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Preface

Virtual Reality is an immersive medium which gives the feeling of being en-

tirely transported into a virtual three-dimensional world, and can provide a

far more visceral experience than screen-based media.

From the user’s point of view, the main properties of a Virtual Reality ex-

perience are presence, immersion and interaction:

• Presence is the mental feeling of being in a virtual space. It’s the

first level of magic for great VR experiences: the unmistakable feeling

that you’ve been teleported somewhere new. Comfortable, sustained

presence requires a combination of the proper VR hardware, the right

content and an appropriate system. Presence feeling is strictly related

to the user involvement.

• Immersion is the physical feeling of being in a virtual space, at a

sensorial level, by means of interfaces. It’s related to the perception

of the virtual world as actually existing. The perception is created by

surrounding the user in images, sounds and other stimuli that provide

an engrossing total environment.

• Interaction is the user capacity to modify the environment and to

receive from it feedback to his actions. It’s related to the realism of

the simulation. The interaction can be direct or mediated. In the first

case the user interacts directly with the VE (CAVE-like systems), in

the second case the user interacts with the VE by means of an avatar

either in first person (HMD systems) or third person (Monitor).
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Purpose of the project

Immersion into Virtual Reality is a perception of being physically present in

a non-physical world. The perception is created by surrounding the user of

the VR system with images, sound or other stimuli that provide an engross-

ing total environment. The use of technological devices such as stereoscopic

cameras, head-mounted displays, tracking systems and haptic interfaces al-

lows for user experiences providing a physical feeling of being in a realistic

world, and the term ‘immersion’ is a metaphoric use of the experience of

submersion applied to representation, fiction or simulation.

One of the main peculiarity of fully immersive virtual reality is the enhanc-

ing of the simple passive viewing of a virtual environment with the ability to

manipulate virtual objects inside it.

This Thesis project investigates such interfaces and metaphors for the in-

teraction and the manipulation tasks. In particular, the research activity

conducted has allowed the design of a thimble-like interface that can be used

to recognize in real-time the human hand’s orientation and infer a simplified

but e↵ective model of the relative hand’s motion and gesture. Inside the vir-

tual environment, users provided with the developed systems is therefore able

to operate with natural hand gestures in order to interact with the scene; for

example, they can perform positioning task by moving, rotating and resizing

existent objects, or create new ones from scratch.

This approach is particularly suitable when there is the need for the user to

operate in a natural way, performing smooth and precise movements. Pos-

sible applications of the system to the industry are the immersive design in

which the user can perform Computer-Aided Design (CAD) totally immersed

in a virtual environment, and the operators training, in which the user can

be trained on a 3D model in assembling or disassembling complex mechanical

machineries, following predefined sequences.
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The thesis has been organized around the following project plan:

• Collection of the relevant State Of The Art

• Evaluation of design choices and alternatives for the interaction hard-

ware

• Development of the necessary embedded firmware

• Integration of the resulting devices in a complex interaction test-bed

• Development of demonstrative applications implementing the device

• Implementation of advanced haptic feedback

Structure of the document

Following the flow of the work this document has therefore been structured

in the following chapters:

• Chapter 1 gives a general overview of Virtual Reality technologies, in-

troducing the problems addressed during this Thesis with a description

of the tracking systems and the most common visualization systems

which VR applications rely on.

• Chapter 2 presents the results of the State Of The Art collection: the

current solutions in the literature regarding interaction and manipu-

lation in Immersive Virtual Environments are analyzed and a general

overview of 3D interfaces for user interaction is presented.

• Chapter 3 presents the proposed system, describing the requirements to

satisfy, the design choices and the implementation of the devices in the

existing system. Section 3.6 analyzes the need of adequate feedback in

Virtual Reality applications, presents a novel haptic interface and the

way in which it has been integrated with the presented device.
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• Chapter 4 presents the applications that have been developed and which

implements the proposed system, describing also the di↵erent ways in

which the user’s hands can be rendered in the virtual environment. It’s

also described the pilot study conducted for assessing the e↵ectiveness

of the training performed in a virtual environment with respect to the

real counterpart, presenting the methodologies and the results of the

study.

• Chapter 5 presents the results of the whole Thesis project, analyzing

the achieved objectives and a range of possible future developments

which arise from the ongoing works.



1. Introduction

If there is a sense of reality,

there must also be a sense of possibility.

Robert Musil

The subject of this Thesis deals especially with Immersive Virtual Real-

ity, which consists of an artificial environment where the user feels just as

immersed as he usually feels in consensus reality. An Immersive Virtual En-

vironment requires a strong presence feeling in order to make the interaction

natural and to improve user’s perception of it. The presence feeling is deter-

mined by the quality of sensorial information, the sensors mobility and the

environment control.

To create a sense of full immersion, the 5 senses (sight, sound, touch, smell,

taste) must perceive the digital environment to be physically real. Immersive

technology can perceptually fool the senses through:

• Panoramic 3D displays or Head Mounted Displays which provide stereo-

scopic vision and in which the dynamic perspective is linked to the head

movements. The Virtual Environments should be realized with realistic

scale and properties.

• Surround sound acoustics or 3D audio e↵ect

• Haptics and force feedback by means of wearable interfaces

• Smell replication

8
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• Taste replication and artificial flavor

The immersion represents the boundaries within which the place illusion -the

illusion of being in a place in spite of the consciousness of being not actually

there- can take place.

Enabling the mind’s continual suspension of disbelief requires particular at-

tention to detail. If VR experiences ignore fundamental best practices, they

can lead to simulator sickness - a combination of symptoms clustered around

eyestrain, disorientation, and nausea. Historically, many of these problems

have been attributed to sub-optimal VR hardware variables, such as system

latency.

1.1 Visualization systems

An immersive VR system provides real-time viewer-centered head-tracked

perspective with a large angle of view, interactive control, and binocular

stereo display. One consideration is the selection of a technological platform

to use for the presentation of VEs.

In this section is presented an overview of the two most common visualization

systems used in immersive virtual reality applications: CAVE systems and

systems based on Head Mounted Display. As stated in [47] HMDs o↵er many

advantages in terms of cost and portability with respect to CAVE systems.

From the other side, CAVEs provide broader field-of-view, higher resolution

and a more natural experience for the user.

1.1.1 The CAVE system

A Cave Automatic Virtual Environment (CAVE) is a cubical, room-sized

fully immersive visualization system. The acronym is also a reference to the

allegory of the Cave in Plato’s Republic in which a philosopher contemplates

perception, reality and illusion. The walls of the room are made up of rear-

projection screens on which high-resolution projectors display images. The

user goes inside of the system wearing shutter/polarizer glasses to allow for
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Figure 1.1: CAVE systems

stereoscopic viewing.

CAVE systems provide complete sense of presence in the virtual environment

and the possibility of being used by multiple users at the same time. A part

from glasses, users inside a CAVE do not need to wear heavy headgear (like

in HMD systems).

The SSSA X-CAVE [39] is an immersive visualization system developed by

PERCRO Laboratory of Scuola Superiore Sant’Anna (Fig. 1.1). It’s a 4-

meters 4-walls room in which each wall is divided into several tiles in order

to ensure a good resolution. Front, right and left screens are subdivided into

four back-projected tiles each, for a global resolution of about 2500x1500 pix-

els per screen, whilst the floor is subdivided into six front-projected tiles for

a global resolution of about 2500x2250 pixels. The X-CAVE is managed by

means of the XVR technology, exploiting its distributed rendering features

on a cluster of five workstations.

The system is also provided with 7 cameras for optical position and orienta-

tion tracking.
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1.1.2 Head Mounted Displays

A Head Mounted Display (HMD Fig. 1.2a) is a device worn by a user on the

head which is provided with a monocular or a binocular display. Binocular

HMDs can be used to achieve stereoscopic vision by showing di↵erent images

for the two eyes; this allows also the user to perceive image depth.

There exists also a variant to this type of device (Optical HMD Fig. 1.2b)

which displays images to the user’s eyes and at the same time allows the

user to see through it (Optical See-Through); OHMDs are mainly used in

Augmented Reality or Mixed Reality applications [8].

(a) Traditional HMD (b) Optical HMD

Figure 1.2: Head Mounted Displays

The Rift is a virtual reality head-mounted display developed by Oculus VR.

The screen displays two images side by side, one for each eye. A set of lenses

is placed on top of the screen, focusing and reshaping the picture for each eye,

and creating a stereoscopic 3D image. Launched in a Kickstarter campaing,

it represents a revolution in the field of HMD, mainly due to its low-cost

($ 350) and to its very high value for money.

The version of the Oculus Rift used during this Thesis is the DevelopmentKit

2 (DK2) which packs a 5-inch OLED display with a resolution of 960 x 1080

pixels per eye and a 100-degree field of view. The displays also use low

persistence, meaning that they only light the pixels for 2 milliseconds of each

frame. The headset has a refresh rate of up to 75 Hz, with an internal-

tracking update rate of 1000 Hz and a positional-tracking update rate of 60

Hz.
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Figure 1.3: A user wearing the Oculus Rift DK2

The position of the user’s head is tracked with a system called ‘Constellation’,

consisting of an external infrared camera, included in the package. Behind the

face of the Rift are 40 high intensity IR LEDs, though you can’t actually see

them. Combined with the camera, this adds positional tracking. Positional

tracking enables you have full motion freedom in the VR environment: you

can sit down, stand up, lean forwards or even look around a corner. By

knowing the position of the LEDs on the objects and their pattern, the system

can determine the precise position of the object, down to sub-millimeter

accuracy.

Oculus o↵ers SDKs to integrate Rift in di↵erent software like Unity, Unreal

Engine and UDK.

1.2 User tracking in VR

The tracking is one of the key technological challenges in Virtual Reality,

and it is a crucial point for providing high fidelity immersion feeling and in-

teraction capabilities to the users. Hence the importance of having a robust

and accurate tracking system [32].

In this type of systems, the tracking devices interact with the processing
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unit, providing the system with spacial information about the user. In sys-

tems that allow a user to move around within a physical space, trackers detect

the position and the orientation of the user, the direction he is moving and

his speed.

Tracking systems consist of a mix of hardware and software which is able to

detect the absolute position and orientation of an object. Exploiting track-

ing data it is possible to measure and report all the 6 DOF of real-life. The

accuracy of tracking is of primary importance: since virtual reality is about

emulating and altering reality, if it is possible to accurately track how parts

of the body (like the head or the hands) move in real life, then it allows for

faithfully representing these inside a virtual environment.

Knowing head position and orientation allows to coherently update the view-

point inside the VE. Knowing position and orientation of hands and fingers

allows to detect if the user is interacting with virtual objects.

Trackers usually consists of:

• acquisition components (sensors) which record in real-time some rele-

vant values

• processing components which receives data from sensors and calculate

the desired values.

An ideal tracker should fulfill the following requirements [44]:

• Accuracy: it’s related with the smallest change in position and orienta-

tion that can be detected by the tracker. In scene coordinates, position

should be within 1mm, and orientation errors should be less than 0.1

degrees.

• Hi frequency of acquisition: the rate at which measurements are re-

ported by the tracker to the host computer should be very high in

order to detect any change.

• Low Latency: the delay between a change in position and orientation

and the report of the change to the host should be small.
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• Low encumber: users should be unrestricted in their mobility. It would

be desirable to have no cables attached to the devices, and all mobile

parts of a tracking system should be very lightweight. For full mobility,

no stationary parts should be required at all.

• Robustness: Small motions should always lead to small changes in

tracker output. Outliers have to be suppressed. Tracking operation

should be continuous over time.

• 6-DoF: absolute position within the x, y and z coordinates of a space

and the orientation (roll, pitch, yaw).

• No shadowing: there should be no space in which the tracker is not

able to e↵ectively measure.

When dealing with HMDs, in order to calculate the views on the display, the

position and the orientation of the user’s head are required [16].

• Head position is used to calculate the position of the viewpoint

• Head orientation is to calculate the view direction and the eye o↵set

direction

Figure 1.4: Orientation parameters for HMD

View position and direction are used to calculate the view volume and there-

fore to dynamically update the perspective. The eye o↵set direction is used

to know on which axis stereo images must be separated.
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1.2.1 Types of tracking systems

In VR, there exist several di↵erent kind of tracking systems: some of them

are based on an emitter/receiver configuration, some other are self-contained

systems. All these systems allow to track position and orientation of the user

in di↵erent ways, with pros and cons for each solution.

