

UNIVERSITÀ DI PISA

Scuola di Ingegneria

Laurea magistrale in Ingegneria Informatica

Master’s thesis

Design and implementation of a routing algorithm

to maximize test coverage of permanent faults in

FPGAs

Supervisors

Prof. Cinzia BERNARDESCHI

Prof. Andrea DOMENICI

Candidate

Filippo MASCOLO

Academic Year 2014/2015

Acknowledgements

Firstly, I would like to express my sincere gratitude to my

supervisors Prof. Cinzia Bernardeschi and Prof. Andrea Domenici for giving

me their support and the opportunity to live such a magnificent experience

in Germany for writing this thesis.

A very special thanks goes to my tutors Dario Cozzi and Sebastian Korf for

helping me continuously in my research, for their patience and motivation.

I must acknowledge Luca Cassano for his assistance during my research

study and thesis writing.

Last but not the least, I would like to thank my family because they were

always supporting me and encouraging me with best wishes.

ii

Contents

Introduction .. 1

2 Related work ... 5

3 Background ... 8

3.1 Field Programmable Gate Array ... 8

3.1.1 FPGA architecture .. 10

3.1.2 Global connections analysis ... 15

3.1.3 Designing an FPGA-based system ... 16

3.1.4 Dynamic Partial Reconfiguration ... 19

3.2 Faults in FPGAs .. 20

3.2.1 Single Event Effects ... 21

3.2.2 Total Ionizing Dose .. 22

3.2.3 Fault effects on design ... 23

3.3 Testing circuit for on line testing .. 27

4 Routing algorithm design.. 31

4.1 Permanent fault model ... 36

4.1.1 Physical wire stuck-at-0/1 .. 36

4.1.2 PIP stuck-off .. 37

4.1.3 PIP stuck-on ... 39

iii

4.2 Routing resources analysis .. 41

5 Proposed routing algorithm .. 50

5.1 U-Turn implementation ... 52

5.1.1 NUT creation .. 54

5.1.2 Connecting the TPG to the SMUT ... 55

5.1.3 Graph creation .. 55

5.1.4 Populating the NUT ... 56

5.1.5 Connecting the SMUT to the ORA .. 58

5.1.6 Storing the full design .. 58

5.1.7 NUT6 and NUT8 special cases .. 60

5.1.8 U-Turn parameters ... 60

5.2 Why U-Turn .. 63

6 Experimental results ... 66

7 Conclusions and future work .. 73

8 Bibliography ... 75

iv

List of Figures

Figure 3.1: Unit Cost (in dollars) / unit diagram .. 9

Figure 3.2: FPGA typical architecture ... 10

Figure 3.3: FPGA Editor screenshot of a Xilinx FPGA 12

Figure 3.4: A configuration bit determines the state of a PIP 13

Figure 3.5: Programmable Interconnection Points inside a switch matrix .. 13

Figure 3.6: Clock regions of different FPGA families 14

Figure 3.7: Connection structure in Virtex-4-5-6 and Spartan-6 16

Figure 3.8: Xilinx design implementation ... 18

Figure 3.9: Routing condition without errors ... 24

Figure 3.10: Permanent fault effect cases .. 25

Figure 3.11: High level view of testing circuit .. 27

Figure 3.12: The structure of a testing circuit .. 28

Figure 3.13: Different testing circuits .. 30

Figure 4.1: U-TURN inputs / outputs .. 32

Figure 4.2: Switch matrix connections for graph creation 34

Figure 4.3: Graph representation of the FPGA .. 35

Figure 4.4: Graph representing a clock region of a VIrte-4 FX12 35

Figure 4.5: Stuck-at-0/1 on a physical wire ... 36

Figure 4.6: Testing stuck-at-0/1 in graph representation 37

Figure 4.7: Stuck-off for a PIP ... 38

Figure 4.8: Testing stuck-off in graph representation 39

v

Figure 4.9: Stuck-on for a PIP ... 39

Figure 4.10: Graph representation of NUT6 testing circuit 40

Figure 4.11: Testing stuck-on in graph representation................................. 41

Figure 4.12: Resources categorization flow ... 42

Figure 4.13: Analysis of testability .. 43

Figure 4.14: Untestable,Critical,Testable,Unsupported resources of a switch

matrix on Virtex-4 .. 45

Figure 4.15: Physical wires report ... 46

Figure 4.16: PIPs report ... 47

Figure 4.17: Test Circuit Independent heat-map.. 48

Figure 4.18: Test Circuit Dependent heat-map .. 49

Figure 5.1: Complete project flow ... 50

Figure 5.2: Simplify vision of the FPGA for U-Turn 53

Figure 5.3: High level view of U-Turn .. 53

Figure 5.4: Graph limits for the Virtex-4 ... 56

Figure 5.5: FPGA Editor screenshot of NUT1 full design 59

Figure 5.6: FPGA Editor screenshot of zoom on SMUT of NUT1 59

Figure 6.1: FPGA Editor screenshot for PIPs connected to a physical wire 70

vi

List of Tables

Table 3.1: Relation between the Permanent Fault and its effect 27

Table 6.1: Number of Switch Matrices, Physical Wires, and PIPs for each

tested device ... 66

Table 6.2: Physical Wires testability for each tested device 67

Table 6.3: PIPs testability for each tested device ... 67

Table 6.4: Artix-7 XC7A100T algorithm results ... 68

Table 6.5: Spartan-6 LX9 algorithm results ... 68

Table 6.6: Virtex-4 FX12 algorithm results ... 69

Table 6.7: Virtex-4 FX100 algorithm results ... 69

Table 6.8: Virtex-5 LX20 algorithm results ... 69

Table 6.9: Virtex-6 CX130T algorithm results .. 69

Table 6.10: Virtex-4 FX100 algorithm results (enhanced version) 71

vii

Abstract

Partially reconfigurable systems are more and more employed in

many application fields, including aerospace. SRAM-based FPGAs

represent an extremely interesting hardware platform for this kind of

systems, because they offer flexibility as well as processing power. On the

other hand, radiations in the atmosphere make the problem of permanent

faults in these devices relevant. The goal of this thesis is the design and

implementation of a routing algorithm to maximize test coverage of

permanent faults in routing resources of SRAM-based FPGAs, using testing

circuits placed on the FPGA. Routing resources represent up to 80% of the

whole chip area in modern FPGAs, and the proposed algorithm can cover all

physical wires of an arbitrary selected large region of the FPGA.

This work is part of a project aimed at developing a software flow

for testing and diagnosing faults due to radiations, during a space mission.

Once faults have been detected and diagnosed, patching the discovered

faulty resources is possible.

1

Introduction

Electronic devices are used in several application fields, from the

entertainment market to military equipment, from mobile phones to

satellites. In particular, SRAM-based FPGAs represent a very interesting

hardware platform for this range of systems, because they offer flexibility as

well as processing power. A particular kind of applications is the one called

mission-critical, where failures may result in significant economical losses,

as in the case of satellites, which cannot be repaired or returned for

maintenance if some parts stop working. In this case, FPGAs are responsible

for handling the major tasks of a satellite mission, for example route

computation, control of experiments and communications, and their

capability to tolerate faults is a key requirement.

When FPGAs operate in a space environment, both temporary and

permanent faults can occur due to radiation. Temporary faults are Single

Event Upset (SEUs), i.e., modifications of the content of memory elements

in the device, and Single Event Transients (SETs), i.e., undesired transient

electrical impulses. Permanent faults induced by radiations on electronic

devices are caused by the Total Ionizing Dose (TID), i.e., the accumulation

of charge trapped in the oxide layer of transistors in CMOS circuits. The

TID causes a degradation of performance and may ultimately cause the

complete destruction of parts of the system.

2

This thesis is motivated by the need to develop testing techniques

addressing the requirements of space-based FPGA applications, and in

particular, those exploiting FPGA reconfigurability. Reconfigurable FPGAs

offer designers the possibility of partitioning the computing resources of a

chip into a number of regions, each independently and dynamically

reconfigurable. A given region, for example, could be used to control a

satellite’s movement in the initial phases of a mission, and to control its

payload after the satellite has reached a stable orbit. It is therefore important

to test a particular region of the FPGA before it is reconfigured for a new

task. Several testing techniques have been developed, and in this thesis the

on-line and application-independent approach is considered. The on-line

testing technique, with the availability of multiple reconfigurable regions,

allows tests to be made at run time without influencing the rest of the

FPGA. The application-independent approach makes tests more general

without considering the specific application that will be used.

This work presents an on-line on-demand approach to test faults in

the routing resources of FPGAs. The proposed approach relies on a set of

testing circuits, composed of a Test Pattern Generator (TPG) and an Output

Response Analyzer (ORA), to test the physical wires and Programmable

Interconnection Points (PIPs) between the TPG and the ORA. Moreover, the

approach exploits an ad-hoc designed place-and-route algorithm, named U-

TURN, to maximize the coverage of permanent faults for these circuits. The

3

approach uses partial dynamic reconfiguration to place the testing circuits at

run time on the free areas of the FPGA to test them before the functional

modules are placed, when reconfigurations are required. Experimental

results have shown that it is possible to generate, place and route the testing

circuits needed to detect the 100% of the physical wires and up to the 86%

of the PIPs in a reasonable time.

This work is part of the OLTRE project (On-Line Testing of

permanent Radiation Effects) that aims at supporting on-line on-demand

testing, diagnosing and fault masking for dynamically reconfigurable

systems on SRAM-based FPGAs. This project is made in cooperation

between University of Pisa, Politecnico di Torino, University of Bielefeld

and it is funded by ESA (European Space Agency).

Chapter 2 describes the starting point of this thesis showing testing

circuits previously developed for our purpose. Chapter 3 provides an

overview of the architectural structure of FPGAs, then it gives some

information about their programming and finally a study of the faults that

can occur. Chapter 4 provides the background concepts for the development

of the routing algorithm, giving details on its design. Then, Chapter 5

presents the implementation of the algorithm and the complete testing flow.

The results achieved with this algorithm, running on different families of

FPGAs, are in Chapter 6. As a conclusion, Chapter 7 will analyse the results

4

of the presented approach, considering the possible future work related to

this thesis.

