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Chapter 1

Introduction

This thesis is a collection of the work carried out during the three years of
Ph.D. studies at the University of Pisa with the Celestial Mechanics Groups.

The main topics of this thesis range from nongravitational perturbations,
to asteroid orbit determination, and to the impact monitoring. The non-
gravitational perturbations arise because outer space is not empty, and they
can affect not only the dynamics of Near Earth Asteroids (NEAs), but also
the determination of the age of asteroid families. The main nongravitational
perturbation is the Yarkovsky effect, a subtle nongravitational phenomenon
related to the anisotropic thermal emission of Solar System objects. The
nongravitational perturbations also affect the impact probabilities of NEAs,
especially over long time span. For some special cases, we need to model
the Yarkovsky effect to compute the long term propagation to the possible
impacts and the intervening planetary encounters of NEAs.

In Chap. 2 we give a review of the general theory needed for the whole
thesis. Sec. 2.1 is about nongravitational perturbations, as in [Milani and
Gronchi, 2010, Chap. 14]. We focus our attention on the Yarkovsky effect,
and on its modeling and formulations. Sec. 2.2 is a general description of
the proper elements. Sec. 2.3 describes the applications of the Yarkovsky
effect, expecially in the case of Near Earth Asteroids and in the case of the
computation of the ages of asteroid families.

Then, in Chap. 3, we seek the evidence of the Yarkovsky effect among
NEAs by measuring the Yarkovsky-related orbital drift from the orbital fit.
To prevent the occurrence of unreliable detections we employ a high precision
dynamical model, including the Newtonian attraction of 16 massive asteroids
and the planetary relativistic terms, and a suitable astrometric data treat-
ment. We find 21 NEAs whose orbital fits show a measurable orbital drift
with a signal to noise ratio (SNR) greater than 3. The best determination is
for asteroid (101955) Bennu, with a Signal to Noise Ratio (SNR) ∼ 200. In
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some cases it is also possible to constrain physical quantities otherwise un-
known. Furthermore, the distribution of the detected orbital drifts shows an
excess of retrograde rotators that can be connected to the delivery mechanism
from the most important NEA feeding resonances and allows us to infer the
obliquity distribution of NEAs. We discuss the implications of the Yarkovsky
effect for impact predictions. This work is published in [Farnocchia et al.,
2013b].

Among those NEAs, there are some special cases that need to be han-
dled in a separate way. Two of these cases are the asteroid (29075) 1950
DA (see [Farnocchia and Chesley, 2014]), and (99942) Apophis (see [Farnoc-
chia et al., 2013a]). Here we carefully analyze (101955) Bennu and (410777)
2009 FD. Chapter 4 is focused on (101955) Bennu: the asteroid with the best
determined Yarkovsky effect, as explained in [Chesley et al., 2014]. (101955)
Bennu is also the target of the OSIRIS-REx asteroid sample return mission.
It is a half-kilometer near Earth asteroid with an extraordinarily well con-
strained orbit. An extensive data set of optical astrometry from 1999–2013
and high-quality radar delay measurements for Bennu in 1999, 2005, and
2011 reveal the action of the Yarkovsky effect, with a mean semimajor axis
drift rate da/dt = (−19.0 ± 0.1) × 10−4 au/Myr or 284 ± 1.5 m/yr. The
accuracy of this result depends critically on the fidelity of the observational
and dynamical model. The introduction of the Yarkovsky effect is crucial not
only for the determination of the orbit, but also for the impact monitoring.
Bennu’s Earth close approaches are deterministic over the interval 1654–2135,
beyond which the predictions are statistical in nature. In particular, the 2135
close approach is likely within the lunar distance and leads to strong scat-
tering and therefore numerous potential impacts in subsequent years, from
2175–2196. The highest individual impact probability is 9.5× 10−5 in 2196,
and the cumulative impact probability is 3.7× 10−4, leading to a cumulative
Palermo Scale value of -1.70.

Chapter 5 shows how the Yarkovsky effect is relevant for the asteroid
(410777) 2009 FD. The results are from [Spoto et al., 2014].Asteroid 2009 FD
could hit the Earth between 2185 and 2196. The long term propagation to
the possible impacts and the intervening planetary encounters make 2009 FD
one of the most challenging asteroids in terms of hazard assessment. To com-
pute accurate impact probabilities we model the Yarkovsky effect by using
the available physical characterization of 2009 FD and general properties of
the near Earth asteroid population. We perform the hazard assessment with
two independent methods: the first method is a generalization of the stan-
dard impact monitoring algorithms in use by NEODyS and Sentry, while the
second one is based on a Monte Carlo approach. Both methods generate or-
bital samples in a seven-dimensional space that includes orbital elements and
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the parameter characterizing the Yarkovsky effect. The highest impact prob-
ability is 2.7× 10−3 for an impact during the 2185 Earth encounter. Impacts
after 2185 corresponding to resonant returns are possible, the most relevant
being in 2190 with a probability of 3×10−4. Both numerical methods can be
used in the future to handle similar cases. The structure of resonant returns
and the list of the possible keyholes on the target plane of the scattering
encounter in 2185 can be predicted by an analytic theory.

In Chap. 6 there is an overwiew of the asteroid families: their identifica-
tion, the properties of their parent bodies, the collisional event(s) generating
the family and the subsequent evolution due to chaotic dynamics. Note that
the number of asteroids with accurately determined orbits increases fast, and
this increase is also accelerating. The catalogs of asteroid physical observa-
tions have also increased, although the number of objects is still smaller than
in the orbital catalogs. Thus it becomes more and more challenging to per-
form, maintain and update a classification of asteroids into families. To cope
with these challenges we developed a new approach to the asteroid family
classification by combining the Hierarchical Clustering Method (HCM) with
a method to add new members to existing families. This procedure makes
use of the much larger amount of information contained in the proper ele-
ments catalogs, with respect to classifications using also physical observations
for a smaller number of asteroids. Our work is based on a large catalog of
high accuracy synthetic proper elements (available from AstDyS), contain-
ing data for > 330 000 numbered asteroids. By selecting from the catalog a
much smaller number of large asteroids, we first identify a number of core
families; to these we attribute the next layer of smaller objects. Then, we
remove all the family members from the catalog, and reapply the HCM to
the rest. This gives both satellite families which extend the core families and
new independent families, consisting mainly of small asteroids. These two
cases are discriminated by another step of attribution of new members and
by merging intersecting families. This leads to a classification with 128 fami-
lies and currently 87095 members. The number of members can be increased
automatically with each update of the proper elements catalog; changes in
the list of families are not automated (see [Knežević et al., 2014]). By using
information from absolute magnitudes, we take advantage of the larger size
range in some families to analyze their shape in the proper semimajor axis
vs. inverse diameter plane. This leads to a new method to estimate the fam-
ily age, or ages in cases where we identify internal structures. The results
from the previous steps are then analyzed, using also auxiliary information
on physical properties including WISE albedos and SDSS color indexes. This
allows us to solve some difficult cases of families overlapping in the proper
elements space but generated by different collisional events. The families
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formed by one or more cratering events are found to be more numerous than
previously believed because the fragments are smaller. We analyze some ex-
amples of cratering families (Massalia, Vesta, Eunomia) which show internal
structures, interpreted as multiple collisions. We also discuss why Ceres has
no family. This Chapter is from [Milani et al., 2014].

Chapter 7 is the continuation of the work carried out in Chap. 6 (see
also [Spoto et al., 2015]). We have now a new family classification, based
on a catalog of proper elements with ∼ 384 000 numbered asteroids and
on the new methods described in Chap. 6. For the 45 dynamical families
with > 250 members identified in this classification we present an attempt
to obtain statistically significant ages, and we succeded in computing 37
collisional family ages. We used a rigorous method, which is an improvement
of the method presented in Chap. 6. The ages of several families have been
estimated for the first time, in other cases the accuracy has been improved.

Chap. 8 is the link among the chaotic orbit determination, the modeling
of the Yarkovky effect, and the impact monitoring. Orbit determination is
possible for a chaotic orbit of a dynamical system, given a finite set of ob-
servations, provided the initial conditions are at the central time. We test
both the convergence of the orbit determination procedure and the behavior
of the uncertainties as a function of the maximum number n of map itera-
tions observed, by using a simple discrete model, namely the standard map.
Two problems appear: first, the orbit determination is made impossible by
numerical instability beyond a computability horizon, which can be approx-
imately predicted by a simple formula containing the Lyapounov time and
the relative round off error. Second, the uncertainty of the results is sharply
increased if a dynamical parameter (contained in the standard map formula)
is added to the initial conditions as parameter to be estimated. In particular
the uncertainty of the dynamical parameter, and of at least one of the initial
conditions, decreases like na with a < 0 but not large in absolute value (of the
order of unity). If only the initial conditions are estimated, their uncertainty
decreases exponentially with n, thus it becomes very small. All these phe-
nomena occur when the chosen initial conditions belong to a chaotic orbit (as
shown by one of the well known Lyapounov indicators). If they belong to a
non-chaotic orbit the computational horizon is much larger, if it exists at all,
and the decrease of the uncertainty appears to be polynomial in all parame-
ters, like na with a ' 1/2; the difference between the case with and without
dynamical parameter being also estimated disappears. These phenomena,
which we can investigate in a simple model, have significant implications
in practical problems of orbit determination involving chaotic phenomena,
such as the chaotic rotation state of a celestial body and a chaotic orbit of a
planet-crossing asteroid undergoing many close approaches. All these results
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are from [Spoto and Milani, 2015].
In Chap. 9 we study the time evolution of the impact probability for

synthetic but realistic impacting and close approaching asteroids detected
in a simulated all-sky survey, see [Vereš et al., 2014]. Here we handle short
term impacts, thus asteroids with poor orbits, while in the previous Chap-
ters we were taking care of long term impacts and asteroids with accurate
orbits. We use the impact probability to calculate the impact warning time
(twarn) as the time interval between when an object reaches a Palermo Scale
value of −2 and when it impacts Earth. A simple argument shows that
twarn ∝ Dx with the exponent in the range [1.0, 1.5] and our derived value
was x = 1.3 ± 0.1 . The low-precision astrometry from a single simulated
all-sky survey could require many days or weeks to establish an imminent
impact for asteroids larger than 100 m diameter that are discovered far from
the Earth. Most close-approaching asteroids are quickly identified as not
being impactors but a size-dependent percentage, even for those larger than
50 m diameter, have a persistent impact probability greater than 10−6 on the
day of closest approach. Thus, a single all-sky survey can be of tremendous
value in identifying Earth impacting and close-approaching asteroids in ad-
vance of their closest approach but it can not solve the problem on its own:
high-precision astrometry from other optical or radar systems is necessary
to rapidly establish an object as an impactor or close-approacher. We show
that the parallax afforded by surveying the sky from two sites is of benefit
for only a small fraction of the smallest objects detected within a couple
days before impact: probably not enough to justify the increased operating
costs of a 2-site survey. Finally, the survey cadence within a fixed time span
is relatively unimportant to the impact probability calculation. We tested
three different reasonable cadences and found that one provided ∼ 10 times
higher (better) value for the impact probability on the discovery night for the
smallest (10 m diameter) objects but the consequences on the overall impact
probability calculation are negligible.
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Chapter 2

General Theory

2.1 Nongravitational perturbations

The nongravitational perturbations arise because outer space is not empty.
First, planetary atmospheres extent to large altitudes, where they can be
thin enough to allow for a satellite orbit but still generate a significant aero-
dynamic drag, given the high relative velocity of the spacecraft.

Second, outer space is pervaded by electromagnetic radiation: the light
arriving directly from the Sun, reflected by the Earth, and by the other
planets. The photons exchange momentum with spacecraft when they are
absorbed and reflected; spacecraft themselves emit infrared radiation and
electromagnetic waves carrying away some momentum. The resulting ac-
celerations are small, but at a level of accuracy of current tracking systems
they are not negligible, hence the need to model and/or measure them. Even
small natural bodies, such as asteroids with diameters in the km range, have
orbits affected by non-gravitational perturbations in a measurable way.

2.1.1 The Yarkovsky effect

Historical overview
The Yarkovsy effect has a long and complex history. A Russian civil

engineer, Ivan O. Yarkovsky, noted that if a prograde rotating body is heated,
this should produce a transverse acceleration in its motion [Beekman, 2006;
Yarkovsky, 1901]. Yarkovsky was only able to give a roughly estimate of
the magnitude of the effect, but he gave rise to a new theory that has been
developed a century later.

Öpik [1951] re-introduced the Yarkovsky effect, long after the original
pamphlet had been lost. At about the same time, Radzievskii [1952a,b]

7
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was the first to consider the effects of systematic photon thrust on a body’s
rotation, but he didn’t find any strong evidence of large albedo variations
over surfaces of asteroids or meteoroids.

During the years between 1969 and 1975, the
Yarkovsky-O’Keefe-Radzievskii-Paddack effect (YORP effect) was born. It
is based on the fact the the irregular shape and thermal radiation can change
the meteoroid’s spin rate [Paddack, 1969; Paddack and Rhee, 1975; Rubin-
cam, 2000].

The work of Rubincam [1995, 1998], Farinella et al. [1998] and Vokrouh-
lický [1998a,b]; Vokrouhlický [1999] led to a major resurgence in the study of
Yarkovsky and YORP effect. They realized a direct link between the orbital
effects acting on the geodynamics artificial satellites such as LAGEOS and
the orbital effects on small meteoroids.

It is also worth mentioning that the orbit analysis of some NEAs suggested
evidence of non-gravitational phenomena by requiring an anomalous secular
decrease of their semimajor axis [Sitarski, 1992, 1998].

Then, Bottke et al. [2002b, 2006]; Vokrouhlický et al. [2000a] showed new
results on the modelling of the Yarkovsky effect, and on its applications to
the dynamic of small asteroids and their population.

Classical models

The relevance of radiation pressure as a source of perturbations on the
orbit of both spacecraft and asteroid depends upon the way it accumulates
with time.

A passive celestial body exposed to solar radiation transforms the ab-
sorbed fractions into heat and reaches some thermal state. The surface tem-
perature is not uniform and changes with time as a result of both the rotation
and the orbital motion. Thus the entire surface re-emits thermal radiation
anisotropically, carrying away linear momentum, and this results in a per-
turbative acceleration, affecting the orbit.

What matters is the fraction of the perturbing acceleration contributing
to the secular change in the semimajor axis. Thermal emission can have sec-
ular effects in the semimajor axis for a heliocentric orbit, even for a spherical
shape; this is called the Yarkovsky effect. A similar effect occurs for geo-
centric orbits, due to the uneven heating resulting from radiation emitted
by both the Sun and the Earth. It is important to point out that there is
no Yarkovsky force, but just thermal emission forces, which under suitable
circumstances have a comparatively small, but significant, mean transversal
component.

The Yarkovsky effect is very important as a source of secular pertur-
bations to model the dynamical evolution of asteroids, e.g. it is relevant
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for the transport of meteorites and asteroids to the Near Earth region: 15
m/y ' 10−4au/My accumulates to a large change over the age of the aster-
oids. For an orbit determination with a data span shorter that an orbital
period they are very small, and anyway less relevant than the short period
perturbations due to both direct radiation pressure and thermal emission.
The exceptional cases are asteroids with a very long observed arc; very ac-
curate observations may also be needed. As an example, the first asteroid
for which the Yarkovsky effect has been measured by orbit determination
is (6489) Golevka, which has been observed by radar during three separate
close approaches to the Earth; the second case was (152563) 1992 BF.

With the accumulation of more data and also the expected improvements
in astrometric accuracies, such cases has become more frequent, as it is clear
from Chap. 3, 4, and 5.

Even if the Yarkovsky effect results in variations to all of the orbital
elements, the most important one is the secular effect in the semimajor axis
a.

Diurnal and seasonal Yarkovsky effect
The diurnal Yarkovsky effect arises because thermal inertia of the illu-

minated body results in a temperature maximum lagging some time after
the maximum illumination. This effect depends upon the conductivity. This
effect is always of the same order of magnitude, once the mass in known;
of course it depends upon the obliquity ε, with the semimajor axis secu-
larly increasing for prograde rotation (ε < 90o) and decreasing for retrograde
(ε > 90o). The magnitude of this effect is larger than that of the seasonal
effect.

If a body with a fixed rotation axis were in a constant thermal state as it
orbits around the Sun, then the thermal emission force would be of constant
size and direction, thus the mean transversal component is 0. This condition
can be violated for two reasons. The first is when the obliquity ε, that is
the angle between the spin axis and the orbital angular momentum, is not 0.
Then the latitude of the Sun in the body equatorial frame is not constant,
hence there is a thermal emission force changing with time, essentially with
the frequency of the mean motion n. The second reason is that the isolation is
a function of the distance from the Sun, thus it changes for an eccentric orbit,
mostly with the frequency. There is a third possible reason: the rotation axis
could be changing with time, for an asteroid not in a simple rotation state
but tumbling, either regularly or chaotically as for (4179) Toutatis.

In the first two cases, the thermal emission force has an intensity which
changes with a period equal to the orbital period (in a two-body approxima-
tion). This is called a seasonal effect because it depends on the fact that the
heliocentric body has temperature variations depending upon the equatorial
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obliquity and upon the orbital eccentricity, similarly to the major planet.
There are three basic assumptions of the model of the Yarkovsky effect:

• The linearization of the surface boundary condition;

• A rotation about a spin axis fixed in the inertial space (at least on a
timescale comparable with the revolution about the Sun)

• A circular orbit about the Sun

The diurnal variant of the Yarkovsky acceleration can be written in the
form: (

da

dt

)
diurnal

= −8

9

αΦ

n
W (Rω,Θω) cos γ

and the seasonal one:(
da

dt

)
seasonal

=
4

9

αΦ

n
W (Rn,Θn) sin2 γ

where Φ = πR2F/(mc), R is the radius of the body, F is the solar ra-
diation flux at the orbital distance a from the Sun, m is the mass of the
body, c is the light velocity, n is the orbital mean motion and α = 1 − A
with A denoting the Bond albedo Vokrouhlický and Bottke [2001]. The Φ
factor is characteristic to any physical effect related to sunlight absorbed or
scattered by the surface of the body. Since m ∝ R3, one obtain a simple
scaling Φ ∝ 1/R. γ is the spin axis obliquity: the diurnal part is propor-
tional to cos γ, thus can make a positive or negative change of the semimajor
axis, being maximum at 0o and 180o obliquity values. The seasonal part is
∝ sin2 γ, thus always results in a decrease in semimajor axis, being maximum
at 90o obliquity. The magnitude of the diurnal and seasonal Yarkovsky effect
is clearly proportional to the function:

W (Rν ,Θµ) = − κ1(Rν)Θν

1 + 2κ2(Rν)Θν + κ3(Rν)Θ2
ν

determined by the thermal parameters of the body and a frequency ν. This
frequency is equal to the rotation frequency ω for the diurnal component,
or to the orbital mean motion n for the seasonal component. The thermal
parameters required by the model are:

• The surface thermal conductivity K;

• The surface heat capacity C;

• The surface density ρ.



2.1. NONGRAVITATIONAL PERTURBATIONS 11

These parameters, together with the frequency ν, do not appear in the
equation of the function W individually, but in the process of solving the
heat diffusion problem and determination of the orbital perturbations, they
combine in two relevant parameters.

• They provide a scale length lν =
√
K/(ρCν) which indicates the lo-

cal value of the penetration depth of the diurnal thermal wave, as-
suming the surface irradiation is periodic with frequency ν. The non-
dimensional radius of the body Rν is defined by Rν = R/lν ;

• Θν = Γ
√
ν/(εσT 3) where Γ is the surface thermal inertia defined by

Γ =
√
KρC, ε is the thermal emissivity of the surface, σ is the Stefan-

Boltzmann constant and T the subsolar temperature (εσT 4 = αF ).

Rubincam [1995] and Vokrouhlický [1998a] showed the behavior of the
three κ-coefficients in the equation for W for an arbitrary value of Rν , and
in particular they noted that when the characteristic size R of the body is
much larger than lν , the coefficients are equal to 1/2. Therefore, for large
bodies the W -factor do not depend on the size R and

W ' W (Θν) = − 0.5Θν

(1 + Θν + 0.5Θ2
ν)

Consequently, the Yarkovsky effect is maximum when Θν ' 1; while for
small or large values of Θν the effect vanishes. In this case, the semimajor
axis secular change da/dt due to the Yarkovsky effect scales as ∝ 1/R with
the characteristic radius R. For small asteroids, either in the near-Earth
space or in the main belt, Θω is typically of the order of unity, while Θn is
much smaller, which implies that the diurnal Yarkovsky component usually
dominates the seasonal component.

Some models were developed to probe the role of each of the simplify-
ing assumptions mentioned above using analytical, semi-analytical or fully
numerical methods. These include:

• An inhomogeneity of the thermal parameters [Vokrouhlický and Brož,
1999];

• A coupling of the diurnal and seasonal components of the Yarkovsky
effect [Sekiya and Shimoda, 2013, 2014; Vokrouhlický, 1999];

• Effects of a non-spherical shape for simple [Vokrouhlický, 1998b] or
general geometries;

• A non-principal axis rotation state [Vokrouhlický et al., 2005a];
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• The Yarkovsky effect for binary asteroids [Vokrouhlický et al., 2005b].

Each of them was found to modify the results from the zero-approximation
model by as much as several tens of percent without modifying the
fundamental dependence of the Yarkovsky effect on obliquity, size or
thermal parameters.

2.2 Proper elements

A classical definition states that proper elements are quasi-integrals of mo-
tion, and that they are nearly constant in time. The proper elements are
obtained as a result of the elimination of short and long periodic perturba-
tions from their instantaneous, osculating counterparts, and thus represent
a kind of average characteristics of motion.

2.2.1 Historical overview

A concept of proper elements has been introduced by Hirayama [1918]. Even
if not using the technical term proper, he employed Lagrange’s classical linear
theory of asteroid secular perturbations to demonstrate that certain asteroids
tend to cluster around special values of the orbital elements, which very
closely correspond to the constants of integration of the solutions of the
equations of their motion, that is, to a sort of averaged characteristics of their
motion over very long time spans. Hirayama [1923, 1928] explicitly computed
just the proper elements (proper semimajor axis, proper eccentricity and
proper inclination), and used them for the classification of asteroids into
families.

Brouwer [1951] computed asteroid proper elements using a linear theory
of secular perturbations, but in combination with an improved theory of
motion of the perturbing planets.

Williams [1969] developed a semianalytic theory of asteroid secular per-
turbations which does not make use of a truncated development of the per-
turbing function, and which is applicable to asteroids of with arbitrary eccen-
tricity and inclination. Williams’ proper eccentricity and proper inclination
are defined as values acquired when the argument of perihelion ω = 0 (thus
corresponding to the minimum of eccentricity and the maximum of inclina-
tion over a cycle of ω). The theory is linearized in the planetary masses, ec-
centricities and inclinations, so that the proper elements computed by means
of this theory, even if much better that the previously available ones, were
still of limited accuracy.
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Kozai [1979] used his theory of secular perturbations for high inclination
asteroids to define a set of proper parameters to identify the families. The
selected parameters were semimajor axis, z-component of the angular mo-
mentum (integral of motion in a first order theory, with perturbing planets
moving on circular, planar orbits), and the minimum value of inclination over
the cycle of the argument of perihelion (corresponding to ω = π/2).

Finally, Schubart [1982, 1991], Bien and Schubart [1987], Schubart and
Bien [1987] tried to determine proper parameters for resonant groups, that is
for Hildas and Trojans. Since the usual averaging methods do not apply in
this case, they adopted slightly different definitions of the proper parameters,
the most important difference being the substitution of a representative value
measuring the libration of the critical argument instead of the usual proper
semimajor axis.

2.2.2 Proper elements

The notion of proper elements is based upon the linear theory of secular
perturbations. Linear theory neglets the short periodic perturbations, con-
taining the anomalies in the arguments; this results in a constant semima-
jor axis which becomes the first proper element ap. The long term evolu-
tion of the other variables is obtained by approximating the secular equa-
tion of motion with a system of linear differential equations. Because of
the linearity assumption, the solutions can be represented in the planes
(k, h) = (e cos$, e sin$) as the sum of proper modes, one for each planet,
plus one for the asteroid. Thus the solution can be represented by epicyclic
motion: for the asteroid, the sum of the contributions from the planets rep-
resents the forced term, while the additional circular motion is the so called
free oscillation and its amplitude is the proper eccentricity ep. The same
applies to the (q, p) = (sin I cos Ω, sin I sin Ω) plane, with amplitude of the
free term given by the (sine of) proper inclination sin Ip. The approximation
of linear secular perturbation theory is good enough for a time span of the
order of the period of circulation for the longitude of perihelion ω. However,
even over such a time span the linear theory is only an approximation, and
over a much longer time span (e.g., millions of years) it would be a rather
poor approximation in most cases.

Proper elements can also be obtained from the output of a numerical
integration for the full equations of motion: the simplest method is to take
averages of the action-like variables a, e, I, over times much longer that the
periods of circulation of the corresponding angular variables. However, this
method provides proper elements of low reliability: the dynamical state can
change for unstable orbits and in such a case the simple average wipes out this
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essential information. Thus, it is necessary to use much more complicated
theories to compute proper elements stable to 1% of their value or better.

Whatever the type of theory, if it is to be accurate enough to represent
the dynamics in the framework of a realistic model, its full-detail description
requires to dwell into a very long list of often cumbersome technicalities. For
this reason in the present thesis we only give a qualitative description of the
computational procedures.

Several different sets of proper parameters have been introduced over
the time, but the most common set, usually referred to as proper elements,
includes proper semimajor axis ap, proper eccentricity ep, (sine of) proper
inclination sin Ip, proper longitude of perihelion $p, and proper longitude of
node Ωp, the latter two angles being accompanied with their precession rates,
the fundamental frequencies g and s, respectively.

The analytical theories and the already mentioned theory by Williams
[1969] use a different definition of proper eccentricity and inclination. Other
authors introduced even completely different parameters to replace the stan-
dard proper elements. Still, the common feature of all these parameters is
their stability over long time spans.

Lemaitre [1993] explains that, even if quite different in terms of the proper
parameters and the ways to compute them, all the theories follow several
basic steps, which can be summarized as follows:

• modelling of asteroid motion (N-body, restricted 3-body), and distin-
guishing the fast and slow angles, i.e. separating the perturbation
depending on the mean longitudes from the rest;

• removal of the short periodic perturbations (analytical or numerical
averaging, on-line filtering) and computation of the mean element;

• splitting of the resulting Hamiltonian into two parts, the integrable
(secular) part, and the perturbation (the long-periodic part depending
on slow angles). In the case of the synthetic theories this step corre-
sponds to the removal of the forced terms;

• removal of the long-periodic terms and computation of the proper val-
ues. At this stage, analytic and semianalytic theories resort to the
averaging over the slow angles and to the iterative procedures to com-
pute the inverse map of canonical transformation, while in the case of
synthetic theories this phase includes the Fourier analysis and extrac-
tion of the principal harmonics from the time series of mean elements;

• output of the proper values, possibly accompanied with their errors
(standard deviations, maximum excursions), fundamental frequencies,
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quality and resonant codes, chaotic behavior indicators and other in-
formation.

2.2.3 The theories

Analytical theory

The main problem in the manufacturing of fully analytical theories of
proper elements is in the complete degeneracy of the unperturbed dynam-
ics, the 2-body problem. Degeneracy means that some of the fundamen-
tal frequencies are zero, and indeed in the 2-body approximation both the
perihelia and the nodes do not precess at all. In the Hamiltonian for-
malism, this is expressed by the statement that the unperturbed Hamil-
tonian function H0 = H0(L) is a function only of one variable L, in turn a
function of the semimajor axis. The perturbed problem with Hamiltonian
H0(L) + µH1(l, g, L,G) (the small parameter µ representing the ratio of the
mass of the planets to the mass of the Sun) can be handled with different
perturbative approaches, but they all have in common the use of a solution
of the unperturbed 2-body problem to be substituted into the perturbing
function H1. Thus they also have in common the problem that the angle
variable l, the mean anomaly conjugate to L, can be eliminated, but the
angles g, conjugate to the other action variables not appearing in H0, cannot
be removed by averaging.

This implies that the procedure to compute proper elements must al-
ways be decomposed into two computational steps: the transformation from
osculating orbital elements to mean elements, free from the short periodic
perturbations (with arguments containing the fast variable l), and the trans-
formations of the mean elements into proper elements. A fully analytical the-
ory performs both steps by means of the computation of functions for which
analytical expressions, in practice truncations of some series, are available.
Note that it is possible to mix two different methods.

Different perturbations techniques can be used, the Lie series technique
being the most convenient for theories pushed to higher order (and therefore
based upon series with many terms). Analytical perturbation techniques
exploit the approximation of the perturbing function H1 by means of a finite
sum of terms, each with a simple expression of the form,

µb(L)ehe′kIjI ′m cos (pl + ql′ + δ)

where h, k, j,m, p, q are integers, the primed elements refer to some perturb-
ing planet, b is a known function and δ is some combination, with integer
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coefficients, of the angles included in g, the perihelia and nodes of the as-
teroid and the planet. The truncation of the series is mostly based upon
the degree in the small parameters eccentricity and inclination of both the
asteroid and the planets, although truncation for large values of the integers
p, q is also possible. Thus we can describe the degree of completeness of a
theory by means of the order in the small parameter µ and of the degree in
the eccentricities and inclinations. From this arises the main limitation of the
analytical method: the accuracy, and stability with time, of the proper ele-
ments decreases as the asteroid eccentricity and inclination increase. There
is a boundary between the region where the analytical proper elements are
most suitable and the region where more computationally intensive meth-
ods, such as the semianalytic ones, need to be used; Knežević et al. [1995]
have mapped this boundary. The simple analytical form of the terms implies
that it is possible to perform both derivatives and integrals analytically; thus
the corresponding operations can be applied to the series term by term. An
analytical theory can be expressed by means of derivatives integrals and
arithmetic operations on these series; thus they can be explicitly computed
by means of a finite, although large, number of elementary operations. In
practice, the current analytical theories use series with several tens of thou-
sand of terms. The series used in the current theories are essentially based
upon the expansions computed by Yuasa [1973] and corrected and completed
by Knežević [1989, 1993]. These are complete to degree 4 in eccentricities
and inclinations; only a few special terms of degree 6 have been added later
Milani and Knežević [1994]. Yuasa [1973] defined an algorithm to compute
proper elements with a theory containing the main terms of order 2 in µ and
complete to degree 4 in eccentricity and inclination, but one essential step
was missing. Milani and Knežević [1990] found that, at orders > 1 in µ, the
formulas of perturbation theory explicitly provide a map between proper and
mean elements, in the opposite direction from the one which we deal with
in practice. Thus the computation of proper elements from mean elements
requires the solution of an inverse function problem, and this is possible only
by an iterative procedure. Later Milani and Knežević [1999] applied the same
argument to the computation of mean elements from osculating ones.

The iterative procedures used in the computation of analytical proper
elements can be divergent where a small divisor, resulting from the attempt to
integrate one of the trigonometric terms with very slowly varying arguments,
occurs. Difficulties in the computation of mean elements from the osculating
ones are due to mean motion resonances, involving the anomalies of the
asteroid and some planet. Difficulties in the convergence of the iterations
for the computation of proper elements from mean elements indicate secular
resonances, that is very small frequencies resulting from combinations of the
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frequencies g, s of the perihelia and nodes with the corresponding frequencies
for the perturbing planets. By the same theories it is possible to construct
maps of secular resonances Knežević et al. [1995]; Milani and Knežević [1994],
including combinations of up to four secular frequencies (and in some special
cases also 6 and 8 frequencies).

Semianalytical theory

The semianalytic calculation of proper elements was initiated by Williams
[1969] and then revisited by Lemaitre and Morbidelli [1994]. It is a classical
perturbation method, where the two averaging processes (the first one on the
mean longitudes and the second on the pericenters and nodes) are performed
numerically. This avoids the expansion in the eccentricity (e) and inclination
(I) of the asteroid, and makes the method particularly suitable for about
20% of the asteroids with large values of these elements.

The latest version of the theory is written in a Hamiltonian formalism
and computed up to the second order in the perturbing masses (presently
only Jupiter and Saturn) and up to the first degree in the eccentricities (e′)
and inclinations (I ′) of the perturbers.

The elimination of the short periodic terms is performed numerically by
the calculation of the double integrals (over the two mean longitudes). After
this averaging, the semi-major axis is constant and represent the first proper
element. To compute the averaged Hamiltonian a Fourier series of the slow
angles is used, with the coefficients evaluated on a three dimensional grid
(in a, e, and I) and stored; a triple linear interpolation is used each time the
Hamiltonian and its derivative have to be evaluated.

The averaged Hamiltonian is split in two parts, based upon the smallness
of the parameters e′ and I ′; the integrable problem corresponds to circular
and planar motion of the perturbing planets, while the perturbation part
gathers all the first order contributions in e′ and I ′. The dynamics of the
integrable problem has been analyzed already by Kozai [1962], and it reveals
different behaviors for low and high inclinations; in the latter case a critical
curve separates the phase space into two regions, corresponding to librations
(about 90 or 270) and to circulations of the argument of the pericenter ω of
the asteroid.

The removal of the long periodic terms is done by using the action angle
variables and is based on the semianalytic method developed by Henrard
[1990]. The resulting Hamiltonian K, after the second averaging process,
depends only on two proper actions, J and Z, which are both constant. The
result is a proper orbit of area proportional to J , located in a plane identified
by the value of Z. Each point of the proper orbit is characterized by a value
of the phase ψ, which can be considered as a proper argument of perihelion.
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From the values of ψ, J and Z, the corresponding values of e, I and ω can
be calculated. Any point can be chosen as a representant of this orbit: for
example, ψ = 0o, 180o corresponds to the minimum value of the eccentricity
and the maximum of the inclination along the proper orbit. On the other
hand, ψ = 90o, 270o corresponds to the maximum of eccentricity and the
minimum of the inclination; this option allows to define proper elements
even for ω−librators, since the libration center is either 90o or 270o.

The proper orbit is also characterized by the two basic frequencies, g and
s, calculated as the partial derivatives of the Hamiltonian K with respect to
the actions J and Z. The set a, g and s is also a set of proper elements and it
is independent of the choice of the representative point on the proper orbit.

The existence of two high inclined groups of asteroids was shown by this
method; a Pallas family at about 35o of inclination Lemaitre and Morbidelli
[1994], and a Hungaria family at 2 au Lemaitre [1994].

The precision is limited by the first order development in e′ and I ′ and
could not be easily improved. However this semianalytic procedure keeps
some advantages, like the fact that it allows the calculation not only of the
proper frequencies, but also of their derivatives with respect to the action
variables.

Synthetic theory

The latest contribution to the field of asteroid proper element determi-
nation is the synthetic theory by Knežević and Milani [2000]. This is, in
fact, a set of purely numerical procedures by means of which one can derive
classical proper elements (ap, ep, sin Ip, $p,Ωp) and fundamental frequencies
(g, s). The theory employs the approach used by Carpino et al. [1987] for
the major planets, and consists of the following steps: first, one numerically
integrates the asteroid orbits for a long enough time span, together with
the orbits of perturbing planets included in the model (the indirect effects
of the planets not included in the dynamical model are accounted for by
applying the so-called barycentric correction to the initial conditions); the
short periodic perturbations are removed by means of an online filtering of
the osculating elements, performed in the course of the integration itself;
simultaneously, the maximum Lyapounov Characteristic Exponents are de-
rived from the variational equations to monitor the chaotic behaviors. The
forced oscillations are then removed from the output of the integration and
the resulting time series are spectrally resolved under the constraints set by
the d’Alembert rules to extract principal harmonics (proper value) together
with the associated fundamental frequencies and error estimates (standard
deviations and maximum excursions).

The first proper element, the proper semimajor axis ap, is obtained by
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filtering out the short periodic perturbations from the time series of the oscu-
lating a. The definition is more complicated than the average of a(t), because
of the second order perturbations which contain both constant and long peri-
odic terms [Milani et al., 1987]. However, the second order perturbations are
very small and in practice they are seldom the main source of time variation
of the proper semimajor axis: chaotic effects are dominant in most cases.
Thus ap has been computed as the mean of the values of a(t) computed as
output of the digital filter; that is a mean of the already smoothed data.
There is also the associated third proper frequency, namely fp, which is the
slope of the angle λ = l + $. The value of fp can be obtained by a simple
linear fit to the filtered λ ∈ R, where the filter also preserves the number of
revolutions. We can define a mean mean motion np = fp − g as the proper
frequency of the mean longitude λ, but the frequency np is not related to ap
by Kepler’s third law.

The procedure to extract proper eccentricity and inclination and the cor-
responding proper frequencies is a modified form of Fourier analysis intro-
duced in [Carpino et al., 1987], and further improved [Knežević and Milani,
2000, 2003]. The procedure includes 3 steps.

First, the forced secular perturbations with known frequencies are re-
moved from the filtered time series for the equinoctial elements:

k = e cos$

h = e sin$

q = tan (I/2) cos(Ω)

p = tan (I/2) sin(Ω)

Given the fundamental frequencies g5, g6, g7 of the precession of perihelia
of Jupiter, Saturn and Uranus respectively, the Fourier components with
these frequencies from (k, h) are removed. Given the fundamental frequen-
cies s6, s7, s8 of the precession of the nodes of Saturn, Uranus and Neptune
respectively, the Fourier components with these frequencies from (q, p) are
removed.

Second, there is the computation of the time series of the arguments
$f ,Ωf , freed from short periodic computations, which are the phases of the
oscillation in the planes (k, h) and (q, p), respectively. This is computed from
the polar angles in these two planes, by adding multiples of 2π to obtain a
continuous real function. Finally, by a linear least squares fit, we estimate
the proper frequencies g, the slope of $f , and s, the slope of Ωf .

Third, there is a Fourier extraction of the proper mode. This can be done
in two ways, as discussed in [Milani and Knežević, 1994]. Either the Fourier
component with period 2π/g is extracted from the time series (k(t), h(t));
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or the component with period 2π is extracted from the data expressed as
functions of $f , that is (k($f ), h($f )). The result would be identical if the
proper oscillation was a linear one, but for non negligible e the higher order
terms are important [Milani and Knežević, 1990] and the latter algorithm
leads to more stable proper elements.

The same applies to the inclination related plane, and the extraction of
the component with period 2π can be extracted from (q(Ωf ), p(Ωf )). The
amplitudes of these proper modes are the proper elements ep and tan (Ip/2);
the latter one is then converted to the more usual sin Ip.

This theory furnishes results of a superior accuracy with respect to the
analytical theory, and it provides a straightforward way to estimate errors of
all the proper values and for each asteroid included in the computation.

Stability of proper elements

One of the main advantages of the synthetic method is the availability of
a stability test for each single set of proper elements computed in this way.
To compute synthetic proper elements, a numerical integration over a long
enough time interval [0, T ] has to be performed. Given the output, the same
algorithms can be applied to shorter time intervals [tj, tj + ∆T ], beginning
at initial times tj, j = 1, . . . , N , in such a way that t1 = 0,tN = T + ∆T . For
each of these running boxes a value of the proper elements ap, ep, sin Ip and
of the proper frequencies is obtained, and the dispersion of these N values
can be used to estimate the stability in time of the results. The dispersion
of the values of some proper element in different boxes can be measured by
the root mean square of the differences of the values computed in each box
with respect to the value computed over the entire time span and by the
maximum difference among the values computed in all the boxes.

The results obtained [Knežević and Milani, 2000] can be better described
by distinguishing the stable and unstable orbits. A large majority of initial
conditions correspond to ostensibly regular orbits (at least over the tested
time span), and for these the synthetic proper elements can be determined
with very good accuracy and stability in time: e.g., in 76% of the cases ep
and sin Ip had standard deviations less than 0.001, and ap less than 0.0003
au. In 55% of the cases the Root Mean Square (RMS) was even less than
0.0003 in ep and less than 0.0001 in sin Ip. The typical improvement with
respect to the analytically derived proper elements is by a factor of more
than 3. In terms of the so-called standard metrics [Zappala et al., 1990] used
to define asteroid families, this would imply a typical error of the relative
velocity of family members with respect to the parent body on the order of
≈ 5 m/s, while for the analytical results the order is ≈ 17 m/s.
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Lyapounov exponents

A well known indicator of chaotic motion is the maximum Lyapounov
Characteristic Exponent (LCE). Although the LCE is rigorously defined as
a limit for t → ∞, an indicator can be obtained by a finite integration of
both the equation of motion and the corresponding variational equation. An
approximation of the LCE can be computed as the best fit slope of the func-
tion of time γ(t) = log [D(t)/D(0)] where D(t) is the length of a variation
vector (with initial conditions selected at random). Renormalization of the
variations vector needs to be applied when it becomes too large, to avoid
numerical instability and overflow. This method typically allows the detec-
tion of a positive LCE after 7 − 8 Lyapounov times TL. The approximate
values of the LCE computed in this way are reliable as order of magnitude,
unless a real state transition between two chaotic regions takes place; the
exact values are not very significant, changes by 20% are typical when the
integration time span is extended.

As a matter of principle, the chaotic orbits are found in the Arnold web of
resonances. In the N-body type problems, because of the degeneracy of the
unperturbed Hamiltonian, the frequencies are split in well separated groups,
short periods, secular, and intermediate. Intermediate periods can occur only
by forming comparatively slow arguments of the form hλ− kλP + . . . where
P refers to some major planet (in practice in the asteroid belt only Jupiter
and Mars resonance matter), and the dots indicate secular arguments. As an
alternative, so called three-body resonances have slow arguments of the form
hλ− kλJ + jλS + . . . . These are second order terms, produced by the beat
of two terms in the perturbing function which happen to have close periods.

The LCE indicators, computed with only the major planets as perturbers,
are a detector of resonances involving the mean motions of the asteroid and
of the planets.

2.3 Applications of the Yarkovsky effect

The Yarkovsky effect has multiple applications ranging from the physical
properties of asteroids to the meteorite transport issues and the spreading of
asteroid families.

Physical properties of asteroids

An asteroid’s Yarkovsky drift can be used to probe some physical prop-
erties of the asteroid itself. The most important physical properties are the
obliquity, the size and mass of the asteroids, but also the thermal and reflec-
tive properties and the rotation rate should also be taken into account.
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The weakest situations are the ones in which we only know da/dt and the
absolute magnitudeH. Even in these cases we can put meaningful constraints
on the obliquity, because the Yarkovsky drift if proportional to cos γ, as
explained in Chap. 3.

If the spin state of the body is known, then cos γ is not unknown and the
thermal parameter Θω is better constrained.

The diameter D can also be directly measured by radar or can be derived
from an assumed distribution of asteroid albedo, or inferred from taxonomic
type or measured albedo. The measurement of the diameter allows the con-
straints to be cast in terms of the bulk density ρ and the thermal inertia
Γ.

The degeneracy between ρ and Γ can be broken in two different ways:

• An independent estimate of ρ would allow a direct estimate of Γ;

• An use of measurable solar radiation pressure deviations on the orbit
yields an area-to-mass ratio. With a size estimate, an independent
mass estimate can lead to a double solution for the thermal inertia of
the body.

This second approach has been applied in few special cases: observations
of an asteroid’s thermal emission can afford independent constraint on the
thermal inertia.

The best cases of the Yarkovsky detection allow us to have a shape model,
spin state and thermophysical characterization, thus we can infer the local
gravity of the body.

The asteroid (101955) Bennu (see Chap. 4) is the Near Earth Asteroid
with the best measured Yarkovsky effect, and the porosity has been computed
using the second approach, as previously discussed.

Impact hazard assessment
If an asteroid has a very precise orbit, the Yarkovsky effect is crucial

for the analysis of the risk posed by potential impacts on Earth. When the
Yarkovsky effect is directly measured by the astrometric data, the analysis
approach is straightforward as in the case for (101955) Bennu (see Chap. 4).

There are some cases where the astrometry provides little or no con-
straints on the Yarkovsky effect, and yet the Yarkovsky drift is a major
contributor to uncertainties at a potentially threatening Earth encounter. In
these cases we have to assume a distributions on albedo, obliquity, thermal
inertia, etc., and from these we derive a distribution of A2 or da/dt. These
distributions allow us to better represent uncertainties at the threatening
Earth encounter, and to compute more realistic impact probabilities, as in
the case for (410777) 2009 FD (see Chap. 5).
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Meteorite transport
The meteoroids are precursors of meteorites, which are believed to be

fragments of larger asteroids located in the main belt between the orbits of
Mars and Jupiter. The Yarkovsky effect was proposed to be main element
driving meteorites to the Earth (see [Öpik, 1951]). The problem is that direct
transport from the main belt required very long timescales and unrealistic
values of the thermal parameters and rotation rates for meter size bodies.

The problem has been overcome: the transport routes that connect main
belt objects to planet-crossing orbits are secular and mean motion resonances
with giant planets, such as ν6 secular resonance at the lower border of the
main asteroid belt and/or the 3/1 mean motion resonance with Jupiter. Then
meteoroids or their immediate precursor objects are collisionally born in the
inner and/or central parts of the main belt, from where they are transported
to the resonances by the Yarkovsky effect. However, some of the precursors
may fragment and produce new swarms of daughter meteoroids which even-
tually reach the escape routes to planet crossing orbits. This model explains
the distribution of the cosmic-ray exposure ages of stony meteorites as a
combination of several timescales:

• The time it takes a meteoroid to collisionally break;

• The time it takes a meteoroid to travel to a resonance;

• The time it takes for that resonance to deliver the meteoroid to an
Earth-crossing orbit;

• The time it takes the meteoroid on a planet-crossing orbit to hit the
Earth.

This model contains a number of assumptions and potentially weak elements.
For instance, one of the difficulties in refining the meteorite delivery models
is the uncertainty in identification of the ultimate parent asteroid for a given
meteorite class.

Spreading of asteroid families
The orbits in the main asteroid belt are affected by deterministic chaos

over long timescales. It is not possible to reliably reconstruct past values
of the orbital secular angles, with the proper values of the semimajor axis
a, eccentricity e and inclination I being the only well-defined parameters at
hand. The explanation of the new techniques used to compute these proper
elements is in Chap. 6. While the deterministic chaos is still in action over
long timescales and produces in most cases a slow diffusion of the proper e
and I, the Yarkovsky effect is the principal phenomenon that changes the
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proper a values of multi-kilometer-size asteroids. Knežević and Milani [2003]
studying the structure of the Vesta family, presented a clear example of the
Yarkovsky effect sculpting a large-scale shape of an asteroid family.

A new method for the age-determination is presented in Chap. 7. The
method is based on the fact that small asteroids in some families are pushed
towards extreme values of the proper semimajor axis and, if plotted in the
proper a vs 1/D (diameter) diagram, they acquire a V -shape (see 7). This
peculiar structure must result from a long-term dynamical evolution of the
family: the Yarkovsky drift itself accounted for most of the family’s extension
in semimajor axis. Assisted by the YORP effect, the Yarkovsky effect is
maximized, and pushes small family members towards the extreme values in
proper a.



Chapter 3

NEAs with measurable
Yarkovsky effect

It is well known that nongravitational forces should be considered as im-
portant as collisions and gravitational perturbations for the overall under-
standing of asteroid evolution [Bottke et al., 2006]. The most important
nongravitational perturbation is the Yarkovsky effect, which is due to radia-
tive recoil of anisotropic thermal emission and causes asteroids to undergo a
secular semimajor axis drift da/dt. Typical values of da/dt for sub-kilometer
NEAs are 10−4–10−3 au/Myr [Vokrouhlický et al., 2000b].

The Yarkovsky acceleration depends on several physical quantities such
as spin state, size, mass, shape, and thermal properties [Vokrouhlický, 1999].
Furthermore, Rozitis and Green [2012] show that surface roughness also plays
an important role by enhancing the Yarkovsky related semimajor axis drift
by as much as tens of per cent. Though no complete physical characterization
is typically available to compute the Yarkovsky acceleration based on a ther-
mophysical model, the orbital drift may be detectable from an astrometric
dataset. As a matter of fact, purely gravitational dynamics could result in
an unsatisfactory orbital fit to the observational data. This is especially true
when extremely accurate observations are available, e.g., radar observations,
or when the observational dataset spans a long time interval thus allowing
the orbital drift to accumulate and become detectable.

Until recently, the Yarkovsky effect has been measured directly only
in three cases, (6489) Golevka [Chesley et al., 2003], (152563) 1992 BF
[Vokrouhlický et al., 2008], and recently for (101955) Bennu [Chesley et al.,
2012]. For both Golevka and (101955) Bennu the Yarkovsky perturbation
must be included to fit accurate radar observations spanning three appari-
tions. For 1992 BF the Yarkovsky effect is needed to link 4 precovery obser-
vations of 1953. Furthermore, in the case of (101955) Bennu the available

25
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physical characterization, along with the estimate of the Yarkovsky effect,
allows the estimate of the asteroid’s bulk density.

Nugent et al. [2012b] find 54 detections of semimajor axis drift by per-
forming a search for semimajor axis drift among NEAs similar to the one
presented in this paper. However, there are differences in the observational
data treatment, in the modeling, and in the selection filters. A description
of the differences and a comparison of the results is provided in Sec. 3.2.2.
Nugent et al. [2012a] use WISE-derived geometric albedos and diameters to
predict orbital drifts for 540 NEAs. Even if none of these objects has an ob-
servational record that allows one to measure the predicted orbital drift, the
authors list upcoming observing opportunities that may reveal the Yarkovsky
signal.

The Yarkovsky effect plays an important role for orbital predictions such
as those concerning Earth impacts. In particular, when an asteroid has an
exceptionally well constrained orbit, the Yarkovsky effect may become the
principal source of uncertainty. Milani et al. [2009] show how the size of the
semimajor axis drift along with its uncertainty modifies impact predictions
for the next century for (101955) Bennu. The cumulative impact probability
is approximately 10−3, while a Yarkovsky-free propagation would rule out any
impact event. Chesley et al. [2012] improve the da/dt estimate by means of
September 2011 Arecibo radar measurements and find a cumulative impact
probability approximately 4 × 10−4. Another remarkable case is (99942)
Apophis. Though only a marginal da/dt estimate is available, Giorgini et al.
[2008] and Chesley et al. [2009] prove that the occurrence of an impact in
2036 is decisively driven by the magnitude of the Yarkovsky effect. In the
longer term, Giorgini et al. [2002] show that an impact between asteroid
(29075) 1950 DA and the Earth in 2880 depends on the accelerations arising
from thermal re-radiation of solar energy absorbed by the asteroid.

3.1 Methodology

3.1.1 Yarkovsky modeling and determination

The Yarkovsky effect depends on typically unknown physical quantities. As
the primary manifestation is a semimajor axis drift, we seek a formulation
depending on a single parameter to be determined simultaneously with the
orbital elements from the observational dataset. To bypass the need of phys-
ical characterization we used a comet-like model [Marsden et al., 1973] for
transverse acceleration at = A2g(r), where g is a suitable function of the
heliocentric distance r and A2 is an unknown parameter.
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For a given A2 we estimate semimajor axis drift by means of Gauss’
perturbative equations:

ȧ =
2a
√

1− e2

nr
A2g(r) (3.1)

where a is the semimajor axis, e is the eccentricity and n is the mean motion.
By averaging we obtain
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a
√
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π
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0
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where T is the orbital period and f is the true anomaly. Let us now assume
g(r) = (r0/r)

d, where r0 is a normalizing parameter, e.g., we use r0 = 1 au.
In this case the semimajor axis drift is

¯̇a =
A2(1− e2)

πn

(
r0

p

)d ∫ 2π

0

(1 + e cos f)d−1df . (3.3)

By Taylor expansion, we have∫ 2π

0

(1 + e cos f)d−1df =
∞∑
k=0

(
d− 1

k

)
ek
∫ 2π

0

cosk fdf . (3.4)

The odd powers of the cosine average out, so we obtain

¯̇a =
2A2(1− e2)

n

(
r0

p

)d
J(e, d) (3.5)

where

J(e, d) =
∞∑
k=0

αke
2k , αk =

(
d− 1

2k

)(
2k

k

)
1

22k
. (3.6)

The ratio
αk+1

αk
=

(
1− d+ 1

2k + 2

)(
1− d

2k + 2

)
(3.7)

is smaller than 1 for d > 0 and k large enough. Therefore, αk are bounded and
J(e, d) is convergent for any e < 1. Equation (3.7) can be used to recursively
compute αk starting from α0 = 1. For integer d the series J is a finite sum
that can be computed analytically, e.g., J(e, 2) = 1 and J(e, 3) = 1 + 0.5e2.

For a fixed d we have a transverse acceleration at = A2(r0/r)
d. To de-

termine A2 we used a 7-dimensional differential corrector: starting from the
observational dataset we simultaneously determine a best-fitting solution for
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both the orbital elements and A2 along with an associated covariance matrix
C describing the uncertainty of the nominal solution. The marginal uncer-
tainty of A2 is obtained from C: σA2 =

√
c77, where cij is the generic element

of C. This uncertainty is then mapped to the uncertainty of the semimajor
axis drift by means of Eq. (3.5).

The proper value of d is not easily determined. From Vokrouhlický
[1998a], we have

at '
4(1− A)

9
Φ(r)f(Θ) cos γ , f(Θ) =

0.5Θ

1 + Θ + 0.5Θ2
(3.8)

for the Yarkovsky diurnal component (which is typically dominant), where A
is the Bond albedo, Θ is the thermal parameter, γ is the obliquity, and Φ(r)
is the standard radiation force factor, which is inversely proportional to the
bulk density ρ, the diameter D, and r2. The thermal parameter Θ is related
to the thermal inertia Γ by means of the following equation

Θ =
Γ

εσT 3
∗

√
2π

P
(3.9)

where ε is the emissivity, σ is the Boltzmann’s constant, T∗ is the subsolar
temperature, and P is the rotation period. In this paper we use d = 2 to
match the level of absorbed solar radiation. Then, from Eq. (3.8) we have
that

A2 '
4(1− A)

9
Φ(1au)f(Θ) cos γ . (3.10)

However, as T∗ ∝ r−0.5 we have that Θ ∝ r1.5, therefore the best value of d
depends on the object’s thermal properties:

• for Θ� 1 we obtain f ∝ r−1.5, which gives d = 3.5;

• for Θ� 1 we obtain f ∝ r1.5, which gives d = 0.5.

These are limit cases, the true d is always going to be between them. As a
matter of fact, it turns out that most NEAs, whose rotation period is not
excessively large and whose surface thermal inertia is not excessively small or
large, have typically values of Θ near unity or only slightly larger, and we can
thus expect d value in the range 2–3. As an example, Chesley et al. [2012]
show that for (101955) Bennu the best match to the Yarkovsky perturbation
computed by using a linear heat diffusion model is d = 2.75.

What matters to us is that da/dt does not critically depend on the chosen
value of d. As an example for asteroid (101955) Bennu we have that da/dt =
(−18.99±0.10)×10−4 au/Myr for d = 2 and da/dt = (−19.02±0.10)×10−4
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Table 3.1: Gravitational parameters of perturbing asteroids. The
masses of Ceres, Pallas, and Vesta are from Standish and Hellings
[1989], the ones of Euphrosyne and Herculina are from the In-
stitute of Applied Astronomy of RAS, St. Petersburg, Rus-
sia (http://www.ipa.nw.ru/PAGE/DEPFUND/LSBSS/engmasses.htm), the
mass of Juno is from Konopliv et al. [2011], all the others are from Baer et al.
[2011a].

Asteroid Gm [km3/s2]
(1) Ceres 63.200
(2) Pallas 14.300
(4) Vesta 17.800
(10) Hygea 6.0250
(29) Amphitrite 1.3271
(511) Davida 3.9548
(65) Cybele 1.0086
(9) Metis 1.3669
(15) Eunomia 2.2295
(31) Euphrosyne 1.1280
(52) Europa 1.2952
(704) Interamnia 4.7510
(16) Psyche 1.7120
(3) Juno 1.9774
(532) Herculina 1.5262
(87) Sylvia 1.3138

au/Myr for d = 3. Another example is Golevka, for which we obtain da/dt =
(−6.62± 0.64)× 10−4 au/Myr for d = 2 and da/dt = (−6.87± 0.66)× 10−4

au/Myr for d = 3. In both cases the difference in da/dt due to the different
values assumed for d is well within one standard deviation.

3.1.2 Dynamical model

To consistently detect the Yarkovsky effect we need to account for the other
accelerations down to the same order of magnitude. For a sub-kilometer
NEA, typical values of at range from 10−15 to 10−13au/d2.

Our N-body model includes the Newtonian accelerations of the Sun, eight
planets, the Moon, and Pluto that are based on JPL’s DE405 planetary
ephemerides [Standish, 2000]. Furthermore, we added the contribution of 16
massive asteroids, as listed in Table 3.1.
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Figure 3.1: Relativistic accelerations of the Earth and Jupiter as they for-
mallyappear in the EIH equations of motion compared to the transverse
Yarkovsky acceleration acting on Golevka.

We used a relativistic force model including the contribution of the Sun,
the planets, and the Moon. Namely, we used the Einstein-Infeld-Hoffman
(EIH) approximation as described in Moyer [2003] or Will [1993]. As already
noted in Chesley et al. [2012], the relativistic term of the Earth should not be
neglected because of significant short range effects during Earth approaches
that NEAs may experience. For asteroids with a large perihelion distance
such as Golevka also Jupiter’s term could be relevant. Figure 3.1 compares
the relativistic accelerations of the Earth and Jupiter as they formally appear
in the EIH equations of motion to the transverse Yarkovsky acceleration
acting on Golevka.

3.1.3 Observational error model

The successful detection of the Yarkovsky effect as a result of the orbital fit
strongly depends on the quality of the observations involved. In particular,
the availability of radar data is often decisive due to the superior relative
accuracy of radar data with respect to optical ones. Moreover, radar mea-
surements are orthogonal to optical observations: range and range rate vs.
angular position in the sky.

Since the Yarkovsky effect acts as a secular drift on semimajor axis we
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have a quadratic effect in mean anomaly: the longer the time span the
stronger the signal. However, the presence of biases in historical data and
unrealistic weighting of observations may lead to inaccurate results. To deal
with this problem we applied the debiasing and weighting scheme described
in Chesley et al. [2010]. This scheme is a valid error model for CCD ob-
servations, while for pre-CCD data the lack of star catalog information and
the very uneven quality of the observations represents a critical problem. In
these cases the occurrence of unrealistic nominal values for Yarkovsky model
parameters presumably point to bad astrometric treatments and have to be
rejected.

To prevent outliers from spoiling orbital fits, we applied the outlier rejec-
tion procedure as described in Carpino et al. [2003].

Besides the astrometric treatment described above, in the following cases
we applied an ad hoc observation weighting:

• (101955) Bennu: as already explained by Chesley et al. [2012], in some
cases there are batches containing an excess of observations from a
single observatory in a single night. In particular there are four nights,
each with about 30 observations from observatory La Palma. To reduce
the effect of these batches to a preferred contribution of 5 observations
per night, we relaxed the weight by a factor

√
N/5, where N is the

number of observations contained in the batch.

• 1992 BF: as the precovery observations of 1953 have been carefully
remeasured in Vokrouhlický et al. [2008], these observations were given
a weight at 0.5” in right ascension and 1” in declination.

• Apollo: the large dataset available for Apollo contains observations
going back to 1930. Many pre-CCD era observation batches show un-
usually high residuals, especially during close Earth approches. To
lower the effect of non-CCD observation, we used weights at 10” for
observations from 1930 to 1950 and 3” from 1950 to 1990. By using
weights at 10” we made sure we included all non-CCD observations,
thus reducing the average error and avoiding to fit a possibly inaccurate
subset only.

• 1989 ML: the discovery apparition contains observations from Palomar
Mountain showing large residuals whether or not the Yarkovsky per-
turbation is included in the model. Even if this apparition increases
the observed arc by three years only, we felt it safer to weight the
corresponding observations at 3”.
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3.1.4 Treatment of precovery observations
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Figure 3.2: Observed position, average observed position, and predicted post-
fit position both with and without the Yarkovsky perturbation in the dynam-
ics. The uncertainty ellipses for the mean observed position and the predicted
positions correspond to the 3-σ level. The dashed lines represent the pre-
dicted motion in the sky of the asteroid in the precovery apparition. Circles
are the predicted positions, crosses are the measured positions, stars are the
mean of the measured positions, while diamonds are the predicted positions
when the Yarkovsky perturbation is included in the dynamics. The origin is
arbitrarily set to the non-Yarkovsky prediction.

There are a few cases where the Yarkovsky signal is mainly contained in
few isolated precovery observations. This is the case of the already mentioned
asteroid 1992 BF, which has 4 isolated observations in 1953 from Palomar
Mountain DSS. Other cases are

• 1999 FK21, which has 6 isolated observations in 1971 from Palomar
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Mountain;

• 2001 MQ3, which has 4 isolated observations in 1951 from Palomar
Mountain DSS;

• 1989 UQ, which has 3 isolated observations in 1954 from Palomar
Mountain;

• 1991 VE, which has 4 isolated observations in 1954 from Palomar
Mountain DSS.

For all these cases it would be desirable to remeasure the precovery obser-
vations as done for 1992 BF in Vokrouhlický et al. [2008], where precovery
observations were corrected by an amount of up to 3.1”. For this reason we
conservatively gave weights at 3” to the precovery observations of the four
asteroids above.

Besides the conservative weighting, we ruled out clock error as a possible
cause of the Yarkovsky signal. Figure 3.2 shows the scenario for the four men-
tioned asteroids during the precovery apparition. We can see that it is not
possible to match the observations by translating the non-Yarkovsky uncer-
tainty ellipse on the along track direction. The Yarkovsky solution produces
a shift in the weak direction that give a better match to the observations, in
particular when we take the average of the observed positions.

