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Abstract
In the first part we recall the theory of multiprojective elimination initiated by
P.Philippon and developed by G.Rémond. In particular, we define the eliminant
ideal, the resultant forms and the Hilbert-Samuel polynomial for multigraded
modules. We then look at subvarieties and cycles of a product of projective
spaces, over a number field, and we define their mixed degrees and mixed heights,
which measure respectively their geometric and arithmetic complexity. Finally,
we define the heights of multiprojective cycles relative to some sets of polynomials,
generalizing a previous notion of height due to M.Laurent and D.Roy, and we give
detailed proofs for their properties. In the second part we prove that if we have a
sequence of polynomials with bounded degrees and bounded integer coefficients
taking small values at a pair (a,b) together with their first derivatives, then
both a and b need to be algebraic. The main ingredients of the proof include a
translation of the problem in multihomogeneous setting, an interpolation result,
the construction of a 0-dimensional variety with small height, a result for the
multiplicity of resultant forms, and a final descent. This work is motivated by
an arithmetic statement equivalent to Schanuel’s conjecture, due to D.Roy.
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Introduction

The aim of this thesis is to present some arithmetic and geometric invariants for
subvarieties and cycles of a product of projective spaces Pn := Pn1 × · · · × Pnq ,
and to use them to prove estimates for the norm and the degrees of polynomials
taking small values at a point together with some derivatives of them.
One of the main motivations for this work is Schanuel’s conjecture, which is one of
the outstanding open problems in Transcendental Number Theory, and ultimately
asserts that there are no unexpected algebraic relations pertaining the exponential
function exp: C→ C∗ [Mac91]. In an article of 2001 [Roy01] D.Roy proves that
Schanuel’s conjecture is equivalent to an arithmetic statement which considers
polynomials in only two variables and finitely generated subgroups of the linear
algebraic group G := C×C∗. This formulation is interesting because it is similar
to the currently known criteria of algebraic independence [Phi86a][Jad96][LR01],
and so it suggests a reasonable approach towards Schanuel’s Conjecture.
The first steps in the direction of the understanding and a proof of this statement
were taken by D.Roy and N.A.Nguyen [Roy10][Roy08][Roy13][VR14], embedding
G into the projective space P2, applying an homogenization of the polynomials
involved, and then implementing arguments and techniques of Diophantine
Approximation. In their approach, the interplay between two different concepts of
heights for Q-subvarieties of the projective space Pn proved to be very important.
The first of these heights was introduced by P.Philippon [Phi86a] and it consists
in a measure of the absolute arithmetic complexity of a Q-subvariety Z of Pn.
The definition takes into account the Chow forms FZ,d of Z, which are irreducible
polynomial forms in many variables with integer coefficients that describe the
set of (r + 1)-uples of homogeneous polynomials (P0, . . . , Pr) with fixed degrees
which have a common zero on Z.
The second of these concepts of heights was introduced and studied by D.Roy
and M.Laurent in [LR01], and it measures the relative arithmetic complexity of a
Q-subvariety Z of Pn with respect to a given set (convex body) C of homogeneous
polynomials with fixed degrees. The definition is again given in terms of the
Chow forms FZ,d, but instead of looking at their coefficients, it considers their
evaluation at polynomials in C.
We see that the process of homogenization of polynomials in two variables doesn’t
permit to obtain estimates taking into account both the degrees in the first
and second variable of the polynomials, but only in dependence of the total
degree. To tackle this problem, D.Roy suggests in [Roy13] to embed G into a
product of projective spaces P1 × P1 and then to use the more recent theory of
multiprojective elimination, introduced by P.Philippon [Phi93] and developed
by G.Rémond [Rém01a]. In this master thesis we’re going to carry on this
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Introduction ix

project, transposing the results and arguments of D.Roy in multihomogeneous
setting, obtaining estimates in which the degrees in the variables x and y occur
separately.
So, to evaluate the absolute arithmetic complexity of a Q-subvariety Z of a
product of projective spaces Pn := Pn1 ×· · ·×Pnq , we use the heights introduced
by G.Rémond in place of the height of P.Philippon. These invariants are defined
in terms of the resultant forms resd(Z) of Z instead of Chow forms. The most
evident complication in this context is that there is no more a unique canonical
choice of height, but there are many, depending on a choice of components of the
product of the spaces. In addition to this, resultant forms are no more irreducible
polynomial forms, and so multiplicity arguments are to be taken into account.
One of the main contribution of this work is the definition of a multihomogeneous
counterpart for the relative heights introduced by M.Laurent and D.Roy. Using
again the theory of multiprojective elimination of G.Rémond we define a notion
of height which measures the arithmetic complexity of a Q-subvariety Z of a
product of projective spaces Pn, with respect to a given set C (convex body)
of multihomogeneous polynomials of given multidegrees. The idea is simply to
consider the evaluation of the resultant form resd(Z) at polynomials in C. We
also give a proof of the basic properties of this height, following the exposition
given in [LR01] for the homogeneous case.
The second main contribution of this thesis is the proof of a lower bound for the
multiplicity of the resultant forms at certain (r + 1)-uples of multihomogeneous
polynomials, which generalizes a previous result of D.Roy ([Roy13], Theorem 5.2)
for the Macaulay resultant. Here the proof combines a decomposition lemma due
to D.Roy, an explicit description of the resultant forms of Pn due to G.Rémond,
and a lemma for calculating lenghts of modules over DVR rings.
Finally, after we’ve collected these results, valid on a generic product of projective
spaces, we specialize them to the case Pn = P1 × P1, in order to prove a small
value estimate that generalizes that of [Roy13]. More precisely, if we define the
G-invariant derivation D1 = ∂

∂x + y ∂
∂y : C[x, y] → C[x, y], we prove that if we

have a sequence of polynomials PN (x, y) ∈ Z[x, y] for which we have bounds on
their coefficients, their x-degree and their y-degree, such that they take small
values when evaluated at a pair (ξ, ν) ∈ C×C×, together with their first invariant
derivatives, then the pair (ξ, ν) must be in Q×Q× and actually the polynomials
PN vanish in (ξ, ν) with high multiplicity, for sufficiently big N . For the proof
we essentially follow the arguments in [Roy13], but we replace the tools valid
in homogeneous setting with those coming from multihomogeneous elimination
and multiprojective geometry.
This thesis is naturally divided into two chapters, which are structured as follows.
We refer to the specific sections for the notations and the definitions.

The first chapter: preliminaries. Heights of multiprojective cycles.

In the first chapter we collect algebraic, geometric and arithmetic tools useful to
address problems of Diophantine Approximation in multiprojective setting. The
main references here are [Rém01a], [Rém01b], [DKS11] and [LR01].
In the first section we present the theory of Multihomogeneous Elimination
developed by G.Rémond. Given a multihomogeneous ideal I of a multigraded
polynomial ring K[X], we define the eliminant ideals Ed(I) and we give an
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algebraic interpretation of them. We then recall the basic properties of UFD
rings and DVR rings. We make a choice of the representatives for the irreducible
elements of a UFD ring, modulo multiplication by units, to define the principal
part of an ideal and the annihilant of a module. We then state the principality
theorem for the eliminant ideals and we define the eliminant forms elimd(I) and
the resultant forms resd(I) of a multihomogeneous ideal I of K[X]. We conclude
by giving some relevant examples of resultant forms.
In the second section we study the geometry of multiprojective spaces, i.e.
products of projective spaces Pn := Pn1 × · · · × Pnq . We define a Hilbert-Samuel
polynomial for multigraded modules of finite type and we give some definitions
useful for the study of multivariate polynomials. We introduce the concepts of
subvarieties, divisors and K-cycles of a multiprojective space, we recall their
relation with multihomogeneous ideals and we define an intersection product
between K-cycles and divisors. We then use the Hilbert-Samuel polynomial to
give the definition of mixed degrees for multiprojective cycles, and we give a
geometric interpretation for these invariants. We extend the definition of resultant
forms to effective cycles. We study their behaviour under index permutations,
field extensions and intersections by hypersurfaces. We then give explicit formulas
for the resultant forms of 0-dimensional cycles and for the degrees of arbitrary
resultant forms in terms of the mixed degrees of the cycle.
In the third section we measure the arithmetic complexity of cycles defined over
a number field through the definition of their heights. We start by recalling the
theory of absolute values over a number field. We then define the concept of
convex bodies and of adelic convex bodies, and we give relevant examples of
them. We define the absolute height of an algebraic number and of a polynomial
form as a sum of local contributions and then, given a multiprojective cycle Z,
we use its resultant forms resd(Z) to give the definition of its mixed heights
hµ(Z) and of its heights relative to convex bodies hC(Z).
In the fourth section we prove some of the basic properties of the heights of
multiprojective cycles. We give estimates for the heights relative to convex
bodies having a particular shape and we compare between the heights relative
to different convex bodies. We study the relation between mixed heights and
heights relative to specific convex bodies and then we give an arithmetic version
of Bézout’s inequality which estimates the heights of the intersection product of
a cycle with an hypersurface.

The second chapter: results. Small value estimates in dimension two.

In the second chapter we specialize to a bihomogeneous setting and we apply
the tools developed in the first chapter to prove a small value estimate for
polynomials in two variables. Here we follow closely the arguments in [Roy13].
The main difference between that article and our work is that we replace P2 and
homogeneous polynomials with P1 × P1 and bihomogeneous polynomials. The
outcome is a more finer statement in the end.
In the first section we state the main theorem, we discuss about the motivation
of the statement, and we prove a corollary along the lines of the main conjecture.
In the second section we study in details the arithmetic and the geometry of
Q-cycles of P1 × P1. We consider separately the subvarieties having dimension
0, 1 and 2 and we study the effect of cutting a subvariety by a hypersurface.
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We then estimate the height of a 0-dimensional Z relative to a convex body C
in terms of the mixed heights of Z and of the evaluations P (α) of polynomials
P ∈ C at normalized representatives α of the complex points of Z.
In the third section we study the ring of polynomials C[X,Y]. We define the
translation automorphisms τγ and the invariant derivation D = X0

∂
∂X1

+ Y2
∂
∂Y2

on C[X,Y], and we give basic estimates for them. We state an interpolation
result due to D.Roy and V.Nguyen, which improves on a previous result of
Mahler, and we use it to estimate the length of a polynomial for which we know
the values of enough invariant derivatives at a point. We then consider the set
I

(γ,T )
D of multihomogeneous polynomials of multidegree D vanishing at a point
γ with multiplicity at least T . We show that if D ≤ N and D is sufficiently
big, then every Q ∈ I

(γ,T )
N can be written as a combination of polynomials

Pν ∈ I(γ,T )
D , and we prove estimates for such a decomposition. The proof takes

the form of a long division algorithm.
In the fourth section we define and estimate the multiprojective distance between
two points of P1(C) × P1(C). We also define the distance from a point of
P1(C)×P1(C) to some analytic curve Aγ . We introduce the quantity |I(γ,T )

D |(α,β)
and we use it to estimate from below and from above the distances of a point
(α, β) from γ and from Aγ .
In the fifth section we prove a decomposition lemma for a generic multigraded
ring K[X] and a lower bound for the multiplicity of the resultant forms of an
arbitrary multiprojective space Pn := Pn1 × · · · × Pnq . We then specialize the
result to prove that the resultant form res(D,D,D)(P1 × P1) vanishes to order at
least T at each triple (P,Q,R) of polynomials in I(γ,T )

D .
In the sixth section we perform the construction of a 0-dimensional subvariety Z
with small height hC(Z) relative to a specific convex body C. We first provide an
estimate for hC(P1×P1) and we then cut P1×P1 with appropriate hypersurfaces
to get the desired 0-dimensional subvariety Z. Finally, we estimate the mixed
degrees and the mixed heights of Z.
The seventh section is devoted to the proof of the main theorem.
We end the chapter with some comments about the results of this thesis and
with indications for possible developments.



Chapter 1

Heights of multiprojective
cycles

1.1 Tools of Multiprojective Elimination
Throughout this text we denote by N the set of nonnegative integers and by N+
the set of strictly positive integers. Also, rings are intended to be commutative
and with 1. For every 1 ≤ i ≤ q we define ei ∈ Nq to be the standard basis
vector (0, . . . , 1, . . . , 0), with 1 in position i. We also set 1 := e1 + . . .+eq. Given
α ∈ Nq we define

|α| := α1 + . . .+ αq.

For n = (n1, . . . , nq) ∈ Nq we define n := n1 + . . .+ nq and

Nn := Nn1 × · · · × Nnq .

Given two nonnegative integers m, r ∈ N we define Nmr := {α ∈ Nm : |α| = r},
and if d = (d1, . . . , dq) ∈ Nq, we set

Nn+1
d :=

∏
1≤i≤q

Nni+1
di

.

A ring R is multigraded (or Nq-graded) if it admits a decomposition

R =
⊕
α∈Nq

Rα

such that RαRβ ⊆ Rα+β for every α, β ∈ Nq. We say that the elements of
Rα are multihomogeneous of multidegree α and we write deg(x) := α for every
x ∈ Rα. A multigraded R-module M is a module over a multigraded ring R
which admits a decomposition M =

⊕
α∈Zq Mα such that RαMβ ⊆ Mα+β for

every α ∈ Nq, β ∈ Zq.

1.1.1 Basic definitions
Let K be any field, q ∈ N+, n = (n1, . . . , nq) ∈ Nq and n := n1 + . . .+ nq. For
1 ≤ i ≤ q, let X(i) = {X(i)

0 , . . . , X
(i)
ni } be a group of ni + 1 variables, and set

X = {X(1), . . . ,X(q)}.

1



Tools of Multiprojective Elimination 2

We consider the ring K[X] multigraded by declaring deg(X(i)
j ) = ei for every

1 ≤ i ≤ q, 0 ≤ j ≤ ni. For d = (d1, . . . , dq) ∈ Nq we denote by K[X]d its part
of multidegree d and by Md the set of monic monomials of multidegree d. If
α ∈ Nn+1

d we define the monomial

Xα := X
(1)α1,0
0 · · ·X(1)α1,n1

n1 · · ·X(q)αq,0
0 · · ·X(q)αq,nq

nq ∈ K[X]d,

so that Md = {Xα : α ∈ Nn+1
d }.

Let r ∈ N and let d = (d(0), . . . ,d(r)) ∈ (Nq\{0})r+1 be a collection of multi-
degrees. For 0 ≤ i ≤ r, we introduce the group of variables u(i) = {u(i)

m : m ∈
Md(i)} and we consider, for 0 ≤ i ≤ r, the general polynomial Ui of multidegree
d(i) in the variables X:

Ui :=
∑

α∈Nn+1
d(i)

u
(i)
XαXα ∈ K[u(i)][X].

Set u = (u(0), . . . ,u(r)). We consider the ringK[u] multigraded by deg(u(i)
m ) = e′i

for i = 0, . . . , r, where e′i is the (i+ 1)-th standard basis element of Nr+1.
Given d = (d(0), . . . ,d(r)) ∈ (Nq\{0})r+1, it will be useful to think of a polyno-
mial form F ∈ K[u] as an element of Sym(K[X]∗d(0))⊗ · · · ⊗ Sym(K[X]∗d(r)) or,
more concretely, as a polynomial map

F : K[X]d(0) × · · · ×K[X]d(r) −→ K.

This is possible, since the variables u(i) are in bijection with coordinate functions
of the affine space K[X]d(i) ∼= AN , with

N =
(
d

(i)
1 + n1

n1

)
· · ·
(
d

(i)
q + nq
nq

)
.

Therefore, with a slight abuse of notation, given F ∈ K[u] and P0, . . . , Pr ∈
K[X]d(0) × · · · ×K[X]d(r) , we will write

F (P0, . . . , Pr) := F (coeff(P0), . . . , coeff(Pr)),

where coeff(Pi) denotes the collection of the coefficients of Pi, so that

P =
∑

α∈Nn+1
d(i)

coeff(P )XαXα,

or, in other words, Pi(X) = Ui(coeff(P ))(X).
If I is an ideal of K[X], we denote by I[d] the ideal of K[u][X] generated by I
and by the general polynomials U0, . . . , Ur. We also consider the K[u]-module

Md(I) := K[u][X]/I[d].

This module inherits a multigraded structure from K[X]. For k ∈ Nq, we
denote by Md(I)k its part of multidegree k in the variables X. Every such
multihomogeneous part is a finitely generated multigraded K[u]-module.
We are now ready to introduce one of the most important objects studied by the
theory of Multihomogeneous Elimination.
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Definition 1.1.1. Let I be an ideal of K[X] and d = (d(0), . . . ,d(r)) ∈
(Nq\{0})r+1. We define the eliminant ideal of index d by

Ed(I) := {f ∈ K[u] : ∃k ∈ Nq fMk ⊆ I[d]}.

The following theorem ([Rém01a], Théorème 2.2) gives an interpretation of the
eliminant ideal in terms of polynomial equations.

Theorem 1.1.2. Let ρ : K[u]→ K a morphism of rings (i.e. a specialization
for the general coefficients). Then, for all multihomogeneous ideals I of K[X],
the following conditions are equivalent:

1. ρ(Ed(I)) = 0;

2. there exists a (finite) field extension L/K and a nontrivial zero of ρ(I[d])
in Ln1+1 × · · · × Lnq+1, that is, there exists x ∈ (Ln1+1\{0}) × · · · ×
(Lnq+1\{0}) such that f(x) = 0 for all f ∈ I and ρ(Ui)(x) = 0 for all
0 ≤ i ≤ r.

The following are easy properties of the eliminant ideal.

Proposition 1.1.3. If I is an ideal of K[X], then Ed(I) = K[u] if and only if
M1 ⊂

√
I. If I is a prime ideal of K[X] and M1 6⊂ I, then Ed(I) is a prime

ideal of K[u].

1.1.2 The annihilant and the principal part in UFD rings
A ring A is a unique factorization domain, or UFD ring, if it is an integral
domain and every element a ∈ A can be written as a finite product of irreducible
elements of A, uniquely up to order and multiplication by units. We also say that
A is factorial. A ring A is a discrete valuation ring, or DVR ring, if it is a unique
factorization domain with a unique irreducible element (up to multiplication by
units).

Facts 1.1.4. The following are well-known properties of UFD and DVR rings.

1. A polynomial ring A[X1, . . . , Xn] over a UFD ring A is again UFD;

2. if A is a UFD ring and π ∈ A is an irreducible element, then (π) is a prime
ideal of A and the localization A(π) is a DVR ring;

3. if A is a UFD ring and p is a minimal nonzero prime ideal of A, then p is
principal, generated by an irreducible element of A;

4. if A is a DVR ring and M is a finitely generated torsion A-module, then
M has finite length;

5. an integral domain A is a DVR ring if and only if there is some discrete
valuation v : K → Z ∪ {∞} on the field of fractions K := Frac(A) of A
such that A = {x ∈ K : v(x) ≥ 0}.

It will be convenient to fix once and for all a set Irr(A) of representatives for
irreducible elements of A modulo multiplication by invertible elements. We
also require that the representative for nonzero units is the element 1. In the
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special case A = Q[X1, . . . , Xn] we take a natural choice for those representatives,
modulo multiplication by ±1, given by the condition that the coefficients of every
polynomial in Irr(Q[X1, . . . , Xn]) lie in Z and are coprime.
Given an ideal J of A, we say that an element a ∈ A is a generator of the
principal part of J if it is a gcd for all elements of J or, in other words,

• a |b for all b ∈ J ;

• if c |b for all b ∈ J then a |c.

A generator for the principal part of an ideal J is unique up to multiplication by
units, so we can give the following definition

Definition 1.1.5. Let J be a nonzero ideal of A. We define ppr(J) to be the
unique generator for the principal part of J that can be written in the form

ppr(J) =
∏

π∈Irr(A)

πnπ .

If 〈S〉 is the ideal generated by a nonempty subset of A we let gcd(S) := ppr(〈S〉).
In the same vein we denote

√
a :=

∏
π∈Irr(A)
π |a

π

for a ∈ A\{0}. We complete these definitions by ppr({0}) := 0 and
√

0 := 0.

Given a finitely generated module over a UFD ring, we are now going to define
an element of the ring that, in some precise sense, encodes local multiplicities
for the annihilator of the module. Since it does not seem to have a name in the
literature, I will call it an annihilant for the module. It will be an essential tool
in the definition of resultant forms in section 1.1.3.

Definition 1.1.6. Let A be a UFD ring and M a finitely generated A-module.
If AnnA(M) 6= 0, we define the annihilant of M by

χA(M) :=
∏

π∈Irr(A)

π`(M(π)) ∈ A ,

where `(M(π)) is the length of the A(π)-module M(π). If AnnA(M) = 0 we set
χA(M) := 0.

Remark 1.1.7. The annihilant ofM is well-defined because for every π ∈ Irr(A)
the ring A(π) is a DVR and, if AnnA(M) 6= 0, M(π) is a finitely generated torsion
module over A(π), so that `(M(π)) is finite; moreover, one has

M(π) 6= 0 ⇐⇒ AnnA(π)(M(π)) 6= A(π)

⇐⇒ (AnnA(M))(π) 6= A(π)

⇐⇒ AnnA(M) ⊆ (π)

and therefore in the above product there are only a finite number of factors
different by 1, precisely those which correspond to the π dividing ppr(Ann(M)).
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We end this section with a result that proves to be useful for calculating length
over DVR rings (see [Rém01a], Lemme 3.1).

Lemma 1.1.8. Let A a DVR ring, M a finitely generated A-module and

At
φ−→ As →M → 0

a finite presentation of M with t ≥ s. Then `(M) is the minimum of the
valuations of the s× s minors of the matrix of φ.

1.1.3 Eliminant and resultant forms
We use the notations of the previous sections and we fix a collection of multide-
grees d ∈ (Nq\{0})r+1, where q ∈ N+ and r ∈ N. We recall that A = K[u] is a
factorial ring andMd(I)k is a finitely generated K[u]-module for every k ∈ Nq
and every ideal I of K[X].
If p is a prime ideal of K[X] we denote by ht(p) its (algebraic) height(1), or rank,
defined as the supremum of the lengths of all chains of prime ideals contained in
p. More generally, if I is an ideal of K[X] we define ht(I) to be the infimum of
the heights of all prime ideals containing I.
We have the following

Lemma 1.1.9. Let I be a multihomogeneous ideal of K[X] with ht(I) ≥ n− r.
Then there exists k0 ∈ Nq such that

AnnK[u](Md(I)k) = AnnK[u](Md(I)k0) , χK[u](Md(I)k) = χK[u](Md(I)k0)

for all k ≥ k0. For such a k ∈ Nq, we have Ed(I) = AnnK[u](Md(I)k).

Proof. We begin with the following easy observation

AnnK[u](Md(I)k) = {f ∈ K[u] : f.K[u][X]k ⊆ I[d]}
= {f ∈ K[u] : fMk ⊆ I[d]}.

Since Ed(I) =
⋃

k∈Nq{f ∈ K[u] : fMk ⊆ I[d]} and the ring K[u] is noetherian,
we have Ed(I) = {f ∈ K[d] : fMk ⊆ I[d]} for all k ≥ k0. This plainly gives
the first and the last assertion. The second statement is [Rém01a], Lemme 3.2
and Théorème 3.3.

Definition 1.1.10. Let I be a multihomogeneous ideal of K[X] with height at
least n− r and d ∈ (Nq\{0})r+1. We define

elimd(I) := ppr(Ed(I)),

and we call any nonzero scalar multiple of it an eliminant form of index d for I.
We also define

resd(I) := χK[u](Md(I)k),

for every sufficiently large k. We call any nonzero scalar multiple of it a resultant
form of index d for I.

(1)Not to be confused with the arithmetic height we define in section 1.3.2
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We observe that the remark 1.1.7 implies that for every multihomogeneous ideal
I with ht(I) ≥ n− r one has the formula√

elimd(I) =
√

resd(I). (1.1.1)

If I is a prime ideal, Proposition 1.1.3 implies that elimd(I) ∈ Irr(K[u]) and
that there exists m ∈ N+ (uniquely determined if resd(p) 6= 1) such that
resd(I) = elimd(I)m.
The relevance of the definition of an eliminant form is essentially resumed in
the following principality theorem ([Rém01a], Corollary 2.15, [DKS11], Lemma
1.34). Given a subset J ⊆ {1, . . . , q} we denote by XJ the group of variables
{X(j) : j ∈ J} and we set nJ :=

∑
j∈J nj . If d ∈ (Nq\{0})r+1 we denote

rJ := #{i : 0 ≤ i ≤ r, d
(i)
j = 0 for all j /∈ J} − 1. Equivalently, rJ + 1 counts

the number of indices i for which the general form Ui of multidegree d(i) lies in
K[u][XJ ].

Theorem 1.1.11. Let K be any field, r ∈ N, I a multihomogeneous ideal of
K[X] and d ∈ (Nq\{0})r+1.
Then Ed(I) is a principal ideal if and only if nJ − ht(I ∩ K[XJ ]) ≥ rJ for
every J ⊆ {1, . . . , q}. In this case Ed(I) = (elimd(I)). Otherwise, Ed(I) is not
principal and elimd(I) = 1.

Nevertheless, we shall see that resultant forms are more suitable than eliminant
forms for applications to Multiprojective Geometry and Diophantine Approxi-
mation.
We end this section providing an explicit formula for the resultant forms of the
zero ideal I = (0) of K[X].

