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Abstract

The purpose of this thesis is to develop navigation and control strategies
for an autonomous sailing model boat. Autonomous sailboats are good can-
didates both for long term oceanic surveys and for patrolling and stealth
operations, since they use wind power as their main mean of propulsion
which ensures low power requirements, a minimal acoustic signature and a
relatively small detectable body. Controlling a sailboat, however, is not an
easy task due to high variability in wind, side drift of the boat and chal-
lenges encountered when attempting to traverse an upwind course. In this
thesis, we describe how we design and set up a control architecture that al-
lows Aeolus, an autonomous model sailboat provided by the Swiss Federal
Institute of Technology in Zurich, ETH, to sail upwind and execute fast and
smooth tacking maneuvers. We implemented different controllers to actuate
the rudder in upwind sailing while tacking. We present experimental results
obtained during several autonomous sailing tests conducted at Lake Zurich,
Switzerland.
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Ma se tu guardi un monte che hai di faccia,
senti che ti sospinge a un altro monte,

un’isola col mare che l’abbraccia,
che ti chiama a un’altra isola di fronte,
e diedi un volto a quelle mie chimere,

le navi cotruii di forma ardita,
concavi navi dalle vele nere,

e nel mare cambiò quella mia vita,
e il mare trascurato mi travolse,

seppi che il mio futuro era sul mare,
con un dubbio però che non si sciolse,

senza futuro era il mio navigare.
Odysseus, Francesco Guccini.
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Chapter 1

Introduction

In the past, sailing was the only achievable means of transport over the sea.
The importance of sailing cannot be easily summarized, but think about two
events, one legendary and one real, to understand its importance. Sail power
was used to transport Aeneas, the Trojan hero, when he left Troy and landed
in Italy. Aeneas, according to Virgil’s Aeneid, is one of the few Trojans who
were not killed or enslaved when Troy fell. The Trojan hero, after being
commanded by the gods to flee, traveled to Italy, where his dynasty founded
Rome, on April 21st, 753 BC. Rome would become the center of the greatest
and most important ancient empire all over the world: the Roman Empire,
which at its greatest extentaions covered 5 million km2. Coming back to real
facts, when Christoper Columbus and his crew discovered the new world on
October 12, 1492, it marked the onset of the early modern period. They used
three wind powered vessels, the Niña, the Pinta and the Santa Maŕıa, to sail
from Spain to San Salvador Island, near Cuba. Nowadays however, sailing
is used for sports, racing competitions and outdoor activities. Sailing is not
just an expensive hobby, but is becoming a major area of research because
it is able to use wind power as primary means of propulsion. Therefor it can
be used to accomplish long term tasks, where endurance is a key feature.

1.1 Motivation

Nowadays unmanned surface vehicles are becoming a key research point,
both for oceanographic and surveillance use. For example, the European
project MORPH [1] aims to develop efficient methods and tools for under-
water environment mapping, using both surface and underwater vehicles.
Unmanned surface vehicles act as a link, between the underwater environ-
ment, where only acoustic communication is available, and the above water
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2 CHAPTER 1. INTRODUCTION

environment, where radio link and GPS signal are available to coordinate
the mission. Another example, is the REP10 AUV experiment [2]. The
same link behavior is used. This project is focused on the demonstration of
heterogeneous autonomous vehicles cooperation (air, surface and underwater
unmanned vehicles) in mine clearance and rapid environmental assessment
missions. However, endurance is a challenge for these unmanned vehicles. In
fact, they cannot operate for a long period of time, without needing being
charged. To overcome this problem and ensure a long term endurance, we
can look at an example used in underwater environments. Seaglidres [3] have
been developed to execute oceanographic surveys for a long period of time.
These are small, reusable autonomous underwater vehicles designed to glide
from the ocean surface to a programmed depth and back while collecting sev-
eral data. They are used for missions exceeding several thousand kilometers
and lasting many months. For example the commercial seaglider produced
by Kongsberg, named The Seaglider [4] and a low-cost one produced by
Graal Tech, named Fólaga [5]. An autonomous sailing model boat is the
perfect surface substitute for seagliders to execute oceanographic surveys, as
mentioned for example in [6, 7]. By employing wind power, it can provide a
long term mission endurance, since the only electrical power required is con-
sumed by the electronics. Moreover, such a surface vehicle can continuously
use a radio link communication as well as GPS signal. Finally, the autonomy
of surface vehicles can be increased by installing a solar pannel on the deck.
These are the motivations to develop, test and employ an autonomous sailing
model boat.

1.2 State of the Art

Many research groups have developed small-scale robotic sailboats in recent
years. For instance, the University of British Columbia (UBC team [8]), the
Tufts University (Trst team [9]), the Olin College of Engineering (Olin
robotic sailing team [10]), and the University of Porto (FASt sailing boat
team [11]). Every year a World Robotic Sailing Championship (WRSC)
[12] is organized and competitors attempt to complete several tasks. For
example, in 2014 the competition took place in Ireland, and the main tasks
to be executed were upwind/downwind sailing, station-keeping, fleet race,
endurance race and obstacle avoidance.

Most studies on sailing robots focus on decoupling the control system of
the rudder from the one of the sail, assuming their coupling behavior is ne-
gletable. For example, [13] shows how to implement one control method for
the rudder and another for sail control to enable the robot to sail following
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a straight line on the surface of the water. Moreover, most studies do not
describe how to execute special sailing maneuvers such as the tack or the
jibe. Since a mathematical model of the dynamics of a model sailboat is
typically not easy to derive, several works use fuzzy logic [14–16] (namely,
empirical rule-based logic) to control both the rudder and the sail. The main
idea is to exploit the knowledge of the “helmsman”, which can be expressed
in terms of a rule-based control system. In [16], for example, two decoupled
fuzzy controllers, one for the rudder and one for the sail, are developed using
simple rules. These two controllers are used both to sail autonomously and
to execute tack and jibe maneuvers. Two field results, one for the tack and
one for the jibe maneuver, are provided. Some other works prefer to use a
standard approach to control a sailing boat. For example, [17] explains how
to identify a continuous linear second order model for the steering dynam-
ics of a model sailboat, and to design a proportional-integral (PI) feedback
law for rudder. Therein, the PI controller is only used to track a desired
heading while sailing, while another controller regulates the sail. Another
example is provided by [18], where a discrete-time transfer function for the
steering dynamics of a model sailboat is derived, and then used to find all
discrete-time proportional-integral-derivative (PID) controllers that satisfy
a robust stability constraint for heading control. In [19] it is shown how to
derive a four-degree-of-freedom (DOF) nonlinear dynamic model for a sailing
yacht. Then a nonlinear heading controller using the integrator backstepping
method is designed, which exponentially stabilizes the heading/yaw dynam-
ics. The same authors in [20] design a time-invariant linear model, i.e. a
first-order Nomoto model, for which a L1 adaptive controller is implemented
to achieve the heading regulation.

1.3 Sailing Background

A sailboat cannot move in every direction without taking into account the
direction from which the wind is blowing. In fact, there is a region relative to
the wind where a sailboat cannot navigate at all, which is indeed called the
“no-go zone” [21]. To better understand the next Chapters, we define some
angles, to describe the state of the boat with respect to the environment:

1. yaw or heading angle, ψ. This is the compass angle and indicates where
the bow of the vessel is pointing;

2. true wind direction angle, σ. It is the direction from where the wind
blows;
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ψ

σ

α

(a) Case without drift

ψ

χ

(b) Case with drift

Figure 1.1: Representation of the angles ψ, χ, σ and α. ψ is the heading
angle (where the bow is pointing), χ is the course-over-ground angle (where
the boat is going toward), v is the velocity vector of the vessel, σ is the true
wind direction and α is heading relative to the wind.

3. heading with respect to the wind, α. It is the relative heading of the
boat, with respect to the true wind direction;

4. course over ground angle, χ. It is the direction to where the boat is
actually going. It can be different from the heading angle ψ if there is
drift, caused for example by the either the action of the waves or of the
wind.

A graphical representation of these angles is depicted in Figure 1.1. Note
that we named the variable σ using the adjective “true” on purpose: the true
wind direction is the angle from which the wind is blowing, if it is observed
by a stationary observer. On the other hand, the apparent wind direction
is the direction of the wind experienced by a moving observer, and therefore
it is influenced by the velocity of observer himself. We will always refer to
the wind, as the the “true” one, if it is not specified something else. The
heading relative to the wind, that is the α angle, is an important value, since
it defines the position of the boat, relative to the wind, and it is heavily used
in this project. The main points of sail and the “no-go zone” are depicted in
Figure 1.2. The “no-go zone” is the area which a sailboat cannot traverse,
because its motion would oppose the wind direction. The amplitude of this
zone depends on the specific boat and on environment conditions.
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Figure 1.2: Points of sail: in irons (A), close-hauled (B), beam reach (C ),
broad reach (D) and running (E ). The shaded red area is the “no-go zone”.
Credit by Wikipedia.
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Figure 1.3: Aeolus, the autonomous sailing model boat.

