
 

 

 

UNIVERSITÀ DI PISA 

Scuola di Ingegneria 

Laurea magistrale in Ingegneria Informatica 

 

 

Master’s thesis 

Design and implementation of a routing algorithm 

to maximize test coverage of permanent faults in 

FPGAs 
 

 

 

Supervisors 

Prof. Cinzia BERNARDESCHI 

Prof. Andrea DOMENICI 

Candidate 

Filippo MASCOLO 

 

 

Academic Year 2014/2015



Acknowledgements 

Firstly, I would like to express my sincere gratitude to my 

supervisors Prof. Cinzia Bernardeschi and Prof. Andrea Domenici for giving 

me their support and the opportunity to live such a magnificent experience 

in Germany for writing this thesis. 

A very special thanks goes to my tutors Dario Cozzi and Sebastian Korf for 

helping me continuously in my research, for their patience and motivation. 

I must acknowledge Luca Cassano for his assistance during my research 

study  and thesis writing. 

Last but not the least, I would like to thank my family because they were 

always supporting me and encouraging me with best wishes.  



ii 

 

Contents 

Introduction .................................................................................................... 1 

2 Related work ........................................................................................... 5 

3 Background ............................................................................................. 8 

3.1 Field Programmable Gate Array ..................................................... 8 

3.1.1 FPGA architecture .................................................................. 10 

3.1.2 Global connections analysis ................................................... 15 

3.1.3 Designing an FPGA-based system ......................................... 16 

3.1.4 Dynamic Partial Reconfiguration ........................................... 19 

3.2 Faults in FPGAs ............................................................................ 20 

3.2.1 Single Event Effects ............................................................... 21 

3.2.2 Total Ionizing Dose ................................................................ 22 

3.2.3 Fault effects on design ........................................................... 23 

3.3 Testing circuit for on line testing .................................................. 27 

4 Routing algorithm design...................................................................... 31 

4.1 Permanent fault model ................................................................... 36 

4.1.1 Physical wire stuck-at-0/1 ...................................................... 36 

4.1.2 PIP stuck-off .......................................................................... 37 

4.1.3 PIP stuck-on ........................................................................... 39 



iii 

 

4.2 Routing resources analysis ............................................................ 41 

5 Proposed routing algorithm .................................................................. 50 

5.1 U-Turn implementation ................................................................. 52 

5.1.1 NUT creation .......................................................................... 54 

5.1.2 Connecting the TPG to the SMUT ......................................... 55 

5.1.3 Graph creation ........................................................................ 55 

5.1.4 Populating the NUT ............................................................... 56 

5.1.5 Connecting the SMUT to the ORA ........................................ 58 

5.1.6 Storing the full design ............................................................ 58 

5.1.7 NUT6 and NUT8 special cases .............................................. 60 

5.1.8 U-Turn parameters ................................................................. 60 

5.2 Why U-Turn .................................................................................. 63 

6 Experimental results ............................................................................. 66 

7 Conclusions and future work ................................................................ 73 

8 Bibliography ......................................................................................... 75 

 

  



iv 

 

List of Figures 

Figure 3.1: Unit Cost (in dollars) / unit diagram ............................................ 9 

Figure 3.2: FPGA typical architecture ......................................................... 10 

Figure 3.3: FPGA Editor screenshot of a Xilinx FPGA .............................. 12 

Figure 3.4: A configuration bit determines the state of a PIP ...................... 13 

Figure 3.5: Programmable Interconnection Points inside a switch matrix .. 13 

Figure 3.6: Clock regions of different FPGA families ................................. 14 

Figure 3.7: Connection structure in Virtex-4-5-6 and Spartan-6 ................. 16 

Figure 3.8: Xilinx design implementation ................................................... 18 

Figure 3.9: Routing condition without errors ............................................... 24 

Figure 3.10: Permanent fault effect cases .................................................... 25 

Figure 3.11: High level view of testing circuit ............................................ 27 

Figure 3.12: The structure of a testing circuit .............................................. 28 

Figure 3.13: Different testing circuits .......................................................... 30 

Figure 4.1: U-TURN inputs / outputs .......................................................... 32 

Figure 4.2: Switch matrix connections for graph creation ........................... 34 

Figure 4.3: Graph representation of the FPGA ............................................ 35 

Figure 4.4: Graph representing a clock region of a VIrte-4 FX12 ............... 35 

Figure 4.5: Stuck-at-0/1 on a physical wire ................................................. 36 

Figure 4.6: Testing stuck-at-0/1 in graph representation ............................. 37 

Figure 4.7: Stuck-off for a PIP ..................................................................... 38 

Figure 4.8: Testing stuck-off in graph representation .................................. 39 



v 

 

Figure 4.9: Stuck-on for a PIP ..................................................................... 39 

Figure 4.10: Graph representation of NUT6 testing circuit ......................... 40 

Figure 4.11: Testing stuck-on in graph representation................................. 41 

Figure 4.12: Resources categorization flow ................................................. 42 

Figure 4.13: Analysis of testability .............................................................. 43 

Figure 4.14: Untestable,Critical,Testable,Unsupported resources of a switch 

matrix on Virtex-4 ........................................................................................ 45 

Figure 4.15: Physical wires report ............................................................... 46 

Figure 4.16: PIPs report ............................................................................... 47 

Figure 4.17: Test Circuit Independent heat-map.......................................... 48 

Figure 4.18: Test Circuit Dependent heat-map ............................................ 49 

Figure 5.1: Complete project flow ............................................................... 50 

Figure 5.2: Simplify vision of the FPGA for U-Turn .................................. 53 

Figure 5.3: High level view of U-Turn ........................................................ 53 

Figure 5.4: Graph limits for the Virtex-4 ..................................................... 56 

Figure 5.5: FPGA Editor screenshot of NUT1 full design .......................... 59 

Figure 5.6: FPGA Editor screenshot of zoom on SMUT of NUT1 ............. 59 

Figure 6.1: FPGA Editor screenshot for PIPs connected to a physical wire 70 

 

  



vi 

 

List of Tables 

Table 3.1: Relation between the Permanent Fault and its effect .................. 27 

Table 6.1: Number of Switch Matrices, Physical Wires, and PIPs for each 

tested device ................................................................................................. 66 

Table 6.2: Physical Wires testability for each tested device ........................ 67 

Table 6.3: PIPs testability for each tested device ......................................... 67 

Table 6.4: Artix-7 XC7A100T algorithm results ......................................... 68 

Table 6.5: Spartan-6 LX9 algorithm results ................................................. 68 

Table 6.6: Virtex-4 FX12 algorithm results ................................................. 69 

Table 6.7: Virtex-4 FX100 algorithm results ............................................... 69 

Table 6.8: Virtex-5 LX20 algorithm results ................................................. 69 

Table 6.9: Virtex-6 CX130T algorithm results ............................................ 69 

Table 6.10: Virtex-4 FX100 algorithm results (enhanced version) ............. 71 

 

  



vii 

 

Abstract 

Partially reconfigurable systems are more and more employed in 

many application fields, including aerospace. SRAM-based FPGAs 

represent an extremely interesting hardware platform for this kind of 

systems, because they offer flexibility as well as processing power. On the 

other hand, radiations in the atmosphere make the problem of permanent 

faults in these devices relevant. The goal of this thesis is the design and 

implementation of a routing algorithm to maximize test coverage of 

permanent faults in routing resources of SRAM-based FPGAs, using testing 

circuits placed on the FPGA. Routing resources represent up to 80% of the 

whole chip area in modern FPGAs, and the proposed algorithm can cover all 

physical wires of an arbitrary selected large region of the FPGA. 

This work is part of a project aimed at developing a software flow 

for testing and diagnosing faults due to radiations, during a space mission. 

Once faults have been detected and diagnosed, patching the discovered 

faulty resources is possible.
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Introduction 

Electronic devices are used in several application fields, from the 

entertainment market to military equipment, from mobile phones to 

satellites. In particular, SRAM-based FPGAs represent a very interesting 

hardware platform for this range of systems, because they offer flexibility as 

well as processing power. A particular kind of applications is the one called 

mission-critical, where failures may result in significant economical losses, 

as in the case of satellites, which cannot be repaired or returned for 

maintenance if some parts stop working. In this case, FPGAs are responsible 

for handling the major tasks of a satellite mission, for example route 

computation, control of experiments and communications, and their 

capability to tolerate faults is a key requirement. 

When FPGAs operate in a space environment, both temporary and 

permanent faults can occur due to radiation. Temporary faults are Single 

Event Upset (SEUs), i.e., modifications of the content of memory elements 

in the device, and Single Event Transients (SETs), i.e., undesired transient 

electrical impulses. Permanent faults induced by radiations on electronic 

devices are caused by the Total Ionizing Dose (TID), i.e., the accumulation 

of charge trapped in the oxide layer of transistors in CMOS circuits. The 

TID causes a degradation of performance and may ultimately cause the 

complete destruction of parts of the system. 
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This thesis is motivated by the need to develop testing techniques 

addressing the requirements of space-based FPGA applications, and in 

particular, those exploiting FPGA reconfigurability. Reconfigurable FPGAs 

offer designers the possibility of partitioning the computing resources of a 

chip into a number of regions, each independently and dynamically 

reconfigurable. A given region, for example, could be used to control a 

satellite’s movement in the initial phases of a mission, and to control its 

payload after the satellite has reached a stable orbit. It is therefore important 

to test a particular region of the FPGA before it is reconfigured for a new 

task. Several testing techniques have been developed, and in this thesis the 

on-line and application-independent approach is considered. The on-line 

testing technique, with the availability of multiple reconfigurable regions, 

allows tests to be made at run time without influencing the rest of the 

FPGA. The application-independent approach makes tests more general 

without considering the specific application that will be used. 

