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Abstract

In the first part we recall the theory of multiprojective elimination initiated by
P.Philippon and developed by G.Rémond. In particular, we define the eliminant
ideal, the resultant forms and the Hilbert-Samuel polynomial for multigraded
modules. We then look at subvarieties and cycles of a product of projective
spaces, over a number field, and we define their mixed degrees and mixed heights,
which measure respectively their geometric and arithmetic complexity. Finally,
we define the heights of multiprojective cycles relative to some sets of polynomials,
generalizing a previous notion of height due to M.Laurent and D.Roy, and we give
detailed proofs for their properties. In the second part we prove that if we have a
sequence of polynomials with bounded degrees and bounded integer coefficients
taking small values at a pair (a,b) together with their first derivatives, then
both a and b need to be algebraic. The main ingredients of the proof include a
translation of the problem in multihomogeneous setting, an interpolation result,
the construction of a 0-dimensional variety with small height, a result for the
multiplicity of resultant forms, and a final descent. This work is motivated by
an arithmetic statement equivalent to Schanuel’s conjecture, due to D.Roy.



o=
o




iv

To my family



Contents

Abstract . . . . .. ii
Introduction . . . . . . . . ... viii

1 Heights of multiprojective cycles 1
1.1 Tools of Multiprojective Elimination . . . . ... ... ... ... 1
1.1.1 Basic definitions . . . . . . ... ... 1

1.1.2 The annihilant and the principal part in UFD rings . .. 3

1.1.3 Eliminant and resultant forms . . ... .. ... .. ... )

1.2 Multiprojective Geometry . . . . . . . .. ... 7
1.2.1 The multihomogeneous Hilbert-Samuel polynomial . . . . 7

1.2.2 The *-operator and operations on polynomials . . . . . . 8

1.2.3 Multiprojective cycles . . . . . ... ... oL 10
1.2.4 Mixed degrees . . . . . . . . ... e 12

1.2.5 Properties of the resultant forms . . . . . ... ... ... 13

1.3 Heights . . . . . . . 15
1.3.1 Convex bodies . . . .. ... .. ... ... ... 16

1.3.2 Heightsof cycles . . . ... ... ... .. ... 19

1.4 Estimates for the heights . . . . .. .. ... .. ... ... ... 21
1.4.1 Comparison between convex bodies . . . . . ... ... .. 22

1.4.2 Comparison between mixed and relative heights . . . . . . 25

1.4.3 An arithmetic Bézout inequality . . ... ... ... ... 27

2 A small value estimate 29
2.1 Statement of the main theorem . . . . . .. .. ... ... .... 29
21.1 Acorollary . . ... ... 30

2.2 Subvarieties of ]P’(lQ X I[D(l@ ....................... 33
2.2.1 Two-dimensional cycles . . . . .. ... ... ... ... 33
2.2.2  One-dimensional cycles . . . . ... ... ... ...... 35
2.2.3 Zero-dimensional cycles . . . . .. ... ... 36

2.3 Estimateson C[X,Y] . .. .. .. . 38
2.3.1 Definitions and basic estimates . . . . . . ... ... ... 38
2.3.2 Aninterpolation result . . . . . .. ... L 41
2.3.3 A division algorithm . . . . . ... ... ... L. 43

2.4 Distance . . . . ... e 46
2.4.1 Lower bound for the distance . . . .. ... ... .. ... 47
2.4.2  Upper bound for the distance . . . . . . . ... ... ... 48

2.5 Multiplicity of the resultant form . . . . . . ... ... ... ... 50
2.5.1 Themainresult . .. ... ... ... ... .. ...... 50



Contents vi

2.6

2.7
2.8

2.5.2 Corollaries in dimension two . . . . . ... ... ..... 53
Construction of a subvariety of dimension 0 . . . . . . ... ... 55
2.6.1 The relevant convex body . . . . . .. .. ... ... ... 56
2.6.2 Existence of a subvariety with small relative height . . . . 57
2.6.3 A posteriori estimates for degree and heights . . . . . . . 58
Proof of the main Theorem . . . ... ... ... ... ...... 61

Further research . . . . . . . . . . ... ... ... ... ... 67



Contents




Introduction

The aim of this thesis is to present some arithmetic and geometric invariants for
subvarieties and cycles of a product of projective spaces P* := P™ x ... x P"a,
and to use them to prove estimates for the norm and the degrees of polynomials
taking small values at a point together with some derivatives of them.

One of the main motivations for this work is Schanuel’s conjecture, which is one of
the outstanding open problems in Transcendental Number Theory, and ultimately
asserts that there are no unexpected algebraic relations pertaining the exponential
function exp: C — C* | ]. In an article of 2001 | ] D.Roy proves that
Schanuel’s conjecture is equivalent to an arithmetic statement which considers
polynomials in only two variables and finitely generated subgroups of the linear
algebraic group G := C x C*. This formulation is interesting because it is similar
to the currently known criteria of algebraic independence | 1 il 1,
and so it suggests a reasonable approach towards Schanuel’s Conjecture.

The first steps in the direction of the understanding and a proof of this statement
were taken by D.Roy and N.A.Nguyen [ Il 1 il ], embedding
G into the projective space P2, applying an homogenization of the polynomials
involved, and then implementing arguments and techniques of Diophantine
Approximation. In their approach, the interplay between two different concepts of
heights for Q-subvarieties of the projective space P" proved to be very important.
The first of these heights was introduced by P.Philippon | ] and it consists
in a measure of the absolute arithmetic complexity of a Q-subvariety Z of P™.
The definition takes into account the Chow forms Fz 4 of Z, which are irreducible
polynomial forms in many variables with integer coefficients that describe the
set of (r + 1)-uples of homogeneous polynomials (P, ..., P.) with fixed degrees
which have a common zero on Z.

The second of these concepts of heights was introduced and studied by D.Roy
and M.Laurent in | ], and it measures the relative arithmetic complexity of a
Q-subvariety Z of P™ with respect to a given set (convez body) C of homogeneous
polynomials with fixed degrees. The definition is again given in terms of the
Chow forms Fz 4, but instead of looking at their coefficients, it considers their
evaluation at polynomials in C.

We see that the process of homogenization of polynomials in two variables doesn’t
permit to obtain estimates taking into account both the degrees in the first
and second variable of the polynomials, but only in dependence of the total

degree. To tackle this problem, D.Roy suggests in [ ] to embed G into a
product of projective spaces P! x P! and then to use the more recent theory of
multiprojective elimination, introduced by P.Philippon [ ] and developed

by G.Rémond | ]. In this master thesis we're going to carry on this

viii



Introduction ix

project, transposing the results and arguments of D.Roy in multihomogeneous
setting, obtaining estimates in which the degrees in the variables x and y occur
separately.

So, to evaluate the absolute arithmetic complexity of a Q-subvariety Z of a
product of projective spaces P™ := P™ x --. x P", we use the heights introduced
by G.Rémond in place of the height of P.Philippon. These invariants are defined
in terms of the resultant forms resy(Z) of Z instead of Chow forms. The most
evident complication in this context is that there is no more a unique canonical
choice of height, but there are many, depending on a choice of components of the
product of the spaces. In addition to this, resultant forms are no more irreducible
polynomial forms, and so multiplicity arguments are to be taken into account.
One of the main contribution of this work is the definition of a multihomogeneous
counterpart for the relative heights introduced by M.Laurent and D.Roy. Using
again the theory of multiprojective elimination of G.Rémond we define a notion
of height which measures the arithmetic complexity of a Q-subvariety Z of a
product of projective spaces P?, with respect to a given set C (convex body)
of multihomogeneous polynomials of given multidegrees. The idea is simply to
consider the evaluation of the resultant form resqy(Z) at polynomials in C. We
also give a proof of the basic properties of this height, following the exposition
given in [ | for the homogeneous case.

The second main contribution of this thesis is the proof of a lower bound for the
multiplicity of the resultant forms at certain (r 4 1)-uples of multihomogeneous
polynomials, which generalizes a previous result of D.Roy (| ], Theorem 5.2)
for the Macaulay resultant. Here the proof combines a decomposition lemma due
to D.Roy, an explicit description of the resultant forms of P™ due to G.Rémond,
and a lemma for calculating lenghts of modules over DVR rings.

Finally, after we’ve collected these results, valid on a generic product of projective
spaces, we specialize them to the case P* = P! x P!, in order to prove a small
value estimate that generalizes that of | ]. More precisely, if we define the
G-invariant derivation D; = % + ya% : Clz,y] — Clx,y], we prove that if we
have a sequence of polynomials Py (z,y) € Z[x,y] for which we have bounds on
their coefficients, their z-degree and their y-degree, such that they take small
values when evaluated at a pair (£, v) € Cx C*, together with their first invariant

derivatives, then the pair (£,7) must be in Q x Q" and actually the polynomials
Py vanish in (£, v) with high multiplicity, for sufficiently big N. For the proof
we essentially follow the arguments in [ |, but we replace the tools valid
in homogeneous setting with those coming from multihomogeneous elimination
and multiprojective geometry.

This thesis is naturally divided into two chapters, which are structured as follows.
We refer to the specific sections for the notations and the definitions.

The first chapter: preliminaries. Heights of multiprojective cycles.

In the first chapter we collect algebraic, geometric and arithmetic tools useful to
address problems of Diophantine Approximation in multiprojective setting. The
main references here are | I 1 [ ] and | ]

In the first section we present the theory of Multihomogeneous Elimination
developed by G.Rémond. Given a multihomogeneous ideal I of a multigraded
polynomial ring K[X], we define the eliminant ideals €4(I) and we give an
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algebraic interpretation of them. We then recall the basic properties of UFD
rings and DVR rings. We make a choice of the representatives for the irreducible
elements of a UFD ring, modulo multiplication by units, to define the principal
part of an ideal and the annihilant of a module. We then state the principality
theorem for the eliminant ideals and we define the eliminant forms elimy(I) and
the resultant forms resq (/) of a multihomogeneous ideal I of K[X]. We conclude
by giving some relevant examples of resultant forms.

In the second section we study the geometry of multiprojective spaces, i.e.
products of projective spaces P* :=P™ X ... x P™. We define a Hilbert-Samuel
polynomial for multigraded modules of finite type and we give some definitions
useful for the study of multivariate polynomials. We introduce the concepts of
subvarieties, divisors and K-cycles of a multiprojective space, we recall their
relation with multihomogeneous ideals and we define an intersection product
between K-cycles and divisors. We then use the Hilbert-Samuel polynomial to
give the definition of mixed degrees for multiprojective cycles, and we give a
geometric interpretation for these invariants. We extend the definition of resultant
forms to effective cycles. We study their behaviour under index permutations,
field extensions and intersections by hypersurfaces. We then give explicit formulas
for the resultant forms of O-dimensional cycles and for the degrees of arbitrary
resultant forms in terms of the mixed degrees of the cycle.

In the third section we measure the arithmetic complexity of cycles defined over
a number field through the definition of their heights. We start by recalling the
theory of absolute values over a number field. We then define the concept of
convex bodies and of adelic convex bodies, and we give relevant examples of
them. We define the absolute height of an algebraic number and of a polynomial
form as a sum of local contributions and then, given a multiprojective cycle Z,
we use its resultant forms resq(Z) to give the definition of its mixed heights
hu(Z) and of its heights relative to convex bodies h¢(Z).

In the fourth section we prove some of the basic properties of the heights of
multiprojective cycles. We give estimates for the heights relative to convex
bodies having a particular shape and we compare between the heights relative
to different convex bodies. We study the relation between mixed heights and
heights relative to specific convex bodies and then we give an arithmetic version
of Bézout’s inequality which estimates the heights of the intersection product of
a cycle with an hypersurface.

The second chapter: results. Small value estimates in dimension two.

In the second chapter we specialize to a bihomogeneous setting and we apply
the tools developed in the first chapter to prove a small value estimate for
polynomials in two variables. Here we follow closely the arguments in | ]
The main difference between that article and our work is that we replace P? and
homogeneous polynomials with P* x P! and bihomogeneous polynomials. The
outcome is a more finer statement in the end.

In the first section we state the main theorem, we discuss about the motivation
of the statement, and we prove a corollary along the lines of the main conjecture.
In the second section we study in details the arithmetic and the geometry of
Q-cycles of P! x P'. We consider separately the subvarieties having dimension
0, 1 and 2 and we study the effect of cutting a subvariety by a hypersurface.
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We then estimate the height of a 0-dimensional Z relative to a convex body C
in terms of the mixed heights of Z and of the evaluations P(«a) of polynomials
P € C at normalized representatives « of the complex points of Z.

In the third section we study the ring of polynomials C[X,Y]. We define the
translation automorphisms 7., and the invariant derivation D = XOain + Ygaiy2
on C[X,Y], and we give basic estimates for them. We state an interpolation
result due to D.Roy and V.Nguyen, which improves on a previous result of
Mabhler, and we use it to estimate the length of a polynomial for which we know
the values of enough invariant derivatives at a point. We then consider the set
I(D'Y’T) of multihomogeneous polynomials of multidegree D vanishing at a point
~ with multiplicity at least T. We show that if D < N and D is sufficiently

big, then every @ € I](\;”T) can be written as a combination of polynomials

P, e IS’T), and we prove estimates for such a decomposition. The proof takes
the form of a long division algorithm.

In the fourth section we define and estimate the multiprojective distance between
two points of PY(C) x P}(C). We also define the distance from a point of

P(C) x P! (C) to some analytic curve A,. We introduce the quantity [1$"" l(a,8)
and we use it to estimate from below and from above the distances of a point
(e, B) from 7 and from A,.

In the fifth section we prove a decomposition lemma for a generic multigraded
ring K[X] and a lower bound for the multiplicity of the resultant forms of an
arbitrary multiprojective space P™ := P™ x --. x P™. We then specialize the

result to prove that the resultant form res p p, p) (P! x P!) vanishes to order at

least T at each triple (P, @, R) of polynomials in ]g,T)_

In the sixth section we perform the construction of a 0-dimensional subvariety Z
with small height he(Z) relative to a specific convex body C. We first provide an
estimate for he (P! x P1) and we then cut P! x P! with appropriate hypersurfaces
to get the desired 0-dimensional subvariety Z. Finally, we estimate the mixed
degrees and the mixed heights of Z.

The seventh section is devoted to the proof of the main theorem.

We end the chapter with some comments about the results of this thesis and
with indications for possible developments.



Chapter 1

Heights of multiprojective
cycles

1.1 Tools of Multiprojective Elimination

Throughout this text we denote by N the set of nonnegative integers and by N
the set of strictly positive integers. Also, rings are intended to be commutative
and with 1. For every 1 < ¢ < ¢ we define e; € N? to be the standard basis
vector (0,...,1,...,0), with 1 in position i. We also set 1 :=e;+...+e,. Given
a € N7 we define

lal =1+ ...+ aq.

For n = (nq,...,ny) € N? we define n:=nq +... +n, and
N :=N™ x ... x N,
Given two nonnegative integers m,r € N we define NJ” := {a € N : |a| =1},
and if d = (d,...,dq) € N?, we set
1._ n;+1
Nytte= [ Npit
1<i<q
A ring R is multigraded (or N9-graded) if it admits a decomposition
=@ n,
aeN?

such that R,Rg C Rq4p for every o, 3 € N9. We say that the elements of
R, are multihomogeneous of multidegree o and we write deg(z) := « for every
T € Ry. A multigraded R-module M is a module over a multigraded ring R
which admits a decomposition M = @aezq M, such that RoaMpg C Myyg for
every a € N1, 5 € 74.

1.1.1 Basic definitions

Let K be any field, ¢ € Ny, n = (n1,...,ny) € N and n:=ny +... +n,. For
1<i<gq,let X = {X(()Z), e ,Xffi)} be a group of n; + 1 variables, and set

X ={xX® . x@

1
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We consider the ring K[X] multigraded by declaring deg(X j(-l)) = e; for every
1<i<¢q,0<j<n; Ford=(dy,...,dy) € N? we denote by K[X]q its part
of multidegree d and by Mg the set of monic monomials of multidegree d. If
a € Ng+1 we define the monomial

(q)

X .— X(()l)m,o o X7(111)a1,n1 B .X(()q)aq,o X Yang o K[X]4,

so that Mg = {X* : o € N3}
Let r € N and let d = (d(&, ...,dM) € (N?\{0})"*! be a collection of multi-
degrees. For 0 < i < r, we introduce the group of variables u?) = {u.(é) T me

My + and we consider, for 0 <4 < r, the general polynomial U; of multidegree
d® in the variables X:

U= Y u%eX®eKu?Xx].

n—+1
aeNd(i)

Set u= (u®,... u). We consider the ring K [u] multigraded by deg(ug)) =e]
for i = 0,...,7, where €/ is the (i + 1)-th standard basis element of N"*1.
Given d = (d@,...,d™) € (N9\{0})"*!, it will be useful to think of a polyno-
mial form F' € K[u] as an element of Sym (K [X],) ® - -+ ® Sym(K[X]},) or,
more concretely, as a polynomial map

F K[X]d(o) X - X K[X]d('r') — K.

This is possible, since the variables u(® are in bijection with coordinate functions
of the affine space K[X]qu) = AV, with

ny Uz

Therefore, with a slight abuse of notation, given F € K[u] and Fy,..., P, €
K[X]qwo X -+ x K[X]qm, we will write

F(Py,...,P.):= F(coeff(P), ..., coeff(P,)),
where coeff (P;) denotes the collection of the coefficients of P;, so that

P = Z coeff (P)x« X%,
aeNz(t)l
or, in other words, P;(X) = U;(coeff(P))(X).
If I is an ideal of K[X], we denote by I[d] the ideal of K[u][X] generated by I
and by the general polynomials Uy, ...,U,. We also consider the K [u]-module

My(I) == K[u][X]/I[d].

This module inherits a multigraded structure from K[X]. For k € N?, we
denote by My (I)x its part of multidegree k in the variables X. Every such
multihomogeneous part is a finitely generated multigraded K [u]-module.

We are now ready to introduce one of the most important objects studied by the
theory of Multihomogeneous Elimination.
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Definition 1.1.1. Let I be an ideal of K[X] and d = (d©®,...,d")) ¢
(N9\{0})" 1. We define the eliminant ideal of index d by

Cq(l) = {f € K[u] : Tk € N' 0y C I[d]}.

The following theorem ([ ], Théoreme 2.2) gives an interpretation of the
eliminant ideal in terms of polynomial equations.

Theorem 1.1.2. Let p : K[u] — K a morphism of rings (i.e. a specialization
for the general coefficients). Then, for all multihomogeneous ideals I of K[X],
the following conditions are equivalent:

1. p(€a(l)) = 0;

2. there exists a (finite) field extension L/K and a nontrivial zero of p(I[d])
in L™+ x ... x L™t that is, there exists x € (L™T1\{0}) x --- x
(L™at1\{0}) such that f(x) = 0 for all f € I and p(U;)(x) = 0 for all
0<s<r.

The following are easy properties of the eliminant ideal.

Proposition 1.1.3. If I is an ideal of K[X], then €4(I) = KJu] if and only if
My C VI. If T is a prime ideal of K[X] and 9M; ¢ I, then €4(I) is a prime
ideal of Kul.

1.1.2 The annihilant and the principal part in UFD rings

A ring A is a unique factorization domain, or UFD ring, if it is an integral
domain and every element a € A can be written as a finite product of irreducible
elements of A, uniquely up to order and multiplication by units. We also say that
A'is factorial. A ring A is a discrete valuation ring, or DVR ring, if it is a unique
factorization domain with a unique irreducible element (up to multiplication by
units).

Facts 1.1.4. The following are well-known properties of UFD and DVR rings.
1. A polynomial ring A[X7,...,X,] over a UFD ring A is again UFD;

2. if Ais a UFD ring and 7 € A is an irreducible element, then (7) is a prime
ideal of A and the localization A(,) is a DVR ring;

3. if A is a UFD ring and p is a minimal nonzero prime ideal of A, then p is
principal, generated by an irreducible element of A;

4. if A is a DVR ring and M is a finitely generated torsion A-module, then
M has finite length;

5. an integral domain A is a DVR ring if and only if there is some discrete
valuation v : K — Z U {oco} on the field of fractions K := Frac(A) of A
such that A = {z € K : v(x) > 0}.

It will be convenient to fix once and for all a set Irr(A) of representatives for
irreducible elements of A modulo multiplication by invertible elements. We
also require that the representative for nonzero units is the element 1. In the
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special case A = Q[X1, ..., X,,] we take a natural choice for those representatives,
modulo multiplication by +1, given by the condition that the coefficients of every
polynomial in Irr(Q[X71,. .., X,]) lie in Z and are coprime.

Given an ideal J of A, we say that an element a € A is a generator of the
principal part of J if it is a ged for all elements of J or, in other words,

e albforall be J;
e if ¢|b for all b € J then alc.

A generator for the principal part of an ideal J is unique up to multiplication by
units, so we can give the following definition

Definition 1.1.5. Let J be a nonzero ideal of A. We define ppr(J) to be the
unique generator for the principal part of J that can be written in the form

ppr(J) = H 7T

welrr(A)

If (S) is the ideal generated by a nonempty subset of A we let ged(S) := ppr({S)).
In the same vein we denote

Va = H T
welrr(A)

7 |a
for a € A\{0}. We complete these definitions by ppr({0}) := 0 and /0 := 0.

Given a finitely generated module over a UFD ring, we are now going to define
an element of the ring that, in some precise sense, encodes local multiplicities
for the annihilator of the module. Since it does not seem to have a name in the
literature, I will call it an annihilant for the module. It will be an essential tool
in the definition of resultant forms in section 1.1.3.

Definition 1.1.6. Let A be a UFD ring and M a finitely generated A-module.
If Anny (M) # 0, we define the annihilant of M by

wad) = J[ w00 ea,
welrr(A)

where £(My) is the length of the A(ry-module M. If Anny (M) = 0 we set
xa(M):=0.

Remark 1.1.7. The annihilant of M is well-defined because for every 7 € Irr(A)
the ring A () is a DVR and, if Anna(M) # 0, My is a finitely generated torsion
module over A, so that £(M(,)) is finite; moreover, one has

M(,T) 75 0 <— AHHAM) (M(ﬂ.)) 75 A(ﬂ.)
< (AHHA(M))(W) 75 A(ﬂ,)
<= Anny(M) C (n)

and therefore in the above product there are only a finite number of factors
different by 1, precisely those which correspond to the 7 dividing ppr(Ann(M)).
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We end this section with a result that proves to be useful for calculating length
over DVR rings (see | ], Lemme 3.1).

