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Introduction

G-networks are a class of queueing networks introduced by Erol Gelenbe in
1989 ([1]), originally inspired by the spiking behaviour of biophysical neu-
rons. In earlier works (([1],[2],[6])) G-networks were also known as Random
Neural Networks, and both the terminologies are still used.

The novelty of G-networks with respect to usual queueing models lies
in the presence of negative customers, that are used to model requests for
removing work, in addition to the classical requests for performing work. Ba-
sically, a negative customer has the capability to destroy a positive customer
present in a queue and to disappear instantaneously after that.

A non-trivial feature of G-networks is that, under ergodicity conditions,
the steady-state distribution of the number of customers in the network is
given as the product of the marginal probabilities of the number of cus-
tomers in each queue. Product form solutions, which are well known to exist
for classical queueing networks with only positive customers, such as Jack-
son networks ([20]) and BCMP networks ([21]), are a desirable trait from a
computational and performance evaluation viewpoint.

What distinguishes G-networks from previously known queueing networks
is that the equations which yield the arrival rate of customers are nonlinear,
making the actual computation of the steady-state distribution a challenging
numerical problem. These equations read


λ+
i = Λ+

i +
∑N

j=1 µjqjp
+
ji

λ−i = Λ−i +
∑N

j=1 µjqjp
−
ji i = 1, . . . , N

qi = min
(

1,
λ+i

µi+λ
−
i

)
.

(0.0.1)

whereN ∈ N, λ+
i , λ

−
i ∈ R+ for i = 1, . . . , N are the unknowns and µj, p

+
ij, p

−
ij,Λ

+
i

Λ−i ∈ R+ are parameters of the G-network, for i, j = 1, . . . , N .
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When the system (0.0.1) admits a solution such that 0 < qi < 1 ∀i =
1, . . . , N , the G-network is said to be stable and the steady-state distribution
is given by π(k) =

∏N
i=1 π(ki) =

∏N
i=1(1− qi)qkii where k = [k1, . . . , kN ] ∈ NN

represents the number of customers in the network.

Starting from a real-world application, the Tra�c Matrix Estimation in
large scale IP networks, we observe that developing an e�cient method for
computing the steady-state distribution would allow to use G-networks with
complex topologies, possibly improving the performances.

The main goal of this thesis is to develop e�cient numerical methods
for computing the solution of equations (0.0.1). We rewrite the system of
equations (0.0.1) in matrix form, yielding the equivalent formulation{

z = T (z) := Λ+(Dz − P+)−1P−D−1
µ + αD−1

µ

q := Λ+(Dz − P+)−1D−1
µ < 1

(0.0.2)

where z ∈ RN is the row vectors of unknowns, 1 = [1, . . . , 1],Λ+, α ∈ RN are
given row vectors, P+, P−, Dµ ∈ RN×N are nonnegative given matrices and
Dz = diag(z) ∈ RN×N is the diagonal matrix with vector z on the diagonal.
Here the symbol < stands for component-wise inequality. Thanks to a result
from Gelenbe ([6]), the function T (z) admits a �xed point z∗ in the region
{z ∈ RN : z ≥ 1}, which may or may not satisfy the ergodicity condition
q = Λ+(Dz∗ − P+)−1D−1

µ < 1.

Firstly we propose and analyze the �xed point iteration z(k+1) = T (z(k)),
for k ≥ 0, starting from a given vector z(0). Under ergodicity condition,
we prove that this iteration is locally convergent to the �xed point z∗ ≥ 1,
with a linear rate of convergence given by the spectral radius of the Jacobian
matrix of the function T at z∗. Moreover, the subsequences (z(2k))k≥0 and
(z(2k+1))k≥0 satisfy

z(2k−1) ≤ z(2k+1) ≤ z∗ ≤ z2(k+1) ≤ z(2k) ∀k ≥ 0 (0.0.3)

i.e. the convergence is alternate around the �xed point, yielding an upper
bound for the error of each component at each step.

Secondly, we propose and analyze a Newton-Raphson method for the
solution of the equation S(z) := z − T (z) = 0, namely

z(k+1) = z(k) − (z(k) − T (z(k)))(I − JT (z(k)))−1, k ≥ 0. (0.0.4)
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We prove that, under stability condition, the iteration (0.0.4) is well de�ned
and locally convergent to the �xed point z∗ ≥ 1 with a quadratic rate, yield-
ing a fast method for the computation of the steady-state distribution.

We will then compare these two methods with an existing algorithm de-
veloped by J.M. Fourneau ([4]), concluding that the Newton-Raphson it-
eration is preferable for moderate values of N . This property makes the
Newton-Raphson algorithm an advisable choice for applications where the
steady-state distributions of many moderate-sized G-networks have to be
computed, as in the Tra�c Matrix estimation problem.

The rest of this thesis is structured as follows:

� In Chapter 1 we specify the notation and recall some basic results and
de�nitions.

� In Chapter 2 we describe the G-network model and study its funda-
mental properties.

� In Chapter 3 we present an application in telecommunication engineer-
ing that motivates the need for e�cient algorithms.

� Chapter 4 is the core chapter: we recall an existing algorithm and
present two new numerical methods for the computation of the sta-
tionary distribution.

� Chapter 5 is devoted to numerical experiments, where we compare the
performances of the three methods.

� In Chapter 6 we conclude and suggest possible developments.

This thesis was supported by the project PRA 2015 �Mathematical mod-
els and computational methods for complex networks� of the Department of
Computer Science, University of Pisa, coordinated by Prof. Antonio Fran-
gioni.
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Chapter 1

Basic tools and de�nitions

In this chapter we present the basic notation, de�nitions and results that will
be used throughout the thesis.

1.1 Notation

Rm×n

Rn
+

A > 0

A ≥ 0

A > B

A ≥ B

I

A>

A−1

ρ(A)

diag(v)

B(x, ε)‖·‖

m by n real matrices.

{x ∈ Rn : x ≥ 0}.
for A ∈ Rm×n, each element of the matrix is greater than zero.

for A ∈ Rm×n, each element of the matrix is greater than or equal

to zero.

A−B > 0.

A−B ≥ 0.

identity matrix.

matrix transpose.

matrix inverse.

spectral radius of matrix A.

diagonal matrix with elements vi, where v ∈ RN .

for a norm ‖ · ‖ on RN and a scalar ε > 0, {y ∈ RN : ‖x− y‖ < ε}
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1.2 Nonnegative matrices

All matrices considered in this thesis will be real square �nite matrices.

Recall that the spectral radius of a matrixA is de�ned as ρ(A) = max{|λ| :
λ is an eigenvalue of A}. Some useful properties of the spectral radius are
reported below. Let N ∈ N.

Lemma 1.2.1. Let A ∈ RN×N . Then, given any ε > 0, there exists an
induced matrix norm ‖.‖ such that ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε.

Theorem 1.2.1. (Gelfand's formula) Let ‖ · ‖ be a matrix norm. Then, for
all matrices A ∈ RN×N , it holds

ρ(A) = lim
k→∞
‖Ak‖1/k

De�nition 1.2.1. A matrix A ∈ RN×N is said to be nonnegative, and we
will write A ≥ 0, if

aij ≥ 0 ∀ i, j = 1, . . . , N.

De�nition 1.2.2. A matrix A ∈ RN×N , with N ≥ 2, is said to be irreducible
if it is not similar via a permutation to an upper block triangular matrix, i.e.
there is no real square matrix P = (pij) such that pij ∈ {0, 1}, P>P = I and

PAP> =

[
B 0
C D

]
where B and D are square matrices of positive size.

A fundamental result regarding nonnegative matrices is the Perron-Frobenius
theorem ([18], pp. 26-28).

Theorem 1.2.2 (Perron-Frobenius). Let A ∈ RN×N , A ≥ 0, be an irre-
ducible matrix. Then the following properties hold:

1. ρ(A) > 0 and it is an eigenvalue of A;

2. There is a vector v > 0 such that Av = ρ(A)v;

3. If B ≥ A and B 6= A, then ρ(B) > ρ(A);

4. ρ(A) is a simple eigenvalue.

An useful corollary is the following:
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Corollary 1.2.1. Let A ≥ 0 be an irreducible matrix. Then:

1. If the row sums of A are constant, i.e.
∑N

j=1 aij = σ ∀i = 1, . . . , N ,
then ρ(A) = σ.

2. If the row sums of A have a minimum σ and a maximum σ, then
σ < ρ(A) < σ.

Two important classes of matrices which will have an important role in
this thesis are the Z-matrices and the M-matrices.

De�nition 1.2.3. A ∈ RN×N is a Z-matrix if aij ≤ 0 ∀i 6= j.

De�nition 1.2.4. Let B ∈ RN×N ,B ≥ 0 be a nonnegative matrix, and let
s ∈ R. The matrix A = sI − B is an M-matrix if ρ(B) ≤ s, and it is a
non-singular M-matrix if ρ(B) < s.

It is clear that an M-matrix is also a Z-matrix. Regarding the opposite
inclusion, the following proposition provides useful criteria for a Z-matrix
to be an M-matrix. For the proof and a complete characterization of non-
singular M-matrices, see [18].

Theorem 1.2.3 ([18], pp. 1240.). Let A ∈ RN×N be a Z-matrix. Then A is
a non-singular M-matrix if and only if one of the following properties holds:

1. The eigenvalues of A have positive real part;

2. A is non-singular and A−1 is non-negative;

3. There exists x > 0 such that Ax > 0.

We conclude this section with the following theorem.

Theorem 1.2.4 ([22], pp. 96). Let A = M −N be a regular splitting of the
matrix A, i.e. M−1 ≥ 0 and N ≥ 0. Then, A is nonsingular with A−1 ≥ 0 if
and only if ρ(M−1N) < 1, where

ρ(M−1N) =
ρ(A−1N)

1 + ρ(A−1N)
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1.3 Functional Analysis

De�nition 1.3.1. Let ‖ · ‖ be a norm on RN , and D ⊆ RN an open subset.
A function F : D → RN is said to be Fréchet-di�erentiable at x ∈ D if there
exists a linear operator A : RN → RN such that

lim
h→0

(1/‖h‖)‖F (x+ h)− F (x)− Ah‖ = 0

In this case, the linear operator A is unique and it is called the Fréchet
derivative of F at x. We will write A = F ′.

Note that the de�nition of Fréchet-di�erentiability requires �xing a norm
on RN , but if a function if Fréchet di�erentiable in a certain norm, then it is
Fréchet di�erentiable in any norm and the Fréchet derivative is the same.

Recall a version of the mean-value theorem, which can be found in [19],
pp. 69.

Theorem 1.3.1. Let ‖ · ‖ be a norm on RN , and let F : D ⊆ Rn → Rm

be Fréchet-di�erentiable on a convex set D0 ⊂ D with Fréchet derivative F ′.
Then, for any x, y ∈ D0,

‖F (y)− F (x)‖ ≤ sup
0≤t≤1

‖F ′(x+ t(y − x))‖‖x− y‖

De�nition 1.3.2. A function F : D ⊂ RN → RN is said to be contractive
on a subset D0 ⊆ D if there exists a 0 ≤ α < 1 such that ‖F (x) − F (y)‖ ≤
α‖x− y‖ for all x, y ∈ D0.

Theorem 1.3.2 (Contraction Mapping Theorem, [19], pp. 120). Let F :
D ⊂ RN → RN be a contractive function on a closed set D0 ⊂ D, and
suppose that F (D0) ⊂ D0. Then F has a unique �xed point in D0.

Theorem 1.3.3 (Brouwer Theorem, [19], th. 6.3.2.). Let F : C ⊆ RN → RN

be continuous on the compact convex set C, and suppose that F (C) ⊆ C.
Then F has a �xed point in C.
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Chapter 2

The G-network model

2.1 Basic model

The basic G-network model consists of an open network of queues in which
two types of customer circulates: positive and negative ones. Each queue con-
sists of one server with i.i.d. exponentially distributed service times, in�nite
waiting room and First In First Out (FIFO) policy for positive customers.

� Positive customers obey standard service and routing disciplines as in
conventional queueing network models. Upon their arrival on a queue,
if the server is idle they immediately start being served, otherwise they
queue increasing the waiting line length by 1.

� Negative customers behave in the following way: when a negative cus-
tomer joins a non-empty queue, it destroys one of the present positive
customer (in the case of FIFO policy, the destroyed positive customer
will be the one who arrived last that queue). If the queue is empty, the
negative customer simply vanishes without doing anything else.

Negative customers are not stored in the queue and they will disappear
as soon as they have accomplished their task: as a result, they can
not be observed, only the e�ect of their arrivals can. Finally, negative
customers actions are supposed to be taken instantaneously.

