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I N T R O D U C T I O N

Proteins are one of the two fundamental classes of biomolecules (the other
being nucleic acids), performing most of all the functional roles in living systems.
In the last fifty years, a big effort was devoted to the computer simulation of the
dynamics of these systems, in order to get a better insight into their structure
and behavior, and to complement the experimental studies. However, the size
of the system, the time scale reachable in simulations and the accuracy of the
representation are limited by the computer performances. Although the Moore
law ensured - up to now - the exponential increase in time of the latter, currently,
simulations with atomic resolution can address a virus size or very limited portion
of a cell on very short time scales while only single proteins can be represented
on the macroscopic time scales.

Therefore, in order to study the dynamics of biological systems, coarse grained
(CG) models are considered a natural solution to overcome the limits of the
atomistic models. CG models address the system at a lower resolution, reducing
the number of explicit degrees of freedom and providing a less computationally
expensive representation of system. Depending on the level of coarse graining,
macroscopic time scales for systems of biologically interesting size can currently
be afforded.

The hierarchical organization of the protein structure naturally suggest a
possible level of coarse graining, namely that of one interacting center (also called
"bead") per amino-acid, being the latter the basic structural unit of a protein.
Among "one-bead-models" the subclass of those with the bead placed over Cα
emerges as a good compromise between the simplicity and the possibility of
representing accurately the conformation of the backbone and protein secondary
structures. The class of Cα-based one bead models, also called "minimalist", is
the focus of this Thesis work.

In the last decade a number of minimalist models were developed, all repre-
senting the interactions by means of empirical force fields (FF) consisting of a
sum of analytical or numerical terms. Different models differ by the number and
composition of the FF terms, and by the parameterization strategy, which can be
based over higher level theories (typically atomistic simulations) or on experi-
mental data (i.e. data set of experimental structures, and inclusion of other kind
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of macroscopic and thermodynamic informations). As a consequence, the model
can be more or less general and transferable. Usually, accuracy and transferability
are in conflict: the more bias towards known structures is included, the more
structurally accurate, but the less transferable and predictive will be the model. In
order to overcome this problem, most of the currently available minimalist models
include some a priori knowledge of the secondary or tertiary structures within
the parameterization, which can be called a "partial bias". Clearly, the general
goal is to build a model both accurate and predictive, and therefore, unbiased. In
spite of the efforts this problem is still open. Many different recipes including
experimental or theoretical information at different levels and in different ways
are available, but a rational and standard approach to the problem is still lacking.

The goal of this Thesis is to make some steps along this route. The chosen
strategy is to follow a physics based approach, related to the fundamental nature
of forces acting within the proteins. Basically, the primary structure of a protein
(i.e. sequence and polypeptide chain) is stabilized by covalent chemical bonds,
while the secondary structure (e.g. helical or sheet-like structures) is stabilized
by specific hydrogen bonds. Higher level structures (tertiary and quaternary)
are stabilized by other specific interactions, such as disulphide and salt bridges.
Therefore, a possible rational strategy to build a physics based CG model is to
start from a model including only the covalent chemistry of the backbone, i.e. to
build a model for unstructured proteins, where the network of hydrogen bond
interaction is weak, disordered or in some case absent.

Therefore, the specific aim of this work is to build a general minimalist model
to be used for unstructured proteins. No hydrogen bonding or other specific
interactions are to be included in the FF, and the model is parameterized based
on a dataset of unstructured proteins. This strategy is expected to result in a
quite general ad unbiased model able to reproduce the structure and dynamics of
class proteins, namely the “intrinsically disordered proteins” (IDP), which is very
interesting per se. In addition this model for unstructured proteins is designed to
be used as a zero-point approximation over which hydrogen bonding and other
interactions can be added in order to build models for structured proteins, in
rational and physics-based fashion.

The first chapter of this work provides some basic notions on proteins. After a
brief introduction of the experimental techniques related to resolve structured
data for proteins, the description of the protein structure is proposed following
the hierarchical order. After this the specific case of IDPs is illustrated. Due to
the considerable differences between these proteins and the natively folded ones,
IDPs require the use of specific experimental and theoretical methods. Random
coils, defined as the fragments with the highest disordered contents of IDPs,

iv



are then selected and analyzed in deeper detail. These represent the naturally
occurring structural class with the smaller hydrogen bond content.

The second chapter illustrates the most popular simulation approaches for
proteins, providing in the first part a description of the classical molecular dynam-
ics, which is applied to a wide range of different models. The atomistic models
allows the best accuracy and can provide information for the parametrization of
coarser models. Details on the atomistic model are reported in the second section
followed by the introduction to the CG models. As said the parametrization of
CG models can follow many different strategies. One is the Force Matching (FM)
based on the fit of CG forces onto those evaluated from trajectories of atomistic
molecular dynamics simulation. Other popular methods fall in the class of the
Boltzmann Inversion (BI), in which potentials are evaluated from the distribution
of each CG-variables extracted from experimental data or from simulations. The
detail on the last approach, the one chosen in this work, are reported in the
closing part of the second chapter, which also describes the details related to the
one beads model proposed in this work. Despite the large amount of degree
of freedom lost in the coarse graining procedure the possibility of representing
explicitly the secondary structure of proteins makes this class of models one
of the most promising for applications. The final part of this chapter already
includes some original results, namely an analysis of the mapping between the
internal variables of the atomistic and one bead model for different secondary
structures.

The third chapter is devoted to the analysis and selection of the data from the
Protein Data Bank (PDB), which represents the main source of structures used
as input for the parametrization in this work. A particular care is devoted to the
selection of structures with a minimal amount of ordered secondary arrangements,
in order to represent with optimal statistics the “unstructured proteins”. This
choice is an important original result of this Thesis work, and is based on the
selection of the appropriate experimental methods for proteins resolution and
secondary structure recognition methods.

The fourth chapter describes the model developed in this work and parametrized
on the basis of the dataset previously described. The main limits of the model
and strategies to overcome them are also discussed. These involve the statistical
relevance of the data, the relative simplicity of the FF used, the absence in it of
the amino-acid specificity.

The parametrization of the model is based on the Boltzmann inversion (BI)
procedure, basically consisting in deriving a potential related to the inverted
logarithm of the internal variables distribution, therefore capable of reproducing
those distribution in equilibrated simulations. The procedure here presented
is actually an advanced version of the BI, involving multi-variate distribution
targeting and the combination with stochastic exploration of the parameters space
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for the non local potential. All the details and results are reported. In addition,
simulations results are reported, to show the quality of the model and to validate
it.

The implementation of these procedure and of the the specific force field for
simulation required specific software creation or manipulation, whose technical-
ities are reported in appendices, together with the algorithmic details, and to
some details about structure and function of disordered proteins. The last chapter
includes a conclusive summary of possible further developments.
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1
T H E P R O T E I N S S T R U C T U R E

This chapter provides an introduction to proteins structure and the basic notions
used in the development of this work. A brief description of the experimental
methods for the determination of the structure of proteins is given in section 1.1.
In the subsequent section the database of the protein structures are described.
These represent the main source of data supporting this work. Section 1.3
contains the basic notions on amino acids and on their polymeric extension, the
polypeptide. Proteins are described according to their hierarchical structure. The
amino acid sequence represents their primary structure. The local structural
arrangement of each residue is defined as the protein secondary structure and it
is described in section 1.4. In this section the main structural patterns and the
“Ramachandran map”, a fundamental tool for the secondary structure analysis is
illustrated. At the end of this chapter a brief introduction to the algorithms of
identification of secondary structure is given, which are subsequently employed
in chapter 3. Section 1.5 describes the last levels of the protein structure, namely
the tertiary and quaternary ones. A deeper description of the disordered proteins
is then given in sec 1.6. This section focus also on the key role of these peculiar
proteins within this work. Section 1.7 provides the description of the random coil,
which is the state of highest entropy among the disordered ones. Since random
coil is characterized by the minimal possible amount of secondary structures, it
is here considered as a paradigm to build a minimalist model for destructured
proteins, which is the main goal of this work.
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1.1 experimental methods for the proteins structure determina-
tion

The two mostly used methods for protein structure determination are the X-ray
crystallography and Nuclear Magnetic Resonance (NMR) spectroscopy. In the
former technique an X-ray beam scatters across the crystallized sample of the
protein and the scattered beams are collected on a screen. In the sample there is a
protein in each lattice site. The X-rays are scattered by the electrons of the crystal
and are elastically diffused. In some specific direction the scattered rays interfere
constructively providing direct information on the reciprocal lattice vectors of the
crystal (K). The intensities recorded on the screen provide the form factor FK of
the protein depending on the diffusion vector, which is related to the electronic
density f(ri) by means of Fourier transform. The total form factor can be written
as the sum of the atomic form factor (fiK) with a phase depending on the atomic
location within the crystallographic unit cell

FK =
∑
i

fiKe
iK·ri . (1.1)

The atomic positions are then determined through an iterative procedure which
compare the diffraction pattern with theoretical models.

This method is very efficient but carries several experimental drawbacks. The
localization of hydrogen atoms is difficult due to the low electron density. The
crystallization of a biological macromolecule implies a non-natural state. The
configurational statistic set is reduced because the sample must be cooled down at
cryogenic temperatures [1]. In addition it is not possible to evaluate the positions
of atoms of the disorder or too mobile regions: the non-regularity of structures
inside the crystal cells makes it impossible to have a coherent scattering giving a
low signal on electron density map.

The Nuclear Magnetic Resonance (NMR) spectroscopy allows to sample both
conformational and functional set of the protein in aqueous solution, which is
nearer to the physiological state. NMR is based on the capability of a nuclear
spin associated magnetic moment to react to external oscillating magnetic fields.
Though quantum classical in nature, the phenomenon can be explained using
a semiclassical analogue: when a magnetic moment interacts with the static
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magnetic field (with modulus B0, oriented toward the z axis) precedes at the
Larmor frequency (ωL):

ωL = γB0 (1.2)

γ =
gZe

2M
(1.3)

where g, also called g-factor, relates the angular momentum of the system to the
intrinsic magnetic moment and is 1 for classical topic, while it assumes different
values for different particles according to the quantum theory. M is the nuclear
mass and Ze the nuclear charge. γ is named gyromagnetic ratio. The average
magnetic moment is parallel to the z axis. Supplying an orthogonal oscillating
magnetic field at the Larmor frequency the whole magnetic moment flips the
mean magnetization on the same plane absorbing the electromagnetic energy.
Therefore the system will have an adsorption peak at ω = ωL. Gyromagnetic
factors for the commonly used nuclei in NMR spectroscopy of proteins are
reported in table 1.

Nucleus γ [106rad s−1T−1]
1H 267.513
2H 41.065
13C 67.262
14N 19.331
15N −27.116

Table 1: Gyromagnetic ratios of the nuclei used in protein NMR spectroscopy.

However when measured same nuclei show slightly different resonance fre-
quencies depending on several environmental conditions (e.g. solvation, chemical
environment), which influences the local magnetic field. The presence or the
absence of a bond, any different conformation of the whole structure and other cir-
cumstances, alter the resonance frequencies. This deviation is defined as chemical
shift σ (generally expressed in ppm);

ωL = (1− σ)B0γ. (1.4)

This feature characterizes each nucleus making it unique within a given molecule.
This is precisely the feature which allows to extract information about the molec-
ular structure.
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The NMR spectroscopy can be performed using different protocols and tech-
niques. Each technique allows to investigate specific property of the sample and
is characterized by a specific timescale. Timescales and main applications of the
most used methods in protein are reported in table 2. From these measurements
it is possible to extract structural restrains for the analyzed structure. These are
subsequently included in molecular dynamics simulations in order to gather a set
of low energy structures, which fulfills all the restraints. At variance with X-ray,
with this method it is possible to study functional behaviors of a proteins, as,
e.g. binding rates, conformational changes frequencies etc.: in fact the chemical
environment of nuclei changes during the transition showing separate lineshapes
depending whose intensity changes as the transition occurs giving information
on kinetic and change rate.

The main drawback of this experimental technique is the limitation on the size
of the analyzed molecule. Macromolecules have a larger number of resonances
in the same spectral range, generating therefore lower resolution spectra where
the resonance assignment is difficult. In addition, imposition of restrains and
the use of molecular dynamics simulation to include them in the structure may
introduce systematic errors due to the methods used in simulations or some
modeler-dependent bias, which must be carefully considered. In spite of these
problems, the structures resolved with NMR are to be preferred in cases in which
the systems has a large conformational flexibility, which is not appropriately
represented in crystallized structures.

1.2 the protein databases

Most of the experimentally resolved protein structures are deposited in the
Protein Data Bank [4] (PDB) a public web database (www.rcsb.org). The PDB,
established in 1971 at Brookhaven National Laboratory, is freely available to the
research community. Nowadays it is managed by the Research Collaboratory for
Structural Bioinformatics (RCSB), and weekly updated.
The data base collects each structure in a “.pdb” file, with a specific format
and labeled with a four-letter alphanumeric code. The submitted structure
undergoes to several controls before acceptance for inclusion in the database.
Each file contains the coordinates of all resolved atoms of the structure, and,
when available, other supporting information such as the "temperature factor",
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190 MAPPING CONFORMATIONAL DYNAMICS 

  1.     Using empirical database correlations, we can use chemical shift data of these 
nuclei ( 1 H,  13 C,  15 N) to derive mainly secondary structure  [26 – 28] . Three -
 dimensional (3 - D) structure determinations of small proteins solely based on 
chemical shifts have been performed  [29, 30] .     

  2.     J - coupling constant data can be converted into dihedral angle information 
utilizing empirical or theoretically predicted Karplus equations  [31 – 36] . By 
using these coupling constants, it is, for example, possible to determine the 
backbone angles ϕ  and  ψ  as well as the side - chain angle  χ1 .  

  3.      Nuclear Overhauser Effect s ( NOE s) yield atomic distances of up to 5    Å . They 
are the parameters most often used in structure calculations of biomolecules.    

 In addition, more recently developed NMR methods derive projection - angle restraints 
from cross - correlated relaxation rates  Γcc   [37, 38]  and long - range distances and 
global orientation from  pseudo - contact shifts  ( PCS )  [39, 40] ,  paramagnetic relax-
ation enhancement  ( PRE )  [41 – 43] , and  residual dipolar coupling s ( RDC s) 
 [44 – 46] . 

 To derive information about the global tumbling or the oligomeric state of a 
protein by NMR spectroscopy, the rotational correlation time ( τc ) can be extracted 
from heteronuclear relaxation rates  [47] . Via Stokes – Einstein relations,  τc  is corre-
lated with the size of the polymeric chain. These heteronuclear relaxation rates also 
provide information about local dynamics on the sub -  τc  time scales, that is, time 

  TABLE 7.1.     NMR  Parameters and Their Information Content about Structure 

   NMR Parameter     Structural Information     Averaging Time Regime  

  Chemical shifts    Secondary structure     μ s – ms  
  J - coupling constants    Torsion angles    ms – s  
  NOEs    Inter - atom distances    ps – ns  

  Longer for exchange  
  Heteronuclear relaxation 

rates R1 ,  R2 , and hetNOE  
  Global rotational tumbling, 

local fl exibility, global shape  
  ps – ns  
  Longer for exchange ( R2 )  

  Residual dipolar couplings    Bond vector orientation relative 
to an external alignment frame  

  ms – s  

  Pseudocontact shifts    Relative orientation and 
distance to a paramagnetic 
probe

μ s – ms  

  Paramagnetic relaxation 
enhancement

  Distance to a paramagnetic 
probe

  ps – ns  

  Cross - correlated relaxation 
rates

  Projection angles related to 
torsion angles  

  ms – s  

  Hydrogen/deuterium 
exchange

  Hydrogen bond stability    s – days  

  Diffusion constants from 
diffusion - ordered 
spectroscopy spectra  

  Global shape, oligomeric state    Order of diffusion time  

Table 2: Table of the main NMR-methods used in protein spectroscopy [2]. The structural
information provided by the technique and the timescale of the measurement are shown
in the second and third column respectively. The J-coupling is the indirect interaction
between two nuclear spins which arises from the chemical bonds connecting the two
spins. R1 and R2 are the to the spin-lattice and spin-spin relaxation rates. NOE (nuclear
Overhauser effect) is the transfer of nuclear spin polarization from one nuclear spin
population to another via cross-relaxation [3].

related to average mean squared displacement from the measured position,
or the secondary structure arrangement. The repository is accessible via the
RCSB website, which also provides useful tools to inquire structures and collect
statistical sub-set with user selected properties. The PDB currently contains more
than 99818 structures. Among these, 9520 are resolved using NMR spectroscopy.
The continuous expansion of the PDB yields bigger and more updated statistics
to the scientific community. The obsolete entries are signaled and the superseding
structures are reported. In addition NMR-determined molecule generally the
set of the best structures (usually about 20), which satisfy the experimental
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constraints, is reported in the .pdb file. This yields more statistics and gives a
picture of the conformations originally explored by the molecule.

In this work all the experimental data are extracted from the PDB-repository.

1.3 amino acids and polypeptides - primary structure

Proteins are among the most important biomolecules. They hold many roles
ranging from the structural to functional ones. Proteins are finely structured
hetero-polymers of the twenty amino acids. They are synthesized during the
process called translation where the genetic code is expressed by the ribosome.

Amino acids (AA) represent the fundamental unit of proteins. They are com-
posed by an amino group (NH+

3 ), a carboxyl group (COO−) both bonded to an
α-carbon (Cα), and by the side chain (R), which is also bonded to the Cα, and
the side chains, which characterizes each amino acid differing in length and the
chemical content.

The Cα is generally bonded with four different ligands forming a chiral center.
Therefore, two isomers exist for each AA: L- and D- isomers (see figure 1). These
are called “enantiomers” (or “stereoisomers”), related by mirror symmetry. In
natural proteins the amino acids are all L-isomer.

�.� ������� ��������� : ����� ����� ��� ������� ���� 5

Figure 1: Schematic representation of the L- and D- isomers.
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Amino acids (AA) are the fundamental elements, the building blocks, of pro-
teins. They are organic compounds essentially formed by an amino (-NH2) and
a carboxyl (-COOH) group, bonded to a central carbon, named C↵. The same
carbon atom is also linked to an hydrogen atom (H) and to a side-chain (R),
specific for every different amino acid. The carbons forming the side chains are
conventionally named with subsequent greek letter (�, �, �, ✏,...).
The C↵ is generally bonded to four different constituents, so forming a chiral
center. In fact two isomers exist for each AA: L- and D- isomers (see figure
1). The two different isomers (called enantiomers) cannot be superimposed, the
molecules are mirror images to each other. The amino acids found in natural
proteins are all L-isomers. The Glycine is the only exception, because its side
chain has only an hydrogen atom, implying that not all the four substituent are
different, thus it is not chiral.

Another important feature of amino acids is their amphiprotic property, i.e.
they can react both as acids and as bases, depending on the environment in
which they are. With specific values of the (solution) pH, the carboxilic group
(-CO2H) can be deprotonated, becoming a negative carboxilates (-CO-

2 ), and
at the same time, the amino group (-NH2) can be protonated, becoming an
ammonium group (+NH3-). At neutral pH, the net charge of this molecular
state is zero and the amino acid is in its zwitterionic state.
The amino acids are classified in five different groups, depending on specific
properties of their side chains. In figure 2 all the amino acids are reported
and the different groups are underlined [56]. One important characteristics is
that amino acids with polar side chain are hydrophilic, while apolar side chains
make amino acids hydrophobic. In table 2 four of the most important hydropho-
bicity scales are compared. AAs are named either with a three letter code or
single letter code as in table 1.

Amino Acids bind to one another through the peptide bond. This is a chemi-
cal covalent bond, where the amino group of one AA reacts with the carboxyl
group of the subsequent AA, releasing a water molecule (H2O). This dehydra-
tion (or condensation reaction) leads to the formation of a bond between the
carbon atom (C) of the first and the nitrogen atom (N) of the second amino acid
(see figure 3, panel A). The lone pair of electrons on the N atom can delocalize,

Figure 1: Schematic representation of the L- and D- isomers.

At neutral pH the amino acids are in zwitterionic form with a proton bonded
to the amino group and a proton missing in carboxyl group. Therefore, amino
acids are generally neutral although with charged extremal groups. Exceptions
are the four naturally charged amino acids lysine, arginine (positive), glutamate,
aspartate (negative), whose charge, however it is localized on the side chain. The
side chain characterizes each amino acid: there are twenty distinct side chains
that differing in chemical composition as reported in figure 2.
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aliphatic side chain with a distinctive cyclic structure. The
secondary amino (imino) group of proline residues is
held in a rigid conformation that reduces the structural
flexibility of polypeptide regions containing proline.

Aromatic R Groups Phenylalanine, tyrosine, and tryp-
tophan, with their aromatic side chains, are relatively
nonpolar (hydrophobic). All can participate in hy-
drophobic interactions. The hydroxyl group of tyrosine
can form hydrogen bonds, and it is an important func-

tional group in some enzymes. Tyrosine and tryptophan
are significantly more polar than phenylalanine, because
of the tyrosine hydroxyl group and the nitrogen of the
tryptophan indole ring.

Tryptophan and tyrosine, and to a much lesser ex-
tent phenylalanine, absorb ultraviolet light (Fig. 3–6;
Box 3–1). This accounts for the characteristic strong ab-
sorbance of light by most proteins at a wavelength of
280 nm, a property exploited by researchers in the char-
acterization of proteins.
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FIGURE 3–5 The 20 common amino acids of proteins. The structural
formulas show the state of ionization that would predominate at pH
7.0. The unshaded portions are those common to all the amino acids;
the portions shaded in red are the R groups. Although the R group of

histidine is shown uncharged, its pKa (see Table 3–1) is such that a
small but significant fraction of these groups are positively charged at
pH 7.0.
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Figure 2: Natural Amino Acids structure. Structural formula of common amino acids, in the
state of ionization that would predominate at pH 7.0. They are grouped into five main
classes on the basis of the side chain (R-group, shaded portion). Non polar, aliphatic
R groups are non-polar and hydrophobic, while aromatic side chains are relatively
non-polar. Side chains of polar, uncharged amino acids are more soluble in water,
or more hydrophilic, than those of the non-polar amino acids, because they contain
functional groups that form hydrogen bonds with water. R-groups with positive or
negative net charge are the most hydrophilic. [56]

giving to the group a partial character of double bond. It has in fact an interme-
diate length (1, 32 Å) between the ordinary single C-N bond (1, 45 Å) and the
double C = N bond (1, 25 Å). The main consequence of the partial character of
double bond is that the peptide bond results rigid and planar. Rotation around
it is not allowed, admitting in this way only two possible conformations of the
atoms, related by a 180� angle.

In figure 3 (Panel B) the dihedral angle ! around the link is defined, it can
assume only two values: 0� in cis conformation and 180� in trans conformation.
This last is the most favourite, since in this arrangement the repulsion between
atoms non bonded connected to the central C↵ are minimized. The Proline is
an exception because it has a ring side chain, so it is found with more probabil-
ity than the other amino acids also in cis conformation.
The AA chain is called a polypeptide, which is characterized by the sequence
in which AAs are connected, namely the primary structure. The sequences are
conventionally reported and red from the N-terminus to the C-terminus, fol-
lowing the order in which they are synthesize by the ribosome. The poly[e[tide
is then composed by two parts: the main chain and the side chains. The main
chain is the backbone of the protein and maintains always the same composi-

Figure 2: Chemical structure of the twenty natural amino acid and its ionization state at neutral
pH. The amino acids are branched into their polarity and ionization state.