Lemma 1.1.8. Let A a DVR ring, M a finitely generated A-module and
AL AT S M0

a finite presentation of M with ¢ > s. Then ¢(M) is the minimum of the
valuations of the s X s minors of the matrix of ¢.

1.1.3 Eliminant and resultant forms

We use the notations of the previous sections and we fix a collection of multide-
grees d € (N9\{0})" !, where ¢ € Ny and r € N. We recall that A = K[u] is a
factorial ring and Mq([)k is a finitely generated K[u]-module for every k € N¢
and every ideal I of K[X].

If p is a prime ideal of K[X] we denote by ht(p) its (algebraic) height™), or rank,
defined as the supremum of the lengths of all chains of prime ideals contained in
p. More generally, if I is an ideal of K[X] we define ht() to be the infimum of
the heights of all prime ideals containing I.

We have the following

Lemma 1.1.9. Let I be a multihomogeneous ideal of K[X] with ht(I) > n —r.
Then there exists kg € N? such that

Ann gy (Ma(Dk) = Anng g (Ma(Di,) 5 Xk (Ma(Dk) = Xgu (Ma(I)x,)
for all k > ko. For such a k € N, we have €4() = Ann [y (Ma (1))

Proof. We begin with the following easy observation

Anng o (Ma(Di) = {f € Ku] - f.K[u][X]i € I[d]}
={feK[u]: fom C I[d]}.

Since €4(I) = Uyena1f € K[u] : f9 C I[d]} and the ring K[u] is noetherian,
we have €4(I) = {f € K[d] : f9Myx C I[d]} for all k > ko. This plainly gives
the first and the last assertion. The second statement is [ ], Lemme 3.2
and Théoreme 3.3. O

Definition 1.1.10. Let I be a multihomogeneous ideal of K[X] with height at
least n — r and d € (N9\{0})"*!. We define

elimg(]) := ppr(€q(1)),

and we call any nonzero scalar multiple of it an eliminant form of index d for I.
We also define

resqy (1) := Xru)(Ma(D)x),

for every sufficiently large k. We call any nonzero scalar multiple of it a resultant
form of index d for I.

(D Not to be confused with the arithmetic height we define in section 1.3.2
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We observe that the remark 1.1.7 implies that for every multihomogeneous ideal
I with ht(I) > n — r one has the formula

Velimg(I) = \/resq(I). (1.1.1)

If I is a prime ideal, Proposition 1.1.3 implies that elimg (/) € Irr(K[u]) and
that there exists m € Ni (uniquely determined if resq(p) # 1) such that
resq(l) = elimg(I)™.

The relevance of the definition of an eliminant form is essentially resumed in
the following principality theorem (] ], Corollary 2.15, | ], Lemma
1.34). Given a subset J C {1,...,q} we denote by X’ the group of variables
{X0U) : j € J} and we set ny = djesmnj. fde (N9\{0})"*! we denote

ryg=#{i: 0<i<r, dg»i) =0 forall j ¢ J} — 1. Equivalently, r; + 1 counts

the number of indices i for which the general form U; of multidegree d( lies in
K[u][X7].

Theorem 1.1.11. Let K be any field, r € N, I a multihomogeneous ideal of
K[X] and d € (N9\{0})"*1.
Then &4(I) is a principal ideal if and only if n; — ht(I N K[X7]) > r; for
every J C {1,...,q}. In this case €4(I) = (elimy(])). Otherwise, €q(I) is not
principal and elimg(l) = 1.

Nevertheless, we shall see that resultant forms are more suitable than eliminant
forms for applications to Multiprojective Geometry and Diophantine Approxi-
mation.

We end this section providing an explicit formula for the resultant forms of the
zero ideal T = (0) of K[X].

Lemma 1.1.12. Let d = (d®,...,d™) € (N9\{0})"*! be a collection of
nontrivial multidegrees. For every multidegree k = (ky, ..., k,) such that k > d(®
for every i = 0,...,n, we define the K [u]-linear map

¢k: K[u] [X]k—d(o) X ... X K[u] [X]k_d(n) — K[u] [X]k (1 1 2)

(AO ) ey An) = Z’lnlelAl. o
Let My be a matrix that represents the map ¢y with respect to some basis of
its domain and its codomain (they are free K[u]-modules). Then, there exists a
multidegree ko € N? with kg > d® for i = 0...,n and an element ¢ € K* such
that, for all k > kg, we have

resq((0)) = ¢ ged({det(A) : A € M}),

where 9 is the set of minors of My having maximum rank and where the ged is
taken into K[u], which is an UFD ring.

Proof. We see that x7_oK[u][X]x_qo = K[u]*® and K[u][X)x = K[u]?®),
where a(k), 8(k) are polynomial expressions in the ¢ numbers k1, ..., k;, with
coefficients depending on d. If we denote by T' = (T4,...,Ty) a group of ¢
variables and by «(7T') and 5(T) the polynomials corresponding to a(k) and B(k),

we see that 5(T") has degree n; in the variable T3, for ¢ = 1,..., ¢, and that it has

n1 g
a unique monomial with maximum total degree, namely LP(5(T)) = %
Tmg]!
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(see also formula (1.2.2)). Moreover a(T') has degree (n + 1)n; in the variable
T;, for i = 1,...,q, and has a leading monomial LP(«(T)) = LP(B(T))"**.
This implies that we can assume a(k) > S(k), for k sufficiently big, say k > k;.
We also notice that the map ¢x fits into a presentation for the K[u]-module

Nk := Ma((0))x = (K[a][X]/(0)[d])y:
K[u]*® 24 Ku)® 5 Ny — 0.

Given 7 € Irr(K[u]), tensoring by K[u](,) preserves the exactness of the presen-
tation ) N

(K[a))(l? = (K[u)) (5 = (Nie) () = 0,
and resy((0)) is calculated, for k sufficiently big, say k > ko, from the lengths of
the modules (Ny)(r) through the formula

resq((0)) = H M),
welrr(K[u])
Since K[u](,) is a DVR ring, Lemma 1.1.8 applies:
£((Nk)(m) = max{e € N: det(A) € ()¢ for all A € M}.

This proves the assertion with kg = max{ky, ko}. O

1.2 Multiprojective Geometry

1.2.1 The multihomogeneous Hilbert-Samuel polynomial

In | ] G.Rémond develops a theory of Hilbert-Samuel polynomials for
multigraded modules, which extends the usual theory for graded modules. He use
this tool to prove his theorems on the eliminant and resultant forms and to give
the definition of mixed degrees, which are measures of the geometric complexity
of multihomogeneous ideals. In what follows it will be convenient to denote by
I the intersection I N K[X(/)] for T an ideal of K[X] and J C {1,...,q}. We

also consider a family of variables 71, ...,T,, and T) will denote the sub-family
{Ti 1 E J}
If M is a multigraded K[X]-module, we give the following definitions.
e(M) = max n — ht ,
(M) Ann(M)Cpmlw( (»)) o)
es(M) := max  (ny —ht(ps)). -

Ann(M)Cp,M1Zp

Definition 1.2.1. Let K be a field and M a multigraded finitely generated
K[X]-module. We define the Hilbert-Samuel function of M:

Uy: 279 — N
k — dimKMk.

The following theorem asserts that the Hilbert-Samuel function is eventually a
polynomial function (] ], Théoreme 2.10).
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Theorem 1.2.2. Let M be a multigraded finitely generated K[X]-module. Then
there exists an unique polynomial Hys € Q[T4, ..., Ty] (called the Hilbert-Samuel
polynomial of M) such that for some ko € N? and for all k > ko we have
s (k) = Hu (k).

Moreover the polynomial Hp, has the following properties.

1. Hjs has total degree e(M) and, more generally, has partial degree e (M)
in the variables T(/) for every J C {1,...,q};

2. The coefficients of the monomial of H,; having maximal total degree are
positive.

1.2.2 The x-operator and operations on polynomials

Given a multihomogeneous ideal I of K[X] we are going to study the mul-
tihomogeneous Hilbert-Samuel polynomial for the multigraded K[X]-module
M = K[X]/I. To this extent, we first give some general definitions concerning
polynomials in many variables. We denote the collection of coefficients of a
polynomial P € Q[T,...,T,] by coeff(P) € Q\, so that we can write

P(Ty,...,Ty) = Y coeff(P)aT°.
aeNd

We define the total degree of P by totdeg(P) := max{|«a| : coeff(P), # 0} € N.
Given this, we introduce the leading part of a polynomial, defined as the sum of
the terms of higher degree

LP(P):= > coeff(P),T". (1.2.2)
|| =totdeg(P)

We also define the collection coeff (P) € QY of normalized coefficients of P by

—~—

1
coeff(P),, := o coeff (P)q,

where ol := aq! - a4!. We then denote the collection of normalized leading
coefficients of P by
LC(P) := coeff(LP(P)).

For a polynomial P € Q[T1,...,T,] and a multi-rational k € Q7 we define
another polynomial by

Aw(P)(Ty,...,Ty) = P(Ty,...,T,) — P(Ty — k1, ..., T, — kq)

To study the coefficients of Ay(P), we introduce the x-operator, following

[ I

Definition 1.2.3. We define the %-operator, * : QV' x Q7 — QY’, by the formula

q
(cxk)y = Z ki Cate,-

i=1
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Given ¢ € QY and a collection of multi-rationals (ki,...,k,) € (Q9)" we will
write cxky %+ --xk, for (... (ecxky)*---)xk,.. We also notice that this operation
is commutative, meaning that for every permutation o of {1,...,r} we have
cxkyx---xk, = cxkyq)*---xk(r). This is easy to prove as, for a,b € Q7,
we have

q q q
(cxaxb), = g b; - E AjCate;te; = g a;ibjCate, te; = (¥ b xa),.
i=1 =1

ij=1

For this reason we allow us to abbreviate ¢ x k; * - - - x k, with c*]_; k;. With
a slight abuse of notation, in case we have ¢ € QY for which ¢, = 0 for all
a # (0,...,0), we consider it simply as a number ¢ € Q. In other words, we
identify Q = QN6 — QN’. We thus also use the following notation.

Definition 1.2.4. Let ¢ € QY and d= (d™,...,d™) € (Q9)" a collection of
multi-rationals. We denote

{(c;d) =cxdW x...xd" €Q.

We will also consider a degenerate case of this definition: if c € Q = QYo we
define (c; 0) := c.

We have the following easy proposition about the coefficients of Agq(P).

Proposition 1.2.5. If P € Q[T,...,T,] is a polynomial without negative
coefficients in its leading part LP(P) and if d = (d1,...,d,;) € Q7 is a multi-
rational with d; > 0 for all ¢ = 1,...,q, then totdeg(Aq4(P)) = totdeg(P) — 1
and

LC(Aq(P)) = LC(P) *d.

Proof. Let ¢ := totdeg(P) and ¢ := coeff(P), and write

P(T)= Y cal®+ > cal™+:

la]=t |a|=t—1
so that
q
P(T—d)= Y calT®= > > dicicaT*® + > T+
la]=t la|=t i=1 la|=t—1

and therefore

q
Aq(P) = Z ZdiaicaJreiTa +n

laj=t—1 =1

where the monomials that are not shown in the above formulas all have total
degree < t—2. The proposition is then proved because the positivity assumptions
avoid cancellation in total degree ¢ — 1. O

Actually, one can give more general formulas for the x-operator taking into
consideration generating functions (see for example the Chow class of a cycle
and the corresponding Bézout formula in | D.
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1.2.3 Multiprojective cycles

Up to now we have considered ideals of K[X]. We recall now the link with closed
subschemes of P% := PR} x -+ x Py,

Definition 1.2.6. If I is an ideal of K[X] we define its multisaturation to be
the ideal B

I'={fe K[X]:JkeN? fom, CI}.
An ideal T is said multisatured if T = 1I.

We introduce, for every j € {0,...,n1} x {0,...,ny}, an indeterminate Z;, and
we denote by Z the collection of all the Z;. We consider the map of K-algebras

0: K|[Z] — K[X]
Z; o XD x0
The kernel of 6 is generated(®) by the polynomials of the form VAVASRAVAS
such that {j;, k;} = {l;;m;} for all i = 1,...,¢, and we know (see [ ], 10,
Ex.5.12 for the case ¢ = 2) that there is a canonical isomorphism

Proj(K[Z]/Ker(f)) = PR} x - x P},

If I is a multihomogeneous ideal of K[X], it is clear that §~1(I) is a homogeneous
ideal of K[Z] (graded by deg(Z;) = 1). The latter gives rise to a multihomoge-
neous ideal of K[Z]/Ker(f) and so to a closed subscheme of Proj(K[Z]/ Ker(6)).
Finally, the above isomorphism permits to attach to a multihomogeneous ideal T
a closed subscheme Z(I) of P%. The relevance of this procedure is given by the
following ([ ], 2.17)

Proposition 1.2.7. The application I — Z(I) described above induces a
decreasing bijection between multisatured multihomogeneous ideals of K[X] and
closed subschemes of P%. The adjective decreasing means that if I C J the
closed immersion Z(J) — P% factorizes as Z(J) — Z(I) — P%. We denote
the inverse of I — Z(I) by Z — Z(Z).

The only multisatured ideal containing 9t is K[X] itself. A multihomogeneous
prime ideal of K[X] that does not contain 9t is multisatured. The reduced
closed subschemes of P}, alternatively called subvarieties, correspond to radical
multihomogeneous ideals of K[X] not containing 9. The integral closed sub-
schemes of P} correspond to multihomogeneous prime ideals not containing 9y
and will be alternatively called irreducible subvarieties. A closed subscheme Z
of P have an underlying noetherian (Zariski) topological space and so, as it
is customary, one can define its dimension dim(Z) using chains of irreducible
subvarieties. The dimension of a nonempty closed subscheme of P} is a non-
negative integer bounded by n = dim(P% ). We observe that for a multisatured
ideal we have dim(Z(I)) = e(K[X]/I); in fact the first number is obtained, by
proposition 1.2.7, considering the length of chains of multihomogeneous prime
ideals; the second is calculated with chains of any prime ideals; the equality is
obtained combining | ], Lemme 2.5 and the fact that K[X] is a catenary
ring. Analogously, e;(K[X]/I) is interpreted as the dimension of the projection
of Z(I) over the product of the factors P}/, i € J.

We now introduce the concept of cycle following | ].

() About this fact, there is a mistake in [ ]
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Definition 1.2.8. A K-cycle of P} is a finite Z-linear combination
Z=> myV (1.2.3)
%

of irreducible subvarieties of P%. The subvarieties V such that my # 0 are
the irreducible components of X. The dimension of a cycle is the maximum
dimension of its irreducible components. A K-cycle is pure dimensional or
equidimensional if its components have all the same dimension. It is effective
(respectively, reduced) if it can be written as in (1.2.3) with my > 0 (respectively,
my € {O, 1})

For 0 < r < n, we denote by Z,.(P%) the group of K-cycles of P% of pure
dimension r and by Z," (P%) the semigroup of those which are effective. We also
set Z<s(P%) = B,_, Z(P%), Z;(P?{) =@ _, ZT(PR), Z(PY) := Z<,(P%)
and ZF(P%) := ZZ (P%). We define the group of divisors® Div(P%) :=
Zn—1(P%) and the semigroup of effective divisors Divt(P%) := Z | (P%).

For every multihomogeneous ideal I of K[X] we associate the effective K-cycle

Z(1) = ZmpZ(P),
p

where the sum ranges over all minimal primes p O I and my = (((K[X]/I),).
If f € K[X] is a nonzero multihomogeneous polynomial, we get from the
well-known Krull’s hauptidealsatz that every minimal prime p containing f
has ht(p) = 1. Since K[X] is factorial, we also observe that every such p is
principal, generated by a multihomogeneous element of Irr(K[X]). Then, for
every multihomogeneous f € K[X] we define

div(f) == Z((f)) € Div" (Pk).

We say that a hypersurface div(f) intersects properly an irreducible subvariety
V of P% if f is not contained in the prime ideal Z(V'). We say that a divisor D
intersects properly a K-cycle Z if every irreducible component of D (which is a
hypersurface) intersects properly all the irreducible components of Z.

Definition 1.2.9. Let f € K[X] be a multihomogeneous polynomial and V an
irreducible subvariety of P%. Assume that div(f) intersects properly V. Then
we define the intersection product of div(f) and V by

V- div(f) == Z(Z(V), f)).

It is an effective cycle of pure dimension dim(V') —1. By linearity, the intersection
product extends to a pairing

Zy(Pg) x Div(Pg) --» Z, 1 (Px) , (Z4,D)— Z-D,

well-defined whenever Z and D intersect properly.

(3)1In this setting there is no distinction between Weil and Cartier divisors.
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1.2.4 Mixed degrees

If I is a multihomogeneous ideal of K[X], we see that K[X]/I is a finitely
generated multigraded K[X]-module. Therefore, thanks to theorem 1.2.2, we can
consider the polynomial Hyx)/r € Q[T1,...,Tq], with total degree e(K[X]/I).
One can prove (see | ]) that its normalized leading coefficients are non-
negative integers. Moreover, if I is a multihomogeneous multisatured ideal not
containing M1y, we have that e(K[X]/I) = ht(I) = dim(Z(I)). We can therefore
give the following definitions.

Definition 1.2.10. Given a multihomogeneous multisatured ideal I of K[X]
we define the collection of mized degrees of I by

deg(T) = coeff(LP(Hyx);1)) € N'etsixi/n,
If V is an irreducible subvariety of P}, we define
deg(V) = deg(Z(V)) € N'amw)
If Z=73%, myV is a K-cycle of P} we define
deg(Z):= Y. mydeg(V) €N'me,
dim(V)=dim(Z)

These definitions agree on the geometric and algebraic sides, meaning that
deg(I) = deg(Z(I)) for every multihomogeneous multisatured ideal I of K[X].
This is easily seen using the following decomposition formula (see | D

deg(I) = Y UK[X]y/I,)deg(p).
p21
ht(p)=ht(I)
Mixed degrees behave well with respect to intersection product, because they sat-
isfy the following version of Bézout’s theorem ([ |, Theorem 1.11, | I,
Lemme 2.11, | |, Théoreme 3.4).

Theorem 1.2.11. Let Z a K-cycle, d € N9\{0} and f € K[X]q a multihomo-
geneous polynomial of multidegree d such that Z and div(f) intersect properly.
Then

deg(Z - div(f)) = deg(Z) = d.

In case Z € Zy(P%) is a 0-dimensional cycle, we can give a nice interpretation of
its degree by passing to an algebraic closure K of K.

Definition 1.2.12. If V is an irreducible subvariety of P} and L/K is an
extension of fields, we define the scalar extension of V' by L as the L-cycle

Vi = Z(Z(V)®k L).

This notion extends to K-cycles by linearity and induces an inclusion Z, (P%) <
Z,.(P?). If Z is an effective K-cycle, then Zj, is also effective.
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It is easy to see that O-dimensional irreducible subvarieties of P correspond to
points in P?(K) =P (K) x --- x P"(K) (i.e. points in (K™ T1\{0}) x --- x
(K™« t1\{0}) modulo multiplication by scalars on each factor). Therefore, for
a general 0-dimensional K-cycle Z, we write Z;z = Zg me& for some points
¢ € P*(K) and mg € Z. Then deg(Z) € NV and if we identify N¥ = N and
write deg(Z) = deg(Z)o, we have (] ], Proposition 1.10 (3))

deg(Z2)=Zp = ngﬁ = ng. (1.2.4)
13 £

In general, we see that mixed degrees can be also defined geometrically (] 1,
Corollary 1.14).

Proposition 1.2.13. Let Z € Z,(P%) and § € N4. For 1 < i < g and
0 < j < B; we denote by H; ; the inverse image with respect to the projection
P% — P% of a generic hyperplane of P} (i.e. H;; = div({; ;) for a generic
ém» S K[X]e ) Then

i

q B
deg(Z)p =deg | Z - H H H; ;

i=1j=1

1.2.5 Properties of the resultant forms

Definition 1.2.14. Ifd = (d®,...,d™) € (NI\{0})"** and Z = 3, my'V €
Z;(]P";() is an effective K-cycle of dimension at most r, we define

resq(Z) = H resq(Z(V))™",
1%

and we call any nonzero scalar multiple of resq(Z) a resultant form for Z of
index d.

We remark that resq(Z(V)) = 1 if dim(V) < r. This follows from Theorem
1.1.11, formula (1.1.1) and the equality ht(Z(V)) = n — dim (V). We now collect
some of the basic and more relevant properties of resultant forms. For details
and proofs, we address the reader to | ] and | ]

The definitions of resultant forms agree on the geometric and algebraic sides
({ ], Théoreme 3.3).

Proposition 1.2.15. If I is a multihomogeneous ideal of K[X], then we have
the following decomposition formula

resqy(I) = H resd(p)Z(K[X]p/fp).
p21

In particular, we have resqy () = resq(Z(I)) for every multihomogeneous multisa-
tured ideal I of K[X].
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Resultant forms are invariant under index permutations (] |, Proposition
1.27).

Proposition 1.2.16. Let Z € ZH(P%), d = (d©,...,d") ¢ (N9\{0})"*!
and u = (u(®, ... u) the group of variables corresponding to d. Let ¢ be
a permutation of the set {0,...,7} and write od = (d@©) ... d(“()) and
ou= (u@O) .  u@m) Then

resed(Z)(ou) = resq(Z)(u).

Resultant forms are invariant under field extensions ([ ], Proposition 1.28).

Proposition 1.2.17. Let Z € ZF(P%),d = (d©,...,d™) € (N?\{0})"*! and
L/K a field extension. Then there exists A € L™ such that

resq(Z1) = Aresq(Z),
where Zj, is the scalar extension of Z by L (see Definition 1.2.12).

The resultant forms of effective pure dimensional K-cycles are multihomogeneous
polynomial forms and their partial degrees can be expressed in terms of mixed
degrees ([ ], Théoréeme 3.4).