Upon completion of service in queue i, the newly served customer either
reaches queue j as a positive customer with probability p+

ij, or as a negative
customer with probability p−ij, or it departs from the network with probabil-
ity di. It is important to note that positive customers leaving a queue can
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become negative when they visit the next queue.

Finally, positive and negative customers can also arrive to queue i from
the outside world according to independent Poisson processes with rates Λ+

i

and Λ−i respectively.

Figure 2.1: The basic G-network model.

2.1.1 Interpretation

From a neural network perspective, positive customers represent excitation
and negative customers represent inhibition of a queue, which is usually
called a neuron in this setting. The number of positive customers at a neu-
ron, which is a non-negative integer, represents the potential of that neuron.

The idea, which motivated the introduction of random neural network
in the �rst place, is that when a neuron is excited, i.e. it has a positive
potential, it may ��re�, sending signals towards other neurons or outside of
the network. As a signal is sent, it reduces the �ring neuron's potential and
can increase or reduce the receiving neuron's potential.

2.1.2 Extensions and areas of application

The basic G-network model introduced in [1] has been extended in several
ways during the years, for example by introducing multiple classes of positive
customers, di�erent service policies and di�erent e�ect of negative customers,
such as triggering a customer movement from a queue to another instead of
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just destroying it ([7],[8],[10]).

G-networks have been applied to several �elds, in particular to Combi-
natorial Optimization ([15]), Image Processing [17] and Telecommunication
systems ([14]). The usefulness of G-networks for most of these applications
stems from their ability to learn from examples and generalize.

In particular, G-networks have been applied ([14]) to the Tra�c Matrix
Estimation (TME) problem in large scale IP networks. We will brie�y review
this application in Chapter 5 and suggest possible developments.

For a survey on Random Neural Networks and G-networks, see [16].

2.2 Model parameters

In the following, we will always refer to the base G-network model. Let
N ∈ N+ be the number of queues in a G-network, and recall that when a
positive customer leaves queue i it either reaches queue j as a positive cus-
tomer with probability p+

ij, or as a negative customer with probability p−ij, or
it departs from the network with probability di.

These probabilities must sum up to one yielding

N∑
j=1

(p+
ij + p−ij) + di = 1 ∀ i = 1, . . . , N (2.2.1)

Let pij = p+
ij + p−ij for i, j = 1, . . . , N . The matrix P = (pij) ∈ RN×N

represents the movement of customers between queues.

Customers leaving a queue are not allowed to return directly back to the
same neuron, i.e. pii = 0 for all i. Let P+ = (p+

ij) ∈ RN×N and P− = (p−ij) ∈
RN×N . The matrices P+ and P− are nonnegative, with zero diagonal entries
and such that P = P+ + P− is row substochastic, i.e.

N∑
j=1

pij ≤ 1 ∀i = 1, . . . , N.

We assume also that they are irreducible and di�erent from the zero matrix.

We denote by Λ+
i ,Λ

−
i ∈ (0,+∞) be the rates of the Poisson processes

representing the arrival of respectively positive and negative customers to
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queue i. We remind that all this processes are independent of each other.
We suppose that at least one of Λ+ = [Λ+

1 , . . . ,Λ
+
N ] and Λ− = [Λ−1 , . . . ,Λ

−
N ]

is di�erent from the zero vector. Finally, let µi ∈ (0,+∞) be the rate of the
queue i server, meaning that the service time distribution of the single server
in queue i has probability density function

f(x) =

{
µie
−µix x ≥ 0

0 x < 0

2.3 Steady-state distribution of the number of

customers

The state of queue i at time t ∈ (0,+∞) is described by the random variable
ki(t), with support N, representing the number of customers present in queue
i at time t. These customers are necessarily positive customers, since negative
customer, by de�nition, are never stored in a queue.

The state of the network at time t ∈ (0,+∞) is described by the random
vector k(t) = (k1(t), . . . , kN(t)), with support NN .

Letting π(ki, t) = P(ki(t) = ki) and π(k, t) = P(k(t) = k), for ki ∈ N
and k ∈ NN , we are interested in determining, when they exist, the steady-
state (or stationary) probability distributions for the queues state π(ki) =
limt→+∞ π(ki, t) and for the network state π(k) = limt→+∞ π(k, t).

Let λ+
j and λ−j be the mean arrival rates of respectively positive and

negative customers to queue j, in steady-state. They are given by the tra�c
equations 

λ+
i = Λ+

i +
∑N

j=1 µjqjp
+
j,i

λ−i = Λ−i +
∑N

j=1 µjqjp
−
j,i i = 1, . . . , N

qi = min
(

1,
λ+i

µi+λ
−
i

) (2.3.1)

provided that this system admits a solution.

The main result regarding the stationary distribution of a G-network is
given in the following theorem, proven by Gelenbe in [1]. It states that if the
system of nonlinear equations (2.3.1) admits a solution with 0 < qi < 1 for
all i = 1, . . . , N , then the stationary distribution of the network state exists
and it is given as a product form of the stationary distribution of each queue.
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Theorem 2.3.1 ([1]). Consider a basic G-network with N queues, as de-
scribed in section 2.1 If the system of non-linear equations

λ+
i = Λ+

i +
∑N

j=1 µjqjp
+
j,i

λ−i = Λ−i +
∑N

j=1 µjqjp
−
j,i

(2.3.2)

where

qi = min(1,
λ+
i

µi + λ−i
) (2.3.3)

admits a unique positive solution {λ+
i , λ

−
i }Ni=1 such that 0 < qi < 1 ∀ i =

1, . . . , N , then the stationary distributions π(ki) and π(k) exist and are given
by

π(ki) = (1− qi)qkii (2.3.4a)

π(k) =
N∏
i=1

π(ki). (2.3.4b)

Proof. Let

k = (k1, . . . , kN)

k+
i = (k1, . . . , ki+1, . . . , kN)

k−i = (k1, . . . , ki − 1, . . . , kN)

k++
ij = (k1, . . . , ki + 1, . . . , kj + 1, . . . , kN)

k−−ij = (k1, . . . , ki − 1, . . . , kj − 1, . . . , kN)

k+−
ij = (k1, . . . , ki + 1, . . . , kj − 1, . . . , kN).

The process {k(t)}t≥0 is a continuous time Markov chain, therefore π(k)
is described by the steady-state balance equations

π(k)
N∑
i=1

[
Λ+
i + (Λ−i + µi)1{ki>0}

]
=

N∑
i=1

{
π(k+

i )µidi + π(k−i )Λ+
i 1{ki>0} + π(k+

i )Λ−i +

+
N∑
j=1

[
π(k+−

ij )µip
+
ij1{kj>0} + π(k++

ij )µip
−
ij + π(k+

i )µip
−
ij1{kj=0}

]}
.

(2.3.5)
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This equation is obtained by balancing the exiting and entering �ows
from state k.

The left hand side represents the rates of exiting �ow from state k: any
arrival (positive or negative) and every departure causes a transition to an-
other state. The right hand side represents the rates of entering �ow to state
k. The possible transitions to state k are:

1. k+
i → k: it is caused by the arrival of a negative customer

from the external to queue i (rate Λ−i ), the departure of a
customer from queue i to the external (rate µidi) and, in
case kj = 0, the arrival of a negative customer from queue i
to queue j (rate µip

−
ij1{kj=0}).

2. k−i → k : it is caused by the arrival of a positive customer
from the external (rate Λ+

i 1{kj>0})

3. k+−
ij → k : arrival of a positive user departing from queue j

in queue i (rate µip
+
ij1{kj>0})

4. k++
ij → k : arrival of a negative user departing from queue
j in queue i (rate µip

−
ij).

We now verify that the product form equation (2.3.4) satis�es the balance
equations. Replacing (2.3.4) in equation (2.3.5) yields

N∑
i=1

[
Λ+
i + (Λ−i + µi)1{ki>0}

]
=

N∑
i=1

{
qiµidi +

Λ+
i

qi
1{ki>0} + Λ−i qi+

+
N∑
j=1

[ qi
qj
µip

+
ij1{kj>0} + qiqjµip

−
ij + qiµip

−
ij1{kj=0}

]}
(2.3.6)

If the solution {λ+
i , λ

−
i } is such that 0 < qi < 1 ∀i, that is qi =

λ+i
µi+λ

−
i

< 1,

we obtain, using (2.3.2)
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N∑
i=1

[
Λ+
i + (Λ−i + µi)1{ki>0}

]
=

N∑
i=1

[
qiµidi +

Λ+
i

qi
1{ki>0} + Λ−i qi

]
+

+
N∑
j=1

[λ+
j − Λ+

j

qj
1{kj>0} + (λ−j − Λ−j )qj + (λ−j − Λ−j )1{kj=0}

]
=

=
N∑
i=1

[
qiµidi + λ−i qi + λ+

i 1{ki>0} + (λ−i − Λ−i )1{ki=0}

]
=

=
N∑
i=1

[
qiµi−

N∑
j=1

qiµi(p
+
ij+p

−
ij)+(µi+λ

−
i )1{ki>0}+(λ−i −Λ−i )1{ki=0}+λ

−
i qi

]
.

Replacing equation (2.3.2) again yields

N∑
i=1

[
Λ+
i + (Λ−i + µi)1{ki>0}

]
=

N∑
i=1

[
qiµi−(λ+

i −Λ+
i )−(λ−i −Λ−i )+(λ−i −Λ−i )1{ki=0}+(Λ−i +µi)1{ki>0}+λ

−
i qi

]
=

N∑
i=1

[
qiµi − (λ+

i − Λ+
i ) + (Λ−i + µi)1{ki>0} + λ−i qi

]
which, after using (2.3.3) and canceling terms

0 =
N∑
i=1

[λ+
i (µi + λ−i )

µi + λ−i
− λ+

i

]
= 0.

Thus, the product form solution is veri�ed since it satis�es the global balance
equations (2.3.5).

This result shows that when a solution to the signal �ow equations (2.3.2)
can be found such that 0 < qi < 1, then the stationary probability distribu-
tion of the state of the network exists and can be written as the product of
the marginal probabilities of the state of each queue.

Product form solutions are well known to exist for certain networks with
only positive customers, such as Jackson networks ([20]) and BCMP network
([21]). What distinguishes this model from previously known queueing net-
works is that the tra�c equations are nonlinear. This property makes the
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actual computation of the solution of the system (2.3.2) quite challenging,
and the main purpose of this thesis is indeed to develop new computational
methods for this problem.

Lemma 2.3.1 ([1]). If a positive solution {λ+
i , λ

−
i } to equations (2.3.2) exists

with 0 < qi < 1 ∀i = 1, . . . , N , then it is the unique solution.

Proof. Since qi < 1 ∀i , the Markov chain {k(t) : t ≥ 0} is irreducible
and aperiodic. Therefore, if a positive stationary solution π(k) exists, then
it is unique. By Theorem 2.3.1, π(k) exists and is given by (2.3.4), so it
is clearly positive for all k. Suppose now there exist two di�erent solutions
{qi}i and {q′i}i to equations (2.3.2), i.e. qj 6= q′j for all j ∈ J ⊂ {1, . . . , N},
J 6= ∅, and qi, q′i < 1 ∀i. Then π(k) =

∏N
i=1(1− qi)qkii and π′(k) =

∏
i∈J(1−

q′i)q
′
i
ki
∏

s∈I\J(1 − q′s)q
′
s
ks are two di�erent stationary solutions, which is a

contradiction.

Remark 2.3.1. When we talk about the solution of equations (2.3.2) with
qi < 1, we can equivalently refer to {λ+

i , λ
−
i }i=1,...,N or to {qi}i=1,...,N , since

the λ+
i , λ

−
i univocally determine the qi and vice-versa, thanks to (2.3.2) and

(2.3.3)

Remark 2.3.2. In this setting we consider only open networks, i.e. networks
for which there exist at least a Λ+

i > 0. This means that there is a stream of
positive customer from the outside of the networks.

Regarding closed network, it can be shown that if P is irreducible and
there exists some p−uv > 0, then π(0) = 1, that is in steady state the network
will be empty almost surely. This is intuitive since there is no external source
of positive customers, while there is at least an internal source of negative
customers.

As a consequence, the only closed networks which are of interest are those
for which either all p−ij = 0 or those for which P is not irreducible, which are
not studied in this thesis.

2.4 Network stability

Suppose that a positive solution of equations (2.3.2) exists. Queue i is said
to be stable if qi < 1. Similarly, the G-network is said to be stable if all the
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queues are stable, that is if qi < 1 for all i = 1, . . . , N .

The reason for such nomenclature is that, as showed in the next corollary
of Theorem 2.3.1, whenever a solution of equations (2.3.2) with 0 < qi < 1
can be found, all the moments of the network state distribution are �nite
and can be computed explicitly from the product-form formula in Theorem
2.3.1.