An important feature of each amino acid is the polarity. Non-polar amino acids
have a low solubility in water. In this class the aliphatic amino acids (alanine,
valine, leucine and isoleucine) fall. Although usually classified separately because
larger, the aromatic amino acids, i.e. phenylalanine, tryptophan and methionine
are also hydrophobic. On the opposite side of the scale, the charged amino acids
and in between, the polar uncharged AA, namely, Asparagine, glutamine, serine
and threonine, are expected to have strong interactions with water and a good
solubility: the first two, thanks to the amine group; the latter two, due to the
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large dipole moment and the capabilities to make hydrogen bonds.

The linkage between susbsequent amino acids in the proteins and peptides
(defined as sequences of 20-100 AA) is named peptide bond. It forms by a con-
densation reaction between the carboxyl group and amino group of subsequent
amino acids operated by the ribosome (see figure 3a). The peptide bond has
two chemically resonant forms (reported in figure 3b). One is represented by
the neutral state where the oxygen atom is double bonded to the C’ atom while
the there is a single bond between Cα and N atoms (figure 3b, left). The other
form involves the lone pair localized on the nitrogen atom to form a double bond
with the carboxyl group while a couple of electrons from the carbon-oxygen bond
becomes localized on the oxygen atom leaving a positive charge on the N atom
and a partial negative charge on O atom (figure 3b, right). Intermediate forms
are possible (fig 3b, center), as indicated by the measured value of bond length
of about 1.32Å, which is a mean of the values 1.45Å and 1.25Å of the single
and double bond respectively. The mixing of these two resonant forms gives
the peptide bond a partial double bond character. As a consequence, the four
atoms Cα-C’-N-Cα lie in a flat plane and the C’-N bond is not freely rotable [5].
Therefore, the two isomers corresponding to cis and trans conformations of the
Cαs with respect to C’-N are not thermally interconvertible. They correspond to
0 and 180deg of the torsion angle ω respectively (C-N torsion angle). The 99.9%
of the peptide bonds are in trans conformation in natural proteins [6].

Other than the bond length and torsion angle of the peptide bond, it is im-
portant to define all the geometrical quantities related to the protein backbone,
defined the chain of Cα-CO-NH-Cα atoms. These are illustrated in figure 3c.
Their reference values are reported in table 3.

Bond [Å] Angle [deg]
Cα-C’ 1.53 Cαi−1-Cαi-N (γ1) 15.6
C’-N 1.32 Cαi+1-Cαi-C’ (γ2) 20.2
N-Cα 1.47 N-Cα-C’ (τ) 111.1

Table 3: Values of the internal geometric parameters of the protein backbone [6][7]. See
also figure 3c for the parameters definition.

As a consequence of the planarity of the peptide bond in trans-conformation
the distance between two consecutive Cα is 3.8 Å (2.9 Å if in cis-conformation).
The rigidity of the peptide plane combined with the small variability of the τ, γ1
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has a pI of 3.22, considerably lower than that of glycine.
This is due to the presence of two carboxyl groups,
which, at the average of their pKa values (3.22), con-
tribute a net charge of !1 that balances the "1 con-
tributed by the amino group. Similarly, the pI of histi-
dine, with two groups that are positively charged when
protonated, is 7.59 (the average of the pKa values of the
amino and imidazole groups), much higher than that of
glycine.

Finally, as pointed out earlier, under the general
condition of free and open exposure to the aqueous en-
vironment, only histidine has an R group (pKa # 6.0)
providing significant buffering power near the neutral
pH usually found in the intracellular and extracellular
fluids of most animals and bacteria (Table 3–1).

SUMMARY 3.1 Amino Acids

! The 20 amino acids commonly found as
residues in proteins contain an !-carboxyl
group, an !-amino group, and a distinctive R
group substituted on the !-carbon atom. The
!-carbon atom of all amino acids except glycine
is asymmetric, and thus amino acids can exist
in at least two stereoisomeric forms. Only the
L stereoisomers, with a configuration related to
the absolute configuration of the reference
molecule L-glyceraldehyde, are found in
proteins. 

! Other, less common amino acids also occur,
either as constituents of proteins (through
modification of common amino acid residues
after protein synthesis) or as free metabolites.

! Amino acids are classified into five types on the
basis of the polarity and charge (at pH 7) of
their R groups.

! Amino acids vary in their acid-base properties
and have characteristic titration curves.
Monoamino monocarboxylic amino acids (with
nonionizable R groups) are diprotic acids
("H3NCH(R)COOH) at low pH and exist in
several different ionic forms as the pH is
increased. Amino acids with ionizable R groups
have additional ionic species, depending on the
pH of the medium and the pKa of the R group.

3.2 Peptides and Proteins
We now turn to polymers of amino acids, the peptides
and proteins. Biologically occurring polypeptides range
in size from small to very large, consisting of two or
three to thousands of linked amino acid residues. Our
focus is on the fundamental chemical properties of these
polymers.

Peptides Are Chains of Amino Acids

Two amino acid molecules can be covalently joined
through a substituted amide linkage, termed a peptide
bond, to yield a dipeptide. Such a linkage is formed by
removal of the elements of water (dehydration) from
the !-carboxyl group of one amino acid and the !-amino
group of another (Fig. 3–13). Peptide bond formation is
an example of a condensation reaction, a common class
of reactions in living cells. Under standard biochemical
conditions, the equilibrium for the reaction shown in Fig-
ure 3–13 favors the amino acids over the dipeptide. To
make the reaction thermodynamically more favorable,
the carboxyl group must be chemically modified or ac-
tivated so that the hydroxyl group can be more readily
eliminated. A chemical approach to this problem is out-
lined later in this chapter. The biological approach to
peptide bond formation is a major topic of Chapter 27.

Three amino acids can be joined by two peptide
bonds to form a tripeptide; similarly, amino acids can be
linked to form tetrapeptides, pentapeptides, and so
forth. When a few amino acids are joined in this fash-
ion, the structure is called an oligopeptide. When many
amino acids are joined, the product is called a polypep-
tide. Proteins may have thousands of amino acid
residues. Although the terms “protein” and “polypep-
tide” are sometimes used interchangeably, molecules re-
ferred to as polypeptides generally have molecular
weights below 10,000, and those called proteins have
higher molecular weights.

Figure 3–14 shows the structure of a pentapeptide.
As already noted, an amino acid unit in a peptide is often
called a residue (the part left over after losing a hydro-
gen atom from its amino group and the hydroxyl moi-
ety from its carboxyl group). In a peptide, the amino
acid residue at the end with a free !-amino group is the
amino-terminal (or N-terminal) residue; the residue
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FIGURE 3–13 Formation of a peptide bond by condensation. The !-
amino group of one amino acid (with R2 group) acts as a nucleophile
to displace the hydroxyl group of another amino acid (with R1 group),
forming a peptide bond (shaded in yellow). Amino groups are good
nucleophiles, but the hydroxyl group is a poor leaving group and is
not readily displaced. At physiological pH, the reaction shown does
not occur to any appreciable extent.
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The carbonyl oxygen has a partial negative
charge and the amide nitrogen a partial positive
charge, setting up a small electric dipole.
Virtually all peptide bonds in proteins occur in
this trans configuration; an exception is noted in
Figure 4–8b.
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FIGURE 4–2 The planar peptide group. (a) Each peptide bond has
some double-bond character due to resonance and cannot rotate.
(b) Three bonds separate sequential ! carbons in a polypeptide
chain. The NOC! and C!OC bonds can rotate, with bond angles
designated " and #, respectively. The peptide CON bond is not free
to rotate. Other single bonds in the backbone may also be 
rotationally hindered, depending on the size and charge of the R
groups. In the conformation shown, " and # are 180% (or "180%).
As one looks out from the ! carbon, the # and " angles increase as
the carbonyl or amide nitrogens (respectively) rotate clockwise. 
(c) By convention, both " and # are defined as 0% when the two
peptide bonds flanking that ! carbon are in the same plane and 
positioned as shown. In a protein, this conformation is prohibited
by steric overlap between an !-carbonyl oxygen and an !-amino
hydrogen atom. To illustrate the bonds between atoms, the balls
representing each atom are smaller than the van der Waals radii for
this scale. 1 Å & 0.1 nm.
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FIGURE 4–3 Ramachandran plot for L-Ala residues. The
conformations of peptides are defined by the values of " and #.
Conformations deemed possible are those that involve little or no
steric interference, based on calculations using known van der
Waals radii and bond angles. The areas shaded dark blue reflect
conformations that involve no steric overlap and thus are fully
allowed; medium blue indicates conformations allowed at the
extreme limits for unfavorable atomic contacts; the lightest blue
area reflects conformations that are permissible if a little flexibility is
allowed in the bond angles. The asymmetry of the plot results from
the L stereochemistry of the amino acid residues. The plots for other
L-amino acid residues with unbranched side chains are nearly
identical. The allowed ranges for branched amino acid residues
such as Val, Ile, and Thr are somewhat smaller than for Ala. The Gly
residue, which is less sterically hindered, exhibits a much broader
range of allowed conformations. The range for Pro residues is
greatly restricted because " is limited by the cyclic side chain to the
range of "35% to "85%.
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Figure 4–8b.
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FIGURE 4–2 The planar peptide group. (a) Each peptide bond has
some double-bond character due to resonance and cannot rotate.
(b) Three bonds separate sequential ! carbons in a polypeptide
chain. The NOC! and C!OC bonds can rotate, with bond angles
designated " and #, respectively. The peptide CON bond is not free
to rotate. Other single bonds in the backbone may also be 
rotationally hindered, depending on the size and charge of the R
groups. In the conformation shown, " and # are 180% (or "180%).
As one looks out from the ! carbon, the # and " angles increase as
the carbonyl or amide nitrogens (respectively) rotate clockwise. 
(c) By convention, both " and # are defined as 0% when the two
peptide bonds flanking that ! carbon are in the same plane and 
positioned as shown. In a protein, this conformation is prohibited
by steric overlap between an !-carbonyl oxygen and an !-amino
hydrogen atom. To illustrate the bonds between atoms, the balls
representing each atom are smaller than the van der Waals radii for
this scale. 1 Å & 0.1 nm.
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FIGURE 4–3 Ramachandran plot for L-Ala residues. The
conformations of peptides are defined by the values of " and #.
Conformations deemed possible are those that involve little or no
steric interference, based on calculations using known van der
Waals radii and bond angles. The areas shaded dark blue reflect
conformations that involve no steric overlap and thus are fully
allowed; medium blue indicates conformations allowed at the
extreme limits for unfavorable atomic contacts; the lightest blue
area reflects conformations that are permissible if a little flexibility is
allowed in the bond angles. The asymmetry of the plot results from
the L stereochemistry of the amino acid residues. The plots for other
L-amino acid residues with unbranched side chains are nearly
identical. The allowed ranges for branched amino acid residues
such as Val, Ile, and Thr are somewhat smaller than for Ala. The Gly
residue, which is less sterically hindered, exhibits a much broader
range of allowed conformations. The range for Pro residues is
greatly restricted because " is limited by the cyclic side chain to the
range of "35% to "85%.
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(c)

Figure 3: (a) Condensation reaction between two amino acids and formation of the peptide bond.
(b) The peptide bond resonances. (c) graphical representation of the polypeptide chain
in extended conformation. The peptide bond plane is represented in light blue. The
torsion angles φ,ψ and the backbone geometric parameters Cα-C, C=O, C-N, N-Cα
distances are indicated, see also table 3.

and γ2 makes the dihedral angles φ and ψ the only two independent geometrical
variables determining the backbone structure (fig. 3c).

As previously mentioned, amino acid sequences inside proteins stem from the
translation of the genetic code carried out by DNA. The mere sequence represents
the first hierarchical structural level of the protein and for this reason it is also
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referred as protein primary structure. The polypeptide chain is oriented: positive
sign is conventionally positive from N-terminal ending to C-terminal.

In principle, the protein behavior is determined by its sequence. On the basis
of the “structure function paradigm”, stating that function is related to the global
3D structure of a protein, this also implies that sequence determines the 3D
structure. As it will be clearer forward in this thesis, the paradigm has been
recently reconsidered. However, for most of the protein classes, namely the well
structured ones, it is still mostly valid. Even in this case, thought, the problem of
predicting the global structure of a protein from its sequence is still open.

There are however a number of sequence-based estimators of the structure.
A large subset of those algorithms belong to the class of Homology-Modeling.
These estimators analyze the primary structure of a protein, whose 3D-structure
is to be predicted, comparing its sequence with the sequence of proteins with
known 3D-structures. The idea under these approach is related to the structure-
function paradigm: similar sequences carry out similar functions and due to the
structure-function correlation, similar structures. When the sequence homology
between target and template is above the 80% homology-modeling shows good
results.

1.4 secondary structure

The protein secondary structure is the local arrangement of a polypeptide
chain. The Ramachandran plot (RP) is one of the most useful tool for the analysis
of the protein secondary structure described by Ramachandran in 1968 [5]. It
is defined as the scatter plot of the backbone φi,ψi preceding and following
the i-th Cα evaluated on structural datasets. Since φ and ψ are the internal
variables determining the backbone folding, the accumulation region in the
RP identify specific ordered local arrangement, defining the ordered secondary
structures (see figure 4). For instance, the RP of helical structures accumulate
around the region φ = −57deg, ψ = −47deg, because these are the values that
the φ,ψ dihedral angles assume in the ordered helical structures (figure 5a),
while extended structures (figure 5c) and sheets (figure 5b) accumulated around
φ = −100deg, ψ = 150deg. The content of the dataset determines the shape
of the RP, which on the other way round, can give an immediate idea of the
relative content of ordered secondary structures. In addition, it is common to
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Figure 4: Ramachandran plot of the non proline, non glycine and non pre-proline amino acids
taken from a database of 97,368 residues at high resolution X-ray (from [10]).

(a) (b) (c)

Figure 5: Example of protein secondary structure. For helix (left) and sheet (center) are reported
hydrogen bond patterns. Absence of hydrogen bonds in coil structure (right).

build amino-acid specific RPs to identify the secondary structure tendency of a
specific (class of) amino-acid (see figures 4 and 8). The case of large dataset it is
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common to analyse the density of this quantity therefore in this work also such a
plot will be referred as RP.

Figure 6a shows that not all the regions of the RP are accessible. In order to
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Figure 6: (a) (φ,ψ) density distribution from all available PDB-NMR data. (b) “Derivation
diagram” for the Ramachandran plot [8]. The boundaries are evaluated considering the
hard-sphere model [5] (see text).

better analyze the forbidden areas it is useful to separate the AA in four classes
which display different structural namely different RP (as shown in figure 4):
glycine, proline, pre-proline1 and all the others. Considering first the last class,
early studies of polypeptide chains only including the steric hindrance by means
of hard spheres models were able to recognize the basic shape of the forbidden
areas on RP [5]. The radii were set up using a specific contact list, similar to those
of the Van der Walls interaction (VdW), for each couple of atoms. The resulting
map is reported in figure 6b and is called “Derivation Plot”. The interaction
between an amino acid and its nearest neighbor is also reported therein. As
indicated in figure 6b, the different steric clashes between the backbone and side
chains atoms concur to the boundaries between allowed and forbidden areas,
and delimit basically three populated regions, namely the right handed helical
region (α), the flat structures region (β) and the left handed helical region (L).
Remarkably, the different size of the allowed regions for the left and right handed
helices is determined by a complex interplay between the directionality of the
polypeptide and chirality of the Cα.

1 The pre-proline is the type which collects all the residues preceding a proline along the polypeptide
chain.
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Figure 7 reports the RP of a simulated tetrapeptide of alanine using an atomistic
model. This simulation was performed ad hoc for the sake of illustrating the RP
(details on the simulation setup reported in section 2.2.1). Due to its small
size, this system cannot form any stable secondary structure, therefore it is able
to sample all the allowed regions with low structural preference. In addition,
thanks to the smalls size the simulation can give a very large statistics and
therefore a high resolution RP. The figure shows the α, β, and L basins and their
substructures, and the PPII basin in addition, which is mostly favored in poly-
proline. The same basins appear in the RP derived from experimental dataset [9],
reported in figure 4. There are some outliers in the bridging regions between the
allowed ones. Their presence can be explained by the fact that in real proteins the
structural parameters τ, γs and the radii of the side chains do not assume sharp
values, rather they have a distribution with a given width [5]. Therefore a realistic
derivation plot should have a fuzzy boundaries between allowed and forbidden
regions, as, in fact, verified by this simulation and in the experimental RP.

Panel (B) of fig. 8 shows the glycine RP. The observed additional symmetry and
smaller forbidden areas in this plot is produced by the achirality of glycine and
extremely reduced side chain. Panel (C) illustrates the proline RP. This amino acid
has the side-chain linked to the N atom of the backbone forming the pyrrolidine
ring (see figure 2). This produces a strong restrain φ torsion angle: indeed the RP
shows this variable restrained in the interval [−90 : −40]. The last panel in figure 8
shows the pre-proline RP. As evident from the RP, the geometric restrains of the
pyrrolidine ring of proline also acts on the preceding AA, inducing deformations
with respect to the generic RP.

As mentioned, the polyproline secondary structures are stabilized by restrains
on the backbone geometry induced by the presence of pyrrolidine ring. In
addition, the lack of the amide-H atom makes this amino acid unable to create
intra-backbone H-bonds therefore the secondary structures stabilized by the
H-bonds are less probable. This is however an exception among the ordered
secondary structures, which are generally stabilized by the hydrogen bonds (H-
bonds) of the backbone. These arise between the interaction of the carboxyl group
(C=O) of a given amino acid, which acts as proton acceptor, with the amine group
(NH) of another, which acts as proton donor establishing a rather strong and stable
linkage between two not subsequent amino-acids in the polypeptide. The energy
of this interaction has a large variability ranging in the order 3− 8kcal/mol [5].
In addition, the C=O and NH groups are polarized, and their alignment within
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Figure 7: Density of the Ramachandran plot of a simulated tetrapeptide. The cumulative regions
are labeled with the name of the specific basin. The contour of each region sketches
outline the shape of each secondary structure basin. These data are obtained from
an atomistic simulation (section 2.2.1). Details on this simulation are reported in
section 2.2.1.

ordered structures may generate strong dipolar interaction which further stabilize
the structure. This is for instance the case of helices, in which H-bonds are aligned
along the helical axis (see figure 9a and 4).

Hydrogen bonding is responsible for the secondary α, π, 310 helical, β-sheet
and turn structures. Among the the H-bonded secondary structures the helices
and sheets have more than one H-bond and are differentiated by their regular
structure schematically reported in panel (a) and panel (b) figure 9 respectively.

The family of the helices is split into specific structures that differ by number
of residues per turn ratio, diameter and circular radius. Helices are usually
right handed, although glycine and proline also allow left handed helices. The
most stable helix structure is represented by the right handed α-helix (see the
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Figure 8: In this figure are reported the Ramachandran plots of proline (C), glycine (B), pre-
proline (D) taken from a database of 97,368 residues at high resolution X-ray (from
[10]).

prevalence in figure 6a), which is also known as 36-helix. Other stable structures
are the right handed 310-helix and π-helix (44-helix) and the left handed α-helix.
Differing in the H-bond pattern α-helices display H-bond between i-residue and
i+4-residue where 310 and π helices between i/i+3 and i/i+5 residues respectively.
Thanks to their stability α-helices are the most abundant protein structure. The
geometry of helices is summarized in table 4. The α helix is also represented in

15



10 ��� ��������� �� ��������

Residue  number

N-end

Helices: no 413 = 516 =27 310

N C C N C C N C C N C C N C C N C C C-end

0

O O O O O O

H H H H H H

1 2 3 4 5

N-end C-end

BB

N C C N C C N C C N C C N C C N C C
HHH

HHH OOO

OOO

C-endN C C N C C N C C N C C N C C N C C
HHH

HHH OOO

OOO
N-end

N-end C-end

BB?

N C C N C C N C C N C C N C C N C C
HHH

HHH OOO

OOO

C-endN C C N C C N C C N C C N C C N C C
HHH

HHH OOO

OOO
N-end

N-endC C N C C N C C N C C N C C N C C N
OOO HHH

OOO HHH
C-end

?B

C-endN C C N C C N C C N C C N C C N C C
HHH

HHH OOO

OOO
N-end

N-endC C N C C N C C N C C N C C N C C N
OOO HHH

OOO HHH
C-end

Figure 5: Hydrogen bonding patterns for secondary structures. Top box: helices are distin-
guished coloring the H-bonds in them. Bottom box: the H-bond pattern is given for
three different class of �-sheets: parallel (�""), antiparallel (�"#) and mixed (�"#) [59]

5 kcal mol-1, although its variability range is large. In proteins, the intra-
backbone H bonds along the same lead to its first fold in secondary structure.

�.�.� Types of Secondary Structures
The secondary structure describes the local conformation of the amino acids

in the protein chain. Different secondary structures are distinguished by regu-
lar arrangements of the main chain. There are three main classes of secondary
structures: Helix, Sheets and Turns.
Helix can be right-handed (R) or left-handed (L), considering the positive ori-
entation of their axis from N to C terminus. In the helices, the intra-backbone
hydrogen bonding pattern is local and periodic, while in the sheets H-bonds
can occur quite far in term of sequence. In turns are local but less regular. In
figure 5, all the H-bonding patterns are schematically drawn, with different
secondary structures put into evidence. The nomenclature of that bonds is usu-
ally described as nm, where n is the number of amino acid residues per helical
turn and m is the number of atoms involved in the cycle generated by the in-
tramolecular H-bond.
The secondary structures are described in deeper detail in the following.

310 -Helix

This structure was first proposed by Taylor in 1941 [6], ten years before the
↵-helix. It is characterized by three amino acids per turn and ten atoms in the
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Helix can be right-handed (R) or left-handed (L), considering the positive ori-
entation of their axis from N to C terminus. In the helices, the intra-backbone
hydrogen bonding pattern is local and periodic, while in the sheets H-bonds
can occur quite far in term of sequence. In turns are local but less regular. In
figure 5, all the H-bonding patterns are schematically drawn, with different
secondary structures put into evidence. The nomenclature of that bonds is usu-
ally described as nm, where n is the number of amino acid residues per helical
turn and m is the number of atoms involved in the cycle generated by the in-
tramolecular H-bond.
The secondary structures are described in deeper detail in the following.

310 -Helix

This structure was first proposed by Taylor in 1941 [6], ten years before the
↵-helix. It is characterized by three amino acids per turn and ten atoms in the

(b)

Figure 9: (a) Schematic representation of the H-bond pattern of the α, π, 310 helices. (b) The
possible H-bonds textures of the conformations of the β-sheet .

figure 5a. Due to a combination of chirality and directionality, left-handed helices
are less probable than right-handed (compare α with L region in the generic RP,
fig. 7).