3.1.5 Filtering spurious results

To assess the reliability of the Yarkovsky detections we computed an expected
value for A2 starting from the (101955) Bennu case, which is the strongest
and most reliable detection, by scaling according to (3.10)

(A2)exp = (A2)RQ36

DRQ36

D
. (3.11)

For diameter D we used either the known value when available or an assumed
value computed from the absolute magnitude H according to the following
relationship [Pravec and Harris, 2007]:

D = 1329 km × 10−0.2H

√
pV

(3.12)

where pV is the albedo, assumed to be 0.154 if unknown, in agreement with
Chesley et al. [2002].

Some physical properties of (101955) Bennu maximize A2 [Chesley et al.,
2012]. In particular γ is nearly 180◦, A is 0.01, and ρ is low (0.96 g/cm3).
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On the other hand Θ = 4.33 for which f(Θ) ' 0.15 while the maximum
is ' 0.21. For these reasons we selected those Yarkovsky detections for
which S = |A2/(A2)exp| was smaller than 1.5. The selected threshold allows
some tolerance as we are scaling only by D without accounting for other
quantities such as bulk density, thermal properties, obliquity, spin rate, and
surface roughness.

A high signal to noise ratio SNR = |A2|/σA2 threshold is likely to produce
robust detections with respect to the astrometric data treatment. With lower
SNR the sensitivity to the observation error model increases and detections
become less reliable. We decided that 3 was a sensible choice for minimum
SNR, even if we analyze detections with smaller SNR in Sec. 3.2.3.

3.2 Results

We applied our 7-dimensional differential corrector to determine the param-
eter A2 and the corresponding da/dt for all known NEAs. After applying
the filters discussed in Sec. 3.1.5 we obtain 21 Yarkovsky detections that we
consider reliable (Table 3.2). The reported uncertainties are marginal, i.e.,
they fully take into account the correlation between A2 (and thus da/dt) and
the orbital elements.

We cross-checked these detections by using two independent software
suites: the JPL Comet and Asteroid Orbit Determination Package and Orb-
Fit (http://adams.dm.unipi.it/orbfit/)1: in all cases we found agreement at
better than the 1-σ level.

3.2.1 2009 BD

Despite the short observed arc, asteroid 2009 BD has a quite accurate or-
bit, e.g., the semimajor axis uncertainty of 5 × 10−8 au. The observational
dataset contains some observation rejected as outliers from the Mauna Kea
observatory. Micheli et al. [2012] show that including solar radiation pres-
sure allows an improvement in the fit to the observations and the recovery of
Mauna Kea observations. Therefore, we also included in the model a radial
acceleration ar = A1/r

2. Along with the tabulated value of A2, we obtained
A1 = (62.05 ± 8.85) × 10−12 au/d2. This results in an area to mass ratio
A/M = (2.72± 0.39)× 10−4 m2/kg, which is consistent at the 1-σ level with
the value reported by Micheli et al. [2012], i.e., (2.97± 0.33)× 10−4 m2/kg.

1OrbFit was used in the development version 4.3, currently in beta-testing.
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After including A1 and A2 in the orbital solution, the uncertainty in
semimajor axis is about 4.3 × 10−8 au, which is significantly smaller than
the product between the detected semimajor axis drift and the observed arc
time interval, i.e., 1.5× 10−7 au.

The value of A2 seems quite large, but it is consistent with the expected
size of this object. From the absolute magnitude H = 28.2 we obtain an
estimated diameter of 8 m and the parameter S computed accordingly is 0.4.

3.2.2 Comparison with other published results

The first three objects of Table 3.2 are the already known cases of Golevka,
1992 BF, and (101955) Bennu. While for (101955) Bennu there is a perfect
match between our result and the one in Chesley et al. [2012], for Golevka
and 1992 BF the values are different from Chesley et al. [2003] and Vokrouh-
lický et al. [2008], respectively. However, this can be easily explained by the
availability of new astrometry and the fact that the present paper adopted
the debiasing and weighting scheme by Chesley et al. [2010], which was not
available at the time of the earlier publications.

As already mentioned, Nugent et al. [2012b] performed a search similar
to the one presented in this paper and found 54 NEAs with a measurable
semimajor axis drift. The main differences are the following:

• They selected only numbered objects, while we included all known
NEAs.

• Their observation dataset was slightly different as they used observa-
tions until 2012 January 31, while we have data until 2012 October 31.
This difference does not really matter for optical data, but it does for
radar data, e.g., for Aten and Toro. Moreover, they did not use single
apparition radar observations, while we did as we think they represent
an important constraint.

• They solved for constant da/dt while we used constant A2 and then
convert to da/dt. These techniques are equivalent when the semimajor
axis and eccentricity are constant, but there could be differences as we
cannot assume da/dt constant for objects experiencing deep planetary
close approaches. However, the error due to close encounter is generally
smaller than the da/dt standard deviation.

• They searched for the best-fit da/dt by means of the golden section
algorithm, i.e., they computed the RMS of the residuals correspond-
ing to the best fitting orbital elements for fixed values of da/dt, then
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the minimum is obtained by interpolation. In this paper we used a
full 7-dimensional differential corrector. The two methods should be
equivalent.

• They used 1 as lower bound for SNR, while we use 3 that gives detec-
tions more robust against changes in the observation weighting. Also,
they used the “sensitivity” parameter, i.e., a metric to measure the
sensitivity of a dataset to the presence of a semimajor axis drift. We
did not use such a metric as we think that an SNR≥ 3 is already a
good metric in that respect.

• We kept only those objects for which the measured orbital drift can be
related to the Yarkovsky perturbation presuming that inconsistencies
stem from astrometric errors, while they also considered the possibility
of other nongravitational effects such as a loss of mass.

Table 3.2 contains a comparison between our orbital drifts and the ones
reported by Nugent et al. [2012b]. 2009 BD, 1999 MN, and 2005 ES70 are
present only in our list as they are not numbered, while 2001 MQ3, 1989
UQ, 1991 VE, and Illapa are eliminated by their filters. It is worth pointing
out that also (101955) Bennu, Golevka, and YORP have been filtered out
by Nugent et al. [2012b] criteria, even though they report the corresponding
detections for a comparison with Chesley et al. [2008]. This is likely to be
due to the lack of radar information in the computation of the sensitivity
parameter.

Among the cases that Nugent et al. [2012b] report with SNR > 3 we did
not include the following three:

• (1036) Ganymed for which we foundA2 = (−16.54±4.35)×10−15 au/d2,
corresponding to da/dt = (−6.06± 1.59)× 10−4 au/Myr. However, the
nominal A2 is 28 times larger than (A2)exp, so we marked this detection
as spurious. As Ganymed observations go back to 1924, this unreliable
detection might be due to bad quality astrometry.

• (4197) 1982 TA for which we used the radar apparition of 1996, which
reduced the SNR below 1. For this object we found A2 = (5.61 ±
14.26) × 10−15 au/d2, corresponding to da/dt = (3.88 ± 9.86) × 10−4

au/Myr. For comparison Nugent et al. [2012b] report da/dt = (30.9±
9.2)× 10−4 au/Myr.

• (154330) 2002 VX4 for which we found A2 = (102.36± 36.34)× 10−15

au/d2, corresponding to da/dt = (43.10±15.25)×10−4 au/Myr. Again,
the value of A2 was ∼ 4 times larger than (A2)exp, so also this detection
was marked as spurious.
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Besides the differences outlined above, there is an overall agreement for
the common cases. As a matter of fact by computing the σ of the difference,
i.e., σ2 = σ2

1 + σ2
2, there are only two cases that are not consistent at the 1-σ

level:

• 1992 BF, for which we applied suitable weights (see Sec. 3.1.3) for
the remeasured observations [Vokrouhlický et al., 2008] of the 1953
apparition. By using the Chesley et al. [2010] standard weights the
uncertainty in da/dt of our detection increases to 0.97× 10−4 au/Myr,
and therefore we are consistent with Nugent et al. [2012b] at the 1-σ
level.

• Apollo, for which we applied a suitable manual weighting as described
in Sec. 3.1.3.

3.2.3 Lower SNR and small orbital drifts
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Figure 3.3: Same of Fig. 3.2 for asteroid 1999 FA. The uncertainty ellipses
for predicted positions correspond to 3-σ levels, while the uncertainty for the
observed position corresponds to 3”.

Table 3.3 contains detections that we rate as non-spurious on the basis
of the S ratio between expected and measured value, down to SNR = 2 plus
the following remarkable cases:
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• 1999 FA, which has 1 isolated observation in 1978 from Siding Spring
Observatory. By performing the same analysis of Sec. 3.1.4 (see Fig. 3.3)
we see no clear improvement due to Yarkovsky as the observation is
3.5–4 σ away from the prediction either way. In this case a clock error
may bring the Yarkovsky solution close to the observation. As this
detection depends on a lone, isolated observation we would rather be
cautious and consider this detection reliable only if the 1978 observa-
tion is remeasured.

• Eros, which looks like a reliable detection as S = 0.75. However, the
obliquity is known to be 89◦ [Yeomans et al., 2000] and then we enter
the regime where the seasonal component of the Yarkovsky effect is
dominant. As the seasonal component is typically 10 times smaller then
the diurnal one [Vokrouhlický et al., 2000b] we mark this detection as
spurious. This points to possible bad astrometric treatment, especially
for historical observations dating back to 1893.

• Toutatis, which enters the Main Belt region because of the 4.12 au
aphelion and the low inclination (0.44◦). Therefore, it is important
to account for the uncertainty in the masses of the perturbing aster-
oids. By taking into account the uncertainty of the perturbing asteroid
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masses the actual uncertainty in A2 increases by 11% with a commen-
surable drop in SNR. Figure 3.4 shows the evolution of A2 as a function
of the number of perturbers for asteroids (101955) Bennu and Toutatis.
While for (101955) Bennu (aphelion 1.36 au) we reach convergence with
just four perturbers, for Toutatis we have a quite irregular behavior
suggesting that we may need to include more perturbers.

• 1994 XL1, whose observations in 1994 from Siding Spring Observatory
show high residual so we relaxed weights at 3”.

• 2005 QC5 and 2000 NL10 have been included despite the low SNR.
Similarly to the cases described in Sec. 3.1.4, we applied weights at
3” to precovery observations and this data treatment weakened the
Yarkovsky detection. However, we think that remeasuring the precov-
ery observations may lead to reliable Yarkovsky detections for these
objects.

• 1950 DA, for which the Yarkovsky effect plays an important role for
impact predictions, e.g., see Sec. 3.3.4.

There are other objects with an even lower SNR for which the Yarkovsky
signal might be revealed if precovery observations were remeasured: (11284)
Belenus, (66400) 1999 LT7, (4688) 1980 WF, (67399) 2000 PJ6, (267759)
2003 MC7, and (88710) 2001 SL9.

Though these detections have to be considered less reliable, some of them
may be good candidates for becoming stronger detections in the future if
high quality astrometry is obtained, e.g., by radar or Gaia [Mignard, 2003].

The results presented so far do not capture those cases for which the
orbital drift truly is small. In fact, when da/dt ∼ 0 the SNR is unlikely to
be greater than 1. Table 3.4 contains detections with SNR < 2 such that

|(A2)exp| − |A2|
σA2

> 3 . (3.13)

This inequality ensures that the possible magnitude of the Yarkovsky effect
is significantly smaller (3-σ level) than expected. In particular, for Icarus we
obtain a strong constraint on A2 and thus da/dt, which is consistent with
Vokrouhlický et al. [2000b, Fig. 5] where |da/dt| < 3× 10−4 au/Myr. These
cases are interesting as they might be an indication of obliquities near 90◦

(e.g., Icarus’ obliquity is 103◦), excessively slow rotations, high bulk density,
or small thermal inertias.
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3.3 Discussion

3.3.1 Connection with NEA feeding mechanisms

The diurnal Yarkovsky effect produces a semimajor axis drift proportional to
cos γ [Vokrouhlický et al., 2000b]. As the diurnal term is typically the dom-
inant one, the sign of da/dt can be related to the asteroid spin orientation,
i.e., a negative da/dt corresponds to a retrograde rotator while a positive
da/dt corresponds to a prograde rotator. This conclusion is supported by
the eight known obliquities for the asteroids in the sample that are listed in
Table 3.2: in all cases the spin axis obliquity is consistent with the sign of
da/dt.

We can now use this interpretation and our solution for the Yarkovsky
semimajor axis drift values for NEAs in the following way. Table 3.2 contains
four prograde rotators and seventeen retrograde rotators. This excess of
retrograde rotators can be explained by the nature of resonance feeding into
the inner Solar System [Bottke et al., 2002a]. Most of the primary NEA
source regions (e.g., the 3:1 resonance, JFCs, Outer Belt, etc.) allow main
belt asteroids to enter by drifting either inwards or outwards, but the ν6

resonance is at the inner edge of the main belt and so asteroids can generally
enter only by inwards drift, i.e., with retrograde rotation. Bottke et al.
[2002a] report that 37% of NEAs with absolute magnitude H < 22 arrive
via ν6 resonance. La Spina et al. [2004] point out that this implies 37% of
NEAs have retrograde spin (via ν6), plus half of the complement (via other
pathways). Thus, the retrograde fraction should be 0.37 + 0.5× 0.63 = 0.69,
while La Spina et al. [2004] report 67% retrograde for their sample, which is
dominated by large NEAs.

Table 3.2 contains 81% retrograde rotators, which is larger than 69% and
thus, at face value, appears to be inconsistent with the theory. The sample
of asteroids shown in Table 3.2, however, is based on measured Yarkovsky
mobility and is not a representative sample of the debiased NEA population
as described by Bottke et al. [2002a]. For example, the sample is dominated
by small PHAs (MOID < 0.05 AU) on fairly deep Earth-crossing orbits.
We find that 9 of the 21 objects are Aten asteroids (43%), compared to
the 6% fraction predicted for the debiased NEA population. Bottke et al.
[2002a] suggest that the majority of Atens (∼ 79%) should come from the
innermost region of the main belt where the ν6 resonance is located. That
would indicate the sampled objects are predisposed to have retrograde spin
vectors.

To further quantify this, we used the debiased NEA model from Bottke
et al. [2002a] to determine the probability that the objects in Table 3.2 came
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from one of five intermediate source regions: the ν6 secular resonance, the
intermediate source Mars-crossing region (MC), the 3:1 mean motion reso-
nance with Jupiter, the outer main belt (OB), and the transneptunian disk
(which provides active and inactive Jupiter-family comets, JFC). Our results
are shown in Table 3.5. Next, we multiplied these values by a second set
of probabilities corresponding to whether a given intermediate source would
produce NEAs with prograde or retrograde spin vectors. Here we assumed
the ν6 resonance would only produce NEAs with retrograde spin vectors,
while the other sources would provide a 50-50 mix of objects with prograde
and retrograde spin vectors. Adding these probabilities together and nor-
malizing by the number of objects in our sample, we predict that 79.3% of
the objects in Table 3.2 should have retrograde spins. We therefore find an
excellent match to the 81%± 8% value provided by observations.

Asteroid 1999 MN represents a mismatch to the assumption that the ν6

resonance produce NEAs with retrograde spin only. However, 1999 MN has
a very peculiar orbit as it might have been evolving in the planet-crossing
space for more than 50 Myr. During this time various things might have
occurred, including a situation that the spin went over the end of a YORP
cycle. Moreover, this body is a prime candidate for being affected by tidal
forces during a close planetary encounter (i.e., high eccentricity Aten with
low inclination). As a matter of fact, Hicks et al. [2010] already suggested
the possibility of YORP and/or tidal spin-up. From its orbit, 1999 MN has
a very high probability of encountering both Earth and Venus.

To assess the behavior of the fraction of retrograde rotators as a function
of the SNR, we took all of the objects with S < 1.5. The left panel of
Fig. 3.5 shows the distribution of A2 and its uncertainty. The excess of
retrograde rotators is clearly visible for SNR > 3 and also between 2 and
3, where small PHAs dominate. For lower SNR we have a more uniform
distribution. The right panel of Fig. 3.5 is a running mean of the fraction of
retrograde rotators as a function of the SNR. For SNR < 1 (372 objects) we
are in a noise dominated regime for which we have a rough 50% fraction of
retrograde rotators, for 1 < SNR < 2 (51 objects) we have a transition from
noise-dominated to signal dominated, and for SNR > 2 (43 objects) we have
a signal dominated regime with around 80% retrograde rotators.

We can also try to use the detected values to infer the obliquity distribu-
tion. From Eq. (3.10) we have that

A2 ∝
cos γ

D
. (3.14)

and so we can estimate γ by using the either known or estimated by Eq. (3.12)
diameter and using (101955) Bennu. By taking both the detections with
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SNR > 1 and those satisfying Eq. (3.13) with 1 as right hand side, and
assuming a fixed ρ = 1500 kg/m3 we obtain the distribution of Fig. 3.6,
where the cases with | cos γ| > 1 have been placed in the extreme obliquity
bins. For the detections with SNR < 1 the nominal value of A2 is not very
reliable, so we added a random component corresponding to σA2 . Despite
the low number of bins, we can see the excess of retrograde rotators and the
abundance of objects with an extreme obliquity, as expected from the YORP
effect [Čapek and Vokrouhlický, 2004]. While this distribution should be con-
sidered only approximate due to the numerous assumptions (e.g., neglecting
dependence on bulk density, shape and thermal properties) we consider it
to be a significant improvement over what is otherwise known. However, we
find it interesting that it appears to be consistent with the observed obliquity
distribution of the NEAs [La Spina et al., 2004].

3.3.2 Spurious detections

Our search for Yarkovsky signal produced a large number of spurious detec-
tions, i.e., semimajor axis drifts far larger than the Yarkovsky effect would
cause. Figure 3.7 contains the histograms of S for different SNR intervals.
For SNR > 3 we have 67% spurious detections, for 2 < SNR < 3 we have
88%.

It is worth trying to understand the reason of these spurious solutions.
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We think there are two possible causes:

• Bad astrometry treatment: as discussed in Sec. 3.1.3 and Sec. 3.1.4,
non-CCD observations may contain errors that are difficult to model. If
an ad hoc weighting is not used we may have misleading results. Indeed,
spot checking of such cases generally confirmed isolated astrometry as
source of spurious detections.

• Incompleteness or inconsistency in the dynamical model: the formu-
lation proposed in Sec. 3.1.1 is a simplified model of the Yarkovsky
perturbation that might be poor in some cases. A more sophisticated
formulation would require a rather complete physical characterization
that is typically unavailable and thus cannot be used for a comprehen-
sive search as done in this paper. Moreover, as discussed in Sec. 3.2.3
for Toutatis, we may need to include more perturbing asteroids (and
the uncertainty in their masses) in the model. Finally, we cannot
rule out the possibility of nongravitational perturbations different from
Yarkovsky as also discussed by Nugent et al. [2012b].

3.3.3 Constraining physical quantities

The results reported in Table 3.2 can be used to constrain physical quantities.
When A, D, and γ are known Eq. (3.10) provides a simple relationship be-
tween ρ and Θ. This relationship can be easily translated into a relationship
between ρ and the thermal inertia Γ by means of Eq. (3.9). As a benchmark
of this technique we can use asteroid (101955) Bennu (Fig. 3.8), for which the
known values of Γ and ρ [Chesley et al., 2012] match the plotted contraint.
Figure 3.9 shows the possible values of ρ as a function of Γ for asteroids
Golevka, Apollo, Ra-Shalom, Toro, YORP, and Geographos. For the latter
two objects we assumed slope parameter G = 0.15. Our findings are consis-
tent with the taxonomic type. For instance, Golevka, Apollo, Toro, YORP,
and Geographos are S/Q-type asteroids with an expected density between
2000 and 3000 kg/m3, while Ra-Shalom is a C-type so we expect a bulk den-
sity from 500 and 1500 kg/m3. Figure 3.9 suggests that Golevka has thermal
inertia 150 < Γ < 500 J m−2 s−0.5 K−1 and Apollo has a rather large thermal
inertia 400 < Γ < 1000 J m−2 s−0.5 K−1. According to Delbó et al. [2003]
Ra-Shalom has an unusually high thermal inertia. In fact, by taking the right
side of the plotted rectangle we obtain a density closer to 1000 kg/m3, similar
to the one (101955) Bennu, which belongs to a similar taxonomic class. For
Toro, Mueller [2012] reports a thermal inertia 200 < Γ < 1200 J m−2 s−0.5

K−1 but likely lower, which would result in a bulk density between 2000 and
4000 kg/m3.
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3.3.4 Implications for impact predictions

There are three known asteroids, namely Apophis, (101955) Bennu, and 1950
DA, for which Yarkovsky perturbations are relevant and need to be accounted
for in the impact risk assessment. For Apophis and (101955) Bennu this is
due to the presence of a strongly scattering planetary close approach between
now and the epochs of the possible impacts. These encounters transform a
very well determined orbit into a poorly known one for which chaotic effects
are dominant [Milani et al., 2009]. Apophis will have a close approach in
April 2029 with minimum distance of ∼ 38000 km from the geocenter. As
a consequence the orbital uncertainty will increase by a factor > 40000.
(101955) Bennu will have a close approach to Earth in 2135 with nominal
minimum distance about the same as the distance to the Moon, with an
increase in uncertainty by a factor ∼500. The minimum possible distance for
this close approach is three times smaller and would result in an increase of
the uncertainty by a factor ∼1500 [Chesley et al., 2012]. In both cases the
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Yarkovsky effect is large enough to shift the position at the scattering close
approach by an amount much larger than the distance between the keyholes
[Chodas, 1999] corresponding to impacts in later years (2036, 2037, 2068 for
Apophis; 2175, 2180, 2196 for (101955) Bennu). Thus, the occurrence of
these later impacts is determined by the Yarkovsky perturbation in the years
between now and the scattering encounter. For 1950 DA the influence of the
Yarkovsky effect for the possible impact in 2880 is due to long time interval
preceding the impact that allows the orbital displacement to accumulate
[Giorgini et al., 2002].

Currently, (101955) Bennu is the case with the best determined Yarkovsky
effect (SNR ∼ 200), while Apophis and 1950 DA have only a marginal detec-
tion (SNR < 1 and SNR ∼ 1.4, respectively). Therefore, the impact monitor-
ing for (101955) Bennu fully takes into account the Yarkovsky effect [Chesley
et al., 2012]. On the contrary, the current estimate of impact probabilities
for Apophis is based on a Monte Carlo model of the Yarkovsky perturbation
based on a priori knowledge of the statistical properties of this effect [Ches-
ley et al., 2009]. 1950 DA benefits from a similar approach [Farnocchia and
Chesley, 2014].

We investigated the possibility that our identification of asteroids with
measurable Yarkovsky effect produces new cases such as the two above, that
is of impact monitoring affected by the Yarkovsky perturbation . The answer
to this question is negative, in that the intersection between the current list of
NEA with possible impacts on Earth (404 according to Sentry, 337 according
to NEODyS) and the list with detected Yarkovsky orbital drifts contains only
(101955) Bennu.

However, this conclusion depends on the fact that our monitoring of pos-
sible future impacts is done for only about one century (currently 100 for
Sentry, 90 years for NEODyS). (101955) Bennu was a special case, related
to an intensified effort for the OSIRIS-REx mission target (http://osiris-
rex.lpl.arizona.edu). If this time span were generally increased to 150–200
years, there could well be other cases similar to (101955) Bennu.

For asteroid 1950 DA Busch et al. [2007] report a minimum density around
3000 km/m3 and two possible solutions for pole orientation and effective
diameter:

1. γ = 24.47◦ and D = 1.16 km;

2. γ = 167.72◦ and D = 1.30 km.

By scaling from the (101955) Bennu case, we obtain A2 = 7.01×10−15 au/d2

for the direct solution and A2 = −5.83 × 10−15 au/d2 for the retrograde
solution. Even if we found a low SNR detection, our result strongly favors
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the retrograde solution, which is at 0.6 σ, than the direct solution, which is
more than 3 σ away.

3.4 Conclusions

High precision orbit estimation for asteroids is important in several appli-
cations such as linking old observations to a newly discovered and assessing
the risk of an Earth impact. In these cases, the Yarkovsky perturbation is a
critical component as it is usually unknown.

We measured reliable orbital drifts for 23 objects and we expect to have
more as new high precision data, e.g., radar and Gaia observations, are avail-
able.

Inaccurate astrometric treatments can lead to unrealistic results, espe-
cially when the Yarkovsky drift significantly depends on isolated observa-
tions.

When a rather complete physical model is available, the measured orbital
drifts can be used to measure unknown physical quantities such as the bulk
density.

The distribution of the detected orbital drifts can be connected to the
NEA delivery mechanism and serve as a validation of future NEA models.

For asteroids experiencing deep close approaches, the occurrence of an
impact can be decisively driven by the magnitude of the Yarkovsky pertur-
bation.
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Table 3.5: Probability of coming from one of the intermediate NEA source
regions for the objects of Table 3.2.

Asteroid ν6 MC 3:1 OB JFC
(101955) Bennu 81.5% 18.5% 0.0% 0.0% 0.0%
1992 BF 70.2% 27.5% 2.3% 0.0% 0.0%
Golevka 15.9% 21.7% 39.6% 22.8% 0.0%
2009 BD 78.8% 21.2% 0.0% 0.0% 0.0%
Apollo 60.3% 21.1% 18.6% 0.0% 0.0%
Aten 68.6% 28.8% 2.7% 0.0% 0.0%
Nyx 65.0% 20.2% 5.3% 9.5% 0.0%
Ra-Shalom 29.2% 7.0% 63.8% 0.0% 0.0%
1989 ML 5.7% 94.3% 0.0% 0.0% 0.0%
1999 MN 100.0% 0.0% 0.0% 0.0% 0.0%
Hathor 75.2% 19.2% 5.6% 0.0% 0.0%
1988 EG 60.2% 26.7% 13.1% 0.0% 0.0%
Illapa 45.6% 24.3% 30.1% 0.0% 0.0%
1999 FK21 72.1% 27.9% 0.0% 0.0% 0.0%
Toro 62.9% 27.7% 9.4% 0.0% 0.0%
2005 ES70 63.3% 10.8% 25.9% 0.0% 0.0%
YORP 72.0% 24.4% 3.6% 0.0% 0.0%
2001 MQ3 17.9% 73.9% 5.2% 3.0% 0.0%
Geographos 60.4% 27.8% 11.7% 0.0% 0.0%
1989 UQ 64.2% 15.0% 20.8% 0.0% 0.0%
1991 VE 63.8% 1.3% 34.9% 0.0% 0.0%
Average 58.7% 25.7% 13.9% 1.7% 0.0%
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Figure 3.9: Density as a function of thermal inertia for asteroids Golevka,
Apollo, Ra-Shalom, Toro, YORP, and Geographos. The rectangles corre-
spond to reasonable values of ρ according to the taxonomic type and to a
reasonable range of Γ [Delbó et al., 2007].



Chapter 4

Orbit and Bulk Density of the
OSIRIS-REx Target Asteroid
(101955) Bennu

The Apollo asteroid (101955) Bennu, a half-kilometer near-Earth asteroid
previously designated 1999 RQ36, is the target of the OSIRIS-REx sample
return mission. A prime objective of the mission is to measure the Yarkovsky
effect on this asteroid and constrain the properties that contribute to this
effect. This objective is satisfied both by direct measurement of the accelera-
tion imparted by anisotropic emission of thermal radiation, the first results of
which are reported here, and by constructing a global thermophysical model
of the asteroid to confirm the underlying principles that give rise to this
effect.

Bennu was discovered by the LINEAR asteroid survey in September 1999.
Since then, more than 500 optical observations have been obtained for this
Potentially Hazardous Asteroid (PHA). Moreover, the asteroid was observed
using radar by the Arecibo and Goldstone radio telescopes during three dif-
ferent apparitions. Thanks to this rich observational data set, Bennu has
one of the most precise orbits in the catalog of known near-Earth asteroids.
The exceptional precision of the Bennu orbit allows one to push the horizon
for predicting possible Earth impacts beyond the 100 years typically used
for impact monitoring Milani et al. [2005a], and indeed Milani et al. [2009]
showed that Earth impacts for Bennu are possible in the second half of the
next century. In particular, the cumulative impact probability they found
was approximately 10−3, about half of which was associated with a possible
impact in 2182. However, the occurrence of an impact depends decisively
on the Yarkovsky effect because the prediction uncertainty due to this non-
gravitational perturbations dominates over the orbital uncertainty associated
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with astrometric errors.
The Yarkovsky effect is a subtle nongravitational perturbation that pri-

marily acts as a secular variation in semimajor axis and thus causes a runoff
in orbital anomaly that accumulates quadratically with time Bottke et al.
[2006]. The computation of the Yarkovsky perturbation requires a rather
complete physical model of the asteroid, including size, shape, density, spin
rate and orientation, thermal properties, and even surface roughness Rozitis
and Green [2012]. Though such a complete profile is rarely available, the or-
bital drift due to the Yarkovsky effect can sometimes be determined from an
asteroid observational data set. For example, Chesley et al. [2003] managed
to directly estimate the Yarkovsky effect for asteroid (6489) Golevka by us-
ing three radar apparitions. Vokrouhlický et al. [2008] employ the Yarkovsky
effect to match precovery observations of asteroid (152563) 1992 BF that
are incompatible with purely gravitational dynamics. More recently Nugent
et al. [2012b] and Farnocchia et al. [2013b] have estimated the Yarkovsky
effect for a few tens of near-Earth asteroids by using a formulation that
depends on a single parameter to be determined from the orbital fit.

Besides Bennu, there are two other asteroids for which possible impacts
are known to be driven by the Yarkovsky effect: (29075) 1950 DA Giorgini
et al. [2002] and (99942) Apophis Chesley [2006]; Giorgini et al. [2008]. The
relevance of the Yarkovsky effect for Apophis is due to a scattering close
approach in 2029 with minimum geocentric distance ∼38000 km. For 1950
DA the influence of the Yarkovsky effect for an impact in 2880 is due to
the long time interval preceding the potential impact. However, no estimate
of the Yarkovsky perturbation acting on these two asteroids is currently
available. To analyze such cases one can use the available physical constraints
for the specific objects, along with general properties of near-Earth asteroids
(e.g., albedo, thermal inertia, bulk density, etc.) to statistically model the
Yarkovsky effect. The orbital predictions and the impact hazard assessment
are then performed by a Monte Carlo simulation that accounts for both
the Yarkovsky effect distribution and the orbital uncertainty Farnocchia and
Chesley [2014]; Farnocchia et al. [2013a]. For Bennu, no such heroics are
required. As we shall see, we now have a precise estimate of the orbital
deviations caused by the Yarkovsky effect, as well as a comprehensive physical
model distilled from numerous investigations.

While the Yarkovsky effect requires a priori knowledge of several physical
parameters to be computed directly, its detection through orbital deviations
can be used to constrain the otherwise unknown physical parameters. When
the spin state is unknown, one can derive weak constraints on obliquity, as
was first shown by Vokrouhlický et al. [2008] for 1992 BF. In cases where
the spin state is well characterized, usually through the combination of radar
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imaging and photometric light curves, the bulk density of the object is cor-
related with the thermal properties and mutual constraints can be inferred,
as was the case for Golevka Chesley et al. [2003]. Rozitis et al. [2013] were
able to jointly model the measured Yarkovsky and YORP effects on (1862)
Apollo, and thereby constrain a number of the body’s physical character-
istics, including axis ratios, size, albedo, thermal inertia and bulk density.
In the case of Bennu, the thermal inertia is known from infrared observa-
tions Emery et al. [2014]; Müller et al. [2012], and so we are able to directly
estimate the mass and bulk density.

4.1 Observational Data and Treatment

4.1.1 Optical Astrometry

We use the 569 RA-DEC astrometric measurements available from the Mi-
nor Planet Center from 1999-Sep-11.4 to 2013-Jan-20.1. We apply the star
catalog debiasing algorithm introduced by Chesley et al. [2010], and data
weights are generally based on the astrometric weighting scheme proposed in
Sec. 6.1 of that paper. In some cases there is an excess of observations from
a single observatory in a single night. In such cases we relax the weights by a
factor of about

√
N/5, where N is the number of observations in the night.

This reduces the effect of the particular data set to a level more consistent
with the typical and preferred contribution of 3–5 observations per night.

Considerable care was taken in identifying outlier observations to be
deleted as discordant with the bulk of the observations. From among the
569 available observations from 43 stations, we reject 91 as outliers, leav-
ing 478 positions from 34 stations in the fits. Figure 4.1 depicts the postfit
plane of sky residuals, highlighting the deleted data. There are an addi-
tional 14 observations, all deleted, that are not depicted in Fig. 4.1 because
they fall beyond the limits of the plot. The manual rejection approach often
deletes an entire batch of data if it appears biased in the mean, thus some
of the deleted points in Fig. 4.1 do not show significant residuals. On the
other hand, some observations are de-weighted relative to the others, and in
some cases these are not deleted, despite the raw residuals being larger than
some rejected observations. In Sec. 4.2.4 we discuss the dependency of the
ephemeris prediction on the outlier rejection approach.
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Figure 4.1: Depiction of Bennu postfit residuals for JPL solution 87. Deleted
observations are depicted with circles around the points. In addition to the obser-
vations shown here, there are 14 deleted observations outside the plot boundaries.

4.1.2 Radar Astrometry

The time delay and Doppler shift of radar echoes from Bennu were measured
in 1999, 2005 and 2011. Radar astrometry was obtained at both Arecibo
and Goldstone as detailed in Table 4.1. The delay observations in the table
correspond to the round-trip light travel time from the nominal telescope
position to the center of mass of the object, and thus they are often referred
to as range measurements. Doppler measurements in the table reflect the fre-
quency shift between the transmit and receive signals due to the line-of-sight
velocity of the object. The use of radar delay and Doppler measurements in
asteroid orbit determination was introduced by Yeomans et al. [1992].

Delay uncertainties arise from the finite resolution of the imaging of 0.05-
0.125 µs/px Nolan et al. [2013], uncertainty in the shape modeling (to deter-
mine the center of mass from the observed echo power) of 10-20 m, equivalent
to about 0.1 µs, and systematic calibration, including uncertainties in the po-
sition of the telescope and light travel within the telescope optics. Because we
have a shape model of Bennu that directly relates the individual range obser-
vations to the center of figure of the model Nolan et al. [2013], the systematic
uncertainties dominate the range uncertainty in the 1999 and 2005 observa-
tions, and are assigned conservative values of 1.0 and 0.5 µs (respectively).



4.1. OBSERVATIONAL DATA AND TREATMENT 57

In 2011, Bennu was much farther away than the previous observations, and
the uncertainty of 2 µs is from the pixel scale of the observations. Doppler
uncertainties are taken to be 1 Hz at 2380 MHz, about 1/4 of the total ro-
tational Doppler width of the object, and are based on the uncertainty of
estimating the position of the center of mass of the spectra.

The 2011 observations (Fig. 4.2 and Table 4.2) were of too low resolution
and SNR to be useful for shape modeling and were obtained solely for im-
proving our knowledge of the orbit of Bennu. The 2-µs (300 m) resolution
was chosen to be the finest resolution that would maximize the SNR of the
observations by including all of the echo power from the 250-m radius as-
teroid in one or two range bins. The asteroid was visible with a SNR > 3
on each of the three observing dates at consistent delay and Doppler offsets
from the a priori ephemeris used in the data taking.

The 2011 radar observations of Bennu, which enabled the results of the
present paper, almost never happened. The two-million-Watt, 65,000-Volt
“power brick” that supplies the electricity for the Arecibo Planetary Radar
system failed in late 2010, and was finally repaired on September 15, 2011.
Because of the critical schedule for Bennu observations, in a space of seven
days the 16-ton unit was trucked 800 miles from Pennsylvania to Florida,
shipped to Puerto Rico, trucked again, and lifted into place with a crane. The
system was reconnected and recommissioned in four days, after nearly a year
of down-time, just in time to perform the observations on the last possible
dates of September 27–29, and just as the prime contractor managing the
Arecibo Observatory was changing (on October 1), after 45 years of operation
by Cornell University, so that most observatory operations were frozen for
the transition.

Figure 4.2: Arecibo delay-Doppler detections of Bennu from 2011-Sep-27,28,29.
Doppler frequency increases to the right and delay increases upwards. Image
resolution is 1 Hz× 1µs.
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4.2 Orbit Determination and Dynamical Model

We have updated the orbit determination for Bennu based on the observa-
tional data set described above. These orbital position measurements place
extraordinary constraints on the orbit determination, and thus we must pay
careful attention to the fidelity of force models, observation models and nu-
merical integration. Our dynamical model includes direct solar radiation
pressure and the thermal re-emission of absorbed solar radiation (i.e., the
Yarkovsky effect). Besides the gravitational acceleration of the Sun, we in-
clude Newtonian perturbations by the eight planets, the Moon, Pluto and 25
selected main belt asteroids. We consider the oblateness term of the Earth’s
geopotential and full relativistic perturbations from the Sun, eight planets
and the Moon.

As shown by Giorgini et al. [2002], who studied the potential impact of
29075 (1950 DA) in the year 2880, other potential dynamical perturbations,
such as galactic tide, solar mass loss and solar oblateness, are too slight
to affect our results. This is because these small effects, which were not
important for 1950 DA, will be even less significant for Bennu due to the
much shorter time interval.

4.2.1 Yarkovsky Effect

The Yarkovsky effect is a key consideration when fitting an orbit for Bennu
Milani et al. [2009]. This slight nongravitational acceleration arises from the
anisotropic re-emission at thermal wavelengths of absorbed solar radiation
Bottke et al. [2006]. The component of the thermal recoil acceleration in the
transverse direction acts to steadily increase or decrease the orbital energy,
leading to a drift in semimajor axis da/dt that accumulates quadratically with
time in the orbital longitude of the asteroid. For a uniform, spherical asteroid
on a known orbit, the drift rate depends on the physical characteristics of
the asteroid according to

da

dt
∝ cos γ

ρD
,

where γ is the obliquity of the asteroid equator with respect to its orbital
plane, ρ is the bulk density of the asteroid, and D is the effective diameter.
Additionally, da/dt depends in a nonlinear and often nonintuitive way on
the asteroid rotation period P and the surface material properties, namely
thermal inertia Γ, infrared emissivity ε and Bond albedo A Vokrouhlický
et al. [2000a].

We have three models available to us for computing thermal accelerations
on Bennu. The first, and most straightforward, is to simply apply a trans-



4.2. ORBIT DETERMINATION AND DYNAMICAL MODEL 59

verse acceleration of the form AT × (r/1 au)−d, where AT is an estimable
parameter, r is the heliocentric distance and the exponent is typically as-
sumed as d = 2 to match the level of absorbed solar radiation. Given an
estimated value of AT and the assumed value of d, one can readily derive
the time-averaged da/dt using Gauss’ planetary equations Farnocchia et al.
[2013b]. This approach, which we term the transverse model, is computation-
ally fast and captures the salient aspects of the thermal recoil acceleration.
Importantly, it requires no information about the physical characteristics or
spin state of the asteroid, and so it can be implemented readily in cases where
only astrometric information is available Chesley et al. [e.g., 2008]; Farnoc-
chia et al. [e.g., 2013b]; Nugent et al. [e.g., 2012b]; Vokrouhlický et al. [e.g.,
2008].

For Bennu we find numerically that the exponent d = 2.25 provides the
best match to the transverse thermal acceleration derived from the thermal
re-emission models described below. This result can also be computed ana-
lytically using a simplified model with the technique described in Appendix
A. Using the transverse model with d = 2.25 we derive JPL solution 87 (Ta-
ble 4.3), which serves as a reference solution as we investigate the effect of
various model variations on the orbit.

JPL solution 87 yields a Yarkovsky drift estimate that compares well
with the corresponding result from Milani et al. [2009], who used observa-
tions only through mid-2006 and found da/dt = (−15± 9.5)× 10−4 au/Myr,
which was judged to be a weak detection of the nongravitational acceleration.
Using the same fit span (1999–2006) from the current data set we now find
da/dt = (−22.9 ± 5.3) × 10−4 au/Myr. The change in the estimate relative
to that of Milani et al. [2009] is due in large part to the use of star catalog
debiasing Chesley et al. [2010], while the improved precision is due to the
higher accuracy and quantity of radar delay measurements obtained through
re-measurement of the 1999 and 2005 Arecibo observations, as well through
as the use of tighter weights on the optical data proposed by Chesley et al.
[2010]. Incorporating the subsequent optical observations through 2013 leads
to da/dt = (−21.3 ± 4.6) × 10−4 au/Myr. Finally, adding the 2011 Arecibo
radar astrometry reduces the uncertainty by nearly a factor 50, leading to the
current best estimate da/dt = (−19.0±0.1)×10−4 au/Myr. We note that the
new formal uncertainty on da/dt is 0.5%, by far the most precise Yarkovsky
estimate available to date. As well, the uncertainty on the semimajor axis
a is 6 m, the lowest value currently found in the asteroid catalog. This low
uncertainty is primarily a reflection of the current precision of the orbital
period (2 ms) rather than an indication of the uncertainty in the predicted
asteroid position, which is at the level of a few kilometers during the fit span.

Both our second (linear) and third (nonlinear) Yarkovsky acceleration
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models employ heat transfer models of different levels of fidelity in order to
predict the surface temperature and associated re-emission of thermal energy.
The linear model utilizes linearized heat transfer equations on a rotating ho-
mogeneous sphere, closely following the development given by Vokrouhlický
et al. [2000b] for both the diurnal and seasonal components of the Yarkovsky
effect. The linear model requires knowledge of the spin orientation and rate,
asteroid diameter and thermal inertia, but does not allow for shape effects
such as self-shadowing and self-heating, which are generally considered mi-
nor. The linear model assumes a sphere, and so oblateness effects are not
captured. This is relevant because the cross-sectional area receiving solar
radiation is increased for an equal volume sphere relative to that of an oblate
body, and thus the force derived with the linear model is enhanced relative
to the nonlinear model. This in turn leads to an increased estimate of the
bulk density as we shall see later.

The nonlinear model is the highest fidelity Yarkovsky force model that
we apply to the orbit determination problem. This approach solves the non-
linear heat transfer equation on a finite-element mesh of plates or facets that
models the Nolan et al. [2013] asteroid shape. The approach is described in
more detail by Čapek and Vokrouhlický [2005], but we summarize it here. For
each facet on the asteroid shape model, the nonlinear heat transfer problem
is solved while the asteroid rotates with a constant spin rate and orienta-
tion and revolves along a frozen, two-body heliocentric orbit. A uniform
temperature distribution is assumed at start-up and the temperature and
energy balance between absorbed, conducted and re-radiated radiation for
each facet is solved as a function of time. The heat transfer problem is treated
as one-dimensional, i.e., the temperature for a given facet depends only on
the depth below the facet. There is no conduction across or between facets.
After several orbital revolutions the temperature profile from revolution to
revolution converges for each plate. Following convergence, diurnal averaging
of the vector sum of the thermal emission over the body yields the force of
thermal emission as a function of orbital anomaly. Given the shape model
volume and an assumed bulk density, the mass can be computed and from
this the thermal recoil acceleration. This ultimately leads to a lookup table
of acceleration as a function of true anomaly that is interpolated during the
high-fidelity orbital propagation.

The nonlinear model was previously used with asteroid (6489) Golevka
Chesley et al. [2003], but at that time the acceleration table was for a frozen
orbit, which turns out to be an unacceptable approximation for Bennu. Fig-
ure 4.3 shows the orbital element variations into the future due to planetary
perturbations and Fig. 4.4 reveals the associated variation in the average
da/dt, which is clearly significant relative to the 0.10× 10−4 au/Myr uncer-
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tainty. As a result of this analysis we have implemented an enhancement to
the nonlinear model that corrects the tabulated accelerations for variations
in orbital elements. The approach is to compute the Yarkovsky force vector
from a linearized expansion about a central, reference orbit according to

~FY (a, e; fi) = ~FY (a0, e0; fi) +
∂ ~FY (a0, e0; fi)

∂a
(a−a0) +

∂ ~FY (a0, e0; fi)

∂e
(e− e0).

Here ~FY is the thermal acceleration in the orbit plane frame so that
variations of the Keplerian Euler angle orbital elements (ω, Ω, i) do not affect

the computation; ~FY is rotated to the inertial frame during the propagation.
The fi are the true anomaly values in the tabulation, a0 and e0 are the values
for the reference orbit. The partial derivatives are also tabulated after they
are derived by finite differences based on a series of pre-computed lookup
tables for varying orbits ~FY (a0 ± δa, e0 ± δe; fi).
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Figure 4.3: Time history of the osculating Bennu orbital elements, a, e and i,
through 2136. The effects of Earth encounters are evident and can be cross-
referenced with Table 4.8.

When computing an orbit with the linear or nonlinear model we use the
physical parameters listed in Table 4.4, and for the nonlinear model we also
use the Nolan et al. [2013] shape model. The bulk density ρ is estimated as
a free parameter. Because the semimajor axis drift da/dt is constrained by
the observations at the 0.5% level, any variations in the force computed by
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Figure 4.4: Time history of the Bennu semimajor axis drift da/dt through 2136.
The variations arise from orbital changes induced by Earth encounters as depicted
in Fig. 4.3.

the thermal models manifests as a variation in the estimated bulk density.
This is discussed in greater detail in Sec. 4.3.

JPL solution 85 (Table 4.3) uses the nonlinear model, and is assumed to
be our most accurate orbital solution. To indicate the differences between
the two models, Fig. 4.5 depicts the estimated thermal recoil accelerations
from the nonlinear and linear models. The plot reveals an excellent agree-
ment between the two models in the transverse acceleration, which is to be
expected since the transverse component is constrained by the observed or-
bital runoff and the associated semimajor axis drift. The radial and normal
(out-of-plane) accelerations show a good but imperfect agreement, with lin-
ear model accelerations being noticeably reduced relative to the nonlinear
model.

Figure 4.6 shows how the radial and transverse accelerations in the linear
model affect the instantaneous and average values of da/dt, as derived from
the classical Gauss planetary equations. During a given orbit, the variations
in the instantaneous drift rate are much larger from the transverse compo-
nent. The normal component of acceleration does not affect the semimajor
axis. While the radial component of acceleration does lead to variations in
semimajor axis during an orbital period, in the mean the radial term does
not contribute to semimajor axis drift, which is a classical result if the radial
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Figure 4.5: Yarkovsky accelerations as a function of heliocentric distance, accord-
ing to the linear and nonlinear Yarkovsky models.

0 60 120 180 240 300 360
−50

−40

−30

−20

−10

0

10

Mean Anomaly − deg

d
a

/d
t 

−
 1

0
−

4
 a

u
/M

y
r

0.9 1 1.1 1.2 1.3
−50

−40

−30

−20

−10

0

10

Heliocentric Distance − au

d
a

/d
t 

−
 1

0
−

4
 a

u
/M

y
r

 

 

Total

Transverse

Radial

Mean

Figure 4.6: The variation of da/dt stemming from the transverse and radial com-
ponents of the Yarkovsky acceleration. The linear Yarkovsky model is depicted.



64 CHAPTER 4. (101955) BENNU

accelerations are symmetric about perihelion. However, Fig. 4.5 reveals that
symmetry is not necessarily present in this case. There is a slight hysteresis
in the radial acceleration profile for the linear model, but because the curve
crosses itself the integrated area under the curve in one orbit nets to ap-
proximately zero. In contrast, the nonlinear radial acceleration has a more
significant hysteresis that does not sum to zero, and thus the radial compo-
nent of acceleration actually contributes to da/dt in the mean. This behavior
is presumably associated with the fact that thermal energy penetrates more
deeply below the asteroid surface around perihelion when the absorbed ra-
diation is greatest, which leads to greater thermal emission post-perihelion
that pre-perihelion. We find that in the nonlinear model the radial acceler-
ation increases da/dt by 0.3%, which is not negligible relative to the 0.5%
precision of the estimate. The result is that the transverse component must
contribute 0.3% more in magnitude to compensate. With the linear model
the radial contribution to da/dt is 60 times less.

Table 4.5 shows the variation in estimated da/dt associated with the
different Yarkovsky models. JPL solution 87 (d = 2.25) is the reference
solution for the comparison, and the linear and nonlinear models yield da/dt
values within 0.03%, less than a tenth of the formal uncertainty. The result
for the typical default value d = 2 is also tabulated and agrees well. This is
not surprising since the astrometry provides a strong constraint on da/dt that
the models must accommodate. At this level of precision, the averaged da/dt
may not be the best means of quantifying the Yarkovsky effect because the
mean value changes as the orbit undergoes strong planetary perturbations
(Figs. 4.3 and 4.4). Nonetheless, it is informative when comparing objects
and assessing the scale of the Yarkovsky effect and so we continue to use it
here.

As discussed in Sec. 4.4, Bennu will have a close approach to Earth in
2135 at around the lunar distance. Table 4.5 also lists the variation in the
2135 b-plane coordinates (ξ2135, ζ2135) associated with the different Yarkovsky
models. We describe these coordinates more fully later, but the salient point
is that ∆ζ2135 reveals the importance of the model variation for long term
predictions, while ∆da/dt reflects the relevance to the orbital estimate over
the fit span from 1999-2013.

In addition to the Yarkovsky effect, our dynamical model also includes
another nongravitational perturbation related to solar radiation, namely di-
rect solar radiation pressure Vokrouhlický and Milani [SRP, 2000]. Based
on the Nolan shape model and the mass estimate discussed in Sec. 4.3, we
assume an area-to-mass ratio of 2.59 × 10−6 m2/kg, which leads to an ac-
celeration of 1.2 × 10−11 m/s2 at 1 au, an order of magnitude greater than
the radial acceleration from thermal re-emissions (see Fig. 4.5). Reflected
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radiation pressure is negligible due to the 1.7% Bond albedo of the body
Emery et al. [2014]. Even though the acceleration of SRP is several times
greater than that from thermal re-emission, it has little effect on the orbital
predictions as it is perfectly aliased with the solar gravity. Turning SRP
on and off changes the estimated semimajor axis (by ∼ 67σ) but leaves the
mean motion unchanged. Thus there is only a minor effect on the trajectory
from eliminating solar radiation pressure from the force model (by assuming
an area-to-mass ratio of zero), as can be seen in Table 4.5 under the entry
labeled Area/Mass= 0.

4.2.2 Gravitational Perturbers

The gravitational effects of the Sun, eight planets, the Moon and Pluto are
based on JPL’s DE424 planetary ephemeris Folkner [2011]. The use of the
older DE405 planetary ephemeris Standish [2000] leads to a modest variation
in the estimated da/dt and the predicted ζ2135 as indicated in Table 4.5.

When Bennu is near the Earth we modeled the gravitational perturbation
due to Earth oblateness. Table 4.5 indicates the effect of varying the distance
within which the oblateness model is included. We found that unless the
effect was included whenever the asteroid is closer than 0.3 au there is a
modest but discernible effect on the orbit determination and propagation.
As a result we used a 1 au cutoff as our baseline.

Perturbing asteroids were also included in the force model. Using DE424,
we developed mutually perturbed trajectories of the four largest asteroids
(1 Ceres, 2 Pallas, 4 Vesta and 10 Hygeia) and designated this perturber
model the CPVH small body ephemeris. We then computed the orbits for
the next 12 largest main belt asteroids, each of which was perturbed only
by DE424 and CPVH. The combination of these 12 additions with CPVH
formed a perturber list of the 16 most massive asteroids (based on current
mass estimates), and we refer to this perturber model as BIG-16. Finally,
we added nine more asteroids, which were selected according to an analysis
of which perturbers could most significantly influence the orbit of Bennu.
The final nine asteroid ephemerides, each perturbed by DE424 and BIG-16,
were combined with BIG-16 to form our final, baseline perturber set of 25
asteroids.

Table 4.5 indicates the effect on the estimated value of da/dt due to
changing the perturber model to either BIG-16 or CPVH. In either case the
effect is small and far less than the 0.5% formal uncertainty. Table 4.6 lists
the assumed masses for each of the asteroid perturbers, as well as the effect of
deleting each one of them from the perturber model. From this table one can
see that, besides the very large contribution of 1 Ceres, 2 Pallas and 4 Vesta,
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only two other asteroids affect da/dt at more than 0.1σ, namely 6 Hebe and
7 Iris. Beyond CPVH, the accumulation of smaller and smaller contributions
tends toward a zero mean. This is not surprising, and is a fortuitous result of
the low aphelion distance (1.36 au) of Bennu, which limits the perturbations
of the main asteroid belt.

4.2.3 Relativity

We used a full relativistic force model including the contribution of the Sun,
the planets, and the Moon. More specifically, we used the Einstein-Infeld-
Hoffman (EIH) approximation Moyer [2003]; Soffel et al. [2003]; Will [1993].
Table 4.5 shows the variations in da/dt and ζ2135 associated with different
relativistic models. We found a 1.6% difference in da/dt with respect to the
basic Sun-only Schwarzschild term [Damour et al., 1994, Sec. 4]. This is
only in small part due to the switch to the improved model for the Sun, as
the contribution of some of the planets is not negligible. In particular, the
Earth’s relativistic terms are responsible for a 1.5% (∼ 3σ) variation because
of significant short range effects during Bennu Earth approaches in 1999 and
2005. Figure 4.7 shows the main relativistic terms and compares them to the
Yarkovsky perturbation. Clearly, the relativistic effects of the Sun are very
important, about two orders of magnitude greater than Yarkovsky, though
it matters little whether the Schwarzschild or EIH approximation is used.
The Earth’s relativistic terms are at the same level as Yarkovsky during
the Earth encounters in 1999 and 2005. At other times, Jupiter and Venus
perturbations are generally more significant, although even the lunar term
can briefly exceed them during close Earth encounters.

The Yarkovsky effect is primarily a transverse acceleration and thus the
transverse component of the relativistic perturbations can alias as Yarkovsky
if not properly modeled. Figure 4.8 depicts how the transverse component
of Earth relativistic perturbation during the 1999 close approach is several
times greater than the transverse acceleration associated with the Yarkovsky
effect. Because the modeled semimajor axis drift is an integral of the two
curves in Fig. 4.8, neglecting Earth relativity leads to significant errors.

Table 4.5 indicates that Earth’s relativity term is the most significant
factor among all of those considered, at least on longer timescales as indicated
by ∆ζ2135. On shorter timescales, i.e., during the fitspan, Table 4.6 reveals
that the perturbation of Vesta leads to a greater change in ∆da/dt than
Earth relativity, although Earth relativity is still more important than Vesta
for longer integrations. The uncertainty in both of these perturbations is
negligible.
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Figure 4.7: Comparison of the Yarkovsky effect with the relativistic perturbations
on Bennu. The magnitude of the respective accelerations is plotted.
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Figure 4.8: Comparison of the transverse perturbations from the Yarkovsky effect
and the relativistic component due to the Earth. Earth relativity can be signif-
icantly greater in magnitude than the Yarkovsky effect during Earth encounters,
and thus provides a statistically significant change in semimajor axis that must be
accounted for in the dynamical model.
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4.2.4 Outlier Treatment

The selection of outliers has a statistically significant effect on the orbital pre-
diction. To explore this sensitivity, we have generated for comparison several
orbital solutions with a variety of automatic outlier rejection parameter set-
tings. These are summarized in Table 4.5, which lists the χrej parameter
value used in the algorithm described by Carpino et al. [2003]. The outlier
rejection threshold χrej is similar to the sigma level at which outlier rejec-
tion takes place, but the algorithm is more sophisticated than simple sigma
clipping. The number of observations deleted in the various cases is also
tabulated. The importance of careful attention to statistical outliers is in-
dicated by the fact that the solutions are seen to progress steadily towards
solution 87 as progressively more stringent requirements are placed on the
outlier selection. In terms of estimated da/dt, the most inclusive approach to
outliers falls about 0.5σ from the solution 87 estimate. However, even a cur-
sory inspection of the data indicates that numerous spurious points remain
in the fit for that solution. While the manual outlier rejections in solution 87
are more aggressive than even the most stringent automatic selections (e.g.,
χrej = 1), the separation between these two solutions is slight, and both are
very well constrained by the observational data, with 478 and 519 optical ob-
servations, respectively. Most of the movement in the orbital predictions due
to outlier treatment can be traced to a small handful of observatories with
significantly biased observations. In general, the manual approach deletes
more observations because it often removes the entire contribution from a
problematic observatory, rather than only those that are clearly discordant
with the bulk of the data.

4.2.5 Numerics and Software Validation

Giorgini et al. [2002] show that numerical integration errors are not significant
for the case of the year 2880 potential impact of 1950 DA. We reach the same
conclusion for Bennu by varying the integration error tolerance used in our
software. Table 4.5 shows that the estimated value of da/dt is not materially
affected by integrator tolerance values ≤ 10−14.

All of the results in this paper are based on the outputs of the JPL or-
bit determination and propagation software package. We have verified our
primary JPL results by careful cross-referencing with comparable results ob-
tained with the OrbFit orbit determination and integration package1. We
compared the orbital solutions, the sensitivity to different settings of the dy-

1See http://adams.dm.unipi.it/orbfit; we used the OrbFit version 4.3, which is still in
beta testing.
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namical model, and the orbit propagation, and we found that these two inde-
pendent software packages reproduce each other’s results very well. Indeed,
the comparison with the OrbFit software package revealed to us the critical
importance of the Earth general relativity terms in the dynamical model.
After resolving modeling discrepancies, we found that the determinations of
AT from the orbital fits was consistent to better than 0.1%, corresponding
to < 0.2σ in da/dt. We are therefore confident that our findings are not
corrupted by software bugs.

4.3 Mass, Bulk Density and Implications

The linear and nonlinear Yarkovsky models both require the asteroid bulk
density ρ, which was initially unknown. However, since all other parame-
ters in the model are independently known, we can estimate this quantity.
We used the linear model to compute JPL solution 86, with an associated
bulk density estimate of 1314 kg/m3. Similarly, we used the more accurate
nonlinear model to obtain JPL solution 85 (Table 4.3), which includes an
associated bulk density estimate ρ = 1181 kg/m3. The discrepancy between
the two models is a combination of factors, but overall implies that the lin-
ear model overestimates the transverse Yarkovsky force by about 11% and
thus the estimated value of ρ is increased to maintain the required mean
da/dt. Of particular importance is the oblateness of the Bennu shape model.
This flattening leads to a diminished cross-sectional area, which tends to re-
duce the energy input and thereby reduce the thermal recoil acceleration in
the nonlinear model. According to the theory of Vokrouhlický [1998a] this
should account for a 5–10% error. Additionally, the linearization of the heat
transfer problem tends to slightly increase the thermal emissions Čapek and
Vokrouhlický [2005], which readily accounts for the remaining discrepancy.

The uncertainty in the bulk density estimate is a complex story due to
the numerous parameters that are used in formulating the estimate. The
formal uncertainty that is obtained directly from the orbit determination
(Table 4.3) captures only the 0.5% uncertainty in the semimajor axis drift,
and does not account for the more significant sources of uncertainty outlined
in Table 4.4. The final column of that table indicates how the associated
parameter uncertainty maps into the bulk density uncertainty, from which we
conclude that the uncertainty in thermal inertia and asteroid size dominate
over other error sources.

As described in Sec. 4.2.1, for a sphere we are sensitive to the product ρD
and so the density estimate varies inversely with the asteroid size, in contrast
to other density estimates that are derived from the asteroid volume. For
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a non-spherical shape the Yarkovsky acceleration actually depends on the
quotient of the radiative cross-sectional area and the volume A/V , rather
than 1/D, and yet the contribution to bulk density is still linear.

In contrast, the bulk density dependence on thermal inertia is markedly
nonlinear (Fig. 4.9). The thermal inertia of Bennu is Γ = 310±70 J m−1 s−0.5 K−1

Emery et al. [2014]. This value is derived from analysis of a suite of observa-
tions of thermal flux, consisting of 8–20 µm spectra of opposite hemispheres
and photometry at 3.6, 4.5, 5.8, 8.0, 16, and 22 µm of 10 different longitudes
using the Spitzer Space Telescope. The thermophysical modeling that results
in this thermal inertia estimate incorporates the detailed shape and spin in-
formation derived from radar imaging and visible light curve photometry,
and explicitly includes the effects of macroscopic surface roughness.
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Figure 4.9: The bulk density estimate for Bennu depends nonlinearly on the esti-
mated thermal inertia Γ. Neglecting surface roughness, we obtain a bulk density
estimate of 1180 kg/m3. However, taking into account the assumed Yarkovsky
enhancement from roughness, as well as uncertainties in obliquity, diameter and
thermal inertia, we obtain 1260± 70 kg/m3 as depicted here.

Previous estimates of Bennu’s thermal inertia Emery et al. [2010, 2012];
Müller et al. [2012] are somewhat higher (∼ 600 J m−1 s−0.5 K−1), and have
led to correspondingly lower bulk density estimates Chesley et al. [e.g., 970
kg/m3, 2014]. There are two primary reasons for the different thermal inertia
values. First, the earlier studies used only a subset of the Spitzer data,
namely the spectra. Those spectra are noisy, making it difficult to scale
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the different segments of the full spectra relative to each other. Different
scale values affect the best-fit model surface temperature distribution, and
therefore the derived thermal inertia. In contrast, Emery et al. [2014] include
the large set of photometric data, which have much higher signal-to-noise
than the spectral data, leading to results that are both more accurate and
have significantly smaller uncertainties. Note that if the uncertainties in scale
factors are included in the uncertainty estimates from the spectral data, the
error bars overlap the Emery et al. [2014] estimate given above. Second, the
earlier estimates assumed a spherical shape for Bennu. However, Bennu is
actually fairly oblate Nolan et al. [2013]. The oblateness causes surface facets
to be tilted farther away from the Sun as compared to a sphere. The models
assuming spherical shape compensate for the more direct viewing geometry
with a lower thermal inertia. For these reasons, we rely here on the updated
thermal inertia from Emery et al. [2014].