This work presents an on-line on-demand approach to test faults in  

the routing resources of FPGAs. The proposed approach relies on a set of 

testing circuits, composed of a Test Pattern Generator (TPG) and an Output 

Response Analyzer (ORA), to test the physical wires and Programmable 

Interconnection Points (PIPs) between the TPG and the ORA. Moreover, the 

approach exploits an ad-hoc designed place-and-route algorithm, named U-

TURN, to maximize the coverage of permanent faults for these circuits. The 
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approach uses partial dynamic reconfiguration to place the testing circuits at 

run time on the free areas of the FPGA to test them before the functional 

modules are placed, when reconfigurations are required. Experimental 

results have shown that it is possible to generate, place and route the testing 

circuits needed to detect the 100% of the physical wires and up to the 86% 

of the PIPs in a reasonable time. 

This work is part of the OLTRE project (On-Line Testing of 

permanent Radiation Effects) that aims at supporting on-line on-demand 

testing, diagnosing and fault masking for dynamically reconfigurable 

systems on SRAM-based FPGAs. This project is made in cooperation 

between University of Pisa, Politecnico di Torino, University of Bielefeld 

and it is funded by ESA (European Space Agency). 

Chapter 2 describes the starting point of this thesis showing testing 

circuits previously developed for our purpose. Chapter 3 provides an 

overview of the architectural structure of FPGAs, then it gives some 

information about their programming and finally a study of the faults that 

can occur. Chapter 4 provides the background concepts for the development 

of the routing algorithm, giving details on its design. Then, Chapter 5 

presents the implementation of the algorithm and the complete testing flow. 

The results achieved with this algorithm, running on different families of 

FPGAs, are in Chapter 6. As a conclusion, Chapter 7 will analyse the results 
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of the presented approach, considering the possible future work related to 

this thesis.  
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2 Related work 

Two kinds of testing methods can be performed to check if an FPGA is 

fault free: application-independent and application-dependent. 

Application-independent methods, such as [1] [2] [3] [4], are meant to 

detect every structural defect causes by the manufacturing process of the 

whole FPGA. On the other hand, application-dependent methods, such as 

[5] [6] [7], focus detecting errors only in resources actually used by the 

design. With both approaches, tests can be off-line or on-line. Off-line tests 

are usually made by the manufacturer. Instead On-line test are made at run 

time on unused areas of the FPGA while the remaining parts continue their 

normal operations. 

 Permanent faults causes by TID have not yet been extensively 

addressed by testing techniques. In the last years, the shrinking of the 

feature size in the CMOS technology made SEUs the predominant radiation 

effect in electronic devices. Therefore, researches focused much more on the 

detection of SEU effects than on TID. 

Among various methodologies the most common are the external and Built-

In-Self-Test (BIST) approaches. The former approach consists in 

considering the CUT (Circuit Under Test) as a black box, providing input 

stimuli from outside the device. Then responses are collected to check 

whether a fault occurred. On the other hand, the BIST approach allows the 
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device to test its own resources without acting from outside. With either 

approach, the following items are needed: 

1. a mechanism to provide a set of input stimuli; 

2. the circuit under test (CUT); 

3. a mechanism to analyse responses in order to discriminate 

whether the CUT is fault free or not. 

Usually testing circuits are composed of a Test Pattern Generator (TPG) 

that provides input stimuli and of an Output Response Analyzer (ORA) that 

observes the output of the resources under test and determines whether they 

are faulty or not. These techniques may be divided into two sub-categories: 

Comparison-based [4], [8] and Parity-based [9] [10]. 

 In the Comparison-based approach, the ORA knows the expected 

output associated with the input stimuli generated by the TPG and by 

comparing it with the actual output of the resources under test, it is able to 

determine whether a fault occurred. With this approach it is not possible to 

detect faults in the TPG and those faults that do not interfere with the actual 

output of the resources under test. With the Parity-based techniques these 

limitations have been overcome. The TPG calculates the parity bit on its 

output and the ORA calculates the parity bit on the received signals. The 

ORA is able to detect whether a fault occurred by comparing these two 

parity bits. The ORA does not need to know the expected output, because it 

relies on the parity bit produced by the TPG. 
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 Parity-based testing approaches may be additionally classified in two 

categories: single parity [9], and cross-coupled parity [10]. In the single 

parity-based technique, the TPG is a n-bit counter and produces n+1 output 

bits where the last one is the parity bit calculated on the other n bits. The 

ORA, as soon as it receives the n+1 bits, calculates the parity bit on the first 

n bits and compares it with the received parity bit. In this technique some 

faults in the TPG cannot be detected and it is necessary that the parity bit is 

sent on a fault free wire. In cross-coupled parity-based techniques the TPG 

is composed of two independent n-bit counters, let us call them TPGi and 

TPGj; each TPGs produces n output bits plus one parity bit. Similarly, the 

ORA is duplicated: ORAi receives the n input bits from TPGi and the parity 

bit from TPGj; conversely, ORAj receives the n input bits from TPGj and the 

parity from TPGi. In this way all the faults occurring into the TPGs may also 

be detected.  
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3 Background 

3.1 Field Programmable Gate Array 

Field Programmable Gate Arrays (FPGAs) are pre-fabricated, 

electrically programmable, silicon devices, composed of programmable 

logic blocks, a programmable routing structure and programmable 

Input/Output pads. Since the birth of the integrated circuit technology in 

1960s, many attempts have been done to achieve programmable devices in 

order to give to hardware architects the possibility of exploiting hardware 

performance and software flexibility at the same time. 

The first modern FPGA was introduced by Xilinx in 1984 under the 

name of XC2064; since then the FPGA technology has dramatically grown 

in terms of scale of integration, performance and competitiveness against 

other technologies. The ability of being programmed, and most of the times 

reprogrammed, provides many advantages over other hardware 

technologies. 

Application Specific Integrated Circuits (ASICs) offer better 

performance in terms of computational time, area requirements and power 

consumption at the cost of much longer time to market and economic effort: 

a full-custom ASIC design needs many months of engineering work and 

hundreds of millions of dollars to be completed, since state-of-the-art tools 

for synthesis, placement & routing, extraction, simulation, timing and power 
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analysis, great engineering effort and very expensive foundry masks are 

needed. An FPGA design needs between only a few dollars and a few 

thousand dollars for units purchase, much less engineering effort and much 

shorter time to be designed and configured, and often an FPGA device can 

be reconfigured if a mistake was made during the design cycle. Figure 3.1 

shows how FPGAs per unit cost is invariable while ASICs per unit cost 

decreases by increasing the number of produced units. 

 

Figure 3.1: Unit Cost (in dollars) / unit diagram 

Given this, only large scale productions can afford a full custom ASIC 

design, while small and medium scale productions prefer saving money and 

time by the use of FPGAs devices. For this kind of productions FPGAs 

represent nowadays the best tradeoff between performance on one hand and 

cost and time to market on the other hand. 

Nowadays FPGAs have become the dominant programmable logic 

technology no longer being used merely as glue logic or as prototyping 
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devices, and starting being used to implement sub-systems or complete 

systems (System-on-Chip). 

3.1.1 FPGA architecture 

An FPGA is a prefabricated array of configurable logic blocks, 

interconnected by a programmable routing architecture and surrounded by 

programmable input/output blocks. 
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Figure 3.2: FPGA typical architecture 

Figure 3.2 shows the basic architecture of an FPGA chip, that is composed 

of three types of basic blocks: 

 CLB: Configurable Logic Blocks are the logic resources, which 

may be simple combinatorial logic (Soft Logic Blocks) or memories, 

multiplexers, ALUs and other kinds of prefabricated circuitry (Hard 
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Logic Blocks). The structure of a CLB is hierarchically divided into 

Slices; 

 IOB: Input/Output blocks provide external connections for the 

FPGA. Since these blocks are placed on the border of the FPGA 

they are used to get the signals into and out of the FPGA; 

 Switch Matrix: all the FPGA blocks are connected to each other 

with a programmable routing architecture. Thanks to the switch 

matrix is possible to route a signal inside the FPGA. The routing is 

made by activating the Programmable Interconnection Points 

(PIPs) which are placed inside the switch matrix. All switch 

matrices are connected by a complex structure of fixed connections 

that are presented in detail below. 

 

Figure 3.3 was created using FPGA Editor [11], a graphical 

application provided by Xilinx for displaying and configuring FPGAs. This 

figure is useful to explain some terminology that is extensively used in the 

rest of this thesis. For simplification purpose in this figure only two switch 

matrices and several connections are represented. 



12 

 

Out PIP

Slice

Switch 
Matrix

Switch 
Matrix

Physical Wire, 
Node

OutPin

InPin

Local lines

Long linesCLB

In PIP
Local 

connections

 

Figure 3.3: FPGA Editor screenshot of a Xilinx FPGA 

 Slice: includes the configurable resources for implementing boolean 

functions, flip-flops and carry-propagation logic; 

 Pin: connection point of one Slice and one physical wire. If the 

direction of the signal goes to the Slice, the Pin is called InPin. 

Otherwise, the Pin is called OutPin; 

 Physical wire: hardwire interconnections of switch matrices; 

 Wire: connection point of physical wire and switch matrix. If the 

direction of the signal goes to the switch matrix, the wire is called 

InWire. Otherwise, it is called OutWire; 

 Programmable Interconnection Point (PIP): the programmable 

routing infrastructure consists of a set of wire segments, which can 

be interconnected by means of programmable elements: PIPs. A PIP 

is a switching element, whose state is determined by the value 
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contained in a configuration cell of a transistor as shown in Figure 

3.4. 

 

Figure 3.4: A configuration bit determines the state of a PIP 

Figure 3.5a shows the structure of a switch matrix where every 

connection between the lines is determined by 6 transistors. 

Activating them it is possible to drive a signal through the switch 

matrix. Figure 3.5b shows a possible configuration of the 

programmable routing architecture. 

