
Academic year 2015 

 

UNIVERSITÀ DI PISA 

 

DIPARTIMENTO DI INGEGNERIA CILVILE E INDUSTRIALE 

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA AEROSPAZIALE 

 

AEROSPACE ENGINEERING 

MASTER THESIS 

 

DEVELOPMENT OF 

FLIGHT CONTROL LAWS FOR 

A SMALL-SCALE HELICOPTER 
 

 

Supervisors:   

Ing. Francesco Schettini  

Prof. Roberto Galatolo  

Prof. Eugenio Denti  

Ing. Giampietro Di Rito  

 Author:       

Roberto Fiorenzani 



                                

  



 

 

 

 

 

 

 

To my parents 

 

 

 

  



ii 
 

 

 

ABSTRACT 

 

 

University of Pisa is performing a research finalized to develop Rotary Unmanned 

Aerial Vehicles (RUAV) starting from a small commercial RC helicopters. These 

vehicles will be capable to perform planned missions in autonomous or automatic 

flight, including the take-off and landing phase, also thanks to sense and avoid 

system capabilities. At the moment the activities are focused on a small 

helicopter, T-REX 500 ESP, equipped with a GPS, inertial sensor and a data 

acquisition system, available at the department. 

This thesis will focus on the development and verification of the control laws. As 

first step, a linear model will be developed and validated, by comparing the open 

loop responses with those ones provided by a complex non-linear model, carried 

out in a parallel work, and flight time histories. This linear model will be based on 

the aerodynamic derivatives to be evaluated in the trim conditions, obtained by 

means of a specific model. The linear model will be used to synthetize the control 

laws that should guarantee the automatic control of the speed components along 

the three body axes. To this end, several controller solutions will be studied and 

compared in order to identify the best architecture. The developed controllers will 

be verified in different flight condition by means of a simulation tests. 
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Notations 

 

A Rotor area 

a cl_alpha 

a1 No fethering plane and rotor angle (xz) 

A1 Cyclic command (yz) 

a1s Rotor and shaft angle (xz) 

αd Rotor and velocity angle (xz) 

At Tail rotor area 

B1 Cyclic command (xz) 

b1 No fethering plane and rotor angle (yz) 

b1s Rotor and shaft angle (yz) 

Cms Rotor moment coefficient 

Ct Thrust coefficient 

δ cd0 

DL Disk load 

D0 coeff. di resistance 

e offset hinge 

f Longitudinal position center of mass (x axis) 

l Lateral position center of mass 

γ Lock’s number 

h Longitudinal position center of mass (z axis) 

HD Force parallel to the rotor 

ht Tail rotor position (z) 

λh inflow in hovering 

λi inflow 

lt Tail rotor position (x) 

μ Ratio horizzontal speed 

Ms Moment due hingeless rotor 

Ω velocità angolare 

R Main rotor radius 

ρ Air density 
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Rt Tail rotor radius 

σ Rotor solidity 

σt Tail rotor solidity 

TD Force perpendicular to the rotor 

Vtip Velocity at rotor tip 

W weight 

wc Non-dimentional weight 
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Introduction 

 

 

This thesis is part of a larger study of the University of Pisa on Rotary Unmanned 

Aerial Vehicle of small dimension. 

These vehicles have unique capabilities, such as vertical take-off and landing, 

maintain hovering for an extended period of time and high flight maneuvering; 

therefore them developing is in a growing interest. 

The T-REX 500 ESP is the vehicle owned in department, where the identification 

of the non- linear system has been developed. 

The purpose of this thesis is the development of flight control laws for the 

automatic flight mode. 

In the automatic flight mode the pilot does not command the swash plate, but the 

motion of the vehicle by assign the velocity along the three body axis and the 

control ensure the stability during the flight checking the attitudes and the 

velocities. 

A particular function of the automatic mode is the hovering, where, without 

commands of the pilot, the helicopter maintaining the stability in a specific 

geographic point by the feedback signals of the GPS and inertial sensor equipped 

on board. 

In forward flight the pilot can assign velocity target (longitudinal, lateral and 

vertical speed) to change the state of flight. 

The develop of the control laws pass throw the study of a liner model, necessary 

to find the transfer functions of the system. 

In chapter 1, a generic description of the RUAV is provided, with a presentation 

of the T-REX 500 ESP and its identification of the non-linear model. 

In chapter 2, the mathematical models, that are the cornerstone of the dynamic of 

the helicopter, are introduced; in particular the equation of flapping of the main 

rotor and the theory at the base of the generation of the thrust force. 
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In the chapter 3, the calculation of trim and aerodynamic derivatives is developed; 

the solution is reported for different value of the coefficient of forward speed 𝜇. 

In chapter 4, the linear system has been defined, a description of the behavior of 

the helicopter has been shown and the stability augmentation system by the 

mechanical feedback of the fly-bar has been described; the linear model has 

occurred with the non-linear system by checking the response to the same 

commands registered in a flight test; the results of the trim are implemented in the 

non-linear system with a Simulink tool to verify the equilibrium. 

In chapter 5, the response in open loop to the commands known in literature have 

been studied, than the structure of controls in hovering, longitudinal velocity u, 

vertical velocity w and roll attitude 𝜙 have been developed and they have been 

validated with simulation in different flight conditions. 

In the last chapter 6, the conclusion and the future step are illustrated.  



vii 
 

 

 

INDEX 
 

1. INTRODUCTION TO RUAV 2 

1.1 T-REX 500 ESP 4 

1.2 Non-linear system 7 

2. MATHEMATICAL MODELS 11 

2.1 The flapping equation 11 

2.2.1 Interpretation of flapping and feathering coefficients 17 

2.2 Actuator disc momentum theory 18 

2.3 Blade element theory 20 

3. TRIM AND AERODYNAMIC DERIVATIVES 23 

3.1 Longitudinal trim 23 

3.2 Lateral trim 25 

3.3 Trim results 26 

3.3 Equations of motion 30 

3.4 Aerodynamic derivatives 32 

4. DYNAMIC OF HELICOPTER 40 

4.1 LINEAR SYSTEM 40 

4.2 Longitudinal plane 41 

4.2.1 Hovering stability 43 

4.2.2 Forward flight stability 44 

4.3 Lateral plane 47 

4.3.1 Hovering stability 48 

4.3.2 Forward flight stability 49 

4.4 Fly-bar 51 

4.5 Validation 55 

4.5.1 Linear model validation 55 

4.5.2 Trim validation 56 



viii 
 

5. FLIGHT CONTROL 57 

5.1 Transfer functions of T-REX 500 57 

5.1.1 Command 𝐁𝟏 58 

5.1.2 Command 𝛉𝟎 63 

5.1.3 Command 𝐀𝟏 65 

5.1.4 Command 𝛉𝐭 67 

5.2 Controller 68 

5.2.1 Autopilot in longitudinal speed and position 70 

5.2.2 Autopilot in vertical speed and altitude 76 

5.2.3 Autopilot in roll angle and lateral position 79 

5.3 MIMO system 81 

5.5 Controller’s architecture 90 

6. CONCLUSIONS AND FUTURE DEVELOPMENTS 92 

Bibliography 93 

APPENDIX A 94 

APPENDIX B 105 

APPENDIX C 107 

 

 

 

  



ix 
 

 

 

LIST OF FIGURE 

 
Figure 1.1: T-REX 500 ESP 4 

Figure 1.2 : Block of Attitude commands 7 

Figure 1.3 : Block of rotor and fly-bar dynamics 8 

Figure 1.5 : Block of RUAV dynamic 9 

Figure 1.4 : Block of forces and moments 9 

Figure 1.6 : Block of data storage 10 

Figure 2.1 : Flapping blade and reference axes [2] 11 

Figure 2.2 : Blade influenced by pitching and rolling rate [2] 13 

Figure 2.3 : Refereeing systems between wind and blade [2] 15 

Figure 2.4 : Representation of hingeless blade [5] 16 

Figure 2.5 : Left and rear side view of helicopter with flapping and feathering 

coefficients [7] 17 

Figure 2.6 : Representation of control volume  for actuator disc momentum theory 

[2] 18 

Figure 2.7 : Section of the blade [2] 20 

Figure 2.8 : Interpretation of Glauert’s formula [2] 22 

Figure 3.1: Longitudinal trim force and moments left side [7] 23 

Figure 3.2: Lateral trim force and moments front side [2] 25 

Figure 3.3: Inflow at the different flight speed 26 

Figure 3.4: Attitude of the rotor at different flight speed 26 

Figure 3.5: Angle between rotor and shaft at the different flight speed 27 

Figure 3.6: Attitude of helicopter at the different flight speed 27 

Figure 3.8: B1 cyclic command at the different flight speed 28 

Figure 3.7: Collective command at the different flight speed 28 

Figure 3.9: Blade flapping coefficients at the different flight speed 29 

Figure 3.10: Lateral attitude and A1 cyclic command at the different flight speed

 29 

Figure 3.11: Representation of body axes [3] 30 

Figure 3.12: Disc and forces in steady and disturbed flight in longitudinal plane 

[2] 32 

Figure 3.13: Change of distance of center of mass to the rotor with the variation of 

helicopter attitude [2] 32 

Figure 3. 14: Effect of the tail plane [2] 33 

Figure 3.15: Disc and forces in disturbed flight in lateral plane [2] 34 

Figure 3.16: Change of distance of the tail rotor to the center of mass with the 

variation of helicopter attitude [2] 34 

file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870826
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870827
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870828
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870829
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870830
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870831
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870832
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870833
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870834
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870835
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870836
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870836
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870837
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870837
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870838
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870839
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870840
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870841
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870842
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870843
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870844
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870845
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870846
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870847
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870848
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870849
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870849
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870850
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870851
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870851
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870852
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870852
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870853
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870854
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870855
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870855


x 
 

Figure 3.17: Longitudinal derivatives value at different flight speed 37 

Figure 3.18: Longitudinal derivatives value at different flight speed 37 

Figure 3.20: Longitudinal control derivatives value at different flight speed 38 

Figure 3.19: Lateral derivatives value at different flight speed 38 

Figure 3.22: : Lateral control derivatives value at different flight speed 39 

Figure 3.21: : Longitudinal control derivatives value at different flight speed 39 

Figure 4.1: Perturbation of flight in longitudinal plane [2] 41 

Figure 4.2: Representation of coupling in pitch and longitudinal speed [2] 43 

Figure 4.3: Representation of position at different speed flight of pitching 

oscillatory mode pole in the Gaus’s plane [2] 46 

Figure 4.4: Lynx root-loci eigenvalue as a function of forward speed [4] 50 

Figure 4.5: Representation of connection between rotor commands and fly-bar [2]

 51 

Figure 4.6: A1 time response at q perturbation 52 

Figure 4.7: B1 time response at q perturbation 52 

Figure 4.8: Representation of fly-bar feedback 53 

Figure 4.9: Change of position of poles with the fly-bar feedback 𝒄𝒍 = [𝟎, 𝟎. 𝟓] 54 

Figure 4.10: Comparison between linear and non-linear models response in pitch 

rate and roll rate under the same commands 55 

Figure 4.11: Representation of the Simulink trim tool 56 

Figure 5.1: Time response in q and 𝛉 to step B1 59 

Figure 5.2 Time response in u and w to step B1 60 

Figure 5.3 Time response in q and 𝛉 to step B1 62 

at high speed 62 

Figure 5.4 Time response in u and w to step 𝛉𝟎 64 

Figure 5.5 Time response in p and phi to step 𝐀𝟏 66 

Figure 5.7 Representation of the radio-controller 69 

Figure 5.8 Generalized Bode plot 𝐮𝐁𝟏 71 

Figure 5.9 Root loci of 𝛉 and q controller [4] 72 

Figure 5.10 Generalized Bode plot 𝜽𝐁𝟏 73 

Figure 5.11 Loop chain forward speed control 74 

Figure 5.12 Generalized Bode plot 𝑿𝐁𝟏 75 

Figure 5.13 Loop chain position X control 76 

Figure 5.14 Generalized Bode plot 𝒘𝛉𝟎 77 

Figure 5.15 Generalized Bode plot 𝒉𝛉𝟎 78 

Figure 5.16 Generalized Bode plot 𝝓𝐀𝟏 80 

Figure 5.17 Example of MIMO system 81 

Figure 5.19 Time response of command B1 84 

Figure 5.18 Time response of control in longitudinal position 84 

Figure 5.20 Time response of control in lateral position 84 

Figure 5.21 Time response of command A1 85 

Figure 5.22 Time response of control in vertical position 85 

file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870856
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870857
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870858
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870859
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870860
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870861
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870862
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870863
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870864
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870864
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870865
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870866
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870866
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870867
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870868
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870869
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870870
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870871
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870871
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870872
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870873
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870874
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870875
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870876
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870877
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870878
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870879
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870880
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870881
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870882
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870883
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870884
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870885
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870886
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870887
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870888
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870889
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870890
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870891
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870892
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870893
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870894


xi 
 

Figure 5.23 Time response of command 𝛉𝟎 85 

Figure 5.24 Time response of control in forward speed 86 

Figure 5.25 Time response of command B1 86 

Figure 5.26 Time response of control in 𝛟 87 

Figure 5.27 Time response of command A1 87 

Figure 5.29 Time response of command 𝛉𝟎 88 

Figure 5.28 Time response of control in w 88 

Figure 5.30 Controller’s architecture 90 

 

 

LIST OF TABLE 

 

Table 1.1: T-REX 500 ESP main characteristics 6 

Table 4.1: Matrix A of the linear system 40 

Table 4.2: Matrix B of the linear system 41 

Table 5.1: Controller values 82 

  

file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870895
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870896
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870897
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870898
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870899
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870900
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870901
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870902
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870903
file:///C:/Users/User/Desktop/stesura/Development%20of%20flight%20control%20laws%20for%20a%20small-scale%20helicopter%20-%20Roberto%20Fiorenzani.docx%23_Toc430870906


2 
 

 

1. INTRODUCTION TO RUAV 

 

 

The acronym RPAS (Remotely Piloted Air System) is a flying system unmanned, 

controlled by radio or satellite from a fixed or mobile center on ground (Ground 

Control Station, GCS) that can be deployed even at a great distance from theater 

of operations. 

The unmanned machine can be simplified by a system to increase stability 

(Stability Augmentation System, SAS) on board, or entirely entrusted to an 

appropriate system for the management of the flight that completely replaces the 

human operator; the first case is a flight in automatic mode and the second it is 

called stand-alone mode and the mission will be carried out according to the plans 

of flight plan. 

The name Unmanned Aerial System (UAS) indicates the same concept to 

previous definition of RPAS, while the definition of Unmanned Aerial Vehicle 

(UAV) refers to the only segment of flight, not including all the elements 

constituting the complete system, such as the Ground Control Station (GCS). 

There are various advantages in terms of weight and cost for UAVs compared to 

traditional systems with the pilot on board; such systems, in fact, do not have the 

need to have an area sufficiently broad in the fuselage to accommodate the pilot 

and do not require a cumbersome board instrumentation. 

The maneuverability of conventional aircraft are also bound to the limits 

physiological pilots in terms of accelerations measured in "g". Removing the pilot 

from the aircraft eliminates all typical requirements required by the presence on 

board the pilot, bringing the human-machine interface to the ground. 
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The UAVs are two times more small and up to a quarter lighter than a traditional 

airplane with equivalent functions, which allow you to take on a greater payload 

and have a greater maneuverability. 

For all these reasons, these systems, initially developed for purely military 

purposes, are becoming more widespread in the civil field. 

These systems are often preferred to carry out some particular types of mission 

that are identified as Dirty, Dull, Dangerous:[10]  

 Dirty: the environment is contaminated by nuclear pollution, chemical or 

bacteriological, such as to be harmful to the health of the crew; 

 Dull: typically long-lasting as the monitoring and reconnaissance, in which 

the capacity of resistance and effectiveness of the human pilot poses a 

limit to the duration of the mission; 

 Dangerous:  the  aircraft overfly hostile areas, that threatening the safety of 

the crew. 

There are many types of  UAV classified by endurance, altitude and weight, with 

fixed or rotary wing; to these last the definition is RUAV (Rotary Unmanned 

Aerial Vehicle). 

The aircraft RUAV, in spite of a greater structural complexity and lower  

autonomy than fixed-wing aircraft, have some important characteristics, 

preferable in certain circumstances. 

These machines are, in fact, endowed with the ability of vertical takeoff and 

landing (VTOL, Vertical Take-Off and Landing) that allows you to take 

advantage in the reduced space launch operations and recovery. 

They are able, moreover, to be able to operate at cruise speed relatively low, and 

to be able to stay in the air at a fixed point (hovering). 
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1.1 T-REX 500 ESP 

 

The helicopter model available in the department is the T-REX 500 ESP (figure 

1.1) suitable for aerobatics and high performance flight but for this work only 

very low altitude, acceleration and speeds of flight will be considered; the 

research is ensuring the stability of the system in a small part of the flight 

envelope. 

 

To notice that the vertical and horizontal stabilizer surfaces of this helicopter are 

small and perforated, they only ensure the protection of the tail rotor, and 

therefore will be neglected in subsequent calculations. 

Other dynamics that were not considered, since these are already controlled by 

standard systems present on the helicopter, are the variations of the angular speed 

of the main rotor (a control system over the power delivered by the electric motor 

ensures a constant rotation) and the yaw dynamic (a gyroscope measures the rate 

of yaw and it controls the collective of the tail rotor to maintain the heading 

except the presence of a pilot command that automatically disables the “heading 

lock”). 

The helicopter is made of plastic material and carbon fiber, that ensure the 

structural strength and the low weight; the following table 1.1 summarizes the 

main characteristics. 

Figure 1.1: T-REX 500 ESP 
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This machine has a strongly rapid dynamics, but the presence of a fly-bar helps 

the pilot to stabilize the helicopter dynamics. 

For a more specific description see [6] and [1]. 

 

 

Parameter Value 

Mass 2.14 kg 

Weight 20.99 N 

Rotor solidity 0.056 [ ] 

Tail rotor solidity 0.121 [ ] 

Main rotor radius 0.485 m 

Flybar radius 0.235 m 

Main rotor angular speed 240.7 rad s
-1

 

Tail rotor radius 0.105 m 

clα 4.5 [ ] 

a_t 1.5 [ ] 

a_fb 1.5 [ ] 

Main rotor chord 0.0423 m 

Flybar chord 0.039 m 

Main rotor inertia 0.01 kg m
2
 

Flybar inertia 7.8e-04 kg m
2
 

Vertical distance of main rotor from center 

of gravity 

0.289 [ ] 

Longitudinal distance of main rotor from 

center of gravity 

-0.025 [ ] 

Lateral distance of main rotor from center of 

gravity 

0 

Vertical distance of tail rotor from main 

rotor 

-0.012/R [ ] (R means main 

rotor radius)  

Longitudinal distance of tail rotor from main 

rotor 

0.575/R [ ] 
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Helicopter equivalent flat surface Sx=0.038 m
2
;  

Sy=0.07 m
2
; 

Sz=0.06 m
2
; 

Blade stiffness 50 N m rad
-1 

Helicopter inertia Ixx=0.02 kg m
2
; 

Iyy=0.065 kg m
2
; 

Izz=0.066 kg m
2
; 

Ixz=-9*10^-4 kg m
2
; 

Ixy=-7*10^-4 kg m
2
; 

Iyz=0 kg m
2
; 

 

  

Table 1.1: T-REX 500 ESP main characteristics 
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1.2 Non-linear system 
 

A non-linear RUAV simulation model has been developed in department to be 

used to validate the control laws before the flight tests. 