5

2 Related work

Two kinds of testing methods can be performed to check if an FPGA is

fault free: application-independent and application-dependent.

Application-independent methods, such as [1] [2] [3] [4], are meant to

detect every structural defect causes by the manufacturing process of the

whole FPGA. On the other hand, application-dependent methods, such as

[5] [6] [7], focus detecting errors only in resources actually used by the

design. With both approaches, tests can be off-line or on-line. Off-line tests

are usually made by the manufacturer. Instead On-line test are made at run

time on unused areas of the FPGA while the remaining parts continue their

normal operations.

 Permanent faults causes by TID have not yet been extensively

addressed by testing techniques. In the last years, the shrinking of the

feature size in the CMOS technology made SEUs the predominant radiation

effect in electronic devices. Therefore, researches focused much more on the

detection of SEU effects than on TID.

Among various methodologies the most common are the external and Built-

In-Self-Test (BIST) approaches. The former approach consists in

considering the CUT (Circuit Under Test) as a black box, providing input

stimuli from outside the device. Then responses are collected to check

whether a fault occurred. On the other hand, the BIST approach allows the

6

device to test its own resources without acting from outside. With either

approach, the following items are needed:

1. a mechanism to provide a set of input stimuli;

2. the circuit under test (CUT);

3. a mechanism to analyse responses in order to discriminate

whether the CUT is fault free or not.

Usually testing circuits are composed of a Test Pattern Generator (TPG)

that provides input stimuli and of an Output Response Analyzer (ORA) that

observes the output of the resources under test and determines whether they

are faulty or not. These techniques may be divided into two sub-categories:

Comparison-based [4], [8] and Parity-based [9] [10].

 In the Comparison-based approach, the ORA knows the expected

output associated with the input stimuli generated by the TPG and by

comparing it with the actual output of the resources under test, it is able to

determine whether a fault occurred. With this approach it is not possible to

detect faults in the TPG and those faults that do not interfere with the actual

output of the resources under test. With the Parity-based techniques these

limitations have been overcome. The TPG calculates the parity bit on its

output and the ORA calculates the parity bit on the received signals. The

ORA is able to detect whether a fault occurred by comparing these two

parity bits. The ORA does not need to know the expected output, because it

relies on the parity bit produced by the TPG.

7

 Parity-based testing approaches may be additionally classified in two

categories: single parity [9], and cross-coupled parity [10]. In the single

parity-based technique, the TPG is a n-bit counter and produces n+1 output

bits where the last one is the parity bit calculated on the other n bits. The

ORA, as soon as it receives the n+1 bits, calculates the parity bit on the first

n bits and compares it with the received parity bit. In this technique some

faults in the TPG cannot be detected and it is necessary that the parity bit is

sent on a fault free wire. In cross-coupled parity-based techniques the TPG

is composed of two independent n-bit counters, let us call them TPGi and

TPGj; each TPGs produces n output bits plus one parity bit. Similarly, the

ORA is duplicated: ORAi receives the n input bits from TPGi and the parity

bit from TPGj; conversely, ORAj receives the n input bits from TPGj and the

parity from TPGi. In this way all the faults occurring into the TPGs may also

be detected.

8

3 Background

3.1 Field Programmable Gate Array

Field Programmable Gate Arrays (FPGAs) are pre-fabricated,

electrically programmable, silicon devices, composed of programmable

logic blocks, a programmable routing structure and programmable

Input/Output pads. Since the birth of the integrated circuit technology in

1960s, many attempts have been done to achieve programmable devices in

order to give to hardware architects the possibility of exploiting hardware

performance and software flexibility at the same time.

The first modern FPGA was introduced by Xilinx in 1984 under the

name of XC2064; since then the FPGA technology has dramatically grown

in terms of scale of integration, performance and competitiveness against

other technologies. The ability of being programmed, and most of the times

reprogrammed, provides many advantages over other hardware

technologies.

Application Specific Integrated Circuits (ASICs) offer better

performance in terms of computational time, area requirements and power

consumption at the cost of much longer time to market and economic effort:

a full-custom ASIC design needs many months of engineering work and

hundreds of millions of dollars to be completed, since state-of-the-art tools

for synthesis, placement & routing, extraction, simulation, timing and power

9

analysis, great engineering effort and very expensive foundry masks are

needed. An FPGA design needs between only a few dollars and a few

thousand dollars for units purchase, much less engineering effort and much

shorter time to be designed and configured, and often an FPGA device can

be reconfigured if a mistake was made during the design cycle. Figure 3.1

shows how FPGAs per unit cost is invariable while ASICs per unit cost

decreases by increasing the number of produced units.

Figure 3.1: Unit Cost (in dollars) / unit diagram

Given this, only large scale productions can afford a full custom ASIC

design, while small and medium scale productions prefer saving money and

time by the use of FPGAs devices. For this kind of productions FPGAs

represent nowadays the best tradeoff between performance on one hand and

cost and time to market on the other hand.

Nowadays FPGAs have become the dominant programmable logic

technology no longer being used merely as glue logic or as prototyping

10

devices, and starting being used to implement sub-systems or complete

systems (System-on-Chip).

3.1.1 FPGA architecture

An FPGA is a prefabricated array of configurable logic blocks,

interconnected by a programmable routing architecture and surrounded by

programmable input/output blocks.

Switch
Matrix

CLB
I
O
B

Switch
Matrix

IOB

Logic
Block

Switch
Matrix

Logic
Block

I
O
B

Switch
Matrix

Switch
Matrix

CLB
I
O
B

Switch
Matrix

Logic
Block

Switch
Matrix

Logic
Block

I
O
B

Switch
Matrix

Switch
Matrix

CLB
I
O
B

Switch
Matrix

Logic
Block

Switch
Matrix

Logic
Block

I
O
B

Switch
Matrix

Switch
Matrix

CLB
I
O
B

Switch
Matrix

Logic
Block

Switch
Matrix

Logic
Block

I
O
B

Switch
Matrix

IOB IOB IOB

IOBIOBIOBIOB

Figure 3.2: FPGA typical architecture

Figure 3.2 shows the basic architecture of an FPGA chip, that is composed

of three types of basic blocks:

 CLB: Configurable Logic Blocks are the logic resources, which

may be simple combinatorial logic (Soft Logic Blocks) or memories,

multiplexers, ALUs and other kinds of prefabricated circuitry (Hard

11

Logic Blocks). The structure of a CLB is hierarchically divided into

Slices;

 IOB: Input/Output blocks provide external connections for the

FPGA. Since these blocks are placed on the border of the FPGA

they are used to get the signals into and out of the FPGA;

 Switch Matrix: all the FPGA blocks are connected to each other

with a programmable routing architecture. Thanks to the switch

matrix is possible to route a signal inside the FPGA. The routing is

made by activating the Programmable Interconnection Points

(PIPs) which are placed inside the switch matrix. All switch

matrices are connected by a complex structure of fixed connections

that are presented in detail below.

Figure 3.3 was created using FPGA Editor [11], a graphical

application provided by Xilinx for displaying and configuring FPGAs. This

figure is useful to explain some terminology that is extensively used in the

rest of this thesis. For simplification purpose in this figure only two switch

matrices and several connections are represented.

12

Out PIP

Slice

Switch
Matrix

Switch
Matrix

Physical Wire,
Node

OutPin

InPin

Local lines

Long linesCLB

In PIP
Local

connections

Figure 3.3: FPGA Editor screenshot of a Xilinx FPGA

 Slice: includes the configurable resources for implementing boolean

functions, flip-flops and carry-propagation logic;

 Pin: connection point of one Slice and one physical wire. If the

direction of the signal goes to the Slice, the Pin is called InPin.

Otherwise, the Pin is called OutPin;

 Physical wire: hardwire interconnections of switch matrices;

 Wire: connection point of physical wire and switch matrix. If the

direction of the signal goes to the switch matrix, the wire is called

InWire. Otherwise, it is called OutWire;

 Programmable Interconnection Point (PIP): the programmable

routing infrastructure consists of a set of wire segments, which can

be interconnected by means of programmable elements: PIPs. A PIP

is a switching element, whose state is determined by the value

13

contained in a configuration cell of a transistor as shown in Figure

3.4.

Figure 3.4: A configuration bit determines the state of a PIP

Figure 3.5a shows the structure of a switch matrix where every

connection between the lines is determined by 6 transistors.

Activating them it is possible to drive a signal through the switch

matrix. Figure 3.5b shows a possible configuration of the

programmable routing architecture.

(a) switch matrix overview (b) example of activated PIPs

Figure 3.5: Programmable Interconnection Points inside a switch matrix

Depending on the direction of a PIP, it is classified as InPIP

or OutPIP. If the signal goes through the PIP and out from the

switch matrix, than the PIP is called OutPIP (in FPGA Editor is

highlighted in purple). Otherwise, the PIP is called InPIP

(highlighted in yellow);

14

 Global connections: wires that connect all switch matrices among

them. Local lines and Long lines, shown in the figure above, belong

to that category and their names come from the length of the

connection;

 Local connections: wires that connect all Switch Matrices with the

related CLB.

Modern FPGAs are split into multiple clock regions whose number and

shape vary among different families of FPGA. Each clock region contains a

certain numbers of components like switch matrices and CLB and an

associated clocking. Clock regions are fundamental parts of FPGAs that

allow for zero skew clock distribution inside the region itself. Figure 3.6a,

3.6b, 3.6c highlight clock regions of different FPGAs.

 (a) Virtex-4 FX12 (b) Virtex-4 FX100 (c) Virtex-5 LX20

Figure 3.6: Clock regions of different FPGA families

15

3.1.2 Global connections analysis

The programmable routing architecture provides an array of routing

switches between each internal components. Each programmable element is

located inside a switch matrix, allowing multiple connections to the general

routing matrix.

The structure of the routing architecture (composed by global

connections) is considerably different among Xilinx FPGA families. The

number of inWires for every physical wire and the distance of the switch

matrices connected characterize different families of FPGA. In Figure 3.7a,

3.7b, 3.7c, 3.7d the lines connected to outWires of single switch matrix are

depicted for each Xilinx FPGA family, therefore the PIPs of the inWires are

selected. According to classification of the lines given in section 3.1.1, the

outPIP (colored in purple) are only within the starting switch matrix,

therefore they are related only to the outWires, because no outWires are

selected in the other switch matrix. Hence, all wires connected to the

considered lines, are of the inWire type; so the PIPs connected to them are

only inPIPs.

