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Abstract

We present a Security Information and Event Management (SIEM) frame-

work to correlate, attribute and predict attacks against an ICT system.

The output of the assessment of ICT risk, that exploits multiple simula-

tions of attacks against the system, drives the building of a SIEM database.

This database enables the SIEM to correlate sequences of detected attacks,

to probabilistically attribute and predict attacks, and to discover 0-day vul-

nerability.

After describing the framework and its prototype implementation, we

discuss the experimental results on the main SIEM capabilities.
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Chapter 1

Introduction

1.1 Intrusion Prevention and Detection

Modern ICT systems rely on a complex infrastructure that strongly increases

the complexity of the security monitoring.

While current Intrusion Detection and Prevention Systems consider the

attacks in isolation, the attack scenarios they have to face are rather complex.

As an example, several tools that are freely available can be used to develop

malware to automatically attack system nodes from another node they have

already attacked. These tools can produce code that can result in very large

impact in a short time.

One of the most complex case intrusion prevention and detection system

have to face is the one of intelligent threat agents. These agents attack an ICT

system to achieve a prede�ned goal. As an example, to steal some information

stored in a given node of the infrastructure. To reach any of its goals, the

agent has to acquire a set of access rights on the system components. When

achieving a goal, the agent may violate any of three main security properties:

integrity, con�dentiality and availability. The �rst and the second one refer

to, respectively, the unauthorized updates and access to information, while

the third to a denial of service. The main problem an agent has to solve to

achieve a goal is that a single attack may not grant all the rights in a goal.

As a consequence, the agent has to implement a sequence of attacks.

1
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In the described scenario, current Intrusion Detection and Prevention

Systems may fail to protect the target system because they do not return

information to correlate attacks and discover those that belong to the same

sequence.

This justi�es the actual trend in implementing Security Information and

Event Management (SIEM) tools. This new security tool should rebuild a

complete and reliable security status of the system by collecting and correlat-

ing the output of a large network of sensors, where each sensor detects single

attacks against system components. A SIEM system should not only enable

a security administrator to discover and react to attacks in real-time but also

to discover network miscon�guration, weaknesses, and system updates.

Despite the large number of available tools and their capabilities, the

automation of the integration and of the correlation of data from a sensor

network is still an open problem.

These challenges and their impact on security are the main motivations

of this thesis that de�nes and evaluates a new SIEM framework to correlate,

attribute and predict attacks against an ICT system.

1.2 Thesis goals

This thesis evaluates an overall framework to solve the problems previously

outlined. These problems are the correlation, attribution and prediction of

attacks against the target system.

The correlation is the problem of how to interpret a set of alerts to pair

it with a proper meaning. An alert is the alarm raised by a sensor when it

detects an attack. A proper meaning is the discovery of the attack sequence

that an agent implements to escalate its privileges.

The SIEM needs a proper knowledge base to correctly correlate alerts.

This knowledge can be acquired from several sources. One of them is the

output of a tool to automatically assess the risk of an ICT system. This tool

returns, among others, a database with the attack sequences each intelligent

agent implements against the target system to reach its goal.

By exploiting the risk and vulnerability assessment to drive the building
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of the SIEM database, we can increase the correlation capability of the SIEM,

because it is aware of the attacks the agents may implement. Furthermore,

a mismatch in the correlation may signal a possible 0-day vulnerability, i.e.

a vulnerability that is not public yet, or an unknown update to the target

system.

The correlation of alerts supports the attribution and prediction. The

former consists in the identi�cation of the agent that is currently implement-

ing a detected sequence, while the latter consists in the forecast of the next

attacks. The solutions to these problems simplify the discovery of the goal

the agent aims to achieve and of its next attacks. The attribution of a se-

quence of attacks and the prediction of the next one constitute an important

mechanisms to minimize or completely avoid the impact of attacks.

Another approach we evaluate to identify attacking agents relies on the

generation of unique attack combinations, the patterns. Patterns are gener-

ated by analyzing the attack sequences each agent implements. The set of

patterns is then matched against the alert stream to identify the correspond-

ing agent.

After implementing a SIEM framework with these features, we evaluate its

main capabilities. In particular, we focus on the evaluation of the reliability

and accuracy of the pattern matching, attribution and prediction.

1.3 Thesis structure

In addition to this chapter, the thesis is structured as follows.

Chapter 2 This chapter presents a survey of the current state-of-the-art

on Intrusion Detection System and Security Information and Event

Management. It also introduces the Haruspex suite that supports the

automated assessment of ICT system.

Chapter 3 This chapter outlines the proposed framework and the main

problems to correlate, predict and attribute attacks. It also discusses

the solutions we propose to these problems. This section also introduces

the de�nitions to formalize the framework.
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Chapter 4 This chapter discusses the prototype implementation of the frame-

work. We detail the main algorithms we have developed and the data

structures they exploit.

Chapters 5 and 6 These chapters report the experimental results to eval-

uate the main SIEM capabilities. In particular, we evaluate the agent

identi�cation and the prediction capabilities.

Chapter 7 This last chapter resumes the main results of the thesis and

outlines future works.



Chapter 2

Related works

This chapter reviews some concepts and works related to intrusion detection,

security information, event management, and risk assessment.

2.1 Intrusion Detection Systems

An Intrusion Detection System (IDS) is a device or software module that

monitors a system to detect attacks or policy violations. The monitoring

phase is implemented by means of sensors, entities that check events to

discover violations according to the approaches described in the following.

When these sensors detect a violation, they raise an alert with information

relative to the event. These concepts were �rstly introduced in [5] and then

again formalized in [18]. A working group created by DARPA in 1998 de�ned

a common framework for the IDS �eld [41] and a common intrusion speci�-

cation language about attacks and events to enable cooperation among the

components of an intrusion detection and response (ID&R) system.

A very simple IDS architecture is discussed in [17], depicting it as Figure

2.1. Basically, an IDS is a detector that processes information coming from

the system to be protected. Three kinds of information are used. The �rst

one is long-term information related to the technique to detect intrusions (a

knowledge base of attacks, for example). The second kind of information is

con�guration information about the current state of the system. The third

5
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Figure 2.1: A simple IDS architecture

and last kind of information is audit information that describes the events

that may occur in the system. The role of the IDS is to eliminate useless in-

formation from the audit trail and present a synthetic view of security-related

actions by the users. A decision is then made to evaluate the probability that

these actions can be considered symptoms of an intrusion.

According to [6], several reasons support the adoption of an IDS such as

preventing attacks, increasing the perceived risk of discovery and punishment

of attackers, documenting the existing threat, and detecting the preambles

to attacks.

The IDS has to perform its task in real-time to be bene�cial from a secu-

rity perspective. In principle, an IDS has to deal with any kind of intrusion,

like network attacks against vulnerable services, data driven attacks on appli-

cations, host based attacks such as privilege escalation, unauthorized logins

and access to sensitive �les, and malware (denial of service attack, viruses,

trojan horses, and worms). Alternative kinds of sensors analyze di�erent

data and apply distinct detection methods to deal with the distinct features

of an intrusion [27, 37, 46].
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2.1.1 Types of Intrusion Detection Systems

We can distinguish between network IDS (NIDS) and host IDS (HIDS).

NIDS can be further partitioned into two subtypes, the wireless IDS, fo-

cusing on wireless network, and the network behavior analysis (NBA) IDS,

examining tra�c �ow on a network in an attempt to recognize abnormal

patterns like Distributed Denial of Service (DDoS), malware, and policy vi-

olations.

Another kind of IDS of interest is a distributed IDS (DIDS) that combines

HIDS and NIDS to build an e�cient and cooperative security environment

to acquire a broader view of the whole security status of the system. One of

the �rst examples is [40].

Network IDS

Since a NIDS monitors the network tra�c, it is important that it can inspect

most of inbound and outbound network tra�c. Ideally, all the tra�c should

be analyzed, but this could impair the overall network performance. Each

packet is captured by a sni�er (both hardware and software solutions are

available) and then it is analyzed to detect possible attacks. This exploits

a special implementation of the TCP/IP stack that reassembles the packets

and applies protocol stack veri�cation, application protocol veri�cation, or

other veri�cation techniques.

In the protocol stack veri�cation, the NIDS looks for malformed data

packets that violate the TCP/IP protocol. This process is useful mainly to

detect DoS or DDoS attacks, because they rely on the creation of improperly

formed packets to exploit any weaknesses in the protocol stack.

The application stack veri�cation considers rules of higher-order proto-

cols, like HTTP, to discover unexpected packet behavior or improper use.

One example of this kind of attack it can discover is DNS cache poisoning.

This veri�cation process requires more computation time than the previous

one, so it could a�ect the NIDS performance.

The main advantages of NIDS include:

• if the network is well designed, few NIDSs can monitor a very large
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network,

• NIDS, as passive devices, can be deployed with little or no disruption

to normal network operations,

• again as passive devices, they are usually not susceptible to direct at-

tacks and not detectable by attackers.

The disadvantages are:

• because of increasing network bandwidth, a NIDS can be overwhelmed

by network tra�c, compromising also its detection capabilities,

• the NIDS e�ectiveness is limited by encrypted communications and

fragmented packets,

• NIDS cannot reliably discovery whether an attack was successful.

One of the most adopted NIDS tool is Snort [31], a free and open source

network intrusion detection (and prevention) system, running on most mod-

ern operating systems. Furthermore, it is supported by a large community.

Snort performs real-time tra�c analysis and packet logging on Internet Pro-

tocol (IP) networks, doing protocol analysis, content searching, and content

matching. Snort integrates distinct components. These components cooper-

ate to detect particular attacks and to generate output in a required format.

There are �ve main components. The Packet Decoder receives packet from

di�erent types of network interfaces. Di�erent Preprocessors are used to

normalize protocol headers, detect anomalies, packet reassembly and TCP

stream reassembly for the next detection phase. The Detection Engine de-

tects intrusion activity in packets. The Logging and Alerting System gener-

ates alerts and logs. Finally, the Output Modules generate the �nal output

from the previous results.

Host IDS

The HIDS monitors a speci�c host or device on the network. Usually, in

the monitored host, the HIDS is installed as a dedicated software or hard-

ware that analyzes local events. The HIDS is also known as system integrity
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veri�er because it monitors the status of key system �les and detects when

an intruder creates, modi�es, or deletes a monitored �le. The HIDS exam-

ines these �les and system logs to determine if an attack is underway or has

occurred and if the attack was failed or successful. Since distinct priority

levels are associated with distinct resources, the most common method to

categorize folders and �les is by color coding. Red coded resources, like OS

kernel, are the most critical one. The yellow coded, like device driver, are

less critical, while the green coded resources, like user data, are less urgent,

because they are frequently modi�ed.

The advantages of HIDS include:

• it can detect local events on host systems and attacks that may elude

a NIDS,

• it can process encrypted tra�c, because it is decrypted by the host,

• it can detect inconsistencies in the use of applications and of system

programs. This enables the detection of Trojan horse,

• it can detect success or failure of attacks with respect to NIDS.

As a counterpart, the main disadvantages are:

• more management is needed, because HIDS are con�gured and man-

aged on each monitored host,

• it is vulnerable both to direct attacks and to those against the host

operating system,

• it needs large amounts of disk space to store the host OS audit logs,

• it can noticeably a�ect the performance of its host systems.

A widely used HIDS is OSSEC [12]. It is free and open source, and

provides intrusion detection for most operating systems. It performs log

analysis, integrity checking, Windows registry monitoring, rootkit detection,

time-based alerting, and active response. OSSEC has a centralized, cross-

platform architecture allowing multiple systems to be easily monitored and
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managed, such as databases (like MySQL), web servers (like Apache HTTP

Server), �rewall (like Iptables), NIDS (also Snort), and many others. It is

composed by three components. The Main Application is required for dis-

tributed network or stand-alone installations. The Windows Agent monitors

Windows environments. The Web Interface provides a graphical user inter-

face.

2.1.2 Detection methods

When an IDS analyzes network tra�c or local events to detect malicious

activities, it can apply three main strategies: signature based, anomaly based

and stateful packet inspection detection.

Signature based detection

Signature based approaches detect attacks by matching their input against

a database of signatures of known intrusions. As a consequence, the attacks

are signaled in a fairly accurate way.

The signature based detection method is widely used because many at-

tacks have unambiguous and distinct signatures. Consider, for example, �n-

gerprinting activities and worms. They implement one of a small set of attack

sequences designed to exploit some vulnerabilities and control a system.

The advantages of this approach are the ease of writing a new signa-

ture and of understanding signature others have developed. Obviously, this

assumes that enough information on possible attacks is available. Further

advantages include a very precise noti�cation of the events that caused the

alerts and the ability of simplifying the signature database by disabling rules

not needed. As an example, rules for SMTP tra�c are not enabled if an

administrator knows that this tra�c is not utilized.

Drawbacks include the need to gather the most comprehensive set of

information on an attack to extract a accurate signature and the frequency

of updates to the rule database. This method cannot detect a completely

new vulnerability and so its exploit, a so called 0-day attack.
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Anomaly based detection

Anomaly based detection is an approach based upon statistics that assume

that we know the normal behavior for a node or network. Under this as-

sumption, detection is implemented by comparing statistical indicators, like

the volume of network tra�c or CPU usage, against the normal behavior.