 

(a) switch  matrix overview  (b) example of activated PIPs 

Figure 3.5: Programmable Interconnection Points inside a switch matrix 

Depending on the direction of a PIP, it is classified as InPIP 

or OutPIP. If the signal goes through the PIP and out from the 

switch matrix, than the PIP is called OutPIP (in FPGA Editor is 

highlighted in purple). Otherwise, the PIP is called InPIP 

(highlighted in yellow); 
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 Global connections: wires that connect all switch matrices among 

them. Local lines and Long lines, shown in the figure above, belong 

to that category and their names come from the length of the 

connection; 

 Local connections: wires that connect all Switch Matrices with the 

related CLB. 

Modern FPGAs are split into multiple clock regions whose number and 

shape vary among different families of FPGA. Each clock region contains a 

certain numbers of components like switch matrices and CLB and an 

associated clocking. Clock regions are fundamental parts of FPGAs that 

allow for zero skew clock distribution inside the region itself. Figure 3.6a, 

3.6b, 3.6c highlight clock regions of different FPGAs. 

                   

     (a) Virtex-4 FX12             (b) Virtex-4 FX100            (c) Virtex-5 LX20 

Figure 3.6: Clock regions of different FPGA families 
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3.1.2 Global connections analysis 

The programmable routing architecture provides an array of routing 

switches between each internal components. Each programmable element is 

located inside a switch matrix, allowing multiple connections to the general 

routing matrix. 

The structure of the routing architecture (composed by global 

connections) is considerably different among Xilinx FPGA families. The 

number of inWires for every physical wire and the distance of the switch 

matrices connected characterize different families of FPGA. In Figure 3.7a, 

3.7b, 3.7c, 3.7d  the lines connected to outWires of single switch matrix are 

depicted for each Xilinx FPGA family, therefore the PIPs of the inWires are 

selected. According to classification of the lines given in section 3.1.1, the 

outPIP (colored in purple) are only within the starting switch matrix, 

therefore they are related only to the outWires, because no outWires are 

selected in the other switch matrix. Hence, all wires connected to the 

considered lines, are of the inWire type; so the PIPs connected to them are 

only inPIPs. 
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                     (a) Virtex-4     (b) Virtex-5 

   

       (c) Virtex-6                 (d) Spartan-6 

Figure 3.7: Connection structure in Virtex-4-5-6 and Spartan-6 

3.1.3 Designing an FPGA-based system 

Every FPGA relies on an underlying programming technology that is 

used to specify the functionality that each block implements, to configure 

interconnections between blocks and to interconnect I/O pads with blocks. 

FPGA programming consists in defining the hardware structure of 

the device by producing a programming code, called bitstream. After being 

downloaded in the device, the bitstream enables or disables gates in the 
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logic blocks to implement a certain function and enables or disables 

connections between wires to connect or disconnect two logic blocks or a 

logic block and an I/O pad. 

The end user can define the behavior of an FPGA using a hardware 

description language (HDL) or a schematic design. Then it is possible to use 

a design automation tool, typically provided by vendors, to generate a 

technology-mapped netlist. A netlist is a textual description of a circuit 

diagram, which provides a map of how its elements are interconnected. 

Then a process called Place-and-Route can be performed in order to adapt a 

netlist to the actual FPGA architecture. In the Xilinx terminology design 

implementation is a process composed by translation, mapping, routing and 

generating a bitstream file for a given design. All these tools are integrated 

in the Xilinx ISE Design Suite, a tool provided by Xilinx. The following 

picture shows the entire flow. 
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Figure 3.8: Xilinx design implementation 

 The HDL file represents the input; 

 Synthetize generates a supported netlist type for the Xilinx 

implementation tools; 

 Translate converts the input design netlist (EDIF or NGC) in a 

NGD netlist; 

 Map maps the design into CLB and IOBs; 

 Generate programming file generates the bitstream which is 

loaded into the device. 

For more information about the Xilinx design automation tool see [12]. 



19 

 

3.1.4 Dynamic Partial Reconfiguration 

Since 2000 FPGAs were designed with a high flexibility feature: the 

Dynamic Partial Reconfiguration (DPR) [13] [14]. It gives the designer the 

ability to reconfigure a certain part of the FPGA during run-time without 

influencing other parts. Thanks to this technique the FPGA can be 

reconfigured on the fly, without switching off or resetting the whole system. 

Moreover it is possible to reconfigure only a specific part of the FPGA, 

while the rest of system remains unchanged. 

A reconfigurable system typically includes an area for static system 

components (base region) and one or more partially reconfigurable regions 

(PR regions) for dynamic system components. The dynamic system 

components are represented by the partial reconfiguration modules (PR 

modules). The placement of a PR module is done by configuring a 

predefined area in a PR. 

Hence a partial reconfigurable system design require a partitioning 

of the FPGA in order to reconfigure only specific areas. In particular two 

different kinds of region are created: static and dynamic region. The static 

region contains components which are not reconfigured in the system, 

therefore the configuration of base region is made once in the initialization 

of the system and cannot be changed at run-time. The reconfigurable region 

is used for run-time reconfiguration, hence it is possible to place and remove 

PR module based on the system needs. 
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3.2 Faults in FPGAs 

This work is a part of a major project [15] [16] that aims to study the 

fault tolerance of FPGAs when they are used in space flight missions. In 

that environment FPGAs are exposed to radiation that could cause 

malfunctions. This chapter gives a general idea of the radiation faults effects 

that may occur in space environment, focusing on permanent ones. 

A fault is defined as a malfunction of an internal component of the 

system. If activated by the operation of the system, it can be propagated to 

the outputs of this component, becoming an error. Finally, if the error is 

propagated and produces a malfunction of the system outputs a failure 

occurred. 

Faults can be introduced in the system both by the user and the 

surrounding environment. The user can cause faults providing wrong inputs 

to the system, bringing it to an incoherent state. On the other side, the 

environment could cause several kind of faults, depending on the nature of 

the solicitation it provides to the system. In space and avionic applications 

the most critical environmental factor that could lead to failures is radiation.  

Radiation may cause both short- and long-term damages in electronic 

systems. Short-term damages are the well-studied Single Event Upset 

(SEUs) and Single Event Transient (SETs) [17]. Long-term damages are 

caused by the Total Ionizing Dose (TID), i.e. the accumulation of charge 

trapped in the oxide layer of transistors in CMOS circuits [18]. TID first 



21 

 

causes degradation of the performance of the system, and ultimately it may 

cause failures. 

 The following sections summarize the radiation effects explained in 

[19]. 

3.2.1 Single Event Effects 

 Single Event Effects (SEEs) are models of the effect of the funneling 

induced by a single particle in a certain location within the device. 

Depending on the hit characteristics and time, the electric fields and energy 

of the incident particle, the funneling can produce different functional 

behaviors. SEEs can be temporary faults, Singe Event Transients (SETs), 

that affect the device for a certain period of time, at most until a power cycle 

is performed, and these are called soft errors; otherwise, if the produced 

fault is permanent, damaging the device itself, it is called hard error. 

 A Single Event Upset (SEU) is the effect of a particle that changes 

the value of a memory element, as a latch or a cell within a memory array. 

When a SET is generated by an ionizing particle within a memory element, 

it could force the feedback loop to change its value thus modifying the 

actual value stored in the memory element. 

 SEUs are not usually permanent faults, because at the first writing 

operation of the affected memory element the wrong value will be 

overwritten. However, there are some cases, in which the memory element 
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could not be written again, thus changing the SEU effect to a permanent 

fault, until a reset or power cycle is performed. 

3.2.2 Total Ionizing Dose 

Differently form the Single Event Effects, Total Ionizing Dose (TID) 

is the effect of the accumulation of the charge injected by radiation. TID 

models the effects of a charge accumulation and displacement damages that, 

together, lead to different malfunctions. First, a global worsening of the 

device performance is registered; transistors slow down and the power 

consumption increases. In memory circuits, ionizing dose affects the 

sensitivity of the logic states of memory cells asymmetrically, causing an 

imbalance. In Flash memories, it has been proven that TID leads to a change 

in the threshold of the floating gate transistors so that they lose their re-

programmability functionality. A second effect of TID is the change in the 

SEE sensitiveness. One consequence of this is that SEUs can cause the so-

called “stuck bits”, that are memory cells whose value is modified by a SEU 

but because of the ionizing dose, their correct value cannot be restored. 

In general, TID effects can be annealed by means of heating the 

device, in order to provide enough energy to the crystalline lattice so that 

atomic locations can be restored and trapped charges can be released. To 

summarize, TID provokes three kinds of effects: performance degradation, 

power consumption increase and programmability loss. 
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3.2.3 Fault effects on design 

In modern FPGAs, the routing resources represent up to 90% of the 

whole chip area. When a permanent fault occurs on the device, the routing 

resources can be affected in different ways. Four categories of possible 

faults are presented: Stuck-at-0, Stuck-at-1, Stuck-off, Stuck-on that are 

explained in details in the chapter 4.1. 