Proposition 1.2.18. Let Z € Z;F(P%) and d = (d(?,...,d™) € (N?\{0})"+'.
Then resy(Z) is a multihomogeneous element of K[u] and its degree in the group
of variables u® is
deg(Z) o<j<r V).
J#i

Resultant forms behave well with respect to the intersection product of a cycle
with an hypersurface. In particular, it transforms it in an evaluation ([ 1,
Proposition 3.6).

Proposition 1.2.19. Let Z € ZF(P%), d = (d©,...,d") € (N?\{0})"+1,
d = d®,...,d"Y), v = (u®,...,u""Y) the group of variables correspond-
ing to d’ and f € K[X]qm such that Z and div(f) intersect properly. Then
there exists A € K* such that

resg/ (Z - div(f))(u’) = Aresq(Z) (W, coeff (f)).

Remark 1.2.20. If Z and div(f) doesn’t intersect properly, we see that there
is an irreducible component V of Z such that f € Z(V). Since Z € ZF(P%)
is a pure-dimensional cycle, we have dim(V') = r. Therefore, for every choice
of multihomogeneous polynomials p; € K[X]qw for i = 0,...,r — 1, it is
easy to see that there is a nontrivial common zero of Z(V') and py, ..., p,—1 in
Kmtlx...x Kmatl where K is an algebraic closure of K. Hence, we see by the
definition of an eliminant form and by Theorem 1.1.2 that for every specialization
p: K[u] = K extending u(™ s coeff(f) we have p(elimg(V)) = 0. This implies
(if the field K is infinite, but we can address the case of K finite passing to an al-
gebraic closure K) that the polynomial form elimg(V)(u®, ... u™=b coeff(f))
is identically zero. Since resq(Z) is a multiple of elimy(V'), we conclude that
resq(Z)(u®, ..., ul™= coeff(f)) = 0 in case Z and div(f) doesn’t intersect
properly.
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Resultant forms have the following specialization property.

Proposition 1.2.21. Let Z € Z}(P%), d = (d?,...,d™) € (N?\{o})"*,
and let I be a finite set of indices. For every i € I let 61(-T) € N?\{0} and
denote by d; the collection of multidegrees (d(o), o, drh) 5ET)). Assume that
d" =3, 65” and let u’ = (u(® ... u""V). Then there exists A € K* such
that
resd(Z)(u’,coeff(H ) = /\Hresdi(Z)(u’,coeff(fi)) (1.2.5)
iel iel

for every field L containing K and every choice of polynomials f; € L[X] 5+

Proof. Since by Proposition 1.2.17 a change of coefficients affects the resultant
forms only by multiplication by a scalar, we can assume L = K. It is easy to see
that the divisor div(][;c; fi) intersects properly the cycle Z if and only if for
every i € I the divisor div(f;) intersects properly Z. Thus, if there is some ¢ € I
such that div(f;) doesn’t intersect properly Z, Remark 1.2.20 implies that both
sides of (1.2.5) are zero, and we are done in this case. Otherwise, we observe
that X - div([;c; fi) = Y/ (X - div(fi)) and we conclude with Proposition
1.2.19. O

We conclude this section by providing an explicit formula for the resultant forms
of 0-dimensional cycles ([ |, Corollary 1.38).

Proposition 1.2.22. Let Z € Z; (P%) a 0-dimensional effective K-cycle and

d € N?\{0} a nonzero multidegree. Write Zz = >_7_, m;&; with §; € P*(K) and
m; € N, and let & a choice of representatives for the points &; in (K™ +1\{0}) x
<o« x (K™at1\{0}) . Then there exists A € K* such that

resa)(Z) = A H Uo(§)™,
=1

where Uy € K[u][X] is the general polynomial of multidegree d .

1.3 Heights

A number field is a field which is a finite extension of Q.

Definition 1.3.1. An absolute value on a field K is a function |-| : K — Rxg
which satisfies

1. 2] =0 <= 2 =0;
2. Jx+y| < x| + |y| for all z,y € K (triangle inequality);
3. |zy| = |z| |y| for all z,y € K.

An absolute value |-| is called ultrametric if it satisfies the ultrametric inequality
|z +y| < max{|z|,|y|} for all z,y € K. It is called archimedean if it is not
ultrametric.
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An absolute value defines a metric on K and thus a topology on K. We say
that two absolute values on K are equivalent if they define the same topology,
and a place is a class of absolute values on K modulo equivalence. Given a
number field K, we denote by Mg the set of nontrivial places of K and by Mg o
the subset of the archimedean places of K. Ostrowski’s theorem says that the
elements of M correspond to the embeddings o : K — C up to conjugation,
whereas elements of M g\ M ¢ are in bijection with the prime ideals of the ring
of integers Ok .

For each v € M we select a corresponding absolute value |-|, on K and a real
number A, > 0 such that the following product formula holds

II I«

vEMK

M= (1.3.1)

v

for all z € K*. Since there are only a finite number of places such that |z, # 1,
this product is well-defined. We can also choose the numbers A, such that

> =1 (1.3.2)

vEMK 0

For each place v € Mg we choose an absolute value of Q which extends ||, on
K. We denote by C, the completion of Q with respect to this absolute value
and we again denote by |-|  the absolute value of C, which coincides with the
chosen absolute value on Q.

Definition 1.3.2. Let v € Mg a place of K and P =} ynt1 o X € C,[X]
a polynomial in some set of variables X with coefficients from C,. We define the
local v-norm and the local v-length of P respectively by

|Plo = HlaX{|Ca|U} , Ly(P):= Z ‘Ca|u-
aeNn+1

We will use the fact that for every P,@Q € C,[X] one has ||P||, < L,(P) and
L,(PQ) < L,(P)L,(Q) (see Lemma 2.3.2). We give analogous definitions for
polynomial forms f € K[u] C C,[u].

1.3.1 Convex bodies

Let L be a local field, that is a field which is complete with respect to an absolute
value |-|. It is well known that if V' is a finite dimensional L-vector space, all
norms on V are equivalent, so they define the same topology and we endow V'
with this topology. The notion of a bounded subset of V is also independent of
the choice of a norm. We may therefore give the following definition.

Definition 1.3.3. We say that a subset C of V is a convex body if it contains a
neighbourhood of zero, it is bounded and it satisfies the condition

Az +py €C

for any choice of points x,y € C and any A, u € L with

A+ |p <1 if |-| is archimedean
max{|A|, ||} <1 if || is ultrametric.
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To each convex body C of V, we attach a norm on the vector space of all
polynomial maps F: V — L.

Definition 1.3.4. If C is a convex body of a finite dimensional L-vector space
Vand F: V — L is a polynomial map, we define

I1E|lc :=sup{|F(z)|: = €C}.

We observe that the norm attached to a convex body C is well-defined because
C is a bounded set. Moreover, since C is a neighbourhood of zero, we have
|F|lc > 0 for all nonzero polynomial maps F: V — L.

Let now K be a number field and let V' be a finite dimensional K-vector space.
For every v € Mg we view V as a K-subspace of C, ® ¢ V under the map
z+— 1® x. Given a polynomial map F': V — K, we also denote by the same
letter F' the unique polynomial map from C, ® ¢ V to C, which coincides with
FonV.

Definition 1.3.5. Let V be a vector space over K of finite dimension n > 0.
An adelic convez body for V is a product

vEMEK vEMK
which satisfies the following conditions:
1. for each v € Mk, the set C, is a convex body of C, ®x V;

2. there exist an invertible linear map ¢ : K™ — V such that, except for
finitely many places v € M, the set C, is the image of the unit ball of C7,
B, := {x € C} : max |x;|, = 1}, under the linear map ¢, : C} — C,®xV
which extends ¢.

In the sequel we will be interested in a particular type of adelic convex bodies,
suitable for the study of Diophantine Approximation in multihomogeneous
setting.

Definition 1.3.6. Given a collection of multidegrees d = (d(®,...,d")) ¢
(N9\{0})" !, we define an adelic convez body of index d to be an adelic convex
body for the K-vector space K[X]gw X -+ X K[X]4q which has the form of
a cartesian product C = Cy x --- x C, where C; is an adelic convex body for
K[X]qm, 0< 5 <.

For any nonempty bounded subset S of a finite dimensional vector space W over
a local field L, which contains a basis for W, there is a smallest convex body of
W containing S. We call it the symmetric convex hull of S. In consists of all
points of W of the form A\jz1+...+ A sz with 2q,...,2, € Sand A\q,..., s € L
satisfying > |\;| = 1 if L is archimedean and max{|)\;|} < 1 otherwise. Given
this, we define the following operation on adelic convex bodies.

Definition 1.3.7. Let d’,d” € N?\{0} be nonzero multidegrees and let d =
d’ +d”. Moreover, let C' =[], C; and C" =[], C. be adelic convex bodies for
K[X]4: and K[X]aq~ respectively (hence of indices (d’) and (d”)). We define
their product C = C'C" as the adelic convex body C = [[, C, for K[X]q whose
v-component C, is the symmetric convex hull of the set of products Q'Q"” with
Q' € C. and Q" € Cl/, for each place v € M.



Heights 18

It is easy to see that this construction gives indeed an adelic convex body of index
(d). Tt is also easy to prove that the product of convex bodies is commutative
and associative.

We are now going to introduce examples of relevant convex bodies and to establish
comparisons between them.

Definition 1.3.8. For every multidegree d = (dy,...,dy) € N?\{0} and every
place v € Mg we define the following convex bodies

B :={P e Cy[X]a: |P|o <1},
Dl .= {L e Cy[X]e,: ||Lll, <1}, foralli=1,...,q,
D¢ == (D) ... (D)% C C,[X]a,

and the adelic convex bodies B =TT, B, plil = IL plil pd = 1, Dd.

For an index p € {1,... ,q}" 1 we define by eu the collection of multidegrees
ey = (€ugs---r€u,) € (NI\{o})"*'. (1.3.3)

Definition 1.3.9. For a collection of multidegrees d = (d(O),...,d(T)) €
(NI\{o})"*' and p € {1,...,¢}" we define the following (cartesian adelic)

convex bodies
B(d) = B(d(O)) X o0 X B(d(r))

DH = pliol ... x pler]

(0) (r)
DY .=Dd x ... x D",

)

of indices d, ey and d respectively.
We remark that DIl = Dei = B for all i = 1,...,q and D = D = B for
all pe{1,...,q}" "

Lemma 1.3.10. Let v be any place of K and d = (d4,...,d;) € NI\{0} a
nonzero multidegree. We have inclusions

q

[(ni + 1)~%Dg € BIY C dim(d)* DY, (1.3.4)
i=1
where we put €, := 1 if v is archimedean and €, := 0 otherwise, and where

dim(d) := #Mg = dimc, (C,[X]q) denotes the number of monic monomials of
multidegree d.

Proof. Given |d| linear forms L; ; € DS for i =1,...,qand j =1,...,d; it is
easy to see that their product P =[], H;li:l L; ; is a polynomial of multidegree
d and norm || P, < £,(P) < |TT{_; (ni+1)%| = [T{_; (ni+1)% (see Definition

1.3.2). Conversely, let P € C,[X]q with || P||, < 1. Then ﬁ(d)P is clearly in the
symmetric convex hull of all the monic monomials in C,[X]q, and since monomials

are trivially products of linear polynomials, we have ﬁ@)P € D4, O
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1.3.2 Heights of cycles

Let K be a number field. Following G.Rémond | ], we introduce the
concept of mixed heights for a multiprojective cycle Z € Z(P%). In fact, our
definition is slightly different from that of G.Rémond, because we use a different
notion of height for a polynomial. The effect is that our definition is easier to
use, but behaves worse with respect to geometric operations.

Then, following the work of M.Laurent and D.Roy | ], we introduce a concept
of height attached to a convex body. We then give the definition of the height
of a multiprojective cycle Z with respect to a convex body C. This last notion
of height has not been defined previously in the literature, but it is a natural
generalization to multiprojective setting of the ideas in [ ], and it will be
an essential tool in the proof of the main theorem of the next chapter. For this
reason we devote the next section to give some useful estimates related to this
new concept of height.

One of the most basilar notions of height that one can define in the theory of
Diophantine Approximation is the Weil absolute height of an algebraic number.

Definition 1.3.11. Let K be a number field, and o € K an algebraic number.
We define the Weil absolute (logarithmic) height of o by

h(a) = hi(e) == Y A, logmax{L,|al,}.
vEMK

The Weil absolute height of an algebraic number « is a nonnegative real number
that measure the arithmetic complexity of a. It does not depend on the field
K, meaning that if « € K C L, then hg(a) = hr(«). It is an important tool in
many problems of Diophantine Approximation, and there are plenty of references
on this subject. For example one can see | ] for a detailed presentation of
the basic results. We will use the following basic properties of Weil absolute
logarithmic height.

Proposition 1.3.12. Let «, 8 algebraic numbers. Then
L. h(a+ B) < k() + h(B) + log(2);
2. h(ap) < h(a) + h(B).

We stress the fact that the Weil absolute height is defined as a sum of local
contributions. We are going to give definitions of more general concepts of height
based on this feature.

We recall that we defined in Definition 1.3.2 the local norm of a polynomial to
be the maximum of the absolute values of its coefficients, with respect to an
absolute value |-|,. Summing up the logarithms of the local norms we define the
absolute height of a polynomial.

Definition 1.3.13. Let P € K[X] a polynomial with coefficients in K over
some set of variables X. We define the absolute height of P by

h(P):= Y Alogl|P|..
VEMEK
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We remark that the Weil absolute height of a number a € K is equal to the
absolute height of the polynomial x —a € K[X]. It is worth saying that if K = Q
and P is a polynomial with integer coprime coefficients, then its height is simply
the logarithm of its norm h(P) = log || P||.

We notice that a resultant form resqy is a polynomial form in K[u], and so we
give the following

Definition 1.3.14. Let p € {1,...,¢}""! and let e, be as in (1.3.3). Let V be
an irreducible subvariety of P% of dimension r. We define the mized height of V
of index u by

hu(V) := h(rese, (V).
We extend this definition to all irreducible subvarieties putting he (V) := 0 if
dim(V') # 7, and then by linearity to an arbitrary cycle Z = >, myV € Z(P%):

hu(Z):= > myhu(V).

B dim(V)=r

We use the product formula on K and the norm attached to the convex bodies
C, (see Definition 1.3.4) to define the height of a nonzero polynomial map
F: VoK.

Definition 1.3.15. If C is an adelic convex body for the finite dimensional
K-vector space V and F : V — C is a nonzero polynomial map, we define

he(F) = Y Aylog|Flle,.
vEMK

We extend this definition with he(0) := 0.

We recall that for every Z € Z,.(P%) and every d = (d©,...,d") € (N9\{0})"*+!
the resultant form resy(Z) can be seen as a polynomial map K[X]gw) X --- X
K[X]4q — K. We can then give the following

Definition 1.3.16. If V is an irreducible subvariety of Px of dimension r,
d € (N9\{0})"*! is a collection of multidegrees and C is an adelic convex body
of index d, we define the height of Z relative to C by the formula

hc(V) = hc (resd (V))

We extend this definition to all irreducible subvarieties putting he (V) := 0 if
dim(V') # 7, and then by linearity to an arbitrary cycle Z = >, myV € Z(P%):

he(Z) =Y myhe(V).

dim(V)=r

We remark that this definition does not depend on the choice of resqy(V') because
of the product formula on K.
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1.4 Estimates for the heights

We set some notation that will help us to get more readable formulas in the
following propositions.

Definition 1.4.1. If Z € Z,(P%) is an r-dimensional cycle of P} and d =
(d© ..., d™) e (N?\{0})"*! is a collection of nonzero multidegrees, we let

N; = (deg(Z);dD),

where d(® := (d©, .., E(i\), ...,d™) € (N9\{0})" is obtained by deleting the
i-th entry from d. In terms of the %-operator (see Definition 1.2.3) we have

N; =deg(Z)>kd(0)*--.*g(i\)*...*d(r)_
More explicitly, we have

Z H d(k) )(deg(Z Zi#j e’

1<p;<q k=0
0<i<r k#j
i#g

where the first sum is taken over all the u = po, ..., f5, ..., pr in {1,...,q}".
We also let

(4 (4)
di’ +n dy’ +n
dlm( ) #My = dimg K[X]q0 = ( 1 1) < a q>7

n1 Ng
and
q r

= 2 (Lan

1<pi<q k=0

0<i<r
where the sum is taken over all the = po, ..., g in {1,...,¢}" .
We also put ||n|| := max{ni,...,nq} and we will often use the estimate

log dim(d?) < log(|[n| + 1) ‘d@

coming from the general inequality (a+b) (b+1)=.
For the statements and the proofs of our estimates, we also need the following
definitions.

Definition 1.4.2. Let v € Mg and d € N\{0}. For any point o € C?*+1 x
- X (CZ‘ZH7 we consider the linear map of evauation at a:

,Ca : (CU [X]d — (CU
Q —  Qa)

We observe that, according to Definition 1.3.4, we have, for a convex body C, of
Cv [X]d:

a(@), = sup |Q(a)], -

QeCy
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Lemma 1.4.3. Let v € Mg any place and let a« € CHL x ... x cpatt any
point. Let d,d’,d”,C,,C!,C” as in Definition 1.3.7. We have

V> v YU

1£alle, = [1£a

e llLaller-

Proof. Every element @ € C, can be written as a finite sum Q = >_;_, L;Q.QY
where Q) € C) and Qf € CJ for i = 1,...,s, and where the coeflicients
As..oyAs € Cy satisfy 7 |\, < 1if v is archimedean and max; |\, < 1
otherwise. In both cases, we get |Q(a)|, < || Lalle; |Lallcy and thus [[La]lc, <
|Lalles I£allc. To establish the reverse inequality, we choose @ = Q'Q" with
Q' €C), and Q" € C)/, and we take the supremum of both sides of the equality
Q' ()], Q" ()], = |Q(c)|, over the set of all such polynomials Q. O

Definition 1.4.4. If P € C,[X]q is a polynomial of multidegree d € N? and C,
is a convex body of C,[X]q, we define the norm of P relative to C, by

IPllc, = inf{|p|, : p € C, and P € pCy}.

If P € K[X]q is a nonzero polynomial of multidegree d € N? and C =[], C, is
an adelic convex body of index (d), we define the height of P relative to C by

he(P):= Y Alog|P
vEMK

Co+

1.4.1 Comparison between convex bodies

We prove two propositions that compare the relative heights with respect to
different adelic convex bodies.

For the proof of the first proposition we need the following result ([ I,
Proposition 3.7).

Proposition 1.4.5. Let L be a local field and assume that V =V} x --- x V}
is a product of L-vector spaces of dimension dim(V;) = n; for j = 1,... k.
Moreover, let C be a convex body of V in the form of a cartesian product
C = (1 X --- x Cy, where C; is a convex body of V; for j = 1,...,k. Then, if
Fy, ..., Fy are multihomogeneous polynomial maps from Vi x --- x Vi to L and
if their product F' = F} - - - Fs has multidegree (dy, ..., dx), we have

s k
2d;
IFlle < TTIFlle < { T 7% | 1Flle,
i=1 j=1

where € := 1 if (L,|-|) is archimedean and € := 0 otherwise.

Proposition 1.4.6. Let C = Cy X --- X C,- be an adelic convex body of index
d=(d®,....,d®)) and let s be an integer with 0 < s < r. Suppose that d®) is

6 and that we

written as a finite sum of nonzero multi-integers d*) = 3", 8;

have a corresponding decomposition of Cs into a product

Cs = H Cs,i7

icl
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where C;; is an adelic convex body for K[X]J@ for each i € I. For each ¢ € I,

denote by ClY the adelic convex body which, as a cartesian product, has the
same factors as C except that the s-th factor C, is replaced by Cs ;. Then, for
any effective cycle Z of dimension r, we have

-2 Z N;log dlm(d(J) < he(Z Z he (Z) < 2N, Zlog dim(égs)).
0<j<r i€l el
Jj#s

Proof. The height of Z relative to a cartesian product of adelic convex bodies
does not change under a permutation of its factors, by Proposition 1.2.16, so we
may assume, without loss of generality, that s = r. By the effectivity assumption
and by linearity, we may assume that Z =V is an irreducible subvariety of P%.
Let F be a resultant form of V' of index d and, for i € I, let F; be a resultant
form of V of index d; = (d@,...,d"=1), 5ET)). Lemma 1.2.21 shows that there
exists ( € K* such that

F (Pl,...,PH,HQi> =C[[Fi(Po,- ., Proa, Qi) (1.4.1)
iel iel

for any field L containing K and any choice of polynomials Q; € L[X] 5

for i € I and P; € L[X]qu for j = 0,...,r — 1. Define polynomial maps

G:Cy[X]gwm — Cp and G; : C, [X]5<7-> for 7 € I by putting

G(Q):F(P()v"'apr—laQ) and Gi(Qi):F’L(POa"'7PT—1;Qi)a

for any Q € C,[X]4m and any Q; € C,, [X]a(_r) withie I. If Py,..., P._; isnot a
regular sequence in the ring K[X]/Z(V), then Remark 1.2.20 implies that G' and
G, are identically zero, for all i € I. Otherwise, Z’' := Z - div(Fp) - - - div(P-_1)
is a well-defined 0-dimensional cycle, and, by Proposition 1.2.19, G and G; are
resultant forms for Z’, respectively of indices d and d;, for ¢« € I. In any case,
thanks to Proposition 1.2.22 there exist elements aq,...,ay, € CP*T1\{0} x

- X (CZ"H\{O}, and (eventually zero) constants £ € C, and &; € C,, for i € I
such that

Nr.