The main advantage is the detection of 0-day attack if they result in a

behavior that fall out of the interval of normal statistics. Another advantage

is the ease of adaption that only requires the update of the thresholds rather

than the de�nition of new signatures.

The drawbacks are the high number of false positives, events signaled as

malicious while they are not, and the complexity to collect data to statisti-

cally de�ne the normal behavior.

Stateful packet inspection approach

Assuming that the IDS knows how a protocol, such as FTP, is supposed to

work, it can detect anomalous behavior.

Relevant data per session are stored and then used to identify intrusions

that involve multiple requests and responses. This approach can also detect

multisession attacks. The Stateful Protocol Analysis (SPA) examines packets

at the application layer for information extracting. This is also referred as

deep packet inspection.

The main drawback is the complexity of session based detection, as it

introduces both heavy processing and memory overhead to track multiple

simultaneous connections.

2.2 Security Information and Event Manage-

ment

A Security Information and Event Management (SIEM) is a component that

implements real-time analysis of the alerts generated by sensors. In some

sense, it is the evolution of an IDS.
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Figure 2.2: The general SIEM architecture

As the name suggests, a SIEM combines the aspects of Security Event

Management (SEM) and the Security Information Management (SIM). The

former deals with real-time monitoring, correlation of events, noti�cations

and console views. Instead, the latter provides long-term storage, analysis

and reporting of log data.

The general architecture of a SIEM is discussed in [28] in terms of the

Figure 2.2. The �rst part of a SIEM is the source device that feeds informa-

tion into the SIEM. A source device is the device, or the application, that

supplies logs to store and process in the SIEM. A modern SIEM can coop-

erate with di�erent source devices, even from di�erent vendors. Actually, a

log collection process retrieves di�erent logs in two ways. Either the source

device sends its logs to the SIEM (push method), or the SIEM reaches out

and retrieves the logs from the source device (pull method). Because logs are

still in their native format, they have to be parsed and normalized in a single

format. Now the rule engine analyzes the normalized logs events to trigger

alerts due to speci�c conditions. The correlation engine is a subset of the

rule engine that matches multiple standard events from di�erent sources to

produce a single correlated event. To take into account the volume of logs

that the SIEM receives, usually the logs are stored in a database, a �at text

�le or a binary �le. Finally, the SIEM implements a method, web-based or

application-based, to enable the user to interact with the logs.

[25] describes a framework for attack modeling and security evaluation in

SIEM systems. This framework includes several steps:

1. the modeling of malicious behavior,
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2. the generation an attack graph,

3. the evaluation of distinct security metrics,

4. the de�nition of risk analysis procedures.

The key elements are the use of a comprehensive security repository, and

of an e�ective attack graph (tree) generation techniques (also in near-real

time). Furthermore, it takes into account known and new attacks based

on 0-day vulnerabilities, and it supports stochastic analytical modeling, and

interactive decision support to select the most e�ective security solutions.

The de�ned Attack Modeling and Security Evaluation Component (AMSEC)

can behave in two modes. In non real-time mode, AMSEC produces the list

of weak network places, possible 0-day vulnerabilities, and the set of attack

trees. This output is computed through the model of the computer network.

In turn, this model is de�ned according to the design speci�cations as well

as to the network con�guration and security policy. In the real-time or near

real-time one, the AMSEC adjusts existing attack trees and malefactor model

to predicts actions of an attacker and generate countermeasures.

One of the most popular SIEM tool is OSSIM [23]. It is an open source

SIEM, that integrates a selection of tools that support network administra-

tors in computer security, intrusion detection and prevention. OSSIM pro-

vides integration, management, and visualization through a browser-based

user interface of events of open source security tools, like Snort and OSSEC.

More important, OSSIM simpli�es the integration of new security devices

and applications. After the normalization of the collected alerts, OSSIM ap-

plies event �ltering and prioritization through con�gurable policies. OSSIM

applies three types of correlations. Inventory Correlation �lters attacks to

speci�c kind of asset, e.g. Windows threat to Linux box. Cross Correla-

tion compares event and vulnerability analysis results. Logical Correlation

correlates using user de�ned condition trees.

A core task of a SIEM is the correlation among alerts to understand

what is happening in the system to inform a security expert, deploy some

countermeasures, and so on. A general characterization of the correlation
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process is explained in [43], and re�ned in [36]. We can distinguish four

phases. At �rst, the alert enters the preprocessing phase for the normalization

and enrichment with other useful information for the next phases. Then,

the reduction phase �lters and validates the alert. The third step is the

correlation phase that tries to �nd out how an actual alert is related to the

previous ones. The fourth step, the prioritization phase, ranks the previous

results according to their severity.

During the correlation phase, the SIEM tries to discover the meaning of

the alerts stream received so far. A possible way to explain alerts correlation,

as in [30], is the generation of hyperalerts. These abstractions are basically

concrete attacks to the system and compose a correlation graph, representing

the di�erent attack scenarios. Di�erent techniques can be used to �nd a

causal relation between hyperalerts, such as temporal constraints, but more

important, the cause-e�ect one, expressed as prerequisites and consequences

of each hyperalert.

In the following we describe di�erent approaches for alerts correlation,

because it is the kernel of the intelligence of every SIEM tool.

2.2.1 Alerts correlation

In last years, a large amount of research e�orts focused on alerts correlation

techniques and their taxonomy [11, 35, 36, 49, 51].

Several de�nitions of alert correlation can be found in the literature [19,

21, 33], but all these de�nitions basically describe alert correlation as the

interpretation of multiple alarms to pair them with a proper meaning.

Alerts, also referred as alarms, are generally short textual messages in a

speci�c format de�ned by vendors or by a standard, like the IDMEF [16].

They are generated on the basis of a matching between some prede�ned

rules and network or host events. Typically, alerts contain general infor-

mation regarding the device issuing them, e.g. its IP, and the event itself,

e.g. the creation time, a description of the event, references to vulnerabilities

database, impact, and so on.

Several reasons favor the adoption of alert correlation. The most impor-
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tant one is the need of discovering the root causes of a problem. An example

of a root cause is an initiating cause of an attack chain [22].

Alert correlation techniques are used in three di�erent application do-

mains: network management, industrial process control (SCADA system)

and network and system security. Obviously, here we focus on this last do-

main.

In the �eld of network and system security, alerts are generated by secu-

rity elements such as NIDS and HIDS. Since the sensitivity of the detection

process is highly variable, they could generate a huge amount of alarms,

where some of them only signal normal activity rather than attacks (false

positives). Alerts correlation simpli�es the evaluation of the validity of those

alerts, and, more important, the detection of complex and multistep attack

scenarios. Usually, this results in a comprehensive view on the security state

of a system.

Alert correlation can use several sources of information, besides the alerts

itself. For instance, we recall topology information [14] and vulnerabilities

databases [47].

Focusing on distinct strategies to correlate alerts, in the literature we

�nd three main category, similarity-based, sequential-based and case-based

methods.

Similarity-based methods

Similarity-based methods try to cluster and aggregate alerts using their sim-

ilarities in attributes such as the IP addresses, port, protocol and timestamp

information. We can distinguish between attribute and temporal based cat-

egories, depending on how similarity is computed. Attribute based tech-

niques correlate alerts by computing prede�ned metrics, such as Euclidean,

Mahalanobis, Minkowski, and/or Manhattan distance functions on some at-

tributes. The resulting scores are compared to a threshold to determine if

alerts have to be correlated. Instead, temporal based techniques rely on

timing constraints.

In [42] a probabilistic method is proposed. An appropriate similarity
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function is de�ned for each attribute in a range from zero (mismatch) to

one (perfect match). The overall similarity is computed through an equation

that combines the results of the previous functions. For each new alert, the

similarity is computed for existing meta-alerts, and the newly created alert is

merged with the best matching meta-alert, as long as the similarity is larger

than a threshold value. Otherwise, a new meta-alert is created.

[15] uses a distinct approach, an expert system one, that de�nes the sim-

ilarity relationship in terms of requirements, each speci�ed through expert

rules. These rules are domain speci�c and they are de�ned through an anal-

ysis of the alerts generated by distinct IDSs. The rules are partitioned into

four categories based on alerts attributes. These are classi�cation, time,

source and target of the alert.

[1] uses several time windows, along with a trained classi�cation method,

to avoid comparing new alerts against the whole set of received alerts. Then,

alerts are correlated though a probability estimation function. Two alerts

are correlated if their temporal similarity is higher than a threshold.

The well-know concept of entropy is the basis of [20]. For each alert,

the partial entropy is calculated to �nd the alert clusters with the same

information. Alert clusters are represented by hyper-alert. Finally a subset

of hyper-alerts is selected according to the entropy maximization.

The similarity-based method is the simplest one and it can be imple-

mented through simple and lightweight algorithms. However, the important

drawback is that it cannot detect root causes. The identi�cation of a root

cause is very useful, because it is an initiating cause of an attack chain.

Hence, we can prevent further occurrences of the attack chain by removing

its root cause [22].

Sequential-based methods

Sequential-based methods group alerts according to causality relationships,

represented as a logical formula using combinations of logical operators, on

pre-conditions and consequences of attacks.

A large number of solutions has been proposed, using several approaches
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to model a scenario. We can mention, as an example, pre/post conditions,

(attack) graphs and (Hidden) Markov models.

In the pre/post conditions category we recall MARS [3, 4]. Attack con-

sequences are modeled through vulnerability and extensional consequences.

The latter is an extended description of possible consequences in a form of

predicates with free variables of facts, such as IP addresses. At �rst, raw

alerts are normalized and then aggregated. Instances of multi-stage attack

instances are generated by correlating aggregated alerts. The proposed ap-

proach is a variation of the requires/provides model and considers �ve factors

to determine the link between stages of attack sequences. These factors are

temporal (alert timestamps) and spatial (IP addresses and port) relation-

ships, pre and post conditions of attacks, vulnerability assessment of the

target system and its con�guration.

[44, 45] use an attack graph approach. The correlation is based on a

Queue Graph, which has the ability to hypothesize missing alerts and to

predict future alerts. It only keeps in memory the latest alert matching

for well-known exploits. The correlation between a new alert and the in-

memory ones is explicitly recorded, whereas the correlation with other alerts

is implicitly represented in terms of the temporal order between alerts. This

improves the overall e�ciency as the correlation process does not need to

scan all the previously received alerts.

An interesting hybrid model is proposed in [2]. It consists of two parts.

The main one applies an attack graph-based method, extending [45], to corre-

late alerts raised for known attacks and hypothesize missed alerts. Instead,

the second one uses a similarity-based method, based on [1], to correlate

alerts raised for unknown attacks which cannot be correlated by the �rst

part. The novelty of the approach is the capability of hypothesizing missed

exploits and of discovering defects in pre and post conditions of known ex-

ploits in attack graphs. It can also update the attack graph by applying the

similarity-based method in the second part of the model.

An interesting combination of attack graph and Hidden Markov Model

(HMM) is used in [34], that presents a formal model of the correlation al-

gorithm. The algorithm can be parameterized to tune its robustness and
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accuracy. Two approaches improve the speed and quality of the algorithm.

Firstly, a parallel multi-core version, using both CPUs and GPUs, is pro-

posed. Then, on a HMM-supported version, the Viterbi Path algorithm is

computed to identify the most probable path in the corresponding attack

graph. The correlation platform can work in real-time.

[48] uses the Hidden Markov Models to represent typical attack scenarios.

It includes an online tracking and prediction module and an o�ine model-

training module. The former searches the best attack scenario to describe

the alert sequence and �nds the most likelihood state transition (attack in-

tention), while the latter uses the historical alert data to build the Hidden

Markov Models for the typical attack scenario.

[39] uses a Markov chain to build a probabilistic model of abnormal events

in network systems to forecast and detect network intrusions. It consists of

three phases. In the �rst phase, the network states, including the outlying

ones, are newly de�ned by applying a K-means clustering over a training

data set. Based on these states, the second phase computes the state transi-

tion probability matrix and the initial probability distribution of the Markov

model. The third phase computes in real-time the chance of abnormal activ-

ity for online data.

The main advantage of the sequential-based method is the high accuracy

in recognizing attack scenarios, potentially discovering the causal relationship

between alerts. However, the correlation results depends upon the logical

predicates that are de�ned as well as upon the quality of the sensors.

Case-based methods

Case-based methods rely on a knowledge-base system that represents well-

de�ned scenarios. The underlying knowledge is built by human or inferred

by adopting machine learning or data mining techniques, and is continuously

updated with the new observed scenarios. When a new case is raised, the

system searches the database for the most similar cases. If a matching case is

found, its associated information is retrieved and used to solve the problem.

If this attempt is successful, proper information on the solution is stored
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for future reuse. Otherwise, the reasons for the failure are identi�ed and

recorded for the next decisions.

A methodology and language for modeling multistep cyber attack sce-

narios is proposed in [13], that models scenarios as trees. Each scenario is

represented through a set of modules. A module represents an inference step

and consists of three sections: activity, pre and post condition. To support

event-driven inferences, the activity section speci�es a list of events to trigger

the module. A library of predicates is de�ned and used as a vocabulary to

describe the properties of system states and events. Each module is linked

to others through pre/post conditions to recognize attack scenarios.

Some proposals adopt an approach based upon data mining, a set of

techniques and tools to extract and present implicit knowledge. [24] presents

a method to discover, visualize, and predict behavior pattern of attackers

in a network based system. Data mining techniques are applied to generate

association rules, starting from alerts produced by an IDS, and to build

prede�ned attack scenarios. These scenarios are used to predict multistage

attacks.