16

 (a) Virtex-4 (b) Virtex-5

 (c) Virtex-6 (d) Spartan-6

Figure 3.7: Connection structure in Virtex-4-5-6 and Spartan-6

3.1.3 Designing an FPGA-based system

Every FPGA relies on an underlying programming technology that is

used to specify the functionality that each block implements, to configure

interconnections between blocks and to interconnect I/O pads with blocks.

FPGA programming consists in defining the hardware structure of

the device by producing a programming code, called bitstream. After being

downloaded in the device, the bitstream enables or disables gates in the

17

logic blocks to implement a certain function and enables or disables

connections between wires to connect or disconnect two logic blocks or a

logic block and an I/O pad.

The end user can define the behavior of an FPGA using a hardware

description language (HDL) or a schematic design. Then it is possible to use

a design automation tool, typically provided by vendors, to generate a

technology-mapped netlist. A netlist is a textual description of a circuit

diagram, which provides a map of how its elements are interconnected.

Then a process called Place-and-Route can be performed in order to adapt a

netlist to the actual FPGA architecture. In the Xilinx terminology design

implementation is a process composed by translation, mapping, routing and

generating a bitstream file for a given design. All these tools are integrated

in the Xilinx ISE Design Suite, a tool provided by Xilinx. The following

picture shows the entire flow.

18

Implementing desing

HDL file

Synthesize

Translate Map
Place and

Route

Generate
programming file

Bitstream

Figure 3.8: Xilinx design implementation

 The HDL file represents the input;

 Synthetize generates a supported netlist type for the Xilinx

implementation tools;

 Translate converts the input design netlist (EDIF or NGC) in a

NGD netlist;

 Map maps the design into CLB and IOBs;

 Generate programming file generates the bitstream which is

loaded into the device.

For more information about the Xilinx design automation tool see [12].

19

3.1.4 Dynamic Partial Reconfiguration

Since 2000 FPGAs were designed with a high flexibility feature: the

Dynamic Partial Reconfiguration (DPR) [13] [14]. It gives the designer the

ability to reconfigure a certain part of the FPGA during run-time without

influencing other parts. Thanks to this technique the FPGA can be

reconfigured on the fly, without switching off or resetting the whole system.

Moreover it is possible to reconfigure only a specific part of the FPGA,

while the rest of system remains unchanged.

A reconfigurable system typically includes an area for static system

components (base region) and one or more partially reconfigurable regions

(PR regions) for dynamic system components. The dynamic system

components are represented by the partial reconfiguration modules (PR

modules). The placement of a PR module is done by configuring a

predefined area in a PR.

Hence a partial reconfigurable system design require a partitioning

of the FPGA in order to reconfigure only specific areas. In particular two

different kinds of region are created: static and dynamic region. The static

region contains components which are not reconfigured in the system,

therefore the configuration of base region is made once in the initialization

of the system and cannot be changed at run-time. The reconfigurable region

is used for run-time reconfiguration, hence it is possible to place and remove

PR module based on the system needs.

20

3.2 Faults in FPGAs

This work is a part of a major project [15] [16] that aims to study the

fault tolerance of FPGAs when they are used in space flight missions. In

that environment FPGAs are exposed to radiation that could cause

malfunctions. This chapter gives a general idea of the radiation faults effects

that may occur in space environment, focusing on permanent ones.

A fault is defined as a malfunction of an internal component of the

system. If activated by the operation of the system, it can be propagated to

the outputs of this component, becoming an error. Finally, if the error is

propagated and produces a malfunction of the system outputs a failure

occurred.

Faults can be introduced in the system both by the user and the

surrounding environment. The user can cause faults providing wrong inputs

to the system, bringing it to an incoherent state. On the other side, the

environment could cause several kind of faults, depending on the nature of

the solicitation it provides to the system. In space and avionic applications

the most critical environmental factor that could lead to failures is radiation.

Radiation may cause both short- and long-term damages in electronic

systems. Short-term damages are the well-studied Single Event Upset

(SEUs) and Single Event Transient (SETs) [17]. Long-term damages are

caused by the Total Ionizing Dose (TID), i.e. the accumulation of charge

trapped in the oxide layer of transistors in CMOS circuits [18]. TID first

21

causes degradation of the performance of the system, and ultimately it may

cause failures.

 The following sections summarize the radiation effects explained in

[19].

3.2.1 Single Event Effects

 Single Event Effects (SEEs) are models of the effect of the funneling

induced by a single particle in a certain location within the device.

Depending on the hit characteristics and time, the electric fields and energy

of the incident particle, the funneling can produce different functional

behaviors. SEEs can be temporary faults, Singe Event Transients (SETs),

that affect the device for a certain period of time, at most until a power cycle

is performed, and these are called soft errors; otherwise, if the produced

fault is permanent, damaging the device itself, it is called hard error.

 A Single Event Upset (SEU) is the effect of a particle that changes

the value of a memory element, as a latch or a cell within a memory array.

When a SET is generated by an ionizing particle within a memory element,

it could force the feedback loop to change its value thus modifying the

actual value stored in the memory element.

 SEUs are not usually permanent faults, because at the first writing

operation of the affected memory element the wrong value will be

overwritten. However, there are some cases, in which the memory element

22

could not be written again, thus changing the SEU effect to a permanent

fault, until a reset or power cycle is performed.

3.2.2 Total Ionizing Dose

Differently form the Single Event Effects, Total Ionizing Dose (TID)

is the effect of the accumulation of the charge injected by radiation. TID

models the effects of a charge accumulation and displacement damages that,

together, lead to different malfunctions. First, a global worsening of the

device performance is registered; transistors slow down and the power

consumption increases. In memory circuits, ionizing dose affects the

sensitivity of the logic states of memory cells asymmetrically, causing an

imbalance. In Flash memories, it has been proven that TID leads to a change

in the threshold of the floating gate transistors so that they lose their re-

programmability functionality. A second effect of TID is the change in the

SEE sensitiveness. One consequence of this is that SEUs can cause the so-

called “stuck bits”, that are memory cells whose value is modified by a SEU

but because of the ionizing dose, their correct value cannot be restored.

In general, TID effects can be annealed by means of heating the

device, in order to provide enough energy to the crystalline lattice so that

atomic locations can be restored and trapped charges can be released. To

summarize, TID provokes three kinds of effects: performance degradation,

power consumption increase and programmability loss.

23

3.2.3 Fault effects on design

In modern FPGAs, the routing resources represent up to 90% of the

whole chip area. When a permanent fault occurs on the device, the routing

resources can be affected in different ways. Four categories of possible

faults are presented: Stuck-at-0, Stuck-at-1, Stuck-off, Stuck-on that are

explained in details in the chapter 4.1.

In order to classify and localize the effects on the routing resources,

caused by a permanent fault, it is necessary to recognize the modification

introduced in the application. Most part of the configuration memory bits is

related to the switch matrices, which control the routing resources. Each net

of a circuit is realized by connections of logic modules through

Programmable Interconnection Points. A SEU or permanent fault in the

configuration bit, which controls a PIP, can alter or interrupt the propagation

of one or more signals. The schematic representation of the effect scenario

can be described considering the original interconnection condition,

illustrated in Figure 3.9, that provides the implementation of two

different routing nets net 2C and net 7E using respectively the two PIPs

I2→OC and I7→OE. Considering the configuration illustrated in Figure 3.9

it is possible to identify all the possible effects induced by a modification of

a PIP resource.

24

Figure 3.9: Routing condition without errors

(a) the Open effect, first case (b) the Open effect, second case

(c) the Conflict effect (d) the Input Antenna effect

25

(e) the Output Antenna effect (f) the Bridge effect

Figure 3.10: Permanent fault effect cases

 Open: The PIP corresponding to the net 7E it is not programmed

any more. Therefore, I7 and OE are not connected. There are two

cases classifiable as Open. The first case is illustrated in Figure

3.10a where the net 7E is deleted. The second case is illustrated in

Figure 3.10b, the net 7E is deleted and a new net, for example net

5E, connects an unused input node 5 to the previously used output

node E, is created. In the second case, the signal net 7E has an

undefined logic value;

 Conflict: A new PIP, corresponding to the net 7C, is added between

an input node 7 and an output node C, both previously used, as

illustrated in Figure 3.10c. The new PIP creates a conflict on the

output node C. The propagated signal is not identifiable by means of

only a topological analysis;

26

 Input Antenna: A new PIP, corresponding to the net 4C is added

between an unused input node 4 and a used output node C, as

illustrated in Figure 3.10d. The new PIP can influence the behavior

of the output node depending on the output logic value assumed by

the nodes of the CLB;

 Output Antenna: A new PIP, corresponding to the net 2D, is added

between a used input node 2 and an unused output node D (as

illustrated in Figure 3.10e). The new PIP does not influence the

behavior of the implemented circuits;

 Bridge: The PIP corresponding to the net 7E is disabled while a new

PIP, corresponding to the net 2E, is instantiated between a used input

node and the output nodes of the previously used net 7E as

illustrated in Figure 3.10f. The behavior of the implemented circuit

is modified.

If a fault modifies the routing of the FPGA, without affecting the behavior

of the system, this effect can be categorized in:

 Tolerant: The configuration of the programming PIP is not affected

by modifications. The modification of the bits in the configuration

memory does not create any modification of the topological

instances of the nets;

 Unrouted: The modification of the PIP cannot be classified in

anyone of the considered classes.

27

For further details on permanent faults that can affect an FPGA see [19].

Table 3.1 shows how a specific permanent fault can turn into one or more

effects presented in this paragraph (see chapter 4.1 for the definitions of

fault types). This thesis is considering these effects in order to detect a

possible permanent fault within a routing resource.

Type of Permanent Fault Permanent Fault Effect

Stuck-at-1 (wire) Open

Stuck-at-0 (wire) Open

Stuck-off (PIP) Open

Stuck-on (PIP) Conflict, Antenna, Bridge

Table 3.1: Relation between the Permanent Fault and its effect

3.3 Testing circuit for on line testing

Figure 3.11 shows a high level view of testing circuits previously

developed [20] to make tests with the BIST approach.

