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Abstract 
 

Transfection allows the introduction of foreign genetic material into cells to study gene 

function and regulation, investigate protein function and, potentially, cure diseases by 

delivering the gene of interest into the target cells of patients. Although virus-mediated gene 

delivery methods show high transfection efficiency, they are mostly limited by their hazardous 

immunogenicity. That is the reason why, lately, chemical and physical approaches have been 

developed to overcome this huge disadvantage, though displaying a low efficiency. The use of 

cationic lipids as a chemical method is very common today because of their ease to use: such a 

system just exploits the capability of liposomes to trap hydrophilic molecules, like DNA, and 

facilitate their delivery into the cells. More recently, complexes made of lipids and polycations 

(e.g. protamine) have been deeply investigated because of a promising improvement in 

transfection efficiency as compared to cationic lipids alone. A general feeling coming from the 

recent literature is that the mechanisms involved in the cellular delivery of DNA with non-viral 

gene delivery methods are not clear, especially those concerning the intracellular trafficking 

and transport into the nucleus. In this Master’s thesis project two transfection 

nanoformulations are compared to give a deeper insight into one of the most important 

cellular barrier that plasmidic DNA encounters at the end of its intracellular trafficking: the 

entry into the nucleus. The first nanoformulation chosen is Lipofectamine, a gold standard for 

transfection; the second one is the complex between cationic lipids and the polycationic agent 

protamine, which is used to condense DNA before formulation with lipids. Observations 

coming from laser scanning confocal microscopy and flow cytometry allowed studying the 

different mechanisms of DNA nuclear delivery among these two nanoformulations. The most 

important finding is the understanding of the crucial role played by the cell cycle during 

transfection: data show that all the cells go through mitosis before being transfected. This 

prompts us to speculate that the breakdown of the nuclear envelope during the mitotic phase 

may facilitate trapping of plasmidic DNA within the nucleus. Another important observation is 

the establishment of a different transfection phenotype after mitosis, between the two 

transfection formulations: cells transfected with Lipofectamine show high transfection 

efficiency and symmetry of the fluorescent signal between the two daughter cells after cell 

division; by contrast, cells transfected with the lipids/protamine complexes typically show a 

lower characteristic transfection efficiency, and marked asymmetry of the fluorescent signal 

between the two daughter cells (along with the existence of big clusters of plasmidic DNA 

colocalizing inside the nucleus). From the literature, it is known that condensation of DNA with 

protamine before mixing with cationic liposomes increases transfection efficiency (as 

measured by the luciferase assay) in comparison with the use of liposomes only. The 

observations coming from my experiments may help elucidating the differences between the 

two formulations: transfection with lipids/protamine could yield lower transfection efficiency, 

compared to Lipofectamine, because of a lower bioavailability of plasmidic DNA, which is 

clustered in a few “big” aggregates. These clusters may explain the asymmetry described 

before: in other words, a limited number of plasmidic DNA molecules can be segregated into 

the two daughter nuclei after the nuclear envelope breakdown, giving rise to a pronounced 

asymmetry of the fluorescence signal between daughter cells. These insights provided by 

confocal microscopy and flow cytometry on the relationship between transfection and cell 
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division may help guiding the development of a new class of non-viral gene delivery systems 

with higher performances.  
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1 Aim of the Thesis 
 

In this Master’s thesis project fluorescence-based, state-of-the-art techniques, such as 

confocal microscopy and flow cytometry, are used to get insights into the cellular processes 

involved in protamine-mediated transfection. Indeed, a special focus is given on the nuclear 

envelope barrier and correlation between the transfection process and the cell cycle. In order 

to get a deeper understanding of these phenomena, the gold standard transfection 

formulation Lipofectamine is used in comparison with lipid-protamine nanoparticles to 

elucidate, through live cell imaging and large cell population analysis, the mechanisms 

responsible for the different transfection efficiency of these two nanoformulations. The 

methods and results described in this work offer a powerful additional protocol to evaluate, 

compare and analyze further non-viral transfection vectors with the expectation of a better 

comprehension of intracellular mechanisms and improvement of gene delivery performances. 
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2 Introduction 
 

2.1 Gene therapy and DNA delivery systems 
 

Gene therapy is a promising therapeutic strategy for the treatment of a wide range of 

acquired and inherited diseases. This therapeutic model depends on either replacing a 

dysfunctional gene by a healthy one, or complementing a missing gene in order to express the 

required protein.1 A transgene used as a pharmaceutical must overcome several obstacles 

avoiding degradation in order to reach the cell nucleus where it should be correctly expressed 

Figure 1. A perfect delivering system should have the following characteristics: 

- it must not interact with vascular endothelial cells and blood components; 

- it must be capable of avoiding uptake by the reticuloendothelial system; 

- it must be small enough to pass through the cell membrane and reach the nucleus. 

 

At present, treatment using genes is 

preferable to enzyme/protein 

replacement therapy because gene 

therapy ensures the lasting production 

of a stable quantity of proteins and 

allows specific transgene-expression 

localization, which permits to avoid the 

unwanted effects caused by the 

systematic presence of a protein.  

Vectors are vehicles carrying the genetic 

material into cells. The optimal vector 

depends on the target cells and its 

characteristics, duration of expression 

and size of the genetic material 

incorporated. The first vectors used in 

gene therapy were viruses, due to their 

ability to deliver and protect the 

therapeutic gene and ensure long-term 

expression. However, the risk of 

provoking immune responses, the high 

cost and difficulty relating to their 

preparation, and the limited size of the 

genetic material that can be 

incorporated limited the use of these 

vectors, and led to research into cheaper 

and safer alternatives.  

This is the reason why non-viral vectors 

have appeared and they can be divided 

into two groups: 

Figure 1 Barriers to successful in vivo delivery of nucleic acids. 
These vectors need to prevent degradation by serum 
endonucleases and evade immune detection. They also need 
to avoid renal clearance from the blood and prevent 
nonspecific interactions. Moreover, the vectors need to 
extravasate from the bloodstream to reach target tissues, and 
mediate cell entry and endosomal escape. 
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1. physical approaches like needle injection, electroporation, gene gun, ultrasound and 

hydrodynamic delivery. These methods depend on a physical force that weakens the cell 

membrane and help facilitate the penetration of the gene inside the nucleus; 

2. chemical vectors like lipoplexes and polyplexes. These are particles prepared by 

electrostatic interaction between polycationic derivatives like lipids or polymers with the 

anionic phosphate of DNA.2,3 

 

2.1.1 Viral vectors 

 

A virus is a biological entity that can penetrate into the cell nucleus of the host cell and exploit 

the cellular machinery to express its own genetic material and replicate it, before spreading to 

neighbour cells. Researchers have used different viruses to deliver therapeutic genes by 

exploiting their particular life cycle. The most used viruses are retroviruses, adenoviruses, 

adeno-associated viruses (AAV) and simplex herpes virus.  To use a virus as a vector, it must be 

modified by removing the pathogenic part of its genes and replacing it by the therapeutic gene. 

At the same time, the virus retains its non-pathogenic structures which allow it to infect the 

cell (like envelope proteins, fusogenic proteins, etc.). To date, viral vectors are the vectors 

most often used to transfer genes. Table 1 shows advantages and disadvantages of viral 

vectors.2  

Advantages Disadvantages 

High transfection efficiency in vivo Carcinogenesis and immunogenicity  

 

Difficult and expensive production in large 
quantities 

 Limited size of gene that can be delivered 
Table 1 

 

2.1.2 Non-viral vectors 

 

The drawbacks of viral vectors, especially severe immune response and insertional 

mutagenesis, have led scientists to find safer alternatives. Consequently, non-viral vectors 

have been designed for transferring DNA and their use in clinical trials increased from 2004 to 

2013, while that of viral vectors saw significant decrease. Research in this field has attracted 

great attention as a result of the advantages that they offer in comparison to viral vectors. 

Table 2 shows advantages and disadvantages of non-viral vectors.2,4 

Advantages Disadvantages 

Relatively safe Low transfection efficiency 

Low immune response  

Easy and cheap production in large quantities  

Transfer of different and large transgenes  

Long period storage due to their stability  
Table 2 
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Despite all these advantages, only a few of these non-viral vectors have so far been tested 

clinically owing to their low delivery efficiency compared to viral vectors.  Whereas viruses 

have evolved to deliver their genomes efficiently to mammalian cells, most synthetic vectors 

are unable to effectively transport their payloads through the multiple barriers they have to 

confront.5 

As briefly described before, non-viral DNA delivery systems are classified into two groups: 

physical methods and chemical methods.  

 

Physical Methods 

The principle of physical gene delivery systems is to use mechanical, ultrasonic, electric, 

hydrodynamic or laser-based energy in order to create temporary weak points in the 

membrane of the target cell, by causing transient injuries or defects in it and facilitates DNA 

intracellular delivery by diffusion. The most important physical methods are: 

- electroporation: the principle is to induce the uptake of DNA into the cell by increasing 

the permeability of the cell membrane through exposure to a controlled electric field 

and pulse duration. Intense electric pulses affect the cell membrane and cause 

temporary localized destabilization, like pores formation, allowing DNA to pass easily 

into the cell; 

- gene gun (or ballistic DNA transfer): first employed in plant cells, in this method 

transgene delivery into the target cell and tissue is carried out by using accelerated 

particle carriers made of biocompatible heavy metals such as gold, tungsten or silver. 

These carriers are coated with plasmid DNA, and the required acceleration is provided 

either by vaporization, water under high-voltage electric spark, or by using helium 

discharge; 

- ultrasound (or sonoporation): depends on increasing the permeability of cell 

membrane by using ultrasound waves that create pores or acoustic cavitation in the 

exposed cell membrane to allow cellular uptake of DNA.2 

 

Chemical Methods 

Chemical vectors are proposed as promising alternatives to viral ones to overcome the 

drawbacks of the latter. These vectors have three objectives that improve gene transfer into 

the cell nucleus. They: 

- mask DNA-negative charges; 

- compress the DNA molecule to make it smaller; 

- protect it from degradation by intracellular nucleases. 

These objectives can be achieved through packing DNA either by electrostatic interaction 

between anionic DNA and polycations, or encapsulating it with biodegradable polymers, or by 

adsorbing it.  

Examples include inorganic particles like engineered nanoparticles that may vary in size, shape 

and porosity: calcium phosphate, silica, gold, magnetic compounds, quantum dots, carbon 

nanotubes are among the most studied in this category. 

Using electrostatic attraction between anionic DNA and a cationic lipid or polymer lead to 

positive complexes known respectively as lipoplexes and polyplexes. 
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• Lipoplexes: A cationic lipid consists of three parts Figure 2:  

1) a hydrophobic anchor (two aliphatic chains (saturated/unsaturated), or a cholesterol 

derivative), 

2) a hydrophilic positively charged head, 

3) a space (linker). 

The linker connects the anchor to the head and plays and important role in determining the 

lipid’s biodegradability. 

 

 
 

The hydrophobic moieties and head groups cause the cationic lipids to assemble into bilayer 

vesicles (liposomes) when are dispersed in aqueous solutions. When cationic liposomes 

condense with anionic DNA, they form positively charged lipoplexes because of the positively 

charged head group of cationic lipids binding with negatively charged phosphate group in 

nucleic acids. Transfection efficiency depends on overall geometric shape, number of charged 

group per molecules, nature of lipid anchor and linker bondage. Figure 2 shows N[1-(2,3-

dioleyloxy)propyl]-N,N,N,trimethylammonium (DOTMA) and this was the first non-natural 

cationic lipid employed for gene transfer. Neutral lipids, such as the fusogenic phospholipid 

dioleylphosphatidylethanolamine (DOPE) or the membrane component cholesterol, were 

included in liposomal formulations as “helper lipids” to enhance transfection activity. 

Cholesterol provides structural stability, whereas DOPE can fuse with other lipids when 

exposed to a low pH, such as in endosomes, facilitating the release of the associated DNA into 

the cytosol.  Since then, many different lipids were developed to form self-assembling nano-

sized DNA delivery systems (lipoplexes) Figure 3.  

 
Figure 3 Chemical structures of cationic and neutral lipids are shown. Liposomal formulations used for DNA delivery 
typically include a mixture of a neutral lipid and a cationic lipid. Cationic lipids (such as DOTMA, DOSPA, DOTAP, 
DMRIE and DC-Cholesterol) have an active role in DNA binding and transfection. They are characterized by a 
cationic head group, a hydrophobic tail and a linker region. Neutral lipids (such as the phospholipids DSPC and DOPE, 
and the membrane component cholesterol) function as “helper lipids” to further enhance nanoparticle stability and 
overall transfection efficacy.

5
 

Figure 2 DOTMA as an example of cationic lipid.  
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The major problem behind the use of lipoplexes in vivo, besides poor efficiency, is cytotoxicity 

resulting from the lipoplex-positive charge interaction with negatively charged serum proteins 

and reduced half-life in blood.2,5 

 

• Polyplexes: A cationic polymer (at physiological pH) is used to condense anionic nucleic acid 

into a nano-sized complex called “polyplex” by self-assembly via electrostatic interactions. It 

can compress DNA molecules to relatively small size which facilitates cellular internalization 

and thus improves transfection efficacy. Moreover cationic polymers are attractive because of 

their immense chemical diversity and their potential for functionalization. Cationic polymers 

used for polyplexes are generally divided into natural (proteins, peptides, polysaccharides) and 

synthetic (poly ethylenimine, dendrimers,…) polymers. Unfortunately, the use of polyplexes as 

gene-transfer systems in vivo must overcome many obstacles, such as their toxicity, poor 

efficiency, polymer polydispersity, and the lack of information about the gene transfer 

mechanism involved in these methods. Poly-L-lysine (PLL) is considered as one of the first 

polymers to be used for gene transfer in vivo. Unlike lipoplexes, polyplexes formed with PLL 

usually use ligands to facilitate their cellular uptake, and endosomolytic reagents are usually 

used to facilitate endosomal escape. Many cationic polymers have been also evaluated as gene 

carriers both in vitro and in vivo, such as poly ethylenimine (PEI) and poly amido amine (PAA) 

and others Figure 4.2,5 PEI-based polyplexes are more efficient and do not require agents for 

endosomal escape.6
 

 

 
Figure 4 Chemical structures of selected polymeric DNA vectors that are commonly used in gene delivery studies 
and clinical trials. Poly(L-lysine) and poly ethylenimine (PEI) are among the oldest and most commonly used 
polymeric gene vectors. To improve safety and efficacy, numerous other polymers have been studied for gene 
delivery, including methacrylate-based polymers such as poly[(2-dimethylamino)ethyl methacrylate] (pDMAEMA), 
carbohydrate-based polymers such as chitosan and β-cyclodextrin-containing polycations, polyamidoamine 
(PAMAM) dendrimers and degradable poly(β-amino ester) polymers.

5
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The main purpose of all these developments and methods in gene therapy is to increase the 

desired medical impact of a drug, and to decrease the side effects related to its use. Nowadays 

a lot of effort is being made to improve the efficiency of non-viral vectors and this Master’s 

thesis work actually provides a series of biophysical techniques useful to give insights into the 

cellular mechanisms involved during transfection. This kind of studies are crucial to help 

understanding which are the key rate-determining steps that limit the transfection efficacy of 

non-viral gene delivery methods. 
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F Adenovirus 

   Lipofectamine plus 

Figure 6 Schematic representation of the 
cellular barriers to nucleocytoplasmic 
traffic of plasmid DNA (pDNA). Cellular 
barriers that are implicated in the low 
efficiency of pDNA uptake: 1) the 
cytoskeleton and molecular crowding 
restrict the diffusional mobility of pDNA 
in the cytoplasm, 2) degradation of pDNA 
by constitutively active cytosolic 
nuclease(s), 3) restricted translocation 
efficiency of pDNA in the nucleus, and 4) 
upon the disassembly of the nuclear 
envelope both nuclear entry (b) and 
escape (c) of pDNA may occur, 5) limited 
transcriptional activity of pDNA in the 
nucleus  which is conceivably influenced 
by interactions with the nuclear matrix 
components (a).
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2.2 Cellular transfection barriers involved in gene delivery 
 

The successful delivery of therapeutic genes to specific target cells and their availability at the 

intracellular site of action are fundamental requirements for successful gene therapy. By 

hijacking a variety of cellular mechanisms, viruses have evolved over millions of years 

strategies to bypass multiple cellular barriers and carry their genomic material into the nucleus. 

Despite their immunogenicity, they present a high transfection efficiency. Non-viral vectors, on 

the other hand, represent a more recent promising approach for the delivery of the DNA but 

they are limited by a low transfection efficiency. As can be seen in Figure 5 lipoplexes (in this 

case Lipofectamine plus) requires 3 orders of magnitude more gene copies than the 

Adenovirus vector to achieve comparable gene expression.7 It has been established that 

numerous cellular obstacles account for this low level of transgene expression by non-viral 

vector-mediated gene delivery. Apart from extracellular barriers like interaction with blood 

components, accessibility and specificity of target tissue/organ, as well as rapid pDNA 

clearance from the extracellular milieu, here we will concentrate on the major obstacles 

encountered by a plasmidic DNA at a cellular level during its nucleocytoplasmic trafficking. 

These barriers include binding to the cell surface, traversing the plasma membrane, escaping 

lysosomal degradation, and overcoming the nuclear envelope Figure 6.8,9,10,11,12,13  

 
Figure 5 Dose-response curve and time course of luciferase gene expression in A549 cells transfected by Adenovirus 
or Lipofectamine plus. (Left) Luciferase gene expression in cells transfected by Adenovirus or Lipofectamine Plus 
was measured 6 h after incubation at the indicated dose. (Right) Transfection activities were measured at indicated 
times after incubation with a dose of 200 copies/cell using Adenovirus and 6.7 x 10

5
 copies/cell (5 pg/cell) with 

Lipofectamine plus. These data represent the mean values and standard deviation of three experiments.
7
 

 

 



11 
 

2.2.1 Uptake pathways for non-viral Gene Delivery 

 

DNA is a large and charged molecule 

that needs to cross the plasma 

membrane in order to reach its target 

(i.e. the nucleus). The plasma 

membrane of living cells is a dynamic 

structure that is relatively lipophilic 

and, as a result, it restricts the entry 

of large, hydrophilic, or charged 

molecules. An appropriate gene 

delivery system is therefore required 

for the efficient cellular uptake and it 

is necessary a complete understanding of both the characteristics of the vectors as well as the 

mechanisms by which they interact with the targeted cells. Several internalization mechanisms 

have been proposed to explain the uptake of different synthetic vectors. The uptake 

mechanisms are, in general, closely linked with the intracellular trafficking and the fate of the 

vectors. The main different endocytotic as well as non-endocytotic uptake pathways used in 

gene delivery can be seen in Figure 7. 