Case-based correlation techniques are very e�ective to solve well-known

problems by specifying appropriate solutions and by discovering new poten-

tial ones. The drawbacks are the complexity of building an exhaustive list

with all the scenarios to build a comprehensive knowledge database and the

low performance that prevents their adoption for real-time correlation.

2.3 The Haruspex suite

The Haruspex suite [7, 8, 9, 10] is a collection of tools that enable security

experts to model threat agents, simulate attacks and choose countermeasures

for a system. Starting from the list of all the vulnerabilities a�ecting each

node and from the system topology, a module of the suite builds an inter-

nal model of the system. A number of experiments on agents attacks are

implemented through this model by applying a Monte Carlo method. By

collecting proper information in each simulation, a statistical sample is built

and stored in a database. This database stores information on the attacks
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Figure 2.3: The architecture of the Haruspex suite

these agents have implemented, the goals they have reached and the time

this has taken. Other tools use this database to produce statistics to assess

the risk and select countermeasures to be deployed.

The suite introduces several de�nitions and features. Here we detail just

some of them.

2.3.1 Kernel modules

The Haruspex suite is composed by several modules, as depicted in Figure

2.3, but the kernel ones are the builder and the engine module.

The builder module

The builder module creates the model of the system, starting from the output

of one or more vulnerabilities scanners, the vulnerabilities the user suspects

will be discovered in the future and the logical system topology. Using this

information, an enumeration of all the elementary attacks to the system

is made, enriched with other information described in the following. Each

vulnerability is classi�ed using the Common Vulnerabilities and Exposure
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(CVE) database [29, 32], a de facto standard on vulnerability description,

and the Common Vulnerability Scoring System (CVSS) [38]. The information

extracted by the builder are used by other modules of the suite.

The engine module

The engine module implements a Monte Carlo method to produce an as-

sessment database with the statistical sample to support the assessment.

Starting from a description of the attacks to the system previously discov-

ered and one of the agents, a number of experiments are made to simulate

the possible attack chains that the agents can implement against the system.

This number is speci�ed by the user or is determined on the basis of a user

de�ned con�dence interval on the statistics. Further details on this phase

are explained in the following.

2.3.2 Attacks

An attack is the exploitation of a vulnerability of a component by an agent to

gain new rights or shutdown a service. A component represents a hardware

or software module of the system. A vulnerability is a defect in a compo-

nent or an erroneous or malicious behavior of some users. The considered

vulnerabilities are e�ective, if already discovered, and potential, if they are

only suspected, so they are paired with the probability distribution of being

discovered at a given time.

An attack is characterized by the target IP, port and the considered pro-

tocol. A further attack attribute is the vulnerability identi�er, in the form

of a CVE id. From the vulnerability description in the CVE, the builder

extracts further attributes of the attack, such as the success probability, the

prerequisites and the consequences. These last two attributes represent re-

spectively the rights needed to implement the attack and the rights acquired

if the attack is successful.

The attack previously considered is an elementary one. Instead, a com-

plex attack is the composition of elementary attacks, an attack chain. The

composition has to respect some constraint. First of all, an elementary at-



CHAPTER 2. RELATED WORKS 22

tack is never repeated after its success. Then, the �rst attack preconditions

must be included in the initial rights set of an agent. The last constraint is

that a chain should respect attack pre and post condition. This means that

the rights returned by an initial subsequence of the elementary attacks in

the chain de�ne a set of rights that includes the preconditions of a successive

attack.

2.3.3 Agents

The attackers that try to violate the system are modeled as threat agent, or

simply agent.

The suite considers an intelligent agent that compose elementary attacks

into a complex one to reach some goals. Each goal is a distinct set of rights

that the agent reaches after acquiring all the corresponding rights. Each

right enables the agent to invoke the corresponding operation of a resource,

like turning o� a service, read or write record of a database, being user of a

node, and so on. Obviously, when an agent reaches a goal there is an impact,

that is a loss for the owner of the system.

The user speci�es the model of the agent through attributes like the initial

set of rights and resources available, and the set of rights that the attacker

wants to acquire.

Obviously, to e�ectively model an intelligent attacker, the engine module

has to simulate the possible attack choices that the agent could implement.

To do so, the engine uses an attack graph. Every node of this graph represents

the rights acquired by the attacker when an attack is successful. We can also

distinguish the initial node, the starting point for a chain, and the �nal node,

containing the goals of the agent. The path in the graph from an initial node

to a �nal one basically represents a privilege escalation to reach a goal. This

path also represents the complex attack that the agent has to successfully

implement in order to achieve some goals.

There are also other attributes to better re�ne the simulation of the most

real behavior of the attacker, by changing the selection of the next attack of

an agent.
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One of the most important ones is the ranking strategy. The agent applies

this strategy to select the sequence of attacks to implement. The strategy

considers attributes such as the success probability, the time to implement

the attacks or the number of rights it grants to the agent. Among the various

strategies an agent can apply, four are the main ones. The Max Probability

one selects the complex attack with the higher probability of success. The

Max Increment one selects the complex attack that returns, if successful,

the largest set of new rights. The Max E�ciency one selects the complex

attack with the best ratio between success probability and execution time.

The Smart Subnet First one selects with same probability each elementary

attack, but it assigns a larger priority to attacks that returns rights on another

subnet.

The interesting notion of look-ahead, a positive integer expressing the

quantity of information that an agent uses when has to choose the next attack

to implement, is de�ned. Typical values are 0, 1 and 2. The next attack is

chosen by considering paths of look-ahead length starting from the node

an agent has reached in the attack graph. Obviously, the look-ahead value

in�uences the previously de�ned ranking strategies. In particular, two cases

may arise. If any ranked attack grants the rights in a goal, then it is returned.

Instead, if, due to a low look-ahead value, the strategy cannot determine a

complex attacks that leads to a goal, then the selection is done according to

the ranking strategies. In this last case, the agent may implement useless

attacks.

The persistence of the attacker is the number of times a failed attack is

repeated before selecting another one.

The continuity is the number of attacks of a chain the agent executes

before invoking again the strategy. This de�nes the compromise between

the selection overhead and the ability of executing chains enabled by newly

discovered vulnerabilities.
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2.3.4 Simulations

Coherently with the adoption of the Monte Carlo method, an experiment

includes several, di�erent and independent runs. Each run simulates the be-

havior of some agents for the same time interval, together with the discovery

of potential vulnerabilities. A run is subdivided into time steps to analyze

these aspects in the simulated elapsing time. When a run is over, the en-

gine module re-initializes the status of the system and agents to start a new,

independent, run.

At each time step of a run, after determining if some potential vulnera-

bilities are discovered, the engine simulates the behavior of the agents. For

each agent, according to the various parameters previously discussed, the

next attack is chosen, unless the agent has already reached its goal or is busy

because still implementing the previous attack. To select an attack, a subset

of the attack graph is dynamically built, according to the look-ahead value.

Then, the selection of the strategy is evaluated.

At the end of a run, the engine collects the samples that it stores in a

database. Using this database, valuable information is extracted, like the

attack chains, the impact, the attacks probability, the reached goals, the

number of runs where an agent implements a sequence, and the time to

implement a complex attack.

Another very interesting information concerns agent plans. A plan is a

subsequence of an attack chain without useless attacks. An attack is useless

if the agent does not use the rights it grants to reach a goal. Haruspex derives

the corresponding agent plans from each sequence through a backward scan

that removes useless attacks.



Chapter 3

Framework

We present the main problems posed by the design of a SIEM framework and

their solutions. First of all, we describe the general architecture of the pro-

posed SIEM framework and then discuss the details of each module. We also

identify the useful information to be derived from the assessment database

produced by the Haruspex suite.

3.1 Architecture overview

The proposed framework considers as source devices both kind of IDSs, net-

work and host ones. A variety of widely deployed sensors are available o�-the-

shelf, and the proposed framework aims to cooperate with them to simplify

its adoption in real environments. A proper module, the Receiver, collects

the alerts raised from the sensors and maps them into a uniform format the

other modules can understand.

After being processed by the Receiver, the alert has to be validated. The

Filter module implements the validation process and, eventually, �lters out

the alert. Furthermore, this process prevents the overload of the SIEM. If

the alert is not validated, unknown updates or con�guration changes to the

target system may have introduced a new vulnerability that may invalidate

the previous assessment. Hence, the alert requires further investigations by

a security expert.

25
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The Matcher and the Correlator modules process a validated alert.

The Matcher accesses an agent attack patterns database to match the

detected sequence of attacks against the agents patterns and identify the

attackers.

The Correlator correlates the alert with the previous ones. The corre-

lation process basically matches the detected attack sequence against the

simulated ones to discover the complex attacks a set of agents are imple-

menting. The correlation process may produce two distinct outputs.

If the correlation is successful, the Predictor attributes the detected se-

quences to some agents and predicts attacks. The attribution of a detected

sequence to an agent is a valuable information. First of all, this supports

the anticipation of the goals the attacker is trying to achieve. Moreover, we

supply some forensics. Obviously, the prediction of the next attacks of an

agent is useful to stop its attempt and prevent any impact.

If no correlation is possible because of the mismatch between the sequence

and the database, the Investigator module analyzes the previous correlation

result and the current alert to discover 0-day sequences. A 0-day sequence

is a complex attack that has not been simulated but that respects the pre

and post conditions constraints on the attacks in a sequence. However, in

this case we do not know the agent and the Predictor cannot predict future

attacks. The security expert is informed and, eventually, an update to the

Haruspex database may be considered.

Figure 3.1 sketches the whole SIEM architecture.

The following sections describe in more details the SIEM modules. Let

us �rst introduce some hypothesis on sensors.

3.2 Sensors

Each sensor sends alerts to the Receiver module trough a secure channel. We

assume that the sensors detect all the attacks, both remote and local ones,

to the system. This assumes a proper con�guration and placement of the

sensors.
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Figure 3.1: The SIEM framework architecture
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Furthermore, we assume the sensors do not miss any attack. This implies

that no false negatives are possible.

We consider two cases, the failure detection and the attack detection one.

The former assumes that the sensors can distinguish successful attack from

failed one. Instead, the latter assumes that the sensors signal attacks without

their outcome.

We discuss the main consequences of the two assumptions in the following.

3.3 Failure detection case

This section assumes that the sensors provide alerts for all known attacks

together with their success or failure.

3.3.1 Building the SIEM database

First of all, the SIEM has to build a database that is the underlying knowl-

edge and the intelligence of the whole framework. This database is produced

from the output of the Haruspex suite, that collects information in multiple

simulations of attacks against the system. The suite discovers both the plans

and the complex attacks of each agent.

The Haruspex suite maps complex attacks of an agent into the corre-

sponding plans. A plan is a subsequence of an attack chain without useless

attacks. Although this seems a useful simpli�cation, by pruning some at-

tacks from a sequence we decrease the di�erences among the attack chains

of distinct agents. This will a�ect the attribution and prediction phases,

because the accuracy of these phases increases with the di�erence among

attack chains. So, agent plans are not optimal for attack attribution and

forecasting.

A Haruspex complex attack is a simulated sequence of attacks imple-

mented by an agent and contains both successful and failed attacks. If we

denote by atsx the successful implementation of attack x and by atf,nx n con-
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secutive failures of attack x, a complex attack may be written as[
atf,21 ats1at

s
2at

f,4
3 atf,34 . . .

]
Because the sensors can detect the result of attacks, the alerts for failed

attacks are not interesting because they do not change the security status of

the system. So, we can drop failed attacks from a complex one.

By removing failed attacks from a sequence, the SIEM builds a database

of successful pure sequences. A successful pure sequence is de�ned as follows.

De�nition 1. A successful pure sequence is the sequence of elementary at-

tacks extracted from a complex one by removing the failures.

As an example, given the complex attack[
ats54at

f,4
63 at

s
66at

f,2
23 at

s
23at

s
63

]
the corresponding successful pure sequence is

[at54at66at23at63]

We can notice that distinct complex attacks can be mapped into the same

successful pure sequence. As a result, the SIEM pairs each successful pure

sequence sps with the set of agents implementing it and their relative frequen-

cies, that is the number of times the agent implements it in the simulations.

If an agent ag implements sps, we denote its frequency with freq(sps, ag).

We can de�ne also freq(sps), that is the number of times sps is implemented

by any agents in the simulations.

The SIEM stores this information in the SIEM database.

3.3.2 Receiving and �ltering alerts

The Receiver processes each alert to extract the characteristics of the attack.

Distinct sensors can be adopted and each sensor has its own alert format. As

a consequence, the Receiver needs to parse the alert.
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At �rst, the Receiver retrieves the result of the attack. If the alert reports

a failed attack, the Receiver just logs the corresponding information, without

further processing. We can explain this behavior under the assumption that

alerts of failed attacks do not convey useful information. This reduces the

computational load of the whole SIEM.

We have already seen the attributes to identify an elementary attack. This

is also the information the Receiver extracts from an alert. These attributes

are:

• the target IP

• the target port

• the transport protocol

• the set of references to the vulnerabilities exploited, namely the CVE

identi�ers

From this perspective, we can de�ne an alert as follows.