Figure 3.11: High level view of testing circuit

28

The most important components are the TPG and the ORA:

 Test Pattern Generator (TPG) is used for a generation of particular

input stimuli for the resources that have to be tested;

 Output Response Analyser (ORA) is the component that reads the

outputs from the resources under test and establishes if a fault

occurred.

All the connections between these components are called Nets Under Test

(NUT) and represent the routing resources that will be tested. A NUT must

be routed starting from an OutPin of a CLB and ending in an InPin of

another CLB crossing a certain number of physical wires and PIPs. It is

worth noting that the dimension of the TPG and the ORA is very small and

for this reason it tests can be made also in small areas. This circuit is already

been validate and it is able to detect the 100% of the faults in the resources

under test.

 The structure of the designed testing circuit is depicted in Figure

3.12.

Figure 3.12: The structure of a testing circuit

29

Clock Generator and Reset Generator are inside the circuit, therefore the

clock and reset signals are generated by dedicated modules in order to make

the testing structure entirely independent of the region of the FPGA on

which it is placed. Indeed, no external clock and reset signals are used, so it

is possible to change the area under test by only replacing the testing circuit,

without any changes in the logic. Results are stored in the configuration

memory of the FPGA and it can be used the read-back techniques [21] to

get them. The start-checking circuit is able to verify whether the testing

circuit has been correctly configured and the test correctly started. In fact

some faults may prevent the test to start at all.

For further details on internal logic and behavior of this circuit see [20].

There are three different versions of the testing circuit to make on-

line tests, which differ substantially on the number of nets that can be tested

at the same time. Figure 3.13a, 3.13b, 3.13c depict a high level view of

them.

TPG ORA
NUT

(a) NUT1

TPG ORA
NUT

6

(b) NUT6

30

TPG ORA
NUT

8

(c) NUT8

Figure 3.13: Different testing circuits

Since these circuits can test multiple NUTs we can make both a fine- and a

coarse-grained test. This circuit can detect the stuck-at-0/1, stuck-on and the

stuck-off permanent faults.

31

4 Routing algorithm design

On-line testing of reconfigurable FPGAs exploits dynamic partial

reconfiguration to place testing circuits on the unused regions of an SRAM-

based FPGA device, called target regions, before placing on it the functional

modules of a reconfigurable system. With this approach it is possible to

check if the target region of the FPGA is free of faults at run-time. The

testing approach used in this work is application-independent and cross-

coupled parity-based.

The testing circuit is composed by the TPG and the ORA (see

section 3.3). A stimulus is sent over the NUT through the OutPin of a CLB

that hosts the TPG and received through the InPin of another CLB that hosts

the ORA (see section 3.1.1). All the wires and all PIPs connecting these

components represent the NUT. Therefore the first step involves deciding

where to place the TPG and the ORA on the target region, while the second

requires choosing the exact wires to connect TPG and ORA. This

corresponds to the so-called Place-and-Route process (for more information

see [22]).

 The TPG, the ORA and the supporting circuity are available in an

XDL file and pre-placed. The algorithm developed in this thesis (U-TURN)

chooses a set of NUTs that maximizes test coverage of physical wires. The

algorithm is written in the C++ programming language and takes as input

the following files:

32

 the XDL file representing the testing circuit;

 an image file representing a specific FPGA;

 a file specifying the partitioning of the FPGA in different regions;

 the name of the region we want to test.

Then U-TURN starts the routing of the NUTs to cover all physical wires in

the region under test. During the execution two files are printed out: the

physical wires testability report and the PIPs testability report. When U-

TURN terminates several testing circuits are created using the computed

NUTs and a summary of tested resources is printed out. The following

figure shows the inputs and the outputs of the algorithm.

Unrouted
testing

circuit (XDL)

INPUT

FPGA image

INPUT

Partitioning
file

INPUT

Region(s)
Under Test

INPUT

Tested
resources
summary

OUTPUT

Routed
testing
circuit

(bitstream)

1..n
OUTPUT

U-TURN

Physical
wires

testability
report

OUTPUT

PIPs
testability

report

OUTPUT

Figure 4.1: U-TURN inputs / outputs

33

There are also other components in the TPG and in the ORA that are

connected to each other for the proper functioning of the testing circuit itself

[20]. It is worth noting that these resources do not belong to the NUT so

they are not tested by the testing circuit. These resources must be free of

faults for a correct behavior of the testing circuit, therefore the TPG and the

ORA should be placed as close as possible to reduce the probability of faults

presence. A test of them should be performed in a second step, changing the

position of the entire testing circuit and using them in the related NUT.

It should be noted that the longer is the NUT, the larger is the

amount of resources tested at a time. But it was found that it is not possible

to have an arbitrary length of the NUT. A limitation on the numbers of the

PIPs that could be used in a NUT is given by the FPGA architecture itself;

in fact a signal could change its logic value if it is driven over a long path. A

limit of 100 PIPs has been set to ensure that testing circuits can still evaluate

the presence of faults.

A representation of the FPGA is useful for developing an algorithm

capable of routing the NUT. This structure has to provide a good description

of the FPGA resources, but at the same time it must be suitable for our

purpose. Figure 4.2 shows several switch matrices and some connections

between them. It should be noted that there is a chance of loops in the

FPGA architecture (e.g. pw2, pip4, pw9, pip9, pw10, pip10, pip11, pw5,

pip3) and this characteristic should be visible also in the representation.

34

S
L
I
C
E

S
L
I
C
E

M
U
L
T
I
P
L
E
X
E
R

SWITCH MATRIX

pw1

pw2

S
L
I
C
E

S
L
I
C
E

M
U
L
T
I
P
L
E
X
E
R

SWITCH MATRIX

S
L
I
C
E

S
L
I
C
E

M
U
L
T
I
P
L
E
X
E
R

SWITCH MATRIX

S
L
I
C
E

S
L
I
C
E

M
U
L
T
I
P
L
E
X
E
R

SWITCH MATRIX

pw5 pw3pw10

pw6

pw7

pw8

pw11

pw4

Physical wire

PIP

pw9

Figure 4.2: Switch matrix connections for graph creation

For these reasons we adopt from graph theory the concept of directed cyclic

graph to describe routing resources of a FPGA region. The following figure

depicts this representation where Nodes denote physical wires and Edges

represent PIPs.

35

pw
1

pw
2

pw
3

pw
4

pw
5

pw
6

pw
7

pw
8

pw
9

pw
10

pw
11

p
ip

1
0

p
ip

6

Physical wire

PIP

Figure 4.3: Graph representation of the FPGA

Obviously the graph dimension depends on the region size; as an

example the figure below shows the representation of an entire clock region

of a Virtex-4 FX12.

Node: physical wire

Edge: PIP

e.g. Virtex-4 FX12, 240 Switch Matrices

Graph dimension:

 39,777 Nodes

 456,783 Edges

Figure 4.4: Graph representing a clock region of a VIrte-4 FX12

36

Several kind of permanent faults can affect a FPGA (see section 3.2)

so the first step consists in the understanding which faults are detectable

with our testing circuits and how to model them to run tests.

4.1 Permanent fault model

This section describes the permanent faults that we are considering,

their effects and how we model them to perform a real test. A net represents

the connection between two or more components and it is composed of

physical wires and PIPs.

4.1.1 Physical wire stuck-at-0/1

Figure 4.5 is an FPGA Editor screenshot where the red line

represents a physical wire that connects several switch matrices.

0/1

Figure 4.5: Stuck-at-0/1 on a physical wire

A Stuck-at-0 fault on a physical wire forces the logic value of the net to ‘0’.

It is possible to check if a physical wire is stuck-at-0-free by using it in a

NUT while the TPG is sending a ‘1’ over it. If the ORA receives a ‘0’, it

37

means that a fault occurred. Therefore if test is passed we are able to verify

that all physical wires that belong to the NUT are stuck-at-0-free. A similar

approach can be applied in the case of Stuck-at-1.

To verify if all physical wires are stuck-at-0/1-free using a graph

representation it is necessary to resolve the nodes-covering problem: we

need to discover several paths such that all nodes are crossed at least once.

If we are using the NUT1 testing circuit the graph has only 1 OutPin and 1

InPin and the NUT has to be routed among these nodes. The following

figure highlights 3 different paths to cover all nodes of the graph.

OutPin

InPin

Figure 4.6: Testing stuck-at-0/1 in graph representation

4.1.2 PIP stuck-off

Figure 4.7 is an FPGA Editor screenshot where the red dotted line

represents a PIP affected by a stuck-off fault.

38

Figure 4.7: Stuck-off for a PIP

A PIP affected by this kind of fault is always deactivated and the two

physical wires are unconnected. Therefore if a path uses a stuck-off PIP its

logic value will be unknown. It is possible to check if a PIP is stuck-off free

by using it in a NUT while the TPG is sending a stimulus over it. If the

ORA receives a different logic value a fault occurred. Therefore if the test is

passed we are able to verify that all PIPs that belong to the NUT are stuck-

off-free.

To verify if all PIPs are stuck-off free using a graph representation it

is necessary to resolve the edges-covering problem: we need to add some

NUTs to the previous such that all edges are crossed at least once. If we are

using the NUT1 testing circuit the following figure shows paths to be added

to cover all edges where larger arrows represent PIPs not tested yet.

39

OutPin

InPin

Figure 4.8: Testing stuck-off in graph representation

4.1.3 PIP stuck-on

Figure 4.9 is a FPGA Editor screenshot where a red line represents a

PIP affected by a stuck-on fault.

Figure 4.9: Stuck-on for a PIP

A PIP affected by this kind of fault is always activated and creates a

connection between two physical wires. This PIP can create an antenna or

short two nets of the design. The result of the short can be either a wired-

40

AND short or a wired-OR short. It is possible to check if a PIP is stuck-on

free using two NUTs that can be shorted by it. If both TPGs send stimuli

over their own NUT and the related ORA receives a different logic value,

then a fault occurred. Therefore if the test is passed, all PIPs that can create

a short between the tested NUTs are stuck-on-free.