The effects of surface roughness on Bennu are not incorporated into the
ρ estimates so far, and yet Rozitis and Green [2012] used a sophisticated
thermophysical model to show that the thermal effects of surface roughness
always tend to increase the Yarkovsky effect. For the Bennu shape model
with the roughest surface model the increase in ρ is 12.7% at the nominal
thermal inertia (see Fig. 4.10), pointing to roughness as the dominant source
of uncertainty.

Although we have no rigorous estimates of Bennu’s roughness, it is un-
likely to be either remarkably smooth or extremely rough. The thermal
inertia from Emery et al. [2014] is somewhat lower than that derived for
(25143) Itokawa Müller et al. [2005], which suggests that Bennu could have
a somewhat smoother surface texture than Itokawa. Elsewhere, Nolan et al.
[2013] find that the radar circular polarization ratio, which is a proxy for
near-surface roughness at the scale of the radar wavelength (12.6 and 3.5
cm), indicates a relatively smooth surface compared to other bodies that
are not particularly rough. In particular, they find Bennu has significantly
lower polarization ratios than Itokawa at both wavelengths and conclude that
Bennu is likely smoother than Itokawa. However, Nolan et al. [2013] did iden-
tify a boulder on Bennu with a size of 10–20 m, suggesting the presence of
smaller boulders below the resolution limit of 7.5 m and a surface that is not
perfectly smooth. In the absence of reliable estimates, we assume that the
roughness is 50±17%, which covers the full range 0–100% at 3σ. This yields
the “Enhanced” curve in Fig. 4.9. Inflating the reference value ρ = 1181
kg/m3 by 50% of the 12.7% enhancement yields our best estimate of 1255
kg/m3.

To develop a comprehensive estimate of the uncertainty in the presence
of the nonlinearity evident in Fig. 4.9 we take a Monte Carlo approach.
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Figure 4.10: Yarkovsky effect enhancement due to 100% surface roughness as a
function of thermal inertia.

We sample Γ, A/V and γ according to the normal distributions given by
Table 4.4. We obtain the Yarkovsky enhancement for each case by sampling
a roughness from 50±17% and using it to scale the 100%-rough enhancement
(from Fig. 4.10) at the sampled thermal inertia. This leads to our final bulk
density estimate of ρ = 1260 ± 70 kg/m3. The associated mass, GM and
area-to-mass ratio values are listed in Table 4.7.

We assume that the Yarkovsky effect is the only significant source of non-
gravitational acceleration on Bennu, and in particular we do not account for
the possibility of outgassing, which would corrupt our bulk density estimate if
it were significant. If the direction of any hypothetical outgassing is skewed
towards the evening terminator, which might be expected as the diurnal
thermal wave penetrates to release buried volatiles, then it would combine
to increase the magnitude of the transverse acceleration on the asteroid. In
this case, the bulk density estimate should be increased to account for out-
gassing. Conversely, if the outgassing tends to cancel the transverse thermal
recoil acceleration then our bulk density estimate will be an overestimate.

3200 Phaethon, a B-type asteroid like Bennu, has long been identified as
the parent body of the Geminid meteor shower Whipple [1983]. This sug-
gests that at least some objects of this taxonomic type have the possibility
of shedding material, possibly as fine-grained material entrained in gasses
released by the sublimation of volatiles. However, the only report of possible
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dust release on Phaethon took place at a heliocentric distance of 0.14 au,
and it has been suggested that the Geminids are shed from Phaethon due
to fracturing associated with fatigue from thermal cycling and the decompo-
sition of hydrated minerals Jewitt and Li [2010]. There is no evidence that
Bennu is shedding material and, with q ' 0.9 au, solar heating is markedly
lower than that experienced by Phaethon. Therefore, we do not consider it
likely that outgassing is significantly affecting our results.

Is the estimated GM in Table 4.7 consistent with loose material on the
equator being gravitationally bound to the surface? Nolan et al. [2013] re-
port that the maximum equatorial diameter is 565 m. From this and the
known spin rate we find a lower bound of GM = 3.7 m3/s2 if we assume
that the gravitational attraction exceeds the centrifugal acceleration. This
is a reasonable expectation because, as discussed above, we consider it likely
that Bennu’s surface is dominated by cm-scale and smaller regolith. How-
ever, it is difficult to rule out the possibility that some regions along the
equator are devoid of loose material, or that induration or cohesion provides
sufficient binding to keep material on the surface that would otherwise de-
part. Even so, the assumption that material is gravitationally bound to the
surface would imply ρ > 890 kg/m3 which is satisfied here with a high degree
of confidence.

One can compute the macroporosity, P = 1 − ρ/ρM , of an asteroid if
the bulk densities of the body ρ and the appropriate meteorite analog ρM
are known. Bennu has been identified as a B-type asteroid, and CI and CM
carbonaceous chondrite meteorite samples provide the best spectral match
Clark et al. [2011]. Consolmagno et al. [2008] report that CM meteorite sam-
ples have average bulk densities of 2130± 190 kg/m3, which, taken together
with our asteroid bulk density estimate and uncertainty from Table 4.7, sug-
gests P in the range 30–50%. For CI meteorites the data are fewer and less
conclusive, with different measurement techniques leading to sample bulk
densities similar to those of CM meteorites or as low as 1600 kg/m3, which
would allow P to be as low as 20% Consolmagno et al. [2008]. Overall, our
judgement is that the macroporosity of Bennu is likely to be in the range
40± 10%, but could be as low as 20%.

Bennu’s estimated bulk density is comparable to values obtained for other
low-albedo asteroids, from large asteroids in the main asteroid belt to smaller
asteroids in the inner solar system. The average C-type asteroid in the main
belt, according to estimates derived from the gravitational perturbations on
the planets, predominantly Mars, is ρ = 1290 ± 60 kg/m3 Standish [2000].
This estimate is biased toward asteroids with diameters much larger than
100 km, which contain the majority of the mass among C-types. However, a
flyby of the 53-km, C-type asteroid (253) Mathilde by the NEAR spacecraft
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also yielded a similar density ρ = 1300 ± 200 kg/m3 Yeomans et al. [1997].
Furthermore, Marchis et al. [2008a,b] report densities of several C-complex
binary asteroids in the main belt. The summary given by Marchis et al.
[2008a, Table 8] suggests that the density distribution of large, C-complex
binaries is ρ = 1100 ± 300 kg/m3. Among the near-Earth asteroid popula-
tion, Shepard et al. [2006] report that the low-albedo binary system (276049)
2002 CE26 has a 3.5-km primary with bulk density 900+500

−400 kg/m3, which is
comparable within the error bars to that of Bennu.

What do Bennu’s density and porosity tell us? To say anything useful
here, we need to put Bennu into context. Our best estimates suggest Bennu
is a fragment of a larger body that experienced a collision Campins et al.
[2010]; Walsh et al. [2013]. Similarly, the large multiple systems examined
by Marchis et al. [2008a,b] were presumably formed by large collision events
[e.g., Durda et al., 2004]. One would expect these smashed up target worlds,
with porosity added by the fragmentation and ejecta re-assembly process, to
have low bulk densities in comparison to their meteorite analogs, and that the
smallest bodies should tend to still lower density due to self-gravitation and
compaction on the large bodies Baer and Chesley [2008]; Baer et al. [2011b].
However, this size dependence seems to vanish at sizes below roughly 250–300
km, below which no obvious size trend exists in macroporosity, an observation
reinforced by Bennu. With this background, we argue that Bennu’s porosity
was produced by a similar mechanism, consistent with our hypothesis that
void space and porosity were added into Bennu by its formation and/or by
post-formation processes. Taken together, these arguments allow us to infer
that Bennu has a heavily fractured or shattered internal structure combined
with a substantial porosity. These characteristics fit the definition of a rubble
pile asteroid provided by Richardson et al. [2002].

4.4 Earth Close Approaches

The deterministic prediction interval for the trajectory of Bennu extends
for 481 years, from 1654 to 2135. Earth close approaches within 0.05 au
during this time interval are listed in Table 4.8. Close encounters outside of
this interval have encounter time uncertainties well in excess of a day. The
closest approach in this interval is the nominally sub-lunar distance encounter
in 2135. This deep close approach leads to strong scattering of nearby orbits,
and so the subsequent impact hazard can only be explored through statistical
means.

Figure 4.3 shows the time history of Bennu’s orbital elements from 2000
to 2136. There are variations of a few percent due to Earth close approaches,
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especially in 2135. As the Yarkovsky induced orbital drift depends on the os-
culating orbital elements ,see Sec. 3 there are also commensurable variations
in the da/dt evolution (see Fig. 4.4).

Table 4.5 details the effect of various differing models on the b-plane coor-
dinates (ξ2135, ζ2135) of the close approach at the last reliably predicted Earth
encounter for Bennu, which takes place in 2135. The b-plane is oriented nor-
mal to the inbound hyperbolic approach asymptote and is frequently used in
encounter analysis. The (ξ, ζ) coordinates on the b-plane are oriented such
that the projected heliocentric velocity of the planet is coincident with the
−ζ-axis. In this frame the ζ coordinate indicates how much the asteroid is
early (ζ < 0) or late (ζ > 0) for the minimum possible distance encounter. In
absolute value, the ξ coordinate reveals the so-called Minimum Orbital Inter-
section Distance (MOID), which is the minimum possible encounter distance
that the asteroid can attain assuming only changes to the timing of the as-
teroid encounter. For a more extensive discussion of these coordinates see
Valsecchi et al. [2003] and references therein. In Table 4.5, the tabulated
da/dt differences are indicative of the importance of the effect on the 1999–
2012 time frame of the observation set, while ζ2135 provides an indication of
how important the term is for the much longer integration from 2011 to 2135.

4.4.1 Impact Hazard Assessment

The geometry of Bennu’s orbit allows deep close approaches to the Earth,
which require a careful assessment of the associated potential collision hazard.
Figure 4.11 shows the dependence on time of the Minimum Orbit Intersection
Distance Gronchi [MOID, see, e.g., 2005]. According to the secular evolution,
the MOID reaches its minimum near the end of the next century while short
periodic perturbations make it cross the Earth impact cross section threshold
at different epochs from 2100 to 2300, which is therefore the time period for
which we must analyze possible close approaches. This objective is similar
to that discussed by Milani et al. [2009], however we bring new analysis tools
to bear on the problem and we have the benefit of crucial astrometric data
not available in 2009. We recall that Milani et al. [2009] based much of their
analysis on the variability of the 2080 encounter circumstances, finding that,
for the observational data then available, this was the last encounter that
was well constrained, and after which chaotic scattering made linear analysis
infeasible. With the current data set, future encounter uncertainties remain
modest until after 2135 (Table 4.8), and nonlinear analysis techniques are
necessary for subsequent encounters. Thus the 2135 encounter is the central
focus in our current impact hazard assessment.

We performed a Monte Carlo sampling Chodas and Yeomans [1999] in the
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7-dimensional space of initial conditions and bulk density. Figure 4.12 shows
the distribution of the Monte Carlo samples on the 2135 b-plane. The b-plane
plot depicts the geocentric locations of the incoming hyperbolic asymptote
of the Monte Carlo samples on the plane orthogonal to the asymptote, indi-
cating the distance and direction of the closest approach point of a fictitious
unperturbed trajectory Valsecchi et al. [see, e.g., 2003]. The linear map-
ping of the uncertainty region is a poor approximation as we can see from
the asymmetry of the distribution. As expected, the uncertainty region gets
stretched along ζ, which reflects time of arrival variation and is thus related
to the along-track direction.

By propagating the Monte Carlo samples through year 2250 we can deter-
mine the Virtual Impactors (VIs), i.e., the Virtual Asteroids (VAs) compat-
ible with the orbital uncertainty corresponding to an impacting trajectory.
The positions of the VIs in the 2135 b-plane define the 2135 keyholes, which
are the coordinates on the b-plane corresponding to a subsequent impact
Chodas [1999]. On the b-plane of a given post-2135 encounter we can in-
terpolate among nearby samples to identify the minimum possible future
encounter distance. When this minimum distance is smaller than the Earth
radius, the keyhole width is obtained by mapping the chord corresponding to
the intersection between the line of variations and the impact cross section
back to the 2135 b-plane. This procedure allows us to develop a map of the
keyholes in the b-plane. For Bennu we found about 200 keyholes in the 2135
b-plane with widths ranging from 1.6 m to 54 km.

Figure 4.13 shows the probability density function (PDF) of ζ2135 resulting
from the Monte Carlo sampling. As already noted, the linear approximation
is not valid in this case, and so the PDF is distinctly non-gaussian. The figure
also reveals the keyhole map in ζ2135, where the vertical bars correspond to
the keyholes > 100 m in width and the height of the bars is proportional
to the width. For a given keyhole the impact probability (IP) is simply
the product of the PDF and the keyhole width. For each of the 78 keyholes
larger than 100 m and with an IP > 10−10, Table 4.9 reports the impact year,
the keyhole width, the impact probability, and the associated Palermo Scale
Chesley et al. [2002]. The cumulative IP is 3.7 × 10−4 and the cumulative
Palermo Scale is -1.70. There are eight keyholes corresponding to an IP
larger than 10−5. Among these, the year 2196 has the highest IP, 1.3× 10−4,
which arises primarily from two separate but nearby keyholes.

Figure 4.14 shows the dependence of the number of keyholes and the
cumulative IP on the minimum keyhole width. Although the number of
keyholes increases with decreasing minimum width, the cumulative IP is
essentially captured already by only the largest ∼ 10% of keyholes, i.e., those
with width & 1 km.
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Post-2135 Earth encounters correspond to resonant returns Valsecchi et al.
[2003]. Table 4.10 describes the main features of the resonant returns corre-
sponding to an IP > 10−5.

It is important to assess the reliability of our results. On one hand, the
keyholes are essentially a geometric factor that does not depend on the mod-
eling of Bennu’s orbit. On the other hand, the PDF on the 2135 b-plane can
be strongly affected by the dynamical model and the statistical treatment
applied to the observations. Table 4.5 reports the 2135 b-plane coordinates
as a function of the different configurations of the dynamical model and dif-
ferent settings for the removal of outliers from the observational data set.
It is worth pointing out that neglecting the Earth relativistic term produces
a large error comparable to a 3σ shift in the orbital solution. In contrast,
the contribution of solar radiation pressure is rather small. As already dis-
cussed in Sec. 4.2.1, this can be explained by the fact that the action of solar
radiation pressure is aliased with the solar gravitational acceleration, and ne-
glecting solar radiation pressure in the model is therefore compensated when
fitting the orbital solution to the observations. The different Yarkovsky mod-
els give ζ2135 predictions within several thousand kilometers of each other.
Interestingly, the shift due to the different astrometric outlier treatment is
comparable to the one due to the relativistic term of the Earth and much
larger than any shift due to the other dynamical configurations. Table 4.6
shows the effect of removing each of the 24 perturbing asteroids included in
the dynamical model. Ceres, Pallas, and Vesta give the largest contributions.
Among smaller perturbers, Hebe and Iris turn out to be the most important.

We used OrbFit (see Sec. 4.2.5) to cross-check the keyhole locations and
widths, the PDF of Fig. 4.13, and the sensitivity to the different configura-
tions of the dynamical model. We found good overall agreement with only
one noticeable difference related to the PDF: while the PDF shapes are sim-
ilar, the peaks are separated by about 40000 km in ζ2135. This difference is
related to the 0.2σ shift in the nominal solution (see Sec. 4.2.5) and is in part
due to the fact that OrbFit presently uses JPL’s DE405 planetary ephemeris
rather than DE424, which is used in our analysis.

4.4.2 Statistical Close Approach Frequency

We now want to characterize the Earth encounter history for Bennu’s or-
bital geometry. The first step is to understand the statistical properties of
Earth encounters during a node crossing cycle (see Fig. 4.11). For this we
generated a dense sampling of 20,000 Virtual Asteroids on the Solution 87
orbit (Table 4.3), but with a uniform sampling of the mean anomaly from the
full range, 0 to 2π, to randomize the node crossing trajectory. For each VA
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widths given on the right ordinate. For clarity only keyholes wider than 1 km are
labeled with the year of impact and only keyholes > 100 m in width are depicted.
Potential impacts with impact probability greater than 10−5 are marked with a
circle at the top of the vertical bar.
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Figure 4.14: Cumulative impact probability (upper) and cumulative number of
keyholes found (lower), each as a function of diminishing keyhole width. The
cumulative impact probability over all potential impacts is 3.7× 10−4.

we recorded all of the close approaches within 0.015 au during JPL’s DE424
ephemerides time interval, i.e., from year −3000 to year 3000, which contains
only one node crossing cycle.

We modeled the number of Earth approaches within a given distance in
a given time frame as a Poisson random variable. We estimated the Poisson
parameter λ by averaging over the trajectories of the VAs. Figure 4.15 shows
the probability of having at least one close approach within a given geocentric
distance during a node crossing cycle (dashed line). For instance, during each
node crossing cycle we have 38% probability of a close approach within the
lunar distance and a 6×10−4 probability of an impact. This is consistent with
our predictions for the next node crossing taking place around 2200, for which
we have similar probabilities of impact and sub-lunar distance encounters.

To analyze the long-term history we need to account for the secular evo-
lution of Bennu’s orbit. As reported by NEODyS2, Bennu’s perihelion pre-
cession period is 28100 yr and each precession period contains four node
crossings. For a given time interval we can compute the expected number
of node crossings and suitably scale the probability of an encounter within a
given distance during a single node crossing cycle. The solid lines in Fig. 4.15

2http://newton.dm.unipi.it/neodys/index.php?pc=1.1.6&n=bennu
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show the probability of at least one Earth encounter within a given distance
for time intervals of 1 yr, 1000 yr, and 1,000,000 yr. For example, in a 1000
yr time interval the probability of a close encounter within a lunar distance
is 7% while the probability of an impact is 9 × 10−5. This indicates that
for Bennu’s current orbital configuration the mean Earth impact interval is
∼ 10 Myr. Note that the precession period assumed here is for the nominal
orbit of Table 4.3, while the precession period does change due to planetary
interactions. For instance, the nominal semimajor axis increases and the un-
certainty grows after the 2135 encounter, causing the post-2135 precession
period to be in the range 28900–33400 years. Delbò and Michel [2011] ana-
lyze the orbital evolution of Bennu on a much longer time frame than a single
node crossing and find that the median lifetime of Bennu could be ∼ 34 Myr,
but their study allowed for substantial orbital evolution to take place, while
our results are valid for the present-day, un-evolved orbit.
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Figure 4.15: Probability (with corresponding 1σ error bars) of having at least
one close approach (CA) within a given distance for different time intervals. The
dashed curve is for a node crossing cycle, while solid line are for 1 yr, 1000 yr,
and 1,000,000 yr. The Earth radius (R⊕) and lunar distance (LD) are marked by
vertical lines.
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4.5 OSIRIS-REx Science

Continued study of Bennu’s trajectory is a significant element of the OSIRIS-
REx science investigation. In particular, the characterization of the Yarkovsky
effect is planned to be conducted on two tracks. On one track, Earth-based
radio tracking of the spacecraft and optical navigation images of the asteroid
from the spacecraft will be used to derive high-precision asteroid position
measurements. These position updates will afford refined estimates of the
nongravitational accelerations that the asteroid experiences. On the other
track, science observations by the OSIRIS-REx spacecraft will allow the de-
velopment of a complete thermophysical model of the asteroid, yielding a
precise estimate of the thermal recoil acceleration, as well as direct and re-
flected solar radiation pressure acting on the body. A comparison of the
acceleration profile from these two independent approaches will provide sig-
nificant insight into the quality of current thermophysical models, and, for
example, the extent to which surface roughness affects the net thermal recoil
acceleration Rozitis and Green [2012].

But first the OSIRIS-REx must rendezvous with Bennu, and knowledge of
the asteroid position is required for accurate navigation of the spacecraft dur-
ing the initial encounter. Our current prediction calls for Radial-Transverse-
Normal (RTN) position uncertainties of (3.3, 3.8, 6.9) km on 2018-Sep-10,
during the planned OSIRIS-REx rendezvous. These are formal 1-sigma error
bars, and may not account for some unmodelled systematic effects, although
we are not aware of any that are significant. In any case, such low un-
certainties suggest that asteroid ephemeris errors will not be a significant
complicating factor during the OSIRIS-REx rendezvous with Bennu.

To characterize the Bennu ephemeris improvement provided by the OSIRIS-
REx mission, we simulate 8 post-rendezvous, pseudo-range points from the
geocenter to the asteroid center of mass. The simulated measurements are
placed at monthly intervals from 2018-Dec-01 to 2019-Jul-01, and they as-
sume an a priori uncertainty of 0.1 µs in time delay, which translates to 15 m
in range. The trajectory constraints from the OSIRIS-REx radio science ef-
fort are likely to be somewhat better than assumed for this study. Table 4.11
lists the uncertainties obtained before and after the inclusion of these simu-
lated OSIRIS-REx radio science data. We find that the uncertainty in the
transverse nongravitational acceleration parameter AT , and by extension the
uncertainty in the mean da/dt, drops by roughly a factor 6–7, bringing the
precision to better than 0.1%.

The OSIRIS-REx radio science observations will not only refine the Yarkovsky
acceleration acting on the asteroid, but also enable significantly improved
future predictions. Table 4.11 reveals that our current predictions call for
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position uncertainties of a few km at the end of proximity operations on
2020-Jan-04, which could be reduced to under 100 m with the simulated
mission data. The associated velocity uncertainties are of order 1 mm/s with
current information, but could fall by a factor 50 or more with the OSIRIS-
REx data.

Similarly, we find that the OSIRIS-REx radio science data could narrow
the ζ2135 uncertainty region on the 2135 b-plane by a factor ∼ 60. This
would be similar to the reduction in uncertainty seen between the Milani
et al. [2009] paper and the present paper. The implication is that the hazard
assessment will be dramatically altered by the OSIRIS-REx radio science
effort. The self-similar nature of the keyholes on the 2135 b-plane suggest
that the cumulative probability is likely to remain around 10−4, although
if the nominal ζ2135 prediction does not change appreciably the cluster of
relatively wide keyholes near the current nominal (Fig. 4.13) could lead to a
cumulative probability of impact in excess of 10−2.

Besides providing direct radio science position measurements of the aster-
oid, OSIRIS-REx will refine and test other aspects of the Bennu ephemeris
problem. The mission objectives include

• a search for outgassing and the incorporation of any activity into force
models,

• direct measurement of the asteroid mass, providing ground truth for
the mass determination technique presented here,

• precision radiometry of both reflected and thermally emitted radiation
with high spatial resolution, providing ground truth for the thermal
accelerations presented in this paper, and

• analysis of the returned sample, which will provide a direct measure-
ment of the thermal, dielectric, and bulk density of the asteroid surface.

4.6 Discussion and Conclusions

Understanding of an asteroid’s physical properties becomes essential when-
ever the Yarkovsky effect or other nongravitational accelerations are a crucial
aspect of the orbit estimation problem. Radar astrometry of asteroids can
provide surprising and important constraints, not only on an asteroid’s orbit,
but also on its physical properties. In the case of Bennu, this information has
immense value for space mission designers. We have seen that the availability
of well-distributed radar astrometry over time spans of order a decade can
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constrain asteroid orbits to the extent that precise estimates of the Yarkovsky
effect can be derived. When coupled with thermal inertia information de-
rived from other sources, such as the Spitzer Space Telescope, important
parameters such as mass, bulk density and porosity can be derived. Com-
bining Yarkovsky detections with thermal inertia measurements to infer the
asteroid mass can be implemented on other near-Earth asteroids, including
potential space mission targets. This technique is the focus of ongoing work.
Indeed, Bennu clearly demonstrates that even weak radar detections can have
considerable science value, raising the imperative to aggressively pursue every
available radar ranging opportunity for potential Yarkovsky candidates.

Our bulk density estimate for Bennu implies a primitive body with high
porosity of 40± 10%. The implication is that Bennu must be comprised of a
gravitationally bound aggregate of rubble, a conclusion that is reinforced by
its shape, which is spheroidal with an equatorial bulge consistent with the
downslope movement and accumulation of loose material at the potential
minimum found at the equator [Nolan et al., 2013]. This bodes well for
the OSIRIS-REx sample collection effort, which requires loose material at
the surface for a successful sample collection, although nothing in this study
constrains the size distribution of the surface material.

The statistical encounter frequency with Earth (Fig. 4.15) can be used to
understand the rate of encounters that could alter the shape and spin state
of a body through tidal interactions [e.g., Nesvorný et al., 2010; Walsh and
Richardson, 2008]. Scheeres et al. [2005] have shown that tidal interactions
at a distance of 6 Earth radii can appreciably alter the spin state of 99942
Apophis. More distant encounters could still excite the spin state enough
to induce seismic activity, leading to a periodic resurfacing of the asteroid
that may have implications for interpretation of Bennu samples returned by
OSIRIS-REx.

We have seen that the current levels of uncertainty in Bennu’s orbit are
low enough that unprecedented levels of accuracy are required in the dy-
namical model that governs the trajectory. For example, the relativistic
perturbation of planetary gravity fields, in particular that of Earth, must
be incorporated to obtain reliable results. The future addition of OSIRIS-
REx radio science data will again decrease the orbital uncertainties by 1–2
orders of magnitude, which will likely require even finer scale refinements to
our dynamical model than used here. However, difficulties in understanding
the proper statistical treatment of asteroid optical astrometry, and in par-
ticular the identification of statistical outliers, will likely remain a dominant
source of uncertainty that is not properly captured by a posteriori covariance
analysis.

Thus our findings for the post-OSIRIS-REx orbital uncertainties of Bennu
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may be illusory. The finding that ζ2135 uncertainties may be reduced as
low as 1000 km with the OSIRIS-REx radio science data assumes that our
Yarkovsky model, including the asteroid spin state, holds through 2135. Thus
a host of model refinements may be necessary to properly characterize the
trajectory out to 2135. Notwithstanding the next radar observation oppor-
tunity in January 2037, we may reach an uncertainty limit that prevents
us from improving predictions any further until models can improve or the
prediction interval is significantly reduced. As an example, the post-2135
predictability will markedly improve after the 0.005 au Earth close approach
in 2060, and it is reasonable to expect that at least some potential impacts
will persist until that time.
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Table 4.1: Radar Astrometry for (101955) Bennu.

Date & Time Measurement Uncertainty Station
(UTC - Receive) (µsec or Hz) (µsec or Hz)

Delay
2011-09-29 11:55:00 202378520.04 2.0 Arecibo
2011-09-28 11:08:00 199711477.27 2.0 Arecibo
2011-09-27 11:39:00 197293588.79 2.0 Arecibo

2005-10-02 14:10:00 57762582.67 0.5 Arecibo
2005-10-02 12:55:00 57594268.2 0.5 Arecibo
2005-09-28 13:35:00 45734943.4 0.5 Arecibo
2005-09-28 11:57:00 45550976.4 0.5 Arecibo
2005-09-20 11:24:00 33024222.68 0.5 Arecibo
2005-09-20 09:09:00 33024251.3 0.5 Arecibo
2005-09-19 12:50:00 33215505.86 1.0 Goldstone
2005-09-18 12:20:00 33873463. 1.0 Goldstone
2005-09-16 09:27:00 36609699.09 0.5 Arecibo
2005-09-16 08:45:00 36658796.03 0.5 Arecibo

1999-10-01 13:40:00 35441297. 1.0 Goldstone
1999-09-25 12:55:00 17785960.83 1.0 Arecibo
1999-09-25 11:09:00 17634668.28 1.0 Arecibo
1999-09-24 12:23:00 15955075.55 1.0 Arecibo
1999-09-24 10:26:00 15838961.63 1.0 Arecibo
1999-09-23 11:28:00 14846130.16 1.0 Arecibo
1999-09-23 09:36:00 14800106.19 1.0 Arecibo
1999-09-23 09:30:00 14820631. 5.0 Goldstone
1999-09-21 10:20:00 15418454. 10.0 Goldstone

Doppler
2011-09-29 11:55:00 -72841.0156 1.0 Arecibo
2011-09-28 11:08:00 -68554.7858 1.0 Arecibo
2011-09-27 11:39:00 -66400.2088 1.0 Arecibo

2005-09-28 12:00:00 -73137.0697 1.0 Arecibo
2005-09-20 09:06:00 2631.7168 1.0 Arecibo
2005-09-16 08:44:00 47170.7359 1.0 Arecibo

1999-09-21 09:00:00 135959. 5.0 Goldstone

Notes:

• Transmit frequency is 2.38 GHz at Arecibo and 8.56 GHz at Goldstone.

• All measurements are referenced to the body center of mass.

• Measurements are also available online at
http://ssd.jpl.nasa.gov/?radar.
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Table 4.2: Radar observations of Bennu from 2011. Each line gives the UTC
date and start/stop times, the number of transmit-receive cycles (runs), and
the direction and distance to Bennu at the mid-epoch on each date. All
observations used a 2 microsecond baud (corresponding to a range resolution
of 300 meters), an 8191-length code, and JPL/Horizons orbital solution 70.

UTC Date Start Time Stop Time Runs RA (◦) DEC (◦) Distance (au)

2011-Sep-27 10:30:36 12:53:45 21 114.3 +28.3 0.1977
2011-Sep-28 10:34:40 12:56:31 10 116.2 +28.5 0.2002
2011-Sep-29 10:38:31 13:02:29 18 118.1 +28.6 0.2028
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Table 4.3: JPL orbit Solns. 85 and 87 for Bennu, Ecliptic J2000 Frame.

Solution 85 (Nonlinear Yarkovsky Model)
Epoch 2011-Jan-1.0 TDB
Semimajor axis (a) 1.126391025996(42) au
Eccentricity (e) 0.203745112(21)
Perihelion dist. (q) 0.896894360(24) au
Perihelion time (tp) 2010-Aug-30.6419463(30) TDB
Long. of Asc. Node (Ω) 2.0608668(37)◦

Arg. of perihelion (ω) 66.2230699(55)◦

Inclination (i) 6.0349391(27)◦

Bulk Density (ρ) 1181.1(6.3) kg/m3†
χ2 ‡ 68.37

Solution 87 (Transverse Yarkovsky Model, d = 2.25)
Epoch 2011-Jan-1.0 TDB
Semimajor axis (a) 1.126391026404(40) au
Eccentricity (e) 0.203745114(21)
Perihelion dist. (q) 0.896894358(24) au
Perihelion time (tp) 2010-Aug-30.6419468(30) TDB
Long. of Asc. Node (Ω) 2.0608670(37)◦

Arg. of perihelion (ω) 66.2230705(55)◦

Inclination (i) 6.0349388(27)◦

Transverse accel. (AT ) −4.618(24)× 10−14 au/d2

χ2 ‡ 68.73

Notes:
Numbers in parentheses indicate the 1σ formal uncertainties of the corresponding
(last two) digits in the parameter value.
† The bulk density uncertainty is marginal only with respect to the orbital ele-
ments, and is conditional with respect to the physical parameters that can affect
the thermal modeling. In particular, the uncertainties in effective diameter, ther-
mal inertia and obliquity are not captured here, and these lead to a marginal
uncertainty an order of magnitude greater. See Fig. 4.9 and the discussion in
Sec. 4.3.
‡ χ2 denotes the sum of squares of normalized postfit residuals.
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Table 4.4: Physical characteristics of (101955) Bennu and associated
marginal uncertainty in estimate of bulk density ρ. Tabulated error bars
represent assumed 1σ uncertainties.

Parameter Value & Uncertainty Ref. ρ Uncert.

Thermal inertia Γ = 310± 70 J m−1 s−0.5 K−1 A +2.1%/−4.1%
Cross-sectional Area/Volume A/V = 3.06± 0.06× 10−3 m−1 B ±2.0%
Obliquity of equator γ = 175◦ ± 4◦ B +0.4%/−0.9%
Surface emissivity ε = 0.90± 0.05 A ±0.3%
Bond albedo A = 0.017± 0.002 A ±0.2%
Rotation period 4.29746± 0.002 h B ±0.0%

References: A— Emery et al. [2014], B— Nolan et al. [2013]
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Table 4.5: Dynamical Effect of Several Model Variations. The columns in-
dicate the type of model variation and the associated change in semima-
jor axis drift rate da/dt or 2135 b-plane coordinates (ξ2135, ζ2135). Tabu-
lated ∆ values are with respect to JPL solution 87 (Table 4.3), for which
da/dt = −18.973 × 10−4 au/My at epoch 2011-Jan-1.0 and (ξ2135, ζ2135) =
(−125 932 km, 281 597 km).

Model ∆da/dt ∆ξ2135 ∆ζ2135 Remarks
(10−4 au/My) (km) (km)

Yarkovsky Model
Nonlinear -0.004 -43 6251 Soln. 85
Linear 0.006 -16 2096 Soln. 86
d = 2.25 0.000 0 0 Soln. 87
d = 2.00 0.006 -21 3423

Asteroid Perturbations
25 Perturbers 0.000 0 0 Soln. 87
BIG-16 only -0.004 2 -409
CPVH only -0.010 22 -3714

Earth Oblateness Limit
10. au 0.000 0 -70
1. au 0.000 0 0 Soln. 87
0.1 au 0.000 0 -25
0.01 au -0.004 11 -1822
0.001 au -0.004 10 -1703

Relativity Model
Full EIH 0.000 0 0 Soln. 87
Basic Sun Model 0.305 -1128 168469
EIH Sun only 0.295 -1069 160086
w/o Mercury -0.001 1 -240
w/o Venus 0.017 -54 8954
w/o Earth 0.291 -1059 159130
w/o Mars 0.000 0 -43
w/o Jupiter -0.012 46 -7652
w/o Saturn -0.004 11 -1859
w/o Uranus 0.000 -1 168
w/o Neptune 0.000 -0 60
w/o Moon 0.004 -11 1801

Outlier Rejection
χrej = 3 0.049 -537 84670 7 del.
χrej = 2 0.026 -414 65916 15 del.
χrej = 1.5 0.018 -243 39502 24 del.
χrej = 1 0.003 -13 2220 49 del.
Manual 0.000 0 0 91 del., Soln. 87

Integration Tolerance
10−16 0.000 -0 60
10−15 0.000 0 0 Soln. 87
10−14 -0.002 4 -721
10−13 -0.003 -5 831

Other
Area/Mass= 0 -0.001 5 -1122
DE405 w/BIG-16 -0.048 84 -14160

Note: For reference, the formal uncertainty in the da/dt estimate is 0.100× 10−4

au/My and in ζ2135 is roughly 60,000 km.
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Table 4.6: Main belt asteroid perturbers, associated GM values and the
dynamical relevance of each as in the previous table.

Count IAU Name GM ∆da/dt ∆ξ2135 ∆ζ2135

No. (km3/s2) (10−4 au/My) (km) (km)

CPVH
1 1 Ceres 63.13a -0.118 298 -51351
2 2 Pallas 13.73b -0.109 295 -50754
3 4 Vesta 17.29c 0.437 -893 136194
4 10 Hygiea 5.78a 0.002 -11 1661

Additions for BIG-16
5 3 Juno 1.82d 0.002 -8 1126
6 6 Hebe 0.93d 0.019 -65 10790
7 7 Iris 0.86d -0.014 57 -9532
8 15 Eunomia 2.10d -0.001 1 -260
9 16 Psyche 1.81d -0.005 16 -2615

10 29 Amphitrite 0.86d 0.000 -0 30
11 52 Europa 1.59d 0.001 -5 643
12 65 Cybele 0.91d 0.000 1 -188
13 87 Sylvia 0.99d 0.000 -1 66
14 88 Thisbe 1.02d -0.007 19 -3099
15 511 Davida 2.26d 0.000 1 -114
16 704 Interamnia 2.19d 0.000 0 -7

Additions for Bennu
17 11 Parthenope 0.39d -0.006 18 -3031
18 14 Irene 0.19d -0.002 6 -1013
19 56 Melete 0.31d -0.002 -6 1070
20 63 Ausonia 0.10d -0.002 4 -731
21 135 Hertha 0.08d 0.001 -6 872
22 259 Aletheia 0.52d 0.000 0 -31
23 324 Bamberga 0.69d -0.001 -4 628
24 419 Aurelia 0.12d 0.002 2 -259
25 532 Herculina 0.77d 0.005 -13 2200

Refs.: aBaer et al. [2011b], bKonopliv et al. [2011], cRussell et al. [2012], dCarry
[2012].
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Table 4.7: Bennu bulk density and related quantities with 1σ uncertainties.

Bulk density ρ (kg/m3) 1260± 70

Mass M (1010 kg) 7.8± 0.9

GM (m3/s2) 5.2± 0.6

Area-to-mass ratio (10−6 m2/kg) 2.4± 0.1

Table 4.8: Bennu Deterministic Earth Approaches Closer than 0.05 AU (JPL
solution 76).

Date (TDB) Nom. Dist. 3σ Min. 3σ Max. 1σ Time Uncert. 1σ ζ Uncert.
(AU) (AU) (AU) (s) (km)

1654 Sep 17.89194 0.022033 0.010586 0.035240 49590 816253
1788 Sep 20.56364 0.009771 0.009304 0.010254 2237 32739
1848 Sep 21.91904 0.007915 0.007892 0.007938 105 1573
1911 Sep 22.88762 0.014178 0.014177 0.014179 2.4 38
1970 Sep 27.10790 0.021403 0.021403 0.021403 1.6 16
1999 Sep 22.76422 0.014686 0.014686 0.014686 � 1 1.1
2005 Sep 20.44528 0.033130 0.033130 0.033130 � 1 1.2
2054 Sep 30.04163 0.039299 0.039299 0.039299 1.6 11
2060 Sep 23.02530 0.005008 0.005008 0.005008 1.0 15
2080 Sep 22.02378 0.015560 0.015427 0.015693 360 7318
2135 Sep 25.40942 0.002009 0.000819 0.003549 4746 79674
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Table 4.9: Keyholes in 2135 b-plane and associated impact probabilities, JPL
solution 76.

Year ζ2135 ζ-width Impact Palermo Year ζ2135 ζ-width Impact Palermo
(km) (km) Prob. Scale (km) (km) Prob. Scale

2192 92981 0.17 1.04× 10−10 −8.27 2195 343783 0.11 4.15× 10−07 −4.67
2187 93280 0.32 2.01× 10−10 −7.97 2181 347699 0.78 2.86× 10−06 −3.80
2198 99162 0.25 3.33× 10−10 −7.78 2175 349704 1.80 6.43× 10−06 −3.43
2187 105731 0.12 3.44× 10−10 −7.74 2186 367729 0.32 8.12× 10−07 −4.36
2182 105945 3.59 1.08× 10−08 −6.23 2175 368877 16.67 4.13× 10−05 −2.63
2197 148127 0.19 3.08× 10−08 −5.81 2181 370007 0.56 1.35× 10−06 −4.13
2182 153125 6.29 1.42× 10−06 −4.11 2193 391326 0.60 8.52× 10−07 −4.36
2187 153481 0.21 4.94× 10−08 −5.58 2187 392308 5.97 8.34× 10−06 −3.35
2192 161203 1.53 5.83× 10−07 −4.52 2198 393200 0.11 1.47× 10−07 −5.13
2193 162322 0.15 6.04× 10−08 −5.51 2181 405893 0.64 6.27× 10−07 −4.46
2182 171554 5.15 3.55× 10−06 −3.71 2187 429187 0.51 2.43× 10−07 −4.89
2187 171842 0.17 1.19× 10−07 −5.20 2181 430234 0.20 9.41× 10−08 −5.28
2187 174357 0.66 5.25× 10−07 −4.55 2176 449272 12.23 3.07× 10−06 −3.76
2192 174935 0.40 3.31× 10−07 −4.76 2193 459392 0.12 2.09× 10−08 −5.97
2194 177766 0.17 1.57× 10−07 −5.09 2188 475391 7.74 7.99× 10−07 −4.37
2199 185793 0.19 2.56× 10−07 −4.89 2194 479545 9.54 8.50× 10−07 −4.36
2193 186415 19.84 2.75× 10−05 −2.85 2194 486578 25.51 1.77× 10−06 −4.04
2198 186996 0.21 2.97× 10−07 −4.83 2194 511097 24.90 6.94× 10−07 −4.45
2199 191883 0.20 3.53× 10−07 −4.75 2188 517881 0.75 1.61× 10−08 −6.07
2198 208524 0.53 1.53× 10−06 −4.11 2193 527510 0.89 1.30× 10−08 −6.17
2190 211276 0.11 3.50× 10−07 −4.74 2181 528840 0.65 9.06× 10−09 −6.30
2199 235014 0.17 8.69× 10−07 −4.36 2193 534125 0.20 2.21× 10−09 −6.94
2192 272823 0.12 8.39× 10−07 −4.36 2193 534310 0.19 2.13× 10−09 −6.96
2198 273950 0.11 7.79× 10−07 −4.41 2198 534527 0.45 4.96× 10−09 −6.60
2186 274243 0.21 1.48× 10−06 −4.10 2198 536801 0.13 1.30× 10−09 −7.18
2191 275096 0.18 1.29× 10−06 −4.17 2198 536823 0.21 2.08× 10−09 −6.98
2191 275569 0.77 5.44× 10−06 −3.55 2196 537259 0.12 1.19× 10−09 −7.22
2191 276541 0.20 1.42× 10−06 −4.13 2189 537324 0.11 1.09× 10−09 −7.24
2185 278479 2.76 1.96× 10−05 −2.98 2199 539780 0.23 2.11× 10−09 −6.98
2196 279590 4.96 3.52× 10−05 −2.75 2185 541921 0.77 6.37× 10−09 −6.46
2196 281070 13.32 9.45× 10−05 −2.32 2185 542397 1.72 1.39× 10−08 −6.12
2185 295318 9.42 6.33× 10−05 −2.47 2185 543753 0.37 2.84× 10−09 −6.81
2190 302940 0.20 1.24× 10−06 −4.18 2197 545747 0.26 1.84× 10−09 −7.03
2180 316352 3.48 1.95× 10−05 −2.96 2190 558169 11.57 4.86× 10−08 −5.59
2191 316680 0.19 1.05× 10−06 −4.26 2196 561278 12.31 4.54× 10−08 −5.64
2186 326599 0.19 9.38× 10−07 −4.30 2196 565865 20.20 6.12× 10−08 −5.51
2180 339506 2.73 1.14× 10−05 −3.20 2190 618399 17.45 4.95× 10−09 −6.59
2191 339838 0.13 5.60× 10−07 −4.53 2184 636299 54.23 6.51× 10−09 −6.45
2190 343541 0.17 6.74× 10−07 −4.45 2184 651571 4.35 2.45× 10−10 −7.88

Note: Impact probabilities > 10−5 are highlighted in bold.



94 CHAPTER 4. (101955) BENNU

Table 4.10: Resonances associated with the eight potential impacts with
impact probability > 10−5.

Year ζ2135 Post-2135 Period Resonance Res. Period ∆P
(km) (yr) (yr) (yr)

2193 186415 1.2342 58 yr/47 rev 1.2340 +0.0002
2185 278479 1.2215 50 yr/41 rev 1.2195 +0.0020
2196 279590 1.2213 61 yr/50 rev 1.2200 +0.0013
2196 281070 1.2211 61 yr/50 rev 1.2200 +0.0011
2185 295318 1.2194 50 yr/41 rev 1.2195 −0.0001
2180 316352 1.2169 45 yr/37 rev 1.2162 +0.0007
2180 339506 1.2144 45 yr/37 rev 1.2162 −0.0018
2175 368877 1.2116 40 yr/33 rev 1.2121 −0.0005

Table 4.11: Formal uncertainties with and without simulated OSIRIS-REx
pseudo-range measurements as described in the text.

Uncertainties
Reference With sim. obs.

AT (10−16 au/d) 2.52 0.38

2020-Jan-04 Position (km)
Radial 1.539 0.008
Transverse 0.855 0.033
Normal 2.461 0.098

2020-Jan-04 Velocity (mm/s)
Radial 0.662 0.005
Transverse 0.400 0.002
Normal 1.388 0.029

ζ2135 (km) 58000 1000



Chapter 5

Nongravitational perturbations
and virtual impactors: the case
of asteroid (410777) 2009 FD

For many years we have been operating impact monitoring systems at the
University of Pisa1 and the Jet Propulsion Laboratory (JPL)2. These online
information systems continually and automatically update the list of aster-
oids that can hit our planet in the next 100 years.

The attempt to extend the monitoring time span to a longer interval,
e.g., 200 years, is on the contrary at the frontier of research on the theory of
chaos, nongravitational perturbations, and observational error models. Thus,
we are not surprised to find that new cases need to be handled in a different
way from the previous ones. So far we have successfully handled the special
cases (99942) Apophis [Farnocchia et al., 2013a], (101955) Bennu [Chesley
et al., 2014], and 1950 DA [Farnocchia and Chesley, 2014]. Each of these
cases required us to model and/or solve for parameters appearing in the
nongravitational perturbations, especially the Yarkovsky effect [Vokrouhlický
et al., 2000a].

Recently, asteroid 2009 FD (discovered by the La Sagra survey on 2009
March 16) appeared as a new case with the following new characteristics. We
previously had 182 optical observations (from the years 2009 and 2010) and a
very precise orbit solution, with a purely gravitational model, leading to sev-
eral Virtual Impactors (VIs) (patches of initial conditions leading to possible
impacts with Earth [Milani et al., 2005a]) in the years 2185–2196. 2009 FD
was reobserved between 2013 November and 2014 April: 109 additional op-

1http;//newton.dm.unipi.it/neodys since 1999; operated by SpaceDyS srl. from 2011.
2http://neo.jpl.nasa.gov/risk/ since 2002.
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tical observations were obtained, plus one radar Doppler measurement was
performed on April 7 from Arecibo (see Sec. 5.1). As a consequence, the un-
certainty of the orbit with the same model become small enough to exclude
the main VI in 2185, the one with largest Impact Probability (IP).

However, this result was inaccurate because it did not properly account
for the uncertainties of the dynamical model. The available astrometry, even
with the radar data point, is not sufficient to determine the strength of the
Yarkovsky effect. The Yarkovsky effect order of magnitude, as estimated by
models, increases the uncertainty of the long term prediction and therefore
the main VI in 2185 is still within the range of possible orbits.

If new observations are added without modeling the Yarkovsky effect, it
is possible that no VIs will be included, although we know this is not correct.
Therefore, rather than removing the risk file (list of VIs) we need to be able to
compute a risk file taking fully into account the Yarkovsky effect. Otherwise
the observers would decrease the priority of observing 2009 FD. To solve this
problem we started an intensive effort to compute the appropriate solution;
in the meantime we decided not to update the online risk files3 to avoid giving
a false “all clear”.

In this paper we report how we solved this problem, in two different
ways, in Pisa and at JPL. Both solutions use theories, most of which are
presented in the papers cited, but some are new, and the known tools have
to be combined in an innovative way to solve this specific case. Of course
our hope is to have accumulated enough expertise (and well-tested software)
to be able to handle new difficult cases, but this is yet to be determined.

The computation of a Yarkovsky model is based on the available phys-
ical properties of 2009 FD, as well as general properties of the Near Earth
Asteroid (NEA) population, with uncertainties propagated nonlinearly to
generate a Probability Density Function (PDF) for the Yarkovsky parame-
ter A2 [Farnocchia et al., 2013b] (see Sec. 5.2). We used this model in two
different ways.

The Pisa solution is to generalize the method of the Line Of Variations
(LOV) [Milani et al., 2005a,b] already in use (both in Pisa and at JPL) to
a higher dimensional space, e.g., to vectors containing six initial conditions
and at least one nongravitational parameter. We obtained the appropriate
metric for defining the LOV by mapping on the 2185 scatter plane (Sec. 5.3).
We control the weakness in the determination of the Yarkovsky parameter
by adding an a priori observation (Sec. 5.4). The JPL solution is based on
a Monte Carlo method applied to propagate the orbital PDF (including the
Yarkovsky parameter) to the target planes of the encounters with Earth in

3This decision was applied both at University of Pisa/SpaceDyS and at JPL.
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the late 22nd Century (Sec. 5.5).

In Sec. 5.6 we discuss the role of the 2185 close approach in scattering
the alternative orbits and consequently in giving access to resonant returns.
The analytic theory, based on Valsecchi et al. [2003], provides approximate
locations for the possible keyholes is given in Appendix 10.2.

The results obtained by the two methods are compared in Sec. 5.7, where
we dicuss the trade-off between the two. We also discuss the future observ-
ability of 2009 FD.

5.1 Astrometry and physical observations of

2009 FD

The observational coverage of 2009 FD available to date is composed of three
separate apparitions. More than 150 astrometric positions were reported
during its discovery apparition in 2009, when 2009 FD reached a magnitude
of V=16 just before disappearing into solar conjunction, making it an easy
target for many observers. A slightly less favorable opportunity in late 2010
resulted in a handful of additional observations, including a Near Infrared
(NIR) detection by the WISE spacecraft [Mainzer et al., 2014]. The object
then entered a phase of almost prohibitive observational geometry, which
resulted in a lack of coverage for a three year period, until late 2013.

In an effort to secure the maximum observational coverage for this im-
portant target, in November 2013 we decided to attempt an early third-
opposition recovery using the 8.2 meter ESO Very Large Telescope (VLT)
on Cerro Paranal, Chile. Observations collected starting from 2013 Novem-
ber 30 with the FORS2 optical imager resulted in a faint but unambiguous
detection inside the uncertainty region, confirmed by consistent detections
achieved over the two subsequent nights; at that time the object was esti-
mated to have a magnitude of approximately V=25.5, making it a challenging
target even for a large aperture telescope like VLT. From early 2014 various
other professional and amateur-level sites began reporting optical observa-
tions, guaranteeing a dense astrometric coverage until early April, when the
object reached its close approach with Earth and then entered solar conjunc-
tion.

As an additional attempt to extend the observational coverage, we tried
to locate unreported precovery observations of 2009 FD in existing archival
data, using the image search engine made available by the Canadian Astron-
omy Data Centre [Gwyn et al., 2012]; all the available images covering the
ephemeris position of 2009 FD corresponded to times when the object was
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fainter than V=24, unlikely to result in a detection in non-targeted sidereal
exposures.

Just before the end of the observability window, and close to the time of
peak brightness for the apparition, we were able to obtain BVRI colorimetric
observations using the EFOSC2 instrument mounted on the 3.6 meter ESO
New Technology Telescope (NTT) at La Silla, Chile. The exposure time was
of 200 s for each of the images, which were reduced using standard proce-
dures with the MIDAS software: after subtraction of the bias from the raw
data and flat-field correction, the instrumental magnitudes were measured
via aperture photometry. For the R filter, we considered the mean value of
two different images, while only one image was taken with the other photo-
metric filters. The absolute calibration of the magnitudes was obtained by
means of the observation of standard fields from the [Landolt, 1992] catalog.
Although exposed at high airmass (around 1.9) and under not ideal (but
stable) seeing conditions (1.4”), the dataset was sufficient to extract accu-
rate optical colors for the asteroid (see Table 5.1), which suggest a C-group
primitive composition, most likely (based on chi-square minimization) of the
Ch or Cgh classes [DeMeo et al., 2009] (see Fig. 5.1). These observations
were obtained only a few days before the radar Doppler detection by the
Arecibo radiotelescope, which marked the end of the 2013-2014 apparition of
2009 FD.

Table 5.1: Apparent V magnitude and optical colors (with error bars) of
2009 FD on 2014 April 02.0 UT. They are consistent with a primitive C-
group taxonomy, most likely of the Ch or Cgh classes.

Band Value [mag]
V 20.258± 0.063
B – V 0.816± 0.091
V – R 0.298± 0.070
V – I 0.704± 0.083

5.2 Yarkovsky effect models

As already discussed, the Yarkovsky effect [Vokrouhlický et al., 2000a] needs
to be taken into account to make reliable impact predictions for 2009 FD.
Including the Yarkovsky accelerations in the force model is tricky because
such accelerations are unknown.

One way to constrain the Yarkovsky effect is to look for deviations from
a gravitational trajectory in the astrometric dataset. The Yarkovsky effect is
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Figure 5.1: Comparisons of the colors of 2009 FD with the visible spectral shapes
of the Ch and Cgh classes. Continous line: 2009 FD measurements; dashed: Ch
taxonomic class; dotted: Cgh class.

modeled as a purely transverse acceleration A2/r
2 and A2 is determined by

the orbital fit to the observations [Farnocchia et al., 2013b]. [Chesley et al.,
2014] successfully used this approach for asteroid (101955) Bennu. However,
for 2009 FD we have a relatively short observed arc and only one Doppler
radar observation. Therefore, the astrometry provides no useful constraint
on A2.

Another option is to use the available physical model as well as general
properties of the near-Earth asteroid population to constrain the Yarkovsky
effect. [Chesley et al., 2009] and [Farnocchia and Chesley, 2014] applied this
technique to perform the risk assessment of asteroids (99942) Apophis and
(29075) 1950 DA. The situation for 2009 FD is similar to that discussed by
[Chesley et al., 2009] for Apophis. The available information for 2009 FD is
as follows.

• [Mainzer et al., 2014] use WISE observations to constrain the diameter
and albedo of 2009 FD as (472±45) m and (0.010±0.003), respectively.
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This value of the albedo is extreme, lower by a factor of > 3 than any
other known albedo for asteroids of similar taxonomic classes. Such
a large anomaly cannot be due to the error in absolute magnitude,
thus even the diameter could be unreliable. We use the published
data: when better data is available we can easily repeat the procedure
described in this paper.

• The known rotation period is (5.9± 0.2) h [Carbognani, 2011].

The slope parameter G, the obliquity, density, and thermal inertia are
unknown. Therefore, we resort to general properties of the asteroid popula-
tion:

• From the JPL small-body database4, we obtain G = (0.18 ± 0.13) for
the whole asteroid population. This distribution for G was also used
by [Mommert et al., 2014] for asteroid 2009 BD.

• For the spin axis orientation we use the obliquity distribution by [Farnoc-
chia et al., 2013b], which was obtained from a list of Yarkovsky detec-
tions.

• The density is unknown, but as discussed in Sec. 5.1 spectral properties
suggest a C-type asteroid and therefore a density typically smaller than
2 g/cm3. We used a distribution as in Fig. 5.2, i.e., a lognormal with
mean 1.5 g/cm3 and standard deviation 0.5 g/cm3.

• For thermal inertia we adopt the [Delbó et al., 2007] relationship be-
tween diameter and thermal inertia.

For more details see [Farnocchia et al., 2013b] and [Chesley et al., 2009].
Figure 5.3 shows the distribution of A2 obtained by combining the physi-

cal parameters described above. Since we do not know whether 2009 FD is a
retrograde or a direct rotator, the A2 distribution has a bimodal behavior. In
general, a retrograde rotation is more likely as discussed in [La Spina et al.,
2004] and [Farnocchia et al., 2013b]. We did not model a complex rotation
state. However, the overall uncertainty is well captured since a complex ro-
tation would decrease the size of the Yarkovsky effect and thus A2, thereby
providing no wider dispersion. Figure 5.3 also shows a normal distribution
with zero mean and the same 3σ level of the distribution obtained from the
physical model, i.e., 97.5× 10−15 au/d2.

4http://ssd.jpl.nasa.gov/sbdb query.cgi
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Figure 5.2: Assumed distribution of the 2009 FD density.

From the described physical model we also obtain a nominal mass of
8.3×1010 kg, which we use in Sec. 5.4 and 5.5 to estimate the energy released
by a possible impact.

If we were to assume that the albedo was 0.06 ± 0.015, with absolute
magnitude H = 22.1 ± 0.3, then the 3 σ uncertainty would grow to 215.3.
This would imply lower IPs and lower mass estimates in the results in Sects.
5.4 and 5.5, but the overall structure of the VIs would be preserved, possibly
with some additional VIs in the distribution tails.

5.3 Line of variations in > 6 dimensions

The most common parameter when modeling the Yarkovsky effect is A2, i.e.,
the coefficient appearing in the average transverse acceleration: T = A2/r

2,
where r is the distance from the Sun. The result is obtained by fitting the
available astrometry (optical and radar) to the initial conditions and the A2

parameter. Thus all the orbit determination process has to be done with
seven parameters, the normal matrix C is 7 × 7, and the eigenvector V1 of
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Figure 5.3: Distribution of the Yarkovsky parameter A2. The solid curve corre-
sponds to the distribution obtained from the physical model; the dashed line is a
normal distribution with the same 3σ limits.

C with smallest eigenvalue is seven-dimensional [Milani and Gronchi, 2010,
Chap. 5, 10]. The theory of the line of variations [Milani et al., 2005b] can
be generalized to dimension > 6: the LOV is defined as the set of the lo-
cal minima of the target function restricted to hyperplanes orthogonal to
V1. The actual computation of the LOV uses a constrained differential cor-
rection process operating on this hyperplane. This change is conceptually
straightforward, but in terms of programming it is a complicated task. As a
result, version 4.3 of the software system OrbFit, implementing a full seven-
dimensional LOV and seven-dimensional impact monitoring, is still under-
going testing and has not yet replaced the operational version 4.2 5.

However, the impact monitoring processing chain including Yarkovsky
effect has already been tested, in particular on the case of (99942) Apophis.
The comparison with results obtained with Monte Carlo method has con-
firmed that the method gives satisfactory results, provided one problem is
solved. As discussed in [Milani et al., 2005b], the notion of smallest eigen-

5http://adams.dm.unipi.it/orbfit/
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value depends on a metric in the parameter space, thus it is not invariant for
coordinate changes. For comparatively short term impact monitoring (a few
tens of years) we can select an appropriate coordinate system depending on
the astrometry available (e.g., Cartesian coordinates for short observed arcs,
equinoctal elements [Broucke and Cefola, 1972] for longer arcs).

The best choice of LOV, applicable to a much longer time span, would
need to have the following property. If there is a planetary encounter that
scatters the LOV solutions into qualitatively different orbits such that they
can result in successive encounters in different years, then we select the Target
Plane (TP) of this encounter as scattering plane [Chesley et al., 2014]. The
best LOV in the space of initial conditions and parameters is such that the
spread of corresponding TP points is maximum. In this way, all the dynam-
ical pathways after the scattering encounter, which could lead to succesive
impacts, are represented on the LOV.

To achieve this result, before computing the LOV we propagated the
nominal orbit to the scattering plane, where we found the major axis vector
W ∈ R2 of the confidence ellipse obtained by linear propagation of the orbit
covariance. Among the possible inverse images of W by the differential of the
propagation to the TP, we selected Z ∈ R7 corresponding to the minimum
increase in the quadratic approximation to the target function, as given by
the appropriate regression line. We then used Z as the direction of the
LOV. For very well determined orbits such as the one of 2009 FD, given the
direction Z, the LOV can be computed as a straight line: a full nonlinear
computation would give negligible changes in the selected sample points.

5.4 Impact monitoring with a priori constraints

We carefully analyzed the available astrometry and manually weighted the
observations to account for the uncertainty information provided by some of
the observers and to mitigate the effect of correlations for nights with a large
number of observations.

When solving for the six orbital elements the orbit is very well con-
strained. For instance, the standard deviation for the semimajor axis a is
STD(a) = 1.8× 10−9 au = 270 m. However, if the seventh parameter A2 is
also determined its uncertainty is too large and the nominal value does not
provide useful information. Thus, we decided to assume an a priori value
A2 = (0 ± 32.5) × 10−15 au/d2, consistent with the discussion in Sec. 5.2.
The a priori observation was added to the normal equation with the stan-
dard formula [Milani and Gronchi, 2010, Sec. 6.1].

In these conditions, the best fit value is A2 = (−2± 32.5)× 10−15au/d2,
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which is not significantly different from 0. The STD(a) = 2.3×10−9 au is not
much higher that the six-parameter fit. We then run the computation of the
LOV defined by the 2185 scattering plane, with 2 401 points up to |σ| = 3,
the propagation to the year 2250 of all the sample points on the LOV, and
the search for virtual impactors, all in the seven-dimensional version; apart
from the change in dimension, the method is not different from [Milani et al.,
2005a].

These computations were done with DE430 planetary ephemerides from
JPL [Folkner et al., 2014], 17 perturbing asteroids including Pluto, and ap-
propriate relativistic dynamics as discussed in [Chesley et al., 2014]. To assess
the risk level, we computed the Palermo Scale (PS) by using the expected
value of the mass as estimated in Sec. 5.2.

Table 5.2: Risk file for 2009 FD: calendar year, month, and day for the
potential impact; approximate location along the LOV in σ space; minimum
distance (the lateral distance from the LOV to the center of the Earth with
the 1 σ semi-width of the TP confidence region); stretching factor (how
much the confidence region at the epoch has been stretched by the time
of impact); probability of Earth impact; and Palermo Scale. The width of
the TP confidence region is always few km. For all VIs the LOV directly
intersects the Earth.

date sigma dist stretch IP⊕ PS
yyyy-mm-dd .dd (r⊕)

2185-03-29.75 −1.069 0.52 184 2.71 ×10−3 −0.43
2186-03-29.98 −1.049 0.58 1450000 3.50 ×10−7 −4.32
2190-03-30.08 0.005 0.57 2960 2.92 ×10−4 −1.41
2191-03-30.21 −0.962 0.89 377000 1.24 ×10−6 −3.78
2192-03-29.51 −1.003 0.87 1110000 3.96 ×10−7 −4.28
2194-03-30.02 −1.025 0.93 3110000 1.58 ×10−7 −4.68
2196-03-29.44 −0.872 0.54 225000 2.68 ×10−6 −3.46

Table 5.2 includes the main 2185 VI with the highest PS = −0.43 among
all asteroids currently on our Risk Page. Its IP ' 1/369 is quite high,
especially for an impact with an estimated energy of ' 3 700 Mt of TNT.
On the contrary, the IP in 2190 is lower than that computed with a purely
gravitational model, although the current VI is very close to the nominal
solution. The computations with the Yarkovsky effect were crucial for a
reliable assessment of the impact risk.