In order to classify and localize the effects on the routing resources, 

caused by a permanent fault, it is necessary to recognize the modification 

introduced in the application. Most part of the configuration memory bits is 

related to the switch matrices, which control the routing resources. Each net 

of a circuit is realized by connections of logic modules through 

Programmable Interconnection Points. A SEU or permanent fault in the 

configuration bit, which controls a PIP, can alter or interrupt the propagation 

of one or more signals. The schematic representation of the effect scenario 

can be described considering the original interconnection condition, 

illustrated in Figure 3.9, that provides the implementation of two 

different routing nets net 2C and net 7E using respectively the two PIPs 

I2→OC and I7→OE. Considering the configuration illustrated in Figure 3.9 

it is possible to identify all the possible effects induced by a modification of 

a PIP resource. 
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Figure 3.9: Routing condition without errors 

 

(a) the Open effect, first case  (b) the Open effect, second case 

 

(c) the Conflict effect   (d) the Input Antenna effect 
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(e) the Output Antenna effect  (f) the Bridge effect 

Figure 3.10: Permanent fault effect cases 

 Open: The PIP corresponding to the net 7E it is not programmed 

any more. Therefore, I7 and OE are not connected. There are two 

cases classifiable as Open. The first case is illustrated in Figure 

3.10a where the net 7E is deleted. The second case is illustrated in 

Figure 3.10b, the net 7E is deleted and a new net, for example net 

5E, connects an unused input node 5 to the previously used output 

node E, is created. In the second case, the signal net 7E has an 

undefined logic value; 

 Conflict: A new PIP, corresponding to the net 7C, is added between 

an input node 7 and an output node C, both previously used, as 

illustrated in Figure 3.10c. The new PIP creates a conflict on the 

output node C. The propagated signal is not identifiable by means of 

only a topological analysis; 
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 Input Antenna: A new PIP, corresponding to the net 4C is added 

between an unused input node 4 and a used output node C, as 

illustrated in Figure 3.10d. The new PIP can influence the behavior 

of the output node depending on the output logic value assumed by 

the nodes of the CLB; 

 Output Antenna: A new PIP, corresponding to the net 2D, is added 

between a used input node 2 and an unused output node D (as 

illustrated in Figure 3.10e). The new PIP does not influence the 

behavior of the implemented circuits; 

 Bridge: The PIP corresponding to the net 7E is disabled while a new 

PIP, corresponding to the net 2E, is instantiated between a used input 

node and the output nodes of the previously used net 7E as 

illustrated in Figure 3.10f. The behavior of the implemented circuit 

is modified. 

If a fault modifies the routing of the FPGA, without affecting the behavior 

of the system, this effect can be categorized in: 

 Tolerant: The configuration of the programming PIP is not affected 

by modifications. The modification of the bits in the configuration 

memory does not create any modification of the topological 

instances of the nets; 

 Unrouted: The modification of the PIP cannot be classified in 

anyone of the considered classes. 
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For further details on permanent faults that can affect an FPGA see [19]. 

Table 3.1 shows how a specific permanent fault can turn into one or more 

effects presented in this paragraph (see chapter 4.1 for the definitions of 

fault types). This thesis is considering these effects in order to detect a 

possible permanent fault within a routing resource. 

 

Type of Permanent Fault Permanent Fault Effect 

Stuck-at-1 (wire) Open 

Stuck-at-0 (wire) Open 

Stuck-off (PIP) Open 

Stuck-on (PIP) Conflict, Antenna, Bridge 

Table 3.1: Relation between the Permanent Fault and its effect 

3.3 Testing circuit for on line testing 

Figure 3.11 shows a high level view of testing circuits previously 

developed [20] to make tests with the BIST approach. 

 

Figure 3.11: High level view of testing circuit 
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The most important components are the TPG and the ORA: 

 Test Pattern Generator (TPG) is used for a generation of particular 

input stimuli for the resources that have to be tested; 

 Output Response Analyser (ORA) is the component that reads the 

outputs from the resources under test and establishes if a fault 

occurred. 

All the connections between these components are called Nets Under Test 

(NUT) and represent the routing resources that will be tested. A NUT must 

be routed starting from an OutPin of a CLB and ending in an InPin of 

another CLB crossing a certain number of physical wires and PIPs. It is 

worth noting that the dimension of the TPG and the ORA is very small and 

for this reason it tests can be made also in small areas. This circuit is already 

been validate and it is able to detect the 100% of the faults in the resources 

under test. 

 The structure of the designed testing circuit is depicted in Figure 

3.12. 

 

Figure 3.12: The structure of a testing circuit 
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Clock Generator and Reset Generator are inside the circuit, therefore the 

clock and reset signals are generated by dedicated modules in order to make 

the testing structure entirely independent of the region of the FPGA on 

which it is placed. Indeed, no external clock and reset signals are used, so it 

is possible to change the area under test by only replacing the testing circuit, 

without any changes in the logic. Results are stored in the configuration 

memory of the FPGA and it can be used the read-back techniques [21] to 

get them. The start-checking circuit is able to verify whether the testing 

circuit has been correctly configured and the test correctly started. In fact 

some faults may prevent the test to start at all. 

For further details on internal logic and behavior of this circuit see [20].  

There are three different versions of the testing circuit to make on-

line tests, which differ substantially on the number of nets that can be tested 

at the same time. Figure 3.13a, 3.13b, 3.13c depict a high level view of 

them. 

TPG ORA
NUT

 

(a) NUT1 

TPG ORA
NUT

6

 

(b) NUT6 
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TPG ORA
NUT

8

 

(c) NUT8 

Figure 3.13: Different testing circuits 

Since these circuits can test multiple NUTs we can make both a fine- and a 

coarse-grained test. This circuit can detect the stuck-at-0/1, stuck-on and the 

stuck-off permanent faults.  
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4 Routing algorithm design 

On-line testing of reconfigurable FPGAs exploits dynamic partial 

reconfiguration to place testing circuits on the unused regions of an SRAM-

based FPGA device, called target regions, before placing on it the functional 

modules of a reconfigurable system. With this approach it is possible to 

check if the target region of the FPGA is free of faults at run-time. The 

testing approach used in this work is application-independent and cross-

coupled parity-based. 

The testing circuit is composed by the TPG and the ORA (see 

section 3.3). A stimulus is sent over the NUT through the OutPin of a CLB 

that hosts the TPG and received through the InPin of another CLB that hosts 

the ORA (see section 3.1.1). All the wires and all PIPs connecting these 

components represent the NUT. Therefore the first step involves deciding 

where to place the TPG and the ORA on the target region, while the second 

requires choosing the exact wires to connect TPG and ORA. This 

corresponds to the so-called Place-and-Route process (for more information 

see [22]). 

 The TPG, the ORA and the supporting circuity are available in an 

XDL file and pre-placed. The algorithm developed in this thesis (U-TURN) 

chooses a set of NUTs that maximizes test coverage of physical wires. The 

algorithm is written in the C++ programming language and takes as input 

the following files: 
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 the XDL file representing the testing circuit; 

 an image file representing a specific FPGA; 

 a file specifying the partitioning of the FPGA in different regions; 

 the name of the region we want to test. 

Then U-TURN starts the routing of the NUTs to cover all physical wires in 

the region under test. During the execution two files are printed out: the 

physical wires testability report and  the PIPs testability report. When U-

TURN terminates several testing circuits are created using the computed 

NUTs and a summary of tested resources is printed out. The following 

figure shows the inputs and the outputs of the algorithm. 

Unrouted 
testing 

circuit (XDL)

INPUT

FPGA image

INPUT

Partitioning 
file

INPUT

Region(s) 
Under Test

INPUT

Tested 
resources 
summary

OUTPUT

Routed 
testing 
circuit

(bitstream)

1..n
OUTPUT

U-TURN

Physical 
wires 

testability 
report

OUTPUT

PIPs 
testability 

report

OUTPUT

 

Figure 4.1: U-TURN inputs / outputs 
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There are also other components in the TPG and in the ORA that are 

connected to each other for the proper functioning of the testing circuit itself 

[20]. It is worth noting that these resources do not belong to the NUT so 

they are not tested by the testing circuit. These resources must be free of 

faults for a correct behavior of the testing circuit, therefore the TPG and the 

ORA should be placed as close as possible to reduce the probability of faults 

presence. A test of them should be performed in a second step, changing the 

position of the entire testing circuit and using them in the related NUT. 

It should be noted that the longer is the NUT, the larger is the 

amount of resources tested at a time. But it was found that it is not possible 

to have an arbitrary length of the NUT. A limitation on the numbers of the 

PIPs that could be used in a NUT is given by the FPGA architecture itself; 

in fact a signal could change its logic value if it is driven over a long path. A 

limit of 100 PIPs has been set to ensure that testing circuits can still evaluate 

the presence of faults. 

A representation of the FPGA is useful for developing an algorithm 

capable of routing the NUT. This structure has to provide a good description 

of the FPGA resources, but at the same time it must be suitable for our 

purpose. Figure 4.2 shows several switch matrices and some connections 

between them. It should be noted that there is a chance of loops in the 

FPGA architecture (e.g. pw2, pip4, pw9, pip9, pw10, pip10, pip11, pw5, 

pip3) and this characteristic should be visible also in the representation. 
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Figure 4.2: Switch matrix connections for graph creation 

For these reasons we adopt from graph theory the concept of directed cyclic 

graph to describe routing resources of a FPGA region. The following figure 

depicts this representation where Nodes denote physical wires and Edges 

represent PIPs. 
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Figure 4.3: Graph representation of the FPGA 

Obviously the graph dimension depends on the region size; as an 

example the figure below shows the representation of an entire clock region 

of a Virtex-4 FX12. 

Node: physical wire

Edge: PIP

e.g. Virtex-4 FX12, 240 Switch Matrices

Graph dimension:

     39,777 Nodes

     456,783 Edges

 

Figure 4.4: Graph representing a clock region of a VIrte-4 FX12 
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Several kind of permanent faults can affect a FPGA (see section 3.2) 

so the first step consists in the understanding which faults are detectable 

with our testing circuits and how to model them to run tests. 

4.1 Permanent fault model 

This section describes the permanent faults that we are considering, 

their effects and how we model them to perform a real test. A net represents 

the connection between two or more components and it is composed of 

physical wires and PIPs. 

4.1.1 Physical wire stuck-at-0/1 

Figure 4.5 is an FPGA Editor screenshot where the red line 

represents a physical wire that connects several switch matrices. 

0/1

 

Figure 4.5: Stuck-at-0/1 on a physical wire 

A Stuck-at-0 fault on a physical wire forces the logic value of the net to ‘0’. 

It is possible to check if a physical wire is stuck-at-0-free by using it in a 

NUT while the TPG is sending a ‘1’ over it. If the ORA receives a ‘0’, it 
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means that a fault occurred. Therefore if test is passed we are able to verify 

that all physical wires that belong to the NUT are stuck-at-0-free. A similar 

approach can be applied in the case of Stuck-at-1. 

To verify if all physical wires are stuck-at-0/1-free using a graph 

representation it is necessary to resolve the nodes-covering problem: we 

need to discover several paths such that all nodes are crossed at least once. 