GQ) =¢]]Qax) and  Gi(Q)) &HQ ),

k=1
for every choice of polynomials @ and @; with ¢« € I as above, and where
N, = deg(Z)*d® x-.-xd"~1) (see Proposition 1.2.11). By virtue of (1.4.1), we

have G(Q) = ¢ [],c; Gi(Qi) whenever Q = [[,.; Qi and therefore § = ([],c; &-
Applying Proposition 1.4.5 to the above factorization of the maps G and G; into
products of linear forms, we find

N
IGle,.. < €L, TT1Lale...

k=1

and
N,

&, [TLaulle,., < dim(a{"”)2Nre

k=1

Gille

i, "
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On the other hand, Lemma 1.4.3 shows that, for any a € C1 1\ {0} x --- x
Cyrt'\ {0}, we have [[Lalle,., = [T,esl£allc,.. .- Combining this with the previ-
ous inequalities and using the relation § = ([[;c; &, we get

IGe.., I < kI, TT (aim(e)2 < Gile,....) -

iel
Taking the supremum of both sides of this inequality over all choices of Py, ..., P._1,
we deduce -
1Flle, < 1¢l, TT (dim(6{)2¥ | Fill o )
il

Finally, taking the logarithms of both sides, multiplying them by A,, summing
over v € Mg and taking into account the product formula for , we get

he(V) < 2N, logdim8(” + 3" hew (V).
i€l iel
For the lower bound, fix a place v € Mg and a choice of polynomials @Q; € Cy; .,
for i € I. Put Q = [[;c; Qi and define C,-valued polynomial maps F and E;
for ¢ € I on the product space H;;é Cy[X]qw by putting

E(PQ, .. .,Prfl) = F(.P(), .. .,Prfl,Q)
and
El'(P(), - ,Prfl) = Fi(Po, .. .,Prfl,Qi)

for any choice of P; € C,[X]qw for j =0,...,r—1. By virtue of (1.4.1), we have
E = ([];c; Bi- Since E; is multihomogeneous of multidegree (N, ..., Ny_1) if
not identically zero, Proposition 1.4.5 gives

r—1
<l [T Elle, < | TT dim@9)*Y5% ] | By,
iel §=0

where C), := Cg X -+ X Cr_1,. Taking the supremum of both sides over all
choices of polynomials Q; € C;.; , with i € I and using the fact that Q =[], Qs
belongs to C, ., we get

r—1
<1, HHE‘H@ < H dim(d@)*Noc | | F|lc, -
icl j=0
Arguing as in the previous situation we deduce
r—1 .
> hew (V) < he(V)+2)  Njlogdim(dY)).
iel j=0

The thesis follows. O
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The second proposition is simpler.

Proposition 1.4.7. Let C = Cy x---xC, and C' = C}) x - - - X C.. be adelic convex
bodies of index d € (N?\{0})"!, and let Z be an effective cycle of dimension r.
Then, there exist a finite subset S of {0,...,7} x M such that C} , = C;, for
any (j,v) ¢ S. Moreover, for each (j,v) € S, there exists p;, € C such that
Cl, C p;jCjo. For such a choice of set S and numbers p; , with (j,v) € S, we
have
he'(Z) < he(Z)+ Y AoNjlog|pjulo.
(Jv)es

Proof. The existence of S and (p;,,)(jv)es follows from the definition of adelic
convex bodies (see Definition 1.3.5). To prove the inequality, we may assume,
by induction on the cardinality of S, that S consists of only one point (i,w).
Moreover, by permuting the factors of C and C’ if necessary, we may assume
that ¢ = 0. We may also assume that Z =V is an irreducible subvariety of P},
because of the linearity of the heights and of the numbers N;. This being so, let
F be a resultant form of V' of index d. Since F' is homogeneous of degree Ny on
the factor K[X]q0) by Proposition 1.2.18, we find

N
1Elles, < 1Flle. o0l

For the other places v # w, we have ||F|¢; = ||F|lc,, since C, = C,. Hence, we
get the desired inequality summing up the logarithms of these local data. O

1.4.2 Comparison between mixed and relative heights

The following results compare the mixed heights of G.Rémond with the heights
relative to the convex bodies DX and B(®).

Lemma 1.4.8. Let Z € Z}(P%) be an effective cycle of dimension r, let
pe{l,...,q}" " and for j = 0,...,r let B; := 3, . e,, € NI Then we have

h(2) < hpe(Z) < h(2) +log(Infl + 1) S deg(2),, (14.2)
=0

where |n|| := max{nq,...,ng}.

Proof. By the effectivity assumption and by the linearity of mixed heights,
relative heights and mixed degrees, it suffices to prove the assertion for an
irreducible subvariety Z = V. Let F' be a resultant form of V' of index e, and

let v € Mg. It is easily seen that if v is ultrametric, we have ||F||, = ||F'HD%,
whereas for v archimedean we have ||F||, < ||F||D% < Ly(F) < N||F||y, where N
is the number of nonzero coefficients of F. Since the form F' is multihomogeneous
of multidegree (deg(Z2); é;(j)> = deg(Z)g, on the factor K[X]ew, and since the
dimension of K [X]ew is n,, + 1, we have

N < (deg(Z)/ﬂo + ||n||) (deg(Z)/@r T n||>,

]| ]
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thus, using the general crude estimate (a:b) < (b4 1) we get

3

log N < log(|[n +1) »  deg(Z)g,
j=0

We conclude adding up the logarithms of the local norms and applying formula
(1.3.2). O

Proposition 1.4.9. Let Z € ZF(P%) be an effective cycle of dimension r,
d € (N9\{0})"*! a collection of multidegrees, and B := B as in Definition
1.3.9. We have the following estimate

hs(Z) — (h(Z);d)| < (2r + 3)log(|In| + 1) Y N;|d)],
=0
where ||n|| = max{ni,...,n,} and |[dV)| = d + .+ dszjj)-

Proof. We first compare between the heights relative to the convex bodies B(®)
and DY, In order to get more readable formulas, we set

T
Q:=log(||n|] +1) ZNj
=0

d(j)‘ .

By Proposition 1.3.10 we have that B = D¢ for every v € Mg\Mk .
Moreover, for every v € Mg o and every j € {0,...,7} we have pj_ﬂl,Df}(” c

BY?) ¢ D37 for the choice p;., = (||n] + 1)d(1j)+"'+dfzj). We can then apply
Proposition 1.4.7 with the choices S := {0,...,7} x Mg, C = B@ ¢ = D9
and with 8 :={0,...,7} x Mg, C' = B, C =D to get the estimates

hpa(Z) — Q < hg (Z) < hpa(Z) + Q. (1.4.3)

We now write D = D x D4 and we consider DI = (D[”)d(lr) . (D[q])dém
as a product of |d(”)| convex bodies. By Proposition 1.4.6 we deduce that

q
hEXDd(T) (Z) o Z d§T)h5xD[j] (Z) <20

j=1
We can therefore prove by induction that

h (Z) - (h(Z);d)‘ <2(r + 1)Q. (1.4.4)

Dxpa™

The thesis is proved by combining (1.4.3) and (1.4.4). O
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1.4.3 An arithmetic Bézout inequality
We report the following result (] |, Proposition 3.10).

Proposition 1.4.10. Let r € Nand s € N,.. For j =0,...,r, let V; be a vector
space over K of finite dimension n; > 0 and let C; be an adelic convex body for
V. PutC=Cox---xCrand V = Vy x---xV,.. Moreover, fori =1,...,s, let F}
be a multihomogeneous polynomial map from V' to K. Denote by F = F; - -- F
the product of these maps and by (di,...,d,) the multidegree of F. Then C is
an adelic convex body for V' and we have

he(F) <3 he(Fi) < he(F)+2 djlogn;.
i=1 7=0

We remark that with the notation set in Definition 1.4.1 we have that a resultant
form of an effective cycle Z € ZF(P%) of index d € (N?\{0})" ™! is a multiho-
mogeneous polynomial map from K[X]go X -+ x K[X]qe with multidegree
N = (N, ..., N;). We have the following

Proposition 1.4.11. Let d = (d®,...,d™) € (N9\{0})"*! and Z € Z;} (P})
an effective cycle. If F is a resultant form of Z of index d then

0 < he(Z) = he(F) <23 Njlogdim(d"). (1.4.5)

j=0
Proof. Write Z = Zle m; Vi, where Vq, ..., V; are the distinct components of Z
and m; > 0 for i = 1,...,s. By definition we have h¢(Z) = .._, m;he(V;) and
F = F™ ... F™ where F; is a resultant form of V; of index d and A € K*.
Then Proposition 1.4.10 together with the equality he(F;) = he(V;) and the
previous remark plainly give (1.4.5). O

The following proposition is an arithmetic version of Bézout’s inequality. It
estimates the relative height of the intersection of an effective cycle with an
hypersurface.

Proposition 1.4.12. Let r € N, d = (d®,... ,d") € (N?\{0})"t!, Z ¢
ZF(P%),and P € K[X]qm. Let also C = Cy X - -+ x C,. be an adelic convex body
of index d and ¢’ = Cy X -+ x Cr_1. Assume that P intersects properly the
effective cycle Z, and let Z’ be the intersection product Z - div(P) defined in
Definition 1.2.9. Then, we have

r—1
he(Z') < he(Z) + Nyhe, (P)+2 ) Njlog dim(dY)).
j=0

Proof. Let F be a resultant form of Z of index d. Let F’ the polynomial map
from K[X]gqw X -+ x K[X]gq¢-1 to K given by

F'(Py,...,P,_1) = F(P,...,P,_1,P).

Proposition 1.2.19 shows that F’ is a resultant form of Z’ of index d™. Since F
is homogeneous of degree N, on the factor K[X]y), we have the upper bound

1E e, < 1P

e IE e,
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for any place v € Mg. Summing up the logarithms over all the places, we get
he(F') < he(F) + Nyhe, (P).

Proposition 1.4.11 gives the inequalities

r—1
he'(Z') < he(F')+2) " Njlogdim(dY) and  he(F) < he(Z),
§=0

and this completes the proof. O



Chapter 2

A small value estimate

2.1 Statement of the main theorem

We define Dy : Clz,y] — C[x,y] to be the differential operator on the ring
Clz, y] defined by the formula D; := % + ya%. Given a polynomial P € Zz, y],
we define its norm || P]| to be the largest absolute value of its coefficients (see
Definition 2.3.1). For a real number o € R, the expression |«] denotes the
largest integer less than or equal a.

The aim of this chapter is to prove the following

Theorem 2.1.1. Let v = (§,n) € C x C* and let g, 7,v,0,%o,t1,t be positive
real numbers satisfying

max{tg,t1} =1, min{tg,t1} =¢ 1<7<1+14,

T<fB, v=1+t+B8—-7+6

and 6 > (7 —t)(1+t—171)/(8+1—7). Suppose that, for each sufficiently large
positive integer N, there exists a nonzero polynomial Py € Z[z, y] with partial
degrees deg, (Py) < [N™], deg,(Py) < [N" | and norm || Py || < exp(N?), such
that '
DiP < —N7Y). 2.1.1

(DL Py(€n)| < exp(~N) (21.1)
Then, we have £, € Q and moreover for each sufficiently large integer N we
have D! Py (£,m) = 0 for every 0 <i < 3|N7|.

This is a generalization of an analogous statement proved in [ ], Main
Theorem. The proof will follow the line of that article and relies on the theory
developed in the previous chapter.

As it was mentioned in the introduction, theorem 2.1.1 is motivated by Schanuel’s
conjecture, whose statement reads as follows

Conjecture 2.1.2. Let ¢ be a positive integer and let aq, ..., ap € C be linearly
independent over Q. Then

trdegg Q(ay, ..., ap, e, ..., e%) > L.

29
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This far-reaching conjecture contains nearly all known results and all generally
accepted conjectures on the transcendence of the values of the exponential
function and it is currently widely open. However in [ ] D.Roy proposes an
approach to tackle Schanuel’s Conjecture, and he proves that it is equivalent to
the following arithmetic statement.

Conjecture 2.1.3. Let ¢ be a positive integer, let y1,...,y, € C be linearly
independent over Q and ay,...,ap € C*. Moreover, let sg, s1, to, t1, v be positive
numbers satisfying

1
max{1,%p,2t1} < min{sg,2s1} <v < 5(1 +to+t1). (2.1.2)
Assume that, for any sufficiently large positive integer N, there exists a nonzero

polynomial Py € Z[x,y] with partial degrees deg, (Pn) < [N"], deg,(Py) <
| N1 | and norm || Py|| < eV, such that

¢ ¢
IDIICPN(Z m;yj, Ha;nj) < eXp(—NV)7 (213)
j=1 j=1
for any integers k,mq,...,my € N with k < N® and max{my,...,my} < N*°t.
Then
trdeg@ Q(yla e Y, 0y, Oég) Z L.
This conjecture was given in the form reported here in [Van]. It can be shown

that if Conjecture 2.1.3 is true for some positive integer ¢ and some choice of
parameters so, 1, to, t1, v satisfying (2.1.2), then Schanuel’s Conjecture 2.1.2 is
true for this value of ¢. Conversely, if Conjecture 2.1.2 is true for some positive
integer ¢, then Conjecture 2.1.3 is also true for the same value of ¢ and for any
choice of parameters satisfying (2.1.2).

Actually, there are both analogies and differences between the statements of our
Theorem 2.1.1 and of Conjecture 2.1.3, but we postpone a discussion on this
topic to the final section of this thesis § 2.8.

2.1.1 A corollary

We are going to deduce from Theorem 2.1.1 a statement that considers polyno-
mials in two variables evaluated at many points of a finitely generated subgroup
of G, together with their first invariant derivatives. To do this, we need to state
some results.

The following is a version of the well-known Liouville’s inequality (] I,
Proposition 3.14).

Theorem 2.1.4. Let K be a number field with d = [K : Q], let v € Mg an
archimedean place of K, and let ¢ € N1 be a positive integer. For 1 <14 < ¢, let
vi € K and let P € Z[z ..., 4] be a polynomial in g variables, with coefficients
in Z, which does not vanish at the point v = (y1,...,74). Assume that P has
partial degree at most N; with respect to the variable z;. Then

log|P(1)], = —(d = 1)log L(P) = d }_ Nih(7:).
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where L(P) = L,(P) denotes the length of P, i.e. the sum of the absolute values
of the coefficients of P (see Definitions 2.3.1 and 1.3.2).

The following is essentially a special case of Philippon’s multiplicity estimate
on commutative linear algebraic groups [ ]. We refer to | ], [roy] and
[ | for more on this result.

Theorem 2.1.5. Let G := C x C* and let X be a finite subset of G containing
e = (0,1). Assume that, for D € N? and Sy € Ny, there exists a nonzero
polynomial P € C[z,y] with partial degrees deg,(P) < D, and deg,(P) < D,
such that D¥ P vanishes on the sumset ¥ + X (where the sum is with respect
to the group law of G), for every k = 0,...,25y. Let ||, |71(2)| and |m2(X)]
be respectively the cardinalities of ¥ and of its images through the projections
7 :G— Cand my: G — C*. Then

. 4D, D

min{[3], Dy [ma(X)[, 2Dy [m(X)[} < =

So+1
Proof. We use the notation of | ], Chapters 5 and 8. Since C[z,y] C
Clz,y,y~ ], we can apply | ], Theorem 8.1 for the choice K := C, G =

Gt:=G,G ={e},dy=dy:=1,d=d" :=2, Dy := D,, Dy :== D,, Sy := S
and W the subspace of T,(G) = C? generated by the vector w = (1,1) to get a
connected algebraic subgroup G* of G™ of dimension < 2 such that, if we set

R W+ T,(G*
f=me ().

then

/ Z *
(‘%;EO) Card ( Z*G ) H(G*; D) < H(G"; D).
0

There are only three cases for the choice of G*.

o If G* = {e}, then ¢, = 1, #(G*; D) = 1 and Card (259*) = I3;

o if G* = Cx {1}, then £, = 1, H(G*; D) = D, and Card (Zg,?*) = |mo(2)];

o if G* = {0} x C¥, then £, = 1, H(G*; D) = 2D, and card(ﬂgg*) _

()]
Since in each of these cases he have (SOZ'%) =Sy +1and H(G";D) =4D,D,,
[6)
the thesis is proved. O

We are now ready to prove the following consequence of Theorem 2.1.1.

Corollary 2.1.6. Let ¢ be a positive integer, let (£;,7;) € CxC* forj =1,...,¢,
and let 8, 7,v,6,t9,t1,t be as in Theorem 2.1.1. Suppose that for any sufficiently
large positive integer N, there exists a nonzero polynomial Py € Z[xz, y| of partial
degrees deg, (Py) < [N™], deg,(Py) < [N*] and norm || Py || < exp(N”), such
that

‘ ‘
lePN(ijgjal_‘[n;nJ) S eXp(_N”)7 (214)
j=1 j=1
for any choice of integers k,my,...,my with 0 <k <3N7 and 0 < mq,...,my <

SNU+=7)/t Then, &,...,& are linearly dependent over Q.
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Proof. A direct application of Theorem 2.1.1 shows that &; and 7; belong to
the algebraic closure Q of Q in C for j = 0,...¢. We are now going to see
that Liouville’s inequality 2.1.4 implies that, for sufficiently large N, the left
hand side of (2.1.4) vanishes for all admissible choices of k,m1, ..., m,. Indeed,
let K be a number field containing all the numbers &1,...,&p,n1,...,7¢, let
d:=[K :Q] and let H := max{h(&),...,h(&),h(m),...,h(ne)}. We consider
on K the archimedean absolute value determined by the given inclusion K C C.
Let N,k,mq,...,mg such that the left hand side of (2.1.4) does not vanish.
Adapting the arguments of Lemma 2.3.6 one can show, since 7 < 3, that

L(DyPy) < exp(2N?)

for sufficiently big N. Moreover, by the basic properties of Weil absolute height
stated in Proposition 1.3.12, we have

£
h(ma&j + ... +me&e) < (log(my) + h(&;)) + (€ — 1) log(2)
=

14t—7
2

IN

(14+t—7)log(N)+£H + (£ —1)log(2) < N
for sufficiently big IV, and

14
h(ni™ - Z ) < 20HN 7

Therefore, using tg,t; < 1, Liouville’s inequality 2.1.4 gives

D1PN ijfijle > exp Q(d_ 1)Nﬁ —d(%H—i— I)NH 7T+1).

Since 1 < f < v and IHT*T +1<1+t+8—7<v, thisis contradicts (2.1.4)
for sufficiently big V.

Thus, for such N and for 0 < k < 3|N"|, D¥Py vanishes on the sumset
Yn + Xy where Xy consists of all points (mi&; + ... +mee, ni"" ---n,"") with
0<my,...,me <ANIHt=7)/t Gince the projections of ¥ on both factors of
C x C* have cardinality at least 1, and since 2| N7| < 3| N7|, it follows from
Proposition 2.1.5 that

4[N JIN" ]

min{[S], N ], 21N} < =

We have tg,t; <1 < 7,50 [N*] and 2| N | are greater than % for
sufficiently large N. This implies

to t1
D] < M < 4AN1HET
INT] +1
On the other hand, if the numbers &, ..., &, were linearly independent over Q

we would get the estimate

‘Z| Z ( +F7TJ + 1)[ > 4N1+t_T,

and this is a contradiction. O
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2.2 Subvarieties of ]P’(l@ X ]P’(l@

In this chapter we study in detail the geometric and arithmetic invariants of Q-
subvarieties of the multiprojective space P := IP}@ X ]P’(l@. We establish a few basic
estimates for the heights of cycles cut by an hypersurface and of 0-dimensional
cycles. We derive these estimates as corollaries of the general results of Sections
§ 1.3 and § 1.4. In this low-dimensional setting, cycles can only have dimension
0,1 or 2, and we have n =q¢=2 and ny =no = 1.

We identify the set of indices {1,2} with {z,y}. With this notation, we let
e, =e; = (1,0), e, = e; = (0, 1) be the standard basis elements of N and we
denote the mixed heights of index p € {1,2}""! of an r-dimensional cycle by

hQ(Z)v

where o € {x,y} ! is a string composed by letters of type x and y.
An element D € N? will be called nonnegative bi-integer, or bidegree. For D € N2
we denote by D, and D, its two components and we define

|D|:=D,+ D, and |D| :=max{D,, Dy}

For L, D € N? we write L < D if L, < D, and L, < D,. We also write L <D
to mean L, < D, and L, < D,.
An element ¢ € R% will be called a bi-constant and we denote by ¢, ¢, its two
components. Given two bi-constants c1,co € Ri we perform componentwise
multiplication and addition, so that we have

c1+ 2= (crz + Cop, Cly + Coy),

C1C2 = (01,102,m,01,y02,y),

and we define

cy ,__ C2x C2,y
cri=cy ey (2.2.1)

2.2.1 Two-dimensional cycles

The only subvariety of P = Pg x Py having dimension r = 2 is P itself. Tt is easy
to see that
Hox,y) = (Th + D)(T2 + 1).

This implies that the only nonzero term of deg(P) € NV is
deg(]P’)(l,l) =1.

An arbitrary collection of r + 1 = 3 multidegrees takes the form
d = (Do, D1, D2)

and in this situation we have (see Definition 1.4.1)

N() = (deg(P), (Dl, D2)> = D17$D27y + Dl,yDQ,x (222)
N1 = (deg(P); (Do, D2)) = Do,o D2,y + Do,y D24 (2.2.3)
Ny = (deg(IP’); (Do, D1)> = Do,le’y + DO,yDl,r (224)
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so that

> Nj|D;j| = [Do||D1||D2| = DooD1 D2 o — DoyDiyDay. (2.2.5)
=0

We are now going to see that the mixed heights hypr(P), hawy(P), hzyy(P),
hyyy(P) of P are pretty easy to describe. We then use this calculation to estimate
the height of P with respect to the convex bodies B(®).

Lemma 2.2.1. All the primitive multiprojective heights of P* x P! are 0.

Proof. In | |, Lemme 3.7 there is an explicit description of the resultant
form of P! x P! of index d = (e, e,, D), with D € N*\{0}. We recall the
construction in the case D = e,. We consider the set of variables

u® = {U-X qu} u® {uyo uyl} u® {uXo uxl)}
and u = {u® u® u®}. We consider first the 1 x 2 matrices

0 0 1 1
Mz = [ug(()) ug(ﬂ and My [ug/g) u§/1):|

We also introduce the vector of their minors

0 0 1
A = (ufy), —ul) uy), —uiy),

and then, for the generic linear forms
Lo=ul)Xo +uQ X1, Li=ul)Yo +ul)vi, Lo =u$) Xo +ulg) X1,

we have

elimg(P) = resq(P) = L2 (A) = ug?)ug() - ugzuggz (2.2.6)

With analogous notation and procedure, we check that for d’ = (e, ey, e,) we
have
elimy (P) = resqy (P) = ugfo)ug,l) — ug)ug/lo).