1.4 Aeolus, the Sailing Model Boat of ETH

Zurich

Aeolus, depicted in Figure 1.3, is the autonomous model sailing boat used in
the Automatic Control Laboratory (Institute für Automatic) at ETH Zurich
[22]. Its name comes from the ruler of the winds in Greek mythology.

1.5 Outline of the Thesis

This thesis is structured in eight main chapters. The first is the Introduction,
and the last is the the Appendix, where some specific implementation details
are explained.

Chapter 2 - Hardware and Software Setup
The main setup of Aeolus is presented. The principal electronic devices
mounted onboard are shown, as well as the implemented software architec-
ture.

Chapter 3 - Modeling and Identification
Two linear model (ARX and state space) are used to approximate the steer-
ing dynamic of the vessel. Numerical and validation results, obtained from
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several tests at lake Zurich, are presented.

Chapter 4 - Collecting and Filtering Data
The data collected from sensors are filtered and combined, before being used
by the rudder and sail controllers to achieve the autonomous sailing goal.

Chapter 5 - Tracking a Constant Heading
Two controllers, a simple proportional gain and a nonlinear regulator for the
rudder are shown. Moreover a rule based controller for the sail is presented.
By controlling both the sail and the rudder, it is shown how Aeolus can
track a reference heading with respect to the wind.

Chapter 6 - Tacking Maneuvers
Five different controllers for the tack maneuver are presented. Each has been
tested in several trials conducted in Lake Zurich. Performance of the various
controllers has have been evaluated and compared.

Chapter 7 - Conclusion
The final results of the thesis are shown. It turns out the the last three con-
trollers for the tack maneuver have got roughly the same performance and
the MPC is slightly better than the others. A suggested standard configu-
ration to sail upwind and execute tack maneuver is shown. Moreover, ideas
for further development and improvements are discussed.
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Chapter 2

Hardware and Software Setup

In this Chapter, we show the main hardware components and software archi-
tecture used to achieve the autonomous sailing goal. Starting from previous
work [23] on our sailing model boat, we briefly explain the main setup and
modifications that have been made on the initial state of Aeolus.

2.1 Hardware

We started with an international one-meter RC model sailboat, and installed
specialized electronics. Our hardware is mainly composed of an autopilot
control unit and a weather station.

Since sensing the wind is clearly fundamental for a sailboat, we use a
dedicated hardware device for this. The weather station we employ is the
Airmar WS-200WX [24], depicted in Figure 2.1, which we have mounted
above the bow. It provides the apparent wind (direction and speed), esti-
mated true wind (direction and speed) and GPS position. All these values
are sampled every 200 milliseconds.

Our autopilot is the Pixhawk board [25], an independent, open-source,
open-hardware board, shown in Figure 2.2. The Pixhaw is an all-in-one
unit, combining a FMU (Flight Management Unit) and an I/O module (In-
out/Output) in one single package. It is equipped with a 168 MHz ARM
Cortex-M4 CPU, with a hardware floating point unit. This board provides
a POSIX-compatible real time operating system, where many applications
can run in parallel. Its I/O model is equipped with several sensors, such
as accelerometers, gyroscopes, magnetometers, etc. Using a radio link, the
Pixhawk sends the data collected online to a specific application, called
QGroundControl [26], running on a PC located on the shore, near where
Aeolus is sailing. Moreover, a microSD card slot is integrated into the

9



10 CHAPTER 2. HARDWARE AND SOFTWARE SETUP

Figure 2.1: The Airmar
200WX weather station.

Figure 2.2: The Pixhawk
board.

board. This makes it possible to record on the micro SD card almost all the
data collected. These data are then analyzed in post processing, supplying
useful information.

Two hardware modifications, shown in Figure 2.3, have been carried out
during this project: the radio antenna has been mounted on the deck, to
increase the communication range, and a 3D printed box has been printed
an installed inside the lower deck to store the electronics.

2.2 Software

We structure the software in a hierarchical way that emulates the tasks di-
vision between tactician and helmsman on a real sailing boat. The first is
responsible for the positioning of the boat on the course, while the second
concentrates on driving the boat as fast as possible. To emulate this division,
we build the main software architecture as shown in Figure 2.4. The high level
controller acts like the tactician: based on path-planning, it sets the refer-
ence action α? and sends a steering command called tack-now when the boat
should tack. The low level controller operates as the helmsman: it reads the
commands sent by the high level controller, and, looking at the information
from the sensors, computes the input actions (sail and rudder commands) to
follow the desired reference. The rudder command is indicated by δ, while
the sail command is represented by µ. The controllers implemented in the
low level controller block are explained in Chapter 5 and in Chapter 6. In
the former, the regulators in charge of tracking the reference α?, supplied by
the high level controller, are shown. In the latter, the controllers that execute
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Figure 2.3: Printed 3D box mounted on the lower deck to store the electron-
ics. The radio antenna has been mounted outside the lower deck.

the tack maneuver, when the tack-now command is sent, are explained.

To estimate the state of Aeolus (position, velocity, attitude, etc), we rely
on an indirect extended Kalman filter (EKF) readily available in the Pix-
hawk firmware and developed by the open source community. It has a tightly
coupled compensation to integrate inertial measurements from IMUs (Iner-
tial Measurements Units) and GPS positions, as explained in [27]. Moreover,
this filter uses a general kinematic model, so no specific tuning based on the
parameters of Aeolus is required. It is developed as a stand-alone applica-
tion, that uses the GPS position and the IMUs data to compute its output.
As soon as a valid GPS position is acquired, this application defines a local
reference frame, which follows the NED (North-East-Down) convention. The
main outputs of the EKF are referred to this local frame. The most used
values, estimated by this filter, are the local position coordinates, the veloc-
ity of the vehicle and its attitude. All of these values refer to the local NED
frame.

To collect the data from the weather station, another software application
has been developed in the firmware. It sends the information collected to the
other applications that require it.

In conclusion, these are the three applications which run in the firmware.
Their main purposes are summarized next.

1. parser 200WX : collects data from the weather station and sends them
to the other applications;
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Low Level
Controller

Aeolus
High Level
Controller

EKF

[α?, tack-now] [δ, µ]

x
x̂x̂

Figure 2.4: The software architecture emulates the tasks division on a real
sailing boat. The low level controller acts as a helmsman and controls the
rudder and the the sail. The high level controller acts as a tactician and sets
the reference actions.

2. autonomous sailing : it is the helmsman of the boat and computes the
rudder and sail actions;

3. path planner : it is the tactician of the vessel and sets the reference
actions.



Chapter 3

Modeling and Identification

In this Chapter, we propose a simple technique to identify a linear state space
model of the yaw dynamics relative to rudder commands. To achieve this
result, we first exploit an ARX model, in order to assess the possibility of
describing the yaw dynamics using a linear model. Finally, a Matlab GUI
(Graphical User Interface) we have developed is shown; its role is to help a
user to identify and validate several linear state space models.

In order to tune and analyze the closed-loop behavior induced by the
controllers as explained in Chapter 5, a dynamical model of the sailboat is
required. In [19] it is shown how to derive a nonlinear four-degree-of-freedom
(4-DOF) dynamic model for a sailing yacht, including the roll dynamics,
using the notation introduced in [28]. This procedure can in principle be
applied to our model sailboat, but then the modeling phase must be followed
by a parameter identification phase. Since identifying all the parameters of
the nonlinear model is typically challenging, we decided to identify only the
yaw and yaw rate dynamics of our sailboat using a linear model, as suggested
in [17,18]. In [17] a continuous-time transfer function, from the rudder angle
to the yaw rate output, is identified, which mathematically describes the
input/output behavior of the system, meaning the dynamic behavior from
the rudder input to the yaw rate. Once this model has been identified,
a pole is added at the origin, so that a transfer function from the rudder
to the yaw angle is also directly obtained. In [18] a discrete-time transfer
function, also describing the yaw rate dynamics relative to the rudder angle
input, is identified instead. Starting from these two works, we next describe
a possible identification phase that can be executed by a “helmsman”, using
the remote controller to command the model sailboat. The boat sails upwind
with a constant velocity, with the rudder being in the middle position; when
the vessel has enough longitudinal speed, a step command on the rudder is
given, that is, a strong steering input. This step command produces a fast

13



14 CHAPTER 3. MODELING AND IDENTIFICATION

variation in the yaw rate and in the yaw angle of the boat, that are recorded
and transmitted via the radio link to a PC located on the shore. A recorded
identification maneuver, during a real test at Lake Zurich, is shown in Figure
3.1.