Lemma 1.1.12. Let d = (d(0), . . . ,d(n)) ∈ (Nq\{0})n+1 be a collection of
nontrivial multidegrees. For every multidegree k = (k1, . . . , kq) such that k ≥ d(i)

for every i = 0, . . . , n, we define the K[u]-linear map

φk : K[u][X]k−d(0) × . . .×K[u][X]k−d(n) → K[u][X]k
(A0 , . . . , An ) 7→

∑n
l=1 UlAl

. (1.1.2)

Let Mk be a matrix that represents the map φk with respect to some basis of
its domain and its codomain (they are free K[u]-modules). Then, there exists a
multidegree k0 ∈ Nq with k0 ≥ d(i) for i = 0 . . . , n and an element ζ ∈ K× such
that, for all k ≥ k0, we have

resd((0)) = ζ gcd({det(∆) : ∆ ∈M}),

where M is the set of minors of Mk having maximum rank and where the gcd is
taken into K[u], which is an UFD ring.

Proof. We see that ×ni=0K[u][X]k−d(i) ∼= K[u]α(k) and K[u][X]k ∼= K[u]β(k),
where α(k), β(k) are polynomial expressions in the q numbers k1, . . . , kq, with
coefficients depending on d. If we denote by T = (T1, . . . , Tq) a group of q
variables and by α(T ) and β(T ) the polynomials corresponding to α(k) and β(k),
we see that β(T ) has degree ni in the variable Ti, for i = 1, . . . , q, and that it has
a unique monomial with maximum total degree, namely LP (β(T )) = T

n1
1 ···T

nq
q

n1!···nq !
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(see also formula (1.2.2)). Moreover α(T ) has degree (n+ 1)ni in the variable
Ti, for i = 1, . . . , q, and has a leading monomial LP (α(T )) = LP (β(T ))n+1.
This implies that we can assume α(k) ≥ β(k), for k sufficiently big, say k ≥ k1.
We also notice that the map φk fits into a presentation for the K[u]-module
Nk :=Md((0))k = (K[u][X]/(0)[d])k:

K[u]α(k) φk−−→ K[u]β(k) −→ Nk → 0.

Given π ∈ Irr(K[u]), tensoring by K[u](π) preserves the exactness of the presen-
tation

(K[u])α(k)
(π) → (K[u])β(k)

(π) → (Nk)(π) → 0 ,

and resd((0)) is calculated, for k sufficiently big, say k ≥ k2, from the lengths of
the modules (Nk)(π) through the formula

resd((0)) =
∏

π∈Irr(K[u])

π`((Nk)(π)).

Since K[u](π) is a DVR ring, Lemma 1.1.8 applies:

`((Nk)(π)) = max{e ∈ N : det(∆) ∈ (π)e for all ∆ ∈M}.

This proves the assertion with k0 = max{k1,k2}.

1.2 Multiprojective Geometry
1.2.1 The multihomogeneous Hilbert-Samuel polynomial
In [Rém01a] G.Rémond develops a theory of Hilbert-Samuel polynomials for
multigraded modules, which extends the usual theory for graded modules. He use
this tool to prove his theorems on the eliminant and resultant forms and to give
the definition of mixed degrees, which are measures of the geometric complexity
of multihomogeneous ideals. In what follows it will be convenient to denote by
IJ the intersection I ∩K[X(J)], for I an ideal of K[X] and J ⊆ {1, . . . , q}. We
also consider a family of variables T1, . . . , Tq, and T (J) will denote the sub-family
{Ti : i ∈ J}.
If M is a multigraded K[X]-module, we give the following definitions.

e(M) := max
Ann(M)⊂p,M1 6⊂p

(n− ht(p)),

eJ(M) := max
Ann(M)⊂p,M1 6⊂p

(nJ − ht(pJ)).
(1.2.1)

Definition 1.2.1. Let K be a field and M a multigraded finitely generated
K[X]-module. We define the Hilbert-Samuel function of M:

ΨM : Zq → N
k 7→ dimKMk.

The following theorem asserts that the Hilbert-Samuel function is eventually a
polynomial function ([Rém01a], Théorème 2.10).
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Theorem 1.2.2. LetM be a multigraded finitely generatedK[X]-module. Then
there exists an unique polynomial HM ∈ Q[T1, . . . , Tq] (called the Hilbert-Samuel
polynomial of M) such that for some k0 ∈ Nq and for all k ≥ k0 we have
ΨM (k) = HM (k).

Moreover the polynomial HM has the following properties.

1. HM has total degree e(M) and, more generally, has partial degree eJ(M)
in the variables T (J) for every J ⊆ {1, . . . , q};

2. The coefficients of the monomial of HM having maximal total degree are
positive.

1.2.2 The ∗-operator and operations on polynomials
Given a multihomogeneous ideal I of K[X] we are going to study the mul-
tihomogeneous Hilbert-Samuel polynomial for the multigraded K[X]-module
M = K[X]/I. To this extent, we first give some general definitions concerning
polynomials in many variables. We denote the collection of coefficients of a
polynomial P ∈ Q[T1, . . . , Tq] by coeff(P ) ∈ QNq , so that we can write

P (T1, . . . , Tq) =
∑
α∈Nq

coeff(P )αTα.

We define the total degree of P by totdeg(P ) := max{|α| : coeff(P )α 6= 0} ∈ N.
Given this, we introduce the leading part of a polynomial, defined as the sum of
the terms of higher degree

LP (P ) :=
∑

|α|=totdeg(P )

coeff(P )αTα. (1.2.2)

We also define the collection c̃oeff(P ) ∈ QNq of normalized coefficients of P by

c̃oeff(P )α := 1
α! coeff(P )α,

where α! := α1! · · ·αq!. We then denote the collection of normalized leading
coefficients of P by

LC(P ) := c̃oeff(LP (P )).

For a polynomial P ∈ Q[T1, . . . , Tq] and a multi-rational k ∈ Qq we define
another polynomial by

∆k(P )(T1, . . . , Tq) := P (T1, . . . , Tq)− P (T1 − k1, . . . , Tq − kq)

To study the coefficients of ∆k(P ), we introduce the ∗-operator, following
[Rém01a].

Definition 1.2.3. We define the ∗-operator, ∗ : QNq×Qq → QNq , by the formula

(c ∗ k)α :=
q∑
i=1

ki · cα+ei .
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Given c ∈ QNq and a collection of multi-rationals (k1, . . . ,kr) ∈ (Qq)r we will
write c∗k1 ∗ · · · ∗kr for (. . . (c∗k1)∗ · · · )∗kr. We also notice that this operation
is commutative, meaning that for every permutation σ of {1, . . . , r} we have
c ∗ k1 ∗ · · · ∗ kr = c ∗ kσ(1) ∗ · · · ∗ kσ(r). This is easy to prove as, for a,b ∈ Qq,
we have

(c ∗ a ∗ b)α =
q∑
i=1

bi ·
q∑
j=1

ajcα+ei+ej =
q∑

i,j=1
aibjcα+ei+ej = (c ∗ b ∗ a)α.

For this reason we allow us to abbreviate c ∗ k1 ∗ · · · ∗ kr with c ∗ri=1 ki. With
a slight abuse of notation, in case we have c ∈ QNq for which cα = 0 for all
α 6= (0, . . . , 0), we consider it simply as a number c ∈ Q. In other words, we
identify Q ∼= QNq0 ↪→ QNq . We thus also use the following notation.

Definition 1.2.4. Let c ∈ QNqr , and d = (d(1), . . . ,d(r)) ∈ (Qq)r a collection of
multi-rationals. We denote

〈c;d〉 := c ∗ d(1) ∗ · · · ∗ d(r) ∈ Q.

We will also consider a degenerate case of this definition: if c ∈ Q = QNq0 we
define 〈c; ∅〉 := c.

We have the following easy proposition about the coefficients of ∆d(P ).

Proposition 1.2.5. If P ∈ Q[T1, . . . , Tq] is a polynomial without negative
coefficients in its leading part LP (P ) and if d = (d1, . . . , dq) ∈ Qq is a multi-
rational with di > 0 for all i = 1, . . . , q, then totdeg(∆d(P )) = totdeg(P ) − 1
and

LC(∆d(P )) = LC(P ) ∗ d.

Proof. Let t := totdeg(P ) and c := coeff(P ), and write

P (T ) =
∑
|α|=t

cαT
α +

∑
|α|=t−1

cαT
α + · · ·

so that

P (T − d) =
∑
|α|=t

cαT
α −

∑
|α|=t

q∑
i=1

diαicαT
α−ei +

∑
|α|=t−1

cαT
α + · · ·

and therefore

∆d(P ) =
∑
|α|=t−1

q∑
i=1

diαicα+eiT
α + · · · ,

where the monomials that are not shown in the above formulas all have total
degree ≤ t−2. The proposition is then proved because the positivity assumptions
avoid cancellation in total degree t− 1.

Actually, one can give more general formulas for the ∗-operator taking into
consideration generating functions (see for example the Chow class of a cycle
and the corresponding Bézout formula in [DKS11]).
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1.2.3 Multiprojective cycles
Up to now we have considered ideals of K[X]. We recall now the link with closed
subschemes of Pn

K := Pn1
K × · · · × PnqK .

Definition 1.2.6. If I is an ideal of K[X] we define its multisaturation to be
the ideal

Ī := {f ∈ K[X] : ∃k ∈ Nq fMk ⊆ I}.
An ideal I is said multisatured if I = Ī.
We introduce, for every j ∈ {0, . . . , n1} × {0, . . . , nq}, an indeterminate Zj , and
we denote by Z the collection of all the Zj . We consider the map of K-algebras

θ : K[Z] → K[X]
Zj 7→ X

(1)
j1
· · ·X(q)

jq
.

The kernel of θ is generated(2) by the polynomials of the form ZjZk − ZlZm
such that {ji, ki} = {li,mi} for all i = 1, . . . , q, and we know (see [Har77], II,
Ex.5.12 for the case q = 2) that there is a canonical isomorphism

Proj(K[Z]/Ker(θ)) ∼= Pn1
K × · · · × PnqK .

If I is a multihomogeneous ideal of K[X], it is clear that θ−1(I) is a homogeneous
ideal of K[Z] (graded by deg(Zi) = 1). The latter gives rise to a multihomoge-
neous ideal of K[Z]/Ker(θ) and so to a closed subscheme of Proj(K[Z]/Ker(θ)).
Finally, the above isomorphism permits to attach to a multihomogeneous ideal I
a closed subscheme Z(I) of Pn

K . The relevance of this procedure is given by the
following ([Rém01a], 2.17)
Proposition 1.2.7. The application I 7→ Z(I) described above induces a
decreasing bijection between multisatured multihomogeneous ideals of K[X] and
closed subschemes of Pn

K . The adjective decreasing means that if I ⊆ J the
closed immersion Z(J) ↪→ Pn

K factorizes as Z(J) ↪→ Z(I) ↪→ Pn
K . We denote

the inverse of I 7→ Z(I) by Z 7→ I(Z).
The only multisatured ideal containing M1 is K[X] itself. A multihomogeneous
prime ideal of K[X] that does not contain M1 is multisatured. The reduced
closed subschemes of Pn

K , alternatively called subvarieties, correspond to radical
multihomogeneous ideals of K[X] not containing M1. The integral closed sub-
schemes of Pn

K correspond to multihomogeneous prime ideals not containing M1
and will be alternatively called irreducible subvarieties. A closed subscheme Z
of Pn

K have an underlying noetherian (Zariski) topological space and so, as it
is customary, one can define its dimension dim(Z) using chains of irreducible
subvarieties. The dimension of a nonempty closed subscheme of Pn

K is a non-
negative integer bounded by n = dim(Pn

K). We observe that for a multisatured
ideal we have dim(Z(I)) = e(K[X]/I); in fact the first number is obtained, by
proposition 1.2.7, considering the length of chains of multihomogeneous prime
ideals; the second is calculated with chains of any prime ideals; the equality is
obtained combining [Rém01a], Lemme 2.5 and the fact that K[X] is a catenary
ring. Analogously, eJ (K[X]/I) is interpreted as the dimension of the projection
of Z(I) over the product of the factors PniK , i ∈ J .
We now introduce the concept of cycle following [DKS11].

(2)About this fact, there is a mistake in [Rém01a].
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Definition 1.2.8. A K-cycle of Pn
K is a finite Z-linear combination

Z =
∑
V

mV V (1.2.3)

of irreducible subvarieties of Pn
K . The subvarieties V such that mV 6= 0 are

the irreducible components of X. The dimension of a cycle is the maximum
dimension of its irreducible components. A K-cycle is pure dimensional or
equidimensional if its components have all the same dimension. It is effective
(respectively, reduced) if it can be written as in (1.2.3) with mV ≥ 0 (respectively,
mV ∈ {0, 1}).

For 0 ≤ r ≤ n, we denote by Zr(Pn
K) the group of K-cycles of Pn

K of pure
dimension r and by Z+

r (Pn
K) the semigroup of those which are effective. We also

set Z≤s(Pn
K) :=

⊕s
r=0 Zr(Pn

K), Z+
≤s(Pn

K) :=
⊕s

r=0 Z
+
r (Pn

K), Z(Pn
K) := Z≤n(Pn

K)
and Z+(Pn

K) := Z+
≤n(Pn

K). We define the group of divisors(3) Div(Pn
K) :=

Zn−1(Pn
K) and the semigroup of effective divisors Div+(Pn

K) := Z+
n−1(Pn

K).
For every multihomogeneous ideal I of K[X] we associate the effective K-cycle

Z(I) :=
∑
p

mpZ(p),

where the sum ranges over all minimal primes p ⊇ I and mp = `((K[X]/I)p).
If f ∈ K[X] is a nonzero multihomogeneous polynomial, we get from the
well-known Krull’s hauptidealsatz that every minimal prime p containing f
has ht(p) = 1. Since K[X] is factorial, we also observe that every such p is
principal, generated by a multihomogeneous element of Irr(K[X]). Then, for
every multihomogeneous f ∈ K[X] we define

div(f) := Z((f)) ∈ Div+(Pn
K).

We say that a hypersurface div(f) intersects properly an irreducible subvariety
V of Pn

K if f is not contained in the prime ideal I(V ). We say that a divisor D
intersects properly a K-cycle Z if every irreducible component of D (which is a
hypersurface) intersects properly all the irreducible components of Z.

Definition 1.2.9. Let f ∈ K[X] be a multihomogeneous polynomial and V an
irreducible subvariety of Pn

K . Assume that div(f) intersects properly V . Then
we define the intersection product of div(f) and V by

V · div(f) := Z((I(V ), f)).

It is an effective cycle of pure dimension dim(V )−1. By linearity, the intersection
product extends to a pairing

Zr(Pn
K)×Div(Pn

K) 99K Zr−1(Pn
K) , (Z,D) 7→ Z ·D,

well-defined whenever Z and D intersect properly.
(3)In this setting there is no distinction between Weil and Cartier divisors.
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1.2.4 Mixed degrees
If I is a multihomogeneous ideal of K[X], we see that K[X]/I is a finitely
generated multigraded K[X]-module. Therefore, thanks to theorem 1.2.2, we can
consider the polynomial HK[X]/I ∈ Q[T1, . . . , Tq], with total degree e(K[X]/I).
One can prove (see [Rém01a]) that its normalized leading coefficients are non-
negative integers. Moreover, if I is a multihomogeneous multisatured ideal not
containing M1, we have that e(K[X]/I) = ht(I) = dim(Z(I)). We can therefore
give the following definitions.

Definition 1.2.10. Given a multihomogeneous multisatured ideal I of K[X]
we define the collection of mixed degrees of I by

deg(I) := c̃oeff(LP (HK[X]/I)) ∈ NNq
e(K[X]/I) .

If V is an irreducible subvariety of Pn
K , we define

deg(V ) := deg(I(V )) ∈ NNqdim(V )

If Z =
∑
V mV V is a K-cycle of Pn

K we define

deg(Z) :=
∑

dim(V )=dim(Z)

mV deg(V ) ∈ NNqdim(Z) .

These definitions agree on the geometric and algebraic sides, meaning that
deg(I) = deg(Z(I)) for every multihomogeneous multisatured ideal I of K[X].
This is easily seen using the following decomposition formula (see [Rém01a])

deg(I) =
∑
p⊇I

ht(p)=ht(I)

`(K[X]p/Ip) deg(p).

Mixed degrees behave well with respect to intersection product, because they sat-
isfy the following version of Bézout’s theorem ([DKS11], Theorem 1.11, [Rém01a],
Lemme 2.11, [Rém01b], Théorème 3.4).

Theorem 1.2.11. Let Z a K-cycle, d ∈ Nq\{0} and f ∈ K[X]d a multihomo-
geneous polynomial of multidegree d such that Z and div(f) intersect properly.
Then

deg(Z · div(f)) = deg(Z) ∗ d.

In case Z ∈ Z0(Pn
K) is a 0-dimensional cycle, we can give a nice interpretation of

its degree by passing to an algebraic closure K̄ of K.

Definition 1.2.12. If V is an irreducible subvariety of Pn
K and L/K is an

extension of fields, we define the scalar extension of V by L as the L-cycle

VL := Z(I(V )⊗K L).

This notion extends to K-cycles by linearity and induces an inclusion Zr(PnK) ↪→
Zr(Pn

L). If Z is an effective K-cycle, then ZL is also effective.
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It is easy to see that 0-dimensional irreducible subvarieties of Pn
K̄

correspond to
points in Pn(K̄) = Pn1(K̄)× · · · × Pnq(K̄) (i.e. points in (K̄n1+1\{0})× · · · ×
(K̄nq+1\{0}) modulo multiplication by scalars on each factor). Therefore, for
a general 0-dimensional K-cycle Z, we write ZK̄ =

∑
ξ mξξ for some points

ξ ∈ Pn(K̄) and mξ ∈ Z. Then deg(Z) ∈ NNq0 and if we identify NNq0 ∼= N and
write deg(Z) = deg(Z)0, we have ([DKS11], Proposition 1.10 (3))

deg(Z) = ZK̄ =
∑

ξ

mξξ =
∑

ξ

mξ. (1.2.4)

In general, we see that mixed degrees can be also defined geometrically ([DKS11],
Corollary 1.14).

Proposition 1.2.13. Let Z ∈ Zr(Pn
K) and β ∈ Nqr. For 1 ≤ i ≤ q and

0 ≤ j ≤ βi we denote by Hi,j the inverse image with respect to the projection
Pn
K → PniK of a generic hyperplane of PniK (i.e. Hi,j = div(`i,j) for a generic
`i,j ∈ K[X]ei). Then

deg(Z)β = deg

Z · q∏
i=1

βi∏
j=1

Hi,j

 .

1.2.5 Properties of the resultant forms
Definition 1.2.14. If d = (d(0), . . . ,d(r)) ∈ (Nq\{0})r+1 and Z =

∑
V mV V ∈

Z+
≤r(Pn

K) is an effective K-cycle of dimension at most r, we define

resd(Z) :=
∏
V

resd(I(V ))mV ,

and we call any nonzero scalar multiple of resd(Z) a resultant form for Z of
index d.

We remark that resd(I(V )) = 1 if dim(V ) < r. This follows from Theorem
1.1.11, formula (1.1.1) and the equality ht(I(V )) = n− dim(V ). We now collect
some of the basic and more relevant properties of resultant forms. For details
and proofs, we address the reader to [Rém01a] and [DKS11].
The definitions of resultant forms agree on the geometric and algebraic sides
([Rém01a], Théorème 3.3).

Proposition 1.2.15. If I is a multihomogeneous ideal of K[X], then we have
the following decomposition formula

resd(I) =
∏
p⊇I

resd(p)`(K[X]p/Ip).

In particular, we have resd(I) = resd(Z(I)) for every multihomogeneous multisa-
tured ideal I of K[X].
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Resultant forms are invariant under index permutations ([DKS11], Proposition
1.27).

Proposition 1.2.16. Let Z ∈ Z+
r (Pn

K), d = (d(0), . . . ,d(r)) ∈ (Nq\{0})r+1

and u = (u(0), . . . ,u(r)) the group of variables corresponding to d. Let σ be
a permutation of the set {0, . . . , r} and write σd = (d(σ(0)), . . . ,d(σ(r))) and
σu = (u(σ(0)), . . . ,u(σ(r))). Then

resσd(Z)(σu) = resd(Z)(u).

Resultant forms are invariant under field extensions ([DKS11], Proposition 1.28).

Proposition 1.2.17. Let Z ∈ Z+
r (Pn

K), d = (d(0), . . . ,d(r)) ∈ (Nq\{0})r+1 and
L/K a field extension. Then there exists λ ∈ L× such that

resd(ZL) = λ resd(Z),

where ZL is the scalar extension of Z by L (see Definition 1.2.12).

The resultant forms of effective pure dimensional K-cycles are multihomogeneous
polynomial forms and their partial degrees can be expressed in terms of mixed
degrees ([Rém01a], Théorème 3.4).

Proposition 1.2.18. Let Z ∈ Z+
r (Pn

K) and d = (d(0), . . . ,d(r)) ∈ (Nq\{0})r+1.
Then resd(Z) is a multihomogeneous element of K[u] and its degree in the group
of variables u(i) is

deg(Z) ∗0≤j≤r
j 6=i

d(j).

Resultant forms behave well with respect to the intersection product of a cycle
with an hypersurface. In particular, it transforms it in an evaluation ([Rém01a],
Proposition 3.6).

Proposition 1.2.19. Let Z ∈ Z+
r (Pn

K), d = (d(0), . . . ,d(r)) ∈ (Nq\{0})r+1,
d
′ = (d(0), . . . ,d(r−1)), u′ = (u(0), . . . ,u(r−1)) the group of variables correspond-

ing to d
′ and f ∈ K[X]d(r) such that Z and div(f) intersect properly. Then

there exists λ ∈ K× such that

resd′(Z · div(f))(u′) = λ resd(Z)(u′, coeff(f)).

Remark 1.2.20. If Z and div(f) doesn’t intersect properly, we see that there
is an irreducible component V of Z such that f ∈ I(V ). Since Z ∈ Z+

r (Pn
K)

is a pure-dimensional cycle, we have dim(V ) = r. Therefore, for every choice
of multihomogeneous polynomials pi ∈ K[X]d(i) for i = 0, . . . , r − 1, it is
easy to see that there is a nontrivial common zero of I(V ) and p0, . . . , pr−1 in
K̄n1+1×· · ·×K̄nq+1, where K̄ is an algebraic closure of K. Hence, we see by the
definition of an eliminant form and by Theorem 1.1.2 that for every specialization
ρ : K[u]→ K extending u(r) 7→ coeff(f) we have ρ(elimd(V )) = 0. This implies
(if the field K is infinite, but we can address the case of K finite passing to an al-
gebraic closure K̄) that the polynomial form elimd(V )(u(1), . . . ,u(r−1), coeff(f))
is identically zero. Since resd(Z) is a multiple of elimd(V ), we conclude that
resd(Z)(u(1), . . . ,u(r−1), coeff(f)) ≡ 0 in case Z and div(f) doesn’t intersect
properly.
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Resultant forms have the following specialization property.

Proposition 1.2.21. Let Z ∈ Z+
r (Pn

K), d = (d(0), . . . ,d(r)) ∈ (Nq\{0})r+1,
and let I be a finite set of indices. For every i ∈ I let δ(r)

i ∈ Nq\{0} and
denote by di the collection of multidegrees (d(0), . . . ,d(r−1), δ

(r)
i ). Assume that

d(r) =
∑
i∈I δ

(r)
i and let u′ = (u(0), . . . ,u(r−1)). Then there exists λ ∈ K× such

that
resd(Z)(u′, coeff(

∏
i∈I

fi)) = λ
∏
i∈I

resdi(Z)(u′, coeff(fi)) (1.2.5)

for every field L containing K and every choice of polynomials fi ∈ L[X]
δ

(r)
i

.

Proof. Since by Proposition 1.2.17 a change of coefficients affects the resultant
forms only by multiplication by a scalar, we can assume L = K. It is easy to see
that the divisor div(

∏
i∈I fi) intersects properly the cycle Z if and only if for

every i ∈ I the divisor div(fi) intersects properly Z. Thus, if there is some i ∈ I
such that div(fi) doesn’t intersect properly Z, Remark 1.2.20 implies that both
sides of (1.2.5) are zero, and we are done in this case. Otherwise, we observe
that X · div(

∏
i∈I fi) =

∑
i∈I(X · div(fi)) and we conclude with Proposition

1.2.19.

We conclude this section by providing an explicit formula for the resultant forms
of 0-dimensional cycles ([DKS11], Corollary 1.38).

Proposition 1.2.22. Let Z ∈ Z+
0 (Pn

K) a 0-dimensional effective K-cycle and
d ∈ Nq\{0} a nonzero multidegree. Write ZK̄ =

∑s
i=1miξi with ξi ∈ Pn(K̄) and

mi ∈ N, and let ξi a choice of representatives for the points ξi in (K̄n1+1\{0})×
· · · × (K̄nq+1\{0}) . Then there exists λ ∈ K̄× such that

res(d)(Z) = λ

s∏
i=1

U0(ξ)mi ,

where U0 ∈ K[u][X] is the general polynomial of multidegree d .

1.3 Heights
A number field is a field which is a finite extension of Q.

Definition 1.3.1. An absolute value on a field K is a function |·| : K → R≥0
which satisfies

1. |x| = 0 ⇐⇒ x = 0;

2. |x+ y| ≤ |x|+ |y| for all x, y ∈ K (triangle inequality);

3. |xy| = |x| |y| for all x, y ∈ K.