If we are using the NUT1 testing circuit the graph has only 1 OutPin and 1 

InPin and the NUT has to be routed among these nodes. The following 

figure highlights 3 different paths to cover all nodes of the graph. 

 

OutPin

InPin

 

Figure 4.6: Testing stuck-at-0/1 in graph representation 

4.1.2 PIP stuck-off 

Figure 4.7 is an FPGA Editor screenshot where the red dotted line 

represents a PIP affected by a stuck-off fault. 
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Figure 4.7: Stuck-off for a PIP 

A PIP affected by this kind of fault is always deactivated and the two 

physical wires are unconnected. Therefore if a path uses a stuck-off PIP its 

logic value will be unknown. It is possible to check if a PIP is stuck-off free 

by using it in a NUT while the TPG is sending a stimulus over it. If the 

ORA receives a different logic value a fault occurred. Therefore if the test is 

passed we are able to verify that all PIPs that belong to the NUT are stuck-

off-free. 

To verify if all PIPs are stuck-off free using a graph representation it 

is necessary to resolve the edges-covering problem: we need to add some 

NUTs to the previous such that all edges are crossed at least once. If we are 

using the NUT1 testing circuit the following figure shows paths to be added 

to cover all edges where larger arrows represent PIPs not tested yet. 
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OutPin

InPin

 

Figure 4.8: Testing stuck-off in graph representation 

4.1.3 PIP stuck-on 

Figure 4.9 is a FPGA Editor screenshot where a red line represents a 

PIP affected by a stuck-on fault. 

 

Figure 4.9: Stuck-on for a PIP 

A PIP affected by this kind of fault is always activated and creates a 

connection between two physical wires. This PIP can create an antenna or 

short two nets of the design. The result of the short can be either a wired-
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AND short or a wired-OR short. It is possible to check if a PIP is stuck-on 

free using two NUTs that can be shorted by it. If both TPGs send stimuli 

over their own NUT and the related ORA receives a different logic value, 

then a fault occurred. Therefore if the test is passed, all PIPs that can create 

a short between the tested NUTs are stuck-on-free. 

 To test this kind of fault we need two NUTs because we would test 

PIPs that can connect more nets. For example Figure 4.10 shows the NUT6 

testing circuit that has 6 OutPins and 6 InPins and can test 6 nets at the same 

time. It is worth noting that these nets must  be independent thus no 

resources can be shared between them. 

OutPins

InPins

Node: pysical wire

Edge: PIP

 

Figure 4.10: Graph representation of NUT6 testing circuit 
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As an example Figure 4.11 shows highlighted in green the PIPs that can 

create a short fault between 2 different routed NUTs. If this test is passed we 

are able to assert that these PIPs are stuck-on free. 

OutPins

InPins

Route of NUT 1

PIPs that create 
a short among 
the two routed 

nets

Route of NUT 2

 

Figure 4.11: Testing stuck-on in graph representation 

4.2 Routing resources analysis 

As previously discussed, the aim of this work is to find a flow 

capable of testing on demand routing resources of a specific region of the 

FPGA. To check if a resource is free of fault, it is necessary to send a signal 

on it and verify if the received signal is the same as the one sent. 
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Since we are using the partial reconfiguration technique, a 

partitioning of the FPGA in different regions is needed. Thanks to this 

technique it is possible to dynamically modify logic blocks of a region by 

downloading partial bit files, while the remaining  logic in other regions 

continues to operate without interruption. Due to the partitioning, the 

routing resources that are on the edges of a region can connect components 

belonging to different regions. If a stimulus is sent over these resources, a 

conflict can occur in the component belonging to the other region. We have 

to be careful when using these resources, and in most cases their 

employment should be avoided. 

We can assume that a Resources Categorization phase is needed to 

understand what is really testable. That phase takes as input the FPGA 

partitioning and the list of partitions to be tested as shown in Figure 4.12. 

During this phase, resources are marked depending on their testability. 

FPGA 
partitioning

Resources 
categorization

Region(s) 
Under Test 

 

Figure 4.12: Resources categorization flow 
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Resource marking is made by following a procedure explained in the 

following. Figure 4.13 shows a simplified version of an FPGA partitioned in 

two different areas: one static and one reconfigurable that has to be tested. 

 

PR-Region

Static Region

Critical

Untestable

Testable

 

Figure 4.13: Analysis of testability 

 

Physical wires are initialized according to the InWire and the OutWire 

position. A physical wire is marked as: 

 Untestable  

- if the OutWire stays in another region because it would be 

impossible drive a signal on the physical wire; 
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- if all InWires stay in another region because it would be 

impossible read-back the sent value; 

 Critical 

if the OutWire and the InWires are in the region under test 

but there is also an InWire in another region; if this resource 

is used an error can be injected in the other region; 

 Testable 

if and only if the OutWire and all InWires are in the region to 

be tested. 

 

It is important to notice that this categorization depends on the FPGA 

partitioning, but there is also another kind of testability according to the 

capability of the testing circuit. In fact our testing circuit is not able to test 

all resources (for example the DSP and BRAM resources). Therefore it is 

appropriate to introduce a new kind of category: the unsupported. 

Once all physical wires are marked, an additional phase is performed. In 

that phase all physical wires inherit the testability of connected resources 

applying the following priority rules: 

1. Unsupported; 

2. Untestable; 

3. Critical; 

4. Testable. 
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But it is worth noting that only testable physical wires can become 

unsupported. 

When the algorithm is running, all this information is stored in the 

data structures of the program. It is possible to generate script files readable 

by FPGA Editor to visualize resources in different color according to their 

testability. Figure 4.14 is an FPGA Editor screenshot that represent a switch 

matrix of the Virtex-4 FX12 where physical wires and PIPs are highlighted. 

Untestable

Critical

Testable

Unsupported

Virtex-4 FX12: INT_X23Y40
Total PIPs: 3312
Total Physical Wires: 418

 

Figure 4.14: Untestable,Critical,Testable,Unsupported resources of a switch matrix on Virtex-4 

Two different reports are printed out at the end of this phase: 

 Physical wires testability report; 

 PIPs testability report. 
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A subset of these reports is shown in Figure 4.15 and Figure 4.16. The first 

one lists physical wires testability of all tiles in the region and also the 

conflicted areas. By “Tile” we mean a general component of an FPGA, like 

a switch matrix or CBL, and in square brackets their own coordinates inside 

the FPGA are shown. The first column lists all physical wires belonging to 

that tile, the second describes their testability and the third defines the 

conflicted regions. If the conflicted region has a name it is shown, otherwise 

the coordinate of the inWire or the Outwire that causes the non-testability is 

printed. The second report gives more details adding PIPs information.  

Tile: Switch Matrix @ [49,26]

Wire: BEST_LOGIC_OUTS0 Testable       
Wire: BYP_INT_B5 Testable       
Wire: BYP_INT_B7 Testable       
Wire: E2BEG6 Testable

…

Wire: LH0 Critical [26,5],[26,11]                         
Wire: LV0 Critical Base1

…

Wire: LH12 Untestable [26,11]
Wire: LV12 Untestable Base0,Base1

…
 

Figure 4.15: Physical wires report 
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Tile: Switch Matrix @ [49,26]

Critical Resources
Wire: LH0                           [26,5],[26,11]

Critical OutPIPs (18)
E2END2 -> LH0
E2MID1 -> LH0
…

Critical InPIPs (11)
LH0 -> E6BEG2
LH0 -> E6BEG3
…

Untestable Resources
Wire: LH12 [26,11]                               

Untestable InPIPs (10)
LH12 -> E6BEG4
LH12 -> E6BEG5
…

Unsupported Resources
...

 

Figure 4.16: PIPs report 

Since the reports are very long and hard to read two more heat-maps 

are created to better understand how many testable resources are in the 

region under test. The numbers in Figure 4.17 represent the percentage of 

testable PIPs in a clock region of a Virtex-4 FX12, that is used as region 

under test. This represents what is reachable according to the partitioning of 

the FPGA and because of it, this heat-map is Circuit Independent. It 

should be noted that larger values are in the middle of the region, while 

numbers decrease as you go away from the centre. This happens because the 

tiles near edges have more physical wires that reach different regions. There 

are 87% of testable physical wires and 78% of testable PIPs in a clock 

region of a Virtex-4 FX12, without considering the testing circuit. 
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INT CLB INT CLB INT CLB INT CLB INT DSP INT CLB INT CLB INT CLB INT CLB INT BRAM INT CLB INT CLB INT CLB INT CLB INT IOIS R_T

27 87 40 98 47 98 48 98 46 48 98 52 98 52 98 52 98 41 52 98 52 98 52 98 52 98 48 58 77

42 100 59 100 68 100 70 100 68 70 100 74 100 74 100 74 100 66 74 100 74 100 74 100 74 100 69 58 100

50 100 68 100 78 100 80 100 79 80 100 84 100 84 100 84 100 77 84 100 84 100 84 100 84 100 79 58 100

52 100 70 100 81 100 83 100 82 100 83 100 88 100 88 100 88 100 74 100 88 100 88 100 88 100 88 100 83 58 100

52 100 70 100 81 100 83 100 79 83 100 88 100 88 100 88 100 72 88 100 88 100 88 100 88 100 83 58 100

52 100 70 100 81 100 83 100 81 83 100 88 100 88 100 88 100 79 88 100 88 100 88 100 88 100 83 58 100

55 100 74 100 85 100 87 100 86 87 100 92 100 92 100 92 100 85 92 100 92 100 93 100 93 100 88 58 100

56 100 74 100 85 100 88 100 87 100 88 100 93 100 93 100 93 100 79 100 93 100 93 100 94 100 94 100 89 60 100

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31

56 100 74 100 85 100 88 100 84 88 100 93 100 93 100 93 100 77 93 100 93 100 94 100 94 100 91 63 100

56 100 74 100 85 100 87 100 85 87 100 93 100 93 100 93 100 84 93 100 93 100 93 100 93 100 88 60 100