The fundamental element forming the sheets structure is the β-strand. Two or
more H-bond can form a β-sheet. The strands can be either parallel or antiparallel
oriented (generally considering the orientation of a strand positive from the N-
terminal to the C-terminal). The sheets torsional angles are found inside the
β-labeled region of the RP (figure 7) (main values reported in table 4).

The structure connecting the strands within the sheets can be either a turn,
in the case of consecutive antiparallel strands, or a longer loop structure (see
later) that can occur both in antiparallel and parallel strands. The turns are con-
sidered independent secondary structures. Turns are generally small fragments
of few residues stabilized by H-bonds. The composition of β-strands can be
more complex than what is reported in figure 9b. A complete analysis of these
structures can be found in [13]. The aggregation of strands influences the stiffness
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Struct. Res/Turn φ[deg] ψ[deg] ω[deg] Pitch (Å) HBc
310 3.1 -49 -29 180 6.0 i/i+3
αR 3.6 -57 -47 180 5.4 i/i+4
αL 3.6 57 47 180 5.4 i/i+4
π 4.4 -57 -70 180 5.2 i/i+5

β-strand -120 120 180
parallel β-sheet -120 113 180

antiparallel β-sheet -139 135 180
PPII 3.0 -75 145 180 9.4
PPI 3.3 -75 160 0 5.6

Table 4: Geometrical parameters of secondary structure [11][12].

of the structure. Figure 5 panel (b) shows the 3D-representation of an antiparallel
β-sheet sketching the H-bond texture with black dashed lines.

The polyproline fragments are found in two regular arrangements which are
determined by the conformation of the peptide bond (i.e. cis or trans conforma-
tions). As aforementioned the presence of the pyrrolidine ring limit the interval of
the φ torsion angle. The polyproline I (PPI) is a right-handed helix with peptide
bond in cis-configuration whereas the polyproline II (PPII) is a left-handed helix
with peptide bond in trans-configuration. The geometrical features of these struc-
tures are reported in table 4. The PPII structure can be found also in non-proline
AAs. Differently from the other secondary structure PPII does not rely much on
dipolar interaction for its stabilization [7]. Shi [14] demonstrated that PPII is the
conformation adopted by a protein in a environment with strong denaturants.
In this case it is not appropriate call it secondary structure since the protein has
lost its natural folding, however this fact indicate that the PPII needs an high
accessibility to the solvent, as that found in denatured proteins. For this reason it
is expected that long protein fragments in PPII conformation are composed by
polar and charged amino acid [14].

The disordered secondary structures are generally found where stabilizing
interactions are absent. This provides an high flexibility to the structure. In native
(correctly folded) proteins disordered regions are generally found in the loops,
connecting two regions with ordered secondary structure. Even in absence of
hydrogen bonds, loops have not the same freedom as the unfolded fragments
due to the fact that their extremes are bond to the protein. The loop secondary
structure is favored either by the presence of locally structured neighbor regions
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(such as in beta sheet) or by the whole arrangement of the protein (i.e. tertiary
structure of the protein, see next section).

Due to their regularity, ordered secondary structures occupy specific regions
of the RP therefore it is possible to distinguish one from the other using this
representation. In contrast, disordered structures are expected be spread approxi-
mately in whole allowed region of the RP including those assigned to the regular
structures. The unstructured regions in non-ordered native state will be discussed
in section 1.6. Figure 5 panel (c) shows an example of disorder structure.

Amino acids generally show propensities for a specific secondary structure,
due to the preference for specific torsion angles, peculiar side-chain interactions,
steric effects and hydrophobic tertiary contacts [15]. The φ,ψ-propensity has
been evaluated considering the statistics of a subset of the PDB, called “coil
library”, in each structured basin, viz. β, α, PPII and the remaining regions.
Table 5 shows the propensity of each basin for each type of AA [15]. Since
coils are considered the less structured parts of proteins, these numbers indicate
the intrinsic propensity of amino acid. Hydrophobic and bulky amino acids
like valine and isoleucine prefer the β-conformation in ordered and disordered
states. Protonated polar aspartic acid has an high β-basin propensity over PPII,
which might reflect the stabilization by the side chain. This table also shows
the propensities of each amino acid when it is involved in a ordered secondary
structure. The comparison between intrinsic and general propensities can give
indication in the model building. For instance, it is interesting to observe that
although the alanine and leucine unfolded residues have an high propensity in
the PPII basin, they have an high predisposition to fold in the α-helix structure
indicating that the role of the hydrogen bonding in determining the secondary
structure is very high, possibly preponderant.

The identification of secondary structures, when the whole protein coordinates
set is available, is usually performed by assignment algorithms based on the eval-
uation of φ ψ angles and on the search of hydrogen bonds. Different algorithms
differ by the chosen criterion in the assignment of H-bonds, and might lead to
slight different results. The most popular are DSSP [16] and STRIDE [17] also
important SEGNO [18], PROSS [19] and XTLSSTR [20]. The secondary structure
identification has a central role in the determination of the data base used in this
work. A detailed description of the algorithms her used DSSP and STRIDE is
reported in appendixes B.
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Table 5: Swindells’ propensities of amino acids for the selected structures [15]. The coil-
propensities represent the tendency of each amino acid based on the assumption that
the structural propensity of a particular amino acid can be derived from the coil library
(a more detailed description of the insight of this subset is reported in sec. 1.7). The
assumption that these values represent the intrinsic propensity of each amino acids lies
in the hypothesis that the context is averaged throughout the dataset.

Experimental determination of the secondary structure contents can be achieved
using circular dichroism spectroscopy in the far-UV frequencies (190− 240 nm)
(far-UV CD). This technique measures the difference in the absorbance of left
versus right circularly polarized light, and it is therefore sensitive to the chirality
of the sample. These measurements are in general expressed as ellipticity2. The
far-UV light scattering is dominated by the peptide bond absorption [21] whose
environmental chirality depends on the secondary structure. Therefore each
secondary structure has a characteristic spectrum. This spectroscopy provides

2 The ellipticity is defined as:

θ = atan

(
ER − EL
ER + EL

)
(1.5)

where ER and EL represent the magnitudes of the electric field vectors of the right and left circularly
polarized light beams. The ellipticity can be directly measured through absorbance experiments
using polarized light.
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a quantifiable contents of secondary structure of protein. Similar information is
achieved by differential IR Fourier transform (FTIR) spectroscopy analysis of the
amide vibrational modes. These vibrations are identified by specific frequency
peaks around 1500− 1550cm−1 and 2800− 3000cm−1 in the IR spectrum, and are
localized on NH and CO groups of the backbone. Therefore their frequencies are
extremely sensitive to the type and environment of H-bonds, and each secondary
structure has a recognizable spectral signature [22].

1.5 tertiary and quaternary structures

The three-dimensional space arrangement of the secondary structure and
consequently of all atoms in a protein is referred to as the protein’s tertiary
structure. A protein tertiary structure is often composed by structural domain
with defined secondary structure. Whereas the secondary structure define the
local conformation of the protein, the tertiary structure includes the long range
effects inside the protein. The main interactions involved in the stabilization
of tertiary structure are the salt bridges, H-bonds, disulphide bonds, dipolar
interactions, hydrophobic and VdW interactions. The salt bridge is the interaction
between side-chains with opposite charge, therefore it usually occurs between
the charged extremities of aspartic/glutamic acids and lysine/arginine. Salt
bridges between polar side chains can occur in specific pH conditions, or between
same charge residues if mediated by opposite charge ions (usually metals or
halides). The intra-backbone H-bonds are usually all saturated in the stabilization
of secondary structures, but additional H-bonds can still be formed by donor-
acceptors groups of side chains, producing inter-domain (or even inter-chain)
interactions.

The disulphide bonds in proteins are the linkage between two sulphydryl
group contained in the cysteine residues. The formed amino acid-complex is
called cystine. The dipolar interactions, between side chains of different domains
also play an important role in the stabilization of the tertiary structure.

Finally, the VdW and hydrophobic interactions are the weaker but more ubiq-
uitous interactions, therefore contribute mostly to the stabilization of the protein.
Specifically hydrophobicity is a driving force of folding and constitutes the main
energetic contribution to protein stability [23] and VdW regulates local contacts,
avoiding the protein collapse.
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The quaternary structure, if present, is the aggregation of subunit with estab-
lished tertiary structure. The interactions involved at this level are almost the
same of the tertiary structure but in this case they may involve two or more
different subunits.

A property which can characterize a tertiary structure is its “globularity”,
related to the amount of hydrophobicity and to the formation of the so-called
hydrophobic cores, namely delimited regions with high hydrophobicity and
low solvent exposure. Experimentally, the hydrophobic fluorescence probes can
be used to detect the hydrophobic regions of proteins. These probes and are
quenched when they come in interaction with the solvent. The ANS hydrophobic
probe provides a strong fluorescence with a large blue shift of the peak. The
analysis of the fluorescence spectra provides useful information regarding ac-
cessibility to the solvent in the protein and the formation of the hydrophobic
core.

1.6 protein folding and intrinsically disordered proteins

After the translation and the polymerisation processes, the protein is found in a
disordered conformation often referred to as unfolded state. It must then perform
a structural transition (protein folding) to native low entropy state. The native
structure is generally stable, at the macroscopic (> 102s), while the folding pro-
cess, which is experimentally expected to be completed in microseconds although
with a wide range of variability [2]. This relatively short time scales is somehow
unexpected: as estimated by Levinthal, a systematic exploration of the conforma-
tional space of a protein, could be achieved only within astronomical timescales
since the number of conformations to explore is comparably astronomical. This
problem is known as Levinthal’s paradox3. In order to explain the experimentally
observed behaviour, it has theorized that the energy landscape of a protein looks
like a deep funnel [2]. The analysis of the pathways followed during the protein
folding is one of the hardest and important challenges in theoretical biophysics.

For many years it has been thought that the function of a protein is entirely
determined by its native structure and vice versa. Namely a specific function

3 In E. Coli cell a protein containing 100 amino acids becomes active in 5 s at 37 oC [6]. Considering
that for each residue could take up 10 conformations, the protein has 10100 conformations. For an
extensive exploration of the available configurations, assuming that it takes the shortest time for
atomic scales (10−13s), it would take 1077 years to find the stable conformation.
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demands specific spatially defined structure. Thanks to this “structure func-
tion paradigm” many prediction were made, from the knowledge of either the
structure or the function, including all the theoretical structural models based
upon the already mentioned homology modeling method. In the last decade a
new theory of the protein functionality arose supported by new experimental
observations. The old structure function paradigm has been replaced by the
new one, which includes the activity of the intrinsically disordered protein (IDP).
IDP is the standard name currently accepted for a class of protein and found
with different names [2], characterized by the presence of at least of one natively
(intrinsically) disordered region (IDR). The definition of this class besides the stan-
dard structural classes represents a revolution in the field of the protein science.
The most accepted sub-classification of IDPs recognize their distinction in molten
globule (MG), pre-molten globule (pMG) and random coil (RC) natively states
differing by the amount of (secondary and tertiary) ordered structures. The MG
has disordered tertiary structure but preserves considerable amount of ordered
secondary structures organized in a globular form. The pMG has a disordered
global arrangement with a residual secondary structure. The RC represents the
lowest level of protein order with little residual amount of secondary structure.

The X-ray crystallography is not appropriate in the determination of IDRs,
because disordered regions does not provide coherent scattering. Therefore the
corresponding atomistic coordinates are usually absent in the X-ray structures,
and one can only get information about the location of IDRs along the sequence.
The MG state, thanks to the presence of the hydrophobic core, can be observed
using the ANS hydrophobic probe (see section 1.5). Figure 10 shows the increase
in the fluorescence signal and blue shift passing from the ANS probe alone
(continuous line) to structures with increasing presence of hydrophobic cores,
(α-synuclein, RC state, dotted line, caldesmon 636-771 fragment, pMG state, dash-
dot line and α-lactalbumin, MG state, dashed line). This method, however, does
not allow to resolve pMG from RC state due to their low hydrophobic content. For
their investigation, far UV-CD is more appropriate. Specifically, the correlation
plot of ellipticity measured at 222 and 220 nm was shown to distinguish these
two states, as shown in figure 11. These two methods, combined with other
measuring the presence of secondary structures such as FTIR can identify and
classify the IDPs and IDR.

The IDPs are involved in regulation, signaling and control of the metabolic
pathways, complementing the functional roles assumed by the other protein
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Figure 10: ANS fluorescence spectra measured for free dye (solid line), in the presence of natively
disordered coil-like α-synuclein (dotted line), natively disordered pre-molten globule-
like caldesmon 636-771 fragment (dash-dot-dotted line), and molten globule state of
α-lactalbumin (dashed line), extracted from [21].

Figure 11: Far-UV CD spectra in terms of double wavelength plot, 222 versus 200 nm, allows
the natively unfolded proteins division on coil-like (gray circles) and pre-molten
globule-like subclasses (black circles), extracted from [2].
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classes. Thanks to their flexibility IDPs have several ways to interact with different
molecular targets. This ability is fundamental for many the cellular functions. An
interesting observation is that the IDPs have been mainly found in the eukaryotic’s
rather than in the prokaryotic’s and archaea’s cells [2]. This suggests that they
represent a step forward in the evolution of the cell signaling system. Further
details on IDPs’ functionality are reported in appendix A.

At variance with the native folding mostly stabilized by the hydrophobicity
in IDPs the intrinsic disorder is associated to the high content of charged and
polar amino acids, in addition to the small and structure destabilizer glycine and
proline with respect of the hydrophobic ones. These prevent or at least hinder the
formation of the hydrophobic core. IDPs have low content of Cys amino acid in
order that the structural arrangement is not stabilized by the disulphide bridges.

The IDPs cannot be studied considering just one configurational arrangement.
The lack of a standard procedure to sample the conformations of IDPs represents
an obstacle, which brought contradictory results in the literature [2]. The statistics
of IDPs data is low. In fact, X-ray crystallography is useless, and the standard
NMR-methods used to sample the conformation of the proteins in native state are
not easily transferable to IDPs due to the difficult resonance assignment [24]. The
intrinsic motion of this class of proteins does not allow to a simple understanding
of the H-NMR spectra. For IDPs the analysis of the 13C-resonance is more
suitable, thought this brings additional technical problems [24]. In addition all
the available NMR measurements are performed in aqueous solution in vitro
assuming that the structure does not change appreciably the extremely crowded
cellular environment. While this is reasonable for natively folded proteins, IDPs
behavior is thought to be in general much affected by the crowding. Therefore
the in-cell sampling represents the preferential way of studing the IDPs structure-
function relationship. It is however a hard task, due to difficulties in the sample
preparationm labeling and survival of the cells during the measurements. The
identification of a standard method for IDPs structural determination is still
under development.

The few available structures of IDPs are collected into the DisProt [25] and
IDEAL [26] are databases and classified according to their function.
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1.7 random coils

The reference state for this Thesis work is the random coil, which is, the state
with less amount of ordered structures, and therefore the largest amount of
disorder. Proteins are not “ideal” random coil (i.e. with normal distribution
of internal variables [27]), rather as explained in the previous section, they are
associated to given stages of denaturation or unfolding, in the following, it will
be referred to an ideal state of random coil in proteins, as a state in which regular
structures are (almost) absent. Clearly, this is associated with the absence of
hydrogen bonds (especially the intra-backbone ones).

The structural characterization of RC is not straightforward: RC can be experi-
mentally identified only based on spectroscopic data which deliver no structural
information. Small peptides (upto 8 residues) are a possible source of structural
information for RC, because of their inability of making secondary structure.
For these there are spectroscopic data, but few structural one [2], therefore in
order to have appropriate statistics and better interpret experiment, these are
complemented by atomistic simulations.

In spite of these problems, an RC dataset can be build, based on a “coil li-
brary” build from crystallographic data [2][28]. These include a residual amount
of helical and other ordered structures, which can be however recognized and
subtracted to obtain an RC dataset. The subtraction procedure itself is straight-
forward, requiring often the elimination not only of the ordered structures but
also of the amino-acids flanking them, which include structural correlations.
It was shown, however, that the dataset build with this procedure has a good
correlation with experimental determination of unstructured peptides, in terms
of the NMR-J coupling constant, often considered as an estimator of the regular
structure propensity [29].

In [28] it has been evidenced that a bias toward the PPII structures derived
from the residues flanking the fragments with ordered secondary structure. These
residue following an helical fragment cannot be in the β basin for steric reason,
and it is unlike that this residue is in the α basin, otherwise it should belong to
the structured region. Therefore, there is likely to be a bias toward PPII structures,
which should be eliminated to have a purely unstructured database. For these
reason the flanking residue should be discarded. In addition, the use of non-
redundant dataset, obtained inserting a threshold on the maximum sequence
homology, prevents from bias toward a specific structure. As already mentioned
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(section 1.4 and figure 7) even in the regular structures purged coil dataset a
tendency towards recurrent structural arrangement emerges which is considered
“intrinsic”. The correct representation of this intrinsic tendency in a simple model
is the main goal of this work. It also emerges that even if to a minor extent this
tendency is amino-acid type dependent, and non local along the chain. These
aspects will be re-considered when the model build in this work is presented in
chapter 3.

It is finally to be remarked that the coil dataset includes only short peptides,
therefore statistical data therein cannot accurately account for possible long range
interactions. However, as it will be clearer in chapter 3, this might be considered
an advantage for this work because it allows to separate and better model the
short range effects. In spite of all the mentioned problems the coil dataset build
as explained currently represent the best dataset for “ideal RC”, defined as the
structures with less possible amount of regular secondary structures.
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2
P R O T E I N S M O D E L I N G

In the last decades protein simulations have become an invaluable tool for
investigation of protein systems. This chapter provides the bases of classical
molecular dynamics simulations in the framework of proteins biophysics which
can be applied to any kind of classical model Hamiltonian describing interaction
in protein. Two specific cases are subsequently illustrated, namely atomistic and
coarse grained models for proteins.

The last section of this chapter focus on the subject of this thesis work, namely
the Cα based one bead models. Although being mainly descriptive, this section
also report an elaboration of the Ramachandran plot to build its “minimalist”
equivalent, which can be considered the first original result of this Thesis.

2.1 classical molecular dynamics

The molecular dynamics of large bio-molecules is which is not easy to access
experimentally. Therefore computer simulations can give a great support, by
simulating and giving a representation of the dynamical trajectories of molecules.
However, obviously, the computational cost of a simulation and therefore the
possibility of reaching sufficient time-size scales, is dependent on the level of
accuracy at which the system is treated [30]. To this respect, in the following,
different possible modeling approaches are reviewed.

The the complete Hamiltonian of a molecular system is generally separated
in a nuclear and electronic part using the Born Oppenheimer approximation.
The wave functions of electrons is evaluated considering the nuclei in a fixed
position in the space. The nuclei interact with each other under the influence of
electrons treated within a mean field approach. This is possible because the mass
of electrons is much smaller than that of nuclei, and therefore the former usually
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adiabatically follow the motion of the latter. The BO approach defines the energy
of each electronic level (in particular the ground state) for each coordinate set.
These U(r1, . . . , rn) are also called potential energy surface (PES) (one for each
electronic state) and can be used as effective potential energies for the nuclear
motion. In the BO approach they are evaluated by solving the electronic problem
at each given nuclear configuration. This approach, defining the class of atomistic
ab initio methods, is the most accurate and computationally expensive to address
a system, because it implies the solution of a Schrödinger like equation for an
N-electron system for each atomic configuration encountered.

Alternatively, one can evaluate U(r1, . . . , rn) in empirically, as will be described
in the next section. In any case, however, the classical mechanics for the nuclei
is assumed. In fact, while the quantum mechanics is obviously necessary to
describe the electrons, quantum effects for the heavier nuclei are expected to be
negligible at room temperature1. Therefore the Newton’s equation of motion
of a system of N particles with mass mi is to be numerically solved. Each
interacting center represents an atom, in this case, but the following formalism
stands also for coarse grained classical interacting centers (defined in the next
section) representing rigidly moving group of atoms. The Newton’s equation of
motion, to be numerically integrated, is then:

dri
dt

= Fi = mir̈i = −∇iU(r1, . . . , rN), (2.1)

The force Fi is determined by the gradient of U with respect to the coordinates
of the particle i. The characterization of the particular system is obtained with
the definition of the potential energy function, which, eventually determines the
evolution of the system according to the classical dynamics.

The numerical integration of equation 2.1 represents the simplest method to
investigate the dynamical properties of a complex system. There are different
integration strategies which differ in the quality of the calculation and in the
ability to sample a sufficient number of configuration. In the following section
the derivation of the integration algorithm used in this work is reported.

1 With the only exception of the lighter nucleus, hydrogen, which in fact is often treated quantum
mechanically.
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2.1.1 Integration algorithms for equations of motion

In molecular dynamics the integration of the Newton’s equations of motion is
implemented by numerical algorithm with discrete time sampling characterized
by the time step ∆t. Taylor expansion gives a first approximation:

ri(t+∆t) = ri(t) + vi(t) ∆t+
1

2mi
Fi(t) ∆t2 + o(∆t3). (2.2)

The Verlet approach is obtained summing and subtracting expansions at + and -
∆t:

ri(t+∆t) = 2ri(t) − ri(t−∆t) +
1

mi
Fi(t) ∆t2 + o(∆t4). (2.3)

Being exact at the fourth order in ∆t, this algorithm reduces the integration errors
at given ∆t. This algorithm is independent from the evaluation of the velocity,
but it can still calculated as follow:

vi(t) =
ri(t+∆t) − ri(t−∆t)

2∆t
. (2.4)

In addition, Verlet algorithm (VA) satisfies the important property of the
Newton’s equations of motion, namely the time reversibility: the algorithms
depends only on the even derivatives of the motion, therefore it is invariant for
time reversal operations. This algorithm has two variants, which reduce the
amount of global error at the expenses of an increase computational costs. These
are “leapfrog” (LF) and “Velocity Verlet” (VV):

leapfrog

vi(t+ ∆t
2 ) = vi(t− ∆t

2 ) +
Fi(t)
mi

∆t

ri(t+∆t) = ri(t) + vi(t+ ∆t
2 )∆t

(2.5)

Velocity Verlet


ri(t+∆t) = ri(t) + vi(t)∆t+ 1

2mi
Fi(t) ∆t2

vi(t+∆t) = vi(t) + 1
2mi

(
Fi(t) + Fi(t+∆t)

)
∆t

(2.6)

These two algorithms provides a better evaluation of the velocity allowing a better
estimation of the kinetic energy. VV provides a more accurate evaluation of the
velocities with respect to LF, therefore it results the most stable scheme among
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the numerical integrators [31]. Figure 1 shows graphically the scheme of the VA
(a), LF (b) and VV (c) integration algorithms.

Dynamics Methods 45

rn!1 " rn # vn ∆t #
1
2 !Fn

m" ∆t2 ! O(∆t3) (15b)

The sum of the two expansions yields an algorithm for propagating the position,

rn#1 " 2rn ! rn!1 #
Fn

m
∆t2 # O(∆t4) (16)

Translated into a stream of commands, this algorithm is executed in two steps:

1. Use the current position rn to calculate the current force Fn.
2. Use the current and previous positions rn and rn!1 together with the current

force Fn (calculated in step 1) to calculate the position in the next step, rn#1,
according to Eq. (16).