As generally in literature, the calculation of a linear system is useful to the 

controllers synthesis; to validate the linear system the response of the two models 

to the same commands must match itch others as shown in the following chapter. 

Here the non-linear dynamic model is shown quickly (to a more specific 

description see [1]). 

The non-linear system has been developed in Matlab Simulink and it is composed 

of: 

 

In the “Attitude command’s block” the electric commands, coming from the radio 

controller that moves the servo, are elaborated to find the angles of the swash-

plate and calculate the commands known in literature 𝜃0, 𝐴1, 𝐵1 corrected by the 

dynamic of the fly-bar. 

The tail command is now under study but the helicopter has its own gyro-control 

system that guarantee the heading-lock without any commands from the pilot to 

the tail; see the thesis [1] to upgrades. 

The output goes in the following block: 

Figure 1.2 : Block of Attitude commands 
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In the block “Rotor dynamics” are calculated the positions of the rotor and of the 

fly-bar compared to the shaft, on the basis of the commands and the flight 

conditions inputs, and the forces and torque generated by the main rotor. 

The fly-bar’s outputs are used like feedback to the block of “Attitude commands” 

as seen previously. 

The rotor’s output are used to calculate forces and moments to the helicopter axis 

in the following block: 

 

 

Figure 1.3 : Block of rotor and fly-bar dynamics 
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In the “Rotor forces and moments” the helicopter characteristics (weight, 

distances, inertia,…) are loaded and the rotor’s forces and moments are 

transformed in the axes body. 

Figure 1.4 : Block of forces and moments 

Figure 1.5 : Block of RUAV dynamic 
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In “Ruav dynamics” the forces and moments are used in the equations of rigid 

body dynamic and by integration the linear velocities, the angular speeds rate and 

the angular attitudes in body axes are found. 

 

In the last block “Data storage” all the results from the simulation are transformed 

in inertial axes and are saved to plot the simulation results. 

 

  

Figure 1.6 : Block of data storage 



11 
 

 

2. MATHEMATICAL MODELS 

 

 

2.1 The flapping equation 
 

Consider a single blade as shown in Figure 2.1 and let the flapping hinge be 

mounted a distance eR from the axis of rotation. 

The shaft rotates with constant angular velocity Ω and the blade flaps with angular 

velocity β̇ . 

The considered reference system is on the blade, parallel to the principal axes, 

origin at the hinge, with the i axis along the blade span, the j axis perpendicular to 

the span and parallel to the plane of rotation, and the k axis completing the right-

hand set. 

Figure 2.1 : Flapping blade and reference axes [2] 
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A very good approximation is to treat the blade as a lamina. 

As a consequence, if A is the moment of inertia about i, and B the moment of 

inertia about j, the moment of inertia C about k is equal to A + B. 

The angular velocity components ω1,ω2,ω3 about these axes are: 

ω1  =  Ω sin β,       ω2  = – β̇ ,           ω3  =  Ω cos β (2.1) 

 

The flapping motion takes place about the j axis, so putting the above values in 

the second of the ‘extended’ Euler’s equations, and using A +  B = C, gives 

Bβ̈ + Ω2(B cos β + MbexgR
2) sin β =  MA (2.2) 

where 𝑀𝐴  = –  𝑀 is the aerodynamic moment in the sense of positive flapping 

and Mb is the blade mass.  

For small flapping angles equation 2.2 can be written 

β̈  +  Ω2(1 +  ε) β =  𝑀𝐴/B (2.3) 

where ε =  M𝑏ex𝑔R
2/B. 

 

If a disturb is considered, the change of incidence Δα due to flapping is 

Δα =
rβ̇

(r+eR)Ω
=

−xdβ/dψ

(x+e)
 (2.4) 

where x =  r/R. 

 

The moment of the lift about the flapping hinge is “rdL” and the total 

aerodynamic moment, assuming the blade chord c to be constant, is 

MA

BΩ2
= – (

γ

8
) (1 –  e)

3
(1 +

e

3
)
𝜕β

𝜕ψ
 (2.5) 

where γ = ρacR
4
/B is called Lock’s inertia number. 

 

The flapping equation become 

𝜕2β

𝜕ψ2
 +  (

nγ

8
)
𝜕β

𝜕ψ
 +  (1 +  ε)β =  0 (2.6) 

where 𝑛 =  (1 –  𝑒)3(1 +  𝑒/3).  
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Now considering a command 

θ =  θ0 – 𝐴1 cos ψ – B1 sin ψ (2.7) 

the steady-state solution of the flapping motion is 

β =  γθ0/8 – 𝐴1 sin ψ + B1  cos ψ (2.8) 

 

The term γθ0/8 represents a constant flapping angle and corresponds to a motion 

in which the blade traces out a shallow cone, and for this reason the angle is called 

the coning angle and neglecting the higher harmonics the flapping can be 

expressed 

β =  a0 – a1 cos ψ – b1 sin ψ (2.9) 

therefor{
a0 = γθ0/8
a1 = −B1
b1 = 𝐴1

e (2.10) 

 

If the rotor hub is pitching with angular velocity q, Fig. 2.2, the angular velocity 

components of the blade are: 

{q sin ψ cos β +  Ω sin β, q cos ψ – β̇ , – q sin ψ sin β +  Ω cos β} (2.11) 

where ψ is the azimuth angle of the blade, defined as the angle between the blade 

span and the rear center line of the helicopter. 

 

Figure 2.2 : Blade influenced by pitching and rolling rate [2] 
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By inserting these values into equation and neglecting q2, which is usually very 

small compared with Ω2, we finally obtain after some manipulation: 

β̈  +  Ω2(1 +  ε)β =  MA/B –  2Ωq(1 +  ε) sin ψ + q̇(1 +  ε) cos ψ (2.12) 

 

The second term on the right is the gyroscopic inertia moment due to pitching 

velocity, and the third term is due to the pitching acceleration. 

The change of incidence Δα is therefore 

Δα =  (q cos ψ – β̇ )/Ω =  q̂ cos ψ –  dβ/dψ (2.13) 

where  q̂  =  q/Ω. 

 

The moment due to the velocity β̇ is already been considered. 

The moment due to the pitching velocity q is found to be 

(MA)pitching =  ρacΩ2R4q̂ cos ψ/8 (2.14) 

The flapping equation becomes now: 

𝜕2β

𝜕ψ2
+
γ

8
𝑛
𝜕β

𝜕ψ
+ (1 +  ε)β =

γ

8
𝑛q̂ cosψ − 2q̂ (1 +  ε)sinψ (2.15) 

and {
a1 = −16q̂/γ
b1 = −q̂

,  q̂ =
𝑞

Ω
. (2.16) 

 

When the rotor hub is rolling with angular velocity p, the equivalent equation to 

2.15 may be derived in like manner and the extra term is: 2Ωpcos ψ  +  q̇sin ψ . 
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If a longitudinal velocity is introduced the components at the blade, adding the 

contribution due the flapping and the induced velocity, are: 

 

i direction: V cos αnf cos ψ cos β +  V sin αnf sin β 

j direction: – V cos αnf sin ψ –  Ωr (2.17) 

k direction: – V cos αnf cos ψ sin β +  V sin αnf cos β – ṙβ – vi  

 

We define 

UP  = –  Vβ cos αnf cos ψ +  V sinαnf – ṙβ – vi (2.18) 

UT  =  V cos αnf sin ψ +  Ωr (2.19) 

vi  =  vi0(1 + Kxcosψ) Glauert’s formula (2.20) 

with vi0the inflow at the rotor center, x =
r

R
 and 𝐾 =

4

3

𝜇

𝜆

1.2+
𝜇

𝜆

  

and using  

λ′ =  (V sin αnf – vi)/ΩR (2.21) 

μ =  (V cos αnf)/ΩR (2.22) 

UP  =  ΩR(λ′ –  x dβ/dψ –  μβ cos ψ) (2.23) 

UT  =  ΩR (x +  μ sin ψ) (2.24) 

considering the aerodynamic flapping moment 

MA   =
1

2
ρa ∫ UT

2(θ +
UP

UT
)

𝑅

0
cr dr (2.25) 

Figure 2.3 : Refereeing systems between wind and blade [2] 
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we obtain, after some calculations, the differential equation of flapping in the 

form: 

𝜕2β

𝜕ψ2
 +

γ

8
(1 +

4

3
μ sinψ)

𝜕β

𝜕ψ
 + [1 +  ε +

γ

8
 (
4

3
μ cosψ)] β =  

γ

8
[θ0 (1 +

8

3
μ sinψ) +

4

3
λ − Kλ𝑖𝑐𝑜𝑠ψ + 2μλ sinψ − μλ𝑖K𝑠𝑖𝑛2ψ] (2.26) 

 

and the flapping coefficients in forward flight 

a0 =
γ

8(1 +ε )
 [θ0 (1 + μ

2 ) +
4

3
 λ] (2.27) 

a1 =
2μ(

4θ0
3
+λ)

1−
μ2

2
 
+
8

γ

ε

1−
μ2

2

𝑏1 (2.28) 

b1 =
4(μa0+0.75Kλ𝑖)/3

1+
μ2

2
 

−
8

γ

ε

1+
μ2

2

𝑎1 (2.29) 

 

For all the dynamics of the rotor, the presence of a hinge with offset “e” has been 

considered, but the T-REX 500 has a hinge-less  rotor and a way of studying the 

problem is to consider the deformation of the blades for zero offset and the 

moment generated proportional to the angle of flapping[3]: 

𝑀 = 𝑘𝛽𝛽 (2.30) 

where 𝑘𝛽 is the stiffness of the blade. 

So, the flapping equation can be wrote β̈  +  Ω2(1 + 𝑘𝛽/𝐵𝛺
2) β =  𝑀𝐴/B,  i.e. 

ε = 𝑘𝛽/𝐵𝛺
2; (if we supposed to be an offset plus the blade stiffness  ε𝑡𝑜𝑡 = ε +

𝑘𝛽/𝐵𝛺
2). 

Figure 2.4 : Representation of hingeless blade [5] 
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2.2.1 Interpretation of flapping and feathering coefficients 

 

The blade flaps of β angle around the hub plane and rotates of θ angle around the 

feathering axis. 

Let us assume the following figure for a clockwise rotor to fix the meaning of the 

coefficients used.  

 

The points occupied by the tip of the blade during the flapping are locked on the 

plane named tip path, that has the 𝑎1𝑠 angle with the shaft in the longitudinal 

plane and 𝑏1𝑠 in the lateral plane; while the no-feathering plane is represented by 

the position of the points where the blade has the same feather, it is represented by 

the angle 𝐵1 in the longitudinal plane and 𝐴1 in the lateral plane. 

The tip path plane and the no-feathering plane differ them self of the flapping 

coefficients 𝑎1 and 𝑏1; they are coincident only in hovering. 

  

Figure 2.5 : Left and rear side view of helicopter with flapping and 

feathering coefficients [7] 
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2.2 Actuator disc momentum theory  

 

Let us take a cylindrical control surface surrounding a control volume whose 

radius is R1, which encloses the rotor, radius R, and its slipstream, radius R2, 

Figure 2.6. 

 

Figure 2.6 : Representation of control volume  for actuator disc 

momentum theory [2] 
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The air velocity relative to the rotor is the rate of climb Vc and the pressure is p∞.  

As the air approaches the rotor, the airspeed increases to Vc + vi at the rotor itself 

and there is a jump of pressure Δp which accounts for the rotor thrust T = ΔpA, A 

being the rotor disc area. 

The slipstream velocity continues to increase downstream of the rotor, reaching a 

value in the ultimate wake of Vc + v2, where the slipstream radius is R2 and the 

pressure p2. 

Let us assume, as for the classical actuator disc, that the pressure in the final wake 

is the same as the ambient pressure, i.e. that p2 – p∞  =  0. 

 

We can write the following equations: 

�̇� = 𝜌𝐴(𝑉𝑐 + 𝑣𝑖) = 𝜌𝐴1𝑉𝑐 = 𝜌𝐴2(𝑉𝑐 + 𝑣2)  (2.31) 

�̇�(𝑉𝑐 + 𝑣2) − �̇�𝑉𝑐 = 𝑇  (2.32) 

1

2
�̇�[(𝑉𝑐 + 𝑣2)

2 − 𝑉𝑐
2] = 𝑇(𝑉𝑐 + 𝑣𝑖)  (2.33) 

After some simplifications we find: 

𝑣2 = 2𝑣𝑖  (2.34) 

𝑇 = �̇�𝑣2 = 2𝜌𝐴(𝑉𝑐 + 𝑣𝑖)𝑣𝑖  (2.35) 

 

In hovering, when 𝑉𝑐 = 0, the equation 2.32 simplifying in 

𝑇 = �̇�𝑣2 = 2𝜌𝐴𝑣𝑖
2  (2.36) 

 

and the inflow at fixed flight point has found to be 

𝑣2 = √
𝑇/𝐴

2𝜌
= 𝑣0  (2.37) 

 

Generally we can write the equation 2.35 

𝑣𝑖
2 + 𝑉𝑐𝑣𝑖 −

𝑇

2𝜌𝐴
= 0  (2.38) 

 

and using the hovering inflow 

(
𝑣𝑖

𝑣0
)
2

+
𝑉𝑐𝑣𝑖

𝑣02
− 1 = 0  (2.39) 

 



20 
 

2.3 Blade element theory 
 

The relationship between the thrust and the induced velocity requires that either 

the thrust or the induced velocity are known. 

 

 

Considering an element of blade of chord c and width dr located at a radius r from 

the axis of rotation. 

The geometric pitch angle of the blade element relative to the plane of rotation is 

θ, the climbing speed is Vc, and the local induced velocity is vi. 

The direction of the flow relative to the blade makes an angle φ ( the inflow 

angle) with the plane of rotation and  for small φ, 

 

φ =  (Vc +  vi)/Ωr (2.40) 

W2  ≈  Ω2r2 (2.41) 

CL =  aα =  a(θ –  φ) (2.42) 

dL ≈  dT (2.43) 

where dT is the elementary thrust, the force perpendicular to the plane of rotation.  

The total thrust is therefore 

T =
1

2
ρabΩ ∫ c(θ −  φ)r2dr

R

0
 (2.44) 

where b is the number of blades. 

Figure 2.7 : Section of the blade [2] 
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Defining 

λc   =  Vc /ΩR, λi   =  vi /ΩR, x =  r/R (2.45) 

and if the chord, induced velocity and ‘collective’ pitch angle θ are constant along 

the blade, 

 

T = 0.5 ρacbΩ 2R3  [
θ0

3
−
1

2
(λc + λi)] (2.46) 

where θ0 is the constant (collective) pitch angle. 

 

Defining a thrust coefficient by 

tc =  T/ρsAΩ2R2 (2.47) 

where s =  bc/πR is the rotor solidity, from the 2.46 

tc =  (a/4)[2θ0/3 – (λc + λi)] (2.48) 

 

Now from the momentum theory, the induced velocity and the thrust are related in 

non-dimensional form by 

 

λi
2 + λcλi –  0.5stc =  0 (2.49) 

Therefore we have two equations in two unknowns. 

 

If there is a longitudinal velocity, using the Glauert’s formula, we can write 

�̅� 𝑖0
4 + �̅�2�̅� 𝑖0

2 –  1 =  0 (2.50) 

where �̅� 𝑖0   =
𝑣𝑖0

𝑣0
, �̅�  =

𝑉

𝑣𝑖0
,  𝑣0 = √(T/2ρA). 
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A Glauert’s formula interpretation can be shown in the figure 2.8. 

 

 

So the thrust coefficient is modified as[2] 

tc  =  (a/4)[2θ0/3(1 + 3μ
2/2) + λ] (2.51) 

λ =  μαd − λ𝑖 (2.52) 

 

the in-plane H-force coefficient 

hc  =  (a/2)[
μδ

2a
+
1

3
a1θ0 +

3

4
λa1 −

1

2
θ0λ] (2.53) 

 

and the rotor torque coefficient 

qc  =
δ(1+3μ2)

8
− λtc − μhc (2.54) 

 

 

Figure 2.8 : Interpretation of Glauert’s formula [2] 
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3. TRIM AND AERODYNAMIC 

DERIVATIVES 
 

 

The problem of trim is to determine the significant parameters characterizing the 

stationary straight flight of the helicopter on the longitudinal and on the lateral-

directional. 

 

3.1 Longitudinal trim 
 

To analyze the condition of trim in the longitudinal plane, reference is made to 

Figure 3.1. 

 

Figure 3.1: Longitudinal trim force and moments left side [7] 
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Equilibrium equations along the horizontal axis and the vertical axis and equation 

of the moment around the y axis[2][7]: 

 

𝑇𝑑 ∙ cos(𝛼𝑑 + 𝜏) − 𝐻𝑑 ∙ sin(𝛼𝑑 + 𝜏) − 𝐷 ∙ sin(𝜏) −𝑊 = 0    (3.1) 

𝐻𝑑 ∙ cos(𝛼𝑑 + 𝜏) + 𝑇𝑑 ∙ sin(𝛼𝑑 + 𝜏) + 𝐷 ∙ cos(𝜏) = 0 (3.2) 

𝐻𝑑 ∙ h ∙ R ∙ cos(𝑎1𝑠) + 𝑇𝑑 ∙ ℎ ∙ 𝑅 ∙ sin(𝑎1𝑠) −𝑊 ∙ 𝑓 ∙ 𝑅 ∙ cos(𝜃) + 𝑀𝑓 +

                        𝑀𝑠 ∙ 𝑎1𝑠 = 0               (3.3) 

𝑎1𝑠 = 𝑎1 − 𝐵1  (3.4) 

 

By dividing to sρAR
2
Ω

2
 with Ω=Vtip/R and linearizing (θ, a1s (αd+τ) and 

Hdsin(αd+τ) are neigible): 

 

𝑡𝑐𝑑 =0.5 ∙ �̂�
2 ∙ 𝑑0 ∙ sin(𝜏) + 𝑤𝑐 with �̂� =

𝑉

Ω𝑅
           (3.5) 

ℎ𝑐𝑑 + 𝑡𝑐𝑑 ∙(𝛼𝑑 + 𝜏) + 0.5 ∙ 𝑑0 ∙ cos(𝜏) = 0 (3.6) 

ℎ𝑐𝑑 ∙ h+ 𝑡𝑐𝑑 ∙ ℎ ∙(𝑎1𝑠) − 𝑤𝑐 ∙ 𝑓 + 𝐶𝑚𝑓 + 𝐶𝑚𝑠 ∙ 𝑎1𝑠 = 0                     (3.7) 

where 𝐶𝑚𝑠 = 𝑘𝛽/sρAR2Ω2. 