52 100 70 100 81 100 83 100 82 83 100 88 100 88 100 88 100 80 88 100 88 100 88 100 88 100 83 58 100

52 100 70 100 81 100 83 100 82 100 83 100 88 100 88 100 88 100 74 100 88 100 88 100 88 100 88 100 83 58 100

52 100 70 100 81 100 83 100 79 83 100 88 100 88 100 88 100 71 88 100 88 100 88 100 88 100 83 58 100

50 100 68 100 78 100 80 100 78 80 100 84 100 84 100 84 100 75 84 100 84 100 84 100 84 100 79 58 100

42 100 60 100 69 100 70 100 70 70 100 74 100 74 100 74 100 68 74 100 74 100 75 100 75 100 70 58 100

28 88 41 98 48 98 49 98 49 100 49 98 53 98 53 98 53 98 45 100 53 98 53 98 53 98 54 98 51 58 96

Region 
Under Test

Virtex-4 FX12

Total TCI PIPs: 831,057
# Testable TCI: 647,546 (78%)
# Critical: 78,635 (9%)
# Untestable: 104,876 (13%)

Total TCI Physical Wires: 81,581
# Testable TCI: 71,013 (87%)
# Critical: 3,398 (4%)
# Untestable: 7,170 (9%)

 

Figure 4.17: Test Circuit Independent heat-map 

Numbers differ when the testing circuit is considered because it 

could not test all resources such as DSP, BRAM, IOIS. Figure 4.18 shows a 

Circuit Dependent heat-map where some testable resources become 

unsupported. In particular 44% of testable physical wires and 29% of 

testable PIPs are now unsupported. 
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Region 
Under Test

Virtex-4 FX12

Total TCI PIPs: 831,057
# Testable TCI: 647,546
# Testable TCD: 456,783 (71%)
# Unsupported: 190,664 (29%)

Total TCI Physical Wires: 81,581
# Testable TCI: 71,013
# Testable TCD: 39,777 (56%)
# Unsupported: 31,225 (44%)

INT CLB INT CLB INT CLB INT CLB INT DSP INT CLB INT CLB INT CLB INT CLB INT BRAM INT CLB INT CLB INT CLB INT CLB INT IOIS R_T

78 55 78 48 81 48 77 48 25 78 48 82 48 82 48 78 48 34 79 48 82 48 82 48 78 48 28 0 95

78 48 78 48 80 48 76 48 24 76 48 82 48 82 48 77 48 30 77 48 82 48 82 48 77 48 27 0 93

81 48 80 48 82 48 78 48 27 78 48 83 48 83 48 79 48 33 79 48 83 48 83 48 79 48 29 0 93

81 48 81 48 83 48 79 48 29 0 78 48 84 48 84 48 80 48 38 0 80 48 84 48 84 48 80 48 32 0 93

81 48 81 48 83 48 79 48 30 79 48 84 48 84 48 80 48 40 80 48 84 48 84 48 80 48 32 0 93

81 48 81 48 83 48 79 48 30 79 48 84 48 84 48 80 48 36 80 48 84 48 84 48 80 48 32 0 93

82 48 82 48 83 48 80 48 32 79 48 85 48 85 48 81 48 38 81 48 85 48 85 48 81 48 35 0 93

82 48 82 48 83 48 80 48 32 0 79 48 85 48 85 48 81 48 41 0 81 48 85 48 85 48 81 48 35 0 93

0

82 48 82 48 83 48 80 48 33 79 48 85 48 85 48 81 48 43 81 48 85 48 85 48 81 48 34 0 93

82 48 82 48 83 48 80 48 33 79 48 85 48 85 48 81 48 39 81 48 85 48 85 48 81 48 35 0 93

81 48 81 48 83 48 79 48 29 79 48 84 48 84 48 80 48 35 80 48 84 48 84 48 80 48 32 0 93

81 48 81 48 83 48 79 48 29 0 79 48 84 48 84 48 80 48 38 0 80 48 84 48 84 48 80 48 32 0 93

81 48 81 48 83 48 79 48 30 78 48 84 48 84 48 80 48 39 80 48 84 48 84 48 80 48 32 0 93

81 48 80 48 82 48 78 48 28 78 48 83 48 83 48 79 48 33 79 48 83 48 83 48 79 48 29 0 93

79 48 78 48 81 48 76 48 24 76 48 82 48 82 48 77 48 29 77 48 82 48 82 48 77 48 27 0 93

80 54 79 48 81 48 78 48 24 0 78 48 83 48 83 48 79 48 33 0 80 48 83 48 83 48 79 48 28 0 96

 

Figure 4.18: Test Circuit Dependent heat-map  
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5 Proposed routing algorithm 

Once the routing resources categorization is made the algorithm 

capable to route the NUT (or NUTs) over testable resources of the FPGA 

region can be applied. 

FPGA 
partitioning

Hard Macros

n

Resources 
categorization

Testing Circuit 
Generation

XDL file of 
testing circuit

Region(s) 
Under Test 

 

Figure 5.1: Complete project flow 

The complete flow of this work is illustrated in Figure 5.1 where the 

Testing Circuit Generation phase operates on the data structure filled by 

the previous phase and takes as input an XDL file [23]. That file represents 

the testing circuit (NUT1 or NUT6 or NUT8) where the positions of the 

TPG and the ORA are already defined and it misses only the routing of the 

NUT (or NUTs). A NUT is complete in any of the following situations: 
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 when there are no more physical wires that can be added to 

the NUT; 

or 

 the NUT reaches 100 routing resources (due to the limitation 

on 100 PIPs that could be used). 

Since there are much larger routing resources in a region under test, when 

the routing algorithm computation is finished, several testing circuits are 

created and they will be used to check if that region is free of faults. 

In the early stages of development I studied the FPGA architectures 

of different families (see section 3.1.2) to find out if they have something in 

common that can be exploited. It can be observed that connection types are 

quite different among families but switch matrices have the same 

connections between each other in the same FPGA. Since there are a large 

numbers of switch matrices in a region (e.g. a Virtex-4 FX12 contains 240 

switch matrices in a clock region, see Figure 4.4), it is useful to apply the 

divide et impera paradigm to reduce the complexity of the problem; the idea 

is to target one of them at a time maximizing its number of tested resources. 

Since routing resources mainly consist of PIPs (e.g. a switch matrix 

in a Virtex-4 FX12 contains 3312 PIPs and 418 physical wires, that allow 

connections to other components as shown in Figure 4.14) the first approach 

was to maximize the coverage of PIPs. Later we understood that a better 
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approach to be followed, particularly regarding the computation time of the 

algorithm, was to maximize the use of physical wires instead of PIPs. 

Keeping in mind the limitation on PIP numbers that can be used in a 

NUT and considering the high number of resources, it is easy to understand 

that we need more than one NUT to test all resources of a single switch 

matrix. As a result the number of testing circuits needed to test all resources 

of a switch matrix change according to the testing circuit type (NUT1, 

NUT6, or NUT8). 

5.1 U-Turn implementation 

The main goal of the algorithm is to maximize the number of physical 

wires used for a Net Under Test. The number of wires in a NUT is 

incremented by leaving and returning to one Switch Matrix Under Test 

(SMUT); for this reason the algorithm is named U-Turn. It runs recursively 

on each switch matrix inside the Region Under Test (RUT) to maximize the 

use of physical wires connected to the SMUT that have not been tested yet. 

For a better understanding of the routing algorithm’s behavior Figure 5.2 

and Figure 5.3 show a simplified vision of an FPGA, showing only the 

switch matrices. The complete test flow performs the following steps: 

1. Define region under test (RUT); 

2. Select switch matrix that we want to test (SMUT); 

3. Place TPG and ORA; 

4. Route the NUT from TPG to SMUT; 
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5. Add physical wires to the NUT by leaving and returning in the 

SMUT (done by U-Turn algorithm); 

6. Route the NUT from SMUT to ORA 

RUT

RUT (region under test) TPG (test pattern generator)SM(switch matrix)

SMUT(switch matrix under test) ORA (output response analyzer)  

Figure 5.2: Simplify vision of the FPGA for U-Turn 

RUT

Routing NUT from TPG to SMUT Routing NUT from SMUT to TPG Adding physical wire to the NUT  

Figure 5.3: High level view of U-Turn 
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A high level pseudo code is listed below: 

pick a SM in a RUT (SMUT); 

if the SMUT still contains non-visited physical wires: 

1 create a new empty NUT; 

2 add connection between the TPG and the SMUT to the 

NUT; 

3 create the graph; 

4 add to the current NUT a physical wire if and only if 

a) there is another physical wire at one of the 

destination SMs that allows to return to the SMUT; 

or 

b) an internal bounce
1
 in the SMUT is possible 

(integrates stuck-at errors of the bouncing wires);  

5 if there are physical wires still connectable to the same 

NUT, go to 4; 

6 add connection between the SMUT and the ORA to the 

NUT 

7 store fully routed test design 

repeat this process until all SMs have been analised; 

5.1.1 NUT creation 

Once the SMUT has been picked the algorithm searches for an 

untested physical wire among the physical wires connected to the SMUT. 

As soon as one is selected, called Starting Physical Wire, a new NUT is 

created with an associated counter. A NUT is represented as a list of nodes 

and edges while the counter denotes the number of untested physical wires 

in the NUT that are not tested before. At the beginning the NUT is empty 

                                                 
1
 Normaly a PIP is classified as an inPIP or outPIP but some of them are both. Therefore it 

is possible to drive a signal entering in a SM, through an inPIP, to a in/outPIP. Starting 

from it we can choose to drive the signal out of the SM (using it as an outPIP) or bouncing 

(using it as an inPIP) inside the SM and drive the signal to another PIP. 
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and the counter value is ‘0’, because the Starting Physical Wire will be 

added after connecting the TPG to the SMUT. 

5.1.2 Connecting the TPG to the SMUT 

At this point the NUT is initialized by adding physical wires and 

PIPs to connect the TPG to the Starting Physical Wire of the SMUT. 