3.1 ARX Model

Using the data from the above identification phase, we identify a transfer
function from the rudder command to the yaw rate, in a similar fashion
of [17] and [18]. We choose to identify an Autoregressive model (ARX) for
two main reasons: we want a discrete-time model since we use a discrete-
time micro controller and the disturbances (wind and waves) act as control
actions. We refer to the rudder signal as δ, to the yaw rate signal (the output
of the system we want to identify) as ω and to the disturbance (wind and/or
waves) as ε. A standard form for the ARX model is

A(q, θ)ω(t) = B(q, θ)δ(t) + ε(t), (3.1)

where q is the time-shift operator, θ is the vector of parameter that describes
our system and A(q, θ) and B(q, θ) are polynomials. Our purpose is to find
the “best” vector θ, for any fixed q, such that the dynamical model in (3.1)
matches as close as possible the experimental data. Usually, θ is estimated
using a least square approach. Using this procedure, we identify several ARX
models, using a different set of data collected during several tests at Lake
Zurich. Each model describes the yaw rate response, as a function of the
rudder command, using only one pole. In fact, it has been seen that using
two or more poles, does not improve much the model response, therefore it
does not seem beneficial to employ more than one pole. An example of one
identified model is

(1− 0.964z−1)ω(t) = −0.035δ(t). (3.2)

In Figure 3.2, it is shown an example of cross validation of model (3.2). The
fitting percantage shown, is computed using the following normalized root
mean square error function:

fit = 100 ·
(

1− ‖xref − x‖
‖xref −mean(xref)‖

)
. (3.3)

The data used to validate the model, are different from the ones used to
identify the model.
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Figure 3.1: Identification maneuver: the first plot shows the yaw rate re-
sponse, the second one shows the yaw response and the last one shows the
rudder command given to Aeolus while sailing.
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(b) Second cross validation

Figure 3.2: ARX model from the rudder command to the yaw rate response,
example of cross validation. Recorded yaw rate in solid blue, ARX response
in dashed orange.

The identified ARX model shows that it is reasonable to describe the
dynamic of yaw rate, using a linear model, at least when the boat is turning.
This linear approximation, is relatively accurate during the initial phase of
the turning maneuver, but starts to get worse the more time that elapses. In
fact, the more the boat steers, the more the drag force and other nonlinear
behaviors start to appear, and the linear approximation cannot closely follow
the actual yaw rate dynamical evolution. This issue is shown in Figure
3.3. Since we aim at controlling Aeolus both when sailing and tacking, we
do not want these nonlinear dynamics to appear too much in the behavior
of the vessel, because they make the boat slow down. Moreover, because
hydrodinamics generated by the shape of the haul, sailing boats excel at
sailing forward but they loose velocity when steering. Therefore, a steering
maneuver should be executed only if either a desired course has to be followed
or after the maneuver the boat can achieve a higher speed. In both cases,
the maneuver should not overshoot the new desired heading. So, for our final
purposes, we accept that our model is valid in the first phase of the turning
maneuver. Since we want to control the yaw angle, we could add a pole on the
unit circle in order to obtain a discrete time transfer function from the rudder
command to the yaw angle. Even if the derivation of this transfer function
is not challenging, especially from the ARX model (3.2), we would like to
have a linear state space model for our design purposes. A first attempt to
obtain it could be to find three matrices which describe the same dynamic in
term of linear state space model and whose input/output transfer function
is equal to the ARX model where a pole has been added on the unit circle.
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Figure 3.3: ARX model from the rudder command to the yaw rate response,
example of the effect of the nonlinear dynamics. Here the rudder command
was kept to one extreme position for the whole steering period. The more
Aeolus steers with a saturated rudder command, the more the nonlinear
dynamics start to appear and the real behavior of the yaw rate differs from
the one of the ARX model.

Even if it has been seen that the state space model obtained in this way can
describe both the yaw rate and yaw dynamic, it is not clear the meaning
of each variable that belongs to the state vector. Consequently, it is not
easy to understand how to design and implement an estimator of the state,
that is required by the controllers that are shown in Chapter 6. This is the
main reason we follow a different way to obtain a state space representation.
However, the ARX model shows that only one pole is sufficient to describe
the yaw rate dynamic of the boat while steering, and this is the main field
evidence used in the next section.

3.2 State Space Model

Using the results from the ARX model, we identify a state space description
of the yaw and yaw rate dynamics. Specifically, we define the state vector at
time k as

xk = [ωk, ψk]
> , (3.4)

where ω is the yaw rate and ψ is the yaw, or heading, angle. We assume
that the system dynamics can be described by the discrete-time linear system

xk+1 = Axk +Bδk. (3.5)
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Where xk is the state of the boat and δ is the rudder command. A
similar state space description has been shown in [20], where the unknown
parameters are adaptively estimated. We use a slightly different approach,
and estimate each parameter of the model without an adaptive procedure.
The matrices in (3.5), which describe a two-state-space model, can be written
as

A =

[
a11 a12
a21 a22

]
, B =

[
b1
b2

]
. (3.6)

We identify two slightly different types of models: the grey and the black
type models. In the grey type we use the knowledge about the physical
meaning of the two variables in the state vector. We assume that the yaw
rate ω (at time k+ 1) depends only on the previous yaw rate (at time k) and
on the rudder command, thus in (3.6) we impose a12 = 0. Then, we assume
that the yaw angle ψ (at time k + 1) is the integral of the yaw rate and it is
not directly affected by the rudder command. Therefore, in (3.6) we impose
a21 = ∆t (time interval between the time instants k and k + 1), a22 = 1 and
b2 = 0. In this way, we are implicitly using the forward Euler method to
integrate the yaw rate signal. It then follows that in the grey model we have
to identify only the parameters a11 and b1. In the black type model we do
not make any prior assumption, thus we identify the full matrices A and B
in (3.6).

By collecting the yaw rate, the yaw and the rudder signals experimentally,
we follow a least square error procedure to compute the matrices A and B. In
Chapter 8, it is shown how to compute both the black and grey type models.
We have seen that both the grey and black type models can describe well
the turning dynamics, but the latter one appears to be more general and
environment-conditions independent. Numerically, the following black type
model has been derived:

A =

[
0.7078 −0.0124
0.0744 0.9986

]
, B =

[
−0.3089
−0.0228

]
, (3.7)

where the yaw angle is meant in radians and the yaw rate is meant in radi-
ans/sec. The sampling time of this discrete-time model is ∆t = 0.099 s. We
have validated the model in (3.7) using data collected in different navigation
tests at Lake Zurich, and one example of validation is in Figure 3.4. It is
important to point out that typically there are different wind and sea (wave)
conditions between the day when a model is identified and the days when it
is validated. We notice that despite the fit percentage for the yaw rate is not
very high (57%), we achieve a quite good fit for the yaw response (88.2%).
In Table 3.1 it is shown the average fitting percentages of the linear state
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Figure 3.4: Linear state space model from the rudder command to the yaw
rate and yaw angle responses, example of cross validation. Recorded data in
solid blue, response of the model in dashed orange.

space model, computed using data obtained in several traials contucted at
Lake Zurich. The fitting percentages have been computed using (3.3).

yaw rate yaw
average fit 79.7% 80.3%

Table 3.1: Benchmark of the linear state space model using average fitting
obtained in 15 trials conducted at Lake Zurich.

3.3 Identification GUI

The models identified using real data, assuming either the ARX structure or
the linear state space one, are heavily dependent on the daily conditions, such
as strength of the wind or height of the waves. However, these conditions
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Figure 3.5: Matlab GUI used to identify a state space model, using the data
transmitted by Aeolus, while it is sailing.

are pretty much constant during the day, at least within a range of some
hours. In order to have a numerical model, that can take into account the
daily conditions, we designed the Matlab GUI (Graphical User Interface)
depicted in Figure 3.5, that allows a user on the shore to identify a state space
model. In fact, while Aeolus is sailing, many data are transmitted over the
radio link, such as the yaw angle, the yaw rate and the rudder command.
With this GUI, a user on the shore can collect the data transmitted, while
a “helmsman” is executing several identification maneuvers controlling the
boat via the remote controller, and use them to identify several models. The
user can select and plot the data collected, and decide which part should be
used to identify a model, that can be either a black or a grey type linear
state space model. Each identified model can be validated using the data
recorded, so the user has an immediate feedback about how much the model
is accurate. Once a satisfying model has been found, it can be used for
further tuning purposes, as explained in Chapter 6.



Chapter 4

Collecting and Filtering Data

In this Chapter, we explain the main techniques we use to filter the data on-
line, onboard of the Pixhawk. We combine the main data provided by the
EKF, with the wind information supplied by the weather station. This infor-
mation is filtered, as explained in this Chapter, and used by the controllers
implemented in Chapter 5 and Chapter 6.

The main output from the EKF, used here, is the heading angle ψ, that is,
the compass direction where the bow is pointing to. The main data supplied
by the weather station, are the estimated true wind direction σ, as well as
the GPS course over ground χ. The course over ground is the direction
over the ground the vehicle is currently moving in; it can be different from
the heading, if there is drift (caused by either the wind or the waves), see
Chapter 1. In order not to follow too much high-frequency wind shifts, we
design a moving average filter for the raw measurement of the direction of
the estimated true wind. The wind direction takes values between −180◦

and 180◦, where 0◦ is the geographic North, +90◦ is the East, +90◦ is the
West, etc. Note that the wind direction discontinuity at the beginning/end
of the scale requires special processing to compute a valid mean value. We
employ the single-pass procedure developed by Mitsuta in [29] to compute
a mean wind direction, which is shown in detail in the Appendix. Figure
4.1 shows the effect of these filters on the raw wind direction measurement.
Note that, this moving average filter introduces a delay between the raw
measurement, and the final averaged value. This behavior heavily influences
the performance of the implicit tack controller, explained in Chapter 6.