We performed the impact monitoring with limit date in 2250 and we found
many close approaches in every single year until 2250, but none leading to
impact because of the secular increase in the Minimum Orbit Intersection
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Figure 5.4: From the orbit of 2009 FD propagated until year 2300, we have
computed the MOID and the distance at the descending node (in au). A MOID
smaller than the radius of the impact cross-section occurs between 2166 and 2197.

Distance (MOID) (see Fig. 5.4); the closest one is in 2198 with a close ap-
proach of 1.4 Earth radii.

5.5 Monte Carlo impact monitoring

The JPL Sentry risk assessment was independently performed by means of
a Monte Carlo simulation. First, we computed a seven-dimensional orbital
solution, with A2 = 0 au/d2. The a priori uncertainty on A2 was set to
obtain a postfit uncertainty of 32.5 au/d2. Then, we used the resulting
seven-dimensional covariance to randomly generate a million samples thus
getting a resolution of ∼ 10−6 for the impact probability. Finally, we prop-
agated each sample, recorded the future close approaches, and counted the
impacts occurring before 2200. The dynamical model is the same used for
the computations in Sec. 5.4.

Table 5.3 lists the possible impacts found by the Monte Carlo method.
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The values of σ are computed by taking the distribution of the Monte Carlo
samples on the 2185 b-plane. The impact probabilities do not change very
much if we use the most complete information about the A2 distribution in
the Monte Carlo method. The ratio between the A2 distribution from the
physical model and the normal A2 distribution is about 2, except the left
tails of the distribution. However, the impacts found in the Monte Carlo
simulations are for |A2| < 5 × 10−15 au/d2 and are therefore far from the
distribution tails.

Table 5.3: The JPL Sentry risk file for 2009 FD obtained from the Monte
Carlo simulation: date for the potential impact; approximate location along
the LOV in sigma space; minimum distance; stretching factor; probability of
Earth impact; and Palermo Scale.

date sigma dist stretch IP⊕ PS
yyyy-mm-dd.dd (r⊕)
2185-03-29.75 −1.048 0.52 160 2.6 ×10−3 −0.44
2190-03-30.08 0.028 0.57 2580 2.7 ×10−4 −1.43
2191-03-30.24 −0.993 0.40 209000 2.0 ×10−6 −3.57
2192-03-29.51 −0.986 0.83 364000 1.0 ×10−6 −3.87
2196-03-29.44 −0.864 0.76 496000 1.0 ×10−6 −3.88

5.6 Scattering encounter

Figure 5.5 shows the increase of the position uncertainty (longest semiaxis of
the 1 σ confidence ellipsoid, as deduced from the linearly propagated confi-
dence matrix) with time. This increase is by no means a gradual increase, but
mostly occurs within short time intervals corresponding to close approaches
to the Earth. In particular, the position uncertainty increases as ∆t2 far from
the close approaches, while it increases much more quickly during the close
approaches. The deepest close approaches are marked by dotted lines. After
the close approach in 2009, there is another at a minimum distance of 0.418
au in 2015, then the pair in 2063 (at 0.0130 au) and 2064 (at 0.0266 au). The
last two are near different nodes, connected by a nonresonant return [Milani
et al., 1999]. Another nonresonant return connects the close approach of 2136
(at 0.0218 au) with the shallower one of 2137 (at 0.0815 au). In all cases,
the divergence of nearby orbits fluctuates, but overall increases by a factor of
' 3× 105 over 176 years (from 2009 to 2185), corresponding to a Lyapounov
time 176/ log(3 × 105) ' 14 years. Over this timespan the Yarkovsky effect
is very important, because the prediction uncertainty is not dominated by
the chaotic effects.
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Figure 5.5: Evolution of the longest semiaxis of the 1σ confidence ellipsoid. The
vertical dashed lines correspond to close approaches with the Earth within 0.05
au.

Finally, as Fig. 5.6 shows, at the time of the 2185 encounter the LOV
(plotted over the interval from σ = −3 to +3) spans more than 7 million
km on the b-plane, and straddles the Earth. As a consequence, a very wide
range of close approach distances is possible, from actual Earth collision up
to very distant encounters. The 2185 VI is similar to a direct impact, with a
very low stretching, hence the comparatively large IP.

After 2185, the divergence grows to much larger values, of course differ-
ent for the different LOV sample orbits, depending on how close the 2185
encounter is, and the prediction uncertainty becomes dominated by chaos.
The later VI detected have higher stretching, thus lower IP, and are resonant
returns [Milani et al., 1999] from comparatively close approaches in 2185,
occurring at the same date after 1, 5, 6, 7, 11 years. They correspond to
resonances between the mean motions n, n⊕ of the asteroid and the Earth,
respectively:
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Figure 5.6: The left figure shows the LOV on the 2185 TP: the VI of 2190
is marked with a cross. The right figure shows a segment of the LOV on the
2185 TP: the keyholes for impact in (from top to bottom) 2186, 2194, 2192,
2191, and 2196 are marked with crosses; also shown are the b-plane circles
associated with the respective mean motion resonances (1/1, 8/9 6/7, 5/6,
9/11).

Figure 5.6 shows the location of the VI on the LOV and the Valsecchi
circles corresponding to the resonances, according to an approximate analytic
theory [Valsecchi et al., 2003]. The 4/5 resonance corresponds to the weakest
perturbation in 2185 since the orbit is currently close to it: thus the circle
for returns in 2190, shown in the left plot of Fig. 5.6, is much larger than the
others, shown at a larger scale in the right plot.

It can be shown with formulas derived from [Valsecchi et al., 2003] that the
values of the semimajor axis after the 2185 encounter could range between
0.82 and 2.10 au, these values being obtained for grazing encounters (see
Appendix 10.2). This semimajor axis gives access to all the resonances with
ratio of mean motions ranging from 4/3 to 1/3. In the propagation of the
LOV orbits we find close approaches to the Earth occurring in each single
year after 2185 until the growth of the MOID prevents the possibility of
impact after 2196.

Thus the analytic theory allows us to predict the approximate location
of possible keyholes [Chodas, 1999]. Figure 5.7 compares the analytical and
the numerical computations of locations and widths of the keyholes, from
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which the IPs can be computed. However, the analytical theory does not
take into account the short periodic changes in the MOID (see Fig. 5.4),
thus it can only provide upper bounds for the widths and the IPs: it is
expected that the number of potential keyholes computed analytically will
be greater than the actual keyholes found numerically. It is also interesting
to compare the probability density distributions computed with or without
the Yarkovky effect. As a result of this comparison, the 3σ value for the
distribution obtained with the Yarkovsky effect is ∼ 106 km, while the same
value for the distribution without the Yarkovky effect is ∼ 105 km.
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5.7 Conclusions

5.7.1 Comparison and reliability of the results

Given the use of the same dynamical model, it is no surprise that the results
are very similar: still, they are remarkably close. The LOV method finds
seven VIs, while the Monte Carlo method finds five, but the two missing VIs
have IPs of 3.5 × 10−7 and 1.6 × 10−7, below the sensitivity of the Monte
Carlo method with a million samples. The five common VIs have consistent
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Figure 5.7: Map of the 2009 FD impact keyholes intersecting the trace of the
LOV on the 2185 TP, computed both numerically and analitically. The probability
density is given by the curve with the left scale, and the analytically computed
keyholes are indicated by the vertical lines with their widths given by the height
of the bar (right scale). The 7 actual VIs found numerically (from Table 5.2) are
marked with a square.

IP estimates: the higher ones, for 2185 and 2190, are in agreement within
a few percentage points; the three lower ones are different (as expected)
because of Poisson statistics.

Thus the Monte Carlo method detects VI down to its sensitivity limit,
which is 1×10−6; the LOV method detects VI close to its generic completeness
limit [Milani et al., 2005a][Sec. 2.5], which is IP ' 2.5×10−7. We note that it
would not be difficult to upgrade these sensitivity limits, with both methods,
by increasing the resolution and therefore the computational load. The seven
dimensional LOV method is more efficient from the computational point of
view for a given resolution. On the other hand, the Monte Carlo method is
simpler from the software perspective and is generally more reliable, e.g., in
the case of off–LOV VIs.

Thus, the problem we had with the computation of the possibilities of
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impact and the values of the IP was solved, and we posted the new results
on our online services NEODyS and Sentry.

The results obtained with the analytical theory despite the approxima-
tions it must contain are remarkably good, to the point that they can be used
as a check of the numerical results. However, they cannot replace numerical
computations to verify that some VIs actually exists in an accurate orbital
computation.

5.7.2 Future observability

2009 FD could be optically observable again during its next apparition in
early 2015. 2009 FD should become detectable with a large-aperture tele-
scope (8-meter class) in October 2014, and even with smaller apertures (2-
meter class) around January 2015, when it is expected to reach a peak
magntiude of V = 23 near opposition. However, the very small skyplane
uncertainty of this apparition (0.15′′ at the 3σ level, even including the con-
tribution due to Yarkovsky) will prevent any significant improvement in the
overall orbital uncertainty.

The next valuable opportunity to collect useful information will begin
in late October 2015, when 2009 FD will emerge from solar conjunction
immediately after its closest approach, already at V = 19. The magnitude
will then reach a peak magnitude of V = 18 within a few days, making
2009 FD an easy target for physical observations from the ground even with
modest apertures. On 2015 November 1 the 3σ uncertainty ellipse will have
semiaxes 2.34” and 0.69” (most uncertainty is in declination, while proper
motion is mostly along right ascension). This uncertainty will give significant
leverage for orbital improvement with ground-based astrometry.

Since the late October 2015 close approach will be at about 0.04 au from
the geocenter, there could be radar observations, hopefully including range
measurements (which were not possible in 2014, with minimum distance 0.1
au).

If these radar and optical observations improve the constraints on the
Yarkovsky parameter A2, then the Impact Monitoring will need to be re-
computed. Our methods and software now allow us to do this, although a
manual procedure is still required: it involves a limited amount of manpower
and some computing time.

The object will then slowly approach solar conjunction during the first
half of 2016, and will not become easily observable from the ground until late
2018 (apart from a couple of very challenging low-elongation opportunities
in early and late 2017 of very limited astrometric relevance). Unless the
2015 observations rule out the two dangerous segments of the current LOV,
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observations may need to be continued for a long time, before the 2009 FD
impact problem is resolved.



Chapter 6

The Yarkovsky Effect
and Asteroid families

Asteroid families are a powerful tool to investigate the collisional and dy-
namical evolution of the asteroid belt. If they are correctly identified, they
allow to describe the properties of the parent body, the collisional event(s)
generating the family and the subsequent evolution due to chaotic dynamics,
non-gravitational perturbations, and secondary collisions.

However, asteroid families are statistical entities. They can be detected
by density contrast with respect to a background in a space of appropri-
ate parameters, but their reliability strongly depends upon the number of
members, the accuracy of the parameters and the method used for the clas-
sification. The exact membership cannot be determined, because the portion
of phase space filled by the family can have already been occupied by some
background asteroids, thus every family can and usually does have interlop-
ers Migliorini et al. [1995]. Moreover, the boundary of the family corresponds
to marginal density contrast and thus cannot be sharply defined.

The problem is, the purpose of a classification is not just to get as many
families as possible, but to obtain families with enough members, with a large
enough spread in size, and accurate enough data to derive quantities such as
number of family generating collisional events, age for each of them, size of
parent bodies, size distribution of fragments, composition, and flow from the
family to Near Earth Asteroid (NEA) and/or cometary type orbits.

This has three important implications. First, the quality of a family
classification heavily depends on the number of asteroids, and the accuracy
of the parameters used. The number of asteroids is critical, because small
number statistics masks all the information content in small families. There
is no way of excluding that families currently with few members are statistical
flukes, even if they are found likely to be significant by statistical tests.

113
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Second, different kinds of parameters have very different value in a family
classification. This can be measured by the information content, which is,
for each parameter, the base 2 logarithm of the inverse of relative accuracy,
summed for all asteroids for which such data are available; see Section 6.1.
By using this measure, it is easy to show that the dynamical parameters,
such as the proper elements1 a, e, I have a much larger information content
than the physical observations, because the latter are available either for
much smaller catalogs of asteroids, or with worse relative accuracy, or both.
As an example, absolute magnitudes are available for all asteroids with good
orbits and accurate proper elements, but they are computed by averaging
over inhomogeneous data with poorly controlled quality. There are catalogs
with albedos such as WISE, described in Mainzer et al. [2011a]; Masiero
et al. [2011], and color indexes such as the Sloan Digital Sky Survey (SDSS),
described in Ivezić et al. [2001], but the number of asteroids included is
smaller by factors 3 to 5 with respect to proper elements catalogs, and this
already includes many objects observed with marginal S/N, thus poor relative
accuracy.

Third, catalogs with asteroid information grow with time at a rapid and
accelerating pace: e.g., we have used for this paper a catalog, distributed from
AstDyS2 with 336 219 numbered asteroids with synthetic proper elements
computed up to November 2012. By April 2013 the same catalog had grown
to 354 467 objects, i.e., 5.4% in 5 months. If the rate of asteroid numbering
was to continue at this rate, a pessimistic assumption, in less than 8 years the
catalog would be doubled. Catalogs of physical observations are also likely
to grow, although in a less regular and predictable way. Thus the question
is whether the increase of the catalogs will either confirm or contradict the
conclusions we draw at present; or better, the goal should be to obtain robust
conclusions which will pass the test of time.

As a consequence our purpose in this paper is not to make ”yet another
asteroid family classification”, but to setup a classification which can be
automatically updated every time the dataset is increased. We are going
to use the proper elements first, that is defining ”dynamical families”, then
use information from absolute magnitudes, albedos and generalized color
indexes, when available and useful, as either confirmation or rejection, e.g,
identification of interlopers and possibly of intersections of different collisional
families. We will continue to update the classification by running at short
intervals (few months) a fully automated ”classification” computer program

1As an alternative the corresponding frequencies n, g, s can be used, the results should
be the same if the appropriate metric is used Carruba and Michtchenko [2007].

2http://hamilton.dm.unipi.it/astdys2/index.php?pc=5



115

which attaches newly numbered objects to existing families.

This will not remove the need to work on the identification of new families
and/or on the analysis of the properties of the already known families. Every
scientist will be practically enabled to do this at will, since for our dataset
and our classification we follow a strict open data policy, which is already in
place when this paper is submitted: all the data on our family classification
is already available on AstDyS, and in fact it has already been updated with
respect to the version described in this paper3.

We have also recently made operational a new graphic interface on Ast-
DyS providing figures very much like the examples shown in this paper4.
Data tabulations in papers have now been abolished, it is now time to re-
duce the number of figures, especially in color, and replacing them with
“graphic servers” providing figures composed upon request from the users:
this is what the AstDyS graphic tool is about.

The main purpose of this paper is to describe and make available some
large data sets, only some of the interpretations are given, mostly as examples
to illustrate how the data could be used. We would like to anticipate one
major conceptual tool, which will be presented in the paper. This concerns
the meaning of the word “family”, which has become ambiguous because of
usage by many authors with very different background and intent.

We shall use two different terms: since we believe the proper elements
contain most of the information, we perform a family classification based only
upon them, thus defining dynamical families. A different term collisional
families shall be used to indicate a set of asteroids which have been formed
at once by a single collision, be it either a catastrophic fragmentation or a
cratering event. Note that there is no reason to think that the correspondence
between dynamical families and collisional families should be one to one. A
dynamical family may correspond to multiple collisional events, both on the
same and on different parent bodies. A collisional family may appear as two
dynamical families because of a gap due to dynamical instability. A collisional
family might have dissipated long ago, leaving no dynamical family. A small
dynamical family might be a statistical fluke, with no common origin. In
this paper we shall give several examples of these non-correspondences.

3We acknowledge that D. Nesvorný was the first to implement such an open data policy,
by making the membership list of his classification(s) available on PDS (NASA Planetary
Data System, EAR-A-VARGBDET-5-NESVORNYFAM-V2.0). We think such an open
data policy should be standard from now on.

4http://hamilton.dm.unipi.it/astdys2/Plot/index.html
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6.1 Dataset

6.1.1 Proper elements

Proper elements a, e, sin I are three very accurate parameters, and we have
computed, over many years up to November 2012, synthetic proper elements
Knežević and Milani [2000, 2003] for 336 319 asteroids. We made a special
effort to recompute synthetic proper elements missing in our database be-
cause of different reasons: asteroids close to strong resonances, suffering close
encounters with major planets, with high e and I. In particular we aimed at
increasing the sparse statistics in the high e, I regions, in order to improve
the reliability of small families therein. We thus integrated orbits of a to-
tal of 2 222 asteroids: the proper elements computation failed for only 62 of
them. The rest are now included in the AstDyS synthetic proper elements
files. This file is updated a few times per year.

For each individual parameter in this dataset there are available both
standard deviation and maximum excursion obtained from the analysis of the
values computed in sub-intervals Knežević and Milani [2000]. If an asteroid
has large instabilities in the proper elements, as it happens for high proper
e, sin I, then the family classification can be dubious.

The same catalog contains also absolute magnitudes and estimates of
Lyapounov Characteristic Exponents, discussed in the following subsections.

6.1.2 Absolute magnitudes

Another piece of information is the set of absolute magnitudes H available
for all numbered asteroids computed by fitting the apparent magnitudes ob-
tained incidentally with the astrometry, thus stored in the Minor Planet
Center (MPC) astrometric database. The range of values for all numbered
asteroids is 15.7 magnitudes, the accuracy is difficult to be estimated be-
cause the incidental photometry is very inhomogeneous in quality, and the
information on both S/N and reduction method is not available.

The sources of error in the absolute magnitude data are not just the
measurement errors, dominant only for dim asteroids, but also star catalog
local magnitude biases, the conversion from star-calibrated magnitudes to
the assumed V magnitude used in absolute magnitudes, and the light curve
effect. The brightness of an asteroid changes at different apparitions as an
effect of shape and spin axis orientation, so the absolute magnitude does not
appear constant. Last but not least, the absolute magnitude is defined at
zero phase angle (ideal solar opposition) thus some extrapolation of observa-
tions obtained in different illumination conditions is always needed, and this
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introduces significant errors, especially for high phase angles. The standard
deviation of the apparent magnitude residuals has a distribution peaked at
0.5 mag: since numbered asteroids have in general many tens of magnitude
observations, the formal error in the absolute magnitude, which is just a
corrected average, is generally very small, but biases can be very significant.
Thus we do not have a reliable estimate of the accuracy for the large dataset
of 336 219 absolute magnitudes H computed by AstDyS, we can just guess
that the standard deviations should be in the range 0.3− 0.5 magnitudes.

The more optimistic estimate gives a large information content (see Ta-
ble 6.1), which would be very significant, but there are many quality control
problems. Other databases of photometric information with better and more
consistent information are available, but the number of objects included is
much smaller, e.g., 583 asteroids with accuracy better than 0.21 magnitudes
Pravec et al. [2012]: these authors also document the existence of serious
systematic size-dependent biases in the H values.

6.1.3 WISE and SDSS catalogs of physical observa-
tions

The WISE catalog of albedos5 has information on 94 632 numbered asteroids
with synthetic proper elements, but the relative accuracy is moderate: the
average standard deviation (STD) is 0.045, the average ratio between STD
and value is 0.28; e.g., the asteroids in the WISE catalog for which the albedo
measured is < 3 times the STD are 26% (we are going to use measure > 3
times STD as criterion for using WISE data in Section 6.5).

This is due to the fact that WISE albedos, for small asteroids, have been
derived from a measured infrared flux and an estimated visible light flux
derived from an adopted nominal value of absolute magnitude. Both terms
are affected by random noise increasing for small objects, and by systematics
in particular in the visible, as outlined in the previous subsection. In prin-
ciple one should use a value of absolute magnitude not only accurate, but
also corresponding to the same observation circumstances of the thermal IR
observations, which is seldom the case. For large asteroids, the albedo can
be constrained from the ratios between different infrared channels of WISE,
thus the result are less affected by the uncertainty of the absolute magnitude.

The 4th release of the SDSS MOC6 contains data for 471 569 moving
objects, derived from the images taken in five filters, u, g, r, i, and z, ranging
from 0.3 to 1.0 µm. Of those, 123 590 records refer to asteroids present in

5Available at URL http://wise2.ipac.caltech.edu/staff/bauer/NEOWISE pass1
6Available at URL http://www.astro.washington.edu/users/ivezic/sdssmoc/
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our catalog of proper elements. As many of these objects have more than
one record in the SDSS catalog, the total number of asteroids is 61 041. The
latter number was then further decreased by removing objects having error
in magnitude larger than 0.2 mag in at least one band (excluding the u-band
which was not used in our analysis): this is used to remove only obviously
degenerate cases. Thus, we used the SDSS MOC 4 data for 59 975 numbered
asteroids.

It is well known that spectrophotometric data is of limited accuracy, and
should not be used to determine colors of single objects. Still, if properly
used, the SDSS data could be useful in some situations, e.g. to detect pres-
ence of more than one collisional family inside a dynamical family, or to trace
objects escaping from the families, see Section 6.5.

Following Parker et al. [2008] we have used a∗, the first principal com-
ponent7 in the r − i versus g − r color-color plane, to discriminate between
C-complex asteroids (a∗ < 0) and S-complex asteroids (a∗ ≥ 0). If (a∗ ≥ 0)
the i − z values can be used to discriminate between S- and V -type, with
the latter one characterized by the i − z < −0.15. The average standard
deviation of the data we have used is 0.04 for a∗, 0.08 for i− z.

6.1.4 Resonance identification

Another source of information available as an output of the numerical in-
tegrations used to compute synthetic proper elements is an estimate of the
maximum Lyapounov Characteristic Exponent (LCE). The main use of this
is to identify asteroids affected by chaos over comparatively short time scales
(much shorter than the ages of the families)8. These are mostly due to mean
motion resonances with major planets (only resonances with Jupiter, Saturn
and Mars are affecting the Main Belt at levels which are significant for family
classification). Thus we use as criterion to detect these “resonant/chaotic”
asteroids the occurrence of at least one of the following: either a LCE > 50
per Million years (that is a Lyapounov time < 20 000 years) or standard
deviation or proper a > 3× 10−4 au.

Note that the numerical integrations done to compute proper elements
use a dynamical model not including any asteroid as perturber. This is done
for numerical stability reasons, because all asteroids undergo mutual close
approaches and these would need to be handled accurately, which is difficult
while integrating hundreds of asteroids simultaneously. Another reason for

7According to Ivezić et al. [2001] the first principal component in the r − i vs g − r
plane is defined as a∗ = 0.89(g − r) + 0.45(r − i)− 0.57.

8Every asteroid is strongly affected by chaotic effects over timescales comparable to the
age of the solar system, but this does not matter for family classification.
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this choice is that we wish to identify specifically the chaos which is due to
mean motion resonances with the major planets. As shown by Laskar et al.
[2011], if even a few largest asteroids are considered with their mass in the
dynamical model, then all asteroids are chaotic with Lyapounov times of a
few 10 000 years. However, the long term effect of such chaos endogenous to
the asteroid belt is less important than the chaos generated by the planetary
perturbations Delisle and Laskar [2012].

The asteroid perturbers introduce many new frequencies, resulting in an
enormous increase of the Arnold web of resonances, to the point of leaving
almost no space for conditionally periodic orbits, and the Lyapounov times
are short because the chaotic effects are driven by mean motion resonances.
However, these resonances are extremely weak, and they do not result in large
scale instability, not even over time spans of many thousands of Lyapounov
times, the so called “stable chaos” phenomenon Milani and Nobili [1992].
In particular, locking in a stable resonance with another asteroid is almost
impossible, the only known exception being the 1/1 resonance with Ceres, see
the discussion about the Hoffmeister family in Section 6.3.1 and Figure 6.2.
This implies that the (size-dependent) Yarkovsky effect, which accumulates
secularly in time in semimajor axis, cannot have secular effects in eccentricity
and inclination, as it happens when there is capture in resonance.

We have developed a sensitive detector of mean motion resonances with
the major planets, but we would like to know which resonance, which is the
integer combination of mean motions forming the “small divisor”. For this
we use the catalog of asteroids in mean motion resonances by Smirnov and
Shevchenko [2013], which has also been provided to us by the authors in
an updated and computer readable form. This catalog will continue to be
updated, and the information will be presented through the AstDyS site.

Asteroid families are also affected by secular resonances, with “divisor”
formed with an integer combination of frequencies appearing in the secular
evolution of perihelia and nodes, namely g, g5, g6 for the circulation of the
perihelia of the asteroid, Jupiter and Saturn, and s, s6 for the circulation
of the nodes of the asteroid and Jupiter-Saturn9. The data on the asteroids
affected by secular resonances can be found with the analytic proper elements,
computed by us with methods developed in the 90s Milani and Knežević
[1990, 1992, 1994]. In these algorithms, the small divisors associated with
secular resonances appear as obstruction to the convergence of the iterative
algorithm used to compute proper elements, thus error codes corresponding
to the secular resonances are reported with the proper elements10.

9In the Hungaria region even some resonances involving the frequencies g3, g4, s4 for
Earth and Mars can be significant Milani et al. [2010].

10We must admit these codes are not user friendly, although a Table of conversion from
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Note that we have not used analytic proper elements as a primary set of
parameters for family classification, since they are significantly less accurate
(that is, less stable in time over millions of years) than the synthetic ones, by
a factor about 3 in the low e and I portion of the main belt. The accuracy
becomes even worse for high e, I, to the point that for

√
e2 + sin2 I > 0.3 the

analytical elements are not even computed Knežević et al. [1995]; they are
also especially degraded in the outer portion of the main belt, for a > 3.2
au, due to too many mean motion resonances. On the other hand, analytic
proper elements are available for multiopposition asteroids, e.g., for 98 926
of them in November 2012, but these would be more useful in the regions
where the number density of numbered asteroids is low, which coincide with
the regions of degradation: high e, I and a > 3.2 au. It is also possible to
use proper elements for multiopposition asteroids to confirm and extend the
results of family classification, but for this purpose it is, for the moment,
recommended to use ad hoc catalogs of synthetic proper elements extended
to multiopposition, as we have done in Milani et al. [2010]; Novaković et al.
[2011].

6.1.5 Amount of information

Table 6.1: An estimate of the information content of catalogs. The columns
give: parameters contained in the catalogs, minimum and maximum values
and range, average information content in bits for a single entry, number of
records and total information content.

parameter min max range av.bits number tot Mb
a (au) 1.80 4.00 2.20 16.7 336219 5.63
e 0.00 0.40 0.40 10.7 336219 3.59
sin I 0.00 0.55 0.55 15.1 336219 5.08
total 14.39
H 3.30 19.10 15.8 5.7 336219 1.92
albedo 0.00 0.60 0.60 4.5 94632 0.43
a* -0.30 0.40 0.70 4.4 59975 0.26
i-z -0.60 0.50 1.10 4.0 59975 0.24
total 0.50

For the purpose of computing the information content of each entry of
the catalogs mentioned in this section, we use as definition of inverse relative
accuracy the ratio of two quantities: 1) for each parameter, the useful range,

the error codes to the small divisors is given in [Milani and Knežević, 1990, table 5.1]. We
shall try to improve the AstDyS user interface on this.
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within which most (> 99%) of the values are contained; 2) the standard
deviation, as declared in each catalog, for each record.

Then the content in bit of each individual parameter is the base 2 loga-
rithm of this ratio. These values are added for each asteroid in the catalog,
thus forming a total information content, given in the last column of Ta-
ble 6.1 in Megabits. For statistical purposes we give also the average number
of bits per asteroid in the catalog.

For H we have assumed a standard deviation of 0.3 magnitudes for all,
although this might be optimistic.

With the numbers in Table 6.1 we can estimate the information con-
tent of our synthetic proper element catalog to be about 14 Megabits, the
absolute magnitudes provide almost 2 megabits with somewhat optimistic
assumptions, the physical data catalogs WISE and SDSS are ∼ 1 Megabit
together.

6.2 Method for large dataset classification

Our adopted procedure for family identification is largely based on applica-
tions of the classical Hierarchical Clustering Method (HCM) already adopted
in previous families searches performed since the pioneering work by Zappala
et al. [1990], and later improved in a number of papers Milani et al. [2010];
Novaković et al. [2011]; Zappalà et al. [1995]; Zappala et al. [1994]. Since the
method has been already extensively explained in the above papers, here we
will limit ourselves to a very quick and basic description.

We have divided the asteroid belt in zones, corresponding to different
intervals of heliocentric distance, delimited by the most important mean-
motion resonances with Jupiter. These resonances correspond to Kirkwood
gaps wide enough to exclude family classification across the boundaries.

As shown in Table 6.2, our “zone 1” includes objects having proper semi-
major axes between 1.6 and 2 au. In this region, only the so-called Hungaria
objects at high inclination (sin I ≥ 0.3) are dynamically stable Milani et al.
[2010]. Our “zone 2” includes objects with proper orbital elements between
2.067 and 2.501 au. The “zone 3” is located between 2.501 and 2.825 au,
and “zone 4” between 2.825 and 3.278 au. Finally, we use also a “zone
5”, corresponding to the interval between 3.278 and 3.7 au., and a “zone
6”, extending between 3.7 and 4.0 au (mostly asteroids locked in the 3/2
resonance with Jupiter).

Moreover, some semi-major axis zones have been also split by the value
of proper sin I, between a moderate inclination region sin I < 0.3 and a high
inclination region sin I > 0.3. Note that in zone 1 the moderate inclination
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Table 6.2: Summary of the relevant parameters for application of the HCM.

Zone sin I range a N (total) Hcomp N(Hcomp) Nmin QRL bins bins bins
(m/s) (a) (e) (sin I)

1 > 0.3 1.600− 2.000 4249 15 70 20 6 12
2 < 0.3 2.065− 2.501 115004 15.0 15888 17 70 20 10 10
2 > 0.3 2.065− 2.501 2627 11 130 8 2 2
3 < 0.3 2.501− 2.825 114510 14.5 16158 19 90 20 10 10
3 > 0.3 2.501− 2.825 3994 9 140 8 3 3
4 < 0.3 2.825− 3.278 85221 14.0 14234 17 100 15 10 10
4 > 0.3 2.825− 3.278 7954 12 80 6 3 3
5 all 3.278− 3.700 991 10 120 20 10 15
6 all 3.700− 4.000 1420 15 60 1 10 15

region is almost empty and contains very chaotic objects (interacting strongly
with Mars). In zone 2 the g − g6 secular resonance clears a gap below the
Phocaea region. In zones 3 and 4 there is no natural dynamical boundary
which could be defined by inclination only, and indeed we have problems
with families found in both regions. In zones 5 and 6 there are few high
inclination asteroids, and a much smaller population.

To compute the mutual distances of objects in the proper element space
we used the “standard metric” d adopted by Zappala et al. [1990], and in
subsequent HCM-based family investigations. We remind that using this
metric means that the distances between objects in the proper element space
are expressed as differences of velocity and are given in m/s.

The HCM algorithm identifies all groups of objects existing at any given
value of mutual distance. This means that for each member i belonging to a
group found at distance d, there is at least one other member whose distance
from i is ≤ d. The basic idea of the HCM is to identify groups which are
sufficiently populous, dense and compact to be reasonably confident, in a
statistical sense, that their existence cannot be due to random fluctuations
of the distribution of objects in the proper element space.

In HCM-based analysis, the most important parameters are the minimum
number of objects Nmin required for groups to be considered as candidate
families, and the critical level of distance adopted for family identification.
The choice of Nmin depends on the total number of objects present in a
given region of the phase space. Nmin = 5 was chosen at the epoch of the
pioneering study by Zappala et al. [1990], when the inventory of main belt
asteroids with computed proper elements included only about 4,000 objects.
In subsequent analyzes of increasingly bigger datasets, the Nmin values were
scaled as the square root of the ratio between the new and old numbers of
objects present in the same volume of the proper element space. We follow
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this procedure also in the present paper. We chose the new Nmin values by
scaling with respect to the values adopted by Zappalà et al. [1995] for the
low-I portions of zones 2, 3, and 4, and Novaković et al. [2011] for the high-I
portions of the same zones. Zones 5 and 6 contain relatively low numbers
of objects, and for them we adopted Nmin values close to 1% of the sample,
after checking that this choice did not affect severely the results.

As for the critical distance level, it is derived by generating synthetic
populations (Quasi-Random Populations) of fictitious objects occupying the
same volume of proper element space, and generated in such a way as to have
separately identical, uncorrelated distributions of a, e and sin I as the real
asteroids present in the same volume. An HCM analysis of these fictitious
populations is performed to identify critical values of mutual distance below
which groupings of at least Nmin quasi-random objects are not found. All
groups of real objects which include Nmin members at distance levels below
the critical threshold are then considered as dynamical families. Note that
we look at groupings found at discrete distance levels separated by steps of
10 m/s, starting from a minimum value of 10 m/s.

It is a rare case, in the domain of astronomical disciplines, that the abun-
dance of data, and not their scarcity, produces technical problems. The
reason is that the catalogs of asteroid proper elements are today so large
that difficult problems of overlapping between different groupings must be
faced, especially the phenomenon of chaining by which obviously indepen-
dent families get attached together by a thin chain of asteroids.

For these reasons, when necessary (i.e., in the most populous zones of
the asteroid belt) we have adopted in this paper a new, multistep procedure,
allowing us to deal at each step with manageable numbers of objects, and
appropriate procedures to combine the results obtained in different steps.

6.2.1 Step 1: Core families

In order to cope with the challenge posed by very big samples of objects in
the low-inclination portions of zones 2, 3 and 4, we first look for the cores of
the most important families present in these regions.

We thus take into account that small asteroids are subject to compar-
atively fast drifts in semi-major axis by the Yarkovsky effect, and to some
other effects (including low-energy collisions, see Dell’Oro et al. [2012]). The
cloud of smallest members of a newly born family expands therefore in the
proper element space and the family borders tend to “blur” as a function of
time. Hence, we first removed from our HCM analysis of the most populous
regions all objects having absolute magnitudes H fainter than Hcomp roughly
corresponding to the completeness limit in each of the low-I portions of zones
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2, 3 and 4. The completeness limits listed in Table 6.2 were derived from the
cumulative distributions of H; for the purposes of our analysis, the choice
of this threshold value is not critical. Having removed the faint objects, we
were left with a much more manageable numbers of asteroids, see Table 6.2.

To these samples, we applied the classical HCM analysis procedures. As a
preliminary step we considered in each zone samples of N completely random
synthetic objects (N being the number of real objects present in the zone),
in order to determine a distance value RL at which these completely random
populations could still produce groups of Nmin members. Following Zappalà
et al. [1995], groups of the real population with > 10% of the total population
at RL were then removed and substituted by an equal number of fully-
random objects. The reason of this preliminary operation is to avoid that
in the real population, a few very big and dense groups become exceedingly
dominant and affect the distributions of proper elements in the zone by over-
populating some bins of the a, e, sin I distribution, from which the Quasi-
Random population is next built (see below) 11. Only one group in Zone 3
and two in Zone 4 were removed and then substituted by equal number of
randomly generated clones. In Zone 2, however, the RL turned out to be
exceedingly high: 160 m/s, a distance level at which practically the whole
real population merges in a unique group. Removing real objects at that
level would have meant to substitute nearly the whole real population by
fully-random objects. So this substitution was not done in Zone 2.

After that, we performed the classical generation of quasi-random popula-
tions. In each zone, the distributions of proper a, e, and sin I to be mimicked
by the quasi-random populations were subdivided in number of bins (see
Table 6.2), and the minimum distance for which groupings of Nmin objects
could be found are determined. We considered as the critical Quasi Random
level QRL in each zone the minimum value obtained in ten runs. The QRL
values adopted in each zone are given in Table 6.2.

Finally, we run the HCM algorithm on the real proper elements. Families
were defined as the groups having at least Nmin members at distance levels 10
m/s lower than QRL, or just reaching QRL, but with a number of members
N ≥ Nmin + 2

√
Nmin.

The families obtained in this first step of our procedure include only a
small subset, corresponding to the largest objects, of the asteroids present
in the low-I portion of zones 2, 3 and 4. For this reason, we call them “core
families”: they represent the inner “skeletons” of larger families present in

11As a matter of fact, such an over-representation could affect the generation of Quasi-
Random objects, producing an exceedingly deep (low) Quasi-Random level (QRL) of
distance, leading to a too severe criterion for family acceptance
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these zones, whose additional members are to be identified in the following
steps of the procedure (see Figure 6.3). In the case of the high-I portions of
zones 2, 3 and 4, and the entire zones 1, 5 and 6, the number of asteroids was
not that large, and we identified families by the direct application of the HCM
procedure, without the multistep approach. For each family, the members
were simply all the objects found to belong to it at the QRL value common
to the zone. In other words, we did not adopt a case-by-case approach based
on looking at the details of the varying numbers of objects found within each
group at different distance levels, as was done by Novaković et al. [2011] to
identify members of the high-inclination families.

6.2.2 Step 2: Attaching smaller asteroids to core fam-
ilies

The second step of the procedure in the low-I portions of zones 2, 3 and
4 was to classify individual asteroids which had not been used in the core
classification, by attaching some of them to the established family cores.
For this we used the same QRL distance levels used in the identification of
the family cores, but we allowed only single links for attachment, because
otherwise we would get chaining, with the result of merging most families
together. In other words, in step 2 we attribute to the core families the
asteroids having a distance from at least one member (of the same core
family) not larger than the QRL critical distance. The result is that the
families are extended in the absolute magnitude/size dimension, not much
in proper elements space, especially not in proper a (see Figure 6.3).

Since this procedure has to be used many times (see Section 6.2.6), it is
important to use an efficient algorithm. The distances between M proper
element sets are M · (M − 1)/2, we could compute all of them then select
the ones < QRL. The computational load is reduced by the partition into
zones, but with zones containing > 100 000 asteroids with proper elements it
is anyway a time consuming procedure.

This problem has a solution which is well known, although it may not have
been used previously in asteroid family classification. Indeed, the problem
is similar to the one of comparing the computed ephemerides of a catalog
of asteroids to the available observations from a large survey [Milani and
Gronchi, 2010, Section 11.3]. We select one particular dimension in the
proper elements space, e.g, sin I; we sort the catalog by the values of this
proper element. Then, given the value of sin I0 for a given asteroid, we find its
position in the sorted list, and scan the list starting from this position up and
down, only until the values sin I0 +QRL and sin I0−QRL, respectively, are
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exceeded. In this way the computational complexity for the computation of
the distances < QRL for M asteroids is of the order of M log2(M), instead of
M2. The large distances are not computed, even less stored in the computer
memory.

6.2.3 Step 3: Hierarchical clustering of intermediate
background

As an input to the third step in the low-I portion of zones 2, 3, and 4, we use
the “intermediate background” asteroids, defined as the set of all the objects
not attributed to any family in steps 1 and 2. The HCM procedure was then
applied to these objects, separately in each of the three zones.

The numbers of objects left for step 3 of our analysis were 99399 in zone 2,
94787 in zone 3 and 57422 in zone 4. The corresponding values of Nmin were
42, 46 and 34, respectively, adopting the same criterion Zappalà et al. [1995]
already used for core families. The same HCM procedures were applied, with
only a few differences. In computing the critical QRL distance threshold, we
did not apply any preliminary removal of large groupings of real objects,
because a priori we were not afraid to derive in this step of our procedure
rather low values of the QRL distance level threshold. The reason is that,
dealing with very large numbers of small asteroids, we have to adopt quite
strict criteria for family acceptance, in order to minimize the possible number
of false grouping, and to reduce the chance of spurious family merging. We
obtained the following QRL values: 50, 60 and 60 m/s for zones 2, 3 and 4,
respectively. Following the same criteria used for core families, step 3 families
were supposed to be found as groupings having at least Nmin members at 40
m/s in zone 2, and 50 m/s in the zones 3 and 4.

On the other hand, as mentioned above, in identifying step 3 families we
are forced to be quite conservative because of overlapping between different
families due either to the intrinsic mobility of their smallest members in
the proper element space, as a consequence of (mostly) Yarkovsky, or to
the family-forming collisional events which also can produce overlapping of
members of different families in the proper element space. For these reasons,
we eventually adopted a value of 40 m/s for step 3 family identification in
all three zones. We also checked that adopting a distance level of 50 m/s in
zones 3 and 4 would tend to produce an excessive effect of chaining, which
would suggest merging of independent families.

Families identified at this step are formed by the population of asteroids
left after removing from the proper elements data set family members iden-
tified in steps 1 and 2 of our procedure. There are therefore essentially two
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possible cases: “step 3” families can either be fully independent, new fam-
ilies having no relation with the families identified previously, or they may
be found to overlap “step 1+2” families, and to form “satellite families” of
smaller objects surrounding some family cores. The procedure adopted to
distinguish between these two cases is described in the following.

6.2.4 Step 4: Attaching background asteroids to all
families

After adding the step 3 families to the list of core families of step 1, we repeat
the procedure of attribution with the same algorithm of step 2. The control
value of distance d for attribution to a given family is the same used in the
HCM method as QRL for the same family; thus values are actually different
for step 1 and step 3 families, even in the same zone.

If a particular asteroid is found to be attributed to more than one family,
it belongs to an ”intersection”. A small number of these asteroids with double
classification is unavoidable, but the concentration of multiple intersections
between particular families requires some explanation.

One possible explanation is due to the presence of families at the bound-
aries between high and low inclination regions in zones 3 and 4, where there
is no gap between them. Indeed, the classification has been done for proper
sin I > 0.29 for the high I regions, for sin I < 0.30 for low I. This implies
that some couples of families are found with intersection in the overlap strip
0.29 < sin I < 0.30, e.g., family 729. This is an artifact of our decomposition
in zones and needs to be corrected by merging the intersecting families.

6.2.5 Step 5: Merging satellite families with core fam-
ilies

Some cases of family intersections, created by step 4, lead to the “satellite
families”. This is when a new family appears as an extension of a family
already identified at steps 1 and 2, with intersections near the boundary.

In general for the merging of two families we require multiple intersections.
Visual inspection of the three planar projections of the intersecting families
proper elements is used as a check, and can allow to assess ambiguous cases.

Of the 77 families generated by HCM in step 3, we have considered 34
to be satellite. Even 2 core families have been found to be satellite of other
core families and thus merged. There are of course dubious cases, with too
few intersections, as discussed in Section 6.3.1. Still the number of asteroids
belonging to intersections decreases sharply, e.g., in the two runs of single-
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step linkage before and after the step 5 mergers, the number of asteroids with
double classification decreased from 1 042 to 29.

The other 43 families resulting from step 3 have been left in our classi-
fication as independent families, consisting mostly of smaller asteroids. As
discussed in Sections 6.3.2 and 6.3.3, some of them are quite numerous and
statistically very significant, some are not large enough and may require con-
firmation, but overall the step 3 families give an important contribution.

6.2.6 Automatic update

The rapid growth of the proper elements database results in any family clas-
sification becoming quickly outdated. Thus we devised a procedure for an
automatic update of this family classification, to be performed periodically.

The procedure consists in repeating the attribution of asteroids to the ex-
isting families every time the catalog of synthetic proper elements is updated.
What we repeat is actually step 4, thus the lists of core families members
(found in step 1), of members of smaller families (from step 3), and also the
list of mergers (from step 5) are kept unchanged.

There is a step which currently we have not automated, and that is step 5:
in principle, as the list of asteroids attached to established families grows, the
intersection can increase. As an example, with the last update of the proper
elements catalog with 18 149 additional records, we have added 3 586 new
“step 4” family members. Then the number of intersections, that is members
of two families, grows from 29 to 36. In some cases the new intersections
support some merge previously not implemented because considered dubious,
some open new problems, in any case to add a new merger is a delicate
decision which at the moment we are unable to automatize.

As time goes by, there will be other changes, from the confirmation/contra-
diction of some of our interpretations by new data: as an example, some small
families will be confirmed by the attribution of new members and some will
not. At some point we may conclude that some small families are flukes
and decide to remove them from the classification, but this is a complicated
decision based on the statistical significance of the lack of increase.

In conclusion we are committed to monitor as the classification is up-
dated and to perform non-automated changes whenever we believe there is
enough evidence to justify them. The purpose of both automated and non-
automated upgrades of the classification is to maintain the validity of the
information made public for many years, without the need for repeating the
entire procedure. This is also to avoid confusing the users with the need of
continuously resetting their perception of the state of the art.
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6.2.7 Some methodological remarks

As it should be clear after the description above, our approach to asteroid
family identification is based on procedures which are quite different from
other possible approaches previously adopted by other authors.

In particular, we do not use any systematic family classifications in > 3
dimensional spaces, such as the ones based either upon proper elements and
albedo, or proper elements and color indexes, or all three data sets. We make
use in our procedure, when dealing with very populous zones, of the absolute
magnitude, but only as a way to decompose into steps the HCM procedure,
see Subsection 6.2.1. Any other available data are used only a posteriori, as
verification and/or improvement, after a purely dynamical classification has
been built. The reasons for this are explained in Table 6.1: less objects, each
with a set of 4− 6 parameters, actually contain less information.

We acknowledge that other approaches can be meaningful and give com-
plementary results. The specific advantage of our methods is in the capability
of handling large numbers of small asteroids. This allows to discover, at least
to measure better, different important phenomena. The best example of this
is the radical change in perception about the cratering families, which have
been more recently discovered and are difficult to appreciate in an approach
biased against the information provided by small asteroids, as in classifica-
tions requiring the availability of physical data (see Section 6.6).

We do not make use of naked eye taxonomy, that is of purely visual
perception as the main criterion to compose families. We agree that the
human eye is an extremely powerful instrument, but we want to provide the
users with data as little as possible affected by subjective judgments. We
have no objection on the use of visual appreciation of our proposed families
by the users of our data, as shown by the provision of a dedicated, public
graphic tool. But this needs to be kept separate, after the classification has
been computed by objective methods.

The reader who may may wish to compare our results with other recent
classifications such as Brož et al. [2013a]; Carruba et al. [2013]; Masiero et al.
[2013]; Mothé-Diniz et al. [2005]; Parker et al. [2008] should note that such
comparison are not easy. One reason is that the families are conventionally
based on the lowest numbered member, and a family which is statistically
the same might have a different name. Thus comparisons should be based
on the full lists of members, not just on summary tables: of the above cited
classifications, as far as we know only Brož et al. [2013a] makes full lists
available12.

12http://sirrah.troja.mff.cuni.cz/˜mira/mp/fams/
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6.3 Results from dynamical classification

6.3.1 Large families

By “large families” we mean those having, in our classification, > 1 000 mem-
bers. There are 19 such families: some of their properties are in Table 6.3.

Table 6.3: Large families with > 1000 members sorted by # tot. The columns
give: family, zone, QRL distance (m/s), number of family members classified
in steps 1, 3, 2+4 and the total number of members, family boundaries in
terms of proper a, e and sin I.

family no z QRL 1 3 2 + 4 tot amin amax emin emax sImin sImax

Hertha 135 2 70 1141 5001 5286 11428 2.288 2.478 0.134 0.206 0.032 0.059
Eos 221 4 100 3060 310 6966 10336 2.950 3.146 0.022 0.133 0.148 0.212
Vesta 4 2 70 1599 925 5341 7865 2.256 2.482 0.080 0.127 0.100 0.132
Eunomia 15 3 90 2713 0 4132 6845 2.521 2.731 0.117 0.181 0.203 0.256
Koronis 158 4 100 930 0 4671 5601 2.816 2.985 0.016 0.101 0.029 0.047
Massalia 20 2 70 86 3546 1126 4758 2.335 2.474 0.145 0.175 0.019 0.033
Themis 24 4 100 1208 0 2742 3950 3.062 3.240 0.114 0.192 0.009 0.048
Hygiea 10 4 100 511 50 1841 2402 3.067 3.241 0.100 0.166 0.073 0.105
Astrea 5 3 90 27 1743 350 2120 2.552 2.610 0.146 0.236 0.054 0.095
Agnia 847 3 90 176 175 1682 2033 2.713 2.819 0.063 0.083 0.056 0.076
Maria 170 3 90 785 0 1245 2030 2.523 2.673 0.067 0.128 0.231 0.269
Minerva 93 3 90 641 0 1192 1833 2.720 2.816 0.115 0.155 0.147 0.169
Adeona 145 3 90 327 0 1072 1399 2.573 2.714 0.153 0.181 0.193 0.213
Hoffmeister 1726 3 90 84 159 1072 1315 2.754 2.818 0.041 0.053 0.066 0.088
Levin 2076 2 70 140 528 477 1145 2.254 2.323 0.130 0.153 0.088 0.106
Veritas 490 4 100 187 46 903 1136 3.143 3.196 0.049 0.079 0.151 0.172
Hungaria 434 1 70 662 0 455 1117 1.883 1.988 0.051 0.097 0.344 0.378
Dora 668 3 90 259 0 842 1101 2.744 2.811 0.188 0.204 0.129 0.143
Klumpkea 1040 4 100 226 0 870 1096 3.083 3.174 0.176 0.217 0.279 0.298

The possibility of finding families with such large number of members
results from our method to attach to the core families either families formed
with smaller asteroids or individual asteroids which are suitably close to the
core. The main effect of attaching individual asteroids is to extend the family
to asteroids with higher H, that is smaller. The main effect of attaching
satellite families is to extend the families in proper a, as a consequence of
the Yarkovsky secular drift da/dt, inversely proportional to the diameter D.

As the most spectacular increase in the family size, the core family of (5)
Astraea is very small, with only 27 members, growing to 2 120 members with
steps 2-5: almost all the family members are small, i.e., H > 14.

Among the largest families, the ones of (135) Hertha and (4) Vesta are
increased significantly in both ways, by attaching satellite families on the low
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a side (the high a side being eaten up, in both cases, by the 3/1 resonance
with Jupiter) and by attaching smaller asteroids to the core. The shape of
both families, when projected on the proper a, e plane, clearly indicates a
complex structure (Figures 6.10 and 6.12). There are two different reasons
for these complex shapes: family 135 actually contains the outcome of the
disruption of two different parents (see Section 6.5); family 4 is the product of
two or more cratering events, but on the same parent body (see Section 6.6).
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Figure 6.1: The family of (20) Massalia in the proper (a, e) plane. Red dots
indicate members of the family core, green dots objects added in step 2 and 4
of the classification procedure, while yellow points refer to members of satellite
families added at step 5, see Table 6.3. Black dots are not recognized as family
members, although some of them might be, while others are background objects.
Blue dots are chaotic objects, affected by the 2/1 resonance with Mars.

Another spectacular growth with respect to the core family is shown by
the family of (20) Massalia, which is also due to a cratering event. The
region of proper elements space occupied by the family has been significantly
expanded by the attribution of the satellite families, in yellow in Figure 6.1,
on both the low a and the high a side. The shape is somewhat bilobate, and
this, as already reported by Vokrouhlický et al. [2006b], is due to the 1/2
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resonance with Mars indicated by chaotic orbits (marked in blue) and by the
line of diffusion along the resonance. The border of the family on the high
proper a side is very close to the 3/1 resonance with Jupiter; the instability
effects due to this extremely strong resonance may be responsible for the
difficulties of attributing to the family a number of objects currently classified
as background (marked in black). Anyway Massalia can be a significant
source of NEA and meteorites through a chaotic path passing though the
3/1. On the contrary, there is no resonance affecting the low a border.

The families of (221) Eos and (15) Eunomia have also been increased
significantly by our procedure, although the core families were already big.
In both cases there is a complex structure, which makes it difficult to properly
define the family boundaries.

The family of (158) Koronis was produced by an impact leading to com-
plete disruption of the original parent body, since there is no dominant largest
member. Family 158 has no satellite families: this is due to being sandwiched
between the 5/2 resonance and the 7/3 resonance with Jupiter. The same
lack of satellite families occurs for the family of (24) Themis: the 2/1 reso-
nance with Jupiter explains the lack on the high a, the 11/5 resonance affects
the low a boundary.

There has been some discussion on the family 490, but as pointed out al-
ready in Milani and Farinella [1994] the asteroid (490) Veritas is in a strongly
chaotic orbit resulting in transport along a resonance (later identified as
5J − 2S − 2A), thus it currently appears to be far away in proper e from
the center of the family, but still can be interpreted as the parent body. A
significant fraction of family members are locked in the same resonance, giv-
ing the strange shape of the family. To exclude (490) Veritas from the other
group with largest member (1086) Nata, as proposed by Michel et al. [2011],
the cutoff distance should be as low as 28 m/s Mothé-Diniz et al. [2005]; we
are using 100 m/s for the core and 40 for step 3, thus we have no reason to
exclude (490) from the family. Both spectroscopic data Mothé-Diniz et al.
[2005] and the albedo data from WISE and IRAS confirm that the family is
homogeneous in composition.

We note that in our analysis we do not identify a family associated with
(8) Flora. A Flora family was found in some previous family searches, but
always exhibited a complicated splitting behavior which made the real mem-
bership quite uncertain Zappalà et al. [1995]. We find (8) Flora to belong to
a step 1 grouping which is present at a distance level of 110 m/s, much higher
than the adopted QRL for this zone (70 m/s). This grouping merges with
both (4) and (20) at 120 m/s, obviously meaningless. In a rigorous HCM
analysis, the QRL cannot be increased arbitrarily just to accept as a family
groupings like this one, not compliant with statistical reliability criteria.
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Satellite problems

We are not claiming that our method of attaching “satellite” families to
larger ones can be applied automatically and/or provide an absolute truth.
There are necessarily dubious cases, most of which can be handled only by
suspending our judgment. Here we are discussing the problem cases, resulting
in a total of 29 asteroids belonging to family intersections.

For the family of (15) Eunomia, the 3/1 resonance with Jupiter opens a
wide gap on the low a side. The 8/3 resonance controls the high a margin,
but there is a possible appendix beyond the resonance, the family of (173)
Ino: we have four intersections 15–173. There is a problem in merging the
two families: the proper a = 2.743 au of the large asteroid (173) appears
incompatible with the dynamical evolution of a fragment from (15). A solu-
tion could be to join to family 15 only the smaller members of 173, but such
a merge cannot be considered reliable at the current level of information.

The family of (221) Eos appears to end on the lower a side at the 7/3
resonance with Jupiter, but the high a boundary is less clear. There are two
families 507 and 31811 having a small number (six) of intersections with 221:
they could be interpreted as a continuation of the family, which would have
a more complex shape. However, for the moment we do not think there is
enough information to draw this conclusion. Other families in the same region
have no intersections and appear separate: the a, sin I projection shows well
the separation of core families 179, 490, 845, and small families 1189 and
8737, while 283 is seen to be well separate by using an e, sin I projection.

The family of (135) Hertha has few intersections (a total of four) with
the small families 6138 (48 members) 6769 (45 members) 7220 (49 members).
All three are unlikely to be separate collisional families, but we have not yet
merged them with 135 because of too little evidence.

The family of (2076) Levin is limited on the low a side by the 7/2 res-
onance with Jupiter. It has few (three) intersections with families 298 and
883. 883 is at lower a than the 7/2 resonance, and could be interpreted
as a satellite, with lower density due to the ejection of family members by
the resonance. Although this is a reasonable interpretation, it cannot be
considered proven, thus we have not merged 2076–883. As for the family of
(298) Baptistina, again the merge with 2076 could be correct, but the two
families in all three proper element planes appear rather as close, possibly
partly overlapping, neighbors, than as a single homogeneous structure (the
Baptistina family exhibits a low density of members and a complete lack of
satellites, while the Levin family has densely packed members and a signifi-
cant satellite family, lowest numbered (4375), with 38 intersection), implying
different formation circumstances; thus we have not implemented the merge.
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The family of (1040) Klumpkea has an upper bound of the proper sin I
very close to 0.3, that is to the boundary between the moderate inclina-
tion and the high inclination zones, to which the HCM has been applied
separately. This boundary also corresponds to a sharp drop in the number
density of main belt asteroids (only 5.3% have proper sin I > 0.3), which is
one reason to separate the HCM procedure because of a very different level
of expected background density. The small family of (3667) Anne-Marie
has been found in a separate HCM run for high proper sin I, but there are
ten intersections with family 1040. However, a merged family would have a
strange shape, with a sharp drop in number density inside the family. This
could have explanation either because of a stability boundary or because of
an observational bias boundary. However, this would need to be proven by
a very detailed analysis, thus we have not implemented this merge.

Figure 6.2: The strange shape of the family of (1726) Hoffmeister in the proper
a, sin I projection. Some perturbations affect the low a portion of the family,
including the halo family 14970. The family of (110) Lydia is nearby, but there is
no intersection.

The family of (10) Hygiea has two intersections with family 1298, but the
two are well separated in the e, sin I plane, thus they have not been merged.
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The family of (1726) Hoffmeister has twenty intersection with the family
14970, formed with much smaller asteroids. Given such an overlap, merging
the two families appears fully consistent with our procedure as defined in
Section 3. However, the merged family has a strange shape, see Figure 6.2,
in particular with a protuberance in the sin I direction which would not be
easy to reconcile with a standard model of collisional disruption followed by
Yarkovsky effect. Moreover, the strange shape already occurs in the core
family, that is for the few largest asteroids, and thus should be explained by
using perturbations not depending upon the size, that is gravitational ones.

Indeed, by consulting the database of analytic proper elements, it is pos-
sible to find that (14970) has a “secular resonance flag” 10, which can be
traced to the effect of the secular resonance g + s− g6 − s6, see also [Milani
and Knežević, 1994, Figure 7]; the same flag is 0 for (1726). Indeed, the
value of the “divisor” g + s − g6 − s6 computed from the synthetic proper
elements is 0.1 arcsec/y for (14970), 0.65 for (1726). On top of that, the
proper semimajor axis of (1) Ceres is 2.7671 au, which is right in the range
of a of the protuberance in proper sin I, thus it is clear that close approaches
and the 1/1 resonance with Ceres can play a significant role in destabilizing
the proper elements Delisle and Laskar [2012]. We do not have a rigorous
answer fully explaining the shape of the family, but we have decided to apply
this merger because the number of intersection is significant and the strange
shape did not appear as a result of the procedure to enlarge the core family.

From these examples, we can appreciate that it is not possible to define
some algorithmic criterion, like a fixed minimum number of intersections, to
automatize the process. All of the above cases can be considered as still open
problems, to be more reliably solved by acquiring more information.

6.3.2 Medium families

By “medium families” we mean families found to have more than 100 and no
more than 1 000 members; the properties of the 41 families in this group are
given in Table 6.4. The exact boundaries 100 and 1 000 are chosen just for
convenience: still the distinction between families based on these boundaries
has some meaning. The medium families are such that the amount of data
may not be enough for detailed studies of the family structure, including
family age determination, size distribution, detection of internal structures
and outliers. They are unlikely to be statistical flukes, they represent some
real phenomenon, but some caution needs to be used in describing it.

