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Introduction

The aim of this thesis is to present the K(π, 1) conjecture for Artin groups, an
open conjecture which goes back to the 70s, and to use the technique of discrete
Morse theory to prove some related results.

The beginning of the study of Artin groups dates back to the introduction
of braid groups in the 20s. Artin groups where defined in general by Tits
and Brieskorn in the 60s, in relation to the theory of Coxeter groups and
singularity theory. Deep connections with the main areas of mathematics
where discovered: in addition to the theory of Coxeter groups and singularity
theory, Artin groups naturally arise in the study of root systems, hyperplane
arrangements, configuration spaces, combinatorics, geometric group theory, knot
theory, mapping class groups and moduli spaces of curves.

The study of Artin groups deeply relies on the study of Coxeter groups, i.e.
groups with a presentation of the form

W =
〈
s1, . . . , sn | s2

i = 1, (sisj)
mij = 1

〉
.

Despite their purely algebraic definition, Coxeter groups admit an interesting
geometric interpretation: each of them can be embedded as a subgroup of GLn(R)
generated by n reflections with respect to hyperplanes of Rn. Artin groups on
the other way are defined through a representation of a very similar form:

A =
〈
s1, . . . , sn | sisjsi . . .︸ ︷︷ ︸

mij

= sjsisj . . .︸ ︷︷ ︸
mij

〉
.

As one can see, the presentation of a Coxeter group W can be obtained from the
presentation of the corresponding Artin group A by adding the relation s2

i = 1
for each generator si. Differently from Coxeter groups, that are sometimes finite,
Artin groups are always infinite.

There are many properties conjectured to be true for all Artin groups but
proved only for some families of them, e.g. being torsion-free, having a trivial
center, and having solvable word problem. Some of these problems, and also
others (such as the computation of homology and cohomology), are related
to an important conjecture called “K(π, 1) conjecture”. Such conjecture says
that a certain topological space N̄ , constructed from a Coxeter group using the
representation we mentioned above, is a classifying space for the corresponding
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8 Introduction

Artin group. The space N̄ admits finite CW models, therefore the K(π, 1)
conjecture directly implies that Artin groups are torsion-free.

A tool which is very important in our work is discrete Morse theory, introduced
by Forman in the 90s. Discrete Morse theory allows to prove the homotopy
equivalence of CW-complexes through elementary collapses of cells, on the basis
of some combinatorial rules which can be naturally expressed with the language
of graph theory. The idea of using discrete Morse theory to prove results about
the K(π, 1) conjecture is present in the literature only in very recent works.

This thesis is structured as follows. In the first chapter we present some of
the most important known results about Coxeter groups, especially concerning
their geometric and combinatorial properties. In the second chapter we do the
same for Artin groups. In particular we introduce the Artin monoids, which
are significantly important in the study of Artin groups. The third chapter is
devoted to an introduction to the terminology and the main results of discrete
Morse theory, in a version developed by Chari and Batzies after the original work
of Forman. In the fourth chapter we introduce the K(π, 1) conjecture together
with some of its consequences. We define a particular CW model for the space
N̄ , called Salvetti complex, and we describe its combinatorial structure. Then
we give a new proof of the K(π, 1) conjecture for Artin groups of finite type
(i.e. those for which the corresponding Coxeter group is finite), using discrete
Morse theory. Finally, in the fifth chapter we describe some connections between
the K(π, 1) conjecture and classifying space of Artin monoids. A relevant result
in this direction is a theorem by Dobrinskaya published in 2006, which states
that the classifying space of an Artin monoid is homotopy equivalent to the
corresponding space N̄ mentioned above. We prove that applying discrete Morse
theory one can collapse the standard CW model for the classifying space of
an Artin monoid and obtain the Salvetti complex. In particular, this gives an
alternative prove of Dobrinskaya’s theorem.



Chapter 1

Coxeter groups

In this chapter we will introduce Coxeter groups and we will present some of
their algebraic, combinatorial and geometric properties. The main references are
[Bou68, Dav08, Hum92].

1.1 Coxeter systems

Let S be a finite set, and let M = (ms,t)s,t∈S be a square matrix indexed by S
and satisfying the following properties:

� ms,t ∈ {2, 3, . . . } ∪ {∞} for all s 6= t, and ms,t = 1 for s = t;

� ms,t = mt,s i.e. M is symmetric.

Such a matrix is called a Coxeter matrix. From a Coxeter matrix M we can
construct a non-oriented simple edge-labelled graph Γ, called Coxeter graph of
M , as follows:

� we take S as the set of vertices;

� an edge connects vertices s and t if and only if ms,t ≥ 3, and such edge is
labelled by ms,t.

For the sake of conciseness, when ms,t = 3 the label on the corresponding edge
is traditionally omitted. Thus an edge connecting vertices s and t is labelled
only if ms,t ≥ 4. Sometimes we also say that (Γ, S) is a Coxeter graph, if we
want to underline that S is the set of vertices of Γ.

Definition 1.1. Let (Γ, S) be a Coxeter graph. The Coxeter system of (Γ, S)
is the pair (WΓ, S), where WΓ is the group defined by

WΓ = 〈S | (st)ms,t = 1 ∀ s, t ∈ S such that ms,t 6=∞〉.

A group WΓ as above is called Coxeter group.

9



10 Coxeter groups

1 2 3 n

Figure 1.1: Coxeter graph of type An.

1 2
m

Figure 1.2: Coxeter graph of type I2(m).

The notion of Coxeter group includes many families of important groups.
For instance setting ms,t = 2 for all s 6= t one obtains the direct product of |S|
copies of Z2. In a similar way, setting ms,t = ∞ for all s 6= t one obtains the
free product of |S| copies of Z2.

A less trivial example is given by the family of Coxeter graphs shown in
Figure 1.1. Such graphs (and the corresponding Coxeter groups) are said to be
of type An, where n is the size of S. If we call s1, . . . , sn the elements of S, the
relations in the Coxeter group of type An are given by:

� s2
i = 1 for all i;

� (sisi+1)3 = 1 for i = 1, . . . , n− 1;

� (sisj)
2 = 1 for all i, j such that |i− j| ≥ 2.

Such group turns out to be isomorphic to Sn+1, the symmetric group on n+ 1
elements. Indeed, the generator si corresponds to the transposition (i i+ 1) in
Sn+1.

As another example, if S consists only of two elements s, t with m = ms,t 6=∞,
the obtained Coxeter group is the dihedral group Dm on 2m elements (the group
of symmetries of a regular m-agon). Indeed, s and t can be regarded as linear
reflections in R2 with respect to lines forming an angle of π/m with each other,
and st is then a rotation of 2π/m. The corresponding Coxeter graph is said to
be of type I2(m), and is displayed in Figure 1.2.

The following lemma shows that from a Coxeter system (WΓ, S) one can
recover all the information encoded in its Coxeter graph Γ. The proof will be a
direct consequence of Proposition 1.10.

Lemma 1.2 ([Bou68]). Let (WΓ, S) be a Coxeter system. Then, for any s, t ∈ S,
the order of the element st in WΓ is precisely ms,t. In particular every s ∈ S
has order 2, and st has infinite order whenever ms,t =∞.

In view of Lemma 1.2 we will often write W instead of WΓ to indicate a
Coxeter group.

Definition 1.3. Let (W,S) be a Coxeter system. For any T ⊆ S let WT be the
subgroup of W generated by the elements of T . A subgroup constructed in this
way is called a standard parabolic subgroup of W .
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The standard parabolic subgroups of a Coxeter group W are Coxeter groups
themselves, as we are going to state in the following lemma. The proof will be
given in Section 1.3.

Lemma 1.4 ([Hum92], Theorem 5.5). Let (W,S) be the Coxeter system corre-
sponding to the Coxeter graph (Γ, S), and let T be a subset of S. Then the pair
(WT , T ) is also a Coxeter system, with associated Coxeter graph Γ|T .

Definition 1.5. A Coxeter system (W,S) is irreducible if the corresponding
Coxeter graph Γ is connected.

Two generators s, t ∈ S commute if they belong to different connected
components of the Coxeter graph Γ. Thus a Coxeter group W is isomorphic to
the direct product of the parabolic subgroups WT1

, . . . ,WTk corresponding to
the connected components Γ|T1 , . . . ,Γ|Tk of Γ. For this reason the study of a
Coxeter group can be essentially reduced to the study of its maximal irreducible
parabolic subgroups.

We finally introduce the length function of a Coxeter system (W,S), which
is a very important concept in the study of Coxeter groups.

Definition 1.6. Fix a Coxeter system (W,S), and let w ∈ W . An expression
for w is an element s1 · · · sk of the free monoid on S, such that the equality
w = s1 · · · sk holds in W . An expression for w is said to be reduced if it has
minimal length among all the expressions for w.

Remark 1.7. The map W → Z2 which sends an element w ∈W to the parity
of the length of any (not necessarily reduced) expression for w is a well defined
group homomorphism. This is true since the relations that define a Coxeter
group always have even length.

Definition 1.8. Let (W,S) be a Coxeter system. The length function ` : W → N
is defined as follows: for any w ∈W , `(w) is length of any reduced expression
for w.

Many interesting properties of the length function will be investigated later
in this chapter. However, we point out some of the simplest ones:

� `(1) = 0, and `(w) = 1 if and only if w ∈ S;

� `(w−1) = `(w) for all w ∈ W , since if w = s1 · · · sk then w−1 = sk · · · s1

and vice versa;

� `(w)− `(w′) ≤ `(ww′) ≤ `(w) + `(w′) for all w,w′ ∈W ;

� `(ws) = `(w) ± 1 for all w ∈ W and s ∈ S, since `(ws) and `(w) have
different parity (by Remark 1.7) and differ at most by 1;

� if w 6= 1 then there exists some s ∈ S such that `(ws) = `(w)− 1 (choose
s as the last generator of any reduced expression for w).
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If we have a standard parabolic subgroup WT of W , then we also have a
length function `T : WT → N which sends each element w of WT to the minimum
length of an expression of w as product of generators in T . The following lemma
will be also proved in Section 1.3. For now we simply notice that `(w) ≤ `T (w)
for all w ∈WT .

Lemma 1.9 ([Hum92], Theorem 5.5). Let (W,S) be a Coxeter system. Then
for all T ⊆ S the length function `T coincides with the restriction `|WT

.

1.2 Geometric representation

Coxeter groups have a strong geometric meaning. As we are going to see,
they admit a faithful representation as groups generated by (non necessarily
orthogonal) reflections in some real vector space V . As a reflection we mean
a linear endomorphism of V that pointwise fixes a hyperplane and sends some
nonzero vector to its negative.

We have already seen in Section 1.1 that dihedral groups, i.e. Coxeter groups
of type I2(m), can be represented as subgroups of GL(2,R) generated by two
reflections. In the case of the symmetric group Sn+1 it is also easy to construct
a faithful representation: if s1, . . . , sn are the transpositions defined in Section
1.1, one can regard si as the orthogonal reflection with respect to the hyperplane
{xi = xi+1} in Rn+1. In this way one obtains the standard action of Sn+1 on
Rn+1 by permutation of the coordinates. If we restrict such representation to
the hyperplane {x1 + · · ·+ xn+1 = 0} of Rn+1 we get a faithful representation
of Sn+1 of dimension n.

Let’s move to the general case. Given a Coxeter system (W,S), consider
a real vector space V of dimension |S| having as a basis the set {es | s ∈ S}.
Define on V a symmetric bilinear form B as follows:

B(es, et) = − cos π
ms,t

,

where π
ms,t

is 0 whenever ms,t =∞. Notice that B(es, es) = 1 for all s ∈ S, and

that in particular all the vectors es are non-isotropic. For each s ∈ S, define a
linear transformation ρs : V → V in the following way:

ρs(v) = v − 2B(es, v) es.

The endomorphism ρs is a reflection since it sends es to −es and pointwise fixes
the hyperplane orthogonal to es with respect to B. In particular, ρs has order 2.
Notice also that ρs preserves B for all s ∈ S: for all v, w ∈ V we have

B
(
ρs(v), ρs(w)

)
= B

(
v − 2B(es, v) es, w − 2B(es, w) es

)
= B(v, w)− 2B(es, v)B(es, w)− 2B(es, w)B(es, v)

+ 4B(es, v)B(es, w)B(es, es)

= B(v, w).
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Proposition 1.10 (cf. [Hum92], Proposition 5.3). The order of ρsρt in GL(V )
is ms,t for all s, t ∈ S.

Proof. As we already noticed, ρs is a reflection for all s and therefore has order
2. So the proposition holds for s = t.

For s 6= t set m = ms,t and consider the linear subspace Vs,t of V generated
by es and et. Both the reflections ρs and ρt fix Vs,t, and so does the composition
ρsρt. Call ρ̄s and ρ̄t the restrictions to Vs,t of ρs and ρt, respectively. If m =∞
the matrix associated to ρ̄sρ̄t with respect to the basis {es, et} of Vs,t is(

−1 2
0 1

)(
1 0
2 −1

)
=

(
3 −2
2 −1

)
,

which has characteristic polynomial and minimal polynomial both equal to (t−1)2.
Therefore in this case ρ̄sρ̄t is not diagonalizable over C, and in particular has
infinite order. Then the same conclusion holds for ρsρt.

Assume from now on that m 6=∞. The restriction of B to Vs,t is represented
in coordinates with respect to the basis {es, et} by the following matrix:

M =

(
1 − cos π

m
− cos π

m 1

)
.

Such matrix is positive definite by Sylvester’s criterion since detM > 0 for
m 6= ∞. Then there exists a linear isomorphism ψ : Vs,t → R2 that sends B
to the standard scalar product of R2. The reflections ρ′s = ψ ◦ ρ̄s ◦ ψ−1 and
ρ′t = ψ ◦ ρ̄t ◦ ψ−1 are reflections in R2 that preserve the standard scalar product,
i.e. orthogonal reflections. The vectors es and et are sent to e′s = ψ(es) and
e′t = ψ(et) such that

〈e′s, e′t〉 = B(es, et) = − cos π
m .

Then the lines spanned by e′s and e′t form an angle of π
m with each other. Since

ρ′s and ρ′t are precisely the orthogonal reflections with respect to e′s and e′t, the
composition ρ′sρ

′
t is a rotation of 2π

m . So ρ′sρ
′
t has order m, and also does ρ̄sρ̄t.

Since B is nondegenerate on Vs,t, the entire space V is the direct sum of Vs,t
and its orthogonal V ⊥s,t with respect to B. It is easy to check that ρs and ρt are
both the identity on V ⊥s,t, so ρsρt has order m.

An immediate consequence of the previous proposition is that there exists a
group homomorphism

ρ : W → GL(V )

which sends s to ρs for all s ∈ S. Such homomorphism is called the canonical
representation of (W,S). As anticipated the canonical representation of a Coxeter
system is always faithful, but we will need some more considerations to prove it.
Meanwhile, we can use the existence of the canonical representation to prove
Lemma 1.2.
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Proof of Lemma 1.2. Since ρs = ρ(s) has order 2 for any s ∈ S, s itself must
have order multiple of 2. Since s2 = 1, the order of s is exactly 2.

