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Abstract

This study evaluates the performances of numerical optimization methods as tools to

identify optimal dynamic motions for robotic mechanical systems interacting with the en-

vironment through unscheduled contact sequences. Specifically, the attention is focused

on a schematic two-dimensional humanoid model, represented as a fixed-base five-DoF

articulated serial chain of rigid bodies, in the tasks of getting up (sitting down) from

(to) supine and prone positions, opportunistically making and breaking contacts with the

ground through hands, elbows, hips, knees, and feet. The different alternatives in the

problem transcription, which lead to different constraint equations in the nonlinear pro-

gram, are determined by: a direct approach to the dynamic problem or a split of the plan-

ning into two consecutive optimizations of rising complexity; an embedded introduction

of contact force constitutive models in the equations of motion or an augmented definition

of the problem, where contact forces are included among the free optimization variables;

and a prevention of undesired contacts by the introduction of all the contact forces (even

the ones constantly equal to zero) or by the imposition of geometric constraints. Shapes

of the emergent behaviors and convergence process sensitivity are evaluated with respect

to cost function weights and contact model parameters respectively.
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Chapter 1

Introduction

While successful approaches to dynamic legged locomotion and whole-body motion plan-

ning exist, strategies which are general and versatile enough to cope with the variety of

situations where inner parts of the body can come into contact, to accomplish a task, with

the surrounding environment in a priori unscheduled contact sequences, have appeared in

the robotics context only very recently.

Interestingly enough, most of the approaches that proved to be successful in this con-

text are optimization-based methods and are often denoted as direct trajectory optimiza-

tion or direct transcription methods. The approach is well established in the numerical

optimal control community [1, 2], with the most efficient variants being the direct mul-

tiple shooting [3] and the direct collocation [4], where parameterized functions with local

support are utilized for both states and inputs.

These methods have been successfully applied in the context of locomotion planning

for two-dimensional legged robots and two-dimensional grasp synthesis in [5], where a

velocity-based time-stepping scheme is adopted along with a Linear Complementarity

Problem (LCP) formulation of contact events. A similar approach has been adopted in [6]

to synthesize optimal gaits for a planar two-legged robots with series of elastic actuators.

Here, the introduction of an higher-order integration scheme for states that are continuous

through collisions is the main novelty. In the context of autonomous manipulation, in [7]

a framework is devised, based on two different contact models, that allows to synthesize

both dexterous and environment-exploiting behaviors in a unified way with encouraging

performances.

Other contributions [8] have been directed towards rendering such approaches amenable

to whole-body motion planning of three-dimensional robot models by considering the full

robot kinematics and condensing the dynamics to the robot’s centroidal linear and an-

gular dynamics with impressive outcomes. Along this line, it is worth mentioning the

contact-invariant approach, originally proposed in [9], to discover complex behaviors for

3
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humanoid figures, and extended to the context of manipulation in [10]. Here, acceptable

assumptions (for example massless limbs) to make the problem simpler, and some witty

relaxations of the complementarity conditions to allow smooth gradient calculations for

contact forces, are paired to a massive use of inverse dynamics, which may lead to in-

consistent results for underactuated and/or defective systems. The previously described

trajectory optimization method has been recently employed to gradually train a neural

network by following an Alternating Direction Method of Multipliers (ADMM) strategy

with interesting results [11].

To the best of our knowledge, [12] is the only work we found where a quantitative

assessment of the performances of direct transcription methods in the context of robotic

systems is performed. The investigation includes effects on computational time, quality

of the solutions, and sensitivity to open parameters. The feasibility of applying direct

transcription methods for online motion planning on a real ballbot robot is included in

the analysis.

In this study, we present an extensive investigation of the performances of direct

transcription methods, with the collocation scheme, for dynamic motion planning of a

humanoid robot model. This is schematically represented as a fixed-base five-DoF articu-

lated serial chain of rigid bodies in two dimensions. The goal consists of performing various

whole-body dynamic tasks (rising from the ground from the supine or prone positions or

laying down from the standing position) opportunistically making and breaking contacts

with the ground through feet, knees, elbows, hands, and even hips if necessary. We could

not find in the literature any assessment studies for systems of similar complexity, and

with unspecified contact sequences, to compare to. We believe that the unscheduled con-

tact sequence along with the articulated-body system are the key ingredients that render

the analysis presented in this paper as complex as interesting.

1.1 Different Approaches to the Motion Planning Prob-

lem

As pointed out this study is focused on the application of direct transcription methods

but many other techniques to approach motion planning problems has been proposed

in recent years. In this section we overview probably the two best known families of

optimal control algorithms for nonlinear systems: the first group we introduce is the one

that include direct transcription and it is generally referred to as numerical optimization

methods, then sampling-based methods are illustrated.
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1.1.1 Numerical Optimization Methods

Numerical optimization methods concern with the solution of Continuous Time Optimal

Control Problems (CTOCP). Given a description of the dynamic system in terms of

Ordinary Differential Equations (ODE), this problem can be stated as

minimize
x,u

∫ T

0

L(x(t), u(t))dt+ E(x(T )) (objective function)

subject to x(0)− x0 = 0 (fixed initial value)

ẋ(t)− f(x(t), u(t)) = 0, t ∈ [0, T ] (ODE model)

h(x(t), u(t)) ≤ 0, t ∈ [0, T ] (path constraints)

r(x(T )) ≤ 0 (terminal constraints)

, (1.1)

where the integral cost contribution L(x(t), u(t)) is called Lagrangian term of the objective

function and the contribution E(x(T )) is called Mayer term of the objective function,

whereas the sum of both is generally referred to as a Bolza objective.

More generic formulations of Problem 1.1 can be stated, for example: every func-

tion can depend from time explicitly, some of the system parameters can be included in

the objective function (even the planning time T could be considered as a variable of

optimization) or Differential Algebraic Equations (DAE) models can be used. On the

other hand, note that considering only inequality path constraints is not a restriction (an

equality relation can be imposed using two inequalities).

Generally speaking, we can distinguish three families of methods to address Prob-

lem 1.1: state-space methods, indirect methods and direct methods.

• State-space methods are based on the principle of optimality : since objectives are

integral functions (therefore the additive property holds), any subarc of an opti-

mal trajectory is optimal itself. Taking advantage of this principle is possible to

split Problem 1.1 in a set of short horizon problems, which can be first computed

recursively backwards and then brought back together to obtain the optimal solu-

tion. This approach is called Dynamic Programming (DP) in discrete time cases,

meanwhile it leads to Hamilton-Jacobi-Bellman equations (HJB) for continuous time

systems. Probably the greatest advantage of state-space methods is their ability to

find global minima, on the other hand the application of these methods is restricted

to small scale systems.

• Indirect methods (also known as “first optimize, then discretize”) start from the HJB

equations and, exploiting the Pontryagin’s minimum principle, build up a boundary

value problem. This system of equations must be solved numerically and it contains
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strongly nonlinear and unstable ODEs. In comparison with DP, it is possible to

manage systems of larger scale, but the obtained solution is a local optimum.

• Direct methods (also known as “first discretize, then optimize”) transform the con-

tinuous time problem into a finite dimensional NonLinear Program (NLP) that can

be solved using high efficient numerical algorithms. All direct methods have in com-

mon the phase of discretization of the control functions, differences lie in the way

that the evolutions of the states are estimated. In this case the principal advantage

is the robustness and the relatively easy application: NLP solvers deal with inequal-

ities and active set changes with great effectiveness. Unfortunately the solution is

a local minimum.

Nowadays direct methods are the most commonly used for real applications and prob-

ably the most successful technique belonging to this family are direct collocation and

direct multiple shooting. For this reason, during this study, we decided to focus our at-

tentions on these two methods; in Chapter 2 we will precisely illustrate and analyze their

structures and principal properties.

1.1.2 Sampling-Based Methods

Sampling-based methods approach the optimal control problem from a complete different

prospective. In this case the solution of the motion planning problem is reached by

sampling the configuration space (C) and trying to connect samples with trajectory pieces

that do not collide with obstacles (belong to Cfree). While the number of samples increases,

the connections between each milestone (sample that belong to Cfree) create a so called

road map that collects all the safe trajectories to connect two states. When the road

map reaches the goal configuration, a solution to the control problem is found (even if it

certainly is not an optimal one). Going on probing C, a better solution might be found

but only few methods provide this guarantee; as we will illustrate, some algorithms are

demonstrated to converge to the absolute optimal solution as the number of samples tends

to infinity (in this case their are said to be asymptotic optimal).

As pointed out, optimality is a characteristic that an efficient motion planning algo-

rithm must have, but this is only one of many. Another fundamental property is the

completeness, an algorithm is said to be complete if it terminates in a finite time return-

ing: a right solution if one exists, failure otherwise. First complete planning algorithms

were developed in late 70s but, at the beginning, their complexity made them unsuitable

for practical applications. Some years later, with the introduction of cell decomposition

methods and potential fields, concrete approaches were proposed. Even if these methods
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demonstrated to perform efficiently within reasonable time bounds, their need to explic-

itly express obstacles in C resulted in an excessive computational complexity. Avoiding

an explicit representation of the obstacles is one of the main idea behind sampling-based

methods; these algorithms implement a “black box” collision detection module that uses

models such as semi-algebraic sets, three-dimensional triangles, nonconvex polyhedra and

so on. This gives the possibility to develop algorithms that are totally independent of the

particular obstacle models. Speaking about completeness, some sampling-based method

are probabilistic complete, in the sense that the probability of the algorithm to find a

feasible solution tends to one as the samples approach infinity.

The best known sampling-base algorithms are the Probabilistic Road Maps (PRM)

and the Rapid-exploring Random Trees (RRT). These two methods approach similarly

the sampling phase but they differ in the way they connect samples. PRM is said to be

a multiple-query method, in the sense that it develops a road map that can be used in

case of different goal configurations, this fact obviously reflects on the computational cost

of the algorithm. PRMs have been reported to perform well in high dimensional spaces

and they also guarantee probabilistic completeness, on the other hand it is important to

note that most online planning problems do not require multiple queries. For all these

reasons single-query incremental algorithms prevailed in recent years. RRT is likely the

most popular of these methods, some of its features are the effectiveness in differential

constraints handling and the probabilistic completeness.

Speaking about optimality, none of the methods presented so far guarantee this char-

acteristic. Only in 2011 a complete and rigorous analysis of these, and many others,

properties was presented [13]. In this study not only the non-optimality of PRM and

RRT (and many others algorithms) is proved, but new algorithms denominated PRM*

and RRT* are presented. These new highly efficient methods are demonstrated to be

probabilistic complete and asymptotical optimal (in addition to their reduced time and

space complexity).

Even though the concepts presented in this section are only the very bases of sampling-

based motion planning, it is clear how this family of methods allow a very pragmatic

approach to these topics; this fact is probably one of the main cause of the recent increase

of interest in them. On the other hand we underline their great capability to solve planning

problems in high dimensional spaces in relatively short times. A complete introduction

to sampling-based methods can be found in [14].
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1.2 Case Study and Original Aims

In the recent years great progresses has been made in the field of motion planning and

a variety of methods of different nature has been proposed but, at the moment, none of

them has really prevailed over the others. Different branches of mathematics has been

examined and lots of efforts were made to exploit well known control theories to obtain

revolutionary approaches to motion planning problems.

Inspired by all these works, we decided to analyze the possibility of mixing the methods

presented above. The original title of this thesis was “An Hybrid Approach to Dynamic

Planning of Robotic Mechanical Systems with Intermittent Contacts” where, indeed, “Hy-

brid” represented our intention to combine direct transcription with sampling-based meth-

ods, in order to bring out the best in each one.

Numerical optimization methods exploit Newton-type algorithms, that guarantee a

very fast convergence to the optimum. Unfortunately they have some weak points: neither

completeness nor optimality are guaranteed and the computed solutions are strongly

dependent on the initial guess (even if this dependance can sometimes play the useful role

to guide the results to assume specific characteristics). On the contrary some sampling-

based methods are proved to be probabilistic complete, asymptotic optimal and they

obviously don’t need an initial guess. Considering that, an implementation of an hybrid

method seems a good idea. For example, we can think to a parallel use of the two

methods (while sampling-based algorithm converges to the absolute optimum, a numerical

optimization of the temporary trajectories can be made) or to initialize a Newton-type

search with a set of feasible trajectory pieces. Unfortunately, because of some unforseen

difficulties, our study has been limited to the application of the numerical optimization

methods.

In order to test our ideas we decided to study a specific case which at the time appeared

simpler than it really is. Inspired by the great amount of studies made on humanoids, we

chose to analyze a simplified two-dimensional robot (illustrated in Figure 1.1 1) composed

by a chain of links connected exclusively by revolute joints. At first we focused our

attentions on the planning of a rising motion; in particular the first task we analyzed

starts from a supine position, with the hands and the hips in contact with the ground,

and finishes in a standing configuration (exactly the one represented in Figure 1.1). As

we will see in Chapter 4, after a fine tune of this case we decided to move on and consider

a wider range of tasks.

A two-dimensional model of the robot implies that every movement has to be sym-

metrical about the plane of representation, such that left and right limbs can’t move

1humanoid pictures are developed in Mathematica environment [18].
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independently. This assumption is extremely limiting in order to study any kind of re-

alistic motion but it drastically reduce the complexity of the problem and, as we will

discuss in this relation, complexity is actually the greatest limit for these kinds of motion

planning methods. On the other hand, considering the fact that we are interested in the

study of rising/sitting movements, this hypothesis appears to be more appropriate.

Figure 1.1: Simplified two-dimensional humanoid.