In this range of sizes it is necessary to analyze each individual family to
find out what can be actually done with the information they provide. As
for the ones near the lower boundary for the number of members, they are
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Table 6.4: The same as in Table 6.3 but for medium families with 100 < # ≤
1000 members.

family no z QRL 1 3 2 + 4 tot amin amax emin emax sImin sImax

Euphrosyne 31 4 80 968 0 0 968 3.082 3.225 0.150 0.231 0.431 0.459
Phocea 25 2 130 944 0 0 944 2.261 2.415 0.160 0.265 0.366 0.425
Hansa 480 3 140 839 0 0 839 2.538 2.721 0.008 0.101 0.364 0.385
Merxia 808 3 90 72 166 567 805 2.705 2.805 0.125 0.143 0.080 0.093
Juno 3 3 90 45 257 462 764 2.623 2.700 0.228 0.244 0.225 0.239
Lydia 110 3 90 168 0 561 729 2.696 2.779 0.026 0.061 0.084 0.106
Zdenekhorsky 3827 3 90 29 310 332 671 2.705 2.768 0.082 0.096 0.080 0.094
Gantrisch 3330 4 100 63 0 537 600 3.123 3.174 0.184 0.212 0.171 0.184
Inness 1658 3 90 98 172 288 558 2.546 2.626 0.165 0.185 0.123 0.142
Ursula 375 4 100 229 0 273 502 3.096 3.241 0.059 0.130 0.264 0.299
Brasilia 293 4 100 38 0 405 443 2.832 2.872 0.119 0.133 0.256 0.264
Harig 10955 3 40 0 428 0 428 2.671 2.739 0.005 0.026 0.100 0.113
Erigone 163 2 40 0 392 0 392 2.332 2.374 0.200 0.218 0.081 0.098
Misa 569 3 40 0 389 0 389 2.623 2.693 0.169 0.183 0.035 0.045
Astrid 1128 3 40 0 389 0 389 2.754 2.817 0.045 0.053 0.008 0.018
Emma 283 4 100 49 0 320 369 3.029 3.084 0.107 0.124 0.155 0.166
Klytaemnestra 179 4 100 60 0 306 366 2.955 3.015 0.053 0.080 0.148 0.159
Martes 5026 2 40 0 346 0 346 2.368 2.415 0.200 0.217 0.082 0.096
Konig 3815 3 40 0 283 0 283 2.563 2.583 0.138 0.143 0.145 0.164
Schubart 1911 6 60 280 0 0 280 3.964 3.967 0.159 0.222 0.041 0.055
Naema 845 4 100 29 0 224 253 2.917 2.953 0.029 0.041 0.205 0.209
Prokne 194 3 140 235 0 17 252 2.522 2.691 0.154 0.196 0.293 0.315
Aeolia 396 3 40 0 242 0 242 2.731 2.750 0.164 0.170 0.057 0.062
1992DY7 12739 3 40 0 240 0 240 2.682 2.746 0.047 0.060 0.031 0.041
Struveana 778 4 100 29 0 200 229 3.158 3.191 0.240 0.261 0.243 0.253
Barcelona 945 3 140 219 0 0 219 2.599 2.659 0.190 0.289 0.506 0.521
Luthera 1303 4 80 179 0 0 179 3.193 3.236 0.106 0.144 0.310 0.337
Sulamitis 752 2 70 27 90 41 158 2.421 2.484 0.084 0.095 0.085 0.092
1995SU37 18466 3 40 0 155 0 155 2.763 2.804 0.171 0.182 0.229 0.236
Ino 173 3 90 29 0 125 154 2.708 2.770 0.159 0.180 0.229 0.239
Brangane 606 3 40 0 153 0 153 2.573 2.594 0.179 0.183 0.166 0.168
Laodica 507 4 100 38 0 111 149 3.124 3.207 0.049 0.075 0.181 0.198
1998RH71 13314 3 40 0 146 0 146 2.756 2.801 0.170 0.183 0.069 0.078
Clarissa 302 2 40 0 143 0 143 2.385 2.418 0.104 0.111 0.056 0.060
Nocturna 1298 4 100 69 0 74 143 3.088 3.220 0.105 0.123 0.104 0.123
Sylvia 87 5 120 119 0 20 139 3.459 3.564 0.046 0.073 0.162 0.179
Matterania 883 2 70 46 0 86 132 2.213 2.259 0.140 0.151 0.092 0.102
Baptistina 298 2 70 43 0 88 131 2.261 2.288 0.146 0.161 0.100 0.114
Darcydiegel 19466 3 40 0 125 0 125 2.724 2.761 0.007 0.020 0.103 0.111
Nele 1547 3 40 0 108 0 108 2.641 2.650 0.267 0.270 0.211 0.212
Duponta 1338 2 70 38 0 66 104 2.259 2.302 0.119 0.130 0.075 0.091
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expected to grow as the family classification procedure is applied automati-
cally by the AstDyS information system to larger and larger proper elements
datasets. As a result, they should over a time span of several years grow to
the point that more information on the collisional and dynamical evolution
process is available. The only other expected outcome is that some of them
can become much stronger candidates for merging with big families (e.g.,
family 507 cited above as a possible appendix to 221). If some others were
not to grow at all, even over a timespan in which there has been a significant
increase in number density (e.g, 50%) in the region, this would indicate a
serious problem in the classification and would need to be investigated.

Note that 14 of the medium families have been generated in step 3, that
is they are formed with the intermediate background after removal of step 1
and 2 family members, roughly speaking with “smaller” asteroid.

Some remarkable medium families

The families of (434) Hungaria, (25) Phocaea, (31) Euphrosyne, and (480)
Hansa, clustered around the 1 000 members boundary, are the largest high
inclination families, one for each semimajor axis zone13. Given the lower
number density for proper sin I > 0.3 the numbers of members are remark-
ably high, and suggest that it may be possible to obtain information on the
collisional processes at higher relative velocities. These four were already
known Carruba [2009]; Knežević and Milani [2003]; Milani et al. [2010]; No-
vaković et al. [2011], but now it is possible to investigate their structure.

For family 480 the proper e can be very small: this results in a difficulty in
computing proper elements (especially e and the proper frequency g) due to
”paradoxical libration”. We need to fix our algorithm to avoid this problem,
but it has no influence on family membership, since e = 0 is not a boundary.

The largest family in zone 5 is the one of (87) Sylvia, which is well defined,
but with a big central gap corresponding to the resonance 9/5 with Jupiter.
This family has in (87) such a dominant largest member that it can be
understood as a cratering event, even if we do not have a good idea of how
many fragments have been removed by the 9/5 and other resonances14.

The largest family found in zone 6, that is among the Hilda asteroid locked
in the 3/2 resonance with Jupiter, is the one of (1911) Schubart. Proper ele-
ments for Hildas, taking into account the resonance, have been computed by
Schubart [1991], but we have used as input to the HCM (step 1) procedure

13Zones 5 and 6 have essentially no stable high inclination asteroids
14This family is interesting also because (87) Sylvia has been the first recognized triple

asteroid system, formed by a large primary and two small satellites Marchis et al. [2005]
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the synthetic proper elements computed without taking into account the res-
onance, thus averaging over the libration in the critical argument. This is due
to the need to use the largest dataset of proper elements, and is a legitimate
approximation because the contribution of even the maximum libration am-
plitude to the modified metrics d, to be used for resonant asteroids, is more
than an order of magnitude smaller than the one due to eccentricity.

We have not identified a family of (153) Hilda Brož et al. [2011], and
this can be understood because they use for determining the Hilda family
members a distance truncation level 140 m/s, as opposed to our QRL of 60
m/s. In our HCM procedure the Hilda family would appear and gobble up
our small family 6124 (at a truncation level of d = 80 m/s) and absorb also
the tiny family 3561 (at d = 120 m/s). Thus the Hilda family is too sparse
to be a statistically significant concentration, even being a large structure
perfectly visible in a plot in the proper (e, sin I) plane. According to Brož
et al. [2011] its age is ∼ 4 Gy, which means the family has lost all the small
members, thus it has become too sparse to detect with a rigorous application
of HCM. The smaller families 6124 and 3561 could be interpreted as the
results of fragmentations, younger by an order of magnitude, of some Hilda
family members.

6.3.3 Small families

The families we rate as “small” are those in the range between 30 and 100
members; data for 43 such families are in Table 6.5. Out of these, 29 are
“small families” added in step 3, and not absorbed as satellite families.

The families in this category have been selected on the basis of statistical
tests, which indicates they are unlikely to be statistical flukes. Nevertheless,
most of them need some confirmation, which may not be available due to
small number statistics. Thus most of these proposed families are there
waiting for confirmation, which may require waiting for more data.

The possible outcomes of this process, which requires a few years, are as
follows: (i) the family is confirmed by growing in membership, as a result of
automatic attachment of new numbered asteroids; (ii) the family is confirmed
by the use of physical observations and/or modeling; (iii) the family grows
and become attached as satellite to a larger family; (iv) the family is found
not to exist as collisional family because it does not increase with new smaller
members; (v) the family is found not to exist as collisional family because of
enough physical observations showing incompatible composition.

Thus the tables published in this paper are to be used as reference and
compared, at each enlargement of the proper elements database, with the
automatically generated new table based on more asteroids, to see which
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Table 6.5: The same as in Table 6.3 but for small families with 30 < # ≤ 100
members.

family no z QRL 1 3 2 + 4 tot amin amax emin emax sImin sImax

Aegle 96 4 100 38 0 62 100 3.036 3.070 0.176 0.189 0.280 0.289
Gallia 148 3 140 95 0 0 95 2.712 2.812 0.116 0.150 0.420 0.430
Chloris 410 3 90 55 0 38 93 2.713 2.761 0.238 0.265 0.146 0.160
Leonidas 2782 3 90 21 0 71 92 2.657 2.701 0.185 0.197 0.061 0.072
1999NA41 31811 4 40 0 89 1 90 3.096 3.138 0.060 0.075 0.178 0.188
Wagman 3110 3 40 0 86 0 86 2.554 2.592 0.134 0.145 0.049 0.065
1993FY12 18405 4 40 0 85 0 85 2.832 2.858 0.103 0.110 0.158 0.162
1986QA1 7744 3 40 0 78 0 78 2.635 2.670 0.069 0.075 0.042 0.049
Hanskya 1118 4 100 47 0 30 77 3.145 3.246 0.035 0.059 0.252 0.266
Watsonia 729 3 90 73 0 2 75 2.720 2.814 0.110 0.144 0.294 0.305
1981EY40 17392 3 40 0 75 0 75 2.645 2.679 0.059 0.070 0.036 0.042
Ikenozenni 4945 3 40 0 71 0 71 2.570 2.596 0.235 0.244 0.087 0.096
Ausonia 63 2 40 0 70 0 70 2.383 2.401 0.118 0.127 0.107 0.118
4057P-L 16286 4 40 0 68 0 68 2.846 2.879 0.038 0.047 0.102 0.111
Tina 1222 3 140 68 0 0 68 2.769 2.803 0.068 0.113 0.350 0.359
1990RA3 11882 3 40 0 66 0 66 2.683 2.708 0.059 0.066 0.031 0.040
1997EM 21344 3 40 0 62 0 62 2.709 2.741 0.150 0.159 0.046 0.050
Lottie 3489 2 40 0 57 0 57 2.390 2.413 0.090 0.096 0.103 0.109
Mecklenburg 6124 6 60 57 0 0 57 3.966 3.967 0.186 0.212 0.146 0.159
1999FO14 29841 3 40 0 53 0 53 2.639 2.668 0.052 0.059 0.033 0.040
1999AZ8 25315 3 40 0 53 0 53 2.575 2.596 0.243 0.251 0.090 0.096
Ashkova 3460 4 100 28 0 24 52 3.159 3.218 0.187 0.209 0.016 0.028
Vladisvyat 2967 4 80 52 0 0 52 3.150 3.224 0.092 0.124 0.295 0.303
Bankakuko 8905 3 40 0 49 0 49 2.599 2.620 0.181 0.190 0.084 0.091
Philnicholson 7220 2 40 0 48 1 49 2.418 2.424 0.183 0.195 0.026 0.036
Karma 3811 3 40 0 49 0 49 2.547 2.579 0.101 0.110 0.185 0.190
1991JH1 6138 2 40 0 46 2 48 2.343 2.357 0.204 0.215 0.039 0.045
2000RD33 32418 3 40 0 48 0 48 2.763 2.795 0.255 0.261 0.152 0.156
2000BY6 53546 3 40 0 47 0 47 2.709 2.735 0.170 0.174 0.247 0.251
1999XM196 43176 4 40 0 47 0 47 3.109 3.152 0.065 0.074 0.174 0.183
Elfriede 618 4 40 0 46 0 46 3.177 3.200 0.056 0.059 0.270 0.277
2000HC81 28804 3 40 0 46 0 46 2.589 2.601 0.146 0.156 0.063 0.070
Anfimov 7468 4 40 0 45 0 45 3.031 3.075 0.087 0.091 0.060 0.061
Brokoff 6769 2 40 0 44 1 45 2.398 2.431 0.148 0.155 0.051 0.056
Aemilia 159 4 40 0 45 0 45 3.091 3.131 0.111 0.117 0.084 0.090
Traversa 5651 4 100 20 0 22 42 3.097 3.166 0.112 0.128 0.231 0.241
1999UY27 21885 4 40 0 42 0 42 3.079 3.112 0.026 0.035 0.184 0.188
Armenia 780 4 80 41 0 0 41 3.085 3.129 0.060 0.074 0.310 0.314
4072T-3 22241 4 40 0 40 0 40 3.082 3.096 0.126 0.133 0.087 0.096
Pallas 2 3 140 38 0 0 38 2.756 2.791 0.254 0.283 0.531 0.550
Terentia 1189 4 40 0 38 0 38 2.904 2.936 0.071 0.075 0.192 0.194
Takehiro 8737 4 40 0 37 0 37 3.116 3.141 0.112 0.121 0.207 0.211
Inarradas 3438 4 100 20 0 14 34 3.036 3.067 0.176 0.186 0.249 0.255



140 CHAPTER 6. ASTEROID FAMILIES

family is growing15.
However, there are cases in which some of these outcomes appear more

likely, and we shall comment on a few of them.

Small but convincing families

The family of (729) Watsonia has been obtained by joining a high I and a
low I families. We are convinced that it is robust, but it may grow unevenly
in the high I and in the low I portions because of the drop in number density,
whatever its cause. Other results on this family are given in Section 6.5.

The family of (2) Pallas has only 38 members, but it is separated by a
gap in proper a from the tiny family 14916. The gap is the effect of 3-body
resonances, the main one being 3J−1S−1A. Given the large escape velocity
from Pallas (∼ 320 m/s) an ejecta from (2) Pallas could be directly injected
in an orbit with proper elements in the region of family 14916. We have not
merged these two families because this argument, although we believe it is
correct, arises from a model, not from the data as such.

Small families which could be satellites of large families

On top of the small families already listed in Subsection 6.3.1, which are
considered as possible satellites because of intersections, there are other cases
in which small families are very close to large ones, and thus could become
candidates for merging as the size of the proper elements catalog increases.

To identify these cases we have used for each family the “box” having
sides corresponding to the ranges in proper a, e, sin I listed in Tables 6.3–6.6,
and we analyzed all the overlaps between them. The parameter we use as
an alert of proximity between two families is the ratio between the volume
of the intersection to the volume of the box for the smaller family. If this
ratio is 100% then the smaller family is fully included within the box of the
larger one; we have found 12 such cases. We found another 17 cases with
ratio > 20%. By removing the cases with intersections, or anyway already
discussed in Sections 6.3.1 and 6.3.2, we are left with 17 cases to be analyzed.

One case of these overlapping-box families is about two medium families,
namely family 10955 (with 428 members the largest of the step 3 families)
and family 19466, which has 40% of its box contained in the box of 10955.
The possibility of future merger cannot be excluded.

Among small/tiny families with boxes overlapping larger ones, we have
found 10 cases we think could evolve into mergers with more data: 4-3489,

15At http://hamilton.dm.unipi.it/˜astdys2/propsynth/numb.famtab you can download
the current family table.
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5-8905, 5-28804, 10-159, 10-22241, 221-41386, 375-2967, 480-34052, 1040-
29185.

In two of the above cases there is already, from the first automatic update,
supporting evidence: of the 7 new intersections, one is 10-22241 and another
is 375-2967. We are not claiming this is enough evidence for a merge, but it
shows how the automatic upgrade of the classification works.

In three cases we do not think there could be future mergers: 15-145,
15-53546, 221-21885. In another three cases the situation is too complicated
to make any guess: 24-3460, 31-895, 4-63.

The conclusion from this discussion is clear: a significant fraction of the
small families of Table 6.5, and few from Table 6.6, could be in the future
included as satellites of larger families. Others could be confirmed as inde-
pendent families, and some could have to be dismissed.

6.3.4 Tiny families

The “tiny families” are the ones with< 30 members; their number is critically
dependent upon the caution with which the small clusters have been accepted
as families. In Table 6.6 we describe 25 such families.

Given the cautionary statements we have given about the “small fami-
lies”, what is the value of the “tiny” ones? To understand this, it is useful
to check the zones/regions where these have been found: 3 tiny families be-
long to zone 5, 1 to zone 6, 12 to zone 4 high inclination, 9 to zone 3 high
inclination. Indeed, groupings with such small numbers can be statistically
significant only in the regions where the number density is very low.

These families satisfy the requirements to be considered statistically reli-
able according to the standard HCM procedure adopted in the above zones.
It should be noted that, due to the low total number of objects present in
these regions, the adopted minimum number Nmin of required members to
form a family turns out to be fairly low, and its choice can be more impor-
tant with respect to more densely populated regions. In the case of high-I
asteroids, Novaković et al. [2011] included in their analysis a large number of
unnumbered objects which we are not considering in the present paper. The
nominal application of the HCM procedure leads to accept the groups listed
in Table 6.6 as families, but it is clear that their reliability will have to be
tested in the future when larger numbers will be available in these zones.

Thus, each one of these groups is only a proposed family, in need of
confirmation. There is an important difference with most of the small families
listed in Table 6.5: there are two reasons why the number densities are much
lower in these regions, one being the lower number density of actual asteroids,
for the same diameters; the other being the presence of strong observational
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Table 6.6: The same as in Table 6.3 but for tiny families with < 30 members.

family no z QRL 1 3 2 + 4 tot amin amax emin emax sImin sImax

Anne-Marie 3667 4 80 25 0 3 28 3.087 3.125 0.184 0.197 0.294 0.301
Helio 895 4 80 25 0 0 25 3.202 3.225 0.169 0.183 0.438 0.445
Ulla 909 5 120 23 0 1 24 3.524 3.568 0.043 0.058 0.306 0.309
Reich 29185 4 80 23 0 0 23 3.087 3.116 0.196 0.209 0.295 0.304
Brucato 4203 3 140 22 0 0 22 2.590 2.648 0.124 0.135 0.473 0.486
2000OL37 34052 3 140 21 0 0 21 2.641 2.687 0.073 0.087 0.368 0.377
Zhvanetskij 5931 4 80 19 0 0 19 3.174 3.215 0.160 0.172 0.302 0.313
1999RR2 22805 4 80 17 0 0 17 3.136 3.159 0.165 0.175 0.301 0.308
Clematis 1101 4 80 17 0 0 17 3.229 3.251 0.030 0.037 0.363 0.375
Sinden 10369 3 140 17 0 0 17 2.551 2.609 0.105 0.118 0.470 0.482
Higson 3025 4 80 16 0 0 16 3.192 3.221 0.059 0.066 0.368 0.378
1993VV7 14916 3 140 16 0 0 16 2.710 2.761 0.270 0.282 0.537 0.542
Devine 3561 6 60 15 0 0 15 3.962 3.962 0.127 0.133 0.149 0.156
2000EW12 45637 5 120 14 0 1 15 3.344 3.369 0.103 0.123 0.142 0.151
Huberta 260 5 120 11 0 4 15 3.410 3.464 0.081 0.088 0.100 0.108
1998HT148 58892 4 80 14 0 0 14 3.121 3.154 0.153 0.162 0.300 0.308
Univermoscow 6355 4 80 13 0 0 13 3.188 3.217 0.088 0.097 0.374 0.378
1998QO53 40134 3 140 13 0 0 13 2.715 2.744 0.223 0.235 0.429 0.438
2004EW7 116763 3 140 13 0 0 13 2.621 2.652 0.236 0.246 0.463 0.468
Bontekoe 10654 4 80 13 0 0 13 3.207 3.244 0.051 0.056 0.368 0.374
Myriostos 10000 3 140 13 0 0 13 2.562 2.623 0.260 0.273 0.316 0.325
1995FR1 7605 4 80 12 0 0 12 3.144 3.153 0.065 0.073 0.447 0.453
1997UG5 69559 4 80 12 0 0 12 3.202 3.219 0.196 0.201 0.299 0.305
1999PM1 20494 3 140 12 0 0 12 2.653 2.690 0.119 0.132 0.470 0.480
2000YD17 23255 3 140 10 0 0 10 2.655 2.688 0.095 0.113 0.460 0.469

biases which favor discovering only objects of comparatively large size. In the
case of the high inclination asteroids the observational bias is due to most
asteroid surveys looking more often near the ecliptic, because there more
asteroids can be found with the same observational effort. For the more
distant asteroids the apparent magnitude for the same diameter is fainter
because of both larger distance and lower average albedo.

If a family is small because of observational bias, it grows very slowly
in membership unless the observational bias is removed, which means more
telescope time is allocated for asteroid search/recovery at high ecliptic lati-
tude and more powerful instruments are devoted to find more distant/dark
asteroids. Unfortunately, there is no way to be sure that these resources will
be available, thus some “tiny” families may remain tiny for quite some time.
In conclusion, the list of Table 6.6 is like a bet to be adjudicated in a com-
paratively distant future. We can already confirm that many of these tiny
families are slowly increasing in numbers. As already mentioned, while this
paper was being completed, the proper elements catalog has already been
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updated, the automatic step 4 was completed, resulting in a new classifica-
tion with a 4% increase in family membership. In this upgrade 14 out of 25
tiny families have increased their membership, in most cases by just 1−−2.

6.4 Use of absolute magnitude data

For most asteroids a direct measurement of the size is not available, whereas
all the asteroids with an accurate orbit have some estimated value of abso-
lute magnitude. To convert absolute magnitude data into diameter D we
need the albedo, thus D can be estimated only for the objects for which
physical observations, such as WISE data or polarimetric data, are available.
However, families are generally found to be quite homogeneous in terms of
albedo and spectral reflectance properties Cellino et al. [2002]. Therefore, by
assuming an average albedo value for all the members of a given family, we
can derive the size of each object from its value of absolute magnitude. This
requires that a family has one or more members with a known albedo, and
we have reasons to exclude that they are interlopers.

The main applications of the statistical information on the diameter D
of family members are three: estimation of the total volume of the family, of
the age of a collisional family, and of the size distribution.

6.4.1 The volume of the families

In case of a total fragmentation, the total volume of a collisional family,
computed as the sum of the volume of known family members (estimated
from absolute magnitude and some assumed common albedo), can be used to
give a lower bound for the size of the parent body. For cratering, the volume
computed without considering the parent body can be used to constrain from
below the size of the corresponding crater. In case of dubious origin, the total
volume can be used to discard some possible sources if they are too small.

As an example let us choose the very large family of (4) Vesta. The albedo
of Vesta has been measured as 0.423 Tedesco et al. [2002], but more recently
an albedo of 0.37 has been reported by Shevchenko and Tedesco [2006], while
a value around 0.30 is found by the most recent polarimetric investigations
Cellino et al. [2012]16.

Before computing the volume of fragments we need to remove the biggest
interlopers, because they could seriously contaminate the result: asteroids
(556) and (1145) are found to be interlopers because they are too big for their

16By using WISE albedos, it can be shown that the most frequent albedos for members
of family 4 are in the range spanning these measurements, see Figure 6.13
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position with respect to the parent body, as discussed in the next subsection,
see Figure 6.5.

If we assume albedo 0.423 for all family 4 members, we can compute the
volume of all the family members at 32 500 km3. The volume would be 54 500
km3 with albedo 0.3, thus the volume of the known family can be estimated
to be in this range. On Vesta there are two very large craters, Rheasilvia
and Veneneia, with volumes of > 1 million km3 Schenk et al. [2012]. Thus it
is possible to find some source crater.

Another example of cratering on a large asteroid is the family of (10)
Hygiea. After removing Hygiea and interlopers with D > 40 km which should
be too large for being ejected from a crater17, and assuming a common albedo
equal to the IRAS measure for (10), namely 0.072, we get a total volume of
the family as 550 000 km3. This implies on the surface of (10) Hygiea there
should be a crater with a volume at least as large as for Rheasilvia. Still the
known family corresponds to only 1.3% of the volume of (10) Hygiea.

6.4.2 Family Ages

The computation of family ages is a high priority goal. As a matter of
principle it can be achieved by using V-shape plots such as Figure 6.3, for
the families old enough to have Yarkovsky effect dominating the spread of
proper a. The basic procedure is as follows: as in the previous section by
assuming a common geometric albedo pv, from the absolute magnitudes H
we can compute18 the diameters D. The Yarkovsky secular effect in proper
a is da/dt = c cos(φ)/D, with φ the obliquity (angle of the spin axis with
the normal to the orbit plane), and c a calibration depending upon density,
thermal conductivity, spin rate, and other parameters. As a matter of fact
c is weakly dependent upon D, but this cannot be handled by a general for-
mula since the dependence of c from thermal conductivity is highly nonlinear
[Vokrouhlický et al., 2000b, Figure 1]. Thus, as shown in 10.1, the power law
expressing the dependence of c upon D changes from case to case. For cases
in which we have poor information on the thermal properties (almost all
cases) we are forced to use just the 1/D dependency.

Then in a plot showing proper a vs. 1/D for asteroids formed by the same
collisional event we get straight lines for the same φ. We can try to fit to the
data two straight lines representing the prograde spin and retrograde spin
states (φ = 0◦ and φ = 180◦). The slopes of these lines contain information
on the family age. Note that this procedure can give accurate results only

17Asteroids (100), (108), (758) also have WISE albedo at least double that of Hygiea.
18D = 1 329× 10−H/5 × 1/

√
pv
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Figure 6.3: V-shape of the family 20 in the proper a vs. 1/D plane. The black lines
are the best fit on the two sides; the black circles indicate the outliers. Black dots
are background asteroids, crosses are colored according to the same conventions
as in the previous Figures.

if the family members cover a sufficient interval of D, which now is true for
a large set of dynamical families thanks to the inclusion of many smaller
objects (represented by green and yellow points in all the figures).

As an example in Figure 6.3 we show two such lines for the Massalia family
on both the low proper a and the high proper a side, that is representing the
above mentioned retrograde and direct spin rotation state, respectively. This
is what we call V-shape, which has to be analyzed to obtain an age estimate.

A method of age computation based on the V-shape has already been
used to compute the age of the Hungaria family [Milani et al., 2010, Figure
20]. A similar method could be applied to all the large (and several medium)
families; however, a procedure to handle cases with different properties needs
to be more robust, taking into account the following problems.

The method assumes all the family members have the same age, that
is, the coincidence of the dynamical family with the collisional family. If
this is not the case, the procedure is more complicated: see in Figure 6.4
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Figure 6.4: V-shapes, in the proper a vs. 1/D plane, for the family of (847)
Agnia and for the subfamily of (3395) Jitka, which appears as a much denser
substructure. All the members marked as outliers are for the Jitka slope fit.

two V-shapes, with a fit for the boundary, in the Agnia family, indicating at
least two collisional events with different ages. Thus a careful examination
of the family shape, in the a, 1/D plot and in other projections, is required
to first decide on the minimum number of generating collisional events. If
substructures are found, with shape suggesting separate collisional events,
their ages may in some cases be computed.

To compute the age we use the inverse slope ∆a(D)/(1/D) (D in km)
of one of the two lines forming the V-shape, the same as the value of ∆a
for an hypothetical asteroid with D = 1 km along the same line. This is
divided by the secular drift da/dt for the same hypothetical asteroid, giving
the estimated age. However, the number of main belt asteroids for which we
have a measured value of secular da/dt is zero. There are > 20 Near Earth
Asteroids (NEA) for which the Yarkovsky drift has been reliably measured
(with S/N > 3) from the orbit determination (see Sec. 3, Table 2.2). We
can estimate the calibration c, and the expected value of da/dt for an as-
teroid with a given D, a, e, φ, by scaling the result for a NEA with different
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D, a, e, φ. However, to derive an error model for this scaling is complicated;
see Farnocchia et al. [2013a] for a full fledged Monte Carlo computation.

The data points (1/D, a) in the V-shape are not to be taken as exact mea-
surements. The proper a coordinate is quite accurate, with the chaotic dif-
fusion due to asteroid-asteroid interaction below 0.001 au Delisle and Laskar
[2012], and anyway below the Yarkovsky secular contribution for D < 19 km;
the error in the proper elements computation (with the synthetic method)
gives an even smaller contribution. To the contrary, the value of D can have
a relative error of 0.2 (see the column RMS(resid) in Table 6.7). Thus a
point in the 1/D, a plane has to be considered as measurement with a signif-
icant error, especially in 1/D, and the V-shape needs to be determined by a
least squares fit, allowing also for outlier rejection.

Most families are bounded, on the low-a side and/or on the high-a side,
by resonances strong enough to eject most of the family members reaching
the resonant value of a by Yarkovsky, into unstable orbits. Thus the V-shape
is cut by vertical lines at the resonant values of a. Thus the slope fit must
be done for values of 1/D below the intersection of one of the slanted sides
of the V and the vertical line at the resonant value of a. For many families
this restricts the range of 1/D for which the V-shape can be measured.

The dynamical families always contain interlopers, few in number, but not
representing a small fraction of the mass (the size distribution of the back-
ground asteroids is less steep). The removal of large interlopers is necessary
not to spoil the computation of the slopes, and also of centers of mass.

For the common albedo we use the average of the WISE albedos with
S/N > 3, cutting tails such as albedo < 0.15 and > 0.6 for V-types. The
values used are in Table 6.7.

As a consequence of the above arguments, we have decided to develop a
new method, which is more objective than the previous one we have used,
because the slope of the two sides of the V-shape is computed in a fully
automated way as a least squares fit, with equally automatic outlier rejection.
The following points explain the main features of this new method.

1. For each family we set up the range of values for the proper a, and for
the diameter D (we may use a different range of values for D for the
inner and the outer side of the V, taking into account the interaction
with resonances). Note this is the only “manual” intervention.

2. The computer code divides the 1/D-axis into bins, which are created
in such a way to contain about the same number of objects. Hence:
the bins, which correspond to small values of 1/D are wider than the
ones which correspond to large values of 1/D; the inner and the outer
side of the family may have different bins.
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3. We select the minimum value (inner side) and the maximum value
(outer side) of the proper a and the corresponding 1/D value in each
bin. The variables of the fit are (proper a,1/D).

4. The computer code implements a linear regression for both sides. The
method is iterative: for each iteration we calculate the residuals, the
outliers and the kurtosis of the residuals. The outliers are the residuals
greater than 3σ, where the control values σ should be the a priori
standard deviation of the residuals in 1/D. However, we do not have
an a priori error model for the measurment of D. Thus we replace it
with a quantity which is fixed in the iteration, our current choice is σ =
STD(a). After removing the outliers we repeat the linear regression.
Note that the outliers for the fit can be interlopers in the family, but
also family members with low accuracy diameters.

5. The method has converged if either the kurtosis of the residuals is
3± 0.3 or there is an iteration without additional outliers.

6. The standard deviation of the slope S is computed from the STD of
the residuals σ and from the formal variance of the slope ΓS,S as found
in the covariance matrix of the fit: STD(S) =

√
ΓS,S × σ. For the

inverse slope STD(1/S) = STD(S)× (1/S2).

7. The two straight lines on the sides of the V-shape are computed inde-
pendently, thus they do not need to cross in a point on the horizontal
axis. We compute the V-base as the difference in the a coordinate of
the intersection with the a axis of the outer side and of the inner side.
This quantity has an interpretation we shall discuss in Section 6.4.2.

The goal in this paper is to introduce objective methods taking into account
the problems above. We pay a special attention to the computation of quan-
tities like the slopes, used to estimate the family age; the ages themselves,
involving the complicated calibration of the Yarkovsky effect, are given only
as examples, to demonstrate what we believe should be a rigorous procedure.

Massalia

One of the best examples of dynamical family for which the computation of
a single age for a crater is possible is the one of (20) Massalia, see Figure 6.1.
The two slopes of the inner and outer side of V-shape (Figure 6.3) have
opposite sign, with the absolute value different by 7.5%, see Table 6.7. This
indicates an accurately determined slope, as confirmed by the formal STD of
the fit.
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Table 6.7: Results of the fit for the low a (IN) and high a (OUT) sides for
each considered family: number of iterations, minimum diameter D (in km)
used in the fit, number of bins, number of outliers, value of the kurtosis and
standard deviation of the residuals in 1/D, and the value of the inverse of
the slope (in au).

family albedo iter. Dmin bins outliers kurtosis RMS(resid) 1/slope STD(1/slope)
20 0.250 IN 7 0.9 21 74 2.96 0.049 -0.057 0.003
20 OUT 6 1.0 13 48 3.12 0.062 0.053 0.004
4 0.353 IN 2 2.2 23 7 2.87 0.039 -0.299 0.045
4 OUT 2 3.9 7 2 1.49 0.035 0.588 0.251
15 0.260 IN 2 4.5 13 1 2.83 0.019 -0.550 0.085
15 OUT 2 5.9 16 1 2.84 0.016 0.447 0.050
158 0.235 IN 2 7.8 9 2 3.03 0.018 -0.346 0.090
158 OUT 2 4.6 11 0 2.16 0.027 0.445 0.080
847 0.238 IN 1 5.2 7 0 1.87 0.013 -0.367 0.070
847 OUT 1 7.2 7 0 1.36 0.011 0.317 0.050
3395 0.238 IN 10 2.1 9 63 2.78 0.038 -0.048 0.007
3395 OUT 7 2.9 8 33 2.81 0.024 0.045 0.007

The STD of the residuals is high and the number of outliers is large be-
cause the asteroids with 1 < D < 2.5 km have a poorly determined absolute
magnitude. Both accuracy of the fit and large residuals are due to the fit
pushed down to small diameters, because the family is not cut by a resonance
on the low a side, and is affected by the 3/1 J resonance on the high a side,
but only for D < 1 km. The V-base is small and positive (Table 6.8). The
internal structure of family 20 is further discussed in Section 6.6.1.

Vesta

The Vesta family has a complex structure, which is discussed in Section 6.6.2:
thus the presence of two different slopes on the two sides (Figure 6.5 and Ta-
ble 6.7) can be interpreted as measuring the age of two different collisional
events, the one forming the high a boundary of the family being older. In
theory two additional slopes exist, for the outer boundary of the inner sub-
family and for the inner boundary of the outer family, but they cannot be
measured because of the significant overlap of the two substructures. Thus
the negative V-base has no meaning.

The family is cut sharply by the 3/1 resonance with Jupiter on the high
a side and by the 7/2 on the low a side. As a result the outer side slope fit is
poor, because the range of sizes is not large enough. That the slope is lower
(the age is older) on the high a side is likely, but the ratio is only roughly
estimated.
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Figure 6.5: V-shape of the family 4. The lines identified by the fit have different
slopes on the two sides; for the explanation see Section 6.6.2.

The calibration constant should be similar for the two subfamilies with the
same composition (with only a small difference due to the relative difference
in a), thus the age computed from the outer side is older, but we do not have
a reliable estimate of this ratio.

For the computation of the barycenter (Table 6.8) it is important to
remove the interlopers (556) and (1145), which clearly stick out from the
V-shape on the outer side, although (1145) is not rejected automatically by
the fit19.

Eunomia

The slope on the outer side in Figure 6.6 is affected by the 8/3 resonance
with Jupiter, forcing us to cut the fit already at D = 5.9 km. The fit on the
inner side has been cut at D > 4.5 km, because the 3/1 J resonance is eating
up the family at lower diameters. The inner and outer V-shape slopes for
Eunomia are different by 23%, but this difference is very poorly constrained.

19By using the smaller WISE albedos, these two are even larger than shown in Figure 6.5.
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Figure 6.6: V-shape of the family 15: asteroids (85) and (258) are interlopers.

The possibility of an internal structure, affecting the interpretation of the
slopes and ages, is discussed in Section 6.6.4: thus the small, positive V-base
(Table 6.8) may not be significant.

For the computation of the barycenter (Table 6.8) it is important to
remove the interlopers (85) and (258) which stick out from the V-shape, on
the right and on the left, respectively, with the largest diameters after (15),
see Figure 6.620.

Koronis

The Koronis family has a V-shape sharply cut by the 5/2 resonance with
Jupiter on the low a side, by the 7/3 on the high a side (Figure 6.7), hence
a short range of diameters usable to compute the slope: on the low a side,
we have been forced to cut the fit at D = 7.8 km. This is the consequence
of a well known phenomenon, by which leakage by Yarkovsky effect from
family 158 into the 5/2 resonance occurs even for comparatively large objects

20Moreover, the albedo of (85) Io is well known (both from IRAS and from WISE) to
be incompatible with (15) Eunomia as parent body.
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Table 6.8: Cratering families: family, proper a, e and sin I of the barycenter,
position of the barycenter with respect to the parent body, V-base, center
of the V-base and escape velocity from the parent body. The barycenter is
computed by removing the parent body, the interlopers and the outliers.

family ab eb sin Ib ab−a0 eb−e0 sin Ib V-base center ve (m/s)
− sin I0 of V-base

20 2.4061 0.1621 0.0252 -0.0026 0.0003 0.0004 0.005 2.4112 102
4 2.3637 0.1000 0.1153 0.0022 0.0012 0.0039 -0.026 363
4 (N 6=1145) 2.3620 0.0993 0.1153 0.0005 0.0005 0.0040
4 low e 2.3434 0.0936 0.1169 -0.0181 -0.0051 0.0056
4 high e 2.3951 0.1094 0.1124 0.0336 0.0106 0.0010
15 2.6346 0.1528 0.2276 -0.0090 0.0042 0.0010 0.012 2.6370 176
15 (N 6=85, 258) 2.6295 0.1496 0.2282 -0.0141 0.0011 0.0015
15 low a 2.6050 0.1495 0.2298 -0.0386 0.0009 0.0032
15 high a 2.6805 0.1499 0.2247 0.0368 0.0013 -0.0019

Milani and Farinella [1995]; Vokrouhlický et al. [2001]. The low fit accuracy
can explain the discrepancy by 29% of the two slopes, which corresponds
to only a little more than the STD uncertainty. We have no evidence for
substructures which could affect the V-shape21.

Agnia

The family of (847) Agnia has a prominent subfamily forming a V-shape
inside the wider V-shape of the entire family (Figure 6.4). We call this
structure the subfamily of (3395) Jitka. A possible interpretation is that
Jitka is the largest fragment of a catastrophic fragmentation of an Agnia
family member.

There are some problems if we use the WISE albedo data for the members
of the dynamical family 847: there are 114 albedos with S/N > 3, which
introduces some risk of small number statistics. Anyway, they indicate that
the two subgroups, the 3395 subfamily and the rest of the 847 dynamical
family, have a similar distribution of albedos, including dark interlopers.
However, the albedo of (847) Agnia 0.147± 0.012 is lower than most family
members, while (3395) Jitka has 0.313±0.045 which is more compatible with
the family. Thus it is not clear whether (847) Agnia is the largest remnant
or an interloper. Also the choice of the common albedo is not obvious. We
have used all the albedo data cited above, including the ones belonging to
the 3395 subfamily, to compute an average (after discarding tails with albedo

21There is a well known substructure, the subfamily of (832) Karin, which is perfectly
visible in Figure 6.7, but does not affect the two sides of the V-shape.
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Figure 6.7: V-shape of the family 158. The Karin subfamily is clearly visible
above the point marked 832.

< 0.1 and > 0.35), and got the mean value of Table 6.7.

Then we have computed 4 slopes, 2 for the entire dynamical family 847
and 2 specifically for the Jitka subgroup (by selecting only the members with
2.762 < a < 2.82). For the entire family, consistent values (within the formal
uncertainty) of the slopes on the two sides (Table 6.7) appear to correspond
to the much older age of a wider and less dense family.

The fit for the Jitka slopes resulted in a large number of outlier rejections,
because on the exterior of the V-shape there are Agnia members which do not
belong to the Jitka subgroup, but are much more dense than the background.
Nevertheless, the fit was good as shown by the two consistent slopes of the
Jitka subfamily, with inverse slopes lower by a factor > 7. The V-base is
negative in both cases (Table 6.9).

The Jitka subfamily shows in the V-shape plot (Figure 6.4) a depletion
of the central portion, which should correspond to obliquities φ not far from
90◦. This can be interpreted as a signature of the YORP effect Vokrouhlický
et al. [2006b], in that most members with φ ∼ 90◦ would have had their spin
axes evolved by YORP towards one of the two stable states, φ = 0◦, 180◦.
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Table 6.9: Fragmentation families: family, proper a, e, sin I of the barycenter,
V-base and center of the V-base. The barycenter is computed by removing
the outliers.

family ab eb sin Ib V-base center of V-base
158 2.8807 0.0488 0.0371 0.023 2.8782
847 2.7799 0.0715 0.0664 -0.017 2.7759
847 (w/o 3395) 2.7450 0.0724 0.0651
3395 2.7925 0.0727 0.0667 -0.004 2.7911

Yarkovsky effect calibration and family age estimation

Recalling that there is not a single measurement of the Yarkovsky effect
for the main belt asteroids, thus also for the families, we can perform the
calibration only by using the measurements for Near Earth Asteroids.

Thus, here the age estimation is obtained by scaling the results for the
asteroid for which there is the best Yarkovsky effect determination 3, namely
the low-albedo asteroid (101955) Bennu, with scaling taking into account the
different values of D, a, e, ρ and A, where ρ is the density and A is the Bond
albedo. The da/dt value for (101955) Bennu has a S/N = 197.7, thus a
relative uncertainty < 1%. The scaling formula we have used is:

da

dt
=
da

dt

∣∣∣∣
Bennu

√
a(Bennu)(1− e2

Bennu)√
a(1− e2)

DBennu

D

ρBennu
ρ

cos(φ)

cos(φBennu)

1− A
1− ABennu

where D = 1 km used in this scaling formula is not the diameter of an actual
asteroid, but is due to the use of the inverse slope and cos(φ) = ±1, as
explained in the description of the method above.

It may appear that the use of the Yarkovsky effect measurements for
asteroids more similar in composition to the considered families than Bennu
would be more appropriate. So, for example, the asteroid (2062) Aten has
the best determined da/dt value of all S-type asteroids (S/N = 6.3), but the
obliquity φ is not known. Thus, using an S-class asteroid for scaling may
not result in a better calibration, because the S-type asteroids are not all the
same, e.g., densities and thermal properties may be different.

For the family of (4) Vesta one would expect that the Yarkovsky mea-
surement for asteroid (3908) Nyx, presumably of V-type Binzel et al. [2004],
should represent a natural choice for calibration. In fact, the same authors
warn that this asteroid belongs to a small group of objects with “sufficiently
unusual or relatively low S/N spectra”, thus the taxonomic class may be
different from nominal. This suspicion is further strengthened by the value
of geometric albedo of only 0.16± 0.06 reported by Benner et al. [2002], sig-
nificantly lower than the typical value (∼ 0.35) for a Vestoid. (3908) Nyx is
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of extremely low density Farnocchia et al. [2014]: it has too many properties
inconsistent with Vestoids.

Thus we have used (101955) Bennu as benchmark to be scaled for the
Yarkovsky calibration of all families, because it is the known case with both
the best estimate of Yarkovsky and best known properties, including obliq-
uity, density, and size.

As shown in the formula above, for the calibration we need an estimate
for the density of asteroids in the size range contributing to the V-shape,
that is down to the minimum value of D used in the fit (given in Table 6.7).
A large compilation of asteroid densities has been published by Carry [2012],
but for main belt asteroids they are accurate and reliable only for very large
diameters. Thus we have used the following method: having selected the
asteroids (704), (4), (6) as representative of the taxonomic classes B, V,
S respectively (for family 15 we have used the density of (15)) with good
density estimates and expected negligible porosity, we take their densities
ρ from Carry [2012]. Then we compute the porosity of Bennu as p = 0.36
from the density 1.26 estimated by 4, and apply the same porosity to all
the taxonomic classes, e.g, to a Vestoid we assign a density (1− p) ρ(V esta).
The porosity, and the correlated change in thermal conductivity with size,
are the main sources of uncertainty in the calibration. We do not yet have
enough information to derive a formal standard deviation for the calibration,
but the relative uncertainty should be approximately 0.3.

Table 6.10: Family age estimation: family, da/dt for D = 1 km obtained
using (101955) Bennu for the calibration, for the two sides of the V-shape,
corresponding family age, standard deviation due only to the propagation of
the formal fit uncertainty.

family density da/dt ∆t STD(∆t)
g/cm3 (10−10 au/y) (My) (My)

20 IN 2.45 -3.54 161 8
20 OUT 3.46 153 12
4 IN 2.30 -3.44 869 131
4 OUT 3.30 1 800 759
15 IN 2.28 -3.66 1 500 232
15 OUT 3.55 1 300 141
158 IN 2.45 -3.04 1 100 296
158 OUT 3.00 1 500 267
847 IN 2.45 -3.28 1 100 213
847 OUT 3.24 979 154
3395 IN 2.45 -3.26 147 21
3395 OUT 3.24 139 22
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The results of our age computation for the considered families are given
in Table 6.10, for the two sides of the V-shape. The standard deviation of
the age reported there is only the portion due to the fit of the slope. We
need to stress that in most cases the main uncertainty in the age is due to
the uncertainty of the calibration.

The estimations of the age of Massalia family from the two slopes are
very close; they are also in good agreement with results obtained with a
quite different method by Vokrouhlický et al. [2006b].

The Vesta family case is particularly interesting as the lower age appears
to be compatible with the estimated age of one of the two largest craters
on Vesta, Rheasilvia (∼ 1 Gy) Marchi et al. [2012]. An age for the other
big crater, Veneneia, has not been estimated, although it must be older
because this crater is below the other. Our result that there is another, older
collisional family is interesting, although there is no way to compare ages
with the Veneneia crater.

The difference of the values of the inner and outer slopes of the V-shape
for the Eunomia could be interpreted as the age of two different events, see
Section 6.6.4. There is no previous estimate of the age of Eunomia we are
aware of, a “young age” being suggested on the basis of simulations of size
distribution evolution by Michel et al. [2001].

The estimation of the age of the Koronis family as inferred from the
longer outer side of the V-shape is consistent with the age (≤ 2 Gy) reported
previously by Marzari et al. [1995], based on the observed size distribution
of larger members, and by Chapman et al. [1996], based on the crater count
on the surface of the Koronis family member (243) Ida. Bottke et al. [2001]
give 2.5± 1 Gy, which is also consistent.

The age estimate for the Agnia family of < 140 My, provided by Vokrouh-
lický et al. [2006a], is consistent with our result for the Jitka subfamily; the
older age for the entire Agnia family has not been found previously because
the low a component identified by us was not included in the family.

The two youngest according to our estimates, family 20 and subfamily
3395, have in common the presence of a lower density central region of the V-
shape, more pronounced for Jitka, barely visible for Massalia. This suggests
that the time scale for the YORP effect to reorient the rotation axis to either
φ = 0◦ or φ = 180◦ is smaller than the time scale for randomization of a
significant fraction of the spin states, which would fill the central gap.

Collisional Models and the interpretation of V-shapes

The method we have proposed for the computation of family ages has the
advantage of using an objective measurement of the family V-shape, rather
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than using a line placed “by eye” on a plot. However, because two parameters
are fit for each boundary line, that is the slope and the intersection with
the a-axis, whenever both sides are accessible the output is a set of four
parameters: the inverse slopes on both sides (Table 6.7), the V-base and
the center of V-base (Tables 6.8, and 6.9). To force the lines to pass from
a single vertex on the horizontal axis would remove one fit parameter, to
assign also the proper a of this vertex (e.g., at the value of some barycenter)
would remove two parameters: this would bias the results and contradict the
claimed objectivity of the procedure, to be defined by the family membership
only22.

On the other hand, our procedure does not use the V-base and its center
to estimate the family age. Only the slopes of the leading edge of family
members (for either high or low a) are used for the ages. This leads to two
questions: which information is contained in the two parameters we are not
using, and is it appropriate to obtain, e.g., a negative V-base, or is this an
indication of a poor fit for at least one of the two lines?

The interpretation of the V–shape plots is not straightforward, because
they are the outcome of a game involving three major players, each one pro-
ducing its own effect. These players are: (1) the collisional history of a family,
including the possible presence of overlapping multi-generation events; (2)
the Yarkovsky effect, which in turn is influenced by the YORP effect; (3) the
original field of fragment ejection velocities at the epoch of family formation.
In addition, also the possible presence of strong nearby resonances plays an
important role. Note also that in the present list of families several ones have
been created by a cratering and not by a catastrophic disruption.

As for the effect (3), the existence of a correlation between the size and
the dispersion in semi-major axis of family members has been known for sev-
eral years. In the past, pre–Yarkovsky era (and with most of the recognized
families resulting from catastrophic events), this correlation was assumed to
be a direct consequence of the distribution of original ejection velocities, with
smaller fragments being ejected at higher speeds Cellino et al. [1999]. The
ejection velocities derived from observed proper element differences, how-
ever, turned out to be too high to be consistent with the experiments, since
they implied collisional energies sufficient to thoroughly pulverize the parent
bodies.

Later, the knowledge of the Yarkovsky effect and the availability of more
detailed hydrodynamic simulations of catastrophic fragmentation family–

22Assumptions on the V-base were contained in most previous attempts at estimat-
ing family ages, although this is not easy to recognize because of the prevalent usage of
coordinates (a,H) instead of (a, 1/D).



158 CHAPTER 6. ASTEROID FAMILIES

forming events (see, for instance, Michel et al. [2001]) suggested a differ-
ent scenario: most family members would be reaccumulated conglomerates,
issued from merging of many fragments ejected at moderate velocities. In
this scenario, the original ejection velocities give a moderate contribution
to the observed dispersion of proper elements. Then the V–shape plots dis-
cussed in the previous subsections would be essentially a consequence of such
Yarkovsky–driven evolution (see Bottke et al. [2002b] for a general reference).
The extension of the above scenario to families formed by craterization events
is not obvious, nor –at the present time– supported by numerical simulations,
which are not yet capable to reach the required resolution Jutzi et al. [2013].
However, the interpretation of the V–shape as a consequence of Yarkovsky
effect should hold also for them.

Unfortunately, a satisfactory interpretation of the observed V–shape plots
can hardly be achieved in a purely Yarkovsky–dominated scenario: the orig-
inal ejection velocities of fragments cannot be totally disregarded. For the
Eos family Brož and Morbidelli [2013], Vokrouhlický et al. [2006c], assume,
for D = 5 km, average asymptotic relative velocities v∞ ∼ 90 m/s. This
is even more true for the families formed by cratering events on very large
asteroids, since ejection velocities v0 must be > ve (escape velocity) as to
overcome the gravitational well of the parent body, and the v∞ of the family
members are both large and widely dispersed (see Section 6.6).

Due to the original dispersion of the family members, we cannot expect
that the two sides of any given V–plot exactly intersect on the horizontal axis,
as one might expect for a ”pure” Yarkovsky model. The original extension
of the family depends on the ejection velocities v∞ of the bodies, while the
Yarkovsky effect on every body of a given size depends on the orientation of
the spin vector. If velocities and spin vectors are not correlated, the two terms
should combine as independent distributions. If the Yarkovsky term is the
dominant signal, the original velocities provide a noise term; the noise/signal
value is certainly significant for large objects, thus the two lines of the ”V”
should not intersect at 1/D = 0, but in the half plane D < 0. The ”V–base”
has therefore to be positive. Yet, this is not the case in some of the examples
presented in this paper. How to possibly explain this?

A more physical explanation may be tentatively suggested, based on an
argument which has been previously discussed in the literature La Spina et al.
[2005], Paolicchi and Micheli [2008] but not yet fully explored. According to
the results of some laboratory fragmentation experiments Fujiwara et al.
[1989], Holsapple et al. [2002] the fragments ejected from a catastrophic dis-
ruption rotate, and the sense of spin is related to the ejection geometry: the
fragments rotate away from the side of higher ejection velocity. Such behav-
ior is clearly represented in [Fujiwara et al., 1989, Fig. 1]. This experimental
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evidence was used in developing the so-called semi-empirical model Paolicchi
et al. [1989, 1996], assuming that fragment rotations are produced by the
anisotropy in the velocity ejection field.

Figure 6.8: The possible correlation spin–ejection velocity for a radial impact from
the interior of the Solar System. This is a projection on the orbital plane. For a
cratering impact the ejecta are in the same hemisphere as the impact point, while
for a catastrophic disruption the crater zone is pulverized, most sizable fragments
are ejected from the antipodal hemisphere. In both cases the ejection velocity
decreases with the angular distance from the impact point. If the rotation is
connected to the velocity shear the fragment with a positive along track velocity
(top of the figure) have a retrograde (clockwise) rotation, and conversely. This
is true both for the front side ejecta (cratering) and for the rear side fragments
(fragmentation). In this case the correlation between the initial ∆a and cosφ is
negative, and the Yarkovsky effect tends initially to shrink the family in a.

In this scenario, the rotation of fragments created in a catastrophic pro-
cess can be strongly correlated with the ejection velocity. For what concerns
cratering events, as far as we know, there is not in this respect any experimen-
tal evidence mentioned in the literature. However, also in cratering events the
ejection velocity field is strongly anisotropic (see, for instance, the popular
Z–model by Maxvell [1997]), and a similar correlation between ejection ve-
locity and spin rate can be expected for the fragments. It is not obvious how
significantly the reaccumulation of ejecta (a process which certainly is very
important after catastrophic events) can affect this correlation. There are
very few simulations taking into account the rotation of fragments recorded
in the literature Richardson et al. [2009], Michel and Richardson [2013], they
are all about fragmentations, and their results do not solve the present ques-
tion. However, if the fragments which stick together were ejected from nearby
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regions of the parent body, an original correlation might be preserved.
If this is the case, different impact geometries will result in different evo-

lutions of the semi-major axis spread of the family. To model the geometry
of the impact, let us call crater radiant the normal n̂ to the smoothed terrain
before the crater is excavated (at the impact point). What matters are the
angles between n̂ and the directions v̂ of the orbital velocity of the parent
body, and ŝ towards the Sun (both at the epoch of the impact).

If n̂ · ŝ > 0 (impact on the inner side) with n̂ · v̂ ' 0 (impact radiant
close to normal to the velocity) there are preferentially retrograde fragments
on the side where ejection velocity adds up with orbital velocity, thus giving
rise to larger a of fragments, preferentially prograde on the opposite, lower
a side. This implies that the spread in proper a of the family initially de-
creases (ejection velocity and Yarkovsky term act in the opposite sense), then
increases again, and the V-base is negative.

If n̂· ŝ < 0 (impact on the outer side) with n̂· v̂ ' 0 there are preferentially
prograde fragments at larger a, preferentially retrograde at lower a. This
results in a large spread, even after a short time, of the family in proper a
(ejection velocity and Yarkovsky term add), and the V-base is positive.

Finally, in case of negligible n̂ · ŝ, the original ejection velocities and
Yarkovsky drift add up as a noise terms, the latter dominating in the long
run; the V-base is positive but small. Note that, as shown by Figure 6.8, this
argument applies equally to cratering and to fragmentation cases.

Thus, in principle, the properties of the V-base and of the family barycen-
ter (Tables 6.8, and 6.9) contain information on the impact geometry and on
the original distribution of v∞. However, the interpretation of these data is
not easy. A quantitative model of the ejection of fragments, describing the
distribution of v∞, the direction of v∞, cosφ, and D, taking into account all
the correlations, is simply not available. We have just shown that some of
these correlations (between direction and cosφ) are not negligible at all, but
all the variables can be correlated. Even less we have information on shapes,
which are known to be critical for the YORP effect.

This does introduce error terms in our age estimates. The main problem
is the dependence on D of the Yarkovsky drift in a, averaged over very long
times. According to the basic YORP theories (see Bottke et al. [2006] for a
general reference) the bodies should preferentially align their rotation axes
close to the normal to the orbital plane (both prograde and retrograde),
with a timescale strongly dependent on the size, approximately as 1/D2.
This result is also supported by the recent statistical work on the spin vector
catalog Paolicchi and Kryszczyńska [2012]. Consequently, there should be
a substantial fraction of the small bodies moving towards the borders of
the V–plot, especially after times long with respect to the time scale for
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the YORP-driven evolution to the spin up/spin down stable states. Using a
different database Vokrouhlický et al. [2006b] have found, for most families, a
number density distribution in accordance to this idea. However, the maxima
are not at the edges, but somewhere in between the symmetry axis of the
V-shape and the edges: e.g., see Figure 6.4. It is not easy to draw conclusions
from this, because in most families the portions near the extreme values of
proper a are affected by resonances and/or by the merging of step 3 families
as satellites.

There are many models proposed in the literature to account for a form
of randomization of the spin state, resulting in something like a Brownian
motion along the a axis over very long time scales; e.g., Statler [2009] and
Cotto-Figueroa et al. [2013] show that the YORP effect can be suddenly
altered. Thus after a long enough time span, most family members may
be random-walking between the two sides of the V-shape, and the central
area is never emptied. However, what we are measuring is not the evolution
in a of the majority of family members, but the evolution of the members
fastest in changing a. Our method, indeed any method using only the low
and high a boundaries of the family, should be insensitive to this effect for
large enough families. In a random effect a portion of the family with a spin
state remaining stable at cosφ ' ±1 will be maintained for a very long time,
and this portion is the one used in the V-shape fit.

Our method is mathematically rigorous in extracting from the family data
two components of the evolution of proper a after the family formation, a
term which is constant in time (from the original distribution of velocities)
and independent from D, and a term which is proportional to 1/D and to the
time elapsed. If the situation is much more complicated, with a larger number
of terms with different dependence on both D and t, we doubt that the
current dataset is capable of providing information on all of them, whatever
the method used. Moreover, some terms may not be discriminated at all,
such as an 1/D dependency not due to a pure Yarkovsky term ∆t/D.

6.4.3 Size distributions

Another use of the diameters deduced from absolute magnitudes assuming
uniform albedo is the possibility of computing a size distribution. This can
be done by fitting a slope in a log-log plot of an histogram as a function
of D, but it is a delicate computation. The numbers of members at too
small diameters are affected by incompleteness, while too large diameters
are affected by small number statistics, especially for cratering events.

In Figure 6.9 we show the result of a size distribution power law fit for
family 20, by using the range from D = 1.5 to 5 km, thus excluding (20)
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Figure 6.9: Size distribution for the family of (20) Massalia using the range
1.5 < D < 5 km.

and the two outliers identified above as well as two others above 5 km. The
resulting best fit differential power law is proportional to 1/D5, that is the
cumulative distribution is proportional to 1/D4; this value suggests that the
fragments are not yet in collisional equilibrium, thus supporting a compara-
tively young age for the family. The figure shows well the decline in numbers
at both extremes of the range in D, the inner one due to incompleteness of
the asteroid catalogs for D < 1.5 km. Note, however, that if the slope of
the differential size distribution exceeds 4 the total volume of the fragments
diverges at the low end. Thus the “real” slope has to decrease below some un-
known value of D. It is not possible to discriminate between the observational
bias and a possible detection of this change of slope.

The interpretation of the other change of slope in the region of large
fragments is not obvious; maybe it resides in some geometrical constraint,
such as the impossibility of creating fragments larger than a given fraction
of the crater depth, in analogy with the well known findings concerning the
catastrophic case Durda et al. [2007]; Tanga et al. [1999].

The same computation was done for the size distribution power law fit for
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family 4, by using as a common albedo 0.35. We have used the range from
D = 1.5 to 8 km, thus excluding (4) and the interlopers (556) and (1145)
as well as another member marginally larger than D = 8. The differential
power law is 1/D4.5, that is the cumulative is 1/D3.5, with concavities sim-
ilar to those represented in Figure 6.9. The slope suggests that collisional
equilibrium has not been reached, but the complex structure of the family
(as proposed in Section 6.6.2) makes a complete interpretation difficult.

6.5 Refinement with physical data

The data from physical observations of asteroids, especially if they are avail-
able in large and consistent catalogs like WISE and SDSS, are very useful
to solve some of the problems left open by purely dynamical classifications
such as the one discussed above. This happens with enough consistent and
quality controlled data, and when the albedo and/or colors can discriminate,
either between subsets inside a family, or between a family and the local
background, or between nearby families. (Other examples in Section 6.6.)

6.5.1 The Hertha–Polana–Burdett complex family

The most illustrative example of discrimination inside a dynamical family
is in the family with lowest numbered asteroid (135) Hertha; when defined
by dynamical parameters only, it is the largest family with 11 428 members.
Its shape is very regular in the a, sinI proper element projection, but has a
peculiar >-shape in the a, e projection (Figure 6.10), which has been strongly
enhanced by the addition of the smaller asteroids of the satellite families (in
yellow).

Already by using absolute magnitude information some suspicion arises
from the V-shape plot, from which it appears possible to derive a consistent
“slope” neither from the inner nor for the outer edge. Problems arise in this
family from the very top, that is (142) Polana which is dark (WISE albedo
0.045) and diameter D ' 60 km, and (135) Hertha which is of intermediate
albedo 0.152 and D ' 80 km, also known to be an M type asteroid, but
exhibiting the 3 µm spectral feature of hydrated silicates Rivkin et al. [2000].

By using systematically the WISE albedo, limited to the asteroids for
which the albedo uncertainty is less than 1/3 of the nominal value (1 247
such data points in the 135 dynamical family), we find the sharply bimodal
distribution of Figure 6.11. (142) Polana is by far the largest of the “dark”
population (for the purpose of this discussion defined as albedo < 0.09, 611
asteroids) as well as the lowest numbered. The “bright” population (albedo
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Figure 6.10: The Hertha dynamical family in proper a, e plane. Bright objects
(magenta stars) and dark objects (cyan stars) forming a characteristic >-shape
indicate two partly overlapping collisional families.

> 0.16, 568 asteroids) does not have a dominant large member, the largest
being (3583) Burdett (albedo 0.186± 0.02, D ' 7.6 km)23

In Figure 6.10 we have plotted with magenta stars the “bright”, with cyan
stars the “dark”: it shows that they are distributed in such a way that the
>-shape in the proper a, e plane is explained by the presence of two separate
collisional families, the “Polana” family and the “Burdett” family, with a
significant overlap in the high a, low e portion of the Hertha dynamical family.
Because the WISE dataset is smaller than the proper elements dataset, we
cannot split the list of members of the 135 dynamical family into Polana
and Burdett, because such a list would contain an overwhelming majority
of “don’t know”. Erosion of the original clouds of fragments by the 3/1
resonance with Jupiter must have been considerable, thus we can see only a

23The asteroid (878) Mildred was previously used as namesake of a family in the same
region: it is likely to be “bright”, but the WISE albedo is inaccurate (= 0.40± 0.22), and
is quite small (D ' 2.5 km). (878) was imprudently numbered in 1926 and then lost: this
is why a low numbered asteroid is so small.
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Figure 6.11: The distribution of WISE albedos for the 135 dynamical family with
the locations of the three namesakes indicated by red lines. The distribution is
clearly bimodal supporting the scenario with two collisional families.

portion of each of the two clouds of fragments. Based on the total volume of
the objects for which there are good albedo data, the parent body of Polana
must have had D > 76 km, the one of Burdett D > 30 km.