Corollary 2.4.1. If the G-network is stable, the stationary probability that

queue i is busy is given by limt→∞ P{ki(t) > 0} = qi =
λ+i

µi+λ
−
i

and the average

number of customer present in queue i in steady-state is Ai = E[ki] = qi
1−qi .

If for some i we have qi = 1, i.e.
λ+i

µi+λ
−
i

≥ 1, the queue i is called unstable

or saturated. This means that in steady state the queue is constantly excited:
limt→+∞ P(ki(t) > 0) = 1. In this case the stationary distribution does not
exist. However, if we restrict ourselves to the sub-network composed only of
stable queues, it can be shown that the stationary distribution of this sub-
network exists and it is still given in product form. We do not consider this
case in this thesis.

2.5 Existence of the stationary distribution

In the previous section we have shown that the stationary distribution of the
state of the network exists if there is a solution to (2.3.2) with 0 < qi < 1
for all i = 1, . . . , N . Showing the existence of such a solution is a non-trivial
task due to the non-linearity of the equations involved.

Partial results about the existence of a solution of equations (2.3.2) were
given in [3], while in [6] the existence for the general case was established.

2.5.1 Feed-forward networks

AG-network is said to be feed-forward if for any sequence i1, . . . , is, . . . , ir, . . . , im
of queues, is = ir for some r > s implies

∏m−1
ν=1 piν iν+1 = 0.

In [3] it is proven that a feed-forward network always admits a unique
solution:

Theorem 2.5.1. If the G-network is feed-forward, then the solution {λ+
i , λ

−
i }Ni=1

of equations (2.3.2) exist and it is unique.
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Proof. For any feed-forward network we can renumber the queues so that
queue 1 has no predecessors (i.e., pi1 = 0 for all i), queue N has no successors
(i.e. pNi = 0 for all i), and pij = 0 if j < i (recall that pii = 0 for all i in our
model). In this way we obtain an network with the property that a customer
can go directly form neuron i to neuron j only if j > i. This means that the
matrices P+ and P− are strictly upper triangular matrices, of the form

P+, P− =


0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×
0 0 0 0 0

 (2.5.1)

For such a network, the λ+
i and λ−i can be computed recursively as follows:

� First set λ+
1 = Λ+

1 , λ
−
1 = Λ−1 , and compute q̃1 =

λ+1
µ1+λ−1

. If q̃1 ≥ 1, set

q1 = 1 (queue 1 is saturated), otherwise set q1 = q̃1.

� If λ+
j , λ

−
j for j = 1, . . . , i − 1 have been calculated (so also the qj for

j < i have) compute

λ+
i = Λ+

i +
∑
j<i

µjqjp
+
j,i

λ−i = Λ−i +
∑
j<i

µjqjp
−
j,i

and then set q̃i =
λ+i

µi+λ
−
i

. If q̃i ≥ 1, set qi = 1 (queue i is saturated),

otherwise set qi = q̃i.

This process computes in a unique manner the solution of equation (2.3.2),
so the theorem is proved.

In feed-forward network therefore a unique solution always exists, al-
though some queues could be unstable. The computational cost for the
algorithm described above is only O(N2): as a consequence, feed-forward
networks have been widely used in applications which requires solving equa-
tions (2.3.2) many times, as in supervised learning [6],[14].

2.5.2 Damped networks

In general network stability can not be asserted a priori, based on the pa-
rameters Λ+

i ,Λ
−
i , µi, P

+, P− only, but only after the qi have been computed.

19



In some case, however, there are su�cient conditions for network stability
which are easy to check.

A G-network is said to be damped if the following property holds:

µi + Λ−i > Λ+
i +

N∑
j=1

µjp
+
ji ∀i = 1, . . . , N. (2.5.2)

For damped G-networks, we have the following results:

Theorem 2.5.2 ([3]). If the G-network is damped, the equations (2.3.2)
always have a unique solution with qi < 1 for all i = 1. . . . , N .

Condition (2.5.2), although it is quite strong, provides a su�cient condi-
tion for network stability which is easy to verify. It can be used to appropri-
ately select parameters of the network to guarantee stability, as in [15].

2.5.3 General case

Solution existence to the general case has been established in [6]. The ap-
proach followed is quite general and has also been used to examine solutions
existence in extensions of the basic G-network model. To this scope we have
to introduce a suitable function G : RN → RN , as follows.

Rewrite equations (2.3.2) in order to eliminate the qi terms:

λ+
i = Λ+

i +
N∑
j=1

λ+
j p

+
j,i

µj
µj + λ−j

λ−i = Λ−i +
N∑
j=1

λ+
j p
−
j,i

µj
µj + λ−j

De�ne the row vectors

λ+ = [λ+
1 , . . . , λ

+
N ]

λ− = [λ−1 , . . . , λ
−
N ]

Λ+ = [Λ+
1 , . . . ,Λ

+
N ]

Λ− = [Λ−1 , . . . ,Λ
−
N ]

20



and let F be the diagonal matrix with elements fj =
µj

µj+λ
−
j

> 0. The previous

equations than may be written as

λ+(I − FP+) = Λ+

λ− = λ+FP− + Λ−

Matrices P+ and P− are irreducible and sub-stochastics, and both of them
have at least one row having sum less than 1, because otherwise, due to
(2.2.1), one of them would be the zero matrix. Therefore by Corollary
1.2.1 we have ρ(P+), ρ(P−) < 1. Since 0 ≤ P and 0 ≤ F ≤ 1, we have
0 ≤ FP+ ≤ P+. According to the Perron-Frobenius theorem 1.2.2, we get
ρ(FP+) ≤ ρ(P+) < 1.

Therefore matrix I − FP+ is non-singular and

(I − FP+)−1 =
∞∑
n=0

(FP+)n

Consider now the variable y = λ− − Λ−, so that

F = F (y) = diag((fj(y))), fj(y) =
µj

µj + Λ−j + yj
, yj = λ−j − Λ−j ≥ 0.

The system (2.3.2) can then be written in the �xed-point form

y = G(y)

where G : RN → RN is given by

G(y) = Λ+(I − F (y)P+)−1F (y)P−. (2.5.3)

Theorem 2.5.3 ([6]). Consider a basic G-network with N queues. Let
Λ+
i ,Λ

−
i be the rates of the Poisson processes representing the arrival of pos-

itive and negative customers to queue i, µi the service rate of queue i and
p+
ji, p

−
j,i the transition probabilities, as described in section 2.1.1. Then a non-

negative solution {λ+
i , λ

−
i }i=1,...,N to equations (2.3.2)

λ+
i = Λ+

i +
N∑
j=1

µjqjp
+
j,i

λ−i = Λ−i +
N∑
j=1

µjqjp
−
j,i

always exists, where qi =
λ+i

µi+λ
−
i

.
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Proof. We will show that the function G(y) de�ned in (2.5.3) has at least a
�xed point y∗ ≥ 0, yielding a solution of equations (2.3.2).

Since 0 ≤ F (y) ≤ I and 0 ≤ (F (y)P+)n ≤ (P+)n for all n ∈ N, we have

(I − F (y)P+)−1 =
∞∑
n=0

(F (y)P+)n ≤
∞∑
n=0

(P+)n = (I − P+)−1

and also

0 ≤ G(y) = Λ+(I − F (y)P+)−1F (y)P− ≤ Λ+(I − P+)−1P− = G(0) (2.5.4)

yielding that G is bounded, i.e. ‖G(y)‖ ≤ δ for all y ≥ 0.

G is also Lipschitz continuous: for all y, z ∈ R+,

G(y)−G(z) = Λ+
[
(F (y)−1 − P+)−1 − (F (z)−1 − P+)−1

]
P− =

Λ+(F (z)−1 − P+)−1
[
F (z)−1 − F (y)−1

]
(F (z)−1 − P+)−1 =

Λ+(F (z)−1 − P+)−1
[
diag

(zj − yj
µj

)]
(F (z)−1 − P+)−1

(2.5.5)

which yields

‖G(y)−G(z)‖∞ ≤

‖(F (z)−1 − P+)−1‖2
∞‖diag

(zj − yj
µj

)
‖∞‖Λ+‖1 ≤

‖(F (z)−1 − P+)−1‖2
∞‖‖Λ+‖1‖(z − y)D−1

µ ‖∞ ≤
‖(F (z)−1 − P+)−1‖2

∞‖‖Λ+‖1‖D−1
µ ‖∞‖z − y‖1 =

L‖z − y‖∞

(2.5.6)

for a suitable constant L > 0, where we used that (F (z)−1 − P+)−1 is
bounded for z ≥ 0 ((2.5.4)) and that all norms of RN are equivalent. There-
fore G(y) is Lipschitz continuous for y ≥ 0.

According to Brouwer Theorem 1.3.3 applied to function G and to the
compact convex set C = RN

+ ∩ B(0, δ), there exist at least a �xed point
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y = λ− − Λ− ≥ 0, yielding a non-negative solution (λ−, λ+) to (2.3.2) by
setting λ− = y + Λ− and

λ+ = (I − F (y)P+)−1Λ+. (2.5.7)

This theorem proves that a nonnegative solution to equations (2.3.2) al-
ways exists, but it does not say anything about the stability of the network.
If the �xed point of the function G is such that 0 < qi < 1 for all i = 1, . . . , N ,

where qi = min(1,
λ+i

µi+λ
−
i

), then the stationary distribution exists unique and

it is given by π(k) =
∏N

i=1 π(ki) =
∏N

i=1(1− qi)qkii (see Theorem 2.3.1).

If, on the other hand, we obtain that qi = 1 for some i, then queue i and
consequently the network is unstable and the stationary distribution does
not exist.
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Chapter 3

Applications

In section 2.1.2 we cited some areas of applications of the G-networks. In
this chapter we brie�y present the use of G-networks in the context of su-
pervised learning and an application in Telecommunication Systems, namely
the Tra�c Matrix Estimation problem ([14]).

3.1 Learning in the G-network

Supervised learning generally refers to the task of inferring a function using a
set of training examples. In general, each training example is an input-output
pair (A,B), where A and B are usually collections of vectors: the function
to be inferred, when presented with the input A, must give B as an output.

When using G-networks, we are presented with a set of input-output pairs
of the form {(Xk, Yk)}k=1,...,K , K ∈ N, where:

� the k-th training input Xk consists of the vectors Λ+
k = [Λ+

1k, . . . ,Λ
+
Nk]

and Λ−k = [Λ−1k, . . . ,Λ
−
Nk], i.e. the rates of the positive and negative

customer arrival processes from the outside.

� The k-th training output consists of the vector Yk = [y1k, . . . , yNK ],
whose elements yik ∈ (0, 1) represent the desidered steady-state oc-
cupation probabilities of the queues. Usually only a subset of all the
queues is used as output queues: that is, queues which only interact
with the outside, i.e. for which di = 0. In the context of supervised
learning, we are only interested in the occupation probabilities of the
output queues.

Training the G-network means �nding the parameters P+, P−, µ which
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minimize a general quadratic function of the form

E(q1, . . . ,qK) =
K∑
k=1

Ek(qk), (3.1.1a)

Ek(qk) =
N∑
i=1

ci(fi(qik)− yik)2 (3.1.1b)

where:

� qk = [q1k, . . . , qNk] and q1k, . . . , qNk are the steady-state occupation
probabilities of the G-network when presented with the outside arrival
rates Λ+

k ,Λ
−
k , for k = 1, . . . , K.

� ci equals 1 if the queue i is an output queue, 0 otherwise.

� fi : (0, 1)→ R is a di�erentiable function.

Remark 3.1.1. The function qk = qk((µi), (p
+
ij), (p

−
ij)) is a function of the

inputs rates Λ+
k ,Λ

−
k (which are given by the training set) and of the network

parameters µi, p
+
ij, p

i
ij, for i, j = 1, . . . , N . This is because the q1k, . . . , qNk,

for i = 1, . . . , N , k = 1, . . . , K, are the solutions of the tra�c equations
λ+
ik = Λ+

ik +
∑N

j=1 µjqjp
+
j,i

λ−ik = Λ−ik +
∑N

j=1 µjqjp
−
j,i i = 1, . . . , N

qi = min
(

1,
λ+ik

µi+λ
−
ik

)
.

(3.1.2)

Let us introduce the following variables, known as the weights of the network:

w+
ij = µip

+
ij ≥ 0, w−ij = µip

−
ij ≥ 0 ∀ i, j = 1, . . . , N (3.1.3)

The system (3.1.2) then reads
λ+
ik = Λ+

ik +
∑N

j=1 w
+
jiqj

λ−ik = Λ−ik +
∑N

j=1 w
−
jiqj i = 1, . . . , N

qi = min
(

1,
λ+ik

µi+λ
−
ik

)
.