At first we tried to approach the problem modelling the humanoid with floating feet;

soon we realized that this model was too complex and some simplifications were needed.

Analyzing some intermediate results we established to reduce the degree of freedom from

8 to 5, for this reason feet were removed and their place was taken by a fixed hinge

(equipped wiht a set of constraints that guarantee the static equilibrium of the removed

feet). With some other simplifications (illustrated in the following chapters) we finally

obtain a manageable problem.
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Chapter 2

Direct Methods to the Solution of

Optimal Control Problems

Working on the example introduced in Section 1.2 two direct methods of numerical opti-

mization has been considered: direct collocation and direct multiple shooting. As said, all

direct methods have in common a finite dimensional parametrization of the input func-

tions and the main difference lies in the way that state trajectories are computed. In this

chapter we introduce and compare these two methods.

The final result of these direct method is an NLP (approximation of the CTOCP) that

has the general form

minimize
v

φ(v) (objective function)

subject to χ(v) = 0 (equality constraints)

ψ(v) ≤ 0 (inequality constraints)

, (2.1)

where v is the vector that collects all the optimization variables. In Section A.2 we present

the technique we use to solve these problems: Interior-Point Method (IPM).

2.1 Direct Collocation

Direct collocation is probably the most straightforward direct method. We start discretiz-

ing the time axis on a fine grid [t0, t1, ..., tN ], control functions are assumed to be constant

during each period (u(t) = wi for t ∈ [ti, ti+1] and i ∈ {0, 1, ..., N − 1}) and states are

approximated with their node values si ≈ x(ti) for i ∈ {0, 1, ..., N}. We replace the ODE

model in the CTOCP (Problem 1.1) with a finite set of equality constraint equations

ci(si, si+1, wi) = 0, i ∈ {0, 1, ..., N − 1}.

For example, in case of a system expressed in state space form, an efficient way to write

these constraints is: ci(si, si+1, wi) = si+1−si
∆t
− f( si+1+si

2
, wi); where ∆t = ti+1 − ti.

11
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The next step is the approximation of the integral terms of the objective function

∫ ti+1

ti

L(x(t), u(t)) ≈ li(si, si+1, wi), i ∈ {0, 1, ..., N − 1}.

where, for example, li(si, si+1, wi) = L( si+1+si
2

, wi)∆t.

Substituting these relations in the original Problem 1.1 we obtain a NLP that has the

form

minimize
s,w

N−1∑

i=0

li(si, si+1, wi) + E(sN) (objective function)

subject to s0 − x0 = 0 (fixed initial value)

ci(si, si+1, wi) = 0 (discretized ODE model)

h(si, wi) ≤ 0 (discretized path constraints)

r(sN) ≤ 0 (terminal constraints)

, (2.2)

where i ∈ {0, 1, ..., N − 1} whereas s = [s0, s1, ..., sN ] and w = [w0, w1, ..., wN−1] represent

the arrays that collect the values of the controls and the states at each step.

Substituting v = [s0, w0, ..., wN−1, sN ] we reduce Problem 2.2 to the standard structure

of Problem 2.1.

2.2 Direct Multiple Shooting

Unlike collocation method, using multiple shooting we have to perform a coarse discretiza-

tion of time axis and, for each interval, numerically solve the ODE (model of the system)

ẋi(t; si, wi) = f(xi(t; si, wi), wi)

subject to xi(ti; si, wi) = si

for t ∈ [ti, ti+1] and i ∈ {0, 1, ..., N − 1}.
Solving latter ODEs (starting with artificial initial conditions si) we obtain a set of

trajectory pieces xi(t; si, wi), whose continuity guarantee the respect of the discretized

dynamic model.

For each trajectory piece, we calculate the Lagrange term of the cost function

li(si, wi) =

∫ ti+1

ti

L(xi(t; si, wi), wi)dt.
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At this point Problem 1.1 assumes the form

minimize
s,w

N−1∑

i=0

li(si, wi) + E(sN) (objective function)

subject to s0 − x0 = 0 (fixed initial value)

si+1 − xi(ti+1; si, wi) = 0 (continuity constraints)

h(si, wi) ≤ 0 (discretized path constraints)

r(sN) ≤ 0 (terminal constraints)

, (2.3)

where i ∈ {0, 1, ..., N − 1}.
Once again, the substitution v = [s0, w0, ..., wN−1, sN ] reduces Problem 2.3 to the

standard structure of Problem 2.1

The last operation we illustrate is the numerical solution of the ODEs. A great variety

of integrators can be used, in our case we decided to utilize the Explicit Runge-Kutta 4th

order method (ERK4), that can be summarized as follows.

Each one of the previous N intervals is now divided into n steps. Using the index

j ∈ {0, 1, ..., n− 1} to number these additional periods and denoting by δt = ti+1−ti
n

their

duration, we approximate the generic jth value of the state as

xi,j+1 = xi,j +
δt

6
(k1 + 2k2 + 2k3 + k4),

where k1 = f(xi,j, wi),

k2 = f(xi,j + k1
δt

2
, wi),

k3 = f(xi,j + k2
δt

2
, wi),

k4 = f(xi,j + k3δt, wi).

Starting with the initial value xi,0 = si, each trajectory xi(t; si, wi) is computed in the

period [ti, ti+1].

2.3 Performance Comparison

In this section we briefly report the principal properties of the methods presented above,

pointing out the characteristics that brought us to choose direct collocation instead of

direct multiple shooting.

Starting from the technicality, the first feature to examine is the sparsity of the NLPs.

A NLP is said to be sparse if the Jacobian matrices ∇vχ(v)T and ∇vψ(v)T contain many
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zero elements; taking advantage of this peculiar structure, solvers can increase their effi-

ciency and drastically reduce the computation time. Collocation methods lead to a large

scale but very sparse NLP, on the other hand multiple shooting produces a more com-

pact NLP not as sparse as the collocation one. Both methods treat unstable systems

efficiently and handle path and terminal constraints very robustly. Speaking of inequality

constraints for multiple shooting method, it is important to note that, in order to check

inequalities on a finer grid than the one introduced to discretize the inputs, it is necessary

to have continuous outputs from the integrator (aspect that considerably complicate the

implementation of the problem).

An important aspect, that can seriously complicate the application of a multiple shoot-

ing method, is that the great majority of the ODE solvers available in common use frame-

works (like ERK4) need as input an ODE in state space form. On the other hand the use

of a collocation method isn’t affected by this limitation, in fact in this case the dynamic

constraints are introduced as a set of algebraic equation that the discretized optimization

variables have to respect. Furthermore this is not only a practical advantage but it also

leads to an increase of performances: for example we can think to have the ODE model

of a mechanical system in the Lagrange standard form

B(q)q̈ + C(q, q̇)q̇ = Q(q, q̇, u),

where q represents the configuration vector. This system of equations can easily be

converted in a state space form, but the inversion a large symbolic matrix generates

a huge matrix (that has to be multiplied to the remaining vectors). This inefficiency

can be avoided by discretizing the equations of motion (at the generic ith step for i ∈
{0, 1, ..., N − 1}) (for example) in the very simple way

B(qi+1)
q̇i+1 − q̇i

∆t
+ C(qi+1, q̇i+1)q̇i+1 = Q(qi+1, q̇i+1, ui)

then adding a relation between configurations and velocities, like the one obtained with

the backward Euler method

q̇i+1 =
qi+1 − qi

∆t
.

To conclude this parenthesis we underline the fact that some methods to write equa-

tions of motion (for example the Newton-Euler recursive method) lead to a non-factorized

results that, for large scale systems, can be very complex to put in state space form.

As revealed earlier, we ended up choosing the collocation method for the example of

the two-dimensional humanoid. This approach has demonstrated to be approximately

five times faster than multiple shooting (with a comparable precision).



Chapter 3

Dynamic Analysis of a Simplified

Two-Dimensional Humanoid

In this chapter we derive the equations of motion for the robotic system presented in

Section 1.2. We chose to approach the problem using the Lagrange standard form for

a series of reasons. The first advantage lies in the fact that the obtained equations are

factorized or, more in detail, the inertia matrix isn’t multiplied by the vector of accel-

erations; this allows us to quickly switch the algorithm of optimization (as pointed out

in Chapter 2 the use of multiple shooting methods is very simplified if the ODE model

can be put in state space form). Another advantage of having factorized equations is the

possibility to rapidly eliminate terms that, in specific cases, are considered negligible (in

Chapter 4 we will frequently adopt the procedure of removing dynamic terms from the

equations of motion). In addition to the derivation of dynamic equations, the necessary

constraints to correctly represent the static actions applied to the removed feet are illus-

trated. Moreover two brief parenthesis are made: first the influence of the data structures

on the efficiency of the optimization algorithms is discusses, at the end an alternative idea

to impose dynamic constraints in the optimization problem is presented.

3.1 Graph Data Structures

Before starting to talk about kinematics and dynamics it is fundamental to face the

data structure topic. We developed our codes using CasADi [16]: a symbolic framework

for algorithmic differentiation and numeric optimization. One of the main features of

CasADi is the use of graph structures (as opposed to trees) to organize data. Graphs

avoid to occupy memory with unnecessary copies of identical expressions, this is done

by creating connections between different branches of the graph in case that the same

intermediate result is needed (as input) in several further operations. This organization

15
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of the memory leads to a great economy in the number of computations and gives the

possibility to approach very large scale systems. In order to clarify this concept, it’s useful

to analyze a trivial example. Let us consider the symbolic expression x+ y + sin(x+ y),

whose graph is the one in Figure 3.1a 1. As we can see it is composed by 6 nodes and

4 elementary operations are needed, but it’s clear that an unnecessary copy of the term

x + y is generated. With the goal to reduce the number of nodes, we can define a new

symbolic variable z = x + y and write the original expression as z + sin(z), the graph

we obtain is the one illustrated in Figure 3.1b. As we can see the redundant node is

eliminated and the variable z is computed only once.

(a) x+y+sin(x+y). (b) z + sin(z).

Figure 3.1: Different graphs related to the same expression.

This might seem a too trivial example but understanding this logic is crucial: during

the development of our codes we ran into a series of problems caused by the excessive

length of the dynamic equations we derived and lots of attempts were made in order

to simplify and compact them. The most time-waster try we performed was indeed

related to a lack of knowledge of these topics: we decided to export intermediate results

from CasADi, import them in Mathematica, exploit Mathematica’s simplification routines

and then bring the equations back to CasADi. Even if the obtained expressions were

approximately one tenth length than the originals, graphs generated by reading (all at

once) these (not as huge as before, but still large) inputs were extremely disorganized.

Only after some time we realized that the simplified equations generated a greater number

of nodes than the original expressions.

These considerations made us realize that a more efficient and pragmatic way to write

equations was needed. We have not found an overall valid solution to this problem, and for

sure our future attentions will be (among other things) directed to that way. Temporarily

1graph pictures are obtained using Graphviz’s Dot, with Python interface pydot.
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our life-saver is to analyze the structure of every geometric and dynamic function we

derive and (whenever possible) try to express it in a closed form; in these cases a tailored

“graph-compressing” implementation can be made. In order to have an rough idea, our

first approach to the problem (with 8 DoF and floating feet) leads to dynamic equations

(in state space form) with 1.4 millions nodes, while the final (with a fixed hinge in place of

the ankles and some expressions introduced in a closed form) has 8.2 thousands of nodes:

almost a factor of 103!

3.2 Dimensions and Parameters

We start introducing the principal lengths and parameters of the humanoid illustrated in

Figure 3.2 2. The values (listed in Table 3.1) are elaborations of the segment parameters

presented in [15] (an adult man with a body mass of 73.0 kg and 1.741 m height is consid-

ered). Despite the fact that humanoid robots have quite different mass distributions, we

consider this approximation admissible in order to capture principal dynamic behaviours.

Link number a (m) c (m) m (kg) i (kg ·m2)

1 0.473 0.208 6.32 0.0855

2 0.422 0.173 20.7 0.399

3 0.532 0.179 36.8 1.92

4 0.282 0.119 3.96 0.0227

5 0.355 0.174 3.26 0.0434

Table 3.1: Humanoid lengths and parameters; respectively: lengths, center of mass posi-

tions, mass and moment of inertia.

Referring to Figure 3.2, the humanoid head is considered to be fixed to the trunk

(Link 3) and its inertia is taken into account in the computation of Table 3.1 parameters,

in the same way hands parameters are included in the forearms (link 5) data.

3.3 Geometric Functions

In this section we present the essential geometric functions required to obtain dynamic

equations. We start analyzing homogeneous transformation matrices: since our problem

is two-dimensional and only revolute joints are present, these matrices can easily be

2schematic images of the humanoid and its body parts are developed using Tikz TEXpackage.
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Figure 3.2: Humanoid geometry.

expressed in a closed form. Calling the configuration vector q = [q1, q2, ..., qn]T , we obtain

the following expressions:

Ti−1,i =




cos qi − sin qi ai cos qi

sin qi cos qi ai cos qi

0 0 1


,

T0,i =
i∏

j=1

Tj−1,j =




cos(
i∑

j=1

qj) − sin(
i∑

j=1

qj)
i∑

k=1

ak cos(
k∑
j=1

qj)

sin(
i∑

j=1

qj) cos(
i∑

j=1

qj)
i∑

k=1

ak sin(
k∑
j=1

qj)

0 0 1



,

where, for example, Ti−1,i represents the transformation between the frame fixed to the

link ith and the one fixed to the link i− 1th (Figure 3.2).