Unless a specific targeting ligand is incorporated in the system, the binding of lipoplexes and 

polyplexes to the cell surface is the result of a nonspecific ionic interaction between the 

positive charge of the complexes and the negative charge of the cell surface. Negatively 

charged cell surface constituents, such as heparin sulfate proteoglycans and integrins play a 

role in the cellular binding of positively charged lipoplexes, polyplexes, or even cationic 

peptides, such as TAT.  

The internalization mechanism of lipoplexes is not well understood. In general, following some 

experimental evidences, it is currently believed that membrane fusion is important for 

transfection but that most of the uptake occurs through endocytosis (Figure 8). The current 

question is then, which pathway of endocytosis is responsible for the uptake? Data have 

shown that uptake may occur by clathrin-mediated endocytosis, cholesterol-dependent 

clathrin-mediated endocytosis, clathrin-independent endocytosis like claveolae or 

macropinocytosis. The variability of reported results suggests that a variety of factors may 

affect the actual mechanism.6,14  

 

2.2.2 Endosomal Escape 

 

After internalization via endocytosis, lipoplexes and polyplexes exist in endosomes and have 

no access to the cytosol or the nucleus. The destiny of these endosomes is the fusion with 

lysosomes for degradation or the recycle of their contents back to the cell surface. That is the 

reason why endosomal escape is essential for efficient transfection Figure 8. Lipoplexes 

containing the pH-sensitive fusogenic lipid DOPE can release the associated DNA into the 

cytosol. DOPE forms a stable lipid bilayer at physiological pH ≈ 7; however, at an acidic pH 5 to 

Figure 7 
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6, it undergoes a transition from a bilayer to an 

inverted hexagonal structure, which fuses and 

destabilizes the endosomal membrane, releasing 

its contents to the cytosol. It is possible that only 

DNA or the lipoplex as a whole will be released 

to the cytosol after fusion. If lipoplexes are 

released, the dissociation of DNA must occur in 

the cytosol or even at the nuclear membrane to 

achieve transfection. PEI has the same ability, 

although through a different mechanism. PEI 

becomes more protonated at low pH as in 

endosomes. This protonation triggers an influx 

of Cl- ions with protons leading to a water influx 

and finally the swelling and rupturing of the 

endosomes.  

Lipoplexes lacking fusogenic lipids and 

polyplexes without proton sponge ability are not 

released efficiently into the cytosol unless 

additional functional devices for endosomal 

release are used. An example is the use of peptides that undergo conformational changes at 

the low pH in the endosomes to interact with and perturb the endosomal membrane. Another 

approach is the use of lysosomotropic reagents such as chloroquine, a weak hydrophobic base, 

which enters the lysosomes and becomes protonated in its acidic environment. This triggers a 

swelling of lysosomes and destabilization of their membranes. Chloroquine also inhibits the 

acidification and maturation of endosomes, thus retarding the lysosomal degradation of genes. 

It is worth mentioning, that the use of chloroquine and similar lysosomotropic reagents is 

usually associated with toxicity, which limits their use in actual applications.6 

 

2.2.3 Fate of plasmidic DNA in the cytoplasm  

 

Another obstacle that DNA may encounter, after endosomal escape, is cytoplasmic molecular 

crowding. On the basis of the observation that plasmidic DNA (pDNA) remained at the site of 

microinjection, it was proposed that diffusional freedom of pDNA in the cytoplasm of 

myotubes is severely impeded15, whereas oligonucleotides up to 250 bp rapidly enter the 

nucleus after cytoplasmic delivery16. Consistently, microinjection of pDNA in the proximity of 

the nucleus, or decreasing the expression cassette size, could significantly enhance transgene 

expression. Direct determination of the diffusional mobility of fluorescein-conjugated pDNA 

was accomplished by fluorescence recovery after photobleaching (FRAP). Microinjected 

nucleic acids > 2 kbp are virtually immobile during the course of the measurements (a few 

minutes). Diffusion of 250- and 2000-bp DNA fragments is 17- and > 100-fold slower, 

respectively in the cytoplasm than in water16. Presumably the mesh-like structure of the 

cytoskeleton accounts for the anomalous mobility of pDNA in the cytoplasm, because diffusion 

was significantly increased after disruption or reorganization of the actin cytoskeleton17,18,19. 

Figure 8 
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This may overall bring to hypothesize that cytoplasm imposes a diffusional barrier to 

nucleocytoplasmic transport of pDNA.  

Restricted diffusion increases the residence time of pDNA in the cytoplasm, which in turn 

favors the metabolic degradation of pDNA. Some observations, like potentiation of transgene 

expression by nuclease inhibitors, are in support of the conclusion that metabolic instability of 

pDNA may contribute to the low gene transfer efficiency of non-viral gene delivery vectors. 

Actually, a subset of nucleases plays a central role in the fragmentation of chromosomal DNA 

and may transiently appear in the cytoplasm.8 

 

2.2.4 Nuclear delivery  

 

The nuclear envelope contains nuclear pores with a passive transport limit of 70 kDa 

molecular mass or ≈ 10 nm diameter20. This is much smaller than the size of DNA, even when 

condensed in lipoplexes or polyplexes. Data show that microinjections of plasmid DNA into the 

nucleus produce a much higher gene expression than when the same plasmid is microinjected 

into the cytosol. For instance, the measure of luciferase activity in growth-arrested COS-7 cells 

after the injection of known amounts of reporter gene into the cytosol or the nucleus showed 

that only 1 of 1000-1500 cytosolic pDNA molecules is successfully transcribed in the nucleus 

Figure 9. This suggests the overall inefficiency of pDNA nucleocytoplasmic trafficking and that 

the nuclear envelope is a significant barrier against transfection.8 

 
Figure 9 Nuclear uptake efficiency of pDNA microinjected from the cytoplasm. Nuclear uptake efficiency of 
luciferase expression cassettes was inferred from the relative expression level of known amount of 
microinjected pDNA in the cytoplasm and the nucleus. (Left) The indicated amount of pGL2 plasmids, encoding 
the luciferase reporter gene, was injected into the cytoplasm of the nucleus of 300-400 COS-7 cells. Cells were 
growth-arrested by serum depletion and luciferase activity was measured after 8 hr of injection. Cell viability 
was determined by co-injection of fluorescein-labeled dextran. The amount of pDNA copies injected was 
calculated from the pDNA concentration and the microinjected volume, determined by radioactive dextran in 
parallel measurements. (Right) Time course of luciferase expression was monitored following cytoplasmic or 
nuclear microinjection of pGL2 using the indicated number of pDNA in COS-7 cells. Based on these experiments 
it is estimated that only 1 out of 1000 cytosolic pDNA molecules reached the nucleosol. Data are means (± SEM, 
n = 3).

8
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2.2.5 Transcription efficiency  

 

Although the efficiency of plasmid nuclear delivery is a critical determinant of the level of 

transgene expression, intranuclear events also influence the transcriptional activity of the 

transgene, and should be taken into consideration when attempting to maximize the efficiency 

of non-viral vectors.21  

Hama et al.7 describe a systematic and quantitative comparison of the cellular uptake and 

subsequent intracellular distribution of exogenous DNA transfected by viral and non-viral 

vectors in living cells, using a combination of TaqMan PCR and a confocal image-assisted three-

dimensionally integrated quantification method (CIDIQ). They use adenovirus (Ad) and 

Lipofectamine Plus (LFN) as models for comparison, since they are highly potent and widely 

used viral and non-viral vectors, respectively. Their findings show that efficiency of cellular 

uptake of LFN is significantly higher than that for Ad. Once taken up by a cell, Ad exhibits 

comparable endosomal escape and slightly higher nuclear transfer efficiency compared with 

LFN. In contrast, LFN requires 3 orders of magnitude more intranuclear gene copies to exhibit a 

transgene expression comparable to that of the Ad, suggesting that the difference in 

transfection efficiency may principally arise from differences in nuclear transcription efficiency 

and not from a difference in intracellular trafficking between Ad and LFN Figure 10. 

 
Figure 10 Summary of the quantitative comparison of intracellular trafficking in A549 cells between Ad and LFN. 
These values were quantified by TaqMan PCR and CIDIQ analysis. 

 

It is difficult to find an explanation to this observation. A plausible hypothesis could be a 

difference in decondensation in the nucleus: the nuclear DNA introduced by the LFN could be 

so well condensed that the transcription process is inhibited. Another possibility is that the Ad 

genome structure and/or proteins coded in the Ad genome affect transgene expression 
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though some of the regions of Ad genome were deleted. The take-home message is that 

transcriptional activity should not be excluded as a rate-limiting process during transfection 

and it might be worthy to be considered for the optimization protocol of non-viral vectors.  
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2.3 Focusing on the nucleus as a barrier for non-viral gene delivery 
 

In eukaryotic cells, the DNA is segregated away from the cytoplasm by the nuclear envelope 

(NE). Unlike other cellular membranes, the NE is a double lipid bilayer composed of an outer 

(ONM) and inner membrane (INM) separated by a perinuclear space. The ONM is contiguous 

with the ER and is thought to contain many of the same proteins and lipids in contrast with the 

INM that has a distinct composition and interacts with chromosomes and/or the nuclear 

lamina Figure 1122. The NE is generally considered as a hydrophobic barrier: transport of 

macromolecules into and out of the nucleus occurs through nuclear pore complexes (NPCs) 

that are embedded in the NE at sites where the ONM and INM are contiguous Figure 1123. The 

NPC has often been considered to be the sole route for crossing the NE; however, Speese et 

al.24 found that large ribonucleoproteins particles cross the NE by vesicle budding and fusion 

pathway through a NPC-independent mechanism, very similar to the nuclear egress of herpes 

virus. This poses interesting questions as to whether this could be a widespread export, or 

even possibly import, mechanism.22 

 

Anyway, molecules smaller than about 40 kDa diffuse passively through the NPC, whereas 

proteins > 60 kDa are taken up by energy-dependent transport. Active nuclear accumulation 

requires the presence of nuclear localization sequence (NLS) in the cargo. A NLS is an amino 

acid sequence that 'tags' a protein for import into the cell. Generally, this signal consists of one 

or more short sequences of positively charged lysines or arginines exposed on the protein 

surface. Docking of NLS provokes considerable conformational change in the NPC, leading to 

opening of the channel diameter from 9 to 40 nm. This conformational change provides a 

plausible explanation for the ability of the NPC to translocate substrates as large as 25-50 MDa. 

The size-dependent diffusional barrier of the NPC can be visualized by the cytoplasmic 

microinjection of fluorescent nucleic acids: DNA fragments smaller than 250 bp are able to 

diffuse into the nucleus, whereas nucleic acids larger than 250 bp are excluded from the 

nucleus.16,25  

Cargo proteins bearing NLSs are bound and imported by a class of proteins known as 

karyopherins (importins) that are soluble in the NPC. In the case of the classical NLS system 

(from SV40 Large T-antigen PKKKRKV), the NLS of the cargo protein is recognized in the 

cytoplasm by importin-α, an NLS receptor, which then dimerizes with importin-β to form a 

Figure 11 Eukaryotic cell nucleus (taken from http://micro.magnet.fsu.edu/cells/nucleus/nucleus.html) and 
nuclear pore complex (NPC)

23
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nuclear pore targeting 

complex. The interaction 

between the importins and a 

series of phenylalanine-

glycine (FG)-repeat proteins 

that make up the NPC 

facilitates translocation 

across the pore Figure 11. 

Once inside the nucleus, the 

small guanosine-triphosphate 

(GTP)-binding protein RAN, in 

its GTP-bound state, 

recognizes the importing-

cargo complex at the nuclear 

face of the NPC, binds to 

importin and induces conformational change in the protein that releases the cargo. After 

inducing release of the cargo within the nucleus, the RAN-GTP-importin-β complex is 

transported back into the cytoplasm where the Ran GTPase-activating protein (RanGAP) 

regenerates RAN-GDP to maintain the RAN gradients. RAN is maintained in its GTP-bound state 

in the nucleus by the guanine nucleotide exchange factor RCC1 which is bound to chromatin. 

To maintain relative levels of RAN across the nuclear envelope, RAN-GDP is transported into 

the nucleus by the small protein NTF2 where it is reconverted to the GTP-bound state Figure 

12.26  

 

2.3.1 Nuclear entry of viruses 

 

Viruses had millions of years to develop strategies to circumvent cellular barriers in order to 

ensure infection of their target cells. Most of these mechanisms involve designing and 

incorporating proteins into the virus that help stabilizing virus-cell interactions and increasing 

internalization, enhancing endosomal escape, promoting movement through the cytoplasm to 

the nuclear envelope, improving nuclear entry in dividing and non-dividing cells (often by 

promoting mitosis) and finally increasing transcription. Non-viral vectors have not had the 

luxury of evolution to aid the delivery and are thus confronted by each of these barriers. It has 

long been appreciated that the nuclear envelope represents a barrier to efficient gene delivery. 

Most successful laboratory transfections occur in actively dividing cells. As one of the 

hallmarks of mitosis is nuclear envelope breakdown, any DNA that has entered the cytoplasm 

before mitosis would gain access to the nuclear compartment once cells initiates division. 

As indicated in Figure 13, five general strategies have been identified, ordered according to 

where in the cell uncoating of the viral genome occurs: 

1) some viruses, such as the retrovirus murine leukemia virus (MLV), gain access to the nucleus 

during mitosis, when the NE is temporarily disassembled; 

Figure 12 Mechanisms of protein nuclear import 
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2) some viruses, such as human immunodeficiency virus 1 (HIV-1) and influenza A virus, 

undergo extensive disassembly in the cytoplasm. The cytoplasmic released components 

contain NLSs and are thereby able to cross the NPC using the host transport machinery; 

3) some viral capsids use importins or viral proteins to attach to the cytoplasmic side of the 

NPC. Interaction with the NPC is then used as a cue for disassembly, and the viral genome 

crosses the NPC and is released into the nucleus, often as a complex with viral proteins. 

Viruses that use this strategy include herpesviruses (which bind to the NPC via importins) and 

adenoviruses (which bind directly to the NPC); 

4) some viral capsids, such as those of hepatitis B virus (HBV) and some baculoviruses, are 

small enough to cross the NPC intact. Genome release then occurs at the nuclear side of the 

NPC or inside the nucleus; 

5) some viruses, such as parvoviruses, do not use the NPC to deliver their genome into the 

nucleus; rather, they transiently disrupt the NE and nuclear lamina, and enter the nucleus 

through the resulting gaps.27 

 

 
Figure 13 Schematic representation of different strategies for nuclear entry of viral genomes.

27
 

 

 

2.3.2 Transcription factor-binding sites promote DNA nuclear translocation 

 

Certain DNA sequences can increase the nuclear targeting of plasmids. Miller et al.28 showed 

that the nuclear import of plasmid DNA through the NPC is a sequence-specific process, 

mediated by specific eukaryotic sequence elements. When delivered side by side by 
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microinjection into the cytoplasm, plasmids containing as little as 72 bp of the SV40 enhancer 

target to the nucleus of most cells within several hours, whereas an identical plasmid lacking 

this 72-bp sequence remains cytoplasmic until cell division (or indefinitely if the cell is non-

dividing). This sequence, termed the “SV40 DNA nuclear targeting sequence (DTS)”, has been 

shown to mediate plasmid nuclear import in several cell lines.  

The distinguishing feature of the SV40 DTS is that it contains binding sites for a number of 

ubiquitously expressed mammalian transcription factors (such as AP1, AP2, nuclear factor 

(NF)-κB, Oct1, TEF-1). As transcription factors function in the nucleus, they contain NLSs for 

their nuclear importation. Under normal conditions, these factors would be transported into 

the nucleus after translation or in a regulated manner when signals activate transcription. In 

either case, a significant cytoplasmic pool of these factors exists at any given time. When 

plasmids carrying the SV40 DTS are delivered into the cytoplasm by any method, some of these 

transcription factors can bind to the DTS, thereby coating a region of the plasmid with NLSs, at 

least some of which are oriented away from DNA itself. These DNA-bound NLSs can be 

recognized by importin-β and/or transportin and transported into the nucleus through the NPC. 

Apart from the requirement for the NLS to be spatially accessible to the importins when the 

transcription factor is bound to the DNA, the binding sites for the transcription factors must 

also be accessible to the transcription factors for any complex to assemble.26,29   

 

This finding could be extended also to eukaryotic promoters or enhancers with the important 

premise that the transcription factors binding to these promoters/enhancers would keep 

presenting their NLSs in an orientation that is accessible to the importins. Miller et al.30 

managed then to exploit cell-specific transcription factors to drive cell-specific DNA nuclear 

entry. They studied a smooth muscle-specific DTS (containing a 176 bp sequence of the 

smooth muscle γ-actin (SMGA) promoter) to drive nuclear import of plasmids in airway or 

vascular smooth muscle cells but not in other cell types, both in cultures cells and in vivo.  

Figure 14 Protein-
mediated plasmid nuclear 
import. 
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The importance of sequences brought to develop methods that enhance plasmids nuclear 

import. A number of different approaches have been created to promote recognition of 

plasmid by importin family members to increase nuclear import like: peptide-nucleic acid 

clamp-conjugated NLS peptides bound to DNA, sequence specific DNA binding proteins bound 

to DNA, NLS-peptides covalently attached to DNA and NLS peptides electrostatically bound to 

DNA.26,31,32,33,34 

 

2.3.3 Cell division and nuclear uptake of plasmidic DNA 

 

The cell cycle is divided into two basic parts: 

mitosis and interphase. Mitosis (nuclear 

division) is the most dramatic stage of the 

cell cycle, corresponding to the separation of 

daughter chromosomes and usually ending 

with cell division (cytokinesis). Interphase is 

the time during which both cell growth and 

DNA replication occur in an orderly manner 

in preparation for cell division.  