De�nition 2. An alert is the noti�cation of an alarm raised by a sensor that

has detected a known attack. Basically, an alert is a tuple of

〈IP, port, protocol, {CV Eids}〉

While the �rst three attributes are always meaningful, the last one, the

CVE ids set, may be empty, have a single reference or more than one, because

the sensor generating the alert could not determine which vulnerability has

been exploited. This could happen because no CVE id has been assigned

or because attack vectors are very similar and the sensor could not distin-

guish among the corresponding vulnerabilities. Consider, for example, the

vulnerabilities enabling a SQL Injection attack. Since the query string could

match distinct descriptions, the sensor could not be able to identify which

vulnerability has been exploited.

Trough this information, the Filter �nds the Haruspex elementary attacks

that are compatible with the alert. The matching condition depends upon
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the alert reference set. If this set has at least one CVE id, the Filter applies

the following de�nition.

De�nition 3. An alert is compatible with an elementary attacks if

(i) the IP, port and protocol are the same

(ii) the attack CVE id is contained in the alert reference set of CVE ids

If the alert reference set is empty, the vulnerability exploited is unknown,

so the Filter cannot apply condition (ii). We consider the worst case scenario,

so potentially, any elementary attack, that respect just condition (i), could

be exploited. As a result, the Filter returns these attacks.

A consequence of the notion of compatibility is that the Filter could map

the alert to a set of Haruspex elementary attacks. This set of attacks may

be empty or include more than one attack. An alert mapped into several

attacks is a source of non determinism that reduces the accuracy of the next

phases.

If an alert is not compatible with any attack, it signals an inconsistency

with the system model of the Haruspex suite. As an example, this may be

due to an unknown update to the system. Further investigations are required,

so the SIEM informs a security expert.

Notice that, since no false positives are possible, if a sensor detects a

successful attack then a vulnerability has been exploited.

If at least one attack is compatible with the alert, the Matcher and the

Correlator modules continue the SIEM processing.

3.3.3 Agent attack patterns recognition

TheMatcher module identi�es attacking agents by matching the alert stream

against the pattern of the various agents. A pattern is de�ned as follows.

De�nition 4. A pattern is an ordered sequence of attacks that uniquely

identify an agent.

We can see a pattern as a signature of an attacker.
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First of all, the Matcher builds an agent attack pattern database out of

the SIEM one.

Starting from a successful pure sequence, the Matcher extracts the com-

binations of N attacks by preserving the sequence order. By iterating this

procedure a number of times equal to the length of the extracted sequence,

the Matcher �nds all the combinations for a successful pure sequence. By

applying this method to all the successful pure sequences, the Matcher con-

structs for each agent the corresponding set of attack combinations.

Notice that distinct successful pure sequences can generate the same at-

tack combination. So we can pair each of them with its frequency.

Furthermore, the same attack combination could appear in more than one

agent set, so the Matcher �lters out the combinations that are not unique

for an agent. The resulting sets of attack combinations are the patterns for

the agents. Each pattern is paired with its frequency, the relative attack

combination frequency.

The whole procedure has a large time complexity. The Matcher provides

three mechanisms to cope with this complexity. The user can bound the max

value of N and can set frequency thresholds on both successful pure sequences

and patterns. Obviously, if any of these mechanisms is used, the Matcher

neglects some successful pure sequences and patterns. This decreases the

accuracy of pattern matching and it may result in false positive or false

negative agents identi�cation.

On receiving a new set of compatible attacks from the Filter, the Matcher

searches for totally matched patterns. If at least one is found, the correspond-

ing agent is identi�ed as attacking the system.

We remark that attacking agents are identi�ed through pattern matching

and attribution. The two processes are di�erent, even if they aim to achieve

the same goal. The Matcher analyzes the attack stream, as it is, to recognize

known agent attack patterns. Instead, the Predictor relies on the correla-

tion process to apply both statistical and heuristic methods to identify the

agents. Furthermore, an attribution is paired with a probability value while

no probability can be paired with pattern matching.
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3.3.4 Correlating attacks

The correlation of alerts is one of the most complex SIEM task. The Cor-

relator module implements this functionality by sequentially composing the

alerts received according to the attack chains discovered by simulations. The

correlation result is the input of the Predictor module, that attributes and

predicts agent attacks.

Now we give more details on the correlation process.

For simplicity sake, at �rst we assume that just one agent is attacking

the system, but this agent and its goals are unknown. This means that any

attack the sensors detect belongs to an attack sequence implemented by that

agent.

Informally, the alert stream received up to a given time matches a suc-

cessful pure sequence if each alert of the stream is compatible with the ele-

mentary attacks in the successful pure sequence, and it respects their order.

This matching could be complete, if the condition holds for all the attacks in

the successful pure sequence, or partial, if the condition holds for the �rst n

attacks of the successful pure sequence. This is a pre�x matching between

alerts and successful pure sequences.

The correlation result is the set of successful pure sequences that match

the alert stream.

On receiving an alert mapped into a set of Haruspex elementary attacks,

the Correlator removes from the previous correlation result all those success-

ful pure sequences that do not match anymore with the alert stream. This

implies that the resulting set could even be empty if no sequence matches

with the alert stream. In this case, no agent has implemented the chain in

a simulation. This signals an inconsistency, and the Investigator module is

invoked to distinguish between 0-day sequence and completely unexpected

attack chains.

Now we extend the correlation process to the one where some agents

attack the system simultaneously. This is the most general situation that

also covers the previous case. So, it is also the default behavior of the SIEM.

If several agents are concurrently attacking the system, the alert stream is
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the ordered interleaving of attacks in the sequences of these agents. Since we

assume these agents cannot cooperate, each attack in the ordered interleaving

is implemented by exactly one agent and the rights it grants are acquired

only by this agent. Obviously, the agents and their goals are not known in

advance.

Here, each alert of the stream has to be compatible with and in the same

order of the ordered interleaving of attacks of a successful pure sequence set.

We can notice that the combinations of distinct successful pure sequences

may generate the same ordered interleaving.

Consider, as an example, three successful pure sequences of distinct agents.

The �rst one, sps1, is at1at3at5, the second one, sps2, is at2at4at6, and the

third one, sps3, is at1at2at3at4. If the detected alert stream das is mapped

into at1at2at3, it is obvious that das could be the ordered interleaving of sps1

and sps2, or the single sps3.

As a consequence, more than one set of successful pure sequences could

verify the matching condition. In the previous example, we have two sets.

One includes sps1 and sps2, while the other one only includes sps3.

An interesting property is that if an alert mapped into the same elemen-

tary attack is received more than one time, it will be matched with at least

two di�erent successful pure sequences. We can prove this property by the

assumption that a single attack chain never repeats a successful attack.

Moreover, these successful pure sequences can be grouped by the agent

that implements them.

The consequence of all these hypotheses is that the correlation process

returns a set of tuples, each with two components for each attacking agent.

The �rst component represents the contribution of that agent to the alert

stream, while the second is the set of the relative matching successful pure

sequences. Because of this interpretation, each of these tuples represents the

security status of the system, that is a distinct and alternative explanation

of the ordered interleaving.

De�nition 5. If naa denotes the number of attacking agents, coni the i -th

agent contribution and comppseqi the matching successful pure sequences set
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that have coni as pre�x, an explanation is a tuple with the structure

〈< con1, comppseq1 >ag1 , . . . , < connaa, comppseqnaa >agnaa〉

At high level, the correlation process may be seen as the computation of

a new set of explanations out of the previous alerts and the received one.

For each explanation, the Correlator checks if at least one successful pure

sequence of an agent still matches the received alert and, in this case, it builds

a new explanation. This explanation is equal to the previous one for all the

agents but the considered one. The component of the agent is replaced by

the new contribution (the previous one plus this alert) and the new matching

successful pure sequence set. Implicitly, the Correlator assumes that the

agent has implemented the attack that has been detected.

The Correlator repeats this procedure for each component of the expla-

nation.

The Correlator also handles a special case where the received alert is

compatible with an initial attack that is the �rst attack of a complex one.

Here, the Correlator determines the set of successful pure sequences that

have the �rst attack compatible with the alert and groups this set by the

implementing agent.

For each explanation, the Correlator builds a new one. This explanation

is equal to the previous one for all the agents but the one that initiates a new

sequence. The component of the agent is replaced by the received alert as

contribution and the relative successful pure sequence set as matching one.

If the agent component was not empty, the Correlator stores the previous

information as history of the explanation. To explain this solution consider

that an agent could interrupt a previous attack chain to implement a new

one.

As a consequence, the complexity of the correlation process increases with

the number of agents attacking the system simultaneously. Fortunately, we

can assume that the probability that n agents attack simultaneously the

system strongly decrease with n. This makes it possible to bound the number

of components, and of concurrent attackers, of explanations. This reduces
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the complexity while introducing the possibility of error in the correlation

result. Because the Predictor and the Investigator rely on this explanations

set, this could also result in a loss of accuracy of attribution, prediction, and

0-day discovery.

Anyway, by focusing on the sequences an agent actually implements, the

proposed approach increases the accuracy of the correlation with respect to

approaches that adopt an attack graph to describe all the sequences an agent

may implement.

All the new explanations computed by the Correlator compose the new

explanation set. If it is not empty, this set can be analyzed by the Predic-

tor to attribute and predict attacks. Otherwise, the Investigator module is

invoked to process the previous explanation set and the actual alert in order

to discover further information.

3.3.5 Attributing and predicting attacks

The Predictor implements both attack attribution and prediction. The �rst

one identi�es the agent that is implementing the detected attack chain, while

the second one forecasts future attacks of the agents that are currently at-

tacking the system.

As attribution and prediction are probabilistic, they could be a�ected by

the a priori estimate of the probabilities that each modeled agent attacks

the systems. This estimate could be supplied by the user as input, but it is

not derivable by the Haruspex output database. The attacking probability of

each agent is a very critical information, because every statistic is conditioned

by the a priori probability that each agent is actually attacking the system.

As a consequence, the Predictor must be aware if these probabilities are

known or not.

The Predictor tries to pair each explanation with its probability, that is

the likelihood of the security status represented by the explanation.

The probability of each explanation can be computed in two cases only.

In the �rst one the user supplies the a priori estimate of the agents attacking

probabilities, in the other one all the explanations have the same set of
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attacking agents. In all the other cases, the probability of each explanation

cannot be computed, because each one considers distinct agents that could

be not actually attacking the system.

In the �rst case, the user supplies the attacking probabilities of each agent.

We denote with P(ag) this probability for the agent ag.

The Predictor queries the SIEM database and retrieves freq(sps, ag) and

freq(sps) for each successful pure sequence sps of an explanation expl.

The Predictor evaluates the probability that an agent ag is involved in

an explanation expl as

P (ag, expl) =

∑
sps∈expl freq(sps, ag)∑

sps∈expl freq(sps)
· P (ag)

From this probability, the Predictor computes the relative probability of the

explanation expl as

Prel(expl) =
∏

ag∈expl

P (ag, expl)

Obviously, this probability has to be normalized with those of other expla-

nations, so the Predictor computes the real explanation probability as

P (expl) =
Prel(expl)∑
expl Prel(expl)

The second case is one of the two previously mentioned, namely the one

where all the explanations produced by the correlation phase involve the same

agents as currently attacking the system. This means that the Predictor is

sure that all these agents attack the system. As a consequence, it applies

the previous reasoning to compute the probability of each explanation by

considering the P(ag) equal to 1 for any agents.

These probability of each explanation will be used both to attribute and

predict attacks. If the Predictor cannot compute them, it adopts some heuris-

tics to extract some information.
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Attack attribution

We consider at �rst the solution to the attribution problem.

This solution pairs each agent with the probability that is actually at-

tacking the system given the detected sequence of attacks.

If the Predictor has computed P(expl), the attribution probability of an

agent is simply the sum of the explanation probability where the agent ap-

pears.

Pattr(ag) =
∑

ag∈expl

P (expl)

Otherwise, the Predictor applies a simple heuristic. If an agent ag is

present in all explanations, its Pattr(ag) is equal to 1, otherwise it is unde�ned.

This is justi�ed by the fact that we are sure that an agent that appears in

each explanation is attacking the system, while the Predictor cannot say

anything about the others. Notice that this can be deduced from the second

case to compute of the probability of an explanation previously described.

We de�ne the result of the attribution process in the following way.

De�nition 6. If we denote with na the number of agents and with Pattr(agi)

the attribution probability of the agent i computed as previously described,

the attribution is a tuple with the structure

〈Pattr(ag1), . . . , Pattr(agna)〉

Prediction computation

We describe now how a prediction is computed.

In principle, a prediction is a set of couples, each de�ning an attack

and the probability it will detected as the next one. This holds if there

is a single attacker, but we are considering a more complex scenario where

distinct agents are concurrently attacking the system. As a consequence, the

observed alert stream is the ordered interleaving of the attack sequences of

some agents. Under these assumptions, the Predictor cannot predict in any

way who implements the next attack. The Predictor can just anticipate the
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behavior, so future attacks, of a single agent. Hence, the prediction will be

de�ned as follows.

De�nition 7. If we denote with na the number of agents and with napsagi
the set of next attacks probabilities for the agent i composed by couples of

〈atx, Pnext(atx)〉

where atx is an attack x and Pnext(atx) is the probability of the attack x to

be the next one, the prediction is a tuple of

〈napsag1 , . . . , napsagna〉

Obviously, a prediction strongly depends upon the explanations that the

Correlator returns, because they describe the last attacks implemented by

the agents in their sequences, so the Predictor can reason on the next attacks.