In order to show what is the form of a more useful graph than the ones illustrated

before, in Figure 3.3 we present the graph related to the the term [1, 3] of T0,i (that

represent the absolute x0 coordinate of the point O5). As we can see this graph isn’t as

compressed as possible, however its representation can be considered acceptable: further

reductions of its dimensions would be as challenging as dispersive.

Starting from the expression of T1−i,i and T0,i, we can define the geometric Jacobian

as the linear transformation that maps the time derivative of the configuration vector q in
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Figure 3.3: Graph representing the computational process related to the absolute x0

coordinate of the point O5.

the linear and angular velocity of a specific point Pi (that is considered fixed with respect

to the ith link). Let us call twist of the point Pi the vector where linear and angular

velocity (respectively of the point and the relative body) are vertically stacked; let us also

indicate it as ξPi = [vTPi ωTi ]T . The geometric Jacobian has the following role:

ξPi = JPi(q)q̇ =

[
JvPi (q)

Jωi(q)

]
q̇

where JvPi (q) is called position Jacobian and Jωi(q) is called orientation Jacobian.

The generic column j of JPi(q), if the jth joint is a revolute one, has the following

form.

JPi(q)[:, j] =





[(kj−1 × (Oj−1Pi))
T kTj−1]T if j ≤ i

[0T 0T ]T if j > i

where kj−1 represents the unitary vector associated to the zj−1 axis.

The next step is to derive the expressions of the geometric Jacobians of each point Oi

and Ci (see Figure 3.2) expressed in the absolute frame of reference. Their expression can

be derived simply substituting Oi (or Ci) to Pi in the latter equation and expressing each

vector in the absolute frame. It is obvious that, since our problem is two-dimensional,

each orientation Jacobian is composed by zeros except for the third row that has the first

i elements equal to 1. The terms of the position Jacobians are less obvious: by inspection,

it’s possible to see that the jth column (for j ≤ i) of JvOi (q) has the form (focusing on the
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in-plane velocities)

JvOi (q)[:, j] =




−
i∑

k=j

ak sin(
k∑
l=1

ql)

i∑
k=j

ak cos(
k∑
l=1

ql)


 .

A completely equivalent exression can be found for JvCi (q)[:, j] with the “trick” of sub-

stituting ai with ai − ci. We will refer to this array of lengths as ai ∈ Ri (where the

superscript can be different from i), that is:

aik =




ak if k < i

ak − ck if k = i
.

The last geometric entity we introduce will be necessary to compute reaction forces

applied in the fixed hinge: the geometric Jacobian of the whole system center of mass

(JvC (q), we will omit subscripts to refer to the whole system properties). Starting from

the definition of the center of mass position (expressed in the absolute frame)

C =
1

m

n∑

i=1

miCi

we can obtain its velocity by differentiation

vC = Ċ =
1

m

n∑

i=1

mivCi =

(
1

m

n∑

i=1

miJvCi (q)

)
q̇ = JvC (q)q̇.

Exploiting this matrix, the acceleration of the center of mass (necessary to compute

inertial forces that are equilibrated by the fixed hinge reaction forces) assumes the form

aC = v̇C =
∂(JvC (q)q̇)

∂q
q̇ + JvC (q)q̈. (3.1)

3.4 Contact Force Model

A fundamental aspect of planning with intermittent contacts is the model of contact

force which is exploited: since contact forces are non-smooth by nature, they can’t be

directly handled by Newton-type algorithms. We can think of two main alternatives to

deal with this discontinuity: approximate the contact forces with differentiable functions

that tend to the real shape as some parameters approach specific values or define these

forces as optimization variables and, thanks to a set of LCP complementarity conditions,

pass the burden of the non-differentiability to the optimization algorithm. Because of

the simplicity of the first strategy, in this study we decided to approach the problem that

way; in this section we present the functions we developed to model normal and tangential
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contact force. In this simple case each link is considered to be a line (in the sense that it

is characterized only by its length) and for this reason, considering a flat ground, contact

forces can be applied only to the extremity of each link.

Starting from normal contact force, we tried several functions to approximate the rigid

contact, such as hyperbolas or exponentials but we will present only the model we used

most. With the goal to make a common linear elastic unilateral contact differentiable,

we developed the function (whose representation is compared to a linear function in

Figure 3.4 3)

Fn =
F0

log(2)
log
(

1 + 2
− κ
F0
y
)
,

where y is the normal gap, F0 is the value of force for y = 0, −κ is the stiffness of the

contact as y → −∞, and log(2) is a constant whose presence is necessary as a consequence

of the use of F0 and κ.

Coefficients make it look more complicated than it really is: a linear unilateral contact

force has discontinuous derivative (−κ if y ≤ 0, 0 if y > 0) that can be approximated by

an hyperbolic function (κ tanh(y)−1
2

) whose primitive looks like log(1 + e−y).

0
Normal gap y

0

F0

N
or

m
al

co
nt

ac
t

fo
rc

e
F
n

Linear model (Fn = −κy if y ≤ 0)

Fn = F0

log(2) log
(

1 + 2−
κ
F0
y
)

Figure 3.4: Normal contact force as a function of normal gap.

Friction contacts are modelled with an hyperbolic approximation of Coulomb law

(illustrated in Figure 3.5):

Ft = −µFnϕ(ẋ), with ϕ(ẋ) = tanh

(
ẋ

ẋref

)
,

where µ is the friction coefficient, ẋ is the tangential velocity, and ẋref is an opportune

value of ẋ at which the the tangential force Ft is 76% of its asymptotic value.

3graphs are developed using matplotlib Python library.
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Tangential velocity ẋ
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Figure 3.5: Friction coefficient as a function of tangential velocity.

Defined the models of contact forces we are going to use, we have to choose the

numerical values of the parameters we introduced. Starting from µ we decided to use

a friction coefficient equal to 1, considering that for this kind of movements high values

of friction forces are required. The choice of the value to adopt for F0 must take into

account some aspects: the use of smooth contact forces sometimes has the consequence

that initial (or goal) positions do not respect constraints imposed to the fixed ankles

actions moreover, even the times when these constraints are respected, these models

might lead to high values of input torques to maintain these positions. In this sense we

have to guarantee a value of F0 such that the weight of the humanoid (697 N) is balanced

with almost zero penetration in the ground and, considering that most of the time the

robot has two contacts, we found 400 N to be an effective compromise. Moving on to the

definition of κ and ẋref, we decided to adopt a stiffness equal to 5.0 ·104 N
m

and a reference

to the tangential velocities of 5.0 · 10−2 m
s
. The choice of these two values is in depth

validated in Section 5.1 where a detailed analysis of the effects of these two parameters

on the convergence process is proposed.

3.5 Dynamic Equations

As said before, several reasons made us choose to write equations of motions in Lagrange

standard form

B(q)q̈ + C(q, q̇)q̇ +G(q) = Q(q, q̇, u),

where q is the configurations vector, B is the inertia matrix, C is the Coriolis and cen-

trifugal terms matrix, G is the gravitational forces vector, and Q is the vector of non-
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gravitational external forces.

It is proved that the inertia matrix can be expressed as:

B(q) =
n∑

i=1

(miJvCi (q)
TJvCi (q) + Jωi(q)

TIiJωi(q))

where Ii is the moment of inertia tensor of the link i (note that, since our problem is two-

dimensional, we can avoid the introduction of tensors by using scalar in-plane moments

of inertia).

In this specific case B(q) assumes a particular pattern that is described by the following

expressions. Splitting the inertia matrix into two parts (the one associated to linear

velocities and the one related to angular velocities) and considering the generic [r, s]

term, we obtain

B[r, s] = M [r, s] + I[r, s] =
n∑

l=1

(Ml[r, s] + Il[r, s]),

where Ml represents the contribution of each link linear velocity to the global inertia

matrix. By inspection it can be seen that Ml has the form

Ml[r, s] =





ml




l∑
i=max(r,s)

(ali)
2 +

l∑

i=r
j=s
i 6=j

alia
l
j cos




max(i,j)∑

k=min(i,j)+1

qk





 if r ≤ l ∧ s ≤ l

0 if r > l ∨ s > l

,

whereas the contribution of each link angular velocity to the global inertia matrix is

trivially the related moment of inertia

Il[r, s] =




il if max(r, s) ≤ l

0 if max(r, s) > l
.

Coriolis and centrifugal terms are obtained using the Christoffel symbols

C[i, j] =
n∑

k=1

Γijkq̇k,

where

Γijk =
1

2

(
∂B[i, j]

∂qk
+
∂B[i, k]

∂qj
− ∂B[j, k]

∂qi

)
.

The jth term of the gravitational torques vector can be easily determined

Gj = −
n∑

i=1

mjJvCi [:, j]
>g,



24

where g = [0 − 9.81]> m
s2

.

Finally the contribution of the remaining external generalized forces can be expressed

as

Qj =
∑

i∈Acf

JvOi [:, j]
>FcOi + uj,

where FcOi = [FtOi FnOi ]
>. Furthermore, in order to reduce the computational burden

associated to undesirable contacts, the set of the active (“turned on”) contact forces

Acf ⊆ {1, . . . , n} is changed from test to test. For example, considering the motions

presented in Section 4.2, the contact force applied to the shoulders of the humanoid will

never be taken into account, while the forces applied on the knees, the hips, and the

elbows will be considered only in some cases.

3.6 Fixed-Base Assumption

As exposed before, in order to reduce the complexity of our dynamic model, we decided

to consider steady feet that are constantly in contact with the ground. This simplification

gives us the possibility to remove 3 DoF but additional constraints to the optimization

problem have to be introduced to guarantee that the effects of the feet-ground contact

are correctly represented. Referring to Figure 3.6 three conditions have to be imposed:

• the unilaterality of the normal contact force

FnO0
> 0,

• the positioning of the contact force in the friction cone

∣∣∣∣∣
FtO0

FnO0

∣∣∣∣∣ < µ,

• the positioning of the contact actions center of pressure inside the contact area

− FnO0
a0,1 ≤ u1 ≤ FnO0

a0,2, (3.2)

where both a0,1 (= 0.200 m) and a0,2 (= 0.058 m) are greater than zero, whereas the

lever of the tangential force is neglected because of the mono-dimensional model of

the feet.

If these constraints hold, we have the guarantee that the removed feet are in a state of

static equilibrium and the 5 DoF model correctly represents the whole body dynamics.
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Figure 3.6: Feet free body diagram.

3.7 A Multibody Approach to the Definition of Dy-

namic Constraints

In this section we illustrate an idea that we tried to develop, but we put (temporarily)

apart because of a lack of results. The idea consists in a different way to impose dynamic

constraints (i.e. the ODE model) in Problem 2.2. Noticing the ease with which it’s possible

to introduce algebraic constraints and the extreme complexity of the equations of motion

generated by such an articulated system, we thought that a “multibody approach” could

make a difference in terms of performances.

Considering our dynamic system, what can be made is a decomposition of the chain in

order to separate each one of the five links from the others. Defining the position and the

orientation of each link with a redundant number of coordinates (x, y, θ) and introducing

symbolic forces (as optimization variables) that represent the internal actions necessary

to restore the congruence of the chain; we are able to analyze the dynamics of the whole

system link by link. Looking at the equilibrium of the generic ith body (see Figure 3.7),

we can write a set of scalar equations

miẍi = Fi+1→i,x + FcOi ,x + Fi−1→i,x,

miÿi = mig + Fi+1→i,y + FcOi ,y + Fi−1→i,y,

iiθ̈i = ui − ui+1 − (Fi+1→i,x + FcOi ,x)CiOi sin θi + (Fi+1→i,y + FcOi ,y)CiOi cos θi+

+ Fi−1→i,xCiO
′
i−1 sin θi − Fi−1→i,yCiO

′
i−1 cos θi,

where O′i−1 is the point that belongs to the ith link corresponding to Oi−1 and (for example)

Fi+1→i,x refers to the x component of the force that the i+ 1th link does on the ith link.

Adding to these equations 2 · n constraints with the form

xi−1 + ci−1 cos θi−1 = xi− (ai − ci) cos θi,

yi−1 + ci−1 sin θi−1 = yi− (ai − ci) sin θi,

we have a problem that is equivalent to the previous.
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Figure 3.7: Single link free body diagram.

Approaching the optimization that way, we are defining a problem with 4 · n · N
additional variables of optimization but whose dynamic equations are extremely simple

(thanks to a constant diagonal inertia matrix and the absence of centrifugal and Coriolis

terms) and whose Jacobian matrices, of the constraints that restore the congruence of the

movements, are very sparse.

This fragmentation leads to a series of further simplification. Following the standard

approach, the majority of the constraint we impose to the problem result in an high

computational cost, taking as example the bounds imposed to the ankle hinge forces:

using standard ODE models the computation of these values requires the calculation of

terms such as the acceleration of the whole system center of mass (Equation 3.1) whereas,

in this case, they simply are variables of optimization. On the other hand there are some

drawbacks; for example the use of absolute angles makes the constraints that prevent self

collisions more complicated to be expressed.

Speaking of optimization methods, we believe that this approach to introduce dynamic

equations suits the direct collocation method very well. First of all the obtained problem

is very sparse, fact that goes in the same direction of the collocation idea. Furthermore all

the extra constraints we introduce have to be checked at every node (a division between

the link, even for a short period of time, is not admissible) and thinking to the multiple

shooting methods, this would require a constant dialogue with the integrator that at every

integration step would have to check these equalities (whereas using a collocation method

the grid on which the constraints are checked is the same used by the integrator).

As said this approach did not give us any results and we had not enough time to make

a depth analysis of the problem; anyway in the light of the possible advantages that we

have briefly highlighted here, the implementation of an efficient code using this technique

is one of the next steps we want to take.