The M phase of the cycle corresponds to 

mitosis, which is usually followed by 

cytokinesis. This phase is followed by the G1 phase (gap 1), which corresponds to the interval 

(gap) between mitosis and initiation of DNA replication. During G1, the cell is metabolically 

active and continuously grows but does not replicate its DNA. G1 is followed by S phase 

(synthesis), during which DNA replication takes place. The completion of DNA synthesis is 

followed by the G2 phase (gap 2), during which cell growth continues and proteins are 

synthesized in preparation for mitosis Figure 16. The duration of these cell cycle phases varies 

considerably in different kinds of cells. For a typical rapidly proliferating human cell with a total 

cycle time of 24 hours, the G1 phase might last about 11 hours, S phase about 8 hours, G2 

about 4 hours, and M about 1 hour. Other types of cells, however, can divide much more 

Figure 15 Cell-specific 
plasmid nuclear 
import 

 

Figure 16 Schema of the cell cycle (Taken from 
http://kvhs.nbed.nb.ca/gallant/biology/cycle.jpg) 
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Figure 17 Levels of GFP 
expression per 1 x 10

5
 cells 

correlate with percentage of 
cells in the S-phase. 
Transfections were done every 
hour after release from 
synchronization and cell cycle 
distribution was measured for 
every cell population being 
transfected.

36
 

 

rapidly. Budding yeasts, for example, can progress through all four stages of the cell cycle in 

only about 90 minutes. Even shorter cell cycles (30 minutes or less) occur in early embryo cells 

shortly after fertilization of the egg.35 

The higher transfectability of dividing over quiescent cells appears to be compatible with the 

hypothesis that disassembly of the nuclear envelope during the M phase enhances plasmidic 

DNA (pDNA) uptake. Grosjean and et al.36 used cell synchronization with mimosine (a drug that 

blocks cells at the border between G1 and S-phase) to evaluate transfection efficiency at 

different phases of the cell cycle using calcium-phosphate (CaPi) method. They showed that 

transfection of a GFP-codifying plasmid using CaPi-DNA co-precipitation method, at different 

phases of the cell cycle, yields variable expression levels of GFP: highest GFP expression levels 

are seen when transfecting cell populations with a dominant representation of S-phase cells 

Figure 17. They suggest this is due to the imminent nuclear membrane disintegration at 

mitosis.  Tseng et al.37 used a liposomal vector containing DOTAP and DOPE and observed 

transfection with a GFP-codifying plasmid in Hela G1-synchronized cells with a standard double 

thymidine blocking procedure. Cell samples were transfected and subsequently maintained in 

G1 phase for various durations to modulate the time between plasmid entry and mitosis. The 

percentage of cells expressing GFP increase sharply as the synchronized cell population passes 

through M phase, suggesting that an event associated with mitosis is essential for transgene 

expression. Brunner et al.38 also investigated the influence of cell cycle on transfection 

efficiency. They fractionated, by means of size and density, fractions of cells corresponding to 

discrete cell cycle phase-specific populations and transfected them with various non-viral 

methods and viral methods. Transfection efficiency is found to be strongly dependent on the 

cell cycle stage at the time of transfection. Luciferase activity in cells transfected with non-viral 

vectors is from 30- to more than 500-fold higher when transfection is performed during S or 

G2 phase compared with cells in G1 phase which had the lowest expression levels. In contrast, 

this effect is not observed with recombinant adenovirus which varied only four-fold. Although 

it has been shown that mitosis-associated nuclear envelope breakdown greatly enhances 

nuclear localization of plasmids and transfection efficiency, this is not a prerequisite.  

 
 

Several groups have shown that plasmids can enter the nuclei in the absence of cell division, 

although the efficiency of such transfection is usually much lower than in dividing cells. Dowty 
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et al.15 showed that pDNA injected into the cytoplasm could be expressed with relatively high 

efficiency in myotubes providing irrefutable evidence that pDNA can enter the karyoplasm of a 

post-mitotic nucleus with intact membranes. Akita et al.39 showed that DNA transfected with 

Lipofectamine Plus could be detected in the nucleus in time intervals as low as 1 h after 

lipoplex-mediated transfection, which suggests that a different mechanism is involved in this 

early nuclear delivery. Also Kamiya et al.40 observed exogenous DNA within the nucleus after 

0.5- to 1-h incubations, and some molecules that extended through the nuclear membrane. 

These results may provide evidence for a possible nuclear entry in the presence of the nuclear 

membrane 
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2.4 Lipid-polymer hybrid system as an additional non-viral gene 

delivery vector 
 

Although substantial progress has been made in the field of non-viral gene therapy over the 

past three decades there is still the need of additional biological insights into the key rate-

determining steps that limit effective delivery and transfection efficacy of non-viral gene 

delivery methods. The main drawback of these methods – that is low transfection efficiency – 

has brought to developments in material sciences, which have yielded new polymers and lipids 

as delivery vectors. At the same time the rapid progress of nanotechnology is enabling a better 

understanding of nanosized materials for gene delivery. 

Hybrid systems made of lipids and polymers (lipopolyplexes) have been explored to improve 

gene delivery. In these systems, DNA is pre-condensed with either poly-L-lysine, protamine, 

histone or several synthetic polypeptides, followed by lipid wrapping using either cationic 

liposomes, anionic liposomes or amphiphilic polymers. It combines the high compaction of 

polyplexes and the facilitated endosomal escape of the lipoplexes. In addition, they provide 

more protection to DNA. Additional efforts are needed to prove that the lipid/polymer hybrid 

system is superior to that of lipoplexes or polyplexes for in vivo gene delivery.41 

 

2.4.1 Protamine as an enhancer of lipid-mediated gene transfer 

 

Protamines are small peptides (MW 4000-4250) which are very basic due to their high arginine 

content. They are naturally occurring substances found only in sperm and purified from the 

mature testes of fish, usually salmon. Protamine’s role in sperm is to bind with DNA, assist in 

forming a compact structure, and deliver the DNA to the nucleus of the egg after fertilization. 

This unique role overcomes a major obstacle in gene therapy by non-viral vectors, the efficient 

delivery of DNA from the cytoplasm into the nucleus. Furthermore, protamine is a FDA-

approved substance with a documented safety profile and could be readily used as an adjuvant 

to a human gene therapy protocol.  

Sorgi et al. showed that condensation of plasmidic DNA with protamine before complexation 

with cationic liposomal formulations (DC-Chol and lipofectin) exhibited increased transfection 

activities in CHO cells comparable to that seen with the multivalent cationic liposome 

formulation, lipofectamine. They hypothesize this is probably due to the spermine head group 

of DOSPA of Lipofectamine that can effectively condense DNA into a compact structure. This 

condensed structure, due to its diminished size, may be more readily endocytosed by the cell, 

resulting in the increased levels of transgene expression. Protamine could apparently do the 

same, thus improving the transfection activities of other lipids.42,43 

Salmon sperm protamine is a protamine which has been sequenced and shown to contain the 

following 32-amino acid sequence: PRRRRSSSRPVRRRRRPRVSRRRRRRGGRRRR (PRO ARG ARG 

ARG ARG SER SER SER ARG PRO VAL ARG ARG ARG ARG ARG PRO ARG VAL SER ARG ARG ARG 

ARG ARG ARG GLY GLY ARG ARG ARG ARG). Nearly two-thirds of this sequence (21 of 32 

residues) is composed of arginine, found clustered in four distinct regions, containing four to 
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six arginine repeats. The protamine molecule has the ability to change its structure from a 

random coil in solution to a structure containing four α-helical regions in the presence of 

nucleic acids. These four α-helical regions are well known helix breakers and this confirms that 

protamine can align with the major groove of double helical DNA of the B form Figure 18.44,45 

Further, protamine may wind around a single double-strand or may cross-link with adjacent 

strands, resulting in cross-linking, condensation, and stabilization of the DNA into a highly 

compact structure.46,47 

 
 

Sorgi et al. also found protamine to be superior to poly-L-lysine as well as to various other 

types of protamine (with more lysine residues). The data seem to suggest that the lysine 

residues are the cause of the loss of activity. The appearance of lysine is at the expense of 

arginine, with the amount of lysine and arginine within each protamine molecule remaining 

constant. As both lysine and arginine are cationic, the net charge of the various protamines 

remain constant and should produce similar condensed structures, assuming that this effect is 

due solely to charge, rather than structural composition. There are two possible explanations 

for the above observations: 

1) the exchange of one or several arginine residues for lysine interferes with the binding 

or affinity of protamine to DNA because of interruption of the α-helical structures. This 

hypothesis is strongly supported by the amino acid analysis, transfection and binding 

assays which all indicate a loss in activity/binding correlating with the appearance of 

lysine residues within the protamine molecule; 

2) protamine contains a nuclear localization signal (NLS) which specifically directs the 

complex to the nucleus. From the general properties found among NLSs – generally 

characterized as containing short runs of basic amino acids – there exist four potential 

regions within the 32-mer protamine which could potentially serve as a nuclear 

localization signal (amino acids 2-5, 12-16, 21-26 and 29-32). The existence of a NLS 

within protamine could account for the increased activity in comparison to other 

cationic polymers (such as poly-L-lysine) and the disruption of the NLS by the 

Figure 18 Protamine molecules bind in the major 
groove of DNA, neutralizing the phosphodiester 
backbone of DNA and causing the DNA molecules to 
coil into toroidal structures.  

(a) Model showing how two adjacent salmon 
protamine molecules (blue atoms) wrap around the 
DNA helix (white atoms) and bind within the major 
groove of DNA.  

(b) Scanning-probe images of toroidal DNA-
protamine complexes prepared in vitro on a 
graphite surface by adding protamine to DNA 
attached loosely to the surface. The toroids formed 
in vitro are similar in size and shape to those 
isolated from human sperm chromatin (c).  

(c) Scanning-probe microscope images of native 
DNA-protamine toroids obtained from human 
sperm chromatin. These toroids, which comprise 
the basic subunit structure of protamine-bound 
DNA, contain approximately 50,000 bp of DNA 
coiled into each donut-shaped structure.

44
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incorporation of a lysine residue could lead to its loss of activity since a single point 

mutation is often sufficient to result in complete loss of nuclear targeting.42 

 

2.4.2 Comparison between Lipoplexes and Lipid/Protamine/DNA Nanoparticles 

 

Nanostructure of Lipoplexes 

Cationic lipid-DNA complexes are denoted as lipoplexes. Cationic lipids are typically used in the 

form of cationic liposomes which can be identified as artificial vesicles consisting of one or 

more bilayers of amphipathic lipids that trap an equal number of internal aqueous 

compartments. These structures are formed spontaneously when certain lipids are placed in 

aqueous phase, through the self-assembly of these lipids in such a way as to orient their 

hydrophobic parts away from the water, while the hydrophilic parts are oriented towards the 

aqueous phase surrounding the hydrophobic ones. Due to the structure of liposome, it can 

encapsulate a wide range of hydrophilic and hydrophobic drugs, in the phospholipid bilayer, in 

the internal aqueous compartments or at the bilayer interface Figure 19.2 

 
Figure 19 Formation of liposome by the self-assembly of amphiphilic lipids placed in aqueous phase (left) and 
schematic illustration representing the structure of liposome and the potential position of lipophilic and 
hydrophilic drugs (right).

2
 

 

Other properties that made liposomes attractive are: 

- biocompatibility; 

- liposome-incorporated pharmaceuticals are protected from the inactivating effect of 
external conditions, yet do not cause undesirable side reactions; 

- size, charge and surface properties of liposomes can be easily changed simply by 
adding new ingredients to the lipid mixture before liposome preparation and/or by 
variation of preparation methods; 

- unique opportunity to deliver pharmaceuticals into cells or even inside individual 
cellular compartments.48 
 

The formation of lipoplexes is generally difficult to control, and different structures are 

produced in the same lipoplex preparation. The proposed model for describing the interaction 

between cationic liposomes and DNA involves the following: (i) liposomes cause a compaction 

of the DNA molecules and charge neutralization; (ii) neutralization may induce aggregation, 

resulting in the formation of a heterogeneous group of multilamellar structures of different 

shapes and consisting of DNA sandwiched between lipid bilayers; (iii) it is proposed that DNA 

affects the liposomes, inducing lipid mixing and rearrangement resulting in fusion of the 

multilamellar structures to form large DNA-lipid complexes.49 Lipoplexes are classified into 

three types, small unilamellar vesicles (SUV), with a diameter less than 50 nm, large 

unilamellar vesicles (LUV) with a diameter of 50-500 nm, and multilamellar liposomes (MLV) 

with a large diameter up to 10,000 nm Figure 20.2 
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SUV can condense DNA on its surface, making it vulnerable to the enzymes in the medium. 

This ineffective protection, in addition to the short half-life of the DNA-SUV complex in the 

blood circulation, limits its use as a DNA delivery system. The large size of multilamellar 

liposomes (MLV) hinder their use for systematic administration or transport of DNA into cells.2 

Once inside the cell, such multilamellar structure offers protection from DNA degradation but 

do not often allow for an adequate DNA release from endosomal compartments. If gene 

payload is not released from endosomes, it is shuttled to the lysosomes, where it is degraded 

by nucleases and transfection may fail.50  

 

 
Figure 20 Liposome formulations used as DNA delivery systems.

2
 

 

Nanostructures of Lipid/Protamine/DNA (LPD) Nanoparticles 

As briefly described before, to overcome the problem of efficient release from endosomal 

compartments, lipid/polycation/DNA (LPD) complexes, in which plasmidic DNA condensed 

with a polycation is encapsulated by a lipid envelope, have recently been developed. Over the 

past few years several efforts to improve the delivery efficiency of LPD systems have been 

made: the composition of the lipid envelope has been modified with novel chemical 

compounds and the surface has been functionalized with several polymers and ligands. One of 

the most challenging issues in the drug delivery field is systemic tumour-targeted delivery and 

LPD nanoparticles may represent a potential vector. Caracciolo et al.50, based on the concept 

of core-shell-type lipid nanoparticles51, showed that the transfection efficiency of 

protamine/DNA complexes coated with a lipid envelope made of cationic 1,2-dioleyl-3-

trimethylammonium propane (DOTAP) is from 3 to 20 times higher than that of DOTAP/DNA 

lipoplexes. They showed that the superior efficiency of LPD complexes over lipoplexes does 

correlate with their distinctive physical-chemical properties. They investigated complex 

formation, DNA protection, surface properties, nanostructure, ability to release DNA upon 

interaction with cellular lipids, and intracellular trafficking.  

Complexes formation of LPD nanoparticles was studied with gel retardation assay and by 

determining the average dimensions and the ζ-potential of P/DNA. Gel retardation assay 

showed substantial retardation of the binary P/DNA complex when P/DNA weight ratio, Rw, 

was above 0.5. Starting from Rw= 0.75, the molar fraction of plasmid DNA completely 

protected by protamine, XDNA was maximum (i.e., XDNA= 1) Figure 21. The ζ-potential evaluation 

of P/DNA particles led to choose Rw= 0.75 because it guaranteed complete DNA protection, 

exhibited negative charge (-20 mV), and had appropriate dimensions (260 nm) with the 
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Figure 22 (Cartoon) Mechanism of formation of 
lipoplexes and lipid nanoparticles: lipoplexes are 
typically formed by bulk mixing between cationic 
liposomes and DNA solutions and are arranged 
as multilayer structures in which DNA is 
intercalated between alternating lipid bilayers. 
Lipid NPs are composed are composed of a core 
of DNA complexed with protamine and covered 
by a lipid shell that protects DNA from 
degradation, imparts biocompatibility and 
improves stability in biological fluids.

50
 

 

minimum P content Figure 21. Then the preassembled negatively-charged P/DNA core was 

coated with a lipid envelope through membrane fusion of positively charged DOTAP small 

unilamellar vesicles (SUVs), triggered by the electrostatic attraction around the negatively 

charged core. ζ-potential and dimensions of complete LPD were determined again giving rise 

to a final chosen LPD nanoparticle (RV= 2, RV being lipid/DNA volume ratio) with dimensions of 

approximately 220 nm, positive charge of 47.8 mV Figure 21. The charge of nanocarriers must 

be positive to let them associate with proteoglycans that are a major constituent of the 

extracellular cell matrix and are negatively charged under physiological conditions, due to the 

occurrence of sulfate and uronic acid groups. 

  
Figure 21 (Top left) Digital photograph of protamine/DNA complexes (P/DNA) with increasing P/DNA weight-ratio 
Rw= 0.1 (lane 1), Rw= 0.5 (lane 2), Rw= 1 (lane 3), Rw= 2 (lane 4), Rw= 3 (lane 5), Rw= 5 (lane 6), Rw= 10 (lane 7), and 
control DNA (lane 8). The high mobility band was attributed to the most compact (supercoiled) form, and the less-
intense one was considered to be the non-super coil content in the plasmid preparation. (Bottom left) Molar 
fraction of plasmid DNA protected by protamine, XDNA, against the P/DNA weight ratio, Rw. (Top centre) Diameter 
of P/DNA complexes, DH, as a function of the P/DNA weight ratio, Rw. This behavior is typical of the reentrant 
condensation effect. (Bottom centre) ζ-potential of P/DNA complexes as a function of Rw. The charge inversion 
effect occurring for 0.5<Rw<1 changes the overall charge of the aggregates from negative (DNA excess) to positive 
(protamine excess).

50
 (Top right) Diameter of LPD complexes (triangles) and lipoplexes (circles) as a function of the 

lipid/DNA volume ratio, RV. (Bottom right) ζ-Potential of LPD complexes (triangles) and lipoplexes (circles) as a 
function of RV. 

 

Studies on the nanostructure of LPD complexes and lipoplexes with synchrotron showed that 

LPD complexes are made of about 10 lipid layers in a highly swollen state, while lipoplexes are 

well ordered multilamellar structures made of more than 30 alternating lipid/DNA layers 

Figure 22.50 
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Differences in transfection efficiency, interaction with cellular lipids and cell imaging  

To compare the ability of LPD nanoparticles and lipoplexes to deliver plasmid DNA, Caracciolo 

et al. performed experiments of Transfection Efficiency (TE) in NIH 3T3, CHO, Hek293, and A17 

cells. As shows Figure 23, LPD nanoparticles exhibit superior performance over lipoplexes in all 

the tested cell lines. (As previously described before, these two formulations were coated with 

the same cationic lipid (DOTAP). The only difference is the pre-condensation step of DNA with 

protamine in LPD nanoparticles).50 

 

 
 

The structural evolution of lipoplexes upon interaction and mixing with anionic cellular lipids 

plays a central role in the DNA escape process, i.e., in how DNA dissociates from lipoplexes and 

is released into the cytoplasm and eventually into the nucleus. Caracciolo et al. performed 

electrophoretic experiments that allow to quantify the molar fraction of DNA that is no longer 

electrostatically associated with cationic lipids, 1- XDNA, as a function of the anionic/cationic 

charge ratio R upon interaction with 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] 

(DOPG) and 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) anionic cellular lipids. As shows 

Figure 24, at the lowest R (R= 0.5), DNA is almost completely dissociated from LPD complexes 

(1 – XDNA ≈ 1), while a large fraction of DNA is still protected by lipoplexes (1 – XDNA of ∼ 0.35 

and ∼ 0.45 for DOPG and DOPA, respectively). Figure 24 also shows that DNA released from 

lipoplexes, 1 – XDNA, increases with increasing R and reaches 1 at R ≈ 10. These findings suggest 

that a much lower amount of anionic lipids is needed to promote complete DNA dissociation 

from LPD complexes.50  

 
Figure 24 Molar fraction of DNA, 1 – XDNA, that is no longer electrostatically associated with LPD 
complexes and lipoplexes after interaction with DOPG (A) and DOPA (B) cellular lipids of as a function of 
the anionic/cationic charge ratio, R.