These two steps are repeated for every time step for each atom in the molecule. Sub-
tracting Eq. (15b) from Eq (15a) yields a complementary algorithm for propagating the
velocities,

vn "
rn#1 ! rn#1

2∆t
# O(∆t2) (17)

Figure 1a gives a graphical representation of the steps involved in a Verlet propaga-
tion. The algorithm embodied in Eqs. (16) and (17) provides a stable numerical method
for solving Newton’s equation of motion for systems ranging from simple fluids to bio-
polymers. Like any algorithm, the Verlet algorithm has advantages as well as disadvan-
tages.

Figure 1 A stepwise view of the Verlet integration algorithm and its variants. (a) The basic Verlet
method. (b) Leap-frog integration. (c) Velocity Verlet integration. At each algorithm dark and light
gray cells indicate the initial and calculating variables, respectively. The numbers in the cells repre-
sent the orders in the calculation procedures. The arrows point from the data that are used in the
calculation of the variable that is being calculated at each step.

Figure 1: Graphical representation of the Verlet integration algorithm and its variants [31]. Verlet
(a), leapfrog (b) and Velocity Verlet (c) integration algorithms. From the first to the third
row, the spatial coordinates, the velocities and the accelerations known at each particular
time step are evidenced by shaded boxes. For each method the integration path is
executed according to the enumeration and arrows, which illustrate the dependencies
of each value from the previous one.

In any case the integration error increases with the timestep ∆t. The smaller
the time steps, the better the integration quality, but the larger number of steps
required to obtain the same time length in the trajectory. In general, the best
choice is to find the largest time step that yields an accurate integration of the
highest frequency modes of the system. Being τ their period, a good rule for
selecting the time step is [31]

τ

∆t
≈ 20. (2.7)
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For instance, in proteins the X-H stretching motion has the highest frequency.
Its period is about 10fs (ν = 3000cm−1). Thus an appropriate time step is
represented by ∆t ≈ 0.5fs [31]. The highest frequency modes below these are the
C=O stretching and lie around 1500− 1700cm−1. Therefore, often the distance
of H to its binder is constrained at the equilibrium value, so that the H modes
frequencies are quenched and ∼ 1fs timestep can be used, sufficient to integrate
the heavy atom frequencies.

2.1.2 Constrained dynamics

As said, including holonomic restraints in the system is useful to quench the
highest frequencies of the system and allows using larger timesteps. This is the
case, e.g. when there are strong chemical bonds described by harmonic potential
with very large elastic constant and/or involving light masses. In this case, use
an holonomic restrains give a good representation of the behavior, since those
modes have very small fluctuations around the equilibrium value. In classical
mechanics the holonomic time-independent constraints can be expressed as a set
of Nc linear equation (where Nc represents the number of constraints):

σk(r1, . . . , rN) = 0, k = 1, . . . ,Nc. (2.8)

The equation of motion integrated with the constraints are:

mir̈i = Fi +
Nc∑
k=1

λk∇iσk({rl}), (2.9)

where the λk are the Lagrange multipliers, enforcing the constraints. To integrate
the constrained equations of motion in the velocity Verlet scheme a new set of La-
grange multipliers is required at each time step. Generally this problem is solved
with the SHAKE algorithm scheme [32] in which the Lagrange multipliers are
obtained on the fly, correcting iteratively the position obtained with equations 2.6
until the deviation is within a user-defined tolerance, representing the largest
accepted deviation of the restrained distance. At the iteration j the position r(j)i is
updated to

r(j+1)i = r(j)i +
1

mi

Nc∑
k=1

δλ̃
(j)
k ∇iσk({r

(0)
l }), (2.10)
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where r(0)i are the coordinates evaluated using the unconstrained integration
algorithm, and

δλ̃
(j)
k = −

σk({r
(j)
l })∑N

i=1(
1
mi
∇iσk({r(j)l }) · ∇iσk({r(0)l }))

. (2.11)

Once the convergence is reached, the velocities must be updated according to

vi(t+∆t/2) = vi(t) +
∆t

2mi
Fi(t) +

∆t

mi∆t

Nc∑
k=1

λ̃k∇iσk({r(0)l }). (2.12)

The RATTLE [33] algorithm evaluates the new constrained coordinates following
the SHAKE algorithm paradigm and then adjusts the velocities in order to fulfill
the Nk velocity constrains:

σ̇k({rl}) = 0. (2.13)

For this procedure a new set of Lagrangian multipliers is needed. Like in the
previous case, the problem is generally resolved using iterative methods.

The SHAKE algorithm is suitable for the Velocity Verlet and leapfrog algorithms
whereas the RATTLE can be used only in the Velocity Verlet scheme. The
constrained dynamic causes the loss of time reversibility if the full convergence is
not reached [34]. The presence of constraint allows to use longer time steps but on
the other hand too large time steps causes slow SHAKE or RATTLE convergence.
Therefore one must in any case find a compromise.

2.1.3 Thermostats

In classical molecular dynamics the statistical definition of the instantaneous
temperature of a system is the following [34]:

T(t) =
1

kbNDOF

n∑
i=1

miv
2
i (t), (2.14)

where NDOF is the number of degree of freedom of the system and kb is the
Boltzmann constant. The integration of the Newton’s equations of motion allows
to sample the microcanonical ensemble of a system’s states. Real systems however,
usually exchange energy with the environment and are better described by the
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canonical ensemble (NVT). This is obtained by coupling a thermostat to the
system. One of the simplest consists in through the scaling of velocities. At each
timestep

v ′i = viγ, γ =

√
Tt

T(t)
, (2.15)

T is the instantaneous temperature (eq. 2.14) and Tt is the target temperature. A
refined variant of this method is the Berendsen thermostat in which the scaling
factor

γB =

√
1+

∆t

τT

(
Tt

T(t)
− 1

)
. (2.16)

The scaling factor depends on the parameter τT which determines how tightly the
system and the thermal bath are coupled. Large values of τT makes the system
uncoupled from the thermal bath, whereas small values produces inappropriate
fluctuation. Equation 2.16 returns the 2.15 when τT = ∆t. The Berendsen is a
refined and more physical velocity scaling, but as the simplest one it does not
guarantee the correct sampling of canonical ensemble. The energy fluctuations
are asymptotically limited around the target value and not distributed according
to the Maxwell-Boltzmann distribution of velocities expected from the kinetic
theory [31].

A method to reproduce the canonical ensemble is the Nosé Hoover thermo-
stat. In this method the coupling with a thermal bath is realized adding to the
Lagrangian a new variable s (and its derivative ṡ with respect to time). This
coupling is governed by the magnitude of the parameter Q > 0 also called the
thermostat “mass”. The new variable s plays the role of the scaling variable, since
dt̄ = s dt. Therefore a new set of Lagrangian variables can be represented by:

r̄ = r, ˙̄r = s̄ ṙ, s = s̄, ˙̄s =
ṡ

s̄
. (2.17)

The Lagrangian equation of the system can be rewritten as function of the new
scaled variable as follow:

L =
∑
i

mi
2
s̄2 ˙̄r2i −U(r̄) +

1

2
Q ˙̄s2 − gkBT0log(s̄) (2.18)

The first term represents the kinetic energy of the real system in which every
velocities is scaled by the variable s̄. The potential function U(r̄) is not modified
by the change of variables. g is the number of degree of freedom, which is
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increased by one with respect to the real system. The set of Lagrangian equation
of motion is therefore:

¨̄ri =
F̄i
mis̄2

−
2 ˙̄s ˙̄ri
s̄

, (2.19)

¨̄s =
1

Qs̄

(∑
i

mis̄
2 ˙̄r2i − gkBT0

)
. (2.20)

These equations are known as Nosé equations of motion and describe the dy-
namics of the extended system (s̄, r̄, t̄). In principle, they realize the Canonical
sampling as it can be proven passing through the Hamiltonian representation
and the evaluation of partition function [34]. Clearly, however, the quality of the
sampling strictly depends on the simulation actual realization. Nosé and Hoover
reformulated the equations 2.19 and 2.20 using the variable γ = ṡ/s and r

r̈i =
Fi
mi

− γri, (2.21)

γ̇ = −
kBNdf
Q

T(t)

(
g

Ndf

T0
T(t)

− 1

)
, (2.22)

which assumes a similar form to the Berendsen thermostat with a time dependent
γ.

Care must be taken on the choice of the parameter Q. High values leads to the
absence of the heat transfer. Small values may lead to the high frequency transfer
causing temperature oscillation. The energy of the real system fluctuates due to
the heat transfer.

Although the Berendsen thermostat is not suitable to reproduce the canonical
ensemble, it is used to relax a system to the desired temperature thanks to its
quick equilibration. The Nosé Hoover approach represents the most used method
in classical molecular dynamics [35]. All the the thermostats proposed in this
section are suitable to the leapfrog and Velocity Verlet schemes of integration due
to the explicit involvement of the velocities.

2.2 proteins models

The described equations and algorithms can be applied to any classical Hamil-
tonian or Lagrangian system. In practice in any case when a potential energy
function U(r1, . . . , rn) of the internal variable is defined (either numerically or an-
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alytically), and the dynamics of those variables is classic. One of these cases is the
already mentioned PES U(r1, . . . , rn) evaluated solving the electronic problem at
each nuclear configuration of the system. This approach, using quantum mechan-
ics for electrons and classical dynamics for nuclei interacting with a U(r1, . . . , rn)
evaluated at each time step is also called ab initio molecular dynamics, because,
in principle, the forces acting on nuclei can be derived directly from the basics
interactions (electrostatics between electrons and nuclei) only. This approach is
very computational expensive. Using massively parallel systems a single protein
could be currently addressed, but only at ultrafast timescales, preventing the
possibility of studying most of the biological process. A way out is to evaluate the
U(r1, . . . , rn) once for all and represent the forces through the sum of empirical
terms, generally named the force field (FF). This approach can be applied to
atomistic representation as far as to coarser one, and is described in the following.

2.2.1 Atomistic models

In the atomistic (or all-atom) empirical models the effect of electronic structure
is included into the FF empirical terms. Quantum effects are therefore implicit,
and the Hamiltonian is completely classic. This results in the huge simplification
of the problem, since a large number of quantum degrees of freedom is elimi-
nated. The computational cost is proportionally reduced, making it possible the
simulation of the dynamics of single proteins to the µs timescales, and to address
system as large as viruses. This gain is payed with the introduction of a large
number of parameters into the FF (and in the Hamiltonian), whose value must
be fitted, i.e. the empirical level of the Hamiltonian is increased, and predictive
power and transferability consequently reduced. Parameters can fixed by fitting
each FF term onto its homologue evaluated evaluated with ab initio calculations
on small molecules representing part of the whole system. Alternatively, parame-
ters can be adjusted in order to reproduce experimentally measured observables
(i.e. vibrational frequencies, or structural data) or thermo-statistic data (melting
temperature/pressure/densities, heat of transition etc.). Different FF may differ
in the functional form of the terms and/or in the parameters fitting strategy.

One of the most popular FF for proteins is CHARMM [36], which is here
described as an exemplar case. The decomposition of the potential energy in
single terms is of course not unique. Therefore the FF terms are generally chosen
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the simplest possible describing interactions in a physically sound fashion. For
instance, the potential decomposition in CHARMM is the following:

U(R) =
∑
bonds Kb(b− b0)

2 +
∑
UB KUB(S− S0)

2 +
∑
angle Kθ(θ− θ0)

2

+
∑
dihedrals Kϕ(1+ cos(nϕ− δ)) +

∑
impropers Kimp(χ− χ0)

2

+
∑
nonbond

{
εij

[(
Rminij
Rij

)12
−

(
Rminij
Rij

)6]
+
qiqj
ε1rij

}
,

(2.23)

where Kb, KUB, Kθ, Kϕ, and Kimp are the bond, Urey-Bradley, angle, dihedral
angle, and improper dihedral angle force constants, respectively; b, S, θ, ϕ, and χ
are the bond length (fig. 2.23-a), Urey-Bradley 1,3-distance (fig. 2.23-c), bond angle
(fig. 2.23-b), dihedral angle (fig. 2.23-d), and improper torsion angle (fig. 2.23-
e), respectively, with the subscript zero representing the equilibrium values for
the individual terms. The last two terms in eq. 2.23 represent “non bonded”
interactions, namely Coulomb and Van der Waals interactions (figure 2.23-f).
qi in the Coulombic interaction represents the partial charge of the atom i.
Partial charges are assigned to specific atom types, which are atoms involved in
specific bonds or functional-groups, in order to better reproduce the electrostatic
interactions inside the system.

Figure 2: Variable related to the potential function in equation 2.23.

Each atom type have specific force field parameters. Every parameter in the
force filed must be consistent with the others, therefore, larger the number of
atom types, harder the consistency of the parameters. Due to these limitations,
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the force fields are generally related to specific issues. For instance, CHARMM22
is the force field oriented toward the simulation of proteins in the CHARMM FF
collection [36].

As said, the optimization of parameters may be fitted on the PES calculated
on small molecules, or using experimental data from different sources. Both
strategies have advantages and disadvantages: using calculated PES allows
a more direct and simple fitting procedure, but includes possible systematic
inaccuracies due to the non transferability of parameters from small molecules
to the extended systems, besides possible inaccuracies of the used calculation
method. On the other hand, fitting onto experimental data is technically more
difficult, because only values of observables can be compared, which include
possible inaccuracies in the calculation of them from simulations. In general,
FFs are parametrized through a combination of fitting strategies. For instance
CHARMM22 [36] intramolecular interactions (i.e. the first five terms of eq. 2.23)
are fitted on structural and vibrational data measured on model compounds. The
evaluated terms are subsequently used to refine the intermolecular parameters in
order to reproduce the target models. This process is iterated till the convergence
is reached [36].

Although sometimes implicit solvents are considered by embedding the atom-
istic protein model into a dielectric medium with appropriate properties, most
often atomistic simulations are performed with explicit solvent, namely including
the protein into a water box. In this case water constitutes 70− 90% of the whole
system, therefore the dynamics of the solvent represents the most time consuming
operation and the choice of the FF for water molecules has a major in the simula-
tion behavior. There are many models of water differing by the geometry, number
of the interaction sites per water molecule (see figure 3), number of constraints
and by the potential used for the interactions [37]. Table 1 shows the parameters
of the most popular methods.

In this work atomistic simulation were performed ad hoc to integrate experimen-
tal data for the RP. Specifically, they were used in building figure 7 in section 1.4.
Those data were produced by means of a standard protocol atomistic simulation
of a tetrapeptide of alanine (see figure 4). The simulation was performed with the
GROMACS molecular dynamics package [41][42] using the TIP3P water model
and the CHARMM22 FF for the peptide. The simulation protocol here used is
reported in table 2.
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Figure 3: Graphical representation of water models differing in interaction sites per molecule. (a)
three sites, (b) four sites, (c) five sites.

Model Type l1[Å] θ[deg] φ[deg] σ[Å] ε/kB[K] q1[e] l2[Å]
SPC [38] (a) 1.0 109.47 − 3.1656 78.20 0.41 0
TIP3P [39] (a) 0.9572 104.52 − 3.1506 76.54 0.417 0
TIP3P/fw [40] (a) 0.9600 104.5 − 3.1506 76.58 0.417 0
TIP4P [39] (b) 0.9572 104.52 52.26 3.1540 78.02 0.52 0.15
TIP5P [39] (c) 0.9572 104.52 109.47 3.1200 80.51 0.241 0.70

Table 1: Main geometrical and energetic parameters of the most popular water models. The
second column refers to the number of interaction sites with respect to figure 3. The
geometrical variables i.e. l1, l2, θ, φ are shown in figure 3. The energetic parameters σ
and ε are Lennard-Jones parameters related to the VdW interaction.

Phase T[K] Integrator ∆t [fs] Duration [ns]
Minimization - leapfrog 0.1 2

Production run 300 leapfrog 0.1 50

Table 2: Simulation protocol adopted for the atomistic simulation.

Figure 4: Tetrapeptide of ALA configuration sampled during the simulation (see text).
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2.2.2 Coarse grained models

The Coarse Grained models (CG) represent a natural way to overcome the time
and size limits of atomistic simulations. In these approaches group of atoms
are represented by single interacting centers. The interaction between them
must be able to reproduce as close as possible the dynamics of the atomistic
representation of the system despite the loss of degrees of freedom (DOFs). This
approach simplify the representation of the protein thanks to the elimination
of a number of DOFs and averaging over the detailed interaction [44]. The CG
method reduces the computational costs, allowing to sample the timescales and
system sizes not accessible to atomistic representations.

Many strategies of coarse graining are possible. The higher the level of coarse
graining, the harder building a FF able to reproduce the structure. In fact, the
condensation of DOFs makes it difficult to represent complex interactions between
the atoms hidden in the bead.

The CG method begins with the definition of a new set of coordinate QI in
terms of the old ones qi

QI = QI(qi ∈ BI) =
∑
ri∈Bi

TIi qi. (2.24)

The second equality holds in case of a linear relation. In this case, TIi is a rect-
angular matrix, since the dimension of the set {QI} is lower than {qi}. Therefore
this transformation is not reversible, in general. The new interacting center
representing group of atoms is often called “bead”.

Restricting to the protein CG models, the procedure starts with the choice of
the number of the beads for amino-acid and their location. The most popular
CG models for proteins (reported in table 3) include between 1 and 6 beads per
amino acids. Models were associated to different FFs, reported in the last column.
The mesoscale level of representation is often separated from the CG, although
it merely correspond to a higher level of coarse graining, where the interacting
center might represent entire structural domains or proteins. Mesoscale models,
though very interesting, go beyond the scope of this work and will no be treated
here.

The CG FF terms can be defined either analytically or numerically. Analytical
representation give the advantage of being more computationally light, while
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Class
Balls and

sticks
Scheme Name and reference

1 bead Cα
Sorenson

Head-Gordon [43]

2 beads Cα (1
bead on side

chain)

1 bead Cβ

2 beads (1 bead
on the bb

centroid, 1 bead
on sc)

UNRES [45], Levitt [44]

1-6 beads Cα
(0-5 beads on sc)

MARTINI [46]

Table 3: Short list of coarse-grained models with the graphical and schematic
representations. The reference of most popular FF is given.
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numerical representation have more flexibility in the representation of very
complex behavior of the CG interaction.

In any case, the parametrization difficulties arise in the balance between the
accuracy and predictive power as aforementioned. This problem, already present
in atomistic empirical models, is more evident here due to the higher level of
empiricism. Different strategies were adopted to overcome those difficulties. One
is to build models completely biased toward a single structure, therefore renounc-
ing to transferability. For instance, the elastic network model (EN, first row in
table 4) considers the whole set of interactions as simple harmonic potentials.
The spring constants are all equal whereas each equilibrium distance is chosen
to reproduce the reference structure. This method was successfully applied to
normal mode analysis of proteins. The EN includes a large amount of a priori
structural information (i.e. the complete 3D structure), therefore its predictive
power is low. The spring constant is the only one adjustable parameter, fitted
on experimental average fluctuations. More refined models include different
spring constant for each interactions and physics-chemistry based cutoff for the
interactions (see table 4). The inclusion of physics based parameters into the
interactions brings an improvement of the predictive power of CG FFs. The same
is obtained eliminating the structural biases, although this brings loss of accuracy
and the need of more complex functional form and parametrization strategies
(see table 4).

Two popular parametrization strategies are the Boltzmann Inversion (BI) and
the Force Matching (FM). The BI method returns statistic based FFs and potentials.
Given an internal variable, from its statistical distribution it is possible to evaluate
potential of mean force associated with it assuming the Boltzmann statistics. In
this way the bias towards a single structure is dropped. Assuming a complete
and independent set of internal variables, the total energy can be written as:

U({Q}) =
∑
i

Ui({Qi}) (2.25)

where each FF term and the relative coordinate is labelled with the index i. The
probability distribution of a variable is related to U({Q}) by:

P(Qi) ∝
∫
dQ1 · · ·dQi−1 dQi+1 · · ·dQNe−

U({Q})
k T = e−

U(Qi)
k T (2.26)
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where N is the number of DOF of the system, k is the Boltzmann constant and
T is the absolute temperature. Equation 2.26 defines in general the potential of
mean force. If the variables Qi are uncorrelated and no cross-terms are present
in 2.25 is exactly the potential term for Qi. It follows that:

U(Qi) ∝ −k T log(P(Qi)). (2.27)

The next assumption is that the distribution P(Qi) can be evaluated from a
statistical set of structures. As mentioned in section 1.1, the available dataset is
represented by a collection of PDB entries. There is no physical reason indicating
that this is an equilibrium distributed dataset. However, once care is taken in
the elimination of redundancies, and possible a priori known biases (e.g. too
sequentially similar structures, of too specific experimental conditions), and
considering that the possibility of resolving a structure is also related to its
stability, one might consider the remaining dataset a possible and experimentally
accessible representation of a statistical ensemble. Moreover using the NMR-
derived structures sampled at room temperature, it is possible to obtain a better
representation of the dynamic behavior of the system. The origin of the dataset,
however, must be always kept in mind when analyzing the result of the Boltzmann
inversion based parametrization. Equation 2.27 is more conveniently written as

U(Qi) = −k T log

(
P(Qi)

P0(Qi)

)
+ const. (2.28)

being P0(Qi) the distribution of the variable when no interaction among the
“beads” (interactive centers) are present. P0 can sometimes be evaluated theoreti-
cally, independently on the input dataset. U is sometimes called also “statistical
potential” (SP).

When the statistical potential depends on two or more variables, e.g. Qi and
Qj, the distribution P0(Qi,Qj) can be approximated by P0(Qi)P0(Qj) if and only
if these two variables are uncorrelated. In general this condition is not satisfied.
In addition in general, not even the completeness condition is satisfied, namely,
the set of Qi does not exhaust the whole description of the system interactions.
This implies that the total probability distribution is not separable, and the sum
of the terms obtained by applying the BI to single variables give only a first rough
approximation of the potential energy. This is then used as the first step of an
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iterative process (Iterative Boltzmann inversion, IBI), consisting in producing
simulations with the approximate potential, and correcting it with the difference

∆U = −k T log

(
P(Qi)

Pj(Qi)

)
. (2.29)

being P(Q) the target distribution (e.g. evaluated from the experimental dataset)
and Pj the distribution evaluated from the simulation. This algorithm can be
repeated until negligible difference between the resulting and the target distribu-
tions is reached.

The FM strategy targets the reproduction of the forces observed in the system
at all atom resolution. These must be obtained from all-atom trajectories of
the system. The quality of the parameterization depends on the quality of the
atomistic Force Field used and on the extension of the phase space sampling
by the atomistic simulation. The method consists in the minimization of the
functional

χ2({F}) =
1

3N

〈
N∑
i=1

|FI({Q({q})}− fI({q}))|

〉
(2.30)

where FI are the CG forces on CG sites I, while fI are the forces on the CG sites
evaluated from the all atom simulations. The average is performed over the
all atom trajectory. The minimization must be obtained tuning the parameters
related to FI. This strategy is aimed to obtain a mechanical consistency between
the all atom and CG resolution during the simulation.