  

The coefficients tcd e hcd are function of aerodynamics coefficients, of 𝜇, θ0 and 

the inflow, that is known from Glaeurt’s theory. 

The problem has coupled equations that need a iter-code to find the unknowns[7]: 

first of all we need to let ℎ𝑐𝑑 = 0.25𝜇𝛿, from the 2.53, without considering the 

inflow and collective contribute, than we calculate 𝛼𝑑 from the 3.6 and λ, from the 

2.52, knowing λ𝑖 with the Glauet’s theory and the value of the collective 

command from the 2.51; at the end we upgrade the new ℎ𝑐𝑑 value, introducing the 

collective command and the inflow, till the percent error is smaller than a prefixed 

constant as shown in the appendix A. 

The flapping coefficients, the attitude and the commands which ensure the trim at 

the different velocities are fended and the corresponding rotor torque helpful to 

find the tail rotor thrust in the lateral trim. 
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3.2 Lateral trim 

 

We refer to the figure 3.2 

 

The equations of translation above y axis and the rotation around x axis are[2][7]: 

 

Tt + Td ∙ b1s +W ∙ φ = 0                                                                                     (3.8) 

Tt ∙ ht ∙ R + (Td +Ms) ∙ b1s ∙ h ∙ R +W ∙ flat ∙ h = 0                   (3.9) 

b1s = 𝐴1 + 𝑏1  (3.10) 

 

Remember that the T-REX 500 has a clockwise rotor motion so in the figure 3.2 

we must take A1, b1 and Tt negative, because it refers to a classic helicopter with 

anticlockwise rotor. 

The tail rotor thrust Tt must compensate the rotor torque. 

Defining lt the distance of the tail rotor from the center of mass: 

 

Qc = qc ∙ ρ ∙ s ∙ A ∙ Ω
2 ∙ R3         (3.11) 

Tt = −
Qc

lt
 (3.12) 

Figure 3.2: Lateral trim force and moments front side [2] 
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3.3 Trim results 
 

The results of the trim for the T-REX 500 are shown below. 

 

Figure 3.3: Inflow at the different flight speed  

 Figure 3.4: Attitude of the rotor at different flight speed 
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 Figure 3.5: Angle between rotor and shaft at the different flight speed  

 Figure 3.6: Attitude of helicopter at the different flight speed 
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 Figure 3.7: Collective command at the different flight speed 

 Figure 3.8: B1 cyclic command at the different flight speed  
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Figure 3.9: Blade flapping coefficients at the different flight speed  

Figure 3.10: Lateral attitude and A1 cyclic command at the different flight speed 
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3.3 Equations of motion 
 

According to the high speed of rotation of the main rotor and its high frequency 

dynamic, to analyze the characteristics of dynamic stability of the helicopter we 

take the equations that govern the motion considering the helicopter as a point. 

 

 

 

{
�⃗� = 𝑚 (�̇⃗⃗� + Ω⃗⃗⃗ × �⃗⃗�)

�⃗⃗⃗� = 𝐼Ω̇⃗⃗⃗ + Ω⃗⃗⃗ × (𝐼Ω⃗⃗⃗)
 [3] [8] (3.13) 

 

To study these equations we make simplifying assumptions such as the theory of 

small perturbations and the angle β=0. 

The velocity vector and angular velocity can be written: 

 

{
V⃗⃗⃗ = (U + u)i⃗ + vj⃗ + (W +w)k⃗⃗

Ω⃗⃗⃗ = pi⃗ + qj⃗ + rk⃗⃗
 (3.14) 

 

 

 

Figure 3.11: Representation of body axes [3] 
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The first equation has the components: 

 

{

m(u̇ + q(W+w) − vr) = X +Wx

m(v̇ + r(U + u) − p(W+w)) = Y +Wy

m(ẇ + pv − q(U + u)) = Z +Wz

  (3.15) 

Not to be confused W (velocity component according k) with Wi (weight 

component according to the axis i). 

In wind axes(W=0) and linearizing [8]: 

{
 
 

 
 u̇ =

X0+Δx+Wx0+Δwx

m

v̇ + rU =
Y0+Δy+Wy0+Δwy

m

ẇ − qU =
Z0+Δz+Wz0+Δwz

m

  (3.16) 

 

Similarly for the second cardinal and assuming that the inertia matrix is 

symmetric I = [
A F E

B D
C
] we can write: 

{

Aṗ − Eṙ = L
Bq̇ = M

Cṙ − Eṗ = N
  (3.17) 

 

Through simplifying assumptions, the principal of all is that of small 

perturbations, we can manage these equations by linearizing the problem. 

From the linearization and by imposing a condition of equilibrium initial (these 

steps will be explained later) there are two elements represented by: 
ΔF⃗⃗⃗

m
 e 

ΔM⃗⃗⃗⃗

I
. 

With the small perturbations they can be explicit with a development of Taylor 

stopped at the first order (taking the example of the component of the force along 

the X axis, the concept extends equally to the other components)[2][7][8]: 

 

ΔX =
∂X

∂u
u +

∂X

∂w
w+

∂X

∂q
q +⋯  (3.18) 

The terms Xu =
∂X

∂u
, Xw, Xq… are called aerodynamic derivatives. 
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3.4 Aerodynamic derivatives 
 

Considering an equilibrium condition, it is calculate the variations of the forces 

and moments of the system due to the disturbance. 

 

For longitudinal plane [2]: 

𝛿𝑋 = −(𝑇𝐷 + 𝛿𝑇𝐷) sin(𝛼𝐷 + 𝛿𝑎1) − (𝐻𝐷 + 𝛿𝐻𝐷) cos(𝛼𝐷 + 𝛿𝑎1) −

𝑇𝐷 sin 𝛼𝐷 − 𝐻𝐷 cos 𝛼𝐷 ≈ −𝑇𝐷𝛿𝑎1 − 𝑇𝐷𝛼𝐷 − 𝛿𝐻𝐷 (3.19) 

𝛿𝑍 = −(𝑇𝐷 + 𝛿𝑇𝐷) cos(𝛼𝐷 + 𝛿𝑎1) + (𝐻𝐷 + 𝛿𝐻𝐷) sin(𝛼𝐷 + 𝛿𝑎1) +

𝑇𝐷 sin 𝛼𝐷 − 𝐻𝐷 cos 𝛼𝐷  ≈ −𝛿𝑇𝐷  (3.20) 

 

To estimate the change in pitching moment consider the following figure 3.13: 

 

 

 

ℎ1 ≈ ℎ − 𝑙𝛼𝑠
𝑙1 ≈ 𝑙 + ℎ𝛼𝑠
𝛼𝑠 = 𝛼𝑑 − 𝑎1𝑠

           (3.21) 

 

 

Figure 3.12: Disc and forces in steady and disturbed flight in 

longitudinal plane [2] 

 

Figure 3.13: Change of distance of center of mass to 

the rotor with the variation of helicopter attitude [2] 
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𝛿𝑀 = −ℎ1𝑅𝛿𝑋 + 𝑙1𝑅𝛿𝑍 +𝑀𝑠𝛿𝑎1 + 𝛿𝑀𝑓  (3.22) 

 

So we have: 

𝑋𝑢 =
𝜕𝑋

𝜕𝑢
= −𝑇𝐷

𝜕𝑎1

𝜕𝑢
− 𝛼𝐷

𝜕𝑇𝐷

𝜕𝑢
−
𝜕𝐻𝐷

𝜕𝑢
  (3.23) 

𝑍𝑢 =
𝜕𝑍

𝜕𝑢
= −

𝜕𝑇𝐷

𝜕𝑢
  

 (3.24) 

and for the others generally: 

𝑋𝑖 =
𝜕𝑋

𝜕𝑖
= −𝑇𝐷

𝜕𝑎1

𝜕𝑖
− 𝛼𝐷

𝜕𝑇𝐷

𝜕𝑖
−
𝜕𝐻𝐷

𝜕𝑖
  (3.25) 

𝑍𝑖 =
𝜕𝑍

𝜕𝑖
= −

𝜕𝑇𝐷

𝜕𝑖
  (3.26) 

𝑀𝑖 =
𝜕𝑀

𝜕𝑖
= −ℎ1𝑅𝑋𝑖 + 𝑙1𝑅𝑍𝑖 +𝑀𝑠

𝜕𝑎1

𝜕𝑖
+ (𝑀𝑖)𝑓  (3.27) 

 

Considering the presence of a tail plane and its incidence 𝛼𝑇 = 𝛼𝑇0 + 𝜃 − 𝜏𝑐 − 휀 

as shown in the figure 3.14, we must evaluate the contributions on pitching. 

 

 

𝑀𝑢𝑇
=

𝜕𝑀𝑇

𝜕𝑢
= −𝜌𝑉𝑆𝑇𝑙𝑇𝑅 [𝐶𝐿𝑇 +

1

2
𝑉
𝜕𝐶𝐿𝑇

𝜕𝑢
], with 𝑉

𝜕𝐶𝐿𝑇

𝜕𝑢
= −𝑎𝑇𝑉

𝜕𝜀

𝜕𝑢
=

−𝑎𝑇 [
𝜕𝑣𝑖

𝜕𝑉
−
𝑣𝑖

𝑉
] (3.28) 

𝑀𝑤𝑇
=

𝜕𝑀𝑇

𝜕𝑤
= −

1

2
𝜌𝑉2𝑆𝑇𝑙𝑇𝑅 [

𝜕𝐶𝐿𝑇

𝜕𝑤
], con 

𝜕𝐶𝐿𝑇

𝜕𝑤
=

𝛼𝑇

𝑉
[1 −

𝜕𝜀

𝜕𝛼
] (3.29) 

Figure 3. 14: Effect of the tail plane [2] 
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If there is an angular velocity q the variation of incidence is Δ𝛼𝑇 = 𝑙𝑇𝑅
𝑞
𝑉⁄  and 

the moment is Δ𝑀𝑇 = −
1

2
𝜌𝑎𝑇𝑉𝑆𝑇𝑙𝑇

2𝑅2𝑞; so that: 

𝑀𝑞𝑇
=

𝜕𝑀𝑇

𝜕𝑞
= −

1

2
𝜌𝑎𝑇𝑉𝑆𝑇𝑙𝑇

2𝑅2 (3.30) 

However, the TREX 500 tail plane is small and perforated and these contributions 

can be neglected; them can be useful for next and more specific study. 

 

Similarly for the lateral plane and following the figure 3.15: 

 

𝛿𝑌 = 𝑇𝛿𝑏1 + 𝛿𝑇𝑡 + 𝛿𝑌𝑓  (3.31) 

𝑌𝑖 =
𝜕𝑌

𝜕𝑖
= 𝑇

𝜕𝑏1

𝜕𝑖
+
𝜕𝑇𝑡

𝜕𝑖
+
𝜕𝑌𝑓

𝜕𝑖
 (3.32) 

 

 

 

 

ℎ𝑡
′ ≈ ℎ𝑡 − 𝑙𝑡𝛼𝑠

𝑙𝑡
′ ≈ 𝑙𝑡 + ℎ𝑡𝛼𝑠

      (3.33) 

 

 

Figure 3.15: Disc and forces in disturbed flight in lateral plane [2] 

Figure 3.16: Change of distance of the tail rotor to 

the center of mass with the variation of helicopter 

attitude [2] 
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𝛿𝐿 = ℎ1𝑅𝑇𝛿𝑏1 + ℎ1𝑅𝛿𝑌 +𝑀𝑠𝛿𝑏1 + ℎ𝑡
′𝑅𝛿𝑇𝑡  (3.34) 

𝛿𝑁 = −𝑙𝑡
′𝑅𝛿𝑇𝑡 + 𝛿𝑁𝑓  (3.35) 

It’s better work in non-dimensional form to have a problem the more generally as 

possible: 

𝜕

𝜕u
= 

𝜕

𝑅Ω𝜕û
≈

𝜕λ

𝑅Ω𝜕μ
 (3.36) 

then 

𝑥𝑢 = 
𝑋𝑢

𝜌𝑠𝐴𝑅Ω
= −𝑡𝑐

𝜕𝑎1

𝜕μ
− αd

𝜕t𝑐

𝜕μ
−
𝜕h𝑐𝑑

𝜕μ
 (3.37) 

 

and similarly has being calculated the others non-dimensional aerodynamic 

derivatives as shown in the appendix A. 

 

The following are the main results in non-dimensional form for the calculation of 

derivatives. 

 

𝜕λ

𝜕μ
= αnf −

𝜕λ𝑖

𝜕μ
, αnf = αd − 𝑎1  (3.38) 

𝜕λ𝑖

𝜕μ
= 

2μθ0+αnf−(4𝑡𝑐/𝑎λ𝑖)𝑉�̅�𝑖
3

1+(4/𝑎)(𝑡𝑐/λ𝑖)(1+�̅�𝑖
4)

  (3.39) 

𝜕t𝑐

𝜕μ
= 

2μθ0+αnf+�̅��̅�𝑖
3/(1+�̅�𝑖

4)

(4/𝑎)+(λ𝑖/𝑡𝑐)/(1+�̅�𝑖
4)

  (3.40) 

𝜕a1

𝜕μ
= 

a1

μ
−

2μ

1−μ2/2

𝜕λ

𝜕μ
  (3.41) 

𝜕h𝑐𝑑

𝜕μ
= 

1

4
𝛿  (3.42) 

𝜕t𝑐

𝜕ŵ
=

𝑎

4

𝜕λ

𝜕ŵ
= 

𝑎

4

1

1+(𝑎/4)(λ𝑖/𝑡𝑐)+�̅�𝑖
4  (3.43) 

𝜕a1

𝜕ŵ
=

2μ

(1−μ2/2)

𝜕λ

𝜕ŵ
= 

2μ

(1−μ2/2)(1+(𝑎/4)(λ𝑖/𝑡𝑐)+�̅�𝑖
4)

  (3.44) 

𝜕h𝑐𝑑

𝜕ŵ
= 

𝑎

4

1

1+(𝑎/4)(λ𝑖/𝑡𝑐)+�̅�𝑖
4 (
1

2
𝑎1 − μθ0 +

μλ𝐷

1−μ2/2
)  (3.45) 

𝜕t𝑐

𝜕q̂
=  0  (3.46) 

𝜕a1

𝜕q̂
= − 

16

𝛾

1

1−μ2/2
  (3.47) 
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𝜕h𝑐𝑑

𝜕q̂
= 

𝑎

4
(
1

2
λ + μa1 − μ

2θ0)
𝜕a1

𝜕q̂
  (3.48) 

 

If a lateral disturb affect the helicopter, the rotor flapping will be rotated through 

angle 𝛽ss, so that 𝜕b1 = a1𝛽ss = 𝑣/μ (positive because the rotor has a clockwise 

motion) [2][3] 

𝜕b1

𝜕v̂
= +a1/ μ (3.49) 

𝜕y𝑐

𝜕v̂
= −h𝑐/ μ = −

1

4
δ  (3.50) 

𝜕b1

𝜕p̂
= 

16

𝛾

1

1+μ2/2
 (3.51) 

𝜕T𝑡

𝜕v̂
= −

𝜕T

𝜕ŵ
 (3.52) 

𝜕T𝑡

𝜕p̂
= −ℎ𝑡

′𝑅
𝜕T

𝜕ŵ
 (3.53) 

𝜕T𝑡

𝜕r̂
= 𝑙𝑡

′𝑅
𝜕T

𝜕ŵ
 (3.54) 

 

The application of longitudinal cyclic pitch tilts the no-feathering axis in the 

longitudinal plane and the incidence of the helicopter had been reduced by the 

same amount: 

𝜕

𝜕B1
= −μ

𝜕

𝜕ŵ
 (3.55) 

Applying a collective command we have 

𝜕t𝑐

𝜕θ0
=

a

6

1+3μ2/2

1+(𝑎/4)(λ𝑖/𝑡𝑐)+�̅�𝑖
4 

 (3.56) 

𝜕λ𝑖

𝜕θ0
= (

λ𝑖

𝑡𝑐
)

𝜕t𝑐
𝜕θ0

1+�̅�𝑖
4  (3.57) 

𝜕a1

𝜕θ0
=

2μ

1−μ2/2
[
4

3
+

𝜕λ𝑖

𝜕θ0
] (3.58) 

𝜕h𝑐𝑑

𝜕θ0
= 

𝑎

8
[a1

𝜕λ𝐷

𝜕θ0
+ λ𝐷

𝜕a1

𝜕θ0
− 2μ(λ𝐷 + θ0

𝜕λ𝐷

𝜕θ0
)]  (3.59) 

𝜕λ𝐷

𝜕θ0
= μ

𝜕a1

𝜕θ0
−

𝜕λ𝑖

𝜕θ0
 (3.60) 



37 
 

Following the results of the derivatives for the T-REX 500 are shown for the 

different speed of flight. 

Figure 3.17: Longitudinal derivatives value at different flight speed 

Figure 3.18: Longitudinal derivatives value at different flight speed 
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Figure 3.19: Lateral derivatives value at different flight speed 

Figure 3.20: Longitudinal control derivatives value at different flight speed 
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Figure 3.21: : Longitudinal control derivatives value at different flight speed 

Figure 3.22: : Lateral control derivatives value at different flight speed 
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4. DYNAMIC OF HELICOPTER 

 

 

4.1 LINEAR SYSTEM 
 

The linear system can be represented in the knowing form: 

{
{�̇�} = [𝐴]{𝑥} + [𝐵]{𝑢}

𝑦 =  [𝐶]{𝑥} + [𝐷]{𝑢}
 

 

Remembering the equations 3.16 and 3.17 and taking the advantage from the 

concept of aerodynamic derivative we can find a liner system that it will be useful 

for the developing of the flight control laws. 

The system has been generated from the script on appendix A and has the 

following form: 

 

Xu Xw Xq -g Xv Xp Xr 0 0 

Zu Zw Zq+U 0 Zv Zp-V Zr 0 0 

Mu Mw Mq 0 Mv Mp Mr 0 0 

0 0 1 0 0 0 0 0 0 

Yu 0 Yq 0 Yv Yp Yr-U g 0 

Lu Lw Lq 0 Lv Lp Lr 0 0 

Nu Nw Nq 0 Nv Np Nr 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

Table 4.1: Matrix A of the linear system 
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Xθ0 XB1 XA1 Xθt 

Zθ0 ZB1 ZA1 Zθt 

Mθ0 MB1 MA1 Mθt 

0 0 0 0 

Yθ0 YB1 YA1 Yθt 

Lθ0 LB1 LA1 Lθt 

Nθ0 NB1 NA1 Nθt 

0 0 0 0 

0 0 0 0 
Table 4.2: Matrix B of the linear system 

and the vector of states 

{𝑢, 𝑤, 𝑞, 𝜃, 𝑣, 𝑝, 𝑟, 𝜙, 𝜓}′ 

 

The problem is highly coupled cause the asymmetry of the helicopter but to 

understand the evolution of flight it is useful separate the longitudinal and lateral 

dynamic. 