 To test this kind of fault we need two NUTs because we would test

PIPs that can connect more nets. For example Figure 4.10 shows the NUT6

testing circuit that has 6 OutPins and 6 InPins and can test 6 nets at the same

time. It is worth noting that these nets must be independent thus no

resources can be shared between them.

OutPins

InPins

Node: pysical wire

Edge: PIP

Figure 4.10: Graph representation of NUT6 testing circuit

41

As an example Figure 4.11 shows highlighted in green the PIPs that can

create a short fault between 2 different routed NUTs. If this test is passed we

are able to assert that these PIPs are stuck-on free.

OutPins

InPins

Route of NUT 1

PIPs that create
a short among
the two routed

nets

Route of NUT 2

Figure 4.11: Testing stuck-on in graph representation

4.2 Routing resources analysis

As previously discussed, the aim of this work is to find a flow

capable of testing on demand routing resources of a specific region of the

FPGA. To check if a resource is free of fault, it is necessary to send a signal

on it and verify if the received signal is the same as the one sent.

42

Since we are using the partial reconfiguration technique, a

partitioning of the FPGA in different regions is needed. Thanks to this

technique it is possible to dynamically modify logic blocks of a region by

downloading partial bit files, while the remaining logic in other regions

continues to operate without interruption. Due to the partitioning, the

routing resources that are on the edges of a region can connect components

belonging to different regions. If a stimulus is sent over these resources, a

conflict can occur in the component belonging to the other region. We have

to be careful when using these resources, and in most cases their

employment should be avoided.

We can assume that a Resources Categorization phase is needed to

understand what is really testable. That phase takes as input the FPGA

partitioning and the list of partitions to be tested as shown in Figure 4.12.

During this phase, resources are marked depending on their testability.

FPGA
partitioning

Resources
categorization

Region(s)
Under Test

Figure 4.12: Resources categorization flow

43

Resource marking is made by following a procedure explained in the

following. Figure 4.13 shows a simplified version of an FPGA partitioned in

two different areas: one static and one reconfigurable that has to be tested.

PR-Region

Static Region

Critical

Untestable

Testable

Figure 4.13: Analysis of testability

Physical wires are initialized according to the InWire and the OutWire

position. A physical wire is marked as:

 Untestable

- if the OutWire stays in another region because it would be

impossible drive a signal on the physical wire;

44

- if all InWires stay in another region because it would be

impossible read-back the sent value;

 Critical

if the OutWire and the InWires are in the region under test

but there is also an InWire in another region; if this resource

is used an error can be injected in the other region;

 Testable

if and only if the OutWire and all InWires are in the region to

be tested.

It is important to notice that this categorization depends on the FPGA

partitioning, but there is also another kind of testability according to the

capability of the testing circuit. In fact our testing circuit is not able to test

all resources (for example the DSP and BRAM resources). Therefore it is

appropriate to introduce a new kind of category: the unsupported.

Once all physical wires are marked, an additional phase is performed. In

that phase all physical wires inherit the testability of connected resources

applying the following priority rules:

1. Unsupported;

2. Untestable;

3. Critical;

4. Testable.

45

But it is worth noting that only testable physical wires can become

unsupported.

When the algorithm is running, all this information is stored in the

data structures of the program. It is possible to generate script files readable

by FPGA Editor to visualize resources in different color according to their

testability. Figure 4.14 is an FPGA Editor screenshot that represent a switch

matrix of the Virtex-4 FX12 where physical wires and PIPs are highlighted.

Untestable

Critical

Testable

Unsupported

Virtex-4 FX12: INT_X23Y40
Total PIPs: 3312
Total Physical Wires: 418

Figure 4.14: Untestable,Critical,Testable,Unsupported resources of a switch matrix on Virtex-4

Two different reports are printed out at the end of this phase:

 Physical wires testability report;

 PIPs testability report.

46

A subset of these reports is shown in Figure 4.15 and Figure 4.16. The first

one lists physical wires testability of all tiles in the region and also the

conflicted areas. By “Tile” we mean a general component of an FPGA, like

a switch matrix or CBL, and in square brackets their own coordinates inside

the FPGA are shown. The first column lists all physical wires belonging to

that tile, the second describes their testability and the third defines the

conflicted regions. If the conflicted region has a name it is shown, otherwise

the coordinate of the inWire or the Outwire that causes the non-testability is

printed. The second report gives more details adding PIPs information.

Tile: Switch Matrix @ [49,26]

Wire: BEST_LOGIC_OUTS0 Testable
Wire: BYP_INT_B5 Testable
Wire: BYP_INT_B7 Testable
Wire: E2BEG6 Testable

…

Wire: LH0 Critical [26,5],[26,11]
Wire: LV0 Critical Base1

…

Wire: LH12 Untestable [26,11]
Wire: LV12 Untestable Base0,Base1

…

Figure 4.15: Physical wires report

47

Tile: Switch Matrix @ [49,26]

Critical Resources
Wire: LH0 [26,5],[26,11]

Critical OutPIPs (18)
E2END2 -> LH0
E2MID1 -> LH0
…

Critical InPIPs (11)
LH0 -> E6BEG2
LH0 -> E6BEG3
…

Untestable Resources
Wire: LH12 [26,11]

Untestable InPIPs (10)
LH12 -> E6BEG4
LH12 -> E6BEG5
…

Unsupported Resources
...

Figure 4.16: PIPs report

Since the reports are very long and hard to read two more heat-maps

are created to better understand how many testable resources are in the

region under test. The numbers in Figure 4.17 represent the percentage of

testable PIPs in a clock region of a Virtex-4 FX12, that is used as region

under test. This represents what is reachable according to the partitioning of

the FPGA and because of it, this heat-map is Circuit Independent. It

should be noted that larger values are in the middle of the region, while

numbers decrease as you go away from the centre. This happens because the

tiles near edges have more physical wires that reach different regions. There

are 87% of testable physical wires and 78% of testable PIPs in a clock

region of a Virtex-4 FX12, without considering the testing circuit.

48

INT CLB INT CLB INT CLB INT CLB INT DSP INT CLB INT CLB INT CLB INT CLB INT BRAM INT CLB INT CLB INT CLB INT CLB INT IOIS R_T

27 87 40 98 47 98 48 98 46 48 98 52 98 52 98 52 98 41 52 98 52 98 52 98 52 98 48 58 77

42 100 59 100 68 100 70 100 68 70 100 74 100 74 100 74 100 66 74 100 74 100 74 100 74 100 69 58 100

50 100 68 100 78 100 80 100 79 80 100 84 100 84 100 84 100 77 84 100 84 100 84 100 84 100 79 58 100

52 100 70 100 81 100 83 100 82 100 83 100 88 100 88 100 88 100 74 100 88 100 88 100 88 100 88 100 83 58 100

52 100 70 100 81 100 83 100 79 83 100 88 100 88 100 88 100 72 88 100 88 100 88 100 88 100 83 58 100

52 100 70 100 81 100 83 100 81 83 100 88 100 88 100 88 100 79 88 100 88 100 88 100 88 100 83 58 100

55 100 74 100 85 100 87 100 86 87 100 92 100 92 100 92 100 85 92 100 92 100 93 100 93 100 88 58 100

56 100 74 100 85 100 88 100 87 100 88 100 93 100 93 100 93 100 79 100 93 100 93 100 94 100 94 100 89 60 100

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31

56 100 74 100 85 100 88 100 84 88 100 93 100 93 100 93 100 77 93 100 93 100 94 100 94 100 91 63 100

56 100 74 100 85 100 87 100 85 87 100 93 100 93 100 93 100 84 93 100 93 100 93 100 93 100 88 60 100

52 100 70 100 81 100 83 100 82 83 100 88 100 88 100 88 100 80 88 100 88 100 88 100 88 100 83 58 100

52 100 70 100 81 100 83 100 82 100 83 100 88 100 88 100 88 100 74 100 88 100 88 100 88 100 88 100 83 58 100

52 100 70 100 81 100 83 100 79 83 100 88 100 88 100 88 100 71 88 100 88 100 88 100 88 100 83 58 100

50 100 68 100 78 100 80 100 78 80 100 84 100 84 100 84 100 75 84 100 84 100 84 100 84 100 79 58 100

42 100 60 100 69 100 70 100 70 70 100 74 100 74 100 74 100 68 74 100 74 100 75 100 75 100 70 58 100

28 88 41 98 48 98 49 98 49 100 49 98 53 98 53 98 53 98 45 100 53 98 53 98 53 98 54 98 51 58 96

Region
Under Test

Virtex-4 FX12

Total TCI PIPs: 831,057
Testable TCI: 647,546 (78%)
Critical: 78,635 (9%)
Untestable: 104,876 (13%)

Total TCI Physical Wires: 81,581
Testable TCI: 71,013 (87%)
Critical: 3,398 (4%)
Untestable: 7,170 (9%)

Figure 4.17: Test Circuit Independent heat-map

Numbers differ when the testing circuit is considered because it

could not test all resources such as DSP, BRAM, IOIS. Figure 4.18 shows a

Circuit Dependent heat-map where some testable resources become

unsupported. In particular 44% of testable physical wires and 29% of

testable PIPs are now unsupported.