Note that we could get the same conclusion by using the a∗ parameter
of the SDSS survey: among the 1 019 asteroids in the 135 dynamical family
with SDSS colors and a∗ uncertainty less than 1/3 of the nominal value, 184
have −0.3 < a∗ < −0.05 and 835 have +0.05 < a∗ < 0.3, thus there is also
a bimodal distribution, which corresponds to the same two regions marked
in magenta and cyan in Figure 6.10, with negative a∗ corresponding to low
albedo and positive a∗ corresponding to high albedo, as expected [Parker
et al., 2008, Figure 3]. The lower fraction of “dark” contained in the SDSS
catalog, with respect to the WISE catalog, is an observation selection effect:
dark objects are less observable in visible light but well observable in the
infrared.

Because of its very different composition (135) Hertha can be presumed
to belong to neither the one nor the other collisional family. However, this
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conclusion cannot be proven from the data we are using, listed in Section
2, but requires some additional information (e.g., taxonomic classification
of Hertha) and suitable modeling (e.g., excluding that a metallic asteroid
can be the core of a parent body with ordinary chondritic mantle). All
these conclusions are a confirmation, based on a statistically very significant
information, of the results obtained by Cellino et al. [2001] on the basis of
a much more limited dataset (spectra of just 20 asteroids). Other authors
Masiero et al. [2013] have first split the asteroids by albedo then formed
families by proper elements: they get the same conclusion on two overlapping
families, but their total number of family members is lower by a factor ∼ 3.

6.5.2 Watsonia and the Barbarians

The family of (729) Watsonia had been already identified in the past by
Novaković et al. [2011], who adopted a proper element data base including
also a significant number of still unnumbered, high-inclination asteroids, not
considered in our present analysis. This family is interesting because it in-
cludes objects called “Barbarians”, see Cellino et al. [2006], which are known
to exhibit unusual polarization properties. Two of us (AC and BN) have re-
cently obtained VLT polarimetric observations Cellino et al. [2014] showing
that seven out of nine observed members of the Watsonia family exhibit the
Barbarian behavior. This result strongly confirms a common origin of the
members of the Watsonia family. However, the story is somewhat more com-
plicated: for more details on this interesting example of using complementary
datasets, see Cellino et al. [2014].

6.6 Cratering families

As a result of the procedure adding many smaller asteroids to the largest
families, our classification contains a large fraction of families formed by
cratering events. Cratering events on the same asteroid occur multiple times
over the age of the solar system, since the target keeps the same impact cross
section. The outcomes can appear as structures inside a dynamical family.

Modeling of the formation of cratering families needs to take into account
the escape velocity ve from the parent body, which results in the parent body
not being at the center of the family as seen in proper elements space. This
is due to the fact that fragments which do not fall back on the parent body
need to have an initial relative velocity v0 > ve, and because of the formula
giving the final relative velocity v∞ =

√
v2

0 − v2
e the values of v∞ have a

wide distribution even for a distribution of v0 peaking just above ve. The
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mean value of v∞ is expected to be smaller than ve, at most of the same
order. Thus immediately after the cratering event, the family appears in the
proper elements space as a region similar to an ellipsoid, which is centered
at a distance d of the order of ve from the parent body. Of course this effect
is most significant for the very largest parent bodies.

We use as criterion for identification of a cratering family that the frag-
ments should add up to ≤ 10% of the parent body volume; we have tested
only the large and medium families, and used the common albedo hypothesis
to compare volumes. In this way 12 cratering families have been identified
with the asteroids (2), (3), (4), (5), (10), (15), (20), (31), (87), (96), (110),
(179), and (283) as parent bodies. Other large asteroids do not appear to
belong to families. We will discuss some interesting examples.

6.6.1 The Massalia family

Although the V-shape plot (Figure 6.3) does not suggest any internal struc-
ture for the family 20, the inspection of the shape of the family in the space
of all three proper elements suggests otherwise.

The distribution of a is symmetrical with respect to (20) Massalia, while
these of e and I are rather asymmetrical. The e distribution is skewed to-
wards higher e (third moment positive), this is apparent from Figure 6.1 as a
decrease of number density for e < 0.157; the I one is skewed towards lower
I (third moment negative).

Thus the barycenter of the ejected objects appears quite close to the
parent body (20), see Table 6.8: if the differences in e, sin I are scaled by
the orbital velocity they correspond to about 7 m/s, much smaller than the
escape velocity. For a single cratering event, the center of mass of the ejecta
has to move in a direction close to the crater radiant, for a barycenter that
close to the parent body multiple craterings with different crater radiants
are needed. This suggests a multiple collision origin of the dynamical family.
At e < 0.157 there is a portion of a family with less members which does
not overlap the other, more dense collisional family. The more dense family
has been ejected in a direction such that e increases and sin I decreases, the
other in a direction with roughly opposite effect.

However, the presence of the low e subfamily does not affect the age
computation, which only applies to the high e subfamily, due to the fact that
the extreme values of a are reached in the high e region. Thus there are two
concordant values for the slopes on the two sides, and a single value of the
age we can compute, which refers only to the larger, high e subfamily.
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6.6.2 The Vesta family substructures
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Figure 6.12: The family 4 shown in the proper a, e plane. The satellite families
merged in step 5 of our procedure (yellow dots) extend the family closer to the
3/1 resonance with Jupiter on the right and to the 7/2 resonance on the left. The
position of (4) Vesta is indicated by the cyan cross, showing that the parent body
is at the center of neither of the two subfamilies, at lower e and at higher e.

The Vesta family has a curious shape in the proper a, e plane (Fig-
ure 6.12), even more if we consider the position of (4) Vesta in that plane.

In proper a, this family is bound by the 3/1 resonance with Jupiter on
the outside and by the 7/2 inside. Closer inspection reveals the role the 1/2
resonance with Mars at a ' 2.417 au: the low e portion of the family has the
outside boundary at the 1/2 resonance with Mars. By stressing the position
of Vesta with the cyan cross in Figure 6.12, we can appreciate the existence
of a oval shape group with proper e lower than, or only slightly above, the
one of Vesta (which is 0.099). We can define a “low e subfamily” as the
family 4 members with a < 2.417 and e < 0.102, conditions satisfied by 5 324
members.

By assuming that albedo and density are the same, we compute the center
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of mass of this low e group, which is at a = 2.3435 and e = 0.0936. To get to
such values the relative velocity components after escape from Vesta should
have been −76 and −98 m/s, respectively24. Since the escape velocity from
Vesta surface is ∼ 363 m/s, this is compatible with the formation of the low
e subfamily from a single cratering event, followed by a Yarkovsky evolution.

What is then the interpretation of the rest of the family 4? We shall
call “high e subfamily” all the members not belonging to the low e portion
defined above, excluding the interlopers (556) and (1145). This leaves 2 538
members, with size D < 8 km. It is also possible to compute a center of
mass: the necessary relative velocities after escape are larger by a factor ∼ 2,
still comparable to the escape velocity from Vesta, although this estimate
is contaminated by the inclusion of low e, low a members into the low e
subfamily. Anyway, the shape of this subfamily is not as simple as the other
one, thus there could have been multiple cratering events to generate it.

This decomposition provides an interpretation of the large discrepancy,
by a factor roughly 2, between the age as computed from the low a side and
from the high a side of the V-shape in a, 1/D. Indeed, if the low e subfamily
ends for a < 2.417, while the high e subfamily ends at a ∼ 2.482, then the
right side of the V-shape belongs to the high e subfamily. From Figure 6.12
we see that the low a side of the family is dominated by the low e subfamily.

By this model, the two discordant ages computed in Section 6.4.2 belong
to two different cratering events. This is consistent with the expectation that
large cratering events occur multiple times on the same target.

As for the uncertainties of these ages, they are dominated by the poor a
priori knowledge of the Yarkovsky calibration constant c for the Vesta fam-
ily. Still the conclusion that the two ages should be different by a factor ∼ 2
appears robust. From the DAWN images, the age of the crater Rheasilvia
on Vesta has been estimated at about 1 Gy Marchi et al. [2012], while the
underling crater Veneneia must be older, its age being weakly constrained.
Thus both the younger age and the ratio of the ages we have estimated in
Section 6.4.2 are compatible with the hypothesis that the low e subfamily
corresponds to Rheasilvia, the high e subfamily (or at least most of it) corre-
sponds to Veneneia. We are not claiming to have a proof of this identification.

Unfortunately, for now there are no data to disentangle the portions of
the two collisional families which overlap in the proper elements space. Thus
we can compute only with low accuracy the barycenter of the two separate
collisional families, and to model the initial distributions of velocities would
be too difficult. However, there are some indications Bus [2013] that discrim-

24The negative sign indicates a direction opposite to the orbital velocity for a, and a
direction, depending upon the true anomaly at the collision, resulting in decrease of e.



170 CHAPTER 6. ASTEROID FAMILIES

ination of the two subfamilies by physical observations may be possible.
In conclusion, the current family of Vesta has to be the outcome of at

least two cratering events on Vesta, not including even older events which
should not have left visible remnants in the family region as we see it today.

6.6.3 Vesta Interlopers and lost Vestoids
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Figure 6.13: Histogram of albedo measured by WISE with S/N > 3: above for
the asteroids belonging to family 4; below for the background asteroids with 2.2 <
proper a < 2.5 au. The uneven distribution of “dark” asteroids (albedo < 0.1) is
apparent. The asteroids with 0.27 < albedo < 0.45, corresponding to the bulk of
the family 4, are present, but as a smaller fraction, in the background population.

Another possible procedure of family analysis is to find interlopers, that
is asteroids classified as members of a dynamical family, not belonging to the
same collisional family, because of discordant physical properties; see as an
example of this procedure Figure 25 and Table 3 of Milani et al. [2010].

In the dynamical family of (4) Vesta there are 695 asteroids with reason-
able (as before) WISE albedo data. We find the following 10 asteroids with
albedo < 0.1: (556), (11056), (12691), (13411), (13109), (17703), (92804),
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(96672), (247818), (253684); the first is too large (D ' 41 km) and was al-
ready excluded, the next 3 are larger than 7.5 km, that is marginally too large
for typical Vestoids; we had also excluded in Section 6.4.1 (1145), which has
an intermediate albedo but is also too large (D ' 23 km). We think these
11 are reliably identified as interlopers, of which 10 belong to the C-complex.
By scaling to the total number 7 865 of dynamic family members, we would
expect a total number of interlopers belonging to the C-complex ' 120.

The problem is how to identify the interlopers belonging to the S-complex,
which should be more numerous. For this the WISE albedo data are not
enough, as shown by Figure 6.13. The albedos of most family members are
between 0.16 and 0.5, which overlaps the values for the S-complex and for
V-types. Among the background asteroids, with 2.2 < a < 2.5 au and with
significant WISE albedos, 34% have albedo < 0.1, but the majority have
albedos compatible with the S-complex, a large fraction also with V-type.

The estimated value of the albedo is derived from a measured absolute
magnitude, which typically has an error of 0.3 magnitudes (or worse). This
propagates to a relative error of 0.3 in the albedo. Thus the values of albedo
for S and V type are mixed up as a result of the measurement errors, both
in the infrared and in the visible photometry.

The only class of objects which are clearly identified from the albedo
data are the dark C-complex ones, because the main errors in the albedo are
relative ones, thus an albedo estimated at < 0.1 cannot correspond to an
S-type, even less to a V-type.

In conclusion, by using the albedo there is no way to count the S-complex
interlopers in the Vesta family; it is also not possible to identify “lost Vestoids”,
originated from Vesta but not in the dynamical family.

The question arises whether it would be possible to use the SDSS data
to solve these two problems. According to [Parker et al., 2008, Figure 3] the
V-type objects should correspond to the region with a∗ > 0 and i−z < −0.15
in the plane of these two photometric parameters. However, these lines are
not sharp boundaries, just probabilistic ones. Thus this criterion is suitable
to reliably identify neither family 4 interlopers, nor lost Vestoids.

The Parker et al. criterion can be used to estimate the V-type population
in a statistical sense. The asteroids which have a large probability of being
V-type need to have a∗ − 2STD(a∗) > 0 and i− z + 2STD(i− z) < −0.15;
we find 1 758 asteroids, of which 55 with a > 2.5 au; they are plotted on the
proper a, e plane in Figure 6.14. The number of asteroids of V-type beyond
the 3/1 resonance with Jupiter should be very small, anyway 55 is an upper
bound on the number of false positive for the V-type criterion in that region.

Of the V-type with a < 2.5 au, 504 are members of the dynamical family
4 and 1 199 are not. In conclusion, even taking into account the possible
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Figure 6.14: Asteroids complying with the Parker et al. [2008] criterion for V-
type. Red points: members of family 4, green: members of other families, black:
background asteroids. The “halo”, in the sense defined by Brož and Morbidelli
[2013], is formed by background asteroids apparently matching the color properties
of Vestoids: they are, among objects with significant SDSS data, at least twice
more numerous than the family 4 members with the same colors.

number of false positive, there are at least twice as many V-types in the inner
belt outside of the dynamical family rather than inside the Vesta family.

Conversely, if we define “non-V type” by either a∗ + 2STD(a∗) < 0 or
i−z−2STD(i−z) > −0.15 we find in the inner belt a < 2.5 as many as 8 558
non-V, out of which only 42 belong to the dynamical family 4, which means
the number of S-type interlopers is too small to be accurately estimated,
given the possibility of “false negative” in the V-type test.

This gives an answer to another open question: where are the “lost
Vestoids”, remnants of cratering events on Vesta which occurred billions of
years ago? The answer is everywhere, as shown by Figure 6.14, although
much more in the inner belt than in the outer belt, because the 3/1 barrier
deflects most of the Vestoids into planet crossing orbits, from which most
end up in the Sun, in impacts on the terrestrial planets, etc. Still there is no
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portion of the asteroid main belt which cannot be reached, under the effect of
Gy of Yarkovsky effect and chaotic diffusion combined. We should not even
try to find families composed with them, because they are too widely dis-
persed. All but the last two family-forming cratering events have completely
disappeared from the Vesta family, as it can be found by HCM.

6.6.4 The Eunomia Family

The number frequency distributions of the family members’ proper elements
indicate that some multiple collisions interpretation is plausible: the distri-
bution of semimajor axes exhibits a gap around a = 2.66 au, close to where
Eunomia itself is located. The distribution of family members on all sides
of the parent body for all three proper elements, and the barycenter of the
family (not including Eunomia) very close to (15), are discordant with the
supposed anisotropic distribution of velocities of a single cratering event.

These pieces of evidence indicate that a single collisional event is not
enough to explain the shape of the dynamical family 15. Then the discrep-
ancy in the slopes on the two sides could be interpreted as the presence of
two collisional families with different ages. Since the subfamily with proper
a > 2.66 dominates the outer edge of the V-shape, while the inner edge is
made only from the rest of the family, we could adopt the younger age as that
of the high a subfamily, the older as the age of the low a subfamily. However,
the lower range of diameters, with D > 6.7 km on the outer edge, and the
ratio of ages too close to 1 result in a poorly constrained age difference.

Still the most likely interpretation is that the Eunomia dynamical fam-
ily was generated by two cratering events, with roughly opposite crater
radiants, such that one of the two collisional families has barycenter at
a > a(Eunomia), the other at a < a(Eunomia), see Table 6.8.

The WISE albedo distributions of the two subfamilies are practically the
same, which helps in excluding more complex models with different parent
bodies.

In conclusion, our interpretation is similar to the one of the Vesta family.

6.6.5 The missing Ceres family

(1) Ceres in our dynamical classification does not belong to any family, still
there could be a family originated from Ceres. The escape velocity from
Ceres is ve ∼ 510 m/s, while the QRL velocity used to form families in zone
3 was 90 m/s. An ejection velocity v0 just above ve would results in a velocity
at infinity larger than 90 m/s: v0 = 518 m/s is enough.
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Thus every family moderately distant from Ceres, such that the relative
velocity needed to change the proper elements is much less than ve, is a
candidate for a family from Ceres. Family 93 is one such candidate25. By
computing the distance d between the proper element set of (1) and all the
family 93 members, we find the minimum possible d = 153 m/s for the
distance (in terms of the standard metric) between (1) and (28911). The
relationship between d and v∞ is not a simple one (depending upon the
true anomaly at the impact), anyway v∞ would be of the same order as d,
corresponding to v0 ∼ 532 m/s.
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Figure 6.15: Histogram of the albedos measured by WISE with S/N > 3 among
the members of the family 93. There is an obvious “dark” subgroup with albedo
< 0.1 and a large spread of higher estimated albedos. Most members have inter-
mediate albedos typical of the S-complex.

This is a hypothesis, for which we seek confirmation by using absolute
magnitudes and other physical observations, and here comes the problem.

According to Li et al. [2006], the albedo of (1) Ceres is 0.090 ± 0.0033;

25There are family classifications, including Zappalà et al. [1995], in which (1) is a
member of a family largely overlapping with our family 93.
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the surface has albedo inhomogenities, but the differences do not exceed 8%
of the value.

The WISE albedos of the family 93 (by using only the 403 data with
S/N > 3) are much brighter than that of Ceres, apart from a small minority:
only 37, that is 9%, have albedo < 0.1. (93) has albedo 0.073 from IRAS,
but we see no way to eject a D ∼ 150 km asteroid in one piece from a crater;
also (255) belongs to the dark minority, and is too large for a crater ejecta.
No other family member, for which there are good WISE data, has diameter
D ≥ 20 km. Actually, from Figure 6.15 the albedo of Ceres is a minimum
in the histogram. By using the SDSS data we also get a large majority of
family 93 members in the S-complex region.

We cannot use V-shape diagrams composed with the same method used in
Section 6.4.2, because the assumption of uniform albedo is completely wrong,
as shown by Figure 6.15. By studying the shape of the family in the proper
a, sin I plane and in the proper a, e plane, taking into account the albedo,
there is no obvious concentration of objects with low/intermediate albedo.
Thus there appears to be no “Ceres family”, just a family of comparatively
bright asteroids, having to do neither with (1), nor with (93), nor with (255).

The family 93 is the only one suitable, for its position in proper elements
space, to be a cratering family from Ceres. However, physical observations
(albedo and colors) contradict this origin for an overwhelming majority of
family members. Thus we need to accept that the bright/intermediate com-
ponent of family 93 is the result of a catastrophic fragmentation of some
S-complex asteroid, and the fact of being very near Ceres is just a coin-
cidence. We can assign 366 “bright and intermediate” (with albedo > 0.1
measured by WISE with S/N > 3) members of family 93 to a collisional fam-
ily, with the lowest numbered member (1433) Gerantina, which has albedo
0.191± 0.017, from which D ' 15. The volume of these 366 is estimated at
49 000 km3, equivalent to a sphere with D ' 45 km; the parent body must
have been an S-complex asteroid with a diameter D > 60 km, given that a
good fraction of the fragments has disappeared in the 5/2 resonance.

However, why Ceres does not have any family? This could not be ex-
plained by assuming that Ceres has been only bombarded by much smaller
projectiles than those impacting on (2), (4), (5) and (10): Ceres has an
impact cross section comparable to the sum of all these four others.

Before attempting an explanation let’s find out how significant are our
family classification data. This leads to a question, to which we can give only
a low accuracy answer: which is the largest family from Ceres which could
have escaped our classification? This has to be answered in two steps: first,
how large could be a family resulting from cratering on Ceres superimposed
to the family 93? 37 dark interlopers out of 403 with good WISE data could
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be roughly extrapolated to 168 out of 1 833 members of family 9326.
Second, how large could be a Ceres family separate from 93 and not

detected by our classification procedure? In the low proper I zone 3, the
three smallest families in our classification have 93, 92 and 75 members.
Although we do not have a formal derivation of this limit, we think that a
family with about 100 members could not be missed by our HCM procedure,
unless it is so dispersed that there is no way to assess its existence.

By combining these two answers, families from Ceres cratering with up
to about 100 members could have been missed. The comparison with the
family of (10) Hygiea, with 2 402 members, and the two subfamilies of Vesta,
the smallest with > 2, 538 members, suggests that the loss in efficiency in
the generation of family members in the specific case of Ceres is by a factor
> 20, possibly much more.

Thus an explanation for the missing Ceres family needs to be some phys-
ical mechanism preventing most fragments which would be observable, cur-
rently those with D > 2 km, either from being created by a craterization, or
from being ejected with v0 > 510 m/s, or from surviving as asteroids. We
are aware of only two possible models.

One model can be found in [Li et al., 2006, section 6.3]: “The lack of
a dynamical family of small asteroids associated with Ceres, unlike Vesta’s
Vestoids, is consistent with an icy crust that would not produce such a fam-
ily.” We have some doubts on the definition of an “icy” crust with albedo
< 0.1, thus we generalize this model by assuming a comparatively thin crust,
with whatever composition is compatible with the measured albedo, effec-
tively shielding the mantle volatiles. When Ceres is impacted by a large
asteroid, 20 < D < 50 km, the crust is pierced and a much deeper crater is
excavated in an icy mantle. Thus the efficiency in the generation of family
asteroids (with albedo similar to the crust) is decreased by a factor close
to the ratio between average crater depth and crust thickness. The ejected
material from the mantle forms a family of main belt comets, if they have
enough water content they quickly dissipate. This rare event would be one of
the most spectacular events of solar system history27. Thus a crust thickness
of few km would be enough to explain a loss of efficiency by a factor > 20
and a possible Ceres family could be too small to be found.

A second possible model is that there is a critical value for the ejection
velocity v0 beyond which asteroids with D > 2 km cannot be launched with-
out going into pieces. If this critical velocity vc is > 363 m/s for V-type

26This is an upper bound, since some dark interlopers need to be there: in the range
2.66 < a < 2.86 au we find that 59% of background asteroids have albedo < 0.1.

27The exceptional presence of some 10 000 comets could perhaps be detected in an
extrasolar planetary system, but we know too few of these.
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asteroids, but is < 510 m/s for the composition of Ceres ejecta (presumably
with much lower material strength), then Vesta can have a family but Ceres
can not. Of course it is also possible that the number of large ejecta with
v0 > 510 is not zero but very small. Thus even a very large impact on Ceres
does generate few observable objects, it does not matter whether they are
asteroids or comets, leading to a family too small to be detected. However,
if the crater is deeper than the crust, Ceres itself behaves like a main belt
comet for some time, until the crater is “plugged” by dirt thick enough to
stop sublimation. This would be spectacular too.

The fact is, little is known of the composition and geological structure of
Ceres. This situation is going to change abruptly in 2015, with the visit by
the DAWN spacecraft. Then what these two models would predict for the
DAWN data?

With both models, larger impacts would leave only a scar, resulting from
the plugging of the mantle portion of the crater (because Ceres does not
have large active spots). What such a big scar looks like is difficult to be
predicted, it could be shallow if the mantle restores the equilibrium shape,
but still be observable as albedo/color variations.

If there is a thin crust, then craters should have low maximum depth and
a moderate maximum diameter. At larger diameters only scars would be
seen28.

If the family generation is limited by the maximum ejection velocity, the
crust could be thicker: there would be anyway craters and scars, but the
craters can be larger and the scars would be left only by the very large
impact basins.

6.7 Couples

One step of our family classification procedure is the computation of the
distance in proper elements space between each couple of asteroids; the com-
putation is needed only if the distance is less than some control dmin. If
the value of dmin is chosen to be much smaller than the QRL values used in
the family classification, a new phenomenon appears, namely the very close
couples, with differences in proper elements corresponding to few m/s.

A hypothesis for the interpretation of asteroid couples, very close in
proper elements, has been proposed long ago, see Milani [1994][p. 166-167].
The idea, which was proposed by the late P. Farinella, is the following: the

28Küppers et al. [2014] recently announced that Herschel observations detected water
vapor connected with Ceres, and tentatively identified the sources with small exposed
patches of ice. This appears to support the thin crust model.
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pairs could be obtained after an intermediate stage as binary, terminated by
a low velocity escape through the so-called fuzzy boundary, generated by the
heteroclinic tangle at the collinear Lagrangian points.

Table 6.11: Very close couples among the numbered asteroids, with distance
d < 0.4 m/s.

name H name H d δap/ap δep δ sin Ip
92652 15.11 194083 16.62 0.1557213 0.0000059 -0.0000011 0.0000011
27265 14.72 306069 16.75 0.2272011 0.0000076 0.0000021 -0.0000029
88259 14.86 337181 16.99 0.2622311 -0.0000091 0.0000019 -0.0000011

180906 17.41 217266 17.44 0.2649047 0.0000069 -0.0000049 -0.0000013
60677 15.68 142131 16.05 0.3064294 0.0000090 0.0000021 0.0000052

165389 16.31 282206 16.85 0.3286134 0.0000019 0.0000080 0.0000022
188754 16.29 188782 16.90 0.3384864 -0.0000059 -0.0000019 0.0000087
21436 15.05 334916 18.14 0.3483815 -0.0000041 -0.0000081 0.0000016

The procedure to actually prove that a given couple is indeed the product
of the split of a binary is complex, typically involving a sequence of filtering
steps, followed by numerical integrations (with a differential Yarkovsky effect,
given the differences in size) to find an epoch for the split and confirm that
the relative velocity was very small. Our goal is not to confirm a large number
of split couples, but just to offer the data for confirmation by other authors,
in the form of a very large list of couples with very similar proper elements.

Currently we are offering a dataset of 14 627 couples with distance < 10
m/s, available from AstDyS29.

To assess the probability of finding real couples in this large sample, it
is enough to draw an histogram of the distance d. It shows the superposi-
tion of two components, one growing quadratically with d and one growing
linearly. Since the incremental growth of volume is quadratic in d, these
components correspond to the random couples and to the ones from a low
velocity split, followed by a linear drift in a due to differential Yarkovsky.
From the histogram it is possible to compute that, out of 14 627 couples,
about half belong to the “random” sub-population, half to the linear growth
component. If it was possible to confirm such a large fraction of couples as
split binaries, this would provide information on the difference in the fraction
of binaries between families and background30.

29http://hamilton.dm.unipi.it/˜astdys2/propsynth/numb.near
30This cannot be obtained from the known binaries, because they are too few: e.g.,

a current total of 88 identified binary systems is given by R. Johnston at the URL
http://johnstonsarchive.net/astro/asteroidmoons.html
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6.8 Conclusions and Future Work

By performing an asteroid family classification with a very enlarged dataset
the results are not just “more families”, but there are interesting qualitative
changes. These are due to the large number statistics, but also to the larger
fraction of smaller objects contained in recently numbered asteroids and to
the accuracy allowing to see many structures inside the families.

Another remarkable change is that we intend to keep this classification
up to date, by the (partially automated) procedures we have introduced.

In this section we summarize some of these changes, and also identify the
most productive future research efforts. Note that we do not intend to do all
this research ourselves: given our open data policy this is not necessary.

6.8.1 How to use HCM

The size increase of the dataset of proper elements has had a negative effect
on the perception about the HCM method, because of the chaining effect
which tends to join even obviously distinct families. Thus some authors have
either reduced the dataset by requiring physical observations, or used QRL
values variable for each family, or even reverted to visual methods.

We believe that this paper shows that there is no need to abandon the
HCM method, provided a multistep procedure is adopted. In short, our pro-
cedure amounts to using a truncation QRL for the larger members of the core
family different from the one used for smaller members. This is statistically
justified, because the smaller asteroids have larger number density.

We are convinced that our method is effective in adding many smaller
asteroids to the core families, without expanding the families with larger
members. As a result we have a large number of families with very well
defined V-shapes, thus with a good possibility of age estimation. We have
also succeeded in identifying many families formed only with small asteroids,
or at most with very few large ones, as expected for cratering.

We intend to work more on the step 5 of the procedure, merging, which
is still quite subjective (even visual inspection plays a significant role).

6.8.2 Stability of the classification

We have established a procedure to maintain our family classification up to
date, by adding the newly discovered asteroids, as soon as their orbital ele-
ments are stable enough because determined with many observations. First
the proper elements catalogs are updated, then we attribute some of the new
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entries as new members to the already known families. This step 6 is per-
formed in an automatic way, by running the same computer code used for
steps 2 and 4. Some changes in the classification such as mergers are not
automatic, thus we are committed to apply them when appropriate.

We already have done this for the proper elements catalog update of April
2013, and we continue with periodic updates. The results are available, as
soon as computed, on the AstDyS information system. The classification is
methodologically stable but frequently updated in the dataset. In this way,
the users of our classification can download the current version.

6.8.3 Magnitudes

As shown in Table 6.1, the absolute magnitudes computed with the incidental
photometry could contribute a good fraction of the information used in family
classification and analysis. However, the accuracy is poor, in most cases
not estimated; better data are available for samples too small for statistical
purposes.

This does not affect the classification, but has a negative impact on the
attempt to compute ages, size distributions, and volumes; also on the accu-
racy of the albedos, and the population models.

The question is what should be done to improve the situation. One pos-
sibility would be a statistically rigorous debiasing and weighting of the pho-
tometry collected with the astrometry. The problem is, the errors in the pho-
tometry, in particular the ones due to difference in filters and star/asteroid
colors, are too complex for a simple statistical model, given that we have no
access to a complete information on the photometric reduction process.

Thus the best solution is to have an optimally designed photometric sur-
vey, with state of the art data processing, including the new models of the
phase effect Muinonen et al. [2010]. This requires a large number (of the
order of 100) photometric measurements per asteroid per opposition, with
a wide filter, and with enough S/N for most numbered main belt asteroids.
These appear tough requirements, and a dedicated survey does not appear
a realistic proposal. However, these requirements are the same needed to
collect enough astrometry for a NEO ”Wide survey”, aiming at discovering
asteroids/comets on the occasion of close approaches to the Earth. Thus a
“magnitude survey” could be a byproduct of a NEO discovery survey.

6.8.4 Yarkovsky effect and ages

One of our main results is that for most families, large enough for statistically
significant analysis of the shape, the V-shape is clearly visible.
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We have developed a method to compute ages, which is more objective
and takes into account the error in the diameter estimate by the common
albedo hypothesis, which is substantial.

We believe this method tackles in an appropriate way all the difficulties
of the age estimation discussed in Section 6.4.2, but for one: the Yarkovsky
calibration. The difficulty in the calibration estimate, due to the need to
extrapolate from NEAs with measured da/dt to main belt asteroids, is in
most cases the main term in the error budget of the age estimation.

Thus the research effort which could most contribute to the improvement
of age estimation (for a large set of families) would be either the direct mea-
surement of Yarkovsky effect for some family members (with known obliq-
uity) or the measurement of the most important unknown quantities affecting
the scaling from NEA, such as thermal conductivity and/or density. These
appear ambitious goals, but they may become feasible by using advanced
observation techniques, in particular from space, and radar from the ground.

6.8.5 Use of physical observations

In this paper we have made the choice of using the dynamical data first,
to build the family classification, then use all the available physical data to
check and refine the dynamical families.

This is best illustrated by the example of the Hertha/Polana/Burdett
complex dynamical family, in which the identification of the two collisional
families Polana and Burdett can be obtained only with the physical data.

The use of dynamical parameters first is dictated by the availability and
accuracy of the data. We would very much welcome larger catalogs of physi-
cal data, including smaller asteroids and with improved S/N for those already
included. However, this would require larger aperture telescopes.

6.8.6 Cratering vs. Fragmentation

Our procedure, being very efficient in the addition of small asteroids to the
core families, has allowed to identify new cratering families and very large
increases of membership for the already known ones.

As a result of the observational selection effect operating against the cra-
tering families, because they contain predominantly small asteroids (e.g.,
D < 5 km), in the past the cratering events have been less studied than the
catastrophic fragmentations. On the contrary, there should be more crater-
ing than fragmentation families, because the target of a cratering remains
available for successive impacts, with the same cross section.
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As the observational bias against small asteroids is progressively miti-
gated, we expect that the results on cratering will become more and more
important.

This argument also implies that multiple cratering collisional families
should be the rule rather than the exception. They necessarily intersect
because of the common origin but do not overlap completely because of the
different crater radiants. Although we have studied only some of the cratering
families (listed in Section 6.6), all the examples we have analyzed, namely
the families of (4), (20), (15), show a complex internal structure.

For the catastrophic fragmentation families, the two examples we have an-
alyzed, (158) and (847), appear to contain significant substructures (named
after Karin and Jitka). The general argument could be used that fragments
are smaller, thus should have collisional lifetimes shorter than the parent
body of the original fragmentation family. Thus we should expect that as
fragmentation families become larger in membership and include smaller as-
teroids, substructures could emerge in most of the families.

A full fledged collisional model for the ejection velocities and rotations
of fragments from both cratering and fragmentation needs to be developed,
possibly along the lines of the qualitative model of Section 6.4.2. This will
contribute both to the age determination and to the understanding of the
family formation process.

6.8.7 Comparison with space mission data

When on-site data from spacecraft, such as DAWN, become available for
some big asteroid, a family classification should match the evidence, in par-
ticular from craters on the surface. For Vesta the main problem is the rela-
tionship between the dynamical family 4 and the two main craters Rheasilvia
and Veneneia. The solution we are suggesting is that the two subfamilies
found from internal structure of family 4 correspond to the two main craters.
We have found no contradiction with this hypothesis in the data we can ex-
tract from the family, including ages. However, to prove this identification of
the source craters requires more work: more accurate age estimates for both
subfamilies and craters, and more sophisticated models of how the ejecta
from a large crater are partitioned between ejecta reaccumulated, fragments
in independent orbits but too small, and detected family members.

Because the problem of the missing Ceres family is difficult, due to ap-
parently discordant data, we have tried to discuss a consistent model, with
an interpretation of the dynamical family 93 (without the namesake) and
two possible physical explanations of the inefficiency of Ceres in generating
families. We are not claiming these are the the only possible explanations,



6.8. CONCLUSIONS AND FUTURE WORK 183

but they appear plausible. The data from DAWN in 2015 should sharply
decrease the possibilities and should lead to a well constrained solution.
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Chapter 7

Asteroid families ages

7.1 Introduction

One of the main purposes for collecting large datasets on asteroid families is
to constrain their ages, that is the epoch of the impact event generating a
collisional family. A collisional family not always coincides with the dynam-
ical family detected by density contrast in the proper elements space. More
complicated cases occur, such as a dynamical family to be decomposed in
two collisional families, or the opposite case in which a collisional family is
split in two density contrast regions by some dynamical instability.

Although other methods are possible, currently the most precise method
to constrain the age of a collisional family (for the ages older than ∼ 10 My)
exploits non-gravitational perturbations, mostly the Yarkovsky effect [Vokrouh-
lický et al., 2000b]. These effects generate secular perturbations in the proper
elements of an asteroid which are affected not just by the position in phase
space, but also by the Area/Mass ratio, which is inversely proportional to
the asteroid diameter D. Thus, the main requirements are to have a list of
family members with a wide range of values in D, enough to detect the dif-
ferential effect in the secular drift of the proper elements affecting the shape
of the family, and to have a large enough membership, to obtain statistically
significant results.

Recently Milani et al. [2014] have published a new family classification
by using a large catalog of proper elements (with > 330, 000 numbered aster-
oids) and with a classification method improved with respect to past meth-
ods. This method is an extension of the Hierarchical Clustering Method
(HCM) [Zappala et al., 1990], with special provisions to be more efficient in
including large numbers of small objects, while escaping the phenomenon of
chaining. Moreover, the new method includes a feature allowing to (almost)
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automatically update the classification when new asteroids are numbered and
their proper elements have been computed. This has already been applied to
extend the classification to a source catalog with ∼ 384, 000 proper elements,
obtaining a total of ∼ 97, 400 family members [Knežević et al., 2014]. In this
paper we are going to use the classification of Milani et al. [2014], as updated
by Knežević et al. [2014], and the data are presently available on AstDyS1.

This updated classification has 21 dynamical families with > 1, 000 mem-
bers and another 24 with > 250 members. The goal of this paper can be
simply stated as to obtain statistically significant age constraints for the ma-
jority of these 45 families. Computing the ages for all would not be a realistic
goal because there are several difficulties. Some families have a very com-
plex structure, for which it is difficult to formulate a model, even with more
than one collision: these cases have required or need dedicated studies. Some
families are affected by particular dynamical conditions, such as orbital reso-
nances with the planets, which result in more complex secular perturbations:
these shall be the subject of continuing work. The results for families with
only a moderate number of members (such as 250 − 300) might have a low
statistical significance.

The age estimation includes several sources of uncertainty which cannot
be ignored. The first source appears in the formal accuracy in the least square
fit used in our family shape estimation methods. The uncertainty depends
upon the noise resulting mostly from the inaccuracy of the estimation of D
from the absolute magnitude H. The second source of error occurs in the
conversion of the inverse slope of the family boundaries into age, requiring
a Yarkovsky calibration: this is fundamentally a relative uncertainty, and in
most cases it represents the largest source of uncertainty in the inferred ages.
In Sec. 7.4.1 we give an estimate of this uncertainty between 20% and 30%.

As a result of the current large relative uncertainty of the calibration,
we expect that this part of the work will be soon improved, thanks to the
availability of new data. Thus the main result of this paper are the inverse
slopes, because these are derived by using a consistent methodology and
based upon large and comparatively accurate data set. Still we believe we
have done a significant progress with respect to the previous state of the
art by estimating 37 collisional family ages, in many cases providing the
first rigorous age estimate, and in all cases providing an estimated standard
deviation. The work can continue to try and extend the estimation to the
cases which we have found challenging.

Since this paper summarizes a complex data processing, with output
needed to fully document our procedures but too large, we decided to in-

1http://hamilton.dm.unipi.it/astdys/index.php?pc=5
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clude only the minimum information required to support our analysis and
results. Supplementary material, including both tables and plots, is available
from the web site http://hamilton.dm.unipi.it/astdys2/fam ages/.

7.2 Least squares fit of the V-shape

Asteroids formed by the same collisional event take the form of a V in the
(proper a - 1/D) plane. The computation of the family ages can be performed
by using this V-shape plots if the family is old enough and the Yarkovsky
effect dominates the spread of proper a, as explained in [Milani et al., 2014,
Sec. 5.2]. The key idea is to compute the diameter D from the absolute
magnitude H, assuming a common geometric albedo pv for all the members
of the family. The common geometric albedo is the average value of the
known WISE albedos [Mainzer et al., 2011b; Wright et al., 2010] for the
asteroids in the family. Then we use the least squares method to fit the data
with two straight lines, one for the low proper a (IN side) and the other for
the high proper a (OUT side), as in Milani et al. [2014], with an improved
outlier rejection procedure, see [Carpino et al., 2003] and Sec. 7.2.4.

7.2.1 Selection of the Fit Region

Most families are bounded on one side or on both sides by resonances. Almost
all these resonances are strong enough to eject most of the family members
that fell into the resonances into unstable orbits. In these cases the sides of
the V are cut by vertical lines, that is by values of a, which correspond to
the border of the resonance. For each family we have selected the fit region
taking into account the resonances at the family boundaries. The fit of the
slope has to be done for values of 1/D below the intersection of one of the
sides of the V affected by the resonance and the resonance border value of
proper a. In Table 7.1 we report the values for a and D, and the cause of
each selection.

The cause of each cut in proper a is a mean motion resonance, in most
cases a 2-body resonance with Jupiter, in few cases either a 2-body resonance
with Mars or a 3-body resonance with Jupiter and Saturn. When no reso-
nance with this role has been identified, we use the label FB (for Family Box)
to indicate that the family ends where the HCM procedure does not anymore
detect a significant density contrast (with respect to the local background).
This is affected by the depletion of the proper elements catalog due to the
completeness limit of the surveys: the family may actually contain many
smaller asteroids beyond the box limits, but they have not been discovered
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Table 7.1: Fit region: family number and name, explanation of the choice,
minimum value of proper a, minimum value of the diameter selected for the
inner and the outer side.

number/ cause min min cause max min
name proper a D IN proper a D OUT
158 Koronis 5/2 2.82 7.69 7/3 2.96 5.00
24 Themis 11/5 3.075 25.00 2/1 3.24 16.67
847 Agnia 8/3 2.70 4.55 5/2 2.82 6.67
3395 Jitka FB 2.76 1.33 5/2 2.82 1.33
1726 Hoffmeister 3-1-1 2.75 5.00 5/2 2.82 4.00
668 Dora 3-1-1 2.75 5.88 5/2 2.815 8.33
434 Hungaria 5/1 1.87 1.25 4/1 2.00 1.25
480 Hansa 3/1? 2.54 5.00 FB 2.71 6.67
808 Merxia 8/3 2.7 2.50 FB 2.80 2.00
3330 Gantrisch FB? 3.13 6.67 5-2-2 3.17 6.67
10955 Harig FB 2.67 1.43 FB 2.77 1.82
293 Brasilia 5/2 2.83 2.50 FB 2.88 2.00
569 Misa FB 2.62 3.33 FB 2.70 3.33
15124 2000EZ39 FB 2.62 2.00 FB 2.70 2.50
1128 Astrid FB? 2.755 2.22 5/2 2.82 2.22
845 Naema FB 2.91 2.86 7/3 2.96 5.00
4 Vesta 7/2 2.25 2.50 3/1 2.50 2.94
15 Eunomia 3/1? 2.52 5.00 8/3 2.71 5.00
20 Massalia 10/3 2.33 1.00 3/1 2.50 0.91
10 Hygiea 11/5 3.07 7.14 2/1 3.25 7.69
31 Euphrosyne 11/5 3.07 6.67 2/1 3.25 6.67
3 Juno FB? 2.62 2.00 8/3 2.70 2.50
163 Erigone 10/3 2.33 2.50 2/1M 2.42 2.50
3815 König FB 2.56 2.20 FB 2.585 2.20
396 Aeolia FB 2.73 1.67 FB 2.755 2.00
606 Brangane FB 2.57 1.67 FB 2.595 1.67
1547 Nele FB 2.64 1.67 FB 2.648 1.67
18405 1993FY12 FB 2.83 2.50 FB 2.85 2.00
170 Maria 3/1? FB 2.665 4.00
93 Minerva FB 2.71 4.00 5/2
2076 Levin 7/2 FB 2.34 2.50
3827 Zdenekhorsky 8/3 2.7 2.00 1-1C
1658 Innes 3/1? 11/4 2.645 2.00
375 Ursula FB 3.1 12.50 2/1

yet. On the contrary when the family range in proper a is delimited by strong
resonances, the family members captured in them can be transported far in
proper e (and to a lesser extent in proper sin I) to the point of not being
recognizable as members; over longer time spans, they can be transported to
planet-crossing orbits and removed from the main belt altogether.
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The tables in this paper are sorted in the same way: there are four parts,
dedicated to families of the types fragmentation, cratering, young, one-sided;
inside each group the families are sorted by decreasing number of members.
In some cases the tables have been split in four sub-tables, one for each type.

In two cases we have already defined the fit region in such a way that
we can include two families in a single V-shape. This family join is justified
later, in Section 7.3, by showing that the two dynamical families can be
generated by a single collision. This applies to the join of 10955 with 19466
and to the join of 163 with 5206. Note that the join of two families, justified
by the possibility to fit together in a single V-shape with a common age,
is conceptually different from the merge of two families due to intersections,
discussed in [Knežević et al., 2014; Milani et al., 2014]; however, the practical
consequences are the same, namely one family is included in another one and
disappears from the list of families.

For one-sided families we are also indicating the “cause” of the missing
side. E.g., for 2076 the lack of the IN side of the V-shape is due to the 7/2
resonance; on the other hand, the dynamical family 883 could be the contin-
uation of 2076 at proper a lower than the one of the resonance. However, the
V-shape which would be obtained by this join would have two very different
slopes, thus it can be excluded that they are the same collisional family.

For most families the “cause” of the delimitation in proper a, in the sense
above, can be clearly identified. However, some ambiguous cases remain: e.g.,
for family 1128 the outer boundary could be due to the 3-body resonance 3-1-
1 (the three integer coefficients apply to the mean motions of Jupiter, Saturn
and the asteroid, respectively); for family 3 the inner boundary could be due
to 4-3-1. For family 3330 a 3-body resonance (not identified) at a = 3.129
could be the cause of the inner boundary.

For the one-sided family 3827 we do not know the cause of the missing
OUT side, although we suspect it has something to do with (1) Ceres, given
that the proper a of Ceres is very close to the upper limit of the family box.

The family of (3395) Jitka is a subfamily of the dynamical family 847.
The family of (15124) 2000 EZ39 is a subfamily of the dynamical family 569.

With 3/1? we are indicating 2 cases (480, 15) in which the families could
be delimited on the IN side by the 3/1 resonance (also 170, 1658 in which
the 3/1 could be the cause of the missing IN side), but the lower bound on
proper a appears too far from the Kirkwood gap. This is a problem which
needs to be investigated.
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7.2.2 Binning and fit of the slopes

Next we divide the 1/D axis into bins, as in Figures 7.1 and 7.2. The partition
is done in such a way that each bin contains roughly the same number of
members.

The following points explain the main features of the method used to
create the bins:

1. the maximum number of bins N is selected for each family, depending
upon the number of members of the family;

2. the maximum value of the standard deviation of the number of members
in each bin is decided depending upon the number of members of the
family;

3. the region between 0 and the maximum value of 1/D is divided in N
bins;

4. the difference between the number of members in two consecutive bins
is computed:

4.1 if the difference is less than the standard deviation, the bins are
left as they are;

4.2 if the difference is greater than the standard deviation, the first
bin is divided into smaller bins and then the same procedure is
applied to the new bins.

This procedure is completely automatic, and it is the same both for the inner
and the outer side of a V-shape. In the example of the Figures, namely the
family of (20) Massalia, in the IN side there are 84 bins with a mean of 19
members in each, with a STD of this number 13. In the OUT side there are
82 bins with mean 19 and STD 11.

In the case of the low a side we select the minimum value of proper a and
the corresponding 1/D in each bin, as in Fig. 7.1. For the other side we select
the maximum value of the proper semimajor axis and the corresponding 1/D,
as in Fig. 7.2. These are the data to be fit to determine the slopes of the
V-shapes: thus it is important to have enough bins to properly cover the
range in proper a.
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Figure 7.1: Blow up of the bins for the inner side of the family of (20) Massalia.
Crosses are the members of the family, points are background asteroids, stars are
affected by the resonances. Circles are members of the family of (20) Massalia
with the minimum value of proper a and the corresponding 1/D in each bin.

7.2.3 Error Model and Weights

The least squares fit, especially if it includes an outlier rejection procedure,
requires the existence of an error model for the values to be fit. Until now
there are no error models for the absolute magnitude and the albedo, which
are available for a large enough catalog of asteroids.

We have built a simple but realistic error model for 1/D computed from
the absolute magnitude H (the formula is D = 1 329 × 10−H/5 × 1/

√
pv)

by combining the effect of two terms in the error budget: the error in the
absolute magnitude with STD σH and the one in the geometric albedo with
STD σpv . The derivatives of 1/D with respect to these two quantities are:

∂(1/D)

∂H
=
log(10)

5
× 1

D

∂(1/D)

∂pv
=

(
1

2× pv

)
× 1

D
,
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Figure 7.2: Blow up of the bins for the outer side of the family of (20) Massalia.
Circles are members of the family of (20) Massalia with the maximum value of
proper a and the corresponding 1/D in each bin on the left side. Crosses, points
and stars as in Fig. 7.1.

then the combined error has STD

σ1/D =

√(
∂(1/D)

∂H
σH

)2

+

(
∂(1/D)

∂pv
σpv

)2

.

To compute this error model we need to select three values: 1) the common
geometric albedo pv for all the family members, 2) the dispersion with respect
to this common albedo σpv , 3) the uncertainty in the absolute magnitude σH .

For the first two, we select all the “significant” WISE albedos , that is the
values of the albedos greater than 3 times their standard deviations (with
S/N > 3). Then we cut the tails of this distribution (see Figure 7.3): pv
is the mean and σpv is the standard deviation of the values of the albedo
without the tails. For the third value σH we use the same for all the families
and the chosen value is 0.3, see the discussion in 6.1 and in [Pravec et al.,
2012].
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Figure 7.3: Histogram of the “significant” WISE albedos for the dynamical family
of (20) Massalia. The vertical lines show the values of the albedos used for the
cut, leaving out values which should correspond to interlopers. In this and in
many other cases the selection of the interlopers is simple: albedo < 0.1 indicates
C-complex asteroids and > 0.4 values are likely to be affected by large errors.

The histograms such as Figure 7.3 are available for all the families listed
in Table 7.2 at the Supplementary material web site.

In Table 7.2 we show the albedo value of the namesake asteroid, with its
uncertainty and the appropriate reference: W for WISE data [Masiero et al.,
2011], I for IRAS, S for [Shepard et al., 2008], and A for AKARI. In some
cases albedo data are not available. The columns 5 and 6 contain the value
of the albedo used for the cut of the tails, and the last two columns are the
mean albedo and the standard deviation.

Two discordant results from the albedo analysis of the dynamical families
are easily appreciated from Table 7.2. (93) Minerva and (293) Brasilia are
interlopers in the dynamical families for which they are namesake, as shown
by albedo data outside of the family range. Indeed, in the following of this
paper we are going to speak of the family 1272 (Gefion) instead of 93, and
of the family 1521 (Seinajoki) instead of 293; both are obtained by removing
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Table 7.2: Family albedos: number and name of the family, albedo of the
parent body with standard deviation and code of reference, maximum and
minimum value for computing mean, mean and standard deviation of the
albedo

number/ albedo largest family albedo
name value STD ref min max mean STD
158 Koronis 0.144 0.009 W 0.07 0.50 0.240 0.061
24 Themis 0.064 0.016 W 0.12 0.069 0.019
847 Agnia 0.147 0.012 W 0.10 0.40 0.242 0.056
1726 Hoffmeister 0.036 0.007 W 0.10 0.048 0.013
668 Dora 0.073 0.009 W 0.10 0.058 0.014
434 Hungaria 0.380 S 0.380 0.100
480 Hansa 0.249 0.024 I 0.10 0.45 0.286 0.068
808 Merxia 0.165 0.021 W 0.10 0.40 0.248 0.055
3330 Gantrisch 0.048 0.010 W 0.047 0.012
10955 Harig 0.251 0.068
293 Brasilia 0.033 0.007 W 0.10 0.27 0.174 0.042
569 Misa 0.030 0.001 I 0.10 0.058 0.016
1128 Astrid 0.046 0.018 W 0.052 0.014
845 Naema 0.072 0.019 W 0.10 0.065 0.014
4 Vesta 0.423 0.053 I 0.15 0.60 0.355 0.099
15 Eunomia 0.206 0.055 W 0.50 0.260 0.083
20 Massalia 0.210 0.030 I 0.08 0.40 0.249 0.070
10 Hygiea 0.058 0.005 W 0.02 0.15 0.073 0.022
31 Euphrosyne 0.045 0.045 W 0.10 0.061 0.015
3 Juno 0.238 0.025 I 0.10 0.40 0.253 0.055
163 Erigone 0.033 0.004 W 0.10 0.055 0.013
3815 König 0.056 0.004 W 0.15 0.051 0.014
396 Aeolia 0.139 0.025 W 0.106 0.028
606 Brangane 0.089 0.012 W 0.121 0.028
1547 Nele 0.313 0.040 A 0.15 0.355 0.064
18405 1993FY12 0.10 0.184 0.042
170 Maria 0.160 0.007 I 0.261 0.084
93 Minerva 0.073 0.004 I 0.10 0.50 0.277 0.096
2076 Levin 0.557 0.318 W 0.10 0.40 0.202 0.070
3827 Zdenekhorsky 0.104 0.008 W 0.12 0.074 0.020
1658 Innes 0.224 0.037 W 0.10 0.43 0.264 0.064
375 Ursula 0.049 0.001 A 0.10 0.062 0.015

interlopers selected because of albedo data, and the namesake is the lowest
numbered after removing the interlopers.

For many families we have proceeded in the same way, that is removing
interlopers clearly indicated by an albedo discordance. The list of these
interlopers for each family is in the Supplementary material.

In some cases we have joined two dynamical families for the purpose
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of mean albedo computation: 2076 includes 298, 163 include 5026, 10955
includes 194662. Family 847 includes the subfamily 3395: the same mean
albedo was used for both, although (847) has albedo 0.147± 0.01 and (3395)
0.313±0.05, which are on the opposite side of the mean. Also 569 in Table 7.2
includes the subfamily 15124.

The family of (434) Hungaria is a difficult case: some WISE data exist
for its family members, but they are of especially poor quality. Thus we have
used for all the albedo derived from radar data [Shepard et al., 2008], and
assumed a quite large dispersion (0.1).

7.2.4 Outlier Rejection and Quality Control

The algorithm for differential corrections used for the computation of the
slopes includes an automatic outlier rejection scheme, as in [Carpino et al.,
2003]. Both the use of an explicit error model for the observations and
the fully automatic outlier rejection procedure are implemented in the free
software OrbFit3 and are used for the orbit determination of the asteroids
included in the NEODyS and AstDyS information systems4. Thus, although
the application of these methods to the computation of family ages is new,
this is a very well established procedure on which we have a lot of experience.

In practice, outlier rejection is performed in an iterative way. At each
iteration, the program computes the residuals of all the observations, their
expected covariance and the corresponding χ2 value. If we can assume that
the observation errors have a normal distribution, to mark an observation
as an outlier we can compare the χ2 value of the post-fit residual with a
threshold value χ2

rej: the observation is discarded if χ2
i > χ2

rej. At each
iteration it is also necessary to check if a given observation, that we have
previously marked as an outlier, should be recovered. Therefore, the program
selects an outlier to be recovered if for the non-fitted residual χ2

i < χ2
rec. The

current values for χ2
rej and χ2

rec are 10 and 9, respectively.

During each iteration of the linear regression we compute the residuals,
the outliers, the RMS of the weighted residuals and the Kurtosis of the same
weighted residuals. Our method converges if there is an iteration without
additional outliers. All these data are reported in Table 1 of the Supple-
mentary material. Besides the automatic outlier rejections, some interlopers
have been manually removed when there was a specific evidence that they do

2However, there is only 1 significant WISE albedo among members of family 19466.
3Distributed at http://adams.dm.unipi.it/orbfit/
4http://newton.dm.unipi.it/neodys/ and http://hamilton.dm.unipi.it/astdys/ respec-

tively.
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not belong to the collisional family, e.g., based upon WISE data: also these
manual rejections are detailed in the Supplementary material.

7.3 Results

7.3.1 Fragmentation Families

The results of the fit for the slopes of the V-shape are described in Table 7.3
for the families of the fragmentation type. To define fragmentation families,
we have used the (admittedly conventional) definition that the volume of the
family without the largest member has to be more than 12% of the total.
This computation has been done after removing the interlopers (by physical
properties) and the outliers (removed in the fit), and is based on D computed
with the mean albedo pv. Comments for some of the cases are given below.

• For family 158 (Koronis) the values of the inverse slope 1/S on the
two sides are consistent, that is the ratio is within a standard deviation
from 1: this indicates that we are measuring the age of a single event.
The well known subfamily of (832) Karin, with a recent age, does not
affect the slopes.

• Family 24 (Themis) has the well known subfamily of (656) Beagle near
the center of the V-shape, thus it does not affect the slopes. The values
IN and OUT are not the same but the difference has very low statistical
significance. The low accuracy of the IN slope determination is due to
the fact that the 11/5 resonance cuts the V-shape too close to the
center, sharply reducing the useful range in D.

• For family 847 (Agnia) we have estimated also the slopes for the sub-
family 3395. 847 has discordant slope values on the two sides, but the
OUT one has too few points, being affected by 3395. Thus we consider
as the true value the one obtained on the IN side. 3395 has a very
good fit but with many outliers, which can be explained as members of
847 but not 3395. Anyway the inverse slopes are significantly lower for
3395; since the ages are proportional to the inverse slopes, this indicates
an age younger by a factor 7.42± 2.06 (based upon the IN values).

• Family 1726 (Hoffmeister) has an especially complicated dynamics on
the IN side, due to both the nonlinear secular resonance g+ s− g6− s6

and the proximity with (1) Ceres, see the discussion in 6.3.1. However,
the results on the two slopes are perfectly consistent: this is in agree-
ment with what was claimed by Delisle and Laskar [2012], namely that
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Table 7.3: Slopes of the V-shape for the fragmentation families: family num-
ber/name, number of dynamical family members, side, slope (S), inverse
slope (1/S), standard deviation of the inverse slope, ratio OUT/IN of 1/S,
and standard deviation of the ratio.

number/ no. side S 1/S STD ratio STD
name members 1/S ratio
158 Koronis 6130 IN -1.647 -0.608 0.089

OUT 1.755 0.570 0.069 0.94 0.18
24 Themis 4329 IN -0.720 -1.390 0.385

OUT 0.477 2.096 0.326 1.51 0.48
847 Agnia 2395 IN -2.882 -0.347 0.072

OUT 4.381 0.228 0.034 0.66 0.17
3395 Jitka IN -21.387 -0.047 0.009

OUT 21.214 0.047 0.008 1.01 0.26
1726 Hoffmeister 1560 IN -5.026 -0.199 0.028

OUT 5.212 0.192 0.025 0.96 0.18
668 Dora 1233 IN -3.075 -0.325 0.053

OUT 3.493 0.286 0.086 0.88 0.30
434 Hungaria 1187 IN -14.855 -0.067 0.006

OUT 15.293 0.065 0.003 0.97 0.10
480 Hansa 960 IN -3.710 -0.270 0.109

OUT 3.064 0.326 0.040 1.21 0.51
808 Merxia 924 IN -8.400 -0.119 0.010

OUT 8.963 0.112 0.008 0.94 0.10
3330 Gantrisch 723 IN -3.986 -0.251 0.061

OUT 3.552 0.282 0.075 1.12 0.40
10955 Harig & 517 IN -6.515 -0.154 0.027
19466 Darcydiegel 153 OUT 5.853 0.171 0.050 1.11 0.38
1521 Seinajoki 545 IN -8.454 -0.118 0.023

OUT 23.507 0.043 0.005 0.36 0.08
569 Misa 441 IN -5.0376 -0.199 0.151

OUT 6.5380 0.153 0.052 0.77 0.64
15124 2000EZ39 IN -14.422 -0.069 0.006

OUT 14.337 0.070 0.007 1.01 0.14
1128 Astrid 436 IN -11.339 -0.088 0.006

OUT 11.434 0.088 0.007 0.99 0.10
845 Naema 286 IN -11.715 -0.085 0.011

OUT 10.741 0.093 0.004 1.09 0.15

the Yarkovsky effect prevails over the chaotic effects induced by close
approaches (also by the 1-1 resonance) with Ceres, in the range of sizes
which is relevant for the fit.

• For the family 480 (Hansa) the slope for the IN side has lower quality,
probably due to 3/1 resonance. It is a marginal fragmentation with
14% of the total volume, excluding (480) Hansa itself.
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• Family 808 (Merxia) is a fragmentation with a dominant largest mem-
ber (64% in volume), thus (808) must not be included in the fit.

• For the family 3330 (Gantrisch) it has been difficult to compute a slope
for the IN side, because of the irregular shape of the low a border
resulting in few data to be fit.

• Family 10955 (Harig) can be joined with family 19466: in this way two
one-sided families form a single V-shape: this join is confirmed by the
two slopes being consistent. Thus one collisional family is obtained
from two dynamical families. This merge was already suggested in
6.3.3, based on the family box overlap (by 40%).

• Family 1521 (Seinajoki) appears to have two discordant slopes: in the
projection (a, sin I) a bimodality appears in the family shape. We draw
from this the conclusion that there are two collisional families, the one
on the IN side being older.

• The family 569 (Misa) is a marginal fragmentation (fragments account
for 19% of the total volume). The ratio of the IN and OUT slopes is
not significantly different from 1, mostly because of the low accuracy of
the IN value. (15124) 2000 EZ39 appears to be the largest fragment of
a fragmentation subfamily inside the family 569: the inverse slopes are
significantly lower, indicating an age younger by a factor 2.19 ± 0.78
with respect to 569 (based upon the OUT values).

7.3.2 Cratering Families

The results of the fit for the slopes of the V-shape are described in Table 7.4
for the families of the cratering type, defined by a volume of the family
without the largest member < 12% of the total. Comments for some of the
cases are given below.

• Family 4 (Vesta) has two discordant slopes on the IN and OUT sides.
As already suggested in 6.6, this should be interpreted as the effect of
two distinct collisional families, with significantly different ages. The
estimated ratio of the slopes provides a significant estimate of the ratio
of the ages, because the Yarkovsky calibration is common to the two
subfamilies, corresponding to two craters on Vesta.

• Family 15 (Eunomia) has a subfamily which determines the OUT slope,
the ratio of the slopes gives a good estimate of the ratio of the ages, be-
cause of the common calibration. The interpretation as two collisional
families, proposed in 6.6, is thus confirmed.
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Table 7.4: Slope of the V-shape for the cratering families. Columns as in
Table 7.3.

number/ no. side S 1/S STD ratio STD
name members 1/S ratio
4 Vesta 8620 IN -2.983 -0.335 0.040

OUT 1.504 0.665 0.187 1.98 0.61
15 Eunomia 7476 IN -1.398 -0.715 0.057

OUT 2.464 0.406 0.020 0.57 0.05
20 Massalia 5510 IN -15.062 -0.066 0.003

OUT 14.162 0.071 0.006 1.06 0.10
10 Hygiea 2615 IN -1.327 -0.754 0.079

OUT 1.329 0.752 0.101 1.00 0.17
31 Euphrosyne 1137 IN -1.338 -0.747 0.096

OUT 1.507 0.663 0.081 0.89 0.16
3 Juno 960 IN -5.261 -0.190 0.038

OUT 7.931 0.126 0.049 0.66 0.29
163 Erigone & 429 IN -7.045 -0.142 0.035
5026 Martes 380 OUT 6.553 0.153 0.013 1.08 0.28

• Family 10 (Hygiea) has a shape (especially in the proper (a, e) pro-
jection) from which we could suspect two collisional events, but the
IN and OUT slopes not just consistent but very close suggest a single
collision.

