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Abstract

We studied the visibility of the supermassive black holes’ ancestors in the X-

ray band. Our goal was to assess if their detection is at reach of the current

observational capabilities.

We used the results of a semi-numerical simulation to evaluate the X-ray emis-

sion of the progenitors, taking into account the attenuation processes that occurs

as the radiation travels through the interstellar medium of the host galaxy. Then

we compared our results with the sensitivity of the most powerful observatory

available, the Chandra Space Telescope, finding that the expected emission is

strong enough to be revealed, although these objects are too rare to be detected

with the past surveys.

Accounting for the technical difficulties that arise in performing a survey, we

planned the best observational strategy to maximize the detection probability.

We found that is more advantageous for a survey to explore an area as large as

possible to the detriment of the sensitivity. These results are encouraging because

none of the past surveys implemented the optimal strategy and therefore there

is ample room for improvement: even if they have not been detected so far, we

expect the detection to be possible in the near future.
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1 Introduction

Structure formation in the early universe is one of the most interesting and

wide-spreading research field in cosmology. The detection of the Cosmic Mi-

crowave Background suggests that four-hundred-thousand years after the Big

Bang our universe was almost homogeneous, with tiny density fluctuations ( δρ
ρ
∼

10−5). Such fluctuations, due to gravitational instabilities, collapsed forming the

large scale structures that we can observe in the local Universe.

Using the most powerful observatories, we have been able to observe objects

at z ∼ 7 − 8, namely a little more than 650 million years after the Big Bang.

In addition to the primordial galaxies, we also find quasars, sources powered by

Super Massive Black Holes (SMBHs). Currently, the most distant quasar known

has a redshift z ∼ 7 (corresponding to less than one billion years after the Big

Bang) and is powered by a SMBH of M ∼ 109M�.

The formation of such massive objects is one of the most fascinating open prob-

lems in cosmology. The first outstanding issues concerns the nature of SMBHs’

seeds: they could be stellar-mass BHs, formed by remnants of massive stars, or

heavier structures with intermediate mass ( 104−5M�), perhaps formed by direct

gravitational collapse. The second concerns the growth of BHs’ seeds either by

the accreting material falling into the black hole or by merging. So far, several

attempts have be done in order to detect SMBHs’ ancestors: in fact, BHs’ envi-

ronments are the brightest objects in the Universe. The accreting material spirals

towards the BH, heating by viscous rubbing against itself and shining with an

extremely efficient process (more than the 10 percent of the gas mass is converted

into heat). Unlike, stellar-objects they present a strong emission in the X-rays

band; so that a possible strategy to detect them is to observe the sky in this

band. It has been done with the most powerful tool available at the moment, the

Chandra X-ray Observatory Satellite, but we have not got any positive response

at the present time.

The aim of our thesis is to investigate the possible causes that could have

hidden SMBHs’ ancestors from our surveys. In particular we will consider two

main hypothesis:
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1 Introduction

• SMBHs’ ancestors are obscured, being buried in significant amounts of gas

and dust that absorb most of the outflowing radiation.

• They are too rare to have been detected in the volume investigated by the

past surveys, hence they are statistically not observed.

For our purpose, we will use the results of a semi-numerical simulation that

provides us details on the SMBHs’ progenitors accretion and on the amount of

obscuring material in their environs. Hence, combining the numerical results

with the current observational data, we will compute the ancestors’ expected X-

ray spectrum, including several interstellar absorption processes. We will find

that the predicted X-ray emission is highly suppressed in the soft band ([0.5÷ 2]

keV) and almost unobscured in the hard one ([2÷ 10] keV).

The expected X-ray flux is well in reach of the most powerful current observato-

ries: hence the reasons for the non-detection are due to the rarity of these sources

and to the limited area probed by the latest deep surveys. To investigate this

issue, in the final part of the thesis we will develop a formalism to obtain, given

the characteristics of the survey, how many sources are supposed to be detected.

This work is organised as follows:

• Chapter 2: it is an introduction that illustrates the standard cosmological

model and the basic tools needed to study structure formation.

• Chapter 3: here we consider the physics of the brightest objects in the

universe, the active galactic nuclei (AGNs), exploring the nature of their

central engine.

• Chapter 4: here we introduce the scientific issue related to the AGNs for-

mation and present some of the most accredited theoretical model developed

to solve it.

• Chapter 5: in this chapter we present our analytical model for the AGNs’

X-ray emission, involving several attenuation processes.

• Chapter 6: we analyze the observational forecasts of the previous estimates

and perform a statistical analysis to determine a best observational strategy.

• Chapter 7: we conclude with brief summary of the work done and the

results obtained, considering the limitation of our works and the prospects

for the near future.
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2 Cosmological Background

This chapter is a brief introduction to cosmology, needed to contextualize our

work: here we will present the main feature of the cosmological standard model

and the background necessary to study the formation of structures in our universe.

In section 2.1, our starting point will be the cosmological principle, which the

whole modern cosmology is based on, together with the observational patency

that the universe is expanding. Then, in section 2.2 we will present the model

currently used to describe the formation of the large scale structures that we

observe in our universe, handling with the collapse of gravitational instabilities.

2.1 The expanding Universe

In 1929, Erwin Hubble inferred from observations that distant galaxies are

receding from us with a velocity that is proportional to their distance:

v = H0d, (2.1)

where the quantity H0 is called Hubble constant. The meaning of the previous

equation, known as Hubble law, is well explained in the context of General Rela-

tivity, that relates the geometry of the universe to its matter content.

In this section, we will describe the kinematics (sec. 2.1.1) and the dynamics

(sec. 2.1.2) of the universe, assuming that it is homogeneous and isotropic (ap-

proximation that is excellent on large scales but obviously fails on small ones),

preparing the ground for the contextualization of this work.

2.1.1 The cosmological principle

All the modern cosmology is based on the statement that, at any epoch, the

universe appears the same to all observers, regardless their individual locations.

This statement, known as the cosmological principle, is basically a generalisation

of the Copernican principle and is equivalent to say that the universe is homoge-

neous and isotropic.

3



2 Cosmological Background

In general relativity, there are only three metrics that describe a homogeneous

and isotropic universe: the Robertson and Walker metrics,

ds2 = c2dt2 − a2(t)

(
dx2

1− kx2
+ x2(dθ2 + sin2 θdφ2)

)
(2.2)

where a(t) is an overall scale factor that describes the expansion of the spatial

coordinates in time and k is the scalar curvature that determines the geometry of

the space and can takes values -1 (corresponding to an open universe), 0 (flat), +1

(close). However, current observations support the statement that the universe

is flat and in this work we will consider k = 0.

Equation (2.2) uses comoving coordinates: the universe expands as a(t) in-

creases but observers keeps fixed the coordinates x, θ, φ as long as there are not

forces acting on them, condition that is called ”absence of peculiar motion”. The

corresponding physical (or proper) coordinates is r(t) = a(t)x and is time depen-

dent even in absence of peculiar motion.

The main information that can be extracted from the metric (2.2) concerns the

propagation of light. Consider a light ray emitted by a source at a time te and

received by an observer at a time to; light rays are characterized by null geodesics

(ds2 = 0), that means cdt = −a(t)dx, where the sign - accounts for the fact that

the light is travelling towards the observer.

The separation between the wave fronts is ∆te at the emission and ∆to at the

detection, but the distance x travelled by the fronts must be constant:

x =

∫
dx = −

∫ to

te

cdt

a(t)
= −

∫ to+∆to

te+∆te

cdt

a(t)
, (2.3)

that means:
∆to
a(to)

=
∆te
a(te)

(2.4)

and
a(to)

a(te)
=

∆to
∆te

=
νe
νo

= 1 + z (2.5)

where ν is the frequency of the electromagnetic wave and the redshift z is

defined by z = νe−νo
νo

. Eq. (2.5) suggests that the redshift z can be interpreted as

a measure of the size of the universe at emission with respect to the present: for

example, at z = 1 the universe was an half of the universe today.

From equation (2.5), knowing the time dependence of the scale factor a(t), we

can convert the redshift z of a source in a time coordinate: setting to = t0, where

the label ”0” means ”at the present time”, and te = t, the radiation emitted by

a source that present a redshift z was emitted at time t in the past.
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2 Cosmological Background

Before to deal with the time dependence of the scale factor (see subsection

2.1.2), it is interesting to point out some observations. First of all, the Hubble

law (2.1) tell us that the velocity at which a galaxy is moving away from us is

proportional to its distance from us: vi = H0ri, where the index i refers to the

galaxy that we are observing.

We can express velocity as the time derivative of the proper distance:

vi =
dri
dt

= xiȧ(t)|t=0 = ri
ȧ(t0)

a(t0)
, (2.6)

that compared with the Hubble law gives H0 = ȧ(t0)
a(t0)

or in general:

H =
ȧ(t)

a(t)
. (2.7)

Another important reflection concerns the apparent intensity of a light source.

We know that the luminosity (i.e. the power) emitted by a source is affected

by a dilution due to its distance from the observer. But, since the universe is

expanding, the expression for the flux deviate from the usual 1
x2

dependence.

Considering a source at a comoving distance x from us is characterized by a

bolometric luminosity L (i.e. the power emitted over the whole spectrum), we

have to take into account that:

• The geometry of the space-time modifies fluxes. Nevertheless, we have

already highlighted that current observations support a flat universe, hence

the surface area involved in the calculation of the flux is the euclidean 4πx2.

• The energy of the emitted photons is redshifting while travelling to us:

hpν0 =
hpνe
1 + z

. (2.8)

• The arrival rate of the photons is stretched by (1 + z).

These statements mean that, for example, if a source at z = 9 from us emits 10

photons of energy 10 keV for unit time, we will receive 1 photons of 1 eV in the

same time interval.

Thus the bolometric flux is:

fbol =
L

4πx2(1 + z)2
=

L

4πd2
L

(2.9)

where dL is known as luminosity distance.
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2 Cosmological Background

Is worth to notice that if we consider a monocromatic flux fν instead to bolo-

metric one, it is:

fν0 =
Lνe(1 + z)

4πd2
L

, (2.10)

due to the redshifting of the considered frequency.

Another important observation concerns the angular size of a source at redshift

z. Due to the expansion of the universe, the angle θ under which we see a source

is increased of a factor (1 + z):

θ =
S(1 + z)

x
=

S

Dθ

, (2.11)

where S is the proper diameter of the source and Dθ is the angular size distance.

Hence, as a consequence of the expansion of the universe, astronomical objects

appear less luminous but larger. Luminosity distance and angular size distance

are related to each other by: dL = (1 + z)2Dθ.

2.1.2 The Friedmann equations

In order to understand the time dependence of the scale factor a(t) and the

evolution of the universe, known the fluids it is composed of, we need to exploit

the general relativity and the conservation laws. The main results of general

relativity are Einstein equations:

Rµν −
1

2
gµνR =

8πG

c4
Tµν (2.12)

that, read left-to-right mean that geometry of the space-time is affected by

matter and read right-to-left mean that fixed the geometry, it determines how

the matter moves.

It can be demonstrated that, due to the fact the Robertson and Walker met-

ric (eq. (2.2)) is particularly simple (with the hypothesis of homogeneity and

isotropy), the eqs. (2.12) give only two independent equations, the Friedmann

equations:

H2 =

(
ȧ(t)

a(t)

)2

=
8πG

3
ρ− kc2

a(t)
(2.13)

ä(t) = −4πG

3
a(t)

(
ρ+

3P

c2

)
(2.14)

that express the evolution of the universe in terms of the scale factor. It is

important to notice that there is a critical density ρc for which the universe is flat
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2 Cosmological Background

(k = 0):

ρc =
3H2

8πG
(2.15)

a universe with ρ > ρc would be closed (k > 0), one with ρ < ρc would be open

(k < 0).

Since for homogeneity and isotropy there cannot be any heat transfer, the

energy conservation is:

c2d(ρV ) = −PdV, (2.16)

that, considered a volume V = V0a
3(t), and a simple equation of state P (ρ) =

wc2ρ, yields:
dρ

ρ
= −3(1 + w)

da

a
=⇒ ρ ∝ a−3(1+w). (2.17)

In the ’90s, took root the standard model of cosmology, known as ΛCDM, that

introduces an exotic fluid (the Dark Energy) to solve the issue derived from the

experimental patency that the universe is accelerating.

According to the ΛCDM model, the density of the universe is made up by four

components:

• Baryonic matter - This component contains both baryons and leptons

(without neutrinos) and, according to the new Planck collaboration re-

lease (Planck Collaboration et al. 2015), is the 4.9% of the total. In the

redshift range of our interest the baryonic matter is not relativistic, hence

its pressure is negligible (w = 0) and eq. (2.17) yields:

ρb(z) = ρb,0(1 + z)3, (2.18)

as it is intuitive since the density of the ordinary matter is diluted by the

expansion of the universe.

• Radiation and relativistic matter - This fluid consists in photons and neutri-

nos and at the present time its density is ≈ 10−5ρtot. For radiation P = ρ/3

and eq. (2.17) gives:

ρr(z) = ρr,0(1 + z)4, (2.19)

as expected, since the photons are both redshifted and subjected to the

same dilution as baryonic matter.

• Dark matter (DM) - The nature of the dark matter is unknown: it has

been introduced to explain observations of galaxies’ dynamics. It is the

7



2 Cosmological Background

26% of the matter of the universe and is probably formed by heavy, weakly-

interacting particles. We expect that as the baryonic component:

ρDM(z) = ρDM,0(1 + z)3. (2.20)

• Dark energy (DE) - The nature of this component is unknown: it has been

introduced in order to explain the observed acceleration ( ¨a(t) > 0) in the

expansion of the universe. Hence, eq. (2.14) requires a negative pressure. A

suitable model for DE can be obtained introducing a cosmological constant

(Λ) in eqs. (2.12) of general relativity. This leads to an equation of state

with w = −1 and so:

ρDE(z) = ρDE,0 (2.21)

According to Planck Collaboration et al. 2015, dark energy accounts for the

69% of the energy of the universe.

As common in literature, let us define the parameters:

ΩX,0 ≡
ρX,0
ρc

(2.22)

useful to describe the various components of the density as fractions of the critical

density.

According to the cosmological standard model, the universe experienced two

main epochs:

• at very high redshift (z > 3300) the main contribute to the total density

comes from radiation: the universe experienced the radiation dominated

(RD) era.

• For redshift 1 < z < 3300 the universe is matter dominated (MD): this

is indeed the redshift range of interest in this work. Assuming the other

components to be negligible, eq. (2.13) has as solution a(t) ∝ t2/3.

• At z < 1 the universe is dominated by the cosmological constant and the

expansion is accelerated.