Recalling the limitation on the PIPs and since we would maximize tested 

resources of the SMUT this path should be as short as possible. To reach 

this goal we use the Iterative Deepening Depth-First Search algorithm 

(IDDFS) [24], based on the depth first search strategy. With this strategy, a 

depth-limited search is run repeatedly, increasing the limit value of the 

depth at every step. Therefore the shortest path connecting the TPG to the 

SMUT is found. 

5.1.3 Graph creation 

It is particularly important to optimize the creation of the graph to 

minimize the occupied memory. Since the algorithm works on the nodes 

and edges also the computation time depends on the graph’s dimension. A 

first approach was to represent the entire region under test as a graph, but 

that solution was discarded because it was too onerous. As an example, 

considering an entire clock region as region under test of a Virtex-4 FX12, 

the machine would need more than 20 gigabytes of RAM. It is worth noting 

that this FPGA was selected because it is one of the smallest. 
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Due to the limitation of the number of PIPs that can be used in a 

NUT it is useful to create a graph with dimension limited to the area formed 

by resources that are directly reachable from the SMUT. To better 

understand this approach, Figure 5.4 highlights the connections of a SMUT 

in a Virtex-4 and the limits of the graph dimension. 

Graph limits

 

Figure 5.4: Graph limits for the Virtex-4 

In this way a graph is created once for each Starting Physical Wire and only 

a few hundred megabytes of memory are occupied. As a result only physical 

wires inside the red square can be added to the NUT. It is important that the 

area has this extension otherwise is not possible to leave and return 

immediately to the SMUT, but it is necessary to use some physical wires 

that are not directly connected to the SMUT. 

5.1.4 Populating the NUT 

At this stage we have a graph whose root is the node that represents 

the Starting Physical Wire and a NUT connecting the TPG to the root. Then 
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a sort of breadth first search algorithm is executed on the graph to optimize 

the solution for the NUT in order to use as many physical wires as possible. 

During the execution of U-Turn 2 kinds of solution are created: 

 best solution that is empty at the beginning; 

 temporary solution that contains the actual NUT, therefore the 

connection from TPG to the root. 

The temporary solution is modified adding all neighbour nodes, one at a 

time, of the root giving priority to those representing physical wires not 

tested. To achieve more randomness, a neighbour is taken casually and then 

the algorithm runs recursively on that neighbour. 

Every time a node representing an exit point from the SMUT is 

selected, the temporary solution is compared with the best one: if the 

counter related to the best solution is smaller than the temporary one, then 

the best solution is overwritten with the temporary one. In this way the best 

solution will maximize the number of physical wires not tested in the 

current NUT. When the temporary solution reaches the threshold of PIPs, it 

is discarded and the algorithm can speed up returning to the previous level 

of neighbourhood. It is worth noting that loops should be avoided and, in 

order to achieve this, each node of the graph can be visited at most once. 
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5.1.5 Connecting the SMUT to the ORA 

To complete the NUT we have to provide the connection to the 

ORA. Once again it is possible by using the IDDFS algorithm (see section 

5.1.2). 

5.1.6 Storing the full design 

Finally as soon as all NUTs are computed, the algorithm creates the 

full testing circuits ready to be downloaded into a device to make the test. 

Figure 5.5 is an FPGA Editor screenshot that represent a full design of a 

NUT1 testing circuit targeting a switch matrix. Light blue lines represent 

connections between the TPG and the ORA not belonging to the Net Under 

Test. The red line is the NUT and as it can be seen it uses many resources 

belonging to one switch matrix under test. Figure 5.6 shows a zoom on that 

SMUT. 
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Figure 5.5: FPGA Editor screenshot of NUT1 full design 

 

Figure 5.6: FPGA Editor screenshot of zoom on SMUT of NUT1 
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5.1.7 NUT6 and NUT8 special cases 

It should be highlighted that all these steps have to be followed for 

each NUT, therefore if we are using the NUT6 or NUT8 testing circuit we 

need to perform them 6 or 8 times. However, attention must be paid to the 

independence of the NUTs of a single testing circuit otherwise the entire 

testing circuit does not work properly. Independence means that no routing 

resources have to be shared among the NUTs. When nodes are used in a 

NUT, they are marked as “already used” and cannot be added to NUTs 

belonging to the same testing circuit. 

It can happen that after having found some NUTs is not possible to 

find another independent NUT for the current testing circuit. When it 

happens this physical wire is added to a special list and it will be tested by 

another testing circuit. If this occurs for the remaining physical wires of a 

SMUT, the testing circuit misses one or more NUTs. To avoid interfering 

with the correct behavior of the testing circuits, missing NUTs are added in 

a redundant way. Therefore with these redundant NUTs we are not testing 

anything new but the testing circuit is still working properly. 

5.1.8 U-Turn parameters 

The algorithm was implemented with the capability to change its 

behavior according to several parameters that are listed below: 

 Regions_to_test 

It contains the names of target region we want to test; 
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 HM_type 

It is an integer value that represents the testing circuit type 

(NUT1, NUT6 or NUT8); 

Possible values: 1, 2, 3; 

 Testing_HM_XLD 

It contains the path to the XDL file of the testing circuit we 

intend to use; 

 Compute_TCI_analysis 

It is a boolean value that enables the analysis of testability 

without considering the testing circuit; 

Possible values: true, false; 

 Route_ORA_and_TPG 

It is a boolean value that enables the routing from the TPG to 

the SMUT and from the SMUT to the ORA; 

Possible values: true, false; 

 PIP_limit_for_each_NUT 

It is an integer value that represents the maximum number of 

PIPs that could be used for each NUT. It is set to 100; 

Possible values: any positive number; 

 PIP_limit_before_come_back 
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It is an integer value that represents the maximum number of 

PIPs that could be used outside the SMUT before coming 

back to it. It is set to 7; 

Possible values: any positive number; 

 Test_also_LOCAL 

It is a boolean value that enables testing of LOCAL resources 

(see section 3.1.1). It is set to true; 

Possible values: true, false; 

 Target_level 

It is an integer value that represents the test will be 

permormed: 

1 test of stuck-at-0/1 for the physical wires 

2 test of stuck-off for the PIPs 

3  test of stuck-on for the PIPs; 

Possible values: 1, 2, 3. 

  



63 

 

5.2 Why U-Turn 

This section describes the reasons why we implemented this kind of 

algorithm. At the beginning two other architecture independent algorithm 

have been designed to maximize test coverage. Both of them use the graph 

representation of the FPGA as well as U-Turn. 

The first one is a modified version of the breadth first search 

algorithm. Modifications are needed because the original BFS visits nodes 

only once and does not work with cyclic graphs. The modified version has 

been designed to visit nodes more times because it could allow to find 

longer paths exploiting cycles. The general behavior of that algorithm is to 

find several paths from a source to a destination node of the graph, then the 

longest one is chosen as the NUT. To do that we need to keep track, inside 

each node, of previous nodes because different paths can share some 

resources. Therefore the idea is to use the concept of colored graphs to label 

each complete path. Problems are in space and time complexity. Regarding 

the space each node has to store 3 additional items for each path the node 

belongs to (previous nodes, previous edges, color of the path) that affects 

the memory used. Concerning time it should be noted that if ‘N’ is the 

number of nodes in the graph, the algorithm could visited all of them ‘N’ 

times. Considering the dimension of the graph space and time complexity 

grow too much. With this algorithm we are sure to find the best solution for 

a NUT but its complexity is too high. 
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The second algorithm is a Heuristic one that improves space and 

time complexity of the previous one but does not ensure finding the best 

solution for a NUT. In this approach nodes have been used in previous 

NUTs should not appear in the next ones. To achieve this a weight, 

initialized to ‘0’, is assigned to each node.  The algorithm gives a higher 

priority to nodes with lower weight. The weight updating of generic node 

‘n’ is made following this formula: 

 

𝑊𝑒𝑖𝑔ℎ𝑡(𝑛) = 𝛼 ∗ 𝑈𝑠𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡(𝑛) + (1 − 𝛼) ∗ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔ℎ𝑡(𝑛 + 1, 𝑠𝑖𝑛𝑘) 

 

Where: 

 UsedWeight(n) is the time that the node ‘n’ has been used in 

previous NUTs; 

 DirectionWeight(n+1,sink) is the orientation offset between a 

neighbour node ‘n+1’ and the ‘sink’ (destination) using Manhattan 

distance (details on Manhattan Distance are in [25]); 

 α = 0.7 because usedWeight() term should add more weight since 

used nodes should be avoided using again. 

With this approach the only additional information is the weight on each 

node. Therefore this algorithm is faster and uses less memory than the 

previous one, but it was discarded because it could not find the best 

solution. 
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Finally we developed U-Turn because it is a good compromise 

between space and time complexity. Each node can be visited at most once 

and the only additional information is related to the “already tested” 

attribute.  
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6 Experimental results 

In the following, figures of the U-Turn algorithm, that aims to use 

routing resources as much as possible, are reported. We run it on the 

following FPGA families: 

 Artix-7 

 Spartan-6 

 Virtex-4; 

 Virtex-5; 

 Virtex-6. 

 

Table 6.1 shows the number of switch matrices, physical wires and PIPs in 

the region under test, which coincides with an entire clock region of each 

tested FPGA. 

 

Device 
#Switch 

Matrices 

#Physical 

Wires 
#PIPs 

Artix-7 XC7A100 1,600 169,037 1,941,969 

Spartan-6 LX9 105 41,784 462,225 

Virtex-4 FX 12 240 81,581 831,057 

Virtex-4 FX100 672 222,240 2,323,415 

Virtex-5 LX20T 360 133,405 1,495,969 

Virtex-6 CX130T 1,480 498,621 5,621,864 

Table 6.1: Number of Switch Matrices, Physical Wires, and PIPs for each tested device 
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The figures in Table 6.2 correspond to the Testable, Critical, Untestable and 

Unsupported physical wires in the region under test of each tested FPGA. 