(3.1.4)

Observe that when using the variables w+
ij , w

−
ij , the condition

N∑
j=1

(p+
ij + p−ij) + di = 1 ∀ i = 1, . . . , N (3.1.5)
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reads
N∑
j=1

(w+
ij + w−ij) = µi(1− di) ∀ i = 1, . . . , N (3.1.6)

In the context of supervised learning ([6]), usually one wants to use the
w+
ij , w

−
ij as the de�ning parameters of the G-network. In order to do this, one

has to �x the di and recover the µi-s by (3.1.6) and the p+
ij, p

−
ij-s by (3.1.3),

for i, j = 1, . . . , N . In the following we will suppose to have done that.

Therefore the function qk = qk((w+
ij), (w

−
ij)), when the Λ+

k ,Λ
−
k are given,

is actually a function of the weights w+
ij and w

−
ij , i, j = 1, . . . , N .

As a consequence, also the error functions Ek(qk) = Ek(qk((w+
ij), (w

−
ij)))

, k = 1, . . . , K, when the Λ+
k ,Λ

−
k are given, are functions of the weights w+

ij

and w−ij , i, j = 1, . . . , N .

The optimization problem that we have to solve then reads{
min

∑K
k=1Ek(qk((w+

ij), (w
−
ij)))

s.t. w+
ij ≥ 0, w−ij ≥ 0 ∀ i, j = 1, . . . , N

(3.1.7)

In [6] a gradient descent algorithm to solve (3.1.7) is presented, which we
brie�y describe.

Let us denote by the generic term wuv either the element w+
uv or w

−
uv, for

u, v = 1, . . . , N . The iterative rule for updating the weigths using the kth
input-output pair at step τ + 1 of the algorithm is

wτ+1
uv = wτuv − η

[ ∂Ek
∂wu,v

]
τ

(3.1.8)

where η > 0 is the step size, which can be changed during the algorithm,
and where the operator [·]τ denotes that all calculations are performed using
the weight values of step τ and the qik values derived from solving equation
(3.1.2) when the current weights w

(τ)
uv are used.

According to 3.1.1, we have

[ ∂Ek
∂wuv

]
τ

=
N∑
i=1

ci(fi(qik)− yik)
[∂fi
∂qi

∂qi
∂wuv

]
τ

(3.1.9)
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Gelenbe showed that

∂q

∂wuv
:=
[ ∂q1

∂wuv
, . . . ,

∂qN
∂wuv

]
= γ(u, v)(I−W)−1 ∀u, v = 1, . . . , N (3.1.10)

where:

� the row vector γ(u, v) denotes eiher γ+(u, v) or γ−(u, v), given by

γ+
i (u, v) =


−1/D(i) if u = i, v 6= i

1/D(i) if u 6= i, v = i

0 otherwise

(3.1.11a)

γ−i (u, v) =


−(1 + qi)/D(i) if u = i, v = i

−1/D(i) if u = i, v 6= i

−qi/D(i) if u 6= i, v = i

0 otherwise

(3.1.11b)

where D(i) = µi + Λ−i +
N∑
j=1

qjw
−(i, j) (3.1.11c)

� W ∈ RN×N is the matrix with elements $ij =
(w+
ij−w

−
ij)qj

D(j)
for i, j =

1, . . . , N .

All this quantities depend on the current values (that is, at step τ) of wuv
and qk. The algorithms then reads:

1) Initialise the weights w
(0)
ij ∀i, j,as well as the step size η.

2) For each successive value of k, starting with k = 1, initialise Λ+
ik and Λ−ik

according to Xk. Then:

2a) Solve the system 3.1.4 using the current weight values.

2b) Based on the values obtained compute the matrixW and γ(i, j) ∀i, j.

2c) Calculate ∂q
∂wij

according to eq. 3.1.10, for all i, j.

2d) Update the weights wij using 3.1.8 and 3.1.9. If this yields a nega-
tive value for a weight, either set this weight to zero or repeat the step
with a smaller η.

2e) Repeat steps 2a), 2b), 2c) and 2d) until convergence
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3) Repeat the procedure of step 2) until convergence.

The computational cost for updating the weights (steps 2b, 2c and 2d) is
O(N3), since the most demanding operation is the inversion of matrix I−W
in eq. 3.1.10.

Our interest for this application resides in step 2a): it requires the solution
of the system 3.1.4, which is the subject matter of this thesis.

3.2 An application: Tra�c Matrix estimation

in large-scale IP networks

In this section we suggest a real problem that motivates the need for devel-
oping e�cient methods for the computation of the steady-state distribution
in a G-network.

In Telecommunication engineering, knowing the tra�c that �ows through
a large-scale network is a key issue in the design of network. In a IP network
this tra�c is typically described by a Tra�c Matrix (TM). The TM represents
the volume of tra�c transmitted between every pair of nodes in a network,
also referred to as the origin-destination (OD) tra�c �ows. Directly measur-
ing the TM is often a prohibitive task: as a consequence, network analysis
requires e�cient TM estimation methods.

Consider a network with l links and m OD �ows. Usually m >> l. A
tra�c matrix is formally described by

� a vector Xt = [xt(1), . . . , xt(m)]> ∈ Rm, where t is a variable repre-
senting time and xt(i) is the tra�c volume of the i-th OD �ow, for
i = 1, . . . ,m.

� a vector Yt = [yt(1), . . . , yt(l)]
> ∈ Rl, where yt(j) is the aggregated

tra�c volume in link j, j = 1, . . . , j, that is the tra�c originated by all
the OD �ows that traverse the link j.

� a routing matrix R ∈ Rl×m, where

Rij =

{
1 if the OD �ow j traverses link i.

0 otherwise.
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The relation between Xt and Yt reads

Yt = RXt (3.2.1)

While it is possibile to e�ciently measure the aggregated data Yt using well-
known protocols, the exact measurement of Xt is in general too costly. The
TM estimation problem consists in computing the vector Xt form the known
vector Yt.

A lot of approaches to tackle the TM estimation problem have been inves-
tigated in the literature. In this thesis we are interested in the approach by
P. Casas and S. Vaton ([14]), which makes use of Random Neural Networks
(i.e., G-networks): this method involve the training of several of G-networks
of moderate size, and thus requires the solution of the system (2.3.1) a large
number of times.

For each OD �ow k, k = 1, . . . ,m, let nk be the number of links it crosses,
and let δk = [δk(1), . . . , δk(nk)]

> ∈ Rnk contain the indexes of the nk non-zero
elements in the k-th column of R, i.e the indexes of the link crossed by OD
�ow k. We want to �nd functions fk : Rnk → R, k = 1, . . . ,m, such that

xt(k) = fk(Yt(δk))

where Yt(δk) := yt(δ1(1), . . . , δk(nk)) is the vector containing the tra�c vol-
ume of the nk links that are crossed by the k-th OD �ow. Intuitively, the
functions fk extract the volume of OD �ow k from the trace that this �ow
leaves in the nk links it traverses.

In [14] the authors propose to approximate each functions fk, for k =
1, . . . ,m, with a G-network, resulting in a total of m G-networks to be
trained. Following a classic neural network approach, they use particular
feed-forward networks (section 2.5.1) with a three-layer structure (�g. 3.1)

Three-layers network have a particular simple structure, and are com-
posed by input, hidden and outpute queues. Input queues (�rst layer) re-
ceive only positive customers from the outside and send customers to hidden
queues (second layer). Hidden queues do not interact with the outside and
only send customers to output queues. Output queues only send customers
to the outside. If the queues are indexed as

i1, . . . , iI︸ ︷︷ ︸
input

, iI+1, . . . , iI+H︸ ︷︷ ︸
hidden

, iI+H+1, . . . , iI+H+O︸ ︷︷ ︸
output

where I,H,O are the number of respectively input, hidden and output queues,
the outsided arrival rates are such that
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Figure 3.1: An example of a three-layers feed-forward network. Image from
Wikipedia.

� Λ+(iv) = 0 ∀ v = I + 1, I + H + O, i.e., positive customer form the
outside can arrive only at input queues.

� Λ−(iv) = 0 ∀ v = 1, . . . , I+H+O, i.e. there are no negative customers
arriving from the outside.

For the k-th G-network, k = 1, . . . ,m, the authors set Ik = nk input
neurons, Hk hidden neurons (which is not a priori �xed and is set through
euristical methods), and Ok = 1 output neuron. They perform numerical ex-
periments using data form the real network Abilene, an Internet2 backbone
network at the US. For this particular application, there are m = 132 OD
�ows, l = 30 links, and the other parameter read Ik ≥ 4, 4 ≤ Hk ≤ 9 and
Ok = 1 for all k = 1, . . . ,m.

For each k = 1, . . . ,m, they train the k-th G-network using the training
dataset

{Yt(δk), xt(k)}t∈Tlearn
where Tlearn = {t1, . . . , T288}, composed of 24 hours of direct OD �ows
measurement. The learning algorithm used is described in section 3.1.

Then, a validation dataset

{Yt(δk), xt(k)}t∈Tval
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is used to verify if the m trained G-networks yield a good approximation
of the unknown functions fk, k = 1, . . . ,m, where Tval = {t1, . . . , T2016},
composed of a week of direct OD �ows measurements. As a global indication
of the accuracy of the estimation, the relative root mean squared error is
used:

RMMSE(t) =

√∑m
k=1(xt(k)− qt(k))2√∑m

k=1 xt(k)2
, ∀ t ∈ Tval (3.2.2)

where qt(k) it the output of the k-th trained G-network when presented with
the input Yt(δk). The authors in [14] showed that the RMMSE(t) is below
0.08 for more than 90% of the t ∈ Tval, with a mean value of 0.0422%, re-
sulting in a huge improvement with respect to other TM estimation methods.

In this simple three-layer feed-forward G-networks scenario, the networks
have really small dimensions, ranging from 9 to 14, and there are 132 of
them. Each G-network is trained with a learning dataset composed of 288
input-output pairs, and according to the gradient descent methods described
in 3.1 this implies that the system (2.3.2) must be solved a number of times
proportional to 132 ·288 = 38016. In this case, due to the feed-forward struc-
ture, no particular algorithm is required for the solution of the correspondent
systems (2.3.1).

However, when using G-networks with more complex topologies, solving
the equations (2.3.2) becomes a non-trivial task, resulting in the need for
e�cient algorithms. On the basis of this observation, the rest of the thesis is
devoted to the study of new numerical methods for the computation of the
steady-state distribution.
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Chapter 4

Numerical methods for computing

the steady-state distribution

As shown in section 2.5.3, a non-negative solution {λ+
i , λ

−
i }Ni=1 of the nonlin-

ear system (2.3.2) always exists, but its direct computation is possibile only
in the particular case of feed-forward networks, described in section 2.5.1. In
the general case, we have shown that solving equations (2.3.2) is equivalent
to �nding the �xed point of the function G(y) = Λ+(I −F (y)P+)−1F (y)P−,
for which iterative methods are needed.

In section 4.1 we will describe an algorithm developed by Fourneau in
1991 ([4]), while in section 4.2 two new numerical methods will be presented
and studied.

4.1 Fourneau iteration.

In [4], J.M. Fourneau developed an algorithm to compute the steady state
distribution of a standard G-network. Recall that the steady state distribu-
tion is obtained by solving the non-linear system of equations (2.3.2) with
unknowns λ+

i , λ
−
i , which read

λ+
i = Λ+

i +
N∑
j=1

µjqjp
+
j,i

λ−i = Λ−i +
N∑
j=1

µjqjp
−
j,i
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with

qi = min
(

1,
λ+
i

µi + λ−i

)
.

Fourneau considers, for all index i = 1, . . . , N , six sequences of real num-
bers

(qi)k≥0, (qi)k≥0, (λ
+
i )k≥0, (λ

+
i )k≥0, (λ

−
i )k≥0, (λ

−
i )k≥0

de�ned by induction on k ≥ 0 as follows:

(λ+
i )k = Λ+

i +
N∑
j=1

µjp
+
j,i(qj)k (4.1.2a)

(λ+
i )k = Λ+

i +
N∑
j=1

µjp
+
j,i(qj)k (4.1.2b)

(λ−i )k = Λ−i +
N∑
j=1

µjp
−
j,i(qj)k (4.1.2c)

(λ−i )k = Λ−i +
N∑
j=1

µjp
−
j,i(qj)k (4.1.2d)

(qi)k+1 = min(1, (λ+
i )k/µi + (λ−i )k) (4.1.2e)

(qi)k+1 = min(1, (λ+
i )k/µi + (λ−i )k) (4.1.2f)

with the following initial values for the sequences (qi)k≥0 and (qi)k≥0:

(qi)0 = 1, (qi)0 = 0 (4.1.3)

For each k ≥ 0, starting from k = 0, the iteration proceeds as follows:

�rst compute the (λ+
i )k, (λ

+
i )k, (λ

−
i )k, (λ

−
i )k from the equations (4.1.2), which

only depends on the kwnon values (qi)k and (qi)k, then compute (qi)k+1 and
(qi)k+1 using the just computed values.