Consider now elements s 6= t in S. By Proposition 1.10 the order of ρsρt =
ρ(st) is ms,t, so the order of st must be a multiple of ms,t. If ms,t = ∞ this
means that the order of st is also ∞. If ms,t 6=∞ we know that (st)ms,t = 1, so
the order of st is exactly ms,t.

To simplify the notation, in the rest of this chapter we will write w(v) instead
of ρ(w)(v), for w ∈W and v ∈ V .

1.3 Roots

In this section we are going to further investigate the geometry of the canonical
representation of a Coxeter system, which is connected with more combinatorial
properties such as the behaviour of the length function.

Let (W,S) be a Coxeter system and ρ : W → GL(V ) its canonical repre-
sentation. Recall that the standard basis of V consists of the vectors es for
s ∈ S.

Definition 1.11. The root system Φ of (W,S) is the subset of V given by

Φ = {w(es) | w ∈W, s ∈ S}.

The elements of Φ are called roots.

All the roots of (W,S) are unit vectors with respect to the bilinear form
B : V × V → R defined in Section 1.2, since s preserves B for all s ∈ S and thus
w preserves B for all w ∈W . Moreover, since s(es) = −es, the opposite of any
root is also a root.

Let ζ ∈ Φ be a root. Then it can be written uniquely in the form

ζ =
∑
s∈S

cses,

for some cs ∈ R. The root ζ is said to be positive if cs ≥ 0 for all s ∈ S, and
negative if cs ≤ 0 for all s ∈ S. In the former case we write ζ > 0 whereas in the
latter case we write ζ < 0. Denote by Φ+ the set of positive roots and by Φ−

the set of negative roots.

Theorem 1.12 ([Hum92], Theorem 5.4). Let w ∈W and s ∈ S. If `(ws) > `(w),
then w(es) > 0. If `(ws) < `(w), then w(es) < 0.

Proof. We prove by induction on `(w) that if `(ws) > `(w) then w(es) > 0. If
`(w) = 0 then w = 1, and the claim is trivial. Suppose then `(w) > 0, and choose
t ∈ S such that `(wt) = `(w) − 1. Notice that t 6= s, and set T = {s, t} ⊆ S.
Consider now the subset C of the coset wWT defined by

C = {u ∈ wWT | `(u) + `T (u−1w) = `(w)}.
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The set C is nonempty because clearly w ∈ C. Choose u ∈ C such that `(u) is
minimized, and set uT = u−1w ∈WT .

Assume by contradiction that `(us) = `(u)− 1. Then

`(w) ≤ `(us) + `((us)−1w)

= `(us) + `(su−1w)

≤ `(us) + `T (su−1w)

= `(u)− 1 + `T (su−1w)

≤ `(u)− 1 + `T (u−1w) + 1

= `(u) + `T (u−1w)

= `(w).

The last equality holds because u ∈ C. Therefore all the inequalities must be
equalities, and in particular `(w) = `(us) + `T ((us)−1w). This means that also
us ∈ C, which is a contradiction by the minimality of u. So `(us) = `(u) + 1.
The same chain of inequalities holds if we change s with t, so we also have
`(ut) = `(u) + 1.

Notice now that wt ∈ C, because `(wt) + `T (t) = `(w)− 1 + 1 = `(w). Then,
by minimality of u, we have that `(u) ≤ `(wt) = `(w) − 1. Therefore we can
apply the induction hypothesis on the pairs (u, s) and (u, t), and deduce that
u(es) > 0 and u(et) > 0.

Observe now that `T (uT s) ≥ `T (uT ). Indeed, if this wasn’t true then we
would have

`(w) < `(ws)

≤ `(u) + `(u−1ws)

= `(u) + `(uT s)

≤ `(u) + `T (uT s)

< `(u) + `T (uT )

= `(w).

Therefore any reduced expression for uT in WT must end with t. A direct
computation (which will be omitted here) shows that uT sends es to a nonnegative
linear combination of u(es) and u(et). Since w = uuT , we finally have that
w(es) > 0.

To conclude the proof, notice that second part of the thesis follows from the
first one applied to ws instead of w.

In the rest of this section we will examine some interesting consequences of
Theorem 1.12, some of which have been anticipated in the previous sections.

Corollary 1.13. Every root is either positive or negative, i.e. Φ = Φ+ ∪ Φ−.

Proof. If ζ = w(es) is a generic root, then we fall in either the first case or in
the second case of Theorem 1.12. So we have ζ > 0 or ζ < 0.
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Corollary 1.14. The canonical representation ρ : W → GL(V ) is faithful.

Proof. Let w ∈ ker(ρ). Then w(es) = es for all s ∈ S. Now suppose w 6= 1, and
choose s so that `(ws) < `(w). Then by Theorem 1.12 we have w(es) < 0, which
is a contradiction.

We now turn to the proof of Lemmas 1.4 and 1.9, stated in Section 1.1.

Proof of Lemma 1.4. Let W ′T be the Coxeter group associated to the Coxeter
graph Γ|T . The canonical representation ρ′ of W ′T can be identified with the
action of the group generated by {ρs | s ∈ T}, i.e. ρ(WT ), on the subspace VT
of V generated by {es | s ∈ T}. Moreover W ′T can be projected to WT sending
each s ∈ T ⊆W ′T to s ∈WT . Then the composition

W ′T →WT

ρ|WT−−−→ GL(VT )

coincides with ρ′ : W ′T → GL(VT ). Since ρ′ is injective (by Theorem 1.12), the
projection W ′T →WT is a group isomorphism.

Proof of Lemma 1.9. We prove by induction on `(w) that for every w ∈ WT

the equality `(w) = `T (w) holds. This is obvious if w = 1, so let’s assume
w 6= 1. Choose s ∈ T such that `T (ws) < `T (w). Set w′ = ws. By Lemma 1.4,
the parabolic subgroup WT is itself a Coxeter group. Moreover its canonical
representation is given by the action on VT obtained restricting ρ : W → GL(V )
to WT . By Theorem 1.12 applied to WT we have that w′(es) > 0. Applying
Theorem 1.12 on W we deduce that `(w′s) > `(w′), i.e. that `(w) = `(w′) + 1.
Then, by induction, `(w) = `(w′) + 1 = `T (w′) + 1 = `T (w).

1.4 Positive roots and longest element

In this section we will further investigate the action of a Coxeter group on
its roots, especially on the positive ones. We will then derive some important
combinatorial consequences about the structure of finite Coxeter groups.

Let Π = Φ+ be the set of positive roots of a fixed Coxeter system (W,S).

Lemma 1.15 ([Hum92], Proposition 5.6). Any s ∈ S permutes the roots in
Π \ {es}.
Proof. Fix some root ζ ∈ Π \ {es}. Write

ζ =
∑
r∈S

crer,

for some coefficients cr ≥ 0. Since ζ is a unit vector (with respect to the bilinear
form B) and ζ 6= es, there must be some t ∈ S \ {s} such that ct > 0. By
definition of the canonical representation, s(ζ) differs from ζ only by a multiple
of es. Thus we have

s(ζ) =
∑
r∈S

c′rer
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with c′r = cr for all r 6= s. In particular c′t = ct > 0, so s(ζ) is still a positive root
different from es. Since s2 = 1, we deduce that s permutes the set Π \ {es}.
Proposition 1.16 ([Hum92], Proposition 5.6). For any w ∈ W , `(w) equals
the number of positive roots sent by w to negative roots.

Proof. Call n(w) the number of positive roots sent by w to negative roots, i.e.

n(w) = |Π(w)|
where Π(w) = Π ∩ w−1(−Π). Fix any s ∈ S. If w(es) > 0, then by Lemma 1.15
we have that

Π(ws) = Π ∩ sw−1(−Π)

= s
(
s(Π) ∩ w−1(−Π)

)
= s
(
(Π \ {es} ∪ {−es}) ∩ w−1(−Π)

)
= s
((

Π ∩ w−1(−Π)
)
\
(
{es} ∩ w−1(−Π)

)
∪
(
{−es} ∩ w−1(−Π)

))
= s
(
Π(w) \∅ ∪ {−es}

)
= s(Π(w)) ∪ {es},

so n(ws) = n(w)+1. Similarly, if w(es) < 0 we find that Π(ws) = s(Π(w)\{es})
and thus n(ws) = n(w) − 1. Notice also that n(1) = `(1) = 0. Then, using
Theorem 1.12, we conclude by induction on `(w) that n(w) = `(w).

Corollary 1.17 (cf. [Hum92], Theorem 1.8). The action of W on the set

Ξ = {w(Π) | w ∈W}
is simply transitive (i.e. transitive and free).

Proof. It is enough to prove that if w(Π) = Π then w = 1, and this is an
immediate consequence of Proposition 1.16.

Consider now the case where W is finite (e.g. a dihedral group or a symmetric
group), so that there is only a finite number of roots. An interesting consequence
of the previous results is the existence of exactly one element of maximum length
in W . This longest element δ has many interesting properties, and will become
important in the study of Artin groups.

Lemma 1.18 (cf. [Hum92], Theorem 1.4). Let W be a finite Coxeter group.
Then there exists some element w ∈W such that w(Π) = −Π.

Proof. Let w ∈ W be an element that maximizes the size of w(Π) ∩ −Π, or
equivalently that minimizes the size of w(Π) ∩Π. Suppose by contradiction that
w(Π) 6= −Π, i.e. that w(Π) ∩Π 6= ∅. Then the set ∆ = {w(es) | s ∈ S} cannot
be fully contained in −Π, since otherwise any element of ∆ would be a negative
combination of the standard basis {es | s ∈ S} and thus the same would be true
for any element of w(Π) ⊇ ∆. So there exists some s ∈ S such that w(es) ∈ Π,
i.e. es ∈ w(Π) ∩Π. By Lemma 1.15, s sends es to its negative and permutes all
the other positive roots, so |sw(Π)∩Π| = |w(Π)∩Π| − 1. This is a contradiction
by definition of w.
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Theorem 1.19 (cf. [Hum92], Theorem 1.8). Let W be a finite Coxeter group.
Then there exists a unique element δ ∈W of maximum length. Moreover, the
following properties hold:

1. δ(Π) = −Π;

2. `(δ) = |Π|;

3. δ has order 2;

4. `(δw) = `(δ)− `(w) for all w ∈W .

Proof. By Lemma 1.18 and Proposition 1.16 the maximum length of elements
of W is exactly |Π|, and it is realized by all the elements δ such that δ(Π) = −Π.
Furthermore, by Corollary 1.17 there can be only one element δ with this
property.

The first two properties are already proved. Since δ2(Π) = δ(−Π) = Π, by
Corollary 1.17 we have that δ2 = 1, which is the third property. The roots
sent by δw to negative roots are precisely the roots sent by w to positive roots
(because δ exchanges positive and negative roots). Therefore, by Proposition
1.16,

`(δw) = |Π| − `(w) = `(δ)− `(w).

This concludes the proof of the fourth property.

1.5 Exchange and Deletion Conditions

In this section we are going to prove two interesting results about the combi-
natorics of reduced expressions in a Coxeter group. They are called Exchange
Condition and Deletion Condition, respectively.

Theorem 1.20 (cf. [Hum92], Theorem 5.8). Let w = s1 · · · sr for some w ∈W
and si ∈ S. Suppose that `(ws) < `(w) for some s ∈ S. Then there is an index
i such that ws = s1 · · · ŝi · · · sr.1 Moreover, if `(w) = r (i.e. the expression for w
is reduced) then i is unique.

Proof. By Theorem 1.12 we have that w(es) < 0. Since es > 0, there exists an
index i such that si+1 · · · sr(es) > 0 and sisi+1 · · · sr(es) < 0. By Lemma 1.15
the only positive root sent by si to a negative root is esi , thus si+1 · · · sr(es) =
esi . Therefore the reflection in V about the vector esi (with respect to the
bilinear form B) is conjugate to the reflection about the vector es through the
transformation si+1 · · · sr. In other words:

si = (si+1 · · · sr)s(si+1 · · · sr)−1.

1With the hat notation ŝi, we mean that si is omitted.
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This implies that

ws = s1 · · · srs
= (s1 · · · si)(si+1 · · · sr)s
= (s1 · · · si)si(si+1 · · · sr)
= s1 · · · ŝi · · · sr.

Consider now the case `(w) = r. Suppose by contradiction that there exist
indices i < j such that

ws = s1 · · · ŝi · · · sr = s1 · · · ŝj · · · sr.

Simplifying s1 · · · si−1 on the left and sj+1 · · · sr on the right we obtain the
relation si+1 · · · sj = si · · · sj−1, which implies that

w = s1 · · · sr
= (s1 · · · si)(si+1 · · · sj)(sj+1 · · · sr)
= s1 · · · si(si · · · sj−1)sj+1 · · · sr
= s1 · · · ŝi · · · ŝj · · · sr.

This is a contradiction since `(w) = r.

Theorem 1.20 can be actually generalized (with a similar proof) to the case
where s is conjugate to an element of S (see [Hum92]). The resulting proposition
is called Strong Exchange Condition.

Remark 1.21. The Exchange Condition holds also replacing ws with sw in the
statement. Indeed, this latter version can be obtained applying the former to
w−1.

Theorem 1.22 ([Hum92], Corollary 5.8). Let w = s1 · · · sr for some w ∈ W
and si ∈ S, with `(w) < r. Then there exist indices i < j such that w =
s1 · · · ŝi · · · ŝj · · · sr.

Proof. Since `(w) < r, there exists an index j such that `(w′sj) < `(w′), where
w′ = s1 · · · sj−1. By the Exchange Condition (Theorem 1.20) applied to w′ and
sj , there exists an index i < j such that w′sj = s1 · · · ŝi · · · sj−1. Multiplying
both sides of this equality by sj+1 · · · sr on the right, we obtain the desired
result.

The Deletion Condition we have just stated has the following immediate
consequence.

Corollary 1.23 ([Hum92], Corollary 5.8). Let w = s1 · · · sr for some w ∈ W
and si ∈ S. Then a reduced expression for w can be obtained omitting an even
number of si in the previous expression.
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1.6 Minimal coset representatives

We will now prove a few interesting properties of standard parabolic subgroups
which will become useful later. As usual, fix a Coxeter system (W,S). For any
T ⊆ S define

WT = {w ∈W | `(ws) > `(w) ∀ s ∈ T}.

By the results of Section 1.5, the set WT consists of all the elements of W
admitting no reduced expression ending with elements of T .

Proposition 1.24 ([Hum92], Proposition 1.10). Let T ⊆ S. Then for any
w ∈ W there exist a unique u ∈ WT and a unique v ∈ WT such that w = uv.
Moreover, `(w) = `(u) + `(v) and u is the unique element of smallest length in
the coset wWT .