 

4.2 Longitudinal plane 
 

Starting from a steady state and applying a perturbation: 

 

{
𝑋0 = 𝑊 𝑠𝑖𝑛 𝜏𝑐
𝑍0 = −𝑊 𝑐𝑜𝑠 𝜏𝑐

  (4.1) 

 

Figure 4.1: Perturbation of flight in longitudinal plane [2] 
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Using the aerodynamic derivatives and remembering: 

�⃗⃗⃗� = 𝑚𝑔(
−𝜃 𝑐𝑜𝑠 𝜏𝑐
𝜙 𝑐𝑜𝑠 𝜏𝑐
−𝜃 𝑠𝑖𝑛 𝜏𝑐

) [8]: 

{
 
 

 
 �̇� + 𝑔𝜃 𝑐𝑜𝑠 𝜏𝑐  = 𝑋𝑢𝑢 + 𝑋𝑤𝑤 + 𝑋𝑞𝑞 + 𝑋𝐵1𝐵1 + 𝑋ΘΘ

�̇� − 𝑞𝑈 + 𝑔𝜃 sin 𝜏𝑐 = 𝑍𝑢𝑢 + 𝑍𝑤𝑤 + 𝑍𝑞𝑞 + 𝑍𝐵1𝐵1 + 𝑍ΘΘ

�̇� = 𝑀𝑢𝑢 +𝑀𝑤𝑤 +𝑀�̇��̇� + 𝑀𝑞𝑞 +𝑀𝐵1𝐵1 +𝑀ΘΘ

�̇� = 𝑞

  (4.2) 

Where the derivatives 𝑋�̇� e 𝑍�̇� are neigible. 

 

The poles of the system can be find using the Laplace’s transformation: 

 

[

𝑠 − 𝑋𝑢 −𝑋𝑤 𝑔 cos 𝜏𝑐
−𝑍𝑢 𝑠 − 𝑍𝑤 −𝑈𝑠 + 𝑔 sin 𝜏𝑐
−𝑀𝑢 −(𝑠𝑀�̇� +𝑀𝑤) 𝑠2 −𝑀𝑞𝑠

] (
𝑢
𝑤
𝜃
) = 0  (4.3) 

 

The characteristic equation has usually the roots [3][4]:  

(𝑠 +
1

𝑇1
) (𝑠 +

1

𝑇2
) (𝑠2 + 2휁𝜔𝑛𝑠 + 𝜔𝑛

2)  (4.4) 

 

We can find from equation 4.4: 

1- Vertical speed mode: it is a steady mode described by (𝑠 +
1

𝑇1
), it’s 

decoupled from the other modes and it is a heavily damped subsidence; 

2- Forward mode: it is described by (𝑠 +
1

𝑇2
) but it is coupled with pitch 

attitude and pitch rate; 

3- Pitching oscillation: it is both speed and flight condition dependent, 

unstable for hinge-less rotor configurations that worsens at high speed.  
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4.2.1 Hovering stability 

 

In hovering some derivatives can be neglect such as Xw, Zu, Zq, Zw and Mw, the 

speed is U= 0 and the rate of climb 𝜏𝑐 = 0; so the characteristic equation takes the 

form [3][4]: 

(𝑠 − 𝑍𝑤)(𝑠
3 − (𝑋𝑢 +𝑀𝑞)𝑠

2 + 𝑋𝑢𝑀𝑞𝑠 + 𝑀𝑢𝑔) = 0  (4.5) 

 

One real root is given by (s − Zw) = 0; this represents a heavily damped motion 

such that if a helicopter is disturbed, by a vertical speed, the motion of lifting is 

rapidly damped.  

The movement is a pure convergence without oscillation and confirms that the 

vertical motion is completely decoupled from the pitch. 

The other real root represents the mode of pitch rate, coupled with speed and pitch 

oscillation. 

In hovering the oscillation in pitch has the following explanation: 

 

Assume that the helicopter in hovering has an horizontal velocity disturbance, the 

change of relative speed to the rotor causes a backward rotation (a), which exerts a 

positive pitching moment. 

At the same time it develops a rear component of the thrust vector that decelerates 

the aircraft up to stop (b). 

At this point the helicopter is located to a new trim angle and the moment 

generated vanishes, but the component of traction towards brings behind the 

Figure 4.2: Representation of coupling in pitch and longitudinal speed [2] 
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aircraft to a translation which introduces a new disorder in speed with consequent 

rotation of the rotor in forward and generation of a positive pith moment (c). 

The component of forward command the motion until arresting the helicopter 

with a new trim angle to beat (d) and zero pitch moment. 

The movement is generally unstable, however handling of the derivative Mq will 

affect the rate of divergence: make Mq more negative will reduce the real part of 

the complex pole and therefore will tend to increase the doubling time. 

The movement can be approximated by evaluating the system in u and q such an 

oscillation whose frequency depends on Mu and Mq [3][4]: 

𝜔 = √−
𝑀𝑢𝑔

𝑀𝑞
               휁 = −

𝑋𝑢−
𝑀𝑢𝑔

𝑀𝑞
2

2
√
−𝑀𝑞

𝑀𝑢𝑔
    (4.6) 

 

4.2.2 Forward flight stability 

 

The characteristic equation in forward flight is not so easy to generalize as in the 

case with a conventional fixed-wing aircraft. 

For the latter, the characteristic equation is solved in pairs of complex conjugate 

poles representing two oscillatory modes, one short-term and high damping (SP) 

and a long-term lightly damped (LP). 

In the case of a helicopter the characteristic equation is solved in four roots, but 

depending on the flight conditions can be found two pairs of complex roots, two 

real and a pair of complex conjugate roots or four real roots. 

The reason for this is the large variation of the value of the derivatives in the 

envelope of flight; however we can find similarities. 

Usually the high frequency poles are characterized by two heavily damped 

subsidence in pitch rate and incidence, like an aircraft. 

The phugoid mode of a fixed-wing aircraft is an oscillation in the height and 

speed at approximately constant incidence.  

Now, considering a disturb that causes the helicopter to adopt negative attitude, 

the component of weight which acts along the longitudinal axis accelerates the 

helicopter, but the disc automatically rotates upward (speed stability) producing 
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an angular velocity that rotates the fuselage at an angle of attack greater than the 

rotor. 

The flight path is still downwards and the component of weight causes the speed 

continues to increase so that the preceding steps are repeated until the traction 

exceeds the weight and the helicopter starts to rise. 

The component weight acting along the flight path now begins to slow down the 

helicopter and the disc rotor rotates forward producing a negative pitch moment. 

The helicopter continues to rise until the weight does not exceed the traction and 

all this will be repeated until the oscillation eventually damps both (stable 

dynamic) or increases indefinitely (unstable dynamic). 

It is possible to characterize the mode to "long term" [3][4]: 

𝜔 = √
−[𝑍𝑢−

𝑀𝑢
𝑀𝑤

𝑍𝑤]𝑔

𝑈
               휁 = −

𝑋𝑢−
𝑀𝑢
𝑀𝑤

[𝑍𝑤−𝑔]

2 √
−𝑈

[𝑍𝑢−
𝑀𝑢
𝑀𝑤

𝑍𝑤]𝑔
 (4.7) 

 

The frequency of the mode to "long-term" is therefore inversely proportional to 

the speed U. 

An increase of the trim speed reduces the resulting frequency of the oscillation 

period. An increase of Zu (relative to the lift coefficient) has the opposite effect. 

The damping of the way to "long term" is influenced by the same factors, but in 

the opposite way; so an increase in trim speed will increase the damping in 

addition to reducing the frequency of the response. 

The resistance of the helicopter (related to Xu) influence the damping of 

"phugoid". 

The following figure 4.3 represent the poles responsible of the pitching oscillatory 

mode for a generally helicopter. 
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In the example shown is also the contribution of the tail plane, which carries a 

positive contribution to the stability with increasing speed, making Mq become 

more negative. 

 

  

Figure 4.3: Representation of position at different speed flight of pitching 

oscillatory mode pole in the Gaus’s plane [2] 
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4.3 Lateral plane 

 

The equation are the following and some derivatives such as Yp, Yr… are 

neglected: 

{
  
 

  
 
�̇� + 𝑈𝑟 − 𝑔𝜙 𝑐𝑜𝑠 𝜏𝑐 − 𝑔𝜓 sin 𝜏𝑐  = 𝑌𝑣𝑣 + 𝑌𝐴1𝐴1 + 𝑌Θ𝑡Θ𝑡

�̇� = 𝐿𝑣
′𝑣 + 𝐿𝑝

′𝑝 + 𝐿𝑟
′𝑟 + 𝐿𝐴1

′𝐴1 + 𝐿Θ𝑡
′Θ𝑡

�̇� = 𝑁𝑣
′𝑣 + 𝑁𝑝

′𝑝 + 𝑁𝑟
′𝑟 + 𝑁𝐴1

′𝐴1 + 𝑁Θ𝑡
′Θ𝑡

�̇� = 𝑝 + 𝑟𝑡𝑎𝑛 𝜏𝑐

�̇� =
𝑟

cos 𝜏𝑐

  (4.8) 

 

Where the derivatives with quotes are calculated: 

(
𝐿𝑖
′

𝑁𝑖
′) =

1

Δ
[
1

𝐸

𝐴
𝐸

𝐶
1
] (𝐿𝑖

𝑁𝑖
)            Δ = 1 −

𝐸2

𝐴𝐶
  [8] (4.9) 

 

Passing in the s domain for the calculation of the poles of the system has: 

[

𝑠 − 𝑌𝑣 −𝑔𝑐𝑜𝑠 𝜏𝑐 𝑈𝑠 − 𝑔 sin 𝜏𝑐
−𝐿𝑣

′ 𝑠2 − 𝐿𝑝
′𝑠 −𝐿𝑟

′𝑠

−𝑁𝑣 −𝑁𝑝
′𝑠 𝑠2 −𝑁𝑟

′𝑠

] (
𝑣
𝜙
𝜓

) = 0  (4.10) 

The quotes will be omitted in the rest of the discussion. 

 

The characteristic equation has the roots [3]:  

𝑠 (𝑠 +
1

𝑇1
) (𝑠 +

1

𝑇2
) (𝑠2 + 2휁𝜔𝑛𝑠 + 𝜔𝑛

2) = 0  

 

From the characteristic equation it is possible define: 

1- Heading mode: represented by s=0 that indicates that the aircraft has 

neutral yaw angle stability.  

2- Yawing mode: it is equivalent to the fixed wing, is represented by 

(𝑠 +
1

𝑇1
) = 0, the mode is independent of roll and lateral translation and is 

an exponential motion that can be either convergent or divergent; 
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3- Rolling mode: described by (𝑠 +
1

𝑇2
) = 0, is a damped subsidence in pure 

roll; 

4- Lateral/directional oscillation: or Dutch roll, is an oscillation in roll and 

yaw, which like the pitching oscillation can be flight condition dependent. 

 

4.3.1 Hovering stability 

 

While in the case longitudinal, not only the speed is zero, but also some 

derivatives are zero, this is definitely not true in the case lateral-directional; 

however, if the tail rotor is assumed to be located on the roll axis, and then Lr can 

be considered negligible, we have a situation similar to that of the longitudinal 

motion [3]. 

s(s − Nr)(s
3 − (Yv + Lp)s

2 + YvLps + Lvg) = 0  (4.11) 

 

One of the real roots is given by (s − Nr) = 0, so that confirms that the yawing 

mode is independent of the other motions; any disturbance in yaw moment will be 

damped by the Nr derivative and the root s = 0 indicates that the route angle 

reached consequently to the disturbance remains unchanged. 

The other real root is usually negative and very high and represents a very damped 

roll mode. 

The root complex is an oscillation diverging much like the longitudinal case. 

In this case however, the presence of the tail rotor, which modifies its traction in 

the presence of a lateral translation, generates a yaw movement. 

The motion can be approximated to an oscillation frequency [3]: 

𝜔 = √
𝐿𝑣𝑔

𝐿𝑝
 (4.11) 
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4.3.2 Forward flight stability 

 

The characteristic equation has two real poles, representing a damped roll mode 

and spiral mode, and two complex conjugate poles that are close to the dutch-roll 

motion in the fixed-wing aircraft. 

As regards the spiral mode there is a variation of the value of the derivative Nv 

that was neglected in hovering and the equation can be written as follows [3]: 

�̇� = 𝑝 =
𝑔

𝑈

[𝑁𝑟𝐿𝑣−𝐿𝑟𝑁𝑣]

[𝐿𝑝𝑁𝑣−𝑁𝑝𝐿𝑣]
𝜙  (4.12) 

Usually the term in the denominator is negative and this translates to stability in 

the relation 𝑁𝑟𝐿𝑣 > 𝐿𝑟𝑁𝑣.  

This underlines the influence that the derivative Lv (dihedral effect), which must 

be negative to ensure the stability of the spiral. 

However it is not simple to establish this effect because of the strong variation of 

the derivatives with the speed of flight. 

The roots that develop the "Dutch roll" can be approximated with frequency and 

damping equal to [3]: 

𝜔 = √𝑌𝑣𝑁𝑟 + 𝑈𝑁𝑣     휁 =
−(𝑌𝑣+𝑁𝑟)

2√𝑌𝑣𝑁𝑟+𝑈𝑁𝑣
    (4.13) 

 

From this approximation results a damped harmonic mode; but there are not 

important effects of other aerodynamic derivatives. 

Analyzing the same problem constraining the center of gravity of the aircraft and 

freeing only the rotations (roll and yaw) it highlights the effect of the derivative Lv 

[3][4]: 

𝜔 = √
𝑈

𝐿𝑝
𝑁𝑣𝐿𝑝 − 𝐿𝑣𝑁𝑝    휁 =

1

𝐿𝑝
[𝑁𝑝𝐿𝑟−𝐿𝑝𝑁𝑟−

𝑈𝐿𝑣𝑁𝑝

𝐿𝑝
]

2√
𝑈

𝐿𝑝
𝑁𝑣𝐿𝑝−𝐿𝑣𝑁𝑝

 (4.14) 

 

It is noted that a too high value dihedron effect leads to instability of the system. 

The roll rate and yaw rate approximated by 𝑠 − 𝐿𝑝 = 0 and 𝑠 − 𝑁𝑟 = 0 is not 

very different from the case of the hovering, remaining exponential damped 

modes. 
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Of interest is an examples of root loci as a function of forward speed of the 

“Lynx” from [4] in figure 4.4; however we expect for our model higher pulsation 

because of the smaller dimensions.  

 

  

Figure 4.4: Lynx root-loci eigenvalue as a function of forward speed [4] 
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4.4 Fly-bar 
 

We have seen that the helicopter is unstable both laterally and longitudinally in 

hovering flight and that the longitudinal instability becomes worse with increase 

of forward speed, particularly when the rotor has hinge-less blades. 

Small-size helicopter has a system that increase the stability called fly-bar, that 

behavior like a mechanical SAS in pitch rate and roll rate. 

 

 

 
The bar behaves like a gyroscope with lag damping generated from the 

aerodynamic forces. 

The bar is linked to the blade so that a tilt of the bar relative to the shaft causes a 

change of pitch of the rotor blade. 

The dynamic equation of the fly-bar it is the same of the rotor with pitch rate or 

roll disturbance; considering the only presence of q: 

𝜕2β

𝜕ψ2
  +

γ

8

𝜕β

𝜕ψ
+  β = –  2q/Ω sin ψ + q̇/Ω2cos ψ  (4.15) 

where β = θ𝑏𝑎𝑟 and q̇/Ω2 is neglectable. 

 

The command θ = −𝐴1𝑠𝑖𝑛 ψ − 𝐵1cos ψ,   θ = 𝑐𝑙θ𝑏𝑎𝑟  (𝑐𝑙 = 0.5 for the 

T-REX 500) and inserting in the 4.15 we obtain regrouping sin and cos: 

Figure 4.5: Representation of connection between rotor commands and fly-bar [2] 
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{
𝐴1

′′ +
γ

8
𝐴1

′ − 2𝐵1
′ −

γ

8
𝐵1 = 2𝑐𝑙𝑞/Ω

2𝐴1
′ +

γ

8
𝐴1 + 𝐵1

′′ +
γ

8
𝐵1

′ = 0
 (4.16) 

 

The results of this system to a positive step of pitch rate “q” are the following: 

 

Figure 4.6: A1 time response at q perturbation 

-bar 

Figure 4.7: B1 time response at q perturbation 

-bar 
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With a disturb of positive q, the fly-bar commands the rotor to tilt back like a first 

order dynamic, while the command A1 is near to zero; a good approximation is 

precisely neglect A1 and the 4.16 simplify in: 

𝐵1
′ +

γ

16
𝐵1 = −𝑐𝑙𝑞/Ω (4.17) 

(𝑠 +
γΩ

16
)𝐵1 = −𝑐𝑙𝑞 (in Laplace domain) (4.18) 

The fly-bar can be treated like a feedback where 𝐵1 = 𝐵1𝑝 −
𝑐𝑙

𝑇𝑓𝑏𝑠+1
𝑞; the low-

pass filter depends on the fly-bar dynamic (𝑇𝑓𝑏 =
16

𝛾𝑓𝑏𝜔
). 

 

In the Laplace’s domain in hovering for example: 

[

𝑠 − 𝑋𝑢 𝑔 0

−𝑀𝑢 𝑠2 − 𝑠𝑀𝑞 −𝑀𝐵1

0 −𝑠𝑐𝑙 𝑠 +
γ

16
Ω

] {

𝑢
θ
𝐵1
} = 0 (4.19) 

 

The solution gives: 

(𝑠3 − (𝑋𝑢 +𝑀𝑞)𝑠
2 + 𝑋𝑢𝑀𝑞𝑠) (𝑠 +

γ

16
Ω) − 𝑠𝑐𝑙𝑀𝐵1(𝑠 − 𝑋𝑢) +

            𝑀𝑢𝑔(𝑠 +
γ

16
Ω) = 0 (4.20) 

With the false feedback technique it is possible to study the values of poles to the 

change of the gain 𝑐𝑙: 

Figure 4.8: Representation of fly-bar feedback 

-bar 
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1 + 𝐾𝐺(𝑠) = 0, with 𝐾 = 𝑐𝑙  

𝐺(𝑠) =
−𝑠𝑀𝐵1(𝑠−𝑋𝑢)

(𝑠3−(𝑋𝑢+𝑀𝑞)𝑠
2+𝑋𝑢𝑀𝑞𝑠+𝑀𝑢𝑔)(𝑠+

γ

16
Ω)

 (4.21) 

 

We can see, in the following figure 4.9, how the high frequency dynamic is not 

interested by the feedback, but in the low frequency dynamic the poles 

responsible of the instability in pitch oscillation change their position to the left-

half plane with the right value of 𝑐𝑙 . 

 

 

We have similarly results for the disturb in roll rate but the dynamic is about the 

command A1 instead.  

High freq. 