Theorem 4.1.1 ([4]). If for any i = 1, . . . , N one of the following assumption
is satis�ed:

� there is a strictly positive probability that a positive customer leaves the
queue to go outside, i.e. di > 0.
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� there is a strictly positive probability that a customer, either positive or
negative, joins a queue j where the rate of negative customers coming
from the outside is strictly positive, i.e. p+

ij + p−ij > 0 and Λ−j > 0.

then the algorithm (4.1.2) converges to a solution of the system (2.3.2).

The complete proof can be found in [4]. Fourneau proved that the se-
quences (qi)k and (qi)k are respectively upper and lower bounds for the qi
and that

N∑
i=1

µi[(qi)k+1 − (qi)k+1] ≤ ε

N∑
i=1

µi[(qi)k − (qi)k] (4.1.4)

where

εi =
N∑
j=1

(p+
ij + p−ij)

µj
µj + Λ−j

, ε = max
i=1,...,N

εi < 1.

Therefore the sequence
∑N

i=1 µi[(qi)k − (qi)k] converges linearly to zero,
proving the thesis.

If the solution computed by the Fourneau algorithm is such that all the
components qi are smaller than 1, then the network is stable and the network
stationary distribution exists and is given by (2.3.4).

Otherwise if some qi are equal to 1, the network is unstable and the
stationary distribution does not exist.

4.1.1 Complexity

Each iteration of the algorithm consists in the computations of the new val-
ues of the sequences (4.1.2) and the new values of the di�erence (qi)k − (qi)k
to check the accuracy. There are 6N new values to compute at each itera-
tion, four of which requiring O(N) time, while two of them requiring O(1)
time. Therefore the complexity of each iteration is O(N2). In conclusion, the
Fourneau algorithm is an iterative methods with linear rate of convergence
requiring O(N2) time per step.

In the rest of this thesis we will develop two new iterative methods hav-
ing respectively linear and quadratically rate of convergence, both requiring
O(N3) time per step. The second method, in particular, will be an attrac-
tive alternative to the Fourneau iteration especially for G-network with a
moderate number of queues.
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4.2 New numerical methods

In this section we will present a new formulation of the �xed point equation
y = G(y), which will allow us to introduce two new iterative methods for the
solution of the tra�c equations (2.3.2).

Recall that

G(y) = Λ+(I − F (y)P+)−1F (y)P−

F (y) = diag((fj(y)))

with y = (yj) ≥ 0, fj(y) =
µj

µj+λ
−
i

=
µj

µj+Λ−j +yj
> 0, Λ+,Λ− are nonnega-

tive row vectors, µ is a positive row vector and P+ and P− are nonnegative
irriducible matrices such that P+ + P− is substochastic, as described in sec-
tion 2.1.1.

Since fj(y) > 0 ∀ j = 1 . . . , N , the diagonal matrix F (y) is non-singular
and we can write G(y) = Λ+(F (y)−1 − P+)−1P−.

Set Dz = F (y)−1, so that Dz = diag(z) and

zj =
1

fj(y)
=
µj + λ−j
µj

=
µj + Λ−j + yj

µj
=
αj + yj
µj

≥ 1. (4.2.2)

Set also αj = µj + Λ−j > 0, α = (αj) and Dµ = diag(µ), so that the
relation between variables y and z is y = zDµ − α.

The equation y = G(y) can therefore be rewritten equivalently as

zDµ − α = Λ+(Dz − P+)−1P−

yielding the new �xed point formulation{
z = T (z)

T (z) = Λ+(Dz − P+)−1P−D−1
µ + αD−1

µ

(4.2.3)

where the function T (z) is de�ned for z ≥ 1. The variables y and z and the
functions G and T satisfy the relations

y = zDµ − α (4.2.4a)

G(y) = T (z)Dµ − α (4.2.4b)
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Remark 4.2.1. The result of theorem 2.5.3 immediately translate in this new
formulation, yielding the existence of a �xed point z∗ = (y∗+α)D−1

µ ≥ 1 for
the function T (z) in z ≥ 1.

Remark 4.2.2. For any non-negative irreducible matrix P with ρ(P ) < 1 and
for any z ≥ 1, Dz − P is a nonsingular M-matrix:

� It is a Z-matrix, since Dz is diagonal and P is non-negative.

� It is non-singular and its inverse is non-negative.

Indeed, Dz−P = Dz(I−D−1
z P ), D−1

z P is irreducible and 0 ≤ D−1
z P ≤

P , yielding that ρ(D−1
z P ) ≤ ρ(P ) < 1 by the Perron-Frobenius the-

orem 1.2.2. Therefore Dz − P is invertible and (Dz − P )−1 = (I −
D−1
z P )−1D−1

z =
∑

n≥0(D−1
z P )nD−1

z ≥ 0.

By the characterization of non-singular M-matrices 1.2.3, we get the the-
sis.

In particular, matrices Dz − P+, Dz − P− and Dz − P+ − P− are non-
singular M-matrices.

Remark 4.2.3. If z∗ is a �xed point of T , yielding a non-negative solution

{λ+
i , λ

−
i }Ni=1 of equations (2.3.2), the stability condition qi =

λ+i
µi+λ

−
i

< 1 for

all i = 1, . . . , N can we rewritten as

Λ+(D∗z − P+)−1D−1
µ < 1. (4.2.5)

Indeed, since zi =
µi+λ

−
i

µi
from (4.2.2), we have qi =

λ+i
µi+λ

−
i

=
λ+i
ziµi

. Recall that

λ+ = Λ+(I − F (y)P+)−1 = Λ+(I −D−1
z P+)−1

(see (2.5.7)), yielding

q = Λ+(I −D−1
z P+)−1D−1

z D−1
µ = Λ+(Dz − P+)−1D−1

µ . (4.2.6)

In section 4.2.1 we will study the properties of function T (z) = Λ+(Dz −
P+)−1P−D−1

µ + αD−1
µ . The advantage of this new formulation, with respect

to the previous formulation y = G(y), is that we will be able to prove that
T is Fréchet-di�erentiable and to easily compute its Fréchet derivative. In
sections 4.2.2 and 4.2.3 these properties will be used to prove the convergence
of two new iterative methods for the solution of z = T (z), namely a �xed
point iteration and a Newton-Raphson method.
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4.2.1 Properties

Lemma 4.2.1. The function T (z) = Λ+(Dz − P+)−1P−D−1
µ + αD−1

µ , for
z ≥ 1, is component-wise nonnegative and non increasing. Moreover, it is
Lipschitz continuous and bounded.

Proof. By remark 4.2.2 we have that Dz − P+ is a nonsingular M-matrix,
therefore (Dz − P+)−1 ≥ 0 by theorem 1.2.2. Since Λ+, P−, α,D−1

µ ≥ 0,
we get that T (z) = Λ+(Dz − P+)−1P−D−1

µ + αD−1
µ ≥ 0. The diagonal

matrix Dz = diag(z) is non-decreasing in z, yielding that, for z ≥ 1,
(Dz − P+)−1 = (I − D−1

z P+)−1D−1
z =

∑
n≥0(D−1

z P+)nD−1
z and T (z) =

Λ+(Dz−P+)−1P−D−1
µ +αD−1

µ are non-increasing, since Λ+, P+, P− are non-
negative. As a consequence

(Dz − P+)−1 ≤ (I − P+)−1 ∀z ≥ 1 (4.2.7)

yielding that (Dz − P+)−1 is bounded for z ≥ 1.

Regarding the Lipscthiz continuity, for all z, w ∈ RN ,z, w ≥ 1 we have

T (z)− T (w) =Λ+
[
(Dz − P+)−1 − (Dw − P+)−1

]
P−D−1

µ

Λ+(Dw − P+)−1(Dw −Dz)(Dz − P+)−1P−D−1
µ =

1 diag(Λ+(Dw − P+)−1)diag(w − z)(Dz − P+)−1P−D−1
µ

(4.2.8)

yielding, with similar passages as in (2.5.6), ‖T (z)− T (w)‖∞ ≤ K‖z −w‖∞
for and a suitable costant K, since (Dz − P+)−1 is bounded for z ≥ 1.

Finally, by (4.2.4) and (2.5.4) we have T (z) = (G(y) + α)D−1
µ and 0 ≤

G(y) ≤ Λ+(I − P+)−1P− for all y ∈ (RN)+, yielding that T (z) is bounded
for z ≥ 1.

Remark 4.2.4. Equation (4.2.8) in particular implies that for any w ≥ 1

lim
z→w
z≥1
‖(Dz − P+)−1 − (Dw − P+)−1‖ = 0 (4.2.9)

since (Dz − P+)−1 is bounded for all z ≥ 1.

Lemma 4.2.2. The function T (z) = Λ+(Dz − P+)−1P−D−1
µ + αD−1

µ is
Fréchet di�erentiable for z ≥ 1 and its Fréchet derivative is

JT (z) := −diag(Λ+(Dz − P+)−1)(Dz − P+)−1P−D−1
µ
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Proof. Taking z = w + h in (4.2.8), for h ∈ RN , yields

T (w + h)− T (w) = 1 diag(Λ+(Dw − P+)−1)diag(−h)(Dw+h − P+)−1P−D−1
µ

= −1 diag(h)diag(Λ+(Dw − P+)−1)(Dw+h − P+)−1P−D−1
µ ,

where we used that diagonal matrices commute. Therefore

lim
h→0

‖T (w + h)− T (w)− hJT (w)‖∞
‖h‖∞

=

lim
h→0

‖h diag(Λ+(Dw − P+)−1)
[
(Dw+h − P+)−1 − (Dw − P+)−1

]
P−D−1

µ ‖∞
‖h‖∞

≤

lim
h→0
‖diag(Λ+(Dw − P+)−1)‖∞‖P−D−1

µ ‖∞‖(Dw+h − P+)−1 − (Dw − P+)−1‖∞ = 0

since:

� ‖diag(Λ+(Dw−P+)−1)‖∞ = ‖(Dw−P+)−>(Λ+)>)‖∞ ≤ ‖(Dw−P+)−1)‖1‖Λ‖∞,
which is bounded for z ≥ 1 thanks to (4.2.7)

� limh→0 ‖(Dw+h − P+)−1 − (Dw − P+)−1‖ = 0 by (4.2.9).

The most important result of this section is the next theorem, which will
allow us to study the convergence properties of the computational methods
described in the next sections.

Theorem 4.2.1. Let z ≥ 1 be such that

Λ+(Dz − P+)−1D−1
µ < 1.

Then ρ(JT (z)) < 1.

Proof. The idea of the proof is to write −JT (z) = M−1N , with matrices
M and N such that M is nonsingular, M−1 ≥ 0,N ≥ 0 and M − N is a
nonsingular M-matrix. Thanks to theorems 1.2.3 and 1.2.4, this will imply
that ρ(M−1N) = ρ(−JT (z)) = ρ(JT (z)) < 1.

Letting ∆ := Λ+(Dz∗ − P+)−1, the stability condition reads

1

∆j

>
1

µj
(4.2.12)
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for all j = 1, . . . , N .

Write

−JT (z) =diag(Λ+(Dz − P+)−1)(Dz − P+)−1P−D−1
µ =

=diag(∆)(Dz − P+)−1P−D−1
µ = M−1N

with M = diag(( 1
∆j

)) ≥ 0 and N = (Dz − P+)−1P−D−1
µ ≥ 0.

The matrix M −N = diag((1/∆j))− (Dz − P+)−1P−D−1
µ is a Z-matrix,

since M is diagonal and N ≥ 0.

Using (4.2.12) yields

M −N =diag((1/∆j))− (Dz − P+)−1P−D−1
µ ≥

=D−1
µ − (Dz − P+)−1P−D−1

µ =

=(Dz − P+)−1(Dz − P+ − P−)D−1
µ

Now, by remark 4.2.2, Dz − P+ and Dz − P+ − P− are non-singular
M-matrices. Therefore by lemma 1.2.3 there exist a vector x > 0 such that
y := (Dz − P+ − P−)x > 0.