In the following is presented an overview of the technologies which could be

used for tracking purposes in VR.

Mechanical tracking

Mechanical trackers measure values through mechanical links placed in chains:

they connect a known point to the tracked object and measuring joint angles

is possible to retrieve position and orientation by means of Direct Kinematics.

They are high-accurate and low-latency systems, but due to their cumber-

someness they are not so comfortable in the use and can limit the user’s

range of motion.

Magnetic tracking

Magnetic tracking relies on measuring the intensity of the magnetic field in

various directions. There is typically a base station that generates AC, DC,

or pulsed DC excitation. As the distance between the measurement point

and base station increases, the strength of the magnetic field decreases. If

the measurement point is rotated, the distribution of the magnetic field is

changed across the various axes, allowing determination of the orientation as

well.

Magnetic tracking accuracy can be good in controlled environments but it is

subject to interference from conductive materials near emitter or sensor, from

magnetic fields generated by other electronic devices and from ferromagnetic

materials in the tracking volume.
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Acoustic tracking

Acoustic trackers use an emitter/receiver configuration. Usually they rely on

microphones to the get time-of-flight measurements from ultrasonic sound

sources. They can measure the time-of-travel of ultrasonic pulses to arrive to

a set of receiver, or they can compare the phases of emitted acoustic waves

with the phase of a reference wave.

When multiple emitter/receiver are present in a known position on a rigid

object, the time di↵erence between them can provide data about the orien-

tation of that rigid object with respect to the transmitters.

The acoustic trackers are low-cost and lightweight systems, but they don’t

well perform in nosing and echoing environments or if there are obstruction

between transmitters and receivers.

Inertial tracking

Inertial tracking uses accelerometers and gyroscopes. Accelerometers mea-

sure linear acceleration. Since the derivative of position with respect to time

is velocity and the derivative of velocity is acceleration, the output of the ac-

celerometer can be integrated to find the velocity and then integrated again

to find the position relative to some initial point.

Gyroscopes measure angular velocity: they are solid-state components based

on MEMS technology, but have the same operating principle as the mechan-

ical gyros. The angular velocity can be integrated to determine the angular

position relative to some initial point.

Inertial trackers are very low-cost and provide high update rates and low-

latency. On the other side, the integration and double-integration lead to

significant drift, especially as it relates to position information and thus it is

hard to rely on inertial tracking to determine position.

The problem of Inertial Navigation is presented more in-depth in the Section

2.6.
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Optical tracking

Optical trackers capture images by means of video cameras and extract in-

formation relying on vision algorithms.

Most optical trackers are marker trackers. Markers can be:

• active (typically IR lights that periodically flash): by synchronizing

the time that they are on with the camera, it is easier to block out

other IR lights in the tracking area. Alternatively it’s possible to define

a mask of permanent IR reflection point inside the scene.

• passive (typically retro-reflectors): they reflect the IR light back to-

wards the light source. In this case the camera is equipped with an IR

flash which is reflected o↵ the markers.

Depending upon the position of the markers and the sensor, this type of

tracker can be divided into two categories:

• inside-out systems in which the markers are in fixed places in the en-

vironment and the sensors are put on the target object;

• outside-in systems in which the markers are placed on the target object

and the sensors are fixed.

Another variation of optical tracking is tracking visible markers which con-

sist in predefined pattern images: the camera can recognize the existence of

this marker and if multiple markers are placed in known positions, the posi-

tion and orientation can be calculated.

The key is to be able to create markers that would be quickly identified by

the cameras in a computationally-e�cient manner as well as be able to create

a su�ciently large number of distinct markers.

If the geometry of the object is known, it is possible to perform marker-

less tracking which continuously searches and compares the image with the

known 3D model [48]. The markeless approach can be used also to to track

complex human motions, by exploiting multiple camera views, as described

in [28]
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Since di↵erent objects can be tracked at the same time if they have di↵erent

marker arrangements, this type of tracker is easy scalable. It also provides

low-latency and high sample rate. On the other side it su↵ers from line of

sight problem which can be partially mitigated by using multiple sensors and

markers. Optical trackers require also a surrounding environment with low

ambient infrared radiation in order to not experience performance losses.

1.2.2 Sensor Fusion

Sensor fusion is a process by which data from several di↵erent sensors are

fused to compute something more than could be determined by any one

sensor alone. The resulting information has less uncertainty than would be

possible when these sources were used individually. Uncertainty reduction

means more accuracy, completeness and information dependability. Thus,

sensor fusion provides a more robust description of an environment or a

process of interest.

The data sources for a fusion process are not specified to originate from

identical sensors. It’s possible to distinguish between

• direct fusion: it’s the fusion of sensor data from a set of heterogeneous

or homogeneous sensors, soft sensors, and history values of sensor data

• indirect fusion: uses information sources like a priori knowledge about

the environment and human input

For example, fusing information coming from di↵erent ToF cameras and

defining a 3D body model, it’s possible to track the entire human body

as described in [30]

A well-known fusion technique is the Kalman filter [26]: it’s an algorithm

that uses a series of measurements observed over time, containing statistical

noise and other inaccuracies, and produces estimates of unknown and not

directly measurable variables that tend to be more precise than those based

on a single measurement alone [17]. It is recursive optimal estimator so that

new measurements can be processed as they arrive and it doesn’t need to

store all previous measurements and reprocess all data each time step.
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It consists of a set of mathematical equations that provides an e�cient com-

putational means to estimate the state of a process, in a way that minimizes

the mean of the squared error.

1.3 Applications of Virtual Reality

Even if one of the wide adopted application for Virtual Reality is the gaming

and the entertainment, Virtual Reality is not an end in itself and in the lit-

erature are present many other kind of possible applications some of which

are more challenging or unusual than others.

For example Virtual Reality it’s adopted by the military [34] for training

purposes. This is particularly useful for training soldiers and to simulate

hazardous situations or other dangerous settings where they have to learn

how to react in an appropriate manner. The uses of VR in this field include

flight or battlefield simulation medic training [46] and virtual boot camp. It

has proven to be safer and less costly than traditional training methods.

Figure 1.5: VR for parachute simulation

Healtcare is one of the biggest adopters of virtual reality which encom-

passes surgery simulation [58], phobia treatment [59] and skills training [37].

A popular use of this technology is in robotic surgery [29]. This is where

surgery is performed by means of a robotic device – controlled by a human

surgeon, which reduces time and risk of complications. Virtual reality has
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also been used in the field of remote telesurgery [46] (Fig. 1.6) in where the

operation is performed by the surgeon at a separate location to the patient.

Since the surgeon needs to be able to gauge the amount of pressure to use

when performing a delicate procedure, one of the key feature of this system

is the force feedback [54]. Another technology deeply used in healthcare is

Figure 1.6: VR for telesurgery

Augmented reality that enables to project computer generated images onto

the part of the body to be treated or to combine them with scanned real

time images [11].

A new trend in Virtual Reality is certainly the use of such technology in the

field of cultural heritage. Virtual Heritage [5] is one of the computer-based

interactive technologies in virtual reality where it creates visual representa-

tion of monument, artifacts, building and culture to deliver openly to global

audiences [43].

The aim of virtual heritage [41] is to restore ancient cultures as a real en-

vironment that user can immerse and understand a culture. By creating

ancient culture simulation, virtual heritage applications become as a link be-

tween the user of the ancient culture and the modern user. The interaction

between them is one way, where the virtual heritage applications are dead

and user can learn about the culture by interacting with their environment.
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Currently, virtual heritage has become increasingly important in the preser-

vation, protection, and collection of cultural and natural history [6]. The

world’s resources of historical in many countries are being lost and destroyed

[21]. With the establishing of new technology, Virtual Reality can be used as

a solution for solving problematic issues concerning cultural heritage assets.

Figure 1.7: VR for cultural heritage

1.4 The XVR framework

XVR [51] is a flexible, general-purpose framework for the rapid development

of Virtual Reality applications. The need of constructs and commands tar-

geted to VR, has lead to the design of a dedicated scripting language which

provides the developer the possibility to deal with 3D animation, positional

sounds e↵ect, audio and video streaming and user interaction.

XVR is actually divided into two main modules:

• the ActiveX Control module, which hosts the very basic components

of the technology such as versioning check and plug-in interfaces;
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• the XVR Virtual Machine (VM) module which contains the core of the

technology such as 3d Graphics engine, the Multimedia engine and all

the software modules managing the built-in XVR features.

The XVR-VM contains a set of byte-code instructions, a set of registers, a

stack and an area for storing methods. The XVR Scripting Language (S3D)

allows specifying the behaviour of the application, providing the basic lan-

guage functionalities and the VR-related methods, available as functions or

classes. The script is then compiled in a byte-code which is processed and

executed by the XVR-VM.

In general an XVR application can be represented as a main loop which inte-

grates several loops, each one running at its own frequency, such as graphics,

physics, networking, tracking, and even haptics, at least for the hi-level con-

trol loop.

1.4.1 The S3D scripting language

An XVR program is always based on a set of 7 fundamental callbacks which

get automatically executed upon.

These predefined functions constitute the basis of any project:

• OnDownload() is performed at the very beginning and triggers the

download of the data files needed from the application.

• OnInit() function is the place where to put the initialization code

for the app. All the commands are executed sequentially. All the

other functions are not active until OnInit() completes its execution.

It receives as a parameter the string defined inside the XVR related

HTML code under the ”UserParam” section. It gets called as soon as

OnDownload() is finished.

• OnFrame() is the place for functions and methods that produce graph-

ics output. This is the only function where the graphics context is vis-

ible. Placing graphics command outside this function would produce

no results. It gets called at a frequency specified by SetFrameRate().

By default the frame rate is set to 100 Hz.



Chapter 1. Introduction 23

• OnTimer() runs independently (i.e at a di↵erent rate) by OnFrame()

and it’s where to put commands that must be independent from the

rendering task. As the timer is hi-res, it is possible to setup timer

parameters with SetTimeStep() so that this function can be called up

to 1k times per second. The default time step is 10 ms, therefore

OnTimer gets called by default at a frequency of 100 hz.

• OnEvent() is independent from both OnTimer() and OnFrame(). It

gets called whenever the application receives an event message. Event

messages can be external (i.e. Windows messages) or internal (i.e.

generated anywhere in the XVR program). Events and messages are

supported in XVR because they add flexibility to the programming

environment for task where fixed timers are not the best option. If the

application does not need them, this function can be ignored.

• DownloadReady() is called whenever a download triggered by the

FileDownload() function is completed and receives as a parameter the

ID (returned by FileDownload) of the downloaded file. This function

can be used to asynchronously download resources not needed since the

beginning of the XVR program.

• OnExit() is called when the application quits or when the user close

the page the application is in. It is the right place to perform nice exits

of external modules.

In addition to these basic functions, XVR o↵ers several predefined classes,

functions and data structures for di↵erent purposes. For example the CVm-

Camera class provides functions for managing the scene and the camera

properties. CVmMesh class, and CVmObject class, allow for managing 3D

models by handling the geometric properties of the model and by dealing

with reference systems and geometrical transformations. The appearance of

the objects is managed by the CVmMaterial and CVmTexture classes.



2. Background and previous

work

If I have seen further, it is by standing on the shoulders of giants.

Isaac Newton

In the literature, the problem of interaction in VR is widely addressed. Sev-

eral di↵erent techniques, that make use of a variety of devices, have been also

proposed for giving manipulation capabilities to the user inside the Virtual

Environment.

In this chapter a survey of existing interaction techniques is presented, along

with a general overview about the tracking devices that can be exploited for

manipulation purposes.

2.1 Object positioning

A key manipulation task often analyzed in the literature regards the object

positioning [27]. As described in [12], the object positioning task consists in

at least two interaction metaphors:

• grabbing (or selection) that refers to the initial phase of the task,

when the user specifies which object to grab and eventually denotes

the center of rotation for the manipulation phase; by moving a cursor,

typically attached to the user’s hand, until it is within the selection

24
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region of the object, is possible to chose that object. Once chosen,

the object can be actual selected using some pre-defined signal such as

gesture, button press or voice command [38].