Chapter 4

Optimal Control Problem:

Description and Results

In this chapter we present the results of several plannings. As said before the case study

is a simplified humanoid and the optimization technique is the direct collocation method.

In order to obtain different motion tasks, we combine two of three basic configurations

(supine, standing, and prone) as initial and goal positions.

We start formalizing the optimal control problem: tasks, cost functions, constraints,

and initial guesses are presented. In the second part some selected results are illustrated

and commented.

All the problems we analyze are coded in Python language, using the interface to the

open-source CasADi framework [16]. CasADi is a symbolic framework for algorithmic

differentiation and numeric optimization, whose main purpose is to be a low-level tool for

quick, yet highly efficient implementation of algorithms for nonlinear optimization. This

great efficiency is achieved taking advantage of some state-of-art optimization routines

(in our case the Ipopt [17] interior-point method is used).

4.1 Formalization of the Optimal Control Problem

In this section we start defining each element of the CT Optimal Control Problem 1.1

for the case study, after that the direct collocation method is used to derive a finite

dimensional NLP.

4.1.1 Benchmark Tasks

At first, we sketched our problem considering a supine initial position and a standing goal

posture, after we obtained first results we introduced an additional prone configuration.

Starting from these three reference configurations (Figure 4.1), we defined the following

27



28

planning problems: prone to standing, standing to prone, supine to standing, and standing

to supine. These tasks are thought to highlight the principal difficulties that the solver

might have to face. Analyzing the first case, the linear interpolation we give as initial

guess (Section 4.1.4) is not a feasible movement because of the ankle torque constraint

(Equation 3.2) anyway, since the feet frontal length a0,1 is sufficiently high, this lower

bound is not too strict. This gives the possibility to find a feasible trajectory (in a very

few number of iterations) that is extremely far away from the optimum described by the

cost function, in this sense the objective function will have to guide the optimization to

a vast exploration of C. In case of a supine initial position the interpolation represent

an highly unfeasible trajectory (note that a0,2 � a0,1) and this time the algorithm will

have to deal with a “one-way-out” search in C. Generally we expect that the solver will

ride out of these difficulties by and extended hands-ground interaction, for this reason we

propose the two remaining tasks: in addition to the previous complications, these times

the humanoid starts its motion with the hands separated from the ground and it will have

to understand itself the usefulness of possible interactions with the environment.

(a) Supine. (b) Prone. (c) Standing.

Figure 4.1: Different initial and goal configurations.

It is important to relate an issue that comes out imposing initial and goal conditions

to this kind of problems. Since contact force models are smooth, if particular bounds are

imposed to the input torques (such as the ones described in Section 3.6), it is practically

impossible that the configurations we define are equilibrated. For example if we want to

plan a motion that starts from the supine posture (Figure 4.1a) it is logical to compute

configuration angles such that the hips and the hands of the humanoid are exactly placed

on the floor. If for simplicity we think to do not have the first joint actuated, looking

at the entire system, it is evident that equilibrium is achieved only with hips and hands

penetration/separation in/from the ground. Furthermore things can become even more

complicated if some other bounds have to hold (for example the non-negativity of the force

applied by the ground on the feet). To deal with this kinds of problems we implemented a
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loop that, acting on the heel angle q1, numerically search the nearest feasible configuration

to the one introduced. In light of this, real initial and goal conditions can be imperceptibly

different (≈ 10−2 rad thanks to the high values of stiffness) from their nominal values.

4.1.2 Cost Function

In practical optimal control problems multiple objective functions are almost inevitable

to introduce: most of the time a simple cost function where, for example, the norm of

the inputs is minimized is not sufficient to achieve complex motion behaviours. On the

other hand it’s important to keep to the minimum the number of cost terms, in fact the

introduction of too many weights can make the relation between cost functions and results

very difficult to interpret.

Multi-Objective Optimization (MOO) is a wide field and analyzing these aspects is

beyond the goals of this study, anyway it is important be aware of the main difficulties

that can arise using multiple cost functions. For this reason in the following lines we

introduce, in very general terms, the fundamentals features of this area.

Denoting the objective function as φ(v) = φ1(v) + φ2(v) + ... + φnφ(v), it is possible

to encircle the subspace of Rnv where all the values of v that respect the constraints live

(feasible region); mapping this subspace through φ(v) to Rnφ we can delimit the feasible

objective region (note that a weighted sum of the cost terms is represented in this space as

a set of parallel hyperplane that intersect each axis in a non-negative point). A solution

of the MOO problem has to lie on boundary of the feasible objective region, in particular

we define the Pareto front the space ∈ Rnφ−1 that contains all of the trade-off solutions

(for which it is impossible to reduce one objective further without necessarily increasing

one of the others). In case of a weighted sum of cost terms, this solution will be the point

where the nearest to the origin hyperplane (among those which cross the feasible region)

intersect the Pareto front. Pareto fronts can be convex, non-convex or even disconnected

(with increasing difficulty in solving the associated MOO problem).

In general two aspects are helpful approaching these kind of problems:

• an homogeneous scaling of each cost term (for example, for the ith term φsci (v) =
φi(v)−φmini

φmaxi −φmini
) avoids too thin feasible regions (that can make the relation between the

cost function weights and the respective non-dominate solution ill-conditioned);

• the use of different (from a weighted sum) functions to aggregate cost terms leads

to more complex hypersurfaces (than the hyperplanes) that can be able to find

solutions of the MOO even inside the possible non-convex regions of the Pareto

front.
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Coming back to our problem, we decided to use an objective function composed by four

Lagrangian terms, in particular we decided to penalize inputs torques, angular velocity,

angular accelerations, and the distance of the hands from the ground. The weights adopted

to penalize each term are indicated by the letter W , in the specific case of the inputs we

decided to introduce a diagonal matrix of weights (as opposed to a scalar) since it gave

us the possibility to finely tune the humanoid behaviours. The cost function terms are

summarized in the following list:

• inputs penalization

Lu =

∫ T

0

u(t)TWuu(t)dt ≈
N−1∑

i=0

uTi Wuui∆t;

• velocities penalization

Lq̇ = Wq̇

∫ T

0

q̇(t)T q̇(t)dt ≈ Wq̇

N∑

i=0

q̇Ti q̇i∆t;

• accelerations penalization

Lq̈ = Wq̈

∫ T

0

q̈(t)T q̈(t)dt ≈ Wq̈

N−1∑

i=0

(q̇i+1 − q̇i)T (q̇i+1 − q̇i)
1

∆t
;

• hands distance from the ground penalization

LyH = WH

∫ T

0

yH(t)2

(
1− t

T

)
dt ≈ WH

N∑

i=0

y2
Hi

(
1− i

N

)
∆t.

Unlike the first three cost terms, the penalization of the distance of the hands from

the ground is quite unusual. Its presence is due to the fact that in almost every stand-up

or sit-down movement it is convenient to quickly approach hands to the ground (in order

to reach a more stable position and share forces between limbs more efficiently). The

time-dependent coefficient is introduced to relax this “soft constraint” as time goes on.

Since the terms of the weight matrices change from a planning to the other, they will

be specified case by case.

4.1.3 Constraints and Variables Bounds

Using using Ipopt, constraints have to be expressed as inequalities, this can be easily done

by setting the lower and the upper bounds of the residuals (related to the expression of the

constraint we want to introduce) coincident to zero. Implying this, in the following lines

we will define all the constraints we impose to our motion planning problem as equalities.
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The first condition to impose is the validity of the ODE model at each collocation

node, the discretization scheme we exploit is the Mid-Point Rule (MPR). Considering the

generic ith node for i ∈ {0, 1, ..., N − 1}, we have

B
(
qi+ 1

2

) q̇i+1 − q̇i
∆t

+ C
(
qi+ 1

2
, q̇i+ 1

2

)
q̇i+ 1

2
+G

(
qi+ 1

2

)
−Q

(
qi+ 1

2
, q̇i+ 1

2
, ui

)
= 0;

qi+1 − qi − q̇i+ 1
2
∆t = 0;

where qi+ 1
2

= qi+1+qi
2

and q̇i+ 1
2

= q̇i+1+q̇i
2

. As we will see in Section 5.2.1, sometimes we

will eliminate less significant terms from the dynamic equations in order to obtain a fast

approximated solution to the problem; in these cases the procedure illustrated above is

exactly the same (except for the ignored terms).

Another fundamental set of constraints we impose is the one necessary to restore the

effects of the removed feet, in this case the inequalities we impose are the ones presented

in Section 3.6. From a practical point of view, the only difficulty that comes out is the

computation of the constraint force made by the fixed hinge. Since we derived equations

of motion using an energy method, this value is not available and its expression has to be

calculated considering the equilibrium of the entire system

FcO0
= m(aC − g)−

n∑

i=1

FcOi ,

note that in order to be coherent with the MPR, this equation has to be discretized as

FcO0
(q, q̇, q̈) ≈ FcO0

(
qi+ 1

2
, q̇i+ 1

2
,
q̇i+1 − q̇i

∆t

)
.

In Section 5.2.2 we will analyze the computational differences between an explicit

introduction of the contact forces model in the equations of motion and the definition of

these forces as optimization variables. In case the second alternative is preferred, a set of

equalities (that force these addition variables to be equal to their expressions as functions

of positions and velocities) has to be introduced. This is done simply employing relations

presented in Section 3.4. Once again, in order to be coherent with the MPR we have to

perform the discretization

FcOi (q, q̇) ≈ FcOi (qi+ 1
2
, q̇i+ 1

2
).

Thanks to the two-dimensional structure of our example, we can guarantee the absence

of self collisions simply by imposing bounds to the configuration. In Table 4.1 we list the

values of these bounds.
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Angle number Lower bound Upper bound

1 (ankles) -90◦ 270◦

2 (knees) 190◦ 360◦

3 (hips) 0◦ 170◦

4 (shoulders) 0◦ 270◦

5 (elbows) 190◦ 360◦

Table 4.1: Bounds for the configuration vector.

4.1.4 Initial Guess

The last topic to discuss, in order to complete the overview of the in case optimal control

problem, is the initial guess. Considering the complexity of the movements we plan, find a

simple and generally valid initial guess is not an easy task. We tried different alternatives

and, as regard configuration and velocities, our decision ended to be a linear interpolation

(of the configuration relative angles) between the initial and the goal conditions. In order

to have an idea of what kind of movement this is, we illustrate an example in Figure 4.2,

as it can be seen this is quite different from an human-like motion but it demonstrated

to work effectively.

Figure 4.2: Linear interpolation between supine and standing postures.

For what concerns the inputs initial guess, our first try was a computation of the

torques necessary to perform the interpolation movement but this approach didn’t gave

good results. In fact, looking at Figure 4.2, it’s clear how the inputs needed by such a

trajectory are extremely high while the results we expect to obtain go in the opposite
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direction. Furthermore, in this case the heels actuator would require a great effort (u1 �
0) whereas, as exposed in Section 3.6, we constrained this value to be almost zero. In

light of these observations, we decided to initialize the input torques with a constant value

equal to 0.

In Section 5.2.2 we will discuss the possibility to define contact forces as optimization

variables, in this cases we will have the need to also define an initialization for these

additional variables. Unlike the previous case, this time the computation of contact

forces consequent with the interpolation movement worked well.

4.2 Reference Results

In this section we present the results of the motion planning problems we described above.

Referring to the techniques we will present in Chapter 5, all the results we propose are

obtained using the pseudo-static intermediate solution method (presented in Section 5.2.1)

and by considering the contact forces as variables of optimization (Section 5.2.2). Each

one of the following results is obtained considering a planning time T equal to 5 s and

100 collocation nodes N . Times and numbers of iterations required to compute these

trajectories will be discussed in Section 5.2.3.

4.2.1 Prone to Standing

The first rising motion we present starts from the prone configuration (Figure 4.1b) and

finishes when the standing position (Figure 4.1c) is reached. This is probably the simplest

movement we can think to: the hands are in contact with the ground from the very first

moment and the ankle torque bound doesn’t represent a particular difficulty (a0,1 � a0,2).

Considering the nature of this movement, we decided to introduce in the dynamic

equations only the contact forces that are applied on: the hands, the elbows, and the

knees. Because of that the total number of optimization variables is equal to

2 · n · (N + 1)︸ ︷︷ ︸
states

+n ·N︸ ︷︷ ︸
inputs

+ 2 · 3 ·N︸ ︷︷ ︸
contact forces

= 2110.

In this case we considered the following values for the weights of the cost function:

Wu = diag(0.100, 0.010, 0.018, 0.002, 0.002),

Wq̇ = 100,

Wq̈ = 100,

WH = 1000.

In Figure 4.3 we illustrate the obtained dynamic motion.
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Figure 4.3: Optimal trajectory for the “prone to standing” problem; 0.71 s per frame.

In this case the initial position required some adjustments to respect each constraint.

In particular, the rotational equilibrium about the ankle axis of the contact and weight

forces, leads to a rotation about the same axis of −0.012 rad (= −0.69◦).

In Figure 4.4 the evolution of the states and the inputs can be observed. As can be seen

the obtained movements are very smooth thanks to the strong penalization imposed to

the accelerations. Even if there aren’t bounds to the inputs, we believe that the computed

values of torques are very likely: in particular the joints that require the highest values

of torque are the knee and the shoulder (in both cases an maximum input almost equal

to 200 Nm is needed).