Since µ > 0 we have that x̃ = Dµx > 0. Moreover, since (Dz−P+)−1 ≥ 0,
we have that (Dz − P+)−1y > 0, since if a component of (Dz − P+)−1y
were zero this would imply that the matrix (Dz − P+)−1 has a null row,
contradicting the fact that it is non-singular. Therefore

(M −N)x̃ ≥ (Dz − P+)−1(Dz − P+ − P−)D−1
µ x̃ ≥

≥ (Dz − P+)−1(Dz − P+ − P−)x =

= (Dz − P+)−1y > 0

yielding that M − N is a nonsigular M-matrix, by using lemma 1.2.3
again.

Recall (4.2.3) that the condition for a G-network to be stable is Λ+(Dz∗−
P+)−1D−1

µ < 1, where z∗ is the �xed point of the function T (z) for z ≥ 1.
We then have the following corollary.

Corollary 4.2.1. Suppose that the G-network is stable, and let z∗ ≥ 1 be
the �xed point of the function T (z) for z ≥ 1, which exists by theorem 2.5.3.
Then ρ(JT (z∗)) < 1.
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Lemma 4.2.3. The function JT (z) is Lipschitz continuous for z ≥ 1.

Proof. Recall that JT (z) = −diag(Λ+(Dz−P+)−1)(Dz−P+)−1P−D−1
µ . Set-

ting Az = (Dz−P+)−1, by equation (4.2.8) we get Az+h−Az = −AzDhAz+h,
yielding

(JT (z)− JT (z + h)) =

=
(
diag(Λ+(Dz+h − P+)−1)(Dz+h − P+)−1 − diag(Λ+(Dz − P+)−1)(Dz − P+)−1

)
P−D−1

µ =

=
(
diag(Λ+(Az − AzDhAz+h))(Az − AzDhAz+h)− diag(Λ+Az)Az

)
P−D−1

µ =

= −
(
diag(Λ+Az)(AzDhAz+h)− diag(Λ+AzDhAz+h)Az+

+ diag(Λ+AzDhAz+h)(AzDhAz+h)
)
P−D−1

µ =

= −
(
diag(Λ+Az+h)(AzDhAz+h)− diag(Λ+AzDhAz+h)Az

)
P−D−1

µ .

(4.2.16)

Using norms we get

‖(JT (z)− JT (z + h))‖∞ =

‖
(
−diag(Λ+Az+h)(AzDhAz+h)− diag(Λ+AzDhAz+h)Az

)
P−D−1

µ ‖∞ ≤(
‖diag(Λ+Az+h)‖∞‖AzDhAz+h‖∞ + ‖diag(Λ+AzDhAz+h)‖∞‖Az‖∞

)
‖P−D−1

µ ‖∞ =(
‖A>z+h(Λ+)>‖∞‖AzDhAz+h‖∞ + ‖(AzDhAz+h)

>(Λ+)>‖∞‖Az‖∞
)
‖P−D−1

µ ‖∞ ≤(
‖A>z+h‖∞‖(Λ+)>‖∞‖Az‖∞‖Az+h‖∞ + ‖A>z ‖∞‖A>z+h‖∞‖Az‖∞‖(Λ+)>‖∞

)
‖P−D−1

µ ‖∞‖Dh‖∞ ≤(
‖Az+h‖1‖Λ+‖∞‖Az‖∞‖Az+h‖∞ + ‖Az‖1‖Az+h‖1‖Az‖∞‖Λ+‖∞

)
‖P−D−1

µ ‖∞‖Dh‖∞ ≤

C‖Dh‖∞ = C‖h‖∞.

where we used that Aw is bounded for all w ≥ 1 ((4.2.7)) and we implicitly
transposed the vectors de�ning the diagonal matrices.

4.2.2 Fixed-point iteration

In the following we will assume that the G-network is stable, that is Λ+(Dz∗−
P+)−1D−1

µ < 1.
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The �rst method we consider for solving the equation z = T (z) is the
following �xed point iteration:{

z(k+1) = T (z(k)) k ≥ 0

z(0) ∈ RN , z(0) ≥ 1.
(4.2.18)

Remark 4.2.5. Since the function T (z) is de�ned for z ≥ 1, we must ensure
that the iteration (4.2.18) is well de�ned, i.e. that T (z(k)) ≥ 1 for all k ≥ 0.
Indeed, if z ≥ 1 we have

T (z) = Λ+(Dz − P+)−1P−D−1
µ + αD−1

µ ≥ αD−1
µ = 1 + Λ−D−1

µ ≥ 1,

since α = µ+ Λ−, Λ− ≥ 0, D−1
µ ≥ 0 and also Λ+(Dz − P+)−1P−D−1

µ ≥ 0.

Moreover T (z) 6= 1, since P−, D−1
µ , (Dz −P+)−1 6= 0 and at least one be-

tween Λ+ and Λ− is di�erent than zero. Therefore, starting from z(0) ≥ 1, the
iteration (4.2.18) is well de�ned and {z(k)}k≥0 ⊆ {z ∈ RN : z ≥ 1, z 6= 1}.
As a consequence, also for the �xed point z∗ it holds that z∗ ≥ 1, z 6= 1.

We are now able to prove that the iteration (4.2.18) is locally convergent:

Theorem 4.2.2. Suppose that the G-network is stable. Then:

i) the function T : RN → RN is contractive in a neighbourhood of z∗,i.e.
there exists a norm ‖ · ‖ on RN , a neighbourhood I(z∗) ⊂ {z ∈ RN :
z ≥ 1} of z∗ and a scalar 0 ≤ γ < 1 such that for all z ∈ I(z∗)

‖T (z)− T (z∗)‖ ≤ γ‖z − z∗.‖

ii) for all z(0) ∈ I(z∗), the iteration (4.2.18) converge to z∗, which is the
unique �xed point of T in I(z∗).

Proof. i) Since ρ(JT (z∗)) < 1 (theorem 4.2.1), by lemma 1.2.1 there ex-
ist a norm ‖ · ‖ on RN such that the induced matrix norm satis�es
‖JT (z∗)‖ < 1. Since z∗ ≥ 1, by continuity of JT (lemma 4.2.3) there
exists a compact neighbourhood of z∗ I(z∗) = B(z∗, ε) ⊂ {z ∈ RN :
z ≥ 1}, for a certain ε > 0, such that ‖JT (z)‖ < 1 ∀z ∈ I(z∗), so
that γ := supz∈I(z∗) ‖JT (z)‖ < 1. By using the mean value theorem
(theorem 1.3.1) we obtain the thesis.

ii) Straightforward application of the Conctraction-Mapping Theorem (the-
orem 1.3.2).
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Remark 4.2.6. In lemma 4.2.1 we have shown that T (z) ≤ T (1) for all z ≥ 1,
since the function T is non-increasing. Restricting to the neighbourhood
I(z∗) ⊂ {z ∈ RN : z ≥ 1} of z∗ de�ned in theorem 4.2.2, and considering a

square sub-neighbourhood Ĩ(z∗) := B(z∗, ε̃)‖·‖∞ ⊂ I(z∗), which exists thanks

to the equivalence of the norms on RN , we set

zmin := z∗ − ε̃ · 1 ∈ Ĩ(z∗),

so that for all z ∈ Ĩ(z∗) we have z ≥ zmin ≥ 1. Then T (z) ≤ T (zmin) for all

z ∈ Ĩ(z∗), since T is non-increasing in z ≥ 1. In other words, zmin ful�lls the
role of 1 locally.

Let now study the convergence rate of iteration (4.2.18) As shown in the
proof of lemma 4.2.1, the function T satis�es, for z, w ≥ 1,

T (z)− T (w) = 1diag(Λ+(Dw − P+)−1)diag(w − z)(Dz − P+)−1P−D−1
µ

i.e.

T (z)− T (w) = (w − z)diag(Λ+(Dw − P+)−1)(Dz − P+)−1P−D−1
µ (4.2.19)

where we used that diagonal matrices commute. This relation allows us
to prove interesting properties of the sequence (4.2.18).

Lemma 4.2.4. For the iteration (4.2.18) it holds that:

i) for all k ≥ 1 let Hk = −diag(Λ+(Dz∗ − P+)−1)(Dz(k) − P+)−1P−D−1
µ .

Then
z(k) − z∗ = (z(0) − z∗)H0H1 · · ·Hk−1 (4.2.20)

Moreover, if z(0) ∈ I(z∗), where I(z∗) is de�ned in theorem 4.2.2, we
have

lim
k→∞

Hk = JT (z∗).

ii) the sequence (z(k) − z∗)k≥0 has alternating sign, i.e. for all k ≥ 0 it
holds that

z(k) − z∗ ≥ 0 ⇐⇒ z(k+1) − z∗ ≤ 0 (4.2.21)

iii) if z(0) = T (zmin) ∈ Ĩ(z∗) ⊂ I(z∗), where zmin and Ĩ(z∗) are de�ned in
remark 4.2.6, the subsequences of odd and even indexes satisfy

1 ≤ zmin ≤ z(2k+1) ≤ z(2(k+1)+1) ≤ z∗ ≤ z2(k+1) ≤ z(2k) ∀k ≥ 0
(4.2.22)
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Proof. i) For all k ≥ 1, setting z = z(k) and w = z∗ in (4.2.19) yields

z(k) − z∗ =T (z(k−1))− T (z∗) =

= (z∗ − z(k−1)) diag(Λ+(Dz∗ − P+)−1)(Dz(k−1) − P+)−1P−D−1
µ =

= (z(k−1) − z∗)Hk−1 =

= (z(k−2) − z∗)Hk−2Hk−1 =

= · · · · · · · · · · · · · · · =

=(z(0) − z∗)H0H1 · · ·Hk−1

Moreover, if z(0) ∈ B(z∗, ε), we have that limk→∞ z
(k) = z∗ and by

continuity it follows that limk→∞Hk = JT (z∗).

ii) From the previous point we have that

z(k+1) − z∗ = (z(k) − z∗)Hk ∀k ≥ 0

withHk = −diag(Λ+(Dz∗−P+)−1)(Dz(k)−P+)−1P−D−1
µ . For all k ≥ 0,

we have that z(k) ≥ 1 and z∗ ≥ 1 (remark 4.2.5), so (Dz∗ − P+) and
(Dz(k) − P+) are M-matrices (remark 4.2.2) and in particular (Dz∗ −
P+)−1 and (Dz(k) − P+)−1 are nonnegative. Therefore Hk ≤ 0 and the
thesis follows.

iii) First of all, with the same reasoning as in remark 4.2.5, we have that
zmin ≤ z(k) for all k ≥ 0 and zmin ≥ 1 by the de�nition of zmin (remark
4.2.6). Recall now that the function T is non-increasing for z ≥ 1 (see
lemma 4.2.1), yielding that T (z) ≤ T (zmin) = z(0) for all z ∈ Ĩ(z∗), and
in particular z∗ ≤ z(0).

Using relation (4.2.21) we easily get the �rst part of the thesis:

z(2k) ≥ z∗ ≥ z(2k+1) ∀k ≥ 0. (4.2.24)

Now, observe that the composition T ◦ T is non-decreasing for z ≥ 1.
The proof is then by induction on k.

Since T (z) ≤ T (zmin) ∀z ∈ Ĩ(z∗), we have z(2) = T (z(1)) ≤ T (zmin) =
z(0) and z(3) = T (z(2)) ≥ T (z(0)) = z(1), where we used that T is
non-increasing and that T ◦ T is non-decreasing. Assuming now that
z(2k+1) ≤ z(2(k+1)+1) and that z(2k) ≥ z(2(k+1)) for a certain k ≥ 1,
applying T ◦ T yields

z(2(k+1)+1) = (T ◦ T )(z(2k+1)) ≤ (T ◦ T )(z(2(k+1)+1)) = z(2(k+2)+1)
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and

z(2(k+1)) = (T ◦ T )(z(2k)) ≥ (T ◦ T )(z(2(k+1))) = z(2(k+2)),

proving the thesis.

Remark 4.2.7. The "alternating" property of lemma 4.2.4 ii) also holds for
the sequence (z(k+1) − z(k))k≥0, that is:

z(k) − z(k−1) ≥ 0 ⇐⇒ z(k+1) − z(k) ≤ 0 (4.2.25)

This property is useful also from a practical standpoint, since it allows to
upper bound the error of each component at each step. In fact, the following
bound holds:

|z(k)
i − z∗i | ≤ |z

(k)
i − z

(k−1)
i | ∀i = 1, . . . , N

Figure 4.1: i-th component of the sequence (z(k))k≥0
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The next theorem shows that the �xed point iteration (4.2.18) has a lin-
ear rate of convergence and the asymptotic reduction of the error is bounded
by the spectral radius of the jacobian JT (z∗).