From these explicit formulas we deduce hayz(P) = hayy(P) = log(1) = 0. Since
by Proposition 1.2.16 the mixed heights are invariant by index permutation, we
get also hyzy (P) = hpgy(P) = hyzy(P) = hyye(P) = 0. For indices (e,, ey, €,)
and (ey,e,,e,) we get by the formulas (2.2.2)-(2.2.4) that Ng = N3 = Ny =
0. Proposition 1.2.18 thus states that the resultant forms res(e, e, e,)(P) and
res(e7/7e7/7e?/)(]I”) are homogeneous of degree 0 in all their variables. So, in this

case they are equal to the constant polynomial form 1 and again we deduce
hggs(P) = hyyy (P) = 0. O

Remark 2.2.2. We notice that formula (2.2.6) makes sense in virtue of the
specialization property of the eliminant forms (Theorem 1.1.2): indeed it is easy
to see that when the six variables in u are specialized to elements of a field L,
then the resulting linear forms Lg, L1, L; have a common zero in P} x P! iff

(0 (0)
det ( 23 u@) = 0. We also notice that (2.2.6) is also consistent with the
Ux

formula 0for thle degrees of resultant forms from Proposition 1.2.18: we have
d = ((1,0),(0,1),(1,0)), so the resultant form is homogeneous of degree Ny = 1,
N; =0, Ny = 1 respectively in the coordinates u(®, u u®.
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Lemma 2.2.3. Let d = (Do, D1, D2) € (N?9\{0})? be a collection of nonzero
bidegrees and let B = B® be as in Definition 1.3.9. Then, for P = Pg x Pg, we
have

hB(P) S 710g(2)(|D0| |D1| |D2| — DO,xDl,zD2,z — DO’yDLyDg’y).

Proof. The result follows directly from (2.2.5) and from Proposition 1.4.9, where
Z=P,r=2,|n||=1and h, =0 for all ¢ € {z,y}® thanks to Lemma 2.2.1. O

We notice that in the case Dy = D1 = Dy = D Lemma 2.2.3 reduces to

hs(P) < 2110g(2)D, D, |D| .

2.2.2 Omne-dimensional cycles

The Hilbert-Samuel polynomial of an irreducible subvariety Z of P of dimension
r =1 is a polynomial in two variables of total degree 1, so it takes the form

H=aly + 015 +c.

This implies that there are only two nonzero components of deg(Z):

deg,(Z) := deg(Z)(1,0)  deg,(Z) := deg(Z)(0,1)-
An arbitrary collection of r + 1 = 2 multidegrees takes the form

d = (Do, D1) = (Do, Doy), (D1.e, D1y))

and in this situation we have

No = (deg(Z); (D)) deg, (Z) D1, + deg, (Z) D1y

Ny = (deg(Z); (Do)) = deg,(Z) Do + deg, (Z) Do,y
so that

> Nj|D;| = deg,(Z) (2Do.+ D10 + Do.w D1y + Doy D12)+

Jj=0

+ degy(Z) (QDO’yDLy + Do,le’y + DO,yDl,m)~
Finally, we have three different mixed heights in this situation, namely
haa(Z), hay(Z) = hye(Z), hyy(Z).

The easiest way to produce a 1-dimensional cycle of P is to consider hypersurfaces.
Actually, since Q[X, Y] is a factorial ring, all its primes of height 1 are principal,
generated by an irreducible polynomial. Thus all integral closed subschemes of
dimension 1 in P are in fact hypersurfaces.

Proposition 2.2.4. Let D € N?\{0} be a nonzero bidegree, let C be a convex
body of C[X,Y]|p, C' =C x C and C” = C’ x C. Suppose that there exists a
nonzero polynomial P € Z[X,Y]p NC. Then Z' = div(P) is an effective cycle
of P= ]P’(b) X ]P’(lQ of pure dimension 1 which satisfies
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(i) deg,(Z') =D, and deg,(Z')= Dy,

(ii) hao(Z') < 11log(2)D,,
hay(Z') < log||P|| + 91log(2)| D,
hyy(Z') < 11log(2) Dy,

(iii) her(Z') < hen(P) + 8log(2) Dy Dy | D).

Proof. We consider Z’ as the intersection product Z’ = P-div(P) as in Definition
1.2.9. Then, (i) follows from Theorem 1.2.11 while (iii) derives from Lemma 1.4.12,
because h¢(P) <0, Ng = N; = Ny = 2D, D, and logdim(D) < log(2)|D|. To
prove (ii), we note that we have P € ||P|| B for the convex body B = B(")
of Definition 1.3.8 and so, by Lemma 1.4.12 applied to the convex body £ =
Blewer:D) = pew x Do x B for p,v € {x,y}, we get

hpewxpes (Z') < he(P) + Ny log|| P|| + 21og(2)(Ng + N1),
with

1 fu#v

N, =D,., N,=D,., and Ngzaﬂ’yc:{o N

thanks to the explicit calculations in equations (2.2.2)-(2.2.4), where u¢ (resp.
v°) is defined to be the only element in {z,y} different from p (resp. v). Then,
since Do+ x D = DY) we see that (ii) follows by combining this upper bound
with the estimates

hu(Z') < hpoun (Z')

coming from Lemma 1.4.8 and
he (P) < Tlog(2)(|D] — Dyudpuw)-

coming from Lemma 2.2.3. O

2.2.3 Zero-dimensional cycles

The Hilbert-Samuel polynomial of an irreducible subvariety Z of P of dimension
r = 0 is a polynomial of total degree 0, so it must be constant. This implies that
there is only one nonzero component of deg(Z), namely

deg(Z) := deg(Z) 0,0y € N.

With a bit of abuse of notation we omit parentheses from collections of multide-
grees with only one element, writing

d=D = (D,,D,).
Here we have a degenerate calculation for Ny
No = (deg(Z); 0) = deg(2),
so that .
> N;|Dj| = No |D| = deg(Z)(Da + D).

=0
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In this case we have to deal with only two mixed heights, which we collect into
MZ) = (ha(Z), hy(Z)).

As we have seen in Section § 1.2.4, we have a simple description for 0-dimensional
subvarieties of P. Indeed, let Z be a 0-dimensional irreducible subvariety of P.

Then Z(C) consists of exactly deg(Z) points, which actually lie in Z(Q) and are
conjugate to each other through the action of Gal(Q/Q).

We can obtain a 0-dimensional cycle by cutting a 1-dimensional subvariety with
an hypersurface.

Proposition 2.2.5. Let d = (Dy, D) € (N*\{0})? be a pair of bidegrees, let
C = Cy x C be a convex body of C[X,Y]p, x C[X,Y]p, and let Z be an
irreducible subvariety of I% X ]P’qll) of dimension r = 1. Suppose that there exists
a polynomial P € Z[X,Y]p N C which does not belong to the ideal of Z. Put
No = D, deg,(Z)+ D, deg,(Z) and let ;1 € {z,y}. Then there exists an effective
cycle Z' of Pgy x Pg, of pure dimension 0 which satisfies

(i) deg(Z’) = Ny,
(ii) hu(Z") < Dyhya(Z) + Dyhyy (Z)+
+deg,,(Z2)(510g(2) | D[ + log|| P[|) + 7log(2)No,
(iii) hey(2') < ha(Z) + 2108(2)| Do| No.

Proof. Define Z' to be the intersection product Z’ = Z - div(P) as in Definition
1.2.9. Then, (i) follows from Theorem 1.2.11 while (iii) derives from Lemma
1.4.12, because h¢(P) < 0. To prove (ii), we note that we have P € ||P| B for
the convex body B = B(P) of Definition 1.3.8 and so, by Lemma 1.4.12 applied
to the convex body £ = B(exD) = Dex x B for u = x,y, we get

hoen (2') < he(Z) + N{ log|[P|| + 2log(2) N,

where Ni = deg,(Z). Then, since D = D!, we see that (ii) follows by
combining this upper bound with the estimates

hy(Z") < hpu(Z")
coming from Lemma 1.4.8 and
he(Z) = Dohye(Z) = Dyhyy(2) < 5log(2)(No + |D| deg,,(2)).
coming from Lemma 1.4.9. O

Definition 2.2.6. Given o € P"(C) x - - - xP"¢(C), we say that a representative
a=(aM,. .. al@)ecCmtlx...xCratl = C"Y of v is normalized if it satisfies
la®| =1 fori=1,...,q, where ||| denotes the sup norm of C™+1,

Proposition 2.2.7. Let D = (D,, D,)) be a nonzero bidegree, let C be a convex
body of C[X,Y]p, let Z be a subvariety of Pg x Pg, of dimension 0, and let Z
be a set of normalized representatives of the points of Z(C) by elements of C*.
Then, we have

he(Z) = Dyhy(Z) — Dyhy(Z) = log sup |P(a)|| < 6log(2)|D| deg(2).
ac”Z €
- (2.2.7)
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Moreover, if there exists a polynomial P € Z[X,Y]p N C which does not belong
to the ideal of Z, then we have h¢(Z) > 0 and

0 < 3log(2) |D| deg(Z) + Dyhy(Z) + Dyhy(2) + > log|P(a) (2.2.8)
acZ

Proof. Let F' be a resultant form of Z in degree D with integer coefficients.
There is a constant a € C* depending only on F' and Z such that, for any
P e C[X,Y]p, we have

P)=a]] Pla). (2.2.9)

acZ
As this is a factorization of F' into a product of deg(Z) linear forms on C[X,Y]p
Proposition 1.4.5 gives

0< he(Z)—1logla| — Z logsup{|P(a)| : P € C} < 2deg(Z)logdim(D).
acZ
(2.2.10)
Applying this estimate to the convex body B = B(P) instead of C, we get

0 < hp(Z) —logla| < 3deg(Z)logdim(D) (2.2.11)
because for each of the deg(Z) points « of Z, we have
0 <logsup{|P(a)| : P € B} <logdim(D).

Combining Proposition 1.4.9 with the explicit calculations given at the beginning
of Section § 2.2.3 we get

|hB(Z) — Dyhe(Z) — Dyhy(Z)| < 3log(2) |D| deg(Z). (2.2.12)

Putting together the inequalities (2.2.10),(2.2.11) and (2.2.12) and using that
logdim(D) < log(2)|D| we deduce (2.2.7). Finally, if a polynomial P €
Z[X,Y]p NC does not belong to the ideal of Z, then we have F(P) € Z \ {0}
and so log |F'(P)| > 0. The estimate (2.2.8) then follows from (2.2.9), (2.2.11)
and (2.2.12), because we have

logla| < hp(Z) < Dyhe(Z) + Dyhy(Z) + 3log(2) | D] deg(Z)

and

—log|a| < log|F(P)| —logla| = ) log |P(a)
a€c”Z

2.3 Estimates on C[X,Y]

2.3.1 Definitions and basic estimates

Here we shall work with the ring C[X,Y] in the two groups of variables X =
(X0, X1) and Y = (Yo, Y1). Given D = (D,, D,) € N? we denote by C[X,Y]p
the set of bihomogeneous polynomial of bidegree D, i.e. homogeneous of degree
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D, in the variables X and homogeneous of degree D, in the variables Y. We
recall the definitions of |D| := D, + D, and | D|| := max{D,, D, }, and we define
dim D := dimc C[X,Y]p = (D, + 1)(Dy + 1).

When the bidegree D is clear from the context we shall for brevity denote by X*Y?
the monomial X’*~*X fYODy_bYlb, with the convention that this expression is 0
when one of the exponents involved is negative.

Definition 2.3.1. Given a (nonzero) polynomial @ € C[X,Y], we define its
norm ||Q|| as the largest absolute value of its coefficients and its length £(Q) as
the sum of the absolute values of its coefficients. We define somewhat consistently

IOl = 0 and £(0) = 0.
We will often use the following properties of the length
Lemma 2.3.2. For every P,Q € C[X,Y] we have
L(P+Q) < L(P)+L(Q) L(PQ) < L(P)L(Q). (2.3.1)

Proof. The idea for the proof of both inequalities is to replace the coefficients by
their absolute values and to evaluate the resulting polynomial in (1,1,1,1). If
write the polynomials P, @ in the standard form

P=>Y pX"Y% Q=) ¢X*Y".

veN? veN?
we have
LP+Q =Y Ipv+al< S (pol +lal) = L(P) + £(@Q),
veEN? veN2

thus the first inequality is proven. Similarly, we have

LPQ=>"1" paasl <D > Ipallasl = LIP)LQ).

veN? o, BeN? veEN? o, BEN?
a+pB=v a+p=v

O

Let G denote the commutative group (G, x G,,)(C) = C x C* with its group
law written additively. For each v = (£,n) € G we define ¥, := (1,£, 1, 7).

Definition 2.3.3. We denote by 7, the C-algebra automorphism of C[X, Y]
given by
T'Y(P(X? Y)) = P(X07 gXO + le }/07 77Y1)7

so that, for every v,~" € G and any P € C[X, Y], we have
(T P)(0y) = P(Uy4y) and 7y 0Ty = Typqr.
We also define on C[X,Y] the following derivation

Definition 2.3.4. 9 9
D:=Xo— +Yo—.
“ax, T %oy,
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This operator is G-invariant, meaning that that 7, oD = Do 7, for any v € G.
For every bidegree D € N? we have that
D(X?Y?) = aX* 1YY + bX2Y?.

Finally, we introduce, for every T" € N, an ideal of C[X,Y] consisting of
polynomials vanishing in v to order at least T

Definition 2.3.5. Let 7 € N,. We denote by 107 the ideal of C[X,Y]
generated by all bihomogeneous polynomials P satisfying D'P(d.,) = 0 for
i=0,...,7—1. For D € N2, the symbol IS’T) represents its homogeneous part
of degree D.

We will see in Section § 2.4 that this ideal can be used to estimate the distance
of a point « from ~.
We first establish a lemma providing estimates for 7,Q and D'Q.

Lemma 2.3.6. Let D € N? and Q € C[X,Y]p. For any v = (£,7) € G and
i € N, we have

L(Q) <a(MPIQI,  L(D'Q) <D L£(Q)

and ,

D'Q(V,)] < e2(m)” DI L(Q),
where ¢1(7y) is a pair (2 + [¢],1 + |n]) and similarly ca(7y) is a bi-constant
(max{1, [¢]}, max{1,|n|}). We recall (see the beginning of Section § 2.2) that we
use the notation (A4, B)” to shorten the expression AP= . BPv,

Proof. We write the bihomogeneous polynomial @) in the standard form
Q= > XY
(a,b)<D

so that
L)< Y ¢ (qa’b XD~ (g X + XI)GYODy—b(nyl)b>

(a,b)<D
< > fgapl 1+ D 1 ()
(a,b)<D
D, D,
<UD (el + 1> Inl” < ea(M” Q|-
a=0 b=0

For the second inequality we inductively apply the following

LDQ)=L( > upaX 'Y’ + g, bXY")
(a,b)<D

< DL(Q) + DyL(Q) = [D]L(Q).
As for the third, it is a direct consequence of the second inequality because

Q(1,6,1,7) < L(Q) max_|¢[*[n|"

(a.b)<D

for every Q € C[X,Y]p. O
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2.3.2 An interpolation result

We report the following proposition due to D.Roy and V.Nguyen (Lemma 3.1
in | 1), which is an improvement of Mahler’s formula (7) from page 88 of
[ ], also stated as Lemma 2 in | ]. We use the notation

i© =1, W .=i(i—1)...(i—p+1) ,forieN, peN,

and the convention that the empty product is 1, in particular 20 = 1 for any
ze€C.

Lemma 2.3.7. Consider the linear recurrence sequence u = (u;);en given by

n—1lm,—1

w; = Z Z A, iWair (i € N),

v=0 p=0
for fixed n € Ny, a, € C, my, € N; and A4, , € C, with «ao, ..., a,—1 distinct.
Set
n—1 n—1
M
M = E m, , ap = [ max H(l + | |)™
0<v<n \T,
v=0 v=0
. m,,s . . my
a1 = min H oy —a,|™ ) as = min min{l,|a, — a,|""}
0<v<n 0<v, ' <n
0<v'<n oty
v/ v

with the understanding that ay,as = 1 if n = 1. Then, we have

max |u;] .

<
ax |A#’V| T ajas 0<i<M

With the help of the above result we can prove the following interpolation
estimate.

Proposition 2.3.8. Let v € G, D € N* and put M = (D, + 1)(D, + 1). Then
the map
ClX,Y]p — CM
Q = (D'Q(Y4))o<i<m

is an isomorphism of C-vector spaces. Moreover, for each @ € C[X,Y]p, we
have

(2.3.2)

L£(Q) < ex(=7)"8Y max [D'Q(I,))| (2.3.3)
Proof. The second assertion is a quantitative version of the first because it
implies that the linear map (2.3.2) is injective and so is an isomorphism, its
domain and codomain having the same dimension M. Therefore it suffices to
prove the second assertion. To this end, we fix a polynomial @ € C[X,Y]p.
We first consider the case when v = e = (0, 1) is the neutral element of G = CxC*,
so that ¥. = (1,0,1,1).
Writing the polynomial @ € C[X,Y]p in the form

Q = Z Qu,v Xry"

(u,v)<D
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it is easy to see that for every ¢ > 0
D,
DZQ(’]?e) = Z q/L,l/ i(/"‘)ylfﬂ'.
pn=0

Therefore, by Lemma 2.3.7 with n = Dy+1, A, , = qu, 0w =vandm, = Dy+1
we get

Qg .
S < DY
900l < 5o [D'QWL)|
where
ag = 1
and

D41
ag M D41 1+ k
aq ng%%y (Dz + 1>( +v) 0<1,_£D (1/’ —v|

v/ v

M (D, + 1)1 \ P
= max e ——
0<v<Dy, \Dgy +1) \v!I(Dy —v)!

D,+1
M \ (D, :
T 0<0eh, ((Dx—i—l) ( v >(Dy+1)>

< oM QM M _ gM
using the general estimates (Z) < 2" and n < 2™. We conclude that
< M Dl
QI < 8" max [D'Q(0.)]

For the general case, we apply the previous result to 7.,Q) instead of Q). Since

D(1,Q)(Ve) = 7,(D'Q)(V) = D'Q(V,) for each i € N,

this gives
< qM i
Im@Qll < 8" max |D'Q(9,)|.
The conclusion follows as Lemma 2.3.6 gives £(Q) < ¢1(—7)”||7,Q] - O

Corollary 2.3.9. Let v € G and T' € N,. Define I, := IY . Then L, is a
prime ideal of rank 2 and I0T) is I,-primary of degree T'.

Proof. The ideal I, is generated by the homogeneous polynomials vanishing at
the point .. Therefore it is prime of rank 2. As (I,)T C I T) C L, the radical
of 1) s I,. Since I, is a prime of maximal rank, this is sufficient to conclude
that 7(rT) ig I,-primary. Moreover, for any choice of homogeneous polynomials
P,Q € C[X,Y] with P ¢ I, and Q ¢ T we find that PQ ¢ I""T). Thus,
I10nT) g I,-primary. Finally, consider the linear map ¢: C[X,Y] — CT given
by ¢(Q) = (D'Q(1,7))o<i<T for each @ € C[X,Y]. Then, Ig’T) is the kernel of
the restriction of ¢ to C[X,Y]p, for each D € N2, Thus, the Hilbert function
of I is given by H(IVT); D) = dime ¢(C[X,Y]p). However, Proposition
2.3.8 shows that p(C[X,Y]p) = CT when (D, +1)(D, +1) > T. Thus, for each
large enough bi-integer D, the value H (I (7). D) is constant equal to T" and so
IT) has degree T. O
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2.3.3 A division algorithm

The following technical lemma provides the inductive step needed in the proof
of the next two propositions.

Lemma 2.3.10. Let vy € G, let L, K, N € N?> and T € N, with
LoLy + LI <T < (Ly + 1)(Ly + 1)
L<K<N<Z2K-L, L#K. (2.34)

and let @ € 11(\77T). Then, we can write

1
- Ny—Ky
Q=) XV
4,j=0
for a choice of polynomials Q; ; € [?’T) (0 <i,j7 <1) satisfying

1

D L(Qig) < er(n)Fea(n) K (64K L(Q). (2.3.5)

4,7=0

Proof. Let us denote M, := XiD””Yij and A := {(1,0),(0,1),(1,1)}. Since
(2.3.4) implies N > 2(N — K — (1,1)), any monomial in X,Y of bidegree N is
divisible by at least one of the four monomials Mi\f{K (0 <i,5 <1). So, we can
write

1
Q= M P,
i,§=0
for some homogeneous polynomials P; ; of bidegree K with

1

> L(Py) = L(Q). (2.3.6)

Put M = (Ly + 1)(L, + 1). Then, for each (i, j) € A, Proposition 2.3.8 ensures
the existence of a unique polynomial R; ; € C[X, Y] satisfying

DkPiJ(’l?,y) for0<k<T,

D*R; ;(0,) =
() {o for T < k < M,
and shows, with the help of Lemma 2.3.6, that it has length

L(R;;) < ci(—7)t8M o hax IDFP; ;(9,)] < er(—) 8Mea ()X | KT L(P; ).

As M <2(LyL,+ || L||+1) —1 < 2T — 1, the above estimate simplifies to

—_

L(Ri;) < §01(*V)LCQ(V)K(64IKI)TE(Pi,j) ((3,5) € A). (2.3.7)

Furthermore, since 2K — L > N, N > K and K > L, the expressions

Qoo = Poo+ M N[ >0 MY KR,
(i,7)eA
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Qij =P ;=M R ;  ((i,5) € A)

are bihomogeneous polynomials of bidegree K which satisfy

1
S MY EQi =@ (2.3.8)

4,7=0

By construction, we have Q; ; € IO T) for (i, 5) € A. Since Q as well belongs
to IT) | we deduce that M(IX()_KQ(LO e I™T) and so Qoo € IT) because
Xo, Yy ¢ I, (see Corollary 2.3.9). Thus, (2.3.8) provides a decomposition of Q
with polynomials Q; ; € 11", 0 < i,j < 1. Using (2.3.6) and (2.3.7), we find
as announced

1 1

DLQi) <2 Y LRig)+ Y L(Piy) < er(=)Fea(n) (641K L(Q),

i,j=0 (i,5)€A 1,j=0

becauseG%T+1 < 64T for T > 1. O
On the qualitative side, this lemma has the following useful consequence.