Proof. Let u be an element of smallest length in the coset wWT , and let v =
wu−1 ∈ WT . For any s ∈ T , we have that us ∈ wWT and thus `(us) > `(u).
This means that u ∈WT . Consider now reduced expressions

u = s1 · · · sq, v = s′1 · · · s′r

with q = `(u), r = `(v), si ∈ S and s′i ∈ T (the last condition can be fulfilled by
Lemma 1.9). Suppose by contradiction that `(w) < `(u) + `(r) = q + r. Then,
by the Deletion Condition (Theorem 1.22) it is possible to omit two factors
in the expression s1 · · · sqs′1 · · · s′r without changing w. Omitting any factor si
would give rise to an element of wWT of length smaller than q = `(u), which
is impossible by definition of u. On the other hand, if it were possible to omit
two factors s′i, s

′
j we would obtain an expression for v of length smaller than

r = `(v), which is also impossible. Therefore `(w) = `(u) + `(r).

With the same argument it follows that any element w′ ∈ wWT can be
written in the form uv′ for some v′ ∈WT (but with the same u as before) and
the property `(w′) = `(u)+ `(v′) is satisfied. In particular when v′ 6= 1 we obtain
that `(w′) > `(u), which means that u is the unique element of smallest length
in wWT .

Finally we have to prove the uniqueness of u in WT ∩ wWT . If there was
some other element u′ ∈ WT ∩ wWT , then we could write u′ = uv for some
v ∈WT \{1} with `(u′) = `(u)+ `(v). But choosing s ∈ T such that `(vs) < `(v)
we would obtain `(u′s) < `(u′), so u′ 6∈WT .

The following corollary is part of the statement of the previous proposition,
but we want to underline it as an interesting result by itself.

Corollary 1.25. Let T ⊆ S. For any w ∈W there exists a unique element of
smallest length in the coset wWT .
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1.7 Dual representation and Tits cone

In this section we are going to investigate some geometric properties of the dual
of the canonical representation ρ : W → GL(V ), i.e. the representation

ρ∗ : W → GL(V ∗)

given by ρ∗(w) = (ρ(w)t)−1. The notation ρ(w)(f) for w ∈W and f ∈ V ∗ will
be shortened into w(f) throughout this section, similarly to what we already do
for the canonical representation. If f ∈ V ∗ and v ∈ V , denote f(v) by 〈f, v〉. By
definition, the dual representation ρ∗ satisfies

〈w(f), w(v)〉 = 〈f, v〉.

The following is an immediate consequence of Corollary 1.14.

Proposition 1.26. The dual representation ρ∗ : W → GL(V ∗) is faithful.

For s ∈ S consider the hyperplane

Hs = {f ∈ V ∗ | 〈f, es〉 = 0}

of V ∗, together with the two half-spaces A+
s and A−s defined by

A+
s = {f ∈ V ∗ | 〈f, es〉 > 0}, A−s = {f ∈ V ∗ | 〈f, es〉 < 0}.

Any f ∈ V ∗ is uniquely determined by its value on es and on all the vectors in
the hyperplane Ls ⊆ V fixed by ρ(s). Then, if f ∈ Hs, we have that

〈s(f), es〉 = 〈s(f),−s(es)〉 = −〈f, es〉 = 0;

〈s(f), v〉 = 〈s(f), s(v)〉 = 〈f, v〉 ∀ v ∈ Ls.

This means that s fixes Hs pointwise. Moreover, since 〈s(f), es〉 = −〈f, es〉, it
sends A+

s to A−s and vice versa. Indeed s acts on V ∗ as a linear reflection, fixing
the hyperplane Hs and sending f to −f for all f ∈ V ∗ such that f |Ls = 0.

Call C0 the intersection of the half-spaces A+
s for s ∈ S. Since the A+

s are
open (with respect to the only topology that makes V ∗ a topological vector
space) the intersection C0 is also open.

Lemma 1.27 ([Hum92], Lemma 5.13). Let s ∈ S and w ∈ W . Then `(sw) >
`(w) if and only if w(C0) ⊆ A+

s , and `(sw) < `(w) if and only if w(C0) ⊆ A−s .

Proof. We have that `(sw) > `(w) is equivalent to `(w−1s) > `(w−1), which is
equivalent to w−1(es) > 0 by Theorem 1.12. Let f ∈ C. Then 〈w(f), es〉 > 0
is equivalent to 〈f, w−1(es)〉 > 0, which is equivalent (by definition of C) to
w−1(es) > 0. So we conclude that the relation `(sw) > `(w) holds if and only
if 〈w(f), es〉 > 0 i.e. w(f) ∈ A+

s . The second part of the statement easily
follows.

Proposition 1.28 (cf. [Hum92], Theorem 5.13). For all w ∈W \ {1} we have
that w(C0) ∩ C0 = ∅.
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Proof. If w 6= 1 then there exists some s ∈ S such that `(sw) < `(w). Then, by
Lemma 1.27, w(C0) ⊆ A−s . Since C0 ⊆ A+

s and A+
s ∩A−s = ∅, we deduce that

w(C0) ∩ C0 = ∅.

Corollary 1.29. The action of W on the set {w(C0) | w ∈ W} is free and
transitive.

Consider now the subset of V ∗ given by

I =
⋃
w∈W

w(C̄0).

Since C0 is a cone, I is also a cone. It is called Tits cone of the Coxeter system
(W,S).

Proposition 1.30. The Tits cone I is convex.

Proof. Let f, g ∈ I. We want to prove that the closed segment [f, g] joining f
and g in V ∗ is contained in I. We can assume without loss of generality that
f ∈ C̄0 and g ∈ w(C̄0) for some w ∈W (otherwise, if f ∈ w′(C̄0), we can apply
w′−1 to both f and g in order to have w′−1(f) ∈ C̄0). We are going to prove
the thesis by induction on `(w).

If w = 1 there is nothing to prove, since C̄0 is convex. Assume from now on
that w 6= 1. Then the segment [f, g] intersects C̄0 in some segment [f, h], for
some h ∈ ∂C0. Let T = {s ∈ S | g ∈ A−s }. If we had h ∈ A+

s for all s ∈ T , then
all points k in an open neighbourhood of h in [f, g] would satisfy both k ∈ A+

s

(because A+
s is open) and k ∈ A+

s (because the closed half-space A+
s is convex

and contains both f and g, so it contains the entire segment [f, g]). Therefore
h ∈ Hs for some s ∈ T . Notice that g ∈ A−s , so w(C0) ⊆ A−s . By Lemma 1.27
this means that `(sw) < `(w). Apply s to both h and g. Then h ∈ C̄0 and
g ∈ sw(C̄0), thus by induction hypothesis the entire segment [h, g] is contained
in I.

In general the Tits cone is strictly contained in V ∗. More precisely, it can
be seen that I = V ∗ if and only if W is finite (see [Hum92], Section 5.13). The
Tits cone will be used in Chapter 4 to formulate the K(π, 1) conjecture.

1.8 Classification of finite Coxeter groups

Definition 1.31. A Coxeter system (W,S) is said to be of finite type if the
Coxeter group W is finite. In this case we also say that the corresponding
Coxeter graph is of finite type.

As we will see, Coxeter systems of finite type play a preminent role in the
theory of Coxeter and Artin groups. Their classification was first derived by
Coxeter [Cox34]. Although in the following chapters we will not strictly need
such classification, we are going to present it (without proofs) in order to have a
better insight into the theoy of Coxeter groups.
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Notice that, since a Coxeter group is the direct product of its maximal
irreducible parabolic subgroups, it is enough to classify the finite irreducible
Coxeter groups. Then any finite Coxeter group will be obtained as a direct
product of irreducible components.

Theorem 1.32 ([Hum92], Corollary 6.2 and Theorem 6.4). A Coxeter system
(W,S) is of finite type if and only if the bilinear form B : V × V → R of Section
1.2 is positive definite.

Theorem 1.33 ([Hum92], Theorem 2.7 and Theorem 6.4). The irreducible
Coxeter graphs of finite type are precisely those listed in Figure 1.3.

Remark 1.34. Most of the Coxeter graphs of Figure 1.3 correspond to the so
called Dynkin diagrams, which arise in other branches of mathematics such as
Lie theory (in the classification semisimple Lie algebras).
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An (n ≥ 1) 1 2 3 n

Bn (n ≥ 2) 1 2 3 n
4

Dn (n ≥ 4)

1

2

3 4 n

E6

1 2 3

4

5 6

E7

1 2 3

4

5 6 7

E8

1 2 3

4

5 6 7 8

F4 1 2 3 4
4

H3 1 2 3
5

H4 1 2 3 4
5

I2(m) (m ≥ 5) 1 2
m

Figure 1.3: Irreducible Coxeter graphs of finite type.



Chapter 2

Artin groups

Artin groups were introduced in their full generality by Tits [Tit66], and the first
deep study of their properties was made by Brieskorn and Saito [BS72]. Further
research has been carried out in more recent years, but still there isn’t a wide
and classical general theory of Artin groups as there is for Coxeter groups.

In this chapter we are going to define Artin groups and we are going to
present some of their known properties.

2.1 Definition and relation with Coxeter groups

Consider a Coxeter graph (Γ, S). Recall that the corresponding Coxeter group
is defined as

WΓ = 〈S | (st)ms,t = 1 ∀ s, t ∈ S such that ms,t 6=∞〉.

Since in WΓ all the generators of S have order 2, the relations (st)ms,t = 1 for
s 6= t can be also written as

Π(s, t,ms,t) = Π(t, s,ms,t),

where the notation Π(a, b,m) stands for

Π(a, b,m) =

{
(ab)

m
2 if m is even,

(ab)
m−1

2 a if m is odd.

For instance, if ms,t = 3 the relation (st)3 = 1 can be written as sts = tst. So
we have that

WΓ =

〈
S

∣∣∣∣ s2 = 1 ∀ s ∈ S,
Π(s, t,ms,t) = Π(t, s,ms,t) ∀ s, t ∈ S such that ms,t 6=∞

〉
.

Consider now the set Σ = {σs | s ∈ S}, which is in natural bijection with S. We
will use this set as a generating set for the Artin group AΓ, as follows.

25



26 Artin groups

Definition 2.1. The Artin group AΓ corresponding to the Coxeter graph (Γ, S)
is the group presented as

AΓ = 〈Σ | Π(σs, σt,ms,t) = Π(σt, σs,ms,t) ∀ s, t ∈ S such that ms,t 6=∞〉.

We also call the pair (AΓ,Σ) an Artin system. As for Coxeter graphs, we say
that an Artin group AΓ is of finite type if Γ is of finite type.

For example, if Γ is of type An−1, the corresponding Artin group is called
braid group on n strands and is denoted by Bn (see [KDT08]). Braid groups
were first defined on their own in the 1920s, and motivated the general definition
of Artin groups. They have strong connections with knot theory, and can be
obtained as fundamental groups of the configuration spaces of n undistinguished
points in the plane:

Bn = π1

Cn \
⋃
i 6=j
{xi = xj}

 /Sn

 ,

where Sn acts on Cn permuting the coordinates. As we will see in Chapter 4,
all Artin groups admit a similar interpretation.

For any Coxeter graph Γ there is a natural projection π : AΓ →WΓ, sending
σs to s for all s ∈ S. The kernel of this projection is often called colored Artin
group, and is denoted by CAΓ. This leads to the following short exact sequence
of groups:

1→ CAΓ → AΓ
π−→WΓ → 1.

We are now going to construct a natural set-section τ : WΓ → AΓ, i.e. a function
such that π ◦ τ = idWΓ . This will not be a group homomorphism (except in the
trivial case S = ∅). Indeed, since Artin groups are conjectured to be torsion-free
(see Section 4.2), there shouldn’t exist non-trivial homomorphisms WΓ → AΓ

at all. In order to construct τ we will need the following result about reduced
expressions in Coxeter groups.

Definition 2.2. Let w ∈WΓ, and let µ, µ′ ∈ S∗ be two expressions for w. We
say that there is an elementary transformation joining µ and µ′ if there exist
ν1, ν2 ∈ S∗ and s, t ∈ S such that ms,t 6=∞,

µ = ν1 Π(s, t,ms,t) ν2 and µ′ = ν1 Π(t, s,ms,t) ν2.

Theorem 2.3 ([Tit69]; cf. [Bro89]). Let w ∈ WΓ, and let µ, µ′ ∈ S∗ be two
reduced expressions for w. Then there exists a finite sequence of elementary
transformations joining µ and µ′.

Proof. The proof is by induction on k = `(w), the case k = 0 being trivial since
there is only one expression of length 0. Assume then k > 0, and let µ = s1 · · · sk,
µ′ = t1 · · · tk. Set s = s1 and t = t1. If s = t we are done by applying the
induction hypothesis to the reduced expressions s2 · · · sk and t2 · · · tk. Therefore,
suppose from now on that s 6= t.
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Our aim is to prove that w admits a reduced expression starting with
Π(s, t,ms,t). Let h be the the maximum nonnegative integer such that w admits
a reduced expression ν starting with Π(s, t, h) or with Π(t, s, h). If h ≥ ms,t we
are done. Assume then by contradiction that h < ms,t, and suppose without
loss of generality that ν starts with Π(s, t, h):

ν = Π(s, t, h) rh+1 · · · rk (for some ri ∈ S).

Since w admits a reduced expression starting with t (namely, µ′), by the Exchange
Condition (Theorem 1.20) applied to ν there exists a reduced expression for w
obtained from ν by adding a t at the beginning and omitting some other letter
of ν. There are two cases.

� The omitted letter lies in the prefix Π(t, s, h). It cannot be the initial
letter, because s 6= t. It cannot be the final letter, because otherwise we
would obtain that

sΠ(t, s, h− 1) rh+1 · · · rk = Π(t, s, h) rh+1 · · · rk,

i.e. Π(s, t, h) = Π(t, s, h), which is impossible by Lemma 1.2 since h < ms,t.
Finally the omitted letter cannot lie in the interior of Π(t, s, h), because
its omission would leave two consecutive s or two consecutive t, and the
resulting expression would not be reduced. In any case, we obtain a
contradiction.

� The omitted letter lies in the suffix rh+1 · · · rk. Then we get

w = sΠ(t, s, h) rh+1 · · · r̂i · · · rk = Π(s, t, h+ 1) rh+1 · · · r̂i · · · rk.

So there is a reduced expression for w starting with Π(s, t, h+ 1), which is
a contradiction by maximality of h.

So we have proved that w admits a reduced expression ν starting with
Π(s, t,ms,t), and in particular ms,t 6= ∞. Replacing the prefix Π(s, t,ms,t)
with Π(t, s,ms,t) in ν, we obtain a reduced expression ν′ for w starting with
Π(t, s,ms,t). Then we can construct a sequence of elementary transformations
joining µ and µ′ as follows: first we transform µ into ν (they both start with an
s, so the induction hypothesis applies); then we transform ν into ν′ (they differ
by a single elementary transformation); finally we transform ν′ into µ′ (again,
applying the induction hypothesis thanks to the fact that ν′ and µ′ both start
with a t).

We are now ready to define the set-section τ : WΓ → AΓ. Given an element
w ∈WΓ, consider a reduced expression s1 · · · sk for w and set

τ(w) = σs1 · · ·σsk .