Theorem 4.2.3. If z(0) ∈ Ĩ(z∗), where Ĩ(z∗) is the neighbourhood de�ned in
remark 4.2.6, the sequence (4.2.18) satis�es

lim
k→∞

k

√
‖z(k) − z∗‖∞ ≤ ρ(JT (z∗)) (4.2.26)

Proof. For z ≥ 1, let h(z) = −diag(Λ+(Dz∗ −P+)−1)(Dz−P+)−1P−D−1
µ , so

that Hk = h(z(k)) and JT (z∗) = h(z∗). Denote J∗ = JT (z∗). The function h
is component-wise non-decreasing. Applying h to the relation (4.2.22) yields

H2k−1 ≤ H2k+1 ≤ J∗ ≤ H2(k+1) ≤ H2k ∀k ≥ 1 (4.2.27)

Therefore in relation (4.2.20) we can upper bound the matrices Hk (distin-
guishing between odd and even indexes), obtaining

z(k+1) − z∗ = (z(0) − z∗)H0 . . . Hk = (z(0) − z∗)H0 . . . H2(l−1)H2l−1H2l . . . Hk

where 0 ≤ l < bk/2c is a �xed nonnegative integer. Letting wl := (z(0) −
z∗)H0 . . . H2(l−1), and thanks to (4.2.27), we obtain

z(k+1) − z∗ ≤wl (J∗H2l)(J∗H2l) . . . (J∗H2l)︸ ︷︷ ︸
bk/2c−l+1 times

= wl(J∗H2l)
bk/2c−l+1S

where

S =

{
I if k is even

J∗ if k is odd.

We obtain

‖z(k+1) − z∗‖∞ ≤ Cl‖(J∗H2l)
bk/2c+1‖∞

and
k

√
‖z(k+1) − z∗‖∞ ≤ k

√
Cl

k

√
‖(J∗H2l)bk/2c+1‖∞

where
Cl = ‖wl‖∞‖S‖∞‖(J∗H2l)

−l‖∞.
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Taking the limit for k →∞ yields

lim
k→∞

k

√
‖z(k+1) − z∗‖∞ ≤ lim

k→∞
k
√
Cl︸ ︷︷ ︸

=1

lim
k→∞

k

√
‖(J∗H2l)bk/2c+1‖∞ =

= ρ(J∗H2l)
1/2

where we used Gelfand's formula 1.2.1.

Taking now the limit for l→∞ yields

lim
k→∞

k

√
‖z(k+1) − z∗‖∞ ≤ lim

l→∞
ρ(J∗H2l)

1/2 =

= ρ(J2
∗ )

1/2 = ρ(J∗)

where we used the continuity of the spectral radius and of the function
h.

Complexity. The �xed point iteration (4.2.18) is an iterative method with
linear rate of convergence, given by ρ(JT (z∗)), as shown in Theorem 4.2.3.
Each iteration requires the computation of the vector T (z(k)) = Λ+(Dz(k) −
P+)−1P−D−1

µ + αD−1
µ . The matrices P+, P−, D−1

µ and the vectors Λ+, α are
given parameters. The only costly operation that we have to perform at each
step is the solution of the linear system v(Dz(k) − P+) = Λ+, since the other
multiplications are just vector-matrix products, yielding a cost of O(N3) time
per step.

4.2.3 Newton-Raphson iteration

In this section we will focus on the equation S(z) := z − T (z) = 0, since a
zero of S is clearly a �xed point of T , and vice versa. Note that S is Fréchet
di�erentiable with derivative JS(z) = I − JT (z). As usual we will suppose
that the system is ergodic.

We will consider the Newton-Raphson iteration:

z(k+1) =z(k) − S(z(k))JS(z(k))−1 = (4.2.32a)

z(k) − (z(k) − T (z(k)))(I − JT (z(k)))−1, k ≥ 0 (4.2.32b)

The following result shows that, for a suitable choice of the starting vector
z0, the iteration (4.2.32) is well-de�ned and quadratically convergent to z∗.
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Theorem 4.2.4. Let z∗ be the zero of function S. Then there exist δ,M > 0
such that the iteration (4.2.32) is well-de�ned for all z(0) ∈ B(z∗, δ) and

lim
k→∞
‖z(k) − z∗‖ = 0

‖z(k+1) − z∗‖ ≤M‖z(k) − z∗‖2 ∀k ≥ 0

Proof. Since ρ(JT (z∗)) < 1 by theorem 4.2.1, JS(z∗) = I − JT (z∗) is non-
singular, and by lemma 4.2.3 JS is also Lipschitz continuous for z ≥ 1.
Therefore there exist a δ1 > 0 such that JS(z) is Lipschitz continuous, non-
singular and such that ‖JS(z)−1‖ ≤ K for all z ∈ B(z∗, δ1), for a certain
costant K ∈ R+.

By the mean value theorem 1.3.1 we have

S(z(k)) = S(z(k))− S(z∗) =

∫ 1

0

(z(k) − z∗)JS(z(k) + t(z(k) − z∗))dt

Let M = LK
2
, 0 < δ < min{δ1,

1
M
} and z(k) ∈ B(z∗, δ). We have

z(k+1) − z∗ = z(k) − S(z(k))JS(z(k))−1 − z∗ =[
(z(k) − z∗)JS(z(k))− S(z(k))

]
JS(z(k))−1 =[

(z(k) − z∗)JS(z(k))−
∫ 1

0

(z(k) − z∗)JS(z(k) + t(z(k) − z∗))dt
]
JS(z(k))−1 =[∫ 1

0

(z(k) − z∗)(JS(z(k))− JS(z(k) + t(z(k) − z∗)))dt
]
JS(z(k))−1.

Since z(k), z(k) + t(z(k) − z∗) ∈ B(z∗, δ) for 0 < t < 1, we have

‖JS(z(k))− JS(z(k) + t(z(k) − z∗))‖ ≤ Lt‖z(k) − z∗‖, ‖JS(z(k))−1‖ ≤ K,

yielding

‖z(k+1) − z∗‖ ≤ K

∫ 1

0

Lt‖z(k) − z∗‖2 =
LK

2
‖z(k) − z∗‖2 = M‖z(k) − z∗‖2,

‖z(k+1) − z∗‖ < (Mδ)︸ ︷︷ ︸
<1

‖z(k) − z∗‖

which is the thesis.
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Complexity. Each step requires the computation of the vector T (z(k)) =
Λ+(Dz(k) − P+)−1P−D−1

µ + αD−1
µ and of the matrix (I − JT (z(k)))−1 = (I +

diag(Λ+(Dz(k) − P+)−1)(Dz(k) − P+)−1P−D−1
µ )−1, yelding a O(N3) cost per

step. In practice it is convenient to �rst compute the inverse (Dz(k) −P+)−1.
Then we obtain T (z(k)) = Λ+(Dz(k)−P+)−1P−D−1

µ +αD−1
µ and I−JT (z(k)) =

I + diag(Λ+(Dz(k) − P+)−1)(Dz(k) − P+)−1P−D−1
µ with just vector-matrix

products, matrix-matrix product with a diagonal factor and matrix sums.

A step of the Newton-Raphson method is therefore slightly more costly
than a step of the Fixed Point iteration. However, the quadratic rate of
convergence of Newton-Raphson makes it up for that, resulting in a much
faster method.
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Chapter 5

Numerical results

Let (q(k))k≥0, (z
(k)
FP )k≥0, (z

(k)
NR)k≥0 be the Fourneau (4.1.2), Fixed Point (4.2.18)

and Newton-Raphson (4.2.32) iterations, respectively. In the following they
will be denoted as FRN,FP,NR, respectively. In this chapter numerical re-
sults regarding the convergence rates, the alternating properties and the CPU
elapsed time will be presented. The software used is MatLab ver. 7.5.0. We
consider three di�erent structures of the matrices P+ and P−: a convex com-
bination of each other, an almost triangular and a tridiagonal structure. The
results show that when the dimension of the G-network is small or moderate,
NR is faster than FRN and FP, making it a preferable choice in applications
such the one described in chapter 3.

The starting point for the Fourneau iteration is given by (4.1.3), while for
the Fixed Point and the Newton-Raphson we set z(0) = T (1) as an euristical
choice (see also lemma 4.2.4). The relative errors for the three methods are
denoted by

e
(k)
FRN =

‖q(k) − q∗‖
‖q∗‖

, e
(k)
FP =

‖z(k)
FP − z∗FP‖
‖z∗

FP
‖

, e
(k)
NR =

‖z(k)
NR − z∗NR‖
‖z∗

NR
‖

(5.0.1)

for k ≥ 0, where q∗, z∗
FP

and z∗
NR

are the solutions computed by the three
methods.

We perform various experiments varying the structure of matices P+, P−

and the magnitude of the vectors µ,Λ+,Λ−.
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5.1 Convex combination

We generate a stochastic matrix A with uniformly distributed psuedo-random
elements in the interval (0, 1) and, for a given x ∈ (0, 1), we set

D = diag(a11, . . . , aNN)

P+ = x(A−D)

P− = (1− x)(A−D)

so that P+ + P− + D = A is stochastic. In this way P+ and P− are both
full matrices, and varying x we control the internal �ow of customers in the
network: the larger x, the larger the probability that a customers, after being
served, leaves a queue as a positive customer rather than as a negative one.

Letting 1 = [1, . . . , 1], we also set, for a given k ∈ R+,

µ = h1

Λ+ = 1

Λ− = k1.

Varying k we can control the amount of negative customers arriving in the
network from the outside, while varying h we control the service rate of the
queues. The external arrival rate of positive customers Λ+ is kept �xed.

The parameters x, h, k have been selected in such a way that the com-
puted probabilities qi are strictly less than one, ensuring the ergodicity of
the network. In all the experiments all the three methods converged to the
correct solution, con�rming that z(0) = T (1) is a good euristical choice for

the starting point. Below are riported the relative errors e
(k)
FRN , e

(k)
FRN , e

(k)
FRN in

typical scenarios. We used N = 10 in all the experiments.
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Figure 5.1: Convex combination structure. Relative errors for x = 0.5, h = 1,
k = 0.01.
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Figure 5.2: Convex combination structure. Relative error errors for x = 0.05,
h = 1, k = 0.01.
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Figure 5.3: Convex combination structure. Relative error errors for x = 0.95,
h = 1, k = 1.
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Figure 5.4: Convex combination structure. Relative errors for x = 0.95,
h = 100, k = 1.

These plots con�rm that FRN and FP have linear rate of convergence,
while the Newton-Raphson iteration has quadratic rate.

In all cases FP converges faster than FRN, but the two methods perform
di�erently: for small x (see �g. 5.2) FRN is particularly fast, reaching the
same speed of FP, while for large x (see �g. 5.3) FP nearly reaches NR speed.

In all cases NR requires only a few iterations to reach convergence, out-
performing FP, since both methods requires O(N3) time per step. In section
5.1.1 a performance comparison between NR and FRN will be carried out:
since FRN requires only O(N2) time per step, there will be a threshold N
such that NR converges faster than FRN for N ≤ N . FRN requires a par-
ticular large number of iterations when x is close to one and the service rate
µ is large, as we can see in �g. 5.4.

Table 5.1 reports, for x = 0.05, 0.5, 0.95, h = 1, 100 and k = 0.01, 1, 100:

� the number of iterations necessary to reach a relative error of the order
of 10−16, for the three iterations;

� the maximum qi, for i = 1, . . . , N ;
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� the spectral radius ρ(J∗) = ρ(JT (z∗)) of the Jacobian matrix of T (z)
in z∗;

� the convergence ratio of the Fourneau iteration

RFRN = lim
k→∞

‖z(k+1)
FRN − z∗FRN‖
‖zk

FRN
− z∗

FRN
‖

for k ≥ 0.

Remark 5.1.1. The convergence ratio of the �xed point iteration is not re-
ported as in all cases it resulted equal to the upper bound ρ(JT (z∗)) (see
4.2.3) up to four decimal �gures.