The percentage is calculated on the total number of physical wires. 

 

Device 

#Testable 

Physical 

Wires 

% 

#Critical 

Physical 

Wires 

% 

#Untestable 

Physical 

Wires 

% 

#Unsupported 

Physical 

Wires 

% 

Artix-7 XC7A100 102,149 61% 7,183 4% 22,255 13% 37,450 22% 

Spartan-6 LX9 26,026 62% 164 1% 6,379 15% 9,215 22% 

Virtex-4 FX12 39,777 49% 3,409 4% 7,170 9% 31,225 38% 

Virtex-4 FX100 114,778 52% 7,747 3% 16,811 8% 82,904 37% 

Virtex-5 LX20T 80,064 60% 2,912 2% 17,299 13% 33,130 25% 

Virtex-6 CX130T 331,684 66% 2,508 1% 28,269 6% 136,160 27% 

Table 6.2: Physical Wires testability for each tested device 

 

The figures in Table 6.3 correspond to the Testable, Critical, Untestable and 

Unsupported PIPs in the region under test of each tested FPGA. The 

percentage is calculated on the total number of PIPs. 

 

Device 
#Testable 

PIPs 
% 

#Critical 

PIPs 
% 

#Untestable 

PIPs 
% 

#Unsupported 

PIPs 
% 

Artix-7 XC7A100 1,254,235 65% 54,757 3% 350,357 18% 282,620 14% 

Spartan-6 LX9 275,573 60% 2,879 1% 103,832 22% 79,941 17% 

Virtex-4 FX12 456,783 55% 78,734 9% 104,876 13% 190,664 23% 

Virtex-4 FX100 1,361,555 59% 191,544 8% 258,242 11% 512,074 22% 

Virtex-5 LX20T 946,897 63% 87,017 6% 185,975 12% 276,080 19% 

Virtex-6 CX130T 4,130,930 74% 70,946 1% 396,545 7% 1,023,443 18% 

Table 6.3: PIPs testability for each tested device 
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The following tables show results achieved with the U-Turn algorithm when 

it runs on each tested FPGA. All of them have a similar structure where 

columns have the following meaning: 

- Test Structure represents the type of testing circuit used; 

- Stuck-at-0/1 tested represents the number of testable physical wire 

on which the fault stuck-at-0/1 is tested; 

- Stuck-off tested represents the number of testable PIPs on which the 

fault stuck-off is tested; 

- Time (in minutes) represents the time taken by the algorithm to 

compute all Nets Under Test; 

- #Testing circuits: represents the number of testing circuits needed 

to test the entire region under test. 

 Artix-7 XC7A100T 

Test 

Structure 

Stuck-

at-0/1 

tested 

% 

Stuck-

off 

tested 

% 

Stuck-

on 

tested 

% Time 
#Testing 

circuits 

NUT 1 102,149 100% 316300 25% 0 0% 22 min 8,042 

NUT 6 102,149 100% 331,409 26% 490,145 39% 25 min 2,365 

NUT 8 102,149 100% 329,897 26% 560,572 45% 27 min 2,039 

Table 6.4: Artix-7 XC7A100T algorithm results 

 Spartan-6 LX9 

Test 

Structure 

Stuck-

at-0/1 

tested 

% 

Stuck-

off 

tested 

% 

Stuck-

on 

tested 

% Time 
#Testing 

circuits 

NUT 1 26,026 100% 78,632 29% 0 0% 2 min 1,617 

NUT 6 26,026 100% 78,467 29% 114,324 42% 3 min 604 

NUT 8 26,026 100% 76,271 28% 125,505 46% 1 min 531 

Table 6.5: Spartan-6 LX9 algorithm results 
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 Virtex-4 FX12 

Test 

Structure 

Stuck-

at-0/1 

tested 

% 

Stuck-

off 

tested 

% 

Stuck-

on 

tested 

% Time 
#Testing 

circuits 

NUT 1 39,777 100% 120,299 26% 0 0% 6 min 3,316 

NUT 6 39,777 100% 118,597 26% 159,272 35% 6 min 1,073 

NUT 8 39,777 100% 114,800 25% 169,781 37% 7 min 929 

Table 6.6: Virtex-4 FX12 algorithm results 

 Virtex-4 FX100 

Test 

Structure 

Stuck-

at-0/1 

tested 

% 

Stuck-

off 

tested 

% 

Stuck-

on 

tested 

% Time 
#Testing 

circuits 

NUT 1 114,778 100% 335,749 26% 0 0% 34 min 9,252 

NUT 6 114,778 100% 362,198 27% 478,208 35% 54 min 2,977 

NUT 8 114,778 100% 352,286 26% 509,572 38% 52 min 2,578 

Table 6.7: Virtex-4 FX100 algorithm results 

 Virtex-5 LX20T 

Test 

Structure 

Stuck-

at-0/1 

tested 

% 

Stuck-

off 

tested 

% 

Stuck-

on 

tested 

% Time 
#Testing 

circuits 

NUT 1 80,064 100% 249,391 26% 0 0% 10 min 6,727 

NUT 6 80,064 100% 241,919 26% 373,990 40% 11 min 1,813 

NUT 8 80,064 100% 235,170 25% 392,972 42% 13 min 1,569 

 Table 6.8: Virtex-5 LX20 algorithm results  

 Virtex-6 CX130T 

Test 

Structure 

Stuck-

at-0/1 

tested 

% 

Stuck-

off 

tested 

% 
Stuck-on 

tested 
% Time 

#Testing 

circuits 

NUT 1 331,684 100% 1,087,549 26% 0 0% 1h 12m 20,271 

NUT 6 331,684 100% 1,091,914 26% 1,637,105 40% 1h 23m 6,769 

NUT 8 331,684 100% 1,071,290 26% 1,850,052 45% 1h 23m 5,872 

Table 6.9: Virtex-6 CX130T algorithm results 
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As we can see the 100% of coverage of physical wires is reached in any 

family of FPGA, proving the validity of the approach. Even if we are not 

targeting the  PIPs, with this algorithm we test, on average, the stuck-off for 

26% and the stuck-on for 40% of them. 

The stuck-off test figures result from the fact that there exist more 

than one PIP to reach a physical wire. As an example Figure 6.1 shows all 

PIPs (colored in yellow) that can be used to reach a physical wire (colored 

in red). 

 

Figure 6.1: FPGA Editor screenshot for PIPs connected to a physical wire 

Taking into account this example we should use 16 times the same physical 

wire, in different NUT, changing every time the PIP used to test the stuck-

off for all these PIPs. 
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Regarding the stuck-on we reach better results than the stuck-off 

because of the algorithm behavior. Recalling that test of stuck-on is made 

using NUTs that can be shorted by a PIP, the closer are the NUTs, the larger 

is the probability that they can be shorted. Reducing the value of 

PIP_limit_before_come_back parameter (presented in section 5.1.8), we 

force the NUTs to come back to the SMUT as soon as possible. As a result 

the probability to short two NUTs is incremented because they will use 

resources that belong to the same SMUT, therefore are very close to each 

other. 

We run the algorithm changing its parameters in order to test more PIPs 

and we found out a combination of them to increase these numbers (see 

Table 6.10), but not enough to reach the 100%. It could be a future work. 

 Virtex-4 FX100 (enhanced) 

Test 

Structure 

Stuck-

at-0/1 

tested 

% 

Stuck-

off 

tested 

% 
Stuck-on 

tested 
% Time 

#Testing 

circuits 

NUT 1 114,778 100% 1,130,421 83% 0 0% 2h 40min 113,753 

NUT 6 114,778 100% 819,929 60% 1,161,915 86% 2h 10min 11,124 

NUT 8 114,778 100% 704,264 52% 1,087,306 80% 1h 53min 7,048 

Table 6.10: Virtex-4 FX100 algorithm results (enhanced version) 

As in section 5.1 the complete flow includes also the connection of 

the TPG and the ORA. This connection adds several routing resources that 

do not belong to the NUT and therefore they are not tested directly. A test is 

successfully passed if and only if the following conditions occur: 

1. testing circuit is working properly; 
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2. no faults affect the NUT (or NUTs). 

As a result if a test is passed we are able to verify that the resources 

belonging to the NUT and also those connecting the TPG and the ORA are 

free of faults. This is a positive side-effect due to the architecture of the 

testing circuit itself. 

On the other hand if the test is not passed we cannot assure that the 

fault is in the NUT. A good approach should be to use resources already 

tested, and fault free, as connection between the TPG and the ORA.  
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7 Conclusions and future work 

In this thesis a routing algorithm to maximize fault coverage of 

permanent faults in routing resources of FPGAs is presented. An 

optimization of its behavior has been assessed during the implementation. 

The time used by U-TURN to complete the routing of all NUTs is about one 

hour with a memory occupation of about 4 gigabytes. Many tests were made 

in order to find the best combination of parameters. Moreover, U-Turn is 

designed to operate with any FPGA and it provides several parameters that 

allow the user to change its behavior without making any change to the 

code. The developed algorithm achieved the objective of 100% of coverage 

of physical wires. 

 Currently the placement of the TPG and the ORA is made manually 

and their location never change during the execution. A future work should 

provide a smart placement of these components in order to obtain several 

improvements: 

 minimizing the distance between these components and the NUT 

making tests using fewer resources unrelated to the SMUT, thus 

increasing the number of physical wires directly connected to the 

SMUT with respect to the total number of physical wires in the 

NUT; 

 placing more than one testing circuit in the same region under test 

thus providing a substantial speed-up of the entire test; 
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 ensuring that the TPG and the ORA use already tested resources to 

make tests more reliable. 

Moreover, since the algorithm works on a representation of the FPGA, it is 

possible to make changes to the algorithm in order to target the PIPs instead 

of the physical wires by maximizing the use of edges instead of nodes. 

 Finally another future work could be the design of new testing 

circuits that allow to test those resources that are currently unsupported.  
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