By Theorem 2.3 different reduced expressions for w yield the same element of
AΓ, so τ is well-defined. Moreover it is a right-inverse of π : AΓ →WΓ, since

π(τ(w)) = π(σs1 · · ·σsk) = π(σs1) · · ·π(σsk) = s1 · · · sk = w.
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2.2 Artin monoids

Definition 2.4. The Artin monoid corresponding to a Coxeter graph (Γ, S) is
the monoid presented as

A+
Γ = 〈Σ | Π(σs, σt,ms,t) = Π(σt, σs,ms,t) ∀ s, t ∈ S such that ms,t 6=∞〉.

Notice that this presentation is identical to that of the Artin group AΓ, but
A+

Γ needs not contain inverses of its elements (as we will see, only the identity
1 ∈ A+

Γ has an inverse). Artin monoids are extremely important in the study
of the corresponding Artin groups. Most of the literature on this topic was
developed in [BS72, Gar69, Par02]. In this section we present, without proofs,
the most important results about Artin monoids and about their relationship
with Artin groups.

The reason why we take the freedom to use the same generating set Σ for
A+

Γ and for AΓ is given by the following theorem.

Theorem 2.5 ([Par02]). The natural monoid homomorphism A+
Γ → AΓ is

injective.

In view of Theorem 2.5, from now on we will consider A+
Γ as contained in

AΓ. The Artin monoid is also called positive monoid of AΓ, for its elements
are precisely those which can be written as a product (with positive exponents)
of generators in Σ. An immediate consequence of the previous theorem is the
following.

Corollary 2.6 ([BS72]). The Artin monoid A+
Γ is cancellative, i.e. αγ1β = αγ2β

implies γ1 = γ2 for all α, β, γ1, γ2 ∈ A+
Γ .

Since the relations Π(σs, σt,ms,t) = Π(σt, σs,ms,t) involve the same number
of generators on the left hand side and on the right hand side, there is a well
defined length function ` : A+

Γ → N that sends an element σs1 · · ·σsk ∈ A+
Γ to

the length k of its representation. Clearly we have that

`(αβ) = `(α) + `(β) ∀α, β ∈ A+
Γ ,

i.e. ` is a monoid homomorphism. An easy consequence is that the identity
1 ∈ A+

Γ is the only invertible element of the Artin monoid.
Notice that the restriction of π : AΓ →WΓ to the positive monoid A+

Γ is still
surjective, and that the set-section τ defined in Section 2.1 has image contained in
A+

Γ . Moreover τ is a length-preserving function: `(τ(w)) = `(w) for all w ∈WΓ.

Definition 2.7. Given α, β ∈ A+
Γ , we say that α �L β if there exists γ ∈ A+

Γ

such that αγ = β. Similarly we say that α �R β if there exists γ ∈ A+
Γ such

that γα = β.

If α �L β we also say that α is a left divisor of β, that α left divides β, or
that β is left divisible by α. We do the same for right divisibility.

Lemma 2.8. Both �L and �R are partial order relations on A+
Γ .
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Proof. Reflexivity and transitivity are obvious. For antisymmetry, assume
α �L β and β �L α. Then αγ1 = β and βγ2 = α for some γ1, γ2 ∈ A+

Γ , thus
α = αγ1γ2. By cancellativity (Corollary 2.6) this implies that γ1γ2 = 1, therefore
γ1 = γ2 = 1, i.e. α = β. The same argument applies to �R.

Definition 2.9. Let E be a subset of A+
Γ . A left common divisor of E is any

element of A+
Γ which left divides all elements of E. A greatest left common

divisor (or left g.c.d.) of E is a left common divisor of E which is left multiple
of all the left common divisors of E. Similarly, a left common multiple of E is
any element of A+

Γ which is left multiple of all elements of E, and a left least
common multiple (or left l.c.m.) of E is a left common multiple of E which is
left divisible for all the left common multiples of E. Define in the obvious way
the analogous concepts for right divisibility.

Notice that when a greatest common divisor or a least common multiple
exists for a set E, then it is unique. Indeed, suppose for instance that α and β
are greatest left common divisors of E; then α �L β and β �L α, which implies
α = β by Lemma 2.8.

Proposition 2.10 ([BS72]). Let E be a subset of A+
Γ . If E admits a left (resp.

right) common multiple, then it also admits a least left (resp. right) common
multiple.

Proposition 2.11 ([BS72]). Any non-empty subset E of A+
Γ admits a greatest

left common divisor and a greatest right common divisor.

We are now going to introduce the fundamental element of the Artin monoid,
which is (when it exists) significantly important. Recall that Σ = {σs | s ∈ S}.

Theorem 2.12 ([BS72]). For an Artin monoid A+
Γ , the following conditions are

equivalent:

� Γ is of finite type;

� Σ admits a least left common multiple;

� Σ admits a least right common multiple.

Moreover, if they are satisfied, then the least left common multiple and the least
right common multiple of Σ coincide.

Definition 2.13. If Γ is a Coxeter graph of finite type, the least left (or right)
common multiple of Σ in A+

Γ is called fundamental element of A+
Γ and is usually

denoted by ∆.

The following theorem summarizes some of the properties of the fundamental
element. Before that, two more definitions are required.

Definition 2.14. An element α ∈ A+
Γ is squarefree if it cannot be written in

the form βσ2
sγ for β, γ ∈ A+

Γ and s ∈ S.
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Definition 2.15. Let rev : A+
Γ → A+

Γ be the bijection that sends an element
σs1σs2 · · ·σsk ∈ A+

Γ to its “reverse” σskσsk−1
· · ·σs1 . It is easy to check that it

is well defined.

Theorem 2.16 ([BS72]). Let Γ be a Coxeter graph of finite type, so that A+
Γ

admits a fundamental element ∆. Then the following properties hold:

(i) rev ∆ = ∆;

(ii) an element of A+
Γ is squarefree if and only if it is a (left or right) divisor of

∆;

(iii) an element of A+
Γ left divides ∆ if and only if it right divides ∆;

(iv) the least (left or right) common multiple of squarefree elements of A+
Γ is

squarefree;

(v) ∆ is the uniquely determined squarefree element of maximal length in A+
Γ ;

(vi) ∆ = τ(δ), where δ is the longest element of WΓ;

(vii) any element α ∈ AΓ can be written in the form α = ∆−kβ for some β ∈ A+
Γ

and k ∈ N.

Some of the properties of Theorem 2.16 are easy to justify: (i) follows from
the last part of Theorem 2.12, whereas (iii), (iv) and (v) follow from (ii).

Property (vi) of Theorem 2.16 is enough to find ∆ in some simple cases. For
instance, if all the generators σs commute (i.e. ms,t = 2 for all s 6= t in S, so
AΓ is free abelian) then ∆ is simply the product of the generators. Instead, if S
consists of only two elements s and t (i.e. the Coxeter group WΓ is a dihedral
group), then ∆ = Π(σs, σt,ms,t).

2.3 Standard parabolic subgroups and normal
form

We are going to define standard parabolic subgroups of an Artin group, similarly
to how we defined those of a Coxeter group (cf. Definition 1.3). Let (Γ, S) be
a Coxeter graph with Artin system (AΓ,Σ), and let T ⊆ S. Set A = AΓ and
A+ = A+

Γ , for simplicity.

Definition 2.17. Let ΣT = {σs | s ∈ T} and let AT be the subgroup of A
generated by ΣT . A subgroup constructed in this way is called standard parabolic
subgroup of A.

Theorem 2.18 ([vdL83]). The natural homomorphism AT → A which sends
σs to σs for all s ∈ T is injective. In other words, (AT ,ΣT ) is the Artin system
corresponding to the Coxeter graph (Γ|T , T ).
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Theorem 2.19 ([BS72]). The least (left or right) common multiple of ΣT exists
in A+ if and only if the Coxeter graph (Γ|T , T ) is of finite type.

If Γ|T is a Coxeter graph of finite type, it makes sense to consider the
fundamental element of the Artin monoid A+

T corresponding to the Artin system
(AT ,ΣT ). Such element will be denoted by ∆T .

Lemma 2.20 ([BS72]). ∆T is precisely the least (left or right) common multiple
of ΣT in A+.

In the rest of this section we are going to introduce a normal form for elements
of the Artin monoid A+. To do so, define for any α ∈ A+ the set

I(α) = {s ∈ S | α = βσs for some β ∈ A+}.

In other words, this is the set of elements s ∈ S such that σs right divides α.

Theorem 2.21 ([BS72]). For any α ∈ A+ there exists a unique tuple (T1, . . . , Tk)
of non-empty subsets of S such that

α = ∆Tk∆Tk−1
· · ·∆T1

and I(∆Tk · · ·∆Tj ) = Tj for 1 ≤ j ≤ k.

Proof. The proof is by induction on `(α), the case `(α) = 0 being trivial (k must
be equal to 0). Assume then `(α) > 0. If T1, . . . , Tk are as in the statement,
then we must have k > 0 and (by the last property for j = 1)

T1 = I(∆Tk · · ·∆T1) = I(α).

So T1 is uniquely determined. Moreover α is right divisible by all the elements in
T1 = I(α), and thus it is right divisible by their least right common multiple ∆T1 .
Set α = β∆T1

. Then existence and uniqueness of T2, · · · , Tk follow applying the
induction hypothesis on β.





Chapter 3

Discrete Morse theory

Discrete Morse theory is a powerful tool for simplifying CW-complexes while
mantaining their homotopy type. It was first developed by Forman [For98], who
presented it as a combinatorial analogue of Morse theory. Forman’s version of
discrete Morse theory, based on the concept of discrete Morse function, was later
reformulated by Chari and Batzies in terms of acyclic matchings [BW02, Cha00].
In this chapter we are going to present the latter formulation, with a few
examples.

3.1 Face poset and acyclic matchings

Let X be a CW-complex. Recall that each cell of X has a characteristic map
Φ: Dn → X and an attaching map ϕ : Sn−1 → X, where ϕ = Φ|∂Dn (see
[Hat02]).

Definition 3.1. The face poset of X is the set X(∗) of its cells together with
the partial order defined by σ ≤ τ if σ̄ ⊆ τ̄ .

Definition 3.2 ([For98]). Let σ, τ ∈ X(∗). If dim τ = dimσ + 1 and σ ≤ τ we
say that σ is a face of τ . We say that σ is a regular face of τ if, in addition, the
two following conditions hold (set n = dimσ and let Φ be the attaching map of
τ):

(i) Φ|Φ−1(σ) : Φ−1(σ)→ σ is a homeomorphism;

(ii) Φ−1(σ) is homeomorphic to Dn.

Definition 3.3 ([For98]). X is a regular CW-complex if all the attaching maps
are injective.

Remark 3.4. If X is regular, then all its faces are regular.

In order to state the main results of discrete Morse theory, we need to
introduce matchings on the cell graphs of CW-complexes. The required definitions
follow.
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Definition 3.5. The cell graph GX of X is the Hasse diagram of X(∗), i.e. a
directed graph with X(∗) as set of vertices and an edge from τ to σ (written
τ → σ) if σ is a face of τ . Denote the set of edges of GX by EX .

Definition 3.6. A matching on X is a subset M ⊆ EX such that

(i) if (τ → σ) ∈M , then σ is a regular face of τ ;

(ii) any cell of X occurs in at most one edge of M .

Given a matching M on X, define a graph GMX obtained from GX by inverting
all the edges in M .

Definition 3.7. A matching M on X is acyclic if the corresponding graph GMX
is acyclic.

For example, consider the torus X = S1 × S1 with the structure of CW-
complex shown in Figure 3.1 on the left. Such complex has one 0-cell x, three
1-cells a, b and c, and two 2-cells A and B. The corresponding cell graph is
shown on the right. The regular faces are exactly those dotted on the left of
Figure 3.2. A possible matching on X is shown in the middle of Figure 3.2.
Such matching is not acyclic, since the corresponding graph GMX has the cycle
A→ c→ B → a→ A. It is easy to check that any acyclic matching on X has at
most one edge. An example of acyclic matching is shown on the right of Figure
3.2.
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Figure 3.1: A CW structure for the torus (on the left) and the
corresponding cell graph (on the right).
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Figure 3.2: Regular edges (dotted on the left), a matching (bold
in the middle) and an acyclic matching (bold on the right).
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3.2 The Morse complex

The aim of discrete Morse theory is to construct, from a CW-complex X with
an acyclic matching M , a simpler CW-complex XM (called Morse complex )
homotopy equivalent to X but with fewer cells. In this section we are going to
state the main theorem of discrete Morse theory (the existence of such Morse
complex) with a sketch of its proof in the case of finite complexes. Then we
are going to present an example which better clarifies the situation in the case
of 2-dimensional complexes, and finally we are going to prove a simple lemma
which is useful to construct acyclic matchings.

Definition 3.8. Let M be an acyclic matching on X. A cell of X is M -essential
if it doesn’t occur in any edge of M .

For example, the essential cells of the matching on the right of Figure 3.2
are A, a, b and x.

Definition 3.9. Let (P,≤) be a poset. A P -grading on X is a poset map
η : X(∗) → P . Given a P -grading on X, for any p ∈ P denote by X≤p the
subcomplex of X consisting of all the cells σ such that η(σ) ≤ p.
Definition 3.10. A P -grading on X is compact if X≤p is compact for all p ∈ P .

Definition 3.11. Let M be an acyclic matching on X and η a P -grading on
X. We say that M and η are compatible if η(σ) = η(τ) for all (τ → σ) ∈ M .
In other words, the matching M can be written as union of matchings Mp for
p ∈ P , where each Mp is a matching on the fiber η−1(p).

Theorem 3.12 ([BW02]). Let X be a CW-complex with an acyclic matching
M and a compact P -grading η such that M and η are compatible. Then there
exist a CW-complex XM , with n-cells in one-to-one correspondence with the
M -essential n-cells of X, and a homotopy equivalence fM : X → XM . Moreover
such construction is natural with respect to inclusion: let Y be a subcomplex of
X such that, if (τ → σ) ∈M and σ ∈ Y (∗), then τ ∈ Y (∗); then YM ′ ⊆ XM and
the diagram

Y YM ′

X XM

fM′

fM

is commutative, where M ′ is the restriction of M to GY . The CW-complex XM

is called Morse complex of X with respect to the acyclic matching M .

Sketch of proof. The compatibility with a compact grading is used to deal with
infinite matchings. Here we make the further assumption that X is a finite
CW-complex, and such compatibility condition becomes unnecessary.

We prove the statement by induction on the number of cells of X. If X has
only one cell there is nothing to prove (M must be empty). Consider then the
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general case. Denote by ≤M the partial order on X(∗) associated to the acyclic
graph GMX . Let σ be a ≤M -maximal cell, and set n = dimσ. There are two
cases.

� The cell σ is not M -essential. Then there exists some other cell τ , of
dimension n+ 1, such that (τ → σ) ∈M . Since σ is ≤M -maximal, it is not
a face of any cell other than τ . Moreover, σ is a regular face of τ . Then it
is possible to collapse the cell σ on τ as in the following figure.

σ

τ

We obtain a complex X ′ homotopy equivalent to X and with two less cells
(σ and τ , which were non-essential), so the induction hypothesis applies.