Proposition 2.3.11. Let v = ({,7) € G, let D € N} and T € N, with
T < DD, +min{D,, D,}. Then, any homogeneous element of I (1) of degree

> D belongs to the ideal J of C[X,Y] generated by Ig’T). Moreover, for any
finite set of points S of P*(C) x P!(C) not containing ([1 : &, [1 : 1)), there exists

an element of IS’T) which does not vanish at any point of S.

Proof. The hypotheses on D and T imply that there exists a bi-integer L # D
such that L < D — (1,0) and L,L, + ||L|| < T < (L +1)(Ly + 1). Then, for
any N € N with N > D + (1,0), the conditions (2.3.4) of Lemma 2.3.10 are
fulfilled with K = N —(1,0) and the lemma shows that IJ(J’T) is contained in the

ideal of C[X,Y] generated by I 1(\7’_2,0). The same argument works for another
choice of L < D —(0,1), N > D+ (0,1) and K = N — (0,1). By induction,
we conclude that I§\7’T) C J for each N > D. This proves the first assertion
of the proposition. It also implies that I(*T) and J have the same zero set in

P(C) x P(C), namely {([1 : €], [1 : n])}, which leads to the second assertion. [

For the next proposition, in comparison with the homogeneous case (Proposition
3.7 of | ]), the simplification of the hypothesis in 2.3.10 allows one to
nearly halve the coordinates of N when they are very big, and we get a little
improvement for the choice of T. The main new problem that occurs in the
proof is that when only one coordinate of N is very different from that of D,
you can halve only one coordinate and so it becomes more intricate to deal with
this case.

In addition to this, we remark that we have N log|N| in the exponent of c3(7),
while in the homogeneous version one has simply N. It is possible to get an
estimate with exponent N also in this setting, at the cost of strengthening the
hypothesis on T' (to a condition of the form T < ¢D,D,,, with 0 < ¢ < 1), but
this minor improvement is ineffective, for the application he have in mind.
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Proposition 2.3.12. Let v € G, T € Ny and D € N2 with |D| > 3 and
1 <T < D,D,. Forany N € N> with N > D and any polynomial Q € II(V%T), we
can write Q =Y _y_p P,X"*Y"v for a choice of polynomials P, € Ij(:;”T)(z/ €
N2, v < N — D) satisfying

> L(P) < cg(y)'PN rIND | N 28T 0e(IND £, (2.3.9)
v<N—-D

where c3(v) = c1(—y)c2 (7).

Proof. We proceed by induction on N. For N = D, the result is clear. Suppose
that N > D, N # D and let @ € I](\?’T). The hypothesis imply that we can
choose a non-negative bi-integer L € N? satisfying L < D and L, L, +||L|| < T <
(Ly +1)(Ly + 1) = dim(L). We shall prove the thesis with the finer inequality

Z ,C(Pl,) < CQ(V)NCS('Y)/BD log(dim(N—L)) |N|2TB log(dim(N—L))ﬁ(Q)’
v<N—-D
(2.3.10)
where § = 210g% e=06.95....
To this extent, we also define

K= <max{D$, [w-‘ },max{D,, {w—‘ }) .

For this choice of K, we have N > K > D > L and 2K > N + L, so that the
conditions (2.3.4) of Lemma 2.3.10 are fulfilled. Moreover, since |N| > |D|+1 >
4, we have 64|K| < 64|N| < |N|* and so this lemma provides polynomials

Qij € IE?’T) satisfying

1 1
Q=Y MYKQi; and > L(Qi;) < () Fes(n)FINTLQ).
3,j=0 i,j=0
(2.3.11)
Since ¢1(y) > 1, co(y) > 1, > 2, dim(N — L) > 2-3 > ¢, it K = D, this
decomposition of @ has all the requested properties. Otherwise, assume that
K, > D, and K, > D, (the other case is symmetric), so that K, = [fetle],
We first notice that
2K — N <2D. (2.3.12)

Indeed 2K, — N < L, +1 < 2D,, and if Ky > D, then again 2K, — N, < 2D,,
else Ky, = Dy and 2K, — N, < D, becomes obvious. We also observe that

Blog(dim(N — L)) > Blog(dim(K — L)) + 2. (2.3.13)

To see this, we notice that N, > K, > D, > L., so N, > L, + 3, hence

Ne+ Ly 1
Ky<-2loe g2
=T 3
Ny —Ly+1
KI—L,U+1§%+1
KoL+l 1 1 1. 1_3
Ne—Le+1-2 N,—L,+1-2 4 1
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Since in addition N, — L, +1 > K, — L, + 1, we have #log(dim(N — L)) —
Blog(dim(K — L)) > flog (§=beth) > flog (4) > 2.

Now, by induction, we may assume that each @; ; in (2.3.11) admits a decompo-
sition Q;,; = Zng—D XV*Y" P; ;, with polynomials P; ;, € IS’T) satisfying

Z £ . 1/ < 02( )KCS('Y)BD log(dim(K—L))‘K|2T,B log(dim(K—L))E(Qij).
v<K—-D

If we substitute these expressions in the decomposition (2.3.11) of @ and we
collect terms, we obtain a new decomposition @ = Y n_p X"* Y™ P, with

(v.T)

polynomials P, € I;”"’ satisfying

1
Z [: < Cg ) CS(,Y)BDlog(dim(K—L))|K‘2Tﬁlog(dim(K—L)) Z E(Qz])
v<N—D i,j=0
< co (’)/)2K7L63 (’Y)ﬁD log(dim(KfL))JrL|N|4T|K|2T6 log(dim(KfL))E(Q).

As 2K — L > N and c3(7) > ca(7y) we have co(y)2K Ly ()PP log(dim(K=L)+L <
ca(7)N ez ()PP log(dim(K=L)+2K=N {sing (2.3.12) and (2.3.13) we deduce

BDlog(dim(K —L))+2K—N < D log(dim(N —L)) and 4T +2T 3 log(dim (K —
L) < 2TBlog(dim(N — L))), so that (2.3.10) holds, hence the thesis follows easily
from dim(N) < |N|2, valid for N positive bi-integer. O

2.4 Distance

Throughout this section, we fix a point v = (§,17) € G = C x C* and denote by
9, = ([1:&],[1: 7)) the class of ¥, = (1,£,1,n) in P}(C) x P}(C). To alleviate
the notation, we simply write ¢; and ¢y to denote respectively the bi-constants
c1(y) and cz(y) of Lemma 2.3.6, and c3 to denote the bi-constant c3(7) from
Proposition 2.3.12. In particular, we have

c2 = (Co.m, C2y) = (max{L, [}, max{1, [n|}) = ([(L, I, [I(L,mI])-

For each bi-integer D > 0, each positive integer T' > 1, and each point («, ) €
P!(C) x P*(C) with representative (, 3) = (ao, 1, o, f1) € C* of norm ||af| =
|3]] = 1, we also define

, T 1)
115 |y = sup{|P(a, B)] : Pe I |P|| <1},

where I](J%T) stands for the bihomogeneous part of degree D of the ideal 1(-T)
introduced in the preceding section. The goal of this section is to estimate this

quantity in terms of the projective distances between («, 3) and ¥, defined by

a1 —
disty(a, (1:6)) = 100t e,

e[ (L, )
disty (8, (1: 7)) = W = c5, |81 — Boél, (2.4.1)

bidist((a, #), 9,) = (dista (o, (1 : €)), dista (8, (1 : 1)),
dist((a, ), 9,) = [bidist((ax 8), 9,
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and in terms of the distance from («, ) to the analytic curve A, = {([1 :
&+ z],[1:ne®]) : z € C} defined by

dist(a, A,) = (% — nexp (% - 5)‘
when ag, 5y # 0.

2.4.1 Lower bound for the distance

For our first estimate, we use the following lemma.

Lemma 2.4.1. Let ((a, 8) € P! (C)xP*(C) with bidist((cv, 8),9,)) < (2¢2) 7! =
((2c2,2)71, (2¢2,)71), and let (a, B) € C* be a normalized representative of (a, 3).

Then we have (|agl, |Bo]) > (2¢2)7 L.

Proof. We have ||aq — apé|| = co4 disty(a, (1 : €)) < 1/2, so |a€] > |aa| —
1/2 = 1/2 and therefore |ag| > (2¢,,)~!. Analogously, we have also |3y >
(20277!)71. O

Proposition 2.4.2. Let D € N?\{0}, T € N, P € C[X,Y]p with P # 0, and
let (o, B), @, 8 be as in Lemma 2.4.1. Then we have

|P(a,B)] < o4 max D P(.,)]

P 2 +cLD|(dist(o¢,(1:g))T—i—dist((a,ﬁ),Aw))

(2.4.2)
where ¢4 = 12||¢s]| eXp(ch,z)'

Proof. Since by Lemma 2.4.1 we have «g, 8y # 0, we put

61=ﬂ—£ and 522&—77651,

g Bo

and consider the entire function f: C — C given by
f(z) =P(1,6+2,1,ne*) (2 €C).
Since o= 85 £(61) = P(aw, o1, Bo, Bi — 0230), we have
|P(a, B)] < lao|P=1Bol ¥ 1 £ (81)] + | P(cxo, a1, Bo, Br) — Plao, a1, Bo, B — 620)],

(2.4.3)
and since f is an entire function and £ (0) = D'P(9).,,) for each i € N, we get

Df’l

f(61) < Z =D P(0y)][0:]"

2.

=0

=14 o> ,
= E\DIP(L@M|51|Z+25|DZP(1’€,W)||51|Z

1=0 =T

0<i<T

, 1 e i
<! max [D'P(0,)| + Y <[Pl dim(D)ey |DJ| '
i=T



Distance 48

where the last estimate uses the upper bound |D'P(¥,)| < cP|DI'L(P) <
c2|DJ* - ||P||(Dy + 1)(D, + 1) coming from Lemma 2.3.6. To provide an upper
bound for the last series, we note that, since |ag| > (2¢2,)7!, we have

[01] = |ao| ™ lax — ag| < 263, dista(a, (1 : §)).
As distz(a, (1: €)) < (2c2.,)7" < 1, this gives |61 < ca, and, for each integer
i > T, we can write |6;|" < (2¢3 )" dist,(a, (1 : €))". Therefore,

(oo}

> APl dim(D)c’|D||64]

i=T

—_

< ||P|| dim(D)c® dist, ( TZ (2¢3 ,|D))’

il
< ||P|| dim(D)ey’ eXp(202,m)'D'dlst oz,(1 )"
< cP || P dist(a, (1 : €))7

The second term in (2.4.3) is easily estimated by writing explicitly the polynomial
P =3 (0p<pPap XY

|P(Q7ﬁ) - P(ga ﬁ()?Bl - 6260)‘

Dy D,
< PSS (ol ~lonl”) (3 180l P*~"18¢ — (81 — 62"
a=0 b=0
D'y
< |IPI(Ds +1) Z b(|B1 + 16280])" " 6250
b=0
< 1PYDa + )PP D 5 4 0, s expen, )P disi((0,8), A,),

where the last inequality comes from |62 < |02| = dist((c, 5), A,) and |B1] +
|6280] < 2+ |n|el?tl. The conclusion follows putting together all the preceding
inequalities, since el® < exp(ca2.) < ¢4, and dim(D)%(Q—ﬁ—Qy exp(ca . ))Pv 71 <
AIP1(2 + o] explen,q)) P17t < P, O
As an immediate consequence, we get

Corollary 2.4.3. With («,f),, 3 as in Lemma 2.4.1 and D € N3, T € N,

we have

15 ) < &7 (dist(er, (12 )7 + dist((@, ), A,).

2.4.2 Upper bound for the distance

We now turn to the problem of finding a lower bound for |Ig’T)|(a,5). To this
end, we first note the following consequence of Proposition 2.3.12.

Lemma 2.4.4. Let D € N?\{0}, T € N* with |D| > 3 and ||D|| < T < D,D,,
let (o, 8) € PL(C) x P! ((C) and let o, 8 € C* be a normalized representative of

it. Then, for any Q € I(T T;, we have

|Q(Q, ﬁ)| < C§5(T7T) log(2T) (2T)28T 1Og(2T)£(Q) ‘ISY,T) |(o¢,,@)-
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Proof. Fix a polynomial @ € 11(\7’T) and consider a decomposition of @ as
given by Proposition 2.3.12 for the choice of N = (T, T'). Since |P(a, )| <

L(P) |I(D7’T)|(a75) for any P € Ig”T), we obtain

\Q(%ﬁ” < Z \Pu(g,ﬁ)\ < C;S(T,T) log(QT)(QT)28Tlog(2T)£(Q) |Ig’T)‘(a7B)-
[v|<N-D
O

Proposition 2.4.5. With the notation and hypotheses of Lemma 2.4.4, we have
dist(a, (1: €))7 < (esT)* 75D 0 ).
Moreover, if bidist((a, 3),9,) < (2¢2)~!, we also have

dist((a, ), Ay) < ca(csT)2T 0T 10T o

where ¢5 = (2051’1) + 2)205(31’1), and c4 is as in Proposition 2.4.2.

Proof. The formula (2.4.1) shows that dist(a, (1 : £)) = |M’(a)| for the linear
form M’ = c; (X1 — £Xo) € C[X,Y](1,0). If [Bo| = 1 we put M = YoM’ and
if [81] = 1 we put M = Y1 M’. For such a choice of M € C[X, Y](;,1) we have
1M <1, M(9,) =0 and M(a, B) = dist(av, (1: €)). Then, as MT € 1777} and
L(M) <2, Lemma 2.4.4 gives

. T,T) log(2T o T
dlSt(a, (1 . f))T _ ‘M(Q, §)|T S 2Tcé5( ,T) log(2 )(2T)28T1 g(2T)|IgY )|(oz,[3)~
(2.4.4)
So the first thesis is proved, as Y = €2,2C2,4y > 1 > 0. Now, assume that
bidist((c, 8),9,) < (2¢2)~!, and write a, B = (o, a1, fo, B1). As the polynomial

T—1
- 1 iy T—i
QX Y) = X7V Vi =0} (X1 — €X0) XY
i=0
also belongs to I ((;g, the same result combined with Lemma 2.4.1 leads to the
estimate
T-1 .

51 1/oq g _T _T

2o (2 =€) | = laol 180 TR, 8

Bo ;“ &0 ool 1l IR, B (2.4.5)

< ¢4(20) P P 08T (BT 105CT) 10T

using £(Q) < 1+ |njexp(l + |£]) < ¢4 Arguing as in the proof of Proposition
2.4.2, we also note that, for each integer i > T, we have |a; /ag —£[* < dist(a, (1 :
)" (2¢3,,)" and therefore

[es] i > (9 2\
‘n;ill(z(l) - £> ‘ < dist(a, (1 f))TCZy; ( C;w) < eqdist(a, (1: €))7

(2.4.6)
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Combining (2.4.4), (2.4.5) and (2.4.6), we get

dist((a, 8), Ay) < |ao| =" |Bo] 71 |Q(a, B)| + cadist(a, (1: €))T
< 64((262)(T,T) + 2T)C:1))5(T,T) log(2T)(2T)28T log(2T) |I(D%T) |(a,6)’

hence we obtain the desired estimate from (2¢o)™7) 427 < ((2¢o)D +2)7 O

We will also need the following

Proposition 2.4.6. With the notation and hypotheses of Lemma 2.4.4, we have
dist (8, (1: )" < (esT)*5 75D 1D, 5

where ¢5 = (20&1’1) + 2)20&1’1), as in Proposition 2.4.5.

Proof. The formula (2.4.1) shows that dist(5, (1 : 7)) = |M’(8)| for the linear
form M’ = ¢; (Y1 — nYp) € C[X,Y](). If |ao| = 1 we put M = XM’ and
if |ay| = 1 we put M = X; M’. For such a choice of M € C[X,Y];,1) we have

IM]| <1, M(9,) = 0 and M(a, B) = dist(8, (1 : n)). Then, as MT € I;:7) and

L(M) <2, Lemma 2.4.4 gives

dist(8, (1) = [M(a, B)|T < 27?0 D @) D) )
(2.4.7)
The proposition follows from cgl’l) = Cg,5C2y > 0. O

We remark that for the first two lemmas of this section we can adapt the
arguments to achieve estimates involving smaller exponents in case D, is a bit
smaller than D,, but not too much. Since we don’t need such improvements, we
didn’t include them and we opted for simpler statements and proofs.

2.5 Multiplicity of the resultant form

In this section, we introduce the last crucial tool that we need for the proof
of our main theorem. In consists in a lower bound for the multiplicity of the
resultant form of multihomogeneous polynomials in n+ ¢ = (n1 + 1) + (ng + 1)
variables at certain n + 1-tuples of such polynomials. In the applications, we
will restrict ton =¢ =2 and ny =no = 1.

Let P := Pt x ... x P?. We set its multidegree in the trivial embedding:
deg(P) := deg ) ((0)).

2.5.1 The main result

In this section we use many of the definitions of the first chapter. We start with
a decomposition lemma.

Lemma 2.5.1. Let P,..., P, be a regular sequence of K[X] made of multi-
homogeneous polynomials, with P; € K[X]p, respectively, for some D; € N,
and let v € NY with v > (3} _, Dp) — (n1,...,nq). Then there exist subspaces
Ey,..., E, respectively of K[X],_p, with dim¢(E,) = deg(P) * Dy * -+ Dp,_1
such that

K[X], = EgPy @ -+ & EnP,.
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Proof. For j = 0,...,n, define the multihomogeneous ideal I; = (P, ..., P;)
and, for each multi-integer v € N7, choose a subspace Ej4+1(v) of K[X], such
that

KX}y = (1) @ Ej41(v).

Put also I_; = (0) and Ey(v) = K[X], so that the above holds for j = —1, and
extend the definition to multi-integers v € Z? with some negative coordinate by
putting K[X], = (I;), = E;4+1(v) = {0} for j = —1,0,...,n. Then, for each
v € 7% and each j = 0,...,n, we have an exact sequence

0 — (K[X)/Lm)u-p, =2 (K[X]/Ii_1), — (K[X)/I), — 0, (25.1)

where the first non-trivial map comes from multiplication by P; in K[X] while
the second is induced by the identity map in K[X]. As the inclusion of E;4q(v)
in K[X], induces an isomorphism between E,;;(v) and (K[X]/I;), for each
veZ%and j =—1,0,...,n, and as all these maps are clearly C-linear, it follows
that

(Ij)y = Ej(v = Dj)P; & (Ij—1),  (v€Z! 0<j<m)

Since (I-1), = {0}, combining these decompositions leads to
(I)y = D E;(v — D) P (2.5.2)
j=0

for each v € Z2. On the other hand, at the level of dimensions, the exactness of
the sequence (2.5.1) gives

dime Ejyq(v) = dime E;(v) —dime E;(v—D;) (v €Z9, 0<j<n). (2.5.3)

Since
v+ n Vg +n
dim¢ Ey(v) = ( Lt 1) ( at q) for each v > (—nyq,...,—ngy)
ni1 g
we notice that for v > (—nq,...,—ny,) it is a polynomial in ¢ variables evaluated

at v and it coincides with the Hilbert-Samuel polynomial of the multihomogeneous
ideal (0) of K[X]:

dimc Ey(v) = H(K[X],v) forv>—(n,...,ng).

We also have totdeg(H(K[X],v)) = n, LP(H(K[X],v)) = T{" --- T, and
LC(H(K[X],v)) = deg(P). From (2.5.3) we also have that

j—1
dime Ej(v) = Ap,_, -+ Ap,(H(K[X],v) forv > Dy~ (n1,...,ng).
h=0

We deduce by induction, using proposition (1.2.5), that these are polynomials of
total degree n — j. In particular, this gives dimc¢(E,,) = deg(P) * Dg * -« - % D1
for all v > Y170 Dy — (n1,...,n,). Then (2.5.3) with j = n implies that
E,+1(v) ={0} for each v > Y/ _ D}, — (n1,...,nq) and so (I,,), = K[X], for
these values of v. The conclusion of the lemma then follows from (2.5.2). O



Multiplicity of the resultant form 52

Theorem 2.5.2. Let I be a multihomogeneous ideal of K[X]. Suppose that, for
some positive multidegree D € Ni, the set of common zeros of the elements of
Ip in P(C) =P (C) x ... x P"(C) is finite and non-empty. Then, the resultant
form for n + 1 multihomogeneous polynomials of multidegree D vanishes up to
order deg(I) at each point of (Ip)"**.

Proof. Since the elements of Ip have finitely many common zeros in P(C), the
subspace Ip of K[X]p contains a regular sequence Py,..., P,_; of length n.
Moreover, as the elements of K[X]p have no common zeros in P(C), this sequence
can be extended to a regular sequence P,..., P,_1, P, for some P, € K[X]|p.
Fix a multi-integer v > (n+ 1)D — (n1,...,n,) large enough so that the Hilbert
function of I at v is H(I;v) = deg(I), and choose subspaces Ey,..., E, of
K[X],—p as in Lemma 2.5.1. For each (n + 1)-tuple Q = (Qo,...,Qn) €
K[X]'5", we define a linear map

vq : Eox---x E, — K[X],
(A07aAn>'—>AOQO++AnQn

Then, by construction, for the choice of P = (P, ..., P,), the map ¢p is an
isomorphism. Put ¢ := dim¢ E,,.