Figure 4.9: Change of position of poles with the fly-bar feedback 𝒄𝒍 = [𝟎,𝟎.𝟓] 

Low freq. 
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4.5 Validation 
 

The development of the linear model has been made in non-dimensional form to 

be flexible to change of the identification of the RUAV and it allow also the 

development of control laws in future works. 

The identification of the non-linear model has been developed comparing the 

response registered in a flight test with the response of the simulation on the same 

story of commands. 

This commands has been loaded in the linear system to check the consistency 

between the two models. 

 

4.5.1 Linear model validation 

 

Following, the response in pitch rate and roll rate show the linear model has an 

acceptable comparison with the non-linear model. 

 

  

Figure 4.10: Comparison between linear and non-linear models response in pitch rate 

and roll rate under the same commands 
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4.5.2 Trim validation 

 

The non-linear model has been evaluate with a Simulink tool that give the 

possibility to calculate the trim of the vehicle. 

The tool is under the route: Tools/Control design/Linear analysis/Trim model. 

 

In “Specifications”, the variable known are loaded, such as inputs, outputs and 

steady state. 

The values of the attitude calculated in the chapter 3 has been used to verifying 

the trim; ones the tool has fended a convergence(TRIM_BF_ON_FORWARD in 

the figure 4.10), the all variable have been loaded in the non-linear model as 

initial conditions and a simulation of some seconds has been run to see if the trim 

is stable. 

The hovering condition and three velocity of flight(𝜇 = 0.04, 𝜇 = 0.06, 𝜇 = 0.1) 

have been verified and a corresponding between the two models has been fended. 

  

Figure 4.11: Representation of the Simulink trim tool  
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5. FLIGHT CONTROL 

 

“When evaluating control aspects of rotorcraft the first aspect to consider is the 

characteristics of the control system. As the pilot must control the swashplate 

through the flight controls a deficiency in their operation will affect all areas of 

flight. Even excellent aircraft handling qualities can be masked by poor flight 

control mechanical characteristics (FCMC). Testing can be divided into 

quantitative aspects which normally take place on the ground and qualitative 

aspects which are conducted in flight. As quantitative testing is concerned with 

the measurement of forces and displacements it can be conducted more easily and 

safely on the ground. For reversible systems, however, the amount of ground 

testing that can be undertaken is limited by the requirement to have the rotors 

turning and by the need to evaluate realistic flight forces. Qualitative testing is 

concerned with the effect that the control system characteristics have on the 

conduct of role tasks.”[3] 

 

To develop the control laws we have to study the time response of the helicopter 

to the commands. 

5.1 Transfer functions of T-REX 500 

 

First of all it is necessary to extrapolate from the linearized system with the 

feedback of the fly-bar the transfer functions regarding the dynamics of the T-

REX 500. 
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The system is strongly coupled; however we can suppose that commands like 

𝜃0and 𝐵1 interact primarily with the longitudinal plane, while 𝐴1and 𝜃𝑡 affect the 

lateral plane. 

The functions illustrated are the most significant and are about the hovering mode; 

for the other flight conditions the value of poles are different but the dynamic is 

still the same; we are interested in flight at fixed point and low flight speed (only 

at high speed the dynamic change mostly and the helicopter dynamic behavior 

looks like a plane; i.e. the rotor becomes a wing). 

The transfer function illustrated following have been calculated in the hovering 

condition; in appendix B the transfer function calculated in a range of forward 

speed have been illustrated. 

 

5.1.1 Command 𝐁𝟏 

 

The transfer function of pitch attitude and pitch rate to a command 𝐵1 are: 

𝜃

𝐵1
=

−814.87(𝑠+4.2)(𝑠+0.0098)

(𝑠2+0.48𝑠+0.29)(𝑠2+47.58𝑠+576.2)
 (5.1) 

𝑞

𝐵1
= 𝑠

𝜃

𝐵1
 (5.2) 

The presence of the fly-bar change the dynamic we have seen in the previously 

chapter: the high frequency pole near to the value of Mq and the fly-bar pole are 

coalescing giving rise to a second order dynamic and the complex conjugate of 

the low frequency oscillatory mode are stabilized in the left half plane. 

 

The transfer function in longitudinal and vertical speed are: 

𝑢

𝐵1
=

9.81(𝑠+4.2)(𝑠2−21.43𝑠+815.2)

(𝑠2+0.48𝑠+0.29)(𝑠2+47.58𝑠+576.2)
 (5.3) 

𝑤

𝐵1
=

−90.34(𝑠+4.2)(𝑠2−0.065𝑠+2.9)

(𝑠+1.078)(𝑠2+0.48𝑠+0.29)(𝑠2+47.58𝑠+576.2)
 (5.4) 

 

In the 
𝑤

𝐵1
 function we can see the vertical speed mode pole (𝑠 + 1.078) that is 

decoupling from the other dynamics. 

The time response are shown in the following figure 5.1 and figure 5.2: 
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Be care that the command has given in radiant but the system is linear and we can 

relate the value very easily. 

As we can see the response in pitch rate it’s very fast �̇�(0) = 𝑀𝐵1𝐵1 but the 

helicopter does not response in q at regime, because the presence of the zero in the 

origin; a little bit slow is the response in 𝜃, being the integral of q, that settles 

itself to a little damped oscillatory mode around the value of -0.2 degrees per 1 

degrees command B1. 
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The response in u is more slow compared to the pitch rate, the frontward rotation 

of the rotor bring a positive acceleration �̇�(0) = 9.81 and the helicopter takes an 

oscillatory increment in forward speed around a regime value of 3.5 m/s per 1 

degrees of command. 

With the rotation of the rotor we expect a loss of lift, but at the same time the 

increment in longitudinal speed decreases the inflow and the power needed to 

maintain the helicopter in hovering, see figure 3.3 and 3.7 in “3.3 Trim results”, 

and the helicopter begin to climb; however the amplitude is negligible. 

 

At high speed, as we have already study, the oscillatory poles are more instable 

because the hinge-less rotor and the fly-bar feedback is less efficient, bringing 

them only to the marginal stability, in the figure 5.3 we can check how the 

oscillation is nearly constant, see appendix B to check the values of poles. 
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5.1.2 Command 𝛉𝟎 

 

Being in steady state the resultant of rotor forces pass very near the center of mass 

so the response in q, 𝜃 and u are negligible; of interest are the w and h response 

instead, where the zero-pole cancellation simplify the transfer function remaining 

the vertical speed mode only. 

 

𝑤

𝜃0
=

−76.67

(𝑠+1.078)
 (5.5) 

ℎ

𝜃0
=

1

𝑠

𝑤

𝜃0
=

−76.67

𝑠(𝑠+1.078)
 (5.6) 

 

 

In the figure 5.4 is reported also the u response in order to see how little is the 

amplitude to 1 radiant of command. 

The response in w, or 𝛼 =
𝑤

𝑈
 if we are in forward flight, is a pure first order and 

decoupling by the other longitudinal dynamic. 

In hovering  the response in altitude is simply its integral, in forward motion we 

should consider the contribute of 𝑉
𝜃

𝜃0
; however it is negligible and does not 

change the response. 

Following a command 𝜃0 the altitude grows as ramp. 
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5.1.3 Command 𝐀𝟏 

 

The command 𝐴1 has effect on the lateral plane. 

𝑝

𝐴1
=

−2355.2 𝑠 (𝑠+4.2)(𝑠+0.75)(𝑠+0.45)

(𝑠+122.4)(𝑠+14.46)(𝑠+0.89)(𝑠2+0.37𝑠+0.39)
 (5.7) 

𝜙

𝐴1
=

1

𝑠

𝑝

𝐴1
 (5.8) 

𝑝 =
−2355.2 𝑠

(𝑠+122.4)(𝑠+14.46)
 (HF approximation) (5.9) 

In the high frequency approximation we can see a highly damped roll dynamic, 

the spiral mode and the dutch-roll poles are not recognized for the dynamic. 

In the first moments the response is governed by the rolling pole and the 

helicopter reach rapidly a rolling rate; but the presence of the fly-bar and, being in 

hovering, the high dihedral effect (𝛽 =
𝜋

2
) tilt the rotor and the effect of the zero in 

the origin bring the rolling rate to zero in a few seconds. 

The roll attitude is approximated to a high damped second order response and 

settles to a constant value, figure 5.5. 

With the growing of the forward speed the dihedral effect reduce its self and the 

spiral pole goes next to the origin; at high flight speed the rolling rate stop to a 

constant value and the roll attitude grows indefinitely. 
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5.1.4 Command 𝛉𝐭 

 

The presence of the tail rotor is necessary to balance the torque of the main rotor; 

a command to its collective influence principally the yaw rate. 

Here will be study the behavior in open loop and in a simple closed loop because 

the control system on the machine is not already been identified. 

 

𝑟

𝜃𝑡
=

48.34(𝑠2+0.067𝑠+0.31)

(𝑠+0.89)(𝑠2+0.37𝑠+0.39)
 (5.10) 

𝜓

𝜃𝑡
=

1

𝑠

𝑟

𝜃𝑡
 (5.11) 

 

In hovering the response is almost exclusively in yaw rate with a little oscillation 

in lateral velocity; in the first moments the helicopter response like a first order, 

than we have a second order oscillation due the dutch-roll poles and the yaw rate 

settles to a constant value, while the yaw angle grows to ramp. 

With the increasing of the forward speed the effect on lateral velocity becomes 

more intense; the helicopter response with a constant 𝛽 =
𝑣

𝑉
, while the yaw rate 

tends to zero at regime. 

The gyro mounted on the T-REX 500 measures the yaw rate and ensure the 

“heading lock” of the helicopter by command the tail rotor collective. 
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5.2 Controller 
 

The purpose of building the control laws is to allow the helicopter to fly in 

automatic mode. 

That means the pilot assigns the reference values from the radio-controller: 

 Hovering mode, the control system set the speed in the three axis to zero; 

 Forward flight mode, the pilot can set the speed along the longitudinal and 

vertical axis and the roll angle by the levers of the radio-controller and the 

control system work to follow the pilot wish, maintaining always the 

helicopter in balance.  

o Longitudinal speed: the pilot change the lever of forward speed (u 

figure 5.7) and the controller, not only bring the helicopter to the 

new speed, but it maintain the altitude and the direction of flight; 

o Vertical speed: the helicopter must perform a climb or a sink with 

the same forward speed and direction of flight and the control sets 

as reference the new altitude reached when the pilot set off the ask 

of vertical speed; 

o Roll angle: if the pilot ask for a turn by setting a roll angle, the 

helicopter must maintain the altitude and the speed of flight while 

performing the maneuver. 

For these control laws PID controller have been used and they are synthetized by 

means of SISO techniques. 

  



69 
 

The figure 5.7 represents how the pilot could set the references for the control: 

 the lever on the left side, usually used to command the cyclic 𝐵1 (up and 

down) and the rotor tail collective 𝜃𝑡 (left and right), now is useful to set a 

variation of longitudinal velocity u or a specific yaw rate; 

 similarly for the lever on the right side, where the command of collective 

𝜃0 and cyclic 𝐴1 now corresponds respectively to a request of vertical 

speed w or of a roll angle 𝜙. 

 

  

Figure 5.7 Representation of the radio-controller 
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5.2.1 Autopilot in longitudinal speed and position 

 

This autopilot allow to choose a forward speed or maintain the position along the 

x body-axes that for small attitude angles can be approximated to the X inertial-

axes. 

Observing the generalized Bode plot in figure 5.8 the control of the speed along 

the x body-axes can be realized with a positive proportional (critical phase at 

180°) and the addition of an integral action to cancel the asymptotic error [8][9]. 

Because of the oscillatory poles it is difficult find a value of the gain to maintain a 

suitable phase margin; to resolve the problem it is possible implementing a 

derivative control or insert a stability augmentation system by 𝜃 and q controller. 
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The figure 5.9 represents the electronic control for a common helicopter [4], that 

can be used on the T-REX too, and the stability effect of a negative proportional 

control in 𝜃, the upper root locus, and a negative proportional control with lag 

(𝑠 +
1

𝑙
) in q, the lower one, that is exactly the same effect of the fly-bar; therefore 

we chose to control only the pitch attitude. 

Figure 5.9 Root loci of 𝛉 and q controller [4] 
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Using the figure 5.10 the generalized Bode plot for function 
𝜃

B1
 we can see how, 

choosing a gain 𝐾 = −0.2 (critical phase at 0°), the poles interested by the 

feedback are only the oscillatory mode and coalescing themselves in to two real 

roots, while the high frequency poles are not changed by the loop. 
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The control chain is the following in figure 5.11. 

 

The transfer function of the position 
𝑋

B1
=

1

𝑠

𝑢

B1
 presents a pole in the origin, so a 

simply positive proportional control will be able to close the system without an 

asymptotic error. 

The stability augmentation system in 𝜃 is still necessary to obtain an acceptable 

response. 

However, as shown in the figure 5.12, the maximum bandwidth reached without 

destabilizing the system is too low and to improve the velocity of the response it 

is necessary to implement a derivative control with an high frequency filter or a 

proportional control in velocity u [8]. 

The proportional control in velocity u has been chosen because it is already been 

developed for the forward speed, but now it is used as a SAS. 

 

 

Figure 5.11 Loop chain forward speed control 
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The control chain is the following in figure 5.13 

 

5.2.2 Autopilot in vertical speed and altitude 

 

With this autopilot the helicopter is capable of maintain the altitude or reach a 

new flight level with a vertical velocity set by pilot. 

The response in vertical velocity, or incidence 𝛼 if the helicopter has a forward 

speed, with a command in collective is a pure first order with an high bandwidth. 

A negative proportional feedback with an integral action to ensure the right value 

request by the pilot it is sufficient to close the system. 

The transfer function in altitude is a second order with a pole in the origin; a 

negative proportional has been developed with a feedback in vertical velocity to 

increase the bandwidth. 

Following are illustrated the Bode diagram of the  
𝑤

𝜃0
 and 

ℎ

𝜃0
. 

 

 

 

 

 

 

 

Figure 5.13 Loop chain position X control 
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5.2.3 Autopilot in roll angle and lateral position 

 

The behavior of the helicopter in the lateral plane is highly influenced by the 

forward speed. 

In hovering the gyro controller help on the maintaining of the heading, so it is 

possible remove the degrees of freedom in yaw rate and develop only a controller 

in position along y axes with the same structure as the previously longitudinal 

controller, but now the command interested is 𝐴1 and the SAS is based on the 𝜙 

angle to increase the stability and on the lateral velocity 𝑣 to close the loop with 

an higher bandwidth [8]. 

In forward speed we have the relation 𝑈𝑟 = 𝑔𝜙, therefore if the pilot is thinking 

to make a turn, he is asking instead for a specific roll angle. 

The controller in 𝜙 has been developed with a negative proportional and an 

integral action. 

The bandwidth and the phase margin reached, looking the figure 5.13, are 

satisfactory so the control does not need a derivative or a SAS in roll rate. 

The problem to this dynamic is the presence of the “heading lock” control that 

prevents to perform a correct turn; the resulting motion is a turn with a growing of 

the dihedral effect, because the increase of the 𝛽 angle, and a corresponding 

growth of the command to maintain the roll angle until saturation. 

When this autopilot is working it will be necessary a shutdown of the gyro 

controller that would allow the proper functioning of the autopilot in roll angle. 
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5.3 MIMO system 
 

All the controller are, in a first moment, studied like a SISO system to find the 

first values of the proportional and integral gains, proceeding in cascade, applying 

before the SAS feedback and then calculating the autopilot on the new SISO 

system generated. 

Finally all the controller have been implemented in the helicopter linear 

simulation model to check the interactions effects among the controller 

themselves. 

This step is very important because a strong assumption considered in the 

synthesis of the controller is that the longitudinal and later dynamic are 

decoupled, but it is not true in the helicopter dynamics. 

Let us suppose the following simple system to evaluate the change of the function 

ℎ

𝜃0
 with the presence of a feedback on the longitudinal speed: 

 

Being Gij the transfer function of the j input to the i output[8]: 

{
𝑢
ℎ
} = [

𝐺𝑢𝜃0 𝐺𝑢𝐵1
𝐺ℎ𝜃0 𝐺ℎ𝐵1

] {
𝜃0
𝐵1
} (5.12) 

with the feedback law 

𝐵1 = 𝐾(𝑢)(𝑢𝑖 − 𝑢) ==> 𝐵1 = 𝐾(𝑢)𝑢𝑖 − 𝐾(𝑢)(𝐺𝑢𝜃0𝜃0 + 𝐺𝑢𝐵1𝐵1) (5.13) 

∆= 1 + 𝐾(𝑢)𝐺𝑢𝐵1 (5.14) 

𝐵1 =
𝐾(𝑢)

∆
𝑢𝑖 −

𝐾(𝑢)𝐺𝑢𝜃0

∆
𝜃0 (5.15) 

 

Figure 5.17 Example of MIMO system 
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The system modifying in: 

{
𝑢
ℎ
} = [

𝐺𝑢𝜃0 𝐺𝑢𝐵1
𝐺ℎ𝜃0 𝐺ℎ𝐵1

] [
1 0

−𝐾(𝑢)𝐺𝑢𝜃0

∆

𝐾(𝑢)

∆

] {
𝜃0
𝑢𝑖
} (5.16) 

ℎ𝑛𝑒𝑤

𝜃0
=

ℎ

𝜃0
−
𝐾(𝑢)𝐺𝑢𝜃0

∆
𝐺ℎ𝐵1 (5.17) 

To integrate the all controllers and evaluate the behavior of the helicopter has 

been developed a code shown in appendix C, that implements the dynamic of the 

servos of the swash-plate too. 

The controller in maintaining of altitude have been resulted ineffective to the 

pilot’s request in change of velocity or in roll attitude because the function 
ℎ

𝜃0
 has 

been modified by others controls and now it is necessary to insert an integral 

action to cancel the asymptotic error. 

The values of the controllers are illustrated in the following table: 

 

Hovering 

k_theta_hover -0.4 

k_u_hover 0.1 

k_X_hover 0.15 

k_phi_hover -0.3 

k_v_hover -0.1 

k_Y_hover -0.15 

k_w -0.05 

k_h 0.2 

Forward speed 

k_theta -0.4 

k_u 0.04 

Tiu 1/0.4 

k_w -0.05 

Tiw 1/0.15 

k_h 0.02 

Tih 1/0.1 

k_phi -0.3 

Tiphi 1/0.1 

 

 

Table 5.1: Controller values 
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5.4 Results 

 

To validate the controllers we need to check the responses in the different flight 

conditions, applying margins that the responses must be within. 

In literature there are not specification about the quality of flight for small-scale 

helicopter and, with the pilot experience, the following specifics have been 

settled. 

We have auto-pilot controllers, so the responses must be the more as possible like 

a second order with zero asymptotic error, frequency response flat till the cut off 

frequency: the specifications chosen are a maximum overshoot of 50% that means 

for a second order response, in a good approximation, a damping coefficient of 

about 휁 > 0.3 and a settling time of less than 8 s; knowing the minimum 휁 we 

have a limit to the lower bandwidth 𝜔𝑛 > 1.6 s
-1

, being 𝑇𝑠 =
4

𝜁𝜔𝑛
, for a tolerance 

of ±2%. 