• manipulation that refers to the actual task, when the user moves the

selected object within the environment, specifying both position and

orientation. Manipulation tasks consists of:

– translation: selected objects can move in a 1:1 correspondence

with the user’s hand or an amplification factor can be applied to

the motion of the object to allow a greater range [38]

– rotation: selected objects rotate of a rotation factor according to

the orientation of the user’s hand. In hand-centered manipulation

the center of rotation is identified with the point in which the

object is grabbed, but in some case it’s desirable to have some

remote center of rotation in order to allow the user to have a good

perspective as he set the orientation of the object.

In [38], also the scaling operation is identified as fundamental form on inter-

action in a virtual world: according to Mine, scaling can be used both in the

interactive construction of a virtual world to get components at their correct

relative scale, and in the exploration of an environment to allows a user to

view some small detail by scaling up the selected object.

As in the case of rotation, also the scaling operation requires the definition

of key parameters:

• center of scaling : it’s the point which all points of the object move

toward when scaling down and all the points move away from when

scaling up. In hand-centered scaling, the center of scaling is identified

with the location of the hand, while in object-centered scaling is defined

to be the center of the selected object.

• scaling factor : it can be hand-specified when movement of the hand

determines it; in this case the scaling is uniform on all the axis. Alter-

natively can be specified providing handles (grabs) which the user can
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interact with to control the scaling of the selected object; this method is

particularly well suited for the implementation of non-uniform scaling.

Di↵erent interaction metaphors are required when the object the user wants

to manipulate is not in his arm range. In [12], Bowman and Hodges evaluate

the techniques for grabbing and manipulating remote objects in immersive

virtual environments. They split in two categories the techniques which

attempt to solve this problem:

• arm-extension techniques in which the user’s virtual arm is made to

grow to the desired length, so that object manipulation can take place

with the hand. These techniques make object manipulation simple

since the user moves and rotates the object with natural hand and arm

motions, but the grabbing is more di�cult because the virtual hand

must be positioned within the object, which may be small or distant.

An example of arm-extension technique is the ‘go-go’ technique.

• ray-casting techniques which make use of virtual light ray to grab

an object, with the ray’s direction specified by the user’s hand. The

use of the light ray makes the grabbing task easy since the user is

only required to point to the desired object, but manipulation is more

di�cult due to the fact that is not hand-centered. An example of ray-

casting technique is the HOMER (Hand-centered Object Manipulation

Extending Ray-casting) technique in which when the user grabs the

object with the light ray, the virtual hand moves to the object position

and the object is attached to the hand; when the object is dropped,

the hand returns to its natural position.

In [18], Foxlin and Harrington investigate wearable solutions for the orienta-

tion and position of users’ heads and hands tracking with respect to a world

coordinate frame. They present a self-referenced head and hand tracker for

wearable computers and portable VR which allows to control view param-

eters for Head Mounted Displays and manual interactions with the virtual

world.

The technique they propose di↵ers from the other because it’s essentially
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‘sourceless’: the system is based on the idea of combining a sourceless head

orientation tracker with a head-worn tracking device that tracks a hand-

mounted 3D beacon relative to the head.

2.2 VR approaches for Immersive Design

According to [57], the current application of Virtual Reality systems in the

design process is limited mostly to design review. Weidlich et al., identify

the reason for this limitation in the di↵erent data formats used for CAD and

VR visualization, and propose the use of VR systems also during the early

design stage in order to drastically reduce potential source of error especially

during the outline and detailing phases.

The ways in which researchers have implemented the immersive modeling

are:

• linking a VR system and a CAD core. An example is ARCADE [50],

a cooperative, directly manipulative 3d modeling system which that

takes a user-centered approach.

• using voxel models for geometry description. Examples are VCM [31],

that allows virtual modeling by adding and removing and uses haptic

feedback, and VADE [24], in which the VR environment used is an

HDM.

2.3 VR for Training

The use of fully immersive Virtual Reality systems for training purposes

has been extensively investigated in literature. A number of challenges have

been highlighted, ranging from minimizing overall latency, interacting intu-

itively in the virtual environment, increasing user’s perceptual awareness of

the virtual world and providing the user with a strong sense of immersion

and embodiment [49]. Examples can be found in the mining industry [55], in

the aerospace industry [15], in the automotive industry [35], in logistics [10]
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Figure 2.1: VR for Immersive Design

and, in general, in the sector of maintenance [36].

Opportunities provided by Mixed and Augmented Reality address issues sim-

ilar to those addressed by VR, although with a slightly di↵erent perspective.

In Mixed Reality, in fact, the real environment is not substituted by a vir-

tual counterpart; rather it is integrated with virtual elements that enhance

its information content. Therefore many safety issues e↵ectively tackled by

VR are commonly not addressed by MR systems which, in turn, may result

more e↵ective whenever the real context is fundamental.

In general, one of the most important consequences of living the training

experience in a totally virtual context (as in VR), or keeping the vision on

the real context (as in MR), is related to the body self visual perception. In

VR, depending on the visualization device, users can still see their body (for

instance in a CAVE) or not (if using a HMD; in this case a digital avatar

must be shown in order to allow self perception). In MR the real context,

including own body, is always present. This has of course an impact in

training, especially in tasks where manipulation operations, or other types of

direct interaction with the body, take place. Avatar representations, in fact,

might not correspond exactly to the dimensions or the current posture of the

user and might, although slightly, mislead the self perception and limit the

e↵ectiveness of the virtual training.
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2.4 Techniques and devices for Interaction

An interaction technique [20] is the fusion of input and output, consisting

of all hardware and software elements, that provides a way for the user to

accomplish a low-level task [9].

• Input to computers consists of sensed information about the physical

environment.

• Output from computers can comprise any emission or modification to

the physical environment, such as a display (monitor, HMD, CAVE

systems), speakers, or tactile and force feedback devices

There exist a pletora of technologies and devices for interaction in Virtual

Environments. Some of them are presented in the following, based on how

relevant to the developed system they appear.

Standard input devices

Any sensed information about physical properties of people, places, or things

can serve as input to computer systems. Familiar examples of input devices

include the mouse, which senses movement across a surface, the keyboard,

which detects a contact closure when the user presses a key and joysticks.

Joysticks are commonly available in two flavors: displacement or isotonic

joysticks move about a pivot with motion in two or more axes, and force

sensing or isometric joysticks employ resistive strain gauges which undergo

a slight deformation when loaded.

The Leap Motion Controller

The Leap Motion controller [1] is a small USB peripheral device designed to

be placed on a physical desktop, facing upward. The device recognizes the

human hands present in its field of view and provides, through its apposite

software, information about the number of hands and for each of them some

related features such as position and orientation in the space, velocity and



Chapter 2. Background and previous work 30

so on. The controller has been designed to identify fingers with a precision

of 0.01 mm.

Figure 2.2: The Leap Motion Controller

The heart of the device consists of two cameras and three infrared LEDs.

These track infrared light with a wavelength of 850 nanometers, which is

outside the visible light spectrum.

The Leap Motion Controller’s viewing range is limited to roughly 60 cm

above the device. This range is limited by LED light propagation through

space, since it becomes much harder to infer hand’s position in 3D beyond a

certain distance. LED light intensity is ultimately limited by the maximum

current that can be drawn over the USB connection.

The device’s USB controller reads the sensor data into its own local mem-

ory and performs any necessary resolution adjustments. This data is then

streamed via USB to the Leap Motion tracking software.

Software

The Leap Motion Service is the software that processes the images. After

compensating for background objects (such as heads) and ambient environ-

mental lighting, the images are analyzed to reconstruct a 3D representation
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of what the device sees.

Next, the tracking layer matches the data to extract tracking information

such as fingers and tools. The tracking algorithms interpret the 3D data and

infer the positions of occluded objects. Filtering techniques are applied to

ensure smooth temporal coherence of the data. The Leap Motion Service

then feeds the results – expressed as a series of frames, or snapshots, con-

taining all of the tracking data – into a transport protocol.

Through this protocol, the service communicates with the Leap Motion Con-

trol Panel, as well as native and web client libraries, through a local socket

connection (TCP for native, WebSocket for web). The client library orga-

nizes the data into an object-oriented API structure, manages frame history,

and provides helper functions and classes. The API are available for the

most common programming languages such as C, C#, Java, Javascript and

Python. Plugins are available for the common Graphics Engine such as Un-

real and Unity.

The software provides also the recognition of gesture such as circle, swipe

and tap.

Leap for VR

For using the controller in immersive VR applications that make use of

HMDs, Leap Motion provides a frame to integrate the Leap controller with

the Oculus Rift DK1 and DK2. The frame needs to be mount on the front

face of the Oculus Rift and the controller is then placed inside it.

Figure 2.3: Oculus Rift DK2 and Leap Motion controller
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This solution is particularly suitable for those applications which require the

users interaction with the virtual environment using their own hands. No

additional markers or devices are required to obtain the relative position and

the orientation of the hands.

As shown in the Fig. 2.3 the Field of View of the Leap controller (135�) is

higher than the Oculus Rift’s one (100�): this means that the user will be

able to freely operate without any blind spot. Moreover, the controller has

no impact on DK positional tracking.

However, there are some critical points in the use of the Leap Motion con-

troller for VR applications:

• the not so high accuracy does not allow precise object manipulation.

• it is not possible to have a visualization of the real hands, but only a

virtual representation of them.

Sensing gloves

A sensing glove is an input device for human–computer interaction worn like

a glove. Various sensor technologies are used to capture physical data such

as bending of fingers and often a motion tracker, such as a magnetic tracking

device or inertial tracking device, is attached to capture the global position

and orientation data of the glove.

Figure 2.4: A user wearing an HMD and a pair of sensing gloves
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Time-of-Flight cameras

Time-of-Flight cameras are sensing systems able to capture RGB images

along with per-pixel depth information.

They provide 3D imaging using a CMOS pixel array and an active modulated

light source used to illuminate the scene. They project a known infrared pat-

tern onto the scene and determines depth based on the pattern’s deformation

as captured by an infrared CMOS imager. By observing the reflected light

and measuring the phase shift between the illumination and the reflection,

3D ToF cameras can tell the distance between from the sensor to objects in

every single pixel.

Figure 2.5: PrimeSense RGB camera with depth sensor

The compactness, ease of use, accuracy and high frame-rate make ToF cam-

eras a suitable solution for a wide range of Virtual Reality applications [19]

and in particular for tracking based on colored markers.

Soli: a radar based wearable

Soli is a project by Google ATAP (Advanced Technology and Products)

unveiled during the Google’s I/O 2015 conference. Project Soli uses radar

(RAdio Detection And Ranging) to detect micro-movements in hands and
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fingers. It transmits radio waves and picks up up reflected responses from

any target it hits.

Figure 2.6: How Soli works

The system uses broad beam radar to measure doppler image, IQ and spec-

trogram. The chip recognizes movement, velocity and distance and can be

programmed to change the input based on that distance.

2.5 Tracking Systems for natural Interaction

By using the systems above described it’s possible to track the position and

the orientation of any relevant part of the body of an user, and by defining

adequate metaphors it’s possible to provide users with the ability of naturally

interact with the Virtual Environment [25].

The naturalness of interaction is a much discussed topic in the literature [33]:

a system that allows the user to move in a natural way, allows also to reduce

the time for learning and to habit to the system.

The process of recording the movement of objects or people is called motion

capture. Often the purpose of motion capture is to record only the move-

ments of the actor, not his or her visual appearance. The recorded data is

thus mapped to a 3D model so that the model performs the same actions

as the actor. This approach is deeply used in filmmaking and video game
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development in order to recording actions of human actors, and using that

information to animate digital character models in 2D or 3D computer ani-

mation.

In the Thesis project the motion capture has concerned only the user’s hands:

in particular we have been interested in the movements of the index finger

with respect to the rest of the hand when the user grabs an object.

2.5.1 Color-Based Tracking

Using colored markers and a depth camera is possible to track the position

of the markers with respect to the whole environment. This tracking system

is particularly suitable when there is the need to distinguish two markers

without any other information. For example, to perform positional hand

tracking, users can simply wear color thimbles on their fingertip [53] as shown

in Fig. 2.7, or wear a Color Glove on their hand [56] as shown in Fig. 2.8.