� The cell σ is M -essential. Then by maximality it isn’t face of any other
cell of X, thus X = X ′ ∪ϕ Dn. By induction, X ′ is homotopy equivalent
to its Morse complex X ′M through a homotopy equivalence f ′M : X ′ → X ′M .
Construct XM by attaching Dn to X ′M via the attaching map f ′M ◦ϕ. Then
f ′M : X ′ → X ′M extends to a homotopy equivalence fM : X → XM .

Consider again the case where X is the torus of Figure 3.1. The acyclic
matching M on the right of Figure 3.2 gives rise to a Morse complex XM with
one 2-cell (corresponding to A), two 1-cells (corresponding to a and b) and one
0-cell (corresponding to x). More explicitly, the procedure described in the proof
of Theorem 3.12 says to remove the cell A (which is the only ≤M -maximal cell),
collapse the cells B and c, and then attach A again. This is shown in Figure 3.3.
Notice that a CW structure for a torus cannot have less than one 2-cell, two
1-cells and one 0-cell, since the homology groups have rank 1, 2 and 1 respectively.
Indeed, the Morse complex XM is a minimal CW-complex, in the sense that the
number of k-cells is exactly rkHk(XM ) for all k ∈ N.

Remark 3.13. It is not true in general that a CW-complex X admits an acyclic
matching M such that XM is a minimal CW-complex, since in this case the
homology of X would be torsion-free.

We are finally going to prove a lemma which will be useful in the next
chapters, when it will come to apply discrete Morse theory.

Lemma 3.14. Let M be a matching on X and let η be a P -grading on X
compatible with M . Let Mp be the restriction of M to the fiber η−1(p), for all
p ∈ P . If Mp is acyclic for all p ∈ P , then M is also acyclic.

Proof. Suppose by contradiction that the graph GMX contains a cycle. Since
the edges in M increase the dimension by 1 whereas all the others lower the
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Figure 3.3: Morse collapses for a torus.

dimension by 1, a cycle must be of the form

τ1 −→ σ1
M−→ τ2 −→ σ2

M−→ . . . −→ σk−1
M−→ τk −→ σk

M−→ τ1,

where the edges labelled with M are those belonging to M . Since τi ≥ σi in X(∗)

we have that η(τi) ≥ η(σi) in P , for all i = 1, . . . , k. Moreover η(σi) = η(τi+1)
since (τi+1 → σi) ∈ M , for all i = 1, . . . , k (the indices are taken modulo k).
Therefore

η(τ1) ≥ η(σ1) = η(τ2) ≥ η(σ2) = · · · = η(τk) ≥ η(σk) = η(τ1).

The first and the last term of this chain of inequalities are equal, so all the terms
are equal to the same element p ∈ P . Then this cycle is contained in the graph

G
Mp

X and therefore Mp is not acyclic, which is a contradiction.

In view of Lemma 3.14, it possible to weaken the hypothesis of Theorem 3.12
by removing the requirement of M being acyclic and asking instead that Mp is
acyclic for all p ∈ P (where Mp is the restriction of M to the fiber η−1(p)). In
this way the P -grading η is used to obtain both compactness and acyclicity.





Chapter 4

The K(π, 1) conjecture

The K(π, 1) conjecture for Artin groups states that a certain topological space
constructed from the dual representation of a Coxeter group is a classifying space
for the corresponding Artin group. Such conjecture has interesting consequences,
and was proved only for some families of Artin groups (first of all, for Artin
groups of finite type). In this chapter we are going to present the K(π, 1)
conjecture, together with some of its consequences and a proof of the conjecture
in the case of groups of finite type. Such proof, different from the first one
by Deligne [Del72], partially follows the line of Paris [Par12] but has major
simplifications thanks to the use of discrete Morse theory. We will mainly follow
the notations of [Par12].

4.1 Statement of the conjecture

Let (Γ, S) be a Coxeter graph, and let WΓ and AΓ be the corresponding Coxeter
and Artin groups. Recall from Section 1.7 that WΓ acts on the Tits cone I ⊆ V ∗.
The union of the regular orbits of such action is the complement in I of a family
A of hyperplanes of V ∗. Define the topological space

N(Γ) = (I × I) \
( ⋃
H∈A

H ×H
)
,

on which WΓ acts freely and properly discontinuously by Corollary 1.29. Define
then the quotient space

N̄(Γ) = N(Γ)/WΓ,

and notice that the projection N(Γ)→ N̄(Γ) is a covering map. As we will see,
the fundamental group of N̄(Γ) is canonically isomorphic to the Artin group
AΓ. The K(π, 1) conjecture, due to Brieskorn [Bri73] (for groups of finite type),
Arnold, Pham, and Thom [vdL83] (in full generality), is the following.

Conjecture 4.1 (K(π, 1) conjecture). The space N̄(Γ) is a classifying space
for the Artin group AΓ.
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Recall that a classifying space for a group π is a connected topological space
with fundamental group isomorphic to π and with trivial higher homotopy
groups. For spaces with the homotopy type of a CW-complex, having trivial
higher homotopy groups is equivalent to having a contractible universal cover
[Hat02]. A classifying space for a group π is usually called a K(π, 1), which gives
the name to the conjecture.

We now give a few definitions which will be needed to present the current
state of the K(π, 1) conjecture.

Definition 4.2. A Coxeter graph (Γ, S) is said to be free of infinity if ms,t 6=∞
for all s, t ∈ S.

Definition 4.3. Denote by Sf and S<∞ the subsets of the powerset P(S)
defined by

Sf = {T ⊆ S | Γ|T is of finite type};
S<∞ = {T ⊆ S | Γ|T is free of infinity}.

Definition 4.4. The dimension of a Coxeter graph (Γ, S) is the maximum
cardinality of a set X ∈ Sf .

Definition 4.5. A Coxeter graph (Γ, S) is called of large type if ms,t ≥ 3 for
all s, t ∈ S such that s 6= t.

Definition 4.6. A Coxeter graph (Γ, S) is called of FC type if Sf = S<∞.

Definition 4.7. A Coxeter graph (Γ, S) is of affine type if the Tits cone I is an
open half-space in V ∗ (recall the notations of Section 1.7) and the action of WΓ

can be restricted to an affine hyperplane E ⊆ V ∗ in such a way that each s ∈ S
acts as an orthogonal reflection in E.

We extend all these concepts to the corresponding Coxeter and Artin groups
(e.g. an Artin group is said to be of large type if its Coxeter graph is of large
type, etc.). So far, the K(π, 1) conjecture has been proved for the following
families of Artin groups.

� Artin groups of finite type [Del72].

� Artin groups of dimension ≤ 2 [CD95]. This family includes Artin groups
of large type, for which the K(π, 1) conjecture was previously proved in
[Hen85].

� Artin groups of FC type [CD95].

� Some families of Artin groups of affine type, namely those called Ãn, B̃n
and C̃n [Oko79, CMS10].
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4.2 The Salvetti complex

In the rest of this work, a central role is played by the Salvetti complex of a
Coxeter graph (Γ, S). Such complex was first defined by Salvetti [Sal87] for
Coxeter graphs of finite type, and later generalized by for arbitrary Coxeter
graphs (see [Par12]). We are going to define the Salvetti complex as in [Par12],
and we will quote some known results about it.

Definition 4.8. Given a poset (P,≤), its derived complex is a simplicial complex
with P as set of vertices and having a simplex {p1, . . . , pk} for every chain
p1 ≤ p2 ≤ . . . ≤ pk in P .

Definition 4.9. Let T ⊆ S. An element w ∈W is T -minimal if it is the unique
element of smallest length in the coset wWT (cf. Corollary 1.25).

Consider now the set W×Sf , with the following partial order: (u, T ) ≤ (v,R)
if T ⊆ R, v−1u ∈WR and v−1u is T -minimal.

Lemma 4.10. The relation ≤ defined above is indeed a partial order relation
on W × Sf .

Proof. The reflexive property is obvious. Concerning the antisymmetric property,
suppose (u, T ) ≤ (v,R) and (v,R) ≤ (u, T ). Then T ⊆ R ⊆ T so T = R.
Moreover v−1u is T -minimal and also contained in WT , thus v−1u = 1. This
means that (u, T ) = (v,R). We finally verify the transitive property. Suppose
(u, T ) ≤ (v,R) and (v,R) ≤ (w,Q). Then T ⊆ R ⊆ Q, so T ⊆ Q. Since
v−1u ∈ WR and w−1v ∈ WQ, we also have that w−1u = w−1vv−1u ∈ WQ.
Furthermore v−1u is T -minimal and w−1v is R-minimal. By Proposition 1.24,
we have that for any x ∈Wx

`(w−1ux) = `(w−1vv−1ux) = `(w−1v) + `(v−1ux)

= `(w−1v) + `(v−1u) + `(x) = `(w−1vv−1u) + `(x)

= `(w−1u) + `(x) ≥ `(w−1u).

This means that w−1u is T -minimal.

Lemma 4.11 ([Par12]). Let (u, T ) ∈W × Sf , and set

P = {(v,R) ∈W × Sf | (v,R) ≤ (u, T )},
P1 = {(v,R) ∈W × Sf | (v,R) < (u, T )}.

Call P ′ and P ′1 the geometric realizations of the derived complexes of (P,≤)
and (P1,≤), respectively. Then the pair (P ′, P ′1) is homeomorphic to the pair
(Dn, Sn−1) for n = |T |.
Definition 4.12. The Salvetti complex of a Coxeter graph Γ, denoted by Sal(Γ),
is the geometric realization of the derived complex of (W × Sf ,≤). By Lemma
4.11 it has a CW structure with one cell C(u, T ) for all (u, T ) ∈W × Sf , where
the dimension of a cell C(u, T ) is |T |.
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Notice that the dimension of the complex Sal(Γ) coincides with the dimension
of the corresponding Coxeter graph Γ, as defined in Section 4.1.

The Coxeter group W acts on W ×Sf by left-multiplication on the first coor-
dinate, and thus also acts on Sal(Γ). Such action is free, properly discontinuous
and cellular, so the quotient map

Sal(Γ)→ Sal(Γ)/W

is a covering map. Moreover such covering map induces a CW structure on the
quotient space Sal(Γ) = Sal(Γ)/W . The complex Sal(Γ) has one cell C̄(T ) of
dimension |T | for each T ∈ Sf .

The reason for which we are interested in studying the Salvetti complex is
that it is a CW model for the space N(Γ), as is stated in the following theorem.

Theorem 4.13 ([Sal87]). There exists a W -equivariant homotopy equivalence
Sal(Γ)→ N(Γ), which induces a homotopy equivalence Sal(Γ)→ N̄(Γ).

Let’s describe in more detail the combinatorics of the low-dimensional cells
of the complexes Sal(Γ) and Sal(Γ).

� The 0-cells of Sal(Γ) are in one-to-one correspondence with the elements
of the Coxeter group W . For this reason we will often denote a 0-cell by w
instead of C(w,∅).

� Since {s} ∈ Sf for all s ∈ S, we have a 1-cell C(w, {s}) joining vertices
w and ws for each w ∈ W and s ∈ S. Notice that the 1-cell C(ws, {s})
joins vertices w and ws, but is different from C(w, {s}). Orient the 1-cell
C(w, {s}) from w to ws.

� A 2-cell C(w, {s, t}) exists only if {s, t} ∈ Sf , i.e. if m = ms,t 6=∞. If it
exists, such 2-cell is a 2m-agon with vertices

w, ws, wst, . . . , wΠ(s, t,m− 1), wΠ(s, t,m) = wΠ(t, s,m),

wΠ(t, s,m− 1), . . . , wt.

See also Figure 4.1 for a representation of such cell in the case m = 3.

The quotient complex Sal(Γ) has one 0-cell C̄(∅), a 1-cell C̄({s}) for each s ∈ S,
and a 2-cell C̄({s, t}) for each {s, t} ∈ Sf . Therefore the fundamental group of
Sal(Γ) admits a representation with a generator σs for each s ∈ S and a relation
for each 2-cell C̄({s, t}). Such relation turns out to be exactly of the form

Π(σs, σt,ms,t) = Π(σt, σs,ms,t),

so we have the following result.

Theorem 4.14 ([vdL83]). The fundamental group of N̄(Γ) is isomorphic to the
Artin group AΓ.
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wt
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wts wsts = wtst

Figure 4.1: Example of a 2-cell C(w, {s, t}) of the complex Sal(Γ),
in the case ms,t = 3.

For a CW-complex, having trivial homotopy groups is equivalent to being
contractible. Therefore Theorems 4.13 and 4.14 allow us to reformulate the
K(π, 1) conjecture as follows.

Conjecture 4.15. The universal cover of both Sal(Γ) and Sal(Γ) is contractible.

Another consequence of Theorem 4.13 is the following: if the K(π, 1) con-
jecture holds for an Artin group AΓ, then homology and cohomology of AΓ are
trivial in dimension higher than the dimension of AΓ, and in particular AΓ is
torsion-free. It is worth mentioning that it is not known in general if Artin
groups are torsion-free.

Now that we have CW models for N(Γ) and N̄(Γ), we can apply discrete
Morse theory in order to get some information about their homotopy types and
about the validity of the K(π, 1) conjecture. To do so, we first define a CW
structure on the universal cover of the Salvetti complex.

Consider the set AΓ×Sf together with the partial order ≤ defined as follows:
(α, T ) ≤ (β,R) if T ⊆ R and α can be written as α = βτ(w) for some T -minimal
element w ∈ WR. Lemmas 4.10 and 4.11 have analogs for AΓ × Sf . Define
then S̃al(Γ) as the geometric realization of the derived complex of (AΓ × Sf ,≤),
with the natural CW structure having a cell C̃(α, T ) of dimension |T | for each
(α, T ) ∈ AΓ × Sf .

Proposition 4.16 ([Par12]). The projections S̃al(Γ) → Sal(Γ) and S̃al(Γ) →
Sal(Γ), induced by the projections AΓ × Sf →W × Sf and AΓ × Sf → Sf , are
cellular covering maps. Moreover the complex S̃al(Γ) is simply connected, and
therefore is the universal cover of both Sal(Γ) and Sal(Γ).

The Artin group AΓ naturally acts on the complex S̃al(Γ), similarly to how the
Coxeter group WΓ acts on Sal(Γ), and this action is free, properly discontinuous
and cellular.

Notice finally that both the complexes Sal(Γ) and S̃al(Γ) are regular (in
the sense of Definition 3.3). On the other hand Sal(Γ) is not regular since, for
instance, all the 1-cells are attached to the same 0-cell.
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4.3 The K(π, 1) conjecture for Artin groups of
finite type

The first proof of the K(π, 1) conjecture in the case of Artin groups of finite
type is due to Deligne [Del72]. Quite recently, Paris suggested a different proof
for this result which is based on the combinatorial constructions of Section 4.2
[Par12]. The aim of this section is to present a new proof, which partly follows
the one of Paris but is, in our opinion, simpler and more understandable. It
relies on discrete Morse theory.