We now consider the heading angle α with respect to the wind direction,
which reads as

α = ψ − σ, (4.1)

Setting a reference value α? for this angle, the high level controller tells Aeolus
the desired orientation relative to the wind. For example, if α? = 45◦ Aeolus

21
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Figure 4.1: True wind direction from the weather station, in blue, and av-
eraged value from the filter, in orange. On the left an example of the delay
introduced by the moving average filter and how this filter can smooth rapid
shifting peaks. On the right the mean value of the wind direction when the
raw measurement switches between −180° and 180°, obtained by using the
Mitsuta mean.

should sail upwind (that is, between “close hauled” and “beam reach”), if
α? = 90◦ Aeolus should sail at “beam reach”, etc. The sign of α? determines
the haul: a positive value corresponds to starboard haul (the wind is blowing
from the right side of the vessel), meanwhile a negative value corresponds to
port haul (the wind is blowing from the left side of the vessel). An example
is depicted in Figure 4.2. In order to overcome drift due to currents and
waves, it is possible to use the course over ground value χ, provided by the
GPS signal, instead of the heading ψ, to compute α. Unfortunately, the
GPS signal sometimes drops, even for long periods of time, up to 10 seconds,
especially during fast steering maneuvers. Therefore, here we define two
angles to take into account both the drift compensation and the updated
measurements:

αψ = ψ − σ (4.2)

αχ = χ− σ. (4.3)

Our estimated α angle is computed as a convex combination between these
two angles as follows:

α = (1− λ)αχ + λαψ (4.4)

where λ is a function of the last time when the course-over-ground (cog) signal
has been updated, that takes values in [0, 1]. Specifically, λ is computed as

λ(t) =

{
t−tlast cog

Tthreshold
if t− tlast cog ≤ Tthreshold

1 otherwise
. (4.5)
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Figure 4.2: Heading with respect to the wind: graphical explanation of the
α angle. The black arrow indicates the direction from which the wind is
blowing. The red area is called “no-go zone”.

Where the constant Tthreshold, can be set by the user while Aeolus is sailing.
Computing λ as (4.5), the more time has elapsed without a course-over-
ground update, the more λ tends to 1; when a new course over ground is
received, λ is then reset to 0. Since this design can cause discontinuities
in the α estimate when a new course over ground is received, we employ a
moving average filter on the α value to smooth out the actual estimate. The
effect of the convex combination, combined with a average filter, and the
difference between the final α and αχ and αψ, is depicted in Figure 4.3.
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Figure 4.3: Effect of the convex combination in the computation of the final
value of α. The upper plots shows the difference between αχ (orange), αψ
(blue), and the final α (black). The lower plot shows where the GPS signal
was lost, that is, where the χ is constant.



Chapter 5

Tracking a Constant Heading

In this Chapter, we define two main controllers, a standard proportional (P)
controller and a more sophisticated nonlinear one (NL), each of them can
be selected to take care of the rudder command. These two controllers are
implemented in the low level controller block, shown in Chapter 2. Finally,
a simple rule based controller for the sail, is explained at the end of the
Chapter.

5.1 Rudder Controller

The reference heading angle for the low regulator is α?, and is set by the
high level controller. Using the equation (4.1), it is possible to specify either
a constant compass course or a constant heading to the wind as reference.
The first case is simply obtained by setting σ = 0; the second case uses a
more general formulation where σ is provided by the weather station. Let
use normalize the rudder command δ to be in the range [−1, 1]. Given the
reference angle α? and the current estimate α, the heading error reads as
e := α? − α, and the P rudder controller sets the rudder command δ as

δ = δP(e) = kp e, (5.1)

for some kp > 0.
Instead, the NL controller defines a nonlinear gain k(e) as

k(e) =
kp

1 + cp|e|
(5.2)

for some kp, cp > 0, and hence sets the rudder command to

δ = δNL(e) = k(e) e. (5.3)

25
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The main idea of this nonlinear controller was first introduced in [30]. The
controller (5.2) acts as a proportional gain when the error e is small, but
its behavior changes when the error is large. The cp constant can be in fact
used to tune the control action when the error is large; here we tune (5.2) so
that the larger cp is, the smaller the gain k(e) and so the rudder action. This
behavior is used also in Chapter 6 to execute a special tack maneuver. These
two controllers are able to track a reference angle. An example of tracking
the reference α?, using the NL controller is depicted in Figure 5.1. Note that,
since the controller is working “near” the reference, applying the P regulator
would have provided a similar behavior.

Using the identified numeric model in (3.7), we can study the stability of
the closed-loop system, both in the linear and the nonlinear case. If we use
the P controller (5.1), the closed loop system is a linear discrete-time model,
whose stability can be studied applying the Jury stability criterion [31]. The
Jury criterion in the discrete-time equivalent of the more famous Routh-
Hurwitz stability criterion for continuous-time systems. In general, a closed
loop system has got the following characteristic equation:

P (z) = a0 + a1z + a2z
2 + · · · aNzN (5.4)

There are four tests to be performed, to check the stability of the system.

1. P (1) > 0

2. (−1)NP (−1) > 0

3. |a0| < an, if rule 1, 2 and 3 are satisfied, the Jury array must be con-
structed

4. The Jury Array must satisfy:

|b0| > |bN−1|
|c0| > |cN−2|
|d0| > |dN−3|

and so on until the last row of the array.

If all these conditions are satisfied, the system is stable. The Jury array is
constructed in a recursive way, by filling the table:

a0 a1 a2 a3 · · · aN
aN · · · a3 a2 a1 a0
b0 b1 b2 · · · bN−1
bN−1 · · · b2 b1 b0

...
...

...
...

...
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Figure 5.1: Example of tracking a reference α?, using the nonlinear controller.
The first plot shows the reference α? in dashed black, and the obtained α
angle in blue. The second plot shows the rudder command in green and the
rudder limits in dotted red. The third plot shows the true wind direction, in
blue the raw data and in orange the average value. The fourth plot shows
the heading angle in blue and the course over ground angle in orange, note
the difference caused by the drift.
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where the following formula can be applied recursively to construct each
element of the array:

bk =

∣∣∣∣a0 aN−k
an ak

∣∣∣∣
ck =

∣∣∣∣ b0 bN−1−k
bN−1 bk

∣∣∣∣
This criterion is applied on the numerical model (3.7), where the rudder

command is computed by (5.1). The characteristic equation, in our case, is
given by

P (z) = z2 + p1z + p0

p1 = −b2kp − a22 − a11 (5.5)

p0 = (−a21b1 + a11b2)kp + a11a22 − a12a21

By checking the previous four rules, we obtain that

1. P (1) > 0 if kp > −0.0442

2. P (−1) > 0 if kp < 214.02

3. |p0| < pn, if −249.22 < kp < 42.629

4. The Jury Array satisfies the fourth rule if either −0.0442 < kp < 42.629
or 42.629 < kp < 214.02

In order to satisfy these four rules, we must have −0.0442 < kp < 42.629,
and since we want a positive value for kp, at the end we obtain that the
closed loop system, controlled using the P regulator, is stable if

0 < kp < 42.629 (5.6)

After several experimental tests, we tune kp for both stability and tracking
purposes to the value kp = 0.35.

Based on the results from the P controller, we tune the NL one in (5.2)
with kp = 0.35, cp = 0.35. In this way, the nonlinear rudder command is
similar to the one obtained with the P controller if the heading error is small,
but the control action is limited as desired when the heading error is large.
For instance, using the previous settings, an error e = 90° produces a rudder
command δ = 0.55 with the P controller and a rudder command δ = 0.35
with the NL one (the error used to compute δ must be expressed in radians).
If we use the nonlinear controller, we obtain a nonlinear closed loop system,
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which has got an equilibrium point in the origin that is locally stable. The
error e, in (5.2), can be seen as the value of the yaw angle ψ, that is x(2),
according to (3.4) ,which must be controlled to 0. The closed loop system is

xk+1 = fcl(xk) = Axk +BδNL(x(2)) (5.7)

The system (5.7) is autonomous, thus x = 0 is an equilibrium point where
we can linearize the system. The transition matrix of the linearized system
is

ACL
kp,cp =

∂fcl
∂x

∣∣∣∣
x=0

= A+B
∂

∂x

(
δNL(x(2))

)∣∣∣∣
x=0

(5.8)

Since in (5.2) there is the absolute value of the error x(2), which is not
necessarily differentiable in x(2) = 0, we must take into account both the
right and the left derivative. Right derivative:

lim
ε→0+

δNL(ε)− δNL(0)

ε
= lim

ε→0+

kp
1+cpε

ε

ε
= lim

ε→0+

kp
1 + cpε

= kp (5.9)

Left derivative:

lim
ε→0−

δNL(ε)− δNL(0)

ε
= lim

ε→0−

kp
1−cpε ε

ε
= lim

ε→0−

kp
1− cpε

= kp (5.10)

So, by linearizing the system in x = 0, we obtain in each case

ACL
kp = A+ [02×1, B]kp, (5.11)

which is the same closed loop transition matrix that is obtained using the
P controller. So, if kp satisfies (5.6), then the origin is an equilibrium point
that is locally stable. In Figure 5.2 there are displayed the state trajectories
sampled simulating the numerical model (3.7) using the NL controller (5.2).
Every sample trajectory, starting “close” from the origin, converges to the
locally stable equilibrium point.