Having studied the evolution of the density of the various components of the

universe, we can obtain from equation (2.13) the evolution of the Hubble param-

eter:

H(z) = H0[Ωm,0(1 + z)3 + Ωrad,0(1 + z)4 + ΩDE,0 + (1− Ω)(1 + z)2]1/2, (2.23)

8



2 Cosmological Background

where Ω = Ωm,0 + Ωrad,0 + ΩDE,0: the plot of eq. (2.23) is shown in figure 2.1.

The inverse of the Hubble parameter is the timescale of the expansion of the

universe at redshift z, therefore it allows us to know what physical processes are

relevant in a cosmological context: if the time scale of any process is higher than

H−1(z) than it can be considered negligible.

0 2 4 6 8 10 12
z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

H
(z

)[
G

yr
−

1 ]

Figure 2.1: Hubble parameter as a function of redshift computed with the latest
Planck data (Planck Collaboration et al. 2015)

From equation (2.7) and (2.23) we can obtain the time elapsed since the Big

Bang at a given redshift z and the comoving distance that separate us from a

source at redshift z:

τ(z) =

∫ ∞
z

dz′

(1 + z′)H(z′)
, (2.24)

x(z) =

∫ z

0

cdz′

H(z′)
. (2.25)

Figure 2.2 show the plots of eqs. (2.24) , (2.25).

In this thesis, we will use the cosmological parameters:

• H0 = 67.7km s−1 Mpc−1,

• Ωm = 0.3089, with Ωb = 0.049,

• Ω = 1,

9



2 Cosmological Background
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(a) Age of the universe
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(b) Comoving distance

Figure 2.2: Figure (a) shows the time elapsed since the Big Bang (eq. (2.24)).
Figure (b) shows the redshift evolution of the comoving distance from us (eq.
(2.25)).

from the last release of Planck collaboration data (Planck Collaboration et al.

2015). These values are consistent with a flat universe.

2.2 Structure Formation

In the previous section we considered the universe at the scales of homogeneity

and isotropy, but it is sufficient to compare the typical densities on the Earth (

≈ 1g cm−3) and in the intergalactic medium (≈ 10−30g cm−3) to highlight that at

small scales the universe is not homogeneous.

The detection of the Cosmic Microwave Background suggests that four-hundred-

thousand years after the Big Bang our universe was almost homogeneous, with

tiny density fluctuations ( δρ
ρ
∼ 10−5). Such fluctuations, due to gravitational

instabilities, collapsed forming the large scale structures that we can observe in

the local Universe.

The aim of this chapter is to introduce one of the most wide-spreading research

field in cosmology: the formation of structures. To do so, we will first study the

evolution of the first density perturbations in the linear regime (sec. 2.2.1), hence

analyzing their growth in the simplest non-linear regime (sec. 2.2.2) and estimate

the main features of a collapsed object (subsec. 2.2.3. To conclude this chapter,

we will describe (in sec. 2.2.4) the statistical properties of the cosmic density

field and introduce (sec. 2.2.5) a powerful theoretical tool to predict the density

of collapsed halo as a function of mass at any given redshift.
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2 Cosmological Background

2.2.1 Growth of linear perturbation

In this subsection we want to focus on the evolution of the tiny density fluc-

tuations in the linear regime. In the high-redshift universe, we can neglect the

cosmological constant that, as we will see in 2.2.5, suppresses the growth of per-

turbations.

The fluctuation field is described by a quantity called overdensity or contrast:

δ(x, t) =
ρ(x, t)

ρ(t)
− 1� 1. (2.26)

Considering fluctuations with wavelength smaller than the Hubble radius λ <

c/H and with non-relativistic peculiar velocities, we can use the classical equation

of fluid dynamics:

(
∂ρ

∂t

)
r

+∇r · (ρv) = 0(
∂v

∂t

)
r

+ (v · ∇r)v = −∇rP

ρ
−∇φ (2.27)

∇2
rφ = 4πGρ.

To disentangle the evolution due to the fluid dynamics to the one due to the

expansion of the universe, we choose to work in comoving coordinates x = r/a(t)

and decompose the total velocity v in expansion velocity plus a peculiar velocity:

v = ȧx + u.

In comoving coordinates:

(
∂f

∂t

)
r

=
∂f

∂t
− ȧ

a
x · ∇f (2.28)

∇ = a∇r.

We also need to decompose the potential φ in unperturbed term and pertur-

bation δφ and to use the equation of state P (ρ) of the fluid:

φ = δφ+
2

3
πGρa2x2 (2.29)

∇P =
dP

dρ
∇ρ = c2

sρ∇δ

where cs is the speed of sound in the matter fluid.

11



2 Cosmological Background

From the previous equations, we obtain a second order differential equation for

δ, known as the Jeans equation:

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρ̄δ +

c2
s

a2
∇2δ. (2.30)

Eq. (2.30) tells us that the evolution of the perturbation is determined by

two conflicting actions: gravity and the fluid pressure. The term ∝ ȧ
a

is a drag

term due to the expansion of the universe that slows down the growing of the

perturbations.

If we want to study the physics in a matter dominated universe, we can neglect

the pressure term; since a(t) ∝ t2/3, the Jeans equation simplifies in:

∂2δ

∂t2
+

4

3t

∂δ

∂t
=

2

3t2
δ, (2.31)

which has only one non-vanishing independent solution:

δ ∝ t2/3 ∝ a(t). (2.32)

Hence, in an Einstein-de Sitter universe (k,Λ = 0), the perturbations grow pro-

portionally to a growth factor D(z) = 1/(1 + z); in section 2.2.5 eq. (2.61) we

will see that is in general more complicated. To solve Jeans equation (2.30), we

will write it in Fourier Transform:

∂2δk
∂t2

+ 2
ȧ

a

∂δk
∂t

=

(
4πGρ− k2c2

s

a2

)
δk. (2.33)

From right side of eq. (2.33) we can easily see that there is a characteristic

scale kJ that distinguishes two different behaviours and has the dimension of the

inverse of a length:

λJ =
2πa

kJ
=

(
πc2

s

Gρ

)1/2

. (2.34)

The perturbation with a wavelength λ < λJ are oscillatory solution of eq.

(2.33) and cannot collapse. Only the perturbation characterized by λ > λJ or

mass:

M > MJ =
4π

3
ρλ3

J =
4π

3

(
πc2

s

Gρ1/3

)3/2

(2.35)

can collapse and form a non-linear object.

The quantities λJ and MJ are known as Jeans length and Jeans mass respec-

tively.

To consider also fluctuation on scales larger than the Hubble radius, we need
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2 Cosmological Background

to include general relativity: we don’t present a detailed analysis here, but show

in table 2.1 the results from Padmanabhan 1993. It’s worth to be noticed that,

in the radiation dominated epoch, perturbations grow until they enter the Hub-

ble radius: hence, we expect that in this phase small scale perturbations are

suppressed with respect to the large scale one.

Epoch radiation DM baryons
t < tenter < teq ∝ a2 ∝ a2 ∝ a2

tenter < t < teq osc ∝ ln a osc
teq < t < tdec osc ∝ a osc
tdec < t osc ∝ a ∝ a

Table 2.1: Evolution of linear fluctuations at different epochs. tenter is the time
at which a fluctuation enter the Hubble radius, teq is the time at which transition
between a radiation and a matter dominated universe occurs, tdec is the time of
decoupling of radiation and baryons.

2.2.2 Spherical collapse

In the previous chapter, we have studied the growth of the perturbations in

the linear regime. When the overdensity δ ' 1, the linear analysis previously

developed is no longer valid: the study of the non-linear collapse of an overdense

region is very complex and requires a numerical approach in its general case. In

this section we will study the special case in which the collapse occurs in spherical

symmetry. We will neglect the contribution of the cosmological constant.

Let M = ρb
4π
3
r3
i (1 + δ̄i) be the total mass of the final collapsed object, where

δ̄i = 3
4πr3i

∫ ri
0

4πδi(r)r
2dr is the initial overdensity and ρb is the background density.

If ri � c/H we can neglect relativistic effects, describe the collapse with New-

tonian gravity and write the energy per unit mass of a point particle at the proper

coordinate r:

E =
1

2

(
dr

dt

)2

− GM

r
. (2.36)

If E ≥ 0 the system cannot stop its expansion and cannot collapse, while if

E < 0 there is a specific r = rta in which the kinetic term vanishes and the system

will contract and collapse.

We want to evaluate E, so we evaluate the kinetic and the potential terms:

Ki =
ṙ2
i

2
=
H2
i r

2
i

2
(2.37)

Ui =
GM

ri
=

4πG

3
ρb(ti)r

2
i (1 + δi) = KiΩi(1 + δi) (2.38)

13
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where Ωi = ρb(ti)/ρc(ti). Then, the condition for collapse is the initial over-

density to be δ̄i > (Ω−1
i − 1).

Assuming to be in a flat, matter-dominated universe Ωi = 1, Hiti ≈ 2/3

and δi ∝ t
2/3
i . Therefore, in a flat universe all the overdense regions will collapse.

However, it is not true that at low redshift all the overdense regions are collapsed:

the collapse time depends on the initial overdensity and diverges for δi → 0;

furthermore, we neglected the cosmological constant that becomes important at

z < 1.

The equations of motion of the collapsing system have the parametric solutions:

r = A(1− cos θ) (2.39)

t = B(θ − sin θ) (2.40)

where A end B are:

A =
3ri
10δ̄i

(2.41)

B =
3ti

4(5δ̄i/3)3/2
. (2.42)

At t ≈ ti the overdense region expands with the Hubble flow, but according

to the previous equations, the expansion gradually slows until the region reaches

the radius of maximum expansion rta = 2A at tta = πB.

Identify θ = 2π as the condition for collapse is a good approximation: even

if it is a non-physical result (it assumes that different shells do not cross, and

this is not valid in the late phases of collapse), more refined analysis show that

at tcoll the structure is virialized (see next subsection) and hereafter we will use

tcoll = 2tta as collapse time.

For future purposes, it is useful to evaluate the density contrast that the linear

theory predicts at the collapse time; since δl(t) = δia(t)/a(ti) ≈ δi(t/ti)
2/3:

δl(tta) = δi

(
tta
ti

)2/3

= 1.06 (2.43)

δl(tcoll) = 22/3δl(tta) = 1.686 (2.44)

We will see in section 2.2.5 that, for the Press-Schechter theory, this value

represents a threshold: once the overdensity, obtained according to the linear

theory, of a region reaches the amplitude δl(tcoll), it is considered a collapsed

object.
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2.2.3 Virialized dark matter halos

In the last section we discussed the theory of the spherical collapse. Although,

in principle, a spherical region should collapse to a point mass, the existence of

mechanisms of violent dynamical relaxation give life to a state of equilibrium

known as virialized dark matter halo.

These halos are the basic structures from which all the complex objects that

we observe in our universe form: in fact it is inside them that baryons collapse

and give birth to the galaxies.

According to the virial theorem, in all dynamically relaxed, self-gravitating

structures:

2K + U = 0 (2.45)

where, for simplicity, we have neglected the cosmological constant term UΛ. K

and U are, respectively, the kinetic and potential energy of the baryonic matter

(Mgas) contained in a virialized halo of mass M :

K =
3

2

Mgas

µmp

kBT

U = −3

5

GMgasM

rvir
. (2.46)

Hence:

kBTvir =
µmpGGM

5rvir
; (2.47)

as a consequence of the virial theorem, the virial radius rvir can be determined

as one half of the turnaround radius, calculated in the previous section.

The final density contrast of the virialized structure is ∆c(z) = ρvir(z)
ρ̄(z)

and it is

approximately equal to 178 if the cosmological constant can be neglected.

From eq. (2.47), explicating the constants, we can obtain the temperature of

a virialized halo of mass M at redshift z:

Tvir(M, z) ≈ 19800K
( µ

0.6

)( M

108h−1M�

)2/3(
Ωm,0∆c(z)

18π2

)1/3(
1 + z

10

)
.

(2.48)

The value of the molecular weight µ of the gas strongly depends on the ioniza-

tion fraction: in a fully ionized primordial gas µ ≈ 0.6, while in a fully neutral

primordial gas µ ≈ 1.2.
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2.2.4 Statistical properties of the density fluctuations

Hence we have not the possibility to reconstruct the actual realisation of the

overdensity δ(x) at a given time in each point of the universe, the overdensity

field is generally treated considering its properties as statistical ensemble.

This can seem a misplaced problem, because we know only one universe and it

does not make sense to treat it with a statistical approach.

Anyway, we know from the cosmological principle that if we divide the universe

regions of volume V sufficiently large, they all are perfectly equivalent, and it is

sensible to ask what is the probability distribution function (PDF) to find at a

given position xi and at a given time a value of the overdensity field between δi

and δi + dδi.

The statistical properties of the PDF (and so of the density field) are completely

determined once one specifies its statistical moments. The simplest case is the

one in which the PDF is a multivariate Gaussian, that has the great advantage

to be completely specified by its second momentum: the two-points correlation

function ξ(r) =< δ(x)δ(x+ r) >. There are several arguments that support this

approximation: for example it is predicted by inflationary models and it is in

good agreement with experimental data from the CMB.

It is useful to work in the Fourier space, since the single modes evolve indepen-

dently; the k-space PDF is still a Gaussian and its second momentum, the power

spectrum is:

P (k) = σ2
k =< δkδ

∗
k > . (2.49)

P (k) is strictly tied to the correlation function ξ(r), being its Fourier transform.

A simple ansatz for the shape of P (k) has been proposed by Harrison and

Zel’dovich:

Pi(k) ∝ kn, (2.50)

this shape is in good agreement with experimental data if n = 0.97 (Planck

Collaboration et al. 2015). The normalization of the power spectrum is fixed from

the galaxy surveys, as we will see in the next section.

We have already highlighted (reference) that, before the matter domination,

perturbations grow as long as they enter the Hubble horizon, so different modes

have different evolution; hence the power spectrum that seeded structure forma-

tion is different from the primordial one: the processed power spectrum is

P (k) ∝ knT 2(k), (2.51)
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Figure 2.3: Figure (a) shows the transfer function from Eisenstein and Hu 1998
. Figure (b) shows the primordial power spectrum (dotted line) and the processed
one (solid line). The transfer function suppresses the scales above k ≈ 0.01.

where the transfer function T 2(k) suppresses the small scale fluctuations with λ

smaller than the Hubble radius at the transition between the radiation dominated

and the matter dominated era (that is ≈ 100Mpc). The transfer function by

Eisenstein and Hu 1998 and the power spectrum are shown in fig. 2.3.

2.2.5 The halo mass function

One of the most useful prediction of the theory of structure formation is the

number density of dark matter halos as a function of mass at any given redshift

z. Press and Schechter (PS) in 1974 derived a simple analytic model to build a

distribution function for collapsed object: once a region on the fixed mass scale

of interest reaches the threshold amplitude for collapse (eq. (2.44)) obtained

according to the linear theory, it can be declared a virialized object.