49

Region
Under Test

Virtex-4 FX12

Total TCI PIPs: 831,057
Testable TCI: 647,546
Testable TCD: 456,783 (71%)
Unsupported: 190,664 (29%)

Total TCI Physical Wires: 81,581
Testable TCI: 71,013
Testable TCD: 39,777 (56%)
Unsupported: 31,225 (44%)

INT CLB INT CLB INT CLB INT CLB INT DSP INT CLB INT CLB INT CLB INT CLB INT BRAM INT CLB INT CLB INT CLB INT CLB INT IOIS R_T

78 55 78 48 81 48 77 48 25 78 48 82 48 82 48 78 48 34 79 48 82 48 82 48 78 48 28 0 95

78 48 78 48 80 48 76 48 24 76 48 82 48 82 48 77 48 30 77 48 82 48 82 48 77 48 27 0 93

81 48 80 48 82 48 78 48 27 78 48 83 48 83 48 79 48 33 79 48 83 48 83 48 79 48 29 0 93

81 48 81 48 83 48 79 48 29 0 78 48 84 48 84 48 80 48 38 0 80 48 84 48 84 48 80 48 32 0 93

81 48 81 48 83 48 79 48 30 79 48 84 48 84 48 80 48 40 80 48 84 48 84 48 80 48 32 0 93

81 48 81 48 83 48 79 48 30 79 48 84 48 84 48 80 48 36 80 48 84 48 84 48 80 48 32 0 93

82 48 82 48 83 48 80 48 32 79 48 85 48 85 48 81 48 38 81 48 85 48 85 48 81 48 35 0 93

82 48 82 48 83 48 80 48 32 0 79 48 85 48 85 48 81 48 41 0 81 48 85 48 85 48 81 48 35 0 93

0

82 48 82 48 83 48 80 48 33 79 48 85 48 85 48 81 48 43 81 48 85 48 85 48 81 48 34 0 93

82 48 82 48 83 48 80 48 33 79 48 85 48 85 48 81 48 39 81 48 85 48 85 48 81 48 35 0 93

81 48 81 48 83 48 79 48 29 79 48 84 48 84 48 80 48 35 80 48 84 48 84 48 80 48 32 0 93

81 48 81 48 83 48 79 48 29 0 79 48 84 48 84 48 80 48 38 0 80 48 84 48 84 48 80 48 32 0 93

81 48 81 48 83 48 79 48 30 78 48 84 48 84 48 80 48 39 80 48 84 48 84 48 80 48 32 0 93

81 48 80 48 82 48 78 48 28 78 48 83 48 83 48 79 48 33 79 48 83 48 83 48 79 48 29 0 93

79 48 78 48 81 48 76 48 24 76 48 82 48 82 48 77 48 29 77 48 82 48 82 48 77 48 27 0 93

80 54 79 48 81 48 78 48 24 0 78 48 83 48 83 48 79 48 33 0 80 48 83 48 83 48 79 48 28 0 96

Figure 4.18: Test Circuit Dependent heat-map

50

5 Proposed routing algorithm

Once the routing resources categorization is made the algorithm

capable to route the NUT (or NUTs) over testable resources of the FPGA

region can be applied.

FPGA
partitioning

Hard Macros

n

Resources
categorization

Testing Circuit
Generation

XDL file of
testing circuit

Region(s)
Under Test

Figure 5.1: Complete project flow

The complete flow of this work is illustrated in Figure 5.1 where the

Testing Circuit Generation phase operates on the data structure filled by

the previous phase and takes as input an XDL file [23]. That file represents

the testing circuit (NUT1 or NUT6 or NUT8) where the positions of the

TPG and the ORA are already defined and it misses only the routing of the

NUT (or NUTs). A NUT is complete in any of the following situations:

51

 when there are no more physical wires that can be added to

the NUT;

or

 the NUT reaches 100 routing resources (due to the limitation

on 100 PIPs that could be used).

Since there are much larger routing resources in a region under test, when

the routing algorithm computation is finished, several testing circuits are

created and they will be used to check if that region is free of faults.

In the early stages of development I studied the FPGA architectures

of different families (see section 3.1.2) to find out if they have something in

common that can be exploited. It can be observed that connection types are

quite different among families but switch matrices have the same

connections between each other in the same FPGA. Since there are a large

numbers of switch matrices in a region (e.g. a Virtex-4 FX12 contains 240

switch matrices in a clock region, see Figure 4.4), it is useful to apply the

divide et impera paradigm to reduce the complexity of the problem; the idea

is to target one of them at a time maximizing its number of tested resources.

Since routing resources mainly consist of PIPs (e.g. a switch matrix

in a Virtex-4 FX12 contains 3312 PIPs and 418 physical wires, that allow

connections to other components as shown in Figure 4.14) the first approach

was to maximize the coverage of PIPs. Later we understood that a better

52

approach to be followed, particularly regarding the computation time of the

algorithm, was to maximize the use of physical wires instead of PIPs.

Keeping in mind the limitation on PIP numbers that can be used in a

NUT and considering the high number of resources, it is easy to understand

that we need more than one NUT to test all resources of a single switch

matrix. As a result the number of testing circuits needed to test all resources

of a switch matrix change according to the testing circuit type (NUT1,

NUT6, or NUT8).

5.1 U-Turn implementation

The main goal of the algorithm is to maximize the number of physical

wires used for a Net Under Test. The number of wires in a NUT is

incremented by leaving and returning to one Switch Matrix Under Test

(SMUT); for this reason the algorithm is named U-Turn. It runs recursively

on each switch matrix inside the Region Under Test (RUT) to maximize the

use of physical wires connected to the SMUT that have not been tested yet.

For a better understanding of the routing algorithm’s behavior Figure 5.2

and Figure 5.3 show a simplified vision of an FPGA, showing only the

switch matrices. The complete test flow performs the following steps:

1. Define region under test (RUT);

2. Select switch matrix that we want to test (SMUT);

3. Place TPG and ORA;

4. Route the NUT from TPG to SMUT;

53

5. Add physical wires to the NUT by leaving and returning in the

SMUT (done by U-Turn algorithm);

6. Route the NUT from SMUT to ORA

RUT

RUT (region under test) TPG (test pattern generator)SM(switch matrix)

SMUT(switch matrix under test) ORA (output response analyzer)

Figure 5.2: Simplify vision of the FPGA for U-Turn

RUT

Routing NUT from TPG to SMUT Routing NUT from SMUT to TPG Adding physical wire to the NUT

Figure 5.3: High level view of U-Turn

54

A high level pseudo code is listed below:

pick a SM in a RUT (SMUT);

if the SMUT still contains non-visited physical wires:

1 create a new empty NUT;

2 add connection between the TPG and the SMUT to the

NUT;

3 create the graph;

4 add to the current NUT a physical wire if and only if

a) there is another physical wire at one of the

destination SMs that allows to return to the SMUT;

or

b) an internal bounce
1
 in the SMUT is possible

(integrates stuck-at errors of the bouncing wires);

5 if there are physical wires still connectable to the same

NUT, go to 4;

6 add connection between the SMUT and the ORA to the

NUT

7 store fully routed test design

repeat this process until all SMs have been analised;

5.1.1 NUT creation

Once the SMUT has been picked the algorithm searches for an

untested physical wire among the physical wires connected to the SMUT.

As soon as one is selected, called Starting Physical Wire, a new NUT is

created with an associated counter. A NUT is represented as a list of nodes

and edges while the counter denotes the number of untested physical wires

in the NUT that are not tested before. At the beginning the NUT is empty

1
 Normaly a PIP is classified as an inPIP or outPIP but some of them are both. Therefore it

is possible to drive a signal entering in a SM, through an inPIP, to a in/outPIP. Starting

from it we can choose to drive the signal out of the SM (using it as an outPIP) or bouncing

(using it as an inPIP) inside the SM and drive the signal to another PIP.

55

and the counter value is ‘0’, because the Starting Physical Wire will be

added after connecting the TPG to the SMUT.

5.1.2 Connecting the TPG to the SMUT

At this point the NUT is initialized by adding physical wires and

PIPs to connect the TPG to the Starting Physical Wire of the SMUT.

Recalling the limitation on the PIPs and since we would maximize tested

resources of the SMUT this path should be as short as possible. To reach

this goal we use the Iterative Deepening Depth-First Search algorithm

(IDDFS) [24], based on the depth first search strategy. With this strategy, a

depth-limited search is run repeatedly, increasing the limit value of the

depth at every step. Therefore the shortest path connecting the TPG to the

SMUT is found.

5.1.3 Graph creation

It is particularly important to optimize the creation of the graph to

minimize the occupied memory. Since the algorithm works on the nodes

and edges also the computation time depends on the graph’s dimension. A

first approach was to represent the entire region under test as a graph, but

that solution was discarded because it was too onerous. As an example,

considering an entire clock region as region under test of a Virtex-4 FX12,

the machine would need more than 20 gigabytes of RAM. It is worth noting

that this FPGA was selected because it is one of the smallest.

56

Due to the limitation of the number of PIPs that can be used in a

NUT it is useful to create a graph with dimension limited to the area formed

by resources that are directly reachable from the SMUT. To better

understand this approach, Figure 5.4 highlights the connections of a SMUT

in a Virtex-4 and the limits of the graph dimension.

Graph limits

Figure 5.4: Graph limits for the Virtex-4

In this way a graph is created once for each Starting Physical Wire and only

a few hundred megabytes of memory are occupied. As a result only physical

wires inside the red square can be added to the NUT. It is important that the

area has this extension otherwise is not possible to leave and return

immediately to the SMUT, but it is necessary to use some physical wires

that are not directly connected to the SMUT.

5.1.4 Populating the NUT

At this stage we have a graph whose root is the node that represents

the Starting Physical Wire and a NUT connecting the TPG to the root. Then

57

a sort of breadth first search algorithm is executed on the graph to optimize

the solution for the NUT in order to use as many physical wires as possible.

During the execution of U-Turn 2 kinds of solution are created:

 best solution that is empty at the beginning;

 temporary solution that contains the actual NUT, therefore the

connection from TPG to the root.

The temporary solution is modified adding all neighbour nodes, one at a

time, of the root giving priority to those representing physical wires not

tested. To achieve more randomness, a neighbour is taken casually and then

the algorithm runs recursively on that neighbour.

Every time a node representing an exit point from the SMUT is

selected, the temporary solution is compared with the best one: if the

counter related to the best solution is smaller than the temporary one, then

the best solution is overwritten with the temporary one. In this way the best

solution will maximize the number of physical wires not tested in the

current NUT. When the temporary solution reaches the threshold of PIPs, it

is discarded and the algorithm can speed up returning to the previous level

of neighbourhood. It is worth noting that loops should be avoided and, in

order to achieve this, each node of the graph can be visited at most once.

58

5.1.5 Connecting the SMUT to the ORA

To complete the NUT we have to provide the connection to the

ORA. Once again it is possible by using the IDDFS algorithm (see section

5.1.2).

5.1.6 Storing the full design

Finally as soon as all NUTs are computed, the algorithm creates the

full testing circuits ready to be downloaded into a device to make the test.