In bold are the rows relative to the plots in �g. ??− 5.4. We make the
following remarks:

� as one would expect, the smaller k (i.e. the smaller the negative cus-
tomers outside arrival rate) the higher the qi-s (i.e. the higher the
probability that in steady-state the queues are non-empty), and the
smaller x (i.e. the smaller the positive customers tra�c inside of the
network) the smaller the qi-s;

� JT (z∗) is decreasing in k;

� the number of iteration of FRN is increasing in x;

� the number of iterations of FP is decreasing in x;

� increasing the service rate (h = 100) reduces the occupation proba-
bilities qi-s, as one would expect, and it has opposite e�ects on the
performance of FNR: for small x (i.e. the internal tra�c is mostly con-
stituted by negative customers), it reduces the number of iterations,
while for large x, it increases it.
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Table 5.1: Convex combination structure. Performance measures.

x = 0.05

h k FRN FP NR max qi ρ(J∗) RFRN

1 10−2 38 36 6 7.39 · 10−1 3.58 · 10−1 3.7 · 10−1
1 1 22 20 5 4.49 · 10−1 1.58 · 10−1 1.73 · 10−1

1 102 7 6 4 1 · 10−2 8 · 10−5 5 · 10−4

102 10−2 15 9 4 1.05 · 10−2 9.2 · 10−3 5.42 · 10−2

102 1 15 9 4 1.1 · 10−2 9 · 10−3 5.4 · 10−2

102 102 13 6 3 5 · 10−3 2 · 10−3 2 · 10−4

x = 0.5

h k FRN FP NR max qi ρ(J∗) RFRN

1 10−2 68 45 6 9.94 · 10−1 4.39 · 10−1 6.11 · 10−1
1 1 30 19 5 5.65 · 10−1 1.39 · 10−1 3.11 · 10−1
1 102 9 5 4 1 · 10−2 4 · 10−5 4 · 10−3

102 10−2 52 11 5 1.94 · 10−2 1.4 · 10−2 4.46 · 10−1

102 1 50 10 5 1.91 · 10−2 1.3 · 10−2 4.44 · 10−1

102 102 28 6 3 7 · 10−3 2 · 10−3 2.18 · 10−1

x = 0.95

h k FRN FP NR max qi ρ(J∗) RFRN

1 1 46 12 5 9.35 · 10−1 3.17 · 10−2 4.53 · 10−1
1 102 12 5 4 1 · 10−2 6 · 10−6 9 · 10−3

102 10−2 207 10 5 7.22 · 10−2 1.65 · 10−2 8.38 · 10−1

102 1 175 9 5 6.4 · 10−2 1.12 · 10−2 8.06 · 10−1
102 102 50 5 3 1 · 10−2 4 · 10−4 4.36 · 10−1

We conclude that:

� the smaller the value of Λ−, the slower the convergence of FP and FRN;

� FRN performs better for small x, while FP performs better for large
x. In any case, FP requires less iterations than FRN ;

� FRN performs particularly well for small x and large µ, and particu-
larly bad for large x and large µ;

� NR requires less iterations than FRN and FP in all cases.
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Next we analyze the monotonicity properties of the three methods. In �g.
5.5 and �g. 5.6 are reported the �rst component of the FRN iteration, namely
the q1

(k), and the �rst components of the FP iteration, namely the (z1)
(k)
FP ,

together with the corresponding values for the occupation probabilities, i.e.
(q1)

(k)
FP . Recall that the relation between z and q is

q = Λ+(D∗z − P+)−1D−1
µ

(see remark 4.2.3).

We can see that the FRN iteration is monotonically decreasing to q1
∗, as

proven by Fourneau in [4], while the FP iteration z
(k)
FP alternates around the

�xed point z∗, as proven in lemma 4.2.4. Note that also (q1)
(k)
FP alternates,

simmetically with respect to z
(k)
FP , since the function z → Λ+(D∗z−P+)−1D−1

µ

is non-increasing in z ≥ 1.
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Figure 5.5: Convex combination structure. First component of the Fourneau
iteration for x = 0.5, h = 1, k = 0.01.
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Figure 5.6: Convex combination structure. First component of the Fixed
Point iteration for x = 0.5, h = 1, k = 0.01.

5.1.1 CPU time

In this section we will compare the CPU time requested by the Fourneau and
the Newton-Raphson iteration for several value of the dimension N , using the
convex combination structure for the matrices P+ and P−. We have shown
that NR requires just a few iterations to reach convergence, while FRN, in
some cases, can be very slow. This is due to the fact that NR has a quadratic
rate of convergence, while FRN has a linear rate which can be close to 1 in
some cases. However, FRN has a quadratic cost per step, while NR has a
cubic cost per step: therefore we expect that for each case there will be a
threshold N such that NR is preferable only for the dimensions N ≤ N . This
property will make NR a suitable algorithm for the Tra�c Matrix estimation
problem, described in 3.2.

Remark 5.1.2. We do not perform the same comparison between FRN and
FP as they are both linearly convergent methods, while FP has a greater
cost per step than FRN, making it slower in almost all cases.

Below we report the results for the following case studies, where FRN
performs di�erently.
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� Case A: x = 0.05, µ = 102 ·1,Λ+ = Λ− = 1 (FRN perform particularly
good).

� Case B: x = 0.5, µ = 1 · 1,Λ+ = 1, Λ− = 10−2 · 1 (FRN performance
is average).

� Case C: x = 0.95, µ = 102 ·1,Λ+ = Λ− = 1 (FRN perform particularly
bad).

For each case and for each value of N , several simulations have been per-
formed. In the plots are reported the average CPU times over all the simu-
lations.
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Figure 5.7: Convex combination structure. CPU times, case A.
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Figure 5.8: Convex combination structure. CPU times, case B.
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Figure 5.9: Convex combination structure. CPU times, case C.
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Figure 5.10: Convex combination structure. CPU times, case C. Zoom 1.
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Figure 5.11: Convex combination structure. CPU times, case C. Zoom 2.
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We observe that:

� In case A (�g. 5.7), the threshold is N = 14: there is no practical
reason to prefer NR over FRN in this case.

� In case B (�g. 5.8), the threshold is N = 44: NR is faster than FRN for
small values of N . For N = 10, the dimension used in the eperiments
in table 5.1, NR is around 4 times faster than FRN.

� In case C (�g. 5.9), the threshold is around N = 620: FRN is very
slow in this case, making NR a preferable choice for moderate/large
values of N . In particular, as reported in �g. 5.10,5.11, NR is around
13 times faster than FRN for N = 10, 7.5 times faster for N = 40, 3.5
times faster for N = 70 and roughly 2 times faster for larger values of
N up to 300.

This results encourage the use of NR in problems where the the steady-
state distributions of a large number of G-networks have to be computed, as
in the context of supervised learning. In section 3.1) we described a learning
algorithm and we observed that step 2a) of that algorithm requires the solu-
tion of the system 3.1.4, i.e. the computation of the steady-state distribution:
in [16] it is advised to use the Fourneau algorithm, due to its O(N2) cost per
step. However, as we have shown in this section, there are cases in which the
Newton-Raphson method is several times faster than the Fourneau iteration,
at least up to a certain dimension N .

Therefore, employing the Newton-Raphson method in those cases can im-
prove the performance of the learning algorithm, as step 2) must be usually
carried out a large number of times, proportional to the dimension of the
learning dataset.

In particular, the Tra�c Matrix estimation problem (section 3.2) is a sce-
nario in which using the Newton-Raphson method could be really bene�cial,
since the G-network dimensions are usually small. In [14] the authors takled
the problem by means of training several G-networks, each having a particu-
lar simple three-layer feed-forward structure and a small dimension, ranging
from 9 to 14. They trained a total of m = 132 G-network using a learning
dataset composet of 288 input-output pairs, and according to the gradient
descent methods described in 3.1 this implies that the system (2.3.2) must
be solved a number of times proportional to 132 · 288 = 38016.

In that particular case, due to the feed-forward structure, no particular
algorithm is required for the solution of the correspondent systems (2.3.1),
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as described in section 2.5.1.

Nonetheless, the results developed in [14] suggest that:

� the approach can be re�ned by employing more complex G-networks,
without restricting only to feed-forward structure. This includes:

� matrices P+, P− having general structure.

� external arrivals of positive customers occurring for all queues.

� external arrivals of negative customers occurring for all queues.

� Given the dimension of m and of the datasets in real examples, the
system (2.3.1) must be solved a large number of times. In [14] this
number is of the order of 104.

� There is a need for e�cient algorithms for the solution of the system
(2.3.1).

� The G-network dimension can be reasonably supposed small/moderate,
given the encouraging results already obtained with dimensions N ≤
14.

Given the results regarding CPU times presented in this section, it is clear
that employing the Newton-Raphson algorithm in this setting can substan-
tially improve the performances.
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5.2 Almost triangular

We generate a stochastic matrix A with uniformly distributed psuedo-random
elements in the interval (0, 1). We then set D = diag(a11, . . . , aNN) and
let P+, P− be equal, respectively, to the strictly lower and strictly upper
triangular part of the matrix A, plus a correction for p+

1,n and p−n,1 in order
to obtain irreducible matrices. Therefore P+, P− have the form

P+ =


0 0 0 0 ×
× 0 0 0 0
× × 0 0 0
× × × 0 0
× × × × 0

 , P− =


0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×
× 0 0 0 0


This is a variant of the simpler feed-forward networks (2.5.1), where

both matrices P+ and P− are strictly upper triangular and a direct solu-
tion method exists.

We also set, for a given k ∈ Z,

µ = 1

Λ+ =
[ 1

N
,

2

N
, . . . ,

N − 1

N
,
N

N

]
Λ− = 10k

[N
N
,
N − 1

N
, . . . ,

2

N
,

1

N

]
.

Λ+,Λ− are chosen in this way in order to balance the �ow of positive
and negative customers to each queue. For example the �rst queue receives
positive customers by all the other queues, so the external rate of positive
customers at the �rst queue is reduced consequently. Conversely, the last
queue receive no positive customers from any of the other queues, so its ex-
ternal positive arrival rate is larger. The situation is symmetrical for the
negative customers.

Fig 5.12-5.13 report the plot of the relative errors for the cases with k = 0
and k = 2, when N = 10. The same observations as in section 5.1 hold.
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Figure 5.12: Almost triangular structure. Relative errors for k = 0.
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Figure 5.13: Almost triangular structure. Relative errors for k = 2.
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5.3 Tridiagonal

For N = 10, we generate a stochastic matrix A with uniformly distributed
psuedo-random numbers in the interval (0, 1) for the o�-diagonal entries,
while for the diagonal entries the valules are generated in the interval (0, y),
for y ∈ R. Varying y we control the probability that a customer exits the
network, i.e. the magnitude of the matrix D.

We then set:

� D = diag(a11, . . . , aNN)

� P− is the tridiagonal matrix with null principal diagonal and having
the 1-st and −1-st diagonals of A as 1-st and −1-st diagonals.

� P+ = A−D − P−

Therefore P+, P− have the form

P− =


0 × 0 0 0
× 0 × 0 0
0 × 0 × 0
0 0 × 0 ×
0 0 0 × 0

P+ =


0 0 × × ×
0 0 0 × ×
× 0 0 0 ×
× × 0 0 0
× × × 0 0



In �g. 5.14-5.15 we report the relative errors e
(k)
FRN , e

(k)
FP , e

(k)
NR in three par-

ticular cases. We set µ = 102 · 1,Λ+ = Λ− = 1 for both cases, while we set
y = 103, 0, 10−3.

We observe that with these parameters, the Fourneau iteration performs
well only for large values of y (�g. 5.14). For smaller values of y (5.15-5.16)
FP and NR outperform FRN by a large amount.
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Figure 5.14: Tridiagonal structure. Relative errors for y = 103.
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Figure 5.15: Tridiagonal structure. Relative errors for y = 101.
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Figure 5.16: Tridiagonal structure. Relative errors for y = 10−3.

67



Conclusion and future work

In this thesis we have studied a particular class of queueing networks called
G-networks, also known as Random neural networks. The main characteris-
tic of G-networks is the presence of negative customers, in addition to the
usual customers in a queueing network. We have reviewed the main theo-
retical properties of G-networks, focusing on the existence of the stationary
distribution of the number of customers in the network. In particular, we
saw that, under stability condition, the steady-state distibution exists and it
is given in product form, which is a desiderable trait.

However, �nding the steady-state distribution involves the solution of
a nonlinear system of equation ((2.3.1)), which is a challenging numerical
problem and the main scope of this thesis. We have presented an equivalent
formulation of the system (2.3.1) in terms of a matrix �xed point equation,
which has allowed us to develop and study two new numerical methods,
namely a �xed point iteration and a Newton-Raphson iteration.

We have proved that the �xed point iteration is locally convergent with a
linear rate of convergent, that the iteration alternate around the �xed point
and we provided a strict upper bound for the asymptotic reduction of the
error. We then proved the well-posedness and the local convergence of the
Newton-Raphons methods, showing that the convergence is quadratic.

We have then compared the performances of the two new methods with
an existing algorithm, concluding that the Newton-Raphson is preferable for
G-networks having small dimension and, in some cases, also for larger di-
mension.

Finally, we have suggested a possibile development of the results devel-
oped in this thesis in the context of the Tra�c Matrix estimation problem,
which has also been a motivating application in the �rst place. Re�ning the
approach used in [14], we propose to consider fully connected G-networks

68



and to employ the Newton-Raphson method in the learning algorithm. Due
to the low dimensionality of the G-networks involved, and considered that
the system (2.3.1) have to be solved a large number of times, we believe that
the Newton-Raphson method would be a preferable choice with respect to
existing methods.
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