An absolute value |·| is called ultrametric if it satisfies the ultrametric inequality
|x+ y| ≤ max{|x| , |y|} for all x, y ∈ K. It is called archimedean if it is not
ultrametric.
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An absolute value defines a metric on K and thus a topology on K. We say
that two absolute values on K are equivalent if they define the same topology,
and a place is a class of absolute values on K modulo equivalence. Given a
number field K, we denote byMK the set of nontrivial places of K and byMK,0
the subset of the archimedean places of K. Ostrowski’s theorem says that the
elements ofMK,0 correspond to the embeddings σ : K ↪→ C up to conjugation,
whereas elements ofMK\MK,0 are in bijection with the prime ideals of the ring
of integers OK .
For each v ∈MK we select a corresponding absolute value |·|v on K and a real
number λv > 0 such that the following product formula holds∏

v∈MK

|x|λvv = 1 (1.3.1)

for all x ∈ K×. Since there are only a finite number of places such that |x|v 6= 1,
this product is well-defined. We can also choose the numbers λv such that∑

v∈MK,0

λv = 1. (1.3.2)

For each place v ∈MK we choose an absolute value of Q which extends |·|v on
K. We denote by Cv the completion of Q with respect to this absolute value
and we again denote by |·|v the absolute value of Cv which coincides with the
chosen absolute value on Q.

Definition 1.3.2. Let v ∈MK a place of K and P =
∑
α∈Nn+1 cαXα ∈ Cv[X]

a polynomial in some set of variables X with coefficients from Cv. We define the
local v-norm and the local v-length of P respectively by

‖P‖v := max{|cα|v} , Lv(P ) :=
∑

α∈Nn+1

|cα|v .

We will use the fact that for every P,Q ∈ Cv[X] one has ‖P‖v ≤ Lv(P ) and
Lv(PQ) ≤ Lv(P )Lv(Q) (see Lemma 2.3.2). We give analogous definitions for
polynomial forms f ∈ K[u] ⊆ Cv[u].

1.3.1 Convex bodies
Let L be a local field, that is a field which is complete with respect to an absolute
value |·|. It is well known that if V is a finite dimensional L-vector space, all
norms on V are equivalent, so they define the same topology and we endow V
with this topology. The notion of a bounded subset of V is also independent of
the choice of a norm. We may therefore give the following definition.

Definition 1.3.3. We say that a subset C of V is a convex body if it contains a
neighbourhood of zero, it is bounded and it satisfies the condition

λx+ µy ∈ C

for any choice of points x, y ∈ C and any λ, µ ∈ L with{
|λ|+ |µ| ≤ 1 if |·| is archimedean
max{|λ| , |µ|} ≤ 1 if |·| is ultrametric.
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To each convex body C of V , we attach a norm on the vector space of all
polynomial maps F : V → L.

Definition 1.3.4. If C is a convex body of a finite dimensional L-vector space
V and F : V → L is a polynomial map, we define

‖F‖C := sup{|F (x)| : x ∈ C}.

We observe that the norm attached to a convex body C is well-defined because
C is a bounded set. Moreover, since C is a neighbourhood of zero, we have
‖F‖C > 0 for all nonzero polynomial maps F : V → L.
Let now K be a number field and let V be a finite dimensional K-vector space.
For every v ∈ MK we view V as a K-subspace of Cv ⊗K V under the map
x 7→ 1⊗ x. Given a polynomial map F : V → K, we also denote by the same
letter F the unique polynomial map from Cv ⊗K V to Cv which coincides with
F on V .

Definition 1.3.5. Let V be a vector space over K of finite dimension n > 0.
An adelic convex body for V is a product

C =
∏

v∈MK

Cv ⊆
∏

v∈MK

Cv ⊗K V

which satisfies the following conditions:

1. for each v ∈MK , the set Cv is a convex body of Cv ⊗K V ;

2. there exist an invertible linear map φ : Kn → V such that, except for
finitely many places v ∈MK , the set Cv is the image of the unit ball of Cnv ,
Bv := {x ∈ Cnv : max |xi|v = 1}, under the linear map φv : Cnv → Cv⊗K V
which extends φ.

In the sequel we will be interested in a particular type of adelic convex bodies,
suitable for the study of Diophantine Approximation in multihomogeneous
setting.

Definition 1.3.6. Given a collection of multidegrees d = (d(0), . . . ,d(r)) ∈
(Nq\{0})r+1, we define an adelic convex body of index d to be an adelic convex
body for the K-vector space K[X]d(0) × · · · ×K[X]d(r) which has the form of
a cartesian product C = C0 × · · · × Cr where Cj is an adelic convex body for
K[X]d(j) , 0 ≤ j ≤ r.

For any nonempty bounded subset S of a finite dimensional vector space W over
a local field L, which contains a basis for W , there is a smallest convex body of
W containing S. We call it the symmetric convex hull of S. In consists of all
points of W of the form λ1x1 + . . .+λsxs with x1, . . . , xs ∈ S and λ1, . . . , λs ∈ L
satisfying

∑
|λi| = 1 if L is archimedean and max{|λi|} ≤ 1 otherwise. Given

this, we define the following operation on adelic convex bodies.

Definition 1.3.7. Let d′,d′′ ∈ Nq\{0} be nonzero multidegrees and let d =
d′ + d′′. Moreover, let C′ =

∏
v C′v and C′′ =

∏
v C′′v be adelic convex bodies for

K[X]d′ and K[X]d′′ respectively (hence of indices (d′) and (d′′)). We define
their product C = C′C′′ as the adelic convex body C =

∏
v Cv for K[X]d whose

v-component Cv is the symmetric convex hull of the set of products Q′Q′′ with
Q′ ∈ C′v and Q′′ ∈ C′′v , for each place v ∈MK .
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It is easy to see that this construction gives indeed an adelic convex body of index
(d). It is also easy to prove that the product of convex bodies is commutative
and associative.
We are now going to introduce examples of relevant convex bodies and to establish
comparisons between them.

Definition 1.3.8. For every multidegree d = (d1, . . . , dq) ∈ Nq\{0} and every
place v ∈MK we define the following convex bodies

B(d)
v := {P ∈ Cv[X]d : ‖P‖v ≤ 1},
D[i]
v := {L ∈ Cv[X]ei : ‖L‖v ≤ 1}, for all i = 1, . . . , q,

Dd
v := (D[1]

v )d1 · · · (D[q]
v )dq ⊆ Cv[X]d,

and the adelic convex bodies B(d) =
∏
v B

(d)
v , D[i] =

∏
v D

[i]
v , Dd =

∏
v Dd

v .

For an index µ ∈ {1, . . . , q}r+1 we define by eµ the collection of multidegrees

eµ := (eµ0 , . . . , eµr ) ∈ (Nq\{0})r+1. (1.3.3)

Definition 1.3.9. For a collection of multidegrees d = (d(0), . . . ,d(r)) ∈
(Nq\{0})r+1 and µ ∈ {1, . . . , q}r+1 we define the following (cartesian adelic)
convex bodies

B(d) := B(d(0)) × · · · × B(d(r)),

Dµ := D[µ0] × · · · × D[µr],

Dd := Dd(0)
× · · · × Dd(r)

,

of indices d, eµ and d respectively.

We remark that D[i] = Dei = B(ei) for all i = 1, . . . , q and Dµ = Deµ = B(eµ) for
all µ ∈ {1, . . . , q}r+1.

Lemma 1.3.10. Let v be any place of K and d = (d1, . . . , dq) ∈ Nq\{0} a
nonzero multidegree. We have inclusions

q∏
i=1

(ni + 1)−εvdiDd
v ⊆ B(d)

v ⊆ dim(d)εvDd
v , (1.3.4)

where we put εv := 1 if v is archimedean and εv := 0 otherwise, and where
dim(d) := #Md = dimCv(Cv[X]d) denotes the number of monic monomials of
multidegree d.

Proof. Given |d| linear forms Li,j ∈ Dei
v for i = 1, . . . , q and j = 1, . . . , di it is

easy to see that their product P =
∏q
i=1
∏di
j=1 Li,j is a polynomial of multidegree

d and norm ‖P‖v ≤ Lv(P ) ≤
∣∣∏q

i=1(ni+1)di
∣∣ =

∏q
i=1(ni+1)εvdi (see Definition

1.3.2). Conversely, let P ∈ Cv[X]d with ‖P‖v ≤ 1. Then 1
dim(d)P is clearly in the

symmetric convex hull of all the monic monomials in Cv[X]d, and since monomials
are trivially products of linear polynomials, we have 1

dim(d)P ∈ D
d
v .
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1.3.2 Heights of cycles
Let K be a number field. Following G.Rémond [Rém01b], we introduce the
concept of mixed heights for a multiprojective cycle Z ∈ Z(Pn

K). In fact, our
definition is slightly different from that of G.Rémond, because we use a different
notion of height for a polynomial. The effect is that our definition is easier to
use, but behaves worse with respect to geometric operations.
Then, following the work of M.Laurent and D.Roy [LR01], we introduce a concept
of height attached to a convex body. We then give the definition of the height
of a multiprojective cycle Z with respect to a convex body C. This last notion
of height has not been defined previously in the literature, but it is a natural
generalization to multiprojective setting of the ideas in [LR01], and it will be
an essential tool in the proof of the main theorem of the next chapter. For this
reason we devote the next section to give some useful estimates related to this
new concept of height.
One of the most basilar notions of height that one can define in the theory of
Diophantine Approximation is the Weil absolute height of an algebraic number.

Definition 1.3.11. Let K be a number field, and α ∈ K an algebraic number.
We define the Weil absolute (logarithmic) height of α by

h(α) = hK(α) :=
∑

v∈MK

λv log max{1, |α|v}.

The Weil absolute height of an algebraic number α is a nonnegative real number
that measure the arithmetic complexity of α. It does not depend on the field
K, meaning that if α ∈ K ⊆ L, then hK(α) = hL(α). It is an important tool in
many problems of Diophantine Approximation, and there are plenty of references
on this subject. For example one can see [Lan02] for a detailed presentation of
the basic results. We will use the following basic properties of Weil absolute
logarithmic height.

Proposition 1.3.12. Let α, β algebraic numbers. Then

1. h(α+ β) ≤ h(α) + h(β) + log(2);

2. h(αβ) ≤ h(α) + h(β).

We stress the fact that the Weil absolute height is defined as a sum of local
contributions. We are going to give definitions of more general concepts of height
based on this feature.
We recall that we defined in Definition 1.3.2 the local norm of a polynomial to
be the maximum of the absolute values of its coefficients, with respect to an
absolute value |·|v. Summing up the logarithms of the local norms we define the
absolute height of a polynomial.

Definition 1.3.13. Let P ∈ K[X] a polynomial with coefficients in K over
some set of variables X. We define the absolute height of P by

h(P ) :=
∑

v∈MK

λv log ‖P‖v.
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We remark that the Weil absolute height of a number α ∈ K is equal to the
absolute height of the polynomial x−α ∈ K[X]. It is worth saying that if K = Q
and P is a polynomial with integer coprime coefficients, then its height is simply
the logarithm of its norm h(P ) = log ‖P‖.
We notice that a resultant form resd is a polynomial form in K[u], and so we
give the following

Definition 1.3.14. Let µ ∈ {1, . . . , q}r+1 and let eµ be as in (1.3.3). Let V be
an irreducible subvariety of Pn

K of dimension r. We define the mixed height of V
of index µ by

hµ(V ) := h(reseµ(V )).

We extend this definition to all irreducible subvarieties putting hC(V ) := 0 if
dim(V ) 6= r, and then by linearity to an arbitrary cycle Z =

∑
V mV V ∈ Z(Pn

K):

hµ(Z) :=
∑

dim(V )=r

mV hµ(V ).

We use the product formula on K and the norm attached to the convex bodies
Cv (see Definition 1.3.4) to define the height of a nonzero polynomial map
F : V → K.

Definition 1.3.15. If C is an adelic convex body for the finite dimensional
K-vector space V and F : V → C is a nonzero polynomial map, we define

hC(F ) :=
∑

v∈MK

λv log‖F‖Cv .

We extend this definition with hC(0) := 0.

We recall that for every Z ∈ Zr(Pn
K) and every d = (d(0), . . . ,d(r)) ∈ (Nq\{0})r+1

the resultant form resd(Z) can be seen as a polynomial map K[X]d(0) × · · · ×
K[X]d(r) → K. We can then give the following

Definition 1.3.16. If V is an irreducible subvariety of PK of dimension r,
d ∈ (Nq\{0})r+1 is a collection of multidegrees and C is an adelic convex body
of index d, we define the height of Z relative to C by the formula

hC(V ) := hC(resd(V )).

We extend this definition to all irreducible subvarieties putting hC(V ) := 0 if
dim(V ) 6= r, and then by linearity to an arbitrary cycle Z =

∑
V mV V ∈ Z(Pn

K):

hC(Z) :=
∑

dim(V )=r

mV hC(V ).

We remark that this definition does not depend on the choice of resd(V ) because
of the product formula on K.
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1.4 Estimates for the heights
We set some notation that will help us to get more readable formulas in the
following propositions.

Definition 1.4.1. If Z ∈ Zr(Pn
K) is an r-dimensional cycle of Pn

K and d =
(d(0), . . . ,d(r)) ∈ (Nq\{0})r+1 is a collection of nonzero multidegrees, we let

Nj := 〈deg(Z); d̂(j)〉,

where d̂(i) := (d(0), . . . , d̂(i), . . . ,d(r)) ∈ (Nq\{0})r is obtained by deleting the
i-th entry from d. In terms of the ∗-operator (see Definition 1.2.3) we have

Nj = deg(Z) ∗ d(0) ∗ · · · ∗ d̂(i) ∗ · · · ∗ d(r).

More explicitly, we have

Nj =
∑

1≤µi≤q
0≤i≤r
i 6=j

( r∏
k=0
k 6=j

d(k)
µk

)
(deg(Z))∑

i6=j
eµi
,

where the first sum is taken over all the µ = µ0, . . . , µ̂j , . . . , µr in {1, . . . , q}r.
We also let

dim(d(i)) := #Md(i) = dimK K[X]d(i) =
(
d

(i)
1 + n1

n1

)
· · ·
(
d

(i)
q + nq
nq

)
,

and

〈h(Z);d〉 :=
q∑

1≤µi≤q
0≤i≤r

( r∏
k=0

d(k)
µk

)
hµ(Z),

where the sum is taken over all the µ = µ0, . . . , µr in {1, . . . , q}r+1.

We also put ‖n‖ := max{n1, . . . , nq} and we will often use the estimate

log dim(d(i)) ≤ log(‖n‖+ 1)
∣∣∣d(i)

∣∣∣
coming from the general inequality

(
a+b
b

)
≤ (b+ 1)a.

For the statements and the proofs of our estimates, we also need the following
definitions.

Definition 1.4.2. Let v ∈ MK and d ∈ Nq\{0}. For any point α ∈ Cn1+1
v ×

· · · × Cnq+1
v , we consider the linear map of evauation at α:

Lα : Cv[X]d −→ Cv
Q 7−→ Q(α) .

We observe that, according to Definition 1.3.4, we have, for a convex body Cv of
Cv[X]d:

‖Lα‖Cv = sup
Q∈Cv

|Lα(Q)|v = sup
Q∈Cv

|Q(α)|v .
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Lemma 1.4.3. Let v ∈ MK any place and let α ∈ Cn1+1
v × · · · × Cnq+1

v any
point. Let d,d′,d′′, Cv, C′v, C′′v as in Definition 1.3.7. We have

‖Lα‖Cv = ‖Lα‖C′v‖Lα‖C′′v .

Proof. Every element Q ∈ Cv can be written as a finite sum Q =
∑s
i=1 λiQ

′
iQ
′′
i

where Q′i ∈ C′v and Q′′i ∈ C′′v for i = 1, . . . , s, and where the coefficients
λ1, . . . , λs ∈ Cv satisfy

∑s
i=1 |λi|v ≤ 1 if v is archimedean and maxi |λi|v ≤ 1

otherwise. In both cases, we get |Q(α)|v ≤ ‖Lα‖C′v‖Lα‖C′′v and thus ‖Lα‖Cv ≤
‖Lα‖C′v‖Lα‖C′′v . To establish the reverse inequality, we choose Q = Q′Q′′ with
Q′ ∈ C′v and Q′′ ∈ C′′v , and we take the supremum of both sides of the equality
|Q′(α)|v |Q′′(α)|v = |Q(α)|v over the set of all such polynomials Q.

Definition 1.4.4. If P ∈ Cv[X]d is a polynomial of multidegree d ∈ Nq and Cv
is a convex body of Cv[X]d, we define the norm of P relative to Cv by

‖P‖Cv := inf{|ρ|v : ρ ∈ Cv and P ∈ ρ Cv}.

If P ∈ K[X]d is a nonzero polynomial of multidegree d ∈ Nq and C =
∏
v Cv is

an adelic convex body of index (d), we define the height of P relative to C by

hC(P ) :=
∑

v∈MK

λv log‖P‖Cv .

1.4.1 Comparison between convex bodies
We prove two propositions that compare the relative heights with respect to
different adelic convex bodies.
For the proof of the first proposition we need the following result ([LR01],
Proposition 3.7).

Proposition 1.4.5. Let L be a local field and assume that V = V1 × · · · × Vk
is a product of L-vector spaces of dimension dim(Vj) = nj for j = 1, . . . , k.
Moreover, let C be a convex body of V in the form of a cartesian product
C = C1 × · · · × Ck where Cj is a convex body of Vj for j = 1, . . . , k. Then, if
F1, . . . , Fs are multihomogeneous polynomial maps from V1 × · · · × Vk to L and
if their product F = F1 · · ·Fs has multidegree (d1, . . . , dk), we have

‖F‖C ≤
s∏
i=1
‖Fi‖C ≤

 k∏
j=1

n
2djε
j

 ‖F‖C ,
where ε := 1 if (L, |·|) is archimedean and ε := 0 otherwise.

Proposition 1.4.6. Let C = C0 × · · · × Cr be an adelic convex body of index
d = (d(0), . . . ,d(r)) and let s be an integer with 0 ≤ s ≤ r. Suppose that d(s) is
written as a finite sum of nonzero multi-integers d(s) =

∑
i∈I δ

(s)
i and that we

have a corresponding decomposition of Cs into a product

Cs =
∏
i∈I
Cs,i,
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where Cs,i is an adelic convex body for K[X]
δ

(s)
i

for each i ∈ I. For each i ∈ I,
denote by C[i] the adelic convex body which, as a cartesian product, has the
same factors as C except that the s-th factor Cs is replaced by Cs,i. Then, for
any effective cycle Z of dimension r, we have

−2
∑

0≤j≤r
j 6=s

Nj log dim(d(j)) ≤ hC(Z)−
∑
i∈I

hC[i](Z) ≤ 2Ns
∑
i∈I

log dim(δ(s)
i ).

Proof. The height of Z relative to a cartesian product of adelic convex bodies
does not change under a permutation of its factors, by Proposition 1.2.16, so we
may assume, without loss of generality, that s = r. By the effectivity assumption
and by linearity, we may assume that Z = V is an irreducible subvariety of Pn

K .
Let F be a resultant form of V of index d and, for i ∈ I, let Fi be a resultant
form of V of index di = (d(0), . . . ,d(r−1), δ

(r)
i ). Lemma 1.2.21 shows that there

exists ζ ∈ K× such that

F

(
P1, . . . , Pr−1,

∏
i∈I

Qi

)
= ζ

∏
i∈I

Fi(P0, . . . , Pr−1, Qi) (1.4.1)

for any field L containing K and any choice of polynomials Qi ∈ L[X]
δ

(r)
i

for i ∈ I and Pj ∈ L[X]d(j) for j = 0, . . . , r − 1. Define polynomial maps
G : Cv[X]d(r) → Cv and Gi : Cv[X]

δ
(r)
i

for i ∈ I by putting

G(Q) = F (P0, . . . , Pr−1, Q) and Gi(Qi) = Fi(P0, . . . , Pr−1, Qi),

for any Q ∈ Cv[X]d(r) and any Qi ∈ Cv[X]
δ

(r)
i

with i ∈ I. If P0, . . . , Pr−1 is not a
regular sequence in the ring K[X]/I(V ), then Remark 1.2.20 implies that G and
Gi are identically zero, for all i ∈ I. Otherwise, Z ′ := Z · div(P0) · · · div(Pr−1)
is a well-defined 0-dimensional cycle, and, by Proposition 1.2.19, G and Gi are
resultant forms for Z ′, respectively of indices d and di, for i ∈ I. In any case,
thanks to Proposition 1.2.22 there exist elements α1, . . . , αNr ∈ Cn1+1

v \{0} ×
· · · × Cnq+1

v \{0}, and (eventually zero) constants ξ ∈ Cv and ξi ∈ Cv for i ∈ I
such that

G(Q) = ξ

Nr∏
k=1

Q(αk) and Gi(Qi) = ξi

Nr∏
k=1

Qi(αk),

for every choice of polynomials Q and Qi with i ∈ I as above, and where
Nr = deg(Z)∗d(0) ∗ · · · ∗d(r−1) (see Proposition 1.2.11). By virtue of (1.4.1), we
have G(Q) = ζ

∏
i∈I Gi(Qi) whenever Q =

∏
i∈I Qi and therefore ξ = ζ

∏
i∈I ξi.

Applying Proposition 1.4.5 to the above factorization of the maps G and Gi into
products of linear forms, we find

‖G‖Cr,v ≤ |ξ|v
Nr∏
k=1
‖Lαk‖Cr,v

and

|ξi|v
Nr∏
k=1
‖Lαk‖Cr,i,v ≤ dim(δ(r)

i )2Nrεv‖Gi‖Cr,i,v .
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On the other hand, Lemma 1.4.3 shows that, for any α ∈ Cn1+1
v \{0} × · · · ×

Cnq+1
v \{0}, we have ‖Lα‖Cr,v =

∏
i∈I‖Lα‖Cr,i,v . Combining this with the previ-

ous inequalities and using the relation ξ = ζ
∏
i∈I ξi, we get

‖GCr,v‖ ≤ |ζ|v
∏
i∈I

(
dim(δ(r)

i )2Nrεv‖Gi‖Cr,i,v
)
.

Taking the supremum of both sides of this inequality over all choices of P0, . . . , Pr−1,
we deduce

‖F‖Cv ≤ |ζ|v
∏
i∈I

(
dim(δ(r)

i )2Nrεv‖Fi‖C[i]
v

)
.

Finally, taking the logarithms of both sides, multiplying them by λv, summing
over v ∈MK and taking into account the product formula for ζ, we get

hC(V ) ≤ 2Nr
∑
i∈I

log dim δ(r)
i +

∑
i∈I

hC[i](V ).

For the lower bound, fix a place v ∈MK and a choice of polynomials Qi ∈ Cr,i,v
for i ∈ I. Put Q =

∏
i∈I Qi and define Cv-valued polynomial maps E and Ei

for i ∈ I on the product space
∏r−1
j=0 Cv[X]d(j) by putting

E(P0, . . . , Pr−1) := F (P0, . . . , Pr−1, Q)

and
Ei(P0, . . . , Pr−1) := Fi(P0, . . . , Pr−1, Qi)

for any choice of Pj ∈ Cv[X]d(j) for j = 0, . . . , r−1. By virtue of (1.4.1), we have
E = ζ

∏
i∈I Ei. Since Ei is multihomogeneous of multidegree (N0, . . . , Nr−1) if

not identically zero, Proposition 1.4.5 gives

|ζ|v
∏
i∈I
‖Ei‖C′v ≤

r−1∏
j=0

dim(d(j))2Njεv

 ‖E‖C′v ,
where C′v := C0,v × · · · × Cr−1,v. Taking the supremum of both sides over all
choices of polynomials Qi ∈ Cr,i,v with i ∈ I and using the fact that Q =

∏
i∈I Qi

belongs to Cr,v, we get

|ζ|v
∏
i∈I
‖Fi‖C[i]

v
≤

r−1∏
j=0

dim(d(j))2Njεv

 ‖F‖Cv .
Arguing as in the previous situation we deduce

∑
i∈I

hC[i](V ) ≤ hC(V ) + 2
r−1∑
j=0

Nj log dim(d(j)).

The thesis follows.
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The second proposition is simpler.

Proposition 1.4.7. Let C = C0×· · ·×Cr and C′ = C′0×· · ·×C′r be adelic convex
bodies of index d ∈ (Nq\{0})r+1, and let Z be an effective cycle of dimension r.
Then, there exist a finite subset S of {0, . . . , r} ×MK such that C′j,v = Cj,v for
any (j, v) /∈ S. Moreover, for each (j, v) ∈ S, there exists ρj,v ∈ C×v such that
C′v ⊆ ρj,vCj,v. For such a choice of set S and numbers ρj,v with (j, v) ∈ S, we
have

hC′(Z) ≤ hC(Z) +
∑

(j,v)∈S

λvNj log |ρj,v|v.

Proof. The existence of S and (ρj,v)(j,v)∈S follows from the definition of adelic
convex bodies (see Definition 1.3.5). To prove the inequality, we may assume,
by induction on the cardinality of S, that S consists of only one point (i, w).
Moreover, by permuting the factors of C and C′ if necessary, we may assume
that i = 0. We may also assume that Z = V is an irreducible subvariety of Pn

K ,
because of the linearity of the heights and of the numbers Nj . This being so, let
F be a resultant form of V of index d. Since F is homogeneous of degree N0 on
the factor K[X]d(0) by Proposition 1.2.18, we find

‖F‖C′w ≤ ‖F‖Cw |ρ0,w|N0
w .

For the other places v 6= w, we have ‖F‖C′v = ‖F‖Cv , since C′v = Cv. Hence, we
get the desired inequality summing up the logarithms of these local data.