50
 

Figure 23 Transfection efficiency of LPD 
complexes and lipoplexes at the same lipid/DNA 
ratio (RV = 2). Luciferase activity is expressed as 
relative light units/mg of protein in the cell 
lysate. TE was found to increase by a factor ∼3 
in A17, ∼4 in CHO, ∼8 in Hek293, and ∼20 in NH 
3T3 cells.

50
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Figure 25 Confocal microscopy of CHO-
K1 cells 4 h after treatment with LPD 
complexes (A) and lipoplexes (B). Green 
fluorescence from NBD lipids forming 
LPD complexes was clearly localized, 
while DNA (red fluorescence) had visibly 
spread into the cytoplasm. DOTAP/DNA 
lipoplexes were distributed throughout 
the cytoplasm and to some extent at 
the cell periphery. Colocalization of 
green and red fluorescence signals 
suggests that lipoplexes are intact with 
DNA trapped within.

50
 

 

These results show that for R < 0.5 DNA is almost completely released from LPD systems, while 

it is still largely protected by lipoplexes. The DNA release ability may be connected with the 

membrane fusion rate of complexes with cellular membranes that is, in turn, inversely related 

to the multilamellarity of lipid aggregates. Such suggestion is in good agreement with 

synchrotron experiments showing that lipoplexes are multilamellar systems, while LPD 

nanoparticles are made of a few membranes and are therefore more disposed to fuse with 

anionic lipids mimicking cellular membranes and to release their gene cargo. 

Confocal images of CHO-K1 cells 4 h after incubation with LPD complexes and DOTAP/DNA 

lipoplexes are shown in Figure 26. Caracciolo et al. observed that green fluorescence from 

lipids forming LPD nanoparticles is clearly localized, while DNA (red fluorescence) has visibly 

spread into the cytoplasm. This may be plasmid DNA exiting from the endosomal of lysosomal 

stage into the cytoplasm. Over the same time scale, cells incubated with DOTAP/DNA 

lipoplexes are mainly distributed throughout the cytoplasm and to some extent at the cell 

periphery. Complexes do not appear to be spread in the cytoplasm and this could suggest that 

such binary formulation is defective in facilitating endosomal escape of nucleic acids, resulting 

in entrapment of plasmid DNA in endosomes.50 

 

 

 

 

 

 

 

 

 

Here in Table 3 can be found the main characteristics and properties that Caracciolo et al. 

discovered in their work50 and it is useful to understand the possible different mechanism 

occurring upon complex-cell interaction between lipoplex and LPD nanoparticle. Because of 

comparable size and ζ-potential, as well as identical lipid composition, it is reasonable to judge 

that LPD complexes and lipoplexes enter the cell using similar internalization mechanisms. 

However, after complex internalization, both LPD complexes and lipoplexes fuse with the 

negatively charged endosomal membrane. LPD complexes are more fusogenic than lipoplexes, 

a phenomenon that is presumably related to higher interaction between cationic and anionic 

cellular lipids due to the absence of competing DNA in the lipid envelope and to the lower 

number of lipid layers to be peeled off. DNA release from endosomes is not a relevant barrier 

for LPD complexes, while DOTAP/DNA lipoplexes remained largely intact and accumulated at 

the nuclear membrane without releasing DNA abundantly Figure 27.50   

 

Figure 26 Confocal microscopy of 
CHO-K1 cells 4 h after treatment 
with LPD complexes (A) and 
lipoplexes (B). Green fluorescence 
from NBD lipids forming LPD 
complexes was clearly localized, 
while DNA (red fluorescence) had 
visibly spread into the cytoplasm. 
DOTAP/DNA lipoplexes were 
distributed throughout the 
cytoplasm and to some extent at 
the cell periphery. Colocalization of 
green and red fluorescence signals 
suggests that lipoplexes are intact 
with DNA trapped within.

50
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Two functional building blocks: 

system: 

 

 Lipoplexes LPD Nanoparticles 

Composition DNA + DOTAP DNA + Protamine + DOTAP 

ζ-potential 44.4 mV 47.5 mV 

Size > 200 nm > 200 nm 

Encapsulation/Toxic
ity 

A larger amount of cationic lipids 
are required to condense the same 
amount of DNA. More toxic. 

A smaller amount of cationic lipids 
are required to condense the same 
amount of DNA. Less toxic. 

Surface  

Adsorption of DNA molecules. 
Detrimental effect for in vivo 
application because of interactions 
between negative charged DNA and 
positively charged serum 
components that may form 
aggregates and undesirable lung 
accumulation 

Resembles that of pure DOTAP 
cationic lipids complexes 

Nanostructure 

Well-ordered multilamellarity (more 
than 30 alternating lipid/DNA 
bilayers) 

About 10 lipid layers in a highly 
swollen state 

Transfection 
efficiency 

Lower Higher 

Interaction with 
anionic cellular 
lipids 

Less disposed to fusion More disposed to fusion 

Cell imaging 
Larger entrapment of plasmidic 
DNA in endosomes/lysosomes 

Higher cytoplasmic spread of 
plasmidic DNA 

Table 3 

 

 

 

 
Figure 27 

 

 

 

 

 

Core of DNA/protamine: 

Carrier for gene payload 

Provides mechanical stability 

Controlled morphology 

Narrow size distribution 

Reduced amount of lipid needed 

for complete drug encapsulation 

 Lipid shell: 

Protects DNA from degradation 

Imparts biocompatibility 

Improves stability in biological 

fluids 
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Evaluation of the transfection barriers involved in lipid-mediated gene delivery 

Pozzi et al.52 used two lipid formulations to 

compare cell uptake, intracellular trafficking, 

endosomal escape and final fate of lipoplexes and 

lipid-protamine/DNA (LPD) nanoparticles in living 

Chinese Hamster Ovary (CHO) cells. The first 

formulation is made of the cationic lipids DOTAP 

and DOPC, while the second mixture is made of DC-

Chol and DOPE. As shows Figure 28, DC-Chol-

DOPE/P-DNA nanoparticles and DC-Chol-

DOPE/DNA lipoplexes are about three orders of 

magnitude more efficient (using the luciferase 

expression assay) than their DOTAP-DOPC 

counterpart. At the same time, transfection 

efficiency (TE) of DC-Chol-DOPE/P-DNA 

nanoparticles is about 2-fold times higher than that 

of DC-Chol-DOPE/DNA lipoplexes. It then looks like 

LPD nanoparticles show potential superior efficacy 

compared with lipoplexes. To understand which 

intracellular barriers are responsible for the 

different transgene expression, they performed a 

quantitative mechanism-based investigation 

comparing cell uptake, intracellular trafficking, 

endosomal escape and final fate of the four 

formulations in the selected cell line.  

In Figure 29 it is reported the amount of 

fluorescence positive cells after 3 h of incubation 

with lipoplexes and LPD nanoparticles prepared 

with Cy3-labeled DNA at 37 °C, measured by flow 

cytometry. It shows that cellular uptake of 

lipoplexes is higher than that of their LPD 

nanoparticles counterparts. Moreover, it is remarkable that, upon CHO treatment with the less 

efficient formulation of DOTAP-DOPC/DNA lipoplexes, cell uptake reached a level as high as 

≈40 %, anyhow superior to the most efficient formulation of DC-Chol-DOPE/P-DNA 

nanoparticles (less than 10 %). They conclude that cellular uptake does not correlate with the 

measured transgene expression. To define the endocytotic route of lipid-mediated DNA 

delivery, CHO cells were treated with Cy3-DNA (red) and co-labeled with specific markers of 

endocytic pathways (green): clathrin-mediated endocytosis (Alexa488-labeled transferrin), 

caveolae-mediated endocytosis (caveolin-E1GFP) and micropinocytosis (70 kDa dextran). 

Colocalization of red and green fluorescence gave rise to visible yellow/orange punctate 

structures and they performed, in addition to a qualitative inspection of confocal images, a 

quantitative analysis of the fluorescence signal distribution. Their findings indicate that fluid-

phase micropinocytosis is the main internalization pathway of lipoplexes, while the uptake of 

LPD nanoparticles occur equally through micropinocytosis and the classical clathrin-associated 

endocytosis. By using correlation techniques, they found that inside the cell both lipoplexes 

Figure 30 F(lys): fraction of DNA in the lysosomes 

Figure 28 

 

Figure 29 
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and LPD nanoparticles are actively transported towards the cell nucleus. For each lipid 

formulation, by analyzing colocalization with the lysosome marker Lysosensor, Figure 30, it 

was observed that LPD nanoparticles escaped from endosomes more efficiently than 

lipoplexes, most likely due to their distinctive core-shell-type nanostructure. The largest 

fraction of DOTAP-DOPC-containing systems reaches the lysosome compartment, suggesting 

that poor endosomal escape and extensive lysosomal degradation are the most relevant 

barriers in DOTAP-DOPC mediated transfection. On the other side, escape from endosome is 

large in DC-Chol-DOPE-containing systems most likely due to the use of DOPE and cholesterol-

like molecules, which can cause rupture of endosomes. Figure 31 shows a schematic summary 

and a comparison of the barriers encountered by lipoplexes and LPD nanoparticles analyzed by 

Pozzi et al.52 Nuclear and post-nuclear processes represent the last steps towards a full 

identification of intracellular barriers accountable for transfection efficiency dissimilarities 

between selected formulations. Therefore, future experiments are needed to further 

investigate what happens during the last phases of DNA intracellular delivery after transfection. 

 
Figure 31 Schematic summary and comparison of the barriers encountered by lipoplexes and LPD nanoparticles. 

Overall, these last data indicate that condensation of DNA with protamine before 

complexation with liposomes increases the transfection efficiency measured with the 

luciferase assay. Thus protamine represents a potential efficient candidate capable of 

overcoming the main limit of non-viral methods, i.e. the low transfection efficiency. In this 

Master’s thesis project fluorescence-based state-of-the-art techniques, such as confocal 

microscopy and flow cytometry, are used to better elucidate the cellular processes involved in 

protamine-mediated transfection. Indeed, a special focus is given on the nuclear envelope 

barrier and on the correlation between transfection and cell cycle. In order to have a deeper 

understanding of these phenomena, the gold standard transfection formulation Lipofectamine 

is used in comparison with lipid-protamine nanoparticles to elucidate, through live cell imaging 

and large cell population analysis, the mechanisms involved in the different transfection 

efficiency between these two nanoformulations. The methods and results described in this 

work offer a powerful and additional protocol to evaluate, compare and analyze further non-
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viral approaches with the expectation of a better comprehension of intracellular mechanisms 

and improvement of gene delivery methods. 
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3 Materials and methods 
 

3.1 Cell culture 
 

CHO-K1 cells (purchased from American Type Culture Collection CCL-61 ATCC) were grown in 

Ham’s F12K medium supplemented with 10% of fetal bovine serum and 1% of 

penicillin/streptomycin at 37°C and in 5% CO2. The sub-culturing protocol was: 

1. cells were maintained in 100 mm X 15 mm Petri dishes (≈ 78,5 cm2) with 10 mL 

complete growth medium; 

2. every 2-3 days, when cells reached confluence (≈ 1-2 x 106), they were washed with 

Phosphate-Buffer Saline (PBS) to remove all traces of serum that may inhibit trypsin 

and trypsinized by adding 1 mL of 0.25% (w/v) Trypsin - 0.53 mM EDTA solution and 

left at 37 °C for 5 minutes; 

3. cells were observed under the microscope to ensure the cell layer detached and avoid 

clumpings of cells; 

4. add 9 mL of complete growth medium and aspirate cells by gently pipetting; 

5. add appropriate aliquots of cell suspension to a new culture vessel (sub-cultivation 

volume dilution 1:10 – 1:20). 

CHO cell line was chosen due to its common use in research, especially for expression, 

transfection, and recombinant protein production.   

 

3.2 Transfection with Lipofectamine® Reagent 
 

The following quantities were used depending on the plate format. 

 

Culture 
vessel 

Growth area 
/ well (cm2) 

Vol. plating 
growth 

medium 
(mL) 

Vol. Serum-
Free 

Medium 
(µL) 

DNA (µg) Lipofectamine  
(µg) 

12-well 4,01 1 2 x 50 1 10 

6-well 9,62 2 2 x 100 2 20 

 

Cells were transfected according to the following protocol: 

1. seed cells to be 70-90% confluent at transfection; 

2. dilute DNA with serum-free medium for 5 minutes at room temperature (RT); 

3. dilute Lipofectamine (Life Technologies) with serum free-medium for 5 minutes at RT; 

4. add diluted DNA to diluted Lipofectamine® Reagent (1:1 volume ratio) and incubate 

for 20 minutes at RT; 

5. add DNA-lipid complexes to cells in serum-free medium for 3 hours at 37°C; 

6. wash the cells with PBS and add with complete growth medium and incubate at 37 °C. 
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3.3 Transfection with Lipid/Protamine/DNA nanoparticles 
 

The following quantities were used depending on the plate format. 

 

Culture 
vessel 

Growth 
area / 
well 

(cm2) 

Vol. 
plating 
growth 

medium 
(mL) 

Protamine 
(µg) 

DNA 
(µg) 

Lipids DC-
Chol/DOPE 

(µg) 

Protamine 
/ DNA 

mass ratio 

Protamine 
/ DNA  
charge 
ratio 

12-
well 

4,01 1 0.5 1 10 1:2 0,64 

6-well 9,62 2 1 2 20 1:2 0,64 

6-well 9,62 2 4 2 20 2:1 2,54 

6-well 9,62 2 8 2 20 4:1 5,08 

6-well 9,62 2 16 2 20 8:1 10,16 

 

First of all dissolve protamine sulfate salt (MW = 5.1 kDa) from salmon (Sigma-Aldrich St. Louis, 

MO, USA) in distilled water at a final concentration of 0.5 mg/mL and incubate for 24 h at 4 °C. 

Cells were transfected according to the following protocol: 

1. seed cells to be 70-90% confluent at transfection; 

2. mix DNA with protamine and incubate for 30 min at RT; 

3. add lipids to protamine/DNA complexes and incubate for 30 min at RT; 

4. add lipid/protamine/DNA complexes to cells in serum-free medium for 3 hours at 37°C; 

5. wash the cells with PBS and add with complete growth medium and incubate at 37 °C. 

  

Protamine/DNA charge ratio was calculated as follows: 

 

𝐶ℎ𝑎𝑟𝑔𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝑛 (+)

𝑛 (−)
 

  

where 𝑛 (+) is the total number of positive moles derived from protamine and 𝑛 (−) is the 

total number of negative moles derived from the DNA. The equation can also be written in 

another way: 

𝐶ℎ𝑎𝑟𝑔𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝑛 (+)

𝑛 (−)
=

𝑛𝑝𝑟𝑜𝑡 × 𝑛+

𝑛𝐷𝑁𝐴  × 𝑛−
=

𝑚𝑝𝑟𝑜𝑡

𝑀𝑊𝑝𝑟𝑜𝑡
× 𝑛+

𝑚𝐷𝑁𝐴
𝑀𝑊𝐷𝑁𝐴

× 𝑛−
=

𝑚𝑝𝑟𝑜𝑡

5100
× 21

𝑚𝐷𝑁𝐴
𝑀𝑊𝑛𝑡 × 2 × bp

× 2 × bp

=

𝑚𝑝𝑟𝑜𝑡

5100
× 21

𝑚𝐷𝑁𝐴
308

≅
𝑚𝑝𝑟𝑜𝑡

𝑚𝐷𝑁𝐴
× 1,27 

where 𝑛+ is the total number of positive residues in protamine (21), 𝑛− is the total number of 

negative residues in DNA, 𝑚𝑝𝑟𝑜𝑡 is the mass of protamine, 𝑀𝑊𝑝𝑟𝑜𝑡 is the molecular weight of 

protamine (5100 Da), 𝑀𝑊𝐷𝑁𝐴 is the molecular wait of DNA, 𝑀𝑊𝑛𝑡 is the molecular weight of a 

nucleotide (308), bp is the pair base of DNA. 
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3.4 Plasmids 
 

A plasmid of 5.5 kbp codifying NLS-SV40 EGFP was used as a protein expression reporter in 

CHO cells after transfection. This enhanced green fluorescent protein (EGFP) contain at the N-

terminal a classical nuclear localization signal (NLS) from SV40 Large T antigen tagging EGFP for 

import into the cell nucleus by nuclear transport. Since a small 

amount of plasmid was available in the laboratory, as a first step 

before utilization, amplification and purification steps were 

performed. Top10 E. coli Competent Cells (Life Technologies) 

stored at –80 °C were transformed with 100 ng of pcDNA3.1 NLS-

SV40 EGFP and left on ice for 30 minutes. Then they received a 

heat shock for 45 seconds at 42 °C and after 3 minutes on ice again. 

250 µL of  S.O.C. medium (Life Technologies) were added to 

bacteria and left to grow for 1 hour at 37 °C.  Cells were then plated on LB Agar Ampicillin (100 

µg/mL)-100 mm plate and left overnight at 37 °C. A colony was picked and let it grow in LB 

medium with Ampicillin (1:1000) at 37 °C in the 

agitator. QIAGEN Plasmid Midi and Maxi Kits was 

used to purify the plasmidic DNA. 