5.2 Sail Controller

We decouple the control of the rudder and the sail, similarly to [16,17]. Since
at the moment of the development of this project, no feedback measurements
of the position of the sail were available, a simple open loop controller for
them has been implemented. This controller is developed as a rule based
regulator: the more Aeolus is sailing opposite to the wind direction, that
is, the closer to 0° α is, the more we close the sail. This simple idea, is coded
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Figure 5.2: Sampled state trajectories, obtained simulating the system be-
havior when the NL controller is applied.

in the firmware of the Pixhawk, using a list of “if-then-else”, that describes
the behavior shown in Figure 5.3. The parameters x1 and x2, shown in the
last Figure, can be changed at run time, while Aeolus is sailing, by an user,
using QGroundControl.
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Figure 5.3: Rule based controller for the sail. The more Aeolus is sailing
opposite to the wind direction, that is, the closer to 0 α is, the more we
close the sail. The parameters x1 and x2 can be changed at run time, while
Aeolus is sailing. The higher the sail command µ, the more the sail is
closed.
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Chapter 6

Tacking Maneuvers

In this Chapter, we derive several controllers to execute the tack maneuver.
Tacking is a sailing maneuver by which a sailing vessel turns its bow into the
wind through the “no-go zone” so that the direction from which the wind
blows changes from one side to the other. An example of a tack maneuver
is shown in Figure 6.1: before tacking the boat is sailing at port haul (wind
from the left side); after the maneuver the vessel is sailing at starboard haul
(wind from the right side). Since during the maneuver the boat crosses the
“no-go zone”, it should be executed in the fastest and smoothest possible
way, in order not to get stuck against the wind. First of all, we try to exploit
the knowledge of the “helmsman” and implement a rule based controller for
the rudder. Second, we take advantage of the controllers implemented in
Chapter 5 and we use them as the simplest way to execute a tack. Third,
we improve the performance of the previous controllers, by designing three
new rudder regulators that compute the command only during the steering
maneuver.

Five possible ways of carrying out a tack are developed and tested: the
helmsman, the implicit, the dedicated, the LQR and the MPC one. The
implicit maneuver does not require a switch from the rudder controller used
during upwind sailing, meanwhile the others require an ad-hoc rudder regu-

Figure 6.1: Example of a tack maneuver. The black arrow shows the wind
direction.
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Figure 6.2: Helmsman rules to execute a tack maneuver. The parameters
α1 and α2 determine the shape of the command. The parameter y sets the
maximum amplitude of the rudder input.

lator to be executed during the tack.

6.1 Helmsman Tack

Our first attempt is to emulate what a real helmsman would do to execute a
tack maneuver. After speaking with a helmsman, we can write two different
rudder commands to execute a tack: the first one is shown in Figure 6.2a
and the second one is shown in Figure 6.2b. The first rudder command is
similar to the one a helmsman would use on a real sailing boat, meanwhile
the second one is something easier. In both cases, there are three parameters,
α1, α2 and y, that can be tuned by a user on the shore, while Aeolus is
sailing, in order to better exploit the controller capabilities.

Both type of tacks, helmsman 1 and 2, are implemented in the firmware
of the Pixhawk and tested in several trials at Lake Zurich. One of these two
controllers can be selected by a user on the shore, and it is executed when
the high level controller, shown in Chapter 2, sends the tack-now command.
These two tacks can be seen as fuzzy controllers to execute a steering ma-
neuver, since they exploit the knowledge of the helmsman and express it in
terms of rules. In this case the rudder command δ is a function of the head-
ing relative to the wind α. We develop these two rudder controllers in the
firmware using a list of nested “if-then-else”, instead of using the common
way to implement a fuzzy controller. Since the rudder command is computed
online the Pixhawk, the choice of a list of “if-then-else” is required because
of the small amount of memory and computation power available. After sev-
eral tests at Lake Zurich, where many values for the parameters α1, α2 and y
were tried, the best responses we could achieve are depicted in Figure 6.3. In
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both helmsman 1 and 2, there is a big overshoot between the desired heading
to the wind, α?, and the obtained one, α. So, our first attempt to perform
a tack as a helmsman would do, by employing a rule based controller, failed
to execute a good steering maneuver. This result makes us thinking about
more sophisticated control laws, that can execute a good tack maneuver, as
shown in the next sections.

6.2 Implicit Tack

The implicit tack is done if the high level controller simply changes the refer-
ence α? of the low level heading controller, for example from −45° to 45°.In
this way, the low level application does not really “know” that a tack maneu-
ver must be done. The new reference is followed by the rudder controller that
is on, either the P controller (5.1) or the NL one (5.2). We have noticed that
the implicit tack done using the P controller produces larger overshoot, com-
pared to the NL implicit one. Two main reasons cause undesired overshoots:
a strong initial rudder command and the delay introduced by the average
filters (applied to the wind direction and to the heading relative to the wind)
shown in Chapter 4. When the reference is changed, the P controller sets a
more aggressive rudder command, compared to the NL controller, in which
the cp coefficient is actually tuned to be less aggressive when the error is
large. Moreover, the moving average filters used to filter the raw measure-
ments introduce a delay of about 2 seconds, thus if the tack maneuver is
executed too fast, for example by using an aggressive rudder command, the
delay introduced by the average filters induces an overshoot in the heading
angle response. To avoid this overshoot, a less aggressive implicit tack ma-
neuver should be executed. All of these considerations can be seen in Figure
6.4, where it is shown a comparison between the implicit P tack and the im-
plicit NL one. Summarizing, our NL controller can both control the rudder
to sail upwind at constant reference and execute a smooth tack maneuver
without significant overshoot. This result is achieved without any further
special action during the maneuver.

6.3 Dedicated Tack

The dedicated tack maneuver, as well as the LQR and the MPC one, are
executed by the low level controller when the high level layer sends the tack-
now command and updates α?. Therefore, the low level application is now
aware that a tack must be carried out, and can hence perform special actions
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(a) Helmsman type 1, tack from port to starboard haul.
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(b) Helmsman type 2, tack from starboard to port haul.

Figure 6.3: Helmsman tack, type 1 and 2. The plots show the reference
α? in dashed black, the heading relative to the wind α in blue, the rudder
command δ in solid green and the rudder limits in dotted red.
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(a) Implicit tack, using the P controller, from port to starboard haul.
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(b) Implicit tack, using the NL controller, from port to starboard haul.

Figure 6.4: Implicit tack. The plots show the reference α? in dashed black,
the heading relative to the wind α in blue, the rudder command δ in solid
green and the rudder limits in dotted red.
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for the maneuver. From our field experience, we mention three critical actions
to be taken into account when tacking:

1. the window size of two average filters (on the wind direction σ and on
the heading relative to the wind α angle) is set to 1 sample only;

2. the α angle is computed using only αψ in (4.2), not by using αχ in
(4.4);

3. a specialized tack regulator takes control of the rudder during the ma-
neuver.

The first action overcomes the undesired delay typical of the implicit tack
caused by the filters. The second action is needed because during a fast tack
maneuver, it is likely to loose the updated course-over-ground measurement.
In our implementation, a specialized tack regulator controls the rudder until
the tack is considered completed, that is until the error signal is within
specified bounds for about 1 second. Namely, we then switch back to the
course-navigation controller when the actual heading is close enough to the
new reference. We consider a dedicated tack maneuver completed if and only
if the following holds for at least T̄ seconds, where T̄ , ᾱ and δ̄ can be set by
a user while Aeolus is sailing:

|α? − α| ≤ ᾱ and |δ| ≤ δ̄. (6.1)

In real tests we set T̄ = 0.8 s, ᾱ = 12° and δ̄ = 0.15. In this way, we switch
from the dedicated controller to the normal one, used for tracking α?, when
Aeolus is “close” enough to the new reference.

Let us now discuss in detail our dedicated tack maneuver. The dedicated
controller is just the nonlinear one in (5.2), with kp = 0.7366 and cp = 0.1
tuned to obtain a more aggressive behavior and execute a faster, as well as
smooth, tack. With our numerical choice, when the error is |e| = 90° we have
|δ| = 1, thus the rudder is working at its saturation boundary. Figure 6.5
shows how the dedicated tack behaves, during a tack from port to starboard
haul. We point out that this more aggressive regulator does not produce
overshoot thanks to the special actions explained above.