In hovering the results obtained with the values of gains in the table 5.1 are the 

following: 

with the controls in longitudinal and lateral positions we within the specifications, 

because of the marginal stability of the low frequency poles that delay the 

behavior of the machine; but the control of altitude is well in requests. 

We report also the time evolutions of the commands to the swash-plate to check 

them amplitude is in the limits of saturation of about ±20 deg. 
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Figure 5.18 Time response of control in longitudinal position 

Figure 5.20 Time response of control in lateral position 

Figure 5.19 Time response of command B1 
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Figure 5.22 Time response of control in vertical position 

Figure 5.21 Time response of command A1 

Figure 5.23 Time response of command 𝛉𝟎 
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In forward speed we have different flight conditions to analyze and to check the 

controllers; the purpose is to obtain, without change the controller’s gains, all the 

response consistent with the specification. 

Following are illustrated the response at the different forward speed parameters 

𝜇 = 0.04,  𝜇 = 0.06 and  𝜇 = 0.1 with the gains of the table 5.1, applying one by 

one the controllers in forward speed first, in vertical speed and then in roll 

attitude, while maintaining the others set to zero following. 

 

Figure 5.24 Time response of control in forward speed 

Figure 5.25 Time response of command B1 
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To note the rapidity of the response in roll due to the very low inertia moment 

around the x axis. 

 

Figure 5.26 Time response of control in 𝛟 

Figure 5.27 Time response of command A1 
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Figure 5.28 Time response of control in w 

Figure 5.29 Time response of command 𝛉𝟎 
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As we can see from the time responses the controllers maintain the specifications 

in all the flight condition: 

 u_control: it is interesting observing the rise of the command with the 

servo dynamic and the modulation due the fly-bar (SAS in q) and the SAS 

in θ and finally the integral effect to eliminate the asymptotic error; 

 phi_control: we have here the same behavior of the command like in the 

previously controller on the high frequency, but the presence of the angle 

𝛽 =
𝑣

𝑉
 triggers the spiral mode and the control must increase the module 

of the command till the saturation, like indicated in paragraph 5.2.3; it 

will be necessary not only deactivate the “heading lock” but also 

implementing a control to bring the x axis of the helicopter tangent to the 

curve during the turn; 

 w_control: we can observe the rapidity of this dynamic, of which we have 

amply discussed and it does not present particular difficulties, and the 

integral effect on the command in the low frequencies. 
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5.5 Controller’s architecture 
 

Figure 5.30 Controller’s architecture 
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The complete architecture of the controller that will be implemented in the non-

linear system is shown in the figure 5.30. 

The inputs are directly from the radio-controller of the pilot, who can choose to 

maintain the hovering or assign a variation of the velocities. 

If the pilot switch on the hovering, the upper blocks are activated; the first block, 

that is commanded by a trigger, memorize the position of the helicopter at the 

moment of activation and sets these parameters as references for the controllers in 

positions and the command to the tail rotor is entrusted to the “heading lock” of 

the T-REX. 

Otherwise is the lower part that is active; in particular the first block maintain the 

altitude constant as long as the pilot does not request a variation in vertical 

velocity, only when the input wi return to zero the block memorize the new 

altitude as a reference; the second block is the responsible of the longitudinal 

velocity and the last takes care about the turns. 

Unlike the hovering control, the lower provides a command to the tail rotor, if the 

pilot ask for a turn, to deactivate the “heading lock” by using a simple yaw 

damper, waiting the identification from the thesis [1], which is adequate for turn 

of short duration; a better solution will be object of future developments. 
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6. CONCLUSIONS AND FUTURE 

DEVELOPMENTS 

 

 

In conclusion a linear model simulation has been developed with a script that 

calculate the trim and the aerodynamic derivatives in hovering and in the range of 

forward speed chosen. 

The coincidence for small perturbation of the linear model with the non-linear 

model has been validate by checking the response to the same commands and by a 

Simulink tool that calculate the trim. 

By the linear model it is possible extrapolate the transfer function to the develop 

of the control laws that have been validated by the simulation of the model and 

checking the response to be within the specifications. 

The scripts developed to the calculations of the controllers are realized to be 

useful not only for the T-REX, they will also be useful for future works on 

different RUAVs or on the same T-REX with an upgrade on its onboard system, 

like a stereoscopic cams for the “sense and avoid” system, that change the 

characteristic fended in the identification. 

The next step to this work is the substitution of the pilot with a FMS that carries 

out the mission in autonomous mode and the implementation of a sense and avoid 

system to the control that is necessary for this kind of flight. 
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APPENDIX A 
 

 

In this appendix will be illustrated the script Matlab with the input of the 

helicopter’s characteristics and with the output of the value of the trim and the 

aerodynamic derivatives at different speed of flight. 

Then the possibility of choose a flight speed condition and generate the 

dimensional aerodynamic derivatives to introduce in the linearized system. 

At the end we have the composition of the matrix of the system and the 

calculation of the fly-bar feedback to obtain the SS system useful to extrapolate 

the transfer functions. 

% 

==================================================================

======= 

  
%    TRIM IN HOVERING AND FORWARD FLIGHT AND AERODINAMIC 

DERIVATIVES 

  
% Programmed by: Roberto Fiorenzani 

  
% 

==================================================================

======= 

  
%dati di input 
m=2.14; %mass 
g=9.81; 
W=m*g; %weight 
s=0.056; %solidity rotor 
s_t=0.121; %solidity tail rotor 
ro=1.225; %air std 
roblade=10; %blade density 
R=0.485; %rotor radius 
R_fb=0.235; 
Mf=0;  
Cmf=0; %moment coefficient 
tauc=0; %trajectory 
A=pi*R^2; %rotor area 
xg=0.4*R; %center of mass blade 
omega=240.7; %rotor angolar rate 
Vtip=omega*R; %tip blade speed 
R_t=0.105; %tail rotor radius 
A_t=pi*R_t^2; %tail rotor area 
Do=0.02; % equivalent drag coeff  
do=Do/(s*A); %coefficiente adimensionalyzed 
a=4.5; %cl_alfa 
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a_t=1.5; %cl_alfa tailrotor 
a_fb=1.5; %cl_alfa fly-bar 
c=0.0423;%blade chord 
c_fb=0.039; % fly-bar chord[m] 
B_bl=0.01; % [Kg m^2]inertia blade 
delta=0.015; %cd0 
gamma=(ro*a*c*R^4)/B_bl;%[ ] %num Lock 
B_fb=7.8e-04; % fly-bar inertia[Kg m^2] 
gamma_fb=(ro*a_fb*c_fb*R_fb^4)/B_fb;% [ ] 
n=2; %Num blade 
h=0.289; %center of mass vertical distance 
f=-0.025; %center of mass longitudinal distance 
l=0; %center of mass lateral distance 
ht=-0.012/R; %tail rotor vertical distance 
lt=0.575/R; %tail rotor longitudinal distance 
e=0; %offset hinge 
Sx=0.038; 
Sy=0.07; 
Sz=0.06; 
K_beta=50; % [Nm/rad] 
Kbeta_adi=K_beta/(ro*s*A*R^3*omega^2); 
% Kbeta_adi=K_beta/(B_bl*omega^2); 
epsilon=1.5*e*(1-e); 
st_sign=s_t*A_t/s/A; 

  
%data inertia 
Ixx=0.02; 
Iyy=0.065; 
Izz=0.066; 
Ixz=-9*10^-4; 
Ixy=-7*10^-4; 
Iyz=0; 
I=[Ixx Ixy Ixz 
    Ixy Iyy Iyz 
    Ixz Iyz Izz]; 
j=I/(m*R^2); 

  
Ms=0.5*roblade*R*n*e*xg*omega^2*R^2; %moment due hinge 
Cms=Ms/(ro*s*A*R^3*omega^2); % 

wc=m*9.81/(ro*s*A*omega^2*R^2); %adim weight 
DL=W/A; %disk load 
ct=DL/(ro*omega^2*R^2); %coeff thrust 
lambdah=sqrt(ct/2); %hovering inflow 

  

 
% trim per mi=[0,0.18] 
mi_look=0:0.1:180; 
mi_look=mi_look./1000; 
for i=1:length(mi_look); 
    %II equation longitudinal trim 
    tcd_look(i)=wc-0.5*mi_look(i)^2*do*sin(tauc); 
    v0_look=sqrt(W/(2*ro*A));                                                   

%%%% 
    V_sign_look(i)=mi_look(i)*Vtip/v0_look;                                            

%%%% 
    vi0_sign_look(i)=sqrt((-

V_sign_look(i)^2+sqrt(V_sign_look(i)^4+4))/2);                %%%% 
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    vi_0_look(i)=vi0_sign_look(i)*v0_look;                                                

%%%% 
    %cicle 
    hcd_1_look(i)=0.25*mi_look(i)*delta; 
    lambda_i_look(i)=vi_0_look(i)/Vtip; 
    alfa_d_1p_look(i)=-

(0.5*(mi_look(i))^2*do*cos(tauc)+hcd_1_look(i))/tcd_look(i)-tauc; 
    lambda_d_1_look(i)=mi_look(i)*alfa_d_1p_look(i)-

lambda_i_look(i); 
    teta_0_1_look(i)=(4/a*tcd_look(i)-lambda_d_1_look(i)*(1-

0.5*mi_look(i)^2)/(1+1.5*mi_look(i)^2))*1.5*(1+1.5*mi_look(i)^2)/(

1-mi_look(i)^2+2.25*mi_look(i)^4); 
    

hcd_2_look(i)=hcd_1_look(i)+(a*mi_look(i)*lambda_d_1_look(i)/4)*((

teta_0_1_look(i)/3)*(1-

4.5*mi_look(i)^2)/(1+1.5*mi_look(i)^2)+lambda_d_1_look(i)/(1+1.5*m

i_look(i)^2)); 
    hcd_look(i)=hcd_1_look(i); 
    hcditer_look(i)=hcd_2_look(i); 
    %contidion to stop iteration hcd 
    count(i)=1; 
    while abs((-

hcditer_look(i)+hcd_look(i))/hcditer_look(i))>1*10^(-6); 
        hcd_look(i)=hcditer_look(i); 
        alfa_d_look(i)=-

(hcd_look(i)+0.5*mi_look(i)^2*do*cos(tauc))/tcd_look(i)-tauc; 
        lambda_d_look(i)=mi_look(i)*tan(alfa_d_look(i))-

lambda_i_look(i); 
        teta_0_look(i)=1.5*(1+1.5*mi_look(i)^2)/(1-

mi_look(i)^2+2.25*mi_look(i)^4).*(4/a*tcd_look(i)-

lambda_d_look(i)*(1-0.5*mi_look(i)^2)/(1+1.5*mi_look(i)^2)); 
        

hcditer_look(i)=hcd_1_look(i)+a*mi_look(i)*lambda_d_look(i)/4*((te

ta_0_look(i)/3)*(1-

4.5*mi_look(i)^2)/(1+1.5*mi_look(i)^2)+lambda_d_look(i)/(1+1.5*mi_

look(i)^2)); 
        count(i)=count(i)+1; 
    end 
    alfa_d_look(i)=-

(hcd_look(i)+0.5*mi_look(i)^2*do*cos(tauc))/tcd_look(i); 
    ni_look(i)=(1-sin(alfa_d_look(i)))/(1+sin(alfa_d_look(i))); 
    lambda_d_look(i)=mi_look(i)*tan(alfa_d_look(i))-

lambda_i_look(i); 
    teta_0_look(i)=1.5*(1+1.5*mi_look(i)^2)/(1-

mi_look(i)^2+2.25*mi_look(i)^4).*(4/a*tcd_look(i)-

lambda_d_look(i)*(1-0.5*mi_look(i)^2)/(1+1.5*mi_look(i)^2)); 
    

a1_look(i)=2*mi_look(i)*(4/3*teta_0_look(i)+lambda_d_look(i))/(1+1

.5*mi_look(i)^2); 
    lambda_look(i)=-lambda_d_look(i)+mi_look(i)*a1_look(i); 
    

K_look(i)=(4/3*mi_look(i)/lambda_look(i))/(1.2+mi_look(i)/lambda_l

ook(i)); 
    %coefficient of flapping 
    

a0_look(i)=gamma/(8*(1+epsilon+K_beta/(omega^2*B_bl)))*(teta_0_loo

k(i)*(1-

19/18*mi_look(i)^2+3/4*mi_look(i)^4)/(1+1.5*mi_look(i)^2)+4/3*lamb

da_d_look(i)*(1-0.5*mi_look(i)^2)./(1+1.5*mi_look(i)^2)); 
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b1_look(i)=4*(mi_look(i)*a0_look(i)+0.75*K_look(i)*lambda_i_look(i

))/3/(1+0.5*mi_look(i)^2); 
    

a1_look_iter(i)=2*mi_look(i)*(4/3*teta_0_look(i)+lambda_d_look(i))

/(1+1.5*mi_look(i)^2)+((8/gamma)*(epsilon+K_beta/(omega^2*B_bl))*b

1_look(i))/(1-0.5*mi_look(i)^2); 
    

b1_look_iter(i)=4*(mi_look(i)*a0_look(i)+0.75*K_look(i)*lambda_i_l

ook(i))/3/(1+0.5*mi_look(i)^2)-

((8*(epsilon+K_beta/(omega^2*B_bl))*a1_look_iter(i))/(gamma*(1+0.5

*mi_look(i)^2))); 
    count_falp(i)=1; 
    while abs((-

a1_look_iter(i)+a1_look(i))/a1_look_iter(i))>1*10^(-9) && abs((-

b1_look_iter(i)+b1_look(i))/b1_look_iter(i))>1*10^(-9) ; 
        a1_look(i)=a1_look_iter(i); 
        b1_look(i)= b1_look_iter(i); 
        lambda_look(i)=-lambda_d_look(i)+mi_look(i)*a1_look(i); 
        

K_look(i)=(4/3*mi_look(i)/lambda_look(i))/(1.2+mi_look(i)/lambda_l

ook(i)); 

         
        

a1_look_iter(i)=2*mi_look(i)*(4/3*teta_0_look(i)+lambda_d_look(i))

/(1+1.5*mi_look(i)^2)+((8/gamma)*(epsilon+K_beta/(omega^2*B_bl))*b

1_look(i))/(1-0.5*mi_look(i)^2); 
        

b1_look_iter(i)=4*(mi_look(i)*a0_look(i)+0.75*K_look(i)*lambda_i_l

ook(i))/3/(1+0.5*mi_look(i)^2)-

((8*(epsilon+K_beta/(omega^2*B_bl))*a1_look_iter(i))/(gamma*(1+0.5

*mi_look(i)^2))); 
    end 
    alfa_nf_look(i)=alfa_d_look(i)-a1_look(i); 
    qcshaft_look(i)=(delta/8*(1+4.7*mi_look(i)^2)-

lambda_d_look(i)*tcd_look(i)-mi_look(i)*hcd_look(i)); 
    Qcshaft_look(i)=qcshaft_look(i)*ro*s*A*omega^2*R^3; 
    Tt_look(i)=Qcshaft_look(i)/(lt*R); 
    %command longitudinal,coefficient a1s and pitch angle 
    B1_look(i)=(a1_look(i)+((hcd_look(i)*h-

f*wc))/(Cms+wc*h+Kbeta_adi)); 
    a1s_look(i)=a1_look(i)-B1_look(i); 
    teta_look(i)=B1_look(i)-a1_look(i)-hcd_look(i)/wc-

0.5*do*mi_look(i)^2/wc; 
    %lateral trim 
    A1_look(i)=-b1_look(i)+(wc*l-

ht*Tt_look(i)/(W)*tcd_look(i))/(h*tcd_look(i)+Cms+Kbeta_adi); 
    fi_look(i)=+b1_look(i)+A1_look(i)+Tt_look(i)/(W); 
    Vcap_look(i)=mi_look(i)./cos(alfa_d_look(i)); 
%      
    %aerodinamic derivatives 
% 
h1(i)=h-f*(alfa_d_look(i)-a1s_look(i)); 
f1(i)=f+h*(alfa_d_look(i)-a1s_look(i)); 
ht_p(i)=ht-lt*(alfa_d_look(i)-a1s_look(i)); 
lt_p(i)=lt; 

  
% 
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dlamdai_dmi_look(i)=(2*mi_look(i)*teta_0_look(i)+alfa_nf_look(i)-

(4*tcd_look(i)/(a*lambda_i_look(i)))*V_sign_look(i)*vi0_sign_look(

i)^3)/(1+4/a*tcd_look(i)/lambda_i_look(i)*(1+vi0_sign_look(i)^4)); 
dlamda_dmi_look(i)=alfa_nf_look(i)-dlamdai_dmi_look(i); 
dtc_dmi_look(i)=(2*mi_look(i)*teta_0_look(i)+alfa_nf_look(i)+V_sig

n_look(i)*vi0_sign_look(i)^3/(1+vi0_sign_look(i)^4))/(4/a+lambda_i

_look(i)/tcd_look(i)/(1+vi0_sign_look(i)^4)); 
if mi_look(i)==0; 
    da1_dmi_look(i)=8/3*teta_0_look(i)+2*lambda_look(i)+0.3737; 
else 
    da1_dmi_look(i)=a1_look(i)/mi_look(i)-

2*mi_look(i)*dlamda_dmi_look(i)/(1-0.5*mi_look(i)^2); 
end 
dhcd_dmi_look(i)=delta/4; 
dlambdai_dw_look(i)=(a/4*lambda_i_look(i)/tcd_look(i)+vi0_sign_loo

k(i)^4)/(1+a/4*lambda_i_look(i)/tcd_look(i)+vi0_sign_look(i)^4); 
dlambda_dw_look(i)=1/(1+a/4*lambda_i_look(i)/tcd_look(i)+vi0_sign_

look(i)^4); 
dtc_dw_look(i)=a/4/(1+a/4*lambda_i_look(i)/tcd_look(i)+vi0_sign_lo

ok(i)^4); 
da1_dw_look(i)=2*mi_look(i)/((1-

0.5*mi_look(i)^2)*(1+a/4*lambda_i_look(i)/tcd_look(i)+vi0_sign_loo

k(i)^4)); 
dlambdad_dw_look(i)=dlambda_dw_look(i)+mi_look(i)*da1_dw_look(i); 
dhcd_dw_look(i)=a/4/(1+a/4*lambda_i_look(i)/tcd_look(i)+vi0_sign_l

ook(i)^4)*(a1_look(i)/2-

mi_look(i)*teta_0_look(i)+mi_look(i)*lambda_look(i)/(1-

0.5*mi_look(i)^2)); 
db1_dw_look(i)=(16/9*mi_look(i)*dlambda_dw_look(i)+4/3*0.75*K_look