In order to assign masses to this collapsed regions Press and Schechter consid-

ered a smoothed density field on a scale R:

δR(x) =

∫
δ(x + x′)W (R,x)d3x′, (2.52)

where W is a suitable window function. The W used in the formal derivation of

the mass function is

W (R,x) = 4πR3 sin kR− kR cos kR

(kR)3
, (2.53)

a top-hat in the k−space that cuts out sharply all the details on scales smaller
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than R. VW =
∫
d3xW (x) = 4π

3
is the equivalent of the volume of this window.

The excess of mass contained around a point x is

δM(x) =

∫
d3yδρ(y)W (x− y) =

∫
d3k

(2π)3
δ̃kρ̄W̃ (k)eik·x (2.54)

For the central limit theorem, δM/M has a Gaussian distribution and a stan-

dard deviation that can be written in terms of the power spectrum:

σ2
M(R) = 〈|δM/M |2〉 =

1

2π2V 2
W

∫ ∞
0

k2dkσ2
kW̃

2
k . (2.55)

The normalization of the power spectrum can be fixed from the observational

value of σM on the scale of R = 8h−1Mpc, σ8 = 0.82 (Planck Collaboration et al.

2015).

According to Press and Schechter 1974, the fraction of mass elements contained

in collapsed objects with mass greater than M at redshift z is the same as the

probability that the present day linear extrapolated density yield at x, δM , is

greater than δc = 1.686:

F (> M, z) =
1

2
erfc(νc) (2.56)

where νc = δc/σ(M, z). This distribution is not correctly normalized: in fact,

one sees that F (> 0, z) = 1/2 while it is reasonable to be 1.

This problem arise from the cloud-into-cloud problem: eq. (2.56) ignores all

the regions that have δM1 < δc when smoothed on a scale M1 but have δM2 > δc

when smoothed on a larger scale M2 > M1 (that is all that regions that are not

part of a collapsed object strictly greater than M1 but are part of a collapsed

object greater than M2).

Press and Schechter 1974 corrected the problem simply multiplying F (> M, z)

for a factor 2.

Finally, the PS mass function is:

dn(M, z)

dM
= − ρ

M

∂F (M, z)

∂M
=

ρ̄

M2
fPS

∣∣∣∣ d ln ν

d lnM

∣∣∣∣ (2.57)

with

fPS(νc) =

√
2

π
νcexp

(
−ν

2
c

2

)
(2.58)

The presence of the factor 2 in the previous equations, can be obtained with

a more corrected, self-consistent approach (the excursion set formalism). This

method allows us to compute also conditional mass distributions, such as the one
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Figure 2.4: Figure (a) shows the standard deviation σM (z = 0). Figure (b) shows
the growth factor in an Einstein-de Sitter universe (dashed line) and the one from
Carroll et al. 1992 (solid line): as can be seen, the presence of a cosmological
constant slows the growth of the perturbations.

of the progenitors of a certain dark matter halo. Consider a collapsed object of

mass M1 at redshift z1 so that it has a linearly extrapolated density contrast

δ1 = δc(z1); then, the mass distribution of its progenitors at z2 > z1 is:

n(M2, z2|M1, z1)dM2 =
M1

M2
2

∣∣∣∣ d ln ν12

d lnM2

∣∣∣∣ dM2 (2.59)

where:

ν12 =
δ2 − δ1√

σ2(M2)− σ2(M1)
(2.60)

The PS formalism provides a simple way to understand why the structure

formation is bottom − up (i.e. hierarchical). As is shown in fig. 2.4a, σM is a

decreasing function of mass, because σ2
M ∼ k3+n ∼ R−(n+3) ∼M−n+3

3 . In section

2.2.1 we saw that in a matter dominated epoch the perturbation grows with the

scale factor δ ∝ D(z) = 1/(1 + z). In presence of the cosmological constant,

the growth of the fluctuation is inhibited and the expression of the growth factor

D(z) is a more complicated. In this thesis, we refer to the fitting formula of

Carroll et al. 1992:

D(z) =
g(z)

g(0)(1 + z)
(2.61)

where

g(z) =
5

2
ωm(z)

[
ωm(z)4/7 − ΩDE(z) +

1 + ωm(z)/2

1 + ΩDE(z)/70

]−1

. (2.62)

The previous formula is plotted in fig. 2.4b, where a comparison with the growth
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factor in an Einstein-de Sitter universe is shown.

Then:

σM(M, z) = D(z)

(
M

M∗

)−(n+3)/3

=

(
M

MNL(z)

)−(n+3)/3

(2.63)

The mass scale at which fluctuations become non linear, MNL = M∗

D(z)(n+3)/3 (ac-

cording to Eisenstein and Hu 1998 is always n > −2) is a decreasing function of

redshift: smaller scales become enter this regime before larger ones.

Hence, the structures formation is bottom-up: smaller halos, that form first,

merge to form more massive halos. In the next chapters, we will see that this

statement leads to a very important hypothesis: the possibility that black holes

could also accrete through merging of smaller ones.
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In this chapter, we introduce one of the brightest type of objects in the universe,

the active galactic nuclei (AGNs), and we will discuss the physical mechanisms

that drive their emission.

In the first section we will do a brief introduction to active galaxies and report

their main observational features. Since the most accredited model assume that

the AGNs’ central engine is powered by an accreting supermassive black hole

(SMBH), in section (3.2) we will give a general description of a BH as solution

of Einstein equations. Then, in section 3.3, we will focus on the accretion mech-

anisms, describing the main characteristics of a spherical accretion (subsec.3.3.1)

and the high radiative efficiency of an accretion disk (subsec.3.3.2).

3.1 Active Galaxies

The names active galaxies and active galactic nuclei (AGNs) refer to the main

feature that distinguishes these objects from ordinary (i.e. inactive) galaxies: the

presence of an accreting supermassive black hole (SMBH) in their center.

At the present time, more than one million of this kind of sources had been

detected and it has been estimated (Netzer 2013) that in the local universe (i.e.

z ≤ 0.1) about 1 out of 50 galaxies contains a fast accreting SMBH and about 1

out of 3 contains a slowly accreting SMBH.

Although all objects powered by an active SMBH are now known as AGNs,

they have several different names, relics from the 1960s - 1970s, originating from

an early confusion among sources with different observational signatures. These

objects are now unified in a standard model; among them:

• Seyfert galaxies- these galaxies present a high surface brightness and a

bright nucleus. Their emission is characterized by strong ionization lines.

This category distinguishes in Type I and Type II Seyfert galaxies: the first

type show strong, very broad emission lines that are not found in the second

type.
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• Quasars (QSOs) present very strong broad emission lines but, unlike Seyfert

galaxies, their host galaxy is usually not clearly detected. As a common

habit, astronomers usually call ”quasars” high-redshift AGNs in general,

hence, since this work is focused on high-z quasars, we will use ”QSO” or

”AGN” equivalently.

• Blazars are the only kind of AGN that present a γ-ray emission. These

objects are extremely rare because, as we will explain, the detection of

γ-ray emission occurs only when there are relativistic outflows from the

nucleus, oriented along our line of sight.

• LINERs (low-ionization nuclear emission-line region) are characterized from

an emission of low-ionized or neutral atom lines and contain a weakly active

nucleus.

The objects reported in the previous list contain also other subcategories, that

for brevity will not be presented in this work.

The unified AGNs model interprets the observational differences among these

sources as arising from different viewing angles to the center of the sources and

from the eventual presence of a large amount of obscuring material along the line

of sight. Astronomers gather AGNs in two large groups:

• type-I AGNs, that are not obscured along our lines of sight to their center;

• type-II AGNs, with heavy obscuration along the line of sight, that extincts

almost all the optical-UV radiation from the inner parsec.

Figure 3.1 shows a highly simplified scheme of AGN unification, whose main

features are:

• a SMBH surrounded by a thin accretion disk that represents the central

engine that power an AGN. See sec.3.3.2.

• a dusty torus: a thick structure of obscuring material that surrounds the

accretion disk at distance of order 1 pc and covers a significant portion of

solid angle. The torus causes the dimming that characterizes type II AGNs.

• a broad line region (BLR) totally enclosed in the torus, that contains line

emitting clouds. The lines are broadened by Doppler effect, due to the high

Keplerian velocity of the clouds around the black hole.
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• a narrow line region (NLR) which extends from a few to several thousand

parsecs; being settled farther from the nucleus, the emitting clouds that

produce narrower lines.

• the relativistic jets: twin collimated, fast outflows in opposite directions,

whose detection occurs only along our line of sight. They are present only

in the 10% of the AGNs and are often accompanied by a radio emission.

• the host galaxy that it is often unresolved with respect to the nucleus.

Anyway, even if the host galaxy does not contribute much to the luminosity

of these sources, its interstellar medium (ISM) play an important role in

the attenuation, as we will see in section 5.3.

Figure 3.1: A side view of AGNs showing the main concepts of the unification
scheme, by Netzer 2013 .

Studying the spectral characteristics of AGNs, astronomers usually analyze

the spectral energy distribution (SED), described in terms of monochromatic

luminosity per unit frequency (Lν [erg s−1 Hz−1]), wavelength (Lλ[erg s−1 cm−1])

or energy (LE[erg s−1 erg−1]).

Unlike stellar sources AGNs present a significant emission in the whole electro-

magnetic spectrum, hence we conclude AGNs’ description with a brief review of

the main observational features of an AGN in the various emission band:
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• Radio: many AGNs presents single or double-lobes structures (that can ex-

ceed in extension the host galaxies) and strong radio cores and/or radio jets

from the nucleus. If an AGN shows a radio emission with monochromatic

luminosity at 5 GHz at least ten times stronger than the monochromatic

luminosity in the B optical band, it is called radio-loud, otherwise radio-

quiet. Statistics on large numbers shows that ∼ 10% of AGNs are radio-loud

sources: this provides a way to identify AGNs in deep radio surveys; stars

are extremely weak radio emitters, so an optical pointlike source that is

also a strong radio source is likely to be a radio-loud AGN. The positional

resolution of radio surveys is of order of 1 arcsec and usually there are no

problems in confirming that the radio source and the optical one are the

same source: most of the early AGNs samples were discovered in this way.

• IR: most of the emission in the near infra-red (NIR) and the mid-infra-red

(MIR) is due to secondary (i.e. that is not the direct result of the accretion

process itself) thermal emission from the dusty structure (the torus) within

1 pc around the central source. The temperature of the NIR and MIR

emitting dust is between 100 and 200 K. Most of the far infra-red (FIR)

thermal emission is thought to be due to colder dust heated by young stars

present in the host galaxy.

Observations in the IR band allow us to detect highly obscured AGNs:

a large fraction of such an objects would not been recognized as AGNs

according to their non-detectable optical and X-ray emission, but their MIR

spectrum is dominated by warm dust emission. Hence, the observation in

this band provides a complementary technique to detect AGNs.

• Optical and UV: optical images of type-I AGNs show evidence of a pointlike

central sources with an emission that can dominate over the stellar back-

ground of the hosting galaxy: the non-stellar origin of this emission excess

is determined by the SED shape and the absence of strong stellar absorp-

tion lines. In the local universe, many AGNs are much fainter than their

host and the contamination by stellar light must be taken into account in

optical observations.

• X-rays: relative AGN luminosity increases with decreasing wavelengths and

the contamination by stars is no more a major problem; unlike stellar

sources, almost all AGNs are strong X-ray emitters. AGNs’ X-ray emis-

sion play a very important role in this work: in chapters 5 and 6 we will

study the visibility of the faint progenitors of luminous quasars in this band.
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A single power-law Lν ∝ ν−αX fits well the intrinsic (i.e. unobscured)

spectrum of many types of AGNs over the energy range 0.2-20 keV. Obser-

vatively, αX ∼ 1 (Piconcelli et al. 2005). The most sensitive X-ray surveys

had been able to detected very distant (z ∼ 7 or even more) sources with

strong 0.5-2 keV (in the observatory rest frame) emission; type-II AGNs

with obscuring column densities (NHI > 1022cm−2 or more) are more dif-

ficult to be detected. The deepest surveys ever performed at the present

times are the ones by the Chandra Space Telescope, that has a resolution of

∼ 1 arcsec. The Chandra X-ray Observatory is characterized by a passband

that is extended up to about 20 keV. However, these missions cover only a

small area of the sky: at the end of this thesis, in chapter 6, we will discuss

the potentiality of these powerful observatories in the search for the faint

SMBHs’ progenitors as X-ray emitters.

• γ−rays: to conclude the description of AGNs’ emissivity, it is worth to

mention that observations above 100 keV show that the majority of AGNs

are weak high-energy emitters. On the other hand, less than the 10% of

them present a strong γ−ray emission: unfortunately, the current γ−ray

observatories (such as the Fermi Gamma-Ray Space Telescope) have low

spatial resolution and all AGNs revealed at these energies appears as point

sources, but they allow us to probe their high-energy emission up to 300

GeV.

Having described what active galactic nuclei are, in the following section we

will introduce their central engines: the black holes.

3.2 Black Holes

Since the scientific community agrees that the central engine of an AGN is

an accreting supermassive black hole (SMBH), in this section we will present

a short description of black holes (BH) in the context of the general relativity.

Black holes (as well as pulsars and neutron stars) had been considered a mere

theoretical curiosity for a long time. The idea of a body so massive that even light

itself could not escape is ascribed to John Michell and Pierre-Simone Laplace in

the XVIII century; in particular, the first publication related to such an object

is a letter by Michell to Henry Cavendish in 1783 to the Royal Society:

If the semi-diameter of a sphere of the same density as the Sun were to exceed

that of the Sun in the proportion of 500 to 1, a body falling from an infinite height
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towards it would have acquired at its surface greater velocity than that of light,

and consequently supposing light to be attracted by the same force in proportion

to its vis inertiae, with other bodies, all light emitted from such a body would be

made to return towards it by its own proper gravity.

Such idea of ”dark stars”, promoted in 1796 by Laplace in his book Exposition

su systéme du Mond, had nothing to do with the idea of space and time, which

where considered absolute concepts: a dark star was conceivable only between

the framework of the Newtonian theory of matter and gravitation and the object

beyond the horizon was rigid, stable against collapse.

It was only in the XIX century, with the development of the theory of Gen-

eral Relativity, that BHs were studied in the general space-time framework as

particular solution of Einstein’s field equations.

3.2.1 Black Holes as solution of Einstein equations

Developed by Albert Einstein between 1907 and 1915, with contribution of

many others after 1915, the theory of General Relativity totally revolutionized

the concepts of space and time.