To facilitate visualization of plasmid DNA delivery 

during transfection with confocal microscopy, the 

Label IT® Plasmid Delivery Control Cy™3 (2.7 kbp, 

double stranded, circular plasmid, Mirus Bio 

Corporation, Madison, WI, USA) was used. The 

excitation wavelength of Cy™3 fluorophore is 549 

nm and the emission wavelength is 570 nm Figure 

32. 

 

3.5 Fluorescence phenomenon 
 

Fluorescence is a phenomenon in which a susceptible substance absorbs light and reemits light 

(photons) from electronically excited states after a given time. Compounds that display 

fluorescent properties are generally termed as fluorescent probes or dyes or fluorochromes. 

Fluorochromes include organic molecules, inorganic ions, fluorescent protein (e.g. green 

fluorescent protein), and atoms. Fluorescence follows a series of discrete steps and the final 

outcome is the emittance of a photon with a longer wavelength. When a light of particular 

wavelength hits a fluorescent sample, the atoms, ions or molecules therein absorb a specific 

quantum of light, which pushes a valence electron from the ground state into a higher energy 

level, creating an excited state. This process happens in a range of femtoseconds and requires 

at least the energy between excited and ground state in order for excitation to occur. After 

excitation to the higher energy level, the electron quickly relaxes to the lowest possible excited 

sublevel (in some picoseconds). This last process is called internal conversion. When the 

electron finally returns to the lower energy level it originated from, a quantum of light (photon) 

is emitted with a longer wavelength because of other phenomena that dissipate energy and 

pcDNA3.1 NLS-EGFP 

AmpR 

Figure 32 Excitation (blue) and emission (red) 
spectra of Cy3 fluorophore. (Taken from 
http://www.bio-ope.com/doc/CyDye.asp) 
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Figure 33 Single photon 
excitation. Representation of a 
Jablonski diagram. Singlet (S) and 
triplet (T) describe the electron 
spin states. The non-radiative 
transfer between singlet and 
triplet states is called 
intersystem crossing. Emission 
between triplet and singlet 
states is called phosphorescence 
and lasts typically milliseconds to 
seconds, much slower compared 
to other molecular events. 
Internal conversion and 
vibrational relaxation represent 
ways to “lose” energy through 
heat: this can help explain the 
Stokes shift. 

 

since the wavelength varies inversely with the radiative energy Figure 33. This difference 

between the emission and the excitation maxima is called “Stokes shift”. Photon emittance is 

slow compared with the absorption of photons and the emitted light is collected and 

transported to detectors. Fluorochromes can enter repetitive cycles of excitation and emission 

as long as no destruction or covalent modification occurs that irreversibly interrupts this 

process.53 

 

 

3.6 Green fluorescent proteins as transfection efficiency reporters 
 

The green fluorescent protein (GFP) was first isolated from the bioluminescent jellyfish 

Aequorea victoria and the gene encoding this protein represents today the member of an 

enormously powerful technology that has revolutionized the way life scientists are carrying out 

research on living cells. This “genetic code for fluorescence” has the outstanding ability to form 

an optically active cromophore in the absence of any cofactors, requiring only the presence of 

oxygen, together with many other advantages Table 4. Since its discovery many other novel 

proteins have been cloned from various marine organisms with different spectral, molecular 

and chemical properties distinct from GFP, providing cell biologists, medical researchers and 

biotechnologists with a diverse choice of multicolored fluorescent labels for imaging and 

screening.  Although many suggestions have been made (like photosensing, predator-prey 

behavior), the biological function of these proteins in marine organisms remains pretty 

unclear.54  

GFP-like proteins have the same basic structure made of 11-stranded β-barrel with a threaded 

α-helix from which, in a solvent-protected environment, the chromophore is suspended. The 
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original GFP contains 238 amino acids and the N- and C-termini are freely accessible for fusion 

to other proteins. Three consecutive amino acids (XXG) in the primary sequence give rise, 

through a series of posttranslational modifications to an optically active cromophore in a 

process called maturation Figure 34.  

 

Advantages and features of fluorescent proteins 

Genetically encoded 

Optical properties can be readily tuned and optimized using molecular biological techniques 

Readily fused to individual proteins 

Accessible N- and C-termini for expression fused to target proteins 

Can be readily targeted to different locations and compartments of cell 

Other than molecular oxygen, no cofactors for chromophore formation required 

Non-invasive  

Fluorescence emissions covering visible spectrum (460-650 nm) 

Variety of different photo-switchable variants available 

Instrumentation suitable for fluorescence detection commonly available in molecular cell 
biology laboratories 

Can be configured to sense a wide range of cellular parameters 
Table 4 

 

 
Figure 34 Structure of A. victoria GFP  
(Taken from http://zeiss-campus.magnet.fsu.edu/articles/probes/jellyfishfps.html) 
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In GFP from Aequorea victoria the 

cromophore amino acids are serine 65, 

tyrosine 66, and glycine 67. The first step in 

the maturation is very most likely a series of 

rearrangements that allow nucleophilic 

attack of the carboxyl carbon of the serine 

residue (Ser65) on the amide nitrogen of 

glycine 67. This is followed by a dehydration 

step and the formation of an imidazolin-5-

one heterocyclic ring system. Oxidation of 

the tyrosyl-α,β carbon by molecular oxygen 

extends the imidazolinone conjugation 

system to include the phenyl ring to form 

the chromophore characteristic of GFP 

Figure 35. GFP variants containing XWG or 

XHG give rise to chromophores with cyan or blue emissions, respectively. Amino acids absent 

in nature or other substitutions in the chromophore motif corresponding to position 66 can 

lead to proteins with novel properties. The wild type (wt) Aequorea GFP displays a complex 

absorption spectrum, with maximal excitation occurring at 397 nanometers, and a minor 

secondary peak of residing at 476 nanometers. The complex absorption spectrum featuring a 

significantly higher extinction coefficient at near-ultraviolet wavelengths, coupled with the low 

quantum yield of wtGFP, have severely limited its utility for cellular imaging applications. 

Mutagenesis strategies were initially applied to the sequence encoding the wtGFP in order to 

determine whether different amino acid substitutions might be used to fine-tune its spectral 

characteristics. Substitution of Ser65 for threonine produces the "enhanced" green derivative. 

The S65T mutation stabilized the hydrogen-bonding network in the chromophore, resulting in 

a permanently ionized form of the fluorophore absorbing at 489 nanometers. The resulting 

GFP-S65T mutant was a distinct improvement over wtGFP for applications as a fluorescent 

marker in living cells because it had a well-defined absorption profile with a single peak at 489 

nanometers. This enhanced variant features an excitation spectral profile that overlays nicely 

with the 488-nanometer argon-ion laser line and is similar in profile to fluorescein and related 

synthetic fluorophores that are readily imaged using commonly available filter sets designed 

for fluorescein (FITC). Furthermore, EGFP is among the brightest and most photo-stable of the 

Aequorea-based fluorescent proteins. In addition, the GFP-S65T derivative is about five-fold 

brighter than wtGFP, and it matures more rapidly, allowing fluorescence to be detected at 

earlier time points after cell transfection. The only drawbacks to the use of EGFP as a fusion 

tag are a slight sensitivity to pH and a weak tendency to dimerize. 

 
Figure 36 Excitation (right) and emission (left) spectra of EGFP. (Taken from: 
http://zeiss-campus.magnet.fsu.edu/articles/probes/jellyfishfps.html) 

Figure 35 GFP cromophore formation. (Taken from: 
http://zeiss-
campus.magnet.fsu.edu/articles/probes/jellyfishfps.html) 
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3.7 Other fluorescent dyes used in this work 
 

3.7.1 Hoechst 

Hoechst 33342 (2'-[4-ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-2,5'-bi-1H-benzimidazole 

trihydrochloride trihydrate) is a cell-permeable DNA stain (effective for fixed-cell and live-cell 

staining) that is excited by ultraviolet light and emits blue fluorescence at 460 to 490 nm. 

Hoechst 33342 binds preferentially to adenine-thymine (A-T) regions of DNA Figure 37. Cells 

were stained with Hoechst 33342 (2 μg/mL) for 10 min and then examined by confocal 

microscopy. 

 
Figure 37 Right: Excitation (blue) and emission (red) spectra of Hoechst. Left: structure of the fluorophore. (Taken 
from: http://www.sigmaaldrich.com/catalog/product/sigma/p4170?lang=it&region=IT and 
http://www.olympusconfocal.com/theory/confocalintro.html) 
 

3.7.2 NBD 

Various lipid probes have proved to be useful in membrane and cell biology due to their ability 

to monitor lipid molecules by a variety of physicochemical approaches at increasing 

spatiotemporal resolution. A widely used fluorophore in biophysical, biochemical, and cell 

biological studies of membranes is the NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group. NBD-

labeled lipids are extensively used as fluorescent analogs of native lipids in biological and 

model membranes to monitor a variety of processes Figure 3855. DOPE neutral lipid labeled 

with NBD was used to localize lipid complexes inside the cell by confocal microscopy. 

Excitation maximum = 465 nm, emission maximum = 535 nm. 

 

 
 

 
 

 

Figure 38
55

 Example of a lipid (1-
palmitoyl,2-(12-[N-(7-nitrobenz-2-
oxa-1,3-diazol-4yl) 
amino]dodecanoyl)-sn-glycero-3 
phosphocholine (C12- NBD-PC)) 
with the NBD fluorescent dye 
attached to an aliphatic chain. 
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3.7.3 FM4-64 

Zal et al.56 reported a novel property of the fluorescent dye FM4-64 (N-(3-triethylammonium-

propyl)-4-(p-diethylaminophenylhexatrienyl)-pyridinium 2Br) to reveal the nuclear envelope 

(NE) Figure 39. The dye 

readily translocates inside the 

cells at physiological 

temperature and, when 

excited at 620-650 nm, 

reveals a distinct 

microenvironment in NE of 

living cells probably due to a 

local enrichment of negatively charged lipids. On the other hand, when the dye is excited at 

480-520 nm it reveals vesicles in the endocytic pathway and the endoplasmic reticulum. The 

emission maximum is at 700 nm.  

 

There was some FM4-64 (T3166 Life Technologies) stored in the laboratory but the 

concentration was unknown. To determine the concentration of the fluorescent dye, the FM4-

64 powder was dissolved in the smallest volume of dimethyl sulfoxide (DMSO) and its 

concentration was determined by the spectrophotometer by exploiting the known molar 

absorptivity in chloroform (ε = 51200 cm-1M-1) and the maximum of absorption at 560 nm 

Figure 40.  

FM4-64 was dissolved in DMSO at 10 mM and added to the cells at 20 µM in complete DMEM 

medium supplemented with 10% FBS and 

1% P/S. The staining was for 30 minutes at 

37 °C in a 5% incubator. Cells were washed 

once with PBS and further incubated for 15 

min at 37 °C in complete medium.56 

 

 

 

 

 

 

 

 

3.7.4 Propidium iodide 

Propidium iodide (PI) is an intercalating agent and a fluorescent molecule that binds to nucleic 

acids. The fluorescence excitation maximum is 535 nm and the emission maximum is 617 nm 

Figure 41. Propidium iodide is used as a DNA stain for both flow cytometry to quantitatively 

assess DNA content in cell cycle analysis or to evaluate cell viability because it is membrane 

impermeant and generally excluded from viable cells. PI also binds to RNA, and thus required 

previous treatment with RNAse to distinguish between RNA and DNA staining. 

Figure 40 Absorption spectrum of FM4-64 in 
chloroform obtained to calculate concentration 
through the law of Lambert-Beer: 𝑨 = 𝒄𝜺𝒅 where c 
is concentration, ε is molar absorptivity and d is the 
path length. 

Figure 39 Structure of FM4-64 fluorophore. (Taken from: 
http://www.lifetechnologies.com/order/catalog/product/T13320) 
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In Table 5 there is a summary of the excitation and emission maxima of the fluorescent dyes 

used during this master’s thesis project. 

 
Figure 41 Right: Excitation (blue) and emission (red) spectra of PI. Left: Structure of the PI fluorophore. (Taken from: 
http://www.bio-rad.com/en-uk/sku/135-1101-readidrop-propidium-iodide and 
http://www.sigmaaldrich.com/catalog/product/sigma/p4170?lang=it&region=IT) 

 

 Excitation (nm) Emission (nm) 

EGFP 488 507 

Cy3 549 570 

Hoechst 343 483 

NBD 465 535 

FM4-64 515 640 

PI 535 617 

Table 5 Summary of the excitation and emission maxima of the fluorescent dyes. 

 

3.8 Confocal microscopy 
 

Confocal fluorescence microscopy experiments were performed with the Olympus Fluoview 

1000 (Olympus, Melville, NY) confocal microscopy. The microscope is equipped with a 405 nm 

diode laser, a 488 nm Argon laser, and 543 nm Helium-Neon laser. Glass bottom dishes 

(WillCo-dish GWSt-3522) containing transfected cells were mounted in a temperature-

controlled chamber at 37 °C and 5% CO2.  

Confocal microscopy represents one of the most important advances ever achieved in optical 

microscopy. The reason why it became so popular is the easy with which extremely high-

quality images can be obtained from both fixed and living cells/tissues. The main advantages 

over conventional wide-field optical microscopy are: 

- ability to control depth of field; 

- elimination or reduction of background information from non-focal plane; 

- capability to collect serial optical sections from thick specimens. 

In conventional wide-field optical epi-fluorescence microscopy, secondary fluorescence 

emitted by the sample occurs through the whole excited volume by obscuring resolution of 

features lying in the objective focal plane. Confocal microscopy provides not such a larger 
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Figure 42 General configuration of a Laser Scanning Confocal 
Microscope. (Taken from: 
http://www.olympusconfocal.com/theory/confocalintro.html) 

improvement in terms of axial 

and lateral optical resolution, 

but is able to exclude secondary 

fluorescence coming from other 

planes above and below the 

focal one.  

As in Figure 42, coherent light 

emitted by the laser excitation 

system passes through a 

pinhole that is situated in a 

conjugate plane with a scanning 

point on the specimen and a 

second pinhole is positioned in 

front of the detector. When the 

laser is reflected by a 

dichromatic mirror and is 

scanned across the specimen in 

a defined focal plane, secondary fluorescence emitted from points on the specimen (in the 

same focal plane) passes back through the dichromatic mirror and is focused as a confocal 

point at the detector pinhole aperture. The other significant amount of fluorescence emission 

coming from points above and below the objective focal plane are not confocal with the 

pinhole and most of this extraneous light is not detected by the detector (like a 

photomultiplier) and does not contribute to the resulting image. When the objective is re-

focused on a new plane of the specimen, it becomes the new confocal plane whose emission 

will be selectively detected by the pinhole aperture. 

 

In contrast to wide-field microscopy, the mechanism of image formation in a confocal 

microscope is fundamentally different. The confocal microscope consists of multiple laser 

excitation sources (instead of a lamp) and the image of an extended specimen is generated by 

scanning the focused beam across a defined area in a pattern controlled by two high-speed 

oscillating mirrors. Traditional wide-field epi-fluorescence microscope objectives focus a wide 

cone of illumination over a large volume of the specimen, which uniformly and simultaneously 

illuminated. The majority of the fluorescence emission is gathered by the objective and 

projected into the eyepieces or detector giving rise to a significant amount of signal due to 

emitted background light and auto-fluorescence originating from areas above and below the 

focal plane, which seriously reduce resolution and image contrast. The laser illumination 

source in confocal microscopy is focused by the lens system to a very small spot at the focal 

plane. Confocal spot size is determined by the microscope design, wavelength of incident laser 

light, objective characteristics, scanning unit settings, and the specimen.  

 

3.8.1 Fluorescence Recovery After Photobleaching (FRAP) 

Fluorescence Recovery After Photobleaching (FRAP) was originally utilized as a method to 

measure diffusion in cellular membranes by using organic dyes. However, with the 

development of both fluorescent protein technology and confocal microscopy, FRAP became a 
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popular technique to study protein mobility inside the cell like diffusion rates, but also protein 

dynamics and interactions with other components. This was possible thanks to the large 

number of fluorescent proteins and by maintaining cellular homeostasis without using 

microinjection or permeabilization techniques. FRAP has importantly been shown to be a good 

approach to study nuclear protein dynamics in living cells devoid of disruption of the cell. 

Table 6 shows the general aspects that can be investigated through the FRAP method. 

Protein/molecule movement and diffusion (diffusional speed) 

Compartmentalization and connections between intracellular compartments 

Speed of protein/molecule exchange between compartments (exchange speed) 

Binding characteristics between proteins 

Immobilization of proteins that bind to large structures (e.g. DNA, nuclear envelope, 
membrane, cytoskeleton, etc.) 

Table 6 

In a classic FRAP experiment Figure 43, fluorescent molecules are irreversibly photobleached 

in a limited area of the cell by high intensity illumination with a focused laser beam. 

Subsequently, diffusional exchange of the surrounding non-bleached fluorescent molecules 

into the bleach area leads to recovery of fluorescence with a particular velocity, which is 

recorded at low laser power. Photobleaching generally requires excitation to an excited state 

and the presence of molecular oxygen, that causes irreversible damage to the fluorochrome, 

thereby permanently interrupting the cycle of repetitive excitation and photon emission. 

 
Figure 43

53
 Schematic representation of a FRAP experiment. A region of interest (ROI) is selected, bleached with an 

intense laser beam, and the fluorescence recovery in the ROI is measured over time. 

 

The fraction of fluorescent molecules that can participate in this exchange is called mobile 

fraction (Mf), whereas the fraction that cannot exchange between bleached and non-bleached 

regions is called the immobile fraction (If). It is then obvious, that FRAP can provide important 

insights into the properties and interactions of molecules within the cellular environment. In 

FRAP experiments, images are analyzed and processed to generate a kinetic plot of 

photobleaching by displaying the temporal fluorescence changes in the bleached region of the 

cell. From this plot, the mobile and immobile fractions can be determined by calculating the 

ratios of the final to the initial fluorescence intensity. Conventionally, the speed of recovery to 

half the plateau intensity (𝐼∞) is called “half-life” (τ1/2). The shorter the half-life, the faster the 

fluorescence recovery occurred and the higher the diffusion Figure 44.  

Changes in the mobile fraction may give clues about various intracellular processes and their 

temporal outcomes. The mobile fraction can also be markedly affected by cellular membrane 

barriers and micro-domains within the membrane. These discontinuities can prevent, or 

temporarily restrict, the free diffusion of molecules through various cellular compartments or 

within the membrane itself. Conversely, active transport (e.g. via coated vesicles or motor 
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proteins) can cause a significantly higher mobility compared with diffusion limited processes. 