The FM was shown to obtain very accurate results, especially with numerical
potentials [47][48]. However it is showed to atomistic simulations, limited both
in accuracy and in the extension of sampling of configurational space [11]. In
particular it was shown that the RP obtained by atomistic simulation is very
sensitive to the chosen atomistic FF [49]. Therefore in this thesis work the BI
related methods were preferred for the parametrization. This choice was also due
to availability of a large amount of data which ensures a larger generality and
transferability of potentials.
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2.3 the cα -based one-bead (minimalist)

2.3.1 Description of the model

The one bead per amino acid representation is the most natural, being the
basic structural unit of polypeptides. This level of coarse graining transform
the polypeptide in a linear chain, simplifying the functional form of the force
field. The low number of degree of freedom allows to reach large size and time
scales in simulation [11] and, in addition to represent the local arrangement of
the backbone, namely the secondary structure [50]. In fact, the protein secondary
structure can be expressed as the sequence of the torsion angle couples. In the
minimalist representation the dihedral φ and ψ angles are undefined but the
secondary structure can be expressed as the sequence of pseudo-dihedral (ϕ) and
pseudo-bond (θ) angles (see figure 5). It will be shown at the end of this chapter
that if the bead is located on the α-carbon, the representation of secondary strcutre
in terms of the θ and ϕ variables is unique, and the backmapping to atomistic
representation is possible. For this reason the Cα based one bead models (also
called minimalist) are privileged among the CG ones, and are the focus of this
work.

Due to the low number of interacting centers, the FF for minimalist models
is described by fewer terms and fewer parameters with respect to the potential
function of an atomistic system (compare with equation 2.23 in section 2.2.1):

U = Ubond(ri,i+1) +Uloc(θi,ϕi) +Unb(ri,j), (2.31)

the first two terms representing the local interactions: Ubond is the peptide
pseudo-bond interaction between two consecutive Cα, whereas Uloc is the poten-
tial term of the remaining local interactions, responsible for the protein backbone
local arrangement. The first term is often described as a stiff harmonic potential
with mean value equal to 3.8Å, which represents the peptide bond in trans con-
formation. In order to include the transition in the cis conformation the bond
term could be extended [51] adding another deep minimum at 2.97Å. However,
as previously shown, it is sometimes convenient to substitute stiff interaction
with holonomic restrains, which is the strategy adopted in this work. This choice
improve the computational performance of the model without appreciable loss of
accuracy. The second term of equation 2.31 describes the local backbone arrange-
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(a)

(b)

Figure 5: All atom representation of the pentapeptide (a) and its minimalist version (b).

ment while the last term describe the non local interaction, generally between
beads separated by at least three beads along the chain. The last term is gener-
ally defined as the interaction of two non consecutive beads. This term should
include the effects of the side chain interactions, hydrophobic effects, electrostatic
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interactions and hydrogen bonds. The latter are particularly difficult to describe
within the minimalist models, due to the absence of donor and acceptor explicit
representation [52]. Since this work focuses on systems in which hydrogen bonds
are virtually absent, the problem of their representation will not be addressed
here.

In general the extreme simplification of equation 2.31 might pose some problem
in the representation of interactions. However, in spite of the simplification this
representation allows to recognize the secondary structure of the simulated
system [11][53], which is an important feature in the field of the protein folding
and IDP simulations where identification of secondary structure are of the utmost
interest.

It is to be observed that equation 2.31 is general enough to describe all the
available minimalist models, included the already described EN, those with
partial bias such as the Go-like models used to describe the folding kinetics.
Table 4 reports a summary of the most popular ones.

In is also to be remarked that also the models generally called “unbiased”
generally preserves some form of bias. This manifest in secondary structure de-
pendent parametrization of the Uloc [53][43]. In addition all the aforementioned
models do not deliver a very accurate representation of the local arrangement for
unstructured proteins. This problem is often bypassed by using functional forms
mixing α and β basins.

The local interactions are often separated in two independent potentials terms [54]

Uloc(θi,ϕi) = Uang(θ) +Udih(ϕ), (2.32)

where Uang is the bond angle potential term, which is defined as a function of
the angle between the three consecutive, and Cαs, and Udih is the dihedral angle
potential term, which is related to the torsion between four consecutive Cαs. The
intrinsic amino-acid conformational tendencies are analyzed using the previously
defined amino acids classification (figure 8 in section 1.4)

In this work the target is the reproduction of the backbone geometry of the
unstructured proteins. The lower statistics of structural data for this class of
molecules, makes this task more difficult than for the structured ones. In addition,
as said and as it will be clearer in the following, single variable internal distribu-
tions are not appropriate targets in this case, because correlations are particularly
important. However, the correct reproduction of the intrinsic conformational
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Figure 6: Graphical representation of the γ1,γ2 and τ angles and the λ1,λ2 auxiliary variables in
a tripeptide; taken from [55].

tendency of the backbone in absence of any specific interactions such as hydrogen
bonds, is the main property a minimalist model should have. Therefore this is
the main task addressed in this work.

2.3.2 Atomistic to minimalist variables transformation

Due to the rigidity of the peptide bond, locating the bead on the Cα offers
a unique advantage of minimalist models with respect to the others, namely
the possibility of building a (φ,ψ)→ (θ,ϕ) mapping between the atomistic and
minimalist internal variables, which is unique, i.e. independent on the secondary
structure.

As aforementioned the coarse graining process reduces the number of DOF.
In fact, as demonstrated by figure 6, a tetrapeptide backbone in atomistic con-
formation is entirely determined by the quadruplet φ1,ψ1,φ2,ψ2 while the same
tetrapeptide is described in terms of three variables θ−,ϕ and θ+. Therefore the
(φ,ψ)→ (θ,ϕ) is a four to three variable mapping. Considering

a = cos(γ2)cos(τ) + sin(γ2)sin(τ)cos(ψ); (2.33)

b = cos(γ2)sin(τ) + sin(γ2)cos(τ)cos(ψ); (2.34)

c = cos(γ1)cos(τ) + sin(γ1)sin(τ)cos(φ); (2.35)

d = cos(γ1)sin(τ) + sin(γ1)cos(τ)cos(φ); (2.36)

47



this transformation can be analytically described by [55]

cos(θ) = a cos(γ1) + b sin(γ1)cos(φ) − sin(γ1)sin(γ2)sin(φ)sin(ψ) (2.37)

ϕ = (λ2)1st + (λ1)2nd + 180deg, (2.38)

where γ1, γ2 and τ are the angles defined in the first chapter. The λ1 and λ2 are
the angles for rotation of the peptide planes about the virtual bond Cα0 . . .Cα1 and
Cα1 . . .Cα2 respectively, with respect to the plane containing the three consecutive
Cαs (see figure 6). In order to evaluate ϕ the λ2 is related to the first residue
whereas the λ1 is related to the second peptide (this approximation is valid
considering the peptide plane flat, ω = 0deg). These variables are related to the
variables γ1, γ2, τ, φ and ψ with the following relations

tan(λ1) =
−b sin(φ) − sin(γ2)cos(φ)sin(ψ)

a sin(γ1) − b cos(γ1)cos(φ) + cos(γ1)sin(γ2)sin(φ)sin(ψ)
; (2.39)

tan(λ2) =
−d sin(ψ) − sin(γ1)cos(ψ)sin(φ)

c sin(γ2) − d cos(γ2)cos(ψ) + cos(γ2)sin(γ1)sin(φ)sin(ψ)
. (2.40)

These equations can be simplified in the case of the ordered secondary structures,
for which φ1 = φ2 and ψ1 = ψ2. Under this hypothesis the mapping transforms
in the phi−ψ to the θ−ϕ two-two mapping. Figure 7 shows how the basins of the
RP (considering β and PPII a unique one) are mapped onto their corresponding
basins in the θ−ϕ plane [56]. The butterfly shape , drawn with the gray line
on the right-hand side plot, sketches outline the limits of the image of the
transformation applied on the whole (φ,ψ) space. Therefore, in the range of
validity of the approximation of ordered secondary structures, these can still be
separated in the minimalist representation. This is a fundamental point, being
the practical demonstration that the minimalist representation is a proper one
to describe one of the basics structural levels of proteins, namely the secondary
structures. Is is to be remarked that this possibility descends from having chosen
the Cα as the site for the location of the bead.

Figure 9a reports the full set of correlation plot θ+,ϕ and θ−,ϕ for the main
structural basins, obtained from the experimental RP relaxing the assumption
of uniform and regular secondary structure, and using the full four to three
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mapping expressed in equations 2.37 and 2.38. This is the first original result
of this thesis work, and can be considered a refinement of figure 7 [56]. The
mapping is the general three to one, spanned by the variables φ, θ−, θ+, being
the two latter bond angles that preceding and following the dihedral along the
chain (see figure 5b). Furthermore, two different θ−ϕ correlation plots must be
considered, namely (φ, θ−) and (φ, θ+) which are in principle different.

Figure 7: Comparison between the structured regions of the Ramachandran plot (left) and
θ,ϕ correlation plot. In green are reported the right-handed helices , in blue the
stranded/extended structures and in red the left-handed helices [56].

These data are sampled from regions, which delimit every basin, by approxi-
mating the densities of these region to a constant value. In this way is is possible
to observe how the transformation modify the density of each basin in the new
system. This analysis have been performed following the first algorithm described
in appendix G, which allows to reproduce the effects of the (φ,ψ)→ (θ,ϕ) trans-
formations. The regions representing each basin are taken from the RP (figure 8).

Differences between “right” and “left” correlation plots are expected if the
directional symmetry along the chain is broken. This is actually the case, due
to the slight difference between γ1 and γ2, which assumes the numerical values
reported in table 3 in section 1.3. However, as it can be seen in the regular
secondary structures these differences are very small, negligible in the helical
basins (plots 9a and 9b), little more evident in the others (plots 9c and 9d). As ex-
pected, and as it will be shown in chapter 3, conversely, these difference becomes
substantial in the unstructured proteins.
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Figure 8: The approximative limits of each basin is superimposed on the RP taken in figure 8 in
section 1.4.

Finally, it is to be observed that right and left θ−ϕ plot are projections of
θ− −ϕ, θ+ 3D plot, which will be described in detail in chapter 3.
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Figure 9: Normalized density plot for the main structural basins, mapped from the experimental
RP onto the θ, ϕ planes. They represent the α (a), the α-L (b), the β (c) and the pPII (d)
regions respectively. See text for the procedure. The color scale bar is on the right of
each graph.
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3
S T R U C T U R A L D ATA S E T P R E PA R AT I O N

In the previous chapter the generalities of the minimalist models were described.
The main focus of this thesis work is to develop a model for unstructured proteins.
The functional form chosen for the FF is equation 2.31, namely local interactions,
depending on the conformational variables θ and ϕ, are separated form non
local interactions, involving all couples separated by more than three beads along
the chain. At variance with other models, in this work the potential Uloc is not
separated in two terms depending on θ and ϕ. The reason for this choice was
outlined in the previous chapter, and will be clearer in this one: it turns out that,
specifically for unstructured proteins, the correlations between θ and ϕ variables
are not negligible, and a separated potential form is not adequate.

As said, the parametrization strategy will be based on the Boltzmann inversion
of structural data. Specifically, the θ,ϕ experimental maps will be inverted to
obtain a backbone potential including correlations. Therefore, the dataset building
assumes a fundamental role in determining the accuracy of the potential. In
chapter 1 the difficulties underlying this task were outlined: data for unstructured
proteins are more difficult to retrieve, and often biased by the presence of residual
ordered secondary structure fragments. This chapter is then entirely devoted to a
pure unstructured (coil) dataset building, which will be used in the next chapter
for the potential parametrization, and to its analysis. Elements of novelty are
introduced in the methodology for these two tasks, specifically in the analysis
which put in evidence correlations between internal variables. The coil dataset
analysis is also compared with that the largest IDP dataset, having lower level of
disorder but larger statistics and biophysical relevance.
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3.1 coil dataset generation

As described in section 1.7, in the literature the “coil libraries” are usually built
using the X-ray data assuming that the crystallographic restrains bring negligible
structural bias. The NMR data give a larger statistics for unstructured fragments
and will be additionally considered in this work. Results from the X-ray and
NMR dataset will be continuously compared along this work. It must be kept in
mind, however, that also NMR data might include a bias, due to the choice of the
specific FF used in simulation to generate structures from NMR restrains.

In any case, care is taken to reduce other sources of bias. For instance, oversam-
pling due to redundancy is reduced filtering out sequence with homology larger
than 30% as suggested in the literature [28]. This is particularly important for the
X-ray dataset, being those structures near to their equilibrium state. Conversely,
the filter is not applied to NMR data, because they provide more out of equi-
librium conformational sampling even to the same sequence. These procedure
finally lead to two dataset named PDB_XRAY and PDB_NMR respectively.

The coil datsets are created by purging all residual secondary structures from
the dataset. Therefore, the secondary structure recognition and assignment algo-
rithm represents a crucial choice for the determination of this dataset. STRIDE [17]
and DSSP [16] are the most popular secondary structure recognition algorithms
using different recognition strategies. In DSSP the recognition is achieved through
the identification of the hydrogen bonding pattern whereas STRIDE takes also in
consideration the geometry of the system. Both these algorithms do not recognize
the PPII secondary structure. In both algorithms, the presence of a H-bond is
recognized by empirically evaluating its energy from the geometry of donor-
acceptor groups and the strength of the interaction. In the two cases slightly
different structural and energetic criteria are used, which, however, does not
bring appreciable differences in the datsets. A more relevant difference regards
the recognition of a specific secondary structure in DSSP (absent in STRIDE), the
“bent”, based on purely structural criteria. This structure is not stabilized by any
hydrogen bonds, and therefore there would be no specific reason to eliminate
it from the coil dataset. In this work besides the dataset building using basic
DSSP, another one is considered DSSP_S in which the bent are included among
the coils.

For each experimental dataset, the disordered structures are evaluated by using
both the assignment algorithms STRIDE and DSSP and considering only those

54



fragments with length greater than six residues. Smaller lengths are discarded
in order to reduce possible tail effects. The relative short length of the residues,
however, also brings an additional advantage: the non local interactions are
statistically minority, therefore the obtained dataset is somewhat ideal to optimize
the local interactions.

Figure 1 shows the statistical analysis of the PDB_NMR (first row) and PDB_XRAY
(second row) made with the aforementioned secondary structure assignment
algorithms. In order to cross check how the different selection algorithms per-
form, cascade selections were performed: the first column shows the secondary
structure contents of the coiled fragments revealed by the DSSP algorithm re-
analyzed using the STRIDE algorithm. In the second column, the two algorithms
are interchanged. The last column shows the secondary structure contents of the
coiled fragments revealed by the DSSP_S algorithm using the STRIDE algorithm.
In each graph is reported the total amount of the residues included in fragments
labeled as coiled structure.

The largest difference between PDB_NMR and PDB_XRAY is revealed by the
DSSP_S assignment. The DSSP algorithm recognizes the lowest number of coiled
fragments in these datasets, followed by the STRIDE algorithm as reported by
the amount of residues contained in each set. The ratios of the coil dataset sizes,
considering as a reference the size of the DSSP dataset, specific for each methods
are approximately 1:3:10 for the PDB_NMR and 1:2:4.7 for the PDB_XRAY. There
is an overall agreement between STRIDE and DSSP, but the STRIDE algorithm
provides assignments closer to the secondary structure evaluation published by
the authors of the protein structure in the PDB [17], which simply indicates that
this is the preferred methods by the experimentalist to assign secondary structure
to their experimental determinations.

Panels c and f show the DSSP_S datasets contain a large bias toward the turn
structures when re-analyzed by the STRIDE algorithm results. For the purposes
of this work, the most interesting results are achieved by the evaluation of the
dataset by using the STRIDE methods (panels b and e). In fact, the DSSP algorithm
defines the turn structure as the basic element with a tight hydrogen bond (i.e.
with interaction energy higher than 0.5kcal/mol). The STRIDE algorithm adopt
the definition given in [57] which identifies a turn structure on the basis of the
dihedral angles (φ,ψ) of two consecutive residues. Due to the equation 2.38, this
definition is strictly related to a specific regions of the (θ−,ϕ,θ+) space. Moreover
as stated, the identification of the bent structures is not supported by a specific
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local interaction and high flexibility of the overall structure is expected in the
coil dataset, therefore the exclusion of these structures based on a geometrical
selection criterion is not desired. Therefore considering DSSP-bend assignment
negligible by its definition, the low contents of turn structures (from the DSSP
analysis) in the STRIDE coiled structures (2% and 4% in NMR and XRAY dataset
respectively) reveals that the STRIDE assignment represents the best assignments
for the scope of this work. Hereinafter each coil database evaluated in this section
is referred as (PDB_)EXP_MET, where EXP is either NMR or XRAY and MET can
be either DSSP(_S) or STRIDE.

Figure 1: Pie charts on the secondary structure contents of the coiled structures assigned with
the DSSP (first column), STRIDE (second column) and DSSP_S (third column, see text
for the definition). The first row contains the data of the PDB_NMR dataset whereas
the second row is related to the PDB_XRAY dataset. The secondary structure contents
reported in each column are the result of the analysis performed with the alternative
algorithm on the coiled structure. The labels C, T, H and S are related to the coil, turn,
α-helix and bend secondary structure respectively.
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Figure 2 reports the statistics all datasets. As it can be seen, X-ray data include
on average shorter sequences, due to the increasing difficulty of the resolution of
the diffraction pattern in longer disordered structures. The information contained
in this plot is the relative contribution of long fragments with respect to short
ones in the dataset, which will be used in the following.

Figure 2: Statistics related to the length of the coiled fragments sampled in the PDB_XRAY and
PDB_NMR datasets identified by the algorithms DSSP, DSSP_S and STRIDE.

Table 1 shows the amino acid contents of the coil library evaluated from the
experimental datasets by using the STRIDE algorithm and the amino acid content
of IDPs [58]. There are some differences between the amino acid contents of IDPs
and the STRIDE dataset, but a detailed analysis of these deviations is bewond
the scope of this work, also because given the broad classification in residue type,
this difference is not expected to affect the result of this work. In any case, the
large deviation of the serine content in the NMR-STRIDE dataset with respect
to the X-ray-STRIDE was expected due to the disorder promoting action of this
AA (see the ranking of the structure destabilizer amino acids in section 1.6) that
makes difficult the structure determination using X-ray crystallography. Since the
glycine is the amino acid with the highest conformational freedom, it is highly
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involved in the formation of the turn secondary structure, which explains its
relatively high occurrence in these datasets.

PDB_XRAY PDB_NRM IDP [58]
STRIDE [%] STRIDE [%]

ALA (A) 5.99 5.40 7.15
ARG (R) + 4.98 4.44 4.21
ASN (N) 4.37 3.43 2.06
ASP (D) - 5.90 4.41 5.05
CYS (C) 0.99 1.49 0.61
GLU (E) - 6.08 5.82 14.26
GLN (Q) 3.54 3.20 4.46
GLY (G) 10.15 13.50 4.31
HIS (H) 2.67 3.96 1.51
ILE (I) 4.12 2.90 3.67
LEU (L) 6.46 4.95 5.44
LYS (K) + 5.70 6.21 10.43
MET (M) 1.29 2.28 1.30
PHE (F) 3.21 2.14 1.66
PRO (P) 11.01 9.05 12.07
SER (S) 6.99 14.99 6.91
THR (T) 6.68 5.14 5.14
TRP (W) 1.16 0.77 0.32
TYR (Y) 3.10 1.84 1.42
VAL (V) 5.59 4.09 8.02

Table 1: This table show the amino acid relative amount of the fragments identi-
fied as coil by the STRIDE algorithm in the PDB_XRAY and PDB_NMR
datasets. The last column shows the percentages related to IDPs [58].

3.2 internal variables statistical distributions

The PDB_NMR dataset is affected by biases on the φ torsion angle of the proline
residue (see panels b in figure E.1 in appendix E, for values of φ ≈ 75deg). This
bias should be eliminated. It was evaluated considering the standard deviation
(STD) of the φ torsion angles of every proline residues present in the PDB file.
Since the bias is revealed by an anomalously small STD, it was eliminated by
setting a threshold on the STD for acceptance of a structure. Overall, the dataset
statistics was decreased of the 17% (see appendix E for details). The filtered
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dataset is herein after referred to as “PDB_NMR” because there is no need to
consider the biased structures in the next statistics.

As reported in section 1.4, the RP is amongst the most useful tools to understand
the content of a structural dataset. Figure 3 shows the densities of the RP,
PDB_NMR_STRIDE dataset. The amino acid are further separated in the four
classes, already introduced in section 1.4, namely proline (P, top right), glycine
(G, bottom left), pre-proline (pP, bottom right) and the remaining (X, top left),
showing different structural characters.

The global shape of these plots was described in section 1.4 where the corre-
sponding plots derived from a X-ray coil library [10] were reported. By comparing
these plots with those of section 1.4, and with accurate X-ray based RP reported
in appendix E, figure E.3, it can be seen that these have generally larger allowed
areas. With exclusion of the regions depleted by the On−1-Hn+1 and On−1-C
steric interactions (see the “derivation diagram” in figure 6b section 1.4), all the
regions are explored. This may have several causes. X-ray structures are more
restrained, both because of the constraints and for the low temperature of the
experimental setup. Therefore the configurational accessible space is more limited
than in NMR resolved data. In addition, the NMR-pdb file reports many models,
generally between 20 and 40 different models with different conformation of the
same structure. This can provide a wider information on the structural properties
of the system.

At variance with the X-ray, NMR dataset shows higher occurrences in regions
surrounding the depletion regions related to the steric repulsion of the atoms.
These regions have been discussed in section 1.4 and graphically sketched in
figure 6b. While this broader occupation of the RP in NMR data is expected due
to the less restrained environmental conditions with respect to X-ray experimental
setup, details of RP analysis are beyond the scope of this work.

3.2.1 Single variable statistical distributions

In this section the distribution of θ and ϕ variables of the minimalist model are
reported. These will be used in chapter 4 for the parametrization. However, more
in general, they contain the same information included in the RP, of which can
be considered the minimalist counterpart, and give a large amount of structural
information. For instance they allow identifying secondary structures, having
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Figure 3: Ramachandran plots of the proline (b), glycine (c), pre-proline (d), and the non proline,
non glicine and non pre-proline amino acids (a) of the coiled structures selected
using the STRIDE algorithm form the PDB_NMR dataset avoiding the proline-biased
structures (see the text). The color range in each panel have been rearranged up to 40%
of the maximum in order to enhance the details.

the bond angle distribution P(θ) peaked at ∼ 90deg (helices) or at ∼ 120− 150deg
(strands) and the dihedral distribution P(ϕ) peaked at ∼ ±60deg (helices, right
and left-handed) or ∼ ±180deg (strands) [11]. Figure 4 shows the distributions re-
lated to the θ (left panel) and ϕ (right panel) variables of the PDB_XRAY_STRIDE
and PDB_NMR_STRIDE datasets. In P(θ) a peak at θ ∼ 90deg is visible including
residual helical-like structures. Analogously residual peaks corresponding to
β, PPII (θ in [120 : 140]deg and [110 : 130]deg respectively) are distinguishable
although the mixing is significant (see figure 9c and 9d in section 2.3.2).
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(a) (b)

Figure 4: One dimensional distributions of the θ angle (a) and ϕ torsion (b) of the coiled
structures, contained in the PDB_NMR (red marks) and PDB_XRAY (green marks),
which are evaluated using the STRIDE algorithm.