1.4.2 Comparison between mixed and relative heights
The following results compare the mixed heights of G.Rémond with the heights
relative to the convex bodies Dµ and B(d).

Lemma 1.4.8. Let Z ∈ Z+
r (Pn

K) be an effective cycle of dimension r, let
µ ∈ {1, . . . , q}r+1 and for j = 0, . . . , r let βj :=

∑
i 6=j eµi ∈ Nqr. Then we have

hµ(Z) ≤ hDµ(Z) ≤ hµ(Z) + log(‖n‖+ 1)
r∑
j=0

deg(Z)βj , (1.4.2)

where ‖n‖ := max{n1, . . . , nq}.

Proof. By the effectivity assumption and by the linearity of mixed heights,
relative heights and mixed degrees, it suffices to prove the assertion for an
irreducible subvariety Z = V . Let F be a resultant form of V of index eµ and
let v ∈ MK . It is easily seen that if v is ultrametric, we have ‖F‖v = ‖F‖Dµv ,
whereas for v archimedean we have ‖F‖v ≤ ‖F‖Dµv ≤ Lv(F ) ≤ N‖F‖v, where N
is the number of nonzero coefficients of F . Since the form F is multihomogeneous
of multidegree 〈deg(Z); êµ(j)〉 = deg(Z)βj on the factor K[X]eµj , and since the
dimension of K[X]eµj is nµj + 1, we have

N ≤
(

deg(Z)β0 + ‖n‖
‖n‖

)
· · ·
(

deg(Z)βr + ‖n‖
‖n‖

)
,
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thus, using the general crude estimate
(
a+b
b

)
≤ (b+ 1)a we get

logN ≤ log(‖n‖+ 1)
r∑
j=0

deg(Z)βj .

We conclude adding up the logarithms of the local norms and applying formula
(1.3.2).

Proposition 1.4.9. Let Z ∈ Z+
r (Pn

K) be an effective cycle of dimension r,
d ∈ (Nq\{0})r+1 a collection of multidegrees, and B := B(d) as in Definition
1.3.9. We have the following estimate∣∣∣hB(Z)− 〈h(Z);d〉

∣∣∣ ≤ (2r + 3) log(‖n‖+ 1)
r∑
j=0

Nj |d(j)|,

where ‖n‖ = max{n1, . . . , nq} and |d(j)| = d
(j)
0 + · · ·+ d

(j)
nj .

Proof. We first compare between the heights relative to the convex bodies B(d)

and Dd. In order to get more readable formulas, we set

Ω := log(‖n‖+ 1)
r∑
j=0

Nj

∣∣∣d(j)
∣∣∣ .

By Proposition 1.3.10 we have that B(d)
v = Ddv for every v ∈ MK\MK,0.

Moreover, for every v ∈ MK,0 and every j ∈ {0, . . . , r} we have ρ−1
j,vDd(j)

v ⊆

B(d(j))
v ⊆ Dd(j)

v for the choice ρj,v = (‖n‖ + 1)d
(j)
1 +...+d(j)

q . We can then apply
Proposition 1.4.7 with the choices S := {0, . . . , r} ×MK,0, C = B(d), C′ = Dd
and with S := {0, . . . , r} ×MK,0, C′ = B(d), C = Dd to get the estimates

hDd(Z)− Ω ≤ hB(d)(Z) ≤ hDd(Z) + Ω. (1.4.3)

We now write Dd = D̃ × Dd(r) and we consider Dd(r) = (D[1])d
(r)
1 . . . (D[q])d

(r)
q

as a product of
∣∣d(r)

∣∣ convex bodies. By Proposition 1.4.6 we deduce that∣∣∣∣∣∣hD̃×Dd(r) (Z)−
q∑
j=1

d
(r)
j hD̃×D[j](Z)

∣∣∣∣∣∣ ≤ 2Ω.

We can therefore prove by induction that∣∣∣hD̃×Dd(r) (Z)− 〈h(Z);d〉
∣∣∣ ≤ 2(r + 1)Ω. (1.4.4)

The thesis is proved by combining (1.4.3) and (1.4.4).
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1.4.3 An arithmetic Bézout inequality
We report the following result ([LR01], Proposition 3.10).

Proposition 1.4.10. Let r ∈ N and s ∈ N+. For j = 0, . . . , r, let Vj be a vector
space over K of finite dimension nj > 0 and let Cj be an adelic convex body for
Vj . Put C = C0×· · ·×Cr and V = V0×· · ·×Vr. Moreover, for i = 1, . . . , s, let Fi
be a multihomogeneous polynomial map from V to K. Denote by F = F1 · · ·Fs
the product of these maps and by (d1, . . . , dr) the multidegree of F . Then C is
an adelic convex body for V and we have

hC(F ) ≤
s∑
i=1

hC(Fi) ≤ hC(F ) + 2
r∑
j=0

dj lognj .

We remark that with the notation set in Definition 1.4.1 we have that a resultant
form of an effective cycle Z ∈ Z+

r (Pn
K) of index d ∈ (Nq\{0})r+1 is a multiho-

mogeneous polynomial map from K[X]d(0) × · · · ×K[X]d(r) with multidegree
N = (N0, . . . , Nr). We have the following

Proposition 1.4.11. Let d = (d(0), . . . ,d(r)) ∈ (Nq\{0})r+1 and Z ∈ Z+
r (Pn

K)
an effective cycle. If F is a resultant form of Z of index d then

0 ≤ hC(Z)− hC(F ) ≤ 2
r∑
j=0

Nj log dim(d(j)). (1.4.5)

Proof. Write Z =
∑s
i=1miVi, where V1, . . . , Vs are the distinct components of Z

and mi > 0 for i = 1, . . . , s. By definition we have hC(Z) =
∑s
i=1mihC(Vi) and

F = λFm1
1 · · ·Fmss , where Fi is a resultant form of Vi of index d and λ ∈ K×.

Then Proposition 1.4.10 together with the equality hC(Fi) = hC(Vi) and the
previous remark plainly give (1.4.5).

The following proposition is an arithmetic version of Bézout’s inequality. It
estimates the relative height of the intersection of an effective cycle with an
hypersurface.

Proposition 1.4.12. Let r ∈ N+, d = (d(0), . . . ,d(r)) ∈ (Nq\{0})r+1, Z ∈
Z+
r (Pn

K), and P ∈ K[X]d(r) . Let also C = C0× · · · × Cr be an adelic convex body
of index d and C′ = C0 × · · · × Cr−1. Assume that P intersects properly the
effective cycle Z, and let Z ′ be the intersection product Z · div(P ) defined in
Definition 1.2.9. Then, we have

hC′(Z ′) ≤ hC(Z) +NrhCr (P ) + 2
r−1∑
j=0

Nj log dim(d(j)).

Proof. Let F be a resultant form of Z of index d. Let F ′ the polynomial map
from K[X]d(0) × · · · ×K[X]d(r−1) to K given by

F ′(P0, . . . , Pr−1) := F (P0, . . . , Pr−1, P ).

Proposition 1.2.19 shows that F ′ is a resultant form of Z ′ of index d̂(r). Since F
is homogeneous of degree Nr on the factor K[X]d(r) , we have the upper bound

‖F ′‖C′v ≤ ‖P‖
Nr
Cr,v‖F‖Cv
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for any place v ∈MK . Summing up the logarithms over all the places, we get

hC′(F ′) ≤ hC(F ) +NrhCr (P ).

Proposition 1.4.11 gives the inequalities

hC′(Z ′) ≤ hC′(F ′) + 2
r−1∑
j=0

Nj log dim(d(j)) and hC(F ) ≤ hC(Z),

and this completes the proof.



Chapter 2

A small value estimate

2.1 Statement of the main theorem
We define D1 : C[x, y] → C[x, y] to be the differential operator on the ring
C[x, y] defined by the formula D1 := ∂

∂x + y ∂
∂y . Given a polynomial P ∈ Z[x, y],

we define its norm ‖P‖ to be the largest absolute value of its coefficients (see
Definition 2.3.1). For a real number α ∈ R, the expression bαc denotes the
largest integer less than or equal α.
The aim of this chapter is to prove the following

Theorem 2.1.1. Let γ = (ξ, η) ∈ C × C× and let β, τ, ν, δ, t0, t1, t be positive
real numbers satisfying

max{t0, t1} = 1, min{t0, t1} = t, 1 < τ < 1 + t,

τ < β, ν = 1 + t+ β − τ + δ

and δ > (τ − t)(1 + t− τ)/(β + 1− τ). Suppose that, for each sufficiently large
positive integer N , there exists a nonzero polynomial PN ∈ Z[x, y] with partial
degrees degx(PN ) ≤ bN t0c, degy(PN ) ≤ bN t1c and norm ‖PN‖ ≤ exp(Nβ), such
that

max
0≤i<3bNτc

|Di1PN (ξ, η)| ≤ exp(−Nν). (2.1.1)

Then, we have ξ, η ∈ Q and moreover for each sufficiently large integer N we
have Di1PN (ξ, η) = 0 for every 0 ≤ i < 3bNτc.

This is a generalization of an analogous statement proved in [Roy13], Main
Theorem. The proof will follow the line of that article and relies on the theory
developed in the previous chapter.
As it was mentioned in the introduction, theorem 2.1.1 is motivated by Schanuel’s
conjecture, whose statement reads as follows

Conjecture 2.1.2. Let ` be a positive integer and let α1, . . . , α` ∈ C be linearly
independent over Q. Then

trdegQ Q(α1, . . . , α`, e
α1 , . . . , eα`) ≥ `.

29
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This far-reaching conjecture contains nearly all known results and all generally
accepted conjectures on the transcendence of the values of the exponential
function and it is currently widely open. However in [Roy01] D.Roy proposes an
approach to tackle Schanuel’s Conjecture, and he proves that it is equivalent to
the following arithmetic statement.

Conjecture 2.1.3. Let ` be a positive integer, let y1, . . . , y` ∈ C be linearly
independent over Q and α1, . . . , α` ∈ C×. Moreover, let s0, s1, t0, t1, ν be positive
numbers satisfying

max{1, t0, 2t1} < min{s0, 2s1} < ν <
1
2(1 + t0 + t1). (2.1.2)

Assume that, for any sufficiently large positive integer N , there exists a nonzero
polynomial PN ∈ Z[x, y] with partial degrees degx(PN ) ≤ bN t0c, degy(PN ) ≤
bN t1c and norm ‖PN‖ ≤ eN , such that∣∣∣∣∣∣Dk1PN (

∑̀
j=1

mjyj ,
∏̀
j=1

α
mj
j )

∣∣∣∣∣∣ ≤ exp(−Nν), (2.1.3)

for any integers k,m1, . . . ,m` ∈ N with k ≤ Ns0 and max{m1, . . . ,m`} ≤ Ns1 .
Then

trdegQ Q(y1, . . . , y`, α1, . . . , α`) ≥ `.

This conjecture was given in the form reported here in [Van]. It can be shown
that if Conjecture 2.1.3 is true for some positive integer ` and some choice of
parameters s0, s1, t0, t1, ν satisfying (2.1.2), then Schanuel’s Conjecture 2.1.2 is
true for this value of `. Conversely, if Conjecture 2.1.2 is true for some positive
integer `, then Conjecture 2.1.3 is also true for the same value of ` and for any
choice of parameters satisfying (2.1.2).
Actually, there are both analogies and differences between the statements of our
Theorem 2.1.1 and of Conjecture 2.1.3, but we postpone a discussion on this
topic to the final section of this thesis § 2.8.

2.1.1 A corollary
We are going to deduce from Theorem 2.1.1 a statement that considers polyno-
mials in two variables evaluated at many points of a finitely generated subgroup
of G, together with their first invariant derivatives. To do this, we need to state
some results.
The following is a version of the well-known Liouville’s inequality ([Wal00],
Proposition 3.14).

Theorem 2.1.4. Let K be a number field with d = [K : Q], let v ∈ MK an
archimedean place of K, and let q ∈ N+ be a positive integer. For 1 ≤ i ≤ q, let
γi ∈ K and let P ∈ Z[x1 . . . , xq] be a polynomial in q variables, with coefficients
in Z, which does not vanish at the point γ = (γ1, . . . , γq). Assume that P has
partial degree at most Ni with respect to the variable xi. Then

log
∣∣P (γ)

∣∣
v
≥ −(d− 1) logL(P )− d

q∑
i=1

Nih(γi).
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where L(P ) = Lv(P ) denotes the length of P , i.e. the sum of the absolute values
of the coefficients of P (see Definitions 2.3.1 and 1.3.2).
The following is essentially a special case of Philippon’s multiplicity estimate
on commutative linear algebraic groups [Phi86b]. We refer to [Ber85], [roy] and
[Wal00] for more on this result.
Theorem 2.1.5. Let G := C× C× and let Σ be a finite subset of G containing
e = (0, 1). Assume that, for D ∈ N2

+ and S0 ∈ N+, there exists a nonzero
polynomial P ∈ C[x, y] with partial degrees degx(P ) ≤ Dx and degy(P ) ≤ Dy

such that Dk1P vanishes on the sumset Σ + Σ (where the sum is with respect
to the group law of G), for every k = 0, . . . , 2S0. Let |Σ|, |π1(Σ)| and |π2(Σ)|
be respectively the cardinalities of Σ and of its images through the projections
π1 : G → C and π2 : G → C×. Then

min{|Σ| , Dx |π2(Σ)| , 2Dy |π1(Σ)|} ≤ 4DxDy

S0 + 1 .

Proof. We use the notation of [Wal00], Chapters 5 and 8. Since C[x, y] ⊆
C[x, y, y−1], we can apply [Wal00], Theorem 8.1 for the choice K := C, G =
G+ := G, G− := {e}, d0 = d1 := 1, d = d+ := 2, D0 := Dx, D1 := Dy, S0 := S0
and W the subspace of Te(G) = C2 generated by the vector w = (1, 1) to get a
connected algebraic subgroup G∗ of G+ of dimension < 2 such that, if we set

`′0 = dimC

(
W + Te(G∗)
Te(G∗)

)
,

then (
S0 + `′0
`′0

)
Card

(
Σ +G∗

G∗

)
H(G∗;D) ≤ H(G+;D).

There are only three cases for the choice of G∗.

• If G∗ = {e}, then `′0 = 1, H(G∗;D) = 1 and Card
(

Σ+G∗
G∗

)
= |Σ|;

• if G∗ = C×{1}, then `′0 = 1, H(G∗;D) = Dx and Card
(

Σ+G∗
G∗

)
= |π2(Σ)|;

• if G∗ = {0} × C×, then `′0 = 1, H(G∗;D) = 2Dy and Card
(

Σ+G∗
G∗

)
=

|π1(Σ)|.

Since in each of these cases he have
(S0+`′0

`′0

)
= S0 + 1 and H(G+;D) = 4DxDy,

the thesis is proved.

We are now ready to prove the following consequence of Theorem 2.1.1.
Corollary 2.1.6. Let ` be a positive integer, let (ξj , ηj) ∈ C×C× for j = 1, . . . , `,
and let β, τ, ν, δ, t0, t1, t be as in Theorem 2.1.1. Suppose that for any sufficiently
large positive integer N , there exists a nonzero polynomial PN ∈ Z[x, y] of partial
degrees degx(PN ) ≤ bN t0c, degy(PN ) ≤ bN t1c and norm ‖PN‖ ≤ exp(Nβ), such
that ∣∣∣∣∣∣Dk1PN (

∑̀
j=1

mjξj ,
∏̀
j=1

η
mj
j )

∣∣∣∣∣∣ ≤ exp(−Nν), (2.1.4)

for any choice of integers k,m1, . . . ,m` with 0 ≤ k ≤ 3Nτ and 0 ≤ m1, . . . ,m` ≤
8N (1+t−τ)/`. Then, ξ1, . . . , ξ` are linearly dependent over Q.
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Proof. A direct application of Theorem 2.1.1 shows that ξj and ηj belong to
the algebraic closure Q of Q in C for j = 0, . . . `. We are now going to see
that Liouville’s inequality 2.1.4 implies that, for sufficiently large N , the left
hand side of (2.1.4) vanishes for all admissible choices of k,m1, . . . ,m`. Indeed,
let K be a number field containing all the numbers ξ1, . . . , ξ`, η1, . . . , η`, let
d := [K : Q] and let H := max{h(ξ1), . . . , h(ξ`), h(η1), . . . , h(η`)}. We consider
on K the archimedean absolute value determined by the given inclusion K ⊆ C.
Let N, k,m1, . . . ,m` such that the left hand side of (2.1.4) does not vanish.
Adapting the arguments of Lemma 2.3.6 one can show, since τ < β, that

L(Dk1PN ) ≤ exp(2Nβ)

for sufficiently big N . Moreover, by the basic properties of Weil absolute height
stated in Proposition 1.3.12, we have

h(m1ξj + . . .+m`ξ`) ≤
∑̀
j=1

(log(mj) + h(ξj)) + (`− 1) log(2)

≤ (1 + t− τ) log(N) + `H + (`− 1) log(2) ≤ N
1+t−τ
` ,

for sufficiently big N , and

h(ηm1
1 · · · ηm`` ) ≤

∑̀
j=1

mjh(ηj) ≤ 2`HN
1+t−τ
` .

Therefore, using t0, t1 ≤ 1, Liouville’s inequality 2.1.4 gives∣∣∣∣∣∣Dk1PN (
∑̀
j=1

mjξj ,
∏̀
j=1

η
mj
j )

∣∣∣∣∣∣ ≥ exp(−2(d− 1)Nβ − d(2`H + 1)N
1+t−τ
` +1).

Since 1 < β < ν and 1+t−τ
` + 1 < 1 + t+ β − τ < ν, this is contradicts (2.1.4)

for sufficiently big N .
Thus, for such N and for 0 ≤ k < 3bNτc, Dk1PN vanishes on the sumset
ΣN + ΣN where ΣN consists of all points (m1ξj + . . .+m`ξ`, η

m1
1 · · · ηm`` ) with

0 ≤ m1, . . . ,m` ≤ 4N (1+t−τ)/`. Since the projections of ΣN on both factors of
C× C× have cardinality at least 1, and since 2bNτc < 3bNτc, it follows from
Proposition 2.1.5 that

min{|Σ| , bN t0c, 2bN t1c} ≤ 4bN t0cbN t1c
bNτc+ 1 .

We have t0, t1 ≤ 1 < τ , so bN t0c and 2bN t1c are greater than 4bNt0cbNt1c
bNτc+1 for

sufficiently large N . This implies

|Σ| ≤ 4bN t0cbN t1c
bNτc+ 1 ≤ 4N1+t−τ

On the other hand, if the numbers ξ1, . . . , ξ` were linearly independent over Q
we would get the estimate

|Σ| ≥ (4bN
1+t−τ
` c+ 1)` > 4N1+t−τ ,

and this is a contradiction.



Subvarieties of P1
Q × P1

Q 33

2.2 Subvarieties of P1
Q × P1

Q

In this chapter we study in detail the geometric and arithmetic invariants of Q-
subvarieties of the multiprojective space P := P1

Q × P1
Q. We establish a few basic

estimates for the heights of cycles cut by an hypersurface and of 0-dimensional
cycles. We derive these estimates as corollaries of the general results of Sections
§ 1.3 and § 1.4. In this low-dimensional setting, cycles can only have dimension
0, 1 or 2, and we have n = q = 2 and n1 = n2 = 1.
We identify the set of indices {1, 2} with {x, y}. With this notation, we let
ex = e1 = (1, 0), ey = e2 = (0, 1) be the standard basis elements of N2 and we
denote the mixed heights of index µ ∈ {1, 2}r+1 of an r-dimensional cycle by

hσ(Z),

where σ ∈ {x, y}r+1 is a string composed by letters of type x and y.
An element D ∈ N2 will be called nonnegative bi-integer, or bidegree. For D ∈ N2

we denote by Dx and Dy its two components and we define

|D| := Dx +Dy and ‖D‖ := max{Dx, Dy}.

For L,D ∈ N2 we write L ≤ D if Lx ≤ Dx and Ly ≤ Dy. We also write L < D
to mean Lx < Dx and Ly < Dy.
An element c ∈ R2

+ will be called a bi-constant and we denote by cx, cy its two
components. Given two bi-constants c1, c2 ∈ R2

+ we perform componentwise
multiplication and addition, so that we have

c1 + c2 := (c1,x + c2,x, c1,y + c2,y),
c1c2 := (c1,xc2,x, c1,yc2,y),

and we define
cc2
1 := c

c2,x
1,x · c

c2,y
1,y . (2.2.1)

2.2.1 Two-dimensional cycles
The only subvariety of P = P1

Q × P1
Q having dimension r = 2 is P itself. It is easy

to see that
HQ[X,Y] = (T1 + 1)(T2 + 1).

This implies that the only nonzero term of deg(P) ∈ NN2 is

deg(P)(1,1) = 1.

An arbitrary collection of r + 1 = 3 multidegrees takes the form

d = (D0, D1, D2)

and in this situation we have (see Definition 1.4.1)

N0 = 〈deg(P); (D1, D2)〉 = D1,xD2,y +D1,yD2,x (2.2.2)
N1 = 〈deg(P); (D0, D2)〉 = D0,xD2,y +D0,yD2,x (2.2.3)
N2 = 〈deg(P); (D0, D1)〉 = D0,xD1,y +D0,yD1,x (2.2.4)
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so that
r∑
j=0

Nj |Dj | = |D0| |D1| |D2| −D0,xD1,xD2,x −D0,yD1,yD2,y. (2.2.5)

We are now going to see that the mixed heights hxxx(P), hxxy(P), hxyy(P),
hyyy(P) of P are pretty easy to describe. We then use this calculation to estimate
the height of P with respect to the convex bodies B(d).

Lemma 2.2.1. All the primitive multiprojective heights of P1 × P1 are 0.

Proof. In [Rém01a], Lemme 3.7 there is an explicit description of the resultant
form of P1 × P1 of index d = (ex, ey, D), with D ∈ N2\{0}. We recall the
construction in the case D = ex. We consider the set of variables

u(0) = {u(0)
X0
,u(0)

X1
}, u(0) = {u(1)

Y0
,u(1)

Y1
}, u(0) = {u(2)

X0
,u(2)

X1
},

and u = {u(0),u(1),u(2)}. We consider first the 1× 2 matrices

Mx =
[
u

(0)
X0

u
(0)
X1

]
and My =

[
u

(1)
Y0

u
(1)
Y1

]
.

We also introduce the vector of their minors

∆ = (u(0)
X1
,−u(0)

X0
, u

(1)
Y1
,−u(1)

Y0
),

and then, for the generic linear forms

L0 = u
(0)
X0
X0 + u

(0)
X1
X1, L1 = u

(1)
Y0
Y0 + u

(1)
Y1
Y1, L2 = u

(2)
X0
X0 + u

(2)
X1
X1,

we have
elimd(P) = resd(P) = L2(∆) = u

(2)
X0
u

(0)
X1
− u(2)

X1
u

(0)
X0
. (2.2.6)

With analogous notation and procedure, we check that for d′ = (ex, ey, ex) we
have

elimd′(P) = resd′(P) = u
(2)
Y0
u

(1)
Y1
− u(2)

Y1
u

(1)
Y0
.

From these explicit formulas we deduce hxyx(P) = hxyy(P) = log(1) = 0. Since
by Proposition 1.2.16 the mixed heights are invariant by index permutation, we
get also hyxx(P) = hxxy(P) = hyxy(P) = hyyx(P) = 0. For indices (ex, ex, ex)
and (ey, ey, ey) we get by the formulas (2.2.2)-(2.2.4) that N0 = N1 = N2 =
0. Proposition 1.2.18 thus states that the resultant forms res(ex,ex,ex)(P) and
res(ey,ey,ey)(P) are homogeneous of degree 0 in all their variables. So, in this
case they are equal to the constant polynomial form 1 and again we deduce
hxxx(P) = hyyy(P) = 0.

Remark 2.2.2. We notice that formula (2.2.6) makes sense in virtue of the
specialization property of the eliminant forms (Theorem 1.1.2): indeed it is easy
to see that when the six variables in u are specialized to elements of a field L,
then the resulting linear forms L̃0, L̃1, L̃1 have a common zero in P1

L × P1
L iff

det
(
u

(0)
X0

u
(0)
X1

u
(2)
X0

u
(2)
X1

)
= 0. We also notice that (2.2.6) is also consistent with the

formula for the degrees of resultant forms from Proposition 1.2.18: we have
d = ((1, 0), (0, 1), (1, 0)), so the resultant form is homogeneous of degree N0 = 1,
N1 = 0, N2 = 1 respectively in the coordinates u(0),u(1),u(2).
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Lemma 2.2.3. Let d = (D0, D1, D2) ∈ (Nq\{0})3 be a collection of nonzero
bidegrees and let B = B(d) be as in Definition 1.3.9. Then, for P = P1

Q × P1
Q, we

have

hB(P) ≤ 7 log(2)
(
|D0| |D1| |D2| −D0,xD1,xD2,x −D0,yD1,yD2,y

)
.

Proof. The result follows directly from (2.2.5) and from Proposition 1.4.9, where
Z = P, r = 2, ‖n‖ = 1 and hσ = 0 for all σ ∈ {x, y}3 thanks to Lemma 2.2.1.

We notice that in the case D0 = D1 = D2 = D Lemma 2.2.3 reduces to

hB(P) ≤ 21 log(2)DxDy |D| .

2.2.2 One-dimensional cycles
The Hilbert-Samuel polynomial of an irreducible subvariety Z of P of dimension
r = 1 is a polynomial in two variables of total degree 1, so it takes the form

H = aT1 + bT2 + c.