The drawback in the use of this methodology is the limited FOV of the depth

camera and the not very fast sample rate.

Figure 2.7: Finger tracking with color markers

Figure 2.8: Real-Time Hand-Tracking with a Color Glove
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2.5.2 Marker-based Tracking

Another way to track user’s parts of the body is the use of motion capture

system such as the one o↵ers by OptiTrack (Fig. 2.9). The system consists

of:

• infrared reflecting markers

• cameras equipped with a CMOS sensor capable of providing VGA im-

ages at 100 fps

• a software able to track up to 2000 markers in 6 DoF.

The X-CAVE system described in the Section 1.3.1 uses 7 OptiTrack Flex 3

cameras for performing positional tracking.

Figure 2.9: An OptiTrack system deployment

The OptiTrack system provides hardware-based synchronization between

cameras; this allows them to expose frames at the exact same time.

Once cameras acquire a new frame, the OptiTrack software handles all ad-

ditional processing required to track and combine the marker data coming
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from all the cameras. Since there is also no guarantee that markers will be

delivered in the same order from one frame to the next, additional algorithms

are required to ensure markers sorting.

2.5.3 Smart Laser Scanner

Smart Laser Scanner [4] is a system capable of acquiring three dimensional

coordinates in real time without the need of any image processing at all.

Essentially, it is a smart rangefinder scanner that instead of continuously

scanning over the full field of view, restricts its scanning are to a very narrow

window precisely the size of the target.

Tracking of multiple targets is also possible without replicating any part of

the system and without the need to wear special gloves nor markers.

Another interesting characteristic of the proposed 3D laser-based locator, is

that it also can be used as an output device: indeed, the laser scanner can

be used to write information back to the user, by projecting alphanumeric

data onto any available surface, like the palm of the hand. This has been

successfully demonstrated, without having to stop the tracking.

2.6 Inertial navigation with IMUs

Until recently the use of inertial sensors in domains such as human motion

capture has been prohibited by their weight and size. Thanks to the per-

formance improvements of small and lightweight Micro Electro-Mechanical

Systems (MEMS) inertial sensors have made the application of inertial tech-

niques to such problems possible. Nowadays, MEMS technology is of par-

ticular interest because it o↵ers small and lightweight inertial sensors at low

cost.

Inertial navigation [60] is a self-contained navigation technique in which mea-

surements provided by accelerometers and gyroscopes are used to track the

position and orientation of an object relative to a known starting point, orien-

tation and velocity. The method used for the estimation of the measurement

is known as dead-reckoning: it is the process of calculating one’s current po-
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sition by using a previously determined position, or fix, and advancing that

position based upon known or estimated speeds over elapsed time. This is

also applicable in the case of angular measurements, as with gyroscopes, in

order to obtain the orientation.

2.6.1 MEMS Gyroscopes

MEMS gyroscopes make use of the Coriolis e↵ect, which states that in a

frame of reference rotating at angular velocity !, a mass m moving with

velocity v experiences a force:

Fc = �2m(! ⇥ v)

MEMS gyroscopes contain vibrating elements to measure the Coriolis e↵ect;

the simplest vibrating element geometry consists of a single mass which is

driven to vibrate along a drive axis. When the gyroscope is rotated a sec-

ondary vibration is induced along the perpendicular sense axis due to the

Coriolis force. The angular velocity can be calculated by measuring this sec-

ondary rotation.

The bias of a rate gyro is the average output from the gyroscope when it is

not undergoing any rotation. The constant bias error of a rate gyro can be

estimated by taking a long term average of the gyro’s output whilst it is not

undergoing any rotation. Once the bias is known it is trivial to compensate

for it by simply subtracting the bias from the output.

2.6.2 MEMS Accelerometers

Accelerometers are electromechanical devices that measures acceleration forces

either static, such as force of gravity, and dynamic, namely caused by moving

the device.

There exist di↵erent ways to make an accelerometer using MEMS techniques.

Some accelerometers use the piezoelectric e↵ect which causes a voltage to be

generated, but the most common way to do it’s by sensing changes in capac-

itance.
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C = ✏r✏0
A
d

where

• C is the capacitance, expressed in Farads,

• A is the area of overlap of the two plates, expressed in square meter,

• ✏r is the relative static permittivity of the material between the plates,

• ✏0 is the electric constant,

• d is the separation between the plates, expressed in meters.

Typical MEMS accelerometers consist of a mass suspended by spring. The

displacement x of the mass is measured using the capacitance di↵erence �C

between a movable plate (on which the mass is attached) and two station-

ary outer plates. It can be proven that the displacement is approximately

proportional to the capacitance di↵erence:

x ⇡ d

�C
C

According to Hook’s law, the spring exhibits a force F proportional to the

displacement x (F = kx). From Newton’s second law (F = ma) results that

the acceleration is proportional to the mass displacement

a = k
mx

If the fixed plates are driven by square waves with voltage amplitude V0, it

can be proven [7] that the acceleration is also proportional to the voltage

output.

2.6.3 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is an electronic device which consists

of a 3-axis gyroscope, measuring angular velocity, and a 3-axis accelerometer,

measuring linear accelerations. By processing signals from these devices it is

possible to track the position and orientation of an object.
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An IMU [40] works by detecting the current rate of acceleration using one or

more accelerometers, and detects changes in rotational attributes like pitch,

roll and yaw using one or more gyroscopes.

Recently, more and more manufacturers also include three magnetometers in

IMUs. The magnetometers measure the strength and direction of the local

magnetic field. Even if, due to nearby magnetic objects, they are a↵ected

by local disturbances in the earth’s magnetic field, their data can be fused

with the gyroscope data to allow better performance for dynamic orientation

calculation in attitude and heading reference systems which base on IMUs

[22].

Using multiple IMUs it’s possible to perform extensive motion capture of

some parts of the body or the entire body. With this approach the motion

capture system remains self contained and it does not rely on any external

infrastructure.



3. The proposed system

Reality is not always probable, or likely.

Jorge Luis Borges

After having investigated the technologies and methodologies for interaction,

the requirements for the new device have been defined: the proposed system

should allow natural interaction to the user, providing the most suitable ma-

nipulation metaphors to operate in an accurate and intuitive way in a Virtual

Environment. The system would have to be also as portable as possible, un-

obtrusive for the user and with short setup and learning time.

In this chapter are presented the scenario in which the project fits, the ex-

isting system used for visualization (i.e. the devices used to present the

Virtual Environment to the user), along with the design choices to satisfy

the interaction requirements and the developed solutions that result from the

implementation of that choices.

3.1 SSSA Mixed Reality system

The visualization system used in this project has been presented in [53].

Before the development of the presented Thesis project, this system was also

used for providing interaction capabilities to the user; the interaction system

allowed only the translation of the virtual objects present in the scene without

any possibility of rotating them.

41
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Regarding the visualization system, what made the approach novel, was that

the user’s hands were video captured in 3D, reconstructed in real-time and

graphically embedded in a synthetic Virtual Environment rendered in an

HMD worn by the user. The introduction of the photo-realistic capture of

user’s hands in a coherently rendered virtual scenario induces in the user a

strong feeling of embodiment without the need of a virtual avatar as a proxy.

Also the user’s ability to grasp and manipulate virtual objects using their

own hands provides an intuitive user interaction experience and improves

the user’s self perception and user’s perception of the environment. We used

the same approach in the current work, so users are able to use their hands

manipulating virtual objects in the scene and are able to navigate in the

scene using their own body movements.

3.1.1 Hardware configuration

The setup used for the optical tracking consists of 8 OptiTrack Flex:V100

cameras,each one equipped with a CMOS sensor capable of providing VGA

images at 100 fps. The tracking software is OptiTrack Tracking Tools version

2.5.3. This system has been used to track the user head position, while the

orientation of the user head is estimated by means of the IMU built-in in the

Oculus DK2; the inertial sensors used in the HMD is reported as a custom

9-axis tracker (gyroscope, accelerometer and magnetometer) with a 1000Hz

update rate and 2ms latency based on the Adjacent Reality Tracker. It can

provide 3DOF rotational tracking with yaw drift correction.

The RGBD camera is a Primesense Carmine 1.09 short range 3D camera. The

camera has a FOV of 57.5x45 degrees and returns a depth map of (approx.)

640 x 480 depth samples at the rate of 30Hz as well as a RGB map of the

same resolution and frame rate. Being the short-range version, it can see

objects as close as 35 centimeters.

The software modules of the system run currently on two workstations: the

first one is allocated to the optical tracking software, and it is equipped

with a Core i7 3770 CPU (4 core with HT @3.4Ghz), 24GB of Ram and

a FirePro V7900 GPU. The second workstation is used for the real-time
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Figure 3.1: The system physical layout: OptiTrack cameras in red, finger

thimbles in dark green, HMD with markers in blue and an example of what

user sees in light green.

rendering, the Primesense data handling and the general management of

the VR application, and it is equipped with a Core i7 960 (4 core with

HT@3.2Ghz), 24GB of Ram and a Nvidia 680GTX GPU with 1,5GB of

memory. Both systems are running Windows 7 64bit.

The graphical workstation is connected to the HMD by means of a 10 meters

video cable, a 10meters USB active extension cableand a power supply cable

for the HMD As shown in the Fig. 3.1, the user wears an HMD and is free

to walk around the scene as well as to use his own hands to manipulate

virtual objects in the scene by means of a RGBD camera mounted on top of

the HMD. This allows the system to get in real-time a textured geometric

mesh of the visible parts of the hands and body (as seen from her/his own

perspective) that can be rendered like any other polygonal model in the scene.

The Fig. 3.2 shows the visualization system. It is composed by the following

items:

• an optical marker, used for positional head tracking

• an Oculus Rift DK2 HMD connected to an Intel workstation for visual
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Figure 3.2: The visualization system: Oculus Rift DK2 and PrimeSense

Carmine 1.09

feedback

• a 3D camera mounted on top of the HMD support, and integral to it,

which is used both for the real-time 3D capturing of the user hands

correctly co-located in the virtual environment (and all the other parts

of the body framed by the camera) and for the tracking of the hands.

3.1.2 Finger tracking and interaction metaphors

In this scenario, fingers tracking was performed by taking advantage only

of the RGBD data in order to detect the colored thimbles. Simple color

filtering was then used in order to identify which pixels of the RGB image

match the marker colors. The algorithm also used the depth map data in

order to e�ciently pre-cull away those pixels that are too far to be part of

the user hands.

A simple collision detection algorithm was applied to this data in order to

enable grabbing and dragging interactive virtual objects. The implemented

interaction was therefore almost completely natural, with the only added

metaphor simulating a simplified grabbing. In fact, no actual physically-

based contact is retrieved: when the two fingers (whose position was visually
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highlighted by making two spheres, with the same colors, appear on top of

them - fingers are anyway visible as they are acquired in 3D and streamed

by the 3D camera) touched each other within or in close proximity of an

interactive object, the two spheres became one single red sphere, meaning

that the object could be grasped and moved (the user could interact with

just a single object at a time).

3.1.3 Existing limits and motivations for a new device

The system presented in [53] allows for augmenting the virtual space with

the real-time 3D rendering of the hands and body of the users, giving them

the perception of being physically present in the virtual environment. The

authors proposed also an interaction approach based on the tracking of col-

ored thimbles, which allows the user to manipulate virtual objects using their

own hands. However, some weaknesses to this approach can be found:

• The interaction system allows only the translation of the virtual objects

present in the scene. Since also the rotation and scaling are deemed

fundamental in object positioning tasks, the development of a new

device capable of providing a more enhanced interaction metaphor has

been necessary.

• For each finger, the previous interaction system requires a thimble of

a di↵erent color. Another requirement for the new device has been to

reduce the number of needed marker required for the tracking purpose.

• Using the previous system in situations that concern small mechanical

elements, the accuracy of the manipulation is not so high, because of

the intrinsic inaccuracy of the RGBD camera. The Thesis project has

addressed also this type of problem, trying to improve this this aspect.
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3.2 Device presentation

The developed device is a thimble-like interface that can be used to recognize

in real-time the human hand’s orientation and infer a simplified but e↵ective

model of the relative hand’s motion and gesture. It’s provided with:

• markers for positional tracking (both color-based and retro-reflective)

• IMUs for hand and finger orientation recognition

• force sensor for pinches and grabs detection

• vibration motor for simple haptic feedback

3.2.1 The ODROID-W module

The module used for the development is the ODROID-W, a miniature com-

puting module fully compatible with all software available for the Raspberry-

Pi.