(i)*dlambdai_dw_look(i))/(1+0.5*mi_look(i)^2); 
dtc_dq_look(i)=0; 
da1_dq_look(i)=-16/gamma/(1-0.5*mi_look(i)^2); 
db1_dq_look(i)=-1/(1+0.5*mi_look(i)^2); 
dhcd_dq_look(i)=a/4*(lambda_look(i)/2+mi_look(i)*a1_look(i)-

mi_look(i)^2*teta_0_look(i))*da1_dq_look(i); 
dtc_dteta0_look(i)=a/6*(1+3/2*mi_look(i)^2)/(1+a*lambda_i_look(i)/

4/tcd_look(i)*(1+vi0_sign_look(i)^4)); 
da1_dteta0_look(i)=8/3*mi_look(i)/(1-0.5*mi_look(i)^2)*(1-

a*s/2*(1+3/2*mi_look(i)^2)/(8*mi_look(i)+a*s)); 
dlambdai_dteta0_look(i)=2/3*a*s*(1+3/2*mi_look(i)^2)/(8*mi_look(i)

+a*s); 
% 

dlambdai_dteta0_look(i)=(lambda_i_look(i)/tcd_look(i)*dtc_dteta0_l

ook(i))/(1+vi0_sign_look(i)^4); 
dlambdad_dteta0_look(i)=mi_look(i)*da1_dteta0_look(i)-

dlambdai_dteta0_look(i); 
dhcd_dteta0_look(i)=a/8*(a1_look(i)*dlambdad_dteta0_look(i)+lambda

_d_look(i)*da1_dteta0_look(i)-

2*mi_look(i)*(lambda_d_look(i)+teta_0_look(i)*dlambdad_dteta0_look

(i))); 
%tail rotor 
dtct_dtetat_look(i)=a_t/6*(1+3/2*mi_look(i)^2)/(1+a*lambda_i_look(

i)/4/tcd_look(i)*(1+vi0_sign_look(i)^4)); 

  
%longitudinal 
xu_look(i)=-tcd_look(i)*da1_dmi_look(i)-

alfa_d_look(i)*dtc_dmi_look(i)-dhcd_dmi_look(i); 
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zu_look(i)=-dtc_dmi_look(i); 
xw_look(i)=-tcd_look(i)*da1_dw_look(i)-

alfa_d_look(i)*dtc_dw_look(i)-dhcd_dw_look(i); 
zw_look(i)=-dtc_dw_look(i); 
xq_look(i)=(-tcd_look(i)*da1_dq_look(i)-

alfa_d_look(i)*dtc_dq_look(i)-dhcd_dq_look(i)); 
xp_look(i)=(-tcd_look(i)*db1_dq_look(i)); 
zq_look(i)=(-dtc_dq_look(i)); 
mu_look(i)=(-

h1(i)*xu_look(i)+f1(i)*zu_look(i)+(Cms+Kbeta_adi)*da1_dmi_look(i))

; 
mw_look(i)=(-

h1(i)*xw_look(i)+f1(i)*zw_look(i)+(Cms+Kbeta_adi)*da1_dw_look(i)); 
mq_look(i)=(-

h1(i)*xq_look(i)+f1(i)*zq_look(i)+(Cms+Kbeta_adi)*da1_dq_look(i)); 
mp_look(i)=(Cms+Kbeta_adi)*db1_dq_look(i); 
%lateral 
yv_f_look(i)=-0.3*mi_look(i)*Sy/(s*A); %Sy  equivalent lateral 

surface 
if mi_look(i)==0 
    yv_look(i)=-delta/4-st_sign*dtc_dw_look(i)+yv_f_look(i); 
    lv_look(i)=(-ht_p(i)*st_sign*dtc_dw_look(i)); 
else 
    yv_look(i)=-tcd_look(i)*a1_look(i)/mi_look(i)-delta/4-

st_sign*dtc_dw_look(i)+yv_f_look(i); 
    lv_look(i)=(-

(h1(i)*tcd_look(i)+(Cms+Kbeta_adi))*a1_look(i)/mi_look(i)-

ht_p(i)*st_sign*dtc_dw_look(i)); 
end 
yp_look(i)=(tcd_look(i)*db1_dq_look(i)); 
yq_look(i)=(-tcd_look(i)*da1_dq_look(i)); 
lp_look(i)=(-

16/gamma*(h1(i)*(tcd_look(i)+a*lambda_d_look(i)/8)+(Cms+Kbeta_adi)

)/(1+0.5*mi_look(i)^2)-ht_p(i)^2*st_sign*dtc_dw_look(i)); 
lq_look(i)=-(Cms+Kbeta_adi)*db1_dq_look(i); 
lr_look(i)=(ht_p(i)*lt_p(i)*st_sign*dtc_dw_look(i)); 
nv_look(i)=(lt_p(i)*st_sign*dtc_dw_look(i)); 
np_look(i)=(ht_p(i)*lt_p(i)*st_sign*dtc_dw_look(i)); 
nr_look(i)=(-lt_p(i)^2*st_sign*dtc_dw_look(i)); 
%commands 
xB1_look(i)=mi_look(i)*dtc_dw_look(i)*alfa_d_look(i)+tcd_look(i)*(

1+mi_look(i)*da1_dw_look(i))+mi_look(i)*dhcd_dw_look(i); 
zB1_look(i)=-mi_look(i)*zw_look(i); 
mB1_look(i)=(-h1(i)*xB1_look(i)+f1(i)*zB1_look(i)-

(Cms+Kbeta_adi)*(1+mi_look(i)*da1_dw_look(i))); 
xteta_0_look(i)=-tcd_look(i)*da1_dteta0_look(i)-

alfa_d_look(i)*dtc_dteta0_look(i)-dhcd_dteta0_look(i); 
zteta_0_look(i)=-dtc_dteta0_look(i); 
mteta_0_look(i)=(-h1(i)*xteta_0_look(i)+f1(i)*zteta_0_look(i)-

(Cms+Kbeta_adi)*da1_dteta0_look(i)); 
yA1_look(i)=-(tcd_look(i)*(1+mi_look(i)*db1_dw_look(i))); 
zA1_look(i)=zB1_look(i); 
lA1_look(i)=-

(h1(i)*yA1_look(i)+(Cms+Kbeta_adi)*(1+mi_look(i)*db1_dw_look(i))); 
nA1_look(i)=0; 
yteta_t_look(i)=-st_sign*dtct_dtetat_look(i); 
lteta_t_look(i)=-(ht_p(i)*st_sign*dtct_dtetat_look(i)); 
nteta_t_look(i)=-(-lt_p(i)*st_sign*dtct_dtetat_look(i)); 
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end 

  
% % grafici 
% figure(1) 
% plot(mi_look,lambda_i_look,mi_look,-lambda_d_look) 
% grid; 
% xlabel('\mu'); 
% ylabel('\lambda_d & \lambda_i'); 
% legend('\lambda_i','-\lambda_d') 
% figure(2); 
% plot(mi_look,alfa_d_look*180/pi) 
% grid 
% xlabel('\mu') 
% ylabel('\alpha_d [deg]') 
% figure(3) 
% plot(mi_look,B1_look*180/pi) 
% grid 
% xlabel('\mu') 
% ylabel('B_1 [deg]') 
% legend('f=-0.025') 
% figure(4) 
% plot(mi_look,a1s_look*180/pi) 
% grid 
% xlabel('\mu') 
% ylabel('a_1s [deg]') 
% legend('f=-0.025') 
% figure(5) 
% plot(mi_look,teta_0_look*180/pi) 
% grid 
% xlabel('\mu') 
% ylabel('\Theta_0 [deg]') 
% figure(6) 
% plot(mi_look,teta_look*180/pi) 
% grid 
% xlabel('\mu') 
% ylabel('\Theta [deg]') 
% legend('f=-0.025') 
% figure(7) 
% 

plot(mi_look,a0_look*180/pi,mi_look,a1_look*180/pi,mi_look,b1_look

*180/pi) 
% grid 
% xlabel('\mu') 
% ylabel('a_0 & a_1 & b_1 [deg]') 
% legend('a_0','a_1','b_1') 
% figure(8) 
% 

plot(mi_look,A1_look*180/pi,mi_look,fi_look*180/pi,mi_look,b1_look

*180/pi) 
% grid 
% xlabel('\mu') 
% ylabel('A_1 & \Phi & b_1 [deg]') 
% legend('A_1','\Phi','b_1') 
% figure(12) 
% 

plot(mi_look,xu_look,mi_look,xw_look,mi_look,zu_look,mi_look,zw_lo

ok) 
% grid 
% xlabel('\mu') 
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% ylabel('longitud') 
% legend('xu','xw','zu','zw') 
% figure(13) 
% plot(mi_look,mu_look,mi_look,mw_look,mi_look,mq_look./10) 
% grid 
% xlabel('\mu') 
% ylabel('longitud') 
% legend('mu','mw','mq/10') 
% figure(14) 
% 

plot(mi_look,yv_look,mi_look,lv_look,mi_look,nv_look,mi_look,lp_lo

ok./10,mi_look,nr_look,mi_look,np_look) 
% grid 
% xlabel('\mu') 
% ylabel('latero') 
% legend('yv','lv','nv','lp/10','nr','np & lr') 
% figure(15) 
% plot(mi_look,xB1_look,mi_look,zB1_look,mi_look,mB1_look) 
% grid 
% xlabel('\mu') 
% ylabel('comand lon') 
% legend('xB1','zB1','mB1') 
% figure(16) 
% 

plot(mi_look,xteta_0_look,mi_look,zteta_0_look,mi_look,mteta_0_loo

k) 
% grid 
% xlabel('\mu') 
% ylabel('comand lon') 
% legend('xteta_0','zteta_0','mteta_0') 
% figure(17) 
% 

plot(mi_look,yA1_look,mi_look,lA1_look,mi_look,yteta_t_look,mi_loo

k,lteta_t_look,mi_look,nteta_t_look) 
% grid 
% xlabel('\mu') 
% ylabel('comand later') 
% legend('yA1','lA1','yteta_t','lteta_t','nteta_t') 

 

% Dimentional aerodinamic derivatives 

%choose the value of forward speed 
mu=0.01; 
% 
i=find(mi_look==mu); 
V=Vcap_look(i)*Vtip; 
teta=teta_look(i); 
fi=fi_look(i); 
wc=wc*(ro*s*A*omega^2*R^2)/m; 
%longitudinal 
xu=xu_look(i)*(ro*s*A*omega*R)/m; 
zu=zu_look(i)*(ro*s*A*omega*R)/m; 
xw=xw_look(i)*(ro*s*A*omega*R)/m; 
zw=zw_look(i)*(ro*s*A*omega*R)/m; 
xq=xq_look(i)*(ro*s*A*omega*R^2)/m; 
xp=xp_look(i)*(ro*s*A*omega*R^2)/m; 
zq=zq_look(i)*(ro*s*A*omega*R^2)/m; 
mu=mu_look(i)*(ro*s*A*omega*R^2)/Iyy; 
mw=mw_look(i)*(ro*s*A*omega*R^2)/Iyy; 
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mq=mq_look(i)*(ro*s*A*omega*R^3)/Iyy; 
mp=mp_look(i)*(ro*s*A*omega*R^3)/Iyy; 

  
%lateral 
yv=yv_look(i)*(ro*s*A*omega*R)/m; 
yp=yp_look(i)*(ro*s*A*omega*R^2)/m; 
yq=yq_look(i)*(ro*s*A*omega*R^2)/m; 
lv=lv_look(i)*(ro*s*A*omega*R^2)/Ixx; 
lp=lp_look(i)*(ro*s*A*omega*R^3)/Ixx; 
lq=lq_look(i)*(ro*s*A*omega*R^3)/Ixx; 
lr=lr_look(i)*(ro*s*A*omega*R^3)/Ixx; 
nv=nv_look(i)*(ro*s*A*omega*R^2)/Izz; 
np=np_look(i)*(ro*s*A*omega*R^3)/Izz; 
nr=nr_look(i)*(ro*s*A*omega*R^3)/Izz; 
%commands 
xB1=xB1_look(i)*(ro*s*A*omega^2*R^2)/m; 
zB1=zB1_look(i)*(ro*s*A*omega^2*R^2)/m; 
mB1=mB1_look(i)*(ro*s*A*omega^2*R^3)/Iyy; 
xteta_0=xteta_0_look(i)*(ro*s*A*omega^2*R^2)/m; 
zteta_0=zteta_0_look(i)*(ro*s*A*omega^2*R^2)/m; 
mteta_0=mteta_0_look(i)*(ro*s*A*omega^2*R^3)/Iyy; 
yA1=yA1_look(i)*(ro*s*A*omega^2*R^2)/m; 
zA1=zA1_look(i)*(ro*s*A*omega^2*R^2)/m; 
lA1=lA1_look(i)*(ro*s*A*omega^2*R^3)/Ixx; 
nA1=nA1_look(i)*(ro*s*A*omega^2*R^3)/Izz; 
yteta_t=yteta_t_look(i)*(ro*s*A*omega^2*R^2)/m; 
lteta_t=lteta_t_look(i)*(ro*s*A*omega^2*R^3)/Ixx; 
nteta_t=nteta_t_look(i)*(ro*s*A*omega^2*R^3)/Izz; 

  

  
lu=0; lw=0; lteta_0=0; lB1=0; mv=0; mr=0; mA1=0; mteta_t=0; nu=0; 

nw=0;... 
    nq=0; nteta_0=0; nB1=0; 
I=[1 Ixy/Ixx Ixz/Ixx 
    Ixy/Iyy 1 Iyz/Iyy 
    Ixz/Izz Iyz/Izz 1]; 
j_acc=inv(I); 
k=[lu lw lq lteta_0 lB1 lv lp lr lA1 lteta_t 
    mu mw mq mteta_0 mB1 mv mp mr mA1 mteta_t 
    nu nw nq nteta_0 nB1 nv np nr nA1 nteta_t]; 
%inertial convertion 

  
accop=j_acc*k; 
lu=accop(1,1); lw=accop(1,2); lq=accop(1,3); lteta_0=accop(1,4); 

lB1=accop(1,5); lv=accop(1,6); lp=accop(1,7);... 
    lr=accop(1,8); lA1=accop(1,9); lteta_t=accop(1,10); 

mu=accop(2,1); mw=accop(2,2); mq=accop(2,3); 

mteta_0=accop(2,4);... 
    mB1=accop(2,5); mv=accop(2,6); mp=accop(2,7); mr=accop(2,8); 

mA1=accop(2,9); mteta_t=accop(2,10); nu=accop(3,1); 

nw=accop(3,2);... 
    nq=accop(3,3); nteta_0=accop(1,4); nB1=accop(3,5); 

nv=accop(3,6); np=accop(3,7); nr=accop(3,8); nA1=accop(3,9); 

nteta_t=accop(3,10); 
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% linear system 
% open loop 
% ================================== 
% 
%     th0   |--------------------------| 
% --------->|                          |-------> u 
%     B1    |         Aereo            |-------> w 
% --------->|   .                      |-------> q 
%     A1    |   x = ALON x + BLON u    |-------> theta 
% --------->|   .                      |-------> v 
%     tht   |   x = ALAT x + BLAT u    |-------> p 
% --------->|   x = [ u w q theta      |-------> r 
%           |         v p r fi         |-------> fi 
%           |           psi  h  ]'     |-------> psi 
%           |                          |-------> h 
%           |                          | 
%           |                          | 
%           |    y = C x + D u         |-------> tau 
%           |                          |-------> du 
%           |                          |-------> dv 
%           |                          |-------> eta 
%           |--------------------------| 
A=[xu xw xq -wc*cos(tauc) 0 xp 0 0 0 0 
    zu zw zq+V -wc*sin(tauc) 0 0 0 0 0 0 
    mu mw mq 0 mv mp mr 0 0 0 
    0 0 1 0 0 0 0 0 0 0 
    0 0 yq 0 yv yp -V +wc*cos(tauc) +wc*sin(tauc) 0 
    lu lw lq 0 lv lp lr 0 0 0 
    nu nw nq 0 nv np nr 0 0 0 
    0 0 0 0 0 1 0 0 0 0 
    0 0 0 0 0 0 1 0 0 0 
    0 -1 0 V 0 0 0 0 0 0]; 
B=[xteta_0 xB1 0 0 
    zteta_0 zB1 zA1 0 
    mteta_0 mB1 mA1 mteta_t 
    0 0 0 0 
    0 0 yA1 yteta_t 
    lteta_0 lB1 lA1 lteta_t 
    nteta_0 nB1 nA1 nteta_t 
    0 0 0 0 
    0 0 0 0 
    0 0 0 0]; 
C=[1 0 0 0 0 0 0 0 0 0 
    0 1 0 0 0 0 0 0 0 0 
    0 0 1 0 0 0 0 0 0 0 
    0 0 0 1 0 0 0 0 0 0 
    0 0 0 0 1 0 0 0 0 0 
    0 0 0 0 0 1 0 0 0 0 
    0 0 0 0 0 0 1 0 0 0 
    0 0 0 0 0 0 0 1 0 0 
    0 0 0 0 0 0 0 0 1 0 
    0 0 0 0 0 0 0 0 0 1  
    0 -1/V 0 1 0 0 0 0 0 0 
    xu xw xq -wc*cos(tauc) 0 xp 0 0 0 0 
    0 0 yq 0 yv yp -V +wc*cos(tauc) +wc*sin(tauc) 0 
    0 0 0 0 1/V 0 0 0 1 0]; 
D=[0 0 0 0 
    0 0 0 0 
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    0 0 0 0 
    0 0 0 0 
    0 0 0 0 
    0 0 0 0 
    0 0 0 0 
    0 0 0 0 
    0 0 0 0 
    0 0 0 0 
    0 0 0 0 
    xteta_0 xB1 0 0 
    0 0 yA1 yteta_t 
    0 0 0 0]; 

  
sistema_nofb=ss(A,B,C,D,... 
                  'inputname',{'Theta0','B1','A1','Theta_t'},... 
                  

'outputname',{'u','w','q','theta','v','p','r',... 
                  'phi','psi','h','tau','du','dv','eta'}); 
              zpk(sistema_nofb); 

  
%  % Verifing T.F. in open loop 
%   disp(' ') 
%   disp(' Verifing T.F. in open loop) 
%   for i=1:4 
%     [ZERI, POLI, GAINS]= ss2zp(A,B,C,D,i); 
%     GAINS 
%     ZERI 
%   end 
%   POLI 
% %   damp('POLI') 

  
% flybar (first order) 
Tfb=16/gamma_fb/omega; k_fb=-0.5; 
  Gain = [k_fb];  Zeri = [ ];  Poli = [-1/Tfb]; 
  [A_TMP,B_TMP,C_TMP,D_TMP] = zp2ss(Zeri,Poli,Gain); 
  fly_bar = ss(A_TMP,B_TMP,C_TMP,D_TMP,... 
                'inputname',{'fb_in'},'outputname',{'fb_out'}); 
% Verifying T.F. fly bar 
%   disp(' '),disp('Verifying T.F. fly bar') 
%   zpk(fly_bar) 

  
flybar=append(fly_bar,fly_bar); 
%   zpk(flybar) 
in=[ 2 3 ]; out=[ 3 6 ]; 
sistema=feedback(sistema_nofb,flybar,in,out); 

  
[Atot,Btot,Ctot,Dtot]=ssdata(sistema); 
[Zeri_Theta0,Poli,K_Theta0]  = ss2zp(Atot,Btot,Ctot,Dtot,1); 
  [Zeri_B1,Poli,K_B1]  = ss2zp(Atot,Btot,Ctot,Dtot,2); 
  [Zeri_A1,Poli,K_A1]  = ss2zp(Atot,Btot,Ctot,Dtot,3); 
  [Zeri_Thetat,Poli,K_Thetat]  = ss2zp(Atot,Btot,Ctot,Dtot,4); 
  % pulsation and damping of poles 
%   disp(' '),disp('System poles with fly_bar:'),damp(Poli) 
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APPENDIX B 
 

 

Following the transfer function, generated by a Matlab script for the different 

speed of flight, are illustrated. 