This implies that there are only two nonzero components of deg(Z):

degx(Z) := deg(Z)(1,0) degy(Z) := deg(Z)(0,1).

An arbitrary collection of r + 1 = 2 multidegrees takes the form

d = (D0, D1) = ((D0,x, D0,y), (D1,x, D1,y))

and in this situation we have

N0 = 〈deg(Z); (D1)〉degx(Z)D1,x + degy(Z)D1,y

N1 = 〈deg(Z); (D0)〉 = degx(Z)D0,x + degy(Z)D0,y

so that
r∑
j=0

Nj |Dj | = degx(Z) (2D0,xD1,x +D0,xD1,y +D0,yD1,x)+

+ degy(Z) (2D0,yD1,y +D0,xD1,y +D0,yD1,x).

Finally, we have three different mixed heights in this situation, namely

hxx(Z), hxy(Z) = hyx(Z), hyy(Z).

The easiest way to produce a 1-dimensional cycle of P is to consider hypersurfaces.
Actually, since Q[X,Y] is a factorial ring, all its primes of height 1 are principal,
generated by an irreducible polynomial. Thus all integral closed subschemes of
dimension 1 in P are in fact hypersurfaces.

Proposition 2.2.4. Let D ∈ N2\{0} be a nonzero bidegree, let C be a convex
body of C[X,Y]D, C′ = C × C and C′′ = C′ × C. Suppose that there exists a
nonzero polynomial P ∈ Z[X,Y]D ∩ C. Then Z ′ = div(P ) is an effective cycle
of P = P1

Q × P1
Q of pure dimension 1 which satisfies
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(i) degx(Z ′) = Dy and degy(Z ′) = Dx,

(ii) hxx(Z ′) ≤ 11 log(2)Dy,
hxy(Z ′) ≤ log‖P‖+ 9 log(2)|D|,
hyy(Z ′) ≤ 11 log(2)Dx,

(iii) hC′(Z ′) ≤ hC′′(P) + 8 log(2)DxDy|D|.

Proof. We consider Z ′ as the intersection product Z ′ = P ·div(P ) as in Definition
1.2.9. Then, (i) follows from Theorem 1.2.11 while (iii) derives from Lemma 1.4.12,
because hC(P ) ≤ 0, N0 = N1 = N2 = 2DxDy and log dim(D) ≤ log(2) |D|. To
prove (ii), we note that we have P ∈ ‖P‖B for the convex body B = B(D)

of Definition 1.3.8 and so, by Lemma 1.4.12 applied to the convex body E =
B(eµ,eν ,D) = Deµ ×Deν × B for µ, ν ∈ {x, y}, we get

hDeµ×Deν (Z ′) ≤ hE(P) +N ′2 log‖P‖+ 2 log(2)(N ′0 +N ′1),

with

N ′0 = Dνc , N ′1 = Dµc , and N ′2 = δµ,νc =
{

1 if µ 6= ν

0 if µ = ν
,

thanks to the explicit calculations in equations (2.2.2)-(2.2.4), where µc (resp.
νc) is defined to be the only element in {x, y} different from µ (resp. ν). Then,
since Deµ ×Deν = D(µ,ν), we see that (ii) follows by combining this upper bound
with the estimates

hµν(Z ′) ≤ hD(µ,ν)(Z ′)

coming from Lemma 1.4.8 and

hE(P) ≤ 7 log(2)(|D| −Dµδµ,ν).

coming from Lemma 2.2.3.

2.2.3 Zero-dimensional cycles
The Hilbert-Samuel polynomial of an irreducible subvariety Z of P of dimension
r = 0 is a polynomial of total degree 0, so it must be constant. This implies that
there is only one nonzero component of deg(Z), namely

deg(Z) := deg(Z)(0,0) ∈ N.

With a bit of abuse of notation we omit parentheses from collections of multide-
grees with only one element, writing

d = D = (Dx, Dy).

Here we have a degenerate calculation for N0

N0 = 〈deg(Z); ∅〉 = deg(Z),

so that
r∑
j=0

Nj |Dj | = N0 |D| = deg(Z)(Dx +Dy).
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In this case we have to deal with only two mixed heights, which we collect into

h(Z) = (hx(Z), hy(Z)).

As we have seen in Section § 1.2.4, we have a simple description for 0-dimensional
subvarieties of P. Indeed, let Z be a 0-dimensional irreducible subvariety of P.
Then Z(C) consists of exactly deg(Z) points, which actually lie in Z(Q) and are
conjugate to each other through the action of Gal(Q/Q).
We can obtain a 0-dimensional cycle by cutting a 1-dimensional subvariety with
an hypersurface.

Proposition 2.2.5. Let d = (D0, D) ∈ (N2\{0})2 be a pair of bidegrees, let
C̃ = C0 × C be a convex body of C[X,Y]D0 × C[X,Y]D, and let Z be an
irreducible subvariety of P1

Q × P1
Q of dimension r = 1. Suppose that there exists

a polynomial P ∈ Z[X,Y]D ∩ C which does not belong to the ideal of Z. Put
N0 = Dx degx(Z)+Dy degy(Z) and let µ ∈ {x, y}. Then there exists an effective
cycle Z ′ of P1

Q × P1
Q of pure dimension 0 which satisfies

(i) deg(Z ′) = N0,

(ii) hµ(Z ′) ≤ Dxhµx(Z) +Dyhµy(Z)+
+ degµ(Z)(5 log(2) |D|+ log‖P‖) + 7 log(2)N0,

(iii) hC0(Z ′) ≤ hC̃(Z) + 2 log(2)|D0|N0.

Proof. Define Z ′ to be the intersection product Z ′ = Z · div(P ) as in Definition
1.2.9. Then, (i) follows from Theorem 1.2.11 while (iii) derives from Lemma
1.4.12, because hC(P ) ≤ 0. To prove (ii), we note that we have P ∈ ‖P‖B for
the convex body B = B(D) of Definition 1.3.8 and so, by Lemma 1.4.12 applied
to the convex body E = B(eµ,D) = Deµ × B for µ = x, y, we get

hDeµ (Z ′) ≤ hE(Z) +N ′1 log‖P‖+ 2 log(2)N0,

where N ′1 = degµ(Z). Then, since Deµ = Dµ, we see that (ii) follows by
combining this upper bound with the estimates

hµ(Z ′) ≤ hDµ(Z ′)

coming from Lemma 1.4.8 and

hE(Z)−Dxhµx(Z)−Dyhµy(Z) ≤ 5 log(2)(N0 + |D|degµ(Z)).

coming from Lemma 1.4.9.

Definition 2.2.6. Given α ∈ Pn1(C)×· · ·×Pnq (C), we say that a representative
α = (α(1), . . . , α(q)) ∈ Cn1+1×· · ·×Cnq+1 = Cn+q of α is normalized if it satisfies
‖α(i)‖ = 1 for i = 1, . . . , q, where ‖·‖ denotes the sup norm of Cni+1.

Proposition 2.2.7. Let D = (Dx, Dy) be a nonzero bidegree, let C be a convex
body of C[X,Y]D, let Z be a subvariety of P1

Q × P1
Q of dimension 0, and let Z

be a set of normalized representatives of the points of Z(C) by elements of C4.
Then, we have∣∣∣hC(Z)−Dxhx(Z)−Dyhy(Z)−

∑
α∈Z

log sup
P∈C
|P (α)|

∣∣∣ ≤ 6 log(2)|D|deg(Z).

(2.2.7)
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Moreover, if there exists a polynomial P ∈ Z[X,Y]D ∩ C which does not belong
to the ideal of Z, then we have hC(Z) ≥ 0 and

0 ≤ 3 log(2) |D|deg(Z) +Dxhx(Z) +Dyhy(Z) +
∑
α∈Z

log |P (α)|. (2.2.8)

Proof. Let F be a resultant form of Z in degree D with integer coefficients.
There is a constant a ∈ C× depending only on F and Z such that, for any
P ∈ C[X,Y]D, we have

F (P ) = a
∏
α∈Z

P (α) . (2.2.9)

As this is a factorization of F into a product of deg(Z) linear forms on C[X,Y]D,
Proposition 1.4.5 gives

0 ≤ hC(Z)− log |a| −
∑
α∈Z

log sup{|P (α)| : P ∈ C} ≤ 2 deg(Z) log dim(D).

(2.2.10)
Applying this estimate to the convex body B = B(D) instead of C, we get

0 ≤ hB(Z)− log |a| ≤ 3 deg(Z) log dim(D) (2.2.11)

because for each of the deg(Z) points α of Z, we have

0 ≤ log sup{|P (α)| : P ∈ B} ≤ log dim(D).

Combining Proposition 1.4.9 with the explicit calculations given at the beginning
of Section § 2.2.3 we get∣∣hB(Z)−Dxhx(Z)−Dyhy(Z)

∣∣ ≤ 3 log(2) |D|deg(Z). (2.2.12)

Putting together the inequalities (2.2.10),(2.2.11) and (2.2.12) and using that
log dim(D) ≤ log(2) |D| we deduce (2.2.7). Finally, if a polynomial P ∈
Z[X,Y]D ∩ C does not belong to the ideal of Z, then we have F (P ) ∈ Z \ {0}
and so log |F (P )| ≥ 0. The estimate (2.2.8) then follows from (2.2.9), (2.2.11)
and (2.2.12), because we have

log |a| ≤ hB(Z) ≤ Dxhx(Z) +Dyhy(Z) + 3 log(2) |D|deg(Z)

and
− log |a| ≤ log |F (P )| − log |a| =

∑
α∈Z

log |P (α)| .

2.3 Estimates on C[X, Y]
2.3.1 Definitions and basic estimates
Here we shall work with the ring C[X,Y] in the two groups of variables X =
(X0, X1) and Y = (Y0, Y1). Given D = (Dx, Dy) ∈ N2 we denote by C[X,Y]D
the set of bihomogeneous polynomial of bidegree D, i.e. homogeneous of degree



Estimates on C[X,Y] 39

Dx in the variables X and homogeneous of degree Dy in the variables Y. We
recall the definitions of |D| := Dx+Dy and ‖D‖ := max{Dx, Dy}, and we define
dimD := dimC C[X,Y]D = (Dx + 1)(Dy + 1).
When the bidegreeD is clear from the context we shall for brevity denote by XaYb

the monomial XDx−a
0 Xa

1Y
Dy−b
0 Y b1 , with the convention that this expression is 0

when one of the exponents involved is negative.

Definition 2.3.1. Given a (nonzero) polynomial Q ∈ C[X,Y], we define its
norm ‖Q‖ as the largest absolute value of its coefficients and its length L(Q) as
the sum of the absolute values of its coefficients. We define somewhat consistently
‖0‖ = 0 and L(0) = 0.

We will often use the following properties of the length

Lemma 2.3.2. For every P,Q ∈ C[X,Y] we have

L(P +Q) ≤ L(P ) + L(Q) L(PQ) ≤ L(P )L(Q). (2.3.1)

Proof. The idea for the proof of both inequalities is to replace the coefficients by
their absolute values and to evaluate the resulting polynomial in (1, 1, 1, 1). If
write the polynomials P,Q in the standard form

P =
∑
ν∈N2

pνXνxYνy , Q =
∑
ν∈N2

qνXνxYνy .

we have

L(P +Q) =
∑
ν∈N2

|pν + qν | ≤
∑
ν∈N2

(|pν |+ |qν |) = L(P ) + L(Q),

thus the first inequality is proven. Similarly, we have

L(PQ) =
∑
ν∈N2

|
∑
α,β∈N2

α+β=ν

pαqβ | ≤
∑
ν∈N2

∑
α,β∈N2

α+β=ν

|pα| |qβ | = L(P )L(Q).

Let G denote the commutative group (Ga ×Gm)(C) = C× C× with its group
law written additively. For each γ = (ξ, η) ∈ G we define ϑγ := (1, ξ, 1, η).

Definition 2.3.3. We denote by τγ the C-algebra automorphism of C[X,Y]
given by

τγ(P (X,Y)) := P (X0, ξX0 +X1, Y0, ηY1),

so that, for every γ, γ′ ∈ G and any P ∈ C[X,Y], we have

(τγP )(ϑγ′) = P (ϑγ+γ′) and τγ ◦ τγ′ = τγ+γ′ .

We also define on C[X,Y] the following derivation

Definition 2.3.4.
D := X0

∂

∂X1
+ Y2

∂

∂Y2
.
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This operator is G-invariant, meaning that that τγ ◦ D = D ◦ τγ for any γ ∈ G.
For every bidegree D ∈ N2 we have that

D(XaYb) = aXa−1Yb + bXaYb.

Finally, we introduce, for every T ∈ N+, an ideal of C[X,Y] consisting of
polynomials vanishing in γ to order at least T .

Definition 2.3.5. Let T ∈ N+. We denote by I(γ,T ) the ideal of C[X,Y]
generated by all bihomogeneous polynomials P satisfying DiP (ϑγ) = 0 for
i = 0, . . . , T − 1. For D ∈ N2, the symbol I(γ,T )

D represents its homogeneous part
of degree D.

We will see in Section § 2.4 that this ideal can be used to estimate the distance
of a point α from γ.
We first establish a lemma providing estimates for τγQ and DiQ.

Lemma 2.3.6. Let D ∈ N2 and Q ∈ C[X,Y]D. For any γ = (ξ, η) ∈ G and
i ∈ N, we have

L(τγQ) ≤ c1(γ)D‖Q‖, L(DiQ) ≤ |D|i L(Q)

and ∣∣DiQ(ϑγ)
∣∣ ≤ c2(γ)D |D|i L(Q),

where c1(γ) is a pair (2 + |ξ| , 1 + |η|) and similarly c2(γ) is a bi-constant
(max{1, |ξ|},max{1, |η|}). We recall (see the beginning of Section § 2.2) that we
use the notation (A,B)D to shorten the expression ADx ·BDy .

Proof. We write the bihomogeneous polynomial Q in the standard form

Q =
∑

(a,b)≤D

qa,bXaYb

so that

L(τγQ) ≤
∑

(a,b)≤D

L
(
qa,bX

Dx−a
0 (ξX0 +X1)aY Dy−b0 (ηY1)b

)
≤

∑
(a,b)≤D

|qa,b| · 1 · (|ξ|+ 1)a · 1 · (η)b

≤ ‖Q‖
Dx∑
a=0

(|ξ|+ 1)a
Dy∑
b=0
|η|b ≤ c1(γ)D‖Q‖.

For the second inequality we inductively apply the following

L(DQ) = L(
∑

(a,b)≤D

qa,b aXa−1Yb + qa,b bXaYb)

≤ DxL(Q) +DyL(Q) = |D| L(Q).

As for the third, it is a direct consequence of the second inequality because

Q(1, ξ, 1, η) ≤ L(Q) max
(a,b)≤D

|ξ|a |η|b

for every Q ∈ C[X,Y]D.
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2.3.2 An interpolation result
We report the following proposition due to D.Roy and V.Nguyen (Lemma 3.1
in [VR14]), which is an improvement of Mahler’s formula (7) from page 88 of
[Mah67], also stated as Lemma 2 in [Tij73]. We use the notation

i(0) := 1, i(µ) := i(i− 1) . . . (i− µ+ 1) , for i ∈ N, µ ∈ N+

and the convention that the empty product is 1, in particular z0 = 1 for any
z ∈ C.

Lemma 2.3.7. Consider the linear recurrence sequence u = (ui)i∈N given by

ui =
n−1∑
ν=0

mν−1∑
µ=0

Aµ,νi
(µ)αi−µν (i ∈ N),

for fixed n ∈ N+, αν ∈ C, mν ∈ N+ and Aµ,ν ∈ C, with α0, . . . , αn−1 distinct.
Set

M =
n−1∑
ν=0

mν , a0 =
(

max
0≤ν<n

(
M

mν

)) n−1∏
ν=0

(1 + |αν |)mν

a1 = min
0≤ν<n

∏
0≤ν′<n
ν′ 6=ν

|αν′ − αν |mν′ , a2 = min
0≤ν,ν′<n
ν 6=ν′

min{1, |αν′ − αν |mν}

with the understanding that a1, a2 = 1 if n = 1. Then, we have

max |Aµ,ν | ≤
a0

a1a2
max

0≤i<M
|ui| .

With the help of the above result we can prove the following interpolation
estimate.

Proposition 2.3.8. Let γ ∈ G, D ∈ N2 and put M = (Dx + 1)(Dy + 1). Then
the map

C[X,Y]D → CM
Q 7→ (DiQ(ϑγ))0≤i<M

(2.3.2)

is an isomorphism of C-vector spaces. Moreover, for each Q ∈ C[X,Y]D, we
have

L(Q) ≤ c1(−γ)D8M max
0≤i<M

∣∣DiQ(ϑγ)
∣∣ (2.3.3)

Proof. The second assertion is a quantitative version of the first because it
implies that the linear map (2.3.2) is injective and so is an isomorphism, its
domain and codomain having the same dimension M . Therefore it suffices to
prove the second assertion. To this end, we fix a polynomial Q ∈ C[X,Y]D.
We first consider the case when γ = e = (0, 1) is the neutral element of G = C×C×,
so that ϑe = (1, 0, 1, 1).
Writing the polynomial Q ∈ C[X,Y]D in the form

Q =
∑

(µ,ν)≤D

qµ,ν XµYν
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it is easy to see that for every i ≥ 0

DiQ(ϑe) =
Dx∑
µ=0

qµ,ν i
(µ)νi−µ.

Therefore, by Lemma 2.3.7 with n = Dy+1, Aµ,ν = qµ,ν , αν = ν andmν = Dx+1
we get

|qµ,ν | ≤
a0

a1a2

∣∣DiQ(ϑe)
∣∣

where
a2 = 1

and

a0

a1
= max

0≤ν≤Dy

(
M

Dx + 1

)
(1 + ν)Dx+1

∏
0≤ν′≤Dy
ν′ 6=ν

(
1 + ν′

|ν′ − ν|

)Dx+1

= max
0≤ν≤Dy

(
M

Dx + 1

)(
(Dy + 1)!
ν!(Dy − ν)!

)Dx+1

= max
0≤ν≤Dy

((
M

Dx + 1

)(
Dy

ν

)
(Dy + 1)

)Dx+1

≤ 2M · 2M · 2M = 8M

using the general estimates
(
n
k

)
≤ 2n and n ≤ 2n. We conclude that

‖Q‖ ≤ 8M max
0≤i<M

∣∣DiQ(ϑe)
∣∣

For the general case, we apply the previous result to τγQ instead of Q. Since

Di(τγQ)(ϑe) = τγ(DiQ)(ϑe) = DiQ(ϑγ) for each i ∈ N,

this gives
‖τγQ‖ ≤ 8M max

0≤i<M

∣∣DiQ(ϑγ)
∣∣ .

The conclusion follows as Lemma 2.3.6 gives L(Q) ≤ c1(−γ)D‖τγQ‖ .

Corollary 2.3.9. Let γ ∈ G and T ∈ N+. Define Iγ := I(γ,1). Then Iγ is a
prime ideal of rank 2 and I(γ,T ) is Iγ-primary of degree T .

Proof. The ideal Iγ is generated by the homogeneous polynomials vanishing at
the point ϑγ . Therefore it is prime of rank 2. As (Iγ)T ⊆ I(γ,T ) ⊆ Iγ , the radical
of I(γ,T ) is Iγ . Since Iγ is a prime of maximal rank, this is sufficient to conclude
that I(γ,T ) is Iγ-primary. Moreover, for any choice of homogeneous polynomials
P,Q ∈ C[X,Y] with P /∈ Iγ and Q /∈ I(γ,T ), we find that PQ /∈ I(γ,T ). Thus,
I(γ,T ) is Iγ-primary. Finally, consider the linear map ϕ : C[X,Y] → CT given
by ϕ(Q) = (DiQ(1, γ))0≤i<T for each Q ∈ C[X,Y]. Then, I(γ,T )

D is the kernel of
the restriction of ϕ to C[X,Y]D, for each D ∈ N2. Thus, the Hilbert function
of I(γ,T ) is given by H(I(γ,T ) ; D) = dimC ϕ(C[X,Y]D). However, Proposition
2.3.8 shows that ϕ(C[X,Y]D) = CT when (Dx + 1)(Dy + 1) ≥ T . Thus, for each
large enough bi-integer D, the value H(I(γ,T ) ; D) is constant equal to T and so
I(γ,T ) has degree T .
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2.3.3 A division algorithm
The following technical lemma provides the inductive step needed in the proof
of the next two propositions.

Lemma 2.3.10. Let γ ∈ G, let L,K,N ∈ N2 and T ∈ N+ with

LxLy + ‖L‖ < T ≤ (Lx + 1)(Ly + 1)

L ≤ K ≤ N ≤ 2K − L, L 6= K. (2.3.4)

and let Q ∈ I(γ,T )
N . Then, we can write

Q =
1∑

i,j=0
XNx−Kx
i Y

Ny−Ky
j Qi,j

for a choice of polynomials Qi,j ∈ I(γ,T )
K (0 ≤ i, j ≤ 1) satisfying

1∑
i,j=0

L(Qi,j) ≤ c1(γ)Lc2(γ)K(64|K|)TL(Q). (2.3.5)

Proof. Let us denote MD
i,j := XDx

i Y
Dy
j and A := {(1, 0), (0, 1), (1, 1)}. Since

(2.3.4) implies N > 2(N −K − (1, 1)), any monomial in X,Y of bidegree N is
divisible by at least one of the four monomials MN−K

i,j (0 ≤ i, j ≤ 1). So, we can
write

Q =
1∑

i,j=0
MN−K

i,j Pi,j

for some homogeneous polynomials Pi,j of bidegree K with

1∑
i,j=0

L(Pi,j) = L(Q). (2.3.6)

Put M = (Lx + 1)(Ly + 1). Then, for each (i, j) ∈ A, Proposition 2.3.8 ensures
the existence of a unique polynomial Ri,j ∈ C[X,Y]L satisfying

DkRi,j(ϑγ) =
{
DkPi,j(ϑγ) for 0 ≤ k < T ,
0 for T ≤ k < M ,

and shows, with the help of Lemma 2.3.6, that it has length

L(Ri,j) ≤ c1(−γ)L8M max
0≤k<T

|DkPi,j(ϑγ)| ≤ c1(−γ)L8Mc2(γ)K |K|TL(Pi,j).

As M ≤ 2(LxLy + ‖L‖+ 1)− 1 ≤ 2T − 1, the above estimate simplifies to

L(Ri,j) ≤
1
8c1(−γ)Lc2(γ)K(64|K|)TL(Pi,j) ((i, j) ∈ A). (2.3.7)

Furthermore, since 2K − L ≥ N , N ≥ K and K ≥ L, the expressions

Q0,0 := P0,0 + M2K−L−N
0,0

 ∑
(i,j)∈A

MN−K
i,j Ri,j


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Qi,j := Pi,j −MK−L
0,0 Ri,j ((i, j) ∈ A)

are bihomogeneous polynomials of bidegree K which satisfy

1∑
i,j=0

MN−K
i,j Qi,j = Q. (2.3.8)

By construction, we have Qi,j ∈ I(γ,T ) for (i, j) ∈ A. Since Q as well belongs
to I(γ,T ), we deduce that MN−K

0,0 Q0,0 ∈ I(γ,T ) and so Q0,0 ∈ I(γ,T ) because
X0, Y0 /∈ Iγ (see Corollary 2.3.9). Thus, (2.3.8) provides a decomposition of Q
with polynomials Qi,j ∈ I(γ,T )

K , 0 ≤ i, j ≤ 1. Using (2.3.6) and (2.3.7), we find
as announced

1∑
i,j=0

L(Qi,j) ≤ 2
∑

(i,j)∈A

L(Ri,j) +
1∑

i,j=0
L(Pi,j) ≤ c1(−γ)Lc2(γ)K(64|K|)TL(Q),

because 6 64T
8 + 1 ≤ 64T for T ≥ 1.

On the qualitative side, this lemma has the following useful consequence.

Proposition 2.3.11. Let γ = (ξ, η) ∈ G, let D ∈ N2
+ and T ∈ N+ with

T ≤ DxDy + min{Dx, Dy}. Then, any homogeneous element of I(γ,T ) of degree
≥ D belongs to the ideal J of C[X,Y] generated by I(γ,T )

D . Moreover, for any
finite set of points S of P1(C)×P1(C) not containing ([1 : ξ], [1 : η]), there exists
an element of I(γ,T )

D which does not vanish at any point of S.

Proof. The hypotheses on D and T imply that there exists a bi-integer L 6= D
such that L ≤ D − (1, 0) and LxLy + ‖L‖ < T ≤ (Lx + 1)(Ly + 1). Then, for
any N ∈ N with N ≥ D + (1, 0), the conditions (2.3.4) of Lemma 2.3.10 are
fulfilled with K = N − (1, 0) and the lemma shows that I(γ,T )

N is contained in the
ideal of C[X,Y] generated by I(γ,T )

N−(1,0). The same argument works for another
choice of L ≤ D − (0, 1), N ≥ D + (0, 1) and K = N − (0, 1). By induction,
we conclude that I(γ,T )

N ⊆ J for each N ≥ D. This proves the first assertion
of the proposition. It also implies that I(γ,T ) and J have the same zero set in
P1(C)×P1(C), namely {([1 : ξ], [1 : η])}, which leads to the second assertion.