Such information can be extracted from FRAP data curves.53,57 

 
Figure 44 Anatomy of a typical FRAP curve.  

 

3.8.2 Z-stacks of optical sections 

With confocal microscopy optical section are not restricted only to x-y plane but also 

transverse planes can be collected and displayed by software programs. The specimen can 

appear as if it had been sectioned in a plane perpendicular to the x-y plane, through collecting 

vertical sections obtained by combining a series of x-y scans taken along the z-axis with the 

software Figure 45. This z-stack of optical sections allows to generate composite and multi-

dimensional views and orthogonal views on x-y, y-z, x-z planes can be very useful to determine 

whether an object is inside or outside another one.  

 

Figure 45 Example of a z-stack of optical sections 
through a sunflower pollen grain. Optical sections were 
gathered in 0.5-micrometer steps perpendicular to the 
x-axis and the picture shows only 12 images collected 
through this series. It reveals internal variations in auto-
fluorescence emission wavelengths using a 488 nm and 
543 nm laser system. (Taken from: 
http://www.olympusconfocal.com/theory/confocalintro
.html)  
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3.8.3 Time lapse  

Time-lapse confocal microscopy imaging was performed to observe CHO cells over time after a 

3 h transfection in serum-free medium. The time of replacement with regular DMEM F-12 

growth medium served as starting point and the incubator was kept at a constant temperature 

of 37°C and 5% CO2. Microscope image sequences are recorded at a chosen interval of time (5-

10 min) for 24-48 h and then can be viewed at a different speed to make videos, or can be 

analyzed to investigate further parameters like fluorescence signal over time. As a reporter for 

successful transfection GFP-NLS is still used with a very weak excitation power of Laser 488 nm, 

which ameliorates the phototoxic effects that are common to long-term time-lapse 

measurements. ImageJ software was used for most of the image analysis.  

 

3.9 Flow cytometry 
 

Bio-Rad’s S3 Cell Sorter was used to individually analyze cell fluorescence after transfection 

and it was also utilized for cell cycle analysis of population of cells.  

Flow cytometry is a technique which allows rapid analysis of many cells per second by using a 

fluid stream to transport cells through a narrow region, where they are illuminated by an 

intense beam of light. The resultant scatter and fluorescence signal is highly correlated with 

cell physiology. Since a large number of cells are analyzed, accurate statistical data can be 

achieved on cell populations. The most important feature of flow cytometry is the capability to 

analyze cell individually, in contrast to other fluorescence methods analysis in which 

measurements are made for a bulk volume of sample containing a large number of particles. 

Fluorescence-activated cell sorting (FACS) is a specialized type of flow cytometry that allows 

sorting of cells: in other words, cell can be accurately separated according to their size, surface 

characteristics, or fluorescence signatures.  

 
Figure 46 Basic components of a flow cytometer (Taken from: http://flowcytometry.med.ualberta.ca/.) 

 

Figure 46 shows the basic components of a flow cytometer, where a laser is typically used as 

the light source and detectors are arranged to collect scattered light in the forward direction 

(forward scatter) and orthogonal to the excitation beam (side scatter). The excitation can also 
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excite fluorescence either from intrinsic autophluorophores within the cells or from special 

fluorescent labels attached to their surface or genetically encoded fluorescent proteins. The 

optical signals are converted to electrical pulses for storage and data are analyzed through a 

high-speed dedicated computer system. The data are often represented as a two-axis scatter 

plot for the identification, enumeration, and sorting of unique cell populations Figure 47.  

 
 

The light collected from the excitation zone can originate from two processes: light scattering, 

where the beam of light changes its direction, and fluorescence emission, where the excitation 

light is absorbed and reemitted at a longer wavelength. The scattering and fluorescence 

characteristics are dependent on the physical features of the cell:  

- side scatter signal (SSC) is strongly influenced by refractive components within cells 

and cell surface topography; 

- forward scatter (FSC) is useful to provide indication of particle size and the state of the 

cells (dead cells refract light differently); 

- cellular components (porphyrins, proteins, other fluorescent compound introduced 

into the cells or fluorescent proteins codified by transfected plasmids, etc.) will 

fluoresce when excited at appropriate wavelengths. 

The side scatter and fluorescence detectors are positioned at right angles to the beam axis 

Figure 46. Fluorescence is typically analyzed in a number of different spectral bands through 

the use of a network or reflective dichroic filters. Each detector converts photons into 

electronic signals that are amplified, digitized, and processed.54  

As the cell passes through the optics and is interrogated by the laser beam, a signal pulse over 

time (number of photons emitted) is generated, that has a height (or peak), width and an 

integrated area. It is exactly this pulse that we define as an “event”. The width and peak 

recorded will give some information about the length of the cell passing through the beam 

Figure 48 - Figure 49. This information is useful to distinguish between single cells or nuclei 

and doublets. 

 

Figure 47 In the x-y scatter plot of FSC vs SSC 
distribution of cells is based upon size: as the 
laser passes through the stream, light is deflected 
and refracted by the cells in the stream. The 
scattered light is collected by the FSC and SSC 
photodiodes. The FACS analysis machine and its 
software present a plot of points that correspond 
to the morphology of the cells in the stream. FSC 
light provides indication of cell size; SSC light is 
strongly influenced by surface roughness and 
internal granularity of the cells detected. The 
distribution of the dots is very important because 
it allows to distinguish one type of cell from 
another and gate around one particular 
population of cells for further analysis. 
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Figure 48

58
 Schematic diagram of 

fluorescence pulse signal (height, 
width, and area) 

 

 

 

 
Figure 49 Signal generated when a cell passes through the laser beam. (Taken from 
http://docs.abcam.com/pdf/protocols/Introduction_to_flow_cytometry_May_10.pdf) 

 

3.9.1 Fluorescence expression analysis of transfected cells as a parameter for 

transfection efficiency 

When a single fluorescent dye is used to label cells, the expression of fluorescence can be 

easily visualized by using, for example, a plot fluorescence vs SSC. This can be also evaluated 

with a histogram, but one advantage to looking a dot plot is that one can look at variances in 

expression as single events, rather than as a collection of events shown as a vertical projection 

of counts at a particular fluorescence. Another advantage is that events that demonstrate high 

levels of expression can be hard to visualize in the diminishing tail of a histogram fluorescent 

frequency diagram. With a dot plot, a second parameter can be used (like SSC) and this gives 

the operator a clearer picture and allows to see how the levels of fluorescence are, for 

instance, differentiated by granularity (if SSC is used as a second parameter in the dot plot).  
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In this case cells were transfected with a GFP-NLS-SV40 codifying plasmid and a dot plot similar 

to one described above was used to analyze transfection efficiency, where here transfection 

efficiency means percentage of transfected cells whose fluorescence is above the fluorescence 

threshold that include more than 99% of not-transfected cells Figure 50. 

 
Figure 50 This is an example of analysis with a dot plot FL1 Width vs FL1 Area Log of non-transfected cells. Laser 488 
(100 mV) was used to excite cells passing through the stream so that GFP could be excited and fluorescence signal 
was collected with a filter FL1 (525/30 nm).  

 

3.9.2 Cell cycle analysis  

Fluorescence intensity of dividing cells treated with propidium iodide (PI) is roughly 

proportional to DNA content and PI can be used to classify them into the G0/G1 pre-replicative 

phase, S replicative phase or G2/M post-replicative phase populations. PI is the most used 

compound to study cell cycle since this reagent binds to DNA in a stoichiometric manner such 

that there is a direct relationship between DNA content and PI fluorescence: cells that are in S 

phase will have more DNA than cells in G1 because they take up proportionally more dye and 

will fluoresce more brightly, and cells in G2 should approximately be twice as bright as cells in 

G1 Figure 51. Cells must be fixed or permeabilized to allow entry of the PI dye, which is 

otherwise actively pumped out by living cells. Alcohol is a dehydrating fixative that also 

permeabilizes cells allowing easy access of PI to the DNA, giving good fluorescence profiles. 

The following protocol was followed to analyze the cell cycle with a flow cytometric approach: 

1) trypsinize adherent CHO cells (5 × 105 – 1 × 106) to detach; 

2) add 1 mL complete DMEM medium and suspend cells; centrifuge 10 minutes at 1200 

rpm; 

3) aspirate supernatant and wash with 0,5 mL of PBS; centrifuge 10 minutes at 1200 rpm; 

4) aspirate supernatant and re-suspend the pellet in 0,5 mL of PBS paying attention not 

to leave any cells clumps; 
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5) fix for 5 minutes with 1,5 mL 95% cold Ethanol (EtOH) by adding dropwise to cells 

while gently vortexing the tube; 

6) dilute EtOH by adding 6 mL of PBS (at this step fixed cells can be stored for a week at 4 

°C); 

7) centrifuge the cells 15 minutes at 1200 rpm; 

8) aspirate supernatant and re-suspend the fixed cells in 0,3 mL of staining solution (PI 50 

µg/mL); 

9) incubate at room temperature for 40 minutes (for a complete and more reproducible 

coloring it is recommended overnight at 4 °C); it is important to keep the cells covered 

with aluminum foil; 

10) filter the cells and analyze by flow cytometry. 

How to prepare the staining solution: 

- Propidium Iodide (Sigma): 50 µg/mL; 

- RNAse (Sigma): 20 µg/mL; 

- Nonidet NP40: 0,1 %; 

- PBS. 

 
Figure 51 2n means diploid condition having a double set of chromosomes, 4n means a 
tetraploid (post replicative) condition having a 4 sets of chromosomes because of duplication of 
DNA in S-phase of cell cycle 

 

3.9.3 How to study transfection efficiency in synchronized CHO cells 

To test the role of cell cycle in transfection efficiency, cells were treated with mimosine, a drug 

that arrests cells at the border between G1 and S-phase. CHO cells were synchronized at the 

G1/S border and transfection occurred at different phases post mimosine release to evaluate, 

after the same amount of time, how transfection efficiency is influenced by the phases of the 

cell cycle at the time of transfection. The following protocol36 (Table 7) was used to analyze 

GFP expression and cell cycle status upon transfections at various time-points during cell cycle: 

1) pre-synchronization step by incubating cells in low serum-containing DMEM/F12 

medium at 0.2% FBS for 48 h; 

2) incubate cells for 14 h with DMEM/F12 + 10% FBS + 100 µM mimosine (Sigma); 

M 
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3) to reinitiate the cycle, change the medium to mimosine-free DMEM/F12 medium + 2% 

FBS; 

4) cells are transfected with GFP-NLS-SV40 plasmid at different hours post mimosine 

release and at the same time of transfection cells are fixed, DNA is labeled and the 

phases of the cell cycle are determined through flow cytometry analysis; 

5) GFP expression is determined after a fixed amount of time post transfection. 

1 Pre-synchronization (48 hours) with DMEM F12 0.2% FBS 

2 Mimosine synchronization (14 hours) with DMEM F12 10% FBS and mimosine 100 µM 

3 Release from synchronization 

4 
GFP transfection (every hour for 

example) Fixation, DNA labelling, flow cytometry 
analysis 

5 
Fluorescence measurement (after a fixed 

amount of time for each sample) 

6 Comparison and results 
  Table 7 
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4 Results 
 

The aim of this Master’s thesis project is to elucidate the mechanisms of nuclear entry of 

plasmidic DNA during transfection. To tackle this issue a nanoformulation made of a cationic 

peptide (protamine) and liposomes (Dc-Chol and DOPE) is used in comparison with the 

Lipofectamine Reagent® gold standard. Thus this work deals with two main problems: 

1) how plasmidic DNA enters the nucleus; 

2) what differences can be established between two different nanoformulations 

(Lipofectamine and Lipid nanoparticles combined with protamine) used for 

transfection. 

 

4.1 Characterization of transfection phenotypes 
 

Initially, cells transfected with Dc-Chol/DOPE/Protamine Nanoparticles and Lipofectamine 

were observed with confocal microscopy and characterized phenotypically.  

 

4.1.1 Dc-Chol/DOPE/Protamine Nanoparticles 

 

CHO cells were transfected with Label IT® Plasmid Delivery Control Cy™3 (2.7 kbp, double 

stranded, circular plasmid, Mirus Bio Corporation, Madison, WI, USA) using Dc-

Chol/DOPE/Protamine and observed 24 h post transfection. Three different transfection 

phenotypes were identified: 

1) Cells with red (Cy3 peak emission 570 nm) cytoplasmic spots Figure 52; 

2) Cells with red diffused cytoplasmic signal Figure 53; 

3) Cells with red diffused cytoplasmic and nuclear signal Figure 54.  

 

The  phenotype 1) shows, 24 h post transfection, vesicles of endocytosis containing the Cy3 

plasmid molecules mostly accumulated in the perinuclear region. This phenotype represents 

the most common one among the cells (>95%) and it shows no red signal coming from inside 

the nucleus Figure 52. On the other hand the other two phenotypes present a diffused stain of 

either the cytoplasm (phenotype 2 - Figure 53) or both cytoplasm and nucleus (phenotype 3 - 

Figure 54).  

In order to better characterize the red diffused signal observed in phenotypes 2) and 3), that 

together represent less than 5% of the total number of cells observed, an experiment of 

Fluorescence Recovery After Photobleaching (FRAP) on an area of the cell that was uniformly 

showing emission signal from Cy3-DNA was performed.  
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Figure 52 Phenotype 1): Cells with red cytoplasmic spots. Scale bar = 10 µm. 

 

 
Figure 53 Phenotype 2): Cells with red diffused cytoplasmic signal. Scale bar = 10 µm. 

 

 
Figure 54 Phenotype 3): Cells with red diffused cytoplasmic and nuclear signal. Scale bar = 10 µm. 

 

As can be seen in Figure 55, corresponding to phenotype 2), by applying a 3 s photobleach in 

the cytoplasm, no recovery is observed in the next ≈ 100 s. On the other hand, by applying a 5 

s photobleach in the nucleus of a phenotype 3) cell Figure 56, partially recovery is observed 

soon after photobleaching with a loss of ≈ 25% of total fluorescence. These results show that 

the red signal coming from phenotype 2) and 3) may involve two different molecular species. 

The lack of fluorescence recovery of phenotype 2) can be related indeed to intact Cy3-plasmid 

or long fragments of Cy3-DNA. The partial recovery of fluorescence signal in phenotype 3) cells 

may be due to free Cy3-fluorophore or small fragments of Cy3-DNA. This is in agreement with 

the study of size-dependent DNA mobility conducted by Lukacs et al16. They showed, by using 

spot photobleaching, a reduction of diffusion coefficients of fluorescein double-stranded DNA 

fragments in the cytoplasm compared with those calculated in aqueous solutions and that 

Cy3 DNA 

Cy3 DNA 

Cy3 DNA 
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reduction was strongly dependent on DNA size. DNA diffusion coefficients in cytoplasm of 100-

bp DNA fragments were, respectively, 3-fold and 19-fold higher compared to those of 250-bp 

and >2000-bp DNA fragments. The very slow diffusion of plasmid-size DNA fragments in cells is 

an important observation with regard to gene therapy. The diffusion of DNA in cytoplasm may 

be an important rate-limiting barrier in gene delivery utilizing non-viral vectors because of 

molecular crowding.  

 
 

 
Figure 55 FRAP experiment in phenotype 2) cell. The absence of recovery (in <100 s) is an index of free intact Cy3 

DNA plasmids 

 

Phenotype 3) cells could represent good samples to study transport of plasmidic-DNA between 

cytoplasm and nucleus with FRAP experiments, but as Figure 56 shows, the recovery time 

cannot be associated to a plasmidic-DNA species but very most likely to free Cy3 fluorophore.  

Another important observation was that transfection of CHO-K1 cells with Dc-

Chol/DOPE/Protamine actually provides a remarkable cytoplasmic release of DNA, as it was 

confirmed with confocal microscopy experiments with NBD fluorophore attached to DOPE. As 

Figure 57 shows, there is a low colocalization between Cy3-plasmidic DNA and NBD-DOPE lipid 

in < 12 h post transfection. This indicates that a large amount of DNA may have escaped 

endocytic vesicles or lysosomal compartments and reached the cytoplasm. The cell 

represented in Figure 57 belongs to phenotype 2) group, because of diffused red signal in the 
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cytoplasm. This observation was also showed by Caracciolo et al.50 with DOTAP/Protamine LPD 

nanoparticles. 

 

 
Figure 56 FRAP experiment in phenotype 3) cell. The rapid recovery is an index of small fragments of Cy3 DNA or 

free fluorophore 

 

 
Figure 57 Green fluorescence from NBD lipids forming LPD complexes was clearly localized, while DNA (red 
fluorescence) had visibly spread into the cytoplasm. Scale bar = 10 µm. 

 

At this point, it was important to evaluate which cell phenotypes are assoaciated with 

transfection in terms of protein expression. To investigate this aspect, a co-transfenction with 

Cy3-plasmidic DNA and an expression plasmid codyfing for a GFP-NLS protein (GFP with a 
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targeting sequence for nuclear entry) was performed. 24 h post co-transfection with Dc-

Chol/DOPE/Protamine Nanoparticles cells were observed and qualitatively only a few cells (≈ 

5%) were positive for expression of GFP-NLS protein. As previously described, most of the cells 

belong to a phenotype 1) group not expressing the heterologous gene (Figure 58) and those 

expressing the GFP-NLS protein seem to be phenotype 1) cells (Figure 59). This is interesting 

because phenotype 2) cells were expected to be more eligible considering the huge endosomal 

escape. This observation may indicate that endosomal escape doesn’t always yield to a high 

transfection efficiency (in terms of expression of GFP-NLS protein) and that other mechanisms 

may be involved. It is also noteworthy to mention that “green” cells were often not positive to 

any red signal coming from the nucleus which would indicate the presence of the plasmid 

inside the nucleus: this may bring to hypothesize that the plasmid has already been degraded 

or that a few numbers of molecules entered the nucleus so that fluorescence signal is not 

strong enough to be detected.   

 
Figure 58 Phenotype 1) group cells not expressing the heterologous gene. Scale bar = 10 µm. 

 

 
Figure 59 Phenotype 1) group cells expressing GFP-NLS protein. Scale bar = 10 µm. 