• For family 3 (Juno) the IN and OUT slopes are discordant, but due
to the low relative accuracy of the slopes the difference is marginally
significant. The number density as a function of proper a is asymmetric,
more dense on the OUT side.

• Family 163 (Erigone) can be joined with 5026 (Martes), with (163)
as parent body for both (marginally within the cratering definition,
fragments forming 11% of the total volume). This is confirmed by
similar albedo (dark in a region dominated by brighter asteroids) and
by very consistent slopes of the IN side (formed by family 163) and
of the OUT side (formed by 5026), see Figure 7.4. There is a very
prominent gap in the center, which explains why we have found no
intersections; it should be due to the YORP effect; see Section 7.5.2.
Again one collisional family is obtained from two dynamical families.

7.3.3 Young Families

We define as young families those with an estimated age of < 100 My; thus
the inverse slopes are much lower than those of the previous tables. These can
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Figure 7.4: V-shape fit for the join of families of (163) Erigone and (5026) Martes.
The IN slope is fit to members of 163, the OUT slope to members of 5026, but
the two values are consistent. The central depleted region explains why the two
families have no intersection: they are joined but not merged.

be both fragmentations and craterings. The results of the fit are described
in Table 7.5.

These families have a comparatively low number of members, but because
they also have a small range of proper a values a significant slope fit is
possible. In particular we have introduced the three last families in the
Table with < 250 members.

Few comments: families 396 (Aeolia) and 606 (Brangane) are craterings,
all the others are fragmentations. The family 1547 (Nele) is a marginal
fragmentation, with 19% of volume outside (1547); it is known to be very
young [Nesvorný et al., 2003], it has been included to test the applicability
of the V-shape method to recent families (see Sec. 7.4.2).
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Table 7.5: Slope of the V-shape for the young families. Columns as in Ta-
ble 7.3.

number/ no. side S 1/S STD ratio STD
name members 1/S ratio
3815 König 340 IN -31.892 -0.031 0.004

OUT 31.364 0.032 0.004 1.02 0.17
396 Aeolia 306 IN -32.358 -0.031 0.005

OUT 35.556 0.028 0.005 0.91 0.22
606 Brangane 192 IN -54.027 -0.019 0.002

OUT 60.374 0.017 0.003 0.89 0.17
1547 Nele 152 IN -201.336 -0.005 0.0008

OUT 187.826 0.005 0.002 1.07 0.44
18405 1993FY12 102 IN -34.189 -0.029 0.01

OUT 34.456 0.029 0.005 0.99 0.36

7.3.4 One Side

The one-sided families are those for which we cannot identify one of the two
sides of the V-shape. The results of the fit are described in Table 7.6.

The families of this type can be due to fragmentations and craterings: in
most cases there is no dominant largest fragment, and they might have had
parent bodies disappeared in the resonance which also wiped out one of the
sides, thus we do not really know.

Table 7.6: Slopes of the V-shape for the one-sided families: family num-
ber/name, number of dynamical family members, side, slope (S), inverse
slope (1/S), standard deviation of the inverse slope.

number/ no. side S 1/S STD
name members 1/S
170 Maria 1431 OUT 1.487 0.672 0.059
1272 Gefion 1341 IN -2.594 -0.386 0.094
2076 Levin 1237 OUT 7.080 0.141 0.023
3827 Zdenekhorsky 794 IN -10.871 -0.092 0.009
1658 Innes 606 OUT 6.006 0.167 0.011
375 Ursula 335 IN -0.516 -1.938 0.426

• The family 170 (Maria) has a possible subfamily for low proper a (no
effect on the OUT slope). There is no dominant largest fragment, thus
it could be either a fragmentation or a cratering, in the latter case with
parent body removed by the 3/1 resonance.

• For the family 1272 (Gefion) there is no dominant largest fragment,
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thus the same argument applies, with possible parent body removal by
the 5/2 resonance.

• For family 2076 (Levin) the possibility of merging with families 298
(Baptistina) and 883 has been discussed in 6.3.1. Joining Baptistina
does not change the slopes; joining 883 would result in a two-sided
V-shape, with a gap due to the 7/2 resonance in between; however,
the two slopes would be very different. All three dynamical families
(for which we already have some intersections) could be considered
as a single complex dynamical family, but still they would belong to
different collisional families with different ages. The slope (thus the
age) we have computed belongs to the event generating only the 2076
family. There are not enough significant physical data on the members
of these families5, not even on the comparatively large (298), to help
us in disentangling this complex case.

• Family 1658 (Innes) is the largest fragment but it is not dominant in
size, thus we cannot distinguish between fragmentation and cratering
with parent body removed by the 3/1 resonance.

• (375) Ursula is an outlier in the fit for the IN slope of 375. This can have
two interpretations. Either (375) is the largest fragment of a marginal
fragmentation (fragments are 23% of total volume), in which case it is
correct not to include it in the slope fit, or (375) is an interloper and
the family could have had a parent body later disappeared in the 2/1
resonance. Unfortunately, it is difficult to use albedo data to help on
this, because there is no albedo contrast with the background.

7.4 Age Estimation

7.4.1 Yarkovsky Calibrations

The method we use to convert the inverse slopes from the V-shape fit into
family ages has been established in 6.4.2, and consists in finding a Yarkovsky
calibration, which is the value of the Yarkovsky driven secular drift da/dt
for an hypothetical family member of size D = 1 km and with spin axis
obliquity (with respect to the normal to the orbital plane) 0◦ for the OUT
side and 180◦ for the IN side. Since the inverse slope is the change ∆(a)
accumulated over the family age by a family member with unit 1/D, the age
is just ∆(t) = ∆(a)/(da/dt).

5E.g., (2076) has WISE data pv = 0.56± 0.32.
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The question is how to produce the Yarkovsky calibration. As discussed
in 6.4.2, this can be done in different ways depending upon which data are
available. Unfortunately for main belt asteroids there are too few data to
compute any calibration: indeed, a measured da/dt is available for not even
one main belt object. The solution we have used was to extrapolate from
the data available for Near Earth Asteroids. The best estimate available for
da/dt is the one of asteroid (101955) Bennu, with a S/N ' 200 [Chesley
et al., 2014]. By suitable modeling of the Yarkovsky effect, by using the
available thermal properties measurements, the density of Bennu has been
estimated as ρBennu = 1.26± 0.07 g/cm3. Bennu is a B-type asteroid, thus it
is possible to compute its porosity by comparison with the very large asteroid
(704) Interamnia which is of the same taxonomic type and has a reasonably
well determined bulk density [Carry, 2012].

Table 7.7: Benchmark asteroids for the density of a taxonomic type: num-
ber/name, taxonomic type, densities as in [Carry, 2012] with their uncer-
tainties, densities at 1 km.

number/ tax ρ STD(ρ) ρ
name type (1 km)

4 Vesta V 3.58 0.15 2.30
10 Hygiea C 2.19 0.42 1.41
15 Eunomia S 3.54 0.20 2.275
216 Kleopatra Xe 4.27 0.15 2.75
704 Interamnia B 1.96 0.28 1.26

In Table 7.7 we list the data on benchmark large asteroids with known
taxonomy and density. For the other taxonomic classes we estimate the
density at D = 1 km by assuming the same porosity of Bennu and the same
composition as the largest asteroid of the same taxonomic class. Thus in the
Table the density at D = 1 km for B class is the one of Bennu from [Chesley
et al., 2014], the ones for the other classes are obtained by scaling.

Once an estimate of the density ρ is available, the scaling formula can be
written as:

da

dt
=
da

dt

∣∣∣∣
Bennu

√
a(Bennu)(1− e2

Bennu)√
a(1− e2)

DBennu

D

ρBennu
ρ

cos(φ)

cos(φBennu)

1− A
1− ABennu

where D = 1 km used in this scaling formula is not the diameter of an actual
asteroid, but it is the reference value corresponding to the inverse slope; we
also assume cos(φ) = ±1, depending upon the IN/OUT side.

The additional terms which we would like to have in the scaling formula
are thermal properties, such as thermal inertia or thermal conductivity: the
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problem is that these data are not available. To replace the missing thermal
parameters with another scaling law would not give a reliable result, also
because of the strong nonlinearity of the Yarkovsky effect as a function of
the conductivity, as shown in [Vokrouhlický et al., 2000b][Figure 1].

We are not claiming this is the best possible calibration for each fam-
ily. However, for generating a homogeneous set of family ages, we have to
use a uniform method for all. To improve the calibration (thus to decrease
the uncertainty of the age estimate) for a specific family is certainly pos-
sible, but requires a dedicated effort in both acquiring observational data
and modeling. E.g., the Yarkovsky effect could be measured from the orbit
determination for a family member (going to be possible with data from the
astrometric mission GAIA), thermal properties could be directly measured
with powerful infrared telescopes, densities can be derived for binaries by
using radar observations, for the cases with missing taxonomy it could be
obtained by spectrometry/infrared/polarimetry. A good example is given by
a very recent event: on January 26, 2015 the asteroid (357439) 2004 BL86

had a very close approach to the Earth, with minimum distance 0.008 au.
Thus it has been possible by radar to confirm that it has a satellite, and to
measure its diameter; infrared observations allowed to assign this asteroid to
the taxonomic class V. When all the data are analyzed and published, we
expect to have for (357439) an estimated density (from the satellite orbit
and the volume, both from the radar data). This could provide a Yarkovsky
calibration, specifically for the Vesta families, significantly better than the
one of this paper.

This implies that the main results of this paper are the inverse slopes,
from which the ages can continue to be improved as better calibration data
become available.

In Table 7.8 we are summarizing the data used to compute the calibration.
The eccentricity used in the calibration is selected, separately for the IN and
OUT side, as an approximate average of the values of proper eccentricity for
the family members with proper semimajor axis close to the limit. It is clear
that the extrapolation from Near Earth to main belt asteroids introduces
a model uncertainty, which is not the same in all cases. If a family has a
well determined taxonomic type, which corresponds to one of the benchmark
asteroids, our computation of the calibration is based on actual data and
we assign to this case a comparatively low relative calibration STD of 0.2;
these cases are labeled with the code “m”. We have also estimated the Bond
albedo A, which is used in the scaling, from the mean geometric albedo pv
by WISE. For subfamilies 3395 (inside 847) and 15124 (inside 569) we have
assumed the same taxonomy as the larger family.

Then there are cases in which the taxonomic class is similar, but not
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Table 7.8: Data for the Yarkovsky calibration: family number and name,
proper semimajor axis a and eccentricity e for the inner and the outer side, 1-
A, density value ρ at 1 km, taxonomic type, a flag with values m (measured) a
(assumed) g (guessed), and the relative standard deviation of the calibration.

number/ proper proper proper proper 1-A ρ tax. flag rel.
name a e a e (1 km) type m STD

IN IN OUT OUT
158 Koronis 2.83 0.044 2.93 0.06 0.92 2.275 S m 0.20
24 Themis 3.085 0.14 3.23 0.135 0.98 1.41 C m 0.20
847 Agnia 2.73 0.07 2.81 0.07 0.92 2.275 S m 0.20
3395 Jitka 2.762 0.07 2.81 0.07 0.92 2.275 S m 0.20
1726 Hoffmeister 2.76 0.05 2.8 0.046 0.98 1.41 C a 0.25
668 Dora 2.76 0.19 2.8 0.197 0.98 1.41 C a 0.25
434 Hungaria 1.92 0.07 1.97 0.07 0.87 2.75 Xe g 0.30
480 Hansa 2.55 0.04 2.69 0.035 0.91 2.45 S m 0.20
808 Merxia 2.71 0.135 2.78 0.13 0.92 2.45 S m 0.20
3330 Gantrisch 3.13 0.195 3.16 0.198 0.98 1.41 C g 0.30
10955 Harig & 2.67 0.016 0.92 2.275 S g 0.30
19466 Darcydiegel 2.77 0.009 0.92 2.275 S g 0.30
1521 Seinajoki 2.84 0.12 2.866 0.123 0.94 2.275 S g 0.30
569 Misa 2.63 0.177 2.69 0.175 0.98 1.41 C a 0.25
15124 2000EZ39 2.64 0.178 2.67 0.177 0.98 1.41 C a 0.25
1128 Astrid 2.767 0.048 2.81 0.048 0.98 1.41 C m 0.20
845 Naema 2.92 0.035 2.95 0.036 0.98 1.41 C m 0.20
4 Vesta 2.27 0.09 2.44 0.11 0.88 2.3 V m 0.20
15 Eunomia 2.53 0.15 2.69 0.15 0.92 2.275 S m 0.20
20 Massalia 2.35 0.162 2.46 0.162 0.92 2.275 S m 0.20
10 Hygiea 3.08 0.13 3.24 0.11 0.98 1.41 C m 0.20
31 Euphrosyne 3.11 0.17 3.2 0.21 0.98 1.41 C m 0.20
3 Juno 2.62 0.235 2.69 0.235 0.92 2.275 S m 0.20
163 Erigone & 2.34 0.208 0.98 1.41 C m 0.20
5026 Martes 2.37 0.207 0.98 1.41 C m 0.20
3815 König 2.57 0.13 2.58 0.14 0.98 1.41 C a 0.25
396 Aeolia 2.735 0.168 2.743 0.167 0.97 2.75 Xe a 0.25
606 Brangane 2.579 0.18 2.59 0.18 0.96 2.275 S m 0.20
1547 Nele 2.64 0.269 2.646 0.269 0.88 2.275 S g 0.30
18405 1993FY12 2.83 0.106 2.86 0.106 0.94 2.275 S g 0.30
170 Maria 2.65 0.08 0.91 2.275 S m 0.20
1272 Gefion 2.74 0.13 0.92 2.275 S a 0.25
2076 Levin 2.31 0.14 0.93 2.275 S g 0.30
3827 Zdenekhorsky 2.71 0.087 0.98 1.41 C m 0.20
1658 Innes 2.61 0.17 0.91 2.275 S g 0.30
375 Ursula 3.13 0.08 0.98 1.41 C m 0.20
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identical to the one of the benchmark. (1726) is of type Cb, (668) of type Ch
in the SMASSII classification, both assimilated to a generic C type; (808) is
Sq, (1272) is SI in SMASSII, (1658) is AS in the Tholen classification, all
assimilated to a generic S type. These are labeled with the code “a” and we
have assigned a relative STD of 0.25.

Finally we have 7 cases in which we do not have taxonomic data at
all, but just used the mean WISE albedo of Table 7.2 to guess a simplistic
classification into a C vs. S complex. These are labeled “g” and have a
relative STD of 0.3. Thus these are the worst cases from the point of view
of age uncertainty, but they are the easiest to improve by observations.

7.4.2 Ages and their Uncertainties

The results on the ages are presented in Tables 7.9–7.12, each containing the
Yarkovsky calibration, computed with the data of Table 7.8, the estimated
age and three measures of the age uncertainty.

The first uncertainty is the standard deviation of the inverse slope, as
output from the least square fit, divided by the calibration. The second
is the age uncertainty due to the calibration uncertainty from the last col-
umn of Table 7.8: this relative uncertainty is multiplied by the estimated
age. The third is the standard deviation of the age, obtained by combining
quadratically the STD from the fit with the STD from the calibration.

The first uncertainty is useful when comparing ages which can use the
same calibration, such as ages from the IN and from the OUT side (as shown
in the last two columns of Tables 7.3–7.6); this can be applied also to the cases
of subfamilies. The third uncertainty is applicable whenever the absolute age
has to be used, as in the case in which the ages of two different families, with
independent calibration errors, are to be compared.

Among the figures, not included in this paper but available in the Sup-
plementary material site, there are all the V-shape plots, which can be useful
to better appreciate the robustness of our conclusions.

In this Section we also comment on ages for the same families found in
the scientific literature, with the warning that for some families there are
multiple estimates, including discordant ones, in some cases published by
the same authors at different times. Thus we think it is important to have a
source of ages computed with a uniform and well documented procedure, such
as this paper. Compilations of ages, such as [Brož et al., 2013b; Nesvorný
et al., 2005], are useful for consultation, but have the limitation of mixing
results obtained with very different methods, sometimes even with methods
not specified. We use the terminology consistent when one nominal value is
within the STD of the other, compatible when difference of nominal values is
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Table 7.9: Age estimation for the fragmentation families: family number and
name, da/dt, age estimation, uncertainty of the age due to the fit, uncertainty
of the age due to the calibration, and total uncertainty of the age estimation.

number/ side da/dt Age STD(fit) STD(cal) STD(age)
name IN/OUT 10−4 au/My My My My My
158 Koronis IN -3.40 1792 262 358 444

OUT 3.34 1708 206 342 399
24 Themis IN -5.68 2447 678 489 836

OUT 5.54 3782 588 756 958
847 Agnia IN -3.46 1003 207 201 288

OUT 3.41 669 100 134 167
3395 Jitka IN -3.44 136 25 27 37

OUT 3.41 138 24 28 37
1726 Hoffmeister IN -5.90 337 47 84 96

OUT 5.86 328 42 82 92
668 Dora IN -6.11 532 87 133 159

OUT 6.08 471 141 118 184
434 Hungaria IN -3.23 208 19 62 65

OUT 3.18 205 8 62 62
480 Hansa IN -3.53 763 310 153 346

OUT 3.44 950 117 190 223
808 Merxia IN -3.52 338 28 68 73

OUT 3.47 321 24 64 69
3330 Gantrisch IN -5.75 436 105 131 168

OUT 5.73 492 131 148 197
10955 Harig & IN -3.48 441 78 132 154
19466 Darcydiegel OUT 3.42 500 146 150 209
1521 Seinajoki IN -3.50 338 66 101 121

OUT 3.49 122 15 37 40
569 Misa IN -6.23 319 242 80 255

OUT 6.15 249 85 62 105
15124 2000EZ39 IN -6.22 111 10 28 29

OUT 6.18 113 11 28 30
1128 Astrid IN -5.89 150 11 30 32

OUT 5.85 150 11 30 32
845 Naema IN -5.73 149 19 30 35

OUT 5.70 163 8 33 34

less than the sum of the two STD, discordant otherwise.

Ages of fragmentation families

The ages results are in Table 7.9; comments on specific families follow.

158 (Koronis): the present estimate increases somewhat the result we
reported in Chap. 6[Table 10] of 1500 My for the OUT side (the result for
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the IN side was considered of lower quality), but within the fit uncertainty.
Now the results from the two sides are not just consistent but very close, and
the fit uncertainty has slightly improved (in Table 10 of the previous paper
the calibration uncertainty was not included). The earliest estimates in the
literature were just upper bounds of ≤ 2 Gy [Chapman et al., 1996; Marzari
et al., 1995], followed by [Farinella et al., 1996; Greenberg et al., 1996] who
give ∼ 2 Gy; Brož et al. [2013b] give 2.5± 1 Gy, which is consistent with our
results: our improvement in accuracy is significant.

24 (Themis): the two sides give different values which are not discordant,
but are affected by large uncertainties. This is one of the oldest families, for
which there are few ages estimates in the literature: [Marzari et al., 1995]
give 2 Gy.

847 (Agnia): the new result is consistent with the one of Chap. 6[Table
10] for the IN side; the OUT side is anyway degraded by the presence of the
3395 subfamily.

3395 (Jitka): the results are almost the same as in 6[Table 10]. In the
literature there are estimates for the age of Agnia, in [Vokrouhlický et al.,
2006a] of 100+30

−20 My, but from their Figure 1 it is clear that their Agnia family
is restricted to our Jitka subfamily, apart from the addition of (847) Agnia
itself. Also in [Brož et al., 2013b] there is an estimate for 847 of 200 ± 100
My. Thus our results on the age are consistent with all the others, even if
we disagree on the name of the family.

1726 (Hoffmeister): our result is consistent with the one in [Brož et al.,
2013b; Nesvorný et al., 2005], giving 300 ± 200 My, but with significantly
lower uncertainty. The fact that the perturbations from (1) Ceres do not
appear to disturb an evolution model based on the Yarkovsky secular drift
is a confirmation of the statement by Delisle and Laskar [2012]: chaotic
perturbations from other asteroids are less effective in shifting the semimajor
axis than Yarkovsky for the objects with D < 40 km.

668 (Dora): the OUT result is somewhat degraded by the 5/2 resonance,
thus the IN is better, but anyway they are consistent. [Brož et al., 2013b] give
500± 200 My, in good agreement, notwithstanding the much lower distance
cutoff used to define the family (60 m/s vs. our 90).

434 (Hungaria): with a similar but less rigorous method, Milani et al.
[2010] find 274 My, which is higher but practically consistent with the current
result. Warner et al. [2009] give ∼ 500 My, but with a low accuracy method.

480 (Hansa): in the literature we find only [Brož et al., 2013b; Carruba,
2010] giving as upper bound < 1.6 Gy. Our result is much more informative,
especially from the OUT side.

808 (Merxia): our results are consistent with both [Brož et al., 2013b]
300± 200 My, and [Nesvorný et al., 2005] 500± 200, but significantly more
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precise.
3330 (Gantrisch): we have found nothing in the literature on the age of

this family, thus the result is useful even if the relative accuracy is poor.
10955 (Harig), including 19466: a well determined slope, consistent be-

tween the two sides, thus confirming the join. The absolute age is of limited
accuracy because of the lack of physical observations. No previous estimates
found in the literature.

1521 (Seinajoki) has two significantly different ages, younger for the OUT
side. This is an additional case of a dynamical family containing two colli-
sional families. [Nesvorný et al., 2005] gives 50± 40 My, which is compatible
with our estimate for the OUT side.

1128 (Astrid) has a perfect agreement on the two sides, which appears
as a coincidence since the uncertainty is much higher. Nesvorný et al. [2005]
give 100± 50 which is consistent, our estimate being more precise.

845 (Naema) has a good agreement on the two sides. Nesvorný et al.
[2005] give 100± 50 which is compatible, our estimate being more precise.

Ages of cratering families

The ages results are in Table 7.10; comments on each family follow.

Table 7.10: Age estimation for the cratering families. Columns as in Ta-
ble 7.9.

number/ side da/dt Age STD(fit) STD(cal) STD(age)
name IN/OUT 10−4 au/My My My My My
4 Vesta IN -3.60 930 112 186 217

OUT 3.49 1906 537 381 659
15 Eunomia IN -3.66 1955 155 391 421

OUT 3.55 1144 57 229 236
20 Massalia IN -3.81 174 7 35 35

OUT 3.73 189 16 38 41
10 Hygiea IN -5.67 1330 139 266 300

OUT 5.50 1368 183 274 329
31 Euphrosyne IN -5.71 1309 169 262 312

OUT 5.72 1160 142 232 272
3 Juno IN -3.46 550 110 110 156

OUT 3.41 370 143 74 161
163 Erigone & IN -6.68 212 53 42 68
5026 Martes OUT 6.64 230 46 19 50

4 (Vesta): the idea that Vesta might have suffered two large impacts
generating two families Sec. 6.6 is quite natural given that cratering does
not decrease the collisional cross section, and has been proposed long ago
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[Farinella et al., 1996]. The new error model and outlier rejection procedure
have reduced the fit uncertainty, especially for the OUT side, thus the ratio of
values on the two sides has increased its level of significance (see Table 7.4).
The good agreement of the age from the IN side with the cratering age of the
Rheasilvia basin, 1 Gy according to Marchi et al. [2012] is very interesting.
Only a rough lower bound age of ∼ 2 Gy is available for the Veneneia basin
because of the disruption due to the impact forming Rheasilvia [O’Brien
et al., 2014]. Thus our age estimate from the OUT side is an independent
constraint to the age of Veneneia.

15 (Eunomia): in Chap. 6[Table 10] the difference in the slopes for the
two sides was much smaller and the fit uncertainty for the OUT side much
larger, thus the existence of two separate ages was proposed as possible. The
improved results provide a ratio very significantly different from 1, thus the
existence of two collisional families inside the single dynamical family 15 is
now supported by high S/N evidence. Nesvorný et al. [2005] give 2.5 ± 0.5
Gy as age for the entire family, which is compatible with our IN side age.

20 (Massalia): our new results are very similar to the ones of our previous
paper as well as consistent with [Vokrouhlický et al., 2006b], giving as most
likely an age between 150 and 200 My. On the contrary [Nesvorný et al.,
2003] give 300± 100 which is marginally compatible.

10 (Hygiea): the interesting point is that this dynamical family appears
to have a single age, a non-trivial result since the family has a bimodal shape
in the proper (a, e) projection, and (10) has almost the same impact cross
section as (4) Vesta. In the literature we found only [Nesvorný et al., 2005]
giving a consistent, but low accuracy, 2± 1 Gy.

31 (Euphrosine): This high proper sin I family is crossed by many reso-
nances, nevertheless the age can be estimated. In the literature, we found
only the upper bound < 1.5 Gy in [Brož et al., 2013b].

3 (Juno): the two ages IN and OUT are not consistent but only com-
patible; more data are needed to assess the possibility of multiple collisions.
In the literature we found only an upper bound < 700 My in [Brož et al.,
2013b].

163 (Erigone): another very good example of join of two dynamical fam-
ilies, 163 and 5026, into a collisional family with all the properties expected,
including age estimates consistent (within half of STD) and a lower number
density in a central strip. [Vokrouhlický et al., 2006b] give an age of 280±112
My, which is higher but consistent; [Bottke et al., 2015] by a different method
give an age 170+25

−30, which is lower but consistent with the IN side. From the
figures we can deduce that in both papers their family 163 also includes our
5026.
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Table 7.11: Age estimation for the young families. Columns as in Table 7.9.

number/ side da/dt Age STD(fit) STD(cal) STD(age)
name IN/OUT 10−4 au/My My My My My
3815 König IN -6.21 51 6 13 14

OUT 6.21 51 6 13 14
396 Aeolia IN -3.09 100 18 25 31

OUT 3.08 91 15 23 27
606 Brangane IN -3.82 48 4 10 10

OUT 3.81 44 7 9 11
1547 Nele IN -3.61 14 2 4 5

OUT 3.61 15 5 5 7
18405 1993FY12 IN -3.50 83 28 25 37

OUT 3.48 83 13 25 28

Ages of young families

The ages results are in Table 7.11. We are interested in finding a lower limit
for the ages we can compute with the V-shape method. For most of these
asteroids there are in the literature only either upper bounds or low relative
accuracy estimates of the ages [Brož et al., 2013b]. In order of estimated age:

1547 (Nele): for this family Brož et al. [2013b] give an age < 40 My;
Nesvorný et al. [2003] give a constraint ≤ 5 My on the age of the Iannini
cluster, which he identified as composed of 18 members not including (1547).
Our estimate (for a family with 152 − 3 = 149 members, including (4652)
Iannini) is higher, but such a young age could be too much affected by the
effect of the initial velocity field, which is apparent in the anti-correlation
between proper a, e. From this example we conclude that probably 15 My
is too young to be an accurate estimate by the V-shape method; this family
should be dated by a method using also the evolution of the angles $,Ω.

3815 (König): we have a precise estimate, in the literature we have found
only an upper bound < 100 My [Brož et al., 2013b].

606 (Brangane): also a precise estimate, in good agreement with 50±40 in
[Brož et al., 2013b]. We do not have a ground truth to assess the systematic
error due to contamination from the initial velocity spread, which for these
ages may not be negligible6.

396 (Aeolia): also a precise estimate, consistent with the upper bound
< 100 My in [Brož et al., 2013b]. 18405 (1993FY12): Brož et al. [2013b]
give an age < 200 My. Our estimate is precise and not just consistent, but
the same on the two sides. For this range of ages around 100 My the initial

6A size independent velocity spread is removed by our fit method, but there may well
be a 1/D dependency in this spread.
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velocity field should not matter.
From these examples we can conclude that the V-shape method is ap-

plicable to young families with ages below 100 My, but there is some lower
age limit tmin such that younger ages are inaccurately estimated from the
V-shape. The cases we have analyzed suggest that tmin > 15 My, but we do
not have enough information to set an upper bound for tmin.

Ages of one-sided families

The ages results are in Table 7.12; these ages are based upon the assumption
that only one side of the family V-shape is preserved. Of course if this was not
the case, ages younger by factor roughly 2 would be obtained. For each case,
comments on the justification of the one-side assumption are given below.

Table 7.12: Age estimation for the one-sided families. Columns as in Ta-
ble 7.9.

number/ side da/dt Age STD(fit) STD(cal) STD(age)
name IN/OUT 10−4 au/My My My My My
170 Maria OUT 3.48 1932 169 386 422
1272 Gefion IN -3.50 1103 270 276 386
2076 Levin OUT 3.86 366 59 110 125
3827 Zdenekhorsky IN -5.99 154 14 31 34
1658 Innes OUT 3.59 464 31 139 143
375 Ursula IN -5.56 3483 765 697 1035

170 (Maria): the very strong 3/1 resonance with Jupiter makes it impos-
sible for asteroids of the IN side of the family to have survived in the main
belt, moreover the shape of the family in the (a, 1/D) plane is unequivocally
one sided. This is an ancient family, and our age estimate is compatible with
3± 1 Gy given in [Nesvorný et al., 2005], but we have significantly decreased
the estimate, to the point that this cannot be a “LHB” family, as suggested
by [Brož et al., 2013b].

1272 (Gefion): the very strong 5/2 resonance with Jupiter makes it im-
possible for most asteroids of the OUT side of the family to have survived
in the main belt. Thus there is no OUT side in the V-shape7. Nesvorný
et al. [2005] give an age 1.2 ± 0.4 Gy, in good agreement with ours, while
[Nesvorný et al., 2009][Figure 1] show a one-sided model, giving a discordant
age of 480± 50 My.

2076 (Levin): as discussed in Section 7.3, this could be just a component
of a complex family, possibly including 298 and 883. The OUT slope, thus

7See the figure 1272 vshapea.eps in the Supplementary material.
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the age we have estimated, refers to the event generating 2076, while 298 and
883 have too few members for a reliable age. In the literature there are ages
for the family of (298) Baptistina: e.g., Bottke et al. [2007] give a discordant
age of 160+30

−20 My, but they refer to a two-sided V-shape including our 883,
with an enormous number of outliers.

3827 (Zdenekhorsky): the family shape is obviously asymmetric, with
much fewer members on the OUT side8. This prevents a statistically signifi-
cant determination of the OUT slope. The family is not abruptly truncated,
possibly because the effect of (1) Ceres is weaker than the one of the main
resonances with Jupiter.

1658 (Innes): the shape of the family in the (a, 1/D) plane is clearly one-
sided. The family ends on the IN side a bit too far from the 3/1 resonance,
thus the dynamics of the depletion on the IN side remains to be investigated.

375 (Ursula): the strongest 1/2 resonance with Jupiter makes it impos-
sible for most asteroids of the OUT side of the family to have survived in
the main belt. This prevents a statistically significant determination of the
OUT slope. With an age estimated at ∼ 3.5± 1 Gy, this family could be the
oldest for which we have an age. Brož et al. [2013b] give the upper bound
< 3.5 Gy.

7.5 Conclusions and future work

In this paper we have computed the ages of 37 collisional families9. The mem-
bers of these collisional families belong to 34 dynamical families, including
30 of those with > 250 members. Moreover, we have computed uncertainties
based on a well defined error model: the standard deviations for the ages are
quite large in many cases, but still the signal to noise ratio is significantly
> 1.

7.5.1 Main results

In Figure 7.5 we have placed the families on the horizontal axis with the
same order used in the Tables, separated in four categories10.

On the vertical axis (in a logarithmic scale) we have marked the estimated
age with a 1 STD error bar. To avoid overcrowding of the Figure, for the

8See the figure 3827 vshapea.eps in the supplementary material.
9Plus one possible, a second age for the family 3 (Juno) with a moderate significance

in the slope ratio, see Table 7.4.
10To locate these families in the asteroid belt, the best way is to use

the graphic visualizer of asteroid families provided by the AstDyS site at
http://hamilton.dm.unipi.it/astdys2/Plot/
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Figure 7.5: Family ages and their uncertainties computed in this paper. If two
ages of the same family are incompatible, the figure shows both ages; this applies
to families 4, 15, 1521. The horizontal dashed lines separate the conventional age
groupings, the vertical solid lines separate the family types, for the definitions see
in the text.

families with compatible ages from the IN and OUT side we have used the
average (weighted with the inverse square of the STD) as the nominal with
an error bar σ =

√
σ2
IN + σ2

OUT/2. If the two ages are incompatible we have
plotted the two estimates with the corresponding bars11. We have also used
an informal terminology by which families are rated by their age: primordial
with age > 3.7 Gy, ancient with age between 1 and 3.7 Gy, old with age
between 0.1 and 1 Gy, and finally the adjective young, as used previously, is
for ages < 0.1 Gy.

By looking at Figure 7.5 it is apparent that we have been quite successful
in computing ages for old families, we have significant results for both young
and ancient, while we have little, if any, evidence for primordial families.
This should not be rated as a surprise: already Brož et al. [2013b], while
specifically searching for primordial families, found a very short list of can-

11For 847 we have used the IN age and STD, as discussed in Section 7.3.
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didates, out of which 4, 10, 15, 158 and 170 we are showing to be ancient,
but not primordial. From our results, only two families could be primordial,
24 and 375, although they are more likely to be just ancient. Thus we agree
with the conclusion by Vokrouhlický et al. [2010] that most of the primordial
families, which undoubtedly have existed, have been depleted of members to
the point of not being recognized by statistically significant number density
contrast: our results indicate that this conclusion applies not only to the
Cybele region (beyond the 2/1 resonance) but to the entire main belt.

Figure 7.5 also shows that our results allow many statistically significant
absolute age comparisons between different families. Although the results
should be improved, especially by obtaining more accurate Yarkovsky cali-
brations, this can be the beginning of a real asteroid belt chronology. The
large compilations of family ages, such as Brož et al. [2013b]; Nesvorný et al.
[2005] are very useful to confirm that our results are reasonable. When avail-
able, the uncertainties reported in these compilations are generally larger; of-
ten only upper/lower bounds are given. However, the literature as analyzed
in Section 7.4.2 shows that often results obtained with different methods,
even by the same authors, can be discordant. Thus the comparison of ages
for different families should not be done with the ages listed in a compila-
tion, but only from a list of ages computed with a single consistent method,
including a single consistent calibration scheme, as in this paper.

In Chap. 7 we have introduced the distinction between dynamical and
collisional families; out of the 5 dynamical families we analyzed as examples,
we found 3 cases in which a dynamical family corresponds to at least 2 colli-
sional ones. In this paper we report on the results of a systematic survey of
the largest (by number of members) dynamical families, monitoring whether
the 1 to 1 correspondence with collisional families does or does not apply.

We have found two examples, for which we use the definition of family
join, in which two separate dynamical families together form a single V-shape,
with consistent slopes, thus indicating a single collisional event: this applies
to families 10955 and 19466, 163 and 5026. Note that this is distinct from
a family merge which can arise when two families, as a result of adding new
members with recently computed proper elements, acquire some members in
common [Knežević et al., 2014].

We have also found at least three examples of dynamical families contain-
ing multiple collisional families: 4, 15 and 1521. For these we have obtained
discordant slopes from the IN and the OUT side of the V-shape, resulting in
distinct ages, see Figure 7.5. We have found a dubious case, family 3, and
there are several other cases already either known or suspected.

Finally, we have found two cases of families containing a conspicuous
subfamily, with a sharp number density contrast, such that it is possible to
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measure the slope of a distinct V-shape for the subfamily, thus the age of the
secondary collision: the subfamily 3395 of 847, and 15124 of 569. There are
several cases of subfamilies, with a separate collisional age, already reported
in the literature, but they are mostly from recent (< 10 My of age) collisions:
we have identified subfamilies with ages of ∼ 100 My.

From the above discussion, we think a new paradigm emerges: whenever
a family age computation is performed, the question on the minimum number
of collisional events capable of generating the observed distribution of mem-
bers of the family in the classification space has to be analyzed. This needs
to take also into account other families in the neighborhood (in the classifica-
tion space). In our case, the classification space is the 3-dimensional proper
elements space because we use dynamical families, but note that the same
argument applies also to other classifications made in different spaces, such
as the ones containing also physical observations data: separate collisional
families may well have the same composition.

7.5.2 Open problems

On other issues we have accumulated data, useful to constrain the asteroid
families evolution, but we do not have a full model.

An example is the fact already known that many families have a central
gap, in the sense of a bimodal number frequency distribution of members as
a function of proper a. The interpretation of this gap as a consequence of
the interaction between the YORP and the Yarkovsky effect, as proposed in
[Vokrouhlický et al., 2006b], is plausible and widely accepted, but a model
capable of predicting the timescales of this evolution is not available.

We have observed the presence and depth of the gap for all the families
having, in our best estimate, < 600 My.

• Ages between 10 and 100 My: the gap does not occur in the youngest
1547 and the one near the upper limit of 100 My, that is 396, but occurs
in 18405 which has an age similar to 396, and in the two with ages ∼ 50
My, 3815 and 606.

• Ages between 100 and 200 My: the gap occurs consistently in families
such as 3395, 15124, 1128, 845, and less deep in 20.

• Ages between 200 and 400 My: there are three families with gap (434,
808, 163) and two without (1726, 3).

• Ages between 400 and 600 My: 10955 has a gap and 668 does not.
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• Ages > 600 My: among the ancient families only 158 and maybe 31
show some small dip in density at the center.

These results do not contradict the interpretation that YORP moves the
rotation axes towards the spin up/spin down position, but takes quite some
time to achieve a strong bimodality which gradually empties the gap. Over
longer time scales, spin axis randomization can reverse the process. However,
our set of examples above shows that the time scales for such processes are
not uniform, but may substantially change from family to family.

Another open problem results from the fact that several families on the
outer edge of the 3/1 resonance gap appear to have a boundary close to, but
not at the Kirkwood gap. This happens to the IN side of families 480 and
15; there are also families 170 and 1658 which are one-sided because of the
missing IN side, with the family not touching the gap. This might require a
dedicated study to find a plausible explanation.

7.5.3 Family ages left to be computed

Of the dynamical families in the current classification, there are 11 with
> 300 members for which we have not yet computed a satisfactory age. The
motivations are as follows.

• There are five complex families: 135, known to have at least two col-
lisional families, with incompatible physical properties, difficult to dis-
entangle; see e.g., 6.10; 221, complex both for dynamical evolution
[Vokrouhlický et al., 2006c] and suspect of multiple collisions; 145,
which appears to have at least 2 ages; 25, corresponding to a stable
region surrounded by secular resonances, could have many collisional
families; 179, a cratering family which is difficult to be interpreted.

• There are another four families strongly affected in their shape in proper
element space by resonances: 5, 110, 283 with secular resonances, and
1911 inside the 3/2 resonance.

• Two others: 490, well known to be of recent age [Nesvorný et al., 2003;
Tsiganis et al., 2007]; 1040, at large proper sin I and also quite large e;
both are strongly affected by 3-body resonances.

We are convinced that for many of these it will be possible to estimate
the age, but this might require ad hoc methods, different from case to case.
In this paper we have included all the ages which we have up to now been
able to estimate by a uniform method.
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Other families with marginal number of members for the V-shape fit
(between 100 and 300 in the current classification) could become suitable
as new proper elements are computed and the classification is automatically
updated, especially in the zones where the number density is low, such as
the high I region, and the Cybele region, beyond the 2/1 resonance.



Chapter 8

Shadowing Lemma and chaotic
orbit determination

Chaotic dynamical systems are characterized by the existence of a predictabil-
ity horizon in time, beyond which the information on the state available from
the initial conditions is not enough for meaningful predictions. Thus it ap-
pears a difficult task to perform an orbit determination for a chaotic dynam-
ical system, at least when the observations are spread over a timespan longer
than the predictability horizon.

Nevertheless there are practical problems of orbit determination in which
the system is chaotic and the time-span of the observations is very long. It is
important to understand the behaviour of the solutions, with their estimated
uncertainties, in particular when the variables to be solved for include not just
the initial conditions but also some dynamical parameters. If the number of
available observations grows, but simultaneously the time interval over which
they are spread grows up to values comparable to the predictability horizon,
does the solution become more accurate, and is the iterative procedure of
differential corrections [Milani and Gronchi, 2010, Chap. 5] to find the least
squares solution still possible?

In this paper we use a model problem, namely the discrete dynamical
system defined by the standard map of the pendulum, with just one dynam-
ical parameter, the µ coefficient appearing in equation (8.1). We also set
up an observation process in which both coordinates of the standard map
are observed after each iteration. In the observations we include a simulated
random noise with a normal distribution. Then, each experiment of orbit
determination is also a concrete computation of a segment limited to n iter-
ations (of the map and of its inverse) of a ε shadowing orbit for the δ pseudo
trajectory defined by the observation process. The Shadowing Lemma (see
Section 8.2) provides a mathematically rigorous result on the availability of

219
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shadowing orbits, but thanks to the orbit determination process we make ex-
plicit the relationship between ε and δ (see Section 8.2.1), and we explicitly
compute the ε-shadowing orbit.

At the same time, each experiment provides an estimate of the standard
deviation of each of the variables, including initial conditions and the pa-
rameter. These estimates can be plotted as a function of n, thus showing
the relationship between accuracy, number of observations and time interval,
measured in Lyapounov times (see Section 8.3).

Of course the numerical experiments are limited to a finite number of
iterations, while the Shadowing Lemma refers to an infinite orbit. However,
the maximum number of iterations is controlled by another time limit, the
computability horizon due to round off error. This limit can be estimated
approximately by a simple formula, and it is found in numerical experiments
as a function of both the initial conditions and the numeric precision used in
the computations.

Wisdom hypothesis

In 1987 J. Wisdom was discussing the chaotic rotation state of Hyperion,
when he claimed that numerical experiments indicated that the knowledge
gained from measurements on a chaotic dynamical system grows exponentially
with the timespan covered by the observations Wisdom [1987]. This pertained
in particular the information on dynamical parameters like the moments of
inertia ratios for Hyperion, as well as the rotation state at the midpoint of
the time interval covered by the observations, which he proposed would be
determined with exponentially decreasing uncertainty.

Therefore Wisdom suggests that the orbit determination for a chaotic
system might be in fact more effective than for a non-chaotic one. It is
clear from the context that he was referring to numerical results, thus his
statement can only be verified with finite computations as close as possible to
a realistic data processing of observations of a chaotic system with dynamical
parameters to be determined.

We have set as a goal in this paper to test the behavior of the uncertainty
in the dynamical parameter of our model problem. We shall discuss the
implications for Wisdom’s claim in Section 8.4.

Application to planet-crossing asteroids

In our solar system there are planet-crossing minor bodies, including as-
teroids and comets, by definition such that their orbits can, at some times,
intersect the orbit of the major planets. In particular many of the Near Earth
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Asteroids (NEAs) can intersect the orbit of the Earth. These orbits are nec-
essarily chaotic, at least over the timespan accessible to accurate numerical
computations.

Unfortunately, these orbits are especially important and necessary to be
studied because of the very reason of chaos, namely close approaches to the
major planets including the Earth: these approaches may, in some cases, be
actual impacts on a finite size planet.

The attempt to predict possibility of impacts by NEAs, in particular on
our planet, is called Impact Monitoring, and it is indeed a form of orbit
determination for chaotic orbits. There is a subset of cases of NEAs for
which non-gravitational perturbations, such as the ones resulting from the
Yarkovsky effect, are not negligible in terms of Impact Monitoring because
of the exponential divergence of nearby orbits which amplifies initially very
small perturbations (see Farnocchia and Chesley [2014]; Farnocchia et al.
[2013a], and Chap. 4 and 5).

Thus the Impact Monitoring for these especially difficult cases is an in-
stance of orbit determination of a chaotic system, with as parameters the 6
initial conditions and at least one dynamical parameter, such as a Yarkovsky
effect coefficient to be solved for. We shall show in Section 8.5 that the weak
determination of the dynamical parameter is a key feature of these cases.

8.1 Orbit determination for the standard map

The simplest example of a conservative dynamical system which has both
chaotic and ordered orbits can be built by means of an area preserving map
of a two dimensional manifold:

Sµ(xk, yk) =

{
xk+1 = xk + yk+1

yk+1 = yk − µ sinxk
(8.1)

where µ is the perturbation parameter, and S is the standard map. The
system has more regular orbits for small µ, and more chaotic orbits for large
µ. We choose an intermediate value of µ, e.g. µ = 0.5, in such a way that
ordered and chaotic orbits are both present. Figure 8.1 shows the strongly
chaotic region around the hyperbolic fixed point, and a few regular orbits on
both sides.

The advantage of such example is that the least square parameter esti-
mation process can be performed by means of an explicit formula.

First we compute the linearized map

DS =

(
∂xk+1

xk

∂xk+1

yk
∂yk+1

xk

∂yk+1

yk

)
=

(
1− µ cos(xk) 1
−µ cos(xk) 1

)
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Figure 8.1: Orbits of the standard map for the perturbation parameter µ =
0.5. Plotted is a blow up of the central region around the hyperbolic fixed point,
showing the strongly chaotic region and a few regular orbits on both sides.

and from this the linearized state transition matrix

Ak =
∂(xk, yk)

∂(x0, y0)

which is the solution of the variational equation (for infinitesimal displace-
ment in the initial conditions), and given by the recursion:

Ak+1 = DS Ak ; A0 = I .

The variational equation for the derivatives with respect to the model pa-
rameter µ is:

∂(xk+1, yk+1)

∂µ
= DS

∂(xk, yk)

∂µ
+
∂Sµ
∂µ

= DS
∂(xk, yk)

∂µ
+

(
− sin(xk)
− sin(xk)

)
Then we set up an observation process, in which both coordinates x and y
are observed at each iteration, and the observations are Gaussian random
variables with mean xk (yk respectively) and standard deviation σ: we use
the notation xk(µ0, σ) to indicate that the probability density function of the
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observation xk is the normal N (xk(µ0), σ2) one, and similarly for yk. The
residuals are: {

ξk = xk(µ0, σ)− xk(µ1)
ξ̄k = yk(µ0, σ)− yk(µ1).

(8.2)

for k = −n, . . . , n. In (8.2) xk(µ0, σ) and yk(µ0, σ) are the observations at
each iteration, µ0 is the “true” value and µ1 = µ0 + dµ is the current guess.

Then the least squares fit is obtained from the normal equations:

C =
n∑

k=−n

BT
k Bk ; D = −

n∑
k=−n

BT
k

(
ξk
ξ̄k

)
(8.3)

Bk =
∂(ξk, ξ̄k)

∂(x0, y0, µ)
= −

(
Ak|

∂(xk, yk)

∂µ

)
.

The least squares solution for both, the parameter µ and the initial condi-
tions, is:  δx

δy
δµ

 = ΓD, Γ = C−1

with Γ the covariance matrix of the result. This is enough to find the least
squares solution by iteration of the above differential correction. However,
to assess the uncertainty of the result, weights should be assigned to the
residuals consistently with the probabilistic model, in this case each residual
needs to be divided by its standard deviation σ; then the distribution of the
result (x, y, µ) is a normal distribution with covariance matrix σ2 Γ.

8.2 Shadowing Lemma

The shadowing problem is that of finding a deterministic orbit as close as
possible to a given noisy orbit. The so-called Shadowing Lemma is the main
result about shadowing near a hyperbolic set of a diffeomorphism. Anosov
[1967] and Bowen [1975] proved the existence of arbitrarily long shadowing
solutions for invertible hyperbolic maps. Here we give an overview of these
classical results, as in Pilyugin [1991].

Let (X, d) be a metric space and let Φ be a homeomorphism mapping X
onto itself. A δ-pseudotrajectory of the dynamical system Φ is a sequence of
points ζ = {xk ∈ X : k ∈ Z} such that the following inequalities

d(Φ(xk), xk+1) < δ. (8.4)
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Figure 8.2: A δ-pseudotrajectory.

hold. For a graphical description of a δ-pseudotrajectory, see Fig. 8.2. Usually,
a δ-pseudotrajectory is considered as the result of using a numerical method
to compute orbits of the dynamical system Φ, e.g., because of round off error.
We say that a point x ∈ X (ε,Φ)-shadows a pseudotrajectory ζ = {xk} if
the inequalities

d(Φk(x), xk) < ε (8.5)

hold (see Figure 8.3). If only one dynamical system Φ is considered, we

Figure 8.3: An ε-shadowing.

will usually write ε-shadows ζ. The existence of a shadowing point for a
pseudotrajectory ζ means that ζ is close to a real trajectory of Φ.

The following statement is usually called the Shadowing Lemma.

Theorem 8.2.1. If Λ is a hyperbolic set for a diffeomorphism Φ, then there
exists a neighborhood W of Λ such that for all ε > 0 there exists δ > 0 such
that for any δ-pseudotrajectory with initial conditions ζ ∈ W there is a point
x that ε-shadows ζ.

The Anosov shadowing requires the existence of a hyperbolic set. It means
that at each point there are two directions where the motion is either expo-
nentially expanding (stable manifold) or exponentially contracting (unstable
manifold).

Definition 8.2.1. We say that a set Λ is hyperbolic for a diffeomorphism
Φ ∈ C1(Rn) if:

(a) Λ is compact and Φ-invariant;
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(b) there exist constants C > 0, λ0 ∈ (0, 1), and families of linear subspaces
S(p), U(p) of Rn, p ∈ Λ, such that

(b.1) S(p)⊕ U(p) = Rn;

(b.2) DΦ(p)T (p) = T (Φ(p)), p ∈ Λ, T = S, U ;

(b.3)

|DΦm(p)v| ≤ Cλm0 |v| for v ∈ S(p), m ≥ 0;

|DΦ−m(p)v| ≤ Cλm0 |v| for v ∈ U(p), m ≥ 0;

The definition of a hyperbolic set is strictly related to the one of Lya-
pounov exponents: for each orbit inside a hyperbolic set, the Lyapounov
exponents must be either > log(λ0) or < − log(λ0).

8.2.1 Shadowing Lemma and orbit determination

Our goal is to connect the Shadowing Lemma with the chaotic orbit deter-
mination, involving the least squares fit and the differential corrections.

First of all we build a δ-pseudotrajectory by using a simulated obser-
vations process. In Section 8.1 we have set up such an observations pro-
cess, with observations (xk(µ0, σ), yk(µ0, σ)). We claim that a sequence ζ =
{(xk(µ0, σ), yk(µ0, σ))} is a δ-pseudotrajectory for the dynamical system Sµ∗(x0, y0),
with δ =

√
2|µ∗ − µ0| + Kσ, K ∈ R. To obtain this result we compute the

Euclidean distance:

d(Sµ∗(xk(µ0, σ), yk(µ0, σ)), (xk+1(µ0, σ), yk+1(µ0, σ))) (8.6)

For the sake of simplicity (x̄k+1, ȳk+1) are the observations, i.e. Gaussian
random variables with mean xk+1 (yk+1, respectively), and standard deviation
σ, as in Sec. 8.1, and Sµ∗(x̄k, ȳk) = (x̃k+1, ỹk+1). Using these notations, (8.6)
turns into

d(Sµ∗(x̄k, ȳk), (x̄k+1, ȳk+1)) =
√

(x̃k+1 − x̄k+1)2 + (ỹk+1 − ȳk+1)2

We compute separately the two differences.

|ỹk+1 − ȳk+1| = |ȳk+1 − µ∗ sin x̄k − yk+1 −N (0, σ2)|
= |N (0, 2σ2)− µ∗ sinxk cos(N (0, σ2)) + µ∗ sin(N (0, σ2)) cosxk + µ0 sinxk|
< N (0, 2σ2) + |µ0 − µ∗| (8.7)

To allow the last estimate, we need to solve a technical problem: the Shad-
owing Lemma uses a uniform norm, that is the maximum of the distance
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between the δ-pseudotrajectory and the ε-shadowing. On the contrary, the
natural norm for the residuals of the fit is the Euclidean norm with the square
root of the sum of the squares. However, since the number of residuals is
not only finite but sharply limited by the numerical phenomena discussed in
Section 8.3, in a given experiment we can just take the maximum absolute
value of the residuals and it is going to be Kσ, with K a number which in
practice cannot be too large, e.g., in our experiment K = 5.9.

Then we can approximate the quantitiesO(σ) and smaller, e.g., cos(N (0, σ2)) ∼
1 and sin(N (0, σ2)) ∼ 0. The x coordinate gives a similar result:

|x̃k+1 − x̄k+1| = |x̄k+1 + ỹk+1 − xk − yk+1 −N (0, σ2)|

< N (0, σ2) +N (0, 2σ2) + |µ0 − µ∗| = N (0, 3σ2) + |µ0 − µ∗| (8.8)

Putting together (8.7) and (8.8) we obtain√
(x̃k+1 − x̄k+1)2 + (ỹk+1 − ȳk+1)2 <

<
√

(N (0, 3σ2) + |µ0 − µ∗|)2 + (N (0, 2σ2) + |µ0 − µ∗|)2 <

<
√

2|µ0 − µ∗|+
√

(N (0, 3σ2))2 + (N (0, 2σ2))2 <
√

2|µ0 − µ∗|+Kσ
(8.9)

with K ∈ R.
Therefore the sequence generated by the observations is a δ-pseudotrajectory

for the dynamical system Sµ∗ with δ =
√

2|µ0 − µ∗|+Kσ.
Figure 8.4 is an example of observations as a δ-pseudotrajectory. The

observations are built with σ = 10−3 and µ0 = 0.5, and the dynamical
system is Sµ∗ , with |µ∗ − µ| = 10−1; the circles have radius δ.

The solution of the least squares fit (to the observations from −n to n),
obtained by convergent differential corrections, is a finite ε-shadowing, valid
for the iterations from −n to n.

We choose a value ε > 0, that is a boundary on the maximum of the
residuals. Then we choose σ < ε/K and we set up the observations process.
Next, we create a first guess: a new orbit obtained with a small change of
the initial conditions and of the dynamical parameter µ: {(xk(µg), yk(µg))} =
Sµg(xg, yg), with xg = x0 + dx, yg = y0 + dy, and µg = µ0 + dµ. Then we
apply the differential corrections to the orbit. If the iterations converge, that
is the last correction is very small, the maximum of the norm of the residuals
is less than ε (because the individual residuals are less than 3σ).

At convergence, we obtain an initial condition (x∗, y∗) and a value of the
dynamical parameter µ∗, such that (x∗, y∗) is the (ε, Sµ∗)-shadowing for the
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Figure 8.4: An example of a δ-pseudotrajectory. Initial conditions are x0 = 3,
y0 = 0, µ0 = 0.5. δµ = 10−1, and σ = 10−3.

δ-pseudotrajectory with δ =
√

2|µ∗− µ0|+Kσ, for all the points used in the
fit.

The most important requirement is the convergence of the differential
corrections, otherwise we cannot obtain the ε-shadowing. This is far from
trivial, because the chaotic divergence of the orbits introduces enormous
nonlinear effects, for which the linearized approach of differential corrections
may fail. To guarantee convergence, first we select the initial conditions x0, y0

to be at the center of the observed interval, otherwise the initial conditions
would be essentially undetermined along the stable manifold of the initial
conditions. Second, we use a progressive solution approach, namely, given
the solution with 2n + 1 observations with indexes between −n and n, we
use the convergent solution x∗0, y

∗
0, µ

∗ for n as first guess for the solution
with 2n + 3 observations (between −n − 1 and n + 1). Then the initial
guess is actually used only for the solution with 3 observations, for which the
nonlinearity is negligible. Still the convergence of the differential corrections
depends critically upon the number n of iterations of the map, as explained
in Section 8.3.
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8.3 Numerical results

The experiment was performed with the initial conditions at x0 = 3 and y0 =
0, and the value of the dynamical parameter µ0 = 0.5. The dynamical context
for this orbit can be appreciated from Figure 8.1, showing that the initial
conditions are indeed in a portion of the initial conditions space containing
mostly chaotic orbits. For the observation noise we have used a standard
deviation σ = 10−10.

8.3.1 Computability horizon
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−30

−20

−10

0

10

20

30
Determinant and eigenvalues of the state transition matrix
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Figure 8.5: The eigenvalues and the determinant of the state transition matrix
in a semilogarithmic scale, as a function of the number of iterations. Also shown
is the linear fit to the large eigenvalue based on the first 180 iteration, with slope
+0.091. The computation is in double precision and the number of iterations of the
standard map n is 300 with the map and 300 with its inverse. The determinant
of the state transition matrix would be 1, for all n, in an exact computation.
The numerical instability occurs when the eigenvalues reach the critical values√
εd,
√

1/εd marked by the dotted lines.
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Figure 8.6: The eigenvalues and the determinant of the state transition matrix
in a semilogarithmic scale, as a function of the number of iterations. Also shown
is the linear fit to the large eigenvalue based on the first 300 iteration, with slope
+0.086. The computation is in quadruple precision and the number of iterations of
the standard map n is 800 with the map and 800 with its inverse. The numerical
instability occurs when the eigenvalues reach the critical values

√
εq,
√

1/εq marked
by the dotted lines.

Figure 8.5 and 8.6 show the absolute value of the eigenvalues of the state
transition matrix forward and backward. The product of two eigenvalues
should be 1 in exact arithmetic. When the condition number of the matrix
becomes larger than the inverse of the machine rounding off error, the com-
putation of the matrix becomes numerically impossible, and the computed
value of the determinant is far from 1.

In Figure 8.5 the computations are performed in the standard double
precision, that is with a mantissa of 52 binary digits and a round off relative
error of εd = 2−53 = 1.1 × 10−16. We observe a numerical instability after
' 180 iterations: the determinant deviates from the exact value of 1 and the
small eigenvalue starts increasing; the large eigenvalue keeps increasing, but
there is a slight change of slope. Then we fit the slope of the large eigenvalue
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curve for the first 180 iterations, and get a Lyapounov indicator +0.091: it
approximates the maximum Lyapounov exponent χ for the orbit to which
our differential corrections converge1.

The Lyapounov time is TL = 1/χ, in this example TL ' 11. To reach a
ratio of eigenvalues of the state transition matrix of 1/εd we need a number
of Lyapounov times log(1/

√
εd), in this case ' 18.4TL ' 202 iterations of

the map. At about this number of iterations the maximum and minimum
eigenvalues of An are so widely apart in size that a bad conditioning hori-
zon is reached, and the computation of the state transition matrix becomes
numerically inaccurate. Hence near ±18.4TL we observe the numerical in-
stability in the computation of the determinant and of the eigenvalues of the
state transition matrix.

Figure 8.6 shows the same computations, with the same initial condi-
tion, but in quadruple precision, with a 112 bit mantissa and εq = 2−113 =
9.6×10−35. The change of slope in the eigenvalues curves occurs after ' 300
iterations, while a full blown numerical instability occurs after ' 550 iter-
ations. The fit to the large eigenvalue for the first 300 iterations gives a
Lyapounov indicator +0.086, not very different from the one obtained in
double precision. Thus we would expect the numerical instability to occur
after log(1/

√
εq)TL ' 39.2TL = 455 iterations. It appears that the rate of

divergence decreases after 300 iterations, as shown by the change in slope,
allowing to maintain at least the determinant near the exact value for about
100 more iterations beyond the value predicted above.

The computability horizon represents the maximum number of iterations
we can reach, before the computation becomes numerically unstable. The
computability horizon strongly depends on the chaoticity of the system: more
chaos, that is larger χ, more instability; but also upon the precision of the
computations.

Thus, in the following we perform the numerical experiments in quadruple
precision, in order to mitigate the problem of the numerical instability. We
compute 500 iterations forwards and backwards, but we use only the first
300 iterations for the linear fits, to avoid the possibility that changes in
slope, such as the ones apparent in Figure 8.6, contaminate our experimental
results.

The compatibly horizon is a hard limit in that it is not practically possible

1There is no way to rigorously compute the Lyapounov exponents: in practice Lya-
pounov indicators extracted from finite propagations are used to assess, but not rigorously
prove, the chaotic nature of the orbits. Note that it is a numerically well documented phe-
nomenon that the indicators are not constant, but actually depend upon the time interval
over which they are computed, although in most cases these changes are not very large
and the conclusion that an orbit is chaotic is reliable.
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to increase the number of iterations to a much higher value. E.g., to push the
horizon by a factor 10 above the value for double precision, we would need
computations performed with real numbers represented with 800 bytes2.

The conclusion is that the practical problem of chaotic orbit determina-
tion is meaningful only for a finite number of iterations, and the accuracy
of the results can be tested only within the boundary of the computability
horizon.

8.3.2 Chaotic case

Figure 8.7 shows the results in quadruple precision of the full 3-parameter
fit: the 3 parameters are the initial conditions and the dynamical parame-
ter µ. The determination of µ is indeed not possible without simultaneous
determination of the initial conditions.

Even in quadruple precision we find a maximum value of n beyond which
the iterative solution of the nonlinear least squares problem is divergent.
This maximum turns out to be 599 in this experiment: it is close to what
we have called the computability horizon, that is this limitation is due to
the difficulty of computing the state transition matrix when the condition
number is too large.

The curves in Fig. 8.7 represent both the formal standard deviation and
the actual error of the solutions of the least squares fit, as a function of n in
a semilogarithmic plot. Both the formal standard deviation and the actual
error of µ do not decrease exponentially. Indeed, in Fig. 8.8 we have the same
behavior of the curves that we have already seen in Fig. 8.7, but in a log-log
plot, in which a constant slope a would imply a power law proportional to
na. The slopes of the lines that fit the uncertainties are: −0.675 for the
dynamical parameter µ, −0.833 and −12.030 for the initial conditions x and
y, respectively. This plot in logarithmic scale shows that the uncertainty
for µ and x does not decrease exponentially. It is also apparent that one
of the initial conditions (y) is better determined than the other one (x),
with an improvement as a function of n which could be exponential. This
is a property of the specific initial condition we have used, for other choices
we can get three parameters determined with comparable accuracy, none of
them with exponential improvement3.