For the next proposition, in comparison with the homogeneous case (Proposition
3.7 of [Roy13]), the simplification of the hypothesis in 2.3.10 allows one to
nearly halve the coordinates of N when they are very big, and we get a little
improvement for the choice of T . The main new problem that occurs in the
proof is that when only one coordinate of N is very different from that of D,
you can halve only one coordinate and so it becomes more intricate to deal with
this case.
In addition to this, we remark that we have N log |N | in the exponent of c3(γ),
while in the homogeneous version one has simply N . It is possible to get an
estimate with exponent N also in this setting, at the cost of strengthening the
hypothesis on T (to a condition of the form T ≤ cDxDy, with 0 < c < 1), but
this minor improvement is ineffective, for the application he have in mind.



Estimates on C[X,Y] 45

Proposition 2.3.12. Let γ ∈ G, T ∈ N+ and D ∈ N2
+ with |D| ≥ 3 and

1 ≤ T ≤ DxDy. For any N ∈ N2 with N ≥ D and any polynomial Q ∈ I(γ,T )
N , we

can write Q =
∑
ν≤N−D PνXνxYνy for a choice of polynomials Pν ∈ I(γ,T )

D (ν ∈
N2, ν ≤ N −D) satisfying∑

ν≤N−D

L(Pν) ≤ c3(γ)15N log(|N |)|N |28T log(|N |)L(Q), (2.3.9)

where c3(γ) = c1(−γ)c2(γ).

Proof. We proceed by induction on N . For N = D, the result is clear. Suppose
that N ≥ D, N 6= D and let Q ∈ I(γ,T )

N . The hypothesis imply that we can
choose a non-negative bi-integer L ∈ N2 satisfying L < D and LxLy+‖L‖ < T ≤
(Lx + 1)(Ly + 1) = dim(L). We shall prove the thesis with the finer inequality∑

ν≤N−D

L(Pν) ≤ c2(γ)Nc3(γ)βD log(dim(N−L))|N |2Tβ log(dim(N−L))L(Q),

(2.3.10)
where β = 2 log 4

3
e = 6.95 . . ..

To this extent, we also define

K =
(

max{Dx,
⌈Nx + Lx

2

⌉
},max{Dy,

⌈Ny + Ly
2

⌉
}
)
.

For this choice of K, we have N ≥ K ≥ D > L and 2K ≥ N + L, so that the
conditions (2.3.4) of Lemma 2.3.10 are fulfilled. Moreover, since |N | ≥ |D|+ 1 ≥
4, we have 64|K| ≤ 64|N | ≤ |N |4 and so this lemma provides polynomials
Qi,j ∈ I(γ,T )

K satisfying

Q =
1∑

i,j=0
MN−K

i,j Qi,j and
1∑

i,j=0
L(Qi,j) ≤ c2(γ)K−Lc3(γ)L|N |4TL(Q).

(2.3.11)
Since c1(γ) ≥ 1, c2(γ) ≥ 1, β ≥ 2, dim(N − L) ≥ 2 · 3 ≥ e, if K = D, this
decomposition of Q has all the requested properties. Otherwise, assume that
Kx > Dx and Ky ≥ Dy (the other case is symmetric), so that Kx = dNx+Lx

2 e.
We first notice that

2K −N ≤ 2D. (2.3.12)

Indeed 2Kx−Nx ≤ Lx + 1 ≤ 2Dx, and if Ky > Dy then again 2Ky −Ny ≤ 2Dy,
else Ky = Dy and 2Ky −Ny ≤ Dy becomes obvious. We also observe that

β log(dim(N − L)) ≥ β log(dim(K − L)) + 2. (2.3.13)

To see this, we notice that Nx > Kx > Dx > Lx, so Nx ≥ Lx + 3, hence

Kx ≤
Nx + Lx

2 + 1
2

Kx − Lx + 1 ≤ Nx − Lx + 1
2 + 1

Kx − Lx + 1
Nx − Lx + 1 ≤

1
2 + 1

Nx − Lx + 1 ≤
1
2 + 1

4 = 3
4 .
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Since in addition Ny − Ly + 1 ≥ Ky − Ly + 1, we have β log(dim(N − L)) −
β log(dim(K − L)) ≥ β log

(
Nx−Lx+1
Kx−Lx+1

)
≥ β log

( 4
3
)
≥ 2.

Now, by induction, we may assume that each Qi,j in (2.3.11) admits a decompo-
sition Qi,j =

∑
ν≤K−D XνxYνyPi,j,ν with polynomials Pi,j,ν ∈ I(γ,T )

D satisfying∑
ν≤K−D

L(Pi,j,ν) ≤ c2(γ)Kc3(γ)βD log(dim(K−L))|K|2Tβ log(dim(K−L))L(Qi,j).

If we substitute these expressions in the decomposition (2.3.11) of Q and we
collect terms, we obtain a new decomposition Q =

∑
ν≤N−D XνxYνyPν with

polynomials Pν ∈ I(γ,T )
D satisfying

∑
ν≤N−D

L(Pν) ≤ c2(γ)Kc3(γ)βD log(dim(K−L))|K|2Tβ log(dim(K−L))
1∑

i,j=0
L(Qi,j)

≤ c2(γ)2K−Lc3(γ)βD log(dim(K−L))+L|N |4T |K|2Tβ log(dim(K−L))L(Q).

As 2K−L ≥ N and c3(γ) ≥ c2(γ) we have c2(γ)2K−Lc3(γ)βD log(dim(K−L))+L ≤
c2(γ)Nc3(γ)βD log(dim(K−L))+2K−N . Using (2.3.12) and (2.3.13) we deduce
βD log(dim(K−L))+2K−N ≤ βD log(dim(N−L)) and 4T+2Tβ log(dim(K−
L) ≤ 2Tβ log(dim(N−L))), so that (2.3.10) holds, hence the thesis follows easily
from dim(N) ≤ |N |2, valid for N positive bi-integer.

2.4 Distance
Throughout this section, we fix a point γ = (ξ, η) ∈ G = C× C× and denote by
ϑγ = ([1 : ξ], [1 : η]) the class of ϑγ = (1, ξ, 1, η) in P1(C)× P1(C). To alleviate
the notation, we simply write c1 and c2 to denote respectively the bi-constants
c1(γ) and c2(γ) of Lemma 2.3.6, and c3 to denote the bi-constant c3(γ) from
Proposition 2.3.12. In particular, we have

c2 = (c2,x, c2,y) = (max{1, |ξ|},max{1, |η|}) = (‖(1, ξ)‖, ‖(1, η)‖).

For each bi-integer D ≥ 0, each positive integer T ≥ 1, and each point (α, β) ∈
P1(C)× P1(C) with representative (α, β) = (α0, α1, β0, β1) ∈ C4 of norm ‖α‖ =
‖β‖ = 1, we also define

|I(γ,T )
D |(α,β) = sup{|P (α, β)| : P ∈ I(γ,T )

D , ‖P‖ ≤ 1},

where I(γ,T )
D stands for the bihomogeneous part of degree D of the ideal I(γ,T )

introduced in the preceding section. The goal of this section is to estimate this
quantity in terms of the projective distances between (α, β) and ϑγ , defined by

distx(α, (1 : ξ)) = ‖α1 − α0ξ‖
‖α‖ ‖(1, ξ)‖ = c−1

2,x|α1 − α0ξ|,

disty(β, (1 : η)) = ‖β1 − β0η‖
‖β‖ ‖(1, η)‖ = c−1

2,y|β1 − β0ξ|,

bidist((α, β),ϑγ) = (distx(α, (1 : ξ)),distx(β, (1 : η))),
dist((α, β),ϑγ) = ‖bidist((α, β),ϑγ)‖,

(2.4.1)
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and in terms of the distance from (α, β) to the analytic curve Aγ = {([1 :
ξ + z], [1 : ηez]) : z ∈ C} defined by

dist(α,Aγ) =
∣∣∣β1

β0
− η exp

(α1

α0
− ξ
)∣∣∣

when α0, β0 6= 0.

2.4.1 Lower bound for the distance
For our first estimate, we use the following lemma.

Lemma 2.4.1. Let ((α, β) ∈ P1(C)×P1(C) with bidist((α, β),ϑγ)) ≤ (2c2)−1 :=
((2c2,x)−1, (2c2,y)−1), and let (α, β) ∈ C4 be a normalized representative of (α, β).
Then we have (|α0|, |β0|) ≥ (2c2)−1.

Proof. We have ‖α1 − α0ξ‖ = c2,x distx(α, (1 : ξ)) ≤ 1/2, so |α0ξ| ≥ |α1| −
1/2 = 1/2 and therefore |α0| ≥ (2c2,x)−1. Analogously, we have also |β0| ≥
(2c2,y)−1.

Proposition 2.4.2. Let D ∈ N2\{0}, T ∈ N+, P ∈ C[X,Y]D with P 6= 0, and
let (α, β), α, β be as in Lemma 2.4.1. Then we have

|P (α, β)|
‖P‖

≤ c4 max
0≤i<T

|DiP (ϑγ)|
‖P‖

+ c
|D|
4
(

dist(α, (1 : ξ))T + dist((α, β), Aγ)
)

(2.4.2)
where c4 = 12‖c2‖ exp(2c22,x).

Proof. Since by Lemma 2.4.1 we have α0, β0 6= 0, we put

δ1 = α1

α0
− ξ and δ2 = β1

β0
− ηeδ1 ,

and consider the entire function f : C→ C given by

f(z) = P (1, ξ + z, 1, ηez) (z ∈ C).

Since αDx0 β
Dy
0 f(δ1) = P (α0, α1, β0, β1 − δ2β0), we have

|P (α, β)| ≤ |α0|Dx |β0|Dy |f(δ1)|+ |P (α0, α1, β0, β1)− P (α0, α1, β0, β1 − δ2β0)|,
(2.4.3)

and since f is an entire function and f (i)(0) = DiP (ϑγ) for each i ∈ N, we get

f(δ1) ≤
∞∑
i=0

1
i! |D

iP (ϑγ)| |δ1|i

=
T−1∑
i=0

1
i! |D

iP (1, ϑγ)| |δ1|i +
∞∑
i=T

1
i! |D

iP (1, ξ, η)| |δ1|i

≤ e|δ1| max
0≤i<T

|DiP (ϑγ)|+
∞∑
i=T

1
i!‖P‖ dim(D)cD2 |D|i|δ1|i,
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where the last estimate uses the upper bound |DiP (ϑγ)| ≤ cD2 |D|iL(P ) ≤
cD2 |D|i · ‖P‖(Dx + 1)(Dy + 1) coming from Lemma 2.3.6. To provide an upper
bound for the last series, we note that, since |α0| ≥ (2c2,x)−1, we have

|δ1| = |α0|−1|α1 − α0ξ| ≤ 2c22,x distx(α, (1 : ξ)).

As distx(α, (1 : ξ)) ≤ (2c2,x)−1 ≤ 1, this gives |δ1| ≤ c2,x and, for each integer
i ≥ T , we can write |δ1|i ≤ (2c22,x)i distx(α, (1 : ξ))T . Therefore,

∞∑
i=T

1
i!‖P‖ dim(D)cD2 |D|i|δ1|i

≤ ‖P‖ dim(D)cD2 distx(α, (1 : ξ))T
∞∑
i=T

1
i! (2c

2
2,x|D|)i

≤ ‖P‖ dim(D)cD2 exp(2c22,x)|D| dist(α, (1 : ξ))T

≤ cD4 ‖P‖ dist(α, (1 : ξ))T .

The second term in (2.4.3) is easily estimated by writing explicitly the polynomial
P =

∑
(a,b)≤D pa,b XaYb:

|P (α, β)− P (α, β0, β1 − δ2β0)|

≤ ‖P‖
Dx∑
a=0

(
|α0|Dx−a|α1|a

)( Dy∑
b=0
|β0|Dy−b|βb1 − (β1 − δ2β0)b|

)
≤ ‖P‖(Dx + 1)

Dy∑
b=0

b(|β1|+ |δ2β0|)b−1|δ2β0|

≤ ‖P‖(Dx + 1)Dy(Dy + 1)
2 (2 + c2,y exp(c2,x))Dy−1 dist((α, β), Aγ),

where the last inequality comes from |δ2β0| ≤ |δ2| = dist((α, β), Aγ) and |β1|+
|δ2β0| ≤ 2 + |η|e|δ1|. The conclusion follows putting together all the preceding
inequalities, since e|δ1| ≤ exp(c2,x) ≤ c4, and dim(D)Dy2 (2+c2,y exp(c2,x))Dy−1 ≤
4|D|(2 + |c2| exp(c2,x))|D|−1 ≤ c|D|4 .

As an immediate consequence, we get
Corollary 2.4.3. With (α, β), α, β as in Lemma 2.4.1 and D ∈ N2

+, T ∈ N+,
we have

|I(γ,T )
D |(α,β) ≤ c

|D|
4
(

dist(α, (1 : ξ))T + dist((α, β), Aγ)
)
.

2.4.2 Upper bound for the distance

We now turn to the problem of finding a lower bound for |I(γ,T )
D |(α,β). To this

end, we first note the following consequence of Proposition 2.3.12.
Lemma 2.4.4. Let D ∈ N2\{0}, T ∈ N∗ with |D| ≥ 3 and ‖D‖ ≤ T ≤ DxDy,
let (α, β) ∈ P1(C)× P1(C) and let α, β ∈ C4 be a normalized representative of
it. Then, for any Q ∈ I(γ,T )

(T,T ), we have

|Q(α, β)| ≤ c15(T,T ) log(2T )
3 (2T )28T log(2T )L(Q) |I(γ,T )

D |(α,β).
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Proof. Fix a polynomial Q ∈ I
(γ,T )
N and consider a decomposition of Q as

given by Proposition 2.3.12 for the choice of N = (T, T ). Since |P (α, β)| ≤
L(P ) |I(γ,T )

D |(α,β) for any P ∈ I(γ,T )
D , we obtain

|Q(α, β)| ≤
∑

|ν|≤N−D

|Pν(α, β)| ≤ c15(T,T ) log(2T )
3 (2T )28T log(2T )L(Q) |I(γ,T )

D |(α,β).

Proposition 2.4.5. With the notation and hypotheses of Lemma 2.4.4, we have

dist(α, (1 : ξ))T ≤ (c5T )28T log(2T )|I(γ,T )
D |(α,β) .

Moreover, if bidist((α, β),ϑγ) ≤ (2c2)−1, we also have

dist((α, β), Aγ) ≤ c4(c5T )28T log(2T )|I(γ,T )
D |(α,β)

where c5 = (2c(1,1)
2 + 2)2c(1,1)

3 , and c4 is as in Proposition 2.4.2.

Proof. The formula (2.4.1) shows that dist(α, (1 : ξ)) = |M ′(α)| for the linear
form M ′ = c−1

2,x(X1 − ξX0) ∈ C[X,Y](1,0). If |β0| = 1 we put M = Y0M
′ and

if |β1| = 1 we put M = Y1M
′. For such a choice of M ∈ C[X,Y](1,1) we have

‖M‖ ≤ 1, M(ϑγ) = 0 and M(α, β) = dist(α, (1 : ξ)). Then, as MT ∈ I(γ,T )
(T,T ) and

L(M) ≤ 2, Lemma 2.4.4 gives

dist(α, (1 : ξ))T = |M(α, β)|T ≤ 2T c15(T,T ) log(2T )
3 (2T )28T log(2T )|I(γ,T )

D |(α,β).
(2.4.4)

So the first thesis is proved, as c(1,1)
2 := c2,xc2,y ≥ 1 ≥ 0. Now, assume that

bidist((α, β), ϑγ) ≤ (2c2)−1, and write α, β = (α0, α1, β0, β1). As the polynomial

Q(X,Y) = XT
0 Y

T−1
0 Y1 − η

T−1∑
i=0

1
i! (X1 − ξX0)iXT−i

0 Y T0

also belongs to I(γ,T )
(T,T ), the same result combined with Lemma 2.4.1 leads to the

estimate ∣∣∣β1

β0
− η

T−1∑
i=0

1
i!

(α1

α0
− ξ
)i∣∣∣ = |α0|−T |β0|−T |Q(α, β)|

≤ c4(2c2)(T,T )c
15(T,T ) log(2T )
3 (2T )28T log(2T )|I(γ,T )

D |(α,β)

(2.4.5)

using L(Q) ≤ 1 + |η| exp(1 + |ξ|) ≤ c4. Arguing as in the proof of Proposition
2.4.2, we also note that, for each integer i ≥ T , we have |α1/α0−ξ|i ≤ dist(α, (1 :
ξ))T (2c22,x)i and therefore

∣∣∣η ∞∑
i=T

1
i!

(α1

α0
− ξ
)i∣∣∣ ≤ dist(α, (1 : ξ))T c2,y

∞∑
i=T

(2c22,x)i

i! ≤ c4 dist(α, (1 : ξ))T .

(2.4.6)
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Combining (2.4.4), (2.4.5) and (2.4.6), we get

dist((α, β), Aγ) ≤ |α0|−T |β0|−1|Q(α, β)|+ c4 dist(α, (1 : ξ))T

≤ c4((2c2)(T,T ) + 2T )c15(T,T ) log(2T )
3 (2T )28T log(2T )|I(γ,T )

D |(α,β),

hence we obtain the desired estimate from (2c2)(T,T ) + 2T ≤ ((2c2)(1,1) + 2)T

We will also need the following

Proposition 2.4.6. With the notation and hypotheses of Lemma 2.4.4, we have

dist(β, (1 : η))T ≤ (c5T )28T log(2T )|I(γ,T )
D |(α,β) .

where c5 = (2c(1,1)
2 + 2)2c(1,1)

3 , as in Proposition 2.4.5.

Proof. The formula (2.4.1) shows that dist(β, (1 : η)) = |M ′(β)| for the linear
form M ′ = c−1

2,y(Y1 − ηY0) ∈ C[X,Y](0,1). If |α0| = 1 we put M = X0M
′ and

if |α1| = 1 we put M = X1M
′. For such a choice of M ∈ C[X,Y](1,1) we have

‖M‖ ≤ 1, M(ϑγ) = 0 and M(α, β) = dist(β, (1 : η)). Then, as MT ∈ I(γ,T )
(T,T ) and

L(M) ≤ 2, Lemma 2.4.4 gives

dist(β, (1 : η))T = |M(α, β)|T ≤ 2T c15(T,T ) log(2T )
3 (2T )28T log(2T )|I(γ,T )

D |(α,β).
(2.4.7)

The proposition follows from c
(1,1)
2 := c2,xc2,y ≥ 0.

We remark that for the first two lemmas of this section we can adapt the
arguments to achieve estimates involving smaller exponents in case Dy is a bit
smaller than Dx, but not too much. Since we don’t need such improvements, we
didn’t include them and we opted for simpler statements and proofs.

2.5 Multiplicity of the resultant form
In this section, we introduce the last crucial tool that we need for the proof
of our main theorem. In consists in a lower bound for the multiplicity of the
resultant form of multihomogeneous polynomials in n+ q = (n1 + 1) + (nq + 1)
variables at certain n + 1-tuples of such polynomials. In the applications, we
will restrict to n = q = 2 and n1 = n2 = 1.
Let P := Pn1 × . . . × Pnq . We set its multidegree in the trivial embedding:
deg(P) := degK[X]((0)).

2.5.1 The main result
In this section we use many of the definitions of the first chapter. We start with
a decomposition lemma.

Lemma 2.5.1. Let P0, . . . , Pn be a regular sequence of K[X] made of multi-
homogeneous polynomials, with Pi ∈ K[X]Di respectively, for some Di ∈ Nq+,
and let ν ∈ Nq with ν ≥ (

∑n
h=0Dh)− (n1, . . . , nq). Then there exist subspaces

E0, . . . , En respectively of K[X]ν−Di with dimC(En) = deg(P) ∗D0 ∗ · · · ∗Dn−1
such that

K[X]ν = E0P0 ⊕ · · · ⊕ EnPn.
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Proof. For j = 0, . . . , n, define the multihomogeneous ideal Ij = (P0, . . . , Pj)
and, for each multi-integer ν ∈ Nq, choose a subspace Ej+1(ν) of K[X]ν such
that

K[X]ν = (Ij)ν ⊕ Ej+1(ν).

Put also I−1 = (0) and E0(ν) = K[X]ν so that the above holds for j = −1, and
extend the definition to multi-integers ν ∈ Zq with some negative coordinate by
putting K[X]ν = (Ij)ν = Ej+1(ν) = {0} for j = −1, 0, . . . , n. Then, for each
ν ∈ Zq and each j = 0, . . . , n, we have an exact sequence

0 −→ (K[X]/Ij−1)ν−Dj
×Pj−−−→ (K[X]/Ij−1)ν −→ (K[X]/Ij)ν −→ 0, (2.5.1)

where the first non-trivial map comes from multiplication by Pj in K[X] while
the second is induced by the identity map in K[X]. As the inclusion of Ej+1(ν)
in K[X]ν induces an isomorphism between Ej+1(ν) and (K[X]/Ij)ν for each
ν ∈ Zq and j = −1, 0, . . . , n, and as all these maps are clearly C-linear, it follows
that

(Ij)ν = Ej(ν −Dj)Pj ⊕ (Ij−1)ν (ν ∈ Zq, 0 ≤ j ≤ n).

Since (I−1)ν = {0}, combining these decompositions leads to

(In)ν =
n⊕
j=0

Ej(ν −Dj)Pj (2.5.2)

for each ν ∈ Zq. On the other hand, at the level of dimensions, the exactness of
the sequence (2.5.1) gives

dimCEj+1(ν) = dimCEj(ν)−dimCEj(ν−Dj) (ν ∈ Zq, 0 ≤ j ≤ n). (2.5.3)

Since

dimCE0(ν) =
(
ν1 + n1

n1

)
· · ·
(
νq + nq
nq

)
for each ν ≥ (−n1, . . . ,−nq)

we notice that for ν ≥ (−n1, . . . ,−nq) it is a polynomial in q variables evaluated
at ν and it coincides with the Hilbert-Samuel polynomial of the multihomogeneous
ideal (0) of K[X]:

dimCE0(ν) = H(K[X], ν) for ν ≥ −(n1, . . . , nq).

We also have totdeg(H(K[X], ν)) = n, LP (H(K[X], ν)) = Tn1
1 · · ·T

nq
q and

LC(H(K[X], ν)) = deg(P). From (2.5.3) we also have that

dimCEj(ν) = ∆Dj−1 · · ·∆D0(H(K[X], ν) for ν ≥
j−1∑
h=0

Dh − (n1, . . . , nq).

We deduce by induction, using proposition (1.2.5), that these are polynomials of
total degree n− j. In particular, this gives dimC(En) = deg(P) ∗D0 ∗ · · · ∗Dn−1
for all ν ≥

∑n−1
h=0 Dh − (n1, . . . , nq). Then (2.5.3) with j = n implies that

En+1(ν) = {0} for each ν ≥
∑n
h=0Dh − (n1, . . . , nq) and so (In)ν = K[X]ν for

these values of ν. The conclusion of the lemma then follows from (2.5.2).
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Theorem 2.5.2. Let I be a multihomogeneous ideal of K[X]. Suppose that, for
some positive multidegree D ∈ Nq+, the set of common zeros of the elements of
ID in P(C) = Pn1(C)× . . .×Pnq (C) is finite and non-empty. Then, the resultant
form for n+ 1 multihomogeneous polynomials of multidegree D vanishes up to
order deg(I) at each point of (ID)n+1.

Proof. Since the elements of ID have finitely many common zeros in P(C), the
subspace ID of K[X]D contains a regular sequence P0, . . . , Pn−1 of length n.
Moreover, as the elements ofK[X]D have no common zeros in P(C), this sequence
can be extended to a regular sequence P0, . . . , Pn−1, Pn for some Pn ∈ K[X]D.
Fix a multi-integer ν ≥ (n+ 1)D− (n1, . . . , nq) large enough so that the Hilbert
function of I at ν is H(I; ν) = deg(I), and choose subspaces E0, . . . , En of
K[X]ν−D as in Lemma 2.5.1. For each (n + 1)-tuple Q = (Q0, . . . , Qn) ∈
K[X]n+1

D , we define a linear map

ϕQ : E0 × · · · × En −→ K[X]ν
(A0, . . . , An) 7−→ A0Q0 + · · ·+AnQn .

Then, by construction, for the choice of P = (P0, . . . , Pn), the map ϕP is an
isomorphism. Put δ := dimCEn.
Form a basis A of E0× · · ·×En by concatenating bases A(i) = (A(i)

j )1≤j≤dimC Ei

of 0× · · · × Ei × · · · × 0 for i = 0, . . . , n, so that the last δ elements of A form
a basis of 0× · · · × 0× En. Since H(I; ν) = deg(I), the set Iν is a subspace of
K[X]ν of codimension deg(I) and so there is also a basis B of K[X]ν whose last
elements past the first deg(I) form a basis of Iν . For each Q ∈ E0×· · ·×En, we
denote by MQ the matrix of the linear map ϕQ with respect to the bases A and
B. Define Ni :=

∑i−1
k=0 dimCEk. Then the (Ni + j)-th column of MQ represents

A
(i)
j Qi properly written in terms of the basis B. Then, if we write explicitly

Qi =
∑

m∈MD
q

(i)
m m we see that the entries of the (Ni + j)-th column of MQ are

fixed C-linear combinations (depending only on A and B) of the coefficients q(i)
m

of Qi. Then, using Laplace’s expansion for the determinant, we see that the map

Φ : K[X]n+1
D −→ C

Q = (Q0, . . . , Qn) 7−→ det(MQ)

is a multihomogenous polynomial map in the coefficients of Q0, . . . , Qn, which is
homogeneous of degree dimCEi in the coefficients of Qi, for i = 0, . . . , n. For
each Q ∈ In+1

D , the first deg(I) rows of MQ vanish because the image of ϕQ is
contained in Iν . It follows from this that all partial derivatives of Φ of order less
than deg(I) vanish at each point of In+1

D .