Form a basis A of Ey x - -- x E,, by concatenating bases A(*) = (A;Z))lgjgdimc B
of 0 x---x E; x---x0fori=0,...,n, so that the last § elements of A form
a basis of 0 x -+ x 0 x E,. Since H(I;v) = deg(I), the set I, is a subspace of
K[X], of codimension deg(I) and so there is also a basis B of K[X], whose last
elements past the first deg(I) form a basis of I,,. For each Q € Ey X - -+ X E,,, we
denote by Mq the matrix of the linear map ¢q with respect to the bases A and
B. Define N; := Zz;lo dimc Ej. Then the (N; + j)-th column of Mq represents
Agl)Qi properly written in terms of the basis B. Then, if we write explicitly

Qi = Y memy, ¢t m we see that the entries of the (N; + j)-th column of Mq are

fixed C-linear combinations (depending only on A and B) of the coefficients q,(ni)

of ;. Then, using Laplace’s expansion for the determinant, we see that the map

®: KXH' —cC
Q = (QOa ceey Qn) L det(MQ)

is a multihomogenous polynomial map in the coefficients of Qy, . .., @, which is
homogeneous of degree dim¢ E; in the coefficients of @;, for ¢ = 0,...,n. For
each Q € Ig“, the first deg(l) rows of Mq vanish because the image of ¢q is
contained in I,,. It follows from this that all partial derivatives of ® of order less
than deg(I) vanish at each point of I},

Claim 2.5.3. If v is sufficiently large, ® is divisible by the resultant form in
multidegree d := (D,..., D) € N"*1: we have

$(Q) = ¥(Q) resu(Q) (2.5.4)

where ¥: K[X]"™ — C is also a polynomial map.

Proof. To see this, we include each E; into K[X],_p and extend the basis A
of By X ... x E, to a basis A of K[X]"*},. We also consider the C-linear map
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?qQ: K[X]Zle — K[X], extending ¢q, given by ¢q(Ao,...,4,) = Z?:o A;Q;.
We notice that Mq is now a minor of maximum rank extracted by the matrix ]\7Q
representing @q in the basis A and B. We consider now the map ¢, considered
in Lemma 1.1.12 with d as above. After tensorizing by the flat (free) C-module
C[d], we obtain from A and B two basis A’, B, respectively for K[ul] [X]p+t and
K[u][X],, and then we consider the matrix M’ representing ¢, in these two
basis. It is then clear that for every choice of Q € K[X]5"™ the matrix MQ
is obtained from M’ by specialization of the variables ul(é) to the coefficients
q,(é) of Qo,...,Qn. Thus, the multihomogeneous polynomial representing ®
exactly coincides with det(A), where A is the minor of M’ corresponding to the
basis A’ = A®1 C A'. Lemma 1.1.12 says precisely that resy divides ® as a
polynomial map. [

Since by Proposition 1.2.18 the resultant form is homogeneous of degree degP x
D ---% D on each factor of K[X]%™ and since by Lemma 2.5.1 ® is of the
same degree on the last factor, the map ¥ has degree 0 on that factor. This
means that ¥(Qo,...,Qx) is independent of Q,. Since ®(P) # 0 and since
Py,...,P,_1 € Ip, we deduce that the restriction of ¥ to Ig“ is not the zero
map and so the condition ¥(Q) # 0 defines a non-empty Zariski open subset U
of I''*. As the map ® vanishes to order at least deg(I) at each point of U, the
factorization (2.5.4) implies that the resultant vanishes up to order deg(I) at
the same points and therefore, by continuity, vanishes up to order deg(I) at each
point of the closure of ¢ in I}5"'. Since I}™! is a C-vector subspace of K[X]"*1,
it is irreducible as algebraic set and so the closure of I/ in Ig“ is all of T g“. O

2.5.2 Corollaries in dimension two

Lemma 2.5.4. Let R be an irreducible bihomogeneous polynomial of Q[X, Y].
Then R divides DR if and only if R is a constant multiple of either X, Yy or Y7.

Proof. Suppose first that R|DR and let D = (D,, D,)) := (deg, R,deg, R). Since
DR is also bihomogeneous of bidegree D, this hypothesis means that R is an
eigenvector of the differential operator D acting on Q[X,Y]p. We observe that,
for each k = 0,..., D, the subspace Y*Q[X]p, is in the kernel of (D — k)P=+1
(indeed, it is also easy to see that it coincides with it) and so the product
H,?:yO(D — k)P=+1 induces the zero operator on Q[X,Y]p. Thus the eigenvalues
of D are the integers 1,...,D, and we find that, for each k = 0,..., D,, the
eigenspace for k is generated by the monomial YODyilekXé) =. So R is a multiple
of such a monomial and, as it is irreducible, we conclude that it has total degree
D, + D, =1 and is a multiple of X, Yy or Y;. The converse is clear. O

Lemma 2.5.5. Let D € Nf_ be a positive bidegree and let P € Q[X,Y]p
with Xo t P, Yo 1 P and Y; 1 P. If an irreducible bihomogeneous polynomial
R € Q[X,Y] divides P,DP,...DFP for some integer k > 0, then R**! divides P.
In particular, the polynomials P, DP, ..., DIPIP have no common irreducible
factor in Q[X,Y] and P,DP,...,DPvP have no common irreducible factor in
Q[X,Y] with positive y-degree.

Proof. Let R be an irreducible factor of P in Q[X, Y], and write P = R°Q for
some positive integer e < || D|| and some bihomogeneous polynomial @ € Q[X,Y]
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not divisible by R. Then, for i = 0,...,e — 1, the polynomial D!P is divisible
by R while D¢P is congruent to (DR)¢Q modulo R. However, by Lemma 2.5.4
the hypothesis on P implies that R { DR. So e is the largest integer for which R
divides P,DP,...,D* P, and the result follows. O

For the next results, we denote respectively by m : G — C and by 79 : G — C*
the projections from G = C x C* to its first and second factors.

Lemma 2.5.6. Let R be an irreducible bihomogeneous polynomial of Q[X, Y].
Then 7, R is irreducible for any v € G. Moreover, assume that R is not a multiple
of either Xy, Yy or Y1, and denote by I'g the set of all v € G such that R divides
7, R. Then if deg, (R) = 0, then 7, (I'r) is reduced to {0}, otherwise m2(T'g) is a
cyclic subgroup of C* of order at most deg, (R).

Proof. The first assertion follows simply from the fact that each 7, is an automor-
phism of Q[X, Y]. To prove the second one, we first note that I'g is a subgroup of
G. Let v = (§,n) € G be an arbitrary element of I'p. Since 7, R has the same de-
gree as R, we have 7,R = AR for some A € C*. Writing R = Z:igg(m YFAR(X),
this condition translates into 7% Ay (Xo,¢Xo + X1) = AAg(Xo, X1) for each
k=0,...,deg,(R). When A # 0, this relation implies that n® = X\. So, if
deg, (R) > 0, being R irreducible and not divisible by Y; and Y7, there are at
least two indices k with Ay # 0. Then 7 is a root of unity of order at most
deg, (R) and, the choice of (£,7) € I'r being arbitrary, we conclude that m(I'r)
is a finite thus cyclic subgroup of C* of order at most deg,(R). Otherwise,
assuming that X does not divide R, we obtain that R = A¢(X) is of positive
degree in X7, and the equality Ay(Xo,&Xo + X1) = AAo(Xo, X1) implies that
A=1and £ =0. Thus, in that case, we have m (I'r) = {0}. O

Theorem 2.5.7. Let ¥ be a non-empty finite subset of G and let T" be a positive
integer. Denote by I the ideal of C[X,Y] generated by the bihomogeneous
polynomials P satisfying

(D'P)(¥,) =0 for each v € ¥ and each i =0,...,T — 1.

Suppose that there exist a finite subset %1 of G, an integer 77 > 0 and a positive
bi-integer D = (D,, D) € N2 such that

D < (Ty + 1)(|m(S0)],|m2(S1)) and (T +T1)|S + 51| < dim(D) (2.5.5)

where X+ 31 ={y+m: v € X, 11 € 31} denotes the sumset of ¥ and X
in G and dim(D) = (D, + 1)(D, + 1). Then, the resultant form in bidegrees
(D, D, D) vanishes up to order T' |%| at each point of (Ip)3.

Proof. We have an irredundant primary decomposition I = ﬂ,yez IT) where,
according to Corollary 2.3.9, the ideals I("T) are primary for distinct prime
ideals of rank 2. Furthermore they all have the same degree T', and so deg(I) =
T|X| € N. The second condition in (2.5.5) implies the existence of a non-zero
polynomial P € C[X,Y]p satisfying

(D'P)(d9,) = 0 for each v € £ + % and each i = 0,..., T + Ty — 1.

Fix such a polynomial P. If it is divisible by Xg, Yy or Y7, then its quotient
by any of these variables possesses the same vanishing property. Thus, upon
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dividing P by a suitable monomial of the form XYY/ and multiplying the
result by X7 (Y + Y1)*¥*! to restore the bidegree, we may assume that P is not
divisible by Xy, Yy, nor Y. By construction, the polynomials 7., (D*P) belong
to I for each v € ¥; and each ¢ = 0,...,T;. We claim that the latter have no
non-constant common factor. For, suppose they have such a common factor R.
Choose it to be bihomogeneous and irreducible. As P is not divisible by Xy, Yy,
nor Y7, the same holds for R. Define I'g as in Lemma 2.5.6, and denote by ¥5 a
minimal subset of ¥; such that ¥y + ' = ¥; 4+ I'g. For any pair of distinct
elements ~y, 7’ of 3y, we have v — " ¢ I'g, thus R does not divide 7,_/(R), and
so, applying 7_., we see that the irreducible polynomials 7_,(R) and 7_/(R)
are not associated. Moreover, the choice of R implies that 7_. (R) divides D'P
for i =0,...,T1. By Lemma 2.5.5, this means that P is divisible by 7_ (R)T* 1.
Thus P is divisible by J[ ¢y, 7 (R)T1*! and so we have this inequality in N2

D = deg(P) > (Th + 1) |X2| deg(R). (2.5.6)

According to Lemma 2.5.6, either we have deg,(R) = 0 and m(I'r) = {0}
or the group m2(I'r) is cyclic of order at most deg, (R). In the first case the
equality X9 + ' = X1 + I'g implies that 71(33) = 7(X;) and from (2.5.6)
we deduce that D, > (Ty + 1) |m1(X1)| against the hypothesis (2.5.5). In the
second case, it implies that [ma(X2)| > [m1(21)|/ deg,(R) and (2.5.6) leads to
D, > (T1 + 1) |m2(X1)| once again in contradiction with (2.5.5).

Since the polynomials 7., (D'P) with v € ¥1 and i = 0,...,T; all belong to Ip
and share no common factor, the set of zeros of Ip in P1(C) x P1(C) is finite (as
C[X,Y] is an UFD and so its prime ideals of rank 1 are principal...). As this
set contains X, it is also non-empty. Therefore, by Theorem 2.5.2, the resultant
form res(p,p,py vanishes up to order deg() = T || at each point of (Ip)*. [

In the case where 3 consists of just one point v, the ideal I of the theorem is
simply 70°7), and for the choice of ¥; = {e} and T} = || D||, the condition 2.5.5
reduces to T < D, D, +min{D,, D,}.

Corollary 2.5.8. Let v € G, D € Ni and T' € Ny with T" < D,D, +
min{D,,Dy}. Then, the resultant form res(p,p,p) vanishes up to order T

at each triple (P, @, R) of elements of Igy’T).

2.6 Construction of a subvariety of dimension 0

The first part of the proof of our main theorem consists in constructing, for
each sufficiently large bi-integer D, a zero-dimensional subvariety Z of I%) X ]P’}@
with small height relative to a certain convex body. In this section, we define a
convex body C of C[X,Y]p = C[Xy, X1, Yo, Y1]p of the appropriate form and
provide an estimate for the height of P! x P! relative to C. Then, we use this
to construct a zero-dimensional subvariety Z with small height he(Z) assuming
the existence of a non-zero homogeneous polynomial P € Z[X,Y]|p whose first
derivatives with respect to D belong to C. The rest of the section is devoted to
a posteriori estimates for the mixed degree and the mixed heights of Z. Since
we don’t need sharp constants, we shall often the estimate log(3) > log(2).
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2.6.1 The relevant convex body
Proposition 2.6.1. Let T € N, let D € N*\{0} and let Y,U > 0 with
T < D,D, +min{D,,D,} and 2Tlog(cs) <Y (2.6.1)
where ¢ = 8max{2 + |¢|, 1+ |n|~'}. Then, for the choice of convex body
= : <e¥ ¢ < e U
C={PeCX.Ylp : [Pl <e”, max [D'P(J,)] < e},

we have he(P' x PY) < —TU + 6D, D, Y + 24log(3)D,D, |D|.

Proof. Let Resp := res(p p,p): C[X,Y]3 — C denote the resultant form for
P! x P! of index d = (D, D, D). Using the notation of Lemma 2.2.3, we have,
by that lemma,

hs(Resp) = hp(P' x P') < 21log(2)(D3D, + D, D). (2.6.2)

Since Resp is a polynomial with integer coprime coefficients (see the discussion
in Section § 1.1.2 and the comments immediately after Definition 1.3.13) we also
have,

he(P' x P') = he(Resp) = logsup{| Resp(Py, P1, )| : Py, P, P> € C}.

As C is compact, there exist Py, P, P, € C for which
he(P' x P') = log| Resp(Py, P1, P2)|.

The first hypothesis in (2.6.1) implies the existence of a non-negative bi-integer
L € N?such that L < D, L # D and L,L, + ||L| < T < dim(L) =: M. Then,
we have |L| < M < 2T. For this choice of L and for each j = 0, 1,2, Proposition

2.3.8 ensures the existence of a unique polynomial @; € C[X, Y], such that
. DiP;j(¥,) fori=0,...,7—1

DO (9 _ 2\YUy ) ) )

Qi(05) {0 fori=T,...,M—1,

and shows that it has norm

Q51 < e (=) 8M  max [DUP(0,)] < (Sler(—))2Te U < ¥

) _ Loy Dy—L,
since 8|c1(—7)|| = ¢ and ||Q,]| < £(Q;). Put Mg,O)L = X P Ly . By

construction, the differences P; — M([(’)_O)L Q; are elements of Ig’T) (notice that
multiplication by X or Yy commutes with differentiation by D) and so, according

to Corollary 2.5.8, the polynomial

f(z) =Resp(Pp— (1 — z)Mg)I))LQO, N i z)Mf())I))LQg) € Clz]

vanishes to order at least T' at z = 0. Applying the standard Schwarz lemma,
this leads to

exp(he(Resp)) = | f(1)]
< e Vsup{|f(2)]; |2| = €}
e~ "V sup{|Resp (P, P|, P)| : P} € CIX,Y]p,||P]|| <3¢}

e TV (3eY)5P=DPy exp(hp(Resp)),

ININ
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where the second estimate follows from || Pj+(1—e")Q;|| < e¥ +(1+eV)e¥ -V <
3eY and the last estimate follows from the fact that Resp is homogeneous of
degree 2D, D, on each of its three arguments. Using (2.6.2) we deduce

he(P* x PY) < —TU + 6D, D,Y + 6D, D, log(3) + 21log(2) D, D,|D|.

The thesis follows from 6 log(3)+211og(2) = 21,14... < 24log(3) = 26,36... O

2.6.2 Existence of a subvariety with small relative height

Proposition 2.6.2. Let D, T, Y, U and C be as in Proposition 2.6.1. Define a
real number C' > 0 by the condition TU = CD,D,Y and suppose moreover that

8<C, |D|<2T -1 and 32log(3)|D|<Y.

Finally, suppose that there exists a non-zero homogeneous polynomial P &
Z]X,Y]|p not divisible by Xo, Yy or Y7 such that D'P € C for i =0,...,27T — 1.
Then, there exists a subvariety Z of Z(D'P : 0 < i < 2T) of dimension 0 with

he(Z) < —C"(Y deg(Z) + Dyhy(Z) + Dyhy(2)), (2.6.3)
where C" = (C — 8)/14.

Proof. Since P is a non-zero element of Z[X,Y]p NC, Proposition 2.2.4 ensures
the existence of a non-zero cycle Z’ of ]P’(b) X ]P’([l2 of dimension 1 which satisfies

deg,(Z') < (=)Dy,

deg, (Z') < (=)Dx,
hea(Z') < 111l0g(2)D, (2.6.4)
hyy(Z') < 1110g(2) D,
hay(Z') < log||P|| + 91og(2)| D| < 2Y

and also, thanks to Proposition 2.6.1 and the definition of C:

he(Z) < hc( ) + 8log(2)D,D,|D|
< -TU +6D,D,Y + 32log(3)D,D,|D|
<—(C-17)D,D,Y.

We derive from (2.6.4) the following inequalities

4D,Y deg,(
4D,Y degy(

m(

NNN\NN

and then
he(Z') < — C'(4D,Y deg,(Z') + 4D,Y deg, (Z")+
+ D3hyu(Z") + Dyhyy(Z') + 2Dy Dyhay (2")),
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where C’ = (C' — 7)/14. From the last estimate and the additivity of the degree
and heights on one-dimensional cycles, we deduce the existence of a component
Z1 of A with

he(Z1) < —C'(4Y No + Dihaw(Z1) + Dihyy(Z1) + 2Dy Dyhay(Z1)),  (2.6.5)

where we put for convenience Ny := D, deg,(Z1)+ D, deg, (Z1). We also observe
that all the inequalities in (2.6.4) are valid for Z; replacing Z’. By Lemma 2.5.5,
the polynomials P, DP,. .., DIl P have no common irreducible factor in QX,Y].
Therefore, at least one of them does not belong to the ideal of Z;. Since it has
integral coefficients and since, by hypothesis, it belongs to C, Proposition 2.2.5
ensures the existence of a non-zero cycle Z” of I%) X I% of dimension 0 with

deg(Z") = Ny,
he(Z") < Dyhyy(Z1) + Dyhyy(Z1) + 2Y deg, (Z1) + Tlog(2) Ny
(Z")

hc(Zl) + 210g(2)|D‘N0 S hc(Zl) + (1/14)4YN0
—C"(4Y No + D2haa(Z1) + Dihyy(Z1) + 2Dy Dyhay(Z1))
—C"(Y deg(Z") + Dyho(Z") + Dyhy (Z")),

INIAIA

with C” = (C — 8)/14. Thus, by linearity, at least one component Z of Z”
satisfies (2.6.3). Since C' > 8, we have h¢(Z) < 0. So, by Proposition 2.2.7, the
ideal of Z contains Z[X,Y]p NC and so contains D'P for i =0,...,27 —1. O

2.6.3 A posteriori estimates for degree and heights

Lemma 2.6.3. Let D € N?\{0} a nonzero bidegree(!). Let (o, 8) € P(C) x
P!(C) and take a representative of it (a, 8) = (ap, a1, B, $1) € C*. Suppose
that there exists a nonzero polynomial P € C[X,Y]p not divisible by X, such
that D'P(a, 8) =0 for i = 0,..., D,. Then, either we have ag # 0 or « is one

of the points (c0,0) = ([0: 1],[1 : 0]) or (co0,00) = ([0: 1],[0 : 1]).

Proof. Write
P= Z PapX?Y".

(a,b)<D
If g = 0, we have, for ¢ =0,1,..., Dy,
9\ o
0=DP(a.8) = (Vi) PleB) = Yoo, sbial a5,
b=0

with the usual convention that b’ = d; ¢ for b = 0. As the matrix (b)o<i<p,

0<b<D,
is invertible, this yields poba?’BODy_bB{’ =0for b =0,...,D,. However, as
Xo 1 P, we also have pp_ , # 0 for at least one of these values of b, and thus we
conclude that a;8p81 = 0. Since ag implies a; # 0, we have Sp8; = 0, and so
a = (00,0) or a = (00,00). O

(D1Indeed, the proof still works if Dy = 0 or Dy =0.
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Lemma 2.6.4. Let D € N*\{0} a nonzero bidegree. Let (o, 8) € P*(C) x P*(C)
and take a representative of it (a, 8) = (o, a1, B, /1) € C*. Suppose that there
exists a non-zero polynomial P € C[X,Y]p not divisible by Yy or Y such that
D'P(a,3) =0 for i = 0,...,D,. Then, either we have 3931 # 0 or « is one of
the points (c0,0) = ([0: 1],[1: 0]) or (c0,00) = ([0: 1],[0 : 1]).

Proof. Write

P= > paX°Y"
(a,b)<D

If 5, =0, we find, for i =0,1,...,D,,

. D
i 9\ - al —a+i_a—i Dy
0=D'Ple8) = (Xogg ) P@D) =X pog —goi” oA

As Y7 1 P, we also note that p, o # 0 for some a with 0 < a < D,. If aq is the
largest such index then, for i = ag, this yields 0 = pao,oao!aé)“ﬂé)y. Since now
Bo # 0, we have og = 0, and so a = (00, 0).

Similarly, if Sy = 0, we find, for e =0,1,..., D,,

0=D'P(a. ) = i: (;) (Dy)"~* (Xoai)ﬁ>kp(%ﬁ)v

k=0

where we define Dg :=11if D, = 0. We therefore see by induction on ¢ that, for
1=0,1,...,D,,

) D
8 g - a’! D,—a+i_a—1 Dy
0= (XoiaXl) P(Q,@—;Papyi(aii)!ao o "B
As Yp 1 P, we also note that p, p, # 0 for some a with 0 < a < D,. If ag is the

largest such index then, for i = ag, this yields 0 = pq, p, ao!ozg)’”ﬁlDy. Since now
B1 # 0, we have ap = 0, and so a = (o0, 00). O

Corollary 2.6.5. Let D € N2\{0} a nonzero bidegree. Let (o, 3) € P}(C) x
P!(C) and take a representative of it (a, 8) = (ap, a1, B, $1) € C*. Suppose
that there exists a non-zero polynomial P € C[X,Y]p not divisible by X, Yy or
Y1 such that D'P(a, 3) =0fori=0,...,|D||. Then, either we have agBg31 # 0
or a is one of the points (c0,0) = ([0: 1],[1 : 0]) or (00, 00) = ([0 : 1],[0: 1]).

Remark 2.6.6. Conversely, if a = (00,0) (resp. @ = (00,00)), then, for any
positive bi-integer D € Nﬁ_, the point « is a common zero of all the derivatives

DiP, i € N, where P = XP=Y"" + XP=¥P" (vesp. P = XP=v]"" + xP=y,)
is not divisible by Xg, Yy or Y.