Figure 5.5 is an FPGA Editor screenshot that represent a full design of a

NUT1 testing circuit targeting a switch matrix. Light blue lines represent

connections between the TPG and the ORA not belonging to the Net Under

Test. The red line is the NUT and as it can be seen it uses many resources

belonging to one switch matrix under test. Figure 5.6 shows a zoom on that

SMUT.

59

Figure 5.5: FPGA Editor screenshot of NUT1 full design

Figure 5.6: FPGA Editor screenshot of zoom on SMUT of NUT1

60

5.1.7 NUT6 and NUT8 special cases

It should be highlighted that all these steps have to be followed for

each NUT, therefore if we are using the NUT6 or NUT8 testing circuit we

need to perform them 6 or 8 times. However, attention must be paid to the

independence of the NUTs of a single testing circuit otherwise the entire

testing circuit does not work properly. Independence means that no routing

resources have to be shared among the NUTs. When nodes are used in a

NUT, they are marked as “already used” and cannot be added to NUTs

belonging to the same testing circuit.

It can happen that after having found some NUTs is not possible to

find another independent NUT for the current testing circuit. When it

happens this physical wire is added to a special list and it will be tested by

another testing circuit. If this occurs for the remaining physical wires of a

SMUT, the testing circuit misses one or more NUTs. To avoid interfering

with the correct behavior of the testing circuits, missing NUTs are added in

a redundant way. Therefore with these redundant NUTs we are not testing

anything new but the testing circuit is still working properly.

5.1.8 U-Turn parameters

The algorithm was implemented with the capability to change its

behavior according to several parameters that are listed below:

 Regions_to_test

It contains the names of target region we want to test;

61

 HM_type

It is an integer value that represents the testing circuit type

(NUT1, NUT6 or NUT8);

Possible values: 1, 2, 3;

 Testing_HM_XLD

It contains the path to the XDL file of the testing circuit we

intend to use;

 Compute_TCI_analysis

It is a boolean value that enables the analysis of testability

without considering the testing circuit;

Possible values: true, false;

 Route_ORA_and_TPG

It is a boolean value that enables the routing from the TPG to

the SMUT and from the SMUT to the ORA;

Possible values: true, false;

 PIP_limit_for_each_NUT

It is an integer value that represents the maximum number of

PIPs that could be used for each NUT. It is set to 100;

Possible values: any positive number;

 PIP_limit_before_come_back

62

It is an integer value that represents the maximum number of

PIPs that could be used outside the SMUT before coming

back to it. It is set to 7;

Possible values: any positive number;

 Test_also_LOCAL

It is a boolean value that enables testing of LOCAL resources

(see section 3.1.1). It is set to true;

Possible values: true, false;

 Target_level

It is an integer value that represents the test will be

permormed:

1 test of stuck-at-0/1 for the physical wires

2 test of stuck-off for the PIPs

3 test of stuck-on for the PIPs;

Possible values: 1, 2, 3.

63

5.2 Why U-Turn

This section describes the reasons why we implemented this kind of

algorithm. At the beginning two other architecture independent algorithm

have been designed to maximize test coverage. Both of them use the graph

representation of the FPGA as well as U-Turn.

The first one is a modified version of the breadth first search

algorithm. Modifications are needed because the original BFS visits nodes

only once and does not work with cyclic graphs. The modified version has

been designed to visit nodes more times because it could allow to find

longer paths exploiting cycles. The general behavior of that algorithm is to

find several paths from a source to a destination node of the graph, then the

longest one is chosen as the NUT. To do that we need to keep track, inside

each node, of previous nodes because different paths can share some

resources. Therefore the idea is to use the concept of colored graphs to label

each complete path. Problems are in space and time complexity. Regarding

the space each node has to store 3 additional items for each path the node

belongs to (previous nodes, previous edges, color of the path) that affects

the memory used. Concerning time it should be noted that if ‘N’ is the

number of nodes in the graph, the algorithm could visited all of them ‘N’

times. Considering the dimension of the graph space and time complexity

grow too much. With this algorithm we are sure to find the best solution for

a NUT but its complexity is too high.

64

The second algorithm is a Heuristic one that improves space and

time complexity of the previous one but does not ensure finding the best

solution for a NUT. In this approach nodes have been used in previous

NUTs should not appear in the next ones. To achieve this a weight,

initialized to ‘0’, is assigned to each node. The algorithm gives a higher

priority to nodes with lower weight. The weight updating of generic node

‘n’ is made following this formula:

𝑊𝑒𝑖𝑔ℎ𝑡(𝑛) = 𝛼 ∗ 𝑈𝑠𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡(𝑛) + (1 − 𝛼) ∗ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔ℎ𝑡(𝑛 + 1, 𝑠𝑖𝑛𝑘)

Where:

 UsedWeight(n) is the time that the node ‘n’ has been used in

previous NUTs;

 DirectionWeight(n+1,sink) is the orientation offset between a

neighbour node ‘n+1’ and the ‘sink’ (destination) using Manhattan

distance (details on Manhattan Distance are in [25]);

 α = 0.7 because usedWeight() term should add more weight since

used nodes should be avoided using again.

With this approach the only additional information is the weight on each

node. Therefore this algorithm is faster and uses less memory than the

previous one, but it was discarded because it could not find the best

solution.

65

Finally we developed U-Turn because it is a good compromise

between space and time complexity. Each node can be visited at most once

and the only additional information is related to the “already tested”

attribute.

66

6 Experimental results

In the following, figures of the U-Turn algorithm, that aims to use

routing resources as much as possible, are reported. We run it on the

following FPGA families:

 Artix-7

 Spartan-6

 Virtex-4;

 Virtex-5;

 Virtex-6.

Table 6.1 shows the number of switch matrices, physical wires and PIPs in

the region under test, which coincides with an entire clock region of each

tested FPGA.

Device
#Switch

Matrices

#Physical

Wires
#PIPs

Artix-7 XC7A100 1,600 169,037 1,941,969

Spartan-6 LX9 105 41,784 462,225

Virtex-4 FX 12 240 81,581 831,057

Virtex-4 FX100 672 222,240 2,323,415

Virtex-5 LX20T 360 133,405 1,495,969

Virtex-6 CX130T 1,480 498,621 5,621,864

Table 6.1: Number of Switch Matrices, Physical Wires, and PIPs for each tested device

67

The figures in Table 6.2 correspond to the Testable, Critical, Untestable and

Unsupported physical wires in the region under test of each tested FPGA.

The percentage is calculated on the total number of physical wires.

Device

#Testable

Physical

Wires

%

#Critical

Physical

Wires

%

#Untestable

Physical

Wires

%

#Unsupported

Physical

Wires

%

Artix-7 XC7A100 102,149 61% 7,183 4% 22,255 13% 37,450 22%

Spartan-6 LX9 26,026 62% 164 1% 6,379 15% 9,215 22%

Virtex-4 FX12 39,777 49% 3,409 4% 7,170 9% 31,225 38%

Virtex-4 FX100 114,778 52% 7,747 3% 16,811 8% 82,904 37%

Virtex-5 LX20T 80,064 60% 2,912 2% 17,299 13% 33,130 25%

Virtex-6 CX130T 331,684 66% 2,508 1% 28,269 6% 136,160 27%

Table 6.2: Physical Wires testability for each tested device

The figures in Table 6.3 correspond to the Testable, Critical, Untestable and

Unsupported PIPs in the region under test of each tested FPGA. The

percentage is calculated on the total number of PIPs.

Device
#Testable

PIPs
%

#Critical

PIPs
%

#Untestable

PIPs
%

#Unsupported

PIPs
%

Artix-7 XC7A100 1,254,235 65% 54,757 3% 350,357 18% 282,620 14%

Spartan-6 LX9 275,573 60% 2,879 1% 103,832 22% 79,941 17%

Virtex-4 FX12 456,783 55% 78,734 9% 104,876 13% 190,664 23%

Virtex-4 FX100 1,361,555 59% 191,544 8% 258,242 11% 512,074 22%

Virtex-5 LX20T 946,897 63% 87,017 6% 185,975 12% 276,080 19%

Virtex-6 CX130T 4,130,930 74% 70,946 1% 396,545 7% 1,023,443 18%

Table 6.3: PIPs testability for each tested device

68

The following tables show results achieved with the U-Turn algorithm when

it runs on each tested FPGA. All of them have a similar structure where

columns have the following meaning:

- Test Structure represents the type of testing circuit used;

- Stuck-at-0/1 tested represents the number of testable physical wire

on which the fault stuck-at-0/1 is tested;

- Stuck-off tested represents the number of testable PIPs on which the

fault stuck-off is tested;

- Time (in minutes) represents the time taken by the algorithm to

compute all Nets Under Test;

- #Testing circuits: represents the number of testing circuits needed

to test the entire region under test.