As can be done with every physical property, space and time can be represented

with a mathematical structure: in relativity an event that happened in a given

space point at a given time is represented as an element of a 4-D real manifold

xµ (where x0 corresponds to the time coordinate and xi, with i = 1, 2, 3, to

the spatial coordinates). Then, if we want to calculate a distance between two

events, we need to introduce a geometrical structure on this manifold; this can

be done defining a metric tensor (briefly, a metric) that allows us to calculate

distances. In the Euclidean space, for instance, the metric tensor is a Kronecker

delta function, while in the Minkowskian space it is:

δµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (3.1)

and the distance ds between two arbitrarily close events is:

ds2 = δµνdx
µdxν . (3.2)

Since, in general relativity, gravity is the result of the curvature of the space-

time, a key issue of the theory is to determine the geometry of the space-time
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(and so the effects of gravity) finding a law that establishes a relation between

gravitational sources and the metric: this law is expressed in the Einstein equa-

tions (see chapter 2, eqs.(2.12)). The derivation of the Einstein equations and

the discussion of its solutions lies outside of the aims of our thesis and involve

several quantities and mathematical tools that we will not introduce in this work.

Hence, we will focus on those solutions of Einstein equations that directly concern

our study field, beginning from the one found, in 1916, by Karl Schwarzschild: it

describes the geometry of the space-time in the vacuum region outside a static,

spherical object of mass M , with the whole mass assumed to be concentrated at

r = 0. The Schwarzshild metric expressed in spherical coordinates (t, r, θ, φ) is:

ds2 = (1− 2GM

rc2
)c2dt2 − (1− 2GM

rc2
)−1dr2 − r2(dθ2 + sin2 θdφ2). (3.3)

There are two singularities in the metric: r = 0 and rSchw = 2GM
c2

; the first

one is a physical singularity and it is uneradicable, the second one, instead, is

a singularity of the metric (3.3) and can be eliminated with a change in the

coordinates.

The quantity rSchw is known as Schwarzschild radius rSchw and corresponds to

the surface that represents the horizon of events : no signal can reach us from the

inside (for details, refer to Schutz 1985 and Romero and Vila 2013). Although a

Schwarzschild radius can be associated at every object of mass M , at ordinary

densities it lies well inside the object: for instance, for the Sun rSchw ≈ 3 km and

for the Earth rSchw is less than a centimeter.

Several solutions of the Einstein equations (in primis, the Kerr solution that

describes a rotating BH) should be introduced in order to fully understand the

phenomenology related to a BH, but such a description lies well outside of the

aims of this work. We limit ourselves to provide some references, (Schutz 1985)

and (Romero and Vila 2013), and to explore, in the next section, one important

physical process that allows us the detection of such mysterious objects: their

accretion.
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3.3 BH accretion

A BH is a rather simple physical object (for the ”no-hair theorem” it can

be completely described by its mass, electric charge1 and angular momentum 2)

nevertheless, it has a great impact on its surrounding environment.

Accretion on a black hole, in particular, is one of the main radiation source in

high energy astrophysics: in the accretion process, for the energy conservation

law, the decreasing of the potential energy is compensated by an increasing kinetic

energy. If part of this kinetic energy is converted in thermal energy, a large

quantity of radiation is emitted.

The most important feature of an accretion process is its high efficiency: Thorne

1974 had shown through theoretical argumentations that the radiative efficiency

ranges from η = 0.057 for a Schwarzschild (i.e. non-rotating) black hole to

η = 0.32 for a maximally rotating object; on the other hand, if we consider for

comparison the energy that could be extracted from the mass by nuclear fusion

reaction, the matter-radiation conversion factor is computed to be lower than

0.01.

One of the most important concept about energy sources is that the luminos-

ity produced by the source itself (or, in our case of interest, in its surrounding

environment) affects its external layers. In an accretion process, it means that

the emitted radiation can block the infall.

Let us consider an accretion process in spherical symmetry, with metal-free,

completely ionized, accreting material. If the photons emitted by the source have

energy < 100keV, the main interaction between the photons and the gas is the

Thomson scattering.

If a source have luminosity L, the momentum carried by the photons for unit

time is L/c and the momentum for unit time and unit surface (at distance r

from the source) is L/4πr2c. Being the Thomson scattering an isotropic process,

on average an electron takes all the momentum of the incident photon. Not

every electron interacts: the probability of interaction is expressed through the

Thomson cross section σT .

Hence, if there are ne electrons for unit volume, the force perceived by the gas

is:

Fr =
L

4πr2c
σTne (3.4)

1However, electric charge can be safely ignored because macroscopic objects are very nearly
neutral.

2The Schwarzschild BH described in the previous section is not rotating; however, general
relativity predicts the existence of rotating BHs, well described by the Kerr metric (1963).
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In the accreting material, electrons and protons are strongly coupled by the

electrostatic force that prevent them to separate, hence this force (that has effect

mostly on electrons because σT ∝ m−2 and mp � me) have to be compared with

the gravitational force on protons.

Fg = ne
GMmp

r2
(3.5)

At equilibrium, Fg = Fr and the luminosity assumes a value known as Edding-

ton luminosity :

LE ≡
4πcGMmp

σT
≈ 1.5× 1038 M

M�
erg · s−1. (3.6)

The Eddington luminosity represents an upper limit for the luminosity of sta-

tionary (i.e. not explosive) sources: for L � LE (as occurs in a supernova) the

radiation pressure would block the accretion flux, that fuels the emission itself.

In the first part of this section, we have talked about the radiative efficiency:

the matter-radiation conversion factor η at which radiation is generated by a

matter flux Ṁ is defined as:

L ≡ ηṀc2. (3.7)

Assuming η = 0.1 as usual in literature (Vietri 2006, Petri et al. 2012, Volonteri

and Stark 2011 and Frank et al. 2002), we can estimate the Eddington accretion

rate accreted on a compact object in order to produce an Eddington luminosity:

ṀE ≡
LE
ηc2

= 2.5× 10−8 M

M�

0.1

η
M�yr−1. (3.8)

Has already highlighted, according to Thorne 1974 the radiative efficiency

ranges from η = 0.057 for a Schwarzschild (i.e. non-rotating) black hole to

η = 0.32 for a maximally rotating object.

Assuming that the fraction of mass that is not converted in radiation is actually

accreted by the compact object (that in our case of interest is a BH), the growth

rate of the black hole is: ṀBH = Ṁ(1 − η) and its bolometric luminosity (3.7)

can be written as:

L = ṀBH
ηc2

1− η . (3.9)

The time scale for the growth of a BH that is accreting at the Eddington rate

is: τE = MBH

ṀBH
= tE

η
1−η , where the quantity tE is called Eddington time.
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3.3.1 Bondi accretion

Let us consider the accretion on a BH in the most simple case: we will assume

that the system is endowed with spherical symmetry, that the accreting gas is

well described from a polytropic relation PV γ = constant and that the situation

is stationary (so that ∂/∂t = 0).

Under these hypothesis, the mass conservation law can be written as:

0 =
∂ρ

∂t
+∇ · (ρ~v) =

1

r2

∂

∂r
(r2ρvr) = 0 (3.10)

that, integrated, give us the mass accreted per unit time:

Ṁ = 4πρvrr
2. (3.11)

Let us fix the boundary condition of the problem, in order to determine Ṁ :

the accretion starts at large distance from the center, where the gas is at rest and

density and pressure are ρ∞ and P∞.

For the Bernoulli theorem, we know that the quantity v2r
2

+w+ φ is conserved,

hence:
v2
r

2
+ w − GM

r
= w∞, (3.12)

where w = ε+P/ρ = γP/((γ − 1)ρ) is the specific enthalpy (being ε the internal

energy of the system for unit mass).

If we change coordinates, taking the sound speed at infinity c2
s∞ = γ P∞

ρ∞
as

unit of velocity, ρ∞ as a unit density and the accretion radius (at which the

sound speed equals the free fall speed) ra = 2GM
v2s

as a unit of distance (so that

r = raξ, ρ = ρ∞R(ξ)), then Ṁ is completely specified by a parameter λ so that:

Ṁ = 4πλ
G2M2ρ∞
c3
s∞

. (3.13)

Resolving the differential equations (3.13) and (3.12), we find that there is only

one value of the parameter λ that respects the condition of continuity at the sonic

point (i.e. the point in which vr = cs):

λ =

(
1

2

) γ+1
2(γ−1)

(
5− 3γ

4

)− 5γ−3
2(γ−1)

(3.14)

With this value of λ, the accretion rate in equation (3.13) is called Bondi

accretion rate and depends on the mass M , on the initial conditions and on the

equation of state, since λ depends on γ.
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Shapiro 1973 had shown that the radiative efficiency of the Bondi accretion on

a BH is very low: ηBondi ≈ 10−4. This occurs because there is not a non-thermal

electrons population because, since the black hole have not a solid surface, there

cannot be shock waves that accelerate them. Hence, the only possible radiative

process is the bremsstrahlung: if the gas density is low, the cooling time is longer

than the free fall time, otherwise if the gas is dense, the time scale of the diffusion

of the photons outward is longer than the free fall time. In any case, the main part

of the released potential energy is not converted in thermal energy and cannot

be radiated away.

3.3.2 Accretion disks

In the previous section we analyzed the spherical accretion on a compact object.

Anyway, in the majority of the astrophysical situations, the accreting matter is

endowed with an amount of angular momentum that does not allow it to fall in

merely radial direction on a BH.

General relativity predicts the existence of an innermost stable orbit, that cor-

responds to a minimum angular momentum of order jmin = qGM/c (Vietri 2006),

where the adimensional parameter q is order of unity. Thus, all the accreting ele-

ments that possess an angular moment j > jmin will arrange themselves in a disk

perpendicular to the rotational axis. To make an example, let us consider a BH

of mass ≈ 108M� and assume that the accreting material comes from the whole

galaxy (so it rotates with velocity of order 100 km/s at distances of order 1 kpc):

then j ≈ 3× 1028cm2s−1 and jmin ≈ 4× 1023cm2s−1 << j.

In this subsection, we want to investigate the structure and the emissivity of a

Keplerian, thin disk: in fact, being the spherical accretion process not radiatively

efficient, it is thought that accretion disks provide most of AGNs’ emission. In

a Keplerian system the only force that is acting on the gas is the gravitational

one, that is a central force, i. e. it preserves the angular momentum. Hence, the

disk accretion requires a physical mechanism that forces a rearrangement of the

angular momentum of the fluid.

As a classical analogue, two rings of matter in centrifugal equilibrium have

angular velocity ωK = GM/r3: the two rings slide one against the other, one

rotating faster than the other. There are friction forces, identical in modulus

and opposite, acting on the two rings: hence, the total angular moment of the

system does not change; the amount of angular momentum lost by the inner ring

is gained by the outer one. From this simple classical argumentation it is clear

that in an accretion disk the angular momentum tend to shift outward.
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Let G(r) be the total torque that the material external to the radius r apply on

the fluid within the radius r. Two condition have to be satisfied for the accretion

process to happen. First of all, in order to fall on the BH the material has to

loose angular momentum, hence:

G(r) < 0. (3.15)

Then, considering a ring of material centered in r of infinitesimal thickness dr, it

applies a torque on the inner ring and undergoes a torque from the outer ring.

The total torque for unit thickness that acts on the ring is ∂G(r)/∂r; then, in

order of the ring to undergo a loss of angular moment, it has to be:

∂G(r)

∂r
< 0. (3.16)

If these two relations are satisfied, in the disk there is a outward flux of angular

momentum.

So far, we have not specified the nature of the torque. We save this topic for

the final part of this section, highlighting for the moment some important results

that can be obtained in a totally general way without specifying G(r).

Assume that the disk is infinitely thin: then it is characterized by a surface

density Σ. The continuity equation is, in cylindrical coordinates and reminding

the axial symmetry of the disk:

∂Σ

∂t
+

1

r

∂

∂r
(rvrΣ) = 0. (3.17)

The angular momentum is not a absolutely conserved quantity, as can be the

mass or the electric charge: it can change if the mass in the considered volume

is undergoes a torque. Hence, the equation that gives us the conservation of the

angular momentum L along the rotational axis ~z is:

∂Lz
∂t

+
1

r

∂

∂r
(rvrLz) =

1

2πr

∂G

∂r
(3.18)

In the stationary case, the last two equations can be easily integrated to get:

Ṁ = −2πrvrΣ (3.19)

FL = −r2ωṀ −G(r) (3.20)
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where Ṁ is the accretion rate on the BH and FL is the flux of angular mo-

mentum, that consists of a negative term due to the matter transport (advection

term: the matter that accretes on the compact object retains some of its angu-

lar momentum) and a positive term (remember eq. (3.15)) due to the torques

between the disk’s elements (it removes angular momentum and transports it

outward).

If the material that falls above the last stable orbit rm retains all its angular

momentum, FL = Ṁ(GMr)1/2, otherwise, if it retains only a fraction β of its

angular momentum:

FL = βṀ(GMr)1/2 (3.21)

So that, eq. (3.20), can be rewritten:

r2ωṀR(r) = −G(r) (3.22)

where R(r) ≡ 1− β r2mωm
r2ω

, where ωm is the Keplerian velocity at rm, so that at

r � rm the two terms are almost perfectly balanced.

Consider again the two rings that apply a mutual torque N . The equation of

motion for the two rings will be: dJ1
dt

= −N , dJ2
dt

= N . If we assume the moment

of inertia to be constant, the change of kinetic energy is:

d

dt

(
ω1J1 + ω2J2

2

)
= −N(ω1 − ω2) ≈ dr

dN

dr
N < 0 (3.23)

hence, the total kinetic energy is decreased. The internal torque generate a

heating of the disk.

From eq. (3.23) , the heating for unit time and unit surface is:

Q =
G

2πr

dω

dr
, (3.24)

that, using eq. (3.22), is:

Q =
3GMṀ

4πr3
R(r). (3.25)

It’s worth to highlight that these relations do not depend on the specific nature

of the torque.

If we assume that all this energy is radiated away, than integrating on the

whole disk (from rm to ∞), we obtain the total luminosity of the disk:

L =

(
3

2
− β

)
GMṀ

rm
. (3.26)
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Equation (3.26) explains the high radiative efficiency of an accretion disk. As

we have seen in subsection 3.3.1, spherical accretion is radiatively low-efficient:

almost all the potential energy is converted in kinetic energy and not in radiation.

In an accretion disk, at least (for β = 1) one half of the potential energy is radiated

away, being the other half converted in rotational kinetic energy, according to the

virial theorem. Hence, neglecting every relativistic effects, the total radiative

efficiency is:

η ≡ L

Ṁc2
=

GM

2rmc2
=
rSchwarz

2rm
. (3.27)

Since for a Schwarzschild BH rm ≈ 3rSchwarz (Vietri 2006), the efficiency so

estimated is 1/6. However an exact calculation that accounts for relativistic

effects depends on the BH’s spin and can be found in (Vietri 2006).

Knowing Q, we can determine the temperature T and the spectrum of the disk.