As it can be seen in Figure 4.5, the constraints on the heel force are verified: the

normal contact force never holds the humanoid to the ground, the absolute value of

the ratio between tangential and normal force is always less than the friction coefficient

µ = 1, and the center of pressure of the action applied to the feet lies in the contact area

[−a0,1, a0,2] = [−0.200, 0.058] m.

A very significant result to analyze is the value of the contact forces applied on the

hands by the ground (Figure 4.6): during the central phase of the movement, the the load

applied to the arms is almost a third of the total wight of the humanoid (696 N). Note

that, since the friction coefficient is equal to 1, during a sliding phases the normal and

the tangential forces have the same absolute values and the related graph is symmetrical

(or overlapped).

At last we present the percentages of the total cost to ascribe to each term of the

objective function (Figure 4.7). As it can be seen inputs torques are penalized a little

more than the other terms and, in spite of the shoulder input reaches very high values,
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Figure 4.4: States and inputs as a function of time; “prone to standing” case.

the related percentage of the total cost is relatively small because of its low weight in the

objective function.

4.2.2 Standing to Prone

The second result we present is the reverse of the first case: starting from a standing po-

sition (Figure 4.1c), the humanoid has to plan a movement to reach a prone configuration

(Figure 4.1b). The main difficulty is represented by the extreme stiffness of the contacts;

in fact, in order to reduce the inputs, a precise use of the hands is necessary but the

gradient of the normal force, computed at the initial position of the hands (0.77 m), is

practically equal to zero. Comparing this case with the previous one, we expect to obtain

a greater influence on the final result of the cost term related to the distance of the hands

from the ground (since its integrand function is inversely proportional to time).

Even this time we only considered the contact forces that are applied on: hands,

elbows, and knees. In light of this the total number of optimization variables is equal to

2 · n · (N + 1)︸ ︷︷ ︸
states

+n ·N︸ ︷︷ ︸
inputs

+ 2 · 3 ·N︸ ︷︷ ︸
contact forces

= 2110.
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Figure 4.5: Heels constraint parameters as a function of time; “prone to standing” case.
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Figure 4.6: Normal and tangential contact forces applied on the hands, originated from

the interaction with the ground; “prone to standing” case.

We considered the following values for the weights of the objective function:

Wu = diag(0.030, 0.015, 0.060, 0.003, 0.003),

Wq̇ = 50,

Wq̈ = 50,

WH = 5000.
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Figure 4.7: Percentages of the total cost related to each term of the objective function;

“prone to standing” case.

In Figure 4.8 the result of the planning is illustrated.

Figure 4.8: Optimal trajectory for the “standing to prone” problem; 0.71 s per frame.

Since this motion is opposite to the previous one, this time the adjustment (of −0.69◦)

is required by the goal position, while the initial configuration correspond to the nominal

one.

In Figure 4.9 the evolution of states and inputs is presented. This time torques are even

smaller (since the inertial forces are in the opposite direction of the gravity acceleration).

The greatest input observed is applied by the knee actuator during the descent phase (as

it might have been expected looking at Figure 4.8).

In Figure 4.10 we illustrate the parameters associated to the constraint force applied

on the heels of the humanoid, even this time the bounds on these values are satisfied.
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Figure 4.9: States and inputs as a function of time; “standing to prone” case.

The contact of the hands with the ground consists almost uniquely in a sliding phase,

as it can be seen in Figure 4.11. As soon as the interaction starts, the humanoid begins

its movement in the direction of the goal position.

To conclude we present the percentages of the total cost to ascribe to each term of the

objective function (Figure 4.12). As pointed out, in this case the main cost is attributable

to the distance of the hands from the ground.

4.2.3 Supine to Standing

In this section we present the first motion planning problem we approached: from supine

(Figure 4.1a) to standing configuration (Figure 4.1c). Unlike previous tasks, in this case

the ankle torque bound represent a great obstacle and complex hands-ground interactions

are required to reach the goal posture.

This time we only introduced the contact forces that are applied on the hands and the

hips, because of that the total number of optimization variables is equal to

2 · n · (N + 1)︸ ︷︷ ︸
states

+n ·N︸ ︷︷ ︸
inputs

+ 2 · 2 ·N︸ ︷︷ ︸
contact forces

= 1910.



39

0 1 2 3 4 5

Time (s)

0

100

200

300

400

500

600

700

800
H

ee
ls

h
in

ge
n

or
m

al
fo

rc
e

(N
)

0 1 2 3 4 5

Time (s)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

H
ee

ls
h

in
ge

ta
n

ge
n
ti

al
/n

or
m

al
fo

rc
e

ra
ti

o

0 1 2 3 4 5

Time (s)

−0.20

−0.15

−0.10

−0.05

0.00

0.05

F
ee

t
ce

n
te

r
of

p
re

ss
u

re
p

os
it

io
n

(m
)

Figure 4.10: Heels constraint parameters as a function of time; “standing to prone” case.
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Figure 4.11: Normal and tangential contact forces applied on the hands, originated from

the interaction with the ground; “standing to prone” case.

In this case the objective function was tuned as

Wu = diag(0.10, 0.05, 0.05, 0.01, 0.01),

Wq̇ = 50,

Wq̈ = 10,

WH = 1000,
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Figure 4.12: Percentages of the total cost related to each term of the objective function;

“standing to prone” case.

note that the weight associated to accelerations is reduced from the previous cases, this

in order to limit the smoothness of the movement and let the humanoid free to quickly

use its hands.

Figure 4.13 represents the evolution of the humanoid configuration. To reach feasibil-

ity, a rotation of the initial position of 0.0074 rad (= 0.42◦) about the heel axis is needed,

while the nominal goal position is already feasible.

Figure 4.13: Optimal trajectory for the “supine to standing” problem; 0.71 s per frame.

In Figure 4.14 the evolution of the states and the inputs is presented. As it can be

seen, an high value of torque has to be applied by the shoulder and the elbow actuators in

order to contrast the body weight during the sliding phase, whereas in the second phase

of the movement the prevailing inputs are the ones acted by the knee and the hip joints.
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Figure 4.14: States and inputs as a function of time; “supine to standing” case.

In Figure 4.15 we present the parameters associated to the constraint force applied on

the heels of the humanoid.

Figure 4.16 represents the hands-ground interaction. In this case three phases of the

contact are noticeable: the first second and a half is needed to approach the hips to the

feet and the hands don’t slip, in the central phase of the movement the hands slide on

the ground, at the end of the contact an impulsive force in applied in order to ease the

rising movement. This particular behaviour is obtained thanks to the reduction of the

accelerations weight.

To conclude we present the percentages of the total cost related to each term of the

objective function (Figure 4.17). This time the input costs are predominant.

4.2.4 Standing to Supine

The last motion we analyzed it the standing (Figure 4.1a) to supine (Figure 4.1c) move-

ment. In this case the ankles torque bound is extremely limiting and the hands starts in

a position very distant from the ground. Despite of these complications, even this time

the solution obtained is very likely.
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Figure 4.15: Heels constraint parameters as a function of time; “supine to standing” case.
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Figure 4.16: Normal and tangential contact forces applied on the hands, originated from

the interaction with the ground; “supine to standing” case.

As in the previous case, we introduced only the contact forces that are applied on the

hands and the hips and the total number of optimization variables is still equal to

2 · n · (N + 1)︸ ︷︷ ︸
states

+n ·N︸ ︷︷ ︸
inputs

+ 2 · 2 ·N︸ ︷︷ ︸
contact forces

= 1910.
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Figure 4.17: Percentages of the total cost related to each term of the objective function;

“supine to standing” case.

The weights of the objective function used this time are

Wu = diag(0.10, 0.05, 0.05, 0.01, 0.01),

Wq̇ = 50,

Wq̈ = 100,

WH = 1000.

Figure 4.18 represents the evolution of the configuration of the humanoid. To reach

feasibility a rotation of the goal position of 0.42◦ about the heel axis is needed.

Figure 4.18: Optimal trajectory for the “standing to supine” problem; 0.71 s per frame.

In Figure 4.19 the evolution of the states and the inputs is presented. In this case,

since the humanoid has to sit down, the input torques are generally lower than the case

before.
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Figure 4.19: States and inputs as a function of time; “standing to supine” case.

In Figure 4.20 we present the parameters associated to the constraint force applied on

the heels of the humanoid.

Figure 4.21 represents the hands-ground contact forces. In this case we can note that

the sliding phase has a reduced duration if compared to the previous cases.

Eventually we present the percentages of the total cost related to each term of the

cost function (Figure 4.22). This time the knee torque is the main cost of the movement,

as it is logical to be looking at Figure 4.18.
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Figure 4.20: Heels constraint parameters as a function of time; “standing to supine” case.
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Figure 4.21: Normal and tangential contact forces applied on the hands, originated from

the interaction with the ground; “standing to supine” case.
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Figure 4.22: Percentages of the total cost related to each term of the objective function;

“standing to supine” case.



Chapter 5

Solution Methodologies and

Performance Comparisons

In Section 3.4 we illustrated the contact force models we developed, the first aim of this

chapter is to analyze the effects that the contact stiffness and the tangential velocity

reference have on the convergence process in order to identify suitable values for these

parameters. After that different techniques to approach the problem presented in Chap-

ter 4 are discussed. The third part of the chapter is focused on the effects that each

cost term has on the behaviour of the humanoid, whereas at last a comparison between

three alternative ways to deal with non-active contact forces (i.e. forces whose values are

constantly equal to zero in a specific task) is performed.

5.1 Convergence Process Sensitivity to Contact Force

Parameters

In this section we analyze the effects that the contact force parameters (introduced in

Section 3.4) have on the performances of the optimization process, in particular we will

focus our attentions on the contact stiffness κ and the tangential velocity reference ẋref.

Obviously an higher value of κ and a lower value of ẋref are generally to prefer but, as

we will see, the use of excessively non-smooth functions leads to a loss of convergence

velocity.

In order to have a deeper understanding of the effects that these values have on the

efficiency of the optimization process, we conducted a set of tests. We considered a “supine

to standing” task (Section 4.2.3) and, regarding the topics we will discuss in Section 5.2.1

and in Section 5.2.2, we took as example a planning where the optimization phase is split

in a pseudo-static planning and a dynamic upgrade and contact forces are introduced

as optimization variables. This task has been chosen because it leads to a motion that

47
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involves both sliding and steady phases of the hands-ground interaction.

In these tests we analyze the relation that links the number of iterations and the

computation time to the values of the in question parameters. We decided to sample

these quantities with an (almost) constant ratio scheme, starting from κ = 2.0 ·104 N
m

and

ẋref = 2.0 · 10−2 m
s

and multiplying each time these values by a factor ≈ 1.5. In Table 5.1

and in Table 5.2 we summarize the obtained results.

Stiffness κ
(

N
m

)
Iterations Time (s)

2 · 104 167 (=145+22) 260 (=176+84)

3 · 104 334 (=313+21) 388 (=315+73)

5 · 104 286 (=265+21) 377 (=311+66)

7 · 104 446 (=442+24) 498 (=425+73)

1 · 105 2199 (=2015+184) 2138 (=1549+589)

Table 5.1: Effects on the convergence process of different values of the normal contact

stiffness (a value of ẋref = 5.0 · 10−2 m
s

is considered).

Tangential velocity reference ẋref

(
m
s

)
Iterations Time (s)

2 · 10−2 loc. infeasibility loc. infeasibility

3 · 10−2 562 (=527+35) 720 (=603+117)

5 · 10−2 286 (=265+21) 377 (=311+66)

7 · 10−2 232 (=212+20) 275 (=216+59)

1 · 10−1 298 (=279+19) 312 (=254+58)

Table 5.2: Effects on the convergence process of different values of the tangential velocity

reference (a value of κ = 5.0 · 104 N
m

is considered). The entry “loc. infeasibility” refers

to the convergence in a point of local infeasibility of Ipopt interior-point algorithm.

As it can be seen from the tables, these parameters have have similar influence on

the convergence process: excessively non-smooth values lead to a great increase of the

computation time whereas an exaggeration in the opposite direction do not bring sufficient

benefits to justify the loss of precision in the contact modeling. In both cases we decided

to adopt compromise values: κ = 5.0 · 104 N
m

and ẋref = 0.05 m
s
. The adopted value of

stiffness has shown to require reasonably low running times and to conduce to admissible

values of hands-ground penetration (in this case, the maximum distance evaluated during

the contact phase was equal to 18 mm). In the case of the tangential velocity we settled
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for a value considerably lower than the characteristic sliding velocities of these tasks: in

order to have an idea, in this example the velocity with which hands slide on the ground

is equal to 0.55 m
s
.

5.2 Alternative Approaches to the Problem Formu-

lation

Optimal control problems can be can be defined in a great variety of alternative forms,

for example some parameters can be expressed as variables of optimizations, contact

forces can be defined as complementarity constraints, or optimization processes can be

divided in series of problems of rising complexity. In this section the possibility to split

the solution into two consecutive optimizations (introducing an intermediate problem

where dynamic terms are neglected) and the effects of the definition of contact forces as

optimization variables are discussed, a deepened analysis of the performances obtained

by the exploitation of these methods is also proposed.

5.2.1 Pseudo-Static Intermediate Step

During the initial phases of the development of this project, we struggled even to obtain

not very significant results; this was due to a combination of things: the great dynamic

complexity of the in case problem, the use of less effective optimization algorithms (such as

direct multiple shooting) and an imperfect knowledge of the CasADi framework. Because

of these circumstances, we tried different strategies to solve the dynamic problem and one

of them turned out to be very useful.