 

In order to check if red signal coming from Cy3-plasmidic DNA could be detected inside the 

nucleus, the Hoechst dye was used to highlight the nuclear region. Some cells show red 

nuclear clusters localization when analyzed with a double channel observation (Figure 60) and 

a z-stack of images was collected to make sure the clusters are really inside the nucleus Figure 

61. As can be seen in Figure 61, the red spot looked to be inside the nucleus but orthogonal 

views (in x-y, y-z and x-z planes) were necessary to confirm it and exclude the possibility that 

the red cluster was just in a very close proximity with the nuclear region.  

Cy3 DNA 

Cy3 DNA GFP-NLS Merge  
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Figure 60 Some cells show red nuclear clusters localization when analyzed with a double channel observation. The 
arrow indicates a possible red object inside the nucleus. Scale bar = 5 µm. 

 

 
Figure 61 Z-stack of a cell (z = 0.25 µm). The arrow indicates a possible red object inside the nucleus. 

 

As can be seen in the three orthogonal views in Figure 62, the red spot can be found on the 

boundary between nucleus and cytoplasm and this is the most representative situation among 

the analyzed cells. Another instrument useful to investigate the localization of red signal inside 

the nucleus is the fluorescence profile analysis of the two channels (red and blue) along a line 

passing through the nucleus in the three orthogonal projections. As can be seen in Figure 62, 

the blue fluorescence profile represents a good mean to establish the boundary of the nuclear 

compartment and, at the same time, the red peak can be identified and determined whether it 

Cy3 DNA Hoechst Merge 
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is included inside the borders of the blue nuclear region. In this case, the xy orthogonal 

projection shows a clear red peak inside the nuclear region, but the other two orthogonal 

views don’t show the same result: the read peak is found to be located on the region where 

the “blue signal” is decreasing, and thus makes it difficult to believe that the red spot is really 

inside the nucleus. This situation probably shows an example of red Cy3-DNA cluster located in 

the periphery of the nucleus or in the cytoplasmic perinuclear region. On the other hand, a few 

cells present red spots that colocalize inside the nucleus Figure 63, and this is proved both 

through orthogonal views and fluorescence profile analysis along a line traced crossing the 

nucleus and the red spot Figure 64 . 
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Figure 63 

 

The two examples reported above are representative of the methodology used to check the 

localization of DNA-Cy3 clusters inside the nucleus. Data show that most of the cells present 

red clusters in the perinuclear region, as verified with orthogonal views and fluorescence 

profiles; other cells, though a few, show red puncta colocalizing with the inner region of the 

nuclear compartment. This brought to find an alternative way to investigate this phenomenon, 

in order to get more insights on the possible ways plasmids may exploit to reach the nucleus 

and transfect the cells to express an heterologous protein.  

Figure 65 shows a summary of the most representative phenotype of the observed cells 72 h 

post transfection: 

- red puncta spread in the cytoplasm (z-stack and orthogonal views showed that 

sometimes these spots can be found on the boundary between nucleus and cytoplasm 

or apparently inside the nucleus); 

- little colocalization between DOPE-NBD and Cy3 plasmid indicating a large endosomal 

escape and presence of free plasmidic-DNA in the cytoplasm;  

It is interesting that a very few cells are transfected after 48 h or 72 h and there is no positive 

correlation between red spots inside the nucleus (or on the boundary) and “green” GFP-NLS-

expressing transfected cells. The high presence of red spots in the perinuclear region can be 

explained if we consider that escape from vesicles and lysosomes could take protamine 

associated plasmidic DNA in the nearby of the perinuclear region and trigger the nuclear pore 

complex mediated transport by exploiting the NLS signal of protamine or simply recruiting the 

key players of the cytoplasm-nucleus transport. 
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Figure 64 Orthogonal views (x-y, x-z, y-z) and fluorescence profile analysis of the red spot. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 65 Summary of the most representative phenotype of the observed cells 72 h post transfection. Scale bar 
= 5 µm. 
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Before going on with the analysis of the transfection process, it was interesting to investigate a 

little bit further the presence of the red spots inside the nucleus. FM4-64, a dye that allows the 

labeling of the nuclear envelope, was used to get insights on these nuclear clusters by 

exploiting its capacity to undergo a spectral change of fluorescence and reveal a distinct 

microenvironment in the nuclear envelope (NE) of living cells. This dye localizes to the NE at 

physiological temperature, where it exhibits enhanced fluorescence when excited at 620-650 

nm in contrast to 480-520 nm excitation in the endocytic pathway and in the endoplasmic 

reticulum. This is probably due to a different distribution of negatively charged lipids and a 

diverse phospholipid biosynthesis between NE and ER56. First, some images were collected to 

verify this Figure 66. The selectivity of the dye described before was achieved with a laser 

scanning confocal microscope using sequential excitation at 488 nm and 633 nm. 

 

To analyze whether the red clusters described before are really inside the nucleus, cells were 

transfected as usual with the Dc-Chol/DOPE/Protamine Nanoparticles and Cy3-plasmidic DNA 

and then, before observation with confocal microscopy, stained with FM4-64. First of all, cells 

with red clusters were identified (Figure 67) and then z-stacks were collected in order to create 

orthogonal projections Figure 68. 

 

 
Figure 66 On the left FM4-64 stained cells were excited with a 488 nm Laser and on the right with a 633 
nm Laser. Both emissions were collected above 700 nm. Scale bar = 2 µm. 

 

 
Figure 67 FM4-64 stained cells transfected with Cy3-DNA. Scale bar = 10 µm. 
 

 

Cy3 DNA Hoechst FM4-64 Merge 
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Figure 68 Z-stacks of FM4-64 stained cells transfected with Cy3-DNA (z = 0.25 µm) 

 

As these pictures show, there is colocalization between Cy3-plasmidic-DNA, nucleus and FM4-

64. It can be hypothesized that: 

- some kind of nuclear envelope endocytosis might have happened; 

- clusters of plasmidic-DNA and protamine may be trapped inside little channels spread 

among the nuclear envelope. 

This last hypothesis is not to be excluded. Fricker et al.59 identified long, dynamic tubular 

channels, derived from the nuclear envelope that extended deep into the nucleoplasm. The 

channels were cell-type specific (found also in more than 90% of CHO cells) and their 

morphology varied from single short tubs to multiple, complex, branched structures. Some of 

the channels transected the nucleus entirely, opening at two separate points on the nuclear 

surface. The presence of NPCs in the channel walls suggests a possible role for these structures 

in nucleus-cytoplasmic transport. It is interesting to formulate this hypothesis because it could 

explain the low transfection efficiency and lack of correlation between “green cells” and red 

spots localized inside the nucleus. The red DNA clusters could actually remain trapped inside 

these channels and may not reach the nucleoplasm, representing an additional obstacle for 

the DNA entry into the nucleus. It is also worthy of mention that these clusters, either those 

found inside the nucleus and those in the perinuclear region, often have sizes which are much 

higher than the diameter of the NPC sieve. This may lead to think that other mechanisms are 

involved in the process of nuclear entry if we exclude that all the red spots found inside the 

nucleus were actually clusters trapped within the nuclear channels described by Fricker.  

 

As first proposed by Sorgi et al., protamine has four possible NLS-like regions made of basic 

amino acids: the precondensation of plasmidic DNA with protamine would actually enhance 

the trans-gene expression mediated by cationic liposomes. To establish the role of protamine 

in these red clusters of Cy3-plasmidic-DNA described before, different ratios (weight/weight) 

of Protamine/DNA were used during the preparation of the transfection nanoparticles. 

Specifically P/D ratios 2:1, 4:1 and 8:1 were used in comparison to the common one (P/D = 1:2) 

used until now. As can be seen in Figure 69 nanoparticles with P/D = 2:1 (charge ratio P/D = 

2,54) also showed red clusters spread in the cytoplasm and the perinuclear region. Staining 
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with Hoechst confirmed the presence of red spots inside the nuclear region (Figure 70) and the 

same happened for P/D = 4:1 (charge ratio P/D = 5,08 Figure 71 - Figure 72) and P/D = 8:1 

(charge ratio P/D = 10,16 Figure 73 - Figure 74). 

 

 
Figure 69 CHO cells transfected with a Protamine/DNA ratio (weight/weight) P:D=2:1. Scale bar = 10 µm. 

 

  
Figure 70 Z-stacks of CHO cells transfected with a Protamine/DNA ratio (weight/weight) P:D=2:1 

 

 

Figure 71 CHO cells transfected with a Protamine/DNA ratio (weight/weight) P:D=4:1. Scale bar = 5 µm. 
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Figure 72 Z-stacks of CHO cells transfected with a Protamine/DNA ratio (weight/weight) P:D=4:1 

 

 

Figure 73 CHO cells transfected with a Protamine/DNA ratio (weight/weight) P:D=8:1. Scale bar = 5 µm. 

   

 

   

Figure 74 Z-stacks of CHO cells transfected with a Protamine/DNA ratio (weight/weight) P:D=8:1 

 

Figure 75 shows the presence of red spots inside the nucleus of “green cells” transfected with 

a ratio w/w P/D = 2:1. In other words, a transfected cells expressing the GFP-NLS codifying 

plasmid shows red puncta inside the nuclear region. This was not representative of the cells 

examined but brought to relate these data with those of Masuda et al.60 They microinjected 

inside the cytoplasm complexes of protamine and DNA at different charge ratios and observed 

that higher charge ratios improved the nuclear transfer of plasmidic DNA by protamine 

according to a model showed in Figure 76 . 
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Figure 75 CHO cells transfected with a Protamine/DNA ratio (weight/weight) P:D=2:1 

 

 
Figure 76 Schematic diagram illustrating the possible mechanism for the improved nuclear transfer of pDNA by 

protamine 

 

Their proposed model supposes that at a low charge ratio, the recognition of the nuclear 

localization signal by the nuclear transport associating proteins is limited since all of the basic 

amino acids (arginines) of protamine may be engaged in the condensation of pDNA. When the 

charge ratio is increased, single protamine exhibits heterogenic functions: a partial domain 

involves in the pDNA condensation, and the other domain is displayed on the particle allowing 

them to be recognized as a nuclear localization signal. The P/D weight/weight ratios used in my 

experiments correspond to the following charge ratios: 0,64 – 2,54 – 5,08 – 10,16 and the 

observations with confocal microscopy actually showed that a larger number of red complexes 

were found in the perinuclear region (and inside the nucleus) as the charge ratio P/D increased 

(Figure 70 – Figure 72 – Figure 74). This may help explain why cells transfected P/D=2:1 

sometimes showed green cells with red clusters inside the nucleus Figure 75. 
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As can be seen from the orthogonal views obtained from the z-stacks in cells transfected with 

P/D=4 and P/D=8, red clusters are often found inside the nuclei and in the perinuclear region 

and have sometimes much higher sizes than those observed at a lower P/D ratio. This may be 

caused by a major clustering of DNA and protamine when protamine is used at a higher ratio. 

These data are interesting because they show that higher charge ratios P/D increase the 

dimensions of the red clusters and the number of these complexes in the perinuclear region 

but this observation is not correlated with a higher transfection efficiency. The number of 

green cells was actually decreased compared to the usual P/D ratio used before.  

 

Another striking observation obtained by visualizing transfected cells expressing GFP-NLS 

protein was that very often these cells were found to be in groups of even number, in couple 

or multinucleated cells (Figure 77 - Figure 78). This provided a hint that cell division could be 

involved in the process of nuclear entry. This is already known from the literature but the 

question was to find out if cell division represented the only way exploited by plasmidic DNA 

with this transfection formulation to enter the nucleus. This was important because of the lack 

of correlation between red spots inside the nucleus and “green cells”. It could be hypothesized 

that the red clusters showed so far could actually represent unavailable plasmidic DNA which 

cannot be transcribed. One reason could be the entrapment of the clusters inside the nuclear 

channels but another possible explanation could be the huge condensation of DNA and 

protamine that would inhibit plasmidic DNA release inside the nucleus and transcription. 

Maybe only little clusters or free plasmidic DNA molecules could actually be effectively 

transcribed and nuclear envelope breakdown during cell division represented the main way for 

DNA nuclear entry. 

 

 

 
Figure 77 GFP-NLS expressing cells are often found in groups of even numbers, coupled or multinucleated. 
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Figure 78 GFP-NLS expressing cells are often found in groups of even numbers, coupled or multinucleated. 

 

 

4.1.2 Lipofectamine 

 

So far the experiments and observations were conducted by precondensing DNA with 

protamine and finally with liposomes made of DC-Chol and DOPE. It was interesting to 

compare all these observations with a transfection gold-standard reagent: Lipofectamine. As 

the double transfection experiment in Figure 79 shows, cells present a few number of red 

clusters and a higher number of little red puncta in the cytoplasm. Compared to the LPD 

nanoparticles, it was very difficult to find red signal coming from inside the nucleus or clusters 

of any size. As it is showed in Figure 80, putative nuclear red clusters are always found to be in 

the perinuclear region and never inside the nucleus.  

 
Figure 79 Cells transfected with Lipofectamine (Cy3 and GFP-NLS plasmids). Scale bar = 5 µm. 

 

It was then interesting to check, whether the protamine was responsible for the higher chance 

of localization of nuclear red spots and an experiment of transfection using precondensation of 

DNA with protamine and then Lipofectamine liposomes show an increase in the number of 

cells positive for bigger red clusters in the cytoplasm and inside the nucleus Figure 81. These 

results encourage to think that protamine could be really involved in this process of DNA 

clustering but it always remains the doubt whether this clusters could actually provide 

bioavailable plasmidic DNA inside the nucleus. Also in this case, actually, red spots could be 

colocalizing in the nucleus but be trapped inside the channels. This may not be always the case 

GFP-NLS Hoechst Cy3-DNA 
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as it is showed in Figure 82 - Figure 83, where the red 

cluster is found in either a “blue” and “green” nucleus.  

 

 

 

 

 

 

 
Figure 81 Cells transfected with Cy3 DNA/Lipofectamine and stained with Hoechst. Scale bar = 5 µm. 

 

 
Figure 82 Red nuclear clusters in Lipofectamine transfected cells 

 

Figure 80 Orthogonal views of Lipofectamine transfected CHO cells 
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Figure 83 Z-stacks of Lipofectamine transfected cells with Cy3-DNA (z = 0.25 µm) 

 

 

4.2 Transfection Efficiency measured with Flow Cytometry 
 

A very clear observation between the two transfection nanoformulations was the different 

transfection efficiency in terms of “green” cells observed with confocal microscopy. As 

previously commented before, LPD nanoparticles are able to transfect only a few cells and 

often these cells are found in couple suggesting a role of cell division as a necessary 

prerequisite for plasmidic nuclear entry and transfection Figure 84. On the other hand, cells 

transfected with Lipofectamine reagent show a much higher transfection efficiency giving rise 

to a “green carpet” of cells suggesting the possibility that in this case cell division is not 

essential for transfection Figure 85. In order to quantify this difference, experiments with flow 

cytometry were performed to give a much higher statistical quantification of transfection 

efficiency between LPD nanoparticles and Lipofectamine reagent Figure 86 - Figure 87. As can 

be seen from the Table 8 and Table 9 Lipofectamine shows an average of 69,94% (24 h post 

transfection) and 65,04% (48 h post transfection), whereas LPD nanoparticles made of 

Protamine/DC-Chol/DOPE showed 6,11% and 5,02% of transfection efficiency after the same 

amount of time. These results are totally in agreement with previous confocal microscopy 

observations as can be seen in Figure 84 - Figure 85. A graph collecting together the results of 

transfection efficiency measured by flow cytometry is shown in Figure 88 .  
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Figure 84 Confocal microscopy observation 24 h post LPD nanoparticles transfection of CHO cells. Scale bar = 20 µm. 

 

 

 
Figure 85 Confocal microscopy observation 24 h post Lipofectamine transfection of CHO cells. Scale bar = 20 µm. 
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Figure 86 Plot that measures LPD nanoparticles-transfected cells. 

  

 
Figure 87 Plot that measures Lipofectamine-transfected cells. 

 

 

 
Figure 88 Histogram showing transfection efficiency measured with flow 
cytometry analysis.  
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5,69 % 5,24 % 

7,21 % 5,19 % 

5,82 % 5,24 % 

5,71 % 4,69 % 

6,11 % 5,10 % 
Table 8 

 

24 h 48 h 

77,87 % 67,78 % 

61,71 % 63,66 % 

77,75 % 66,93 % 

61,21 % 61,81 % 

69,94 % 65,04 % 
Table 9 
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4.3 CHO cells synchronization with mimosine 
 

At this point it was very interesting to check the possibility that cell division represented the 

only way for LPD nanoparticles to transfect the cells and a protocol of cell synchronization and 

flow cytometry was established to test this hypothesis. These type of experiments have the 

aim to verify whether the “status” (in terms of cell position within the cell cycle) of cell 

populations prior to transfection is involved in transfection efficiency. For synchronization of 

CHO cells a drug called mimosine was used. Mimosine inhibits ribonucleotide reductase and 

thus lowers dNTPs levels available intra-cellularly, thus inhibiting entry of the cell into S phase. 

After mimosine treatment, the majority of cells are arrested at the border between G1 and S-

phase. Through optimized addition and removal of the drug from the culture it is possible to 

generate a culture of highly synchronized cells. These synchronized cells were transfected at 

two different time points throughout the cell cycle and flow cytometry measurement was 

performed to determine the transfection efficiency at these various time points.  

 

Figure 89 represents the synchronization protocol of CHO cells and Figure 90 shows the 

progression through the cycle after release from mimosine. Cells were pre-synchronized for 48 

h in 0.2 % FBS containing medium and then synchronized with mimosine for 14 h. Samples 

were taken for cycle analysis every 2 h after mimosine release (left to right, top to bottom), 

fixed with ethanol, stained with PI and then analyzed by flow cytometry. Figure 91 shows the 

percentages of cells in each phase of the cell cycle during the progression through the cycle 

obtained by flow 

cytometry. It can be seen 

that the synchronization is 

not perfect because only 

65% are synchronized in 

G1 phase at t = 0 h (post 

mimosine release) but 

longer treatment with 

mimosine is not 

recommended because of 

toxicity. Now I transfected 

synchronized cell 

populations at two 

different time points 

throughout the cell cycle. 

First, cells were 

transfected with LPD 

nanoparticles and 

Lipofectamine at 0 h and 8 h after release from mimosine and then observed at 12 h after 

(respectively 12 h and 20 h after release from mimosine). Since it is risky to have a population 

which has lost synchronization, the transfection has to be observed not too long after (like 24 

h or more). These timings were chosen because the first one would allow most of the cells to 

reach the end of S-phase and beginning of G2-phase, thus avoiding the nuclear envelope 

Figure 89 Synchronization and transfection protocol of CHO cells with mimosine 
to study transfection efficiency at different points of the cell cycle. 