If we assume following (Vietri 2006) that the disk is in local thermal equilibrium,

so that all the heat is dissipated locally:

Q = 2σSBT
4 (3.28)

where, σSB is the Stefan-Boltzmann constant. It means that:

T =

(
3GMṀR(r)

8πσSBr3

)1/4

. (3.29)

Using equation (3.6), (3.7) and defining x ≡ r/rSchw, we can write:

T = 8× 107K

(
0.1

η

)1/4(
L

LE

)1/4(
1038erg s−1

LE

)1/4(
R(x)

x3

)1/4

. (3.30)

From the previous equation and from the (3.6), we can see that the higher the

black hole mass, the colder its accretion disk.

With the assumption of local thermal equilibrium, we expect that at least

locally the spectrum is the one of a black body; hence, the total spectrum is the

overlapping of many black body spectrum and:

Lε = 4πr2
Schw

∫
xdx

2ε3

h3c2

1

eε/kT (x) − 1
. (3.31)

So far, we have not specified the nature of the torque. It has been unknown for

a long time, but nowadays it is well understood: it is a magnetohydrodynamic

effect.
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In magnetohydrodynamics the fluid stress tensor possesses a term due to the

magnetic field: the Maxwell stress tensor. The component Mij of the Maxwell

stress tensor represents the flux of the i−component of the momentum along the

direction ĵ:

Mij = − 1

4π

(
EiEj +BiBj −

δij
2

(E2 +B2)

)
. (3.32)

we neglect the terms relative to the electric field, because in astrophysics the

electrical conductivity is infinite and ~E = −~v
c
∧ ~B, so they are quadratic in v/c.

rMrφ is the flux of the component Lz of the angular moment through a surface

orthogonal to φ̂, that is the angular moment lost by the material within the radius

r, benefiting the material outside the radius r.

Hence, the torque G is:

G =

∫
dφr

∫
dzrMrφ =

r2

2

∫
dzBrBφ (3.33)

Here a problem arise: in case of hydromagnetic turbulence, Br and Bφ are

completely uncorrelated ad hence their average is null: hence there cannot be

any loss of angular momentum.

To produce a flux of angular momentum it is necessary that BrBφ is negative

along all the lines r = constant: this is the result of a magnetohydrodynamical

instability, known as BHVC or MRI.

Consider a magnetic field line, oriented along the rotational axis, at distance r0

from the center: let us suppose that the line immersed in the disk is perturbed in

a ”S” shape. Since the electric resistance is null the magnetic field is frozen out,

so the central point of the S, settled in r0, continue to rotate with unperturbed

velocity, while the curves of the S are settled in regions that rotate faster or slower

than r0. As a result, the line is stretched in a direction that has both radial and

tangential components. The shape of the S become always more stressed, while

the magnetic field try to rectify it. Distinguishing fours part in the S according to

their concavity and convexity, it is found that in each part the sign of the product

BrBφ is consistent, showing that there is an outward flux of angular momentum.

Having described the main features of an accretion disk, before to end this

section we want to highlight some observations.

First of all, eq.(3.30) shows that stellar mass BHs have accretion disks that

emit mainly in the X-ray band. The accretion disks of supermassive black holes

of masses of order 109M�, instead, have the maximum of the emission in the

UV band; nevertheless, observations show that the environments that surround
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SMBHs are also characterized by a strong emission in the X-ray band.

Since the origin of the energetic X-ray photons cannot be the disk itself, it is

likely that their source is a hot medium in the proximity of the disk. The scientific

community agree that the soft disk emitted photons could be upscattered to their

observed X-ray energy through inverse Compton effect in a hot, diluted gas called

corona. The conditions for the formation of a hot corona around a thin accretion

disk are still unknown, although there are some interesting hypothesis that involve

an high density gradient in the disk accretion and the heating of the outer layers

through both the radiation from the disk and strong magnetic fields. Figure

3.2 shows two possible locations of the corona: the right side of the pictures

involves a disk-corona structure in which the corona photons can irradiate the

disk, changing the local energy balance. This possibility complicates the physics

of the disk, that will not be described here.

Figure 3.2: Two schematic diskcorona structures showing possible locations of
the corona and the scattering geometry of the disk-produced and corona-produced
photons, by (Netzer 2013).

We conclude this section stressing that, in order to predict an AGN spectrum,

we need to take into account that, in their travel throughout the host galaxy, the

photons produced in a SMBH’s environment have some probability to interact

with the interstellar medium and hence to be absorbed or scattered away. Since

this work is focussed on the visibility of quasars in the X-ray band, we will

concentrate on the main processes that determine an attenuation of the flux

emitted in the this band: the Compton effect and the photoelectric effect (being

the energy of the X-ray photons higher of the ionization energy of the atoms,

we will assume that the photoelectric absorption occurs with the extraction of

an electron from the K-shell of the atom (Morrison and McCammon 1983 and

Yaqoob 1997).

Going through a material with number density n for an infinitesimal path dl,

the number of photons in a beam N change as: dN = −Nnσdl, where σ is the

total cross-section for the attenuation processes. Hence, the photons that survive

after having travelled along a line of sight are:

N = N0 e
−

∫
nσ dl = N0e

−τ , (3.34)

36



3 Active Galactic Nuclei

where τ is a key quantity in astrophysics and is called optical depth.
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4 Faint progenitors of luminous

quasars

In this chapter we will introduce the scientific issue that underlies this work: it

concerns the formation and the growth of the supermassive (∼ 109M�) black holes

(SMBHs) that power high-redshift active galactic nuclei (AGNs). Several models

have been theorised to explain the existence of such massive objects less than one

billion years after the Big Bang, when galaxies were in their infancy: some models

explore the possibility that these enormous objects form by accretion on smaller

BHs, others call for the gradual merging of stellar-mass or intermediate-mass

black holes, the progenitors.

Section 4.1 is a brief introduction to the problems of the SMBHs’ formation

and growth. Then, in section 4.2, we will describe the theoretical models related

to the collapse and the formation of BHs of stellar and intermediate mass. In

section 4.3 we will introduce the outstanding issues related to the accretion and

present the merging theory. Finally, in section 4.4 we will describe the ”merger

tree” method, that allow us to study hierarchical models in which SMBHs form

by merging.

4.1 The problem

In chapter 3, we illustrated the current paradigm that explains the central

engine of these bright non-stellar sources, known as quasars, observed in our

universe. However, the detection of high-redshift quasars poses several other

questions concerning their birth, growth and evolution.

The most distant quasar currently known, ULAS J1120+0641 (Mortlock et al.

2011), has a redshift z = 7.085, corresponding to less than 800 millions years after

the Big Bang.

Following Petri et al. 2012, if we assume that the BH accretes a mass fraction
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(1− η) at the Eddington rate (see section 3.3), its growth can be described as:

d lnM

dt
=

1− η
η

1

tE
(4.1)

where tE ≈ 0.45Gyr is the Eddington time defined in section 3.3. Thus:

M(z) = M0e
1−η
η

t(z)
tE . (4.2)

Hence, for the usually assumed value of the radiative efficiency η = 0.1, ULAS

J1120+0641 requires an initial seed (i.e. the initial black hole of mass M0, that

is the starting point from which a SMBH can form) with mass M0 ≥ 500M�
1

to achieve a mass M = 2× 109M� (Mortlock et al. 2011) at z ∼ 7: a value that

is much larger with respect to the mass Mstars < 100M� estimated for the first

stars (Greif et al. 2011). Furthermore, it is not realistic to assume that accretion

occurred at its maximum value (the Eddington rate) for almost 1 Gyr.

This example highlights two main outstanding issues concerning the high-

redshift quasars central BHs:

• the nature and the formation of their seeds,

• the mechanisms through which the seeds accrete up to the huge mass of a

SMBH.

We will discuss the first issue in sec. 4.2 and the second one in sec. 4.3.

4.2 Seed formation models

In this section, we will focus on the SMBHs’ seeds and in particular on the

theoretical models developed to describe their formation. Approximately the

seeds can be distinguished (Volonteri 2010) in:

• light seeds (M ≈ 102M�), formed in the very early universe (z ' 20− 50),

• intermediate seeds (M ≈ 103M�), formed between z ' 10− 15.

• heavy seeds (M ≈ (104 − 106)M�), formed between z ' 5− 10,

According to theoretical models, light seeds form very early, hence, in principle,

they have more time to grow and to merge; nevertheless, their accretion rate is

1the value 500M� is a lower boound, in fact it has been calculated as if the time available for
accretion was 0.77 Gyr, the age of the universe at z = 7.
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lower, especially in presence of its own radiative feedback. On the other hand,

heavy seeds have less time to grow, but this can be compensated by they higher

initial mass.

Current observations do not allow us to understand if one of these initial con-

ditions is favourite: we rely on future high-redshift observations performed by the

next generation of telescopes, such as the James Webb Space Telescope (JWST).

In this work, we will briefly describe two main hypothesis: that the SMBHs’

seeds are the result of a direct gravitational collapse and that they are remnants

of massive stars, These formation models will be the main topic of the subsections

4.2.2 and 4.2.1.

4.2.1 Direct collapse

In this chapter we will introduce the direct collapse process. This model of BHs’

formation was introduced to solve the problem of the SMBHs’ seeds nature and

predicts that, under specific conditions, compact objects of mass up to 106M�

can form directly through general relativity (GR) instabilities.

In order to explain the conditions needed for a direct collapse black hole

(DCBH) to form, we need to analyze the cooling processes that occur in as-

trophysical environments. In a non-ionized gas cloud (it is indeed the case if the

temperature T is lower than 105 ÷ 106 K), the cooling channels are essentially

three:

• if heavy elements are present in a fraction Mmetals/Mgas > 10−4, they domi-

nate the cooling through processes as dust thermal emission, molecular and

atomic line emission.

• If the gas is pristine (i.e. metal-free), the cooling proceeds through the re-

laxation of the H2 rotational bands: the minimum temperature above which

this cooling channel is enabled is TH2 = 102÷103 K. Anyway theH2 molecule

is rather fragile: if the background flux in the Lyman−Werner band (11.2-

13.6 eV) is strong enough (order of 10−18 ÷ 10−16 erg cm−2 s−1 Hz−1, from

Bromm and Loeb 2003), it breaks and the cooling process is realized only

through atomic hydrogen.

• The cooling of a pristine atomic gas cloud is executed mainly by the Lyman−α
emission of the neutral H, that takes place for a minimum temperature

≈ 104 K.
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Numerical simulations suggest that there are three precise conditions to be

simultaneously satisfied for the direct collapse to occur:

• the halo must be pristine: the consequences of the presence of metals has

been studied by Omukai et al. 2008 performing numerical simulations; ac-

cording to their results, for metallicities above 10−4, cooling induces frag-

mentation in pieces of mass ∼ 0.1M�.

• The halo must be massive enough for the cooling to be dominated by the

atomic H, hence is virial temperature must be Tvir > 104 K.

• The Lyman-Werner background must be strong enough for the H2 cooling

to be inhibited, so that no fragmentation (and so star formation) can occur.

In fact, efficient gas collapse leading to a massive black hole seed formation

is mutually exclusive with star formation, as the competition for the gas

supply limits the collapsing mass available.

Under these conditions, the baryons stream toward the center and it is possible

that they enter a GR instability that leads to the formation of a DCBH.

DCBHs are a fascinating and popular solution to the problem of the seeds

formation; nevertheless, at the present time it is only a theoretical scenario that

has not been observationally confirmed yet.

4.2.2 Massive star remnants

One of the most popular scenarios for the formation of SMBHs associates their

seeds to the remnants of the older generations of stars. Astronomers distinguish

three population of stars by their abundance of heavy elements:

• population I (popI) stars includes the Sun and are the most rich in metals.

According to the models for formation of heavy elements, they are likely

to be formed out by the gas contaminate with the heavy elements formed

by previous giant stars. Since they are generally settled in low redshift

galaxies, popI stars are not likely to form high-redhift SMBHs’ seeds.

• Population II (popII) stars are generally settled in high-redshift galaxies.

Their main feature is the low metal contents, due to the fact they formed in

regions with no heavy-element pollution. Since popII stars can be massive,

they could be good candidates for the formation of the SMBHs’ seeds.
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• population III (popIII) stars are predicted to form by pristine gas and are

completely metal-free. We saw in the last subsection that above a cer-

tain temperature threshold the H2 time is shorter than the Hubble time at

virialization and stars can form. Simulations of the collapse of primordial

molecular clouds Carr et al. 1984 suggest that the first population of stars

was also very massive (M∗ > 100M�). Anyway, even if the popIII stars’

remnants would be good candidate for the formation of SMBHs’ seeds, their

existence has not been confirmed yet, but see Sobral et al. 2015 for recent

claims of observations.

Very massive stars have an estimated lifetime of order of million years and their

end depends mainly on the value of their mass:

• 25 < M∗/M� < 140. In this mass range, a metal free star is predicted to

form directly a BH. Nevertheless the resulting BHs are predicted to be too

light to settle at the center of the host galaxy potential well and may be

wandering within the host. Hence, stars in this range of masses are not

predicted to leave a SMBHs’ seed.

• 140 < M∗/M� < 260. Theoretical models predict that in the core of massive

stars within this range, after the central He burning, electron-positron pairs

are produced in abundance. The loss of this radiative energy (called pair-

instability) causes a decrease of the radiation pressure and a violent collapse

of the star under its own gravity, until O and Si burning produce enough

energy to reverse the collapse. This kind of stars are not supposed to

produce BHs, since the nuclear-powered explosions completely destroy them

and leave no remnants (references).

• M∗/M� > 260. In this mass range, a star is not affected from the instability

described in the previous point and it can collapse in a black hole without

destructive explosions. The BHs produced in this case have masses inter-

mediate between those of the stellar and the supermassive variety, then the

final destiny of a star in this case could be to form a SMBH seed.

To conclude this section, we comment that remnants of very high redshift

massive stars can give life to SMBHs’ seeds, but their mass is likely to be of order

102M�, and we still need to understand if these light seeds can grow up to the

huge mass of a SMBH.
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4.3 The growth problem

Assuming that a black hole seed forms at z = 20, the simple calculation in sec.

4.1 tells us that, if it starts from a mass that is at least 102 ÷ 103M�, it could

reach a mass of order 107 ÷ 108M� at z = 7, provided that it accretes always

at the Eddington rate (eq. (3.8)). Anyway, there is no a well justified reason to

assume that a black hole accretes at the maximum accretion rate all its life long:

this scenario is not explained by numerical simulations.

Some authors, for example Willott et al. 2010, studied the possibility of the

formation of SMBHs starting from small (M < 100M�) seeds, provided they

experience several mergers and periods of super-Eddington accretion. Current

observations support the fact that sporadic events of super-Eddington accretion

can occur at z ∼ 6: in these conditions, low mass seeds can still generate a

SMBH. Others, for example Petri et al. 2012, explored the possibility that the

growth occurs through merging of heavier seeds.