The application of Newton-type algorithms to non-convex problems leads to locally

optimal solutions and, in this sense, initial guesses have a great influence on the nature

of the movement we want to obtain. As pointed out in Section 4.1.4, the initial guess we

use in this study is a linear interpolation and, as shown in Figure 4.2, this trajectory is

quite different from an human-like motion. For this reason we thought that a split of the

problem into two consecutive optimizations (introducing a pre-computation whose goal

is to elaborate the linear interpolation in a more realistic trajectory) was a smart idea.

Analyzing how this kind of motions are generally performed by humans it appear clear

how accelerations and velocities are in general reduced to the minimum: since we have

not a particular reason to do these actions very quickly, we prefer to give importance to

the safety (stability) of the movement. In light of that we decided to run a first (fast and

relatively easy to solve) problem, where the dynamic terms of the equations of motion

are eliminated, and then upgrade the obtained solution with a second optimization where
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the whole dynamic equations are considered. Approaching the problem this way, most of

the work is done during the first phase (reducing the overall computation time) while the

upgrade, in general, needs a few iterations.

To ensure that the obtained initial guess can be useful, we have to set a cost function

that drives the solution to a quasi-static behaviour; in particular a penalization of the

velocities and the accelerations is needed (as exposed in Section 4.1.2). In this case,

in fact, we can predict that the approximation B(q)q̈ + C(q, q̇)q̇ + G(q) − Q(q, q̇, u) ≈
G(q) − Q(q, q̇, u) will hold. It’s interesting also to note that a strong penalization of

accelerations and velocities leads to a great reduction of the possibilities to move from

a configuration to the other; thinking for example at the case of the interpolation, in

absence of accelerations (and remembering the ankle constraint Equation 3.2) the only

way to complete the task is by using the hands to bring the center of mass above the

feet, in order to be able to use knees and hips to stand up. This restriction of the set

of feasible solutions has pros and cons: while on the one hand this guides the solution

to have specific characteristics, on the other it might create narrow connections between

subsets of C that might be hard to find by the solver.

As it can be seen from the previous relation, because of q̇ even the simplified expression

has a dependence from time (due to the approximation of the Coulomb model with an

hyperbolic function of the velocity). This approximation has to be maintained: if we

remove this relation the robot will have to move over a frictionless ground, whereas we

want a motion that takes advantage of the friction. For this reason this approach to the

problem cannot properly be called static and, in this sense, we coined the term “pseudo-

static”. Anyway this impossibility of removing time from the simplified expressions also

have a positive side: looking at the discrete time problem, this approximation does not

remove any variable or equation (note that the kinematic reconstruction is still needed to

relate positions and velocities of different steps); this means that the problem does not

change structure and the same cost functions and the same optimization variables can be

used.

Summarizing, we split our planning in the solution of two consecutive problems whose

characteristics are illustrated in Table 5.3. Section 5.2.3 concerns with a numerical inves-

tigation of the benefits of this technique and the one presented in Section 5.2.2.

5.2.2 Different Methods to Introduce Contact Force Constitu-

tive Relations

Given the functions that relate tangent and normal contact forces to positions and ve-

locities, we interrogate ourselves whether it is better to introduce contact force models
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Settings Pseudo-static solution Dynamic solution

Initial guess linear interpolation pseudo-static solution

Cost function Lu + Lq̇ + Lq̈ + LyH Lu + Lq̇ + Lq̈ + LyH

DT ODE model
Gi+ 1

2
= Qi+ 1

2
Bi+ 1

2

q̇i+1−q̇i
∆t

+ Ci+ 1
2
q̇i+ 1

2
+Gi+ 1

2
= Qi+ 1

2

qi+1 − qi = q̇i+ 1
2
∆t qi+1 − qi = q̇i+ 1

2
∆t

Table 5.3: Partition of the problem in two consecutive plannings. The notation must be in-

terpreted as follows: i represents the generic step, Bi+ 1
2

= B(qi+ 1
2
), Ci+ 1

2
= C(qi+ 1

2
, q̇i+ 1

2
),

Gi+ 1
2

= G(qi+ 1
2
), Qi+ 1

2
= Q(qi+ 1

2
, q̇i+ 1

2
, ui), qi+ 1

2
= qi+qi+1

2
, and q̇i+ 1

2
= q̇i+q̇i+1

2
.

directly in the computation of the equations of motion (embedded approach) or to de-

fine extra variables that, in the later optimization phase, are forced to be equal to their

expression by an equality constraint (augmented approach).

We can try to foresee the results analyzing how these two different approaches act on

the iterations of the optimal control problem. To do this we introduce the following scalar

example

m(x)ẍ+ c(x, ẋ)ẋ = u+ F (x, ẋ),

where F represent a generic external force that is a function of the position and the

velocity. This equation of motion can be discretized, for simplicity, as

m(xi)
ẋi − ẋi−1

∆t
+ c(xi, ẋi)ẋi = ui−1 + F (xi, ẋi),

xi − xi−1 = ẋi∆t.

Without considering the fact that using Ipopt we have to introduce constraints as

inequalities, we can analyze what are the effects that these two different methods of

dealing with contact forces have on the first order optimality conditions (presented in

Appendix A)

∇φ(v) +∇χ(v)λ = 0,

where v is the optimization variable, φ(v) is the cost function and χ(v) are the equality

constraints. In other words: what is the most effective way to make the solver aware that

contact forces can be exploited to reach goal configuration and to reduce input torques?
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Embedded Definition of Contact Force Models

In this case our variables of optimization are xi, ẋi and ui−1, while all the equality con-

straints where these variables appear are

χi(v) =




m(xi)
ẋi−ẋi−1

∆t
+ c(xi, ẋi)ẋi − ui−1 − F (xi, ẋi)

xi − xi−1 − ẋi∆t
m(xi+1) ẋi+1−ẋi

∆t
+ c(xi+1, ẋi+1)ẋi+1 − ui − F (xi+1, ẋi+1)

xi+1 − xi − ẋi+1∆t




= 0,

where the notation χi(v) isn’t quite proper (since in this case the index i isn’t define in the

same set as the original one). Remembering that the Lagrange multiplier vector has the

dimension of the vector of the equalities, in this case we have (with the same uncorrect

notation) λi ∈ R4.

During the optimization process, the possibility of interacting with the environment

lies in the terms of ∇χ(v) where the dynamic constraints are differentiated with respect

to positions or velocities. The terms of this gradient matrix have the following form:

∇χi(v) =




∂m(xi)
∂xi

ẋi−ẋi−1

∆t
+ ∂c(xi,ẋi)

∂xi
ẋi − ∂F (xi,ẋi)

∂xi
1 0 −1

m(xi)
∆t

+ ∂c(xi,ẋi)
∂ẋi

ẋi + c(xi, ẋi)− ∂F (xi,ẋi)
∂ẋi

−∆t −m(xi+1)
∆t

0

−1 0 0 0


.

Looking at the gradient matrix it is possible to see how the influence of the contact

forces lies exclusively in the [1 : 2, 1] terms, where their expression is differentiated.

Anyway there is not any guarantee that such terms are big enough to prevail on the

remaining derivatives of the dynamic constraints and that they are able to drive the

optimization in the direction where the contact forces increase. In order to have some

numbers as reference for the humanoid case, we report as example that using the values

assigned in Section 3.4 we obtain

∂Fn
∂y

∣∣∣∣
y=20 cm

≈ −10−3 N

m
,
∂Fn
∂y

∣∣∣∣
y=50 cm

≈ −10−14 N

m
.

As it can be seen, because of the extremely high value of contact stiffness, these gradients

tend to zero very rapidly and we can expect that in general (with the hands separated

from the ground) they are negligible with respect to the others members of the derivatives.

To conclude we can state that using this method we are certain that, at every iteration,

contact forces will coincide with their expressions (that is not necessary a positive aspect)

and that, if the hands are separated from the ground, the derivatives of these functions

may become too small to drive the optimization to a hands-ground interaction.
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Augmented Definition of Contact Force Models

An alternative to the direct introduction of the contact forces model in the computation

of the external force vector, is the definition of additional optimization variables and

the introduction of a set of equality constraints that relate these new variables with the

positions and the velocities of their points of application. Doing this we are adding to the

original 2 · n · (N + 1) + n ·N = 1510 other 2 · n ·N = 1000 optimization variables and, in

this sense computation time per step will surely be longer (properly speaking the number

of variables we introduce is in general ≤ 1000 since sometimes we do not introduce all the

contact forces in the equations of motion).

Denoting these additional optimization variable at the generic step i as Fi, the vector

that contains all the equalities where our generic variables (xi, ẋi, ui−1, and Fi) are present

assume the form

χi(v) =




m(xi)
ẋi−ẋi−1

∆t
+ c(xi, ẋi)ẋi − ui−1 − Fi

xi − xi−1 − ẋi∆t
Fi − F (xi, ẋi)

m(xi+1) ẋi+1−ẋi
∆t

+ c(xi+1, ẋi+1)ẋi+1 − ui − Fi+1

xi+1 − xi − ẋi+1∆t

Fi+1 − F (xi+1, ẋi+1)




= 0.

Remembering once again that the number of Lagrange multipliers is equal to the

number of equality constraints, in this case we have λi ∈ R6.

This time the gradient matrix of the equality constraints is

∇χi(v) =




∂m(xi)
∂xi

ẋi−ẋi−1

∆t
+ ∂c(xi,ẋi)

∂xi
ẋi 1 −∂F (xi,ẋi)

∂xi
0 −1 0

m(xi)
∆t

+ ∂c(xi,ẋi)
∂ẋi

ẋi + c(xi, ẋi) −∆t −∂F (xi,ẋi)
∂ẋi

−m(xi+1)
∆t

0 0

−1 0 0 0 0 0

−1 0 1 0 0 0



.

In this case when the derivatives of the dynamic constraints are performed, forces

aren’t differentiated unless the variable of differentiation are the forces themselves (term

[4, 1]), whereas the derivatives of the forces expressions (with respect to positions or veloc-

ities) are executed exclusively when the additional constraints are differentiated (terms

[1 : 2, 3]). If we compare this matrix with the one of the previous section, we can see

how in this case the derivatives of the contact forces expressions are not added to the

remaining dynamic terms and, moreover, they are multiplied to new dedicated Lagrange

multipliers. In light of this we can say that, during optimization, contact forces derivatives

are isolated from the remaining dynamic constraints and these new multipliers might be

used to first achieve more relevant restrictions (such as the minimization of the inputs
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Embedded Augmented

D PS+D D PS+D

T1

iterations 200 420 (=383+37) 181 323 (=291+32)

time (s) 311 386 (=337+49) 707 555 (=442+113)

T2

iterations 317 723 (=703+20) 193 225 (=209+16)

time (s) 648 467 (=440+27) 827 359 (=308+51)

T3

iterations 953 1133 (=1114+19) 346 286 (=265+21)

time (s) 1408 618 (=592+26) 1170 377 (=311+66)

T4

iterations 86 283 (=258+25) 91 269 (=250+19)

time (s) 128 210 (=174+36) 257 305 (=240+65)

Table 5.4: Comparison between the embedded and the augmented definition of contact

force models and between the direct dynamic solution (D) and the two steps optimization

with the computation of a pseudo-static initial guess (PS+D). T1 represents the “prone

to standing” task, T2 the “standing to prone” task, T3 the “supine to standing” task, and

T4 the “standing to supine” task.

or the achievement of the final configuration) than the equalities between contact force

variables and their expression.

5.2.3 Numerical Validation

In this section we analyze from a numerical point of view the different techniques proposed

in Section 5.2.1 and in Section 5.2.2: on the one hand we have the presumed increase of

performances caused by a division of the problem into two consecutive optimizations; on

the other hand we have the differences between an embedded definitions of the contact

force constitutive equations and an augmented formulation of the NLP, where these forces

are introduced as optimization variables. To compare these alternatives we performed a

series of tests where all the four elementary tasks (exposed in Section 4.2) are investigated;

each one of these tasks has been approached in four different ways (originated by the

combinations of the 2+2 previous alternatives). In particular we focused our attention

on the number of iterations and the total time necessary to obtain each solution and, in

order to find possible discrepancies between the computed trajectories, a check is also

performed. In Table 5.4 all the results are reported.

We start by saying that all the alternatives proposed in this section gave identical

results in term of computed trajectory, except for the “supine to standing” task where,

because of the low weight related to the inputs penalization in the cost function, the
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intermediate step drove the solution to assume a different behaviour.

Analyzing the advantages caused by the introduction of a pseudo-static step, it is

interesting to note that the number of iterations necessary to find the intermediate results

are generally higher than the ones necessary to obtain a direct dynamic solution, fact that

is in contrast with our reflection on the ease of solution of the pseudo-static optimization.

Anyway in the pseudo-static case each iteration requires almost half of the time (than

a dynamic one) and an overall reduction of computation time can be seen (especially

in case of a “supine to standing” task). As it can be seen in all the cases the dynamic

upgrade to the pseudo-static solution required very short amount of iterations and time.

We also underline how the pseudo-static approach leads to an general regularization of

the computation times, while the direct dynamic approach shows great variations of time

from a task to the other.

For what concerns the comparison between the embedded and the augmented def-

inition of contact forces, a general reduction of the number of iterations is caused by

the definition of contact forces as optimization variables but in this case each iteration

needs approximately twice the time. The addition of these two aspects leads to simi-

lar performances of these methods, with a slight greater effectiveness of the embedded

technique.

In conclusion we can state that the intermediate step is helpful in terms of computation

time but it is not essential, whereas the excessive increase of the time per step ratio of

the augmented approach gets the better of its higher efficiency.

