a] Shapiro, M., Preguica, N., Baquero, C., and Zawirski,
M. (2011a). A comprehensive study of Convergent and Commutative
Replicated Data Types. [Research Report] RR-7506, INRIA.

[Shapiro et al., 2011b] Shapiro, M., Preguica, N., Baquero, C., and Za-
wirski, M. (2011b). Conflict-free replicated data types. [Research Report]
RR-7687, INRIA.

107

https://nodejs.org
https://nodejs.org
http://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
http://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
https://jcp.org/en/jsr/detail?id=338

Bibliography

[Shapiro et al., 2011c] Shapiro, M., Preguica, N. M., Baquero, C., and Za-
wirski, M. (2011c). Conflict-Free Replicated Data Types. In Stabilization,
Safety, and Security of Distributed Systems - 13th International Sym-
posium, SSS 2011, Grenoble, France, October 10-12, 2011. Proceedings,
pages 386–400.

[Stonebraker, 1986] Stonebraker, M. (1986). The Case for Shared Nothing.
IEEE Database Eng. Bull., 9(1):4–9.

[Stonebraker, 2010] Stonebraker, M. (2010). SQL databases v. NoSQL
databases. Commun. ACM, 53(4):10–11.

[Strauch, 2012] Strauch, C. (2012). NoSQL Databases. Lecture of Selected
Topics on Software-Technology Ultra-Large Scale Sites. Technical report,
Stuttgart Media University.

[Sun Microsystems, Inc., 2000] Sun Microsystems, Inc. (2000). The For-
est Project. http://web.archive.org/web/20041013072348/http:
//www.sunlabs.com/research/forest/.

[Takasaka, 2005] Takasaka, S. (2005). Survey of Persistence Approaches.
Master’s thesis, Royal Institute of Technology/Stockholm University in
collaboration with Swiss Federal Institute of Technology Zurich - ETH.

[Tanenbaum, 1993] Tanenbaum, A. S. (1993). Distributed operating systems
anno 1992. What have we learned so far? Distributed Systems Engineering,
1(1):3–10.

[Tanenbaum, 1995] Tanenbaum, A. S. (1995). Distributed Operating Sys-
tems. Prentice Hall.

[Tanenbaum, 2008] Tanenbaum, A. S. (2008). Modern operating systems (3.
ed.). Pearson Education.

[Tansey and Eli, 2008] Tansey, W. and Eli, T. (2008). Efficient automated
marshaling of C++ data structures for MPI applications. In Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE International Sympo-
sium on, pages 1–12.

[Torgersen, 2006] Torgersen, M. (2006). Language integrated query: unified
querying across data sources and programming languages. In Companion
to the 21th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2006, Octo-
ber 22-26, 2006, Portland, Oregon, USA, pages 736–737.

[Torgersen, 2007] Torgersen, M. (2007). Querying in c#: how language in-
tegrated query (LINQ) works. In Companion to the 22nd Annual ACM

108

http://web.archive.org/web/20041013072348/http://www.sunlabs.com/research/forest/
http://web.archive.org/web/20041013072348/http://www.sunlabs.com/research/forest/

Bibliography

SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal,
Quebec, Canada, pages 852–853.

[Vogels, 2008] Vogels, W. (2008). Eventually Consistent. ACM Queue,
6(6):14–19.

[Zope Foundation, 2015] Zope Foundation (2015). ZODB - a native object
database for Python. http://www.zodb.org. Accessed 22 May 2015.

109

http://www.zodb.org

	Introduction
	Problem
	Persistence is not a concern of programming languages
	How to deal with persistence
	A change of perspective
	Goal: persistence and distribution provided as language feature
	About a solution

	Background
	Orthogonal Persistence
	PS-algol
	Napier88
	Persistent Java
	Persistent Oberon

	Files and file system
	Serialization
	Databases
	Relational databases
	Object-oriented databases
	NoSQL databases

	From persistence to distribution
	Distribution within programming languages
	Distributed operating systems
	Eventual consistency and conflict resolution
	System model
	Strong Eventual Consistency
	Conflict-free replicated data types
	Remarks

	Spray programming
	Description
	Design choices
	Language level
	Unique identities
	Shallow persistence
	Eventual consistency

	Specification
	Some properties

	SprayJS
	Remarks about JavaScript
	Why JavaScript?
	Implementation
	Library
	Server

	Examples
	Explicit communication and synchronization
	Sharing among users
	Sharing among applications
	Sharing among devices

	Conclusions
	Further development

	References