The NMR dataset produces smoother distributions due to the above mentioned
wider conformational sampling. Conversely, the X-ray dataset reveals a conforma-
tional preference for the PPII structures, which are less flexible and therefore more
statistically present in the X-ray dataset. Very broad yet still visible structures are
present in the P(ϕ) distribution in correspondence of α-like right handed helices
(ϕ ∼ 60deg), PPII (ϕ ∼ −100deg) and β (ϕ ∼ 180deg). It is to be observed that the
sign of the φ is related to helicity (right-handed is positive whereas left-handed is
negative). The fact that the α-basin propensity is lower than the others is related
to the relatively high propensity to make H-bonds in that secondary structure.

Especially for the parametrization sake, it is important to consider also the
“non bonded” distribution P(r), defined as the distribution function of the spatial
distance of beads separated by more than two beads along the chain, i.e. the
minimal separation along the chain is defined to minimize the correlation with
the other distributions depending on θ and ϕ, which involve beads separated up
to two beads along the chain.

Due to the short length of the fragments chosen dataset (see figure 2), P(r) is
not statistically well defined. More specifically, the statistical relevance strongly
depends on the distance along the chain of the beads: contribution from beads
separated by more beads are less statistically represented. This implies that P(r)
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at larger r is more noisy than the short r. To correct for this problem the following
weighted normalization is adopted for P(r).

P̃(r) =
1

N−n+ 1

N∑
i=n

Pi(r). (3.1)

Figure 5a reports the P̃N(r) for different N. As it can be seen, the different length
fragments show peaks at the same locations, representative of the chain induced
order, but different statistical weight depending on the length of the fragment.
In addition the longer fragment sets show a change in the behavior (a “flex”)
around 50Å, which could therefore be considered as a sort of coherence length.

For completeness, in this work the model results for non bonded distribution
will be compared with the experimental ones of figure 5a.

(a) (b)

Figure 5: (a) Distance distribution of the PDB_NMR_STRIDE dataset using the normalization
defined in equation 3.1. For all the distribution n = 6 whereas N = {16, 20, 25, 30}. (b)
3D-rendering of the minimalist representation of the fragment 81-133, 1WGS.

3.2.2 Distribution of geometrical backbone parameters, τ, γ1 and γ2

The τ, γ1 and γ2 angles, defined in section 2.3.2, are not explicit internal
variables of the minimalist model. However, since they enter the relationship
between the atomistic backbone variables φ, ψ with the minimalist counterpart
(equations 2.38) an analysis of these variables is of paramount interest for the
scope of this work. Figure 6 shows the distribution of these variables extracted
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from the PDB_NMR and PDB_XRAY datasets. The two datasets show different
behaviors: multi-peaked distributions for the NMR dataset whereas single peaked
distributions with a Gaussian-like shapes. As for previously discussed cases, the

Figure 6: τ distribution (top left), γ1 (top right) and γ2 (bottom). For each variable is reported
the data extracted from the PDB_NMR (green) and PDB_XRAY (red) datasets.

multiple peaks might be attributed to different modules used in the determination
of PDB_NMR data. On the other hand, in this case, since the parameters under
consideration involves very local distances and angles, their distribution is not
likely to be substantially influenced by crystallographic constrains. Therefore in
the following the X-ray derived distributions will be considered the reference
ones, for these parameters.

Figure 7 shows the correlation plot for each couple of the τ, γ1 and γ2 variables
obtained from the PDB_NMR dataset. To be noted that, while the correlations
between these variables, which are related to the same amino acid, are almost
negligible (see panels a, b, c in figure 7), the γ2 − γ ′1 plot (figure 7d) (γ1 of the
next residue) shows, conversely, a clear correlation. In order to operatively use the
previous observation, it is useful to represent them in analytical form. Therefore,
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(a) (b)

(c) (d)

Figure 7: (a) correlation plot between the τ and γ1 variables; (b) correlation plot between the
τ and γ2 variables; (c) correlation plot between the γ1 and γ2; (d) correlation plot
between the γ ′1 and γ2 variables. Data extracted from the PDB_NMR dataset. γ ′1 is the
next γ1 angle along the polypeptide.

the τ variable distribution is fitted with a Gaussian function (see fitted parameters
in table 2). The fitting procedure for γ ′1 and γ2 involved the search for a new set
of coordinates ξ1 and ξ2, which diagonalize the covariance matrix

C =

(
Cγ ′1,γ ′1

Cγ ′1,γ2

Cγ2,γ ′1
Cγ2,γ2

)
=

(
7.7830 4.3357
4.3357 7.0270

)
. (3.2)

64



The matrix diagonalization lead to:

ξ1 = −0.7371 γ ′1 − 0.6757 γ2 (3.3)

ξ2 = +0.6757 γ ′1 − 0.7371 γ2 (3.4)

ξ1 and ξ2 are fitted with a Cauchy distribution and a Gaussian distribution
respectively. The Cauchy distribution is chosen for ξ1 in place of the Gaussian
one because it provides a model more accurate. Figure 8 shows the results of the
fitting procedure. Table 2 reports the values this analysis.

Variable Function type mean value [deg] c [deg]
τ Gaussian 111.08± 0.01 2.34± 0.09
ξ1 Cauchy −25.03± 0.01 0.40± 0.05
ξ2 Gaussian −4.40± 0.01 1.48± 0.15

Table 2: Fitting parameters of the sampled distributions related to the variables τ, ξ1 and
ξ2. The Gaussian function is defined as f(x) = A exp(−(x− x0)

2/2c2), whereas
the Cauchy as g(x) = A c/((x− x0)2 + c2), where in both cases the parameter
x0 represent the mean value of the distribution.

3.2.3 Two variables θ,ϕ distributions

In this section the two-variables version of the distribution of section 3.2.1
are evaluated. These are the θ,ϕ correlation plots, which are considered the
minimalist counterparts of the RP, as anticipated in section 2.3.2. Following the
same approach followed for the atomistic RP, here those plots are evaluated for
separated the separated amino-acid classes defined in section 1.4, namely the
proline (P), glycine (G), pre-proline (pP) and all the others (X). As shown in
section 2.3.2, in order to completely represent the correlation, the θ+,ϕ and θ−,ϕ
plots must be evaluated separately; this implies that the evaluation of correlations
in the minimalist model must involve at least four subsequent “beads” (amino
acids). The following algorithm is used for the evaluation of the plots:

• the polypeptide chain is analyzed by subsequent quadruplets;

• the amino acid type of the two central residues define the correlation plot,
therefore there would be in principle 16 plots classes, defined by all the
possible couples XX, XG etc. However, only 11 are possible, due to the P/pP
type definition (see table 3);
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Figure 8: (a) Density of the (ξ1, ξ2) distribution obtained after the variable transformation T .
Results fitting procedure on the variables τ (b), ξ1 (c) and ξ2 (d). The parameters of
the function are reported in table 2.

• the third residue characterize the type of the last residue: if the third residue
is a pre-proline, the fourth is a proline; the third is an X amino acid or a
glycine, then the fourth can be a non proline amino acid (N); if the third
amino acid is a proline, then the next can be every amino acid (A).

• the external amino acids (first and fourth) are either determined by their
side neighbors (e.g. if the the third is a pP, the the fourth must be a P, if the
second is a P, the first is a pP) or considered ininfluent.

Table 3 summarizes the all the allowed types of quadruplets. This classification
provides eleven classes of quadruplets.
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2nd
AA

3rd
AA

X G P pP
X 3 3 3

G 3 3 3

P 3 3 3 3

pP 3

Table 3: Central amino acids of the allowed types of quadruplets. The rows reports the type of
the second amino acid whereas the columns reports the type of the third amino acid.

Figure 9 and 10 report all the plots, evaluated using the PDB_NMR_STRIDE
dataset. As expected, plots including G as a central AA (figure 10) shows the
largest spread of occupation and smaller forbidden areas (although GG, PG and
GP are affected by high noise due to the low statistics), while the plots for generic
AA (X) show selective occupation of the secondary structure-like basins (see
figure 9 in section 2.3.2 for their location), especially β and PPII (less α basin),
though also the intermediate regions are populated. Conversely, es expected
the P-pP plots have a very specific occupation of the PPII basin, due to the
conformational restrains due to proline.

All the couples of plots show differences between the each left and right
θ,ϕ plot. For non homogeneous amino-acids couples, its easy to ascribe these
deviation to the different propensity of each amino acids. But when the couple
is homogeneous there are still relevant deviations. These can be understood
considering equations 2.38 in section 2.3.2. These deviations can be ascribed
to the difference of the distribution of φ and ψ, and secondly to the difference
between γ1 and γ2.

The presence of the proline provides a clear preference toward the PPII struc-
tures as shown in figure 9 from the second to the fifth row. Moreover the proline
limits the exploration of the θ space also in the preceding amino acids, as ex-
pected from the pP-RP. This effect can be clearly observed in the second row of
the XpP-correlation plot. In order to understand the nature of the shapes, these
correlation plots are compared with the correlation plots theoretically evaluated
from the Ramachandran plots (for details, see section 3.3). In most of the cases the
obtained shape reproduces approximately the experimental data, although the
low sampling in the most specific cases (when in the site is considered a specific
amino acid rather than a set) produce high noise. Therefore every particular
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shape can be easily explained with the conformational preference of each amino
acid.

Figure 9: For each row the φ, θ− (left) and φ, θ+ (right) of the case specified by the upper label.
The case is defined by the amino acid composition of the two central Cαs of four
consecutive Cαs. These data are extracted from the PDB_NMR dataset selecting with
the STRIDE algorithm the coiled regions.
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Figure 10: For each row the φ, θ− (left) and φ, θ+ (right) of the case specified by the upper label.
The case is defined by the amino acid composition of the two central Cαs of four
consecutive Cαs. These data are extracted from the PDB_NMR dataset selecting with
the STRIDE algorithm the coiled regions. Due to the presence of residual cumulative
spots, the color mapping of the GG and GpP have been rescaled in order to make the
background motifs visible.

3.2.4 Three dimensional distribution (θ−,ϕ, θ+)

The minimalist model built in this work focus on the reproduction of these
correlation plots for unstructured proteins in order to reproduce the highest
similarity to real structures. It would represent the highest structure similarity
between a minimalist model and the reality. In order to reproduce such complexity
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there is the need to extend the knowledge on the dataset analyzing the 3D-
distribution (3Dd) of the (θ−,ϕ, θ+) variables in the available dataset. Likewise
the case of 2D plots, these distributions are evaluated for separate classes of
amino acids. Therefore each plot is identified by the specific couple of the central
amino acids as illustrated in the correlation plots. The XX quadruplets represent
the reference case in the following analysis due to the available high statistics
and its extension on the (θ−,φ, θ+) space. Figure 11 shows the slice referred
of the 3D-distribution of the XX quadruplet. These slices show the how it is
approximate the 2D-distributions indeed each slice differs both for shape and
highest counting regions.

All these observations enhance the importance on the utilization of the 3D-
distribution showing where the other representations lack of details.

3.3 θ,ϕ map generation from ramachandran plot

From the previous sections, it is apparent that the statistics for 2D and 3D maps
as directly obtained from the experimental structures dataset, is often rather low,
especially for the more specific amino acid classes. This implies that the maps
are too noisy to be used e.g. in the Boltzmann inversion-like procedure (see
equation 2.28) for the parametrization. In this section, methods are described
decrease the noise.

Equations 2.38, 2.40 [55], provide the transformation from the atomistic to the
minimalist conformational variables, which is in general a four to three map
(φ1,ψ1,φ2,ψ2)→ (θ−,ϕ, θ+). These formulas can be used to map the RP onto
the (θ−,ϕ, θ+) plot. The starting RP can be more easily interpolated, bringing
a smoother final result. A further smoothening is produced by the use of the
analytical representation of the distribution of the transformation parameters
τ, γ1, γ2 (equations 2.38-2.40, section 2.3.2). This process, of course, do not
include additional information with respect to the direct reproduction of θ,ϕ
plots, rather it filters the noise and make the resulting plot easier to handle for
the parametrization tasks.

Two different algorithms are used to perform this task. The first one is a
Monte-Carlo method, which samples the RP and γs, τ distributions. These values
are then used to evaluate the θ−, ϕ, θ+ map, triplets with which the distribution
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is build. The statistics of this map can then be increased at will with longer MC
runs, and the noise reduced. Details are given in appendix G.

However, algorithms based only on the φ,ψ angles distribution suffer of the not
correct recognition of the turns structures, which therefore can bias the final distri-
bution. However, the turns can only definitely be recognized only by the presence
of H-bonds, for which detection a full atomistic structure is needed. Therefore an
improvement of the above algorithm consists in the atomistic reconstruction from
the RP variables. Details are reported in appendix G.

Figure 12 reports the θ,ϕ maps evaluated with all the described methods. The
first row is the same as figure 9, also reported here for comparison, the second is
extracted form the XRAY_STRIDE, the third and fourth rows are with the two
methods described above. As it can be seen, the second method generates a
maps that are basically indistinguishable from that directly obtained from the
experimental dataset, and with improved statistics. The first method, conversely
seems to suffer the bias due to the non proper treatment of the turn structures,
which produces an effective oversampling of the α basin.

The noise reduction is particularly relevant in the case of the glycine class maps,
in which the starting statistics is evidently insufficient (e.g. figure 13 shows the
plots related to the GG class with the same order of the XX class). In addition, the
sampling is sufficient to obtain a well defined 3D map (as reported in figure 11
in section 3.2.4, for the XX class). These maps will be used as reference for the
model building described in the next chapter.

3.4 disprot: a dataset for disordered proteins

The evaluation of a force field for Intrinsically Disordered Proteins (IDPs)
(sec. 1.6), in particular for random coil (sec. 1.7), is the main target of this work.
The data previously reported are not extracted from a dataset of disordered
proteins therefore theoretically they cannot represent the behavior of the the IDPs.
Anyway the coil library represent the best starting point for the representation of
this set thanks to the large amount of data contained in the PDB.

The principal database of the disordered proteins is the DisProt [25] (Disordered
Proteins) introduced in section 1.6. The total amount of disordered regions in this
database is 1539 in 694 proteins. As aforementioned the IDRs are generally not
resolved on the published structures in the PDB.
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The DisProt collect all the information related to the identification of the
disorder and the availability of a PDB reference. All the information related
to the state of the region, viz. random coil state (also called in the dataset
“extended-disorder”), Molten globule state and pre-Molten globule state, and the
particular function of the structure, and the derivation of the function (i.e. if it
arise from a transition between states or form the state itself), can be found in the
DisProt-file. As aforementioned, there are not available PDB-structures sampled
using the X-ray crystallography, therefore the only available data are extracted
from NMR-spectroscopy. Table 4 reports the correspondence between the DisProt
and the PDB. The “Disordered” class, contains all the structure with unclassified

Disordered Extended Molten Pre-Molten
PDB entries 84 21 6 0

Table 4: Correspondence between the DisProt and the PDB data for each disordered state.

disorder. The number of available PDB data cannot provide a reliable reference
database due to the low statistics. Figure 14 reports the correlation plots of the
φ, θ variables. Despite the high noise caused by the low number of statistical
data, some structural preferences can still be observed. Figure 14a shows a
significant residual presence of helical structures in the α-basin. Other structural
preferences are observed in the β and PPII basins although less relevant than α.
The Disordered dataset does not allow to recognize the state of the unstructured
sample, therefore residual secondary structure may be present as expected by the
proteins in the Molten and Pre-Molten globule states (sec. 1.6). Figure 14b shows
only the preference toward the PPII basin although no conclusion can be taken
due to the statistical irrelevant data.

Despite the low statistics of the structures, the amino acid contents have a more
substantial statistics. Table 5 reports the percentage related to the amino acid
contents of the two datasets. The data related to IDPs, found in the literature [58],
are provided here as reference data. Moreover, the amino acid contents related to
the “etropic chain” (particular function of IDPs, see appendix A) is reported. As
expected there is a large contents of charged amino acids in each examined case,
glycine and proline, which are known as the most structure destabilizers. The
reference data have been found consistent with the amino acid contents of the
IDR related to the “etropic chain” function. This particular function is found only
in the random coil state.
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Disordered Extended Entropic Chain Article [58]
ALA (A) 8.35 10.84 7.57 7.15
ARG (R) + 5.48 5.59 4.50 4.21
ASN (N) 3.91 3.19 2.20 2.06
ASP (D) - 6.35 6.16 4.68 5.05
CYS (C) 1.08 0.78 0.51 0.61
GLU (E) - 7.55 10.02 15.31 14.26
GLN (Q) 4.61 3.96 5.26 4.46
GLY (G) 8.35 10.87 6.78 4.31
HIS (H) 2.23 1.32 1.61 1.51
ILE (I) 3.66 2.10 3.60 3.67
LEU (L) 6.96 5.18 5.26 5.44
LYS (K) + 6.93 8.95 8.60 10.43
MET (M) 2.55 2.04 1.25 1.30
PHE (F) 2.89 2.00 1.69 1.66
PRO (P) 6.19 8.69 9.77 12.07
SER (S) 8.51 7.09 6.93 6.91
THR (T) 5.14 4.14 4.80 5.14
TRP (W) 1.11 1.17 0.63 0.32
TYR (Y) 2.32 0.90 1.56 1.42
VAL (V) 5.83 5.00 7.37 8.02

Table 5: This table show the amino acid percentage of the proteins and regions
in the generic disordered state (Disordered) and random coil state (Ex-
tended) found in the DisProt database [25]. The third column reports the
amino acid contents of the structures identified as entropic chain. The
last column shows the percentages related to IDPs [58].
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Figure 12: Comparison of the ϕ, θ− (left), ϕ, θ+ (right) correlation plots of the XX sequence
related to the NMR_STRIDE dataset (first row), XRAY_STRIDE dataset (second row),
fist reconstruction algorithm (third row) and second reconstruction algorithm (last
row).
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Figure 13: Comparison of the ϕ, θ− (left), ϕ, θ+ (right) correlation plots of the GG sequence
related to the NMR_STRIDE dataset (first row), XRAY_STRIDE dataset (second row),
fist reconstruction algorithm (third row) and second reconstruction algorithm (last
row).
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Figure 14: The φ, θ− (left) and φ, θ+ (right) correlation plots of the Disordered (a) and Extended
(b) datasets extracted from the DisProt [25].
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4
M I N I M A L I S T M O D E L F O R U N S T R U C T U R E D P E P T I D E S

This chapter reports the main original results of this work, namely the parametriza-
tion and optimization of a minimalist model for unstructured peptides. The model
is base on the reproduction of the 1D, 2D and 3D statistical distribution described
in the previous chapter. The potential terms are first described, while the result
of the optimization process are subsequently reported. Simulations performed
with the model are finally illustrated.

4.1 model definition

The model used in this Thesis is a one-bead Cα-based model for coiled struc-
tures i.e. the minimalist model. The polypeptide is represented as an unbranched
beads-chain where each beads is constrained to hold the same distance from
its next neighbor along the chain. This distance is 3.8Å, which represents the
Cα the separation when the peptide bond is in trans conformation. The mass
of the bead is evaluated with the average molecular mass of each amino acid
which is about 115 a.u.. As mentioned in chapter 2, the FF includes two terms,
describing local and non local interaction respectively (see eq 2.31). As reported
in section 2.3.1 the local term is usually separated in terms dependent on θ and
ϕ (see equation 2.32). While this description is acceptable for regular secondary
structures, it is apparent from the analysis of previous sections 3.2.3 and 3.2.4
that this potential form cannot easily account for θ−ϕ correlation, and especially
for their direction dependent part, manifesting in the fact that θ+,ϕ and θ−,ϕ
maps are different. In order to account for this, here the following form of the
local potential is considered:

Uloc = Ucorr(θ−,ϕ, θ+). (4.1)

79



The Ucorr(θ−,ϕ, θ+) potential term can be evaluated from P(θ−,ϕ, θ+) through
the BI method (eq. 2.28), illustrated in section 2.2.2, which implies a simple
mathematical operation on the P. The numerical accuracy is increased be the
elimination of the statistical noise operated by the algorithms described in the
previous chapter. However, it requires then knowledge of probability distribution
P0(Qi) (eq. 2.28) of the reference state of the non interacting beads. The minimalist
model considers each interacting center constrained to its nearest neighbors along
the chain at a defined distance. The bond angle and dihedral angle distributions
of the non interacting system are:

P0(θ) =
sin(θ)

2
, P0(φ) = 2π (4.2)

In this case the P0(θ−,ϕ, θ+) is the product of the distributions reference distri-
bution of its elements, therefore:

P0(θ−,ϕ, θ+) =
π

2
sin(θ−)sin(θ+). (4.3)

As the statistical distribution, the Uloc should depend on the amino acid type.
The same classification of AAs in the four classes is used, separating glycine
proline and pre-proline form the generic amino acid set. As for the distributions,
eleven different classes of potentials can be defined, identified by the following
type couples

• XX

• GX

• XG

• GG

• PG

• PX

• GpP

• XpP

• PpP

• pPP

• PP

However, the statistics of data is good only for the XX class. Therefore, though
increased by the data improvement, the results for other classes must be consid-
ered with care.

In order to take advantage from the DOF reduction, this model considers im-
plicitly the effects of the solvent. Therefore the non bonded term in equation 2.31
must be comprehensive of the solute-solvent and solute-solute non bonded in-
teractions. Unb model is built considering the the potential parametrized by a
Morse function:

UMorse(r) = A((1− e
−b(r−r0))2 − 1), (4.4)
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where A is the magnitude of the deep measured from the minimum to the
asymptotic value, r0 is the minimum position and b is related with the width of
the deep indeed the full width at half amplitude (∆rA/2) follows this relationship:

∆rA/2 =
1

b
log

(
2+
√
2

2−
√
2

)
≈ 1.76

b
. (4.5)

The non bonded potential are in general repulsive a short distances, in order to
reproduce the VdW repulsion between the atoms. At larger distance this potential
should be able to reproduce the electrostatic interactions of the system which
could be either repulsive or attractive depending on the mean amino acid type
involved in the interaction.

In order to parametrize such potential, a starting set of parameters reproducing
a weak repulsion between each beads is adopted. In section 4.3 the optimization
of these parameters is described.

4.2 local potential parametrization

As said, unstructured proteins do not have stabilizing h-bonds. Therefore
their conformational tendency, expressed by the minimalist equivalent of the RP,
i.e. the θ,ϕ maps, is entirely determined by the backbone chemistry and steric
interactions. These must be included in the minimalist representation into the
local and non local terms. By definition, the non local interaction acts only on
beads which are located at least 3 AA apart, and are likely to represent side
chains steric and hydrophobic effects, but not the local backbone effects which
are included in the local term. Considering that in addition, the statistics of long
peptides rapidly decreases as with the peptide length, it is reasonable to deduce
that the main effect of the whole peptide structural and dynamical behavior
should be imputed to the local term, which is considered the prevalent one,
and optimized as the first. The non local term is optimized as secondary and
considered a “correction” to the whole system behavior. As said, the local term
can be obtained by direct BI from the P(θ−,ϕ, θ+). The densities P(θ−,ϕ, θ+)
and the result of the BI are in the form of 3D-gridpoint. Therefore, in order to use
all the available information, the adopted strategy interpolates all the point of the
(θ−,ϕ, θ+) space defining the potential function as a stepwise function. Because
the potential function U(θ−,ϕ, θ+) must be derivable along every direction of
the 3D-space, among the interpolation algorithms the tricubic interpolation [64]
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results the most suitable. This algorithm, indeed, provides the C1 continuity. The
details on the interpolation algorithm can be found in appendix D.