Figure 8.9 shows the results for the standard deviation and the actual er-
ror when solving only for the initial condition. The 2x2 portion of the normal

2Software to perform arithmetic computations with an arbitrary number of digits is
available, but the algorithms are too slow to be used even for our simple example.

3This depends upon the orientation of the stable and unstable directions at the initial
condition.
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Figure 8.7: Standard deviation of the solutions for the initial conditions and for
the dynamical parameter µ (continuous lines), and actual error (nominal solution
of the fit minus real value used in the simulation, dashed lines), as a function of
the number of iterations.

matrix which refers only to the initial conditions is not badly conditioned.
Also as a result of this, we are able to get convergence of the differential
corrections up to ±742 iterations, which is even beyond the numerical sta-
bility boundary. If the fit is done by using only up to 300 iterates, to avoid
the apparent slope change, the slopes shown in this Figure are −0.084 for x
and −0.083 for y; note that the Lyapounov indicator for the same interval is
+0.086. Thus exponentially improving determination of the initial conditions
only is possible, and the exponent appears to be very close to the opposite
of the Lyapounov exponent.

8.3.3 Ordered case

An ordered case can be obtained with a change of the initial conditions. For
the numerical experiments we have chosen x0 = 2, y0 = 0 and µ0 = 0.5. In
the ordered case we have not the problem of the computability horizon and
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Figure 8.8: Uncertainty of the solution of the least squares fit for the initial
conditions and for the dynamical parameter µ in a logarithmic scale.

the Lyapounov exponent is very small: actually, it could be zero if we are on
a Moser invariant curve. Thus we have computed 5000 iterations.

Figure 8.10 gives a summary of our numerical experiment in the ordered
case. The Lyapounov indicator is very small (' 10−4), and can be made even
smaller by continuing the experiment for larger values of n. As a consequence,
the state transition matrix is not badly conditioned, and the computability
horizon is much beyond the number of iterations we have used (if it exists
at all). Thus the lack of chaoticity implies the practical absence of the com-
putability horizon, and we can determine all the parameters with very good
accuracy, even if we are not in exact arithmetic. The values of the slopes of
the fit to the uncertainty are −0.504 for µ, −0.504 and −0.488 for x and y
respectively, the corresponding regression lines are shown in the log-log plot
on the bottom right. As it is clear by comparing the top right and the bot-
tom left plot, the standard deviation for the solution with only 2 parameters
have very much the same behavior, indeed in a log-log plot (not shown) we
can get slopes −0.511 for x, −0.481 for y.

All these power laws are close to the inverse square root of the number of
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Figure 8.9: Standard deviation of the solutions for the initial conditions (contin-
uous lines), true errors for the same 2 parameters (dashed lines).

iterations, namely the same rule as the standard deviation in the computation
of a mean. We do not have a formal proof of this, but we conjecture that
for an orbit on a Moser invariant curve (for which the Lyapounov exponents
are exactly zero) the standard deviations for all the parameters decrease as
1/
√
n.

8.4 Discussion on the Wisdom hypothesis

The statement by Wisdom, as a practical rule for concrete orbit determina-
tion, appears to be first limited by the computability horizon. Second, the
actual decrease of the uncertainty, going as far as it can be done numerically,
is not exponential, but polynomial, as na, with a negative and rather small,
although we have found that the value of a depends upon the initial con-
ditions4. Note that the orbit determinations in which the only parameters

4We are showing figures and giving data only for one initial condition, but of course
we have run many tests.
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to be solved are the 2 initial coordinates show an exponential decrease as
exp(−αn), where α appears to be close to the Lyapounov exponent χ, but
the strong correlations appearing when 3 parameters are solved degrade the
result in a very substantial way.

This needs to be compared to the regular case, shown in Figure 8.10,
where the standard deviations for each of the 3 fit parameters decrease ap-
proximately according to an 1/

√
n law, as prescribed by the standard rule for

the estimate of the mean with errors having a normal distribution. Indeed it
is possible that the determination of µ for some chaotic cases, including the
example shown in Figure 8.8, decreases faster than for an ordered case, but
the decrease is anyway polynomial, proportional to na with some different
negative a, thus the difference is not very large, given the tight constraint on
the maximum possible value of n.

8.5 Examples from Impact Monitoring

One feature of our results is that adding a dynamical parameter to the list
of parameters to be determined results in degradation in the normal matrix,
thus in much slower decrease of the uncertainties as the number of obser-
vations grows. The problems of orbit determination for NEA undergoing
several close approaches to the Earth (or other planets) is more complex
than our simple model, but we have found that the phenomenon described
above does occur in a remarkably similar way.

In Figure 8.11 we show two probability distributions, as derived from the
orbit determination of the asteroid (410777) 2009 FD. The narrow peaked
distribution corresponds to an orbit determination with 6 parameters, the ini-
tial conditions only: the standard deviation is 6× 104 km. The much wider
distribution corresponds to a fit with 7 parameters, including the constant
A2 appearing in the transverse acceleration due to the Yarkovsky effect: the
STD is ' 2.3× 106 km. The Yarkovsky effect is a form of non-gravitational
perturbation due to thermal radiation emitted anisotropically by the aster-
oid, and is indeed very small. However, when the uncertainty resulting from
the covariance matrix of the orbit determination is propagated for ∼ 170
years after the last observation available, not only the Yarkovsky effect has
a long enough time to accumulate but it is also enhanced by the exponen-
tial divergence of nearby orbits, the Lyapounov time being about 15.3 years
[Spoto et al., 2014][Figure 5].

The practical consequence of this increase of the uncertainty arises from
the fact that the Target Plane of 2009 FD for 2815 includes some keyholes,
small portions corresponding to impacts with the Earth (either at that time
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or a few years later, until 2196). With the 7 parameters solutions these
keyholes are within the range of outcomes with a significant value of the
Probability Density Function, thus the impacts have a non-negligible proba-
bility, the largest being an Impact Probability of ' 1/370 for 2185. If on the
contrary the orbit was estimated with 6 parameters only, then the probabil-
ity would appear to be even larger for an impact in 2190, and all the other
keyholes (including the one for 2185) would correspond to negligible impact
probabilities. Given that the impact, if it was to occur, would release an
energy equivalent to 3, 700 MegaTons of TNT, this difference is practically
relevant. In fact, the solution including the Yarkovsky effect leads to a more
reliable estimate of the Impact Probabilities, because the Yarkovsky effect
exists and needs to be taken into account.

Is the discrepancy in the uncertainties with and without the dynamical
parameter in the fit essentially the same phenomenon we have found in our
simple model? We do not know the answer to this question, but we shall
investigate this issue in the future.
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Figure 8.10: Top left: eigenvalues of the state transition matrices, for the
chosen regular initial conditions and for ±5000 iterations. Top right: solu-
tions for the initial condition only, condition number of the normal matrix,
standard deviation of y and for x. Bottom left: solutions for three param-
eters, condition number, standard deviation of x, of y, of µ. Bottom right:
log-log plot of the 3 standard deviations, with very similar slopes.
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Figure 8.11: Two different Probability Density Functions (PDF) for the trace of
possible solutions on the Target Plane of the close approach of asteroid (410777)
2009 FD to the Earth in the year 2185. Superimposed and on a different vertical
scale are the keyholes relative to impacts in different years between 2185 and 2196;
the height of the bar is proportional to the width of the keyhole, thus the Impact
Probability can be computed as product of the width and the PDF.



Chapter 9

Effect of parallax cadence on
asteroid impact probabilities

The past quarter century has witnessed an exponential increase in the num-
ber of known near Earth objects accompanied by a concomitant improvement
in the ability to calculate their impact probabilities with Earth. The job of
identifying the largest and most hazardous NEOs, those larger than about
1 km diameter, has mostly been accomplished and asteroid surveys are now
focussing on the individually less hazardous but far more numerous smaller
asteroids. The large asteroids can be detected at great distances years to
centuries in advance of their impact but the smaller asteroids may only be
detected on their final approach, if at all, since about 40% of them must
approach from the direction of the Sun in daylight sky. This work quantifies
how the impact probability and warning time evolve in the impact apparition
for the smaller asteroids as a function of their size, time after discovery, and
observing cadence. In particular, we examine whether the parallax afforded
by observations at nearly the same time from two independent observatories
provides leverage in improving the impact probability calculation or increas-
ing the impact warning time.

The Catalina Sky Survey [CSS, Larson et al., 1998] and the Panoramic
Survey Telescope and Rapid Response System prototype [Pan-STARRS 1;
e.g. Hodapp et al., 2004; Kaiser et al., 2002] currently dominate the field of
NEO discovery — almost 90% of all NEOs and about 75% of all potentially
hazardous objects1 (PHO) were discovered by these two surveys in calendar
years 2012 and 2013. The known population of NEOs larger than 1 km
diameter is more than 90% complete [Mainzer et al., 2011b] so the discovery

1 PHOs are NEOs that have a minimum orbital intersection distance [e.g. Gronchi,
2005] with Earth less than 0.05 au and absolute magnitude H < 22

239
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rate of NEOs in this size range has decreased by about a factor of 6 from a
peak of 93 in the year 2000 to about 15/year in the last two years.

Despite the success of the surveys in the past few decades it remains the
case that the most likely warning time for an impact is zero — contemporary
surveys are unlikely to detect smaller but still dangerous asteroids because
they do not survey the entire sky deeply or regularly enough to identify
the next impactor. The surveys are further limited by the simple fact that
ground-based facilities can not survey during the day and about 40% of
all impactors will approach from the direction of the Sun. These problems
were spectacularly highlighted by the Chelyabinsk impact on the morning of
15 February 2013 [e.g. Borovička et al., 2013; Brown et al., 2013] — with
absolutely no warning a ∼ 17 m diameter object blew up in the atmosphere
with an energy equivalent to about 500 kilotons of TNT, damaging buildings
50 km away in the city of Chelyabinsk and injuring about 1,500 people.

The impact risk associated with the unknown objects larger than 1 km
diameter is now comparable to the impact risk with the much more nu-
merous, but individually less destructive, objects with diameters less than
1 km. The new balance in the impact risk, along with the realization that
smaller impacts may be more numerous but less destructive than anticipated
a decade ago [e.g. Brown et al., 2013], has contributed to an increased interest
and funding for the NEO survey programs in recent years. e.g. NASA’s NEO
Observations (NEOO) program office now solicits2 proposals for surveys that
‘provide capability to detect the subset of 90% of PHOs down to 140 meters
in size’

The smaller NEOs are more difficult to detect than the larger ones. They
are detected closer to Earth (if they are detected), and consequently have
shorter observational arcs. The limited time range of the set of detections
can make it difficult to identify real impactors even during the apparition in
which the impact will take place. This was not the case for the few-meter
diameter asteroids 2008 TC3[e.g. Jenniskens et al., 2009] and 2014 AA3, the
only natural objects to be discovered before striking Earth. The very smallest
objects will be discovered so close to Earth that, if individual detections
of the object can be associated with one another as a ‘tracklet’ [Denneau
et al., 2013], the non-linear motion of the detections on the sky-plane due
to topocentric parallax can provide enough leverage in the orbit solution to
predict an impact.

The observable characteristics of NEOs that will impact Earth can be
quite different from those of other NEOs [e.g. Chesley and Spahr, 2004;

2 ROSES 2011 NEOO solicitation section C.9.1.1.
3 Minor Planet Electronic Circular 2014-A02



241

Farnocchia et al., 2012; Vereš et al., 2009]. For instance, their observable
steady-state distribution on the sky-plane is a function of their size and
time before impact. Decades before impact they tend to be concentrated in
‘sweet spots’ near the ecliptic and within about 120◦ of the Sun. As the time
until impact decreases from weeks to days they spread out over most of the
sky but they are still concentrated in the direction towards and away from
the Sun. An object on its ‘death plunge’ must be moving directly towards
Earth in a geocentric reference frame so that about a week before impact
its apparent rate of motion may be small — likely mimicking the rate of
motion of much more distant and totally harmless asteroids, and perhaps
not triggering followup that would allow an impact probability calculation.

The techniques employed for the impact probability calculation have
evolved dramatically over the past few decades with the realization that
asteroid impacts have shaped the Moon’s surface and influenced the evolu-
tion of life on Earth. Indeed, it was only 34 years ago that Alvarez et al.
[1980] proposed that the KT extinction was the result of an asteroid impact
and, even though Opik [1952] stated that “Over a dozen meteor craters are
at present known on the earth’s surface”, it was only in 1960 that Chao et al.
[1960] found strong physical evidence that Meteor Crater in Arizona, USA,
was formed in an impact event.

Opik [1952]’s estimated collision rates using the ‘Theory of Probabilities’
for the entire NEO population were surprisingly good given that only six
NEOs were known at the time. His collision probability formulae formed the
basis of much of the impact collision work in the next decades [e.g. Bottke
et al., 1996; Kessler, 1981] but were eventually supplanted by new numerical
techniques [Milani et al., 2002]. The two primary operational asteroid im-
pact warning systems, the Jet Propulsion Laboratory’s Sentry system and
the NEODyS CLOMON2 system, calculate the collision probability by gen-
erating synthetic ‘Virtual Asteroids’ (VA) on orbits that are consistent with
the known set of observations and propagating all of them into the future
with an N-body integrator to search for impacts [Milani et al., 2005a]. These
impact warning systems are based on a geometric sampling technique for
which the identification of the Virtual Impactors (VI) is performed on the
line-of-variation [LOV, Milani et al., 2005b], thus avoiding the poor effi-
ciency inherent to the Monte Carlo methods, especially when the collision
probability is small.

Impact predictions are extremely sensitive to the orbit accuracy that de-
pends on many factors, but the primary drivers are the length of the obser-
vational arc and the astrometric accuracy of the detections [e.g. Desmars
et al., 2013]. The longer the arc, and the better the astrometry, the more
accurate the orbit. The latter effect is best illustrated by radar detection of
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asteroids that provide exquisite range and range-rate information, thereby
dramatically improving the impact probability accuracy and/or extending
the time frame during which the impact probability can be calculated [Ostro
et al., 2002].

Impactors can be either direct or resonant [Milani et al., 1999]. Direct
impactors collide with Earth during their first known encounter and must be
discovered far away to have a large warning time. The warning time for small
impactors can be significantly less than one orbital period because they have
to be close to Earth to be detected. On the other hand, resonant impactors
experience intervening Earth encounters before collision. The intervening
encounters are the main source of non-linearity in the dynamics and usually
prevent a conclusive assessment of the impact threat, but provide additional
observational opportunities to detect and constrain their orbits and the im-
pact threat.

In this work we focus on the evolution of the collision probability with
time for a single survey and concentrate on direct Earth impactors that are
detected in the apparition during which the impact occurs. The smaller the
asteroid the more likely this scenario, as the likelihood that small asteroids
will be detected in earlier apparitions is 1) small and, even if they are de-
tected, 2) it is unlikely that they will be recoverable in future apparitions
because of the large uncertainties in their ephemeris based on the short ob-
servational arcs in the discovery apparition. Thus, we concentrate on collision
probability evolution with time for 300 m, 100 m, 50 m and 10 m diameter
impactors.

We also explore whether the collision probability calculation benefits from
simultaneous or nearly-simultaneous parallax measurements from two obser-
vatories. The heliocentric motion of the impactor and Earth, as well as the
topocentric rotation of the observer about the geocenter, produce parallax
between successive observations of the same object, even from the same site.
For very close objects that will impact within days of discovery there may
be benefits from the two-site scenario — especially in rapidly identifying the
object as an impactor.

Finally, we measure the single-system impact warning time as a function
of impactor diameter. We expect the warning time to be longer for larger
objects but the exact relationship between diameter and warning time is not
intuitively obvious. The larger objects are discovered at greater distances
where their rate of motion is similar to the much more distant main belt
objects and the impact probability will be much smaller. If the impact prob-
ability is too small it may not cross the threshold to flag the object as an
imminent impactor.
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9.1 Method

9.1.1 Synthetic asteroid populations

Our study considers three different classes of asteroids that might be identi-
fied soon after discovery as impactors:

• Impactors

Figure 9.1: Eccentricity (top) and inclination (bottom) vs. semi-major axis for
synthetic impactors (circles), close-approachers (black dots) and main belt objects
(grey squares).

We used a 133 member subset of the population of Earth impactors
developed for Vereš et al. [2009] that strike the Earth in a 12 month
period beginning at the same time as the 12 month survey simulation
described below (§9.1.2). The impactors’ orbit elements are drawn from
a realistic population of NEOs [Bottke et al., 2002a] and tend to have
perihelia or aphelia that lie near Earth’s geocentric distance of about
1 au (fig: 9.1). These types of orbits are nearly tangent to Earth’s
orbit so they spend more time available for impact. There is also an
enhancement with small inclinations for the same reason.

• Close Approachers
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Figure 9.2: Impact parameters (closest approach distance to Earth) of the syn-
thetic close-approaching asteroids. The dashed straight line is a linear fit to the
data.

We generated 8,275 synthetic asteroids from the Bottke et al. [2002a]
NEO model that approach Earth to within 10 LD (lunar distance,
∼ 0.028 au) during the one year simulated survey (§9.1.2). The orbit
distribution of the close approachers is more representative of the un-
derlying NEO population (Fig. 9.1) and has a higher mean eccentricity
and inclination compared to the impactors. This leads to them having
higher speeds relative to Earth and higher apparent rates of motion as
viewed from ground-based observatories (compared to the impactors).
The number of close-approachers increases linearly with the impact pa-
rameter because the area of annuli of fixed width increases linearly with
the annuli diameter (Fig. 9.2).

• Main Belt Objects (MBO)
There are about one million asteroids larger than 1 km diameter in
the main belt with semi-major axes between about 2.0 au and 3.5 au
(Fig. 9.1). By definition, they can not approach within ∼ 0.7 au of
Earth, but tens of thousands will be within the detection limits of
the survey that we model below (§9.1.2), and many of them will not
be known objects (at least in the beginning of the survey). We will
show that the objects’ rates of motion are typical of some incoming
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impactors and we wanted to determine if a relatively large astromet-
ric uncertainty could generate false, non-zero, impact probabilities for
these distant objects. We used a sample of about 14,000 synthetic main
belt asteroids selected from the Grav et al. [2011] solar system model
that have minimum perihelion magnitudes4 detectable in our synthetic
survey with Vq < 20). We used the absolute magnitudes (H) from the
Grav et al. [2011] model that were assigned randomly according to a
realistic size-frequency distribution.

9.1.2 Survey simulation

We simulated the detection of small incoming impacting asteroids with the
in-development ATLAS [Tonry, 2011] system because of its all-sky every-
night survey capabilities. The smaller the asteroid the more likely it is that
it will not be brighter than any of the contemporary or planned survey sys-
tem’s limiting magnitudes until a few days before impact, so that detecting
the object requires nearly all-sky coverage over that time interval. ATLAS
achieves all-sky coverage by using small telescopes with wide fields-of-view
(FOV) and large-format CCD cameras. Thus, it has a relatively large pixel
scale (and astrometric uncertainty) and brighter limiting magnitude than
other surveys.

The two primary purposes of this study were to 1) measure the time-
evolution of the impact probability of asteroids detected with a realistic sur-
vey and 2) measure the effect of parallax on the impact probability precision.

To address the first issue we generated synthetic observations of each of
our synthetic asteroids for a simulated one year ATLAS survey. Our low-
fidelity instantiation of the survey covered the entire dark sky each night
without regard for the Moon, weather, galaxy and clouds. The survey does
account for the changing duration of the night through the year and geo-
metrical constraints from the horizon. The fidelity of the simulation is not
critical to the two primary purposes of this study but will have an impact on
e.g. the calculated detection efficiency for small objects.

We addressed the second issue by using the synthetic survey to simulate
the performance of two ATLAS surveys located at observatory sites F51 and
568 (respectively, the locations of the Pan-STARRS 1 facility on Haleakala,
Maui, Hawaii, and the University of Hawaii 2.2 m telescope on Mauna Kea,
Hawaii). These locations are amongst the best ground-based astronomical
sites in the world with typically more than 75% clear nights, dark sky, high

4 The minimum perihelion magnitude is the apparent magnitude an object would have
if observed at opposition from Earth when the object is at perihelion.
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altitude, sub-arcsecond seeing, and a number of other nearby operational
observatories and instruments. The sites are separated by∼ 130 km to enable
parallax measurements for nearby asteroids. For instance, an asteroid at
10 LD can have a parallax of up to∼ 6.5” from the two sites — about an order
of magnitude larger than the system’s astrometric uncertainty. Increasing the
distance between the two observatories would enhance the parallax effect.
However, the meteorological correlation would be lower and it would be less
likely that both sites could observe. Furthermore, the greater the separation
between the two sites the more difficult it is to survey the same fields. Finally,
two separate sites introduce additional cost and management issues.

To create the survey we divided the sky into ‘square’ tiles (or fields) with
each square having an area equal5 to that of an ATLAS camera’s FOV of
∼ 40 deg2. The tile centers were equally spaced at about the width of the
ATLAS FOV along lines of latitude. They were also spaced in latitude by
the width of the ATLAS FOV. This pattern is not optimal because it results
in significant field overlap at high latitudes but it was simple to implement
and the details of the survey pattern will have little impact on the results.
We used the Tools for Automated Observing optimization (TAO) package6

to schedule the nightly surveying of the tiles and maximize the number of
fields exposed each night with the desired cadence subject to the survey’s
limitations. Each tile was visited 4 times per night with roughly a Transient
Time Interval (TTI) of 15 minutes between visits. We did not account for
the Moon, galactic plane, planets, bright stars or weather (Fig. 9.3) but did
account for the camera readout and telescope slew times. The fields were
observed only when the Sun was more than 12◦ below the horizon and the
field centers were more than 30◦ above the horizon (i.e. above 2 airmasses).
We imposed a southern declination limit of −30◦ that will have the effect
of decreasing the detection efficiency for the imminent impactors that are
concentrated towards opposition, but will provide more time for surveying
the ‘sweet spots’ [Chesley and Spahr, 2004] at small solar elongations where
the sky-plane density of future and larger impactors is highest. The strat-
egy of surveying the sweet spots is a likely scenario for actual surveys that
are rightfully more concerned with the long-term advance notice of larger
impactors rather than the short-term notice for smaller objects.

We used the Pan-STARRS 1 Moving Object Processing System [MOPS,
Denneau et al., 2013] to generate the synthetic asteroid detections in our
simulated survey and to link detections within a tile on one night into ’track-

5 Some of the values for the ATLAS system characteristics used in this work repre-
sent early expectations for the system. The exact values have no impact on our general
conclusions.

6 Paolo Holvorcem, http://sites.mpc.com.br/holvorcem/tao/readme.html
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Figure 9.3: (Top) One night of the synthetic ATLAS survey covering the entire
night sky visible from Haleakala, Maui, Hawaii. Each shaded ’square’ represents
one bore site that is imaged 4 times/night. The dark solid line represents the
ecliptic, and the positions of some of the planets, Sun and Moon are represented
with their images. The declination limit of −30◦ is roughly 40◦ above the horizon
as observed from Haleakala. (Bottom) Time series for detections in tracklets for
the 2-site ’no-shift’, ’half-shift’ and ’full-shift’ scenarios. Each of the time steps
represent a transient time interval (TTI).

lets’. MOPS employes an N-body integrator and the DE406 ephemerides
[Standish, 1998] to compute the position and brightness of every synthetic
detection. In practice, we set the absolute magnitude of each synthetic object
to H = 0 and turned off the MOPS system’s capability of adding astrometric
and photometric uncertainty to each detection so that we could modify those
values post hoc as described below.

9.1.3 Photometric & astrometric uncertainty

Each synthetic MOPS detection had a calculated apparent magnitude m0

corresponding to the value if the object’s absolute magnitude (H) was zero.
We could then assign any other absolute magnitude to the object and its
actual apparent magnitude corresponding to that detection would then be
m∗ = m0 + H. We then used a reported apparent magnitude m = m0 +
H + ∆m where ∆m = max{0.01, G[0, σ(m∗)]} and G represents a randomly
generated number from a normal (Gaussian) distribution with a mean of zero
and width σ(m∗) = 0.02× 2(m∗−16) appropriate for the ATLAS system. The
max function limits the minimum photometric uncertainty to 0.01 mag.

We did not account for the effect of trailing of the detections due to the
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motion of the object during an exposure [e.g. Vereš et al., 2012]. The neglect
is justified because the large ATLAS plate scale of about 2”/pixel means
that detections trail by less than 1 pixel for rates of up to 1.6◦/day and the
majority of the impactors that are larger than 10 m diameter move slower
than this rate when they are first detected (Fig. 9.5). Main belt objects are
not trailed at all because they typically move fastest near opposition at rates
of about 0.25◦/day. The close-approachers can move much faster but here
we assume that ATLAS will apply a trail finding and fitting algorithm to
maintain astrometric and photometric integrity for objects with faster rates
motion.

The impact probability calculation depends on the reported astrometric
uncertainty that, in turn, depends on the apparent brightness of the detec-
tions and the system’s pixel scale. The reported astrometric position of each
synthetic detection was ’fuzzed’ by an offset ∆ = max{0.1”, G[0, σp(m

∗)]}
where the sub-script ’p’ represents ’positional’ uncertainty and σp(m

∗) =
2”/108.5−0.4m∗

appropriate to the ATLAS system’s 2” pixel scale and photo-
metric performance. The max function ensures that the minimum astrometric
uncertainty is always larger than 0.1”.

9.1.4 Survey cadence

One of the main goals of this study was to demonstrate how two survey
sites could improve the impact probability determination in comparison with
a single site, but there are many different survey cadences that could be
implemented in either scenario. We decided that a fair comparison between
the two scenarios required maintaining the same combined tracklet arc-length
(i.e. time from first to last observation) and studied three different 2-site visit
cadences (see Fig. 9.3):

• 1-site (quads)
4 images acquired with roughly a TTI between each

• 2-site no-shift
2 images acquired at each site with roughly 3 TTI between them

• 2-site half-shift
2 images acquired at each site with roughly 2 TTI between them inter-
leaved with the other site

• 2-site full-shift
2 images acquired at each site with roughly a TTI between them se-
quential with the other site
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We will show in §9.2.3 that there is little difference in performance be-
tween the cadences, but there is a marginal benefit to the 2-site full-shift
scenario and we adopt it as the nominal cadence unless otherwise specified.

9.1.5 Observability windows

For a fair comparison between the observation circumstances of our synthetic
close-approachers and impactors we only considered observations of close-
approachers before the moment of closest approach. This requirement is
symmetric with the impactors because it is impossible to obtain observations
of an impactor after impact.

Furthermore, because our simulated survey was only one year in dura-
tion instead of infinite, we were careful to consider only those impactors of
different sizes that could be detected before impact. Letting D represent
the impactor diameter, we defined an D-dependent ’observability window’,
twindow(D). Then, letting tbegin and tend represent the simulated survey’s
starting and finishing time respectively, we require that the time of im-
pact of an object with diameter D, timpact(D), satisfy tbegin + twindow(D) ≤
timpact(D) ≤ tend, i.e. we require that the time of impact and the entire
observability window be in the simulated survey time.

We defined twindow(D) using our simulated survey and synthetic objects
from which we could measure the number of days between the first detection
and impact as a function of the impactor diameter (Fig. 9.4). If t̄first(D) rep-
resents the average value as a function of diameter, and σfirst(D) the standard
deviation of the distribution, then we set twindow(D) = t̄first(D) + σfirst(D).
This time observability window encompasses the actual observability window
of about 84% of the objects at each diameter but will eliminate the ∼ 16% of
the sample with the longest observability times. The choice reflects a balance
between increasing the time observability windows and keeping more objects
in the analysis — longer windows mean fewer objects satisfy the requirement.
No window was applied for main belt asteroids.

9.1.6 Orbit determination and impact probability

Orbit determination is the process of identifying the best-fit least-squares
orbit to an object’s astrometric dataset. We used the standard differential
correction procedure [Milani and Gronchi, 2010, Chap. 5] with the objects’
synthetically generated orbit as the starting point. The use of the synthetic
orbit as the initial orbit in the fit will skew our orbit determination and
impact probability calculation towards more accurate values than could be
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Figure 9.4: (large circles and squares) Observing window duration implemented
in this study for close-approachers and impactors on their final approach. (small
circles and squares) Average number of nights to closest approach or impact. By
definition, the upper limits of the error bars on these data points corresponds to
the observing window durations (§9.1.5).
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expected from the single-survey performance in our study. We do not con-
sider this an important issue because the NEO candidate followup community
rapidly provides additional astrometry for initial orbit determination by the
Minor Planet Center. It is also worth noting that we assume a high efficiency
and accuracy for linking detections of the same object into tracklets and then
linking the tracklets into ’tracks’ [Milani and Gronchi, 2010, Chap. 8]. This
is justified because the MOPS has better than 99.5% efficiency at performing
this function [Denneau et al., 2013].

After an orbit was computed along with its corresponding uncertainty
we computed the probability of an Earth impact. The analysis of close en-
counters is typically a strongly non-linear problem whose solution requires
sophisticated methods [e.g., Milani et al., 2005a] but we adopted a simpli-
fied approach to the calculation of the impact probability since this study
only assesses its evolution in the days and weeks before impact. First we
search for upcoming close approaches and then we perform a linear mapping
of the orbital uncertainty region to the close encounter b-plane and com-
pute the impact probability corresponding to the intersection between the
mapped uncertainty region and Earth’s cross section [Valsecchi et al., 2003].
The short-term propagation and the lack of intervening planetary encounters
justifies the adoption of the simplified linear approach.

We updated the orbit determination and risk assessment night-by-night
within the simulation to assess the time evolution of the impact probability.
i.e. we incrementally added each tracklet to an object’s astrometric data set
and then recalculated the orbit and associated impact probability each night.

9.2 Results & Discussion

We tested the performance of the ATLAS survey for impactors and close
approachers of 5, 10, 20, 50, 100, 150, and 300 meters diameter because we
expected there to be a size-dependency on the ability to rapidly calculate
impact probabilities. Large objects will typically be detected at larger dis-
tances where the effects of parallax are small and the lever arm to impact
is large, making it difficult to assign a high probability to a possible impact.
Small objects will be detected close to Earth so parallax will provide some
power in the orbit solution and impact probability calculation.
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9.2.1 Observable characteristics of the impactor pop-
ulation

The mean apparent rate of motion of impactors on the first night of de-
tection is about 0.25 ± 0.05(rms) deg/day, essentially matching both the
mean rate and distribution of typical main belt asteroids moving at 0.19 ±
0.06(rms) deg/day (Fig. 9.5).
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The fastest impactor rates of & 0.5 deg/day mimic that of the perfectly
harmless Hungaria asteroids. The Hungarias are on the inner edge of the
main belt [e.g. Jedicke, 1996; Rabinowitz, 1991] and can have high rates of
motion in ecliptic latitude because of their high inclinations. On the other
hand, the Earth-grazing close-approachers typically have high apparent fly-
by speeds even on their night of first detection. Their angular rate of motion
extends to ∼ 10 deg/day while less than 2% move slower than 0.5 deg/day.

Figure 9.6 illustrates several features of the detected impactors’ sky plane
motion. First, smaller objects are visible for much less time than the larger
impactors, the impactors typically move westwards and mostly in longitude,
and they are first detected near the system’s limiting magnitude and increase
in brightness as they move closer to Earth. The larger objects can be dis-
covered almost everywhere on the night sky but the smaller objects tend to
be discovered towards opposition where the reduction in apparent brightness
due to phase angle effects is smallest.
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Figure 9.5: (left) Apparent rate of motion on the first night of observation for
impactors with diameters of 10 m, 50 m and 300 m. (right) Apparent rate of motion
on the first night of observation for impacting, close-approaching and main belt
asteroids. The impactors and close-approachers both have diameters of 50 m but
the main belt asteroids have a realistic size-frequency distribution.
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Figure 9.6: Time evolution of the sky plane position and apparent V magnitude
for all the detected synthetic impactors at 4 different sizes: 10 m, 50 m, 100 m and
300 m. The coordinates are ecliptic opposition-centric with west to the right. The
star symbol in the center represents opposition.

9.2.2 Detection efficiency & rates

The ATLAS pre-impact detection efficiency (Fig. 9.2.2, left) plateaus due to
geometrical reasons at a maximum of about 50% even for the largest objects
— ATLAS only surveys about half the sky but detects everything brighter
than its limiting magnitude. The efficiency decreases for smaller objects with
a particularly dramatic drop from 10 m to 5 m. i.e. it decreases by about half,
to about 25%, from 300 m to 10 m diameter — nearly 3 orders of magnitude
in the impactors cross-sectional area — but then decreases by another 50%
from just 10 m to 5 m diameter (only a factor of 4 in cross-section). In this
size range the objects are typically fainter than the survey system’s limiting
magnitude and even a nightly cadence is not sufficient to catch the objects
in the brief time they are bright enough to be detected before impact.

The behavior of the detection efficiency as a function of diameter is differ-
ent for close-approaching asteroids (Fig. 9.2.2, left). Remembering that for
a direct comparison to the impactors we only considered close-approachers
detected before closest approach, the detection efficiencies are identical at
the largest sizes we considered. The close-approacher detection efficiency
would have been much higher if we had allowed them to be detected after
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Figure 9.7: (left) Detection efficiency for synthetic impactors and close ap-
proachers as a function of object diameter and (right) our predicted incremen-
tal number of detections per year of impactors, close-approachers, and false
impactors (close-approachers with a residual impact probability higher than
10−6 on the day of closest approach — see Fig. 9.11). Our calculation of the
discovery rates used the Brown et al. [2013] impactor size-frequency distribu-
tion and impact rate. Note that the close-approacher statistics only includes
objects before closest approach for direct comparison to the impactors.

close-approach because there would be much more time to detect them, and
because objects that approach in daylight from the direction of the Sun are
likely to depart and be detectable in the night time sky. The detection ef-
ficiency is slightly higher for the close-approachers in the 50 m to 150 m
diameter range because these objects will be bright enough and detectable
longer than the impactors. On the other hand, close-approachers smaller
than 50 m diameter are detected less efficiently than the impactors because
they are usually too far away and therefore too faint to be detected — 1% of
the close approachers in our simulation come no closer than 1 LD while all
the impactors do so by definition.

Figure 9.2.2 (right) illustrates that it is unlikely that ATLAS will de-
tect impactors larger than 5 m diameter. There are simply not enough of
them and the detection efficiency for the smaller, most frequent, impactors
is less than 10%. It is dangerous to extrapolate ATLAS’s ability to detect
even smaller impactors in the 1-2 m diameter size range like 2008 TC3 [e.g.
Jenniskens et al., 2009] because the detection efficiency becomes particularly
sensitive to the observing cadence and subtleties of image processing e.g.
trail detection. However, assuming that the detection efficiency drops to just
1% for a 1 m diameter object, ATLAS might detect one impactor every few
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years.

On the other hand, ATLAS will detect 100s or 1,000s of close approaching
asteroids to within 10 LD because there are far more of them than impactors
(scaling like the ratio of the cross sectional area of a circle with radius equal
to the close-approach distance and the cross sectional area of Earth). Most
of the detected close approachers will be in the 20 m to 50 m diameter range
(Fig. 9.2.2, right) but there will still be 10s to 100s of detected objects outside
that range. We will show in §9.2.4 that ATLAS alone can not establish that
all the close-approachers are not impactors — 100s of the closest approach-
ing objects will always have a residual non-zero impact probability unless
additional observations are acquired with other optical or radar facilities.

9.2.3 Impact probability evolution for impacting as-
teroids

The impact probability for an impacting asteroid depends on the observed
arc length and the object’s distance from Earth and both depend on the size
of the impactor (see Fig. 9.8). Longer arc lengths provide better orbit pre-
cision and a higher impact probability because all these objects are actually
impactors. However, when an object is far from Earth the integration to
the impact epoch stretches the orbital uncertainty and decreases the impact
probability. The impact probability is smaller for larger diameter impactors
at the same number of nights after discovery because smaller objects are
likely to be observed when close to Earth and therefore closer to their im-
pact time. The topocentric parallax in the detections and deviation from
great-circle motion allow a better orbit determination, and the small amount
of time to impact provides a higher impact probability.

The typically monotonically increasing impact probability that asymp-
totically approaches unity (Fig. 9.8) is the expected behavior though we
were surprised that the single-system astrometry required about a week to
reach ∼ 100% for the 50 m diameter impactors and a month to reach the
same values at 100 m. The impact probability reached 99% an average of
2.0± 0.5(rms), 4.5± 1.8(rms), 8.9± 4.7(rms) and 29± 16(rms) days before
impact for impactors of 10 m, 50 m, 100 m, and 300 m diameter at mean geo-
centric distances of 0.6± 0.4(rms) LD, 1.0± 0.5(rms) LD, 1.9± 1.0(rms) LD
and 5.5 ± 1.5(rms) LD respectively. Thus, even though a 300 m diameter
object has nearly 1, 000 times the cross-sectional area of a 10 m diameter
object, and is therefore about a 1, 000 times brighter (∼ 7.5 mag) at the
same topocentric distance, an imminent impact becomes definitive with only
about 10 times more warning time when the larger object is only ∼ 5 times
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Figure 9.8: Impact probability time evolution for four synthetic objects of 10 m,
50 m, 100 m and 300 m diameter.

further away.

Of course, our calculated impact probabilities rely only on the detections
from a single survey with relatively large astrometric uncertainty compared
to contemporary standards (because of its all-sky coverage as described in
§9.1.3). In some cases there will be nights with particularly bad astrometric
error that temporarily decrease the impact probability as illustrated by the
100 m diameter example in Fig. 9.8. The detection of a real impactor with
even a 10−6 impact probability would certainly trigger high-precision ground-
based optical and radar followup that would improve the orbit determination
and impact probability.

None of the four objects represented in Fig. 9.8 had an impact probability
calculated on the first night. This does not mean that the impact probability
was zero, only that with just one night’s data the orbit determination could
not converge on a full 6-parameter orbit (even when we start with the correct
initial orbit) and its covariance matrix, but both are required for the impact
probability calculation. While short-arc orbit determination methods are
available they have not yet been extensively tested in their ability to provide
reliable hazard assessments [e.g. Chesley, 2005; Milani and Knežević, 2005;
Virtanen et al., 2001]. With our single survey simulation there is a ∼ 14%
efficiency for calculating an impact probability on the first night for 10 m
diameter objects with the efficiency decreasing with diameter to just 2% for
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300 m impactors. Therefore, it is critical to have rapid follow-up observa-
tions from other observatories to achieve a better efficiency in recognizing
impactors on the discovery night — but there may be nothing particularly
noteworthy about the tracklet to flag it as worthy of immediate follow-up.
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Figure 9.9: Average impact probability as a function of the number of nights
since discovery for impactors of 10 m, 50 m, 100 m and 300 m diameter. The four
curves correspond to the cadence scenarios illustrated in fig. 9.3 and discussed in
§9.1.4. The missing data points for night zero indicates that it was not possible
to calculate the impact probability on the discovery night: this is not the same as
claiming the objects have zero impact probability.

The average impact probability as a function of time for an ensemble of
impactors of a specific diameter (Fig. 9.9) behaves much the same as the
individual examples illustrated in Fig. 9.8. The four survey cadences (§9.1.4)
are essentially equivalent in terms of the numerical value and efficiency of the
impact probability calculation beginning on the second night after discovery.
While the efficiency for calculating an impact probability on the first night
is small (discussed above), the 2-site full-shift scenario is always superior,
so that combining observations from different stations does provide better
constraints on the orbit and allows for an impact probability calculation.
Again, we stress that this is true only on the first night of discovery and
only for the small fraction of objects for which an impact probability can be
calculated, so the benefits of parallax in the impact probability calculation
afforded by a 2-site scenario is limited to a small fraction of the least danger-
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ous impactors. We recognize that the 2-site scenario offers other advantages
such as increased immunity to weather shutdowns (one site can still survey
if the other is not operational) and natural disasters (such as lava flows) but
at the expense of having to maintain two sites.

We define the impact warning time as the time interval between the im-
pact epoch and the epoch at which an object’s Palermo Scale [Chesley et al.,
2002] ranking becomes higher than −2. We used the Palermo Scale because
it is a standard tool to communicate the risk posed by a possible impact,
and selected the −2 threshold as it corresponds to cases that ’merit careful
monitoring’.7. The warning time increases with the impactor diameter as
twarn ∝ D1.1±0.2 (Fig. 9.10) — detected impactors with an orbit determina-
tion that are smaller than ∼ 20 m diameter typically have less than a couple
of days of warning time, 50 m diameter objects provide about one week no-
tice, and the warning time is weeks to months for objects larger than 100 m
diameter. Including those objects that were detected, but for which an orbit
was impossible to calculate (even starting with the correct orbit as the initial
value in the fitting procedure), the warning time increases with diameter as
twarn ∝ D1.3±0.1.

The time to impact from first detection (∆t) should increase linearly
with diameter D because the geocentric distance (ρlimit) at which an asteroid
becomes brighter than a system’s limiting magnitude (mlimit) is given by

5 log10 ρlimit = mlimit −H + φ(r, ρlimit) (9.1)

where φ is a ’phase function’ that depends on an object’s geocentric and
heliocentric (r) distance [Bowell et al., 1988]. Furthermore, H ∝ log10D
[Pravec and Harris, 2007] so it follows that ρlimit ∝ D assuming that φ is
roughly constant (which is justified given that the heliocentric distance is
nearly constant during the final approach (r ∼ 1), and because φ depends on
the phase angle which does not change much during an impacting object’s
final approach to Earth). Since ρlimit = v∆t, where v is the speed of the
impactor relative to Earth, it follows that ∆t ∝ D.

However, v depends on the diameter because smaller objects are detected
closer to Earth where they are moving faster because they have accelerated
in Earth’s gravity well. Assuming that impactors fall towards Earth with
similar initial v∞ then it is not difficult to show that the speed at discovery
goes roughly as v ∝ D1/2 and that ∆t ∝ D3/2.

The impact warning time twarn as we have defined it is related, but not
identical to, and always ≤ ∆t. Thus, we expect that twarn ∝ Dx with
1 < x < 1.5 in agreement with our measured value of 1.3± 0.1. To put this

7 http://neo.jpl.nasa.gov/risk/doc/palermo.html
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Figure 9.10: Impact warning time twarn as a function of impactor diameter (D)
for the ATLAS survey using the full-shift cadence (see Fig. 9.3 and §9.1.4). The
error bars represent the standard error on the mean and are equal to or smaller
than the data points for all but the two leftmost values. (dashed line) The fit
to the data for all detected impactors (i.e. including those without calculated
orbits and impact probabilities) with warning time given by log10(t/days) = (1.3±
0.1) log10(D/meters)−(1.4±0.2). (solid line) The fit to the objects with calculated
impact probability is log10(t/days) = (1.1 ± 0.2) log10(D/meters) − (1.0 ± 0.4).
The grey area represents the expected range with slopes in the range [1.0, 1.5] (see
§9.2.3) when anchored at 300 m diameter.
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in perspective, a Chelyabinsk-like impactor of 20 m diameter would typically
only have a 2 day warning time if it was detected by an ATLAS-like survey.

9.2.4 Impact probability evolution for main belt and
close-approaching asteroids

We included a sample of main belt and close-approaching asteroids to assess
the survey’s ability to distinguish them from impactors. The problem may
be difficult when only a short arc of observations is available, in which case
the orbital uncertainty is large and there may be multiple and very different
initial orbits [Milani et al., 2008] consistent with the observations, some of
which lead to a least-square solution far from the actual orbit.

The inclusion of the distant, slow-moving main belt asteroids may seem
surprising but Fig. 9.5 illustrates that the rate of motion of impacting as-
teroids can be similar to that of main belt objects. Despite the similarity
in their rates of motion we never found a non-zero impact probability for
a synthetic main belt object with ≥ 2 days of arc. It is worth noting once
again that we used the actual main belt orbit as the starting point to obtain
the orbit solution — this process biases our results towards decreasing the
calculated impact probability a short time after discovery.

The most likely false impactors must be PHOs that experience a close-
approach to Earth. These objects might be identified as they approach
Earth and the astrometric uncertainties and orbit integration may combine
to produce non-zero impact probabilities. Indeed, about 30% of the close-
approaching objects in our synthetic population had an impact probability
higher than 10−6 at some time during the simulation8 but none of the impact
probabilities ever exceeded 3%.

With our single-system survey simulation (i.e. one or two sites) we find
that even large objects, those ≥ 50 m diameter, can have non-zero impact
probabilities just a few days before impact (Fig. 9.11). About 3 to 5% of the
50 m and 100 m diameter close-approachers have a persistent impact risk
on the day of (false) impact which means that follow-up observations from
other stations are critical to establish the lack of danger from these objects.
A persistent impact risk remains on the day of impact for about 75% of the
10 m diameter close approachers but perhaps this is not too worrisome since
they are unlikely to make it through Earth’s atmosphere and cause serious
ground damage. On the other hand, the opportunity for scientific study of
more 2008 TC3-like events [Jenniskens et al., 2009] is tremendous if the false

8 10−6 is the threshold typically used by NASA to rule out an impact. e.g.
http://www.jpl.nasa.gov/asteroidwatch/newsfeatures.cfm?release=2013-017
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alarm rate is small enough so, once again, follow-up observations are required
for all these objects.

100 10 1 0.1
0.0

0.2

0.4

0.6

0.8

1.0

 300 m
 150 m
 100 m
   50 m
   20 m
   10 m
    5 m

 

 
Fr

ac
tio

n 
of

 o
bj

ec
ts

 w
ith

 IP
 <

 1
0-6

Days to close approach

Figure 9.11: Fraction of close-approaching asteroids for which an impact is ruled
out (impact probability less than 10−6) as a function of the number of days before
close-approach for 7 different asteroid diameters. The ‘noisy’ behavior on the left,
corresponding to long times before impact, is mostly due to low number statistics.

We estimated the false impactor rate (fig:9.2.2, right) with the single-
survey system using the [Brown et al., 2013] PHO size frequency distribution
appropriate for objects in this size range, our calculated close-approacher
survey efficiency (Fig. 9.2.2, left), and the fraction of them that retain a
non-zero impact probability on the (false) impact date (Fig. 9.11). We find
that the single all-sky survey system will generate 100s of false impactors per
year for objects of . 100 m diameter. Thus, rapid astrometric followup with
other optical and radar facilities is imperative to reduce the false impactor
rate to zero.

9.3 Conclusions

We have performed a simulation of a single all-sky asteroid survey to study
the time evolution of the calculated impact probability for both real and
false impactors. We also studied the utility of using two observatories at
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different locations to perform the survey to take advantage of the parallactic
displacement in the detections of the same object.

As expected, the impact probability for impactors typically increases
monotonically with time after discovery and is larger at the time of dis-
covery for small objects that are detected closer to Earth and with less time
to impact. We found that the impact warning time, the time interval between
when the impact probability reaches -2 on the Palermo Scale and when the
impact takes place, increases with diameter according to twarn ∝ D1.3, and
developed a simple mathematical argument that the exponent should be in
the range [1.0, 1.5].

Close approaching asteroids can almost always be unambiguously iden-
tified as non-impactors but a small percentage will have a non-zero impact
probability even on the day of (false) impact. i.e. the simulated survey on its
own is unable to eliminate the impact risk. The fraction of objects for which
a persistent impact risk exists at the time of impact increases with decreasing
diameter of the object because the small objects have smaller observational
arc lengths and concomitantly less precise orbit elements. The combination
of the PHO size-frequency distribution with the probability of detecting false
impactors suggests that the single all-sky system alone will generate 100s of
potential impactors that must be ruled out with other followup facilities.

The calculated impact probability can take surprisingly long to reach
∼ 100% with just the results from a single low-precision astrometric survey.
The impact probability may reach 100% only a few days before impact even
for 300 m diameter objects detected a month in advance and imaged nightly
thereafter.

Our simulations suggest that a 2-site survey is unnecessary, at least in
terms of the incremental benefit in improving the impact probability cal-
culation. The parallax afforded by this scenario only improves the impact
probability calculation for a small fraction of the smallest asteroids detected
shortly before impact. The 2-site survey offers many different cadence op-
tions and some can provide more efficient impact probability calculations
than others. The derived impact probability was ∼ 10 times higher (i.e.
better) on the discovery night using the ’full-shift’ cadence compared to the
other two cadences. This suggests that a real survey that implements the
2-site scenario should carefully test different cadences to select one that max-
imizes the efficiency and accuracy of the impact probability on the discovery
night. The effect of survey cadence on the impact probability calculation is
negligible on successive nights.
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Chapter 10

Appendix

10.1 Finding the best power law to model the

Yarkovsky effect

We want to find the value of d such that the transverse accelerationAT (r/r0)−d,
r0 = 1 au, provides the best match to the Yarkovsky acceleration acting on
Bennu. We can neglect the seasonal component of the Yarkovsky effect. In
fact, the diurnal component is usually the dominant one [Vokrouhlický et al.,
2000b]. Moreover, the obliquity of Bennu is 175◦ and the seasonal compo-
nent vanishes when the spin axis is normal to the orbital plane [Bottke et al.,
2006]. For the diurnal component of the Yarkovsky effect we have that the
transverse acceleration is [Vokrouhlický, 1998a]

at =
4(1− A)

9
φ(r)f(Θ) cos(γ) , f(Θ) =

0.5Θ

1 + Θ + 0.5Θ2
(10.1)

where A is the Bond albedo, φ the standard radiation force factor at helio-
centric distance r, Θ the thermal parameter, and γ the obliquity.

The dependence on r is contained in φ(r) ∝ r−2 and f(Θ). As a matter
of fact, Θ depends on the subsolar temperature T?, and T? depends on r:

Θ =
Γ

εσT 3
?

√
2π

P
, T? =

4

√
(1− A)GS

σε

(
1 au

r

)2

(10.2)

where Γ is the thermal inertia, ε the emissivity, σ the Stefan-Boltzmann
constant, GS = 1365 W/m2 is the solar constant, and P the rotation period.
Thus, Θ ∝ r3/2.

We want to approximate f(Θ) with a power law (r/r0)ψ:

f(Θ) ' c(r/r0)ψ =⇒ log f(Θ) ' log c+ ψ log(r/r0) . (10.3)

265
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Figure 10.1: Dependency of transverse acceleration exponent d on thermal
inertia Γ for Bennu.

By differentiating with respect to r we find:

ψ = r
∂ log f(Θ)

∂r

∣∣∣∣
r=r0

. (10.4)

From the chain rule we obtain

∂ log f(Θ)

∂r
=

1

f(Θ)

∂f(Θ)

∂Θ

∂Θ

∂r
(10.5)

Evaluating this equation for r = r0 and using the physical quantities as in
Table 4.4 yield ψ ' −0.24. Therefore, d ' 2.24, which is in good agreement
with the value 2.25 found numerically in Sec. 5.2.
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10.2 An analytic estimate of the resonant re-

turns cascade

We can make an analytic estimate of the range of semimajor axes of the
possible post-2185 orbits [Valsecchi et al., 2003]; in doing so, we will use the
b-plane coordinates ξ, which correspond to the local MOID with sign, and ζ,
which is related to the timing of the encounter, as well as the values of the
unperturbed geocentric velocity U (in units of the Earth orbital velocity),
and of the angle θ between the velocity of the Earth and the unperturbed
geocentric velocity of 2009 FD at the encounter of 2185. We assume the
values of the 2185 VI, U = 0.533 and θ = 97◦.7.

We then compute c = m⊕/U
2, where m⊕ is the mass of the Earth in units

of the solar mass; c is the value of the impact parameter leading to a rotation
of the geocentric velocity by 90◦, and plays the role of a characteristic length
for each NEA. In the case of 2009 FD c = 0.25 r⊕, where r⊕ is the Earth
radius.

The gravitational cross section of the Earth seen by 2009 FD is a disk of
radius b⊕ [Valsecchi et al., 2003],

b⊕ = r⊕

√
1 +

2c

r⊕
= 1.22 r⊕;

thus, the b-plane distance corresponding to a grazing Earth encounter is
1.22 r⊕.

We now turn to the possible post-encounter values of the orbital semima-
jor axis a′ of 2009 FD, which is given by

a′ =
1

1− U2 − 2U cos θ′
;

in fact, as discussed by [Valsecchi et al., 2003], a′ is maximum when cos θ′

is maximum, and a′ is minimum when cos θ′ is minimum. We can therefore
consider the expression for cos θ′ as a function of the b-plane coordinates:

cos θ′ =
(ξ2 + ζ2 − c2) cos θ + 2cζ sin θ

ξ2 + ζ2 + c2
.

We use the wire approximation of [Valsecchi et al., 2003], so that ξ can be
considered constant, like all other quantities in the expression, except ζ. We
therefore take the partial derivative with respect to ζ,

∂ cos θ′

∂ζ
=

2c[2cζ cos θ + (ξ2 − ζ2 + c2) sin θ]

(ξ2 + ζ2 + c2)2
,
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and look for the zeroes ζ± of its numerator:

0 = ζ2 sin θ − 2cζ cos θ − (ξ2 + c2) sin θ

ζ± =
c cos θ ±

√
c2 + ξ2 sin2 θ

sin θ
.

Making the appropriate substitutions (c = 0.25 r⊕, |ξ| = 0.52 r⊕, θ = 97◦.7),
we get ζ+ = 0.54 r⊕ and ζ− = −0.61 r⊕; both values lead to values smaller
than b⊕, implying that the maximum and minimum possible values for a′ are
obtained for grazing encounters taking place at ζ = ±

√
b2
⊕ − ξ2 = ±1.11 r⊕.

Thus, the maximum post-encounter a′ and the related maximum orbital pe-
riod P ′ are

a′max = 2.10 au and P ′max = 3.05 yr,

and the minimum post-encounter a′ and the related minimum orbital period
P ′ are

a′min = 0.82 au and P ′min = 0.74 yr.

This range of post-2185 orbital periods for 2009 FD makes a number resonant
of returns within 2196 possible, the year after which the secular increase in
the MOID precludes the possibility of additional collisions with the Earth
at the same node. The list of resonances is given in Table 10.1; the lines in
boldface describe cases in which actual VIs are found numerically.

In Table 10.1 the columns shows, from left to right: the year of impact
of the potential VI; the associated mean motion resonance; the value of
the resonant post-2185 semimajor axis a′; the ζ coordinate of the keyhole
center; ∂ζ ′′/∂ζ, i.e., the partial derivative of the ζ coordinate on the post-
2185 b-plane, taken with respect to the ζ coordinate on the 2185 b-plane;
and finally an estimate of the maximum possible impact probability Pmax for
the potential VI in question. Both ζ and ∂ζ ′′/∂ζ are computed according
to [Valsecchi et al., 2003]; in practice, ∂ζ ′′/∂ζ can be seen as the factor by
which the stretching increases in the interval of time between the first and
the second encounter.

The values of Pmax are computed by multiplying the PDF by the maxi-
mum possible chord (i.e., the diameter of the circle of radius b⊕), and thus
has to be seen as an upper limit; in this respect, it should not be considered
too surprising that the potential VIs in the two top rows of Table 10.1 are
not found by either of the numerical procedures described in the paper, since
it may well be that the real values of the probability are significantly smaller
than Pmax because of small chords. In the same spirit, the good agreement
between the values of Pmax in Table 10.1 and those in the risk tables should
not be overestimated because of the very simple dynamical model with which
the analytical estimates are computed.
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Table 10.1: The resonances with the mean motion of the Earth made acces-
sible to 2009 FD by the 2185 close encounter. The lines in boldface show the
resonances for which actual VIs are found numerically.
year reson. a′ (au) ζ (km) ∂ζ ′′/∂ζ Pmax
2194 7/9 1.1824 246116 8.8× 102 2.7× 10−6

2189 3/4 1.2114 98818 2.5× 103 1.1× 10−6

2196 8/11 1.2365 66047 1.5× 104 1.9× 10−7

2192 5/7 1.2515 55426 1.4× 104 2.1× 10−7

2195 7/10 1.2684 47028 2.8× 104 1.0× 10−7

2188 2/3 1.3104 34570 1.5× 104 1.9× 10−7

2196 7/11 1.3517 27698 8.9× 104 3.3× 10−8

2193 5/8 1.3680 25736 7.5× 104 3.9× 10−8

2190 3/5 1.4057 22199 6.3× 104 4.7× 10−8

2197 7/12 1.4324 20288 1.8× 105 1.6× 10−8

2192 4/7 1.4522 19089 1.2× 105 2.5× 10−8

2194 5/9 1.4797 17667 1.8× 105 1.7× 10−8

2196 6/11 1.4979 16850 2.4× 105 1.2× 10−8

2187 1/2 1.5874 13820 6.3× 104 4.7× 10−8

2196 5/11 1.6915 11524 4.8× 105 6.2× 10−9

2194 4/9 1.7171 11083 4.2× 105 7.0× 10−9

2192 3/7 1.7592 10431 3.6× 105 8.2× 10−9

2197 5/12 1.7926 9970 6.7× 105 4.4× 10−9

2190 2/5 1.8420 9361 3.1× 105 9.6× 10−9

2193 3/8 1.9230 8511 5.7× 105 5.3× 10−9

2196 4/11 1.9629 8146 8.3× 105 3.6× 10−9

2188 1/3 2.0801 7220 2.6× 105 1.2× 10−8

2188 4/3 0.8255 −7389 1.2× 105 2.5× 10−8

2192 9/7 0.8457 −8493 2.6× 105 1.1× 10−8

2189 5/4 0.8618 −9413 1.4× 105 2.2× 10−8

2194 11/9 0.8748 −10204 2.8× 105 1.1× 10−8

2190 6/5 0.8856 −10899 1.5× 105 2.1× 10−8

2191 7/6 0.9023 −12069 1.5× 105 2.0× 10−8

2192 8/7 0.9148 −13023 1.6× 105 1.9× 10−8

2193 9/8 0.9245 −13819 1.7× 105 1.8× 10−8

2194 10/9 0.9322 −14494 1.8× 105 1.7× 10−8

2195 11/10 0.9384 −15075 1.9× 105 1.6× 10−8

2196 12/11 0.9436 −15580 1.9× 105 1.6× 10−8

2186 1/1 1.0000 −22947 9.2× 103 3.3× 10−7

2197 11/12 1.0597 −39074 4.2× 104 7.4× 10−8

2196 10/11 1.0656 −41704 3.4× 104 9.1× 10−8

2195 9/10 1.0728 −45365 2.6× 104 1.2× 10−7

2194 8/9 1.0817 −50811 1.9× 104 1.6× 10−7

2193 7/8 1.0931 −59775 1.2× 104 2.5× 10−7

2192 6/7 1.1082 −77314 6.6× 103 4.8× 10−7

2191 5/6 1.1292 −127134 2.1× 103 1.6× 10−6

2196 9/11 1.1431 −215975 1.4× 103 2.6× 10−6

2190 4/5 1.1604 −1366152 1.6× 101 3.0× 10−4
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A. (2001). Dynamical Spreading of Asteroid Families by the Yarkovsky
Effect. Science, 294:1693–1696.
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Delbò, M. and Michel, P. (2011). Temperature History and Dynamical Evo-
lution of (101955) 1999 RQ 36: A Potential Target for Sample Return from
a Primitive Asteroid. The Astrophysical Journal Letters, 728:L42.

Delisle, J.-B. and Laskar, J. (2012). Chaotic diffusion of the Vesta family
induced by close encounters with massive asteroids. Astronomy & Astro-
physics, 540:A118.

Dell’Oro, A., Cellino, A., and Paolicchi, P. (2012). Non-destructive collisions
and the evolution of the orbits of binary asteroid systems in the Main Belt.
Monthly Notices of the Royal Astronomical Society, 425:1492–1503.

DeMeo, F. E., Binzel, R. P., Slivan, S. M., and Bus, S. J. (2009). An extension
of the Bus asteroid taxonomy into the near-infrared. Icarus, 202:160–180.



278 BIBLIOGRAPHY

Denneau, L., Jedicke, R., Grav, T., Granvik, M., Kubica, J., Milani, A.,
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Knežević, Z. (1993). Minor planet short-periodic perturbations: the indi-
rect part of the disturbing function. Celestial Mechanics and Dynamical
Astronomy, 55:387–404.
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Milani, A. and Knežević, Z. (1999). Asteroid mean elements: higher order
and iterative theories. Celestial Mechanics and Dynamical Astronomy,
71:55–78.
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Trilling, D. E., Mueller, M., Harris, A. W., Smith, H. A., and Fazio, G. G.
(2014). Constraining the Physical Properties of Near-Earth Object 2009
BD. The Astrophysical Journal, 786:148.
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Spoto, F., Milani, A., and Knežević, Z. (2015). Asteroid family ages. Icarus.

Standish, E. M. (1998). JPL Planetary and Lunar Ephemerides,
DE405/LE405. Technical report, Jet Propulsion Laboratory, Pasadena.

Standish, E. M. (2000). Recommendation of DE405 for 2001 Mars Surveyor
and for Cassini. Technical Report IOM 312.F-00-107b, Jet Propulsion
Laboratory.

Standish, E. M. and Hellings, R. W. (1989). A determination of the masses of
Ceres, Pallas, and Vesta from their perturbations upon the orbit of Mars.
Icarus, 80:326–333.

Statler, T. S. (2009). Extreme sensitivity of the YORP effect to small-scale
topography. Icarus, 202:502–513.

Tanga, P., Cellino, A., Michel, P., Zappalà, V., Paolicchi, P., and Dell’Oro,
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