Figure 3.3: ODROID-W
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This module integrates a BCM2835 ARM11 700Mhz processor produced by

Broadcom, 512MB SDRAM and like other Raspberry Pi on the board are

available:

• 32 GPIOs

• 2 I2C buses

• 1 SPI bus

The ODROID-W provides also a Ricoh RC5T619 Power Management Inte-

grated Circuit (PMIC) that includes RTC, ADC, UPS and Battery gauge.

Since these peripherals are not present in the standard Raspberry-Pi boards,

the needed drivers are o↵ered by a patch for the o�cial distribution of the OS

Raspbian. The last o�cial distribution released is based on the RPi kernel

3.12.32.

3.2.2 The Inertial Measurement Unit: MPU-9150

The MPU-9150 is a System in Package (SiP) that combines two chips: the

MPU-6050, which contains a 3-axis gyroscope, 3-axis accelerometer and an

onboard Digital Motion Processor capable of processing complex MotionFu-

sion algorithms; and the AK8975, a 3-axis digital compass. The part’s inte-

grated 6-axis MotionFusion algorithms access all internal sensors to gather a

full set of sensor data.

Figure 3.4: MPU-9150

The MPU-9150 features three 16-bit analog-to-digital converters (ADCs) for
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digitizing the gyroscope outputs, three 16-bit ADCs for digitizing the ac-

celerometer outputs and three 13-bit ADCs for digitizing the magnetometer

outputs.

Communication Interface

The MPU-9150 communicates to a system processor using an I2C serial in-

terface. The MPU-9150 always acts as a slave when communicating to the

system processor.

The MPU-9150 has an auxiliary I2C bus for communicating to o↵-chip sen-

sors. This bus has two operating modes:

• I2C Master Mode: The MPU-9150 acts as a master to any external

sensors connected to the auxiliary I2C bus

• Pass-Through Mode: The MPU-9150 directly connects the primary and

auxiliary I2C buses together, allowing the system processor to directly

communicate with any external sensors.

Gyroscope Features

• Digital-output X-, Y-, and Z-Axis angular rate sensors (gyroscopes)

with a user-programmable full- scale range of ±250�, ±500�, ±1000�,

and ±2000�/sec

• Integrated 16-bit ADCs enable simultaneous sampling of gyros

• Digitally-programmable low-pass filter

Accelerometer Features

• Digital-output 3-Axis accelerometer with a programmable full scale

range of ±2g, ±4g, ±8g and ±16g

• Orientation and tap detection

• User-programmable interrupts
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Magnetometer Features

• 3-axis silicon monolithic Hall-e↵ect magnetic sensor with magnetic con-

centrator.

• Full scale measurement range is ±1200 µT

3.2.3 The force sensor

The force sensor (Fig. 3.5) is a force-sensing resistor with a round, 0.4 mm

diameter, sensing area. The FSR will vary its resistance depending on how

much pressure is being applied to the sensing area. The harder the force, the

lower the resistance. The harder the force, the lower the resistance. When

no pressure is being applied to the FSR, its resistance will be larger than

1M⌦, with full pressure applied the resistance will be 2.5k⌦. This FSR can

sense applied force anywhere in the range 0.1N - 10N

Figure 3.5: Force sensor

3.2.4 Simple Haptic Feedback

The feedback is provided by means of a 3V vibration motor (Fig.3.6). The

simplest and most popular type of vibration motor is known as an ERM

(Eccentric Rotating Mass). It’s a standard DC motor with an o↵-center

load attached to the shaft. When the motor is powered and rotates, the

unbalanced mass creates a centripetal force and if the motor is attached to

an object, that force acts on the object and causes it to displace. As DC
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motors turn very fast, a full circle of displacement can happen over 100 times

a second. This fast and repeated displacement is what is felt as vibrations.

The motor is driven using a PWM signal in order to change the voltage

applied to it according to the haptic feedback that is required.

Figure 3.6: Vibration motor

3.2.5 Network connectivity

A miniature WiFi module has been used to provide wireless connectivity

to the device. The module has been connected to the USB port o↵ered by

the ODROID-W. The needed drivers were already available in the modi-

fied Raspian distribution. A local network has been thus deployed using an

Access-Point 2.4 GHz band connection.

3.3 Device design

As described above, the ODROID-W provides 2 I2C buses. Each of the 2

buses can be redirected to several physical pins by changing the mode of

these pins:

• I2C-0

– GPIO 0 (SDA) and GPIO 1 (SCL) in ALT0 mode
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Figure 3.7: High-level device schematics

– GPIO 28 (SDA) and GPIO 29 (SCL) in ALT0 mode

– GPIO 44 (SDA) and GPIO 45 (SCL) in ALT1 mode

• I2C-1

– GPIO 2 (SDA) and GPIO 3 (SCL) in ALT0 mode

– GPIO 44 (SDA) and GPIO 45 (SCL) in ALT2 mode

Only one of these pairs can be activated at any moment per bus.

The I2C-0 bus is used by default by the GPU to talk to the camera module,

while the I2C-1 bus can be used by the user however he wants: the camera is

physically connected to GPIO 0/1. These pins are setup as inputs by default

and the GPU will change them to ALT0 whenever it needs to talk to the

camera and switches them back to INPUT immediately after.



Chapter 3. The proposed system 52

The Ricoh RC5T619 includes among other things 2 ADCs, one of which has

been used to read the force sensor. Also the PMIC uses I2C-0 to talk to the

CPU.

In the project the buses have been used to connect the 2 IMUs: one IMU

is connected to the pins GPIO 2 and GPIO 3 and uses the I2C-1 bus, while

the other is connected to the pins GPIO 28 and GPIO 29 and uses the bus

I2C-0. This bus is shared between this IMU and the PMIC.

Every time a reading from the ADC is required, the mode of the pins GPIO 0

and GPIO 1 must be set to ALT0 and the mode of the pins GPIO 28 and

GPIO 29 must be set to INPUT.

After the reading the mode of the pins GPIO 0 and GPIO 1 must be set

to INPUT and the mode of the pins GPIO 28 and GPIO 29 must be set to

ALT0 in order to enable the bus for the IMU.

Figure 3.8: Top-view of the device
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Figure 3.9: Pinching operation

3.4 Software development

The ODROID-W module can be easily programmed writing programs or

scripts in the most common languages (such as C, C++, Python) and com-

piling it like any other Unix machine. The module can be simply connected

to an external monitor through the mini-HDMI port and the user can input

using USB keyboard and mouse. However this would imply physical cable

connections and disconnections every time the device needed to be tested or

reprogrammed.

In order to achieve a more comfortable development, an SSH server has been

setup. In this way the module can be easily programmed over-the-air using

any SSH terminal from a machine connected to the same network.

In the project all the embedded applications have been written in C++.

3.4.1 Embedded firmware

The aim of the application that runs on the ODROID is to provide the instant

orientation of the user’s hands and the force exercised between thumb and

index fingers. To achieve this result the application needs to read the data

coming from the IMU (linear acceleration, angular velocity and compass

heading) and fuse them in order to retrieve the orientation. For this purpose
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RTIMULib [45] library has been used: RTIMULib is a library that connects

a 9-dof, 10-dof or 11-dof IMU to an embedded Linux system and obtain

Kalman-filtered quaternion or Euler angle pose data.

In the initialization stage, the application loads the configuration files relative

to the IMUs and creates the RTIMU instances from them. In absence of

configuration file, the instances are anyway created with the default settings

and with no calibration data.

The configuration file for our applications has the following characteristics:

• IMU type: InvenSense MPU-9150

• Fusion type: RTQF

• I2CBus: 1/0

• Compass calibration settings

• Accelerometer calibration settings

• Gyroscope bias data

• Gyroscope and accelerometer sample rate: 50Hz

• Compass sample rate: 25Hz

• Gyroscope and Accelerometer low pass filter: 20Hz for Gyroscope, 21Hz

for the accelerometer

• Gyroscope full scale range: +/- 1000 degrees per second

• Accelerometer full scale range: +/- 8g

Inside the loop the application waits for one of the following command via

UDP, listening on the port 45002:

• Start command: must include the ID of the IMU (0 for the IMU

placed on the hand, 1 for the IMU placed on the finger) and the des-

tination port of the message. As soon as the application receives this

command, it starts reading from the sensors and sending the data to
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the destination which is the address from which the Start command ar-

rives. The start command is required at least every 10 seconds and it’s

interpreted as a keep alive message; the absence of start commands for

more that 10 seconds it’s interpreted as a stop command. The format

of the Start command is the following

Start,<IMU ID>,<PORT>

• Stop command: it terminates the readings from the sensor and the

packet sending and put the application into the initial waiting state for

energy saving. The format of the Stop command is the following

Stop,<IMU ID>

During its activity, the application waits also for Vibration commands:

they tell the device that an activation of the vibration motor is required.

The format of the Vibration command is the following

Vibration,<Duration>,<PWM>

The duration field contains the time in millisecond for which the motor will

be activated; the PWM value allows to regulate the intensity of the vibration.

Even if the MPU-9150 provides up to 1000 accelerometer and gyroscope sam-

ples per second, for the application a much smaller rate is required. In order

to have accurate measurements and to save energy a 50Hz-rate has been

chosen for the readings from accelerometer and gyroscope and a 25Hz-rate

for the readings from magnetometer. The raw data coming from the IMU is

then processed using the RTQF fusion algorithm which ouputs orientation

data.

During the loop, at each iteration the application reads also the value com-

ing from the ADC to which the force sensor is connected. All this data is

packetized into a structure which contains 7 floats:

H Rot X H Rot Y H Rot Z F Rot X F Rot Y F Rot Z Force value

and the 224-byte packet is sent over UDP.
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3.4.2 RTQF: the fusion algorithm

RTQF [3] is the default fusion algorithm used in all versions of RTIMULib.

It’s a much simplified version of a Kalman filter that does just enough for

e↵ective fusion of data from gyros, accelerometers and magnetometers. Es-

sentially how RTQF works is that the gyro rate outputs are used, along with

the time between samples, to linearly extrapolate the previous orientation to

the predicted current orientation of the IMU. In order to stop this getting

totally out of line with reality, the accelerometers and magnetometers pro-

vide an absolute reference (pitch and roll for the accelerometers, yaw for the

magnetometers). The accelerometer and magnetometer outputs can be quite

noisy and subject to all kinds of perturbations so the trick is to combine ev-

erything in a way that produces nice results in real life. RTQF calculates two

quaternions at every step – one is the predicted quaternion from the gyro

rates while the other is the ground frame-referenced measured quaternion

from the accelerometers and magnetometers. The predicted quaternion is

the most stable but subject to drift. The measured quaternion is less stable

but has no drift.

Slerp stands for Spherical Linear Interpolation and is a technique for find-

ing an intermediate quaternion between two other quaternions. Quaternion

Slerp uses a parameter, the Slerp power, that is used to control where be-

tween the two original quaternions the new one is generated. So, in this

case, the Slerp power controls where the resulting quaternion is between the

predicted quaternion and the measured quaternion.

The Slerp power can range between 0 and 1. If it is 0, the measured quater-

nion is ignored and only the gyros are used e↵ectively. If the Slerp power is

1, the predicted quaternion is ignored and only the measured state from the

accelerometers and magnetometers is used. RTIMULib uses a default value

of 0.02. This means that mostly the gyros are used although the predicted

state is corrected by 1/50 of the di↵erence between the predicted state and

measured state.
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Calibration

In order to work correctly the IMUs need to be calibrated with the tool

provided by RTIMULib. The end result is a file in the working directory

called RTIMULib.ini that contains all of the generated settings.

RTIMULib supports the following IMU calibration options:

• Compass min/max calibration. This is a simple scheme that obtains

the minimum and maximum readings from the magnetometers and

then scales the readings based on these values.

• Compass ellipsoid fitting. This is a secondary (optional) stage to the

min/max calibration that further refines the response by fitting an

ellipsoid to the magnetometer readings and shrinking these coordinates

so that they fit on the surface of a sphere located at the origin. This

option requires GNU Octave on the host system.