As in [Par12] we are going to define a subcomplex S̃al+(Γ) of S̃al(Γ), which
is the geometric realization of the derived complex of (A+

Γ × Sf ,≤) viewed as
subposet of (AΓ×Sf ,≤). Essentially, S̃al+(Γ) is the subcomplex of S̃al(Γ) having
all the cells C̃(α, T ) such that α belongs to the positive monoid A+

Γ .
The key result is the following. Its proof is where our work differs from

[Par12]. Notice that for now we still don’t need to assume that Γ is of finite
type.

Theorem 4.17 (cf. [Par12]). The subcomplex S̃al+(Γ) is contractible.

Proof. Our aim is to construct an acyclic matching on S̃al+(Γ) having only one
essential cell (in dimension 0), and then apply Theorem 3.12.

Set X = S̃al+(Γ). Define a function η : X(∗) → N as follows:

η
(
C̃(α, T )

)
= max
w∈WT

`
(
ατ(w)

)
.

We are now going to verify that η is a compact N-grading on X. Suppose that
(α, T ) ≤ (β,R) in X(∗). This means that the same relation holds in A+

Γ × Sf ,
thus T ⊆ R and α can be written as α = βτ(u) for some T -minimal element
u ∈WR. Therefore

η
(
C̃(α, T )

)
= max
w∈WT

`
(
ατ(w)

)
= `(α) + max

w∈WT

`(w)

= `(β) + `(u) + max
w∈WT

`(w)

= `(β) + max
w∈WT

`(uw)

≤ `(β) + max
v∈WR

`(v)

= η
(
C̃(β,R)

)
,

where the fourth equality follows from Proposition 1.24 since u is T -minimal.
We still need to see that η is a compact grading. If a cell c = C̃(α, T ) is such
that η(c) ≤ n for some fixed n ∈ N, then

`(α) ≤ max
w∈WT

`(ατ(w)) ≤ n.

In the Artin monoid A+
Γ there is only a finite number of elements of length ≤ n,

so the subcomplex X≤n has only finitely many cells. Thus it is compact.
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We want to construct an acyclic matching on the fibers η−1(n) for each n ∈ N.
To do so, we first prove a few intermediate results.

(i) We claim that, given any cell C̃(β, T ) of X, there is exactly one 0-cell
C̃(α,∅) lying in the same fiber and such that C̃(α,∅) ≤ C̃(β, T ). To prove
this, first notice that the relation C̃(α,∅) ≤ C̃(β, T ) is true if and only if
α can be written in the form α = βτ(u) for some u ∈WT . If we add the
condition that the two cells must lie in the same fiber, then we have the
following inequality:

η
(
C̃(β, T )

)
= max
w∈WT

`(βτ(w)) ≥ `(βτ(u)) = η
(
C̃(α,∅)

)
.

The equality holds if and only if u is the unique element of maximal length
in WT . This means that there is exactly one 0-cell which is both in the
boundary of C̃(β, T ) and in the same fiber.

(ii) Let C̃(α,∅) be a 0-cell of X. We want to prove that for any T ∈ Sf there
is at most one cell of the form C̃(β, T ) in the same fiber of C̃(α,∅) and
such that C̃(α,∅) ≤ C̃(β, T ). Indeed, by step (i) we know that the only
0-cell in the boundary of C̃(β, T ) and lying in the same fiber is C̃(β∆T ,∅),
where ∆T is the fundamental element of A+

T . So there are two cases: if α

is right divisible by ∆T , then there is exactly one cell of the form C̃(β, T )
having C̃(α,∅) in its boundary and lying in the same fiber (it is obtained
setting β = α∆−1

T ); otherwise, if α is not right divisible by ∆T , then there

is no 0-cell of the form C̃(β, T ) satisfying these two conditions.

(iii) Let C̃(α,∅) be a 0-cell of X, and let

T =

{
s ∈ S

∣∣∣∣ there exists some β ∈ A+
Γ such that

C̃(α,∅) ≤ C(β, {s}) and η
(
C̃(α,∅)

)
= η

(
C̃(β, {s})

) } .
We want to prove that T ∈ Sf and that there exists a unique γ ∈ A+

Γ such
that

C̃(α,∅) ≤ C(γ, T ) and η
(
C̃(α,∅)

)
= η

(
C̃(γ, T )

)
.

By step (ii), α is right multiple of all the elements in ΣT = {σs | s ∈ T};
more precisely, using the notation of Section 2.3, T = I(α). By Proposition
2.10 there exists a least right common multiple of ΣT , which means that
T ∈ Sf (by Theorem 2.19). Moreover, by Lemma 2.20 we have that such
least right common multiple is precisely ∆T , which means that α is right
multiple of ∆T . Again by step (ii), there exists exactly one γ ∈ A+

Γ such

that the cell C̃(γ, T ) contains the 0-cell C̃(α,∅) in its boundary and lies
in the same fiber.

(iv) Putting together steps (ii) and (iii), we have that any connected component
of the subgraph η−1(n) ⊆ GX (see Definition 3.5) has exactly one 0-cell
C̃(α,∅) and is isomorphic to the Hasse diagram of the powerset P(T )
where T = I(α). Indeed, for each R ⊆ T there is exactly one cell of the
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form C̃(βR, R) which has the 0-cell C̃(α,∅) in its boundary and lies in the
same fiber; moreover, if we have R ⊆ Q ⊆ T then

βQ = α∆−1
Q = βR∆R∆−1

Q ,

thus C̃(βR, R) ≤ C̃(βQ, Q). In Figure 4.2 are shown the isomorphism types
of connected components of η−1(n) ⊆ GX for |T | = 0, 1, 2, 3.

{t}{s}

{s, t}

∅ ∅

{s} {t} {r}

{t, r}{s, r}{s, t}

{s, t, r}

T = {s, t, r}T = {s, t}

∅

{s}

∅

T = {s}T = ∅

Figure 4.2: Isomorphism types of the connected components of
the subgraph η−1(n) of GX , in the cases |T | = 0, 1, 2, 3.

We are now able to describe an acyclic matching on the fibers η−1(n). Fix
a connected component C of a fiber η−1(n) ⊆ GX . As proved in (iv), C is
isomorphic to the Hasse diagram H of P(T ) for some T ∈ Sf . Unless C is the
connected component of the 0-cell C̃(1,∅), it contains at least two cells; this
is true because T = I(α) has at least one element for α 6= 1. If |T | ≥ 1, fix an
element s ∈ T and consider the following matching M on H :

M =
{

(R ∪ {s} → R) | R ⊆ T \ {s}
}
.

See Figure 4.3 for a drawing of such matching in the case |T | = 3. To see that
M is acyclic, consider the following partition of the set of vertices P(T ) of H :

V1 = {R ⊆ T | s ∈ R},
V2 = {R ⊆ T | s 6∈ R}.

All the edges in M go from V1 to V2, whereas all the other edges connect two
vertices in the same component. This easily implies that M is acyclic.

Putting together the matchings on each connected component C ∼= H , we
finally obtain a matching on X(∗) compatible with η. The only essential cell is the
0-cell C̃(1,∅). Therefore by Theorem 3.12 the complex X is homotopy equivalent
to a CW-complex with only one cell (in dimension 0), i.e. X is contractible.
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{s, t}

∅

{s} {t} {r}

{t, r}{s, r}

{s, t, r}

Figure 4.3: The matching M on H in the case T = {s, t, r}.
The nodes in V1 are grey, whereas those in V2 are white.

In Figure 4.4 is shown the subcomplex S̃al+(Γ) for S = {s, t} and ms,t = 2,
together with the matching used to prove Theorem 4.17.

Thanks to the results of Section 2.2, when Γ is of finite type it is possible
to “nicely” cover the entire complex S̃al(Γ) with copies of S̃al+(Γ). This is how
we will then prove that Theorem 4.17 implies the K(π, 1) conjecture for Artin
groups of finite type.

Proposition 4.18 ([Par12]). Let Γ be a Coxeter graph of finite type. Then
there exists an infinite chain Y0 ⊆ Y1 ⊆ . . . of subcomplexes of S̃al(Γ) such that

S̃al(Γ) =
⋃
i∈N

Yi

and each Yi is isomorphic (as a CW-complex) to S̃al+(Γ).

Proof. Let ∆ be the fundamental element of A+
Γ (see Section 2.2). Define then

the subcomplexes Yi as
Yi = ∆−i S̃al+(Γ).

By Theorem 2.16, any element α ∈ AΓ can be written in the form ∆−iβ for
some i ∈ N and β ∈ A+

Γ . This means that any cell C̃(α, T ) of S̃al(Γ) is contained
in some subcomplex Yi, so the union of such subcomplexes covers all S̃al(Γ).

Recall now the following classical result, which be deduced from [Hat02],
Corollary 4G.3.

Lemma 4.19. Let X be a CW-complex, and let {Yi | i ∈ N} be a family of
contractible subcomplexes of X such that Yi ⊆ Yi+1 for all i ∈ N and⋃

i∈N
Yi = X.

Then X is also contractible.
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1 σ2
s σ3

s σ4
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Figure 4.4: The subcomplex S̃al+(Γ) for S = {s, t} and ms,t = 2,
with the matching on η−1(4).

Proof. The image of any map Sn → X is compact, so it is contained in a finite
subcomplex of X. Thus it is contained in Yi for some i. Since Yi is contractible,
the map itself is homotopic to a constant map in Yi. This proves that all the
homotopy groups of X are trivial. Then the inclusion {x} ↪→ X for any x ∈ X is
a weak homotopy equivalence, so by Whitehead’s theorem it is also a homotopy
equivalence.

We are finally able to prove the K(π, 1) conjecture for Artin groups of finite
type.

Theorem 4.20 ([Del72, Par12]). Let Γ be a Coxeter graph of finite type. Then
N̄(Γ) is a classifying space for the corresponding Artin group AΓ.

Proof. We have already seen that it is enough to prove that the complex S̃al(Γ) is
contractible. This follows from Lemma 4.19 using the family {Yi} of subcomplexes
given by Proposition 4.18, each of them being contractible by Theorem 4.17.



Chapter 5

Classifying space of Artin
monoids

In this final chapter we will present some relations between the K(π, 1) conjecture
and the notion of classifying spaces of monoids introduced in [Seg73]. In the
first section we are going to introduce classifying spaces of monoids, particularly
in the case of monoids which inject into their groupification (this is the case we
are interested in, since an Artin monoid injects into the corresponding Artin
group). The second section is devoted to an alternative proof of a theorem
by Dobrinskaya [Dob06], which gives a reformulation of the K(π, 1) conjecture.
Such proof is new (although part of it relies on a work by Ozornova [Ozo13])
and uses the technique of discrete Morse theory.

5.1 Classifying space of monoids

First we are going to introduce the notion of classifying space of a monoid, as a
particular case of the classifying space of a small category (viewing a monoid as
a category with one object) [Seg73].

Definition 5.1. The classifying space BM of a monoid M is the geometric
realization of the following simplicial set. The n-simplices are given by the
sequences (x1, . . . , xn) of n elements of M , and are denoted by the symbol
[x1| . . . |xn]. The face maps send an n-simplex [x1| . . . |xn] to the simplices
[x2| . . . |xn], [x1| . . . |xixi+1| . . . |xn] for i = 1, . . . , n− 1, and [x1| . . . |xn−1]. The
degeneracy maps send [x1| . . . |xn] to [x1| . . . |xi|1|xi+1| . . . |xn] for i = 0, . . . , n.

As shown in [Mil57], the geometric realization of a simplicial set is a CW-
complex having a n-cell for each non-degenerate n-simplex. Therefore the
classifying space of a monoid is a CW-complex having as n-cells the simplices
[x1| . . . |xn] with xi 6= 1 for all i. Notice also that BM has only one 0-cell denoted
by [ ].

49
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Definition 5.2. The groupification of a monoid M is a group G together with
a homomorphism M → G satisfying the following universal property: for any
group H and homomorphism M → H, there exists a unique homomorphism
G→ H which makes the following diagram commutative.

M G

H

Remark 5.3. If any presentation of M is given, then the groupification G of
M is the group with the same presentation.

Remark 5.4. The fundamental group of the classifying space BM of a monoid
M is given by the groupification G of M . This can be easily seen using the
well-known presentation of the fundamental group of a CW-complex with one
0-cell: generators are given by the 1-cells, and relations are given by the attaching
maps of the 2-cells. In our case the generator set is {[x] | x ∈ M, x 6= 1} and
the relation corresponding to the 2-cell [x|y] is given by [x][y][xy]−1 if xy 6= 1
and [x][y] if xy = 1. This is indeed a presentation for the groupification G of M ,
by Remark 5.3.

Before focusing on the case of Artin monoids, we are going to give an explicit
construction for the universal cover of BM for any monoid M that injects in its
groupification G (i.e. the natural map M → G is injective). This construction
generalizes the one of Example 1B.7 in [Hat02]. Let EM be the geometric
realization of the simplicial set whose n-simplices are given by the (n+ 1)-tuples
[g|x1| . . . |xn], where g ∈ G and xi ∈M . The i-th face map sends [g|x1| . . . |xn]
to 

[gx1|x2| . . . |xn] for i = 0;

[g|x1| . . . |xixi+1| . . . |xn] for 1 ≤ i ≤ n− 1;

[g|x1| . . . |xn−1] for i = n.

The i-th degeneracy map sends [g|x1| . . . |xn] to [g|x1| . . . |xi|1|xi+1| . . . |xn] for
all i = 0, . . . , n. Notice that the vertices of EM are in bijection with the
group G, and that the vertices of an n-simplex [g|x1| . . . |xn] are of the form
[gx1 · · ·xi] for i = 0, . . . , n. The group G acts freely and simplicially on EM
by left multiplication: an element h ∈ G sends the simplex [g|x1| . . . |xn] to the
simplex [hg|x1 . . . |xn]. Thus the quotient map EM → EM/G is a covering map.

Lemma 5.5. EM/G is naturally homeomorphic to BM .

Proof. A simplex [x1| . . . |xn] of BM can be identified with the equivalence
class of the simplex [1|x1| . . . |xn] of EM/G. This identification is bijective and
respects face maps and degeneracy maps, so it is a homeomorphism.

Proposition 5.6. The space EM is the universal cover of BM , with the
natural covering map p : EM → BM obtained composing the quotient map
EM → EM/G and the homeomorphism EM/G→ BM of Lemma 5.5.
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Proof. We have already seen that p is indeed a covering map. Therefore it is
enough to show that EM is simply connected. Choose [ ] and [1] as basepoints for
BM and EM respectively, so that p : (EM, ∗)→ (BM, ∗) becomes a basepoint-
preserving covering map. An element c of π1(BM, ∗) can be represented as a
signed sequence (ε1[x1], . . . , εk[xk]) of 1-cells, where the sign εi = ±1 indicates
whether the arc [xi] is travelled in positive or negative direction. If we lift
such path to the covering space EM , we obtain a path passing through the
vertices [1], [xε11 ], [xε11 x

ε2
2 ], . . . , [xε11 x

ε2
2 · · ·xεkk ]. Notice that under the isomorphism

π1(BM, ∗) ∼= G of Remark 5.4 the path c corresponds precisely to xε11 x
ε2
2 · · ·xεkk .