Because each explanation is alternative to the others, the Predictor computes

a prediction for each explanation and it may associate each prediction with a

probability. This probability is equal to the relative P(expl), if the Predictor

has been able to compute them, and it is unde�ned otherwise.

The Predictor computes Pnext(atx) in the following way.

Each explanation includes, for an agent ag, its contribution conag and

its set of matching successful pure sequences comppseqag that have conag

as pre�x. Starting from this information, the Predictor determines, for each

successful pure sequence sps in comppseqag, the last attack atlast implemented

by ag as the last attack of conag in sps. The attack atx immediately following

atlast in sps will be the next attack of the relative ag. Moreover, atx could be

shared among distinct successful pure sequences of the agent. The Predictor

computes Pnext(atx) as a weighted average.

If we denote with next(sps, atx) the predicate that indicates if atx is the

next attack of sps, Pnext(atx) is de�ned as

Pnext(atx) =

∑
next(sps,atx)

freq(sps, ag)∑
sps freq(sps, ag)
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By collecting these probabilities for all the next attacks of an agent ag,

the Predictor computes the napsag previously described. By applying this

procedure for each agent of the explanation, the Predictor computes the

relative prediction.

Notice that the next attack atx of a successful pure sequence is the next

one that characterizes the privilege escalation an attacker implements to

reach its goals. So, the prediction process discovers the next attacks that an

attacker has to successfully implement to achieve its goals. It also pairs these

attacks with their probability of a future exploitation.

While the attribution returns a single result for all the explanation set,

the prediction returns a set of predictions, one for each distinct explanation

in the current security status of the system.

In the attribution process, the P(expl) support a more accurate estima-

tion of agents attribution probabilities. Anyway, even if P(expl) cannot be

computed, the Predictor can apply heuristics to product results that are

accurate and valuable.

The prediction set is always computed but, without P(expl), the Predictor

cannot compute the most likelihood forecast.

From a concrete security perspective, the Predictor produces very inter-

esting results for the real-time prevention of impact. By attributing attacks

to an agent we can also discover its goals, so that the SIEM can reduce or

even completely avoid the impact by stopping some of the attacks the agent

needs to reach a goal.

3.3.6 Discovery of 0-day

When the correlation process cannot return a result, the Investigator tries

to discover further information on the last alert received. In particular, the

Investigator can discover a 0-day sequence out of the last valid correlation

result and the actual alert. The whole process is based on the pre and post

conditions of elementary attacks.

We �rst de�ne the sequence rights that is the rights set that an agent can
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acquire by implementing a sequence of attacks.

De�nition 8. A sequence rights is the set of rights granted by an attack

sequence if all its attacks are successful. If as[i] denotes the i -th attack of

the attack sequence as, len(as) the length of the attack sequence as, and

post(at) the postconditions of an attack at, the sequence rights sr(as) of as

is the union of all the postconditions, that is

sr(as) =

len(as)⋃
i=0

{post(as[i])}

The Investigator has to consider all the explanations in the last valid cor-

relation result, because each codi�es distinct and alternative security status

of the system. Each explanation stores the contribution of each attacker to

the alert stream. Under the assumption that the agents do not cooperate, a

contribution represents the sequence of successfully attacks by an attacker.

In this way, the Investigator �nds the sequence rights of the contribution to

deduce the rights an agent acquires.

Given the right set of the contribution and the initial rights of an agent,

the Investigator computes the union of these two sets as the global rights the

agent acquires at the time.

We recall that the actual alert is mapped into a set of Haruspex elemen-

tary attacks where each attack has its own preconditions.

Furthermore, a vulnerability has enabled the attack causing the alert and

it can be exploited because the attack sequence of an agent grants the proper

rights.

The Investigator checks if the rights of the agent includes the precondition

of a mapped attack. If at least one attack veri�es this condition, the alert

satis�es the post and pre conditions ordering, so the Investigator identi�es

a possible 0-day sequence of the agent, namely a sequence the agent has not

selected in any simulation.

If, instead, no contribution of an agent to an explanation satis�es the

previous condition, the Investigator deduces that the attack chain is not

consistent with the system model of the Haruspex suite. This could mean
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that either the agent has exploited, before this detected attack, a 0-day

vulnerability (that cannot be detected by de�nition), or unknown updates

to the target system, e.g. the insertion of a new LAN node, have introduced

further vulnerabilities.

The Investigator �nds other useful information by further investigations.

By considering information on the topology of the target system, the

Investigator determines the set of nodes where the 0-day vulnerability could

have been exploited.

Furthermore, by considering pre and post conditions, the Investigator

computes the di�erence between the preconditions of the attacks mapped

from the alert and the global rights. This is the set of rights that the 0-day

vulnerability could have granted to an agent. Similar reasoning are applied

to the sequences rights of the contributions. Here, the Investigator identi�es

the set of rights granted by the 0-day vulnerability with respect to attack

chains, rather than to the privilege escalation the agent actually attempts.

As a result, the output of the Investigator helps the security experts in the

analysis of the unexpected attacks to the system, both for system hardening

and vulnerabilities discovery.

3.4 Attack detection

This section highlights the main di�erences of the framework with respect

to the previous case. Now the sensors cannot distinguish successful attacks

from failed ones. This is the most general case.

The new SIEM database

Since the sensors cannot determine the result of the attacks, the previous

De�nition 1 of successful pure sequence has to be generalized to take into

account the repetition of attacks due to failures.

A complex attack may execute each attack a variable number of times that

depends upon an agent attribute as well as on the simulation randomization.

We de�ne the general pure sequence as follows.
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De�nition 9. A pure sequence is the sequence of elementary attacks ex-

tracted from a complex attack, by removing consecutive repetition of the

same attacks.

As an example, if the complex attack is[
ats54at

f,4
63 at

s
66at

f,2
23 at

s
23at

s
63

]
the corresponding pure sequence is

[at54at63at66at23at63]

As a consequence, the length of a pure sequence is equal to or larger than

the one of the successful pure sequence extracted from the same complex

attack.

The SIEM database is built in the same way as before, but now the SIEM

considers pure sequences rather than successful ones.

Alerts collection and �ltering

The Receiver still collects alerts from the sensors, but now it cannot retrieve

the result of the attacks. As a consequence, any received alert must be parsed

and sent to the Filter module.

This implies that the whole SIEM has to process a larger number of alerts

than in the previous case.

Furthermore, if the Filter �nds no matching attacks, it could signal an

inconsistency, but also a false positive. This may be due to several reasons.

A possible example is the one where the attacker lacks of information on the

LAN node to attack, so it exploits the wrong vulnerability.

Pattern recognition

The Matcher builds its agent pattern database as previously described, but

this time it considers pure sequences.



CHAPTER 3. FRAMEWORK 44

Because pure sequences are longer than successful ones, the complexity

of pattern extraction increases, both from the time perspective and from the

number of patterns generated.

The larger complexity also a�ects the matching pattern search.

Attack correlation

The Correlator just considers pure sequences instead of successful ones. The

whole correlation process does not change even if its complexity increases

because of attack repetitions.

Consider, as an example, a pure sequence ps where the attack atx is the

last one matched. If the actual received alert is mapped into a set of attacks

that contains atx, it still matches ps. As a consequence, ps participates at

least to the next correlation.

Furthermore, ps could appear in distinct explanations that belong to the

new explanations set.

Furthermore, consider the following case. Two pure sequences, ps1 and

ps2, have the same last matched attack, atx, and belong to two distinct

compatible pure sequence sets of distinct agents. The consecutive repetitions

of an alert compatible with atx will be matched with ps1, or ps2, or both. As a

consequence, if that alert is received two times, the Correlator generates three

explanations. Two that represent the doubly matching for, respectively, ps1

and ps2, and one that represents one match for ps1 and one for ps2. Basically,

this results from the combination of the alerts on the pure sequences of

distinct agents. Obviously, this reasoning can be extended to a larger number

of pure sequences and consecutive alerts.

All these considerations result in an increase in the number of compatible

pure sequences and in the one of explanations.

Hence, the complexity of correlation strongly increases. However, the

security status that is represented could not change signi�cantly because the

last attack of a pure sequence that is matched could be the same one as in

the previous correlation.
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Attribution and prediction

Attribution and prediction work as previously, because the explanation struc-

ture and meaning are not modi�ed. Anyway, the Predictor complexity in-

creases because the larger cardinality of the explanation set.

The main di�erence is in the interpretation of the prediction that now

returns the next attacks of the agent and these attacks may even fail. As a

consequence, we have a more general view of attack forecast.

0-day discovery

In case of mismatch in the correlation process, the Investigator performs

further investigation to discover a 0-day sequence.

Now the contribution represents the sequence of potentially successfully

attacks by an attacker, so the Investigator has to consider anyway all the

attacks of the contribution to compute the sequence rights of De�nition 8.

This could lead to a set of acquired rights larger than the set of rights the

attacker gains, so it could impair the 0-day sequence discovery capability of

the framework.

We can derive a general conclusion from all these di�erences with the

previous case. The lack of information on the result of the attacks a�ect

both the performance and accuracy of the SIEM.



Chapter 4

Implementation

This chapter outlines a prototype implementation of the proposed framework

and details its main algorithms and data structures.

4.1 Data structures

This sections details the two main data structures. The �rst one is the

Pattern Pool that enables theMatcher to match the agent pattern set against

the alert stream. The other data structure, the Pure Sequence Trie, is used

by the Correlator, the Predictor and the Investigator.

4.1.1 Pattern Pool

A pattern is a sequence of attacks that uniquely identify an agent. The

Matcher matches a set of patterns against the alert stream to identify the

corresponding agent. Since the alert stream may be the ordered interleaving

of the attacks of distinct agents, the attacks matching a pattern do not have

to be consecutive in the stream. In other words, in between each matched

attack of a pattern, we may have a number of attacks that are not meaningful

for this pattern but match other patterns.

This problem is known in the literature as the multi-pattern matching

with variable length of do not cares.

46
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Since we have to match each pattern attack by attack, we adopt a sim-

pli�ed version of [26, 50].

The Pattern Pool is a data structure that supports the simultaneous

matching of a set of patterns. It is an array with one element for each agent.

PP[ag] denotes the element of the array for agent ag. Each element is an

hash table indexed by the attack identi�er. The value associated with each

key atk is the set of patterns that have atk as the next attack to match.

PP[ag][atk] denotes this set of patterns.

The Pattern Pool represents each pattern as a couple with the structure

〈pat, j〉

This couple denotes that the pattern pat is matched till the j -th attack, and

represents the pattern status.

Algorithm 4.1 shows the initialization of the Pattern Pool.

The BuildEmptyPatternPool function allocates in memory the data struc-

ture. Then, for each agent element ag and for each atk, PP[ag][atk] is asso-

ciated with the empty set.

The last loop distributes the patterns in the PP. For each pattern pat

of ag in the agentPatternSet, the algorithm adds the couple 〈pat, 0〉 to the

corresponding set PP[ag][pat[0]]. Here and in the following, pat[i] indicates

the i -th+1 attack of the pattern pat. So, pat[0] is the �rst attack of pat.

At the end, the procedure returns the initialized PP with the initial

matching status of each pattern.

Algorithm 4.5 shows how the Matcher matches patterns against the alert

stream.

4.1.2 Pure Sequence Trie

The Pure Sequence Trie (PST) is the main in-memory data structure of the

current implementation. It is used by the Correlator, the Predictor and the

Investigator.

To choose the actual representation of this data structure, �rst of all we

consider that it represents the agPureSequenceDB, a database that stores the
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Algorithm 4.1 Initialization of the Pattern Pool

Input: agentPatternSet, the set of agent patterns
1: PP ← BuildEmptyPatternPool()
2: for all ag in agentSet do
3: for all atk in attackSet do
4: PP [ag][atk]← ∅
5: end for

6: end for

7: for all (ag, pat) in agentPatternSet do
8: Add(PP [ag][pat[0]], (pat, 0))
9: end for

10: return PP

pure sequences implemented by the agents and their frequency. Each pure

sequence is a sequence of attacks and its pre�x may be shared with a set

of distinct pure sequences. Furthermore, the matching of the alert stream

against a set of pure sequences resembles a pre�x matching.

These considerations resulted in the selection of an ordered tree or trie

data structure, where each trie node represents a pure sequence pre�x p. So,

a node is connected to its children through the set of pure sequences that

share p. A node includes some pointers that are labeled with the next attack

atk of p. So, each child represents the pure sequence set that share the pre�x

p;atk. This reduces both memory requirements as well as the time to retrieve

matching pure sequences.

As far as concerns the correlation process, our main concern is the se-

quential composition of alert to match a pure sequence set. By using the

described trie, this process can be implemented by following a path in the

trie. The path is determined according to the sequence of attacks compatible

with each alert of the stream. Furthermore, to simplify the computation of

an explanation, a node identi�es both the contribution and the matching

pure sequence set of an agent. As a consequence, each explanation includes

pointers to trie nodes. This proves that the trie can e�ciently support the

correlation.