• Accelerometer calibration. This uses a simple min/max system to scale

the accelerometer outputs to between -1g and +1g when not being

artificially accelerated.

3.5 Integration in the existing system

A pair of presented devices has been used in the configuration with 2 IMUs

to track the orientation of the user’s hands and index fingers. An additional

device, in the configuration with only 1 IMU, has been placed inside of a

helmet in order to track the orientation of the head: the helmet is also

provided with a marker for positional tracking and need to be worn by the

user in a CAVE system. The tracking data is used to update the viewpoint

and the images on the walls.

Data (euler angles and force value) from the devices are sent via UDP to a

middleware data collection application. This middleware collects all the data

from the tracking devices (including OptiTrack and RGBD camera), formats

the data in a string according to the XVR framework, and forwards it via

UDP to the graphical application on the XVR default port 45000.
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VR SENSOR ID, pos x, pos y, pos z, rot x, rot y, rot z, force value

The position fields are filled with the data coming from the tracking system,

while the rotation and the force value fields with the data coming directly

from the IMU.

3.6 Introducing advanced Haptic Feedback

Haptic devices can provide a sense of touch and force feedback to the users

[13]: for these reasons they are particularly suitable for those applications

which contemplate the exploration of the virtual environment or the interac-

tion with the object present in it [42].

The device described in the Chapter 3 is only able to provide a very simple

feedback to the user by means of the vibration motor. The intensity of the

vibration is modulated according to the haptic feedback that is required.

In order to provide advanced feedback, that vibration motor has been sub-

stituted with a more e↵ective device that is able to modulate skin stretch at

the fingertip.

This Thesis has not deal with the design and the realization of this device,

but with its integration in the proposed system.

3.6.1 Hardware description

The advanced haptic device is a wearable fingertip [14] with 3 DoF asym-

metric 3-RSR kinematics. Rendering of skin stretch in 3 degrees of freedom

(DoF), with contact - no contact capabilities, has been implemented through

rigid parallel kinematics.

A di↵erential method for solving the non-trivial inverse kinematics has been

also proposed and implemented in real time for controlling the position of

the skin tactor.

The result of the design choices has been a small and lightweight device

particularly suitable for rendering haptic feedback during manipulation in

virtual environments. The device is presented in a dual finger configuration
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(index and thumb) in order to allow two-fingers fine manipulation of objects.

Figure 3.10: The haptic device

To actuate the device 3 lightweight (4g) and compact size (20x23x8 mm)

electromagnetic servo motors have been used, driven through a Pololu Micro

Maestro control board.

Thanks to the parallel structure, all the actuators have been mounted on the

base fixed to the back of the fingertip. Thus, the encumbrance within the

hand workspace has been minimized to the only end-e↵ector with the skin

tactor.

3.6.2 Device integration

In order to integrate the haptic device into the existing system:

• the device itself has been provided with markers (for positional track-

ing) and an IMU (for orientation tracking)

• the graphical application has been modified in order to handle the in-

formation coming from the device and to faithfully actuate the motors.
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Since the purpose of this work is to investigate the interaction with virtual

objects, both finger configurations, for the thumb and for the index finger

have been used.

On top of each device have been placed an infrared marker and a colored

marker in order to track the position of the two fingers using the data com-

ing either from the OptiTrack and the 3D camera mounted on top of the

Oculus. The actual position of the fingers has been obtained using only the

data coming from the Optitrack system, but the use of the colored markers

came from the need to distinguish the thumb (blue) from the index (green)

finger.

The orientation tracking of the fingers takes place by means of an IMU

mounted on the device. Since the servo motors generate an electromagnetic

field, the magnetometer used in the IMU can be subjected to malfunction if

located close to the motors. Thus, several trials have been done in order to

obtain a location for the IMU where the influence of the motors was negli-

gible. Each trial needed a calibration specific for that location and the best

position resulted to be the one shown in Fig. 3.11.

Figure 3.11: The haptic device and the IMU

Providing the orientation of the two fingers, the IMUs allow to establish

the actual position of the fingers in the space with respect to the marker’s

positions with the following formula:
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posf = posm + dfm ·Rf

where:

• posm is the marker position obtained from the OptiTrack

• dfm is the distance (fixed) between the marker and the finger

• Rf is the Rotation Matrix of the finger obtained from the IMU



4. System Integration and

Testing

If we are to make reality endurable,

we must all nourish a fantasy or two.

Marcel Proust

Upon completion of the development of the interaction device, the imple-

mentation and the evaluation of the previously presented solution have been

addressed.

To handle most of the basic VR requirements (loading the 3D model of the

environment, performing stereoscopic rendering, gather sensors data) we use

the flexible and e�cient XVR framework [51], that allows us to have a fine-

grained control on the basic aspects of visualization and interaction.

In this chapter are presented two di↵erent applications which make use of the

system. For the applications, the virtual environment has been represented

with a 4 by 4 meters sized virtual room. The user, located inside the room

can freely move inside it, wearing on both hands the developed device.

62
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4.1 Hand Model Rendering

The first graphical aspect addressed for the application development has

been the look and feel of the user hands. The simplest way for representing

the movements of the hand is to show an object (such as a sphere) placed

according to the positional information received from the tracking system.

To provide an higher feel of presence to the user, two more complex render

strategies have been taken into account as described in the following.

Since the aim of the project is to provide users with the ability of performing

manipulation tasks the markers for the positional tracking are placed on the

index fingertip as the Fig. 4.1 shows.

Figure 4.1: Location of the marker for positional tracking

Real Hand

The system described in the Section 3.1 is used to show a real-time textured

geometric mesh of the visible parts of the hands and body as seen from the

user perspective. For the more specific tasks of real-time reconstruction and

visualization of the data captured by the camera the custom rendering XVR

plugin based on the hardware-accelerated approach and described in [52] has

been used. All the external modules have been developed in C++.
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Figure 4.2: Real Hands rendering

The position tracking of the hand is performed fusing the data coming either

from the 3D camera mounted on top of the Oculus and the OptiTrack system.

Color markers have been also used to distinguish the two hands.

The user sees his own real hands operating in the virtual environment, so

high natural and intuitive interaction is provided. On the other side the user

seeing the devices on his hands could be distracted or annoyed.

Virtual Hand

According to [23] when one’s own hand is placed out of view and a visible

fake hand is repeatedly stroked and tapped in synchrony with the unseen

hand, subjects report a strong sense in which the fake hand is experienced

as part of their own body.

The render of virtual hands is achieved by showing a virtual representation

of human hands in the same position of where the real actually are. The

hands are oriented and animated according to the information coming from

the IMUs:
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• the IMU placed on top of the index provides the orientation of the

whole hand

• the IMU placed on the back of the hand provides the relative orientation

of the hand with respect to the index finger orientation.

The system does not provide any information about the rotation of the other

finger but the index. However has been observed that when performing a

pinch

• the middle, the ring and the little fingers follow the movement of the

index in a proportional way;

• the thumb gets close the index during the pinch and gets away during

the release.

In order to make easy the animation and the management of the avatar

hands, an high-level class HandCharacter has been created; this class allows

to manipulate the complex hierarchies of objects of the hand, providing some

methods for rotating the index, the thumb and the other fingers and handling

the rotation of the single phalanxes of each finger.

Figure 4.3: The virtual render of the hand
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4.2 World Builder

This application allows the users to populate a scene with objects of

elementary shape such as cubes, spheres, pyramids and cylinders. The appli-

cation provides di↵erent type of hands render according to the needed and

the requirements.

Initially the user is in an empty room and in order to add objects inside the

scene has to interact with the palette.

4.2.1 The palette tool

The palette is the tool which allows users to customize the scene with objects.

In particular it provides the possibility to put an object inside the scene

and to color it. The palette is enabled with the solicitation of the force

sensor placed on the left-index phalanx. The Figure 4.4 shows a model of a

palette divided two sections: shapes and colors. The shapes section shows

the procedural objects which can be easily imported to the scene with a

simple grab. The imported objects take default dimension (0.2m) and gray

color. To modify the latter, the colors section can be used. It shows a series

of fixed colors which can be applied to the object by grabbing them to the

desired object. Three sliders with the primary colors red, green and blue are

also provided in order to customize the final color.

When the palette is activated, it’s placed in the left part of the current
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Figure 4.4: Design of fixed palette Figure 4.5: The VR palette

viewpoint of the user and remains there until another activation occurs.

A mobile version of the palette is also available: when active, it’s shown on

the user’s left-hand and follows the orientation of the hand. In this case in

the side facing the palm of the hand are shown the same object, while in the

side facing the back of the hand are shown the colors and the sliders. The

mobile palette is shown until the user pinches.

4.2.2 Object manipulation metaphors

To place an object inside the scene the user has to grab it from the palette.

A grasping condition occurs when the user pinches an object by exerting a

force between the index and the thumb -namely when the force sensor detect

a force above a certain threshold- within or in close proximity of an object.

Once an object is placed into the scene, the user can interact with it using

his own hands in order to customize its position, orientation and dimension.

Translation

The translation of an object is enabled with a weak pinch on one of its

surface and it lasts until the user release the pinch. This state transition is
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announced with a sound, a vibration feedback and for the duration of the

translation the involved object takes a red color. Inside this state, using the

tracking information, the position of the object will be update according to

the hand one and it allows the user to place an object into a desired position

inside the scene.

Rotation

The rotation of an object is enabled with a strong pinch on one its surface

and it lasts until the user release the pinch. Also in this case, the state tran-

sition is announced with a sound, a vibration feedback and a green color of

the involved object. Inside this state, using the IMU and the tracking infor-

mation, both the orientation and the position of the object will be update

according to the hand ones. The rotation of the object is pivoted to the

pinching point and while rotating, the object can be also translated.

To let the object rotate around its pivot point the following procedure 4.6 is

executed:

1. The pinching point (pivot point) coordinates are computed with respect

to both the world frame and the local frame of the object.

2. The object is translated into the pinching point.

3. The object is rotated with respect to the hand rotation around its

center.

4. The object is translated back of a quantity equal to the distance be-

tween its previous position and the pinching point position with respect

to the local frame.
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(1) (2) (3) (4)

Figure 4.6: Rotation of a cube around a pivot point

Scaling

The objects inside the scene can also be scaled, either on a single axis and

uniform on the three axis:

• To scale an object on a specific axis -namely to extrude one of its

surface- a pinch on one of the six red dots is needed. Each dot allows the

extrusion of the relative surface which belongs. The center of scaling

in this case correspond with the center of the object. The scaling

factor on the scaled axis is proportional to the hand displacement in

the sense that the pinched point behaves like attached to the hand,

while on the other axis the axis factor remains constant. Since the

scaling on a certain axis produces a scale in both direction, the object

undergoes a scale corresponding of the half of the hand displacement

and a translation equal to the half of the hand displacement on the

same axis.

• The homogeneous scaling of an object is enabled with a weak pinch

with both hands on the object surfaces. As above, thescaling factor

is proportional to the hand displacement and the center of scaling is

the center of the object. In this case the translation undergone by

the object is directed to the perpendicular of the hands’ displacement

direction in order to maintain the proportions between the pinched
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points. This provide high-intuitive interaction.

Figure 4.7: Scaling of a pyramid on the vertical axis. The object is first

scaled and then translated

Figure 4.8: Homogeneous scaling of a cube. The object is first scaled and

then translated



Chapter 4. System Integration and Testing 71

In each frame the following steps are executed:

1. Get head position and orientation from the OptiTrack

2. Get hands position (from OptiTrack and RGBD camera) and orienta-

tion (from IMU)

3. Compute the new viewpoint and the hands animation

4. Check whether or not the user is pinching with the finger

5. If yes, check the eventual objects involved in the pinching

6. Update object (position, orientation and dimension) according to the

pinching mode (Translation, Rotation)

7. Provide the adequate feedback

8. Update the scene and the state variables
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4.3 Operator Training Simulator

Global industrial manufacturing capacities constitute a large part of the

world wealth and economy. A key component of any manufacturing business

is training: training a specialized workforce as well as training the customers

about the produced machineries requires huge amounts of time, resources and

logistic facilities. Training has spill-over benefits for the industry (by provid-

ing a pool of skilled workers) and for the society (the improved employment

outcomes and flow-on e↵ects such as improved health and lower social wel-

fare costs). Currently, in the field of industrial manufacturing training is a

hugely expensive activity traditionally burdened by a number of issues such

as the cost of realizing a training environment, the cost of using machineries

beyond the working hours, security risks when a trainee uses an equipment

and more. These considerations have in time lead to the suggestion that the

use of Virtual Reality could introduce significative benefits in the training

processes, by removing the need of physical mock-ups in the training process

or at least in some of the procedures.