5.3 Taking Non-Active Contact Forces into Account

As pointed out before, the codes we developed are equipped with the option of limiting

the number of the considered contact forces to the minimum necessary. This operation is

acted with the goal of reducing as possible the complexity of the dynamic equations, with

the consequent reduction of the computation time. Furthermore in case of a symbolic

representation of the contact forces, this avoids the introduction of hundreds of optimiza-

tion variables. On the other hand, this fact can be seen as a limitation to the possible

interactions between the robot and the environment. For this reason we decided to con-

duct a test which goal is to compare the nature of the trajectory and the performances of

different ways to take non-active contact forces into account. As a reference the solution

of the “standing to supine” case (presented in Section 4.2.3) is considered, and two ad-

ditional alternative approaches are investigated. In the first case we simply analyze the

results obtained by introducing all the contact forces (Acf ≡ {1, . . . , n}). In the second

case we add a series of geometric constraints that avoid the contact with the ground of
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Embedded Augmented

D PS+D D PS+D

M1

iterations 953 1133 (=1114+19) 346 286 (=265+21)

time (s) 1408 618 (=592+26) 1170 377 (=311+66)

M2

iterations 676 1391 (=1372+19) 355 268 (=247+21)

time (s) 1120 1342 (=1315+27) 2363 489 (=357+132)

M3

iterations 239 1233 (=1214+19) 379 255 (=234+21)

time (s) 283 489 (=468+21) 775 398 (=363+35)

Table 5.5: Comparison between the performances obtained by the introduction of: the

minimum necessary number of contact forces (M1), the total number of contact forces

(M2), and the minimum number of contact forces with additional geometric constraints

that check possible collisions of non-active joints (M2). The entry “D” refers to the direct

dynamical approach, while “PS+D” is related to the double step solution of the dynamic

problem (with a pseudo-static intermediate optimization).

the excluded joints (yOi > 0 with i ∈ {1, . . . , n}\Acf).

As exposed in Section 4.2.3, for the in case problem the contact forces that are neces-

sary for the movement are the ones applied to the hips and the hands. In light of this, the

first alternative proposed consists in the introduction of three additional contact forces

(i.e. 2 · 3 · N = 600 extra optimization variables) while the second method leads to a

collision detection of three joints. In Table 5.5 the obtained results are summarized.

We start by reminding that, as pointed out in Section 5.2.3, for the in case task the

trajectory obtained with the double step approach is slightly different form the one given

by the direct solution of the dynamic problem. Using these alternative techniques to

deal with non-active forces we observed the same pattern: all the double step optimiza-

tions computed the same trajectory and all the direct dynamic problems led to the same

solution, except for the collision detection (M3) embedded dynamic (D) approach that

brought to a movement equal to the one obtained using the double step method.

Comparing the first two alternatives (minimum and total number of contact forces

introduced), the first aspect to underline is that the number of iterations of these two

approaches are similar, this fact suggests that the introduction of additional contact forces

do not have the tendency to drive the solver to different solutions. The increased number

of variables is reflected in a general loss of performance in terms of computation time.

Going on to the analysis of the effects of the collision detection of the non-active

joints, astonishing results are obtained: this approach leads to a general reduction of the

computation time even if compared with the first technique where non-active joints are
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not monitored any way! In some cases a decrease of the time per iteration ratio is also

registered.

To conclude we can state that the introduction of geometric constraints to avoid

collisions between non-active joints and the ground is certainly the best way to ensure

that the computed trajectories are actually exploitable.

5.4 Single Cost Term Influence on the Resulting Tra-

jectories

In Section 4.1.2 we illustrated what are the terms that compose our objective function, we

are now interested in deepening our comprehension of the effects that each one of these

terms has on the final behaviour of the humanoid. To do that we analyze the usual “supine

to standing” task (presented in Section 4.2.3) and we perform a series of tests where, each

time, we reduce by a factor of 103 all but one of the cost function weights W . The reason

why we only reduce the terms that aren’t object of the in case investigation is that their

presence, even with a minimal influence, avoids completely unnatural movements (like

the one that we could obtain with a penalization of the hands-ground distance only).

In this case we preferred to directly run a dynamic optimization (referring to the alter-

natives presented in Section 5.2.1), this choice is mainly due to the fact that a reduction

of the weight related to the accelerations makes a pseudo-static result unsuitable as ini-

tial guess. Furthermore a direct dynamic optimization does not influence in any way the

final behaviour of the humanoid. For what concerns the other techniques we presented,

in this case we exploited an augmented formulation of contact forces whereas we turned

off non-active forces. In order to have a comparison, each one of the following figures

includes in the background a red profile that represents the original movement (obtained

with the simultaneous use of every cost term).

Starting from the effects that the penalization of the input torques has on the resulting

movement, in Figure 5.1 we propose the trajectory obtained reducing all but one the cost

terms presented in Section 4.2.3. As it can be seen, in this case the main tendency of

the robot is to place itself in a vertical configuration that ideally eliminate the necessity

of any input. This position is achieved with an intense exploitation of the arms inertia

(since the related weight is relatively low): as shown in Figure 5.2 the humanoid support

the rising phase with impulsive torques applied by the shoulder and the elbow actuators.

Figure 5.2 also report the percentages of the total cost to ascribe to each term; as it can

be seen, despite of its reduced value, the weight related to the accelerations avoids an

excessively quick movement from the initial position to the vertical one. The amount of
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time necessary to the computation of this result is 946 s whereas the number of iteration

is equal to 245.

Figure 5.1: Effects of a strong penalization of the inputs torques on the “supine to stand-

ing” motion (blue), compared with the reference result (red); 0.71 s per frame.
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Figure 5.2: Input torques as a function of time and percentages of the total cost related to

each term of the objective function; “standing to supine” case with a strong penalization

of the input torques.

Moving on to the analysis of the effects of the term that penalize the velocities, in

Figure 5.3 the obtained trajectory is illustrated. As logical, in the first phase of the move-

ment the humanoid strongly accelerates in order to reach velocities that are maintained

almost constant for the remaining time. Note that this trajectory lead to great effort of

the knee actuator. Figure 5.4 confirms the previous observations and shows how, this

time, only a weak connection between the penalization of the velocities and the inputs is

present. This time the optimization required 694 s and 199 iterations.
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Figure 5.3: Effects of a strong penalization of the velocities on the “supine to standing”

motion (blue), compared with the reference result (red); 0.71 s per frame.

0 1 2 3 4 5

Time (s)

−1.0

−0.5

0.0

0.5

1.0

1.5

A
n

gu
la

r
ve

lo
ci

ti
es

(r
ad

/s
)

q̇1

q̇2

q̇3

q̇4

q̇5

Inputs Velocities Accelerations Hands-ground gap
0

5

10

15

20

25

30

35

S
in

gl
e

te
rm

co
n
tr

ib
u

ti
on

to
th

e
to

ta
l

co
st

(%
) Link 1

Link 2

Link 3

Link 4

Link 5

Figure 5.4: Angular velocities as a function of time and percentages of the total cost

related to each term of the objective function; “standing to supine” case with a strong

penalization of the angular velocities.

In Figure 5.5 the trajectories obtained by a high penalization of the accelerations

are illustrated. This time the computed motion (blue) is quite similar to the original

one (red), the main difference is shown in the central phase of the movement where the

reference trajectory is strongly influenced by the penalization of the input torques and, for

this reason, the humanoid assumes a curled configuration. In Figure 5.6 the accelerations

as a function of time for the in case result are proposed. Figure 5.6 also represent the

percentages of the total cost to ascribe to each term, in this case a weak relation with the

cost terms associated to the inputs and the hands-ground distance can be observed. In

this case the running time was equal to 883 s and 246 iterations were needed.
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Figure 5.5: Effects of a strong penalization of the accelerations on the “supine to standing”

motion (blue), compared with the reference result (red); 0.71 s per frame.
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Figure 5.6: Angular accelerations as a function of time and percentages of the total cost

related to each term of the objective function; “standing to supine” case with a strong

penalization of the angular accelerations.

Finally we report the results obtained imposing to the humanoid an inversely propor-

tional to the time penalization of the hands-ground distance. As it can be seen this motion

(presented in Figure 5.7) consists in a rise of the center of mass of the system while the

hands remain as long as possible in contact with the ground and all the stand-up move-

ment is concentrated in the last 0.7 s, where the humanoid makes a very quick movement

to reach the goal position. Figure 5.8 shows how this time an high penalization of a single

term is unavoidably in conflict with the effects caused by the other terms of the objective

function. In particular the tendency to leave the hands as long as possible in contact with

the ground leads to high values of velocities and accelerations in the very last part of the
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movement. Figure 5.8 also illustrate the evolution of the contact forces applied by the

ground to the hands; as it can be seen, the original aim of this term is achieved: since

the hands have to be in contact with the floor, the humanoid has the tendency to load

as possible this contact in order to reduce to the minimum the input torques. The time

necessary to plan this motion was equal to 1272 s whereas 316 iterations were needed.

Figure 5.7: Effects of a strong penalization of the hands-ground distance on the “supine

to standing” motion (blue), compared with the reference result (red); 0.71 s per frame.
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Figure 5.8: Normal and tangential hands contact forces as a function of time and percent-

ages of the total cost related to each term of the objective function; “standing to supine”

case with a strong penalization of the hands-ground distance.
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Chapter 6

Further Improvements

In this study we demonstrated the possibility to exploit numerical optimization methods

for motion planning of complex robotic systems. We hope that the presented results will

encourage future works to deepen the pointed out aspects. On our part, there are many

topics we want to analyze and develop; in this section we briefly summarize our future

aims.

A deeper knowledge of the frameworks and the used algorithms is probably the first

step to make. During this study we realized how a better organization of the codes might

have a great influence on the computation times and even on the nature of results. There

is a wide range of slightly different possibilities to approach these problems, and sometimes

choose one instead of another can make a failure become a success. Furthermore, the use

of high-level interfaces lead to a great capability of quickly implementing very complex

and efficient algorithms but, on the other hand, it precludes the possibility to understand

the real complexity of the tools we are exploiting.

From a physical point of view, an in-depth analysis about the different alternatives to

write dynamic equations has to be conducted. As exposed in Chapter 3 the expression

of some of the geometric and dynamic entities in a closed form gave us the opportunity

to drastically reduce the number of nodes of the dynamic equations; even if this method

worked in our case, this is an approach tailored for the in case problem and it cannot be

extended to more complex or three-dimensional problems. A pragmatic comparison be-

tween the form and the complexity of the expressions generated by methods of different

nature (such as Euler-Lagrange and Newton-Euler approaches) has to be made. Even

some variations to the standards application of the Newton-Euler equation might give

some interesting results, for example the various alternatives to choose the location of the

pivot point of the rotational equilibria can result in the systematic elimination of some

undesired terms. In Section 3.7 we pointed out the possibility to exploit the structure
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of the optimization problem to develop new approaches to the definition of the dynamic

constraints, in this case taking advantage from the efficiency with which these algorithms

treat equality constraints we tried to reduce to the minimum the complexity of the dy-

namics and to burden as possible the optimization routine. Moreover it is fundamental

to remember that the goal of all these analysis is to reduce the computation time (that

is strictly related to number of nodes of the equations) and, as illustrated in Section 3.1,

sometimes even very trivial tricks can make the difference in this sense.

In Section 4.1.2 we introduced the basic concepts of multi-objective optimization;

going on with the application of numerical optimization techniques this is a subject that

must be considered. Bad-scaled problems and inadequate cost functions make the relation

between the results of the motion planning problem and the inputs (such as the weights

of the cost functions) discontinuous. As pointed out, in case of a non-convex Pareto front

the use of a weighted sums of the cost terms leads to the impossibility to explore all

the optimal solutions; this fact is unacceptable considering that the main goal of motion

planning is exactly the exploration of the different solutions to the problem.

Using the technique presented in Section 5.2.1 some other topics came to our atten-

tions. Numerical optimization methods are extremely sensitive to the use of adequate

initial guesses. A basic approach to this problem consists in the introduction of only the

initial values of the primal optimization variables, not remembering that also dual vari-

ables and barrier function parameters are objects of the converge process. For example

when a pseudo-static solution is used to warm start the dynamic problem, the optimization

process begins its search without the knowledge of the values of the Lagrange multipliers

and with extremely relaxed barrier parameters. In this sense, the introduction of complete

initial guesses might greatly speed up the convergence of the second optimization.

Another field where we lack of knowledge is the one of the solvers. Ipopt gives a wide

selection of linear solvers for sparse problems, in this study we used the ma57 routine but,

with some superficial tries, we realized that in some cases there might be better choices.

Once the planning problems will be adequately analyzed, the natural evolution of this

approach consists in the Nonlinear Model Predictive Control (NMPC) technique. This

method exploits the structures presented in this study, to on-line compute new optimal

trajectories in case the measured configurations are different from the ones established.

If each planning is fast enough to be computed in real time, NMPC gives the ability to

control the robot with great effectiveness.



65

Finally we have to remember how the original aim of the thesis was the development of

hybrid approaches to the motion planning problem. In Section 1.1.2 we briefly overview

the world of the sampling-based algorithms but these are only one of many. Recently

some others techniques (for example the ones based on the Lyapunov stability theory)

has been proposed, leading the way to a new set of prospective advancements.
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Appendix A

Elements of Numerical Optimization

A positive aspect of using optimization software (such as Ipopt) is that they make you

able to deal with complex optimization problems very quickly, even if your mathematical

background is not as wide as it should be. On the other hand, non-convex optimization

problems present a great variety of aspects that needs to be in depth understood in

order to obtain valid and generalizable results. Because of that, in this appendix, we

introduce, from a very basic point of view, some fundamental concepts of non-convex

optimization. This analysis doesn’t want to be an exhaustive dissertation on numerical

optimization, only the topics related to the methods we’ve used during our studies will

be analyzed; furthermore we underline that practical optimization algorithms present

much more complicated structures than the ones presented here (for a complete and very

detailed analysis see [19]). The presentation of these topics is structured following [2].