6.4 LQR Tack

The fourth steering controller implemented is a Linear Quadratic Regulator
(LQR), where “optimality” is with respect to an infinite-horizon cost func-
tion. The LQR is a state-feedback controller, meaning that the control action
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Figure 6.5: Dedicated tack from starboard to port haul. The plots show the
reference α? in dashed black, the heading relative to the wind α in blue, the
rudder command δ in solid green and the rudder limits in dotted red. Where
the dedicated regulator is not controlling the rudder, the α and the δ lines
are dashed. The tack-now command has been received at time 0.88 s; from
that moment, the dedicated regulator takes care of the rudder, until the tack
maneuver is not considered completed, that is around time 4.7 s.
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is a static feedback law of the state x as follows: δ = δ(x) = KLQRx. In our
specific application, we aim at computing the optimal rudder command δ
to carry out a fast and smooth maneuver. To exploit the model derived in
the modeling section in Chapter 3, we make the assumption that the true
wind direction σ does not change during the tack maneuver, which is a prac-
tically reasonable assumption if the maneuver is fast enough. In this way,
a tack maneuver can be just seen as a change in the heading angle ψ. For
example, a tack from port (α? = −45◦) to starboard haul (α? = 45◦), can
been seen in two equivalent ways: (a) we require a change in the α angle of
∆α = 90◦; (b) we require a change in the heading angle ψ of ∆ψ = 90◦, i.e.,
∆ψ = ∆α, based on (4.1) assuming a constant wind-direction angle σ. Thus,
tacking results in steering the state of the system in (3.4) from the initial
value xi = [ωi,∆ψ]> to the final value xf = [0, 0]>, where the latter consists
in achieving the desired α? with zero yaw rate. Let us rewrite the model in
(3.4) in state-space form with

δ̂k := δk − δk−1 (6.2)

x̂k := [ωk, ψk, δk−1]
> , (6.3)

where δ̂ is the new control input and x̂ ∈ IR3 is the extended state. Namely,
the extended state at time k, x̂k, contains the yaw rate and yaw angle at time
k and the rudder command δk−1 injected into the system at the previous step
k − 1. The input δ̂ is the difference between the actual rudder command at
time k, and the previous one; in other words, the real rudder command δ
provided at the time k is then δk = δk−1 + δ̂k. Since the LQR problem does
not take into account any constraint, such as the rudder saturation limits,
the final command given to the rudder is a clipped version of the optimal one
computed, in order to respect the actuator limits. The state space matrices
Â, B̂ corresponding to the extended state dynamics become

Â :=

[
A B
0 I

]
, B̂ :=

[
B
I

]
. (6.4)

This state-vector extension allows us to define the following LQR problem:
min

∞∑
k=0

x̂>kQx̂k + rδ̂ 2
k

s.t. x̂k+1 = Âx̂k + B̂δ̂k, ∀k ∈ N
x̂0 = x̂(t)

(6.5)

where the matrix Q � 0 and r > 0 are design choices, x̂ is the extended
state and δ̂ is the input command of the extended system. The LQR gain
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KLQR is computed such that the state feedback law δ̂(x̂(t)) = KLQRx̂(t)
solves the problem (6.5), subject to the unconstrained discrete-time dynamics
x̂k+1 = Âx̂k + B̂δ̂k. Moreover, the LQR gain KLQR ensures that the closed
loop system is stable. The main reason to extend the state vector as in (6.2)
is to assign a cost penalty to the control action δ as well as to the control
variation δ̂. Once we obtain the matrices of the extended model in (6.4) using
the values in (3.7), we can tune Q and r, both via numerical simulations and
via field tests. We tested several values, both for Q and for r, and we saw
that the best configuration for these parameters is given by

Q = diag(1, 3, 1), r = 35. (6.6)

With this choice, we sensibly penalize fast variation in the rudder command,
which should not vary with too much velocity and should avoid “chattering”.
Moreover, we give a higher priority in controlling the yaw angle ψ than the
other state variables ω and δ. The values for Q, r and KLQR can be set using
the GUI shown in Chapter 3. In this way, every time when a new model is
identified, it can be used to compute a new matrix gain KLQR, that is sent to
Aeolus and used online in the Pixhawk to compute the rudder command
δ. Moreover, the weight matrices can be set while sailing, helping the user
on the shore to better tune the LQR tack controller. An example of a LQR
tack is depicted in Figure 6.6. The rudder command from the LQR stays
for a long period close to the saturation of the rudder. This behavior allows
the optimal regulator to execute a faster maneuver, without overshoot. The
path of Aeolus during a LQR tack maneuver is depicted in Figure 6.7.

6.5 MPC Tack

The last tack controller implemented is the MPC : Model Predictive Control.
The MPC is an advanced nonlinear controller, that uses the information
about the system dynamics to compute an optimal control law, where “op-
timality” is with respect to a finite-horizon cost function. Despite of the
LQR, the MPC can take into account several constraints. Other than the
system dynamic, it can allow for input bounds, actuator velocity, restriction
in values assumed by the state, etc. At each step, the MPC returns a control
action for the rudder, based on the actual state of the system: δ = δ(x). This
controller uses the same main assumption of the LQR: to exploit the model
derived in the modeling section in Chapter 3, we make the assumption that
the true wind direction σ does not change during the tack maneuver. More-
over, as in the LQR case, the MPC brings the state of the system in (3.4)
from the initial value xi = [ωi,∆ψ]> to the final value xf = [0, 0]>. In the
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Figure 6.6: LQR tack from port to starboard haul. The plots show the
reference α? in dashed black, the heading relative to the wind α in blue, the
rudder command δ in solid green and the rudder limits in dotted red. Where
the LQR regulator is not controlling the rudder, the α and the δ lines are
dashed. The tack-now command has been received at time 1.22 s; from that
moment, the LQR regulator takes care of the rudder, until the tack maneuver
is not considered completed, that is around time 6.17 s. The ripples displayed
in the α response (blue) are due to the action of the waves, while Aeolus
is steering, and are not caused by the given rudder command.
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Figure 6.7: Path of Aeolus (the GPS receiver is located above the bow)
while executing an LQR tack. Starting from the origin position, Aeolus sails
upwind at port haul. A tack is executed at (−9,10), and then Aeolus sails
upwind at starboard haul. The black arrows show the mean wind direction
measured by the weather station.

formulation of the MPC problem, we adopt the same extended state model
displayed in (6.4). In this way, we can define the following MPC problem:

min
N−1∑
k=0

[
x̂>kQx̂k + rδ̂ 2

k

]
+ x̂>NPx̂N

s.t. x̂k+1 = Âx̂k + B̂δ̂k, ∀k ∈ 0, 1, ..., N − 1

|δk| ≤ δ, ∀k ∈ 0, 1, ..., N − 1

|δk − δk−1| ≤ ∆, ∀k ∈ 0, 1, ..., N − 1

x̂0 = x̂(t)

(6.7)

where the matrix Q � 0, r > 0 and P � 0 are design choices and N is
the length of the finite horizon. The matrix P defines the terminal cost of
the cost function to be minimized. The problem takes into account both
the rudder bounds and the rudder velocity, other than the system dynamics.
Note that, at each step the MPC problem (6.7) is solved, it is not ensure
the stability of the closed loop system when the optimal control computed
is applied. To ensure the stability of the closed loop, we should have both a
terminal cost and a terminal set. By a proper selection of these two terms,
we could ensure feasibility and stability of the closed-loop system [32]. But,
there are some practical issues to face about the terminal set: it reduces
the region of attraction and is not easy to compute. Finally, it is often
unnecessary, since starting from a stable system and using a “long enough”
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horizon, the application of the optimal control, computed at each step, will
produce a stable closed loop system, when starting from a neighborhood of
the origin [33]. What we can easily do, is to design the terminal cost in order
to mimic an infinite-horizon cost function. This is done by choosing the final
cost matrix P as the solution of the discrete-time algebraic Riccati equation,
using as input the system matrices Â and B̂, and the chosen weights Q and
r.