In its execution, the Correlator may need to send pointers to trie nodes

to the Predictor and the Investigator. As a consequence, each node stores
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information that also support attribution, prediction, and investigation. In

particular, each node stores:

• children, the hash table indexed by the next attacks of the pre�x. It

links the node to its children,

• pre�xFreq, the frequency of the pre�x,

• agPre�xFreq[ag], the frequency of the pre�x for each agent ag,

• agNextAtkFreq[ag][atk], the frequency of the next attacks atk of each

agent ag,

• acquiredRightSet, the right set that an agent that reaches the node

acquires.

We will see in the following how the various task use each information.

This data structure is shared among several activities. However, since no

activity updates the structure, it cannot become a bottleneck for the parallel

computation.

The Pure Sequence Trie implements the described trie. Algorithm 4.2

details its construction.

First of all, the function BuildEmptyPSTrie allocates the memory for an

empty trie.

For each pure sequence ps, the algorithm applies a common schema for

trie construction. Starting from the root, either it accesses an existing node

or creates a new one by following the path determined by each attack atk in

ps.

The function GetOrAddChild returns the child of node labeled with the

attack atk if it was already created, otherwise it allocates a new node for

atk and appends it to the children of node. Moreover, if the failureDetection

parameter is set to false, the new node has a self transition to itself, obviously

labeled with atk. This is useful in the correlation process to take repeated

attacks. The function also initializes the acquiredRightSet to the union of the

acquiredRightSet of the parent node and the postconditions granted by atk.
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Then, the algorithm updates the frequencies with the functionsUpdateNex-

tAtkFreq, UpdateAgFreq and UpdateFreq. The frequencies are always in-

creased by a psFreq factor, the frequency of the pure sequence. Obviously, the

algorithm updates the next attack frequency of the parent, while it increases

the pre�x frequency of the agent and the one of the child.

Finally, the algorithm returns the pure sequence trie it has built.

Algorithm 4.2 Pure sequence trie construction

Input: agPureSequenceDB, the database of pure sequences;
failureDetection, a boolean value representing if the sensors de-
termine the attack result

1: psTrie← BuildEmptyPSTrie()
2: for all (ag, ps, psFreq) in agPureSequenceDB do

3: node← GetRoot(psTrie)
4: child← null
5: for all atk in ps do
6: child← GetOrAddChild(node, atk, post(atk), failureDetection)
7: UpdateNextAtkFreq(node, ag, atk, psFreq)
8: UpdateAgFreq(child, ag, psFreq)
9: UpdateFreq(child, psFreq)

10: node← child
11: end for

12: end for

13: return psTrie

4.2 Algorithms

This section outlines the main algorithms in the current prototype of the

discussed framework.

4.2.1 Pure sequence database construction

Algorithm 4.3 shows that the computation of the pure sequence database is

very simple. Each record of this database stores information on the agent

ag that implements a pure sequence ps with a frequency psFreq. As a conse-
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quence, each record has the following structure

〈ag, ps, psFreq〉

The algorithm computes this database from the Haruspex complex attack

database complexAttackDB.

From each complex attack ca, the function GetPureSequence computes

the corresponding pure sequence ps. Depending upon the failureDetection

parameter, the failed attacks may be removed from ca. This computes the

corresponding successful or generalized pure sequence ps.

Given ps and the agent ag implementing it, the function AddOrUpdate-

Freq searches the record where ag implements ps in agPureSequenceDB. If it

is found, the function increments by one its frequency psFreq. Otherwise, it

inserts the record 〈ag, ps, 1〉 into the pure sequence database.
Finally, the algorithm returns the complete agPureSequenceDB.

Algorithm 4.3 SIEM database construction

Input: complexAttackDB, the database of Haruspex complex attacks;
failureDetection, a boolean value that represents if the sensors deter-
mine the attack result

Output: agPureSequenceDB, the database of pure sequences
1: agPureSequenceDB ← ∅
2: for all (ag, ca) in complexAttackDB do

3: ps← GetPureSequence(ca, failureDetection)
4: AddOrUpdateFreq(agPureSequenceDB, ag, ps)
5: end for

6: return agPureSequenceDB

4.2.2 Agent pattern set construction

In the following, we present the Algorithm 4.4 to build the agent pattern set.

The algorithm examines each pure sequence ps in the agent pure sequence

database agPureSequenceDB.

If the frequency psFreq of a pure sequence is larger than a threshold

psThreshold, the functionGetAllAtkCombinationsuses the corresponding pure
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sequence ps to extract all the attack combinations with a length from 1 to

N, the upper bound on the length of a combination.

The function AddOrUpdateFreq inserts an attack combination atkComb

for agent ag into the agentPatternSet with as frequency psFreq, if agentPat-

ternSet does not include it. Otherwise, the frequency of atkComb for ag is

increased by psFreq. This takes into account that a pure sequence ps with

frequency psFreq generates an attack combination psFreq times.

Finally, the functions FilterAtkComb and FilterNotUniqueAtkComb re-

move from the agentPatternSet, respectively, the attack combinations with a

frequency lower than patThreshold and that are not unique for an agent.

After executing the two functions, the algorithm returns the resulting

agentPatternSet.

Algorithm 4.4 Agent pattern set construction

Input: agPureSequenceDB, the database of pure sequences; N , the max
length of a pattern; psThreshold, the threshold to apply to pure sequence
frequency; patThreshold, the threshold to apply to pattern frequency

Output: agentPatternSet, the set of agent patterns
1: agentPatternSet← ∅
2: for all (ag, ps, psFreq) in agPureSequenceDB do

3: if psFreq > psThreshold then
4: for all atkComb in GetAllAtkCombinations(ps,N) do
5: AddOrUpdateFreq(agentPatternSet, ag, atkComb, psFreq)
6: end for

7: end if

8: end for

9: FilterAtkComb(agentPatternSet, patThreshold)
10: FilterNotUniqueAtkComb(agentPatternSet)
11: return agentPatternSet

The overall complexity depends upon not only the main loop, but also

upon the inner one, even if its complexity is bound by the user choice of N.

Since their iterations are independent, both loops can exploit any available

parallelism. The only serialization point may arise because the function Ad-

dOrUpdateFreq may extract the same attack combination from distinct pure

sequences. As a consequence, the agentPatternSet has to support concurrent
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accesses.

4.2.3 Agent pattern matching

For each alert validated by the Filter, the Matcher runs the Algorithm 4.5,

that updates the pattern status of unidenti�ed agents to discover them.

For each validated alert al, CompAtkSet returns a non empty set of com-

patible elementary attacks. Each compatible attack atk matches the patterns

in PP[ag][atk]. The algorithm examines this set to update their status and

�nd totally matched patterns.

For each couple 〈pat, j〉 in PP[ag][atk], the algorithm considers two cases.

If j+1 is equal to the pattern length len(pat), the pattern is totally matched.

Here, the algorithm invokes MarkAsIdenti�edAndSignal that stops the com-

putation, marks ag as identi�ed and signals it to the user. Otherwise,

pat[j+1] is the next attack to match, so we add 〈pat, j + 1〉 to the corre-

sponding PP[ag][pat[j+1]].

We can notice that the attack pat[j+1] could be a compatible attack of

the alert. This attack will be considered later to update pattern status. As

a consequence, the algorithm delays the insertion to avoid any interference

with other PP[ag][atk] sets.

When all the attacks in CompAtkSet(al) have been processed, the algo-

rithm completes any delayed insertion.

This procedure is repeated for each agent that has not already been iden-

ti�ed.

Notice that the algorithm can easily exploit any available parallelism. The

most complex computation is the loop to update each pattern status, where

each pair is independent from the others. As a consequence, this process can

be implemented in parallel.

4.2.4 Correlation

The Correlator executes the Algorithm 4.6 to correlate each validated alert

with the previous ones.
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Algorithm 4.5 Pattern matching algorithm

Input: al, the actual alert
Output: the identi�ed agents, if any
1: for all ag not already marked as identi�ed do
2: for all atk in CompAtkSet(al) do
3: tmp← PP [ag][atk]
4: PP [ag][atk]← ∅
5: for all (pat, j) in tmp do
6: if j + 1 == len(pat) then
7: MarkAsIdentifiedAndSignal(ag)
8: else

9: PostponedAdd(PP [ag][pat[j + 1]], (pat, j + 1))
10: end if

11: end for

12: end for

13: CommitAdds(ag)
14: end for

The Correlator sequentially composes the alerts by traversing the Pure

Sequence Trie. Starting from a node, the Correlator reaches a new node

by following the links in the children hash table. The link to follow is de-

termined by the correspondence between the label of a link and the attack

compatible with an alert. Since an alert can be compatible with a set of

distinct elementary attacks, the Correlator can reach distinct nodes in the

trie. This implies that the algorithm has to consider a set of nodes rather

than a single one.

The prevState is an internal variable of the Correlator and represents the

set of explanations computed through the previous alert. It is initialized to

the set that only includes an empty explanation.

Algorithm 4.6 processes each explanation expl of prevState. It computa-

tion consists of two steps.

The �rst one considers the case where the received alert al is compatible

with an initial attack.

The predicate IsCompatibleWithInitialAtk checks if al is compatible with

at least one attack that is initial for a sequence. This can be done by match-

ing the CompAtkSet(al) against the children of the trie root. If al is com-
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patible with an initial attack, the algorithm invokes GetInitAgNodeSet that

returns a set of couple. Each couple associates an agent ag with the set of

nodes initPSTNodeSet labeled with an attack compatible with al and with

the children of the trie root. For each couple, the algorithm may build a

new explanation newExpl equal to expl, but where the component of ag is

replaced by initPSTNodeSet. Then, the algorithm inserts this explanation

into newState. According to the framework, this has to be done only if the

number of attacking agents involved in an explanation is not larger than a

threshold maxCA. Anyway, if ag already belongs to expl, the building of new-

Expl does not increase the number of attacking agents because we replace its

component.

The second step considers each component of an explanation expl that

refers to an agent ag. Here, the algorithm computes the possible extension to

an agent sequence. Obviously, this cannot be done for the empty explanation.

For each agent ag in an explanation expl, the algorithm tries to extend the

set of nodes pstNodeSet that represents the sequence actually implemented.

The algorithm evaluates the predicate IsExtendableFor that is true only if

the alert al is compatible with at least one next attack of ag in any node

in pstNodeSet. If IsExtendableFor is true, GetExtNodeSet returns a set new-

PSTNodeSet that includes the children nodes of nodes in pstNodeSet that

are compatible with the alert and implemented by ag. Then, the algorithm

transmits this information to BuildNewExpl to build a new explanation and

inserts it into the newState. Since it replaces an agent component, the algo-

rithm does not need to check the number of attacking agents in expl.

Finally, if newState is not empty, it is copied into prevState variable and

it is returned.

Distinct explanations can be analyzed in parallel because the correspond-

ing computations are independent. Furthermore, also each step can be par-

allelized. The algorithm can access the trie nodes in parallel because they

are not updated. A centralization point arises because of the computation of

newState. The corresponding implementation has to support the concurrent

insertion of explanations by avoiding as much as possible the use of locks.
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Algorithm 4.6 Correlation algorithm

Input: al, the received alert
Output: newState, the new set of explanations
1: newState← ∅
2: for all expl in prevState do
3: if IsCompatibleWithInitialAtk(al) then
4: for all (ag, initPSTNodeSet) in GetInitAgNodeSet(al) do
5: if ag ∈ expl OR AttackingAgents(expl) < maxCA then

6: newExpl← BuildNewExpl(expl, ag, initPSTNodeSet)
7: Add(newExpl, newState)
8: end if

9: end for

10: end if

11: for all (ag, pstNodeSet) in expl do
12: if IsExtendableFor(pstNodeSet, al, ag) then
13: newPSTNodeSet← GetExtNodeSet(pstNodeSet, al, ag)
14: newExpl← BuildNewExpl(expl, ag, newPSTNodeSet)
15: Add(newExpl, newState)
16: end if

17: end for

18: end for

19: if newState is not empty then
20: prevState← newState
21: end if

22: return newState
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4.2.5 Attribution and Prediction

The Predictor applies Algorithm 4.7 to attribute and predict attacks.

First of all, ComputeExplProb computes the probability of each explana-

tion. According to the framework, this function returns meaningful values if

either the user de�nes agAtkProb, the attacking probability of each agent, or

if all the explanations in explSet involve the same set of agents. Otherwise,

explProb is unde�ned.

The computation of the probability of each explanation requires the agent

pre�x frequency and the total pre�x frequency. We recall that an explanation

includes a set of couples, where each couple de�nes an agent ag and the set of

trie nodes representing the matching sequences actually implemented by ag.

Each trie node includes both the frequencies of interest in the agPre�xFreq[ag]

and pre�xFreq variables. So, this computation is very simple.

After the initialization of attr, the attribution is computed. If explProb

is de�ned, the attribution for agent ag is the sum of the probabilities expl-

Prob[expl] of the explanations expl that involve ag. Otherwise, a strategy is

applied that is implemented by function AgentInAll. This function returns

the set of agents involved in each explanation. To implement the adopted

strategy, the function Attribute pairs each agent in this set with a probability

equal to 1, while other agents have unde�ned attribution probability.

Then, the algorithm computes the prediction. First of all, it initializes

the set predSet to empty. For each explanation expl in the set explSet, Com-

putePrediction computes the prediction for expl and associates each predic-

tion with the corresponding probability. If the probability is computed it is

equal to explProb[expl], unde�ned otherwise.

Notice that the prediction by ComputePrediction uses the information in

the nodes associated with ag. In particular, it needs the pre�x frequency

of each agent and the one of the next attack. These values are stored, re-

spectively, in the agPre�xFreq[ag] and the agNextAtkFreq[ag][atk] variables

of each trie node.