Proposition 2.6.7. Let D € N?s—’ T eNy, let PeC[X,Y]p with Xg 1 P, Yy 1 P
and Y7 1 P, and let Y € R. Suppose that

T < D,D, + min{D,, D,},

max{34log(2)|D|, log || P||,log |DP|....log |[DIPIP|} <Y,
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and that W = Z(D'P; 0 <i < ||D|| + T) is not empty. Then any irreducible
component Z of W in ]P’b X IP’(b has dimension 0 with

_ 2D.D,

_ 3D.DY

deg(2) and (h(Z);D) < T (2.6.6)
Proof. By Lemma 2.5.5, the polynomials P, DP, ..., DIPIIP are relatively prime
as a set. Since they are all bihomogeneous of degree D, we conclude that

there exist integers a1, ...,a)p) of absolute values at most |D| such that Q =

nyl” a;D'P is relatively prime to P(®). Then Z(P,Q) has dimension 0 and
since W is a closed subset of Z(P,Q), it also has dimension 0.

Let Z be an irreducible component of W. Since Z C Z(D'P; 0 < i < ||D|)),
Lemma 2.6.5 shows that either Z(C) is contained in the open set G of P(C) x
P(C) or it consists of one of the points (co,0) or (0o, 00) (the points of Z(C)
are conjugate over Q). In the latter case, we have deg(Z) = 1 and h(Z) = 0,
and the estimates in (2.6.6) follow. Thus, in order to prove these estimates, we
may assume, without loss of generality that Z(C) C G.

Let G =res(p)(Z): C[X,Y]p — C be a resultant form for Z of index (D), and
let F: C[X,Y]p — C denote the map given by F'(R) = res(p,p p)(P)(P,Q, R)
for each R € C[X,Y]p. We claim that GT divides F.

To prove this claim, choose a system of representatives a,...,a, € C* of the
points of Z(C) and complete it to a system of representatives a, ..., a, of those
of Z(P,Q)(C). Then, there exist a,b € C* and eq,...,e; € Ny such that

F(R) = aR(a;)" -~ R(ey)”  and  G(R) = bR(ay) - -- R(ay) (2.6.7)

for each R € C[X,Y]p. Moreover, e; = --- = ez represents the multiplicity
of G as a factor of F over Q. So, our claim reduces to showing that e; > T.
Denote by « the point of Z(C) corresponding to ay. According to Proposition

2.3.11, there exists a polynomial R in IE)O"T) such that R(a;) #0fori=2,...,1t.

Since P and @ also belong to Ij(:,a’T), Corollary 2.5.8 shows that resp p p)(Z)
vanishes to order at least T" at the point (P,Q, R). Therefore, for any fixed
S € C[X,Y]p, the polynomial F(R + zS) € C[z] is divisible by 7. Choosing S
so that S(a;) # 0, formula (2.6.7) for F provides

F(R+ 25) = aS(a;) R(ag)® -+ R(a,)* 2 + O(27 1),
and then e; > T. Therefore, GT divides F', and we obtain
T'deg(Z) = T deg(G) < deg(F) =2D,D,, (2.6.8)

which proves the first half of (2.6.6). In terms of the convex body B = B(P-P-D)
of Definition 1.3.9, we also find, thanks to 1.4.5,

Ths(Z) = Ths(G) < h(F) + 4log dim(D)D, D, < hs(F) + 4log(2) D, D,| D).

To translate this inequality in terms of the standard height h(Z), we first observe
that Lemma 1.4.9 and the degree estimate (2.6.8) lead to

T(h(Z); D) < Thp(Z) + 3T log(2)|D|deg(Z) < Thp(Z) + 6log(2)D,D,|D|.

(@ Proof by induction, based on the fact that P has at most |D| irreducible factors.
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Moreover, since F' is obtained by specializing the first two arguments of a
resultant form of P into P and Q with ||[P| < e¥ and ||Q| < |D|?e¥ < elPIFY]
and since that resultant form is homogeneous of degree 2D, D, in each of its
three arguments, we also find, using 2 < 3log(2):

hs(F) < 2D,D,(Y + |D| +Y) + h(P) < 4D, D,Y + 24log(2)D, D, |D|,

using the upper bound for hg(PP) provided by Lemma 2.2.3. Combining the last
three estimates, we conclude that

T(h(Z); D) < 4D, D,Y + 34log(2)D, D, |D| < 5D,D,Y,

which proves the second half of (2.6.6). O

2.7 Proof of the main Theorem

We are now going to prove Theorem 2.1.1. We divide the proof into several steps
and we use the results obtained in the previous sections of this chapter.

We shall put ourself in a multiprojective setting. To this extent, we think
of G = C x C* as embedded into P*(C) x P*(C) and we use the notation of
Section 2.4. We shall argue by contradiction, assuming on the contrary that
9, = ([1:€],[1:n)) is not a point of P}(Q) x P1(Q). From there we proceed in
several steps.

Step 1. We define relevant convex bodies Cy and we define bihomogeneous
polynomials Py that belong to Cy together with their first 2| N7 | derivatives.

For each positive integer N € N, we put
D :=(|[N%| |N“|), T:=|N7], Y:=2N? U:=N"/2
and we define a convex body Cxn of C[X,Y]|p by

= : < i < - .
ex = {PeCX,Y]p : |P| < exp(Y), Jmax. [D'P(9,)] < exp( 0}

Given a polynomial P = Z(a,b)gD Papz®y® € Clz,yl<p we define its bihomog-
enization in bidegree D to be HpP := Z(a,b)gD PapX?Y? € C[X,Y]p . We
then denote by ]51\7 the bihomogeneous polynomial of Z[X,Y]p defined by

Py = Xy "0 X70Yy Ry (Y, + Yq)RotR Hp Py,

where hg, ko, k1 stand for the largest integers such that X(;“J,YO’“O,Yf1 divide
HpPy. Then, by construction, ﬁN is not divisible by Xo, Yy or Y. We claim
that, for any sufficiently large N, the polynomials D/ Py with 0 < j < 2| N7] all
belong to Cy .

To prove this, fix a choice of integer j with 0 < j < 2| N7 |, and put @ = DiPy.
Using Lemma 2.3.6, and the fact that 7 < 8 and t; < 8 we find

QI < IDPL(Py) < |DIPN"2*P dim(D) || Px|| = exp((L + o(1))N?).
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Moreover, for any ¢ = 0,...,|N7] — 1, Leibniz’ rule of differentiation for a
product leads to the following estimate, where we also use that multiplication
by Xy or Yy commutes with D, that DHp = HpD, that X, Yy are evaluated
to 1, and that 1,¢t,7 < v:
ID'Q(,)| =

= D77 (@ oy (1 + y)* ot Py (2, 9)) |o=e, y=n

(i +7)! _
S § T' S' t' U' "D"lﬂxh0|1:§ |Diy 1 |y:?7 |D115(]‘ + y)k0+k1 |y:n |D11LPN|$2'£
rbstttu=itj y=n

(i +5)! _
< X ﬁ o max{1, [} - ki [y =" - 20 (ko + k)"
r4+s+t+u=i+j e

. 1 ko+k1 . DkP . 1u
max{ a|77|} ngrggi(NTj | 1 N(fan”

< maxc{2, €], In| =, 120110 (hg + iy + ko + iy + 1) exp(=NY)
— exp(—(1 — o1))N").

Step 2. For N sufficiently large, we construct a 0-dimensional subvariety Z = Zy
of P, x Pg contained in Z(D*Py : 0 < < 2T) such that

5
e (2) < 5= (AN deg(2) + (h(2); D))

We fix N € N and observe that the convex set C defined in Proposition 2.6.1
coincide with C. We now check that if IV is sufficiently large the hypothesis of
2.6.2 are all fulfilled. This will imply the existence of Zy. Recall that we defined
0 =v+7—1—1t— 4, and fix an arbitrarily large integer N.

e I'< D,D, +min{D,,D,} because 7 < 1+,
e 2Tlog(cg) <Y because 7 < f3,
e 8<(Checause C < Nl andd=v+7—-1—t—£>0,
e |D|| <2T — 1 because 7 > 1.
e 321log(3)|D| <Y because 5> 71 > 1.
Moreover, we have C” = (C — 8)/14 > N°/57 because C ~ N°/4.

Step 3. We let Z be a set of normalized representatives of the points of Z(C)
by elements of C* and we define U to be the set of points (a, 3) of Z(C) with
bidist((a, 8),9,) < (2¢2)~*. We show that the quantity

Z max{T log dist(c, (1 : £)),log dist((«, 8), Ay)}
(a,B)eU

. 5
is bounded above b —%(QN*B deg(Z) + (h(Z); D)).
Here the starting point is Proposition 2.2.7, from which we get, since |D| < 2N:

> logsup{|P(a, B)|; P € Cn} < hey(Z) = (M(2); D) + 121og(2) N deg(Z).
(B)EZ
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For each (o, ) € Z(C) with corresponding point (a,) € Z, we also have,
according to the definitions,

sup{|P(a. 8)|; P € Cy} = sup{|P(a, ) P € 15", P <1} = @15 |0 5)-
For each (o, 8) € Z(C) \ U, Proposition 2.4.5 and Proposition 2.4.6 give

115 (0 = (e5T) ™27 198CT) max{dist(a, (1 : €))7, dist(8, (1 : 7))"}
2 (2HC2 ||C5T)728T log(2T)

—30T log(T
ZT og( )7

assuming N large enough so that (2||ca||cs)?87 108(T)728108(2) < 72T1os(T)  For
the more interesting points («, ) € U, Proposition 2.4.5 gives

|1,97T>|(a,ﬁ) > ¢y M (esT) ~281108CT) max{dist(a, (1 : €))7, dist((a, B), A-)}
> 7308 max{dist(a, (1 : €))7, dist((ev, B), 4,)},

provided that N is large enough. Putting all these estimates together, taking
into account that Z(C) consists of deg(Z) points, we conclude that

Z max{7 log dist(c, (1 : £)),logdist((c, 5), A4)}
(a,B)eU

< ¥ <log|I(D%T)|(a7g)+30T10g(T)2>
(a,8)eU

< > (log 115" (a,5) + 30T 10g(T)2)
(a,8)€Z(C)
< hey (Z2) — (h(Z); D) + 1210g(2) N deg(Z) + 30T log(T)? deg(Z)
N6
< —E(Nﬁ deg(Z) + (h(Z); D))
if N is large enough, because 8 > 7 > 1 and h,(Z), hy(Z) > 0.
In particular, the set U is not empty and contains at least one point («, ) for

which log dist(a, (1 : €)) < =27 and logdist((a, 8), A,) < —N2 < —N27
Moreover, if @« = (ap : a1), 8 = (6o : f1), 01 = g—; — &, and if we have the

normalization ||(ag, a1)|| = ||(Bo, 51)]] = 1, we have

dist(8, (1: ) = c3,,, 181 — nfol

< |B1 —nBo e’ | + cay InllBolle” — 1]

< |Bol dist((e, ), Ay) + €!*1/[8y

< dist((a, B), Ay) + c2.2€2 |ag| ~ dist(a, (1 : £)),
NO+B
57T )

< 2¢p z€°** exp ( —

In the first inequality we used ¢z, > 1, in the second we used ¢z, > |n| and the
general inequality e” — 1 > ze”, valid for x > 0, and in the third inequality we

(3)True also with a constant ¢, which changes nothing.
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used el%1l < e (see the proof of Proposition 2.4.2). Thus, as N goes to infinity,
the point (ap, o) runs through an infinite sequence of points of P'(Q) x P'(Q)
converging to 9., but distinct from 9., because 9., ¢ P1(Q) x P}(Q).

Step 4. We derive upper bounds for deg(Z), h,(Z) and hy(Z) in terms of the
smallest positive integer N, for which

ZC Z(D'Py,11: 0<i<2[(No+1)7)).

If N > 2, such an integer exists and is at most equal to N — 1. Moreover, N,
goes to infinity with N because, as Py, 41 is not divisible by Xj, Yy or Y7, it
follows from Lemma 2.5.5 that Z(Dif’N*+1 : 0 <i< N,+1)(C) is a finite
subset of P1(Q) x P(Q) and so, for fixed N, > 1, this set does not contain the
point (ag, Bp) of Z(C) when N is large enough. Thus, assuming N large enough,
it follows from Step 1 that DPy_, 1 belongs to Cy. 41 for i =0,..., N, + 1 and

max{3410g(2)(N, + 1), log||Px. 11| - - -, log [PV T Py_1||} < 2(N, + 1)°.

For N large enough, putting Dy := ([(N, + 1), [ (N, + 1) ]), we also have
[(N.+1)7] < D4 3Dy, because 7 < 1+ t. By Proposition 2.6.7, we conclude
that

2(N, + 1)+t

D =TT

S 3N>:+t—7'

and
5(]\7* 4 1)1+t+,3
L(Ns+1)7]

Thus expanding (h(Z); D) we get

(h(Z); Dy) < < GNIHHOTT,

hm(Z) < 6N£1+,3*T and hy(Z) S 6N£0+B77'

Step 5. Put T* := | N7 | and D, := (| Nl°|,[N!*]) = Dy,. We show that for
every subset S of U, the quantity

Z max {T* log dist(«, (1 : €)), logdist((a,ﬁ),Ay)}
(a,B)ES

is bounded below by —8N/ deg(Z) — (h(Z); D).

For N large enough, we have N, > 2 and so, by the very choice of N,, there exists
an integer iy with 0 <4y < 2| N7 | such that Z is not contained in the curve of
P! x P! defined by the polynomial P* := D Py_. For N large enough, we also
have P* € Cn, N Z[X,Y]. Then, Proposition 2.2.7, together with |D,| < 2N,,
gives
0 < 6log(2)N. deg(2) + (h(Z); D) + Y log|P*(a, B)I-
(a.8)eZ

Moreover, the fact that P* € Cy, leads to the crude estimate

Juax log|P"(a, )| < log(2)[D.| + log | P[] < (2log(2) + 2)N/.
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Combining the last two results and using —61log(2) + 2log(2) + 2 > —2, we
deduce that, for N large enough:

> min{0,log|P*(a, B)|} > —2N/ deg(Z) — (h(Z); D..). (2.7.1)
(a.p)eZ

For a point (a, 3) € U with representative (a, §) € Z, Proposition 2.4.2 provides
the more precise estimate

[P (e, B)] <

< ea max [D'P*(9,)] + 3 [P (dlistlan, (1: )7 + dist((@ ), 4,))

< ege N2 4 NN (dist(a, (12 €))7 4 dist((a, 8), A5)).

However, if N, is large enough, the inequality (2.7.1) combined with the estimates
for deg(Z) and h,(Z), hy(Z) obtained in Step 4 leads to

log |P*(a, B)| > —2N{ deg(Z) — (h(Z); Ds) > —(6 + 12)NFH07T,
thus [P*(a, 8)| > 2c2eN</2, and so
log |[P*(a, B)| < 3N? + max {T*logdist(a, (1:£)), logdist((ev, B), A;)}.

Note that this holds for any («, 8) € U with a lower bound on N, not depending
on (a, ). Therefore, if N is large enough, we conclude using (2.7.1) that, for
any subset S of U, we have

Z max {T* log dist(cv, (1 : £)), logdist((c, 8), A1)} >
(a,8)€S

> — 5N/ deg(Z) — (h(Z); D.).

Step 6. We derive a contradiction by combining the results of Step 3 and Step
5 with the estimates found in Step 4. We then prove that (¢£,7) € Q x @X.

We partition I into the following two disjoint subsets U’ and U"
U :={(a, B) eU; T* logdist(a, (1: &) > logdist((a, 8), A,)} , U =U\U'.
We also put
S1 = Z logdist(, (1:&)) , S9:= Z log dist((a, 3), A,).
(a,B) €U’ (a,B)eU"

According to Step 3, we have
N5
TS; + 852 < *W(Nﬁ deg(Z) + (h(Z); D)),

whereas the result of Step 5 applied to the sets S = U’ and § = U" gives

respectively
T*S; > —5NP deg(Z) — (h(Z); D..),

Sy > —5NFP deg(Z) — (h(Z); D..).
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Combining these three inequalities, we obtain

)

B (N des(Z) + (1(Z); D)) = — (= +1) (5N? deg(2) + (h(2); D.)

and so expanding we get that the quantity
NP deg(Z) + NoT0h,(Z) + Nt h,(2)
is asymptotically dominated by
NN Th, (Z)+ NN "hy(Z)

(we may omit the term N™NP~" deg(Z) in the right hand side as it is negligible
with respect to N°T5 deg(Z)). Suppose that

N™N~Th,(Z) > N"NI~Th,(Z). (2.7.2)
This implies that
NO+B—T deg(Z) < NiU_Thw(Z) and N:_to <« N7—%to, (2.7.3)

Since deg(Z) > 1 and hy(Z) < NP7 (see Step 4), from the first estimate in

(2.7.3) we get
N6+B—T < Nf+1+t_27—.

As 7 > 1, combining this with the second estimate from (2.7.3) yields
(T—t)d+p—T)<(T—0—ty)(B+1+t—27)

which after simplifications is equivalent to 6 < (7 —¢o)(1+t—7)/(B8+t1 — 7).
In case we have the opposite inequality in (2.7.2) we obtain with the same
arguments § < (1 —t1)(1 4+t —7)/(8 +to — 7). We see that the inequality
T — to T — tl
ﬂ+t1*7’ - B+t0*7’
is equivalent to (7 — to)(8 +to — 7) > (7 — t1)(8 + t1 — 7), which in turn is

equivalent to (t; —to)((8 —7) + (to +t1 — 7)) > 0 and so to t; > to. This means
that in any case we have proven

T —to T—th }:(T—t)(l‘i‘t—T)

B+t —7 B+to—T B+1—1

This contradicts the hypothesis on ¢ in the statement of Theorem 2.1.1, and
therefore proves that £,7 € Q.

6§max{

Step 7. We use Liouville’s inequality to prove that for sufficiently large N the
polynomials D¥ Py vanish at (¢,7) forall k =0,...,d|N7|.

The argument is similar to the one presented in the proof of Corollary 2.1.6, so
we only give a sketch of the calculations. Let K = Q(&,7n), let d = [K : Q] and
let H be an upper bound for the Weil absolute height of £ and 7 (see Definition
1.3.11). If D¥ Py does not vanish at (£, 7), Proposition 2.1.4 gives

DY Py (€,v)] > exp(—2(d — 1)NP — dH(N" + N")),

for sufficiently big N. Since to,t; < 8 < v, this is contradicts (2.1.1) for sufficiently
big N.
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2.8 Further research

It should be mentioned that the main results of this thesis, Theorem 2.1.1
and Corollary 2.1.6, should be considered only as first steps towards the full
comprehension and a proof of Conjecture 2.1.3. Our work treats the case of a
single point taken with high multiplicity, although Corollary 2.1.6 shows that
we can deduce a result valid for a finitely generated subgroup of G = C x C*.
A dual problem was considered by V.Nguyen in | |, where she considers
polynomials taking small values at translates of a point v € G by multiples of a
rational point (r,s) € Q x Q*. Using the theory developed in the first chapter
of this thesis and adapting the techniques used in the second chapter, we are
able to translate into a multihomogeneous setting also the arguments of | ]
and to prove the following result.

Theorem 2.8.1. Let v = (£§,n7) € C x C* and (r,s) € Q x Q* with r # 0 and
s # +1. Let B,0,v,tg,t1,t be positive real numbers satisfying

max{tp,t1} =1, min{ty,t1} =t 1<o<1+t,

1+t+p—-0 ifo>1+1

c+1<pB, v>
g {1H+B0+5 ifo<l+1L

where § = (0 —1t)(2+t—20)/(8+2—27). Suppose that, for each sufficiently large
positive integer N, there exists a nonzero polynomial Py € Z[z,y] with partial
degrees deg, (Py) < [N'], deg,(Py) < [N*] and norm || P|| < exp(N?), such
that
P i, nst)| < —NY), 2.8.1
ogﬁ?fﬁvaj| N (§ +ir,ns')| < exp(=NY) (2.8.1)
Then, we have £, € Q and moreover for each sufficiently large integer N we
have Py (€ +ir,ns') = 0 for every 0 < i < 4| N7].

The striking point of this statement is that in the range 1 + % <o <1+t the
estimate for v proves to be best-possible. This can be showed with an easy
application of Dirichlet’s Box Principle.

Therefore, the first achievement one could hope to get is a result that deals
with both multiplicities and translations. This should be done with appropriate
generalizations of our lemmas. For example, it is possible to prove an interpolation
result that bounds the length of a polynomial for which we know the values
of sufficiently many invariant derivatives of it, at sufficiently many points of a
finitely generated subgroup of G.

However, if one compares the estimates one gets from these methods to the
conjectural ones from Conjecture 2.1.3, one can see that the main obstruction is
represented by the fact that, for each N, the number of conditions imposed on
Py need to be less than the dimension of the space of bihomogeneous polynomials
of bi-degree D. This limitation is required by the interpolation result of Section
§ 2.3.2 and for an efficient application of the multiplicity estimate of Section §
2.5. Thus, the understanding of the phenomena that come out when the number
of conditions slightly exceeds the dimension of the space of polynomials should
be one of the future direction of research.
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Moreover, one of the main differences between our theorem 2.1.1 and conjecture
2.1.3 is that the second is a question about high-transcendence degree, while the
first is not.

To overcome this problem one My try to work within higher-dimensional linear
algebraic groups and with higher-dimensional subvarieties, and to induct on the
dimension. An example of this technique can be found in the proof of the Main
Theorem of | ].

Another approach that looks tantalizing is to extend the results of sections 1.3
and 1.4 of this thesis to the case when K is not a number field, but a generic
M-field with a product formula. An M-field is a field that comes together with
a set of nontrivial places, parametrized by a measure space, so that a notion
of height can be defined by integrating the local contributions. We refer to
[ Il ] for more on this topic. The main fact we need here is that, by
a result of Moriwaki [ |, any field finitely generated over Q can be given
a canonical structure of M-field with a product formula. One could hope that
such a generalization would permit to work within P x PL. and to prove the
desired statements by induction on the transcendence degree of K.

As for the lower bound for the multiplicity of resultant forms, it should be
remarked that an adaptation of the arguments of section § 2.5 may show that
Theorem 2.5.2 can be extended, with minor modifications, to arbitrary resultant
forms of subvarieties of P?. This should be one of the themes of a forthcoming
article on the results of this thesis.

Finally, it is worth saying that there is a very active area of research that studies
different concepts of heights in the field of Arithmetic Geometry. For this reason,
it seems compelling to deepen the study of the heights introduced in the first
chapter, and to compare them with analogous concepts coming, for example,
from Arakelov Theory | ] or from the study of toric varieties | ].
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