NUCLEAR ENVELOPE BREAKDOWN 
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breakdown. The second timing, on the other hand, would allow most of the cells to go through 

mitosis and hence nuclear envelope breakdown.  

 

 

 
Figure 90 Progression of the cell cycle after mimosine release.  
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Figure 91 Percentage of CHO-K1 cells in specific phases of the cell cycle after mimosine-induced synchronization.  

 

As can be seen in Figure 92, no increase of transfection efficiency is observed between these 

two combinations. One hypothesis is that transfecting at 8 h after release from mimosine does 

not give enough time for the plasmid to reach the nucleus and for the protein to be expressed. 

The experiment was then repeated by reducing both the selection of the second moment of 

transfection (from 8 h to 4 h after mimosine release) and the time interval to measure 

transfection efficiency by flow cytometry (from 12 h to 10 h and 8 h after transfection). These 

two precautions could help identifying the time necessary for the plasmid intracellular delivery 

plus protein expression and reducing the chance of “desynchronize” the population of cells.  

As can be seen from Figure 93 Lipofectamine reagent transfection actually shows an increase 

between the two different 

combinations of 

transfections after release 

from mimosine. On the 

other hand, transfection 

with LPD nanoparticles 

shows an increase only 

once. These results 

indicate that transfection 

with Lipofectamine of 

populations of cells at a 

higher S-phase percentage 

obtain a higher 

transfection efficiency 

measured with flow 

cytometry than 

populations of cells 
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Figure 92 Histogram showing  the transfection efficiency between 
Lipofectamine and LPD nanoparticles at two chosen timings after mimosine 
release. 
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transfected at a lower S-phase percentage. The first experiments also showed that a certain 

time is needed for the plasmidic-DNA complexes to enter the cell, escape from 

endosomes/lysosomes, become distributed within the cytoplasm, reach the nucleus and the 

protein be expressed. At mitosis, when the nuclear membrane disintegrates, and before it is 

rebuilt again, pDNA may become enclosed into the nuclear environment. Very most likely cells 

transfected at 0 h after release from mimosine don’t have enough time to disrupt the nuclear 

membrane and pDNA also has a higher chance of being degraded in the lysosomes or in the 

cytoplasm. It is noteworthy to mention that this doesn’t happen for LPD nanoparticles 

suggesting that maybe different mechanisms could be involved during transfection compared 

with Lipofectamine reagent.  

 
Figure 93 Histogram showing transfection efficiency of Lipofectamine and LPD nanoparticles at different temporal 
combinations after mimosine release in CHO-K1 cells.  

 

These experiments provide useful proofs that mitosis actually enhance transfection efficiency 

but it is not able to tell whether this represents the only way possible since a certain degree of 

CHO cell population remained asynchronous (t = 0 h there’s 25 % and 10% of cells in S- and G2-

phase) and this probably is responsible for some protein expression when cells are transfected 

at t = 0 h after release from mimosine.  
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4.4 Live cell imaging with confocal microscopy 
 

The previous experiments of flow cytometry, cell synchronization and transfection efficiency 

support the hypothesis of a positive correlation between successful gene transfer (in terms of 

protein expression) and “status” of the cell population (mitosis enhance transfection efficiency 

probably because plasmidic DNA can reach the nucleus and thus overcome the major barrier 

of the nuclear envelope). Flow cytometry provides excellent statistics, yet this method is 

indirect in comparison to single cell studies. It is actually possible to evaluate an entire 

population only at one specific time, meaning that the course of events is averaged over a 

certain period.  

It was then decided to address the question of cell cycle correlation to exogenous protein 

expression by using time-lapse imaging methods that combines both the advantages of direct 

measurements with a statistical approach. An incubator and confocal laser scanning 

microscope were used to observe CHO-K1 cells over a period of over 24 h. Images were 

recorded every 5 minutes and subsequent analysis was performed by following the fate of 

singe cells Figure 94.  

 

 

 

 

 

 

 

 

 

 

 

 

 

As usual, cells were transfected either with LPD nanoparticles or with Lipofectamine 

transfection reagent. GFP-NLS is used as reporter for successful lipoplex transfection. It is 

found that only cells entering mitosis were able to express the fluorescent protein reporter 

GFP-NLS. Concentration of the reporter to the relatively small nuclear volume leads to a faster 

increase in signal intensity above noise without requirement for protein expression to the 

same minimally detectable level in the cytoplasm. This reduces the uncertainty in determining 

Figure 94 Time-lapse imaging of a CHO cell dividing and giving rise to two transfected 
“daughter” cells. Each frame is collected every 5 minutes with a 488 nm excitation Laser.  
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the moment of first expression. It is noteworthy to mention that cells up to at least 10 h post 

cell division could express the protein reporter indicating stability of pDNA in the cytoplasm 

Figure 95. This is important because it provides evidence that there must not be necessarily a 

small time window for transfection coupled to active mitotic activity. Lipoplexes and 

(especially) LPD nanoparticles may then be quite stable in the cytoplasm. Cell live imaging 

allows also to determine the length of the cell cycle by measuring two consecutive detachment 

timings of the cells. For CHO-K1 cells the cell cycle has a length of 14,4 ± 1,7 h (n = 35) which is 

in agreement with data coming from synchronization analysis previously described.  

 

 
Figure 95 Frequency distribution histogram graph that shows the different initial fluorescence detection signals 
after division for CHO cells transfected with LPD nanoparticles and Lipofectamine.  

 

Confocal fluorescence live cell microscopy confirm the different transfection efficiency 

between the two transfection nanoformulations. In order to see if any other differences could 

be appreciated, it was performed a fluorescence analysis of each couple of cells becoming 

“green” after mitosis over time Figure 96. 

As can be seen from the graphs in Figure 96, the fluorescence profiles over time of the two 

“daughter” cells after mitosis between Lipofectamine and LPD nanoparticles show different 

trends. Cells transfected with Lipofectamine show a symmetry of fluorescent signal between 

the two daughter cells after cell division; by contrast, cells transfected with LPD nanoparticles 

present in 30% of analyzed samples a marked asymmetry of the fluorescent signal with the 

extreme case of just one “daughter” cell being transfected. 
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Figure 96 Fluorescence profile analysis of two daughter cells after mitosis for LIpofectamine-transfected cells (left) 
and LPD-nanoparticles-transfected CHO cells (right). These are two representative samples chosen to show the 
different trend between the two transfection nanoformulations. 

 

An interesting observation comes from Figure 95: usually, in fact, longer time-lags are 

observed for LPD-nanoparticles-transfected cells before fluorescence signal can be detected, 

as compared to Lipofectamine. These observations may help elucidating the differences 

between the two formulations in terms of transfection efficiency: transfection with 

lipids/protamine could yield lower TE, compared to Lipofectamine, because of a lower 

bioavailability of pDNA, which may be clustered in a few “big” aggregates described before in 

the first part of the results. These clusters may help to explain the asymmetry observed with 

the fluorescence profile analysis (both in terms of lag time for initial fluorescence detection 

and counts of extreme cases where only one daughter cell becomes “green” after division). In 

other words, a limited number of pDNA molecules can be segregated into the two nuclei of the 

daughter cells after the nuclear envelope breakdown, giving rise to a pronounced asymmetry 

of the fluorescence signal between daughter cells.  
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5 Discussion 
 

DNA complexes used during transfection must overcome several barriers to enter the plasma 

membrane, cytoplasm and nucleus of a target cell in order for the transgene to be translated 

into protein. As these complexes encounter each of these barriers, they are subject to a 

certain probability of success (or failure) in overcoming these obstacles. The cumulative 

probability of success for the entire journey influences the transfection efficiency for a given 

system. This is the reason why successful non-viral gene nanocarriers require a deep 

understanding of the mechanisms involved in their interaction with target cells that goes 

beyond the simple evaluation of final transfection efficiency. Design of efficient nanoparticles 

and studies focused on each single step of transfection are needed so that the main 

disadvantage of non-viral vectors, that is a relatively low efficiency compared to virus, can be 

efficiently improved. The findings reported in this study bring to several interesting conclusions 

and highlight further open questions that deserve investigation in future studies.  

As previously said, there is the need to predict which of the intracellular barriers represent the 

main rate-limiting factor in the transfection process. In this project I focused on the 

cytoplasmic and nuclear compartments with the aim of increasing the overall understanding of 

the sequence of events encountered by lipid-mediated DNA delivery systems during their 

intracellular journey. The ability of a non-viral vector to escape from the endosomal 

compartment can strongly influence the carrier’s transfection efficiency. Phenotype analysis of 

LPD systems (DC-Chol/DOPE/Protamine) confirms the evident property of endosomal escape 

and DNA release in the cytoplasm. Transfection with LPD nanoparticles, whose lipids and DNA 

are respectively labeled with NBD and Cy3, clearly shows spread into the cytoplasm and can 

give rise to cells with diffuse “red” cytoplasmic signal coming from plasmidic-labeld DNA. In 

this regard, FRAP experiments give quantitative contribute to understand which “species” of 

DNA are being observed: some cells actually show a phenotype with “red” cytoplasmic diffuse 

signal that, when photobleached in a limited region of interest, present a slow recovery of 

fluorescence, thus compatible with the presence of intact plasmidic DNA molecules. I believe it 

is interesting that no positive correlation is observed between this kind of phenotype and 

transfection efficiency (in terms of “green cells” observed by confocal microscopy). This 

prompts me to speculate that efficient endosomal escape does not necessarily bring to high TE, 

probably because of other factors that may influence the overall yield of this process. Vectors 

and cellular factors that enhance cytoplasmic DNA mobility may then have a role in increasing 

the efficacy of gene expression. Actually, the slow diffusion of plasmidic DNA in the cytosol has 

probably necessitated the evolution of efficient packaging and transport mechanisms to carry 

viral DNA across the cytoplasm. Interaction between viral proteins and the microtubular 

network and/or the actin cytoskeleton appears to account for the efficient nuclear targeting of 

viral particles. The vectorial transport of viruses to the nucleus could thus serve as a paradigm 

to design more efficient DNA delivery systems to improve non-viral gene delivery methods.  

The observation of “red” DNA clusters inside the nucleus both with LPD nanoparticles and 

Lipofectamine (with an initial step of pre-incapsulation of DNA with protamine) represents a 

strong evidence of the putative role played by protamine. First of all, different methods were 

used to confirm the real localization of DNA clusters inside the nuclear compartment, such as 
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z-stack collections and 2-channel-fluorescence-profile analysis along the three axes. It is 

observed that the number of these clusters increases both in number and dimensions when 

the ratio (weight/weight) Protamine:DNA increases (from 0.5:1 to 8:1). Collectively, it is shown 

that protamine represents a good DNA condenser with the advantage of nuclear targeting 

improvement (because of the presence of NLS signals within protamine sequence). On the 

other hand, also in this case, no positive correlation is observed between red clusters inside 

the nucleus and “green” GFP-expressing cells (index of transfection efficiency). This 

observation inspired further investigations of the role and localization of these nuclear red 

clusters. In this regards, FM4-64 dye proved extremely useful to gain insights into this 

observation: the major practical advantage of dual-excitation imaging of FM4-64 resides in the 

ability to visualize the nuclear envelope (NE) in unaltered cells (without the need to transfect 

NE-resident fusion proteins). LPD nanoparticles were then used associated with FM4-64 

showing colocalization between Cy3-DNA and FM4-64-NE. As described by Fricker et al.59, this 

may be explained by the entrapment of DNA clusters inside tubular channels, of both inner 

and outer nuclear membranes, that extend deep into the nucleoplasm (up to more than 90% 

in CHO cells). One possible function of such invaginations is to bring a larger proportion of the 

nucleoplasm close to a nuclear pore. They actually esteem that three or four appropriately 

placed tubes would bring almost all of the nucleoplasm within a distance of 0.5 µm from the 

nuclear envelope. This means that even nucleoli, which are buried within the nucleus, may lie 

close to the envelope. Deep tubular invaginations into the nucleoplasm occur so often in 

mammalian interphase nuclei that may even have a role in entrapping big clusters, like the 

DNA-Cy3 ones observed colocalizing with FM4-64 stain. Actually, the lumen of nuclear 

channels is not empty but ribosomes, small vesicles and cytoskeletal elements have all been 

seen. Thus, these structures may very most likely bring cytoplasmic space closer to the interior 

of the nucleus. Taken together, the traditional view of the NE as an approximately spherical 

coat defining the nucleoplasm may not represent the best one. 

The observation of “green” cells found in groups or couples prompted me to study how the 

“status” of the cell population influences transfection efficiency. Cell synchronization using 

mimosine was achieved in order to evaluate transfection at different phases of the cell cycle. 

Transfection efficiency was monitored by fluorescence quantification of GFP with flow 

cytometry and I show that CHO cells passing through mitosis yield higher transfection 

efficiency. The nuclear membrane disintegration may allow plasmid DNA to become enclosed 

within the nuclear environment before this latter is rebuilt again. It is interesting to highlight 

two observations: 1) transfection at 8 h (< 10% of the cells are in G1 phase) post mimosine 

release (PMR) does not yield to higher transfection efficiency compared to 0 h (65 % of the 

cells are in G1 phase) PMR transfection. The increase is observed only when 4 h (< 10 % of the 

cells are in G1) PMR cells are compared to 0 h PMR;  2) only Lipofectamine shows such a 

behavior. The first observation proves that a certain time is needed for the complexes to be 

distributed within the cells so that at least a few will be localized in the proximity of the 

nucleus. The 8 h PMR transfection timing may have failed because of insufficient time for DNA 

to reach the nucleus giving rise to a TE comparable with the 0 h PMR one. On the other hand 4 

h PMR shows a different transfection behavior and represents the timing with the highest 

percentage of cells in S-phase (around 80%). This supports the hypothesis that “S-phase cells” 

obtain higher efficiency. The last observation supports the fact that LPD complexes may have 

different mechanisms or require longer time compared to Lipofectamine: this represents a 
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novel parameter that can be included when single transfection formulations are studied (so 

that further investigations can be conducted to give insights into the different mechanisms 

involved).  

In this work, GFP-expressing plasmids are used to evaluate the capacity of the transgene to be 

transcribed and translated into a protein. This is particular useful to verify the TE of cells when 

using microscopy. Though simple and practical, this method does not allow a quantitative 

evaluation of cell populations and other methods like protein assays (e.g. luciferase gene 

expression) and fluorescence plate reader measurements of GFP help to overcome this 

problem. In this work FACS analysis is employed to calculate transfection efficiency and, 

considering that most of the analysis described in the literature to prove the high efficiency of 

protamine are conducted with luciferase gene expression analysis, it would be interesting to 

check whether a similarity (in terms of general percentage or relative ratios) are maintained 

between these two methods when comparing different transfection formulations. This 

coupling may be useful to reinforce reliability of measured data.   

Another method to study the differences between different transfection agents is time lapse 

fluorescence microscopy. Detailed image analysis coming from time lapses provide new 

insights on the single cell level while simultaneously achieving appropriate statistics. Flow 

cytometry method indicates a primary rout for transfection involving nuclear envelope 

breakdown but does not allow verifying the existence of mitosis-independent pathways. First, 

temporal relation between protein expression and cell division and second fluorescence profile 

analysis over time allow providing important parameters to compare, in this case, 

Lipofectamine with LPD nanoparticles. It was found that all transfected cells go through mitosis 

before becoming “green”. This is a striking observation that confirms the need for a cell to 

enter mitosis in order to be transfected. This is in partial disagreement with a similar work by 

Kirchenbuechler et al.61, that in HeLa cells reports a ≈ 3% of the cells expressing the protein 

without preceding proliferation. Moreover, cells entering mitosis up to at least 10 h post 

division express the fluorescent protein reporter GFP-NLS. This indicates an impressive stability 

of the plasmid in the cytoplasm of at least 10 h.  

These last experiments provide a new tool to study the dependence between cell division and 

DNA transfection compared to flow cytometry. The latter can provide only indirect support 

due to the averaging over entire cell populations and time frames (and, in this case, difficulty 

to have a 100 % fully synchronized cell population). Time lapse studies provide new and more 

interpretable evidence for correlation of cell division and protein expression based on statistics 

at the single cell level. This means it is possible to reveal the lag time needed for protein 

expression and evaluate if all cells go through mitosis before being transfected. Moreover 

through the temporal evolution of the fluorescence profile, it can be established whether two 

“daughter” cells show a similar protein expression pattern or not. Lipofectamine system gives 

rise to a marked symmetry compared to LPD nanoparticles. The latter present, in 30% of the 

cases, the feature that only one “daughter” cell gets transfected. This observation can help 

speculate possible mechanisms that may be different between the two systems. I may argue 

that the red clusters of DNA and protamine observed by confocal microscopy can represent 

less “bio-available” plasmidic DNA compared to Lipofectamine. For instance, the extreme case 

of just one daughter cell becoming green, may bring to think that there is a very little genetic 

material bio-available at the moment of cell division. The existence of red clusters of 
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DNA/protamine in the nucleus in not-transfected cells further supports this hypothesis 

(nuclear envelope breakdown). In addition, the longer time needed to detect the first 

expression signal reflect the necessity for a longer time to release DNA from these clusters or 

even inhibition of transcription (because of possible disturbance induced by protamine). These 

last hypotheses may help explain why I did not observe an increase in TE evaluated by flow 

cytometry analysis of transfected and synchronized CHO cells. Collectively, all these results 

provide good means to evaluate possible differences in transgene expression between two 

nanoformulations in terms of differences in intracellular fate of pDNA. 

This work stimulates to: 

1) further investigate the role of protamine as part of transfecting agents and examine in 

depth the putative role of nuclear channels in DNA clusters entrapment; 

2) study additional transfection formulations by coupling flow cytometry with live cell 

imaging; 

3) prove, with other experiments, whether cell division is the only requisite for efficient 

transfection; 

4) develop new transfection methods capable of releasing DNA in early mitosis.  

 

These results and perspectives are of great interest for the community of scientists working 

with cationic lipids and other non-viral nanoparticles as DNA-transfecting agents. A better 

understanding of the mechanisms of cellular and nuclear delivery are necessary in order to 

overcome the obstacle of low  transfection efficiency (compared to viruses) and for guiding the 

rational engineering of a new generation of non-viral vectors better tailored to both in vitro 

and in vivo applications. 
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