The function ComputeExplProb can be easily parallelized, because the

computation of the probability of each explanation is independent from those
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Algorithm 4.7 Attribution and prediction

Input: explSet, the set of explanations computed by the Correlator
Output: attr, the attribution; predSet, the set of prediction
1: explProb← ComputeExplProb(explSet, agAtkProb)
2: attr ← InitAttribution()
3: if explProb is de�ned then
4: for all expl in explSet do
5: for all ag in expl do
6: attr[ag] = attr[ag] + explProb[expl]
7: end for

8: end for

9: else

10: agSet← AgentInAll(explSet)
11: attr ← Attribute(agSet)
12: end if

13: predSet← ∅
14: for all expl in explSet do
15: pred← ComputePrediction(expl)
16: if explProb is de�ned then
17: Add(predSet, pred, explProb[expl])
18: else

19: Add(predSet, pred, undefined)
20: end if

21: end for

22: return attr and predSet
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of the others. Furthermore, attribution and prediction can be executed in

parallel.

Attribution can be implemented according to a reduce parallel paradigm.

Instead, prediction can be implemented through a map parallel paradigm,

because the computation of a prediction is independent from the others. The

parallelism of the prediction only requires the support of parallel insertions

into predSet.

4.2.6 Investigation

Algorithm 4.8 shows the algorithm the Investigator executes each time it is

invoked. According to the framework, it needs the last valid explanation set

lastState computed by the Correlator and the received alert al.

The algorithm examines each explanation expl of lastState.

For each couple 〈ag, pstNodeSet〉 in expl, GetGlobalRightSet computes

the alternative global right sets. Each element of this set is a tuple 〈ag, pstNode, rights〉
that represents that ag has implemented the sequence determined by pstNode

to acquire the rights in rightSet. This set is the union of the initial rights of

ag with those it has acquired through the sequence it has implemented. The

set of rights granted by the sequence is the value of acquiredRightSet of each

node. Hence, we have to merge this set and the one of the initial rights of

ag.

IsAcceptable determines if at least the precondition of one compatible

attacks with the alert al is included in rightSet. If this is the case, the corre-

sponding agent ag and the trie node pstNode are inserted into 0daySeqSet.

Finally, if the 0daySeqSet is not empty, the algorithm signals the possi-

ble 0-day sequences with the alert al. Otherwise, further investigations are

required to discover potential 0-day vulnerabilities.

Obviously, the main loop determines the complexity of the algorithm.

However, the loop can be parallelized by applying a map paradigm, because

each expl computation is independent. Again, this requires concurrent inser-

tions into a set.
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Algorithm 4.8 Investigation

Input: lastState, the last valid explanation set computed by the Correlator ;
al, the actual alert

Output: information on 0-day sequences or 0-day vulnerabilities
1: 0daySeqSet← ∅
2: for all expl in lastState do
3: for all (ag, pstNodeSet) in expl do
4: for all (ag, pstNode, rightSet)inGetGlobalRightSet(ag, pstNodeSet)

do

5: if IsAcceptable(rightSet, al) then
6: Add(0daySeqSet, ag, pstNode)
7: end if

8: end for

9: end for

10: end for

11: if 0daySeqSet is not empty then
12: Signal0daySeq(0daySeqSet, al)
13: else

14: Investigate0dayV uln()
15: end if



Chapter 5

Experimental results - Failure

Detection

This chapter presents the testing environment of the prototype and reports

the main experimental results. At �rst, we evaluate the main SIEM capabil-

ities in the failure detection case where the sensors can also return the result

of the attacks.

5.1 Testing environment

We implemented a prototype of the Haruspex based SIEM to evaluate its

main capabilities.

Since we cannot test the prototype in a real environment, we have also

implemented a proper software module to generate an alert stream used

as the input of the SIEM. This module, the AlertGenerator, simulates the

alerts produced from the attack chains of an agent set. The module accesses

the Haruspex complex attack database to retrieve agent attack sequences to

simulate. If the agent set includes more than one agent, the simulation refers

to the case of concurrent attacks. As a consequence, the AlertGenerator

interleaves in a random way the attack chains of distinct agents to produce

a single alert stream. This is the stream produced by a sequence of attacks

that is the ordered interleaving of the chains. Since we are in the failure
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detection case, the module generates alerts only for successful attacks.

We simulate each agent set several times to produce reliable statistics.

Each simulation considers the case of a single attacker, two or three concur-

rent agents. The user can specify both the number of simulations per agent

and the number of concurrent agents per simulation. For our purpose, we

consider at most three concurrent agents, because a larger number of agents

corresponds to a scenario with a neglectable probability.

To be fair, in case of simultaneous attackers we consider all the permuta-

tions of the agent set of the Haruspex database. So each agent starts as the

i -th agent of the alert stream in an equal number of simulations.

Obviously, we have to monitor the behavior of the SIEM during each simu-

lation. So, some proper modules monitor and collect the statistics of interest

to produce the experimental results to evaluate the main SIEM capabili-

ties. These modules are the GlobalMatchStatistics, the GlobalAttrStatistics

and the GlobalPredStatistics. They measure, respectively, statistics on the

identi�cation of agents through pattern matching, the attribution and the

prediction.

Since we do not provide any agent attacking probability, the Predictor

applies the heuristic already described to attribute attacks and it does not

pair each prediction with a probability.

5.1.1 Synthetic database

As input database, we use a synthetic one called Labyrinth Hard. In the

following, we abbreviate it with simply labhard. This database includes 2859

elementary attacks and more than 200000 total attack sequences of 6 agents.

All agents have the same initial rights set. This implies that the agents start

from the same initial attack set. Furthermore, they try to reach the same

goal. As a consequence, di�erences among agents are only due to distinct

selection strategies and knowledge levels on the system, represented by the

lambda attribute. This implies that this database allows us to evaluate also

the characterization of agents through their attributes. It is worth noticing

this is a worst case situation where the di�erence between any two agents is
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AgID AVG Strategy Lambda
0 31,498 Smart Subnet First 1
1 12,59 max Increment 1
2 12,928 max Increment 2
3 30,507 max Probability 1
4 31,768 max Probability 2
5 36,745 max E�ciency 2

Table 5.1: Agent general information - failure detection case

very small.

5.2 General information

Table 5.1 reports the general information about the agents. Each record

represents:

• AgID, the agent identi�er,

• AVG, the average length of the agent attack sequences,

• Strategy, the strategy adopted by the agent,

• Lambda, the integer representing the degree of knowledge on the sys-

tem.

As expected, the agents that adopt a max Increment strategy have the

shortest average sequence length.

5.3 Pattern matching capability

The GlobalMatchStatistics measures distinct aspects to evaluate the identi-

�cation capability of agents through pattern matching. In particular, Table

5.2 reports for each agent:

• AVG, the average distance between the �rst attack of an agent and the

one of its identi�cation,



CHAPTER 5. EXPERIMENTAL RESULTS - FAILURE DETECTION 64

• PCT, the percentage of AVG with respect to the average length of the

sequences of the agent,

• WID, the agent probability of being identi�ed before implementing its

�rst attack,

• UNID, the agent probability of not being identi�ed at all.

The GlobalMatchStatistics measures these features in case of one, two or

three concurrent attackers. The -1, -2 and -3 in the table header identify

these cases.

The GlobalMatchStatistics computes the WID probability as the ratio

between the number of times the WID condition holds and the number of

agent simulations. The same applies for the UNID probability that considers

the case where the agent is not identi�ed. Both are errors in the identi�cation,

but the UNID case is worse than the WID one, since the agent attacks and

reaches a goal before the SIEM realizes it.

Obviously, in all other cases the agent is correctly identi�ed. So, the

GlobalMatchStatistics computes the agent AVG as the ratio between the

sum of the distances and the number of times this case occurs.

Table 5.2 shows some interesting results.

First of all, the probability that the pattern matching does not identify

some agent is larger than zero. So, a SIEM that only adopts this mechanism

to identify an agent may not identify an attacker. In particular, this happens

for agent 1 and 2 that have the higher UNID probabilities.

The UNID-1 probabilities are not null also in case of single attacker per

simulation. Since the Matcher �lters attack combinations the are not unique

for an agent, it may happen that no pattern for a speci�c attack sequence is

present.

Agents 1 and 2 have also the higher PCT values. The PCT-1 values for

agent 1 and 2 are, respectively, 68% and 57%. So, if these agents attack in

isolation, the SIEM on average identi�es them when they have implemented

more than an half of their attack sequences. The PCT-2 and PCT-3 values

are even larger, but with lower di�erence between the values of the two
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AgID AVG-1 PCT-1 WID-1 UNID-1
0 5,293 16,805 0 0,002
1 8,594 68,262 0 0,621
2 7,437 57,526 0 0,42
3 8,368 27,43 0 0,047
4 9,53 29,999 0 0,069
5 9,672 26,323 0 0,009

AgID AVG-2 PCT-2 WID-2 UNID-2
0 4,402 13,975 0 0
1 17,203 136,646 0 0,572
2 16,053 124,174 0 0,3
3 7,856 25,75 0 0
4 8,266 26,019 0 0,004
5 9,878 26,882 0 0

AgID AVG-3 PCT-3 WID-3 UNID-3
0 4,669 14,824 0,278 0
1 25,174 199,953 0,002 0,519
2 25,517 197,379 0,006 0,22
3 7,704 25,252 0,231 0
4 7,995 25,168 0,215 0
5 9,654 26,271 0,246 0

Table 5.2: Pattern matching capability - failure detection case
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agents. Here, we have to remember that potentially attacks by other agents

can occur in between. Anyway, in the worst case scenario, agents 1 and 2

may have already implemented a long sequence of attacks.

Agent 0 adopts a Smart Subnet First strategy and has the lower AVG,

PCT, WID and UNID values, so it is the most easy to be identi�ed.

The other agents instead have PCT values of 25% in all cases, so they

are soon identi�ed. The Matcher identi�es them, on average, when the agent

has implemented a quarter of its sequence, so the SIEM has the remaining

75% of the chain to discover and stop its attempt.

The AVG values and the corresponding PCT are almost the same for

each agent even if the number of concurrent agents increases. This implies

that an agent will be identi�ed through pattern matching on average with

AVG attacks, independently on the number of agents currently attacking the

system.

As a general rule, agents that adopt a max Increment strategy have a

lower probability of being identi�ed. Furthermore, the identi�cation capabil-

ity of the pattern matching does not change if two agents only di�er because

of the lambda value. This implies that attack combinations di�er because of

the agent selection rather than because of the lambda attribute.

Furthermore, as the number of concurrent agents increases, the WID

probability increases as well. As a matter of fact, the ordered interleaving of

concurrent agents produces sequences of attacks similar to some patterns of

other agents. As a consequence, the UNID probability decreases.

The GlobalMatchStatistics measures the number of times a condition

holds on the agent that has been identi�ed set to evaluate the accuracy

of the pattern matching. We consider some conditions:

• PID, the �nal identi�ed agent set is equal to the set of simulated agents,

• NPID, it includes all the simulated agents and others,

• ONID, it includes at least one simulated agent that is not identi�ed,

but at least one that is identi�ed,

• NOID, it is disjoint with the set of simulated agents.
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ConcNoAg PID-ratio NPID-ratio ONID-ratio NOID-ratio
1 0,805 0 0 0,195
2 0,001 0,715 0,276 0,008
3 0 0,664 0,336 0

Table 5.3: Pattern matching accuracy - failure detection case

Table 5.3 reports the corresponding probability computed as the ratio

between each value and the sum of all values.

As we can see, the most accurate results are produced when just one

agent attacks. In all other cases, we have a high value of NPID-ratio, so

the Matcher overestimates the agents currently attacking the system. This

shows that, at least in the severe case we have considered, the identi�cation

of agent through attack pattern matching does not return reliable and precise

results.

5.4 Attribution capability

The attribution is similar to the identi�cation of attacking agents through

pattern matching. As a consequence, the GlobalAttrStatistics measures and

produces the same statistics of the GlobalMatchStatistics. This simpli�es the

comparison of the two approaches. Tables 5.4 and 5.5 report these statistics.

Table 5.4 reports the attribution capability values measured by the Glob-

alAttrStatistics.

First of all, we notice that the Predictor never identi�es an agent before

it is actually attacking the system. Furthermore, all the agents are identi�ed.

This implies that the attribution is able to correctly identify each agent.

Agents 1 and 2 are the most di�cult to identify, as through pattern

matching. Anyway, the worst case happens in the most unlikely scenario

where three agents attack concurrently. Furthermore, the values of AVG

and PCT of these agents are much lower than the corresponding values for

the pattern matching. The di�erence in the PCT values of these agents is

larger than before. As a consequence, here the distinct values of lambda a�ect

the attribution capability.
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AgID AVG-1 PCT-1 WID-1 UNID-1
0 3,019 9,584 0 0
1 4,039 32,085 0 0
2 2,144 16,588 0 0
3 4,24 13,899 0 0
4 4,786 15,066 0 0
5 6,069 16,517 0 0

AgID AVG-2 PCT-2 WID-2 UNID-2
0 6,987 22,182 0 0
1 10,783 85,651 0 0
2 7,15 55,307 0 0
3 10,215 33,483 0 0
4 10,283 32,37 0 0
5 11,637 31,669 0 0

AgID AVG-3 PCT-3 WID-3 UNID-3
0 11,689 37,109 0 0
1 16,059 127,558 0 0
2 12,806 99,054 0 0
3 14,352 47,044 0 0
4 14,896 46,891 0 0
5 16,289 44,329 0 0

Table 5.4: Attribution capability - failure detection case
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ConcNoAg PID-ratio NPID-ratio ONID-ratio NOID-ratio
1 1 0 0 0
2 1 0 0 0
3 1 0 0 0

Table 5.5: Attribution accuracy - failure detection case

For all other agents the AVG and PCT values are larger than before

in all the cases but those with a single attacker. Furthermore, these values

increase as the number of concurrent agents increases. This shows that the

concurrent attacks of distinct agents impair the attribution capability.