The considered flight speed are reported by means of the coefficient of forward 

speed 𝜇; the transfer function of the hovering case have been shown already in the 

chapter 5. 

 

𝝁 = 𝟎. 𝟎𝟒 

 

𝜃

𝐵1
=

−819.14(𝑠+4.2)(𝑠+0.008)

(𝑠2+0.03𝑠+0.2)(𝑠2+47.58𝑠+576.2)
  

𝑢

𝐵1
=

9.7(𝑠+4.2)(𝑠2−16.31𝑠+816.5)

(𝑠2+0.03𝑠+0.2)(𝑠2+47.58𝑠+576.2)
  

𝑤

𝐵1
=

−3502.8(𝑠+4.2)(𝑠2−0.03𝑠+1.31)

(𝑠+1.57)(𝑠2+0.03𝑠+0.2)(𝑠2+47.58𝑠+576.2)
  

𝑤

𝜃0
=

−131.7

(𝑠+1.57)
  

𝑝

𝐴1
=

−2395.8 𝑠 (𝑠+4.2)(𝑠+0.75)(𝑠+0.45)

(𝑠+122.8)(𝑠+19.11)(𝑠+0.03)(𝑠2+2𝑠+15.1)
  

𝑟

𝜃𝑡
=

82.97(𝑠2+0.067𝑠+0.31)

(𝑠+0.03)(𝑠2+2𝑠+15.1)
  

 

𝝁 = 𝟎. 𝟎𝟔 

 

𝜃

𝐵1
=

−823.9(𝑠+4.2)(𝑠+0.009)

(𝑠2+0.03𝑠+0.09)(𝑠2+47.58𝑠+576.2)
  

𝑢

𝐵1
=

9.6(𝑠+4.2)(𝑠2−16.15𝑠+821.1)

(𝑠2+0.03𝑠+0.09)(𝑠2+47.58𝑠+576.2)
  

𝑤

𝐵1
=

−5175.45(𝑠+4.2)(𝑠2−0.011𝑠+0.5)

(𝑠+1.92)(𝑠2+0.03𝑠+0.09)(𝑠2+47.58𝑠+576.2)
  

𝑤

𝜃0
=

−158.34

(𝑠+1.92)
  

𝑝

𝐴1
=

−2415.9 𝑠 (𝑠+4.2)(𝑠2+2.46𝑠+29.99)

(𝑠+123.5)(𝑠+14.59)(𝑠+0.009)(𝑠2+2.47𝑠+27.15)
  

𝑟

𝜃𝑡
=

99.67(𝑠2+0.12𝑠+0.11)

(𝑠+0.009)(𝑠2+2.47𝑠+27.15)
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𝝁 = 𝟎. 𝟏 

 

𝜃

𝐵1
=

−837.59(𝑠+4.2)(𝑠+0.0098)

(𝑠2+1.14)(𝑠2+47.58𝑠+576.2)
  

𝑢

𝐵1
=

7.52(𝑠+4.2)(𝑠2−35.33+867.2)

(𝑠2+1.14)(𝑠2+47.58𝑠+576.2)
  

𝑤

𝐵1
=

−8635.2(𝑠+4.2)(𝑠+0.25)(𝑠−0.23)

(𝑠+2.12)(𝑠2+0.48𝑠+0.29)(𝑠2+47.58𝑠+576.2)
  

𝑤

𝜃0
=

−186.73

(𝑠+2.12)
  

𝑝

𝐴1
=

−2499.6 𝑠 (𝑠+4.2)

(𝑠+122.2)(𝑠+19.41)(𝑠+0.0059)
  

𝑟

𝜃𝑡
=

117.25(𝑠2+0.16𝑠+0.12)

(𝑠+0.89)(𝑠2+2.95𝑠+53.34)
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APPENDIX C 
 

The following scrips are an example of the develop of the MIMO system in 

hovering to check the effects of the controllers and evaluate the change of the 

transfer functions with the change of the controller’s gains. 

% Attuatore servo 
Ts=1/16; 
  Gain = [1/Ts];  Zeri = [ ];  Poli = [-1/Ts]; 
  [A_TMP,B_TMP,C_TMP,D_TMP] = zp2ss(Zeri,Poli,Gain); 
  servo = ss(A_TMP,B_TMP,C_TMP,D_TMP); 
% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzione di trasferimento dell''attuatore:') 
%   zpk(servo) 

    
% Parallelo tra i 4 attuatori 
  attuatori = append(servo,servo,servo,servo);   
% Verifica funzioni di trasferimento 
%   disp(' '),disp('Funzioni di trasferimento del blocco di 

attuazione') 
%   zpk(attuatori) 

  
% catena loop unitario 
  Gain = [1];  Zeri = [ ];  Poli = [ ]; 
  [A_TMP,B_TMP,C_TMP,D_TMP] = zp2ss(Zeri,Poli,Gain); 
  back1 = ss(A_TMP,B_TMP,C_TMP,D_TMP,... 
               'inputname',{'anyin'},'outputname',{'anyout'}); 
% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzione di trasferimento unitaria') 
%   zpk(back1) 

  
%controllo in theta 
Gain = [k_theta];  Zeri = [ ];  Poli = [ ]; 
  [A_TMP,B_TMP,C_TMP,D_TMP] = zp2ss(Zeri,Poli,Gain); 
  theta_damper = ss(A_TMP,B_TMP,C_TMP,D_TMP,... 
               'inputname',{'\theta'},'outputname',{'B1'}); 
% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzione di trasferimento dello theta_damper') 
%   zpk(theta_damper) 

  
%controllo in phi 
Gain = [k_phi];  Zeri = [ ];  Poli = [ ]; 
  [A_TMP,B_TMP,C_TMP,D_TMP] = zp2ss(Zeri,Poli,Gain); 
  phi_damper = ss(A_TMP,B_TMP,C_TMP,D_TMP,... 
               'inputname',{'\phi'},'outputname',{'A1'}); 
% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzione di trasferimento dello phi_damper') 
%   zpk(phi_damper) 

  
% YAW DAMPER (guadagno) 
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  Gain = [k_r];  Zeri = [ ];  Poli = [ ]; 
  [A_TMP,B_TMP,C_TMP,D_TMP] = zp2ss(Zeri,Poli,Gain); 
  yaw_damper = ss(A_TMP,B_TMP,C_TMP,D_TMP,... 
               'inputname',{'r'},'outputname',{'Thetat_c'}); 
% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzione di trasferimento dello yaw_damper') 
%   zpk(yaw_damper) 

  
% controllo in v (guadagno) 
  Gain = [k_v];  Zeri = [ ];  Poli = [  ]; 
  [A_TMP,B_TMP,C_TMP,D_TMP] = zp2ss(Zeri,Poli,Gain); 
  v_damper = ss(A_TMP,B_TMP,C_TMP,D_TMP,... 
                'inputname',{'v'},'outputname',{'A1_c'}); 
% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzione di trasferimento del p_damper') 
%   zpk(p_damper) 

   
 % controllo in u (solo guadagno) 
  Gain = [k_u];  Zeri = [ ];  Poli = [ ]; 
  [A_TMP,B_TMP,C_TMP,D_TMP] = zp2ss(Zeri,Poli,Gain); 
  u_damper = ss(A_TMP,B_TMP,C_TMP,D_TMP,... 
                'inputname',{'u'},'outputname',{'B1_c'}); 
% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzione di trasferimento del theta_damper') 
%   zpk(theta_damper) 

  
% controllo in w (solo guadagno) 
  Gain = [k_w];  Zeri = [ ];  Poli = [ ]; 
  [A_TMP,B_TMP,C_TMP,D_TMP] = zp2ss(Zeri,Poli,Gain); 
  w_damper = ss(A_TMP,B_TMP,C_TMP,D_TMP,... 
                'inputname',{'w'},'outputname',{'Theta0_c'}); 
% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzione di trasferimento del w_damper') 
%   zpk(w_damper) 

  
% controllo in h (solo guadagno) 
  Gain = [k_h];  Zeri = [ ];  Poli = [ ]; 
  [A_TMP,B_TMP,C_TMP,D_TMP] = zp2ss(Zeri,Poli,Gain); 
  auto_h = ss(A_TMP,B_TMP,C_TMP,D_TMP,... 
                'inputname',{'h'},'outputname',{'Theta0_c'}); 
% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzione di trasferimento del auto_h') 
%   zpk(auto_h) 

  
% controllo in X (solo guadagno) 
  Gain = [k_X];  Zeri = [ ];  Poli = [ ]; 
  [A_TMP,B_TMP,C_TMP,D_TMP] = zp2ss(Zeri,Poli,Gain); 
  auto_X = ss(A_TMP,B_TMP,C_TMP,D_TMP,... 
                'inputname',{'X'},'outputname',{'B1_c'}); 
% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzione di trasferimento del auto_X') 
%   zpk(auto_X) 

  
% controllo in Y (solo guadagno) 
  Gain = [k_Y];  Zeri = [ ];  Poli = [ ]; 
  [A_TMP,B_TMP,C_TMP,D_TMP] = zp2ss(Zeri,Poli,Gain); 
  auto_Y = ss(A_TMP,B_TMP,C_TMP,D_TMP,... 
                'inputname',{'Y'},'outputname',{'A1_c'}); 



109 
 

% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzione di trasferimento del auto_Y') 
%   zpk(auto_Y) 

  
% controllo in psi (guadagno) 
  Gain = [k_psi];  Zeri = [ ];  Poli = [ ]; 
  [A_TMP,B_TMP,C_TMP,D_TMP] = zp2ss(Zeri,Poli,Gain); 
  auto_psi = ss(A_TMP,B_TMP,C_TMP,D_TMP,... 
                'inputname',{'psi'},'outputname',{'Thetat_c'}); 
% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzione di trasferimento del auto_psi') 
%   zpk(auto_psi) 

  
% Serie tra il blocco "attuatori" e il blocco "sistema" 
% --------------------------------------------------- 
  sistema_con_attuatori = series(attuatori,sistema); 

   
% Verifica funzioni di trasferimento dell'aereo in ciclo aperto, 

con gli attuatori 
%   disp(' '),disp('Funzioni di trasferimento del sistema 

attuatori+sistema in ciclo aperto:') 
%   zpk(sistema_con_attuatori) 

   
% Schema del blocco theta_damper 
%    theta  |         |-------|           |  B1_c 
% --------->|-------->|k_theta|---------->|--------> 
%           |         |-------|           |  
%     phi   |         |-------|           |  A1_c 
% --------->|-------->| k_phi |---------->|--------> 
%           |         |-------|           |  
stabil=append(theta_damper,phi_damper); 
ingresso=[ 2 3 ]; uscita=[ 4 8 ]; 
sistema_aument_stabil = 

feedback(sistema_con_attuatori,stabil,ingresso,uscita); 
  zpk(sistema_aument_stabil); 

   
% Calcolo e memorizzazione matrici del sistema, zeri, poli e 

guadagni in 
% ciclo aperto con stabilità aumentata 
  [A_CA,B_CA,C_CA,D_CA] = ssdata(sistema_aument_stabil); 
  [Zeri_Theta0_CA, Poli_CA, K_Theta0_CA]  = 

ss2zp(A_CA,B_CA,C_CA,D_CA,1); 
  [Zeri_B1_CA, Poli_CA, K_B1_CA]  = ss2zp(A_CA,B_CA,C_CA,D_CA,2); 
  [Zeri_A1_CA, Poli_CA, K_A1_CA]  = ss2zp(A_CA,B_CA,C_CA,D_CA,3); 
  [Zeri_Thetat_CA, Poli_CA, K_Thetat_CA]  = 

ss2zp(A_CA,B_CA,C_CA,D_CA,4); 
% Calcolo e stampa pulsazioni e coefficienti di smorzamento dei 

poli in ciclo aperto 
%   disp(' '),disp('Poli del sistema attuatori+sistema in ciclo 

aperto:'),damp(Poli_CA) 

  
  % Schema del blocco "compensatore" 
%           |-----------------------------| 
%     w     |         |-------|           |  theta0_c 
% --------->|-------->|  k_w  |---------->|--------> 
%           |         |-------|           |  
%     u     |         |-------|           |  B1_c 
% --------->|-------->|  k_u  |---------->|--------> 
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%           |         |-------|           |  
%     v     |         |-------|           |  A1_c 
% --------->|-------->|  k_v  |---------->|--------> 
%           |         |-------|           |  
%     r     |         |-------|           |  Thetat_c 
% --------->|-------->|  k_r  |---------->|--------> 
%           |         |-------|           |  
%           |-----------------------------| 
  % Parallelo tra i blocchi del compensatore 
  compensatore = append(w_damper,u_damper,v_damper,yaw_damper);   
% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzioni di trasferimento del compensatore') 
%   zpk(compensatore) 
  % Schema del blocco "compensatore" 

  
% ******************************* Chiusura  

******************************* 

  
  ingresso=[ 1 2 3 4]; uscita=[ 2 1 5 7 ]; 
  sistema_CC = 

feedback(sistema_aument_stabil,compensatore,ingresso,uscita); 
  zpk(sistema_CC); 

   
% Calcolo e memorizzazione matrici del sistema, zeri, poli e 

guadagni con feedback compensatore  
  [A_CC,B_CC,C_CC,D_CC] = ssdata(sistema_CC); 
  [Zeri_Theta0_CC,Poli_CC,K_Theta0_CC]  = 

ss2zp(A_CC,B_CC,C_CC,D_CC,1); 
  [Zeri_B1_CC,Poli_CC,K_B1_CC]  = ss2zp(A_CC,B_CC,C_CC,D_CC,2); 
  [Zeri_A1_CC,Poli_CC,K_A1_CC]  = ss2zp(A_CC,B_CC,C_CC,D_CC,3); 
  [Zeri_Thetat_CC,Poli_CC,K_Thetat_CC]  = 

ss2zp(A_CC,B_CC,C_CC,D_CC,4); 
  % Calcolo e stampa pulsazioni e coefficienti di smorzamento dei 

poli in 
%   disp(' '),disp('Poli del sistema con compensatore in ciclo 

chiuso:'),damp(Poli_CC) 

  

  
% Parallelo tra i blocchi controllore 
  controllore = append(auto_h,auto_X,auto_Y,auto_psi);   
% Verifica funzione di trasferimento 
%   disp(' '),disp('Funzioni di trasferimento del compensatore') 
%   zpk(controllore) 
  % Schema del blocco "controllore" 

  
%           |-----------------------------| 
%   hi-h    |         |-------|           |  Theta0_c 
% --------->|-------->|  k_h  |---------->|--------> 
%           |         |-------|   
%   Xi-X    |         |-------|           |  B1_c 
% --------->|-------->|  k_X  |---------->|--------> 
%           |         |-------|           |  
%   Yi-Y    |         |-------|           |  A1_c 
% --------->|-------->|  k_Y  |---------->|--------> 
%           |         |-------|           | 
%   Gyro    |         |-------|           |  Thetat_c 
% --------->|-------->| k_psi |---------->|--------> 
%           |         |-------|           | 
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%           |-----------------------------| 

  
% Serie tra il blocco "controllore" e il blocco "sistema_CC" 
% --------------------------------------------------- 
  sistema_con_controllo = series(controllore,sistema_CC); 
  % Verifica funzioni di trasferimento dell'aereo in ciclo aperto, 

con gli attuatori 
%   disp(' '),disp('Funzioni di trasferimento del sistema con 

controllo in ciclo aperto:') 
%   zpk(sistema_con_controllo) 

   
% Calcolo e memorizzazione matrici del sistema, zeri, poli e 

guadagni in 
% ciclo aperto sistema completo 
  [A_CAC,B_CAC,C_CAC,D_CAC] = ssdata(sistema_con_controllo); 
  [Zeri_Theta0_CAC, Poli_CAC, K_Theta0_CAC]  = 

ss2zp(A_CAC,B_CAC,C_CAC,D_CAC,1); 
  [Zeri_B1_CAC, Poli_CAC, K_B1_CAC]  = 

ss2zp(A_CAC,B_CAC,C_CAC,D_CAC,2); 
  [Zeri_A1_CAC, Poli_CAC, K_A1_CAC]  = 

ss2zp(A_CAC,B_CAC,C_CAC,D_CAC,3); 
  [Zeri_Thetat_CAC, Poli_CAC, K_Thetat_CAC]  = 

ss2zp(A_CAC,B_CAC,C_CAC,D_CAC,4); 
% Calcolo e stampa pulsazioni e coefficienti di smorzamento dei 

poli in ciclo aperto 
%   disp(' '),disp('Poli del sistema con controllo in ciclo 

aperto:'),damp(Poli_CA) 
loop=append(back1,back1,back1,back1);   

  
%%%%%%%%%%%%%%%%%%%%%%%%%%% chiusura %%%%%%%%%%%%%%%%%%%%%%%%%% 

   
ingresso=[ 1 2 3 4 ]; uscita=[ 12 10 11 9 ]; 

  
sistema_autoCC = 

feedback(sistema_con_controllo,loop,ingresso,uscita); 
  zpk(sistema_autoCC); 
  % Calcolo e memorizzazione matrici del sistema, zeri, poli e 

guadagni in 
  % ciclo chiso 
  [A_autoCC,B_autoCC,C_autoCC,D_autoCC] = ssdata(sistema_autoCC); 
  [Zeri_Theta0_autoCC, Poli_autoCC, K_Theta0_autoCC]  = 

ss2zp(A_autoCC,B_autoCC,C_autoCC,D_autoCC,1); 
  [Zeri_B1_autoCC, Poli_autoCC, K_B1_autoCC]  = 

ss2zp(A_autoCC,B_autoCC,C_autoCC,D_autoCC,2); 
  [Zeri_A1_autoCC, Poli_autoCC, K_A1_autoCC]  = 

ss2zp(A_autoCC,B_autoCC,C_autoCC,D_autoCC,3); 
  [Zeri_Thetat_autoCC, Poli_autoCC, K_Thetat_autoCC]  = 

ss2zp(A_autoCC,B_autoCC,C_autoCC,D_autoCC,4); 
% Calcolo e stampa pulsazioni e coefficienti di smorzamento dei 

poli in 
% ciclo chiuso 
%   disp(' '),disp('Poli del sistema con controllo in ciclo 

chiuso:'),damp(Poli_autoCC) 

 