In the first section essential concepts of nonlinear optimization are introduced. In

the second part we will present Interior-Point Method (IPM), an efficient algorithm to

solve inequality constrained optimization problems. The third section treats Algorithmic

Differentiation (AD), an accurate and very efficient routine to compute derivatives.

Tools we present in this appendix will give us a clearer idea about how NLPs derived

in Chapter 2 can be handled.

A.1 Optimality Conditions

In this section we illustrate the first and second order optimality conditions, that represent

a set of necessary and sufficient conditions to state that a point is a local minimizer of a

given function (subject to both equality and inequality constraints).

As seen in Chapter 2 direct methods lead to the solution of NLPs with the following

general form.
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Problem 1 (Non-Linear Program).

minimize
v

φ(v) (objective function)

subject to χ(v) = 0 (equality constraints)

ψ(v) ≤ 0 (inequality constraints)

where φ : Rnv → R , χ : Rnv → Rnχ and ψ : Rnv → Rnψ are assumed to be twice

continuously differentiable.

Let Ω := {v ∈ Rnv | χ(v) = 0, ψ(v) ≤ 0} denote the feasible set (set of all points

that satisfy the constraints) and v∗ ∈ Ω be a feasible point. A feasible point needs to

satisfy two conditions to be called a solution of the NLP; likewise unconstrained opti-

mization problems need a first order condition (∇φ(v∗) = 0) and a second order condition

(∇2φ(v∗) � 0).

Before we can define the optimality conditions, we need to describe the feasible set

in the neighborhood of the candidate point v∗; it may be that not all the inequality

constraints need to be considered. We define the ith inequality constraint active if and

only if ψi(v
∗) = 0 and inactive otherwise. Let us also denominate the index set of all

active inequality constraints A(v∗) ⊂ {1, 2, ..., nψ} as the active set.

With the purpose of verifying if v∗ is a local minimizer, we have to check the following

qualification.

Definition 1 (Linear Independence Constraint Qualification). The LICQ holds at v∗ ∈
Ω iff all vectors ∇χi(v∗) for i ∈ {1, 2, ..., nχ} and ∇ψi(v∗) for i ∈ A(v∗) are linearly

independent.

Defining a vector where we stack all the equality constraints and the active inequality

constraints

χ̃(v) =

[
χ(v)

ψi(v), i ∈ A(v∗)

]
: Rnv → Rnχ̃

the LICQ is satisfied if the Jacobian ∂χ̃
∂v

(v∗) has full row rank.

For inequality constrained problems the equivalents of the first order conditions of

optimality are the Karush-Kuhn-Tucker optimality conditions. Generally speaking (for

non-convex problems) these are only necessary conditions to state that v∗ is a local min-

imizer but, in the instance of a convex problem, they are sufficient for global optimality.

Theorem 1 (Karush-Kuhn-Tucker optimality conditions). If v∗ is a local minimizer of

the NLP and the LICQ holds at v∗, there exist Lagrange multipliers vectors λ∗ ∈ Rnχ and
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µ∗ ∈ Rnψ such that

∇vL(v∗, λ∗, µ∗) = 0,

χ(v∗) = 0,

ψ(v∗) ≤ 0,

µ∗ ≥ 0,

µ∗Tψ(v∗) = 0,

where L(v, λ, µ) = φ(v) + λTχ(v) + µTψ(v) is the Lagrangian function whereas a triple

(v∗, λ∗, µ∗) that satisfies LICQ and KKT conditions is called KKT point.

The last three conditions exposed in the KKT problem are called complementarity

conditions and for each index i ∈ {1, 2, ..., nψ} they define an L-shaped set in the (ψi(v), µi)

space. Each one of these sets is a non-smooth manifold with a non-differentiable point in

the origin. We call weakly active a constraint for which our candidate v∗ gives ψi(v
∗) =

0 ∨ µ∗i = 0 and strictly active a constraint for which our candidate v∗ gives ψi(v
∗) =

0 ∨ µ∗i > 0. Eventually we say that strict complementarity holds if and only if, for a

specific KKT point, all active constraints are strictly active.

In case of strict complementarity of a KKT point, the optimization problem can (lo-

cally) be seen as a problem with equality constraints only (the ones defined by the vector

χ̃(v)).

At this point we are able to introduce the Second Order Optimality Conditions.

Theorem 2 (Second Order Optimality Conditions). Consider: a point v∗ where LICQ

holds, multipliers λ∗ and µ∗ such that the KKT conditions are satisfied, a basis Z ∈
Rnv×(nv−nχ̃) of the null space of ∂χ̃

∂v
(v∗) ∈ Rnχ̃×nv and let strict complementarity hold.

Projecting the Hessian of the Lagrangian function in the null space of the Jacobian of χ̃(v∗)

(ZT∇2
vL(v∗, λ∗, µ∗)Z), we obtain the so called reduced Hessian. The following statements

hold:

• Second Order Necessary Conditions: if v∗ is a local minimizer, then the reduced

Hessian is positive semidefinite.

• Second Order Sufficient Conditions: if the reduced Hessian is positive definite, v∗ is

a local minimizer unique in its neighborhood.

With the introduction of Theorem 1 and Theorem 2 we have presented all the elements

to be able to distinguish a local minimizer; in Section A.2 we will discuss how to approach

these conditions from a numerical point of view.
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A.2 NLP Solution via Interior-Point Method

As seen, inequality constraints lead to non-smooth complementary conditions; this means

that standard Newton’s method cannot be applied directly to solve KKT problems. In

this section we will show a method to deal with this kind of problems, the basic idea is

to substitute non-smooth conditions with differentiable functions that, at each step of an

iterative process, are reshaped in order to give a better approximation of the original con-

straints. The family of methods we present is called interior-point method and, together

with Sequential Quadratic Programming, it is the most common way to numerically solve

NLPs.

We start analyzing the complementarity conditions of the KKT problem, that is pro-

posed in a less compact version here

∇φ(v∗) +∇χ(v∗)λ∗ +∇ψ(v∗)µ∗ = 0,

χ(v∗) = 0,

ψ(v∗) ≤ 0,

µ∗ ≥ 0,

µ∗iψi(v
∗) = 0 for i ∈ {1, 2, ..., nψ}.

We can think to approximate these conditions with a single set of smooth equations:

µ∗iψi(v
∗) + τ = 0 with τ > 0. These are hyperbolas in the (ψi(v

∗), µ∗i ) plane that (for

τ → 0) tend to the L-shaped sets of the the complementarity conditions.

In order to see how the hyperbola approximation has changed the form of our NLP

we have to make some operations: expand the last term of the first KKT condition

∇ψ(v∗)µ∗ =

nψ∑

i=1

µ∗i∇ψ(v∗)[:, i] =

nψ∑

i=1

µ∗i∇ψi(v∗),

substitute the hyperbola approximation of µ∗i in the latter equation

nψ∑

i=1

µ∗i∇ψi(v∗) = −τ
nψ∑

i=1

1

ψi(v∗)
∇ψi(v∗),

noting that 1
ψi(v∗)

∇ψi(v∗) = ∇ log(−ψi(v∗)), we have

∇ψ(v∗)µ∗ = −τ
nψ∑

i=1

∇ log(−ψi(v∗)),

gathering this expression with ∇φ(v∗) we have

∇φ(v∗) +∇ψ(v∗)µ∗ = ∇(φ(v∗)− τ
nψ∑

i=1

log(−ψi(v∗))).
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Finally we can state that the KKT conditions for the above NLP are well approximated

(for small values of τ) by the first order optimality conditions of the following problem.

Problem 2 (Barrier Problem).

minimize
v

φ̂(v, τ) = φ(v)− τ
nψ∑

i=1

log(−ψi(v))

subject to χ(v) = 0

The approach to this new problem is the following: we solve it for a big value of τ (in

order to have a slightly nonlinear problem), with this solution we initialize a new search

using a smaller value of τ , and we iterate until τ is small enough and v∗ is reached. A

key point of the solution of this problem is to ensure that iterations don’t jump to the

second branches of the hyperbolas (this is generally achieved by shortening steps).

To conclude this section, we have to explain how to solve each step (one for every

value of τ) of Problem 2: every step can be classified as a nonlinear optimization with

equality constraints only. We start writing the first order conditions of optimality for

these problems

∇vL̂(v, τ, λ) = ∇vφ̂(v, τ) +∇χ(v)λ = 0,

χ(v) = 0.

Starting from an initial guess [vT0 λT0 ]T , Newton’s method generates a sequence of

iterations (denoted by the index k) by linearizing the previous equations.

[
B̂(vk, τ, λk) ∇χ(vk)

∇χ(vk)
T 0

][
v − vk
λ− λk

]
+

[
∇vL̂(vk, τ, λk)

χ(vk)

]
=

[
B̂(vk, τ, λk) ∇χ(vk)

∇χ(vk)
T 0

][
v − vk
λ

]
+

[
∇vφ̂(vk, τ)

χ(vk)

]
= 0

where the matrix on the left is called KKT matrix and B̂(vk, τ, λk) = ∇2
vL̂(v, τ, λ) is

introduced to underline the fact that in many circumstances using an approximation of

the Hessian of the Lagrangian might be very convenient.

The last equation is linear in the variable [vT λT ]T and it can be easily solved inverting

the KKT matrix.

A.3 Algorithmic Differentiation

As we have seen in the previous sections of this appendix, differentiation is a fundamental

process in numerical optimization. Common ways to compute derivatives (such as Com-

puter Algebra Systems or Finite Differences) can become too slow or too inaccurate as
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the expressions get longer. In this section we present the basic idea behind Algorithmic

Differentiation methods used by numeric optimization software such as CasADi.

Let us consider a function ρ(v) : Rnv → Rnρ , that is composed by a sequence

of nσ elementary operations σi(v) for i ∈ {0, 1, ..., nσ − 1}. We denote the inputs

as v1, v2, ..., vnv and the result of the ith intermediate elementary operation as vnv+i+1

(= σi(v1, v2, ..., vnv+i)).

In order to compact results, we introduce augmented vectors that collects the inputs

and the first intermediate results:

ṽ0 = v =




v1

...

vnv


, ṽ1 =




v1

...

vnv

vnv+1



, ..., ṽnσ =




v1

...

vnv
...

vnv+nσ



.

In the same way we define the augmented elementary function:

σ̃i(ṽi) =




v1

...

vnv+i

σi(v1, v2, ..., vnv+i)



.

Using this representation, we can exploit the chain rule of differentiation to achieve

an useful result. Defining C as a selection matrix, that extract form the last result (ṽnσ)

the desired outputs, we can put our initial expression in the following form:

ρ(v) = C · σ̃nσ−1(σ̃nσ−2(...(σ̃1(σ̃0(v))))).

At this point we are interested in the computation of the Jacobian matrix of ρ(v).

Since the obtained expression collects every elementary operation one inside the other,

the derivative of the the function is obtained by the multiplication of the derivatives of

each elementary function:

∂ρ

∂v
= C · ∂σ̃nσ−1

∂ṽnσ−1

· ∂σ̃nσ−2

∂ṽnσ−2

· ... · ∂σ̃1

∂ṽ1

· ∂σ̃0

∂ṽ0

.

This result already simplify and make systematic the operation of differentiation but,

if we examine how each Jacobian matrix is composed, we can see that the generic ∂σ̃i
∂ṽi

has
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the following structure:

∂σ̃i
∂ṽi

=




1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

∗ ∗ · · · ∗




where the row composed by ∗ has at maximum two non-zero elements (since each elemen-

tary operation has maximum two inputs).

The last result explains why AD is so efficient: every step of multiplication consists in

a sequence of computational cost free operations (where 0 or 1 elements are involved) and

a multiplication of a vector (composed by two non-zero elements only) for a very sparse

matrix.

The product of the Jacobian matrices can be evaluated in the Forward Mode (FM)

or Backward Mode (BM), depending on the order with which the multiplications are

performed.

Introducing a so called seed vector p ∈ Rnv (whose role is to select the “direction” of

the derivative), the FM starts from the multiplication ∂σ̃0
∂ṽ0
p and makes a recursion whose

result is the directional derivative of ρ(v): ∂ρ
∂v
p. It’s important to note that in this case

if we want to obtain the full Jacobian matrix ∂ρ
∂v

we have to call the algorithm nv times,

using at every sweep a seed vector corresponding to a different unit vector in Rnv (it can

be shown that the computational cost of the full Jacobian is directly proportional to nv).

On the other hand, BM starts the recursion from λTC (where λ ∈ Rnρ is the seed

vector that every sweep combine the rows of the full Jacobian) to reach the result λT ∂ρ
∂v

.

Note that this time if we want to obtain ∂ρ
∂v

we have to call the algorithm nρ times, using

at every sweep a seed vector corresponding to a different unit vector in Rnρ (this time the

computational cost is directly proportional to nρ).

The last observations explain why BM is so efficient in numerical optimization prob-

lems: thinking for example at the Lagrangian function (that is a scalar function: nρ = 1)

of a system with a huge number of states (nv � 1), BM involve a great computational

economy. As a drawback BM has the necessity to store all the intermediate variables and

partial derivatives, and it is also true that not all the times we have a function where

nv > nρ.
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