 Artix-7 XC7A100T

Test

Structure

Stuck-

at-0/1

tested

%

Stuck-

off

tested

%

Stuck-

on

tested

% Time
#Testing

circuits

NUT 1 102,149 100% 316300 25% 0 0% 22 min 8,042

NUT 6 102,149 100% 331,409 26% 490,145 39% 25 min 2,365

NUT 8 102,149 100% 329,897 26% 560,572 45% 27 min 2,039

Table 6.4: Artix-7 XC7A100T algorithm results

 Spartan-6 LX9

Test

Structure

Stuck-

at-0/1

tested

%

Stuck-

off

tested

%

Stuck-

on

tested

% Time
#Testing

circuits

NUT 1 26,026 100% 78,632 29% 0 0% 2 min 1,617

NUT 6 26,026 100% 78,467 29% 114,324 42% 3 min 604

NUT 8 26,026 100% 76,271 28% 125,505 46% 1 min 531

Table 6.5: Spartan-6 LX9 algorithm results

69

 Virtex-4 FX12

Test

Structure

Stuck-

at-0/1

tested

%

Stuck-

off

tested

%

Stuck-

on

tested

% Time
#Testing

circuits

NUT 1 39,777 100% 120,299 26% 0 0% 6 min 3,316

NUT 6 39,777 100% 118,597 26% 159,272 35% 6 min 1,073

NUT 8 39,777 100% 114,800 25% 169,781 37% 7 min 929

Table 6.6: Virtex-4 FX12 algorithm results

 Virtex-4 FX100

Test

Structure

Stuck-

at-0/1

tested

%

Stuck-

off

tested

%

Stuck-

on

tested

% Time
#Testing

circuits

NUT 1 114,778 100% 335,749 26% 0 0% 34 min 9,252

NUT 6 114,778 100% 362,198 27% 478,208 35% 54 min 2,977

NUT 8 114,778 100% 352,286 26% 509,572 38% 52 min 2,578

Table 6.7: Virtex-4 FX100 algorithm results

 Virtex-5 LX20T

Test

Structure

Stuck-

at-0/1

tested

%

Stuck-

off

tested

%

Stuck-

on

tested

% Time
#Testing

circuits

NUT 1 80,064 100% 249,391 26% 0 0% 10 min 6,727

NUT 6 80,064 100% 241,919 26% 373,990 40% 11 min 1,813

NUT 8 80,064 100% 235,170 25% 392,972 42% 13 min 1,569

 Table 6.8: Virtex-5 LX20 algorithm results

 Virtex-6 CX130T

Test

Structure

Stuck-

at-0/1

tested

%

Stuck-

off

tested

%
Stuck-on

tested
% Time

#Testing

circuits

NUT 1 331,684 100% 1,087,549 26% 0 0% 1h 12m 20,271

NUT 6 331,684 100% 1,091,914 26% 1,637,105 40% 1h 23m 6,769

NUT 8 331,684 100% 1,071,290 26% 1,850,052 45% 1h 23m 5,872

Table 6.9: Virtex-6 CX130T algorithm results

70

As we can see the 100% of coverage of physical wires is reached in any

family of FPGA, proving the validity of the approach. Even if we are not

targeting the PIPs, with this algorithm we test, on average, the stuck-off for

26% and the stuck-on for 40% of them.

The stuck-off test figures result from the fact that there exist more

than one PIP to reach a physical wire. As an example Figure 6.1 shows all

PIPs (colored in yellow) that can be used to reach a physical wire (colored

in red).

Figure 6.1: FPGA Editor screenshot for PIPs connected to a physical wire

Taking into account this example we should use 16 times the same physical

wire, in different NUT, changing every time the PIP used to test the stuck-

off for all these PIPs.

71

Regarding the stuck-on we reach better results than the stuck-off

because of the algorithm behavior. Recalling that test of stuck-on is made

using NUTs that can be shorted by a PIP, the closer are the NUTs, the larger

is the probability that they can be shorted. Reducing the value of

PIP_limit_before_come_back parameter (presented in section 5.1.8), we

force the NUTs to come back to the SMUT as soon as possible. As a result

the probability to short two NUTs is incremented because they will use

resources that belong to the same SMUT, therefore are very close to each

other.

We run the algorithm changing its parameters in order to test more PIPs

and we found out a combination of them to increase these numbers (see

Table 6.10), but not enough to reach the 100%. It could be a future work.

 Virtex-4 FX100 (enhanced)

Test

Structure

Stuck-

at-0/1

tested

%

Stuck-

off

tested

%
Stuck-on

tested
% Time

#Testing

circuits

NUT 1 114,778 100% 1,130,421 83% 0 0% 2h 40min 113,753

NUT 6 114,778 100% 819,929 60% 1,161,915 86% 2h 10min 11,124

NUT 8 114,778 100% 704,264 52% 1,087,306 80% 1h 53min 7,048

Table 6.10: Virtex-4 FX100 algorithm results (enhanced version)

As in section 5.1 the complete flow includes also the connection of

the TPG and the ORA. This connection adds several routing resources that

do not belong to the NUT and therefore they are not tested directly. A test is

successfully passed if and only if the following conditions occur:

1. testing circuit is working properly;

72

2. no faults affect the NUT (or NUTs).

As a result if a test is passed we are able to verify that the resources

belonging to the NUT and also those connecting the TPG and the ORA are

free of faults. This is a positive side-effect due to the architecture of the

testing circuit itself.

On the other hand if the test is not passed we cannot assure that the

fault is in the NUT. A good approach should be to use resources already

tested, and fault free, as connection between the TPG and the ORA.

73

7 Conclusions and future work

In this thesis a routing algorithm to maximize fault coverage of

permanent faults in routing resources of FPGAs is presented. An

optimization of its behavior has been assessed during the implementation.

The time used by U-TURN to complete the routing of all NUTs is about one

hour with a memory occupation of about 4 gigabytes. Many tests were made

in order to find the best combination of parameters. Moreover, U-Turn is

designed to operate with any FPGA and it provides several parameters that

allow the user to change its behavior without making any change to the

code. The developed algorithm achieved the objective of 100% of coverage

of physical wires.

 Currently the placement of the TPG and the ORA is made manually

and their location never change during the execution. A future work should

provide a smart placement of these components in order to obtain several

improvements:

 minimizing the distance between these components and the NUT

making tests using fewer resources unrelated to the SMUT, thus

increasing the number of physical wires directly connected to the

SMUT with respect to the total number of physical wires in the

NUT;

 placing more than one testing circuit in the same region under test

thus providing a substantial speed-up of the entire test;

74

 ensuring that the TPG and the ORA use already tested resources to

make tests more reliable.

Moreover, since the algorithm works on a representation of the FPGA, it is

possible to make changes to the algorithm in order to target the PIPs instead

of the physical wires by maximizing the use of edges instead of nodes.

 Finally another future work could be the design of new testing

circuits that allow to test those resources that are currently unsupported.

75

8 Bibliography

[1] W. Huang, F. Meyer, N. Park e F. Lombardi, «Testing Memory

Modules in SRAM-based Configurable FPGAs,» in Proceedings of

the Interational Workshop on Memory Technology, Desing and

Testing, August 1997.

[2] M. Renovell, J. Portal, J. Figuras e Y. Zorian, «Minimizing the

Number of Test Configurations for Different FPGA Families,» in

Proceedings of the Eighth Asian Test Symposium, 1999.

[3] J. Smith, T. Xia e C. Stroud, «An Automated BIST Architecture for

Testing and Diagnosing FPGA Interconnect Faults,» in Journal of

Electronic Testing, 2006.

[4] M. Abramovici, C. Strond, C. Hamilton, S. Wijesuriya e V. Verma,

«Using roving stars for on-line testing and diagnosis of fpgas in fault-

tolerant applications,» in Proceedings of the International Test

Conference, 1999.

[5] M. Rozkovec, J. Jenicek e O. Novak, «Application Dependent FPGA

Testing Method,» in Proceedings of the 13th Euromicro Conference

on Digital System Design: Architectures, Methods and Tools,

September 2010.

76

[6] M. Tahoori, «Application-Dependent Testing of FPGAs,» in IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 2006.

[7] C. Bernardeschi, L. Cassano, M. G. C. A. Cimino e A. Domenici,

«Gabes: A genetic algorithm based environment for SEU testing in

sram-fpgas,» in Journal of Systems Architecture, 2013.

[8] J. S e V. K. Agrawal, «Detection and diagnosis of faults in the routing

resources of a sram based fpgas,» International Journal of Computer

Applications, September 2012.

[9] X. Sun, P. Trouborst, J. Xu e B. Chan, «Novel technique for built-in-

self-test of fpga interconnects,» in Proceedings of the IEEE

International Test Conference, 2000.

[10] J. Yao, B. Dixon, C. Stroud e V. Nelson, «System-level built-in self-

test of global routing resources in virtex-4 fpgas,» in Proceedings of

the 41st Southeastern Symposium on System Theory, 2009.

[11] Xilinx, «FPGA Editor Guide,» September 2015. [Online]. Available:

http://www.xilinx.com/support/sw_manuals/2_1i/download/fpedit.pdf

.

[12] Xilinx, «ISE In-Depth Tutorial,» April 2012. [Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_

1/ise_tutorial_ug695.pdf.

[13] Xilinx, Partial Reconfiguration Flow presentation Manual, Xilinx

77

University Program, 2015.

[14] Xilinx, «Partial Reconfiguration User Guide,» January 2012.

[Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_

1/ug702.pdf.

[15] L. Cassano, D. Cozzi, S. Korf, J. Hagemeyer, M. Porrman e L.

Sterpone, «On-Line Testing of Permanent Radiation Effects in

Reconfigurable Systems,» in Design, Automation & Test in Europe

Conference & Exibition (DATE), March 2013.

[16] D. Sorrenti, D. Cozzi, S. Korf, L. Cassano, J. Hagemeyer, M. Porrman

e C. Bernardeschi, «Exploiting Dynamic Partial Reconfiguration for

On-Line On-Demand Testing of Permanent Faults in Reconfigurable

Systems,» in Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT), October 2014.

[17] R. Baumann, «Radiation-induced soft errors in advanced

semiconductor technologies,» in IEEE Transaction on Device and

Material Reliability, September 2005.

[18] J. Wang, «Radiation effects in FPGAs,» in Proceeding of the 9th

Workshop on Electronics for LHC Experiments, October 2003.

[19] N. Battezzati, L. sterpone e M. Violante, Re-configurable Field

Programmable Gate Arrays for Mission-Critical Applications, July

78

2010.

[20] D. Sorrenti, «Exploiting Partial Dynamic Reconfiguration for On-

Line On-Demand Detection of Permanent Faults in SRAM-based

FPGAs,» in master thesis University of Pisa, 2013.

[21] Xilinx, «Configuration and Readback of Virtex FPGAs Using JTAG

Boundary-Scan,» February 2007. [Online]. Available:

http://www.xilinx.com/support/documentation/application_notes/xapp

139.pdf.

[22] Xilinx, «Command Line Tools User Guide,» December 2009.

[Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/d

evref.pdf.

[23] C. Beckhoff, D. Koch e J. Torresen, «The Xilinx Design Language

(XDL): Tutorial and Use Cases,» in Reconfigurable Communication-

centric System-on-Chip (ReCoSoC), June 2011.

[24] D. Cozzi, «Homogeneous communication router for Xilinx FPGAs,»

in master thesis Politecnico di Torino, 2010.

[25] P. E. Black, «Mahnattan distance,» [Online]. Available:

http://xlinux.nist.gov/dads/HTML/manhattanDistance.html.