Claim 2.5.3. If ν is sufficiently large, Φ is divisible by the resultant form in
multidegree d := (D, . . . ,D) ∈ Nn+1: we have

Φ(Q) = Ψ(Q) resd(Q) (2.5.4)

where Ψ: K[X]n+1
D → C is also a polynomial map.

Proof. To see this, we include each Ei into K[X]ν−D and extend the basis A
of E0 × . . .×En to a basis Ã of K[X]n+1

ν−D. We also consider the C-linear map
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ϕ̃Q : K[X]n+1
ν−D → K[X]ν extending ϕQ, given by ϕ̃Q(A0, . . . , An) =

∑n
i=0AiQi.

We notice thatMQ is now a minor of maximum rank extracted by the matrix M̃Q

representing ϕ̃Q in the basis Ã and B. We consider now the map φν considered
in Lemma 1.1.12 with d as above. After tensorizing by the flat (free) C-module
C[d], we obtain from Ã and B two basis Ã′,B′, respectively for K[u][X]n+1

νD and
K[u][X]ν , and then we consider the matrix M ′ representing φν in these two
basis. It is then clear that for every choice of Q ∈ K[X]n+1

D the matrix M̃Q

is obtained from M ′ by specialization of the variables u(i)
m to the coefficients

q
(i)
m of Q0, . . . , Qn. Thus, the multihomogeneous polynomial representing Φ
exactly coincides with det(∆), where ∆ is the minor of M ′ corresponding to the
basis A′ = A ⊗ 1 ⊆ Ã′. Lemma 1.1.12 says precisely that resd divides Φ as a
polynomial map.

Since by Proposition 1.2.18 the resultant form is homogeneous of degree degP ∗
D ∗ · · · ∗ D on each factor of K[X]n+1

D and since by Lemma 2.5.1 Φ is of the
same degree on the last factor, the map Ψ has degree 0 on that factor. This
means that Ψ(Q0, . . . , Qn) is independent of Qn. Since Φ(P) 6= 0 and since
P0, . . . , Pn−1 ∈ ID, we deduce that the restriction of Ψ to In+1

D is not the zero
map and so the condition Ψ(Q) 6= 0 defines a non-empty Zariski open subset U
of In+1

D . As the map Φ vanishes to order at least deg(I) at each point of U , the
factorization (2.5.4) implies that the resultant vanishes up to order deg(I) at
the same points and therefore, by continuity, vanishes up to order deg(I) at each
point of the closure of U in In+1

D . Since In+1
D is a C-vector subspace of K[X]n+1,

it is irreducible as algebraic set and so the closure of U in In+1
D is all of In+1

D .

2.5.2 Corollaries in dimension two
Lemma 2.5.4. Let R be an irreducible bihomogeneous polynomial of Q[X,Y].
Then R divides DR if and only if R is a constant multiple of either X0, Y0 or Y1.

Proof. Suppose first thatR |DR and letD = (Dx, Dy) := (degxR,degy R). Since
DR is also bihomogeneous of bidegree D, this hypothesis means that R is an
eigenvector of the differential operator D acting on Q[X,Y]D. We observe that,
for each k = 0, . . . , Dy the subspace YkQ[X]Dx is in the kernel of (D − k)Dx+1

(indeed, it is also easy to see that it coincides with it) and so the product∏Dy
k=0(D− k)Dx+1 induces the zero operator on Q[X,Y]D. Thus the eigenvalues

of D are the integers 1, . . . , Dy and we find that, for each k = 0, . . . , Dy, the
eigenspace for k is generated by the monomial Y Dy−k0 Y k1 X

Dx
0 . So R is a multiple

of such a monomial and, as it is irreducible, we conclude that it has total degree
Dx +Dy = 1 and is a multiple of X0, Y0 or Y1. The converse is clear.

Lemma 2.5.5. Let D ∈ N2
+ be a positive bidegree and let P ∈ Q[X,Y]D

with X0 |- P , Y0 |- P and Y1 |- P . If an irreducible bihomogeneous polynomial
R ∈ Q[X,Y] divides P,DP, . . .DkP for some integer k ≥ 0, then Rk+1 divides P .
In particular, the polynomials P,DP, . . . ,D‖D‖P have no common irreducible
factor in Q[X,Y] and P,DP, . . . ,DDyP have no common irreducible factor in
Q[X,Y] with positive y-degree.

Proof. Let R be an irreducible factor of P in Q[X,Y], and write P = ReQ for
some positive integer e ≤ ‖D‖ and some bihomogeneous polynomial Q ∈ Q[X,Y]
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not divisible by R. Then, for i = 0, . . . , e− 1, the polynomial DiP is divisible
by R while DeP is congruent to (DR)eQ modulo R. However, by Lemma 2.5.4
the hypothesis on P implies that R |- DR. So e is the largest integer for which R
divides P,DP, . . . ,De−1P , and the result follows.

For the next results, we denote respectively by π1 : G → C and by π2 : G → C×
the projections from G = C× C× to its first and second factors.

Lemma 2.5.6. Let R be an irreducible bihomogeneous polynomial of Q[X,Y].
Then τγR is irreducible for any γ ∈ G. Moreover, assume that R is not a multiple
of either X0, Y0 or Y1, and denote by ΓR the set of all γ ∈ G such that R divides
τγR. Then if degy(R) = 0, then π1(ΓR) is reduced to {0}, otherwise π2(ΓR) is a
cyclic subgroup of C× of order at most degy(R).

Proof. The first assertion follows simply from the fact that each τγ is an automor-
phism of Q[X,Y]. To prove the second one, we first note that ΓR is a subgroup of
G. Let γ = (ξ, η) ∈ G be an arbitrary element of ΓR. Since τγR has the same de-
gree as R, we have τγR = λR for some λ ∈ C×. Writing R =

∑degy(R)
k=0 YkAk(X),

this condition translates into ηkAk(X0, ξX0 + X1) = λAk(X0, X1) for each
k = 0, . . . ,degy(R). When Ak 6= 0, this relation implies that ηk = λ. So, if
degy(R) > 0, being R irreducible and not divisible by Y0 and Y1, there are at
least two indices k with Ak 6= 0. Then η is a root of unity of order at most
degy(R) and, the choice of (ξ, η) ∈ ΓR being arbitrary, we conclude that π2(ΓR)
is a finite thus cyclic subgroup of C× of order at most degy(R). Otherwise,
assuming that X0 does not divide R, we obtain that R = A0(X) is of positive
degree in X1, and the equality A0(X0, ξX0 +X1) = λA0(X0, X1) implies that
λ = 1 and ξ = 0. Thus, in that case, we have π1(ΓR) = {0}.

Theorem 2.5.7. Let Σ be a non-empty finite subset of G and let T be a positive
integer. Denote by I the ideal of C[X,Y] generated by the bihomogeneous
polynomials P satisfying

(DiP )(ϑγ) = 0 for each γ ∈ Σ and each i = 0, . . . , T − 1.

Suppose that there exist a finite subset Σ1 of G, an integer T1 ≥ 0 and a positive
bi-integer D = (Dx, Dy) ∈ N2

+ such that

D < (T1 + 1)(|π1(Σ1)| , |π2(Σ1)|) and (T + T1) |Σ + Σ1| < dim(D) (2.5.5)

where Σ + Σ1 = {γ + γ1 : γ ∈ Σ, γ1 ∈ Σ1} denotes the sumset of Σ and Σ1
in G and dim(D) = (Dx + 1)(Dy + 1). Then, the resultant form in bidegrees
(D,D,D) vanishes up to order T |Σ| at each point of (ID)3.

Proof. We have an irredundant primary decomposition I =
⋂
γ∈Σ I

(γ,T ) where,
according to Corollary 2.3.9, the ideals I(γ,T ) are primary for distinct prime
ideals of rank 2. Furthermore they all have the same degree T , and so deg(I) =
T |Σ| ∈ N. The second condition in (2.5.5) implies the existence of a non-zero
polynomial P ∈ C[X,Y]D satisfying

(DiP )(ϑγ) = 0 for each γ ∈ Σ + Σ1 and each i = 0, . . . , T + T1 − 1.

Fix such a polynomial P . If it is divisible by X0, Y0 or Y1, then its quotient
by any of these variables possesses the same vanishing property. Thus, upon
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dividing P by a suitable monomial of the form Xh
0 Y

k
0 Y

l
1 and multiplying the

result by Xh
1 (Y0 + Y1)k+l to restore the bidegree, we may assume that P is not

divisible by X0, Y0, nor Y1. By construction, the polynomials τγ(DiP ) belong
to I for each γ ∈ Σ1 and each i = 0, . . . , T1. We claim that the latter have no
non-constant common factor. For, suppose they have such a common factor R.
Choose it to be bihomogeneous and irreducible. As P is not divisible by X0, Y0,
nor Y1, the same holds for R. Define ΓR as in Lemma 2.5.6, and denote by Σ2 a
minimal subset of Σ1 such that Σ2 + ΓR = Σ1 + ΓR. For any pair of distinct
elements γ, γ′ of Σ2, we have γ − γ′ /∈ ΓR, thus R does not divide τγ−γ′(R), and
so, applying τ−γ , we see that the irreducible polynomials τ−γ(R) and τ−γ′(R)
are not associated. Moreover, the choice of R implies that τ−γ(R) divides DiP
for i = 0, . . . , T1. By Lemma 2.5.5, this means that P is divisible by τ−γ(R)T1+1.
Thus P is divisible by

∏
γ∈Σ2

τ−γ(R)T1+1 and so we have this inequality in N2

D = deg(P ) ≥ (T1 + 1) |Σ2|deg(R). (2.5.6)

According to Lemma 2.5.6, either we have degy(R) = 0 and π1(ΓR) = {0}
or the group π2(ΓR) is cyclic of order at most degy(R). In the first case the
equality Σ2 + ΓR = Σ1 + ΓR implies that π1(Σ2) = π(Σ1) and from (2.5.6)
we deduce that Dx ≥ (T1 + 1) |π1(Σ1)| against the hypothesis (2.5.5). In the
second case, it implies that |π2(Σ2)| ≥ |π1(Σ1)| / degy(R) and (2.5.6) leads to
Dy ≥ (T1 + 1) |π2(Σ1)| once again in contradiction with (2.5.5).
Since the polynomials τγ(DiP ) with γ ∈ Σ1 and i = 0, . . . , T1 all belong to ID
and share no common factor, the set of zeros of ID in P1(C)× P1(C) is finite (as
C[X,Y] is an UFD and so its prime ideals of rank 1 are principal...). As this
set contains Σ, it is also non-empty. Therefore, by Theorem 2.5.2, the resultant
form res(D,D,D) vanishes up to order deg(I) = T |Σ| at each point of (ID)3.

In the case where Σ consists of just one point γ, the ideal I of the theorem is
simply I(γ,T ), and for the choice of Σ1 = {e} and T1 = ‖D‖, the condition 2.5.5
reduces to T ≤ DxDy + min{Dx, Dy}.

Corollary 2.5.8. Let γ ∈ G, D ∈ N2
+ and T ∈ N+ with T ≤ DxDy +

min{Dx, Dy}. Then, the resultant form res(D,D,D) vanishes up to order T
at each triple (P,Q,R) of elements of I(γ,T )

D .

2.6 Construction of a subvariety of dimension 0
The first part of the proof of our main theorem consists in constructing, for
each sufficiently large bi-integer D, a zero-dimensional subvariety Z of P1

Q × P1
Q

with small height relative to a certain convex body. In this section, we define a
convex body C of C[X,Y]D = C[X0, X1, Y0, Y1]D of the appropriate form and
provide an estimate for the height of P1 × P1 relative to C. Then, we use this
to construct a zero-dimensional subvariety Z with small height hC(Z) assuming
the existence of a non-zero homogeneous polynomial P ∈ Z[X,Y]D whose first
derivatives with respect to D belong to C. The rest of the section is devoted to
a posteriori estimates for the mixed degree and the mixed heights of Z. Since
we don’t need sharp constants, we shall often the estimate log(3) ≥ log(2).
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2.6.1 The relevant convex body
Proposition 2.6.1. Let T ∈ N+, let D ∈ N2\{0} and let Y,U > 0 with

T ≤ DxDy + min{Dx, Dy} and 2T log(c6) ≤ Y (2.6.1)

where c6 = 8 max{2 + |ξ| , 1 + |η|−1}. Then, for the choice of convex body

C = {P ∈ C[X,Y]D : ‖P‖ ≤ eY , max
0≤i<T

|DiP (ϑγ)| ≤ e−U},

we have hC(P1 × P1) ≤ −TU + 6DxDyY + 24 log(3)DxDy |D|.

Proof. Let ResD := res(D,D,D) : C[X,Y]3D → C denote the resultant form for
P1 × P1 of index d = (D,D,D). Using the notation of Lemma 2.2.3, we have,
by that lemma,

hB(ResD) = hB(P1 × P1) ≤ 21 log(2)(D2
xDy +DxD

2
y). (2.6.2)

Since ResD is a polynomial with integer coprime coefficients (see the discussion
in Section § 1.1.2 and the comments immediately after Definition 1.3.13) we also
have,

hC(P1 × P1) = hC(ResD) = log sup{|ResD(P0, P1, P2)| : P0, P1, P2 ∈ C}.

As C is compact, there exist P0, P1, P2 ∈ C for which

hC(P1 × P1) = log |ResD(P0, P1, P2)|.

The first hypothesis in (2.6.1) implies the existence of a non-negative bi-integer
L ∈ N2 such that L ≤ D, L 6= D and LxLy + ‖L‖ < T ≤ dim(L) =: M . Then,
we have |L| < M ≤ 2T . For this choice of L and for each j = 0, 1, 2, Proposition
2.3.8 ensures the existence of a unique polynomial Qj ∈ C[X,Y]L such that

DiQj(ϑγ) =
{
DiPj(ϑγ) for i = 0, . . . , T − 1,
0 for i = T, . . . ,M − 1,

and shows that it has norm

‖Qj‖ ≤ c1(−γ)L8M max
0≤i≤T−1

|DiPj(ϑγ)| ≤ (8‖c1(−γ)‖)2T e−U ≤ eY−U

since 8‖c1(−γ)‖ = c6 and ‖Qj‖ ≤ L(Qj). Put MD−L
(0,0) = XDx−Lx

0 Y
Dy−Ly
0 . By

construction, the differences Pj −MD−L
(0,0) Qj are elements of I(γ,T )

D (notice that
multiplication by X0 or Y0 commutes with differentiation by D) and so, according
to Corollary 2.5.8, the polynomial

f(z) = ResD(P0 − (1− z)MD−L
(0,0) Q0, . . . , P2 − (1− z)MD−L

(0,0) Q2) ∈ C[z]

vanishes to order at least T at z = 0. Applying the standard Schwarz lemma,
this leads to
exp(hC(ResD)) = |f(1)|

≤ e−TU sup{|f(z)| ; |z| = eU}
≤ e−TU sup{|ResD(P ′0, P ′1, P ′2)| : P ′j ∈ C[X,Y]D, ‖P ′j‖ ≤ 3eY }
≤ e−TU (3eY )6DxDy exp(hB(ResD)),
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where the second estimate follows from ‖Pj+(1−eU )Qj‖ ≤ eY +(1+eU )eY−U ≤
3eY and the last estimate follows from the fact that ResD is homogeneous of
degree 2DxDy on each of its three arguments. Using (2.6.2) we deduce

hC(P1 × P1) ≤ −TU + 6DxDyY + 6DxDy log(3) + 21 log(2)DxDy|D|.

The thesis follows from 6 log(3)+21 log(2) = 21, 14 . . . ≤ 24 log(3) = 26, 36 . . .

2.6.2 Existence of a subvariety with small relative height
Proposition 2.6.2. Let D, T , Y , U and C be as in Proposition 2.6.1. Define a
real number C > 0 by the condition TU = CDxDyY and suppose moreover that

8 < C, ‖D‖ ≤ 2T − 1 and 32 log(3)|D| ≤ Y.

Finally, suppose that there exists a non-zero homogeneous polynomial P ∈
Z[X,Y]D not divisible by X0, Y0 or Y1 such that DiP ∈ C for i = 0, . . . , 2T − 1.
Then, there exists a subvariety Z of Z(DiP : 0 ≤ i < 2T ) of dimension 0 with

hC(Z) ≤ −C ′′(Y deg(Z) +Dxhx(Z) +Dyhy(Z)), (2.6.3)

where C ′′ = (C − 8)/14.

Proof. Since P is a non-zero element of Z[X,Y]D ∩ C, Proposition 2.2.4 ensures
the existence of a non-zero cycle Z ′ of P1

Q × P1
Q of dimension 1 which satisfies

degx(Z ′) ≤ (=)Dy,

degy(Z ′) ≤ (=)Dx,

hxx(Z ′) ≤ 11 log(2)Dy

hyy(Z ′) ≤ 11 log(2)Dx

hxy(Z ′) ≤ log‖P‖+ 9 log(2)|D| ≤ 2Y

(2.6.4)

and also, thanks to Proposition 2.6.1 and the definition of C:

hC(Z ′) ≤ hC(P) + 8 log(2)DxDy|D|
≤ −TU + 6DxDyY + 32 log(3)DxDy|D|
≤ −(C − 7)DxDyY.

We derive from (2.6.4) the following inequalities

4DxY degx(Z ′) ≤ 4DxDyY,

4DyY degy(Z ′) ≤ 4DxDyY,

D2
xhxx(Z ′) ≤ DxDyY,

D2
yhyy(Z ′) ≤ DxDyY,

2DxDyhxy(Z ′) ≤ 4DxDyY,

and then

hC(Z ′) ≤− C ′(4DxY degx(Z ′) + 4DyY degy(Z ′)+
+D2

xhxx(Z ′) +D2
yhyy(Z ′) + 2DxDyhxy(Z ′)),
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where C ′ = (C − 7)/14. From the last estimate and the additivity of the degree
and heights on one-dimensional cycles, we deduce the existence of a component
Z1 of Z ′ with

hC(Z1) ≤ −C ′(4Y N0 +D2
xhxx(Z1) +D2

yhyy(Z1) + 2DxDyhxy(Z1)), (2.6.5)

where we put for convenience N0 := Dx degx(Z1)+Dy degy(Z1). We also observe
that all the inequalities in (2.6.4) are valid for Z1 replacing Z ′. By Lemma 2.5.5,
the polynomials P,DP, . . . ,D‖D‖P have no common irreducible factor in Q[X,Y].
Therefore, at least one of them does not belong to the ideal of Z1. Since it has
integral coefficients and since, by hypothesis, it belongs to C, Proposition 2.2.5
ensures the existence of a non-zero cycle Z ′′ of P1

Q × P1
Q of dimension 0 with

deg(Z ′′) = N0,

hx(Z ′′) ≤ Dxhxx(Z1) +Dyhxy(Z1) + 2Y degx(Z1) + 7 log(2)N0

hy(Z ′′) ≤ Dxhxy(Z1) +Dyhyy(Z1) + 2Y degy(Z1) + 7 log(2)N0

hC(Z ′′) ≤ hC(Z1) + 2 log(2)|D|N0 ≤ hC(Z1) + (1/14)4Y N0

≤ −C ′′(4Y N0 +D2
xhxx(Z1) +D2

yhyy(Z1) + 2DxDyhxy(Z1))
≤ −C ′′(Y deg(Z ′′) +Dxhx(Z ′′) +Dyhy(Z ′′)),

with C ′′ = (C − 8)/14. Thus, by linearity, at least one component Z of Z ′′
satisfies (2.6.3). Since C > 8, we have hC(Z) < 0. So, by Proposition 2.2.7, the
ideal of Z contains Z[X,Y]D ∩ C and so contains DiP for i = 0, . . . , 2T − 1.

2.6.3 A posteriori estimates for degree and heights
Lemma 2.6.3. Let D ∈ N2\{0} a nonzero bidegree(1). Let (α, β) ∈ P1(C) ×
P1(C) and take a representative of it (α, β) = (α0, α1, β0, β1) ∈ C4. Suppose
that there exists a nonzero polynomial P ∈ C[X,Y]D not divisible by X0 such
that DiP (α, β) = 0 for i = 0, . . . , Dy. Then, either we have α0 6= 0 or α is one
of the points (∞, 0) = ([0 : 1], [1 : 0]) or (∞,∞) = ([0 : 1], [0 : 1]).

Proof. Write
P =

∑
(a,b)≤D

pa,bXaYb.

If α0 = 0, we have, for i = 0, 1, . . . , Dy,

0 = DiP (α, β) =
(
Y1

∂

∂Y1

)i
P (α, β) =

Dy∑
b=0

pDx,bb
iαDx1 β

Dy−b
0 βb1,

with the usual convention that bi = δi,0 for b = 0. As the matrix
(
bi
)

0≤i≤Dy
0≤b≤Dy

is invertible, this yields pDx,bα
Dx
1 β

Dy−b
0 βb1 = 0 for b = 0, . . . , Dy. However, as

X0 - P , we also have pDx,b 6= 0 for at least one of these values of b, and thus we
conclude that α1β0β1 = 0. Since α0 implies α1 6= 0, we have β0β1 = 0, and so
α = (∞, 0) or α = (∞,∞).

(1)Indeed, the proof still works if Dx = 0 or Dy = 0.
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Lemma 2.6.4. Let D ∈ N2\{0} a nonzero bidegree. Let (α, β) ∈ P1(C)×P1(C)
and take a representative of it (α, β) = (α0, α1, β0, β1) ∈ C4. Suppose that there
exists a non-zero polynomial P ∈ C[X,Y]D not divisible by Y0 or Y1 such that
DiP (α, β) = 0 for i = 0, . . . , Dx. Then, either we have β0β1 6= 0 or α is one of
the points (∞, 0) = ([0 : 1], [1 : 0]) or (∞,∞) = ([0 : 1], [0 : 1]).

Proof. Write
P =

∑
(a,b)≤D

pa,bXaYb.

If β1 = 0, we find, for i = 0, 1, . . . , Dx,

0 = DiP (α, β) =
(
X0

∂

∂X1

)i
P (α, β) =

Dx∑
a=i

pa,0
a!

(a− i)!α
Dx−a+i
0 αa−i1 β

Dy
0 .

As Y1 - P , we also note that pa,0 6= 0 for some a with 0 ≤ a ≤ Dx. If a0 is the
largest such index then, for i = a0, this yields 0 = pa0,0a0!αDx0 β

Dy
0 . Since now

β0 6= 0, we have α0 = 0, and so α = (∞, 0).
Similarly, if β0 = 0, we find, for i = 0, 1, . . . , Dx,

0 = DiP (α, β) =
i∑

k=0

(
i

k

)
(Dy)i−k

(
X0

∂

∂X1

)k
P (α, β),

where we define D0
y := 1 if Dy = 0. We therefore see by induction on i that, for

i = 0, 1, . . . , Dx,

0 =
(
X0

∂

∂X1

)i
P (α, β) =

Dx∑
a=i

pa,Dy
a!

(a− i)!α
Dx−a+i
0 αa−i1 β

Dy
1 .

As Y0 - P , we also note that pa,Dy 6= 0 for some a with 0 ≤ a ≤ Dx. If a0 is the
largest such index then, for i = a0, this yields 0 = pa0,Dya0!αDx0 β

Dy
1 . Since now

β1 6= 0, we have α0 = 0, and so α = (∞,∞).

Corollary 2.6.5. Let D ∈ N2\{0} a nonzero bidegree. Let (α, β) ∈ P1(C) ×
P1(C) and take a representative of it (α, β) = (α0, α1, β0, β1) ∈ C4. Suppose
that there exists a non-zero polynomial P ∈ C[X,Y]D not divisible by X0, Y0 or
Y1 such that DiP (α, β) = 0 for i = 0, . . . , ‖D‖. Then, either we have α0β0β1 6= 0
or α is one of the points (∞, 0) = ([0 : 1], [1 : 0]) or (∞,∞) = ([0 : 1], [0 : 1]).

Remark 2.6.6. Conversely, if α = (∞, 0) (resp. α = (∞,∞)), then, for any
positive bi-integer D ∈ N2

+, the point α is a common zero of all the derivatives
DiP , i ∈ N, where P = XDx

0 Y
Dy
0 +XDx

1 Y
Dy
1 (resp. P = XDx

0 Y
Dy
1 +XDx

1 Y
Dy
0 )

is not divisible by X0, Y0 or Y1.