The MPC problem (6.7) must be solved on board the Pixhawk, while
Aeolus is sailing. To do so, we employ FORCES Pro [34], a powerful tool
that allows the user to generate high performance numerical optimization
solvers. Its main target is the field of optimal control and estimation, with
strong support for parametric problems. Through FORCES Pro we can
define the MPC problem in Matlab, as the one set in (6.7), and generate the
code of the solver of the problem. This solver can be generated both for the
Matlab environment and for an embedded platform. In our specific case, we
generate the solver for the platform ARM Cortex-M4; the settings used
to define the MPC problem are displayed in the Appendix. This solver is an
object file, that is linked in the firmware of the Pixhaw at the compilation
time. Additionally, FORCES Pro allows us to define a parametric prob-
lem, that is, a problem where some parameters can be changed at run-time,
without compiling a new version of the solver and link it in the firmware.
Thus, in our case we make Â, B̂, Q, r and P , present in the problem (6.7),
to be parameters. In this way, the user located on the shore, can use the
Matlab GUI shown in Chapter 3, identify and validate a model, tune the
parameters Q and r and simulate the model response using FORCES Pro
on a PC. Once the model and the parameters tuning are satisfactory, the
user can send the tuned parameters back to Aeolus via the radio link. Note
that, the firmware in the Pixhawk does not need to be compiled every time
the user would like to either use a new model or change the design param-
eters. By following this procedure, we tested several weights and different
identified model, in real tests. For example, we used the same weights of
the LQR controller, shown in (6.6). One parameter that cannot be changed
at run-time, is the length of the horizon, that is the parameter N in (6.7).
In order to allow a user to try different horizon while Aeolus is sailing, we
generate different solvers through FORCES Pro, using different lengths for
the horizon. Every solver is linked in the firmware, and can be selected at
run-time. We implement three different horizon length: 10, 20 and 30 steps.
According to the mean sample time of the model identified in Chapter 3,
one step of prediction is roughly equal to 0.1 seconds. As a result of both
simulation and real tests, these three horizons are “long enough” to execute
a good tack maneuver.
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An example from the field of a MPC tack, computed with a horizon of 20
steps, is depicted in Figure 6.8. The rudder command from the MPC stays
for a long period close to the saturation of the rudder. This behavior allows
the optimal regulator to execute a faster maneuver, without overshoot.

6.6 Benchmark

In this section, we analyze the performance of the tack controllers that are
able to execute a tacking maneuver quickly and without overshoot. The
controllers we consider here are the implicit, dedicated, LQR and MPC. We
do not consider the helmsman controller since it is unlikely to execute a good
tack. During the upwind phase of a regatta, the tack maneuver is essential
to change the haul. Without the tack maneuver, the boat will be unable to
take the “zig-zag” path needed for it to sail upwind. In the tack maneuver,
it is important that the boat completes the turn so it does not get stuck in
“irons” heading into the true wind. Simultaneously, it is undesirable for the
controller to produce too much overshoot as this reduces the boat’s speed over
water. To accomplish these objectives, we define two different parameters,
which we used to evaluate the different controllers:

1. T : time required to reach the new reference α?;

2. V : magnitude of the velocity at the end of the tack divided by the
magnitude of the velocity before starting to steer.

The less the value of T and the greater the value of V , the better the tack.
Note that since waves and wind change continuously, we cannot have the
same environmental conditions while testing. We use the implicit NL tack
controller as benchmark, and present T and V for the other regulators as
values relative to its T and V . This comparison in shown in Table 6.1. A

Tack type Trel% Vrel%
Implicit NL - -
Dedicated NL +43 +48
LQR +43 +47
MPC +45 +60

Table 6.1: Benchmark of the tack regulators with respect to the implicit NL
controller. Average values over 22 experiments.

positive value means use of the controller provided an improvement over
the implicit NL controller for that metric. A positive value of Trel% means
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(a) The plots show the reference α? in dashed black, the heading relative to the
wind α in blue, the rudder command δ in solid green and the rudder limits in
dotted red. Where the MPC regulator is not controlling the rudder, the α and
the δ lines are dashed. The tack-now command has been received at time 0.8 s;
from that moment, the MPC regulator takes care of the rudder, until the tack
maneuver is not considered completed, that is around time 4.6 s.
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Figure 6.8: MPC tack from starboard to port haul. Horizon length 20 steps.
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that the time required to tack is less than that required by the implicit NL
controller. A positive value of Vrel% means that the loss of velocity during
the tack is less than that lost by the implicit NL controller. Second, we
instead use the dedicated NL tack controller as benchmark, and express the
performance of the other controllers with respect to its parameters. This
comparison is shown in Table 6.2.

Tack type Trel% Vrel%
Dedicated NL - -
LQR 0 −1.5
MPC +2 +8

Table 6.2: Benchmark of the tack regulators with respect to the dedicated
NL controller. Average values over 22 experiments.

Referring to these average values, shown in Table 6.1, we can say that,
the last three specialized controllers improve the performance of the steering
maneuver, compared to the implicit NL regulator. Looking at Table 6.2,
we can see how the dedicated NL controller and the LQR provide roughly
the same performance. Finally, the MPC, by using knowledge about rudder
saturation and velocity, is able to achieve better performance both in terms
of time required to tack and loss of velocity due to the tacking maneuver.
However, these improvements require advanced tools such as the linear state
space model shown in Chapter 3 and an online solver, like the one generated
by FORCES Pro. A user who cannot, or does not want to use these
tools can easily implement the dedicated NL controller, which yields good
performance and requires very little time to be implemented in an embedded
platform.
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Chapter 7

Conclusion

This thesis has focused on developing an autonomous sailing model boat
starting from a system that could sail only if remotely operated. This au-
tonomous sailing goal is achieved by completing four tasks:

1. develop a model for the turning dynamic;

2. collect and filter data in real time while sailing;

3. sail upwind;

4. execute tack maneuvers.

The first task has been completed with the simple, but useful, approach
described in Chapter 3. This model is used to identify a linear state space
model capable of describing both the yaw and yaw rate dynamic. A Matlab
GUI has been created and provided to the user to identify the parameters
for and validate several models. The second sub-task has been carried out
by collecting and filtering the data required to sail autonomously. This is
performed in real time on the onboard Pixhawk unit and the result is sup-
plied to the appropriate controllers. The third task has been accomplished
by developing two rudder controllers, selectable at run time, and one sail reg-
ulator. Each rudder control has been tested in several trials at Lake Zurich,
Switzerland. In these trials, the autonomous sailing model boat achieved its
objective and sailed upwind autonomously. The fourth and last sub-goal has
been achieved by implementing five different tack controllers which have been
tested in trials at Lake Zurich. Four of these controllers are good candidates
to execute a tack maneuver. The performance of each controller has been
compared to that of the others in Chapter 6.

In order to provide a usable platform for further development on this
work, an API (Application Programming Interface) has been provided within

49
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the high level controller shown in Chapter 2. In this way, development of high
level applications is independent from the low level control system. Through
this API, future users can use the features and functionality provided by the
low level controller without knowing its implementation.

7.1 Suggested Configuration

The best configuration begin start sailing autonomously is to employ the
nonlinear controller to follow a constant heading and use the dedicated tack
controller to steer. This configuration is the most attractive since it uses the
nonlinear controller, shown in Chapter 5 both for tracking and for tacking.
This controller can be easily coded in any programming language and does
not require a model of the system because the controller can be tuned with
a simple “trial & error” procedure. Finally, it requires a small amount of
computation from the processor. The dedicated regulator was the second best
tack controller in trials. However, the fastest and least decelerating tacking
performance was achieved with the MPC controller for steering. However,
before using this controler, an identification phase must be undertaken before
sailing and an online optimization solver must be employed, such as the one
generated through FORCES Pro.

7.2 Future Works

We think that in order to improve the autonomous sailing skill, future works
should focus on three main objectives. First, a waterproof sensor, capable
of detecting the sail position, could help both the sailing and the tack ma-
neuver task. Real helmsmen do not “decouple” the rudder action from sail
position while steering; however, they take advantage of the position of the
sail to regulate the rudder during a tack maneuver and improve tacking per-
formance. Therefore, by sensing the position of the sail, a controller could be
developed which accounts for the fact that the sail and rudder position are
not actually decoupled. Such a controller could achieve better performance
than those implemented for this thesis by taking advantage of the complex
sail dynamics resulting from sail position during a tack.

Second, a more advanced path-planner can be implemented. With the
existing autonomous sailing skills, such a path planner can be used to per-
form, for example, a complete regatta task while avoiding obstacles. Other
tasks are also possible with more advanced and capable path planning ca-
pability. This would enable the system to move toward being practical for
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specific applications and more complex operations.
Third, looking at the roll angle of Aeolus could be useful to regulate the

sail position. While sailing, boats with displaced haul, like Aeolus, should
have a little heel as it minimizes the length of the water line and increases
speed. Usually 15° to 30° is good, but it is hull specific. It could be useful,
for example, to define a threshold regarding the roll angle: if the boat is
too tilted, the sail should be “eased off” to bring the roll angle below the
threshold again. By easing off the sail the force applied from the wind on
the sheets is lowered, and so the sailboat is less heeled, that is, the roll angle
is reduced. Moreover, a dynamical model of the roll and roll rate behavior
could be used to develop advanced control laws which can compute “how
much” the sail should be “eased off.” These will help increasing the boat’s
speed, which depends on the roll angle, as shown in [35]. It is reasonable to
think that this dynamical model can be identified in a similar fashion to that
used to identify the yaw and yaw rate dynamics for the linear state space
model, shown in Chapter 3.

7.3 Outcome

Two scientific articles have been written on the work developed for this thesis.
The first, [36], was accepted in the IEEE Oceans Conference, which took
place in Genoa, Italy, where it was presented in May 2015. We attended
the conference and presented the work. The second article, [37], has been
accepted in the International Robotic Sailing Conference, that will take place
in Mariehamn, Finland, in September 2015.
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Chapter 8

Appendix

In this chapter, are shown the main pieces of code, used to develop the whole
project.