In the subsection 2.2.5 we explained that the structure formation through the

growth of perturbations in the cosmic density field occurs bottom − up: smaller

structures form first and, gradually, the formation of more massive structures

takes place. The detection of high redshift interacting galaxies highlights the

possibility that the DM halos supposed to embed low-redshift galaxies could be

formed by merging of two already virialized halos. We expect that the hierarchi-

cal build-up of galaxies through mergers could produce black hole binaries that

tighten because of the dynamical friction with the background gas and finally

coalesce. Some authors (e.g. Berti et al. 2006) claimed that, with our current

experimental instruments, we can hope to identify SMBHs’ seeds during their

mergers by their gravitational-wave emission predicted by general relativity.

From the theoretical side, the study of the merging of virialized haloes can

be done with the mass function formalism described in the subsection 2.2.5: the

probability distribution function in eq.(2.59) of chapter 2 can be converted to a

Monte Carlo code through a computational procedure that, given a DM halo at

a given z, simulates its statistical merger history. This method is the main topic

of the next section.

4.4 The Merger-Tree method

In subsection 2.2.5 we described the PS formalism and mention the extended

PS formalism from which we can obtain equation (2.59).
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Given an halo of mass and redshift (M1, z1) the extended PS formalism allows

us to know the mass distribution of the progenitors at some redshift z2 > z1.

In the limit z2 → z1 (i.e. for a small redshift interval ∆z), one can write:

dN

dM2

(z2 → z1) =
M1

M2
2

dfPS(ν12)

dz2

∣∣∣∣ d ln ν12

d lnM2

∣∣∣∣∆z (4.3)

that is proportional to the mean number of progenitors of mass M2 in which

the parent halo of mass M1 is split when a step redshift z1 −→ z2 = z1 + ∆z

is taken. Lacey and Cole 1993 exploited these results to develop a computa-

tional approach to study hierarchical models in which structures grow through

gravitational instabilities: the merger tree method.

This approach is based on an algorithm that can be used to reconstruct sort

of a genealogical tree of a SMBH: considering a DM halo of mass M1 at z = z1

hosting a SMBH, the algorithm proceeds backward in time reconstructing its

statistical merger history, accounting at each step that the halo can be split in

two progenitors or not.

To construct the numerical algorithm essential to simulate dN
dM2

, one needs to

fix a mass resolution Mres to keep the computational time reasonable (all detail

of M < Mres are ignored). Lacey and Cole 1993 defined the mean number of

progenitors, P , and the mass fraction of the final object in progenitors of mass

smaller than Mres, F :

P =

∫ M1/2

Mres

dN

dM2

dM2, (4.4)

F =

∫ Mres

0

dN

dM2

M2

M1

dM2 (4.5)

Setting the initial condition (M1, z1) we go backward in time of a redshift

interval ∆z small enough to ensure that the splitting is at most binary (i.e.

P � 1). Then a number 0 < R < 1 is generated and is compared to P :

• if R > P , the halo does not split in two parents and its mass at redshift

z1 + ∆z is M1(1 − F ), i.e. the ignored details below Mres are assumed to

be accreted mass in the time interval corresponding to −∆z.

• if R ≤ P , the halo split in two progenitors: one of mass M2 (randomly

generated in the mass interval Mres < M2 < M1/2) and one of mass M1(1−
F )−M2.

This procedure is iterated for every new generated halo, at increasing z, gen-
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erating the merger tree. Thus, in the description of a merger tree algorithm, we

need to specify the following parameters: Mres,∆z, z1, zend,M1. In figure 4.1 is

represented an example of merger tree.

Figure 4.1: Example of merger tree with 3 levels and 11 nodes. In the figure, the
”parent” halo splits in 3 progenitors of M > Mres at redshift z2 (courtesy of A.
Petri, master thesis).
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spectrum

In the last chapter, we introduced the scientific issue that concerns the super-

massive black holes (SMBHs) formation and the theoretical models developed in

order to solve it. Among them, we considered the possibility that these powerful

objects form by merging of smaller black holes, besides accreting material falling

into the black hole.

Having the chance to detect the SMBHs’ ancestors would be a remarkable ob-

servational breakthrough and would give cosmologists the opportunity to improve

our knowledge on the birth and evolution of these mysterious objects and their

host galaxies and to better constrain the theory.

Several detection attempts have been done with the most powerful observa-

tory available at the moment, the Chandra X-ray Observatory, but no positive

responses have been obtained at the present time.

In the following two chapters we will try to understand if our current technolo-

gies are sensitive enough to detect such sources. In particular we will investigate:

(i) if they are very faint (for example because they could be buried in a blanket of

obscuring material) and need more sensitive tools to be observed; (ii) if they are

very rare and we should explore larger regions of the sky to increase the detection

probability.

The aim of this chapter is to model the radiative X-ray flux density of an ac-

creting black hole (BH) and the following absorption from the obscuring material

that surrounds the source; this emission model will be applied to the accreting

high-redshift black holes simulated with a merger tree by Valiante et al. 2011, in

order to estimate the X-ray luminosity expected for the SMBHs’ ancestors.

In sec. 5.1 we will describe in details the data that the merger tree by Valiante

et al. 2011 provide us. Then, in sec. 5.2 and 5.3, we will describe the emission

and the absorption model, respectively, and we will make a prediction on the

expected SMBHs’ ancestors luminosity in the X-ray band.
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5.1 Data from the Merger-Tree -

GAMETE/QSODUST

Valiante et al. 2011 developed a semi-analytical model for the formation and

evolution of high-z quasars, in order to study the origin of dust in these objects.

In particular, they studied the case of a dark matter halo of Mh = 1013M� at

z = 6.4 and compared their results with the observational features of the quasar

SDSS J1148+5251, powered by a BH of mass MBH ≈ 3 × 109M�, detected at

z = 6.4 Willott et al. 2003.

Their code (GAMETE/QSODUST) consists of two blocks: the first one runs

backward in time and stochastically reconstructs the merger tree of the assumed

1013M� dark mater halo at z = 6.4; the second runs forward in time and allow

them, thanks to an analytical model, to follow the evolution of the baryonic

component of the halo and the growth of the central BH.

The first block of their code is based on a merger tree with the following

characteristics (see section 4.4 for the meaning of each quantity):

• a redshift dependent resolution mass Mres(z) = 10M(Tvir = 104K, z), being

M(Tvir = 104K, z) the mass of a DM halo with a virial temperature of 104

K (eq. (2.48)) at redshift z;

• 5000 redshift intervals logarithmically spaced in the expansion factor be-

tween z = 6.4 and z = 37.

• a BH seed of mass Mseed = 104h−1M� assigned to all the progenitor halos

corresponding to density fluctuation higher than 4 − σ (M > M4−σ) that

exceed the threshold mass required to form stars (M > Msf ) for the first

time in the merger tree.

Here we briefly present in detail the (Valiante et al. 2011) data that we are

going to use in the next parts of the chapter.

We will use four sets of data, corresponding to two different models (labelled

as B1 and B3), at two different redshifts (z = 7 and z = 8). Each of the four

data sets contains the accretion rate in M�/yr for each progenitor, the hydrogen

column density in cm−2, the metallicity (ratio of the metals mass to the total gas

mass) and the ratio of the dust mass to the total gas mass for its surrounding

environment.

The two models differ for the prescriptions used for star formation history

(SFH), star formation efficiency and initial mass function (IMF):
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Model B1 Model B3
z = 7 8.3× 10−4 6.4× 10−4

z = 8 3.4× 10−4 2.8× 10−4

Table 5.1: Average accretion rates (in M�/yr) for models B1 and B3 at z = 7
and z = 8. It is worth to notice that the average accretion rate at redshift z = 8
decrease of a factor ≈ 2 with respect to z = 7 in both models.

• the SFH is the time distribution of the star formation occurred in the halo.

In GAMETE/QSODUST it is decomposed in a continuous and a bursty

components; In the models B1 and B3 the bursty component dominates.

• the star formation efficiency is the fraction of baryons in the galaxy that is

in stars. The model B1 has a lower star formation efficiency than the B3.

• the IMF φ(M)dM is the probability that a newly formed star has a mass

between M and M + dM .

Both models assume that stars form according to a Larson IMF (Larson 1998):

φ(m) ∝ m−αe−
mch
m (5.1)

where α = 2.35 is the Salpeter power law index Salpeter 1955, but differs for

the value of the parameter mch that is 5M� in model B1 and 0.35M� in model

B3; the trend of the Larson IMF for this two different values of mch is shown in

figure 5.1: a larger value of mch shifts the maximum of φ(m) to a larger value of

the stellar mass.

In the following, for brevity, we will show only to the details obtained for the

B1-set of data, where they are analogue to the ones obtained using model B3.

We will highlight the differences with some comments, where there is any.

Figure 5.2 shows the probability distribution function (PDF) normalized to

unity of the BH accretion rates, for model B1 at z = 7, while the numerical

values of the average accretion rates for each data set are shown in table 5.1. In

both models B1 and B3 the accretion rates vary from 10−7M�/yr to 102M�/yr

(with an average accretion rate that is slightly higher for the model B1) and there

is a decrease of a factor ≈ 2 of the average accretion rate at redshift z = 8 with

respect to z = 7.

We call quiescent (active) a SMBH if the luminosity produced by its accretion

is less (greater) than the typical luminosity of a galaxy, that we will assume to be

Lgalaxy ≈ 1011L� ≈ 4× 1044erg/s. Then, assuming a radiative efficiency η = 0.1,

equation (3.9) suggests that a quiescent BH should have a mass accretion rate
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φ
(M
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mch = 5M�
mch = 0.35M�

Figure 5.1: Trend of the Larson IMF for the two different values of mch that
discriminate models B1 and B3. As is shown the larger value of mch shifts the
maximum of φ(M) to a larger value of the stellar mass. Each φ(M) is expressed
in arbitrary units.
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Figure 5.2: Probability distribution function of the mass accretion rates ṀBH

of the black holes simulated by Valiante et al. 2011 for their model B1 at z = 7.
With a quick glance at the picture we can see that the majority of the simulated
progenitors are quiescent (i.e. have ṀBH ≤ 6 × 10−2M�/yr) and only a minor
fraction is active (i.e. have ṀBH > 6× 10−2M�/yr).
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Model B1 Model B3
z = 7 0.77 0.89
z = 8 0.79 0.91

Table 5.2: Fraction of progenitors that present an accretion rate lower than 6×
10−2M�/yr for models B1 and B3 at z = 7 and z = 8. The progenitors at z = 8
are characterized by a more quiescent fraction and progenitors simulated according
to the model B1 are characterized by a higher active fraction.

ṀBH ≤ 6 × 10−2M�/yr. According to figure 5.2, the majority of the simulated

progenitors are quiescent and only a minor fraction is active. In table 5.2 is listed

the fraction of quiescent progenitors for the two models and the two redshifts:

progenitors simulated according to the model B1 are characterized by a higher

accretion activity.
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Model B1, z = 7

Figure 5.3: Probability distribution function of the column densities NHI simu-
lated by Valiante et al. 2011 for their model B1 at z = 7. No one of the progenitor
is surrounded by a Compton thick (NHI ∼ σT−1 = 1.5× 1024cm−2) environment.

Figure 5.3 shows the probability distribution function (PDF) normalized to

unity of the BH neutral hydrogen column densities NHI, for model B1 at z =

7. Table 5.3 reports the average column densities for the two models at the

two redshifts. z = 8 progenitors are covered by a hydrogen blanket that is the

20% more dense with respect to the ones at z = 7. Furthermore the B1 model

generated progenitors more obscured than in model B3.

It’s interesting to note that no one of the environments simulated by Valiante

et al. 2011 is Compton-thick, that is none has a column density higher than

NHI ∼ σT
−1 = 1.5 × 1024cm−2, where σT = 6.6 × 10−25cm2 is the Thomson

cross-section (Comastri 2004).

Finally, figure 5.4 shows the PDF normalized to unity of the metallicity and
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Model B1 Model B3
z = 7 3.0× 1022 2.7× 1022

z = 8 3.7× 1022 3.2× 1022

Table 5.3: Average column densities (in cm−2) for models B1 and B3 at z = 7
and z = 8. z = 8 progenitors are covered by a hydrogen blanket that is the 20%
more dense with respect to the ones at z = 7. Furthermore the B1 model gener
ated progenitors more obscured than in model B3.

the dust to gas ratio in the environment around the simulated progenitors. In

particular, figure 5.4a shows that a very small fraction of the simulated BHs is

surrounded by an environment with metallicity higher or equal to the solar value

Z� = 0.0122 (Asplund et al. 2009), being logZ� ≈ −2.
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(a) Metallicity
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(b) Dust to gas ratio

Figure 5.4: These figures show on the left (right) the probability distribution
function of the metallicities (dust to gas ratios) simulated by Valiante et al. 2011
for their model B1 at z = 7.

To conclude the description of the data that we will use, we want to understand

if there are some relation between the simulated properties of the progenitors

(accretion rate, hydrogen column density, metallicity and dust ratio). As repre-

sentative case we will show the results for model B1 at z = 7 only. In figure 5.5

we report the scatter plot of the mass accretion rate versus the hydrogen column

density and the dust to gas ratio. The scatter plots of the other four possible

coupling of the four quantities do not reveal any strong correlation among them.

As is shown in figure 5.5a the simulated progenitors can present a high, (10−2÷
102)M�/yr, accretion rate in the whole range (1021 ÷ 1023)cm−2 of hydrogen

column densities. However, more than a half of the progenitors lies in corre-

spondence of low (ṀBH < 10−2M�/yr ) accretion rates and column densities

NHI > 1022cm−2, while it can be noticed that very few progenitors (and, in some
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models, none) present at the same time very low accretion rate and very low

column density.

The direct correlation between the dust to gas ratio and the mass accretion

rate appears more well-defined: according to figure 5.5b there are not active

progenitors with low dust to gas ratio ( Mdust

Mgas
< 10−4) and there are not quiescent

ones with high dust to gas ratio.
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(a) Accretion rate vs column density
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(b) Accretion rate vs dust to gas ratio

Figure 5.5: Correlation between the mass accretion rate and the other quantities
simulated by Valiante et al. 2011 . (a) More than a half of the progenitors lies in
correspondence of low accretion rates and high column densities. (b) There is a
well-defined direct correlation between the dust to gas ratio and the mass accretion
rate.

5.2 The intrinsic flux density

In chapter 3 (section 3.3) we noticed that accretion on a BH is an efficient

mechanism for producing electromagnetic radiation. The generated luminosity is

usually parametrized in terms of the dimensionless radiative efficiency η:

Lbol = ṀBH
ηc2

1− η (5.2)

We have already highlighted in section 3.3 that the estimation of realistic values

of η is an important and problematic issue: we remind our choice to assume the

standard value in literature (e.g. Vietri 2006, Petri et al. 2012, Volonteri and

Stark 2011 and Frank et al. 2002) η = 0.1, as fiducial value. Thus, according to

(5.2), Lbol(ṀBH) = 6.4× 1045
(

ṀBH

1M�/yr

)
erg · s−1.