Proposition 2.6.7. LetD ∈ N2
+, T ∈ N+, let P ∈ C[X,Y]D withX0 - P, Y0 - P

and Y1 - P , and let Y ∈ R. Suppose that

T ≤ DxDy + min{Dx, Dy},

max{34 log(2)|D|, log ‖P‖, log ‖DP‖, . . . , log ‖D‖D‖P‖} ≤ Y,
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and that W = Z(DiP ; 0 ≤ i < ‖D‖+ T ) is not empty. Then any irreducible
component Z of W in P1

Q × P1
Q has dimension 0 with

deg(Z) ≤ 2DxDy

T
and 〈h(Z);D〉 ≤ 5DxDyY

T
. (2.6.6)

Proof. By Lemma 2.5.5, the polynomials P,DP, . . . ,D‖D‖P are relatively prime
as a set. Since they are all bihomogeneous of degree D, we conclude that
there exist integers a1, . . . , a‖D‖ of absolute values at most |D| such that Q =∑‖D‖
i=1 aiDiP is relatively prime to P (2). Then Z(P,Q) has dimension 0 and

since W is a closed subset of Z(P,Q), it also has dimension 0.
Let Z be an irreducible component of W . Since Z ⊆ Z(DiP ; 0 ≤ i ≤ ‖D‖),
Lemma 2.6.5 shows that either Z(C) is contained in the open set G of P1(C)×
P1(C) or it consists of one of the points (∞, 0) or (∞,∞) (the points of Z(C)
are conjugate over Q). In the latter case, we have deg(Z) = 1 and h(Z) = 0,
and the estimates in (2.6.6) follow. Thus, in order to prove these estimates, we
may assume, without loss of generality that Z(C) ⊆ G.
Let G = res(D)(Z) : C[X,Y]D → C be a resultant form for Z of index (D), and
let F : C[X, Y ]D → C denote the map given by F (R) = res(D,D,D)(P)(P,Q,R)
for each R ∈ C[X,Y]D. We claim that GT divides F .
To prove this claim, choose a system of representatives α1, . . . , αs ∈ C4 of the
points of Z(C) and complete it to a system of representatives α1, . . . , αt of those
of Z(P,Q)(C). Then, there exist a, b ∈ C× and e1, . . . , et ∈ N+ such that

F (R) = aR(α1)e1 · · ·R(αt)et and G(R) = bR(α1) · · ·R(αs) (2.6.7)

for each R ∈ C[X,Y]D. Moreover, e1 = · · · = es represents the multiplicity
of G as a factor of F over Q. So, our claim reduces to showing that e1 ≥ T .
Denote by α the point of Z(C) corresponding to α1. According to Proposition
2.3.11, there exists a polynomial R in I(α,T )

D such that R(αi) 6= 0 for i = 2, . . . , t.
Since P and Q also belong to I(α,T )

D , Corollary 2.5.8 shows that res(D,D,D)(Z)
vanishes to order at least T at the point (P,Q,R). Therefore, for any fixed
S ∈ C[X, Y ]D, the polynomial F (R+ zS) ∈ C[z] is divisible by zT . Choosing S
so that S(α1) 6= 0, formula (2.6.7) for F provides

F (R+ zS) = aS(α1)e1R(α2)e2 · · ·R(αt)etze1 +O(ze1+1),

and then e1 ≥ T . Therefore, GT divides F , and we obtain

T deg(Z) = T deg(G) ≤ deg(F ) = 2DxDy, (2.6.8)

which proves the first half of (2.6.6). In terms of the convex body B = B(D,D,D)

of Definition 1.3.9, we also find, thanks to 1.4.5,

ThB(Z) = ThB(G) ≤ hB(F ) + 4 log dim(D)DxDy ≤ hB(F ) + 4 log(2)DxDy|D|.

To translate this inequality in terms of the standard height h(Z), we first observe
that Lemma 1.4.9 and the degree estimate (2.6.8) lead to

T 〈h(Z);D〉 ≤ ThB(Z) + 3T log(2)|D|deg(Z) ≤ ThB(Z) + 6 log(2)DxDy|D|.
(2)Proof by induction, based on the fact that P has at most |D| irreducible factors.
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Moreover, since F is obtained by specializing the first two arguments of a
resultant form of P into P and Q with ‖P‖ ≤ eY and ‖Q‖ ≤ |D|2eY ≤ e|D|+Y ,
and since that resultant form is homogeneous of degree 2DxDy in each of its
three arguments, we also find, using 2 < 3 log(2):

hB(F ) ≤ 2DxDy(Y + |D|+ Y ) + hB(P) ≤ 4DxDyY + 24 log(2)DxDy|D|,

using the upper bound for hB(P) provided by Lemma 2.2.3. Combining the last
three estimates, we conclude that

T 〈h(Z);D〉 ≤ 4DxDyY + 34 log(2)DxDy|D| ≤ 5DxDyY,

which proves the second half of (2.6.6).

2.7 Proof of the main Theorem
We are now going to prove Theorem 2.1.1. We divide the proof into several steps
and we use the results obtained in the previous sections of this chapter.
We shall put ourself in a multiprojective setting. To this extent, we think
of G = C × C× as embedded into P1(C) × P1(C) and we use the notation of
Section 2.4. We shall argue by contradiction, assuming on the contrary that
ϑγ = ([1 : ξ], [1 : η]) is not a point of P1(Q)× P1(Q). From there we proceed in
several steps.

Step 1. We define relevant convex bodies CN and we define bihomogeneous
polynomials P̃N that belong to CN together with their first 2bNτc derivatives.

For each positive integer N ∈ N+, we put

D := (bN t0c, bN t1c), T := bNτc, Y := 2Nβ , U := Nν/2,

and we define a convex body CN of C[X,Y]D by

CN =
{
P ∈ C[X,Y]D : ‖P‖ ≤ exp(Y ), max

0≤i<T
|DiP (ϑγ)| ≤ exp(−U)

}
.

Given a polynomial P =
∑

(a,b)≤D pa,bx
ayb ∈ C[x, y]≤D we define its bihomog-

enization in bidegree D to be HDP :=
∑

(a,b)≤D pa,bXaYb ∈ C[X,Y]D . We
then denote by P̃N the bihomogeneous polynomial of Z[X,Y]D defined by

P̃N = X−h0
0 Xh0

1 Y −k0
0 Y −k1

1 (Y0 + Y1)k0+k1HDPN ,

where h0, k0, k1 stand for the largest integers such that Xh0
0 , Y k0

0 , Y k1
1 divide

HDPN . Then, by construction, P̃N is not divisible by X0, Y0 or Y1. We claim
that, for any sufficiently large N , the polynomials DjP̃N with 0 ≤ j < 2bNτc all
belong to CN .

To prove this, fix a choice of integer j with 0 ≤ j < 2bNτc, and put Q = DjP̃N .
Using Lemma 2.3.6, and the fact that τ < β and t1 < β we find

‖Q‖ ≤ |D|jL(P̃N ) ≤ |D|2N
τ

22Dy dim(D)‖PN‖ = exp((1 + o(1))Nβ).
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Moreover, for any i = 0, . . . , bNτc − 1, Leibniz’ rule of differentiation for a
product leads to the following estimate, where we also use that multiplication
by X0 or Y0 commutes with D, that DHD = HDD1, that X0, Y0 are evaluated
to 1, and that 1, t, τ < ν:

|DiQ(ϑγ)| =
= |Di+j1 (xh0y−k1(1 + y)k0+k1PN (x, y))|x=ξ, y=η

≤
∑

r+s+t+u=i+j

(i+ j)!
r! s! t!u! |D

r
1x
h0 |x=ξ |Ds1y−k1 |y=η |Dt1(1 + y)k0+k1 |y=η |Du1PN |x=ξ

y=η

≤
∑

r+s+t+u=i+j

(i+ j)!
r! s! t!u! h

r
0 max{1, |ξ|}h0 · ks1 |η|−k1 · 2k0+k1(k0 + k1)t·

·max{1, |η|}k0+k1 · max
0≤k<3bNτc

|Dk1PN (ξ, η)| · 1u

≤ max{2, |ξ|, |η|−1, |2η|}h0+k0+k1(h0 + k1 + k0 + k1 + 1)3bNτc exp(−Nν)
= exp(−(1− o(1))Nν).

Step 2. ForN sufficiently large, we construct a 0-dimensional subvariety Z = ZN
of P1

Q × P1
Q contained in Z(DiP̃N : 0 ≤ i < 2T ) such that

hCN (Z) ≤ −N
δ

57 (2Nβ deg(Z) + 〈h(Z);D〉).

We fix N ∈ N+ and observe that the convex set C defined in Proposition 2.6.1
coincide with CN . We now check that if N is sufficiently large the hypothesis of
2.6.2 are all fulfilled. This will imply the existence of ZN . Recall that we defined
δ = ν + τ − 1− t− β, and fix an arbitrarily large integer N .

• T ≤ DxDy + min{Dx, Dy} because τ < 1 + t,

• 2T log(c6) ≤ Y because τ < β,

• 8 < C because C � Nδ and δ = ν + τ − 1− t− β > 0,

• ‖D‖ ≤ 2T − 1 because τ ≥ 1.

• 32 log(3)|D| ≤ Y because β > τ ≥ 1.

Moreover, we have C ′′ = (C − 8)/14 ≥ Nδ/57 because C ≈ Nδ/4.

Step 3. We let Z be a set of normalized representatives of the points of Z(C)
by elements of C4 and we define U to be the set of points (α, β) of Z(C) with
bidist((α, β),ϑγ) ≤ (2c2)−1. We show that the quantity∑

(α,β)∈U

max{T log dist(α, (1 : ξ)), log dist((α, β), Aγ)}

is bounded above by −N
δ

57 (2Nβ deg(Z) + 〈h(Z);D〉).

Here the starting point is Proposition 2.2.7, from which we get, since |D| ≤ 2N :∑
(α,β)∈Z

log sup{|P (α, β)| ; P ∈ CN} ≤ hCN (Z)− 〈h(Z);D〉+ 12 log(2)N deg(Z).
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For each (α, β) ∈ Z(C) with corresponding point (α, β) ∈ Z, we also have,
according to the definitions,

sup{|P (α, β)| ; P ∈ CN} ≥ sup{|P (α, β)| ; P ∈ I(γ,T )
D , ‖P‖ ≤ 1 } = (3)|I(γ,T )

D |(α,β).

For each (α, β) ∈ Z(C) \ U , Proposition 2.4.5 and Proposition 2.4.6 give

|I(γ,T )
D |(α,β) ≥ (c5T )−28T log(2T ) max{dist(α, (1 : ξ))T ,dist(β, (1 : η))T }

≥ (2‖c2‖c5T )−28T log(2T )

≥ T−30T log(T ),

assuming N large enough so that (2‖c2‖c5)28T log(2T )T 28 log(2) ≤ T 2T log(T ). For
the more interesting points (α, β) ∈ U , Proposition 2.4.5 gives

|I(γ,T )
D |(α,β) ≥ c−1

4 (c5T )−28T log(2T ) max{dist(α, (1 : ξ))T ,dist((α, β), Aγ)}
≥ T−30T log(T ) max{dist(α, (1 : ξ))T ,dist((α, β), Aγ)},

provided that N is large enough. Putting all these estimates together, taking
into account that Z(C) consists of deg(Z) points, we conclude that∑

(α,β)∈U

max{T log dist(α, (1 : ξ)), log dist((α, β), Aγ)}

≤
∑

(α,β)∈U

(
log |I(γ,T )

D |(α,β) + 30T log(T )2
)

≤
∑

(α,β)∈Z(C)

(
log |I(γ,T )

D |(α,β) + 30T log(T )2
)

≤ hCN (Z)− 〈h(Z);D〉+ 12 log(2)N deg(Z) + 30T log(T )2 deg(Z)

≤ −N
δ

57 (Nβ deg(Z) + 〈h(Z);D〉)

if N is large enough, because β > τ ≥ 1 and hx(Z), hy(Z) ≥ 0.
In particular, the set U is not empty and contains at least one point (α, β) for
which log dist(α, (1 : ξ)) ≤ −N

δ+β

57T and log dist((α, β), Aγ) ≤ −N
δ+β

57 ≤ −N
δ+β

57T .
Moreover, if α = (α0 : α1), β = (β0 : β1), δ1 = α1

α0
− ξ, and if we have the

normalization ‖(α0, α1)‖ = ‖(β0, β1)‖ = 1, we have

dist(β, (1 : η)) = c−1
2,y |β1 − ηβ0|

≤ |β1 − ηβ0 e
δ1 |+ c−1

2,y |η||β0||eδ1 − 1|

≤ |β0|dist((α, β), Aγ) + e|δ1||δ1|
≤ dist((α, β), Aγ) + c2,xe

c2,x |α0|−1 dist(α, (1 : ξ)),

≤ 2c2,xec2,x exp
(
− Nδ+β

57T
)

In the first inequality we used c2,y ≥ 1, in the second we used c2,y ≥ |η| and the
general inequality ex − 1 ≥ xex, valid for x ≥ 0, and in the third inequality we

(3)True also with a constant eY , which changes nothing.
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used e|δ1| ≤ ec2,x (see the proof of Proposition 2.4.2). Thus, as N goes to infinity,
the point (α0, β0) runs through an infinite sequence of points of P1(Q)× P1(Q)
converging to ϑγ but distinct from ϑγ , because ϑγ /∈ P1(Q)× P1(Q).

Step 4. We derive upper bounds for deg(Z), hx(Z) and hy(Z) in terms of the
smallest positive integer N∗ for which

Z ⊆ Z
(
DiP̃N∗+1 : 0 ≤ i < 2b(N∗ + 1)τc

)
.

If N ≥ 2, such an integer exists and is at most equal to N − 1. Moreover, N∗
goes to infinity with N because, as P̃N∗+1 is not divisible by X0, Y0 or Y1, it
follows from Lemma 2.5.5 that Z(DiP̃N∗+1 : 0 ≤ i ≤ N∗ + 1)(C) is a finite
subset of P1(Q)× P1(Q) and so, for fixed N∗ ≥ 1, this set does not contain the
point (α0, β0) of Z(C) when N is large enough. Thus, assuming N large enough,
it follows from Step 1 that DiP̃N∗+1 belongs to CN∗+1 for i = 0, . . . , N∗ + 1 and

max{34 log(2)(N∗ + 1), log ‖P̃N∗+1‖, . . . , log ‖DN∗+1P̃N∗+1‖} ≤ 2(N∗ + 1)β .

For N large enough, putting D+ := (b(N∗ + 1)t0c, b(N∗ + 1)t1c), we also have
b(N∗ + 1)τc ≤ D+,xD+,y, because τ < 1 + t. By Proposition 2.6.7, we conclude
that

deg(Z) ≤ 2(N∗ + 1)1+t

b(N∗ + 1)τc ≤ 3N1+t−τ
∗

and
〈h(Z);D+〉 ≤

5(N∗ + 1)1+t+β

b(N∗ + 1)τc ≤ 6N1+t+β−τ
∗ .

Thus expanding 〈h(Z);D+〉 we get

hx(Z) ≤ 6N t1+β−τ
∗ and hy(Z) ≤ 6N t0+β−τ

∗ .

Step 5. Put T ∗ := bNτ
∗ c and D∗ := (bN t0

∗ c, bN t1
∗ c) = DN∗ . We show that for

every subset S of U , the quantity∑
(α,β)∈S

max
{
T ∗ log dist(α, (1 : ξ)), log dist((α, β), Aγ)

}
is bounded below by −8Nβ

∗ deg(Z)− 〈h(Z);D∗〉.

For N large enough, we have N∗ ≥ 2 and so, by the very choice of N∗, there exists
an integer i0 with 0 ≤ i0 < 2bNτ

∗ c such that Z is not contained in the curve of
P1 × P1 defined by the polynomial P ∗ := Di0 P̃N∗ . For N large enough, we also
have P ∗ ∈ CN∗ ∩ Z[X,Y]. Then, Proposition 2.2.7, together with |D∗| ≤ 2N∗,
gives

0 ≤ 6 log(2)N∗ deg(Z) + 〈h(Z);D∗〉+
∑

(α,β)∈Z

log |P ∗(α, β)|.

Moreover, the fact that P ∗ ∈ CN∗ leads to the crude estimate

max
(α,β)∈Z

log |P ∗(α, β)| ≤ log(2)|D∗|+ log ‖P ∗‖ ≤ (2 log(2) + 2)Nβ
∗ .
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Combining the last two results and using −6 log(2) + 2 log(2) + 2 ≥ −2, we
deduce that, for N large enough:∑

(α,β)∈Z

min{0, log |P ∗(α, β)|} ≥ −2Nβ
∗ deg(Z)− 〈h(Z);D∗〉. (2.7.1)

For a point (α, β) ∈ U with representative (α, β) ∈ Z, Proposition 2.4.2 provides
the more precise estimate

|P ∗(α, β)| ≤

≤ c4 max
0≤i<T∗

|DiP ∗(ϑγ)|+ c2N∗4 ‖P ∗‖
(

dist(α, (1 : ξ))T
∗

+ dist((α, β), Aγ)
)

≤ c4e−N
ν
∗ /2 + c2N∗4 e2Nβ∗

(
dist(α, (1 : ξ))T

∗
+ dist((α, β), Aγ)

)
.

However, if N∗ is large enough, the inequality (2.7.1) combined with the estimates
for deg(Z) and hx(Z), hy(Z) obtained in Step 4 leads to

log |P ∗(α, β)| ≥ −2Nβ
∗ deg(Z)− 〈h(Z);D∗〉 ≥ −(6 + 12)N1+t+β−τ

∗ ,

thus |P ∗(α, β)| ≥ 2c4e−N
ν
∗ /2, and so

log |P ∗(α, β)| ≤ 3Nβ
∗ + max

{
T ∗ log dist(α, (1 : ξ)), log dist((α, β), Aγ)

}
.

Note that this holds for any (α, β) ∈ U with a lower bound on N∗ not depending
on (α, β). Therefore, if N is large enough, we conclude using (2.7.1) that, for
any subset S of U , we have∑

(α,β)∈S

max
{
T ∗ log dist(α, (1 : ξ)), log dist((α, β), Aγ)

}
≥

≥− 5Nβ
∗ deg(Z)− 〈h(Z);D∗〉.

Step 6. We derive a contradiction by combining the results of Step 3 and Step
5 with the estimates found in Step 4. We then prove that (ξ, η) ∈ Q×Q×.

We partition U into the following two disjoint subsets U ′ and U ′′

U ′ := {(α, β) ∈ U ; T ∗ log dist(α, (1 : ξ)) ≥ log dist((α, β), Aγ)} , U ′′ := U\U ′.

We also put

S1 :=
∑

(α,β)∈U ′
log dist(α, (1 : ξ)) , S2 :=

∑
(α,β)∈U ′′

log dist((α, β), Aγ).

According to Step 3, we have

TS1 + S2 ≤ −
Nδ

57 (Nβ deg(Z) + 〈h(Z);D〉),

whereas the result of Step 5 applied to the sets S = U ′ and S = U ′′ gives
respectively

T ∗S1 ≥ −5Nβ
∗ deg(Z)− 〈h(Z);D∗〉,

S2 ≥ −5Nβ
∗ deg(Z)− 〈h(Z);D∗〉.
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Combining these three inequalities, we obtain

−N
δ

57 (Nβ deg(Z) + 〈h(Z);D〉) ≥ −
( T
T ∗

+ 1
)(

5Nβ
∗ deg(Z) + 〈h(Z);D∗〉

)
and so expanding we get that the quantity

Nδ+β deg(Z) +Nδ+t0hx(Z) +Nδ+t1hy(Z)

is asymptotically dominated by

NτN t0−τ
∗ hx(Z) +NτN t1−τ

∗ hy(Z)

(we may omit the term NτNβ−τ
∗ deg(Z) in the right hand side as it is negligible

with respect to Nδ+β deg(Z)). Suppose that

NτN t0−τ
∗ hx(Z) ≥ NτN t1−τ

∗ hy(Z). (2.7.2)

This implies that

Nδ+β−τ deg(Z)� N t0−τ
∗ hx(Z) and Nτ−t0

∗ � Nτ−δ−t0 . (2.7.3)

Since deg(Z) ≥ 1 and hx(Z)� N t1+β−τ
∗ (see Step 4), from the first estimate in

(2.7.3) we get
Nδ+β−τ � Nβ+1+t−2τ

∗ .

As τ ≥ 1, combining this with the second estimate from (2.7.3) yields

(τ − t0)(δ + β − τ) ≤ (τ − δ − t0)(β + 1 + t− 2τ)

which after simplifications is equivalent to δ ≤ (τ − t0)(1 + t− τ)/(β + t1 − τ).
In case we have the opposite inequality in (2.7.2) we obtain with the same
arguments δ ≤ (τ − t1)(1 + t− τ)/(β + t0 − τ). We see that the inequality

τ − t0
β + t1 − τ

≥ τ − t1
β + t0 − τ

is equivalent to (τ − t0)(β + t0 − τ) ≥ (τ − t1)(β + t1 − τ), which in turn is
equivalent to (t1 − t0)((β − τ) + (t0 + t1 − τ)) ≥ 0 and so to t1 ≥ t0. This means
that in any case we have proven

δ ≤ max
{

τ − t0
β + t1 − τ

,
τ − t1

β + t0 − τ

}
= (τ − t)(1 + t− τ)

β + 1− τ

This contradicts the hypothesis on δ in the statement of Theorem 2.1.1, and
therefore proves that ξ, η ∈ Q.

Step 7. We use Liouville’s inequality to prove that for sufficiently large N the
polynomials Dk1PN vanish at (ξ, η) for all k = 0, . . . , dbNτc.

The argument is similar to the one presented in the proof of Corollary 2.1.6, so
we only give a sketch of the calculations. Let K = Q(ξ, η), let d = [K : Q] and
let H be an upper bound for the Weil absolute height of ξ and η (see Definition
1.3.11). If Dk1PN does not vanish at (ξ, η), Proposition 2.1.4 gives∣∣Dk1PN (ξ, ν)

∣∣ ≥ exp(−2(d− 1)Nβ − dH(N t0 +N t1)),

for sufficiently big N. Since t0, t1 < β < ν, this is contradicts (2.1.1) for sufficiently
big N .
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2.8 Further research
It should be mentioned that the main results of this thesis, Theorem 2.1.1
and Corollary 2.1.6, should be considered only as first steps towards the full
comprehension and a proof of Conjecture 2.1.3. Our work treats the case of a
single point taken with high multiplicity, although Corollary 2.1.6 shows that
we can deduce a result valid for a finitely generated subgroup of G = C× C×.
A dual problem was considered by V.Nguyen in [VR14], where she considers
polynomials taking small values at translates of a point γ ∈ G by multiples of a
rational point (r, s) ∈ Q×Q×. Using the theory developed in the first chapter
of this thesis and adapting the techniques used in the second chapter, we are
able to translate into a multihomogeneous setting also the arguments of [VR14]
and to prove the following result.

Theorem 2.8.1. Let γ = (ξ, η) ∈ C× C× and (r, s) ∈ Q×Q× with r 6= 0 and
s 6= ±1. Let β, σ, ν, t0, t1, t be positive real numbers satisfying

max{t0, t1} = 1, min{t0, t1} = t, 1 < σ < 1 + t,

σ + 1 < β, ν >

{
1 + t+ β − σ if σ ≥ 1 + t

2
1 + t+ β − σ + δ if σ < 1 + t

2

where δ = (σ−t)(2+t−2σ)/(β+2−2τ). Suppose that, for each sufficiently large
positive integer N , there exists a nonzero polynomial PN ∈ Z[x, y] with partial
degrees degx(PN ) ≤ bN t0c, degy(PN ) ≤ bN t1c and norm ‖P‖ ≤ exp(Nβ), such
that

max
0≤i<4bNσc

|PN (ξ + ir, ηsi)| ≤ exp(−Nν), (2.8.1)

Then, we have ξ, η ∈ Q and moreover for each sufficiently large integer N we
have PN (ξ + ir, ηsi) = 0 for every 0 ≤ i < 4bNσc.

The striking point of this statement is that in the range 1 + t
2 ≤ σ < 1 + t the

estimate for ν proves to be best-possible. This can be showed with an easy
application of Dirichlet’s Box Principle.
Therefore, the first achievement one could hope to get is a result that deals
with both multiplicities and translations. This should be done with appropriate
generalizations of our lemmas. For example, it is possible to prove an interpolation
result that bounds the length of a polynomial for which we know the values
of sufficiently many invariant derivatives of it, at sufficiently many points of a
finitely generated subgroup of G.
However, if one compares the estimates one gets from these methods to the
conjectural ones from Conjecture 2.1.3, one can see that the main obstruction is
represented by the fact that, for each N , the number of conditions imposed on
PN need to be less than the dimension of the space of bihomogeneous polynomials
of bi-degree D. This limitation is required by the interpolation result of Section
§ 2.3.2 and for an efficient application of the multiplicity estimate of Section §
2.5. Thus, the understanding of the phenomena that come out when the number
of conditions slightly exceeds the dimension of the space of polynomials should
be one of the future direction of research.
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Moreover, one of the main differences between our theorem 2.1.1 and conjecture
2.1.3 is that the second is a question about high-transcendence degree, while the
first is not.
To overcome this problem one My try to work within higher-dimensional linear
algebraic groups and with higher-dimensional subvarieties, and to induct on the
dimension. An example of this technique can be found in the proof of the Main
Theorem of [Phi86a].
Another approach that looks tantalizing is to extend the results of sections 1.3
and 1.4 of this thesis to the case when K is not a number field, but a generic
M -field with a product formula. An M -field is a field that comes together with
a set of nontrivial places, parametrized by a measure space, so that a notion
of height can be defined by integrating the local contributions. We refer to
[Gub94][Gub98] for more on this topic. The main fact we need here is that, by
a result of Moriwaki [Mor00], any field finitely generated over Q can be given
a canonical structure of M -field with a product formula. One could hope that
such a generalization would permit to work within P1

K × P1
K and to prove the

desired statements by induction on the transcendence degree of K.
As for the lower bound for the multiplicity of resultant forms, it should be
remarked that an adaptation of the arguments of section § 2.5 may show that
Theorem 2.5.2 can be extended, with minor modifications, to arbitrary resultant
forms of subvarieties of Pn. This should be one of the themes of a forthcoming
article on the results of this thesis.
Finally, it is worth saying that there is a very active area of research that studies
different concepts of heights in the field of Arithmetic Geometry. For this reason,
it seems compelling to deepen the study of the heights introduced in the first
chapter, and to compare them with analogous concepts coming, for example,
from Arakelov Theory [Rém01b] or from the study of toric varieties [GPS14].
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