The interpolation algorithm requires the that for each point of the 3D-grid, the
values of the potential function, its first derivatives and the mixed derivatives
of second and third order are known (the set of needed values is shown in
equation D.2). The required derivatives are evaluated through the finite difference
method.

In view to reproduce a force field U(θ−,ϕ, θ+), the boundary conditions must
be imposed in the algorithm by implementing derivatives matching the topology
of the system. ϕ is periodic of 2π so is derivative of ϕ. For all the values ϕ̃
and θ̃− constants, the value of U(θ̃−, ϕ̃, 0deg) is constant; this is also true for
θ−, and when they are on the other border (180deg). Regarding the derivatives
on θ+/− = {0, 180}deg must be observed on the supplementary angle of ϕ with
opposite sign. Resuming the periodic boundary conditions for the P(θ−,ϕ, θ+)
function must be:

• ∀θ+, θ−, U(θ−,−180deg, θ+) = U(θ−,+180deg, θ+),

∂U(θ−,−180deg, θ+)
∂ϕ

=
∂U(θ−,+180deg, θ+)

∂ϕ
; (4.6)

• ∀θ+,ϕ, ϕ̃, U(0,ϕ, θ+) = U(0, ϕ̃, θ+),

∂U(0,ϕ, θ+)
∂θ−

= −
∂U(0deg,ϕ± 180deg, θ+)

∂θ−
; (4.7)

• ∀θ+,ϕ, ϕ̃, U(180deg,ϕ, θ+) = U(180deg, ϕ̃, θ+),

∂U(180deg,ϕ, θ+)
∂θ−

= −
∂U(180deg,ϕ± 180deg, θ+)

∂θ−
. (4.8)

The last two equations are true also for θ+.

Figure 1 reports the potential function representation of the XX class, repre-
sented as an isovalue surface. This figure reports the ϕ axis in the [0 : 360]deg

in order to show a central compact core related to the β and PPII basins, which
contain most of the energy minima of this potential. Slices of the U(θ−,ϕ, θ+)
taken on different axes at different values are reported in figure 2. The slices were
chosen according to the representative values of each structured basin. It shows
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Figure 1: Rendering of isosurface (isovalue −1.79kcal/mol) of the U(θ−,ϕ, θ+) for the XX class.
ϕ variable ranges in [0 : 360]deg.

that the energy minimum is in proximity to those regions represented in the third
row, which is related to the PPII basin.

4.3 non local potential optimization

Assumed that the non bonded interactions produce correction to the distri-
butions, which are peptide length dependent, the Unb term was optimized in
order to reproduce the differences in the distributions from dataset of different
peptide lengths contained in the NMR_STRIDE dataset. As shown in section 3.2.1,
length of the peptides varies in the range between 7 amino-acids (lower limit
imposed during the dataset evaluation) and more than 50 amino acids. The total
amount of fragments decrease exponentially varying the length of the fragments
(figure 2 in section 3.1). For this reason the normalized distance distribution
P̃N(r) (equation 3.1) has been used in order to compare the results obtained from
the simulation with those related to the experimenal dataset.

The use of a single non bonded potential meets certain difficulties related to the
different fragment sizes. In longer fragments the contribution of the non bonded
interaction will be more important rather than in shorter due to the higher number

83



Figure 2: Representation U(θ−,ϕ, θ+) after the tricubic interpolation. First column is related for
a defined value of the variable θ+. The second column is related for a defined value of
the variable θ−. The last column is related to the ϕ variable. For each row are selected
those values related a particular regular secondary structure. The first is related to the
α-helix, the second to the β-sheet and the last to the PPII-helix.

of one-bead one-bead interactions. For this reasons, in the simulation protocol
adopted during the modeling of this system, the simulation of polypeptides
of different length have been considered. Moreover the contributes obtained
from a particular fragment have been conveniently weighted considering the
aforementioned length distribution. These weights are reported in table 1.

The optimization algorithm evaluates the best set of parameters in the meaning
of the reproduction of the non bonded distribution of the experimental data.
Therefore, for each set of parameters a simulation run is performed in order to
evaluates the statistics. Each parameter set is drawn form the uniform distribution
inside the specific interval which is an input parameter of the algorithm. For
each set of sampled parameters, the preliminary check of the potential function,
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Length Weight
17 75
24 18
50 1

Table 1: Weights considered for a specific length during the evaluation of the distributions from
the simulations.

Parameter Starting value Min Max
A [kcal/mol] 6.06 0 10

r0 [Å] 43.55 2 150

b [1/Å] 1.78 10−03 10−5 1

χ2max - - 10−3

Table 2: Parameters related to the optimization of the Morse potential.

which is performed evaluating if the mean square root deviations between the
derivatives of the function of with the last accepted potential function is below the
threshold χ2max, allows to avoid the simulation of many useless sets of parameters
speeding up the whole process. For further details the optimization algorithm for
the parameter is discussed in appendix H. In this work, the parameters related to
the Morse potential function (equation 4.4) have been optimized considering the
values reported in table 2.

The simulations protocol is described in the next session. The set of optimized
parameters evaluated after 288 iterations of the algorithm are

A = 5.16[kcal/mol]; r0 = 139.4[Å]; b = 5.7 10−4[1/Å]; (4.9)

therefore, considering equation 4.4 and 4.5, the optimized function is a soft
repulsive potential. This result is consistent with the non globular nature of the
unstructured proteins due to the high contents of polar and charged residues.

4.4 molecular dynamics simulations

The simulations performed during the development of the force field follow a
common protocol. All the simulations are performed on the DL_POLY_Classic
software package [35], conveniently modified in order to implement the 3D
potential, as reported in appendix F. A brief description of the software package
which includes the input and output files is reported in appendix C.
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Stage Phase T [K] Integrator ∆t [ps] Duration [ns]
Minimization - leapfrog 10−3 2

Optimization Equilibration 300 leapfrog 10−3 0.5
Production run 300 leapfrog 10−3 3

Minimization - leapfrog 10−3 2

Simulation Equilibration 300 leapfrog 10−3 3

Production run 300 leapfrog 10−3 15

Table 3: Simulation protocol adopted during the potential optimization and the
simulation.

(a)

 0
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 1200

 0  100  200  300  400  500  600
T [K]

(b)

Figure 3: Time evolution and distribution of the temperature obtained during the production of
the model with 24 residues The green line is a Gaussian fit.

For force field model, simulations are performed on systems of different
size. The length of the considered fragments are: 17, 24 and 50 residues. Each
simulation follows the same protocol, described in table 3.

Figure 3 reports the time evolution (a) and the resulting distribution (b) of the
temperature of the production run evaluated using the optimized potential. The
Gaussian distribution of temperature indicates a proper thermalization.

Figure 4 shows the distribution of the variables bond angle (a), dihedral angle
(b), distance r1,17 (c) and the non bonded P̃17(r) (d). The single variable dis-
tributions, although they represent a partial picture of the system considering
the correlations described in chapter 3, they provide an easily accessible com-
parison between the experimental data and the simulation results. In general,
the simulation result reproduce qualitatively all the distributions. All the peaks
corresponding to structural basins are present, located in the right place and
approximately of the right height. Quantitatively, it appear to be a compromise
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Figure 4: One dimensional distributions of the bond angle (a), dihedral angle (b),
r1,17 (c) and non bonded distribution P̃20(r) (d). Each plot is related to
the NMR_STRIDE dataset (red line), XRAY_STRIDE dataset (green line)
and the data extracted from the simulation (blue line).
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between the XRAY_STRIDE and NMR_STRIDE data: the distribution are broader
than the X-ray ones, and slightly sharper than NMR data. On other words, the
model accounts for all the structural features. The residual discrepancies with ex-
periment can be ascribed to the larger variability of structural and environmental
conditions in the case of the NMR, and to the crystallographic constraints in the
case of X-ray.

On the technical level, a manipulation of the non bonded interaction parameters
could fine tune the height of the shoulders. This can be inferred splitting the
average distributions into its components representing the simulation performed
with fragments of different length (figure 6, a). It can be observed that the
relative height of the peaks depends on the peptide length, and, consequently
on the non bonded interaction, which has a different relative weight depending
on the length. This can be especially observed in the distribution of the small
bond angle interval (80deg < θ < 110deg) and in the large bond angle interval
(130deg < θ < 150deg) consistently with the observed differences in the other
distributions. Splitting the PDB_NMR dataset in partitions with peptides longer
and shorter than 18 residues in its higher and lower than 18 residues partitions,
namely O18 and U18, it is possible to observe the deviations due to the length
of the fragments, which are similar to those aforementioned for the simulated
model. Unfortunately there is low statistics for each peptide length and an
accurate evaluation of the experimental size effects are not available in this work.
However, as said, the relative fine tuning of the height of the peaks might depend
also on environmental conditions. Therefore the present determination of the non
bonded potential is considered optimal with respect to the available reference
data.

As a final validation of the model, figure 7 reports the θ,ϕ correlation plots,
and figure 8 the 3D θ−,ϕ, θ+ map, and its slices. This is a result that was not
produced previously by any model present in the literature. By comparing
figure 7 with the first row in figure 9 in section 3.2.3, and in figure 8 with 11
in section 3.2.4, it can be seen that all the feature of the generic amino acid
correlation map are reproduced, even the quantitative level. To our knowledge,
the preseent is the only model capable of reproducing all the complex structural
details of unstructured proteins.

In summary, in this chapter it was shown that the model built in this thesis work
is capable of reproducing complex structural features of the unstructured peptides
structure and dynamics. These are (i) the intrinsic conformational tendency,
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measured as the relative peaks location and height in the single variable local
distribution, (ii) the peptide length dependence of the non bonded interaction
relative weigh, (iii) the 3D local variable correlations. All of this is bone by a force
field composed by two terms, the first representing the local interaction via a
three-variable function, the second representing the non local interaction by an
extremely simple single variable functional form. The model was implemented
in a general purpose MD program and can be used for protein of any length.
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C O N C L U S I O N S A N D P E R S P E C T I V E S

This work returned two classes of results. The main result is reported in chapter
4, and is the complete parameterization (local and non local part) of a minimalist
model for unstructured peptides. The model was shown to accurately reproduce
the 1D, 2D and 3D distributions of internal variables derived from experimental
data both involving local and medium-long range distances.

The conformational tendencies of a polypeptide chain of generic sequence is
can address in detail. At variance with previous minimalist models, the peculiar
form of the potential is capable of reproducing both the conformational variables
correlations and the directionality of the chain. To our knowledge, no CG model
reproduces these effects, with the exception of the multi-bead model by Scheraga
and co-workers [45], which is however much more complex, including multiple
beads for the backbone and for the side chain. Conversely the model here
described is a linear chain and all the complex effects are included in the accurate
parametrization of the force filed, and the peculiar choice of its functional form.

The non local variables distributions are also reproduced, especially their
peptide length dependence. This is achieved with a very simple functional form
for the non local term, and thanks to the fact that the main physical effects are
included in. The final result is an accurate, yet simple and manageable, force
field for unstructured peptides and proteins of any length, to be used for generic
molecular dynamics simulations.

In the road towards these achievements, several side, yet very important, results
were achieved as well. The model parametrization required a very accurate repre-
sentation of the Ramachandran plot minimalist equivalent. This work has showed
that, at variance with structured proteins, for which the 2D θ,ϕ maps are suffi-
cient to this purpose for unstructured proteins this is represented by the 3D map
of the internal variables θ−,ϕ, θ+ and/or by the whole set of its 2D projections.
These can be experimentally evaluated if a reliable structural dataset is available.
Since, however, the structural determination of the unstructured proteins and
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peptides is much more difficult than that of structured proteins, the creation of
a reliable and sufficient dataset for this proteins class was not straightforward.
One solution was to create it by subtraction of ordered secondary structures from
the generic dataset. This in turn has lead to the reconsideration of the available
algorithms for secondary structure detection and assignment, and raised very
interesting issues on the definition of unstructured fragments themselves. Side
results from this part were improved algorithms for the maps generation and
for the selections of secondary structures. In addition, the considered secondary
structure assignment algorithms are based on the detection of the hydrogen bond
network. Therefore, the subtraction of the ordered structures, ensure the absence
of hydrogen bonds from the structures in the resulting dataset.

A second side result, relevant on the technical level, was the fact that the local
potential includes correlations and directionality of the chain, via a multiple vari-
able functional form. This is a novelty with respect to previous treatments, and,
furthermore, required some technical intervention into the DL_POLY software
for its implementation. These software updates are made available, and could be
exploited also for different multi variate potential forms implementations.

This work must be considered within a more general roadmap aimed at
building minimalist models for generic proteins. As said, the build model
represents a system in which hydrogen bonds are absent. Therefore it can be
considered the first step in the physical construction of a model for ordered
secondary structures. The obvious step to build physics based and accurate
models for secondary structure is to add force field terms representing the
hydrogen bond network. This is in fact a natural development of this work.

Other immediate development are the parameterization of specific classes of
proteins, namely prolines and glycines, which display rather different confor-
mational tendencies in the RP due to the lack of the Cβ. The data have already
been prepared in this work and the procedure can be immediately repeated to
generate the complete model.

Besides the primary results (the model for unstructured proteins, description
of the dynamics of some specific cases) this work has returned interesting insight
into the whole class of Intrinsically disordered proteins. These elude one of the
paradigms of the biomolecular chemistry, namely the relation between structure
and function: they do not have a very well defined structure, but they do
have a function. Therefore, a reliable model for this class can help redefining
this paradigm, including into it dynamical information. Immediately future
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development could then regard the direct application of the model to proteins at
totally or partially destructured involved in pathological biochemical pathways,
such as the α-synuclein for the Parkinson disease. Finally, for the same reason,
this model can shed light on the behavior and function of the unstructured
intermediates of the folding process for structured proteins in general. Folding is
probably one of the most studied process in the biochemistry, which, however,
has still a large number of open issues, which could benefit of a reliable and
accurate structural and dynamical model for unstructured proteins.

95





A P P E N D I C E S

a idp’s functions

The importance of IDPs cannot be understood without the possible functions
that they can perform. Five general functional classes are recognized in IDPs
and each class is differentiated for the action mode [58]. For each functional
class an example is cited in order to understand the wide spectrum of functions
adopted by this type of protein. In entropic chain class the protein function stems
directly from the protein structural conformations at a given energy. An example
of entropic chain is the PEVK domain of the titin. Thanks to the absence of a
stable tertiary structure the protein is able be stretched [59]. In the other four
classes the function arise from the molecular recognition (MORF). In the display
sites class proteins bind to them partner(s) transiently in post-translational modi-
fication. SNAP-25 belongs to this class; it makes a complex with synaptobrevin
and syntaxin in exocytosis of synaptic vesicles with a disorder to order transition
in fact it has been observed the grown up of alpha-helical content in the complex
structure [60]. The remaining three protein classes viz. effectors, assemblers and
scavengers, contain proteins that have a permanent binding partner. The effec-
tors bind and modify the activity of their partner protein. Inhibitors belong to
this class. 4E-BP1 has a non folded structure and binds to the initiation factor
eIF4E preventing that it binds with eIF4G needed for the translation process [61].
Proteins contained in the second class assemble multi-protein complexes and/or
target the activity of attached domains. CITED2 protein is unstructured when
free. It folds partially in a extended structure and in a α-helix structure when it
wraps around the TAZ1 domain of CREB-binding protein making a complex [62].
The scavengers store and/or neutralize small ligands. The main example of this
class is represented by casein. Casein is an IDP that undergoes to a more folded
structure when it binds to Ca++ [63]. The IDPs represent the actual forefront

97



of the protein research. The functionalities performed by these proteins are of
the main interest for the understanding of the cell biology. Advances on the
protein folding pathways are also obtained from the studies on the intermediate
states assumed by IDPs. Another aspect of main importance for IDPs is the
role that these proteins assume in the development of several neurodegenerative
disease [2]. The inhibition of these process, which relays on the nature of the
IDPs, is of main interest for the medicine.

b secondary structure assignment algorithms

One of the target of this thesis is to identify a protein dataset in which the ele-
ments have non ordered secondary structure. Algorithms of secondary structure
assignment can select the set of structures not involved in ordered secondary
structures, which are extracted from the database of structures (PDB). Such algo-
rithm considers a series of criteria which allow to be consistent with the secondary
structure definition.

When the atomistic geometry of the protein is available there are algorithms
able to assign the local secondary structure either analyzing the geometrical
properties or estimating the hydrogen bond topology. The DSSP [16] (Define
Secondary Structure of Proteins) is one the most popular algorithm. It first
evaluate all the present hydrogen bond on the structure using the following
expression:

E = q1 q2(
1

rON
+

1

rCH
−

1

rOH
−

1

rCN
) ∗ f (B.1)

where q1 = 0.42e and q2 = 0.20e are the partial charges of the dipole C-O and
N-H (e is the electric charge of the electron). The distances are considered in
and the dimensional factor f in chemical units is about 332 and E is in kcal/mol.
The algorithm considers a large cutoff for the hydrogen bond (interaction about
−3kcal/mol) interaction with E < −0.5kcal/mol.

Based on the hydrogen bond definition are defined turns and bridges. A n-turn
correspond to a single hydrogen bond between the C=O group of the residue i
and the group NH of the residue i+n with n = 3, 4, 5. A bridge is composed by
two non overlapped stretches of three residues each, i− 1, i, i+ 1 and j− 1, j, j+ 1.
These stretches can form either parallel or antiparallel bridge depending if the
following bonds are present either [j− 1, i and i, j− 1] or [i− 1, j+ 1 and j− 1, i+
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1] for the former whereas either [i, j and j, i] or [i− 1, j+ 1 and j− 1, i+ 1] for the
latter.

Once mapped the amino acid sequence it follows the recognition of the coop-
erative assignment. For a minimal helix there must be at least two consecutive
n-turns. It mean that for a α-helix (HB between C=O of i and NH i+ 3) four
residues are required (two consecutive 3-turns). The presence of one or more
consecutive bridges is considered as a ladder. A sheet is defined as two or more
ladders connected by shared residues.

The STRucture IDEntifier [17] (STRIDE) is another important secondary struc-
ture assignment algorithm. This is a knowledge based secondary structure
algorithm in which the propensity of the main secondary structure conforma-
tion is considered in support to the determination performed using the H-bond
intensities.

The hydrogen bond energy is evaluated considering the empirical formula:

Ehb = Er × Et × Ep, (B.2)

where the Er is the radial contribution of the energy, Et and Ep are the angular
contribution. Their expression are reported as follows:

Er = −
2Emr

8
m

r8
−
Emr

6
m

r6
(B.3)

Ep = cos2p (B.4)

Et =


(0.9+ 0.1sin(ti))cos(to) 0o < ti < 90

o

K1(K2 − cos
2(ti))

3cos(to) 90o < ti < 110
o

0 ti > 110
o

(B.5)

where Em = −2.8kcal/mol, rm = 3.0, K1 = 0.9/cos6(110o), K2 = cos2(110o).
The ti and to are the angular deviation of the H atom from the bisector of the
lone pair within the plane of the lone pair orbital and from the plane of the lone
pair orbitals respectively.

The configurational propensity is evaluated considering the distribution of the
experimentally assigned secondary structures on the Ramachandran Plot.
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The helices assignment considers if the intensity of the H-bond between con-
secutive residues, opportunely weighted with the structural tendency, fulfill the
threshold. Regarding the sheet assignment, the formation of two consecutive
H-bonded bridge is necessary. Also in this case the evaluation of the presence of
the H-bond is weighted with the structural propensity.

The main difference of the two reported algorithms lies in the knowledge based
definition of the secondary structure of the STRIDE algorithm. From this point
of view it is possible to states that DSSP algorithm represents a first-principle
assignment whereas the STRIDE holds a partial knowledge of the previous
assignment. The preference between the assignment of the two algorithms
depends on the target of the research. It has been demonstrated that STRIDE
provides a better assignment of β-sheet than the DSSP. Regarding the helical
structures in the α-basin are better recognized in the DSSP algorithm although
they appears to be too fragmented. In section 3.1 it has been shown that the
STRIDE coil assignment is preferred over the DSSP assignment simply because it
shown the higher correspondence between the algorithms regardless the bend-
labeled structures.

c dl_poly

The general purpose toolkit for dynamical molecular simulation DL_POLY
Classic[35] has been used and properly modified during this work.

The simulation setup is done writing the three input files: CONFIG, CON-
TROL and FIELD. The CONFIG file contains the specifics of the structure of the
simulated cell such as vectors of the cell and periodicity directives, and contains
the initial state of the simulated system. The types of amino acids contained and
their positions are also defined here.

The topologies of the interactions and constrains, and all the related specifica-
tions of the force field, are provided in the FIELD input file. At the end of the file
the setup of the Van der Waals interactions is reported. These interactions are
considered between each couple of two non consecutive atoms at least separated
by three bonds. Each interaction is defined by the two specific atom types.

The CONTROL file collects all the directives to run the simulation, such as
timesteps, duration, thermostats, cut-offs, and many other specific options.
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The output of the program are three files, namely OUTPUT, STATIS and
HISTORY. The OUTPUT file contains all the simulation setup and the thermody-
namics state of the sampled configurations. The last information is also gathered
under another format by the STATIS file. All the trajectory configurations are
stored in the HISTORY file.

The last two important files given in output are REVCON and REVIVE, which
contains respectively the last sampled configuration and the accumulated statis-
tical data. These files allow to continue the simulation restarting the previous
simulation.

d tricubic interpolation of the 3d maps

This section reports the detailed description of the tricubic interpolation pro-
vided by Lekien and Marsden in [64]. Given a function defined on a regular <3

gridpoint, the tricubic interpolation attempt to find the function which interpo-
lates the point with a C1 isotropic function. Considering the regular cubic cell of
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Figure 2. Element for interpolation in three dimensions.

that we know the value of the first derivatives at the eight corners.‡ A finite difference method
can be used to extract an approximation of the derivatives of f based on nearby values of f .

In this situation, the necessary condition for C1 continuity results in four constraints at the
eight corners of each element, giving 32 constraints. An examination of Equation (2) shows
that N must be greater or equal to 3 to keep the number of coefficients above 32. The resulting
tricubic form of f on the elements is

f (x,y,z) =
3∑

i,j,k=0
aijkx

iyjzk (3)

We will derive the equations for the coefficients aijk in such a way that they satisfy the necessary
condition above (C1 continuity at the eight corners) and then the strategy is to show that this
condition is also sufficient that is, the corner conditions automatically imply C1 continuity of
f on each face.