8.1 Grey and Black Type Models

Code used to identify the linear state space model, as explained in Chapter
3.

function [A, B, Dt] = computeGreyModel(W, Y, U, time)
% Compute black type model
% W: vector containing yaw rate sampled data
% Y: vector containing yaw angle sampled data
% U: vector containing rudder command sampled data
% time: vector containing the time when each value was sampled

%compute average delta dt over the sampled measurements
Dt = mean(diff(time)); %mean deltaT in uSec
%convert Dt from milliSec to sec
Dt = Dt / 1e3;

%number of measurements
N = length(W);

%create matrix for pseudoinverse computation
M = [ W(1 : N-1), U(1 : N-1);

W(1 : N-2), U(1 : N-2)];

c = [ W(2 : N);
(1 / Dt) * (Y(3 : N) - Y(2 : N-1))];

%compute pseudoinverse
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x = M \ c;

%take result
a11 = x(1);
b1 = x(2);

A = [a11, 0;
Dt, 1];

B = [b1;
0];

end

function [A, B, Dt] = computeBlackModel(W, Y, U, time)
% Compute black type model
% W: vector containing yaw rate sampled data
% Y: vector containing yaw angle sampled data
% U: vector containing rudder command sampled data
% time: vector containing the time when each value was sampled

%compute average delta dt over the sampled measurements
Dt = mean(diff(time)); %mean deltaT in uSec
%convert Dt from milliSec to sec
Dt = Dt / 1e3;

%number of measurements
N = length(W);

%create matrix for pseudoinverse computation
M = [ W(1 : N-1), Y(1 : N-1), U(1 : N-1)];

c1 = W(2 : N);

c2 = Y(2 : N);

%compute pseudoinverse
x1 = M \ c1;
x2 = M \ c2;

%take result
A = [x1(1), x1(2);

x2(1), x2(2)];

B = [ x1(3);
x2(3)];

end
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8.2 Mitsuta Mean

Code used to compute the an average value of the true wind direction, as
shown in Chapter 4.

function m mean = mitsuta mean(meas)
% Compute Mitsuta mean
% measurements vector (meas, values in [0,2*pi])

D = meas(1);
sum = 0;

%compute Mitsuta mean
for i = 2 : length(meas)

delta = meas(i) - D;
if(delta < -pi)

D = D + delta + 2 * pi;
elseif(delta < pi)

D = D + delta;
else

D = D + delta - 2 * pi;
end

sum = sum + D;
end

m mean = sum / k;

8.3 FORCES Pro Settings

Settings used in FORCES Pro to generate the object file, used to resolve
the MPC problem online the Pixhawk.

%% FORCES Pro Solver settings

% embedded platform
codeoptions.platform = 'ARM Cortex-M4 (FPU)';
% infinity norm of residual for inequalities
codeoptions.accuracy.ineq = 1e-4;
% infinity norm of residual for equalities
codeoptions.accuracy.eq = 1e-4;
% absolute duality gap
codeoptions.accuracy.mu = 1e-4;
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% relative duality gap := (pobj-dobj)/pobj
codeoptions.accuracy.rdgap = 1e-4;
% type of variables
codeoptions.floattype = 'float';
% information printing level
codeoptions.printlevel = 0;
% initial value of mu0
codeoptions.mu0 = 1;

8.4 Setting Up a Real Sailing Test

In this section we briefly show how to setup Aeolus, in order to execute a
real sailing test.

8.4.1 Firmware Version

The latest firmware of the whole project, updated until the end of March
2015, can be found at [38]. It must be flashed into the Pixhawk board,
following the instructions that can be found at [25]. Before flashing it, an
user should check if the “outdoor” version is set. To do so, open the following
files and follow the comments inline:

1. src/modules/path_planning/pp_config.h

2. src/modules/autonomous_sailing/settings.h

3. src/modules/parser_200WX/settings.h

8.4.2 Acquire a GPS Position

Once Aeolus has been positioned in an open space, under clear sky, it can be
switched on. Now, the user can open the application QGroundControl
[26], and establish the radion link communication to the Pixhawk. The
default communication bad rate should be 57 600. The user can now look at
the Mission pannel, in QGroundControl, to check when the Pixhawk
has acquired a good enough GPS position.

8.4.3 Arm the System

Once Aeolus has acquired a good enough GPS position, it can be “armed”.
To do so, first of all switch on the remote control, and make sure it is set
into the “manual” model. Second, press the safety switch for roughly two
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seconds, until it starts blinking with a “high” frequency. Now bring the left
stick into the lower right position, for roughly two seconds. At this step,
you should be able to control both the rudder and the sails with the remote
control.

8.4.4 Autonomous Sailing

Once Aeolus is sailing into the water, the user can use the remote control
and switch from “manual” to “autonomous” mode. In this way the sails and
rudder commands computed into the firmware are effectively applied to the
actuators. The following list, explains the main parameters, and their default
values, that can be used to set the behavior of Aeolus, when it is sailing
autonomously. They can be set into the Onboard Paramters panel, under
the Plots section of QGroundControl. In Table 8.1, there are shown the
most important parameters, that can be set by an user. Other parameters,
such as the ones about the LQR and the MPC, can be set using the Matlab
GUI shown in Chapter 3.

Name Description Default Value
AS SAIL Use −1 to let autonomous controller use its

computed value for the sails. If you want
to force the sails to be in a certain position
set this parameter to a positive value within
[0, 0.56], where 0 mean sails fully opened, 0.56
means sails fully closed

−1

AS MAX RUD Set a new value for the maximum rudder com-
mand. Must be in [0, 1]

1

AS SAI CL CMD Sails command value when sails should be con-
sidered fully closed

0.56

AS SAI X1 AL Positive α angle, in degrees, at which sails
should start opening. Look at Figure 5.3

45

AS SAI X2 AL Positive α angle, in degrees, at which sails
should be fully opened. Look at Figure 5.3

150

AS TY TCK Type of tack maneuver: implicit (0), LQR (1),
MPC (2) and dedicated (3)

3

AS TCK USE Y Use both αχ and αψ (0) in equation (4.4), or
only αψ (1), to compute α, while tacking

1

AS RUD P kp gain, valid for both equation (5.1) and (5.2) 0.35
AS RUD CP cp value in equation (5.2) 0.35

AS RUD TYPE Type of rudder controller in upwind phase: P
(0) or NL (1)

1
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AS COG DELAY S T value in equation (4.5) 1.5
AS WIN AL Number of samples used in the moving average

filter for the α angle
10

AS WIN TWS Number of samples used in the moving average
filter for the true wind speed

10

AS WIN TWD Number of samples used in the moving average
filter for the σ angle

10

AS USE FIXED TWD Compute α in (4.1) using σ provided by the
moving average filter (0), or using a fixed σ
(1), see ASP MEAN WIND D

0

AS TCK P K kp gain of the dedicated NL controller 0.7366
AS TCK P C cp value of the dedicated NL controller 0.1

ASO STP TCK S T̄ used in (6.1), in seconds 0.8
ASP ALST ANG D Reference α?, in degrees, works only if

ASP ALST SET is 1
45

ASP ALST SET use ASP ALST ANG D to change α? (1) 1
ASP DO MANEUV Send a “tack-now” command to the low level

controller, see Chapter 2
0

Table 8.1: Settable autonomous sailing parameters.

8.5 Further Results From The Field

Here we show further tack tests, executed at Lake Zurich, Switzerland.
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Figure 8.1: Dedicated tack from port to starboard haul. The plots show the
reference α? in dashed black, the heading relative to the wind α in blue, the
rudder command δ in solid green and the rudder limits in dotted red. Where
the dedicated regulator is not controlling the rudder, the α and the δ lines
are dashed. The tack-now command has been received at time 1 s; from
that moment, the dedicated regulator takes care of the rudder, until the tack
maneuver is not considered completed, that is around time 4.6 s.
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Figure 8.2: LQR tack starboard to port haul. The plots show the reference
α? in dashed black, the heading relative to the wind α in blue, the rudder
command δ in solid green and the rudder limits in dotted red. Where the
LQR regulator is not controlling the rudder, the α and the δ lines are dashed.
The tack-now command has been received at time 1 s; from that moment,
the LQR regulator takes care of the rudder, until the tack maneuver is not
considered completed, that is around time 5.1 s.
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(a) The plots show the reference α? in dashed black, the heading relative to the
wind α in blue, the rudder command δ in solid green and the rudder limits in
dotted red. Where the MPC regulator is not controlling the rudder, the α and
the δ lines are dashed. The tack-now command has been received at time 1 s;
from that moment, the MPC regulator takes care of the rudder, until the tack
maneuver is not considered completed, that is around time 4.5 s.
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Figure 8.3: MPC tack from starboard to port haul.Horizon length 10 steps.
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