Since the luminosity Lbol is the sum of the optical-ultraviolet and the X-ray

luminosities radiated by the accretion disk and the hot corona, respectively, we
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need to apply suitable bolometric corrections to Lbol in order to estimate the

luminosity in both the soft and the hard X-ray bands.

The employed bolometric correction (Marconi et al. 2004) is expressed by the

luminosity dependent relations:

log[L/L(2− 10keV)] = 1.54 + 0.24L̃ + 0.012L̃2 − 0.0015L̃3 (5.3)

log[L/L(0.5− 2keV)] = 1.65 + 0.22L̃ + 0.012L̃2 − 0.0015L̃3 (5.4)

where L̃ = (logL− 12) and L is the bolometric luminosity in units of L�.

The X-ray emission can be modeled as a single power law:

Fν = F0ν

(
ν

ν0

)−α
(5.5)

where the intrinsic flux density Fν is related to luminosity through the relation:

Fν =
(1 + z)fνL

4πdL(z)2
, (5.6)

dL(z) is the redshift dependent luminosity distance defined in section 2.1.1 and

fν is the chosen bolometric correction, normalized according to eqs. (5.3) and

(5.4).

Our fiducial value α = 0.9± 0.1 for the slope of the X-ray spectrum is derived

from the analysis of the XMM-Newton spectra of 40 quasars at redshift z ≤ 1.72

performed by Piconcelli et al. 2005.

In figure 5.6 it is shown the X-ray intrinsic flux density of a BH that is accreting

1M�/yr; the shaded region represents the range of the values permitted for the

flux density if the slope α varies between (−3,+3)σ around the fiducial value

α = 0.9.

5.3 Absorption from obscuring material

As noticed in section 3.3.2, the radiation produced in the immediate surround-

ings of a BH has a certain probability to interact with the gas and dust in its

environs. In particular, the two main attenuation processes are the photoelectric

absorption and the Compton scattering of a photon against a free electron.

The attenuated radiative flux, after the interaction with matter, is:
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Figure 5.6: Intrinsic flux density evaluated for a BH that is accreting 1M�/yr.
The black line represents the plot arising from the fiducial value of α = 0.9 from
Piconcelli et al. 2005, while the shaded region spans over the values that the
flux density takes between α ± 3σ. Since the shaded region depends only on the
parameter α, we put it arbitrarily to zero at 6 keV.

F obs
ν = Fνe

−τ , (5.7)

where τ = (1.2σT +σph)NH is the total optical depth (Yaqoob 1997), as defined

in section 3.3.2, NH is the hydrogen column density, σph is the photoelectric cross

section and σT is the Thomson cross-section.

The factor 1.2 in the previous equation is justified as follows: if we assume

that the whole helium is double ionized at the energies in play (assumption well

motivated because the He second-ionization potential is about 0.05 keV and we

are considering photons in the X-ray band), then the number of free electrons in

the gas will be the number of hydrogen atoms plus twice the number of helium

atoms:

ne− = nH + 2nHe = nH(1 + 2
nHe
nH

) ' nH(1 +
Y

2X
), (5.8)

being X (Y ) the ratio of the hydrogen (helium) mass to the total mass gas,

nHe = MHe

µHemu
≈ Y Mgas

4mp
, nH = MH

µHmu
≈ XMgas

mp
, and µH , µHe the atomic weight of

H and He respectively and mu the atomic mass unit.

For a primordial universe, where the values for X and Y are esteemed to be

around X ≈ 0.76 and Y ≈ 0.24, ne− ' 1.16nH ; but since stars are supposed
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to produce helium and heavier elements, it is reasonable to assume that these

primordial values are lightly modified: assuming a solar-like X = 0.70 and Y =

0.30, then ne− ' 1.21nH . Hence, we adopt ne− = 1.2nH as fiducial value, in

agreement with Yaqoob 1997. However, this choice does not affect our results:

we calculated that the contribution of the Compton effect to the total optical

depth is about 0.2% at both 1 keV and 10 keV.

Morrison and McCammon 1983 computed an interstellar photoelectric absorp-

tion cross section as a function of energy in the range (0.03÷ 10) keV, for metal-

licity Z1982
� = 0.0263, that in 1982 was estimated to be the metallicity of the Sun.

1

As we discussed (see figure 5.4b), the values of metallicity simulated by Valiante

et al. 2011 span a wide range of values: thus, we need to obtain a metallicity

dependent cross section. To this purpose, we will break the photoelectric cross

section in three terms, expressing the contribution of hydrogen, helium and metals

atoms, respectively:

σph = σH + σHe + σmetals. (5.9)

The only term in the previous equation that depends on metallicity is σmetals;

therefore if we compute σH and σHe, we can obtain σMMCC
metals for the metallicity

used by Morrison and McCammon 1983:

σMMCC
metals = σph − (σH + σHe). (5.10)

Since σmetals is proportional to the metallicity:

σmetals(Z) = σMMCC
metals

(
Z

Z1982
�

)
(5.11)

and thus we can compute σph for an arbitrary metallicity.

The hydrogen ionization energy (≈ 13.6 eV) and the helium second ionization

energy (≈ 54.4 eV) are much lower than the energy in play (order of keV), hence

the terms σH and σHe can be safely evaluated in Born approximation.

Following Shu 1991, the cross section in Born approximation for an hydrogen-

like atom is:

σShu =
8π

3
√

3

Z̃4mee
10

ch̄3(h̄ω)3

√
48Z̃e2

2aZh̄ω
, (5.12)

being Z̃ the atomic number of each element (1 and 2 for H and He respectively),

1The current value for the solar metallicity is Z� = 0.0122, from Asplund et al. 2009.
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5 A simple model for the X-ray spectrum

me and e the electron mass and charge, c the speed of light, h̄ the reduced Planck

constant, and aZ = h̄2/Z̃mee
2.
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Figure 5.7: The photoelectric cross section. The dashed line shows the cross
section calculated by Morrison and McCammon 1983, while the solid line represent
the cross section evaluated as in equation (5.10) and scaled for solar metallicity
Z�.

Figure 5.7 shows the photoelectric cross-section calculated by Morrison and

McCammon 1983 and the one evaluated with the method described above and

scaled for the current solar value of the metallicity. We can highlight a few

qualitative features:

• the cross section presents several gaps that corresponds to the K-shell energy

of different elements. In fact in the evaluation of the photoelectric cross

section has been taken into account that a certain element X contributes

to the absorption only if the energy of the photons is greater than the

K-shell energy. The height of the gap depends both on the abundance

of the elements and on their atomic number, for example the highest gap

correspond to the Fe.

• being the photoelectric cross section plotted in 5.7 multiplied by E3, it can

be evinced that the cross section is a decreasing function of the photon

energy. Hence, we expect that softer X-ray photons are subjected to a

heavier attenuation with respect to the harder one.

56



5 A simple model for the X-ray spectrum

Known the cross section of the absorption processes in play, we can compute

the observed flux density F obs
ν = Fνe

−τ . The resulting F obs
ν is shown in figure

5.8. The assumed values of the hydrogen column density and the metallicity of

the system are 1022cm−2 and 10−3 respectively. The red shaded region spans

over the values that the flux density takes between ±3σ around the fiducial value

α = 0.9 Piconcelli et al. 2005. The attenuation is heavier in the soft X-ray band

(0.5÷ 2keV), being about the 26% at the center of the band (1.25 keV). On the

contrary, hard radiation (2÷ 10keV) crosses the obscuring material undergoing a

very light attenuation, about the 0.1% at the center of the band (6 keV).
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Figure 5.8: Radiative flux density of a BH accreting 1M�/yr, after the interaction
(due mainly to photoelectric absorption and the Compton scattering) with the
surrounding material. The assumed values of the hydrogen column density and
the metallicity of the system are 1022cm−2 and 10−3 respectively. The red shaded
region spans over the values that the flux density takes between ±3σ around the
fiducial value α = 0.9 Piconcelli et al. 2005. The attenuation is heavier in the soft
X-ray band (0.5 ÷ 2keV), being about the 26% at the center of the band (1.25
keV). On the contrary, hard radiation (2÷ 10keV) crosses the obscuring material
undergoing a very light attenuation, about the 0.1% at the center of the band (6
keV).

Finally, figure 5.9 shows the attenuation of the intrinsic flux density of a BH

accreting 1M�/yr with a varying column density and with a metallicity value

fixed on 10−3.

Figure 5.10 shows the probability distribution function of the luminosity in the

soft [0.5 ÷ 2keV] (dark grey) and the hard [2 ÷ 10keV] (light grey) band of the

simulated progenitors for model B1, at redshifts z = 7, z = 8. The PDFs for
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Figure 5.9: Attenuation of the intrinsic flux density of a BH accreting 1M�/yr
as a function of NHI . The assumed value of the metallicity of the system is
10−3. It’s worth to notice that for hydrogen column densities larger than NHI =
2.5×1023cm−2 (dotted line) the whole emission in the soft X-ray band (0.5÷2keV)
is suppressed.

model B3 present analogue features.

The PDF for the soft luminosity is shifted to lower values with respect to the

hard one: this is due to the stronger attenuation of the radiation emitted by

a progenitor in the soft band with respect to the hard one. To have a notion

of the absorption of the soft radiation versus the absorption of the hard one, it

is sufficient to give a glance at figure 5.9 and to remember that the hydrogen

column densities simulated mostly belong to 1022cm−2 < NHI < 1023cm−2, so the

attenuated flux density of the simulated progenitors lies, on average, between the

yellow and the red lines.

Figure 5.11 shows the ratio of the soft luminosity to the hard luminosity for

each progenitor (for both models and the two redshifts), quantity that hereafter

will be simply called soft to hard ratio. As expected from previous plots and

considerations, the higher is the column density, the lower is the ratio between

the soft and the hard radiation that survive to the absorption.

Once highlighted the strong dependence of the soft to hard ratio on the column

density, we want to understand if it has a dependence on the metallicity of the

system: we considered the scatter plot of the column density and the metallicity

of the system, introducing as colour the soft to hard ratio of each progenitor
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Figure 5.10: Probability distribution function of the luminosity in the soft (dark
grey) and the hard (light grey) band of each simulated progenitor for the model
B1, at redshifts z = 7, z = 8. As expected from figure 5.9, radiation in the soft
band presents a heavier attenuation than the hard one.
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Figure 5.11: Soft to hard ratio of each simulated progenitor for model B1 at
redshifts z = 7. As expected, the higher is the column density, the lower is the
ratio between the soft and the hard radiation that survive to the absorption.
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(picture 5.12).

According to picture 5.12 the soft to hard ratio depends only weakly on the

metallicity of the system: the colours arrange themselves in regions that can be

delimited by almost vertical lines, showing that the soft to hard ratio is mostly

affected by the hydrogen column density rather than by the metallicity of the

gas.
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Figure 5.12: Scatter plot of the metallicity versus the hydrogen column density
in which colour highlights the soft to hard ratio of each simulated progenitor: blue
represents a higher value of the soft to hard ratio, while red corresponds to a lower
value.

5.3.1 The dust

In the current section, evaluating the photoelectric absorption, we have totally

neglected the contribution of dust.

In fact, as pointed out by Fireman 1974 the condensation of the absorbing

material into grains reduces the photoelectric cross section. Morrison and Mc-

Cammon 1983, following Ride and Walker 1977, estimated the importance of

this effect, evaluating the photoelectric cross section in the case that all elements

but H, He, Ne and Ar are totally condensed in grains (the only exception is the
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5 A simple model for the X-ray spectrum

oxygen that is assumed to be condensed at 25 %) : the result of their study is

shown in picture 5.13; the effect is very small at low energy, where most of the

absorption is due to hydrogen and helium, and at high energy, where the grains

are transparent to radiation.

Because of the rather small value estimated by Morrison and McCammon 1983

for the reduction of the photoelectric cross section, the 11% just above the carbon

edge (at 0.3 keV) and less than the 4% at 1 keV, we have not included the effect

of grains in evaluating the absorption of the intrinsic X-ray radiation.

Figure 5.13: The photoelectric cross section evaluated by (Morrison and McCam-
mon 1983). The dashed lines show the cross section calculated assuming that the
100 % of C, N, Na, Mg, Al, Si, S, Cl, Cr, Fe, Ni and the 25% of O are condensed
into grains. With courtesy of (Morrison and McCammon 1983).
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6 Observational forecasts

In the last chapter we modelled the X-ray emission of an accreting black hole

taking into account the absorption from the obscuring material in the black hole

environs.

In this final chapter we will try to understand if the SMBHs’ ancestors predicted

by theoretical models, but never detected so far, are indeed too faint (sec. 6.1)

or too rare (sec. 6.2) to be detected with the current observational tools; we

will focus on the most powerful observatory at the moment: the Chandra X-ray

Observatory.

In section 6.1, we will describe the main observational features (such as the

sensitivity, the energy bandpass and the field of view) of the Chandra X-ray

observatory. In section 6.2 we will calculate the expected number of detectable

progenitors as a function of the characteristics of the performed survey and in

section 6.3 we will propose an observational strategy in order to maximize the

probability to detect a supermassive black holes’ progenitor.

6.1 The sensitivity of Chandra

The Chandra X-ray Observatory was launched in 1999 and it is still in oper-

ation. The telescope consists in the High Resolution Mirror Assembly (HRMA)

that is large 1.2 meters and has an effective collection area of 400 cm2 at 1 keV.

The extreme accuracy of HMRA permits an angular resolution unprecedented for

this kind of instruments: 0.5 arcsec.

Chandra has multiple focal plane instruments but in this work we will use

only the Advanced CCD Imaging Spectrometer (ACIS): it collects photons in an

energy range of ∆E = 0.5÷ 8keV, divided in a soft (∆Esoft = 0.5÷ 2keV) and a

hard band (∆Ehard = 2÷ 8 keV). In the imaging setup the ACIS has four CCD

chips each one with 1024x1024 pixels and an image scale of 0.5 arcsec per pixel;

this results in a field of view of 16.9x16.9 arcmin2.

Since we are interested in high-redshift signals, the observational Chandra en-

ergy bands ∆Esoft and ∆Ehard in the rest frame are multiplied by (1 + z). So
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that at redshift z = 7, ∆Esoft corresponds to a energy range of [4, 16] keV in the

rest frame of the source that we want to detect. For this reason we can see that

even the soft Chandra energy band is dominated by the hard component of the

X-ray spectrum of the source.

In the following we will need to compute the Chandra sensitivity (i.e. the min-

imum detectable flux) for an arbitrary exposure time; in general in an instrument

we can have two types of noise:

• the detector noise: since this component adds a number of electrons in each

pixel with a time independent variance, its weight scales as the inverse of

time

σ(t) ∝ t−1 (6.1)

• the background noise: this noise arises from the Poisson fluctuations in the

number of the background photons. Since the variance of the number of

electrons that corresponds to this noise increases with the square root of

the exposure time, we have

σ(t) ∝ t−1/2 (6.2)

In general it is not trivial to determine which one of the two noise components

dominates; in fact this depends on the background intensity; we expected that

for large enough exposure time the second one dominates, but the calculation of

the threshold is beyond the aim of this work.