The application presented is intended to be used by industrial companies who

needs to train their operators on the tasks of assembly, disassembly or main-

tain large mechanical machines. What motivates the use of Virtual Reality
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is that a real copy of the machine could be cumbersome and expensive, and

very likely it might result impossible to work together on the same machine

at the same time. Moreover usually an expert assistant is required during

the training phase in order to assist the operator. The proposed application

provides the needed metaphors to interact and manipulate a 3D model of the

machine in absolute autonomy with the purpose of following out a task. The

application provides a controlled and safe training environment, in which

damages to the real machine are reduced or avoided; hence, inexperienced

users can take advantage of virtual training before actually facing the real

machine.

The application presents a scene consisting of a room, within which the user,

wearing the visualization system described above, can walk around. At the

center of the room is placed the 3D model of the machine, while on the wall

are present the instruction tables that help the operator during the task.

The application consists of two fundamental modes of operation: the author-

ing mode and the training mode.

4.3.1 Authoring mode

This modality is intended to be performed only once by an expert who owns

already deep-knowledge of the machine, of the procedures that can be per-

formed on it, such as maintenance, and of each of the steps that needs to be

followed to disassemble it. The expert can disassemble the machine, piece

after piece. During this phase, the expert defines steps and sequences. In our

mind a sequence consists of an ordered list of steps, and each step consists

of an unordered list of pieces to move. According to this notation, inside a

step the pieces can be moved without a specific order, but inside a sequence

the steps must be sequentially performed. The expert can also mark a step as

a group of pieces: this implies that the step will consist only in the transla-

tion of the entire group into its target position. The expert thus disassembles

the group piece-by-piece, with the possibility to further define nested groups.

The concept of group is of primary importance especially in case of complex

hierarchical machines: it allows to assemble/disassemble portions of the ma-
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chine in a location di↵erent from the final one, helping the operator to have

a more organized and schematic view of the entire machine. If during the

disassembly the expert makes a mistake, he can navigate through the steps,

undo the changes and start over.

While authoring, the expert places each item in a specific location. This

location is marked as starting position for the specific piece during an assem-

bly session: in other words, when the trainee will assemble the machine, at

the beginning of each step he will find the pieces exactly in the position the

expert left it. If inside a step, two or more pieces are left in the same posi-

tion (and have the same dimensions) they are marked as equivalent. In this

case, only one of the equivalent pieces is shown with a label indicating the

number of equivalent pieces of which consists. This implies that in assembly

mode, the operator can place an equivalent piece in the target position of

any other equivalent (e.g. if the expert marks some screws as equivalent, the

operator will be able to place screws in any well fitting location). During

this phase the expert can also take snapshots (Appendix A.2) of the state

of the machine from its own point of view. These snapshots are stored and

can be used and modified in order to define instructions tables that can be

presented to the operators during the training phase.

At the end of the authoring session an ordered list containing all the se-

quences, the steps and the equivalences defined by the expert is saved on file

(using the tool described in Appendix A.1), as shown in Fig. 4.9.

4.3.2 Training mode

This mode is intended to be performed by operators for training. The trainee

can either work on the machine in a ‘free’ mode, or can perform a training

session on the machine assembly or disassembly. In the first case the opera-

tor can interact with the machine model, without any constraint in terms of

sequences and steps, in order to discover how it is made. When instead the

operator performs a training session, he’s constrained to the specific sequence

previously executed by the expert in the authoring mode.

On the walls of the room, the operator can find the instruction tables relative
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Figure 4.9: The authoring stage produces the sequences structure starting

from the 3d model

to the step he’s performing, and information about the progress of his task:

number of remaining pieces, number of steps completed, number of sequences

completed and time passed.

During the training several hints could be activated, depending on the di�-

cult of the task, to help the operators: It is possible to define help layers that

can be dynamically presented to the users that encounter di�culties in per-

forming certain operations. Furthermore the operators can perform the same

task several times - with a decreasing level of help - until they acquire the

needed familiarity with the machine. The application’s flow chart is shown

in the Fig. 4.10.

Figure 4.10: The training system flow chart.
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Disassembly mode

In this modality the instruction sequences are loaded from file in the same

order they have been saved. At the beginning of the task, the machine is

completely mounted and in order to move forward on the task, the operator

must complete the needed steps by removing the right pieces from their

starting position. Since it is a disassembly task, the operator is not required

to put the items into a target position; in order to clean up the scene, at

the end of each step, the moved pieces are translated into the position the

expert left them. The operator is able to move only the pieces that must be

actually moved inside that step. When the operator grabs a piece that can

be moved it becomes green, while if the piece cannot be moved it becomes

red. Each action results also in an acoustic feedback that alerts the users

that the action has been actually performed by the system.

Assembly mode

In this modality the instruction sequences are loaded from the file in a back-

ward order. At the beginning, the first piece is already placed into its target

position. The remaining pieces relative to the step/sequence are showed in

their start position, namely where the expert left them during the author-

ing stage. Equivalent pieces are showed together with a label indicating the

number of multiple items. The task of the operator is to put all the pieces

into their right target position. If the operator leaves the pieces in a closest

range of the target, they are automatically snapped to the correct position.

Also in this case each action results in an acoustic feedback that alerts the

users that the action has been actually performed by the system.

4.4 Integration of the advanced haptic device

In order to integrate the advanced haptic device described in Section 3.6

the condition for the object grasping, previously based on the force exerted

between thumb and index fingers and measured by means of the force sensor,

has been substituted with a more realistic one based on the contact between
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the fingers and the objects.

If an object is touched with only one finger, it is moved in the same direction

of the finger movement. If instead an object is touched with both fingers it is

grasped and it’s moved according to the movement of the mid-point between

the fingers position.

The contact-no contact condition is based on the closeness of the fingers to

the surface of the object. When a finger enters is contact with an object two

quantities are computed:

• the normal vector between the surface and the contact point: it’s used

to calculate the orientation of the force on that finger.

• how much the finger virtually enters the object: it’s used to calculate

the value of the force that will be exerted.

For the collision detection between the fingers and the objects the native

XVR function isColliding has been used.

bool IsColliding(

vector[3] FromPoint,

vector[3] ToPoint,

vector[3] &ContactPoint,

vector[3] &ContactNormal

);

The function tests the intersection between the current object and the seg-

ment (FromPoint, ToPoint). In case of collision, the intersection point is

returned in ContactPoint and a vector representing the normal to the con-

tact point is returned in ContactNormal.

The returned ContactNormal is expressed in the object coordinate system.

So in order to refer it to the finger the coordinates of the normal needs to be

converted to the finger reference system.

The position of the end-e↵ector with respect to the fingertip gives the feeling

of the exerted force.

The inverse kinematics of the device has been solved o✏ine for each point
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the end-e↵ector can reach with a resolution of 0.1mm. The results have been

stored in a look-up table which contains the values relative to the angular

positions of all the actuators for each point. These value are sent to the

device using serial communication (USB).

4.5 Preliminary user studies

In our pilot study, the aim of the subjects has been to perform an assembly

task of a 53-pieces model of the LEGO R� Creator Sea Plane [2]. The final

task has been preceded by a training phase on the same real model, or on

an equivalent 3D model. The 3D model has been exported from 3ds MAX R�

Figure 4.11: The real model Figure 4.12: The 3D model

using the specific XVR plugin. The authoring stage has been performed by

one of the experimenter strictly following the original instructions provided

with the model, dividing the model into 3 groups (the flying boat, the tail

and the pontoons) and identifying 5 sequences.
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4.5.1 Description of the pilot study

The test group consisted of 8 subjects, divided into two sub-groups. Both

sub-groups have performed a 30-minutes training, the first one using the real

model, and the second one using the virtual model with the presented sys-

tem.

Figure 4.13: Virtual training
Figure 4.14: Assembly of the real

model

During the training, the subjects were provided with the same instruction

tables needed to accomplish the requested task and they could use the time

at their disposal to perform the task several times, or just to study the model

and the relative instruction tables.

After the training each subject has performed the actual task: an assembly

of the real model without time constraints and instruction tables. The per-

forming time has been registered and the results evaluated according to the

number of pieces correctly placed.
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4.5.2 Results

The Fig. 4.15 and 4.16 show the results of the pilot study. In particular

the Fig. 4.15a and 4.16a show the completion times of assembly sequences

performed respectively during the real training and the virtual training. The

Fig. 4.15b and 4.16b show the time needed to assemble the real model after

the training (in yellow), and the percentage of completion of the model (in

blue).

(a) Duration of training sequences (b) Real assembly

Figure 4.15: Training on the real model

(a) Duration of training sequences (b) Real assembly

Figure 4.16: Training on the virtual model
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The charts show that the time needed to complete an assembly sequence

significantly decreases in the virtual training with respect to the number of

trials. The first trial in virtual training requires more time because of the

needed familiarization with the environment. Even if the assembly of the real

model after the virtual training has required longer time, all the subjects have

been able to complete the assembly of the model for almost the 50%, with a

peak of 90%.



5. Conclusions and future

works

There are two possible outcomes: if the result confirms the hypoth-

esis, then you’ve made a measurement. If the result is contrary

to the hypothesis, then you’ve made a discovery.

Enrico Fermi

This Thesis project has been investigating interfaces and metaphors for in-

teraction in Fully Immersive Virtual Environments with the aim of providing

users with the ability of performing manipulation tasks.

The research activity has begun with the collection of the relevant State of

The Art and the analysis of the solutions currently suggested in the literature

to let users the manipulation of virtual objects.

Then, always keeping in mind a set of usability criteria to satisfy (reliability,

weightlessness, cumbersomeness), an original device has been designed. The

set-up of a practical and e↵ective inter-networked test environment has been

important during the design of the necessary components and embedded

firmware that would allow verification and tests on the fly. This has helped

to significantly speed-up the development phase since the device could be

programmed without been physically connected to the complex VR equip-

ment.

The result of this work has been thus integrated in the existing system with

82
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the purpose of validating it in a complex interaction testbed and two demon-

strative applications have been implemented for this specific task.

The second part of the project has been concerned with the implementation

of advanced haptic feedback in the system, and this has been obtained by

means of a novel haptic device.

5.1 Achievements

The various research activities have allowed the design of a thimble-like inter-

face that can be used to recognize in real-time the human hand’s orientation

and infer a simplified but e↵ective model of the relative hand’s motion and

gesture. Inside the virtual environment, users provided with the developed

system are therefore able to operate with natural hand gestures in order to

interact with the scene; for example, they could perform positioning task

by moving, rotating and resizing existent objects, or create new ones from

scratch.

More in particular, the existing SSSA system, which consists of a powerful

optical tracking system and an HMD with a 3D camera mounted on top of

it, has been thus exploited to develop the demonstrative applications that

involves the use of the user’s hands for performing manipulation tasks:

• World Builder allows users to populate a room with objects of ele-

mentary shape chosen from a palette. The objects can be manipulated

in position, orientation and dimension and their color can be easily

modulated.

• Operator Training Simulator allows the training of the users in as-

sembling or disassembling complex mechanical machineries by following

predefined step sequences.

A preliminary user study, aimed at assessing the e↵ectiveness of the training

performed in a virtual environment has then been conducted: the users have

been asked to assembly a model of a seaplane first using a Mixed Reality

system and then in the real counterpart scenario.
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The collected results suggest that the virtual training could be so e↵ective as

the real one, but more extensive user studies need to be performed in order

to further assess the benefits of the virtual approach.

5.2 Future directions

At the current status the project already provides the necessary tools and

methodologies for hand’s orientation tracking, allowing users to manipulate

virtual object by means of interaction metaphors.