This means that if c is non-trivial in π1(BM, ∗) then it lifts to a non-closed path
in EM . Since p∗ : π1(EM, ∗) → π1(BM, ∗) is injective, we can conclude that
π1(EM, ∗) is trivial.

The space EM has a particular subcomplex E+M consisting of all the cells
[g|x1| . . . |xn] such that g ∈M . In analogy to the case when M is a group (for
which EM = E+M), we prove that E+M is contractible.

Proposition 5.7. The space E+M deformation retracts onto its vertex [1]. In
particular it is contractible.

Proof. Any simplex [g|x1| . . . |xn] of E+M is a face of the (possibly degenerate)
simplex [1|g|x1| . . . |xn], which is also in E+M . Then we have a deformation
retraction of E+M onto the vertex [1] which slides any point q ∈ [g|x1| . . . |xn]
along the line segment from q to [1]. Such line segment exists in [1|g|x1| . . . |xn],
and is well defined in E+M because the attaching maps of the simplices are
linear.

5.2 Dobrinskaya’s theorem

In [Dob06], Dobrinskaya proved that the K(π, 1) conjecture can be reformulated
as follows.

Theorem 5.8 ([Dob06]). The K(π, 1) conjecture holds for an Artin group AΓ

if and only if the natural map BA+
Γ → BAΓ is a homotopy equivalence.

Dobrinskaya’s theorem is particularly interesting since it relates the K(π, 1)
conjecture to the problem of determining when the natural map M → G between
a monoid and its groupification induces a homotopy equivalence BM → BG
between the corresponding classifying spaces. Such fenomenon is known to
happen in some cases (see [MS76]), but the general problem is still open.

To prove Theorem 5.8, Dobrinskaya also proved the following result.

Theorem 5.9 ([Dob06]). The space N̄(Γ) is homotopy equivalent to the classi-
fying space BA+

Γ of the Artin monoid A+
Γ .

It is quite easy to deduce Theorem 5.8 from Theorem 5.9. Indeed, if the
natural map BA+

Γ → BAΓ is a homotopy equivalence then

N̄(Γ) ' BA+
Γ ' BAΓ,
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so the K(π, 1) conjecture holds for the Artin group AΓ. On the other hand, if the
K(π, 1) conjecture holds for AΓ then both spaces BAΓ and BA+

Γ are classifying
spaces for AΓ, so the natural map BA+

Γ → BAΓ must be a homotopy equivalence
since it induces an isomorphism at the level of fundamental groups.

In the rest of this section we will present a new proof of Theorem 5.9 based
on discrete Morse theory. Some ideas are taken from a recent work of Ozornova
[Ozo13], but we will prove the stronger statement that the space BA+

Γ can
be collapsed (in the sense of discrete Morse theory) to obtain a CW-complex
which coincides with Salvetti complex Sal(Γ) up to homotopy equivalence of the
attaching maps and orientation of the cells. This in particular answers some of
the questions left open in [Ozo13], Section 7.

From now on, let (Γ, S) be a Coxeter graph. When Γ is of finite type we are
able to show that EA+

Γ is contractible, using an argument similar to the one
used to prove that S̃al(Γ) is contractible.

Theorem 5.10. If Γ is a Coxeter graph of finite type, then the space EA+
Γ is

contractible.

Proof. To make the notation more readable denote the space EA+
Γ by X and its

subcomplex E+A+
Γ by X+. For any h ∈ AΓ the subcomplex hX+ is homeomor-

phic to X+, and therefore it is contractible by Proposition 5.7. Notice also that
hX+ consists of all the simplices [g|x1| . . . |xn] of X such that g �L h. Then,
if ∆ is the fundamental element of A+

Γ , X is the union of the subcomplexes
Yi = ∆−iX+ for i ∈ N. Since Yi ⊆ Yi+1 for all i, we can apply Lemma 4.19 to
conclude that X is contractible.

Corollary 5.11. If Γ is a Coxeter graph of finite type, then the classifying space
BA+

Γ is a classifying space for AΓ.

Proof. This result follows immediately by Remark 5.4, Proposition 5.6 and
Theorem 5.10.

We are going to construct an acyclic matching M on BA+
Γ which is essentially

a combination of the two matchings used in [Ozo13], with the difference that
ours will be entirely on the topological level. Set Z = BA+

Γ and

D = {∆T | T ∈ Sf \ {∅}},
where ∆T is the fundamental element of A+

T ⊆ A+
Γ . First we are going to describe

some definitions and results of [Ozo13], which will lead to the construction of
two matchings M1 and M2.

� A cell c = [x1| . . . |xn] ∈ Z(∗) is µ1-essential if the product xk · · ·xn lies in
D for 1 ≤ k ≤ n.

� The µ1-depth of a cell c = [x1| . . . |xn] is given by

d1(c) = min{j | [xj | . . . |xn] is µ1-essential},
with the convention that d1(c) = n+ 1 if no such j exists. Notice that c is
µ1-essential if and only if d1(c) = 0.



Dobrinskaya’s theorem 53

� For a cell c = [x1| . . . |xn] of µ1-depth d, and for d ≤ k ≤ n, define Ik ⊆ S
to be the unique subset of S with the property that xk · · ·xn = ∆Ik .

� A cell c = [x1| . . . |xn] of µ1-depth d > 0 is µ1-collapsible if

I(xd−1xd · · ·xn) = Id,

Lemma 5.12 ([Ozo13]). Define

M1 =

{
(c1 → c2)

∣∣∣∣ c1 = [x1| . . . |xn] ∈ Z(∗) is µ1-collapsible, and
c2 = [x1| . . . |xd−1xd| . . . |xn] where d = d1(c1)

}
.

Then M1 is an acyclic matching on Z with essential cells given by the µ1-essential
cells defined above.

To construct the second matching M2, assume from now on that the set
S carries a total order ≤. Notice that a µ1-essential cell c = [x1| . . . |xn] is
completely characterized by the sequence of subsets I1 ⊂ I2 ⊂ · · · ⊂ Ik defined
above.

� A µ1-essential cell c = [x1| . . . |xn] is µ2-essential if, for any 1 ≤ k ≤ n,
Ik \ Ik+1 = {sk} and sk = max Ik.

� The µ2-depth of a µ1-essential cell c = [x1| . . . |xn] is given by

d2(c) = min{j | [xj | . . . |xn] is µ2-essential},

� A µ1-essential cell c = [x1| . . . |xn] of µ2-depth d > 0 is µ2-collapsible if

max Id−1 = max Id.

Lemma 5.13 ([Ozo13]). Define

M2 =

{
(c1 → c2)

∣∣∣∣ c1 = [x1| . . . |xn] ∈ Z(∗) is µ2-collapsible, and
c2 = [x1| . . . |xd−1xd| . . . |xn] where d = d2(c1)

}
.

Then M2 is an acyclic matching on Z with essential cells given by the non-µ1-
essential cells and the µ2-essential cells.

Consider now the matching M = M1 ∪M2 on Z. With a slight abuse of
notation, define the length of a cell as

`([x1| . . . |xn]) = `(x1 · · ·xn)

for any cell [x1| . . . |xn] ∈ Z(∗). Define also a function η : Z(∗) → N × {0, 1} as
follows:

η(c) =

{
(`(c), 0) if c is µ1-essential;

(`(c), 1) if c is not µ1-essential.
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Lemma 5.14. The function η : Z(∗) → N× {0, 1} is a compat grading on Z, if
N× {0, 1} is equipped with the lexicographic order.

Proof. First we have to prove that η is a poset map. For this it is enough to
prove that, for any cell c1 = [x1| . . . |xn] ∈ Z(∗) and for any cell c2 which is a face
of c1, η(c1) ≥ η(c2). Suppose by contradiction that η(c1) < η(c2) for some cells
c1 and c2 as above. Since `(c1) ≥ `(c2) the only possibility is that η(c1) = (k, 0)
and η(c2) = (k, 1) where k = `(c1) = `(c2). This means in particular that c1 is
µ1-essential whereas c2 is not. Since `(c1) = `(c2), the cell c2 must be of the
form

c2 = [x1| . . . |xixi+1| . . . |xn]

for some i ∈ {1, . . . , n − 1}. Clearly if c1 is µ1-essential then also c2 is, so we
obtain a contradiction.

It only remains to prove that Z(n,q) is compact for all (n, q) ∈ N × {0, 1}.
This is immediate since Z(n,q) contains only cells of length ≤ n and there is only
a finite number of them.

Proposition 5.15. The matching M on Z is acyclic and compatible with the
compact grading η.

Proof. First let us prove that M and η are compatible. If (c1 → c2) ∈M1 then,
by definition of M1, we have that `(c1) = `(c2) and that both c1 and c2 are not
µ1-essential. On the other hand, if (c1 → c2) ∈M2, then `(c1) = `(c2) and both
c1 and c2 are µ1-essential. In any case we have η(c1) = η(c2), which means that
M and η are compatible.

Consider a fiber η−1(n, q), for some (n, q) ∈ N× {0, 1}. It cannot simultane-
ously contain edges in M1 and edges in M2, because the value of q determines
whether the cells in η−1(n, q) must be µ1-essential or not. Since M1 and M2 are
acyclic, the restriction of M to η−1(n, q) is also acyclic. This is true for all fibers
η−1(n, q), therefore by Lemma 3.14 we can conclude that M is also acyclic.

The previous proposition allows to apply Theorem 3.12 to Z, obtaining a
smaller CW-complex which we will call Y . The essential cells of the matching
M are precisely the µ2-essential cells. Notice that a µ2-essential cell c =
[x1| . . . |xn] ∈ Z(∗) is uniquely identified by the set I(x1 · · ·xn) ∈ Sf . This means
that the cells of Y are in one-to-one correspondence with Sf .

Call eT the cell of Y corresponding to the set T ∈ Sf . Then dim eT = |T |,
and the attaching map of eT has image contained in the union of the cells eR with
R ( T . So any subset F ⊆ Sf which is closed under inclusion (i.e. R ⊆ T ∈ F
implies R ∈ F) corresponds to a subcomplex YF of Y . In particular this holds
when F = T f for any T ⊆ S.

In a similar way we have subcomplexes SalF (Γ) of Sal(Γ) for all subsets F
of Sf closed under inclusion.

Remark 5.16. The reduced complex Y is natural with respect to inclusion
of the set S. Indeed, consider Coxeter graphs (Γ, S) and (Γ′, S′) such that
S ⊆ S′ (with a fixed total order on S′, which induces a total order on S) and
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Γ′|S = Γ. Then we obtain reduced complexes Y and Y ′ such that Y can be
naturally identified with the subcomplex Y ′Sf of Y ′. This is true because for any
non-degenerate simplex e of the subcomplex BA+

Γ ⊆ BA+
Γ′ all the faces of e, as

well as the matched cell µ(e), also belong to the subcomplex BA+
Γ .

Let us recall a few results of homotopy theory which will be used later. For n ≥
2 denote by π′n(X,A, ∗) the quotient group of πn(X,A, ∗) by the normal subgroup
generated by the elements [γ][f ] − [f ] for [f ] ∈ πn(X,A, ∗) and [γ] ∈ π1(X, ∗).
Furthermore denote by h′ : π′n(X,A, ∗)→ Hn(X,A) the homomorphism induced
by the Hurewicz homomorphism h : πn(X,A, ∗)→ Hn(X,A). See also [Hat02],
page 370.

Lemma 5.17 ([Hat02], Proposition 0.18). If (X1, A) is a CW pair and we have
attaching maps f, g : A→ X0 that are homotopic, then X0 tf X1 ' X0 tg X1

rel X0.

Corollary 5.18. If X is a CW-complex and f, g : Sn−1 → X are two attaching
maps of an n-cell en that are homotopic, then X tf en ' X tg en rel X.

Proof. It follows from the previous lemma with (X1, A) = (Dn, Sn−1) and
X0 = X.

Lemma 5.19 ([Hat02], Corollary 4.12). A CW pair (X,A) is (n− 1)-connected
if all the cells in X \A have dimension ≥ n.

Theorem 5.20 (General Hurewicz theorem; [Hat02], Theorem 4.37). If (X,A)
is an (n− 1)-connected pair of path-connected spaces with n ≥ 2 and A 6= ∅,
then h′ : π′n(X,A, ∗)→ Hn(X,A) is an isomorphism and Hi(X,A) = 0 for i < n.

We are finally ready to prove that the CW-complexes Y and Sal(Γ) are
essentially the same complex up to homotopy of the attaching maps and orien-
tation of the cells. In particular this implies that Y and Sal(Γ) are homotopy
equivalent, so Dobrinskaya’s theorem holds. In order to prove our main theorem,
the following lemma is required.

Lemma 5.21. Up to orientation, the boundary curve of a 2-cell e{s,t} of Y is
given by {

Π(e{s}, e{t},ms,t) Π(e−1
{s}, e

−1
{t},ms,t) if ms,t is even;

Π(e{s}, e{t},ms,t) Π(e−1
{t}, e

−1
{s},ms,t) if ms,t is odd.

Proof. By Remark 5.16 it is sufficient to treat the case S = {s, t}, so that Y
consists only of one 0-cell e∅, two 1-cells e{s}, e{t} and one 2-cell e{s,t}. Suppose
that s > t (in the other case the result is the same but with reversed orientation).
Set

Π′(a, b, k) =

{
Π(a, b, k) if k is even,

Π(b, a, k) if k is odd.
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Moreover, set

ξks = Π′(σt, σs, k),

ξkt = Π′(σs, σt, k).

Essentially ξks is a product of k alternating elements (σs or σt) ending with σs,
and ξkt is the same but ending with σt. For example, ξ4

s = σtσsσtσs. Set also
m = ms,t. The cells e∅, e{s}, e{t} and e{s,t} correspond to the M -essential cells
of Z, which are the following:

c∅ = [ ],

c{s} = [σs],

c{t} = [σt],

c{s,t} = [ξm−1
s |σt].

If c is a cell of Z, call M<c the restriction of the matching M to the cells that
are < c with respect to the partial order induced by the acyclic graph GMZ . Since
M<c is also an acyclic matching on M , compatible with the compact grading
η, we can consider the complex Y <c obtained collapsing Z along the matching
M<c. For simplicity, we will call a cell of some Y <c with the same name as the
corresponding M<c-essential cell in Z.

We want to prove by induction on k the following two assertions:

(i) the boundary curve of the 2-cell c = [ξkt |σs] in Y <c is

Π′([σt], [σs], k + 1) [ξk+1
s ]−1

for 1 ≤ k ≤ m− 1;

(ii) the boundary curve of the 2-cell c = [ξks |σt] in Y <c is

Π′([σs], [σt], k + 1) [ξk+1
t ]−1

for 1 ≤ k ≤ m− 2.