We adopted an empirical approach: from Xue et al. 2011, Alexander et al.

2003, Elvis et al. 2009 and Lehmer et al. 2005 we know the sensitivity of Chandra

in both the hard and the soft band if it performs observations with exposure time

of 4 Ms, 2 Ms, 0.16 Ms and 0.25 Ms, respectively.

Figure 6.1 show that, in both the hard and the soft band of Chandra, these

values can be well fitted by a 1/t law, where t is the exposure time. Therefore we

can conclude that for exposure time smaller than 4 Ms Chandra is not background

limited and:

σ(t) = 10−16.45 1Ms

t
erg · s−1 · cm−2 (6.3)

for the Chandra soft band,

σ(t) = 10−15.73 1Ms

t
erg · s−1 · cm−2 (6.4)

for the Chandra hard band.
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Figure 6.1: Sensitivity of Chandra Space Telescope. The values of the sensitivity
from Xue et al. 2011, Alexander et al. 2003, Elvis et al. 2009 and Lehmer et al. 2005
are fitted with: σ(t) = 10−16.45 1Ms

t erg · s−1 ·cm−2 and σ(t) = 10−15.73 1Ms
t erg · s−1 ·

cm−2 in the Chandra soft and hard band respectively. Since the instrument has a
higher sensitivity in the soft band than in the hard one, it is more advantageous
to look for faint objects in this band.

We want to understand if the current Chandra surveys can detect the faint

progenitors of luminous quasars once we assume that their emission is the one

predicted in chapter 5, starting from the progenitors simulated by Valiante et al.

2011.

To do so, we integrated the spectral energy distribution F obs
ν (eq.(5.7)) in the

Chandra soft band ∆Esoft = [0.5, 2] keV, that corresponds to ∆Ez=7
soft = [4, 16]

keV and ∆Ez=8
soft = [4.5, 18] keV for sources at z = 7 and z = 8, respectively.

Figure 6.2 shows the PDF of the expected flux of the supermassive black holes’

progenitors at redshift z = 7 and z = 8 in the Chandra soft band: the vertical

lines show the minimum flux detectable by Chandra with exposure time of 4 Ms,

1 Ms and 0.01 Ms.

Similarly, if we are interested in the Chandra hard band ∆Ehard = [2, 8] keV,

that corresponds to ∆Ez=7
hard = [16, 64] keV and ∆Ez=8

hard = [18, 72] keV for sources

at z = 7 and z = 8, respectively Figure 6.3 shows the PDF of the expected flux

of the SMBHs’ progenitors at z = 7 and z = 8 in the hard Chandra band.

Accordingly to fig. 6.2 and 6.3 we have the possibility to observe the most

luminous part of the progenitors with the Chandra X-ray Observatory: hence, in

the next section we will explore the possibility that these sources have not been

observed so far because they are rare.

Since from a comparison between fig. 6.2 and 6.3 we see that there are not

remarkable differences in the expected flux (and so in the observational forecasts)

but the sensitivity of the instrument in the hard band is lower: hence, hereafter,

we will only show the details for the detection of the SMBHs’ ancestors using the
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Figure 6.2: PDF of the expected flux in the Chandra soft band at redshift z = 7
(a) and z = 8 (b): the vertical lines show the minimum flux detectable by Chandra
with exposure time of 4 Ms, 1 Ms and 0.01 Ms.
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Figure 6.3: PDF of the expected flux in the Chandra soft band at redshift z = 7
(a) and z = 8 (b): the vertical lines show the minimum flux detectable by Chandra
with exposure time of 4 Ms, 1 Ms and 0.01 Ms.

6.2 Statistical analysis

Since the progenitors simulated by Valiante et al. 2011 have been created in

order to reconstruct the merger history of a dark matter halo of mass 1013M� at

z = 6.4, we can evaluate the comoving volume in which the simulated progenitors

are scattered as the ratio of the halo mass to the average comoving density of the

universe, ρc = 3H2

8πG
≈ 10−29cm−3. This way, the volume1 of one Valiante et al.

2011 box is Vbox = 79cMpc3.

1We have chosen to use comoving units, because they are redshift independent
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For our purpose, we will assume that the simulated progenitors lie on the two-

dimensional surface Sbox = V 2/3 = 18.38cMpc2, corresponding to a square of

side Lbox = V 1/3 = 4.28cMpc. At redshift z = 7, the surface Sbox corresponds

to ≈ 1.7 x 1.7arcmin2, much smaller than the field of view (FOV) of Chandra

AChandra = 16.9 x 16.9arcmin2.

Anyway, according to the Sheth and Tormen (ST) mass function (Sheth and

Tormen 1999), at z = 6.4 we are supposed to find on average 0.2 halos of 1013M�

every Gpc3. Thus, in volume of 5 Gpc3 we find one Valiante’s box on average. The

volume of 5 Gpc3 corresponds to a bidimensional surface≈ 700×700 arcmin2, that

can be completely explored by a survey that performs an observation that covers

about 4×105 pointings with the FOV of Chandra; anyway this observation would

be really challenging, because of the time needed to perform a so high number of

pointings.

The number of progenitors N expected to be observed by a survey that has a

sensitivity equal to F and that probes an area A of the sky is:

N(F,A) = N̄(F )
A

AST
, (6.5)

where, N̄(F ) is the number of progenitors that have a flux sufficient to be detected

by an instrument of sensitivity F , A is the area explored by the survey and AST

is the area corresponding to the volume occupied by one Valiante et al. 2011 box

according to the Sheth and Tormen mass function (5Gpc3)2/3.

Figure 6.4 shows N(F,A) estimated with model B1 of Valiante et al. 2011 data,

at z = 7 and z = 8. The slope of the lines with the same colour (i.e. the same

value of N(F,A)) is much steeper at z = 7 that at z = 8: in fact, with increasing

redshift the progenitors are more numerous (and smaller) so the same increase in

A corresponds to a larger increase in the detectable progenitors at z = 8. Blue

points correspond to actual Chandra surveys, whose characteristics are examined

in depth in Xue et al. 2011, Alexander et al. 2003, Elvis et al. 2009 and Lehmer

et al. 2005 . The meaning of the red points will be explained in sec. 6.3; we will

see that they correspond to the estimated best observational strategy for a given

exposure time. The position of the points in the F−A plane implies that the most

sensitive survey performed nowadays, the Chandra Deep Field-South (CDF-S),

that have a total effective time exposure of 4 Ms and explores a solid angle of 465

arcmin2, is observationally disadvantaged with respect to the Chandra COSMOS

(C-COSMOS) that, having effective exposure of 0.16 Ms, is much less sensitive

but cover a much wider region of the sky (6120 arcmin2). Hence, to improve
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the probability to detect a SMBH ancestor it seems to be observationally more

advantageous to perform several pointings than to increase the sensitivity with a

higher exposure time for a single pointing. This statement will be confirmed and

studied in detail in the next chapter.

6.3 Best observational strategy

In this section, we will try to understand if it is more observational advanta-

geous to increase the survey sensitivity or increase the area of the sky probed by

the survey. To do so, we will suppose to perform an imaginary experiment, in

which we have the Chandra space telescope available for a determined time Ttot;

it is interesting to calculate how invest this time in order to get the maximum

probability to detect one of the objects that we are looking for.

As representative set, we choose to focus on the results from the analysis of

the B1 set of Valiante’s data. The total time required by a Chandra survey that

probe an area A of the sky, executing n = A/AChandra pointings, each one with

an exposure time texp, is:

Ttot = Teff + ζ
A

AChandra
(6.6)

where the effective time

Teff = texp
A

AChandra
(6.7)

takes into account that some of the time is wasted in technical operations

needed to move the telescope in order to probe different regions of the sky. Ac-

cording to Elvis et al. 2009, the Chandra COSMOS survey performed four expo-

sure with nominal total exposure time Ttot = 0.20 Ms and effective exposure time

Teff = 0.16 Ms; hence, the technical time needed to prepare the telescope for a

pointing in a region of the sky is estimated to be ζ = 0.01 Ms.

Once we keep Ttot fixed, we can exploit eqs. (6.5) and (6.7) exploring the

parameter space in search of the values of the sensitivity F and the covered area

A to maximize the detectable number of progenitors.

Having followed this procedure for several values of the available time Ttot,

we obtained a plot (figure 6.5) of the maximum number of z = 7, 8 detectable

progenitors as a function of the time available for the observation, according to

our emission model developed in chapter 5. The observational forecast is slightly

more optimistic (with Nmax the 20% higher at Ttot = 4Ms) if the estimate is done
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Figure 6.4: Progenitors expected to be detect with the current Chandra surveys
(blue points) according to our emission model. The upper(lower) panel corre-
sponds to the observational forecasts at z = 7(z = 8). According to the figure, less
sensitive but wider surveys such as C-COSMOS 0.16 Ms are observatively advan-
tageous with respect to deeper but narrower ones (such as the CDF-S) Red points
refers to imaginary surveys that maximize the probability to detect a progenitors
once we assign an observation time (here, 2 Ms and 4 Ms).
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considering the progenitors simulated by Valiante et al. 2011 according to their

model B1, but totally analogue to the ones from model B3.

It is worth to notice that this result depends strongly on the parameter ζ:

we estimated that if it was ten times greater, in 4 Ms the maximum number of

detectable progenitors at z = 7 would be almost three times lower.
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Figure 6.5: Maximum number of z = 7, z = 8 ((a) and (b), respectively) pro-
genitors detectable by the Chandra space telescope in a total exposure time Ttot.
The solid (dashed) line corresponds to the model B1 (B3) by Valiante et al. 2011
: the observational forecast is more optimistic in model B1.

After these considerations, we can go back to figure 6.4. The red points in the

picture represent the values of the sensitivity and the covered area that maximize

the probability to detect a progenitor in an imaginary survey that observe the

sky for an efficient time of 2 Ms and 4 Ms. It is clear from the arrangement of

the these points in the F −A plane with respect to the actual CDF-N (2Ms) and

CDF-S (4Ms) that observatively is more advantageous to enlarge the probed area

rather than increase the sensitivity.

Because of the rarity of the expected progenitors, a shallow but large survey

have more chances to detect them with respect to a deeper but narrower one.

Anyway, being the ancestors at z = 8 fainter than their ”sons” at z = 7, they

need deeper surveys to be detected as we can see by the comparison between the

two pictures of fig.6.4.

To conclude this section, it’s important to discuss the validity of the prediction

of this thesis about the detectable MBHs ancestors. Being sprang from the study

of a very special region (the volume simulated by Valiante et al. 2011), our esti-

mate of the number of detectable progenitors is just a lower bound: according to

the ST mass function, in 5Gpc3 we are supposed to find only one Valiante’s box

(in which the progenitors of a quasar at z = 6.4 are scattered), but, in principle,
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6 Observational forecasts

we cannot rule out the possibility to find in this volume progenitors of quasars

that are going to form at later times or intermediate mass BHs that are not going

to form any quasar.

From this work we can highlight a few important points:

• SMBHs’ ancestors are luminous enough to be detected in the X-ray band

by Chandra. In fact, being settled at high redshift, even the Chandra soft

energy bandpass corresponds to rest frame energies that are hard enough

to be unobscured.

• These objects are extremely rare. None of the surveys performed so far

probes a region of the sky large enough for the detection to be statistically

probable.

• The best observational strategy fixes the sensitivity of the survey to a value

sufficient to detect the outliers and explores an area large enough to make

the detection statistically probable.

Therefore, even if SMBHs’ ancestors have not been detected so far, we expect

the detection to be possible in the near future. Obviously we will need more in-

depth studies with more realistic models, but the results of this work encourage

new surveys.
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In this work we modelled the X-ray emissivity of supermassive black holes

(SMBH) ancestors. In particular we studied the spectrum of their emission and

the feasibility of surveys with an high detection probability.

The scientific issue related to the supermassive black holes (SMBHs) forma-

tion is still outstanding: indeed observers found SMBHs with M > 109M� less

than a Gyr after the Big Bang. These observations are very challenging for our

theoretical models and the formation mechanisms of these objects is still an open

problem. In fact, we expect that SMBHs’ ancestors are present at higher redshift

but they have never been observed so far. Their detection would be an important

breakthrough that would allow us to reach a deeper knowledge on these mysteri-

ous and problematic objects. Several attempts have been done in oder to reveal

them but, so far, there have not been positive responses.

This work investigated the ancestors visibility the X-ray band: indeed, black

holes are characterized by a very hard spectrum and a strong X-ray emission; this

could be used to discriminate them from ”ordinary” galaxies, powered by stars.

To do so, we followed two steps:

• we developed a model for the progenitors’ X-ray flux: according to the

observations of low-redshift quasars, the intrinsic flux has been modeled as

a single power-law in the energy range [0.5-10] keV.

• We exploited the results of a semi-numerical simulation, that provides de-

tails on the progenitors accretion and on the amount of obscuring material

in their environs, to evaluate the X-ray emission of the progenitors. In

the evaluation of the expected flux, several attenuation mechanisms have

been taken into account, finding that the dominant one is the interstellar

photoelectric absorption within the host galaxy.

As a result, we found that the predicted X-ray flux is highly suppressed in the

soft band ([0.5÷2] keV), almost unobscured in the hard one ([2÷10] keV). Inter-

estingly, we found that the most luminous SMBHs ancestors are very bright and
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7 Conclusions

well in reach of the most powerful current observatories. Hence, we investigated

the reasons for the non-detection.

We developed a statistical analysis in order to compute the volume density of

these objects. We found that this negative response is due to the rarity of these

sources and to the limited area probed by the latest deep surveys: therefore the

non-detection is statistically expected.

To examine in depth this issue, in the final part of the thesis:

• We developed a formalism to obtain, given the characteristics of the survey,

how many sources are supposed to be detected. As expected for the rarity

of these objects, none of the surveys performed so far probes a region of the

sky large enough for the detection to be statistically probable.

• We planned the best observational strategy, finding out that is more advan-

tageous for a survey to explore an area as large as possible to the detriment

of the sensitivity. The results are encouraging because none of the past sur-

veys implemented the optimal strategy and therefore there is ample room

for improvement.

The conclusion of this work are very exciting: indeed, the detection of SMBHs’

ancestors is already at reach of our observational capabilities. Therefore, even if

they have not been detected so far, we expect the detection to be possible in the

near future; this will be a milestone in the SMBHs observational history, leading

to binding constraints in our theoretical models. Obviously we will need more

in-depth studies with more realistic models, but we hope that the results of this

work will encourage new studies and new surveys in search of these fascinating

objects.
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