However the modular architecture enables several possibilities for future de-

velopment that would allow addressing some exciting challenges that remains

still open. More in detail:

5.2.1 Combining Optical and Inertial Tracking

The OptiTrack system used in this Thesis is able to provide data coming from

the cameras at 100 FPS. Especially when dealing with haptic interfaces, there

is the need to have positional data at higher frequency in order to determine

contact-no contact situation and to provide the adequate feedback with no-

delay. Numerical stability is also a well known problem in haptic rendering

that is highly alleviated by a high-frequency rendering loop.

In the presented device, the IMU MPU-9150 is only used to obtain fused

data about the orientation of the user hand from accelerometer, gyroscope

and magnetometer; the accelerometer can provide raw data up to 1000 Hz

and we think that it can be used to obtained the linear acceleration of the

user’s finger at high frequency, in order to compensate the OptiTrack mea-

sures and have fine-grained positional tracking.

Some work has already been done, especially for what concerns the data

reading, the gravity compensation and the correspondence between the dif-

ferent coordinate systems involved.

Obviously the challenges to address are several:

• the double integration to obtain position from acceleration intro-

duces unavoidable measurement errors due to tiny vibrations, imper-
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fections in the manufacturing and so on. Accumulating these errors

over time results in a Random Walk. The OptiTrack measurements

‘resets’ the error at fixed rate, but the introduced error must be cor-

rectly evaluated also in the case of short-term double integration.

• the latency between the measurement of the position with the Opti-

Track and its communication to the device. This point is crucial for the

estimation of the position using the accelerometer because the device

uses the last received position as starting one: noon-up-to-date data

could produce a significant error in positional reckoning. The intro-

duction of measurement timestamps could alleviate the consequences

of this problem.

Another issue to face regarding the communication is the unreliabil-

ity of the wireless link. If several packets get lost the error introduced

could be inappropriate for some applications, so space is present here

for some more sophisticate communication protocol.

Figure 5.1: A scatter plot of a trajectory
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5.2.2 Using active IR leds for Optical Tracking

The markers used for the Optical tracking are passive retro-reflective mark-

ers: even if they have small dimension they are bigger and more visible than

an active IR led. Moreover there is no chance to distinguish a marker from

another but to use algorithms that associate the same marker to the closer

position measured. In the project the markers relative to the two hands have

been distinguished with the use of colored marker and a RGBD camera.

The use of active IR leds for optical position tracking would allow the def-

inition of di↵erent illumination patterns for each led. To do so, the device

needs to recognize the illumination rate of the OptiTrack and to synchronize

with it. The application should be only able to recognize the pattern and to

associate to it the correct position.
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A. Support tools developed

A.1 XVR Object SerDes

The XVR Object SerDes is an XVR class which provides methods for serial-

izing and deserializing XVR objects. The class works also in case of nested

objects (i.e. objects which have other objects as attributes). This is useful

for storing XVR objects without losing their type and structure.

A function ClassName Factory() is required in order to serialize instances of

that class. The function must return an array containing an instance of the

class and an array containing the attributes to serialize.

function ExampleObj_Factory() {

return {ExampleObj(), {"name", "id", "arr"}};

}

The library o↵ers two methods: Serialize and Unserialize.

Serialize

string Serialize(obj)

• obj: The object to be serialized. serialize() handles all types.

• return value: A string containing a byte-stream representation of obj

that can be stored anywhere.

The serializer generates a storable representation of an object. The serial-

ization stage, given an instance of a class and a list of attributes to serialize,
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returns a dump of the instance in a string. Primitive objects (i.e. string,

int, bool, vector) are encoded using the XVR function VarStringEncode(var)

which encodes the content of the variable var in a string.

Non-primitive objects (i.e. array, class) are recursively serialized according

to their type.

Listing A.1: Example of serialization

1 var object to be serialized = TestObj();

2 var child obj = ChildObj();

3 object to be serialized.id = 1;

4 object to be serialized.name = ”Father”;

5 object to be serialized.arr = {true, 2, ”Lorem”};
6

7 child obj.name = ”Child”;

8

9 object to be serialized.child = child obj;

10

11 var serializer = Serializer();

12 var serialized obj = serializer.Serialize(object to be serialized);

Unserialize

class Unserialize(serialized obj)

• serialized obj: the serialized string.

• return value: the converted obj is returned,

The unserializer takes a serialized variable and converts it back into an XVR

object. Also in this case, primitive objects are decoded using the XVR

function VarStringDecode(var), while non-primitive objects are recursively

deserialized according to their type.
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Listing A.2: Example of deserialization

1 var serializer = Serializer();

2 var new obj = TestObj();

3

4 new obj = serializator.Deserialize(serialized obj);

A.2 XVR ScreenTool

XVR ScreenTool is a simple tool that provide an intuitive way to take screen-

shots from the inside of an XVR application.

The action can be triggered by any XVR event, such as key pressure, timer

expiration, collision detection and so on. The image is then saved in PNG

format.

This tool is particularly suitable for those situations in which the user is far

from the keyboard or is wearing an HMD and the traditional way to take

screenshot is not comfortable.



B. Code Listing

Listing B.1: Reading from IMU

1 while (imu0�>IMURead() && imu1�>IMURead()) {
2 /⇤ Retrieve data from IMUs ⇤/
3 RTIMU DATA imuData0 = imu0�>getIMUData();

4 RTIMU DATA imuData1 = imu1�>getIMUData();

5

6 /⇤ Retrieve data from ADC ⇤/
7 float force value = getForceValue();

8

9 /⇤ Fill data packets ⇤/
10 data IMU[0][0] = imuData0.fusionPose.x() ⇤ RTMATH RAD TO DEGREE;

11 data IMU[0][1] = imuData0.fusionPose.y() ⇤ RTMATH RAD TO DEGREE;

12 data IMU[0][2] = imuData0.fusionPose.z() ⇤ RTMATH RAD TO DEGREE;

13 data IMU[0][3] = 0;

14 data IMU[1][0] = imuData1.fusionPose.x() ⇤ RTMATH RAD TO DEGREE;

15 data IMU[1][1] = imuData1.fusionPose.y() ⇤ RTMATH RAD TO DEGREE;

16 data IMU[1][2] = imuData1.fusionPose.z() ⇤ RTMATH RAD TO DEGREE;

17 data IMU[1][3] = adc value;

18

19 /⇤ Send data packets ⇤/
20 for(int i = 0; i<NUM OF IMU; i++)

21 {
22 sendto(sock, data IMU[i], 4⇤sizeof(float), 0,
23 (struct sockaddr ⇤) &IMUSocket[i], sizeof(IMUSocket[i]));

24 }
25 }
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Listing B.2: ADC Reading

1 float getForceValue()

2 {
3 /⇤ Disable I2C for IMU (pin 28|29) ⇤/
4 INP GPIO(28);

5 INP GPIO(29);

6 /⇤ Enable I2C for ADC (pin 0|1) ⇤/
7 SET GPIO ALT(0,0);

8 SET GPIO ALT(1,0);

9

10 FILE ⇤f0 = fopen(”/sys/bus/iio/devices/iio:device0/in voltage1 raw”, ”r”);

11 fscanf(f0, ”%i”, &adc input);

12 fclose(f0);

13

14 float adc value = 1 � (max(0, min(1, ((adc input � min val) /

15 (max val � min val)))));

16

17 /⇤ Disable I2C for ADC (pin 0|1) ⇤/
18 INP GPIO(0);

19 INP GPIO(1);

20 /⇤ Enable I2C for IMU (pin 28|29) ⇤/
21 SET GPIO ALT(28,0);

22 SET GPIO ALT(29,0);

23 return adc value;

24 }

Listing B.3: Accelerometer compensation

1 RTIMU DATA imuData1 = imu1�>getIMUData();

2 uint64 t temp now = RTMath::currentUSecsSinceEpoch();

3 float deltaTime = temp now � now;

4 deltaTime /= 1000000.0f;

5 float accel[3], gravity[3], data IMU1[3];

6
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7 /⇤ Get Accelerometer values ⇤/
8 RTVector3 accelData = imu1�>getAccel();

9 accel[0] = accelData.x();

10 accel[1] = accelData.y();

11 accel[2] = accelData.z();

12

13 /⇤ Get Orientation (RPY) values ⇤/
14 data IMU1[0] = imuData1.fusionPose.x() ⇤ RTMATH RAD TO DEGREE;

15 data IMU1[1] = imuData1.fusionPose.y() ⇤ RTMATH RAD TO DEGREE;

16 data IMU1[2] = imuData1.fusionPose.z() ⇤ RTMATH RAD TO DEGREE;

17

18

19 /⇤ Compute gravity vector ⇤/
20 gravity[0] = 2 ⇤ (imuData1.fusionQPose.x() ⇤ imuData1.fusionQPose.z() �
21 imuData1.fusionQPose.scalar() ⇤ imuData1.fusionQPose.y());

22 gravity[1] = 2 ⇤ (imuData1.fusionQPose.scalar() ⇤ imuData1.fusionQPose.x() +

23 imuData1.fusionQPose.y() ⇤ imuData1.fusionQPose.z());

24 gravity[2] = imuData1.fusionQPose.scalar() ⇤ imuData1.fusionQPose.scalar() �
25 imuData1.fusionQPose.x() ⇤ imuData1.fusionQPose.x() � imuData1.fusionQPose.y() ⇤
26 imuData1.fusionQPose.y() + imuData1.fusionQPose.z() ⇤ imuData1.fusionQPose.z();

27

28 /⇤ Remove gravity vector from accelerometer measure ⇤/
29 accel[0] = accel[0] � gravity[0];

30 accel[1] = accel[1] � gravity[1];

31 accel[2] = accel[2] � gravity[2];

32

33 /⇤ Change the coordinate system according to the global reference system ⇤/
34 glm::mat4 rotationMatrix = glm::yawPitchRoll(data IMU1[2], data IMU1[1], data IMU1[0]);

35 glm::vec4 accel base = rotationMatrix ⇤ glm::vec4(accel[0], accel[1], accel[2], 1.0f);

36

37 /⇤ Check if there are new measures from OptiTrack ⇤/
38 if(!OptitrackUpdated())

39 {
40 /⇤ If not, predict velocity and position ⇤/
41 accel[0] = accel base[0] ⇤ 9.81;
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42 accel[1] = accel base[1] ⇤ 9.81;

43 accel[2] = accel base[2] ⇤ 9.81;

44

45 static float prev accel[3] = {accel[0], accel[1], accel[2]};
46

47 vel[0] += (prev accel[0] + accel[0]) ⇤ 0.5f ⇤ deltaTime;

48 vel[1] += (prev accel[1] + accel[1]) ⇤ 0.5f ⇤ deltaTime;

49 vel[2] += (prev accel[2] + accel[2]) ⇤ 0.5f ⇤ deltaTime;

50

51 static float prev vel[3] = {vel[0], vel[1], vel[2]};
52

53 pos[0] += (prev vel[0] + vel[0]) ⇤ 0.5f ⇤ deltaTime;

54 pos[1] += (prev vel[1] + vel[1]) ⇤ 0.5f ⇤ deltaTime;

55 pos[2] += (prev vel[2] + vel[2]) ⇤ 0.5f ⇤ deltaTime;

56

57 prev accel[0] = accel[0];

58 prev accel[1] = accel[1];

59 prev accel[2] = accel[2];

60

61 prev vel[0] = vel[0];

62 prev vel[1] = vel[1];

63 prev vel[2] = vel[2];

64 }
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3d human body tracking with an articulated 3d body model. In Robotics

and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE Interna-

tional Conference on, pages 1686–1691. IEEE, 2006.

[31] Frank-Lothar Krause, Martin Göbel, G Wesche, and T Biahmou. A
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One of the main peculiarity of fully immersive virtual reality is the enhan-

cing of the simple passive viewing of a virtual environment with the ability

to manipulate virtual objects inside it. This Thesis project investigates such

interfaces and metaphors for the interaction and the manipulation tasks. In

particular, the research activity conducted allowed the design of a thimble-

like interface that can be used to recognize in real-time the human hand’s

orientation and infer a simplified but e↵ective model of the relative motion

and gesture. Inside the virtual environment, users provided with the develo-

ped systems will be therefore able to operate with natural hand gestures in

order to interact with the scene; for example, they could perform positioning

task by moving, rotating and resizing existent objects, or create new ones

from scratch.

Pisa, July 2015
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