The base steps are for k = 1. Start from case (i). We have c = [σt|σs],
whose boundary in Z is given by [σt][σs][σtσs]

−1. The 1-cells [σt] and [σs] are
M -essential, whereas the 1-cell [σtσs] is matched with c. Therefore all these
1-cells are M<c-essential. This means that the boundary of c in Y <c is also given
by [σt][σs][σtσs]

−1. Case (ii) is similar: we have c = [σs|σt], and its boundary
in Z is [σt][σs][σsσt]

−1. This is also the boundary in Y <c, because [σsσt] is
matched with c (this wouldn’t be true for m = 2, but such case is excluded by
the condition k ≤ m− 2).

We want now to prove step k, case (i), for 2 ≤ k ≤ m−1. We have c = [ξkt |σs],
whose boundary in Z is given by [ξkt ][σs][ξ

k+1
s ]−1. The 1-cell [σs] is M -essential,

so it is in particular M<c-essential. The 1-cell [ξk+1
s ] is matched with c in M , so
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[σs]

[ξk+1
s ]

[σt]

[σs][σt]

[ξk−1
s |σt]

[ξkt ]

[ξkt |σs]

[σt]

[ξk+1
t ]

[σs]

[σt][σs]

[ξk−1
t |σs]

[ξks |σt]

[ξks ]

Figure 5.1: On the left: the induction step, case (i); on the right:
the induction step, case (ii). The boundary curve for all the
2-cells is denoted clockwise, starting from the black vertex. The
light arrows indicate the Morse collapse.

it is M<c-essential. Finally the 1-cell [ξkt ] is matched with c′ = [ξk−1
s |σt], whose

boundary in Y <c
′

is by induction hypothesis Π′([σs], [σt], k) [ξkt ]−1. Thus the
boundary of c in Y <c is given by

Π′([σs], [σt], k) [σs] [ξk+1
s ]−1 = Π′([σt], [σs], k + 1) [ξk+1

s ]−1.

See the left part of Figure 5.1 for a picture of case (i).
We finally want to prove step k, case (ii), for 1 ≤ k ≤ m − 2. We have

c = [ξks |σt], whose boundary in Z is given by [ξks ][σt][ξ
k+1
t ]−1. The 1-cell [σt] is

M -essential, so it is M<c-essential. The 1-cell [ξk+1
t ] is matched with c in M

(notice that this is true only for k < m − 1, because ξmt = ξms ), thus it is also
M<c-essential. The only 1-cell left to analyze is [ξks ], which is matched with
c′ = [ξk−1

t |σs], whose boundary in Y <c
′

is by induction Π′([σt], [σs], k) [ξks ]−1.
Then the boundary of c in Y <c is given by

Π′([σt], [σs], k) [σt] [ξk+1
t ]−1 = Π′([σs], [σt], k + 1) [ξk+1

t ]−1.

See the right part of Figure 5.1 for a picture of case (ii).
The induction argument is complete. To end the proof, consider now the

2-cell c{s,t} = [ξm−1
s |σt] of Z. Its boundary is [ξm−1

s ][σt][ξ
m
t ]. The 1-cell [σt] is

M -essential. The 1-cell [ξm−1
s ] is matched with c′ = [ξm−2

t |σs], whose boundary
in Y <c

′
is Π′([σt], [σs],m− 1) [ξm−1

s ]−1. The 1-cell [ξmt ] = [ξms ] is matched with
c′′ = [ξm−1

t |σs], whose boundary in Y <c
′′

is Π′([σt], [σs],m) [ξms ]−1. Therefore
the boundary of c{s,t} in Y is

Π′([σt], [σs],m− 1) [σt]
(

Π′([σt], [σs],m)
)−1

= Π′([σt], [σs],m− 1) [σt] Π([σs]
−1, [σt]

−1,m)

= Π′([σs], [σt],m) Π([σs]
−1, [σt]

−1,m).
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Up to orientation and starting point of the boundary curve, this is exactly what
is stated in the lemma.

Theorem 5.22. For any Coxeter graph Γ there exists a homotopy equivalence
ψ : Y → Sal(Γ) such that, for every subset F of Sf closed under inclusion, the
restriction ψ|YF has image contained in SalF (Γ) and

ψ|YF : YF → SalF (Γ)

is also a homotopy equivalence.

Proof. Consider a chain {∅} = F1 ⊆ F2 ⊆ · · · ⊆ Fk = Sf of subsets of Sf

closed under inclusion and such that |Fi+1| = |Fi|+ 1 for all i. We will define
ψ recursively on the subcomplexes YFi of Y , starting with the subcomplex YF1

consisting only of the 0-cell, and extending the map one cell at a time. We will
construct ψ such that ψ|YFi has image contained in SalFi(Γ). Simultaneously
we will prove by induction that the constructed map ψ|YFi : YFi → SalFi(Γ) has
the property that, for any subset F ⊆ Fi closed under inclusion, its restriction
is a homotopy equivalence between YF and SalF (Γ).

Define ψ|YF1
sending the 0-cell of Y to the 0-cell of Sal(Γ). Assume now by

induction to have already defined ψ|YFi for some i, and let en be the n-cell of
YFi+1

not contained in YFi . Such n-cell corresponds to the only element T ∈ Sf
which belongs to Fi+1 but not to Fi. We want to extend ψ|YFi to the cell en.

If n = 1 we simply send homeomorphically e1 to the corresponding 1-cell
of SalFi+1

(Γ), preserving the orientation. If n = 2 we can apply Lemma 5.21
to observe that the boundary curve of e2 in YFi is the same (via ψ|YFi ) as the

boundary curve of the corresponding 2-cell f2 of SalFi+1(Γ); then we extend
ψ|YFi sending e2 to f2 homeomorphically, preserving the boundary.

Now we are going to deal with the case n ≥ 3. To simplify the notation, set
X = YFi+1

, A = YFi , X
′ = SalFi+1

(Γ), A′ = SalFi(Γ) and ϑ = ψ|YFi . Moreover
consider the following subsets of Sf , which are closed under inclusion:

F = {R ∈ Sf | R ( T}, F∗ = F ∪ {T}.

Set Â = YF , X̂ = YF∗ , Â′ = SalF (Γ) and X̂ ′ = SalF∗(Γ). Notice that F ⊆ Fi
because Fi+1 is closed under inclusion and T is the only element in Fi+1 \ Fi.
Then we have the following inclusions of CW-complexes.

A X

Â X̂

A′ X ′

Â′ X̂ ′

By induction we know that ϑ : A→ A′ is a homotopy equivalence and that its
restriction λ = ϑ|Â : Â→ Â′ is also a homotopy equivalence. Let ϕ : Sn−1 → A
be the attaching map of the cell en. Notice that X̂ is obtained from Â by
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attaching the same cell en, so the image of ϕ is actually contained in Â. Thus
we have ϕ : Sn−1 → Â. The CW-complex X ′ is also obtained from A′ attaching
a n-cell, and with the same argument we can deduce that the corresponding
attaching map ϕ′ has image contained in Â′. Setting Γ1 = Γ|T we have that Γ1

is a Coxeter graph of finite type, because T ∈ Sf . Therefore the CW-complex
X̂ = YF∗ ' BA+

Γ1
is a space of type K(AΓ1

, 1) by Corollary 5.11. Similarly,
X̂ ′ = Sal|F∗(Γ) ' Sal(Γ1) is also a space of type K(AΓ1

, 1) by Theorem 4.20.
Choose the only 0-cell as basepoint for all the CW-complexes Â, A, X̂, X,

Â′, A′, X̂ ′, X ′. Consider now the long exact sequence of homotopy groups for
the pair (X̂, Â, ∗):

· · · → πn(X̂, ∗)→ πn(X̂, Â, ∗) ∂−→ πn−1(Â, ∗)→ πn−1(X̂, ∗)→ . . .

Since X̂ is a K(π, 1) and n ≥ 3, both the groups πn(X̂, ∗) and πn−1(X̂, ∗) are
trivial. Then the boundary map ∂ : πn(X̂, Â, ∗)→ πn−1(Â, ∗) is an isomorphism.
Since n ≥ 3 both π1(X̂, ∗) and π1(Â, ∗) are naturally isomorphic to the Artin
group AΓ1

, and the natural map π1(Â, ∗) → π1(X̂, ∗) induced by inclusion is
an isomorphism. Notice also that ∂ is a homomorphism of π1(Â, ∗)-modules.
Therefore ∂ induces an isomorphism ∂̄ : π′n(X̂, Â, ∗)→ π′n−1(Â, ∗) . Combining
Lemma 5.19 and Theorem 5.20 we have that the Hurewicz map h′ : π′n(X̂, Â, ∗)→
Hn(X̂, Â) is also an isomorphism. By basic facts the homology group Hn(X̂, Â)
is a free abelian group generated by the cell en. Putting everything together, we
obtain the following chain of isomorphisms:

π′n−1(Â, ∗) ∂̄−1

−−→ π′n(X̂, Â, ∗) h′−→ Hn(X̂, Â)→ Z.

Let x0 be the image of the basepoint of Sn−1 through the attaching map ϕ.
Given a path γ in Â from ∗ to x0, we have a change-of-basepoint isomorphism
bγ : πn−1(Â, ∗)→ πn−1(Â, x0) which induces an isomorphism b̄γ : π′n−1(Â, ∗)→
π′n−1(Â, x0). In a similar way we obtain an isomorphism, which we are still
going to call b̄γ , between the relative groups π′n(X̂, Â, ∗) and π′n(X̂, Â, x0). Such
isomorphisms commute with the boundary maps ∂, so that we obtain the
following commutative diagram:

π′n−1(Â, ∗) π′n(X̂, Â, ∗) Hn(X̂, Â) Z

π′n−1(Â, x0) π′n(X̂, Â, x0) Hn(X̂, Â) Z.

∂̄−1

b̄γ

h′

b̄γ

∂̄−1 h′

The class of ϕ in π′n−1(Â, x0) is sent by ∂̄−1 to the class of the characteristic map
Φ: (Dn, Sn−1)→ (X̂, Â, x0) of en. By definition, the Hurewicz homomorphism
then sends [Φ] to a generator of Hn(X̂, Â). So [ϕ] is a generator of π′n−1(Â, x0).
The isomorphism b−1

γ sends [ϕ] ∈ π′n−1(Â, x0) to some class [ϕ̃] ∈ π′n−1(Â, ∗)
with ϕ̃ ' ϕ. Thus we can finally conclude that the attaching map ϕ : Sn−1 → Â
is homotopic to some map ϕ̃ : (Sn−1, ∗)→ (Â, ∗) such that [ϕ̃] is a generator of
π′n−1(Â, ∗).
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The same argument can be applied to ϕ′ : Sn−1 → Â′, which therefore turns
out to be homotopic to some map ϕ̃′ : (Sn−1, ∗)→ (Â′, ∗) such that [ϕ̃′] is a
generator of π′n−1(Â′, ∗). Consider now the map λ◦ϕ̃ : (Sn−1, ∗)→ (Â′, ∗). Since
λ is a basepoint-preserving homotopy equivalence, we have that the element
[λ ◦ ϕ̃] = λ∗(ϕ̃) is a generator of π′n−1(Â′, ∗). Therefore [λ ◦ ϕ̃] = ±[ϕ̃′]. Up to
change of orientation of the n-cell in X̂ ′ \ Â′ we can assume that [λ ◦ ϕ̃] = [ϕ̃′].
By definition of π′n−1, since n ≥ 3 this means that [λ ◦ ϕ̃] = bγ [ϕ̃′] in πn−1(Â′, ∗)
for some path γ from ∗ to ∗ in Â′. In particular, λ ◦ ϕ̃ ' ϕ̃′. Then we have that
λ ◦ ϕ ' λ ◦ ϕ̃ ' ϕ̃′ ' ϕ′. Thus λ ◦ ϕ and ϕ′ are homotopic as maps Sn−1 → Â′.

We are now ready to construct the extension ϑ̃ of ϑ that we wanted.
Since ϑ : A → A′ is a homotopy equivalence, it can be extended to a ho-
motopy equivalence ϑ̄ : A tϕ en → A′ tϑ◦ϕ en being the identity on the inte-
rior of en. Moreover, since ϑ ◦ ϕ ' ϕ′, by Corollary 5.18 there exists a map
τ : Â′ tϑ◦ϕ en → Â′ tϕ′ en which is a homotopy equivalence rel Â′. Extending τ
to τ̃ : A′ tϑ◦ϕ en → A′ tϕ′ en being the identity on A′\Â′, we obtain a homotopy
equivalence rel A′. Then the composition ϑ̃ = τ̃ ◦ ϑ̄ extends ϑ and is a homotopy
equivalence between X = A tϕ en and X ′ = A′ tϕ′ en.

To complete our induction argument we only need to prove that, for any
subset F ⊆ Fi closed under inclusion, the restriction ϑ̃|YF is a homotopy
equivalence between YF and SalF (Γ). If T 6∈ F then F ⊆ Fi−1, so ϑ̃|YF
is a restriction of ϑ and our claim follows by induction. So we can assume
T ∈ F . We also assume F 6= Fi, since when F = Fi our claim is already
proved. If we set F ′ = F \ {T} then F ′ ⊆ Fi−1. By induction, the restriction
ϑ′ = ϑ̃|YF′ is a homotopy equivalence between YF ′ and SalF ′(Γ). If we follow the
previous construction to extend ϑ′ to a homotopy equivalence between YF and
SalF (Γ), we have to compose the maps ϑ̄′ : YF ′ tϕ en → SalF ′(Γ) tϑ◦ϕ en and
τ̃ ′ : A′ tϑ◦ϕ en → A′ tϕ′ en, where τ̃ ′ is obtained extending τ (as it was defined
previously) to the identity. What we obtain is precisely θ̃|YF , which is then a
homotopy equivalence.
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of type Ãn, Bn and applications, Geometry & Topology Monographs
13, 85–104 (2008).

61



62 Bibliography

[CMS10] F. Callegaro, D. Moroni and M. Salvetti, The K(π, 1) problem for
the affine Artin group of type Bn and its cohomology, J. Eur. Math.
Soc.(JEMS) 12(1), 1–22 (2010).

[Cox34] H. S. Coxeter, Discrete groups generated by reflections, Annals of
Mathematics , 588–621 (1934).

[Dav08] M. Davis, The geometry and topology of Coxeter groups, volume 32,
Princeton University Press, 2008.

[DCS96] C. De Concini and M. Salvetti, Cohomology of Artin groups, Math.
Res. Lett 3(2), 293–297 (1996).

[Del72] P. Deligne, Les immeubles des groupes de tresses généralisés, Inven-
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è tutta un’altra cosa! Ovviamente il ringraziamento è esteso a tutto quello che
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il sopravvento su Age.

65



66 Acknowledgements

Ringrazio i miei compagni d’anno matematici: Luca, Leonardo, Alessandro
(che vedo molto spesso), Justin, Elia, Giulio, Giovanni (che vedo un po’ meno
spesso), Simone (che ho visto una volta negli ultimi due anni). Tra l’altro con
Leonardo e Alessandro ho di recente guadagnato un ottimo passatempo nerd;7

per questo li ringrazio, e con loro anche Tess (che si è unito a noi nella conquista
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Elders Council riuscirà sicuramente a superarle.

9Non dimentichiamo la simpatica gara di trading e il viaggetto a Londra che ne è conseguito!
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