Agents 3 and 4 have the same strategy with di�erent lambda, but their

AVG and PCT values are not so di�erent. This implies that the lambda

for the max Probability strategy does not characterize the agents for the

attribution perspective.

Although simultaneous attacks impair the attribution capability, Table

5.5 shows that in all simulations the Predictor correctly and precisely identi-

�es the attacking agents. As a consequence, the attribution is accurate and

reliable.

5.5 Prediction capability

For each alert of the stream, the Predictor computes a set of predictions.

From this set, the GlobalPredStatistics extracts the set of next attacks of any

agent and stores its cardinality paired with the index of the alert. At the end

of the simulations, the GlobalPredStatistics computes the average cardinality

of the next attack sets for each alert index. This procedure is repeated for a

single attacker, two and three concurrent agents. Obviously, a lower average

cardinality results in a more accurate prediction.

Figure 5.1 plots the graph of the average cardinality of the next attack

sets over the number of alerts. The SingleAg curve corresponds to a single

attacker, ConcAg2 and ConcAg3 correspond to, respectively, two and three

concurrent agents.

We can see that the three curves have a descending trend. Obviously,
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Figure 5.1: The Prediction capability - failure detection case

they have a spike in the �rst alerts because at the beginning of a sequence

an attacker can choose its attack in a larger set.

While the curve associated with a single attacker decreases in a monotonic

way, those of the other two cases have some spikes. This may occur when

another agent executes its �rst attack in the simulation.

Since all the curves have a descending trend, the prediction continuously

restricts the next attack set of the agents by pruning the set of possible

next attacks alert by alert. This happens because the SIEM knows that

the sequence of attacks includes only successful ones and we assume that

a successful attack is never repeated in a chain. As a consequence, in the

failure detection case, the prediction can predict future attacks.



Chapter 6

Experimental results - Attack

Detection

This chapter reports the same tests previously discussed, but for the attack

detection case where the sensors signal the detected attack without its out-

come.

6.1 Testing environment

Obviously, to produce fair results, the whole testing environment is the same

as before. The only di�erence is that the AlertGenerator now generates also

alerts for failed attacks. The user can modify the probability of repeating an

attack before it is successful.

6.2 General information

Table 6.1 reports the same information on the agents as in the previous sec-

tion. For each agent, the table shows the average length of attack sequences,

strategy and lambda in the case of attack detection.

Obviously, here the average length of attack sequences is larger than in

the failure detection case because of the repetition of failed attacks.
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AgID AVG Strategy Lambda
0 53,31 Smart Subnet First 1
1 26,496 max Increment 1
2 24,308 max Increment 2
3 42,15 max Probability 1
4 39,728 max Probability 2
5 52,693 max E�ciency 2

Table 6.1: Agent general information - attack detection case

6.3 Pattern matching capability

Table 6.2 reports the pattern matching capability. The AVG values includes

also repetition of failed attacks.

As we can see, the considerations done in the previous section for WID

and UNID probabilities still hold. Here there is a little increase of theWID-2

probabilities, but this could be a statistical �uctuation.

The real di�erence may be found in the AVG and PCT values. Although

the AVG values are larger than the corresponding ones in the failure detection

case, the values of PCT are lower. This is due to the longer attack chains

of the agents. Anyway, larger AVG value also implies that an attacker can

even implement a larger number of successful attack before being identi�ed.

Table 6.3 shows an important result. The attack repetition due to fail-

ures decreases the PID-ratio while it increases the NPID-ratio in the single

attacker case. This may be explained by considering that attack repetitions

can generate the same attack sequence in a pattern of another agent, but,

anyway, they also identify the simulated agent. This increases the NPID-

ratio.

When two or three agents attack concurrently, the values are in line with

the corresponding ones of the failure detection case.

As a consequence, without the attack result, the pattern matching ap-

proach has a lower accuracy.
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AgID AVG-1 PCT-1 WID-1 UNID-1
0 5,572 10,451 0 0,006
1 14,47 54,613 0 0,657
2 12,462 51,266 0 0,407
3 8,85 20,996 0 0,051
4 9,525 23,975 0 0,049
5 12,268 23,283 0 0,008

AgID AVG-2 PCT-2 WID-2 UNID-2
0 5,201 9,756 0,024 0
1 22,671 85,565 0 0,578
2 23,544 96,854 0 0,278
3 8,501 20,168 0,041 0,002
4 8,986 22,619 0,059 0,002
5 11,114 21,093 0,044 0

AgID AVG-3 PCT-3 WID-3 UNID-3
0 4,556 8,546 0,287 0
1 33,619 126,886 0,011 0,469
2 34,876 143,471 0,009 0,143
3 9,039 21,445 0,241 0
4 9,743 24,525 0,3 0
5 10,797 20,491 0,269 0

Table 6.2: Pattern matching capability - attack detection case

ConcNoAg PID-ratio NPID-ratio ONID-ratio NOID-ratio
1 0,404 0,4 0 0,196
2 0 0,728 0,258 0,014
3 0 0,71 0,29 0

Table 6.3: Pattern matching accuracy - attack detection case
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AgID AVG-1 PCT-1 WID-1 UNID-1
0 3,841 7,204 0 0
1 4,268 16,109 0 0
2 3,636 14,958 0 0
3 4,623 10,968 0 0
4 4,797 12,076 0 0
5 7,857 14,912 0 0

AgID AVG-2 PCT-2 WID-2 UNID-2
0 10,187 19,109 0 0
1 12,769 48,191 0 0
2 10,357 42,608 0 0
3 11,235 26,655 0 0
4 12,367 31,128 0 0
5 14,798 28,084 0 0

AgID AVG-3 PCT-3 WID-3 UNID-3
0 14,337 26,894 0 0
1 19,985 75,428 0 0
2 16,989 69,889 0 0
3 19,109 45,336 0 0
4 18,385 46,278 0 0
5 21,715 41,21 0 0

Table 6.4: Attribution capability - attack detection case

6.4 Attribution capability

The attribution capability is not a�ected by the uncertainty on the attack

result, as Table 6.4 shows.

Again, all the WID and UNID values are equal to zero, so there is no

error in the attribution.

Obviously, the AVG values increase with respect to the failure detection

case. This is due to several factors. One of them is the repetition of fail-

ures. Anyway, also the average agent sequence length increases and this can

contribute to improve the PCT values.

Notice that now the Predictor attributes the Agents 1 and 2 with PCT of,

respectively, 75% and 69% in the worst case of three concurrent agents. These
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ConcNoAg PID-ratio NPID-ratio ONID-ratio NOID-ratio
1 1 0 0 0
2 1 0 0 0
3 1 0 0 0

Table 6.5: Attribution accuracy - attack detection case

Figure 6.1: The Prediction capability - attack detection case

values are signi�cantly better than the corresponding ones in the previous

section. In this case, failed attacks simplify the solution.

Table 6.5 shows that also in the attack detection case the attribution

returns accurate results.

6.5 Prediction capability

Figure 6.1 plots the average cardinality of the next attack sets with respect

to the number of alerts, as in the failure detection case.

When a single agent attacks, at �rst, the curve decreases but then it

increases. This implies that, after some attacks, there is an increase in the

number of attacks the agents can select to reach their goals.

The curve of two concurrent agents is almost parallel to the X axis but

with an increasing trend. This means that the cardinality of the next attack
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set increases because we consider both successful and failed attacks some

agents can implement.

Only the curve associated with three concurrent agents respects the de-

creasing trend after a spike.

As a result, since in the attack detection case the SIEM cannot known the

result of the attacks, the prediction cannot properly reduce the next attack

set. This strongly decreases the accuracy of the prediction.



Chapter 7

Conclusions

This chapter summarizes this thesis and its results. Then, it outlines some

future works.

7.1 Final remarks

The increasing complexity of the infrastructure of ICT systems strongly in-

creases the complexity of security monitoring because security tools have to

rebuild the security status of the whole system to detect and prevent se-

quences of attacks. This problem is faced in a modular way. A network

of sensors detects single attacks, while the Security Information and Event

Management (SIEM) analyzes these alerts to discover how they are corre-

lated. This correlation exploits a proper knowledge base.

We have de�ned and implemented a new SIEM framework based on the

output of Haruspex, a suite to automate the assessment and the management

of ICT risk. The suite simulates the behavior of a set of intelligent agents

that may attack the system and it returns a database of the attack sequences

these agents can implement and the probability of each sequence. This is the

knowledge base that the correlation uses.

Since distinct sensors may be characterized by widely di�erent capabili-

ties, our evaluation has considered two main cases. In the �rst one, failure

detection, the sensors can detect not only the occurrence of attacks, but also
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their result. In other one, attack detection, the sensors can only signal attacks

without their outcome.

We have evaluated the capabilities of the prototype of the proposed SIEM

through simulations that have considered distinct implementation strategies.

In these simulations we have collected several measures to evaluate the re-

liability and accuracy of the proposed framework. The outcomes of these

simulations have shown several interesting results.

The pattern matching approach cannot produce accurate results. It pro-

duces the most accurate results only when a single agent attacks the system

in the failure detection case. In the other cases, it overestimates the set of

agents actually attacking the system. As a consequence, the identi�cation of

agents through pattern matching is not reliable in practice.

Obviously, any increase in the number of agents that are concurrently

attacking the system increases the complexity of the correlation. As a con-

sequence, also the complexity of attribution increases. Even if, on average,

the attribution requires more attacks to identify an agent than the pattern

matching approach, it is always accurate.

From the pattern matching and attribution perspectives, the selection

strategy of an agent is the only attribute that really characterizes it. Instead,

its lambda attribute a�ects the SIEM identi�cation capabilities just in one

case. This may be explained by considering that while the lambda can a�ect

the order of some attacks, the attacks are mostly related to a strategy and a

goal, so all the agents sharing these two attributes will implement the same

attacks.

Finally, the prediction of future attacks is e�ective and accurate only in

the failure detection case. When the sensors can detect attacks but not their

outcome, the prediction cannot properly prune the set of next attacks because

an agent can repeat the failed ones. As a consequence, the uncertainty on

the attack result impairs the prediction.
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7.2 Future works

This section outlines some future works on further evaluations and extensions

of the framework.

7.2.1 Real environment test

Till now, we have evaluated the prototype though simulations. As a future

work, we can deploy the SIEM in a real environment.

Since a network of sensors can produce a high volume of alerts, the SIEM

should be able to properly handle this volume. In particular, we can evaluate

some aspects not considered in our current experiments.

First of all, we can measure the SIEM capability in validating alerts.

This allow us to evaluate the false positive and negative rates that the SIEM

recognizes.

By deploying the SIEM in a dedicated machine, we can measure its pro-

cessing overhead and the throughput it can achieve. The SIEM throughput is

a very important measure, because a high throughput implies that the SIEM

can process a large number of alerts in a short period. As a consequence, the

SIEM can detect and react to complex attacks in a short time.

Furthermore, by changing the con�guration of the network of sensors,

i.e. their number and the subset of the system that is monitored, we can

also evaluate the throughput each con�guration requires as a function of the

number and kind of sensors.

Finally, we can evaluate the SIEM capabilities by deploying a distributed

version of the framework.

7.2.2 Sensors deployment and ruleset generation

The framework has assumed a proper placement and con�guration of the

sensors. If we relax this assumption, the SIEM has to produce information

on both these aspects.

The SIEM now includes also a proper module that receives as input the

database of elementary and complex attacks of Haruspex, the topology of
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the system, a database of available sensors, some constraints on them, e.g.

the maximum number, and a database that pairs each vulnerability with the

corresponding signature.

By analyzing this information, the module can generate the list of sen-

sors to be deployed and the allocation of each sensor. This list pairs each

sensor with the rules enabling the detection of an attack set and the optimal

placement in the system. This new feature has to be evaluated.

Furthermore, the sensors may not be able to detect some attacks because

of their capabilities or placement. As a consequence, we can evaluate the

SIEM capabilities in this case.

7.2.3 False positive and false negative handling

Actually, the framework has not considered the case where the SIEM has

processed a false positive or a false negative.

The former implies a mismatch in the correlation that may be resolved by

removing an attack from the detected sequence. Furthermore, the resulting

sequence may match one the agents execute with a large probability. This is

a strong indication that the removed attack corresponds to a false positive.

Similar considerations apply to false negative, but the handling has to

add attacks to sequences instead of removing them.

Both these solutions require some backtracking capability in the correla-

tion algorithm that may impair the attribution and prediction.

Further evaluations on these aspects are required to understand in more

details the correlation capability and its e�ects on the attribution and pre-

diction.
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