3. ADDITIONAL CONSTRAINTS

The tricubic interpolation form given by Equation (3) uses 64 coefficients and enforcing C1

continuity at the eight corners only provides 32 constraints. Notice that there is not a unique
choice of extra constraints. We will show in Section 5 that the first 32 conditions also guarantee

‡In comparison, global interpolation only requires the continuity of the derivatives at the faces of the elements.
This produces multi-element constraints and requires the simultaneous computation of the interpolants for all
squares. In this paper, we assume that a fair approximation of the first derivatives at the corner are available,
so the interpolants can be computed for each element independently. This choice is mainly dictated by the
structure of the data. Footprints of geophysical flows are usually sparse and the error may increase greatly at
the edges of the domain. Computing the interpolant only with data collected at the corner of an element avoids
the propagation of high measurement errors from the edges. In addition, the boundary conditions are not always
known, making it impossible to derive a full system of equation for global splines.

Copyright ! 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:455–471

Figure D.1: Element for the interpolation [64].
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unitary side, as shown in figure D.1, the function which interpolates the eight
points of the cell can be defined as a stepwise function as follow:

f(x,y, z) =
N∑

i,j,k=1

aijkx
iyjzk. (D.1)

The C1 continuity is provided if and only if the three first-derivatives are continu-
ous through the six faces of the reference cube. Assuming that the values of the
derivatives are known at each corner, this provide an amount of 32 constraints
(the value and three derivatives for each point). The number of parameters in
equation D.1 scales as 4N. The minimum N needed to include the 32 constrains is
4, therefore other four constraints for each point must be defined. Higher degree
derivatives are chosen in order to favor the smoothness of the function. The
complete set of constraints isotropic an linearly independent is the following:{

f(x,y, z),
∂f(x,y, z)

∂x
,
∂f(x,y, z)

∂y
,
∂f(x,y, z)

∂z
,

∂2f(x,y, z)
∂x∂y

,
∂2f(x,y, z)
∂x∂z

,
∂2f(x,y, z)
∂y∂z

,
∂3f(x,y, z)
∂x∂y∂z

}
.

(D.2)

Stacking the 64 coefficient of equation D.1 in the vector ααα as:

α1+i+4·j+16·k = aijk, i, j,k = {0, 1, 2, 3}, (D.3)

and ordering the constraints, in a vector b,

bi = f(pi), 1 6 i 6 8 bi =
∂f(pi−8)
∂x , 9 6 i 6 16;

bi =
∂f(pi−16)
∂y , 17 6 i 6 24; bi =

∂f(pi−24)
∂z , 25 6 i 6 32;

bi =
∂2f(pi−32)
∂x∂y , 33 6 i 6 40; bi =

∂2f(pi−40)
∂x∂z , 41 6 i 6 48;

bi =
∂2f(pi−48)
∂y∂z , 49 6 i 6 56; bi =

∂3f(pi−56)
∂x∂y∂z , 57 6 i 6 64,

(D.4)

it is possible to obtain the following linear system:

Mααα = b, (D.5)
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where the 64× 64 matrix M is obtained from the product of the i, j,k depending
on its position. The inversion of the matrix M leads to the solution of the aijk
coefficients.

The input of this program is the vector b, therefore the derivatives must be
provided as input. In this work the derivatives have been evaluated through
the finite difference method (see section 4.2). This interpolation method is
extremely simple but each point evaluation requires 64 evaluations, therefore in
the framework dynamical simulation it may increase the computational costs.

This program considers the input unit cell as a cube of unitary length, therefore
the derivatives given in input must be multiplied for the size of the cell vector on
that particular direction. The function evaluation is done through equation D.1
after the the selection of the particular space cell and the coordinates normaliza-
tion to the unitary cubic cell. The function derivation is easily evaluated from the
interpolating function but the result must be divided by the size of the original
system cell vector related to the derivation.

e bias analysis nmr_pdb database

As mentioned in section 1.1, the protein space arrangement from the NMR
spectroscopy technique is evaluated using the restrained molecular dynamics
considering the geometrical constraints taken from the NMR spectra. Sometimes
the restraints are applied to the most restrained conformations although no NMR
restrain is experimentally observed. Such constraints on the φ torsion angle of
the proline amino acid are common inside the PDB entries. On 9352 pdb files
considered, 2197 files have been considered under these constraints. The bias on
the φ variable have been evaluated considering all the proline dihedral angles
related to a PDB file, which show the standard deviation below two degrees.
Figure E.1 and E.2 shows the Resulting Ramachandran Plots resulting from the
analysis of the whole “coil library” PDB_NMR evaluated using the STRIDE
algorithm and the same Ramachandran plots avoiding the biased structures
respectively.

Each Ramachandran plot has been represented scaling the colors from 0 counts
to the 40% of the maximum pixel counts in order to enhance the differences
in the low region counts. The direct comparison between the P-RPs (panel (b),
figs. E.1,E.1) shows the consistent suppression of the bias toward fixed values
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Figure E.1: Ramachandran plots of the proline (b), glycine (c), pre-proline (d), and the non
proline, non glicine and non pre-proline amino acids (d) of the coiled structures
selected using the STRIDE algorithm form the PDB_NMR dataset. The color ranges
in each panel have been rearranged up to 40% of the maximum in order to enhance
the details.

of φ ∼ −75deg and −69.7deg. Other effects on the X-type of amino acid (a)
is represented by the suppression of the horizontal stripes of figure E.1. An
unexpected effect is represented by the variation of the color in the β and PPII
basins. The presence of a bias toward specific conformation represented by black
pixels in both the figures do not allow to scale the colors in the correct manner.
These conformation probably are not related to the set of the proline-biased
structures revealed. The color scaling can be observed spread in whole RP in
the glycine-case (c). Also the pre-proline-RP (d) is affected by the proline bias.
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Figure E.2: Ramachandran plots of the proline (b), glycine (c), pre-proline (d), and the non
proline, non glicine and non pre-proline amino acids (d) of the coiled structures
selected using the STRIDE algorithm form the PDB_NMR dataset avoiding the
proline-biased structures (see the text). The color range in each panel have been
rearranged up to 40% of the maximum in order to enhance the details.

Indeed al the relevant black horizontal lines present in figure E.1 are suppressed
in figure E.2.

Although this simple analysis is not able to suppress all the conformational
preference represented by the the isolated high-counts pixels in each RP, it allows
remove to strong bias toward φ ∼ −75deg and −69.7deg observed in the coiled
structures obtained from the complete PDB_NMR dataset selected using the
STRIDE algorithm.
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Figure E.3 shows the set of Ramachandran plots for the PDB_XRAY dataset.
Although the RPs derived from the X-Ray dataset is not considered in the building
process of the force field (see section 4.1), due to all the observations reported in
chapter 1.1, it represents a reference for an unbiased system.

f angles-torsion potential module in dl_poly: algorithms and im-
plementation

This Thesis is based on the development of a disordered proteins force field
for the minimalist protein representation in molecular dynamics simulation. The
force field is then implemented in the general purpose molecular dynamics
software DL_POLY Classic [35]. As shown in chapter 3, in the unstructured
proteins the correct representation between θ on ϕ internal variables assumes a
crucial role. Therefore, here a three variables potential in (θ−,ϕ, θ+) is developed.
Since DL_POLY Classic does not provide any module for the implementation of
this potential term [35], a proper module was implemented. In the following, the
development of the FF is first described, and then the implementation is illustrated.
The potential term can be safely developed thanks to the independence of the
gradient of these variables. The chosen way to develop this potential term is
the following: considering the ordered sequence of beads (a,b, c,d) (figure F.1)
where the first term is in direction of the N-term of the fragment, ϕ is the torsion
angle between the beads, θ− the bond angle between the beads a−b− c, whereas
θ+ is the bond angle between b− c− d. The force on each bead is:

Fa = Fθ−1 + Fφ1
Fb = Fθ+1 + Fφ2 − Fθ−1 − Fθ−3
Fc = Fθ−3 + Fφ3 − Fθ+1 − Fθ+3
Fd = Fθ+3 + Fφ4

(F.1)

where the terms Fθi and Fφi are the forces acting on the i-th bead involved in
the bond angle and diherdal angle interactions respectively. The evaluation of an
analytic functional functional for the potential function remains a target for future
works. In this first attempt considers a numeric functional form for U(θ−,ϕ, θ+)
and in this form it was implemented in DL_POLY Classic. This solution presents
the inconvenience of being numerically heavy with respect to analytical potential.
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Figure E.3: Ramachandran plots of the proline (b), glycine (c), pre-proline (d), and the non
proline, non glicine and non pre-proline amino acids (d) of the coiled structures
selected using the STRIDE algorithm form the PDB_XRAY. The color range in each
panel have been rearranged up to 40% of the maximum in order to enhance the
details.
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Figure F.1: Four-beads system and its variables.

The development of the interpreter for the tricubic interpolation (see ap-
pendix D) have been implemented in DL_POLY Classic. The interpreter needs
as input the output of the tricubic interpolation, which is the set of 64 values
for each voxel of the grid-point. These values represent the aijk parameters of
equation D.1. The whole set of parameters must be known runtime. When the set
(θ−,ϕ, θ+) is known, the forces must be evaluated from the derivatives evaluated
of equation D.1.

The loading in memory and evaluation of the function in a specific point
is extremely time expensive with respect to the correspondent obtained with
analytic expressions. The time involved represents one limit of this procedure
which however for the simulation of small polypeptide represents a valid solution.
In future application an equivalent solution obtained through analytic potential
will be investigated.

g algorithms for the θ− , ϕ, θ+ 3d correlation

Because in many cases, as show in section 3.2.3, the available statistics do
not allow to evaluate a statistical potential through the Boltzmann inversion
method, there is the need to elude this limit in order to get a complete set of
local interactions required for the completeness of the model. Therefore, two
algorithms are show in this section.

The main idea of these two algorithms is to rebuild the (θ−,ϕ, θ+) densities,
starting from the densities of the RP evaluated in chapter 3. Because the target
structures of these algorithms are the unstructured proteins, the basic assumption
here is that there is no relationship between consecutive couples of φ,ψ required
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to sample the θ−,ϕ, θ+ space (see section 2.3.2). The algorithm takes advantage
from the 4→ 3 mapping which allows to sample conformations which are not
already sampled from the database, but which may be physically consistent
although no check on the energy is done.

The first algorithm is based on the equations reported in section 2.3.2, assuming
moreover that the distribution of the τ, γ1 and γ2 contained in equations 2.38
and 2.40 are those evaluated in section 3.2.2 in order to obtain a smoother
representation of the data as it follows.

The algorithm is proceeds through the following these steps

1. sampling randomly the a couple (φ1,ψ1) values from the cumulative dis-
tribution function of RP densities and a set of γ1−1, γ2−1, and τ1 from the
cumulative of the fitted distribution functions (parameters in table 2, in
section 3.2.2, and equations 3.3 and 3.4);

2. sampling randomly the second couple (φ2,ψ2) as in the first step, and a
new set of γ1−2, γ2−2, and τ2, with γ1−2 correlated to the γ2−1;

3. evaluating the values of θ−,ϕ, θ+ from equations 2.37 and 2.38 and store
the values;

4. copy the values of the second set of variables on those related to the first
step and restart from the second step until the desired number of cycles are
completed.

The second algorithm adopts a different scheme. As it will be clear in the next
section, the last algorithm need to be improved avoiding the samples related to the
turn structures. This can be achieved using the secondary structure assignment
algorithm, but the atomistic coordinates of the backbone atoms are needed.

The coordinates might be obtained involving a reconstruction algorithms,
such as pulchra [50], although the knowledge on the RP variables, which is the
starting point of the algorithm, may be lost. Therefore, a simple algorithm able
to reconstruct the backbone atoms position has been developed. This algorithm
requires as input the values of all the consecutive couples of dihedral and bond
angle, therefore, requires as input the angles ν and µ representing C’NCα and
CαNC’ bond angles respectively (figure G.1). The values of the variables are
measured from the PDB_XRAY dataset are shown in table G.1.

The quite satisfactory results obtained sampling the CG-variables using the first
algorithm, let to the use of a different criteria of selection of the coil structures. In
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Figure G.1: Reference figure for the set of bond and torsion angles related to the
second algorithm.

Variable Value Variable Value
τ 111.08± 2.34deg dC ′N 1.33± 0.01Å
ν 121.38± 4.07deg dNCα 1.46± 0.01Å
µ 116.30± 4.26deg dCαC ′ 1.52± 0.01Å
ω 179.12± 11.22deg dC ′O 1.23± 0.01Å
ωO 180.18± 2.22deg τO 120.54± 0.98deg

Table G.1: Geometrical parameters of the protein backbone extracted from the PDB_XRAY dataset.
All the variables are graphically represented in figure G.1.

110



order to be able to select the unstructured fragments using the secondary structure
assignment algorithms all the coordinates of the backbone atoms must be known.
The coordinates can may be obtained involving reconstruction algorithms, such
as pulchra [50], although the knowledge on the RP variables, which is the starting
point of the algorithm, may be lost.

A simple algorithm has been developed in order to reconstruct the backbone
atoms for each value of φ,ψ sampled. The basic module of this algorithm
evaluates the position of the next atom (p4) in the polymer sequence, starting from
the knowledge of the previous three atoms in the sequence (p1, p2, p3), in order
that the next atom assumes specific distance d from the neighbor atom, angle
γ and torsion α with respect to the preceding two and three atoms respectively.
Namely this module can be identified with the linear operator N(d,γ,α).

N(d,γ,α) has been developed through the composition of multiple rotation
operation. Starting from the condition in which p4 is aligned with p3 and p2.
Considering a new set of coordinates (x ′, y ′, z ′) referred to the last three atoms
as follow:

rij = pj − pi, (G.1)

x ′ =
r23

|r23|
, (G.2)

y ′ =
r12 −

r23·r12
r23

r23

|r12 −
r23·r12

r23
r23|

, (G.3)

z ′ =
r23 × r12

|r23 × r12|
. (G.4)

The unknown position of the fourth atom can be evaluated through r34. In the
reference system with origin in p3 and oriented with the Cartesian axes x ′, y ′

and z ′, the initial condition r34
′ lies on the x ′ coordinate. Applying a rotation on

the x ′,y ′ plane to r34
′ of the angle 180deg− γ, and then applying the rotation of

α ′ angle on the y ′, z ′ plane to the result, where

α ′ =

α− 180deg if α >= 0

α+ 180deg if α < 0.
(G.5)

Evaluating r34 of the main reference system it is possible to evaluate the position
of p4 as follow:

p4 = p3 + r34. (G.6)
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Using this algorithm it is possible to evaluate the backbone position considering
sets of the following values: dNCα , dCαC ′ , dC ′N, τ, τ1, τ2, φ, ψ, ω. This allows
to evaluate the positions of the C ′i, Ni+1, Cαi+1.

In order to assign the structure using the STRIDE algorithm the position of
the oxygen atom is needed. In order to evaluate such position the dC ′O distance,
CαC

′O angle (τO) and Ni+1CαC ′O torsion (ωO) are considered.

Bearing in mind the that the evaluation of the θ−,ϕ, θ+ maps are the main
objective of this analysis, in order to evaluate which variable among τ, τ1 and τ2
influences the resulting maps, a preliminary evaluation considers the deviations
obtained sampling different values of the aforementioned angles. Figures G.2
shows the standard deviations of θ+ (left column) and ϕ (right column) obtained
for each couple of φ2, ψ2 torsion angles (second couple of angles needed to the
evaluation of the θ−,ϕ, θ+, see chapter 2.3) randomly sampling the τ (first row),
τ1 (second row) and τ2 (third row). The deviations are evaluated on the basis of
10000 samples for each φ2, ψ2 couple. All the plots are represented on the same
color scale. The random sampling of the angular variables is accomplished from
the knowledge of the distributions of each variable. In this evaluation the known
correlation between the τ2i and τ1i+1 has been neglected. The largest deviation
is obtained by the τ on the θ variable reach approximately half dimension of
the pixel used in the potential function evaluation, whereas the other are lower,
therefore is the only that will be considered in the following. In the evaluation of
the CG correlation map these deviations are not determinant in the high counting
region although allows to obtain a smoother behavior in the low counting regions.
This provide the evaluation of a better defined potential function.

h algorithm for potential parameters optimization

The parametrization of a force field requires the selection of the most repre-
sentative parameters. In general this choice must be taken in view to reproduce
a set of reference results. Regarding the empirical force fields, these results
are represented by experimental data. Therefore, the parameter selection and
optimization represents the most important step of the process for the application
issues.

In this work the parameter optimization is performed with a proprietary
software, named CG-autoparam. This useful tool is able to gather the optimal
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Figure G.2: Standard deviations of θ (first column) and ϕ (second column) obtained considering
different values of the τ (first row). τ1 (second row) and τ2 (third row) for each value
of φ,ψ. The RP variable have been sampled randomly form the RP-distribution in
the case of the X amino acids (see section 1.4). The angular deviations are referred to
the same color scale.

parameters using the IBI (sec. 2.2.2) and a Monte Carlo parameters sampling.
Although IBI represents theoretically an efficient method to obtain fast the optimal
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parameters it shows many drawbacks due to the many numerical difficulties.
Monte Carlo sampling is a sufficient method to reach the optimal parameters and
it does not hold problem of IBI. Theoretically it can achieve an extensive sampling
of the parameters’ space although the procedure is extremely time expensive.

CG-autoparam is optimized for the classical molecular dynamic program
“DL_POLY Classic” [35] (for more information about the simulation toolkit see
appendix C). The program accepts the pdb structure of the simulating objects.
Given the first set of potential parameters it makes the CONFIG and FIELD input
files needed to DL_POLY-run. The the CONTROL input file should be configured
by the user. The FIELD file is made considering that every beads feel the same
force field as needed in the Cα-model in this work. The CG-A input is an xml-file
containing all the directives of the program.

The program contains every available potential function implemented in
DL_POLY Classic. The applied potentials should be coupled with a specific
geometrical distribution.

As aforementioned this program allows to perform cycles of simulations. At
the end of each cycle, the obtained distributions are compared with the reference
distributions (in this work are set to the experimental results). The compari-
son between the reference and the simulated distribution is obtained using the
Kullback-Liebler divergence [65] (KLdiv) defined for continuous variable as:

I(f,g) =
k∑
i=1

pilog

(
pi
πi

)
, (H.1)

where f = {p1, . . . ,pk} and g = {π1, . . . ,πk} and both the distributions are positive
and normalized to the unity. I(f,g) represents the information lost considering
g approximating f1. The control parameter of each cycle is the mean KLdiv
(mKLdiv) of every function under optimization. The interval of interest on which
evaluate the KLdiv is given as input. If the i-th value is null in one of the
distributions, this addend is excluded from the evaluation of the KLdiv. The
best iteration is chosen as the set of parameters that gathers the lowest value of

1 The insight of this formula can be extracted observing the spitted expression:

I(f,g) =
k∑
i=1

pilog(pi) −

k∑
i=1

pilog(πi) = Ef(log(f)) − Ef(log(g)), (H.2)

where the difference of the distribution logarithm’s expected values under the reference distribution
is obtained.
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mKLdiv. For each step the mKLdiv is evaluated and from the comparison with
last accepted value, which corresponds to the last accepted set of parameters. If
the last accepted KLdiv is lower than simulated KLdiv then this step is accepted,
otherwise it is accepted with a probability of:

exp

(
− γ

I(f,gsim)

I(f,gla)

)
, (H.3)

where γ is a scaling factor that regulates the admitted deviations. In this way the
parameters are sampled according the Metropolis algorithm. In order to reduce
the deviations growing the number of iterations of the algorithm, γ decrease
according:

γi = γ0δ
i (H.4)

where i is the iteration index, γ0 > 0 is the starting value of the admitted deviation
and 0 < δ 6 1 is the scaling factor. At the beginning of the new iteration, the new
set of parameters is sampled uniformly from predefined intervals related to each
parameter. The number of iterations of this cycle is given in input.

It is also possible to check the status of distributions with or without assigned
potential function term and KLdivs are computed and considered inside the
evaluation of mKLdiv.

Modifications have been implemented to the version used in this work in
order to minimize the work out time together with the possibility compare
two dimensional distribution and to make Monte Carlo parametrizations with
two dimensional potential function. These modifications allow the analysis of
the φ, θ+ and φ, θ− that are useful in this work. The comparison between the
distributions it has been performed using the root mean square distance (RMSD)
between them. The last modification becomes necessary when two distributions
are null in different intervals because in the CG-A main release null values, from
one or both the distributions, are excluded form the loss function evaluation.
Another important change implemented in the code consists in a preliminary
function analysis before the simulation run (see fig. H.1). This parameter selection
attempts to avoid the run of simulation using sets of worthless parameters. The
check of a specific potential function is performed accepting only the set of
parameters for which the root mean square difference between the derivatives of
the last accepted function and of the sampled function is under a fixed threshold.
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Figure H.1: Example of selective sampling and e parameter space exploration (sampling of the
Morse potential parameters A and b, in eq. 4.4 in section 4.1 ). The white field
represents the regions of the rejected values. The marks are reported by scaling
the color from white to red where red represents the minimum of the loss function
among the obtained results. It is also represented the sampling process in CG-
autoparam. Starting from the light blue mark the space is sampled. The yellow
arrow is sapling a region which is avoided by the preliminary selection algorithm.
The step represented by the green line is rejected because its loss function value
results lower than the starting point’s value whereas the blue arrow’s step is accepted
for the lower value of the loss function for such a configuration. The next step would
put in evidence the possibility that during the sampling a loss function higher value
may be accepted within the probability reported in eq. H.3.

With this method the role of the last accepted step is of paramount importance
because it determines the range of allowed parameter for the next run. Therefore
the last-accepted set is the only retained in memory. Modeling the allowed
regions in the space of parameters avoids the extensive exploration, which is in
general worthless and time expensive.

Another important improvement consists in the possibility to perform many
simulations in parallel from the same starting point and then choose the set
of parameters which gives the best loss function. In the unmodified version,
the only way to speed up the process was to run many unrelated processes.
Graphically (see figure H.2) the old process looks like to explore the space with
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N-tracer whereas the new version considers many trials for each step. The
exploration with n-parallel tracers could be useful in exploring extensively space
with multiple minima but it depends on the selection parameter χmax which
manages the distance from the previous potential function.

p1

p
2

(a)

p1

p
2

(b)

Figure H.2: This figure shows the the parallel strategies available in this work. Panel a shows the
sampling process with more tracer whereas panel b shows the sampling performed
with a single tracer.

As aforementioned, CG-A is a program oriented to the optimization of the
parameters of an analytic function. Regarding the optimization of numerical
potential, an easy achievable solution is represented by the iterative Boltzmann
inversion (equation 2.29). Theoretically, after having obtained the resultant distri-
bution of the simulation it is possible to apply the IBI, with a simple subtraction
of the potential grids and thereafter to perform the parameter evaluation through
the interpolation procedure. Although in the best cases it determines only the
elongation of the optimization, the use of a scale factor ξ ∈ [0, 1], may represent a
wise choice in order to avoid the presence of deep gradient in the new potential
function.

Regarding the 3D-potential U(θ−,ϕ, θ+), the full validity of this type of de-
velopment is diminished by the low number of experimental data relevant to
the reference potential needed to achieve a low noise potential reference. More-
over the intended simulation should be long enough to sample in detail the
3D-distribution.
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